
2809658256

REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

COPYRIGHT

Degree P \ a  D  Year 2 0  O?" Name of Author

This is a thesis accepted for a Higher Degree of the University of London. It is an 
unpublished typescript and the copyright is held by the author. All persons 
consulting this thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author 
and that no quotation from it or information derived from it may be published without 
the prior written consent of the author.

Theses may not be lent to individuals, but the Senate House Library may lend a 
copy to approved libraries within the United Kingdom, for consultation solely on the 
premises of those libraries. Application should be made to: Inter-Library Loans, 
Senate House Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written 
permission from the Senate House Library. Enquiries should be addressed to the 
Theses Section of the Library. Regulations concerning reproduction vary according 
to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the 
author. (The Senate House Library will provide addresses where possible).

B. 1962-1974. In many cases the author has agreed to permit copying upon
completion of a Copyright Declaration.

C. 1975-1988. Most theses may be copied upon completion of a Copyright
Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

LOANS

This copy has been deposited in the Library of l ^ M / )

This copy has been deposited in the Senate House Library, 
Senate House, Malet Street, London WC1E 7HU.





Hyperpolarisation-activated ion channels as a target for 

nitric oxide-cGMP signalling in the rat brain

Gary William Wilson

Thesis submitted in fulfilment of the degree of Doctor of Philosophy, University 

College London (Wolfson Institute for Biomedical Research).



UMI Number: U592503

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U592503
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



I, Gary William Wilson, confirm that the work presented in this thesis is my own. 

Where information has been derived from other sources, I confirm that this has 

been indicated in the thesis.

1st October 2007

2



Abstract
Most of the known physiological effects of nitric oxide (NO) in the brain are 

mediated by activation of specialised guanylyl cyclase-coupled receptors, leading 

to a rise in intracellular cGMP. Apart from protein kinase activation little is known 

about subsequent cGMP signal transduction. In optic nerve axons, 

hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels, which bind 

cGMP (and cAMP) directly, appear to be a target. The objective was to test this 

possibility directly using electrophysiological methods. Studies were initially carried 

out by recording extracellularly from Schaffer collateral/commissural axons in 

hippocampal slices, where the NO-cGMP pathway contributes to synaptic plasticity. 

Pharmacological manipulation of the NO-cGMP pathway failed to affect 

significantly axonal conduction at 0.2 - 5 Hz, a frequency range in which HCN 

channels were found to influence conduction reliability. Raising cAMP levels were 

similarly ineffective suggesting that, unlike in optic nerve, the subunit composition 

is likely to render the HCN channels relatively cyclic nucleotide-insensitive. Next, I 

investigated two neuronal types known to express the cyclic nucleotide-sensitive 

HCN channel subunits (HCN2 and/or HCN4), namely the principal cells of the 

medial nucleus of the trapezoid body and of the deep cerebellar nuclei. Using 

whole-cell voltage clamp, I found no reproducible evidence of regulation of HCN 

channel function by NO, even though exogenous cGMP was effective routinely and 

the neurones expressed NO-activated guanylyl cyclase, as shown by 

immunohistochemistry. I then carried out a series of non-invasive sharp electrode 

current-clamp recordings in deep cerebellar nuclear neurones. Using the 

characteristic voltage sag as an index of HCN channel operation, exogenous NO 

was found to modulate the channels reproducibly. Attempts to refine the original 

whole-cell recording solution to optimise preservation of the NO-cGMP pathway 

failed to restore NO-sensitivity. Minimising cell dialysis by using the perforated- 

patch variant of the whole-cell method, however, was successful. The results 

provide direct evidence that HCN channels are potential downstream mediators of 

NO-cGMP signaling in the deep cerebellar nuclei and suggest that the importance 

of this transduction pathway may have been previously overlooked because of 

unsuitable recording methods.
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Chapter 1 -  General introduction

The functional significance of the nitric oxide (NO) - guanosine 3’-5’-cyclic 

monophosphate (cGMP) -hyperpolarisation-activated channel signalling pathway 

has not been well documented. NO is an unconventional, freely diffusible 

neurotransmitter of physiological and pathological importance throughout the brain. 

The hyperpolarisation-activated channel, which carries a current often referred to 

as the funny or queer current because of its initially puzzling properties, has been 

found to be crucial in both the central nervous system (CNS) and cardiovascular 

system. cGMP is a ubiquitous second messenger that could link these two 

components to a number of neurophysiological processes. Here, the discovery of 

these two entities and the general aspects of their signalling in the CNS will be 

considered. More detailed discussion of specific topics pertaining to each chapter 

will be discussed therein.

1.1 THE HISTORICAL IDENTIFICATION OF NO

NO was first studied by Joseph Priestly during the 18th century, when it was 

classified as a colourless, toxic gas. Indeed, on breathing NO, Humphrey Davy 

spoke of a terrible burning in his tongue, throat and chest (Sprigge 2002). Since 

being named “molecule of the year'1 by the journal Science in 1992 and earning 

three scientists the Nobel Prize for Physiology or Medicine in 1998, NO has 

become one of the most researched molecules.

NO rose to biological fame in the 1980s when it was identified as a diffusible 

endothelium-derived relaxing factor (EDRF) in a series of seminal experiments in 

the vascular system. As the name implies, EDRF was released from endothelial 

cells lining blood vessels to cause relaxation of the underlying smooth muscle, 

thereby influencing blood flow and blood pressure (Furchgott & Zawadzki 1980; 

Cocks & Angus 1983). This endothelial-dependent relaxation was thought to be 

mediated through cGMP and cGMP-dependent phosphorylation (Rapoport & 

Murad 1983; Rapoport et al. 1983). Prior to these studies, nitroglycerin, used 

clinically for many years for its vasodilatatory properties, and other organic nitrates 

were proposed to release NO, stimulate a guanylyl cyclase and cause a rise in 

cGMP (Katsuki et al. 1977; Arnold et al. 1977). The similarity of the tissue
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Chapter 1 -  General introduction

response to EDRF and nitrovasodilators led Furchgott, Ignarro and Moncada to 

propose more-or-less simultaneously that EDRF was NO. This was later confirmed 

when bradykinin was shown to release a substance from endothelial cells with 

indistinguishable chemical reactivity, stability and biological activity to authentic NO 

(Palmer ef al. 1987).

The following year, NO was found to be the substance produced following 

activation of the N-methyl-D-aspartate (NMDA) class of glutamate receptors on 

brain neurones to relay signals to neighbouring cells (Garthwaite et al. 1988). This 

potentially explained the earlier finding in the cerebellum that cGMP accumulation 

did not predominantly occur in the same cells that were stimulated by NMDA, 

suggesting an intercellular messenger (Garthwaite & Garthwaite 1987). This factor 

was subsequently demonstrated to share the same properties as EDRF and 

authentic NO, such as Ca2+-dependent release and smooth muscle relaxation 

(Garthwaite et al. 1989). NO as a neurophysiological messenger was discovered.

Around the same time, a third, unrelated body of research confirmed the link 

between NO and cellular toxicity. Previously it had been shown that urinary levels 

of nitrate (N03) exceeded dietary intake indicative of a synthetic pathway (Green 

et al. 1981). Following an inflammatory stimulus, the synthesis of N 03' was 

increased (Wagner et al. 1983), which was later attributed to activated 

macrophages (Stuehr & Marietta 1985). The dependence of the cytotoxic action of 

activated macrophages on L-arginine (Hibbs, Jr. et al. 1987) led to the confirmation 

of NO being part of repertoire of defences against foreign organisms (Hibbs, Jr. et 

al. 1988).

These three diverse functions, smooth muscle relaxation, neural communication, 

and immune defence, remain at the core of NO biology and are subserved largely 

by the processes outlined in the following sections

1.2 NO PRODUCTION

The physico-chemical properties of NO set it apart from conventional signalling 

molecules, such as neurotransmitters like glutamate. Firstly, like 0 2 and C 02, NO 

lacks chemical specialization. It does, however, possess an extra (unpaired)

15



Chapter 1 -  General introduction

electron, making it a radical. Whilst some other related radicals are chemically 

reactive and can cause damage to cells (Keynes et al. 2003), NO is relatively 

stable in physiological concentrations, which are thought to be a nanomolar or less 

(Garthwaite 2005). Second, also like 0 2 and C02, NO diffuses very quickly through 

membranes, obviating the need for a specialized release mechanism and giving it 

the ability to act on neighbouring cells within milliseconds of its manufacture.

Nitric Oxide Synthases

Following the discovery of NO, it was not long before synthetic machinery for NO 

was identified, in the form of nitric oxide synthase (NOS) which was found to be 

highly expressed in brain (Bredt et al. 1990; Bredt & Snyder 1990). NOS catalyses 

the stereoselective conversion of the amino acid L-arginine and molecular oxygen 

to citrulline and NO. Three distinct genes encode the three mammalian enzymes, 

known as neuronal (n)NOS, inducible (i)NOS and endothelial (e)NOS. This group 

of enzymes were first identified in 1989 and subsequently characterised throughout 

the 90’s.

These proteins are homodimers of subunits (figure 1.1), each consisting of 

an N-terminal oxygenase domain and a C-terminal reductase domain. The former 

contains binding motifs for haem, tetrahydrobiopterin (BH4, a cofactor) and the 

substrate, L-arginine. The reductase domain possesses NADPH, FAD and FMN 

binding sites. Functionally, electrons are donated by NADPH to the reductase 

domain and proceed via the FAD and FMN redox carriers to the oxygenase 

domain, whereupon interaction with the haem iron and BH4 at the active site 

catalyses the generation of NO. The two domains are linked by a binding site for 

calmodulin, through which Ca2+-calmodulin binding facilitates electron flow through 

the enzyme.

16
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NO + Citrulline 

L-Arginine + O

FMN- -FAfr -  -NADPjj)

"I _ ★ Q  < ^ Z >  XXX
Flow of electrons Dimerisation Oxygenase Reductase Binding

Domain Domain Domain Site

Figure 1.1 Synthesis of NO by NOS: structure and catalytic function.

Proposed arrangement of NOS monomers; the reductase domain oxidises NADPH to 
N A D P \ donating electrons which are transferred via the bound flavoproteins, FAD and 
FMN to the haem moiety in the oxygenase domain of the other monomer. Two 
oxygenation cycles then occur, the first forming N-hydroxy-L-arginine (NHA) by the N- 
oxygenation of L-arginine in a reaction which requires tetrahydrobiopterin (BH4). In the 
second cycle, NHA is converted by oxidative cleavage to NO (Adapted from Alderton et 
al. 2001, and http://www.sgul.ac.uk/depts/immunology/~dash/no/synthesis.htm

The Ca2+-dependence of NO synthesis varies with the NOS isoforms, nNOS and 

eNOS having a requirement for much higher concentrations than iNOS. The 

calcium-insensitivity of iNOS is the result of the lack of an auto-inhibitory loop insert 

of 40-50 amino acids within its FMN-binding subdomain that, in the other two 

isoforms, acts by destabilizing calmodulin binding at low Ca2+ concentrations 

(Alderton et al. 2001). Loss of eNOS activity at low calcium concentrations is 

circumvented when the protein is phosphorylated, typically by the kinase known as 

Akt, or protein kinase B (Dimmeler et al. 1999). Physiologically, eNOS 

phosphorylation may be the most important device for maintaining NO output in 

blood vessels in the brain.

NOS inhibitors

Knowledge of the enzymatic mechanism for NO synthesis led rapidly to the 

identification of inhibitors, which have become invaluable tools for investigating the

17
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Chapter 1 -  General introduction

biological roles of NO. First-generation inhibitors were L-arginine derivatives with 

substituents on the guanidine nitrogen normally used for NO synthesis, compounds 

such as NG-monomethyl-L-arginine (Hibbs, Jr. et al. 1987) and NG-nitro-L-arginine 

(Moore et al. 1990). As expected, these inhibitors are simple competitive inhibitors 

for the L-arginine binding site. They inhibit all NOS isoforms with reasonable 

potency (Ki in the low micromolar range). Compounds showing good selectivity for 

nNOS over eNOS are now available such as N5-(1-lmino-3-butenyl)-L-ornithine (L- 

VNIO) and [N-(3-aminoethylyl)benzyl]-acetamidine (1400W; Babu & Griffith 1998; 

Boer et al. 2000).

NOS distribution and NO generation in the nervous system

The nNOS isoform is found predominantly in neurones and has a distribution in the 

brain and spinal cord as wide as that of the major neurotransmitters glutamate and 

GABA, although the amounts vary from region to region. In some brain areas, such 

as the cerebellum, nNOS is found in virtually all cells whereas in others, like the 

striatum and cerebral cortex, it is found in a subpopulation of intemeurones 

comprising only a small percentage of the total neuronal number. Nevertheless 

even in those regions that are relatively sparsely endowed with nNOS-containing 

neurones, dense nNOS-containing fibre networks are to be seen ramifying 

throughout the neuropil, suggesting that the majority of neurons receive NO signals 

(Vincent & Kimura 1992; Rodrigo et al. 1994).

In many of these brain regions, NO formation is coupled to the stimulation of the 

NMDA-sensitive class of glutamate receptor (NMDA-R), which is found in almost 

all excitatory synapses. This special relationship is the result of the NMDA-R- 

associated ion channels having a high permeability to calcium ions and by the 

compartmentalization of the nNOS and NMDA proteins into a complex at synaptic 

sites. The scaffold for this complex is post-synaptic density-95 (PSD-95) protein 

which contains several PDZ domains, the modular protein-protein interaction 

motifs. The N-terminus of nNOS contains a PDZ domain which interacts with the 

second PDZ domain on PSD-95 (Brenman et al. 1996). PSD-95 also binds the C- 

terminal PDZ domain of NMDA-Rs (Komau et al. 1995), leading to the assembly of 

these proteins into a ternary complex (Christopherson et al. 1999). This

18



Chapter 1 -  General introduction

colocalisation of NMDA-Rs and nNOS appears to be functionally significant as 

suppression of PSD-95, using anti-sense oligonucleotide techniques, blocks the 

production of cGMP following NMDA-R activation and Ca2+-influx, but not following 

activation of other Ca2+-channels or non-specific depolarisation (Sattler et al. 

1999). Association of nNOS with the membrane and NMDA-Rs thus enables 

synaptic activation of NO synthesis.

In addition to the functional coupling with NMDA receptors postsynaptically, 

there are other instances where NO is formed presynaptically. In parts of the brain, 

nNOS is concentrated strongly in axons such as in the parallel fibres in the 

cerebellum (Shibuki and Kimura, 1997) and it may perform an analogous 

“orthograde” transmitter function at these locations.

Although nNOS is the main isoform in the nervous system, emerging evidence 

suggests that NO from eNOS in the microvasculature can also influence neurons. 

This represents a conceptual departure from the traditional view of brain function, 

where signal processing is perceived as being performed by neurones with the 

support of nearby glial cells. On the other hand, any point in the brain is maximally 

only about a cell diameter (approximately 25 pm) away from a capillary (Pawlik et 

al. 1981) and the geometry of the capillary network is ideal for distributing a 

molecule like NO within a tissue volume, just as it is for oxygen. At least in vitro, 

the global NO signal deriving from the endothelium can influence the membrane 

potential of axons in the optic nerve (Garthwaite 2006), the baroreceptor reflex in 

the solitary tract nucleus (Paton et al. 2002) and the capacity for synaptic plasticity 

in the hippocampus (Hopper & Garthwaite 2006).

1.3 NO INACTIVATION

NO is a small non-polar molecule that can readily cross cell membranes by 

diffusion. Therefore a mechanism is required to curtail its spatial and temporal 

spread. Diffusion alone ensures rapid dissipation of the molecules from small 

volumes (Wood & Garthwaite 1994). Reaction with oxyhaemoglobin in red blood 

cells in the vasculature probably plays some role (Liu et al. 1998), however a sub-
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Chapter 1 -  General introduction

physiological level concentration of oxyhaemoglobin in in vitro brain slices may 

negate its significance compared to the in vivo situation.

Active NO inactivation is more likely to be of importance in shaping the NO 

concentrations when there are many nearby sites of simultaneous NO synthesis. 

Brain tissue avidly consumes NO such that its half life at physiological 

concentrations is estimated to be in the 10 millisecond time scale (Hall & 

Garthwaite 2006). Chemically, NO can also react with oxygen in solution, but this 

process (termed autoxidation) is particularly slow, and so may be of minimal 

physiological importance. NO also reacts very rapidly with lipid peroxyl radicals 

(Keynes et al. 2005), a process likely to be significant in pathological conditions 

associated with oxidative stress. More recently, a new mechanism, independent of 

lipid peroxidation, has been identified in brain slices that would be important in 

shaping NO signals when several sources are active (Hall & Garthwaite 2006; see 

chapter 6). The molecular identity of this mechanism remains unclear, although 

much literature points perhaps to unidentified (flavohaemo)proteins. Despite a 

large volume of research, the means by which the NO signal is actively quenched 

remains unclear.

1.4 NO SIGNAL TRANSDUCTION  

S-Nitrosation

Previously known as S-nitrosylation, this form of chemical modification involves the 

transfer of the NO moiety to thiol groups (Koppenol 2002). This would therefore be 

an important route for NO signal transduction as protein function is often affected 

by covalent modification (Stamler et al. 2001). Within the brain, NMDA-Rs have 

been reported to be modified by S-nitrosation (Stamler et al. 2001; Lipton et al. 

2002). The chemical reactivity of NO is such that it can not simply associate with 

thiols in a reversible manner; the direct reaction of NO and thiols generates a thiol 

sulphide, not a nitrosothiol; the stable covalent link between sulphur and nitrogen in 

a S-nitrosothiol is not particularly susceptible to homolysis except during strong 

irradiation (Hogg 2002). Therefore some reconciliation of the biological and 

chemical data is required to consider the physiological significance of S-nitrosation. 

More recently, the regulation of NMDA-Rs by S-nitrosation has been suggested to
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Chapter 1 -  General introduction

be produced only when high, supra-physiological concentrations of NO are 

concurrently present with UV light, indicative of artefactual generation of suitable 

nitrosating species (Hopper et al. 2004). The evidence as yet points more towards 

similarly aberrant generation of the critical nitrosating species, for example by use 

of high NO concentrations or donors that may not generate authentic NO. 

Therefore S-nitrosation may become more relevant during pathophysiological 

situations such as hypoxia (Takahashi et al. 2007). As the physiological relevance 

of NO-mediated S-nitrosation of proteins is unclear, it will not be further considered 

here.

The NO receptor

The mechanism of signal transduction preceded the identification of NO as a 

biological messenger. During the 1970s, it was found that NO was a powerful 

activator of guanylyl cyclase (GC) enzymes, causing the synthesis of cGMP 

(Kimura et al. 1975). This observation provided crucial evidence for the hypothesis 

that EDRF was NO because the factor was found to cause relaxation through 

cGMP generation. Because of its location in the soluble fractions in tissue 

homogenates, the enzyme became known as “soluble” GC. It is now clear that 

these enzymatic proteins constitute the major physiological receptors for NO 

having a ligand-binding site and transduction unit (Bellamy & Garthwaite 2002a). I 

refer to them here as GC-coupled NO receptors (N O gcR s ).

The receptors capture and transduce low-level NO signals, even very transient 

ones. The ligand-binding site is a specialized haem moiety that excludes oxygen 

(Martin et al. 2006), allowing NO to bind without becoming oxidized, in contrast to 

its reaction with oxyhemoglobin, when NO is converted to nitrate ions. The 

transduction unit to which the haem is attached are heterodimers of a- and /?- 

subunits and the enzyme exists in two main isoforms. Attachment is via a covalent 

link between the ferrous centre of the haem binding site and histidine residue 105 

of the /?-subunit (Wedel et al. 1994). The /?1 subunit appears to be the common 

subunit and it is partnered by either a\ or a2. At the mRNA and protein level, both 

isoforms are found abundantly in brain tissue but have an uneven distribution, 

some areas or cells showing prominently and others, a2/?1 (Gibb &
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Garthwaite 2001). A special feature of the cr2/?1 isoform is that it binds to synaptic 

scaffold proteins containing PDZ domains (Russwurm et al. 2001), which would be 

convenient for transducing localized NO signals from nNOS, whereas the a1/?1 

may have a less localized distribution in neurones. A [32 subunit, which lacks the 

initial N-terminal region relative to residues of the £1  subunit, is present in low 

quantities at the mRNA level (Gibb & Garthwaite 2001) but there is conflicting 

evidence as to its functional significance (Gupta et al. 1997; Gibb et al. 2003) and, 

to date, there has been no evidence that [32-protein exists physiologically.

NO'

Figure 1.2 Binding of NO activates the 
guanylyl cyclase-linked NO receptor

The binding of NO to the iron centre 
binding site in the N-terminal region of 
the enzyme results in the formation of a 
6-coordinated haem. Activation follows 
cleavage of the proximal His bond 
leading to a conformational change in 
the tertiary structure of the protein that, 
by some means, is conveyed to the 
catalytic site.

GTP cGMP

The binding of NO to the vacant coordination site on haem group of the N O gcR 

(figure 1.2) is extremely rapid, being nearly diffusion-limited (Zhao et al. 1999). 

Initially, a six-coordinate nitrosyl-haem complex is formed but the subsequent 

snapping of the bond between the haem and a nearby histidine residue results in a 

five-coordinate species (Bellamy & Garthwaite 2002a). This bond breakage causes 

a conformational change that presumably propagates to the catalytic domain, 

accelerating conversion of GTP into cGMP by a thousand-fold or more (Garthwaite 

2005).

NO binds very avidly to haem groups possessing vacant coordination sites. 

Indeed, the capacity of haemoglobin to bind and inactivate NO was well known
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(Martin et al. 1985a; Martin et al. 1985b) long before NO was recognized as a 

biological messenger, and this property proved to be an important one in 

assembling the hypothesis that the biological messenger was NO, and in testing 

that hypothesis. The binding of NO to most haem groups is so tight that it often 

takes hours or days for it to unbind, a property that would preclude a dynamic 

signalling role for NO. Although of high affinity (dissociation constant around 1 nM), 

binding of NO to the purified NOGGR-haem is readily reversible (rate of dissociation 

0.04 s'1) so that, on removal of NO, the associated cyclase activity switches-off 

with a half-life of a few seconds (Kharitonov et al. 1997). In cells however, the rate 

of deactivation is ten-fold faster (on the 100-millisecond timescale), which allows 

the N O gcR in cells to respond more faithfully to brief NO transients than it would do 

otherwise, albeit at the expense of a lowered NO sensitivity (Garthwaite 2005). 

These properties give rise to highly sensitive NO detectors within cells for efficient 

physiological NO signal transduction.

Both isoforms, a $ \ and a rf  1, share similar kinetic properties, with EC50 

values for NO of 0.5 - 2 nM under steady-state conditions in cells (Griffiths & 

Garthwaite 2001; Griffiths et al. 2003; Gibb et al. 2003; Wykes & Garthwaite 2004). 

Catalysis of GTP to cGMP also requires the presence of divalent cations, most 

probably Mg2+, which are required as substrate co-factors to facilitate binding of 

GTP. Although both subunits contribute to the catalytic domain there is only a 

single active site. The second “pseudosymmetric” site, which is thought to be 

analogous to the forskolin binding site in adenylyl cyclases, may have a regulatory 

function. ATP is an inhibitor thought to act, in part, by competing with GTP for 

binding at an allosteric site (Ruiz-Stewart et al. 2004), which could be the 

pseudosymmetric site. Binding of Ca2+ to two allosteric sites also results in 

inhibition of the enzyme (Kazerounian et al. 2002). NOgcR can also be inhibited by 

cGMP-dependent kinase-dependent phosphorylation setting up a negative 

feedback circuit to impede further formation of cGMP (Murthy 2004).

On stimulation with NO, NOGGR desensitises within seconds in intact cells 

(Bellamy et al. 2000; Wykes et al. 2002; Mo et al. 2004), unlike purified enzyme, 

which produces cGMP at a constant rate for prolonged periods of time. The rapid 

physiological desensitisation highlights the dynamic nature of cellular NOGGR
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activity, as is also evidenced by the fast activation (within 20 ms) and deactivation 

(half-time of 200 ms) on addition or removal of NO (Bellamy & Garthwaite 2001b). 

These properties mean that NO gcRs can sense NO concentrations of about 0.1 

nM or more, convert them into approximately one thousand-fold higher 

concentration of cGMP within a second, and then cease activity when NO 

production stops, again within a second. Thus, although many details of their 

functioning remain to be explained, the NO gcRs are highly effective proteins for 

transducing NO signals into greatly amplified levels of cGMP with good temporal 

fidelity.

There are a number of widely used pharmacological tools for modulating 

and probing the function of N O gcR- The most widely used is a selective, potent 

(IC50 ~20 nM) inhibitor, 1-H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 

Garthwaite et al. 1995). Spectroscopic measurements have shown that ODQ 

causes a characteristic Soret peak shift, indicative of oxidation of the N O gcR haem 

moiety (Schrammel et al. 1996). This change in redox state is thought to underlie 

the irreversible, much decreased NO-stimulated activity following ODQ application. 

At higher concentrations, ODQ becomes non-specific, inhibiting other proteins 

containing a haem moiety such as cytochrome P-450 (Feelisch et al. 1999). 10 pM 

ODQ is now the benchmark concentration to inhibit N O gcR and to confirm that an 

NO-induced effect is mediated by cyclase activation and cGMP generation. 

Whether or not other NO receptors exist remains to be determined.

The localisation of NOGcR and cGMP signal

The distribution of NO gcR  in the rat brain has been mapped using cGMP 

immunocytochemistry following perfusion of animals with NO donors (see figure 

1.3; Southam & Garthwaite 1993). A comparison of the sites of endogenous NO 

production and of action, namely the distribution of NOS and the NOGcR 

respectively gave an insight into the workings of the NO-cGMP signalling pathway. 

Both proteins are functionally expressed in close proximity; there is a 

complementary relationship suggesting NO is an autocrine and a paracrine agent.
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Figure 1.3 Distribution of NOS 
and cGMP accumulation in 
parasagittal sections of rat 
brain

Nitric oxide synthase

Cwebdtum

Nitric oxide-evoked cGMP accumulation

Olfactory
htrib

The top panel was prepared 
using NADPH diaphorase 
histochemistry, a marker for 
NOS in the brain while the 
bottom utilized cGMP 
immunohistochemistry 
following perfusion of the NO 
donor, sodium nitroprusside. 
The stainings are displayed as 
heat maps with red being 

nmt' strong and blue being weak. 
There is a good match 
between the presence of the 
enzyme and cGMP production 
ina number of brain regions 
such as the colliculi and 
substantia nigra. Often the 
locations are complementary 
rather than identical such as in 
part of the brainstem. (Adapted 
from Southam & Garthwaite 
1993)

CoHicuti

For example, numerous nNOS-like immunoreactive fibres form bouton-like 

structures onto mesencephalic trigeminal (Mes-V) neurones, while cGMP 

immunoreactivity is found only in the recipient Mes-V neurones (Pose et al. 2003). 

Likewise, a small number of NOS-positive multipolar neurones radiate throughout 

neocortical layers 2-6, while NO-stimulated cGMP accumulation is seen in almost 

all neurones in these layers (Southam & Garthwaite 1993). In the cerebellum, the 

molecular layer neuropil homogeneously stains for NOS, while the downstream 

Purkinje cells are devoid of NOS (Vincent & Kimura 1992), but contain N O gcR 

(Ariano et al. 1982). Immunohistochemistry of the CA1 region of the hippocampus 

revealed a postsynaptic localisation of NOS and presynaptic cyclase (Burette et al. 

2002). This complementary distribution of the sources and targets of NO supports 

its role as an intercellular signalling molecule; it can be synthesised presynaptically 

from axon terminals or from a mesh of fibres radiating throughout the parenchyma,
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or postsynaptically in dendrites and spines, permitting signalling in either the 

anterograde or retrograde directions in different neural circuits.

As to be expected from this large range of different ‘set-ups’ of NOS and 

NOqcR, the cGMP signal generated at the various locations is quite different. 

Intuitively, the signal generated will depend on the balance between cGMP 

formation, dependent upon cyclase activity, and degradation, which is mainly 

dependent upon phosphodiesterases (PDEs).

PDEs are often homodimeric enzymes that catalyse the hydrolysis of cyclic 

nucleotides to the corresponding non-cyclised monophosphate, which for cGMP 

would be 5’-GMP. In mammals there are 11 familes of PDE, encoded by genes 

with several splice variants giving rise to at least 50 proteins that may exhibit 

different subcellular localisation or tissue distributions. Of these, PDE 5 and 9 show 

greater selectivity for cGMP over cAMP, while PDE 1, 2, 3, 4, 10 and 11 will 

hydrolyse both cyclic nucleotides to a certain degree (Beavo 1995; Soderling & 

Beavo 2000; Bellamy & Garthwaite 2001a).

The level of diversity in PDEs generates heterogeneity in the amplitude, 

duration and localisation of cGMP (and therefore NO) signalling throughout the 

various subcellular domains. For example, in cerebellar astrocytes, the low PDE 

activity and rapid desensitisation of NOgcR following NO application results in a 

large increase in cGMP and a long-lived plateau (Bellamy et al. 2000). Conversely 

in rat platelets, NO stimulation (EC50 = 10 nM) leads to very transient increase in 

cGMP, peaking after 2-5 s. This profile is caused partly by NO gcR  desensitisation 

(half-life of up to 3 s) and partly by PDE5 catalytic activity (Mo et al. 2004). 

However, the lack of information about endogenous NO and cGMP signals is the 

major deficit in our current understanding of NO signalling within the nervous 

system and the body as a whole.

1.5 DOWNSTREAM TARGETS FOR cGMP

The effects of NO are mediated, directly and indirectly, by cGMP binding to cGMP- 

modulated kinases, phosphodiesterases and ion channels:
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cGMP-dependent protein kinase

cGMP-dependent protein kinase (cGK) or protein kinase G (PKG) is activated by 

submicromolar cGMP concentrations (Gamm et al. 1995) and phosphorylates 

serine or threonine residues. There are three types: cGKIa and 1/? (splice variants) 

and cGKII. cGKI is cytosolic enzyme, whereas cGKII is targeted to the membrane 

by myristoylation of an N-terminal glycine residue (Vaandrager et al. 1996).

Activation of cGK appears to involve cGMP binding to the regulatory 

domain, which contains two allosteric cGMP sites both of which must be occupied 

for full catalytic activity (Gamm et al. 1995); cGMP binding results in a 

conformational change that relieves the N-terminal autoinhibition of the C-terminal 

catalytic centre. The N-terminal domain is also important for the homodimerisation 

of the kinase subunits. Autophosphorylation of this region can also occur, causing 

a more persistent kinase activity that could outlast the original cGMP signal.

In brain, cGKIa is concentrated in Purkinje cells in the cerebellum and 

cGKI/? in the hippocampus. cGKI is also found at variable levels throughout the 

CNS. Similarly, cGKII expression is widespread, being found particularly 

abundantly in the cerebral cortex, thalamus, olfactory bulb and superior colliculi (El- 

Husseini et al. 1999; de Vente et al. 2001; Feil et al. 2005). One role of cGKII is in 

the regulation of circadian rhythm, via effects on gene expression in the 

suprachiasmatic nucleus (Oster et al. 2003).

The known substrates of cGK include G-substrate (Detre et al. 1984), G- 

substrate-like DARPP-32 (Tsou et al. 1993), ADP ribosyl cyclase (Galione et al. 

1993), vasodilator-stimulated phosphoprotein (VASP), inositol triphosphate 

receptor (IP3R), ]P3R-associated cGMP kinase substrate (IRAG), Ca2+-activated K+ 

channels and RhoA (Hofmann et al. 2000). Some of these proteins have been 

implicated in a number of process involving synaptic plasticity and learning, 

behaviour and nociception as well as development (Schlossmann et al. 2005).

cGMP-regulated PDEs

Of the 11 known families, PDE2, 5, 6, 10 and 11 contain one or two N-terminal 

GAF domains. These motifs, as well as the catalytic site, can bind cGMP in 

addition to the enzyme catalytic site, usually one cGMP molecule per monomer. In

27



Chapter 1 -  General introduction

the case of PDE 2, which can hydrolyse both cyclic nucleotides, the binding of 

cGMP to a non-catalytic GAF site activates the enzyme increasing the rate of 

breakdown of both cAMP and cGMP (Martins et al. 1982; Martinez et al. 2002). 

This important modulatory effect again highlights the potential cross-talk between 

signalling pathways and provides an important means by which cGMP can shape 

the level of cellular cAMP.
Like PDE2, binding of cGMP to a PDE5 GAF domain increases the rate of 

hydrolysis (Mullershausen et al. 2003) and also permits the enzyme to be 

phoshorylated by cGKI (Turko et al. 1998). Phosphorylation of human PDE5 

increases the cGMP-binding affinity of the allosteric domain by approximately ten

fold, which in turn further enhances the stimulatory effect of cGMP on hydrolysis 

(Corbin et al. 2000).

cGMP inhibits the effect of PDE 3, yet not by an allosteric mechanism. The 

catalytic site of PDE 3 only efficiently degrades cAMP, yet has a high affinity for 

cGMP. Therefore cGMP simply competes with cAMP for the catalytic site 

(Degerman et al. 1997).

These indirect effects of cGMP, by potentiating and diminishing the cAMP 

signal add another facet to the NO-cGMP pathway.

Cyclic nucleotide-gated (CNG) channels

Another group of known receptors for cGMP are the families of cyclic nucleotide- 

gated ion channels. CNG channels were first discovered in retinal rod 

photoreceptors (Kaupp et al. 1989) and then in retinal cone cells (Bonigk et al. 

1993) and olfactory receptor cells (Dhallan et al. 1990), but there is now evidence 

for a more widespread distribution, such as in the hippocampus (Kingston et al. 

1996) and cerebellum (Kingston et al. 1999; Strijbos et al. 1999).

Molecular cloning has identified two subfamilies of subunits in vertebrates, 

namely CNGA(1-4) and CNGB(1,3). CNGA1 is primarily found in rod-type 

receptors, CNGA3 in cones and CNGA2 and CNGA4 in olfactory receptors. 

CNGB1 has two important splice variants, B1a and B1b, expressed in rods and 

olfactory receptors respectively and CNGB3 mainly identified in cones. 

Heterologous expression of subunits has identified CNGA1-3 as core subunits 

being capable of forming functional homomeric channels, whereas CNGA4 and
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B1,3 do not, and are therefore considered to have a modulatory effect as co

expression with core subunits leads to formation of channels with different ion 

selectivity, ligand sensitivity and gating properties (Kaupp & Seifert 2002).

CNG channels belong to the superfamily of voltage-gated K+ channels and 

therefore are thought to be a tetrameric assembly of subunits arranged around a 

central pore. Physiologically, rod CNG channels are thought to consist of an 

assembly of three CNGA1 subunits and one CNGB1 subunit (Weitz et al. 2002), 

while those in cone photoreceptors seem to contain of two CNGA3 and two 

CNGB3 subunits (Peng et al. 2004). Like cone receptors, olfactory receptor 

channels are thought to be composed of two core CNG2A subunits and two 

regulatory subunits (one CNGA4 and one CNGB1; Zheng & Zagotta 2004).

By hydropathy plotting, each subunit is predicted to consist of 6 

transmembrane regions (S1-6) and a pore region located between S5 and S6, 

which under physiological conditions, carries inward currents of Ca2+ and Na+ ions. 

Interestingly, despite similar homology to other voltage-sensitive channels in the 

voltage-sensing S4 domain, CNG channels are virtually voltage-independent. 

Following the S6 domain, there is an intracellular cyclic nucleotide-binding domain 

(CNBD), which shares homology with other cyclic nucleotide-binding proteins such 

as cGK and the E. coli catabolite gene activator protein. The binding of cGMP or 

cAMP to the CNBD results in the direct opening of the channel (Matulef & Zagotta 

2003).

cGMP is the preferred agonist for rod- and cone-type channels whereas 

olfactory-type channels are relatively non-selective between cyclic nucleotides. It is 

conceivable that membrane potential and Ca2+-influx could be modulated by NO- 

cGMP-mediated activation of CNG channels (Biel et al. 1998). For example, NO 

from nearby amacrine cells could increase cGMP levels to augment CNG channel 

activity in retinal ganglion cells (Ahmad et al. 1994). Unfortunately, the 

pharmacology of CNG channels is poorly developed at the moment, making 

studies of their participation in NO signal transduction difficult. Nevertheless, there 

is evidence that, in response to activation of the NO-cGMP pathway, the channels 

can promote neurotransmitter release from cone presynaptic terminals and 

increase neuronal firing postsynaptically (Savchenko et al. 1997). More recent
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work suggests that the NO-stimulated activation of CNG channel and cGK 

stimulates neuritic sprouting in cones, an important part of structural synaptic 

plasticity (Zhang et al. 2005).

HCN channels

The last target for NO-cGMP pathway is another member of the CNBD-containing 

family of ion channels (Craven & Zagotta 2005), the hyperpolarisation-activated 

cyclic nucleotide-modulated (HCN) channels. They exhibit the most unusual 

property of being activated at more hyperpolarized membrane potentials (typically 

negative to -50 mV) earning the current carried the title of funny (lf) or queer (lq). 

Within the brain, this current is now known as lh and is a mixed cation current of 

both K+ and Na+ in a ratio of permeability from 3:1 to 5:1 respectively (Robinson & 

Siegelbaum 2003). There is some evidence for lh being carried also by Ca2+ ions 

(Yu et al. 2004).

Molecular identification o f HCN channels in brain

The channel carrying lh in the mouse brain was identified initially through its 

interaction with the SH3 domain of neuronal Src (Santoro et al. 1997). A 

subsequent paper from the same group functionally expressed this candidate 

gene, known as BCNG-1 (equivalent to HCN1), yielding a current with 

considerable similarities to native neuronal lh. In addition they reported the 

identification of three other partial clones in the mouse brain, named BCNG-2, - 3 

and -4 and two human clones (Santoro et al. 1998). This was swiftly followed by 

two back-to-back papers in Nature; the first study identified a hyperpolarisation- 

activated current in sea urchin sperm (splh) carried by spHCN channels, which is 

directly modulated by cAMP, not by cGMP (Gauss et al. 1998); the second 

identified a family of three mammalian hyperpolarisation-activated currents (HACs) 

using BLAST analysis for the CNBD of CNG channels (Ludwig et al. 1998). HAC-1, 

-2 and -3 corresponded to BCNG-2, -1 and-4 respectively. HAC4 was then 

identified by screening a rabbit sinoatrial node (SAN) library (Ishii et al. 1999). The 

cloning of the four mammalian genes, termed HCN 1-4 instead of HAC1-4 

(Clapham 1998) was then completed and show, on the basis of the amino acid
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sequence, they are members of the voltage-gated superfamily and have a 

structure and proposed topology (figure 1.4) as described for CNG channels.

Figure 1.4 The proposed 
topology and structure for HCN 
channel subunits

A single subunit is composed of 
6 a-helical membrane-spanning 
segments (S1-6), a positively- 
charged S4 domain, cytoplasmic 
N- and C- termini, the latter 
containing a cyclic nucleotide 
binding domain (CNBD). The 
putative pore region between S5 
and S6 extends into the 
membrane.

The currents produced by heterologously-expressed homomeric HCN channels are 

activated by hyperpolarisation but have quite different steady state voltage- 

dependence and relative rates of activation. The half-maximal voltages (Vi/2) for 

HCN1, 2 and 4 are about -73, -92 and -81 mV respectively (Accili et al. 2002) 

HCN1 has the fastest kinetics (r < 500 ms), followed by HCN 2 (r = s) and then 

HCN4 (Altomare et al. 2001).

An integrated allosteric model is compatible with the voltage-gating of HCN 

channels (as well as modulation by cAMP). This model suggests channel opening 

is a combination of two processes: the first is the displacement of the four voltage 

sensors from a reluctant to willing state and secondly, the conformational 

rearrangement of all subunits from closed to open. Therefore the voltage sensors 

are gated by voltage alone; whereas the channel closed and open transitions occur 

allosterically. The faster rate of activation of homomeric HCN1 channels may be 

explained by the faster activation of the voltage sensor along with a weaker 

interaction between the subunits in the closed-to-open transition (DiFrancesco 

1999; Altomare et al. 2001).

Pore 

Na* K+
\  4

Outside

C-
linker

CNBD

Voltage dependence and kinetics o f activation

31



Chapter 1 -  General introduction

Unexpectedly, the voltage-sensing mechanism is conserved among the 

superfamily of ion channels despite being gated by opposite voltages. The S4 

region of HCN and other hyperpolarisation-activated channels moves outward 

during depolarisation just as the Shaker K+ channel (Mannikko et al. 2002; Sesti et 

al. 2003). Therefore the difference in polarity of activation must lie within the 

downstream coupling mechanism to the gate (Rosenbaum & Gordon 2004). It 

would appear that HCN channels display a unique internal re-arrangement in 

various transmembrane segments around S4, leading to changes in the gating 

canal (Bell et al. 2004). For example, certain residues of S1 face a mobile region of 

S4 and therefore can affect its motion (Ishii et al. 2006).

Molecular mechanism o f cyclic nucleotide modulation o f HCN channels

Direct modulation of HCN channels by cAMP was first identified by a study 

involving macropatches from rabbit SAN myocytes (DiFrancesco & Tortora 1991). 

cAMP causes a depolarising shift in the steady-state activation curve. The efficacy 

of cAMP has been found to differ between isoforms, with HCN1 being far less 

responsive (shift of 2-5 mV) than HCN2 and 4 (shift of up to 20 mV; Robinson & 

Siegelbaum 2003). The construction of truncation mutants showed that the CNBD 

caused the inhibition of activation of the core transmembrane domain. The 

difference in modulation by cAMP between HCN1 and HCN2 is due to the different 

efficacy of CNBD inhibition (Wainger et al. 2001). Deletion of the CNBD mimics the 

effect of cAMP by moving the voltage dependence of HCN gating in a depolarising 

direction to a similar level seen with cAMP.

A series of chimeric subunit studies subsequently showed that the 

difference in cAMP efficacy arises due to the conserved 80 amino acid C-linker. 

This domain has no intrinsic inhibitory influence, yet it is the interaction of the C- 

linker and the CNBD that accounts for the differences in basal gating and cAMP 

modulation (Wang et al. 2001). Taken together, the basal gating of HCN4 and 

HCN2 is shifted to more hyperpolarised potentials than HCN1 because of greater 

tonic inhibition elicited by the appropriate C-linker/CNBD.

The crystal structure of the C-terminal region of HCN2 gives insight into the 

relationship between the CNBD, C-linker and core transmembrane domains. The 

CNBD consists of 4 a-helices (A, P, B and C) with a /?-roll of 8 /?-strands in a jelly
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roll between the A- and B-helices (Zagotta et al. 2003). The binding of cAMP is in 

the anti formation between the /?-roll and the C-helix, while cGMP binds in the syn 

configuration which permits a hydrogen bond with a £-roll threonine residue, which 

thought to explain the structural basis for ligand discrimination in CNG channels 

(Altenhofen et al. 1991). The C-terminal regions of the 4 subunits assemble as 

tetramers like a pyramid, but the CNBDs do not interact appreciably. Conversely, 

the C-linkers mediate most of the subunit-subunit contacts; each linker consists of 

6 a-helices (A’-F’); A’ and B’ of one subunit forming an antiparallel helix-turn-helix 

that interacts with C’ and D’ of the next subunit. Binding of cAMP or cGMP is 

thought to change this ‘elbow-to-shoulder’ arrangement and this conformational 

change is then translated to pore opening (Zagotta et al. 2003).

Binding of cAMP, and probably cGMP, is thought to promote the formation 

of this four-fold symmetric gating ring from a state in which the subunits interact as 

two-fold symmetric dimer of dimers. A particular tripeptide sequence near the N- 

terminal end of the C-linker accounts for the efficacy of ligand gating in CNG 

channels. Interestingly, the mutation of QEK in HCN1 or 2 to FPN of the cNMP- 

insensitive CNG4A results in cAMP becoming a negative agonist promoting the 

disassembly of the tetrameric gating ring on binding (Zhou et al. 2004).

HCN channels have been shown to coassemble and form heteromers. For 

example, a concatenated construct of HCN1 and HCN2 subunits shows 

modulation by cAMP that is intermediate to homomeric HCN1 and HCN2 channels 

(Ulens & Tytgat 2001; Chen et al. 2001). As a consequence of four distinct 

subunits, a range of channels with different properties could arise depending on 

the proportion of different isoforms.

In native and heterologously expressed channel, lh/f was activated, not only 

by cAMP, but also cGMP with similar efficacy, although with a reduced sensitivity; 

the channels are about thirty-fold less sensitive to cGMP compared to cAMP as 

shown by apparent dissociation constants (DiFrancesco & Tortora 1991; Ludwig et 

al. 1998). As such, cAMP is often considered the natural ligand being 

approximately ten-fold more potent than cGMP (DiFrancesco & Tortora 1991; 

Ludwig et al. 1998; Zagotta et al. 2003). However, both nucleotides have also been 

shown to have similar concentration-effect profiles (Ingram & Williams 1996).
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HCN3

HCN3 have only recently been studied through heterologous expression, using 

lentiviral infection to overcome previous HCN3 expression problems (Mistrik et al.

2005). The rate of homomeric channel activation is between that of HCN2 and 

HCN4, while V1/2 is similar to HCN2 (~ -95 mV). Unlike channels formed from the 

other HCN subunits which all show positive, depolarising shifts in the steady-state 

activation curves, HCN3 channels display a negative shift (~ -5 mV) in the 

presence of cAMP or cGMP.

Pharmacological manipulation o f lh

There are a number of organic blockers of HCN channels, the most commonly 

used being ZD7288. Like a quartemary cation, it has a lipophilic structure and is 

thought to cross the cell membrane and exert its action from the internal side. 

Therefore it is relatively slow (10 - 15 min) to take effect. In hippocampal CA1 

pyramidal neurones, IC50 is ~ 10 pM (Gasparini & DiFrancesco 1997). This is in 

contrast to low mM Cs+ that blocks quickly on the external surface (Harris & 

Constanti 1995).

In CA1 pyramidal cells, the anticonvulsant, lamotrigine, causes a 

depolarising shift in the steady-state activation curve, translating into a decreased 

number of action potentials following current injection in the dendrites. This may be 

due to a decreased Rjn decreasing excitability; however the reported effects on Rin 

are inconsistent (Poolos et al. 2002).

The anaesthetic propofol causes a concentration-dependent hyperpolarising 

shift in the activation curve and a decrease in conductance of HCN channels in 

thalamic neurones. This disrupts the regular frequency of <5-oscillations (Ying et al.

2006). The inhalation anaesthetic, halothane, also has a similar effect that can be 

reversed by cAMP. The site of action was localised to the C-terminal region (Chen 

et al. 2005).

Instantaneous current component

HCN channels (sea urchin sperm HCN and HCN2 subunits heterologously 

expressed) produce an instantaneous current in addition to the slower, time-
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dependent current (lh) activated during hyperpolarisation. This instantaneous 

current is independent of that from the prevailing background current that may arise 

from constitutive activation of lh at the holding potential. Unlike lh, the 

instantaneous current is insensitive to block by Cs+ and to mutation in the S4 

voltage sensor and is therefore voltage insensitive, earning it the designation of the 

voltage-independent current (VIC). It appears that this current is carried by a leaky, 

Cs+-insensitive state of the channel (Proenza et al. 2002). Both it and lh show 

similar reversal potentials and are blocked by ZD7288, which blocks the channel 

pore, suggesting that both currents are carried through the pore. Further work 

looking at the rates of inhibition by ZD7288 suggests the voltage-independent and 

lh are carried by two distinct populations of HCN channel (Proenza & Yellen 2006). 

The interconversion between both states is not currently understood. In areas that 

express a large amount of HCN protein, VIC may act as an important background 

conductance and could presumably contribute to a large leakage current, such as 

in reticular neurones (Santoro et al. 2000).

Further modulation of HCN channels

The comparison of native channel properties and of functionally expressed HCN 

isoforms and concatenated constructs in HEK 293 cells suggests that native 

channels are made up of different isoforms in certain combinations, but there may 

also be unknown factors modulating HCN channels. It seems that, as for NO 

signalling, there are ‘context’-dependent mechanisms at work (Qu et al. 2002; 

Altomare et al. 2003). For example, a yeast two-hybrid screen identified an 

interaction of HCN1, but not 2 or 4, with filamin A, a cytoplasmic scaffold protein 

which links transmembrane proteins to the actin cytoskeleton. This C-terminal 

interaction, downstream of the CNBD, doubles the conductance of the channel and 

causes a hyperpolarising shift in Vi/2. This is in concert with the clustering of the 

channel in discrete spots of the plasma membrane (Gravante et al. 2004). This 

clustering may lead to the arrangement of the channels into subcellular complexes 

to facilitate signalling.

TPR-containing Rab8b-interacting protein (TRIP8b), a protein with no 

previously ascribed function, has been found to interact specifically with a 

conserved C-terminal region in all four HCN subunits. Both proteins are also
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colocalised in the dendrites of CA1 pyramidal cells, suggesting a physiological 

function. In heterologous expression, TRIP8b disrupts the trafficking of HCN 

channels to the plasma membrane causing an accumulation in the cytoplasm, 

resulting in a reduced lh density. Infection of CA1 pyramidal cells with TRIP8b also 

reducs the native current density. This suggests that TRIP8b is involved in 

regulating channel density in the plasma membrane (Santoro et al. 2004).

Many other voltage-gated channels have accessory or /?-subunits that 

modulate the core channel properties. The role of minK-related peptide 1 (MiRP1) 

was first confirmed by co-expression with HCN1 or 2 in Xenopus oocytes. A 

member of the KCNE family of 1 transmembrane domain proteins, MiRP1 (or 

KCNE2) enhanced the amplitude of lh and increased the maximum conductance. 

This peptide had no effect on the midpoint of activation yet significantly increased 

the rate of activation (Yu et al. 2001). In heterologous expression in CHO cells, 

MiRP1 disrupts the ability of homomeric HCN2 channels to move from the leaky to 

open state, thereby increasing VIC and reducing the time-dependent lh (Proenza et 

al. 2002). Another study demonstrated an interaction with the HCN4 isoform 

expressed in CHO cells; MiRP1 increased lh amplitude, but with slowing of kinetics 

and a negative shift in V1/2 (Decher et al. 2003). However, a similar investigation 

using HEK293 cells showed no effect (Altomare et al. 2003). An attempt to resolve 

this inconsistent set of results from using different isoforms and expression 

systems was made by Qu et al. (2004) by coexpressing HCN2 and MiRP1 in 

neonatal ventricular myocytes which already express a small hyperpolarisation- 

activated current. At physiologically relevant voltages, MiRP1 increased the current 

amplitude, conductance and accelerated the gating kinetics with no effect on the 

instantaneous component. Therefore it would seem that MiRP1 acts as a /?- 

subunit, although its prevalence in the brain and its role are as yet unknown.

The majority of the reported effects of cGMP and cAMP appear to be though 

direct binding to the CNBD and independent of activation of PKG and PKA 

respectively (Pedarzani & Storm 1995; Garthwaite et al. 2006), although there are 

exceptions such as in rat olfactory receptor neurones (Vargas & Lucero 2002). 

More recently there have been studies elucidating the role of phosphorylation by 

other kinases on channel function. In DRG and cardiac tissue, general inhibition of
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protein tyrosine kinases or specific inhibition of Src-family kinases results in a 

slowing of the kinetics of activation with little effect on V1/2 (Zong et al. 2005). In the 

hippocampus, inhibition of p38 MAPK, but not related kinases, causes a 

hyperpolarising shift in voltage-dependent activation affecting temporal summation 

(Poolos et al. 2006).

Vitronectin, a component of the extracellular matrix, has been shown to 

increase the conductance of HCN channels in murine CA1 and CA3 cells, with little 

effect on the voltage for half-maximal activation; there is also a relative increase in 

the HCN1 immunoreactivity (Vasilyev & Barish 2004). Vitronectin levels are 

commonly elevated at injury sites and in activated microglia. This change in lh may 

contribute to persistent excitability in some neurological pathologies.

1.6 THE FUNCTIONS OF lh IN THE BRAIN

lh is important in setting the membrane potential of CA1 pyramidal neurones 

(Gasparini & DiFrancesco 1997), thalamic relay neurones (McCormick & Pape 

1990a), neocortical layer I interneurones (Wu & Hablitz 2005), basket cells in the 

dentate gyrus (Aponte et al. 2006) and many other cells in the CNS by virtue of the 

range of activation of the channels near the resting membrane potential. The wide 

ranging expression of HCN channels within the brain (Notomi & Shigemoto 2004) 

coupled with their unique properties mean that it is involved in several other 

important physiological processes:

Rhythmicity

HCN channels interact functionally with T-type Ca2+ channels, which carry lt, to 

generate rhythmic oscillations in thalamic relay neurones. The activation of lh 

depolarises the membrane to threshold for lt which further depolarises the 

membrane to spiking threshold. The prolonged depolarisation results in inactivation 

of T-type channels and the deactivation of HCN channels. This produces a 

hyperpolarising overshoot and afterhyperpolarisation (AHP) that is essential to 

remove inactivation of T-type channels and to activate lh to restart the cycle 

(McCormick & Pape 1990a). A similar process is thought to function in the inferior 

olive, where rhythmic spikes are generated by an interaction of lt and a Ca2+-
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activated K+ current (Bal & McCormick 1997). Therefore lh is thought to act as a 

genuine pacemaker, similar to its function in the heart.

In other networks lh is thought to play a more regulatory role, rather than 

generating rhythmogenic pacemaker potentials. In the medial septum, an important 

generator of hippocampal theta rhythm, lh plays a role in the generation of high (6- 

9 Hz), but not low (3-5 Hz), frequency theta oscillations. In the motor cortex, 

blockade of lh does not suppress the prevailing oscillations; instead it may act to 

stop stronger long-lasting oscillations (Castro-Alamancos et al. 2007)

Dendritic integration

HCN channels figure prominently in the dendritic mechanisms that control temporal 

summation of excitatory input. In CA1 pyramidal cells, the HCN channels 

throughout the soma and dendritic arbour have similar activation and deactivation 

kinetics, however there is a seven-fold increase in the density of lh from the soma 

to the distal dendrites. This means that not only is input resistance (Rin) much lower 

in the distal portions of the neurone, but the shunting action of deactivating HCN 

channels means the membrane time constant (rmem) and length constant both are 

decreased, which in CA1 cells are important to normalise spatially the temporal 

summation of EPSPs. The deactivating, non-uniform lh therefore influences the 

cable properties of the dendrites and in turn shapes the time course of the EPSP 

as it is propagated to the soma. Without active HCN channels, the output of the 

soma becomes highly dependent upon the location of the dendritic inputs (Magee 

1998; Magee 1999).

In layer VA/I of the frontal cortex, an area concerned with working memory 

tasks, inwardly-rectifying and leak K+ currents (lKir and heak) are important in 

sustaining the activity of HCN channels to maintain appropriate temporal 

summation (Day et al. 2005). The blocking of these K+ conductances results in 

depolarisation of the cell membrane, deactivation of HCN channel and enhanced 

spiking. Therefore a suitable interplay of channels is required for the function of lh.

In the subiculum, there are bursting and regularly-spiking neurones. The 

HCN channel conductance in the former is double that of the latter; this doesn’t 

explain the difference in spiking. However, bursting cells show -  50 % less 

summation of excitatory inputs from CA1 pyramidal cells. Computer modelling
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suggested that the higher level of lh in the bursting neurones allows better 

discrimination of high frequency input arising from gamma oscillations (van Welie 

et al. 2006).

Ih and synaptic facilitation

At the crayfish neuromuscular junction, 5-HT, forskolin and Br-cAMP depolarise the 

prejunctional axon and increase the excitatory junction potential. This was found to 

be caused by a direct effect of cAMP on lh in the afferent nerve. This phenomenon 

could be mimicked by hyperpolarising the neuronal membrane to give a period of 

prolonged HCN channel activation. Therefore, simply increasing the amplitude of lh 

is sufficient to increase synaptic strength (Beaumont & Zucker 2000). Intense 

electrical stimulation of the motor nerve results in a long-term facilitation of 

transmitter release that absolutely requires HCN channel activation during the 

stimulation and the ensuing ten minutes. During this period, an actin-dependent 

process called synaptic tagging occurs. This results in subsequent cAMP-induced 

synaptic enhancement being HCN channel-independent (Zhong & Zucker 2004).

Ih and synaptic plasticity

LTP at the hippocampal mossy fibre synapse is independent of NMDA receptors 

(Zalutsky & Nicoll 1990) and is thought to be expressed presynaptically involving 

increased Ca2+ and cAMP. A role for lh in this LTP was deduced by employing the 

blocker, ZD7288; application of 1-50 pM ZD7288 blocked LTP following 

tetanisation or bath application of forskolin. Induction of LTP following a tetanus 

appears to arise from the increase in presynaptic Ca2+ which activates a Ca2+- 

sensitive adenylyl cyclase; there is a rise in the level of cAMP which increases the 

activation of the lh, in turn, depolarising the terminal and increasing glutamate 

release into the synaptic cleft (Mellor et al. 2002). The increase in lh amplitude 

could be blocked by a PKA-inhibitor, suggesting that not just a direct binding of 

cAMP to the CNBD accounted for the increase in HCN channel activation.

The results of this study were later questioned because higher 

concentrations (~ 50 pM) of ZD7288 were found to depress basal synaptic 

transmission. This depressive effect was also observed with DK-AH269, another 

organic blocker of lh. Blockade of HCN channels with Cs+ did not occlude this
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depression, suggesting it is lh-independent. This effect is not synapse specific 

being also seen at the hippocampal Schaffer collateral-CA1 pyramidal cell and the 

cerebellar parallel fibre-Purkinje cell synapses (Chevaleyre & Castillo 2002; Huang 

& Hsu 2003). An attempt to replicate the initial work found the effect of cAMP to be 

independent of lh. The same was found for parallel fibre LTP, which shares 

common mechanisms with mossy fibre LTP (Chevaleyre & Castillo 2002). 

However, Huang and Hsu (2003) report that cAMP is involved, and directly 

modulates HCN channels via the CNBD, independent of the action of PKA.

At hippocampal Schaffer collateral-CA1 synapses, LTD induced by a 15 min 

train at 1 Hz is blocked by 2 mM C s\ suggesting the involvement of lh in the 

maintenance of plasticity (Maccaferri et al. 1994).

In a Hebbian manner, the pairing of the theta-burst stimulation of Schaffer 

collateral inputs and postsynaptic firing results in the localised increase in synaptic 

strength and dendritic excitability. Therefore, at these potentiated sites there is a 

higher efficiency in the EPSP-action potential coupling, such that presynaptic 

spikes often generate postsynaptic action potentials more effectively. This 

strengthening of synaptic transmission is accompanied by a decrease in cellular 

excitability. This decrease is accompanied by an increase in HCN1 protein and is 

sensitive to ZD7288 suggesting a role for an increased lh. The increase in HCN 

channel conductance results in a decrease in Rin, thereby limiting cellular 

excitability. This may provide a negative feedback mechanism to normalise 

postsynaptic output and promote network stability (Fan et al. 2005). Similarly, a- 

latrotoxin-induced increased synaptic activity results in an increased somatic lh> 

which decreases the Rjn and depolarises the membrane potential. This shifts the 

output range of the CA1 pyramidal cells, so that a higher level of input is required. 

In this way, lh influences the homeostatic scaling of neuronal excitability (van Welie 

et al. 2004).
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1.7 THE PHYSIOLOGICAL FUNCTIONS OF NO IN THE NERVOUS  

SYSTEM

NO has been implicated in numerous behaviours in mammals, including learning 

and memory formation, cardio-respiratory function, feeding, sleeping, reproductive 

behaviour, aggression and anxiety. Interestingly, some of these roles appear 

conserved across many millions of years of evolution. For example, the jellyfish 

Aglantha digitate (phylum Cnidaria) first appeared about half a billion years ago 

and contains a very primitive nervous system consisting of a nerve net, 

photoreceptors and mechanosensitive nerve cells. NOS-containing neurones are 

found in the tentacles and NO plays a key role in swimming behaviour associated 

with feeding, with cGMP being the effector molecule (Moroz et al. 2004). The NO- 

cGMP pathway is involved in feeding behaviour in molluscs (Korneev et al. 2005) 

and honeybees (Menzel & Muller 1996), where it contributes to the formation of 

long-lasting associations between scent and food reward. In mammals, NO 

regulates the passage of food through the intestine (Geiselhoringer et al. 2004) 

and affects feeding behaviour (Morley & Flood 1992; Yamada et al. 1997).

The neuronal activity associated with feeding is just one of the numerous 

physiological functions in the central nervous system (CNS) thought to involve NO. 

The effect of NO as a messenger between neurones can either be in the short

term or can persist over various timescales.

Acute effects on neuronal function

NO can modulate neuronal function in the short term by effects on excitability. This 

can manifest as a depolarisation, modulation of the firing rate, or changes in 

neurotransmitter release.

In the lateral geniculate nucleus of the thalamus, NO and cGMP depolarise the 

neurones and increase the responses to ionotropic glutamatergic receptor 

activation by sensory stimulation (Shaw et al. 1999). NO augments the 

spontaneous discharge rate of medial vestibular nucleus neurones probably by 

direct activation of CNG channels leading to a depolarisation (Podda et al. 2004). 

However, in the hypothalamic paraventricular nucleus (PVN) and the nucleus of
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thesolitary tract (NTS), NO depolarises only a subset of neurones through a cGMP- 

dependent mechanism which involves an increase in conductance (Bains & 

Ferguson 1997; Wang et al. 2006b). The delayed-rectifier K+ channel in neocortical 

neurones is enhanced by NO (Han et al. 2006).

In the visual cortex, decreases in endogenous NO levels leads to a decrease in the 

responses to visual stimuli in 38% of cells, an increase in 5 % and no effect in the 

remaining 57% (Cudeiro et al. 1997). In lamina X of the spinal cord, NO and cGMP 

increases the firing rate of most neurones apart from 2% showing a decrease. This 

is in contrast to laminae I and II where half were inhibited and only 28% activated. 

Interestingly, cAMP only caused an excitatory response (Schmid & Pehl 1996; Pehl 

& Schmid 1997). This disparate range of effects of NO on the neuronal activity 

highlights that production of cGMP alone does not allow any prediction about an 

excitatory or inhibitory effect. These differences most likely result from the different 

downstream targets for the NO-cGMP pathway, although the role of N O gcR was 

not addressed.

Repetitive stimulation of the hippocampal Schaffer collateral axon at 2 Hz leads to 

a robust lowering of its activation threshold that lasts in excess of 30 min, an effect 

that requires NOS (McNaughton et al. 1994). Activation of eNOS and production of 

NO causes depolarisation of optic nerve axons apparently by engaging lh 

suggesting that microvascular endothelial cells participate in signal processing in 

the brain (Garthwaite et al. 2006). Such lowering of axonal thresholds would be 

expected to alter downstream synaptic responses.

In some hypothalamic PVN neurones, the potentiation of a Ca2+ conductance by 

NO could provide a mechanism by which these cells could increase the release of 

neurotransmitters (Bains & Ferguson 1997). This is the case in rostral ventrolateral 

medullary neurones where the NO-cGMP-cGK pathway enhances N-type channel 

Ca2+ entry leading to increased glutamate release and an enhancement in synaptic 

transmission (Huang et al. 2003). In the salamander retina, NO and cGMP activate 

CNG channels clustered at cone terminals and cause an increase in glutamate
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release onto the NO-synthesising horizontal cells, setting up a feedback circuit 

(Savchenko et al. 1997). The potentiation of GABA release from NTS neurones by 

NO involves increasing Ca2+ levels by engagement of the stores sensitive to the 

NAD+ metabolite, cADPR (Wang et al. 2006a). More recent work in the NTS shows 

that NO potentiates both EPSPs and IPSPs, but the threshold concentration for an 

increase in EPSP is about ten-fold lower suggesting this difference in sensitivity 

may underlie the specificity of the effects (Wang et al. 2006b).

Long-term modulation of neuronal function

NO and cGMP have frequently been found to participate in synaptic plasticity, 

which refers to the capability of synapses to adjust their strength enduringly 

upwards or downwards in response to brief periods of altered input, and which is 

commonly regarded as a cellular correlate of learning and memory formation (Bliss 

& Collingridge 1993). Long-term potentiation (LTP) in the hippocampus, cerebral 

cortex, cerebellum, amygdala, and spinal cord have all been reported to involve the 

NO-cGMP pathway, as has long-term depression (LTD) in the cerebellum and 

striatum.

In some cases, NO appears to act as a retrograde trans-synaptic messenger, 

conveying information about postsynaptic NMDA-R activity to the presynaptic 

terminal and influencing neurotransmitter release. Theta-burst stimulation of mossy 

fibre afferents induces LTP at the synapse with granule cells in the cerebellum. 

This is accompanied by NMDA-R- and NOS-dependent rise in the levels of NO in 

the granule cell layer and a concomitant rise in the presynaptic mossy fibre 

terminal, suggesting that NO acts as a retrograde messenger by diffusion (Maffei 

et al. 2003).

Within the hippocampus, there is also evidence consistent with a retrograde 

messenger role for NO, which is released post-synaptically from CA1 pyramidal 

cells (Arancio et al. 1996). The CA1 region is enriched in the cGMP-dependent 

kinase (cGK)1 isoform, which is important in the NO-dependent initiation of LTP in 

this region (Zhuo et al. 1994; Arancio et al. 2001). However, which kinase 

substrates are physiologically responsible for these functional changes has not yet 

been investigated. Hippocampus-specific cGKI knockout mice show normal LTP in
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young animals (4-6 weeks), but reduced LTP in older animals (12 weeks); related 

behaviour tests for hippocampus-dependent learning are unexpectedly normal 

(Kleppisch et al. 2003). Presynaptic LTD of the release of the readily-releasable 

pool induced by low frequency stimulation also requires NMDA-R activation, the 

extracellular diffusion of NO and the activation of cGK (Stanton et al. 2003). This 

suggests that there may be a subtle mechanistic switch that dominates the final 

direction of plasticity. Therefore these conflicting results could be explained by the 

different extents to which both LTP and LTD are engaged depending on the 

stimulus protocol used in slices and the training regime employed in behavioural 

studies.

A further layer to this complexity is that NO appears to act not just as an 

acute signalling molecule released during LTP induction but has an equally 

important role outside this phase (Bon & Garthwaite 2003). NO has also been 

implicated in the later phases of the plasticity through cGMP-dependent alterations 

in gene expression driven by cGK-dependent phosphorylation of the transcription 

factor, CREB (Lu et al. 1999). More recently, it was found that a prevailing, tonic 

eNOS-generated low level of NO is required in addition to the activity-induced 

phasic nNOS-generated burst of NO for LTP induction at Schaffer Collateral-CA1 

synapse (Hopper & Garthwaite 2006). However, the precise roles of these two 

sources of NO remain to be elucidated.

Cerebellar LTD appears to require activation of NMDA-R found presynaptically on 

parallel fibres (Casado et al. 2002). Activation of parallel fibres seemingly results in 

the release of NO (Shibuki & Kimura 1997), which acts on the postsynaptic spines 

of the Purkinje cells in an anterograde fashion. Purkinje cells contain a high 

concentration of cGKIa (Lohmann et al. 1981; El-Husseini et al. 1999) and also 

express a cGK-target protein, G-substrate, which functions as a protein 

phosphatase inhibitor (Hall et al. 1999; Endo et al. 1999). By engaging this 

cascade in postsynaptic cells, NO contributes to LTD at the parallel fibre-Purkinje 

cell synapse possibly by causing the declustering of synaptic AMPA receptors 

(Launey et al. 2004). More recently, the source of NO has been disputed 

implicating the interneurones rather than parallel fibres (Shin & Linden 2005).
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Purkinje cell-specific cGK-knockout mice show strongly reduced LTD as expected 

as well as defects in certain types of motor learning in the cerebellum (Feil et al. 

2003). Very recently, the NMDA-R-stimulated release of NO was shown to 

increase Ca2+ transients in activated parallel fibres, which is thought to underlie a 

presynaptic form of LTP at the parallel fibre-Purkinje cell synapse (Qiu & Knopfel

2007).

Clearly there are numerous ways in which NO can modulate the response of a 

given neurone or network of cells and this will depend on the downstream target 

components expressed. While the acute actions of NO on neuronal function are 

seemingly divergent, the ability to change both presynaptic and postsynaptic 

responses highlights the versatility of NO as a signalling molecule, acting in both 

anterograde and retrograde directions. This means, however, that its precise 

function will need to be understood on a more regional context-specific basis.

1.8 THE PHYSIOLOGICAL FUNCTION OF NO-cGMP-HCN  

CHANNEL PATHWAY

As mentioned before, the interaction of lh and lt is important in generating rhythmic 

oscillations in thalamocortical neurones. Further work identified one of the first 

reported instances of regulation of Ih by NO. NO and a membrane permeable 

analogue of cGMP cause a depolarisation of the membrane potential in these relay 

neurones and decrease Rin. Current-voltage relationships suggest a greater effect 

of NO at hyperpolarised potentials suggesting an effect on lh. Indeed, NO shifted 

the voltage for half-maximal activation of the channels by about 5 mV in a 

depolarised direction. A combination of all these factors decreases the rebound 

depolarisation because of less de-inactivation of the lt, thereby decreasing rebound 

action potentials. Ultimately, NO is able to potently and reversibly block the slow 

oscillatory activity in spontaneously active neurones (Pape & Mager 1992). Fibres 

from the cholinergic tegmental neurones contain NOS (Vincent & Kimura 1992) 

and extend into the thalamus. These neurones are thought to increase in firing rate 

just prior to the transition from sleep to wakefulness, an effect which would 

presumably liberate NO into the thalamus. It would therefore appear that the NO-
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cGMP-HCN channel pathway could play an important role in the functional control 

of neuronal networks.

A decade later, a pair of papers from the same group showed an effect of the NO- 

cGMP pathway on trigeminal motor pool and mesencephalic neurones. In both 

sets of cells, NO and cGMP reversibly depolarise the membrane potential and 

reduce the threshold of firing. There is little-to-no change in Rin. This is presumably 

by action of cGMP on lh noted by observing effects on the voltage ‘sag’ to 

hyperpolarising current injections (Abudara et al. 2002; Pose et al. 2003). In this 

case, the augmentation of HCN channel function is excitatory, a property that may 

be important in various jaw reflexes and movements.

Earlier work on the trigeminal ganglia suggested that sensitisation of primary 

afferent neurones by prostaglandin-E2 involves a depolarising shift in the activation 

curve for lh via a direct effect of cAMP (Ingram & Williams 1996). The 

concentration-effect profiles for Br-cAMP and Br-cGMP are very similar suggesting 

that cAMP and cGMP may have equal efficacy and potency for causing 

depolarising shifts in HCN channel voltage dependence, indicating that the NO- 

cGMP pathway could play a part in nociceptive processing. In the neurones of the 

substantia gelatinosa, NO enhances lh indicating a role in central sensitisation 

through a change in the properties of these important relay neurones (Kim et al. 

2005).

In the optic nerve, tonic eNOS-derived NO raised cGMP levels which then cause 

membrane depolarisation, apparently by directly engaging HCN channels. eNOS 

appears only to be expressed in the neighbouring endothelial cells, providing a 

novel mechanism, at least in vitro, by which the microvasculature persistently 

signal to axons. This prevailing ‘tone’ is approximately at the midpoint of possible 

changes in membrane potential, such that the system is well poised to respond to 

changes in eNOS activity (Garthwaite et al. 2006).
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1.9 GENERAL AIMS OF THE STUDY

The functions of the NO-cGMP pathway and HCN channels individually have been 

studied extensively throughout the brain and the body as a whole. However, there 

is still little known about how they interact within the CNS. The previous section 

highlights the precedents for NO and/or cGMP modulating HCN channels in 

neurones. The ubiquity of NO as an intercellular messenger and the prevalence of 

HCN channels throughout the brain suggest that Ih is a realistic and plausible 

target for NO-cGMP signalling. In the following chapters, the NO-cGMP-HCN 

channel pathway in regions of the hippocampus, cerebellum and brainstem are 

investigated and discussed. The delicate nature of the NO-cGMP-HCN channel 

interaction is emphasised in later chapters.

OVERARCHING HYPOTHESIS: The NO-cGMP-HCN channel signalling pathway 

is present in the brain.
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2.1 MATERIALS

Compound Abbreviation Source

Adenosine 5 ’-triphosphate magnesium salt ATP Sigma
4-Aminopyridine 4-AP Sigma (fluka)
(Z)-1-[N-(3-Ammoniopropyl)-N-(n-propyl)-amino]/NO PAPA/NO Alexis
Amphotericin B (solubilised) - Sigma
Apamin - Alamone
Bovine serum albumin (fraction V) BSA Sigma
8-Bromoadenosine 3 ’,5’ cyclic monophosphate 8-Br-cAMP Sigma
8-Bromoguanosine 3’,5’ cyclic monophosphate 8-Br-cGMP Sigma
8-(4-chlorophenylthio)-guanosine ^ ’-cyclic monophosphate 
sodium salt

8-pCPT-cGMP Sigma

Caesium chloride Cs+ Sigma
6-cyano-7-n itroq u inoxal ine-2,3-d ione CNQX Tocris
Guanosine 3’-5 ’-cyclic monophosphate cGMP Sigma
Guanosine 5’-triphosphate sodium salt GTP Sigma
D(-)-2-amino-5-phosphonopentanoate D-AP5 Tocris
3,3’-Diaminobenzadine DAB Sigma
Diethylamine NONOate: 2-(N,N-Diethylamino)-diazenolate-2- 
oxide . diethylammonium salt

DEA/NO Alexis

Dimethyl sulfoxide DMSO Sigma
DPX mounting medium - VW R
Ethylene glycol-bis(/?-aminoethyl ether)-N,N,N’,N’-tetraacetic 
acid

EGTA Sigma

Forskolin - Sigma/Tocris
Gramicidin - Sigma
N^-Hydroxyethylpiperazine-N’̂ -ethanesulfonic acid HEPES Sigma
3-lsobutyl-1 -methylxanthine IBMX Sigma
Isoprenaline IsoP Sigma
Mayers haemalum - Lamb
A^-nitro-L-arginine L-NNA Tocris
Noradrenaline NorA Sigma
OCT embedding medium OCT Lamb
Picrotoxinin Ptx Sigma
1,4-Piperazinediethanesulfonic acid PIPES Sigma
Poly-D-lysine - Sigma
Potassium Acetate KAc Sigma
Potassium Methylsulphate KM eS04 City
Proteinase XXIII _ Sigma
Proteinase inhibitor - Sigma
Saclofen - Sigma
Soluble guanylyl cyclase (bovine lung) sGC Sigma
Sodium hydroxide NaOH Sigma
Tetrodotoxin TTX Latoxan
Tris(hydroxymethy!)aminomethane hydrochloric acid Tris Sigma
Tritiated cyclic guanosine monophosphate 3H-cGMP Amersham
Triton X-100 - Sigma
Trizma base Tris Base Sigma
Vectastain Elite ABC complex Vector
4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium ZD7288 Tocris
chloride
Table 2.1 List of compounds
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All standard reagents were obtained from BDH (VWR) unless stated otherwise.

Key

Agar: Agar Scientific, Stansted, UK.

Alexis: Axxora Ltd, Nottingham, UK.

Amersham: Chalfont St.Giles, Bucks, UK.

City: City Chemical, West Haven, CT, USA.

Lamb: Raymond A Lamb Ltd, Eastbourne, UK.

Latoxan: Latoxan Laboratories, Rosans, France.

Sigma: Sigma-Aldrich Company Ltd, Poole, Dorset, UK.

Tocris: Tocris Cookson Ltd, Avonmouth, Bristol, UK.

Vector: Vector Labs Ltd., Peterborough U.K.

VWR: VWR International, Dorset, UK.

2.2 GENERAL SOLUTIONS 

Artificial cerebral spinal fluid (aCSF)

119 mM NaCI, 2.5 mM KCI, 1.3 mM MgCI2, 2.0 mM CaCI2, 1.0 mM NaH2P04.H20,

26.2 mM NaHC03, and 11 mM glucose, equilibrated with 95% 0 2 - 5% C02 

(carbogen) give a pH of 7.4 at 30 -32 °C.

Phosphate buffer (PB)

Stock ‘A’ and ‘B’ solutions were prepared; ‘A’ contained 31.2 g / 1 NaH2P04.2H20; 

‘B’ contained 35.6 g / I Na2HP04.2H20. 0.2 M stock PB solution was prepared 

using 95 ml of ‘A’, and 405 ml of ‘B\ All stock solutions were stored at 4 °C

Tris-buffered saline (TBS)

5.85 g Tris (MW 121.0) was added to 250 ml distilled water; 3.4 ml concentrated 

HCI was diluted in 200ml water; 250 ml Tris, 192 ml HCI, and 8.77 g NaCI was 

topped up to 1000 ml.
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NO donors

Stock solutions at 100 - 1000 x final concentration were prepared freshly each day 

in 10 mM NaOH, and kept on ice to prevent decomposition until use. During the 

course of my experiments, I have used two members of the 1-substituted diazen-1- 

ium-1,2-diolate (‘NONOate’) class of compounds that generate authentic NO at 

reliable rates (Keefer et al. 1996), namely DEA/NO and PAPA/NO (table 2.2). I 

chose these compounds because their relatively short half-lives fit with the 

timeframe of my experiments.

Donor Structure Efficiency of NO Half-life
release (EN0, mol

______________________________________ NO/mol_donor)_________________________

DEA/NO 1.5 2 min at 37 °C
' 16 min at 22-25 °C

r t *c  v /  N  w  C M '

15 min at 37 °C
PAPA/NO 2 77 min at 22-25 °C

Table 2.2 The structure and properties of two NONOates (Keefer etal.  1996)

In buffer at pH 7.4, the rates of release of NO for all NONOates are thought to be 

first order, while the primary route of NO breakdown involves an interaction with 

oxygen in the aqueous solution in a process termed ‘autoxidation’. To predict these 

reactions quantitatively, I have used an established mathematical model (Schmidt 

et al. 1997) and the following notations:

t = time(s)
CNo(t) = concentration of NO at time t (M)
Co(t) = concentration of donor at time t (M)
Co = initial concentration of donor (M) 
eNo = mol of NO per mol donor
0 2 = concentration of oxygen (M); 1 mM in aCSF equilibrated with carbogen 
ki = rate constant for donor decomposition (s'1)
k2 = rate constant for NO oxidation (M'2s'1); known to be 13.6x106 at 37 °C; values 

are not available for 30 - 32 °C, so this was used as an estimate
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Assuming that the NO donor (D) decays exponentially, the change in NO is given 

by the difference between formation and the third order process of autoxidation:

, C M?(0 — k \ C ^ 2 ^ 2 C N O ^  
at

with initial conditions: C d (0 )= C o  and C n o (O ) = 0

As all the electrophysiological experiments are carried out at 30 - 32 °C, an 

approximate intermediate half-life, compared to table 2.2, of 8 and 45 min was 

used for DEA/NO and PAPA/NO respectively to generate NO concentration 

profiles (figure 2.1).

Figure 2.1 The predicted 
concentration profiles for two 
NONOates utilised in 
subsequent electrophysiological 
experiments

The faster kinetics of DEA/NO 
means there is a greater release 
of NO, peaking around the 2 nd or 
3rd min and then decrease.

The slower kinetics of PAPA/NO 
results in the level of NO almost 
reaching a plateau after ~ 1-2 
min s.

2.3 STATISTICAL ANALYSIS

Analyses were conducted using Origin 7 (OriginLab Corporation, Northampton, 

MA) and SPSS for Windows v11.5 (SPSS U.K. Ltd., Woking, U.K.) as appropriate, 

p values < 0.05 were considered statistically significant. Data are presented as 

mean value ± standard error of the mean (sem).
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Chapter 3 - The NO-cGMP-HCN channel pathway and 

axonal conduction in the hippocampus
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3.1 INTRODUCTION

The importance of the hippocampus in learning and memory has led to a boom in 

research on their presumed biological correlate, hippocampal synaptic plasticity; 

during the past two decades a multitude of pre- and postsynaptic alterations that 

contribute to long-term potentiation (LTP) and depression (LTD) have been 

identified (Bliss & Collingridge 1993; Malenka & Bear 2004). The NO-cGMP 

signalling pathway has been suggested to have various roles (chapter 1). Ih is 

involved in LTP (Mellor et al. 2002) and LTD (Maccaferri et al. 1994) within this 

brain region. HCN channels also affect the summation of synaptic inputs, either to 

allow greater discrimination of high frequency inputs in the subiculum (van Welie et 

al. 2006) or to normalise input spatially in CA1 pyramidal cells (Magee 1998).

Figure 3.1. The hippocampal formation

The CA3 (red thick line) and CA1 (thick 
blue line) areas are connected by Schaffer 
Collateral (thin red line) and commissural 
(thin green line) axons (SC/C) from
ipsilateral and contralateral CA3 pyramidal 
cells (red triangles) respectively, 
o, p, r, l-m indicate the strata oriens, 
pyramidale, radiatum and lacunosum
moleculare respectively; sub = subiculum,
DG = dentate gyrus.

The stratum radiatum of area CA1 in the hippocampus (figure 3.1) contains mostly 

unmyelinated axons, which form the Schaffer Collateral/commissural (SC/C) 

pathway coursing from ipsilateral and contralateral area CA3 pyramidal cells

(Johnston & Amaral 2004). These fibres, amongst the thinnest axons in the

mammalian CNS (Shepherd & Harris 1998), possess abundant boutons that form 

en passant synaptic contacts with CA1 pyramidal cell apical dendrites. Plasticity at 

these synapses is typically elicited by activating the presynaptic axons at certain 

frequencies. The associated changes, if any, in the presynaptic axonal firing 

properties are not well documented, despite their importance in determining 

release of neurotransmitter and, hence, the degree of synaptic activation.
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In these axons, it is known that lh is required to maintain the reliability in conduction 

at relatively low frequencies (1-5 Hz; Soleng et al. 2003), indicating an important 

link between HCN channel activity and axon function. The modulation of axonal lh 

could influence the SC/C fibre activity and ultimately the signal conveyed to the 

postsynapse.

Both cAMP and cGMP are potential modulators of HCN channels (chapter 

1) and both cyclic nucleotides have been extensively implicated in the induction of 

hippocampal LTP (Pockett et al. 1993; Boulton et al. 1995; Arancio et al. 1996; 

Arancio et al. 2001; Pineda et al. 2004), but little attention has been given to the 

possibility that their participation may, at least in part, be explained by an action on 

axonal HCN channels. There is some evidence for modulation of axonal 

conduction via cAMP in the cerebellum (Chen & Regehr 1997) but its effect on 

hippocampal axons does not appear to have been examined. Repetitive low 

frequency (2 Hz) stimulation causes a robust lowering of the activation threshold of 

the Schaffer collateral axon, an effect that was dependent on endogenous NO 

formation and presumably cGMP (McNaughton et al. 1994). The outcome at stimuli 

in the theta (5-12 Hz) and gamma (20-100 Hz) range, often used in various LTD 

and LTP induction protocols, was not investigated.

Focusing on NO-cGMP signalling, it was recently demonstrated that tonic 

and phasic NO signals are both required for hippocampal LTP, particularly where a 

high frequency stimulus is used to enhance postsynaptic activation. Conversely a 

low frequency stimulation and postsynaptic pairing protocol is less likely to be 

affected by NO-dependent effects on presynaptic axon properties. The tonic and 

phasic NO signals are generated, respectively, by eNOS and nNOS, the former in 

blood vessels and the latter in neurones (Hopper & Garthwaite 2006). In this 

respect, it is notable that nerve fibres are prominent sites of cGMP accumulation in 

response to NO in the hippocampus (van Staveren et al. 2004). In other central 

axons (optic nerve), endogenous NO, via cGMP, causes a depolarisation 

apparently by directly engaging HCN channels (Garthwaite et al. 2006), an effect 

that would be expected to improve the fidelity of conduction (Soleng et al. 2003).

Immunohistochemical localisation of HCN channel subunits in the rat brain 

reviews a high density of HCN1 and HCN2 within the stratum radiatum of CA1

55



Chapter 3 - The NO-cGMP-HCN channel pathway in the hippocampus

(Notomi & Shigemoto 2004). Expression of a functional heteromer of murine HCN1 

and HCN2 channels, using a concatenated construct, gives rise to channels with a 

voltage dependence of activation similar to HCN2, whereas sensitivity to cyclic 

nucleotides was intermediate to both (Ulens & Tytgat 2001). Therefore the h- 

current in SC/C axons could potentially be regulated by cyclic nucleotides and 

compounds that affect the levels of cyclic nucleotides, such as NO.

3.2 AIM

This study was carried out to investigate axonal conduction during theta and 

gamma band stimulation of the SC/C pathway and, in particular, the influence of 

HCN channel function upon conduction and its possible modulation by NO-cGMP.

HYPOTHESIS: The NO-cGMP-HCN channel signalling pathway is present in the 

SC/C axons; NO and cGMP modulate axonal function via axonal HCN channels.
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3.3 METHODS 

Tissue preparation

All procedures were in accordance with regulations the Animals (Scientific 

Procedures) Act 1986. For extracellular recordings, hippocampal slices were 

prepared from six to eight week-old male Sprague-Dawley (SD) rats. The animals 

were killed by stunning followed by cervical dislocation and decapitation. For 

intracellular recordings, hippocampi were obtained from male or female 16- to 25- 

day-old SD rats after cervical dislocation and decapitation; younger animals were 

used as CA3 pyramidal cells at this post-natal age are more amenable to patch- 

clamping. The brain was rapidly removed and the hippocampus dissected out and 

placed in cold (4 °C) artificial cerebrospinal fluid (aCSF). Transverse slices, 400 pm 

thick, were prepared using a Mcllwain tissue chopper (for extracellular recordings) 

or a Vibratome (for intracellular recordings) and maintained in a humidified 

interface holding chamber containing aCSF at room temperature. After a period of 

recovery (at least 60 min), one slice was transferred into a submerged chamber 

and continuously perfused with oxygenated aCSF.

Electrophysiological recordings (at 30 -  32 °C)

Bipolar twisted NiCr-insulated electrodes were placed more towards the fimbrial 

end of the SC/C pathway relative to the recording electrode; the recording 

electrode (5-10 MQ) was filled with aCSF. A stimulus (200 ps duration) at constant 

voltage is generated using a Digitimer stimulator (Welwyn Garden City, 

Hertfordshire). The recording and stimulating electrodes were positioned in stratum 

radiatum of area CA1 to elicit an appreciable presynaptic CAP and field excitatory 

postsynaptic potential (fEPSP; figure 3.2A); the presynaptic action potentials were 

isolated pharmacologically from postsynaptic activity by bath application of 20 pM 

CNQX and 50 pM D-AP5 (figure 3.2B). Initially the input-output relationship of 

stimulus intensity (typically between 1 and 20 V) against CAP amplitude was 

determined, and the voltage adjusted to about a third of maximum, i.e. a 

submaximal stimulus. Baseline recordings for about 15 min at 0.2 Hz, controlled by 

a Master-8 scheduler (Intracel Ltd, Royston, UK) were performed to ensure stability
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of the slice. For all extracellular recordings, ‘n’ refers to the number of individual 

slices. Test trains consisting of 80 pulses at 5, 30 or 100 Hz, separated by 5 min 

intervals at 0.2 Hz. All recordings were made at 30 - 32 °C. Signals were amplified 

with an Axoclamp-2B (Axon Instruments, Foster city, CA), filtered at 5 kHz, 

digitised at 20 kHz (100 Hz stimulation) or 50 kHz (0.2 Hz and 5 Hz stimulation) 

and stored on the computer hard disk using pClamp6 (Axon instruments, Foster 

City, CA). To minimise the stimulus artefact obscuring the triphasic fibre volley, a 

trace in the presence of 0.5 pM TTX was retrospectively subtracted.

CAP amplitudes were measured from the first positive to the most negative 

peak; latencies were measured from the start of the stimulus artefact to the most 

negative peak (figure 3.2B). Test frequency values were normalised relative to the 

mean of the 5 min baseline stimulation at 0.2 Hz.

L-nitroarginine (L-NNA), Br-cGMP, pCPT-cGMP, forskolin, ZD7288 and 

CsCI were washed in and out for at least 20 min; the CAP at 0.2 Hz was recorded 

throughout, and no change observed; Br- and pCPT-cGMP were added to the 

same slice; all forskolin concentrations were added cumulatively to the same slice. 

DEA/NO was present for 30 s at 0.2 Hz, prior to switching to 5 Hz. A series of 

interleaved control experiments were carried out to confirm the long-term stability 

of the preparation.

presynaptic
/ /C A P

Stimulus
artefact

Amplitude

Latency 0.1 mV0.1 mV

5 ms 5 ms

Figure 3.2 Field recording of the 
response to stimulation of SC/C  
fibres in the stratum radiatum

A, Following a stimulus, the 
presynaptic compound action 
potential (CAP) and the field 
excitatory postsynaptic potential 
(fEPSP), resulting from activation 
of the fibres and associated 
synapses in the vicinity of the 
recording electrode, can be seen.
B, In the presence of the 
excitatory synaptic blockers, 
CNQX and D-AP5, the 
presynaptic CAP is isolated 
(Trace in TTX subtracted 
retrospectively).

Whole-cell recordings were made from CA3 stratum pyramidale without visual 

identification at 30 - 32 °C; all cells included in the study had a stable resting
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membrane potential less than -50 mV. Pipette solutions contained (in mM): 150 

KMeS04, 10 KCI, 10 HEPES, 4 NaCI, 4 MgATP; the pH was adjusted to 7.39 - 7.4 

and the osmolarity to 280-290 mOsm / I. Open pipette resistance was 2-4 MQ. 

Antidromic activation of the Schaffer collateral was carried out using a 

supramaximal stimulus. Under voltage clamp conditions, currents were recorded 

using an Axopatch 1D amplifier and pClamp7 (Axon Instruments, Foster city, CA) 

in neurones clamped at holding potentials from -60 to -75 mV. Stable access 

resistances were 30-75 MQ; 80% compensation of the series resistance was used; 

voltages were not corrected for liquid junction potentials. The recordings were 

filtered at 1 kHz and sampled at 2 kHz. Ih amplitudes were obtained by single 

exponential fits to the charging curve; current amplitude was measured as the 

difference between the plateau current level at the end of the hyperpolarising step 

and the point where the fitted line intersected with the capacitative transient. The 

instantaneous current component was measured as the difference between this 

point of intersection and the holding current. Cells that showed, any conduction 

failures or little or no lh(n=5 of 18; arbitrarily < 40 pA) were rejected.

For current clamp, the neuronal membrane potential was held approximately 

at -62 mV (the apparent average resting membrane potential) and signals were 

recorded by using an Axoclamp-2B amplifier in bridge mode and pClamp7 (Axon 

Instruments, Foster City, CA). The bridge balance was constantly monitored 

throughout the experiment and adjusted appropriately. The voltage signal was 

filtered at 1 kHz and sampled at 2 kHz, which appeared sufficient to record 

accurate waveforms. Cells included in the study had an action potential height of at 

least 60 mV. The afterdepolarisation, immediately following the initial fast 

repolarisation, was measured as the area under the curve up to 60 ms (as full time 

of scale at 5 Hz) to the baseline membrane potential.

All analyses were performed offline using Clampfit 8.0 (Axon Instruments, 

Foster City, CA). Patch longevity was usually a maximum of 30 min, so CsCI (2 

mM) was used to block lh because of the longer wash in times required (10 - 15 

minutes) for ZD7288 and other organic blockers.
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Statistics

At 5 Hz, a Student’s paired f-test was performed on the last stimulus to determine if 

the control and test situation were different at the end of the train of activity. At 30 

and 100 Hz, a repeated measure ANOVA was performed on the entire 80 stimuli, 

as well as on bins of 10 stimuli to determine when the control and test cases were 

different during the course of the stimulation.
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3.4 RESULTS

The CAP resulting from electrical stimulation of the SC/C pathway was recorded 

within the CA1 stratum radiatum after pharmacological isolation from potentials 

mediated by ionotropic glutamate receptors. Preliminary experiments indicated that 

blockade of lh, with Cs+ (2 mM) or ZD7288 (10 pM), had no obvious effect on the 

CAP properties at 0.2 Hz stimulation, so this frequency was adopted as the 

baseline. Test frequencies of 5, 30 and 100 Hz were chosen for study because 

they cover the theta and gamma rates of stimulation typically used in LTD and LTP 

induction protocols.

100 and 30 Hz stimulation

Following an action potential, a brief supernormal period of reduced firing threshold 

and increased conduction velocity has been observed in many different axons 

(Gardner-Medwin 1971; Wigstrom & Gustafsson 1981). In accordance with these 

findings, after two successive stimuli of equal intensity there was a decrease in the 

latency of the second volley with no significant effect on the amplitude (figure 

3.3A), implying that the same numbers of fibres was being activated. Stimulation 

with 80 pulses at 100 Hz (figure 3.3B) resulted in an initial increase in peak 

amplitude followed by a decrease (figure 3.4A), the changes in volley latency 

reciprocating this trend (fig. 3.4C), showing a clear alternation in CAP excitability 

from supemormality to subnormality.

At a concentration selectively blocking HCN channels in the hippocampus 

(Huang & Hsu 2003), ZD7288 (10 pM) had no significant effect on CAP properties 

over the entire train at 100 Hz stimulation (figure 3.4B,D,E,H; repeated measures 

ANOVA; p>0.05). Similar negative results were found with 2 mM Cs+ both at 100 

Hz (figure 3.4F,I) and at 30 Hz (figure 3.4G.J). However, statistical analysis on bins 

of 10 stimuli revealed consistently significant greater amplitude differences at the 

beginning of 100 and 30 Hz stimulation and consistently significant latency 

increases at the end of stimulation in the presence a HCN channel blocker.
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0.05 mV

StimulusStimulus
0.02 mV

0.05 mV

Figure 3.3 Changes in CAP amplitude and latency in response to 100 Hz stimulation

A, average traces of the first and second evoked fibre volleys by pulses of identical strength 
separated by 10 ms (i.e. the first and second CAPs from the train of 80 stimuli at 100 Hz in 
B; n=13). The amplitude was unchanged for both (p=0.89) while the latencies were 
significantly different (p<0.001); the stimulus artefact was cropped for clarity.
B, a typical example of 80 stimuli at 100 Hz with expanded sections as indicated. As 
stimulus train proceeded, a transition in the amplitude of the fibre volley was clear.
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Figure 3.4 Changes in CAP amplitude and latency in response to 80 stimuli at 100 and 30 Hz 
with and without block of lh

A,B, a typical example of the CAP amplitude at 0.2 Hz and at 100 Hz (as indicated by the 
bars). In control (black squares) and in the presence of 10 pM ZD7288 (red squares), the 
increase and decrease in amplitude follow the same trend.
C.D, the latency transition in the same slice as A.
E,H, mean amplitude and latency values at 100 Hz normalised to the stable mean at 0.2 Hz 
(n=6). * indicate significant differences in the presence of 10 pM ZD7288 (Repeated 
measures ANOVA; p<0.05).
F,l, mean amplitude and latency values using 2 mM Cs+, another HCN channel blocker 
(n=7). * indicate significant differences between the control values and measurements in the 
presence of Cs+ (Repeated measures ANOVA; p<0.05). Some sem were omitted in either 
the positive or negative direction for clarity of data points.
G,J, mean amplitude and latency values at 30 Hz normalised to the stable mean at 0.2 Hz 
(n=7). * indicate significant differences in the presence of Cs+ (Repeated measures ANOVA; 
p<0.05).
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5 Hz stimulation

Under control conditions, stimulating the axons with 80 pulses at 5 Hz had little 

effect on the CAP amplitude (figure 3.5A.E), although there was a significant 

increase in the latency (figure 3.5C,G). In the presence of ZD7288, the CAP 

recorded became significantly smaller and slower during the course of the train 

(figure 3.5B,D,E,G). This finding is in good agreement with previously published 

data (Soleng et al. 2003) and suggests that in the absence of lh, there is a 

decrease in axon excitability accompanied by impaired conduction. The same 

results were found with Cs+ (2 mM), whose effects were partially reversed following 

a 30 min wash out (figure 3.5F.H), as expected (Harris & Constanti 1995).

Regulation of axonal HCN channels by NO-cGMP pathway

Since the effect of blocking lh was most pronounced at 5 Hz stimulation frequency, 

this condition was adopted for investigating the possible modulation by cGMP. 

Initially, given the recent precedent from optic nerve axons (Garthwaite et al. 

2006), I investigated if the NO-cGMP pathway impinged on axonal function. 

Blockade of endogenous NO production using L-NNA at a concentration (100 pM) 

that inhibits all isoforms of NOS (Hopper & Garthwaite 2006) had no effect at the 

baseline or test frequency (figure 3.6A,C). Exogenous NO was delivered in the 

form of the NONOate DEA/NO, which releases authentic NO with predictable 

kinetics (Keefer et al. 1996; chapter 2). When applied in the presence of L-NNA, 

neither 0.3 pM (data not shown) nor 10 pM DEA/NO had any observable effect on 

the CAP amplitude or latency recorded at 0.2 or 5 Hz (figure 3.6B,D). The selected 

DEA/NO concentrations cover the range that cause cGMP accumulation in 

hippocampal slices and that are capable of substituting for endogenous NO in the 

induction of hippocampal synaptic plasticity (Bon & Garthwaite 2001; Bon & 

Garthwaite 2003; Hopper & Garthwaite 2006).

To investigate possible modulation by cyclic nucleotides more directly, 

analogues of cGMP, namely 8-Br-cGMP and 8-pCPT-cGMP, were used at typical 

concentrations of 100 pM (DiFrancesco & Tortora 1991; Pape & Mager 1992; 

Bains & Ferguson 1997). No effect of either analogue was seen at 0.2 or 5
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Figure 3.5. Changes in CAP amplitude and latency in response to 80 stimuli at 5 Hz with and 
without lh block

A,B, a typical example of the CAP amplitude at 0.2 Hz and at 5 Hz (as indicated by the bars). 
In control experiments (closed squares) at 5 Hz the amplitude values ended at approximately 
their initial value. In the presence of 10 pM ZD7288 (open squares) the amplitude decreased 
considerably as the stimulation at 5 Hz progressed.
C,D, a typical example of the CAP latency at 0.2 Hz and at 5 Hz (as indicated by the bars). In 
control experiments (black) the latency increases at 5 Hz. ZD7288 (grey) gave a further 
increase.
Insets, average traces of the first (black) and the last (dashed) three CAP responses to 80 
stimuli at 5 Hz.
E,G, mean amplitude and latency values at 5 Hz normalised to the stable mean at the 
baseline frequency, 0.2 Hz (n=6). ZD7288 had a significant effect on the amplitude and 
latency (*: Student’s paired f-test; p<0.05)
F,H As for E & G, using 2 mM Cs+ to block lh (n=8).On wash out there was a partial reversal 
of the effects of the amplitude and latency.
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Figure 3.6. The effect of the pharmacological manipulations of the NO-cGMP and cAMP 
signalling pathways on CAP amplitude and latency in response to 80 stimuli at 5 Hz

Each pair of graphs show the mean amplitude and latency values at 5 Hz normalised to the 
stable mean at 0.2 Hz. In all cases, there were no obvious differences between drug 
conditions (Student’s paired f-test; p.0.05).
A.C, Blockade of endogenous NO production using 100 pM L-nitroarginine (L-NNA; n=11).
B.D, Application of exogenous NO using 10 pM DEA/NO that results in maximal production 
ofcGM P (n=4).
E,G, Increasing cGMP levels by application of membrane-permeable analogues of cGMP, 
8-Br-cGMP and 8-pCPT-cGMP (both 100 pM; n=4).
F,H, Augmentation of the level of cAMP using forskolin (1 ,1 0  or 100 pM; n=9)
Insets: typical average waveforms for fibre volleys at 0.2 (mean of all 60 stimuli; thick line) 
and at 5 Hz (mean of the latency plateau; thin line) from one slice.
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Hz stimulation frequency (figure 3.6E.G) during perfusion for 20 min. Finally, I 

tested if cAMP, which is generally regarded as the more potent cyclic nucleotide 

active on HCN channels (Zagotta et al. 2003), was active by bath application of the 

adenylyl cyclase stimulator, forskolin. Over the range of commonly used 

concentrations of 1-100 pM (Daly et al. 1982; Pape & Mager 1992; Mellor et al. 

2002; Chevaleyre & Castillo 2002) forskolin application (20 min) failed to affect 

significantly the CAP amplitude or latency at 0.2 or 5 Hz (figure 3.6F,H).

Whole-cell recording from CA3 neurones

More direct information on the involvement of HCN channels during repeated 

axonal stimulation was sought by recording intracellularly from CA3 neurones, the 

sources of the Schaffer collateral axons. Under voltage-clamp conditions, 

hyperpolarising voltage steps (figure 3.7A) revealed a current with the time and 

voltage-dependence characteristic of lh in these cells (Cobb et al. 2003). From a 

holding potential of around -60 mV and activation of lh using fixed 20 and 50 mV 

hyperpolarising steps, DEA/NO (10 pM) had no obvious effect (figure 3.7B), 

consolidating the information from the extracellular recordings. It should be realised 

that work in chapter 6 indicated that the NO-cGMP signalling cascade was affected 

by the whole-cell solution, so further work would be required to test more precisely 

the standing hypothesis.

To further elucidate the role of lh during higher frequency stimulation, the 

Schaffer collaterals were stimulated at 5 Hz and the antidromic action potential 

(AP) at the CA3 soma recorded as an indication of successful conduction (figure 

3.7C). As expected, an all-or-none response with no rise to threshold was 

observed. An afterdepolarisation immediately following the sodium spike and 

subsequent medium and slow afterhyperpolarisations were also as expected 

(Vervaeke et al. 2006). The h-current was measured following hyperpolarising 

steps of 20 and 50 mV before and after 80 stimuli at 5 Hz (figure 3.8A). Axon 

stimulation did not result in any significant changes in lh elicited following a -20 mV 

step while on a -50 mV step, there was a significant decrease in amplitude (figure 

3.8A-C). Ih is partially activated at the holding potential (Cobb et al. 2003) 

generating a cationic inward current that would contribute to the instantaneous 

current component. Therefore, a decrease on a -50 mV step is suggestive of more
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Figure 3.7. Ih and the antidromic AP in CA3 pyramidal cells

A, Under voltage clamp conditions, 600 ms voltage steps from -66 mV to -116 mV (-5 mV 
steps) activated an inward current with slow onset. This current was sensitive to 2 mM C s \  
This cell, recorded in the presence of 20 pM CNQX, 50 pM D-AP5 and 50 pM picrotoxinin, 
had a resting membrane potential o f -61 mV.
B, 10 pM DEA/NO had no effect on lh amplitude activated by -20 and -50 mV steps (n=5; 
Student’s paired f-test; p<0.05). Data points represent bins of 4 results.
Insets: typical current recorded during the experiment.
C, Antidromic activation of CA3 pyramidal neurones via stimulation of Schaffer Collaterals in 
the CA1 stratum radiatum
i, under current clamp conditions, stimulation results in a clear action potential without a rise 
to threshold. Immediately after there was an after-depolarisation (ADP) followed by a 
medium and slow afterhyperpolarisation (mAHP & sAHP). Recorded in the presence of 20 
pM CNQX, 50 pM D-AP5, 50 pM picrotoxinin and 200 pM saclofen.
ii, a different cell, under voltage clamp conditions, exhibits the currents that reflect the 
membrane potential changes in (i). Recordings were carried out in the presence of 20 pM 
CNQX, 50 pM D-AP5 and 50 pM picrotoxinin.

DEA/NO
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of the current being already activated. Indeed, the instantaneous current showed a 

significant increase following stimulation (figure 3.8D). As expected, lh was blocked 

by Cs+ (figure 3.8C).

Closer examination of the holding current showed a positive shift after 5 Hz 

axon stimulation (figure 3.8F), indicative of a hyperpolarising current. This shift 

became greater in the presence of Cs+ in all cells showing such a change, and was 

greater for the -20 mV step compared to the -50 mV step (figure 3.8F). In this 

protocol, the -20 mV step was imposed immediately following the period of axon 

stimulation and the -50 mV step 1 s afterwards, which could have affected the 

results. When the order of the steps was reversed, the results were similar (data 

not shown). This was also true for the instantaneous current, except that when the 

second test potential was -20 mV, there was no significant difference between the 

instantaneous current before and after 5 Hz stimulation (p = 0.068), indicating that 

the pre 5 Hz ionic state had been restored by the time the test step was applied. 

The rates of activation of the current (figure 3.8E), derived from single exponential 

fits to the charging curve, showed no significant difference at -20 or -50 mV steps.

Current-clamp recordings showed that, as for the population response, 

individual axons were able to follow reliably low frequency (0.2 Hz) stimulation 

(figure 3.9Ai). As the stimulus train proceeded at 5 Hz there was a progressive, 

significant increase in the latency to firing as well as an obvious, significant 

hyperpolarisation (figure 3.9Aii,B). As expected from the field potential results, Cs+ 

had no effect on the fidelity of conduction at 0.2 Hz (figure 3.9Aiii,B,C,E). At 5 Hz, 

Cs+ caused a significantly greater increase in the latency to the action potential 

peak and a greater, yet not significant hyperpolarisation (figure 3.9Aiv,B,C). By 

superimposing and aligning the baseline membrane potential of the first and last 

action potential, it can be seen that over the course of 80 stimuli at 5 Hz, there was 

a significant increase in the ADP (figure 3.9D, E). In the presence of C s\ the ADP 

was significantly larger over the 0.2 Hz period. Similarly the ADP increased 

following 5 Hz stimulation, but the final increase was significantly greater (figure 

3.9E).
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Figure 3.8 The changes in the 
membrane currents
measured from the soma of 
CA3 pyramidal cell before 
and after 5 Hz stimulation

A, a typical response of a cell 
to -20 and -50 mV steps, (i) 
and (ii) are the responses 
immediately before and after 
80 stimuli at 5 Hz 
respectively. This cell, in the 
presence of 20 pM CNQX, 50 
pM D-AP5 and 50 pM 
picrotoxinin, had a resting 
membrane potential of -65 
mV and the holding potential 
was -  73 mV.
B, raw (open squares) and 
mean (filled circles; n=6) 
values indicating the changes 
in the h-current measured at 
two step potentials before 
and after 5 Hz stimulation. 
For the -20 mV step, there 
was no significant difference 
(Student’s paired f-test; p = 
0.89) between current 
amplitude values before and 
after 5 Hz. Conversely, for the 
-50 mV step, there was a 
significant difference

  (Student’s paired f-test, p <
0.03).

C, same as for A but in the presence of 2 mM Cs+.
D, raw (open squares) and mean (filled circles; n=6) values for the instantaneous current 
component. Stimulation at 5 Hz resulted in significantly different values at both step 
potentials (Student’s paired f-test, p < 0.02).
E, summary of the changes in the time constants of activation for lh. Values are derived 
from exponential fits during the two voltage steps of -20 and -50 mV. There were no 
significant differences following stimulation at 5 Hz at either voltage step (paired student’s f- 
test; n=6)
F, the changes in the holding current immediately before and after 5 Hz stimulation
i, following stimulation at 5 Hz, there was a change in the outward direction indicative of a 
hyperpolarisation.
ii, As for (i) but in the presence of 2 mM Cs+. The outward changes in the holding current 
during the two steps were larger when lh was blocked (Student’s paired f-test; 20 mV, 
p<0.035; 50 mV, p<0.02). The holding current prior to the -50 mV step was significantly less 
positive than the holding current prior to the -20 mV (Student’s paired f-test; p<0.03).

post 5 Hz, -20 mV step 

post 5 Hz, -50 mV step 

pre 5Hz, -20 & -50 mV steps

post 5 Hz, -20 mV step 
post 5 Hz, -50 mV step

pre 5Hz, -20 & 50 mV steps
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Figure 3.9 The changes 
in the membrane 
potentials recorded from 
the CA3 pyramidal cell 
soma during stimulation

A, i,ii, a series of traces 
from a during stimulation 
at 0.2 Hz (one trace every 
50 s shown) and at 5 Hz 
(one trace every 2 sec 
displayed). There was 
little or no change at 0.2 
Hz, while at 5 Hz there 
was a significant 
hyperpolarisation in the 
membrane potential and 
an obvious increase in 
the action potential 
latency (Student’s paired 
f-test; p<0.01) 
iii, iv, as for i,ii but in 2 
mM Cs+. Again at 0.2 Hz, 
there is apparently 
little/no change. At 5 Hz, 
irrespective of conduction 
failures, the
hyperpolarising shift in 
the membrane potential is 
more pronounced as is 

f* mm the increase in latency.
B, i, an relatively non-representative example of the changes in the membrane potential 
during stimulation at 0.2 and 5 Hz (as indicated by the bar) with and without lh block.
ii, iii, Cs+ had no significant effect on the membrane potential at 0.2 Hz or at 5 Hz (Student’s 
paired f-test; n=4).
C, i, an example of the representative changes in the latency to the peak of the action 
potential (AP) during stimulation at 0.2 and 5 Hz (as indicated by the bar) with and without lh 
block. Cs+ appeared to cause differences at 5 Hz. #  indicates conduction failures. In the 
absence of Cs+, this neurone showed some jitter after reaching a plateau at 5 Hz as indicated 
by the double-arrowed line.
ii, Cs+ had no significant effect on the time to peak at 0.2 Hz (Student’s paired f-test; n=4).
iii, Blocking lh increased the peak latency (Student’s paired f-test; p<0.035; n=4).
D, Alignment of the baseline membrane potential for the first and last stimulation at 5 Hz 
highlights a change in the afterdepo la rising potential (ADP). This change seemed larger in 
the presence of Cs+.
E, i, timecourse of the changes in the ADP during 0.2 and 5 Hz stimulation. #  indicates 
conduction failures.
ii, iii, The lh blocker increased the ADP at both frequencies of stimulation (Student’s paired f- 
test; p<0.05; n=4)
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3.5 DISCUSSION

HCN channels are activated at hyperpolarized membrane potentials (typically 

negative to about -60 mV), producing an inward current that depolarises the 

neurone to counteract a hyperpolarising input. At the baseline stimulus frequency 

of 0.2 Hz, the fibre volley was stable and blocking lh had no obvious effect. This 

suggests HCN channel activity may not affect the action potential and therefore 

CAP shape; alternatively it could indicate quite low h-current levels at low 

frequencies and most probably at resting membrane potentials. It is known that 

unmyelinated fibres such as desheathed vagus nerve hyperpolarise at higher firing 

frequencies within their physiological range (Grafe et al. 1997). Therefore, action 

potentials at higher frequencies in the fine calibre SC/C axons might be expected 

to result in a hyperpolarisation, which could conceivably interfere with conduction 

reliability.

Function of lh at theta frequencies

At the population level, stimulation at 5 Hz led to an increased threshold for 

activation. The extracellular recordings corroborate published findings at similar 

frequencies (Soleng et al. 2003). Voltage-clamped, intracellular measurements 

presented in my study showed a significant positive shift in the holding current, 

indicative of a hyperpolarisation. This was mirrored in current-clamp mode, where 

all cells showed a hyperpolarisation in the resting membrane potential during 5 Hz 

stimulation. Individual axons showed changes in the latency to peak reflecting the 

CAP latency increase. This intracellular information confirms and reinforces the 

interpretation that the activity-induced increase in threshold is a hyperpolarisation 

(Soleng et al. 2003; Munoz-Cuevas et al. 2004). This activity-induced 

hyperpolarisation has been shown to be blocked by ouabain, suggesting an 

involvement of the Na+-K+-ATPase in this process (Kobayashi et al. 1997; Munoz- 

Cuevas et al. 2004). Voltage-clamped measurements showed an increase in the 

instantaneous component during the hyperpolarising steps to activate lh. This is 

suggestive of a greater standing lh at the holding potential, presumably activated 

by the activity-induced hyperpolarisation.

72



Chapter 3 - The NO-cGMP-HCN channel pathway in the hippocampus

Under current-clamp, I found an increase in somal ADP that follows the 

increasing spike peak latency during stimulation at 5 Hz. In many principal brain 

neurones, the somatic spike ADP is thought to be generated by a Ca2+-activated 

current (Wong & Prince 1981; Jung et al. 2001), low voltage-gated, persistent Na+ 

current (Azouz et al. 1996) or Na+-activated K+ channel (Liu & Stan Leung 2004). 

This change in the repolarisation of the membrane would presumably impact on 

the recovery from inactivation of Na+ channels. This coupled with the activity- 

induced hyperpolarisation moving the membrane potential further from threshold 

would likely cause action potential failures and underlie the decrease in CAP. A 

part of the increase in ADP could also be simply due to the concomitant increase in 

driving force following the hyperpolarisation of the membrane potential.

When lh was blocked, there was an increase in the CAP latency, seen also in 

individual somal action potential recordings; there was a decrease in the CAP 

amplitude, seen as a greater number of AP failures in individual axons. However, 

there was no significant increase in the extent of the hyperpolarisation in the 

presence of Cs+. One cell (out of four) in particular hyperpolarised to the maximum 

level during the control stimulus train and displayed no obvious difference in the 

presence of Cs+. This seems strange given the important role of lh to act to 

dampen hyperpolarisation and maintain excitability; however a larger sample size 

would be required to elucidate the true effect. Unlike the voltage-clamp data, no 

cells studied under current-clamp were rejected, because the interpretation of the 

size of the lh sag, which is an indirect measure of the level of current activation, is 

difficult (Aponte et al. 2006). Furthermore, it is intriguing that the soma of different 

cells should display such marked changes in the level of lh. Perhaps HCN channels 

are mainly located on dendrites that may have been lost depending on their 

orientation to the slicing angle.

Given the pronounced effects of ZD7288 or Cs+ on CAP at 5 Hz stimulation, 

it is possible that lh is larger across the axon population. SC/C axons display 

stronger signal preservation than the soma or initial segment of CA3 pyramidal 

cells (Meeks et al. 2005), suggesting a decrease in CAP amplitude represents a 

marked effect. It has been shown that both granule cells and the attached mossy
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fibre show ADPs (Geiger & Jonas 2000), suggesting effects at the soma may 

reflect changes occurring in the axon. However, the duration of axonal action 

potentials, ADP and the resting membrane potential, all of which will influence lh 

activation, may cause subtle deviations from that recorded in the soma. 

Immunohistochemical localisation of channel subunits suggests a change in the 

HCN subunits present in the various strata of the hippocampus in which the CA3 

soma and the Schaffer Collateral exist (Notomi & Shigemoto 2004). For this 

reason, there may be subtle differences in lh in different parts of the CA3 pyramidal 

cell, as for the non-inactivating K+ current, lm (Vervaeke et al. 2006). This makes 

the interpretation of the whole-cell lh data difficult, yet unavoidable problem given 

the small size of the axons precluding them from individual electrophysiological 

analysis. Another important caveat to the interpretation is that Cs+ is non-specific, 

and ZD7288 was not used (because of the longer wash in times) to determine if 

the effects seen were attributable to lh; an alternative strategy may be to block 

inwardly-rectifying channels, which are also blocked by Cs+, with low micromolar 

Ba2+.

In the presence of Cs+ the somal ADP was increased even at the 0.2 Hz 

stimulation frequency. Previous work in CA1 pyramidal cells suggested that the 

mAHP is caused, in part, by the deactivation of lh (Gu et al. 2005a). This would 

therefore suggest that blocking HCN channels allows the ADP to increase in size, 

as seen in our results. However this increase in the ADP had no effect on the 

ability of the axons to respond to 0.2 Hz stimulation at the individual or population 

level. In CA1 cells, the role of deactivation of HCN channels is only consistently 

important at -80 mV, not at -60 mV (Gu et al. 2005a). This highlights the role of lh 

at 5 Hz because we find that the membrane potential hyperpolarises within this 

range. When lh was unavailable, the ADP showed a further significant increase 

suggesting that lh may not only be acting to reduce hyperpolarisation, but its 

deactivation perhaps reduces the extent of the ADP and therefore prolongs 

inactivation of Na+ channels.

NO-cGMP-HCN channel signalling at theta frequencies

This obvious importance of HCN channels in the fidelity of conduction prompted 

investigation of modulation by the direct binding of cGMP to the C-terminal cyclic
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nucleotide binding domain (CNBD; Ludwig et al. 1998; Zagotta et al. 2003). The 

apparent presence of HCN1 and 2 subunits within the CA1 stratum radiatum 

(Notomi & Shigemoto 2004) circumstantially implies axonal lh would derive from a 

channel comprising of one or both of these subunits. HCN2, along with the HCN4 

isoform, is particularly sensitive to regulation by cyclic nucleotides, which shift 

activation to more depolarized membrane potentials, making the resting membrane 

potential more depolarized. Heteromeric HCN1-HCN2 channels have a voltage 

dependence of activation similar to HCN2, with intermediate sensitivity to cAMP 

(Ulens & Tytgat 2001). Due to the proposed role of NO in hippocampal synaptic 

plasticity (Hopper & Garthwaite 2006) and the tonic effect on optic nerve HCN 

channels (Garthwaite et al. 2006), lh is a realistic candidate for regulation by cGMP 

and therefore NO. It is surprising that pharmacological manipulations of the 

NO/cGMP signalling cascade had no obvious effect on CAP latency (and 

amplitude) via lh or another means. The use of L-NNA indicates that there is no 

tonic regulation of SC/C axonal lh, nor acute regulation by NO donors or analogues 

causing phasic rises in cGMP. The NO-dependent effect on axonal excitability 

previously reported appears to occur only at room temperature (McNaughton et al. 

1994).

Being ten-fold more potent (DiFrancesco & Tortora 1991; Zagotta et al. 

2003), cAMP is generally regarded as the natural CNBD ligand, yet several 

examples are now to be found where the NO-cGMP pathway brings about changes 

in neuronal excitability using HCN channels (Pape & Mager 1992; Ingram & 

Williams 1996). To address this issue I used the diterpene, forskolin, which is 

known to activate adenylyl cyclase in this region of the hippocampus (Mons et al. 

1995; Wong et al. 1999), leading to an increase in the levels of intracellular cAMP. 

As for the results from modulation of the NO/cGMP pathway, there was no obvious 

effect on CAP properties. The consistent lack of effect of changing cyclic 

nucleotide levels is expected as both cAMP and cGMP should be able to modulate 

the HCN subunit, albeit with different potency, as outlined previously. These results 

in SC/C axons mirror those in frog sciatic nerve, where increases in cyclic 

nucleotide levels also had no bearing on axonal excitability (Horn & McAfee 1977).
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This lack of effect of all of these pharmacological interventions on CAP 

properties suggests there is no modulation by the NO-cGMP pathway of the native 

lh via the CNBD or other cyclic nucleotide-regulated targets like cGMP-dependent 

protein kinases. This suggests that the native channel possesses properties 

consistent with the HCN1 homomeric channels with regard to changing cyclic 

nucleotide level sensitivity (Ulens & Tytgat 2001; Wang et al. 2001). This is 

interesting because in the rat optic nerve, tonic NO from eNOS, directly affects lh 

via cGMP. However, these channels are thought to also contain HCN4, which 

would confer greater sensitivity to cyclic nucleotides (Garthwaite et al. 2006). The 

lack of a positive control is problematic, but all compounds have previously been 

used to facilitate transmission and affect plasticity in the hippocampus in the 

literature (Hopper & Garthwaite 2006). Other published work from the laboratory 

verifies the drugs’ expected activity (Garthwaite et al. 2006), as well as work in 

chapter 4. The sequestering of the signalling cascades and gradients of the cyclic 

nucleotides away from the lh channels could conceivably mean that the HCN 

channels in the Schaffer collateral would never see the increases in cGMP or 

cAMP induced by treatment with DEA/NO or forskolin. However in our experiments 

the cGMP analogues would be expected to diffuse throughout the axon 

unimpeded. Therefore HCN channels in SC/C axons have properties consistent 

with HCN1 homomeric channels with respect to cyclic nucleotide sensitivity.

Gamma frequency stimulation

At 30 or 100 Hz, I demonstrated an initial increase in the amplitude that mirrors the 

decrease in latency, similar to activity seen at 10, 20 and 50 Hz (Munoz-Cuevas et 

al. 2006). Previous reports considered the rise in the extracellular potassium 

concentration, [K+]0, as a possible explanation of this supernormal period. This rise 

in amplitude may be due to the lateral diffusion of the increasing [K+]0 in the inter- 

axonal space (Kocsis et al. 1983), which would, in turn, depolarise quiescent axons 

as well as the previously activated fibres, resulting in an increased likelihood of 

firing. In addition, the recruitment of ‘threshold’ fibres that fail sometimes but after 

firing once, keep firing because of this residual depolarisation afforded by the ADP 

(Munoz-Cuevas et al. 2006) could contribute to the increased CAP amplitude. The 

initial decrease in latency suggests an increase in synchrony of firing (Munoz-
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Cuevas et al. 2006), which would have important implications with regard to 

message transmission to CA1 pyramidal cells, particularly when theta (Morgan & 

Teyler 2001) and long theta-patterned (Maffei et al. 2003) stimulation protocols. 

The persistent accumulation of K+ and hence prolonged depolarisation could then 

contribute to Na+ channel inactivation, subnormality and failures.

Compared to most other ion channels, lh has relatively slow kinetics (Accili 

et al. 2002) and therefore its role at 30 and 100 Hz, and the consequences of 

blocking it, may be much more subtle: Blocking lh led to a consistently, greater 

increase in the CAP amplitude at the beginning of the train. At the end of the train, 

there was a significantly greater increase in the latency. These differences may be 

explained by considering that the supernormal period may, in part, also be due to 

an ADP (Wigstrom & Gustafsson 1981; Soleng et al. 2004). The intracellular 

recordings showed that at 5 Hz the blockade of HCN channels increased the ADP. 

Assuming a similar outcome at 30 and 100 Hz, this would mean that the 

subsequent stimulation would occur during the ADP of the previous action 

potential. The membrane would be closer to threshold and more likely to fire. 

Towards the end of the pulse train, the enhanced ADP from blocking lh would 

compound the K+-induced depolarisation, making the axons less likely to fire, 

increasing the latency with respect to the control.

There are dense recurrent connections within the CA3 region, in which 

single pyramidal cells synapse with approximately 10,000 other pyramidal cells, 

giving rise to an autoassociative network (Amaral & Witter 1989). Field oscillations 

typically at 40 Hz, indicated that neuronal synchronisation is capable of affecting 

spiking behaviours of other CA3 pyramidal cells (Fujisawa et al. 2004). Presumably 

this phenomenon would affect the output of the cell via the Schaffer collateral. If 

this was the case and a lot of neurones were indeed firing at once, the discussed 

effect of K+ accumulation and activation of quiescent fibres would act to modify the 

signal conveyed to the CA1 pyramidal cells.

Functional considerations

These findings add to the wealth of information about synaptic plasticity within the 

hippocampus. Within the literature there are several LTP-inducing protocols 

consisting of several trains of 100 Hz, such as the well characterised theta-burst
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stimulation (Morgan & Teyler 2001). High frequency stimulation-induced LTP 

normally requires stimuli in the 30-100 Hz range (Bliss & Collingridge 1993). Yet at 

these high frequencies, both of which belong to the gamma range of frequencies 

(Traub et al. 1998), the involvement of presynaptic axonal lh seems somewhat 

irrelevant. Since NO signals are required for LTP, which can be induced at 100 Hz, 

and lh is not affected by 100 Hz stimulation, then NO and lh do not interact during 

LTP. Supporting this, expression of LTP has been found not to involve changes in 

presynaptic spike properties (Laerum & Storm 1994). On the other hand, typical 

protocols for inducing LTD tend to involve repetitive stimulation at lower 

frequencies 4-12 Hz (theta range; see review, Malenka & Bear 2004). At these 

frequencies, lh is required for fidelity of signal conduction. However, as the h- 

current in these axons is unresponsive to modulation by changing levels of cyclic 

nucleotides, the axon is probably not affected during the induction, expression or 

maintenance of LTD.

In conclusion, the NO-cGMP-HCN channel pathway is seemingly not present in 

SC/C axons and plays no role in modulating firing properties at different stimulation 

frequencies. Therefore it is likely that, like the optic nerve, other fibre tracts and 

nuclei within the CNS that possess HCN channels containing HCN2 and HCN4 

subunits would express a form of lh that can be regulated by the NO-cGMP 

pathway.
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4.1 INTRODUCTION

Within the literature there is a precedent for modulation of HCN channels by NO 

and cGMP (see chapter 1). The apparent lack of changes in hippocampal axonal 

HCN channel function during pharmacological manipulation of both cGMP and 

cAMP levels (chapter 3) suggests that it is most likely the particular subunit 

composition of the channel that accounts for the insensitivity to cyclic nucleotides. 

From immunohistochemical studies, these axonal channels are circumstantially 

made up of HCN1 and 2 subunits (Notomi & Shigemoto 2004). Heterlogously- 

expressed HCN4 and HCN2 homomeric channels show greater degrees of 

modulation by cyclic nucleotides than HCN1 channels (Accili et al. 2002), with 

HCN4 channels showing the greatest. Therefore the obvious progression was to 

investigate the NO-cGMP-HCN channel pathway in neurones showing high levels 

of HCN4 expression with minimal HCN1 subunit protein. Such areas include the 

ventral group and geniculate nuclei of the thalamus, components of the olfactory 

pathway (nucleus of the lateral olfactory tract and external plexiform layer of the 

olfactory bulb), parts of the auditory brainstem (ventral cochlear nucleus (CN) and 

medial nucleus of the trapezoid body (MNTB)) and the deep cerebellar nuclei 

(DCN; Notomi & Shigemoto 2004). The thalamic and olfactory regions were 

rejected because they had already been studied (Pape & Mager 1992), or had a 

less well-defined function. The last two brain regions were selected to be realistic 

targets for NO-cGMP signalling because of the expression of HCN4 in the MNTB 

neuronal cell bodies (Leao et al. 2006a) or neuropil of DCN neurones (Notomi & 

Shigemoto 2004).

Auditory brainstem

Principal cells of the medial nucleus of the trapezoid body (MNTB; figure 4.1) are 

vital parts of a circuit in the superior olivary complex (SOC). These cells have been 

postulated to convert excitatory inputs from the contralateral cochlear nucleus (CN; 

(Smith et al. 1991) to form inhibitory projections onto principal cells in the lateral 

superior olive (LSO; Glendenning et al. 1985; Wenthold et al. 1987). Cells in LSO 

compare this contralateral inhibitory input from MNTB with ipsilateral excitatory
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input, a configuration believed to underlie their sensitivity to interaural intensity 

differences (Boudreau & Tsuchitani 1968). The function of MNTB cells was 

therefore thought to act as a simple sign-inverting relay synapse.

MNTB neurones receive their major input from the contralateral CN via 

globular bushy cells (GBCs; Smith et al. 1991). These afferents envelop the 

somata of the principal cells with some of the largest synaptic terminals in the 

CNS, the calyces of Held. In the juvenile rat, the calyx resembles a cup covering 

about 40% of the MNTB cell membrane with some finger-like stalks (Satzler et al. 

2002). MNTB neurones appear to also receive other, smaller synapses onto the 

principal cells (Smith et al. 1991).

Brainstem \

CN

Calyx of 
Held

MNTB

Auditory
nerve

From ear Pyramid

Figure 4.1 The circuitry of the auditory brainstem
Auditory stimuli are converted to signals by the cochlear hair cells and are transmitted to the 
ipsilateral anterior ventral cochlear nucleus (CN) by excitatory synapses onto the spherical 
and globular bushy cells (SBC and GBC). GBC axons (blue) cross the brainstem, decussate 
and synapse onto the principal neurones of the contralateral medial nucleus of the trapezoid 
body (MNTB). These neurones (red) in turn project to the lateral superior olive (LSO) forming 
an inhibitory synapse. In addition, the LSO receives excitatory input from the ipsilateral CN 
via the SBCs (brown). The precise timing of these two inputs at the LSO allows it to act as a 
coincidence detector of binaural cues. (MSO: medial superior olive; SPN: superior 
paraolivary nucleus; the superior olivary complex (SOC) comprises of the LSO, SPN and 
MSO)

The MNTB principal cells have spherical or ellipsoid somata that give rise to single 

large-diameter dendrites, which branch extensively and often extend beyond the 

borders of MNTB. The commonly observed axonal projections include not only 

those to the LSO, but also to the superior paraolivary nucleus (SPN), and the 

medial superior olive (MSO), and occasionally the lateral nucleus of the trapezoid
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body. These connections with other nuclei hint that MNTB cells may play a more 

complicated role than simply a high-fidelity, sign-inverting synapse. The projections 

of individual MNTB cells show an orderly spatial arrangement of regions 

responsible for aural perception (Banks & Smith 1992).

The Calyx of Held is a high-fidelity synapse being able to follow reliably input in 

excess of 600 Hz and therefore well-suited for preserving the timing of afferent 

impulses from the cochlear nucleus (Wu & Kelly 1993). In response to current 

injection, MNTB principal cells exhibit rectification for depolarising currents. This 

rectification was removed on application of the potassium channel blocker, 4- 

aminopyridine (4-AP). 4-AP also converted firing behaviour from transient to 

repetitive. In the adult, excitatory postsynaptic potentials (EPSPs) are blocked by 

CNQX, and inhibitory postsynaptic potentials (IPSPs) by strychnine. Synaptic 

transmission in the MTNB would therefore reflect the integration of these excitatory 

and inhibitory inputs (Banks & Smith 1992). The same study also found a “sag” in 

the membrane potential in response to hyperpolarising current injections This sag 

is characteristic of the HCN channel.

Four members of a gene family encode the mammalian HCN channels (HCN 1-4). 

A detailed immunohistochemical localisation study of all HCN subunits in the adult 

rat indicates a higher level of HCN2, with lower equal levels of HCN1, 3 and 4 in 

the MNTB (Notomi & Shigemoto 2004). In younger animals, amenable to patch- 

clamp analysis, strong HCN2 antibody labelling but no HCN1 staining is seen in 

the MNTB (Koch et al. 2004). In situ hybridisation data in adult rat also 

corroborates these findings of high levels of HCN2 and 4 with little or no HCN1 

(Monteggia et al. 2000). More recently, robust membrane staining for HCN2 and 

HCN4 and no HCN1 is described in the young mouse (Leao et al. 2006a; Leao et 

al. 2006b). As the lh in these cells should consist of mainly HCN2 and 4 subunits, it 

is plausible that the channels in the MNTB could be regulated by cyclic nucleotides 

(chapter one).

Indeed, a study investigating the enhancement of this current, lh, by 

noradrenaline and 8-Br-cAMP confirmed this prediction. Sharp electrode voltage-
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clamp analysis showed a depolarising shift in the steady-state activation curve 

(Banks et al. 1993). In current clamp, these effects on lh resulted in a membrane 

depolarisation, an increase in input conductance, and a reduction in the voltage 

sag in response to hyperpolarising currents. This is an important finding because 

MNTB cells exhibit highly nonlinear behaviour near the resting membrane potential 

(RMP). Therefore this augmentation of HCN channel function could have profound 

effects on their responses to auditory input. In particular, the resulting depolarising 

shift in RMP would cause an increase in the aforementioned 4-AP-sensitive low- 

threshold potassium conductance. This in turn would decrease the duration of 

synaptic potentials and enhance the ability of MNTB cells to follow calyceal inputs 

at high rates. A similar role for lh in determining the firing properties and excitability 

of neurones in the superior olivary complex, again augmented by cAMP, has also 

been shown in vivo (Shaikh & Finlayson 2003; Shaikh & Finlayson 2005).

It is therefore conceivable that the effect of cAMP on lh could also occur when the 

NO-cGMP signalling pathway is engaged. Neuronal nitric oxide synthase (nNOS) 

has been localised to adult rat MNTB principal cells by in situ hybridisation, 

NADPH-diaphorase histochemistry and immunohistochemistry (Iwase et al. 1998; 

Fessenden et al. 1999; Schaeffer et al. 2003). The presence of mRNA for the /?- 

subunit of sGC or N O gcR, the physiological receptor for nitric oxide, has also been 

confirmed (Fessenden et al. 1999). Therefore it could be postulated that nitrergic 

transmission and furthermore the NO-cGMP-HCN channel pathway may be 

present in the Calyx of Held.

Unlike the adult, the young rodent (up to post-natal day 12 (P12)) has a large 

NMDA-R-mediated EPSC which subsequently decreases markedly with age 

(virtually undetectable at P16; Joshi & Wang 2002). In P8-12 rats, approximately 

30 % of the total Ca2+ that enters the principal cell during an EPSC occurs via the 

NMDA receptor (Bollmann et al. 1998). Elsewhere NMDA-R activation is known to 

engage the NO/cGMP pathway by preferentially activating the calcium-sensitive 

nNOS, which is physically coupled to NMDA receptors (Komau et al. 1995; 

Brenman et al. 1996; Christopherson et al. 1999). Given the high incidence of
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nNOS in MNTB principal cells (Fessenden et al. 1999), as well as the expression 

of NMDA receptors (Sato et al. 1999), there is a high probability that both proteins 

are coexpressed in this nucleus. During this critical period when the auditory 

brainstem becomes capable of high-frequency transmission coinciding with the 

onset of responses to tone-pips at P12 (Blatchley et al. 1987), nitrergic 

transmission via cGMP may play an important role at this giant synapse by 

affecting HCN channels.

Cerebellum

The deep cerebellar nuclei (DCN) are the primary output structure of the 

cerebellum (figure 4.2). Purkinje cells, the sole output of the cerebellar cortex, send 

inhibitory GABAergic projections to the DCN. They account for about 70 % of the 

synapses onto DCN neurones (De Zeeuw & Berrebi 1995). In addition, the DCN 

receive excitatory glutamatergic inputs from various extra-cerebellar sources via 

the mossy fibres as well as from the inferior olive via the climbing fibres (Llinas & 

Muhlethaler 1988). Therefore the firing properties of these cells will reflect the net 

effect of all these inputs and neural computations carried out in the cerebellum.

The cells of the DCN are seemingly heterogeneous, consisting of both large 

and small projection neurones as well as local circuit GABAergic neurones. 

Anatomically, the large projection neurones have fusiform or multipolar shaped 

somata, with diameters ranging from 15 to 35 pm, are immunoreactive for 

glutamate and project to a variety of premotor centres. In addition, there are 

smaller projection GABAergic neurones. They too have fusiform or multipolar 

somata, with smaller diameters of 5 to 20 pm, sending axons to the inferior olive. 

These different cell types are heterogeneously distributed throughout the DCN 

(Beitz & Chan-Palay 1979; Kumoi et al. 1988; Batini et al. 1992).
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Figure 4.2 Diagram of the core cerebellar pathways

The cortex receives two major excitatory inputs. The first is from the climbing fibres (blue) 
that form multiple synapses with a single Purkinje cell. The second is from the mossy fibres 
(grey) that synapse onto granule cells, the axons of which, known as parallel fibres, form 
excitatory synapses with Purkinje cells in the molecular layer. Both of these inputs act to 
modulate the Purkinje cell response, the sole output of the cortex to the deep cerebellar 
nuclei. These nuclei convey cerebellar output to other brain regions.

The large glutamatergic projection neurones are very active at rest and 

either spike regularly or burst spontaneously (Jahnsen 1986b; Aizenman & Linden 

1999). An important electrophysiological property of DCN neurones is the presence 

of a pronounced rebound depolarisation (RD) that typically triggers a series of 

action potentials immediately after the offset of a hyperpolarising pulse or a train of 

IPSPs. A number of conductances underlie this RD, including low-threshold, 

voltage-gated Ca2+ channels, the persistent Na+ channel and the hyperpolarisation- 

activated current, lh (Jahnsen 1986a; Llinas & Muhlethaler 1988; Aizenman &
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Linden 1999; Raman et al. 2000). This so-called depolarising envelope drives Na+ 

spiking, which in turn recruits high-threshold Ca2+ channels and results in a large 

Ca2+ transient. The RD is partially terminated by the activation of SK-type Ca2+- 

sensitive K+ channels (Aizenman & Linden 1999).

The study of Notomi & Shigemoto (2004) reveals intense immunolabelling of HCN1 

and 2, with a lower level of HCN4 in all three DCN neurones. A recent study 

showed that cAMP caused a depolarising shift of ~ 10 mV in the steady-state 

activation curve for lh in juvenile DCN neurones (Chen et al. 2005). This is an 

important finding because lh has been suggested to play a role in boosting the 

induction of the RD (Aizenman & Linden 1999). Therefore this augmentation of 

HCN channel function by cAMP could have an effect on DCN neurone output 

responses to the range of inputs described above.

If cAMP can affect lh in DCN neurones, presumably by a direct action on 

CNBD, then cGMP (produced in response to NO stimulation) should be able to 

produce a similar effect, albeit perhaps at a different potency (chapter one). 

Neuronal nitric oxide synthase (nNOS) has been identified in a small subset of the 

neurones in the rat and human DCN by immunohistochemistry (Rodrigo et al. 

1994; Bernstein et al. 2001). The presence of the or- and /?-subunit of sGC or 

NO gcR, the physiological receptor for NO with different intensities, has also been 

confirmed again by immunohistochemistry (Ding et al. 2004). Therefore it could be 

postulated that the NO-cGMP-HCN channel pathway may play a role in the DCN 

and ultimately the entire output of the cerebellum.

4.2 AIM

Given the favourable HCN subunit expression profile and the previously 

established modulation of lh by cAMP in the MNTB and DCN neurones, I 

investigated the presence of NO-cGMP-HCN channel cascade.

HYPOTHESIS: The NO-cGMP signalling pathway modulates HCN channel 

function in the principal neurones of the MNTB and DCN.
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4.3 METHODS 

Tissue preparation

All procedures were in accordance with regulations given by the UK Home Office.

Post-natal day 8-13 (P8-13) Sprague-Dawley rats were killed by cervical 

dislocation and decapitation. Juvenile rats were used because beyond this age the 

extent of myelination is much greater, which diminishes both visibility and viability 

of the neurones after slicing (Gauck & Jaeger 2003).

The brain was rapidly removed and the brainstem or the cerebellum (as 

appropriate) dissected out, taking care to remove the meninges, and placed in iced 

(4 °C) sucrose-substituted low Na+ artificial cerebrospinal fluid (aCSF) containing 

(mM): 250 sucrose, 2.5 KCI, 1.3 (for MNTB) or 6 (for DCN) MgCI2, 2.0 CaCI2, 1.0 

NaH2P04.H20, 26.2 NaHC03, and 11 glucose, equilibrated with 95% 0 2- 5% C 02. 

By trial-and-improvement, I found that using a higher concentration of MgCI2 

increased the number of viable DCN neurones, presumably by blocking NMDA-R 

activity. Coronal slices (200-350 pm thick) were prepared using a vibroslicer and 

maintained in an interface holding chamber containing normal aCSF at room 

temperature. For brainstem slices, the level of the 7th nerve was used as a guide 

for the presence of the MNTB. After a period of recovery (at least 60 min), one 

slice was transferred into a submerged chamber and continuously perfused with 

gassed normal aCSF.

Electrophysiological recordings

Whole-cell recordings were made at 30 - 32 °C from individual MNTB cells or large- 

diameter DCN (dentate or interposed) neurones, visually identified using normal 

optics and a x40 water-immersion objective (NA .75, Zeiss). Pipette solutions 

contained (in mM): 150 KMeS0 4 , 10 KCI, 10 Hepes, 4 NaCI, 4 or 1 MgATP, 0.4 

NaGTP. The pH was adjusted to 7.39 - 7.4 and the osmolarity to 280-290 mOsm / 

I. Open pipette resistance was 2-4 MQ. Under voltage clamp conditions, currents 

were recorded using an Axopatch 1D amplifier and pClamp7 (Axon Instruments,
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Foster city, CA) in neurones clamped at holding potentials from -40 to -75 mV. 

Resting membrane potentials (RMP; observed before and after TTX application) 

were between -51 and -70 mV for MNTB neurones. The RMP of DCN neurones 

showed regular cycling, between -37 and -68 mV. In all experiments 80% 

compensation of the series resistance was used; junction potentials were not 

compensated. The recordings were filtered at 1 kHz and sampled at 2 kHz. Patch 

longevity was usually a maximum of 30 min, so Cs+ (2 mM) was used to block lh 

because of the long wash in times required for ZD7288 and other organic blockers.

\  ^ ^

500 ms

Vhold
0.1 nA

Vstep

Figure 4.3 A current response to the typical voltage step protocol (inset).

A series of long (3-4 s) voltage steps (inset, figure 4.3) were used to study lh. The 

current amplitudes were obtained by double exponential fits (solid red line) to the 

charging curve; lh amplitude (ldiff) was measured as the difference between the 

plateau steady-state current level (lss) at the end of the hyperpolarising step and 

the point where the extrapolated fitted line intersected with the capacitative 

transient; the instantaneous current (Lst) component was measured as the 

difference between this point of intersection and the holding current. The voltage
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dependence of lh activation was assessed by measuring the activation and 

deactivation tail currents upon return to a fixed holding potential to remove the 

effect of the driving force. The tail current values were used to construct steady- 

state activation curves, which showed a typical S-shaped dependence on the 

hyperpolarising voltage and quantified by fitting with the Boltzmann function:

Win f(^ 0  V-V\i2

1 + e k

where V is the membrane potential, V1/2 is voltage at which the channels are the 

half-maximally activated, and the slope factor, k, serves as an indication of the 

relation between voltage and fractional activation (see Banks et al. 1993).

Stably-clamped cells often became leaky and unusable if prolonged 

hyperpolarising voltage steps were repeatedly applied. Due to these technical 

limitations, I was unable to collect data at potentials where lh was fully activated or 

deactivated. Therefore the steady-state activation function ninf (V) was obtained 

using shorter voltage steps and normalising the tail currents as follows:

( F ) =

I  tail { V m ) ~  I  tail (  ^rn in  )

where Vmax and Vmin are the voltages corresponding approximately to maximum 

and zero activation of lh respectively.

Pharmacological manipulation of HCN channels was examined by bath application 

of compounds over a short time, typically 3 to 7 minutes, before applying the above 

step protocol to study the function of HCN channels. In order to follow the 

timecourse of wash in (and wash out), a small (~ 40 mV), short (typically 500 ms) 

hyperpolarising step from the holding potential was applied every 10 s to activate 

sufficient HCN channels to observe any changes. Ih was approximately measured
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as the difference between the point following the capacitative transient and the 

plateau prior to the offset of the voltage step.

Analysis was performed offline using Clampfit 8.0 (Axon Instruments, Foster City, 

CA).
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4.4 RESULTS

lh was first recorded from voltage-clamped MNTB principal cells. Preliminary 

experiments in these neurones indicated that there was a marked rundown of HCN 

channels particularly at the beginning of the recording (n=3), a common problem of 

the whole-cell technique. Therefore to minimise variation, an equilibration period of 

3 - 5  min was introduced after obtaining the whole-cell configuration. In line with 

previous results, I found it necessary to block K+ channels using 1 mM 4-AP as 

they contaminate the HCN channel tail currents. A consequence of the loss of K+- 

conductances was unclamped TTX-sensitive Na+-influx (figure 4.4). Therefore all 

subsequent measurements were made in 1 mM 4-AP and 500 nM TTX.

Figure 4.4. Blockade of delayed rectifier 
K+ channels and TTX-sensitive Na+ 
channels

4-AP (1 mM) was added to block a low 
threshold potassium current found in 
MNTB principal cells. This slightly 
depolarised the neurones. In turn, TTX  
(500 nM) was used to block 
spontaneous activity seen in 4-AP.
It is necessary to block these K+ and 
Na+ currents to minimise contamination 
of HCN channel tail currents.

This neurone had a resting membrane 
potential of -67 mV and was voltage- 
clamped at -  60 mV.

The whole-cell voltage-clamp technique was employed to investigate the effect of 

the NO-cGMP signalling pathway on the properties of lh in MTNB principal cells. I 

was unable to apply strong hyperpolarising voltage step (more negative than -105 

mV) to ensure maximum activation of lh because this sustained hyperpolarisation, 

particularly with repeated steps for multiple drug conditions, led to loss of a stable 

recording. Therefore a compromise of a much longer 4 s pulse with less negative

Control
+ 4-AP 
+ TTX

0.5 nA
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voltage step was used to activate HCN channels. As far as possible, drug 

applications were done in series on the same neurones.

Ih was found in every cell in which a stable voltage clamp was obtained. 

Smaller hyperpolarising steps elicited currents composed primarily of linear 

leakage currents, because the steady-state and instantaneous current were 

approximately equal. Larger voltage steps elicited a slow inward, non-inactivating 

current (figure 4.5). These currents traces approach their steady-state values more 

rapidly for larger hyperpolarising steps due to voltage-dependent activation 

kinetics. For example, rSiow and Tfast were 1320 ± 94 and 166 ± 12 ms at -90 mV, 

and increasing to 1539 ± 74 and 235 ± 23 at -80 mV (n=4; Student’s paired f-test; 

p<0.05). As expected the current was blocked by 2 mM Cs+.

-60 mV

0.1 nA 

1 s

... *... .

+ Cs+

. . .

B

o.o-

- 0.1 -

<c
I  -0 .2 -
b
O

-0.3-
— I 
- • — I inst-0.4-

-100 -90 -80 -70 -60 -50

Vs,eP(mV)
Figure 4.5 A typical current response from a voltage-clamped MNTB principal cell

A, The current response to 4 s voltage steps to activate lh in 5 mV increments i.e -55 to -95 
mV. The membrane potential was then stepped to -70 mV for 2 s to obtain lh tail currents 
and then back to the holding potential (-60 mV). This current was blocked by 2 mM Cs+.

B, The current-voltage relationship derived from A.

This cell had a resting membrane potential of -68 mV.
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The activation curve for lh was derived from tail currents (see Methods) and 

fitted with a Boltzmann function; the voltage causing half-maximal activation (V1/2) 

was -85 ± 1 . 0  mV (n=8; see figure 4.6 for a representative example). The 

application of 100 pM DEA/NO, a supramaximal concentration for stimulating 

maximal cGMP accumulation in the hippocampus (Bon & Garthwaite 2001), 

caused a significant hyperpolarising shift in Vi/2 ( -90 ±1 .5  mV; n=8; Student’s 

paired t test; p<0.005). However this effect was attributable to rundown as seen in 

the timecourse, because it did not reverse on wash out (Vi/2 = -90 ±1.6 mV; n=4; 

Student’s paired f-test; p=0.379).

To ensure that HCN channels in the MNTB cells had the functional 

capability of responding to cyclic nucleotides, I first tried to increase the levels of 

the ‘preferred’ ligand, cAMP, by bath application of 20 pM noradrenaline (NorA). 

However, in contrast to the response in adult rats (Banks et al. 1993), this proved 

to be ineffectual (n=7; Student’s paired f-test; p=0.204). Conversely, the addition of 

the membrane-permeable analogue, Br-cAMP, which should be able to directly 

modulate lh by binding to the CNBD, did actually cause a significant, depolarising 

shift of 4.5 ±0.5 mV in Vi/2 (Vi/2 = -83 ± 3.0; n=4; Student’s paired f-test; p<0.005). 

Therefore it would appear that lh in MNTB neurones is not modulated by NO.
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Figure 4.6 An individual example (same cell as figure 4.3) of the apparent lack of receptor- 
mediated modulation of lh in MNTB principal cells

A, Timecourse for effect of drug manipulations on lh. Drug effect was followed by measuring L 
activated by a short (500 ms) hyperpolarising step to -95 mV every 10 s. Coloured vertical 
lines correspond to the step immediately prior to the protocol to generate activation curves in 
C.
i, initially there was a clear rundown in the current after obtaining the whole-cell configuration. 
The 3 min exposure to 100 pM DEA/NO had no obvious effect on the current.
ii, 3 min application of 20 pM noradrenaline (NorA) had no apparent effect on lh
in, The wash in of 1 mM Br-cAMP caused an increase in the current activated by the short 
hyperpolarising step.

B, Raw traces for the current activated by 500 ms hyperpolarising step to -95 mV. The same 
colours are used as A . Notice the increase in current amplitude and the small depolarising 
shift in the holding current in the presence of Br-cAMP (ii).

C, Steady-state activation curves derived from tail currents from voltage step protocols to 
activate lh. Lines are Boltzmann fits to the data. Legend gives values for half-maximal voltage 
(Vi/2) in mV
i, The wash in and wash out of 100 pM DEA/NO had little obvious effect.
ii, The wash in and wash out of 20 pM noradrenaline had little obvious effect
iii, The wash in of 1 mM Br-cAMP caused a positive shift in the curve.

‘Predrug’ was prior to continuous application of 4-AP (1 mM) and TTX (500 nM).
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This lack of regulation of HCN channels by NO in part of the auditory brainstem 

prompted me to investigate another brain region in which the NO-cGMP-HCN 

channel pathway may be important, namely the DCN. To confirm I was recording 

from large projection neurones, I checked that the rebound currents following a 

hyperpolarising step, thought to be carried by T-type Ca2+ channels and apamin- 

sensitive Ca2+-activated K+ channels, were sensitive to Ca2+-free medium. This 

was indeed true (figure 4.7) and I further confirmed this by blocking both channel 

types with 100 pM Ni2+ and 100 nM apamin respectively.

-37 mV
-87

 t=0mn

---6

Figure 4.7 Rebound currents following a 
hyperpolarisation

A, The change to a C a2+-free (substituted 
with Mg2+) aCSF solution resulted in the 
loss of the initial inward current and the 
subsequent slower, outward current. This 
DCN neurone had a resting membrane 
potential (RM P) of -57 mV.

I then repeated the voltage step protocols in large diameter DCN cells as for the 

MNTB. Ih was observed in all neurones from which stable recordings were 

obtained. As can be seen from figure 4.8 , there was no effect of 100 pM DEA/NO 

on steady-state activation curve of lh (n=3; Vi/2: control -85 ± 3.7, DEA/NO -87 ± 

3.8; Student’s paired f-test; p=0.358). As in the case of the MNTB, I tried to 

modulate HCN channel function by increasing the level of cAMP. Bath application 

of 10 pM isoprenaline (figure 4.9), a ^-adrenergic receptor agonist, caused a 

significant positive shift in the voltage-dependence of activation (n=4; Vi/2: control - 

91 ± 2.7, isoprenaline -86 ± 3.0; Student’s paired f-test; p<0.02).
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Figure 4.8 A typical response from a DCN principal cell

A, The current response to 3.5 s voltage steps to activate lh in 9 mV increments i.e -120 to -39 
mV. The membrane potential was then stepped to -80 mV for 2 s to obtain lh tail currents and 
then back to the holding potential (-40 mV). The protocol was repeated every 3 min to gauge 
the degree of run-down. In the presence of 100 pM DEA/NO there was no obvious change in 
the current response measured. The rebound currents activated on stepping back to the 
holding potential are more clearly shown on the right hand side.
B, The voltage-lh relationship obtained from double exponential fits to the charging curves in 
A. It can be seen that the current stabilised after the first repeat i.e. approximately 5 minutes 
after obtaining the whole-cell configuration. 100 pM DEA/NO did not appear to affect the 
amplitude of lh
C, The steady-state activation curves constructed from tail currents in A. Again the initial 
rundown can be seen and also the fact that DEA/NO had no obvious effect on voltage- 
dependence of activation
D, Summary of the values for V 1/2 (raw data in black, mean ± sem in red). There was no 
significant effect of DEA/NO application (n=3; Student’s paired f-test; p=0.358)

1 mM 4-AP and 500 nM TTX were present throughout; 4 mM ATP was used in the whole-cell 
solution.
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Figure 4.9 The effect of isoprenaline on lh in DCN neurones

A, 10 pM isoprenaline (IsoP) caused a reversible, negative shift in the holding current, while 
100 pM DEA/NO had no obvious effect.
B, The steady-state activation curves constructed from tail currents in A. Isoprenaline caused 
a reversible, depolarising shift; DEA/NO had no effect on voltage-dependence of activation
C, Summary of the values for V 1/2(raw data in black, mean ± sem in red). Isoprenaline caused 
a significant depolarising shift in V 1/2 (n=4; Student’s paired f-test; p<0.02).

1 mM 4-AP and 500 nM TTX were present throughout; 4 mM ATP was used in the whole-cell 
solution.

Therefore it seemed that despite the ability to respond to cAMP, the HCN channels 

in the MNTB and DCN were not modulated following stimulation of the cell with 

NO. However, around this same time, biochemical measurements of cGMP levels 

following activation of purified N O gcR in the laboratory showed that 4 mM ATP 

reduced enzyme activity to about 10% of control at a range of GTP concentrations 

(B. Roy, personal communication). This would mean that little cGMP would be 

generated in response to application of NO to the MNTB or DCN. Physiological 

ATP concentrations are thought to be around 1 mM (Gribble et al. 2000). This 

concentration causes about 50 % inhibition of N O qcR fractional activity (Ruiz- 

Stewart et al. 2004). 1 mM ATP was selected to use in the whole-cell solution in
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order to permit NO-stimulated cGMP production, but still to supply the intracellular 

environment with physiological amounts of ATP to maintain cellular processes. 

Despite this modification, application of 100 pM DEA/NO again had no obvious 

effect on HCN channel function or membrane properties in either the MNTB cells 

(figure 4.10; n=2) or DCN large projection neurones (n=2; data not shown).
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Figure 4.10 The NO-cGMP-HCN channel pathway in voltage-clamped MNTB principal cells 
using 1mM ATP in the whole-cell solution
A, Steady-state activation curve constructed from tail currents. Values for V 1/2 and k are as 
legend.
B, Timecourse for effect of 100 pM DEANO on lh (i) and the holding current (ii) measured a 
short (500 ms) hyperpolarising step to -90 mV every 10 s. Coloured vertical lines correspond 
to the step immediately prior to voltage-step protocol to generate activation curves in A.
C, Example raw traces from timecourse (B).

This cell had a resting membrane potential of -63 mV and was clamped at -60 mV.

One explanation for the lack of modulation of lh by NO could be that the HCN 

channel in both of two sets of neurones may be incapable of responding to cGMP 

on a molecular basis, as for sea urchin sperm HCN channels, spHCN (Gauss et al. 

1998). To address this possibility, I carried out a series of interleaved experiments 

in which the cyclic nucleotide or analogue was directly delivered to the intracellular 

milieu by inclusion with the whole-cell solution. These experiments were initially
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performed in DCN cells because rundown is less of a problem. Each ‘n’ number 

represents an individual cell, which was exposed to only a single whole-cell 

solution I.e. no repeated measures.

100 pM cGMP had no apparent effect on V1/2, while 100 pM cAMP caused a 

depolarizing shift of ~ 10 mV (figure 4.11). Increasing the concentration of cGMP to 

1 mM caused a similar positive shift in the steady activation curve and Vi/2. The 

apparent potency of cGMP, compared to cAMP, for inducing a depolarising shift 

was about 1 order of magnitude lower, but the influence of PDEs on this result is 

unknown. The Br-substituted forms of the nucleotides, thought to be less prone to 

hydrolysis by PDEs (Wei et al. 1998), also modulated lh as for the native form; 100 

pM Br-cGMP caused a shift in Vi/2 unlike cGMP at this concentration,

Now that it was established that cGMP could modulate the channel with similar 

efficacy to cAMP, a further reason for failure to observe NO-stimulated modulation 

of lh might be that the concentration of NO-donor, DEA/NO was too high. This may 

seem counterintuitive given that a particular biological response to increasing 

concentration of an agonist is typically S-shaped and NO-stimulated cGMP 

production is no exception (Bellamy et al. 2000; Bon & Garthwaite 2001; Gibb et al. 

2003; Hopper et al. 2004). It would appear that after reaching the maximal 

production of cGMP in response to NO, greater concentrations of NO apparently 

decrease the rate of ensuing cGMP accumulation below this maximum. 

Extrapolating this trend would mean that the concentration-effect curve would 

become bell-shaped, such that if the concentration was too high, no cGMP would 

be produced within the measurable limits.
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Figure 4.11

A, A series of interleaved experiments in voltage-clamped DCN neurones to show the extent 
of modulation of HCN channel function by cyclic nucleotides directly in the whole-cell 
solution. Individual values are in black and mean ± sem in red.
Top panel: none of the different cyclic nucleotides had an effect on k.
Bottom panel: 100 pM cGMP had no apparent effect on \ZV2. All other treatments 
significantly shifted V 1/2 in a depolarised direction (n=3-5 separate cells in different slices; 
Student’s unpaired f-test compared control and test values; * p< 0.03, ** p< 0.002, t  
p<0.0005).

B, Representative steady-state activation curves for each of the conditions in A. Notice the 
almost overlay of control and 100 pM cGMP. All other treatments shift the curve to more 
positive potentials for a given level of activation.

C, A limited set of experiments in MNTB principal cells to show that these neurones are 
indeed capable of responding to cGMP and cAMP (n=2-3).

4 mM ATP in the whole-cell solution throughout.
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In order to address this problem, one would ideally like to carry out a 

concentration-effect curve for the DEA/NO-stimulated cGMP production in the 

DCN, as measured by radioimmunoassay (see chapter 6). Unfortunately, due to 

the prohibitively small size of the MNTB and DCN and the number of animals that 

would therefore be required to generate sufficient protein level, this was not done. 

Instead I repeated the voltage step protocol using interleaved lower concentrations 

of DEA/NO.

A hundred-fold reduction to 1 pM DEA/NO had no observable effect on HCN 

channel function (figure 4.12 A-C; n=5; V1/2: control -87 ± 2.2 compared to DEA/NO 

-86 ± 2.4 mV; Student’s paired f-test; p=0.459). In some of these experiments, if 

patch integrity was maintained, 1 mM Br-cGMP (n=2) or 1 pM forskolin (n=1) was 

added. Both treatments caused a reversible, -  10 mV depolarising shift in V1/2 

(figure 4.12 D&E).

An intermediate concentration of 10 pM similarly had no effect in 4 of 6 cells 

studied (figure 4.13; n=4; V1/2: control -96.8 ± 4.39 compared to DEA/NO -98.0 ± 

3.66 mV; Student’s paired t test; p=0.477). In the other two neurones, interestingly,

I found that there was reversible regulation (figure 4.14). A qualitative inspection of 

some of the properties of lh in these cells did not indicate a difference in the 

properties of lh to account for the different responses to NO application (table 4.1).

Cell RMP (mV) lh amplitude at - 
100 mV (nA)

Time constants 
(ms)

Vi/2 (mV)

A -58 -0.301 1371
255.5

-90.2

B -47 -0.172 1261.0
198.2

-89.5

C -47 -0.152 1603.9
336.7

-99.6

D -57 -0.212 1440.3
250.4

-108.1

1 -44 -0.190 916.7
271.8

-93.5

2 -43 -0.180 1104.3
551.2

-88.6

Table 4.1 Collection of properties for cells in which lh was (1&2) and was not (A-D) regulated by NO
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Figure 4.12 The lack of effect of 1 pM DEA/NO on lh in DCN principal cells (n=5)

A, A typical example of a steady-state activation curve constructed from tail currents. Values 
for V 1/2are as legend.
B, Timecourse for effect of 1 pM DEANO on (i) lh and (ii) the holding current measured 
during a short (500 ms) hyperpolarising step to -90 mV every 10 s. Coloured vertical lines 
correspond to the step immediately prior to voltage-step protocol used to generate activation 
curves in A.
C, Example raw traces from timecourse (B).

This cell was clamped at -47 mV and 1 mM ATP was used in the whole-cell solution.

D, Bath application of 1 mM Br-cGMP produced a depolarising shift in the activation curve.
E, Example raw traces showing the effect of Br-cGMP following wash in.

This cell was clamped at -57 mV and 1mM ATP was used in the whole-cell solution.
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Figure 4.13 The lack of effect of 10 pM DEA/NO on ih in DCN principal cells

A, A typical example of a steady-state activation curve constructed from tail currents. Values 
for V 1/2are as legend.
B, Timecourse for effect of 10 pM DEANO on (i) lh and (ii) the holding current measured 
during a short (500 ms) hyperpolarising step to -90 mV every 10 s. Coloured vertical lines 
correspond to the step immediately prior to voltage-step protocol to generate activation 
curves in A.
C, Example raw traces from timecourse (B).

This cell had a resting membrane potential of -58 mV and was clamped at -42 mV. 1mM ATP 
in the WCS.
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Figure 4.14 The regulation of lh by NO in the minority of DCN principal cells

A, An example from a minority of cells (total n=2) showing reversible regulation of the steady- 
state activation curve for HCN channels. Lines are Boltzmann fits to the data; values for V 1/2 
are as legend.
B, Current-voltage plots derived from voltage step protocol show the reversible increase in lh 
amplitude (up to approximately -120 mV when HCN channels are fully activated) in the 
presence of NO.

This cell was clamped at -49 mV. There was 1 mM ATP in the WCS.
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4.5 DISCUSSION

The modulation of lh by the NO-cGMP signalling pathway was investigated in the 

MNTB and DCN neurones. Kinetics of activation were of the appropriate range to 

confirm that the HCN channels in these neurones were likely to contain HCN4 and 

HCN2 subunits (Accili et al. 2002).

The V1/2 for MNTB neurones (around -85 mV) was more hyperpolarised than 

previously reported values in the adult rat but is in agreement to measurements in 

similarly aged mice. As well as a difference in voltage-dependence, lh amplitude 

was also much smaller in the juvenile neurones (about 200 pA compared to 2 nA) 

but similar to that in mice of the same age (Banks et al. 1993; Leao et al. 2006a). 

This may present a change during maturation into an adult.

HCN channel function was not modulated by application of noradrenaline at 

this age unlike the adult (Banks et al. 1993). This was presumably due to a lack of 

expression of relevant adrenergic receptors or a lack of coupling of an increase in 

noradrenaline-stimulated cAMP accumulation to HCN channel function, because 

bath application of Br-cAMP caused a depolarising shift in voltage dependence. 

This shift of -  4.5 mV was smaller than that seen in the adult ( - 1 7  mV). This may 

represent a difference in drug potency or efficacy and/or the exact subunit 

composition of the HCN channel.

The attempt to modulate the voltage-dependence of lh by NO yielded no 

positive results. This was not due to the channel properties being maximally 

modulated i.e. the maximal positive shift in Vi/2> because subsequent application of 

Br-cAMP lead to a positive shift in the voltage dependence. The initial conclusion 

would be that the NO-cGMP-HCN channel pathway is not active in the MNTB. This 

is a disappointing finding because an increase in the kinetics and amplitude of lh is 

known to affect the delay to firing of an action potential which would have 

implications for binaural processing at LSO (Leao et al. 2006a; Leao et al. 2006b).

Turning next to the DCN, values for Vi/2 and current amplitudes were comparable 

to reported values (Chen et al. 2005), as were ‘resting’ membrane potentials
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(Aizenman et al. 2003). I found a comparable lack of modulation of lh in DCN 

neurones by NO as in the MNTB. Again, this was not due to the voltage- 

dependence of activation already being shifted to the maximally depolarised 

position because the addition of isoprenaline caused a depolarising shift in Vi/2.

The almost consistent lack, so far, of modulation by NO could be due to a lack of 

modulation by cGMP. This was found not to be the case because inclusion of 

cGMP in the patch pipette modulated lh. Therefore, like other native channels, 

HCN channels in the MNTB and the DCN can be modulated by both cAMP and 

cGMP (DiFrancesco & Tortora 1991; Ludwig et al. 1998; Zagotta et al. 2003).

One important assumption that is not confirmed for both the DCN and MNTB is that 

the entire NO-cGMP-HCN channel pathway is expressed in these neurones at this 

particular range of post-natal days used. This is to say that the NO-synthesising 

enzyme (NOS), the NO-receptor (N O gcR) and HCN channels are present. The 

occurrence of the HCN channels is not so problematic, as the electrophysiological 

recordings presented here confirm the presence of a current resembling that 

previously described. The occurrence of N O gcR is of paramount importance, 

otherwise there is no apparatus for the transduction of an NO signal. The presence 

of NOS within the vicinity of the nuclei would be required to indicate an 

endogenous source of NO and a potential, physiological relevance of the NO- 

cGMP-HCN channel pathway.

In the case of the DCN, mixed results using 10 pM DEA/NO as well as the 

seemingly homogeneous properties of lh in the neurones recorded are at first 

confusing. One explanation for the inconsistently negative results could be that the 

large projection cells show heterogeneity in terms of NO-cGMP pathway. For 

example, only a minority of cells may express NO gcR and therefore generate 

cGMP. In the DCN, the cyclase might not be abundant even in the adult (Matsuoka 

et al. 1992). On the other hand, assuming that all necessary proteins are 

expressed, it is possible that in the majority of the DCN neuronal population there 

is no coupling between cGMP production and downstream HCN channels.
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Little is known about PDEs expressed in the DCN or the MNTB. Particularly 

in regard to cGMP-hydrolysing PDE isoforms, mRNA for PDE2 and PDE9 are 

found in the DCN but not PDE5 (van Staveren et al. 2002; van Staveren et al. 

2003). This could reduce the amplitude and spread of NO-stimulated cGMP such 

that the HCN channels do not detect a change during a NO signal; in cardiac 

myocytes, PDE5 and to a lesser extent, PDE2 act to prevent access of the NOqcR- 

synthesised cGMP pool to expressed CNG channels (Castro et al. 2006). The 

apparently higher potency of PDE-resistant Br-cGMP in my experiments could 

indicate that PDE activity is quite high in DCN and that HCN channels might be 

compartmentalised away from the cGMP pools controlled by NOgcR- Some 

preliminary data (n=4; not shown) using the non-selective PDE-inhibitor, 3-lsobutyl- 

1-methylxanthine (IBMX), showed that inhibition of PDEs resulted in a depolarising 

shift of HCN channel voltage dependence. I considered that testing the hypothesis 

that the activity of certain PDE-isofomns compartmentalises HCN channels away 

from cyclic nucleotide pools could result in an expensive pharmacological ‘fishing’ 

exercise, which may not yield useful information, particularly given the lack of 

inhibitors for certain PDEs.

If PDE activity is an explanation of the results, why do two neurones show 

positive regulation of lh by NO? For one, they could have simply occurred by 

chance, but this seems unlikely because the effect was reversible on removal of 

NO. Therefore, this could represent recordings from two different populations of 

large projection cells within the DCN differing in PDE expression and/or activity. 

This level of differential expression is seen in cerebellar Purkinje cells, which all 

express PDE5, but only a subset express PDE1B (Bender & Beavo 2004). 

However the functional implications are unknown.

Alternatively, the differences in the NO-cGMP-HCN channel pathway may reflect 

two electro physio log ically-distinct neuronal populations. Despite providing the 

major output of the cerebellum and playing a crucial function in motor control and 

learning, the populations of DCN neurones remain poorly characterised and 

defined. Identification of two types of neurones in the DCN failed to make a strong 

correlation between morphological and electrophysiological parameters (Czubayko
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et al. 2001), but subsequent work suggests that one type are small intemeurones 

and the rest the larger projection neurones (Aizenman et al. 2003). Most recently, 

the ‘large’ glutamatergic neurones have been further classified into two distinct 

populations according to cell size and electrophysiological features. GABAergic 

neuronal size also appears to show some overlap with glutamatergic neurones (17 

± 1.1 vs 26 ±1.5 pm respectively (Uusisaari et al. 2007). In this case, the 

characterised cell-types all displayed similar lh-attributed depolarising sags, 

indicative of homogeneous lh profiles. Therefore I could have been recording from 

the GABAergic neurones or a distinct set of glutamatergic cells in the two 

examples of reversible modulation of HCN channels.

Lastly, it may be that there is a methodological problem with the 

electrophysiological recordings. The run-down in lh seen in the recordings after 

obtaining the whole-cell configuration may be due to the equilibration with the 

solution in the patch pipette. One could hypothesise that dialysis of the intracellular 

milieu disrupts the coupling in the signalling pathway. In the 2 cells displaying 

positive regulation, this dialysis may not (yet) have occurred; perhaps increasing 

the duration of baseline recording may have been necessary to allow dialysis to 

occur; another possibility is that for the recordings of these 2 cells, the series 

resistance was higher, although this did not appear to be the case.

The following chapters explore and discuss some of these possible explanations 

using immunohistochemical, biochemical and electrophysiological techniques.
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Chapter 5 - The NO-cGMP-HCN channel pathway in 

brainstem and cerebellum: immunocytochemical studies 

and sharp electrode recordings
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5.1 INTRODUCTION

To complement the study in chapter 4, the presence of the NO-cGMP-HCN 

pathway was examined by immunohistochemical and less-invasive 

electrophysiological means.

nNOS (Vincent & Kimura 1992; Rodrigo et al. 1994; Iwase et al. 1998; 

Fessenden et al. 1999; Gotti et al. 2005), NOgcR (Ariano et al. 1982; Fessenden et 

al. 1999; Gibb & Garthwaite 2001; Ding et al. 2004; Pifarre et al. 2007) and HCN 

channel subunits (Monteggia et al. 2000; Moosmang et al. 2001; Notomi & 

Shigemoto 2004) have been previously identified in the adult MNTB and DCN. The 

possibility remains that part of the NO-cGMP-HCN channel pathway may be 

missing in these brain regions in juvenile rats. The kinetics of activation suggest 

HCN channels in these regions contain HCN2 and HCN4 subunits and are 

therefore liable to modulation by cGMP (chapter 1). The lack of modulation of HCN 

channels in the MNTB and DCN by NO (chapter 4) may arise from the lack of 

expression of NOGcR at this age, which would mean a NO signal could not be 

transduced to cause rises in cGMP.

Alternatively, the signalling pathway may be present but the whole-cell 

technique used to measure the functionality of the pathway may cause dialysis or 

uncoupling (Sakmann & Neher 1984) of NO-stimulated cGMP and HCN channel 

function. This could be overcome by using a method that limits the perturbation of 

the intracellular contents.

5.2 AIM

The principal aim of this study was to determine the presence of the components of 

the NO-cGMP-HCN channel pathway in the MNTB and DCN neurones and to 

investigate the functioning of the pathway using less invasive recording methods 

than the whole-cell technique.

HYPOTHESIS: The NO-cGMP-HCN channel signalling pathway is present in the 

principal cells of the MNTB and DCN.
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5.3 METHODS

Immunohistochemistry

Antibody Concentration Source
Primary:
Mouse anti-eNOS 1:200 BD Biosciences Ltd, UK 

(Catalogue #610296)
Rabbit anti-nNOS 1:500 Zymed, San Francisco, 

CA (#61-700)
Sheep anti-nNOS 1:20,000 Gift from Dr. P.C. Emson, 

The Babraham Institute, 
Cambridge, UK

Rabbit anti-sGC^ subunit 1:500 Cayman Chemical, Ann 
Arbor, Ml (#160897)

Sheep anti-cGMP 1:40,000 Gift from Dr. J. de Vente, 
Maastricht, Netherlands

Rabbit anti-HCN1 1:800 Alomone labs Ltd., 
Jerusalem, Israel (#APC- 
056)

Rabbit anti-HCN2 1:500 Alomone labs Ltd., 
Jerusalem, Israel (#APC- 
030)

Rabbit anti-HCN4 1:200 Alomone labs Ltd., 
Jerusalem, Israel (#APC- 
052)

Table 5.1 Summary of antibodies used

All secondary antibodies were from Chemicon International, Harlow, UK. They 

were raised in a donkey host and used at 1:200.

Slices containing the MNTB or DCN, prepared as before (chapter 4), were fixed in 

ice-cold, freshly depolymerised paraformaldehyde (1 or 4 %) in 0.1 M phosphate 

buffer (PB; pH 7.4) for 2 h. Tissue was cryoprotected using ice-cold sucrose 

solution at 5 % for 3 h and then at 20 % in PB overnight. The slices were quickly 

frozen under dry ice in OCT, then frozen on a cryostat chuck and sectioned 

coronally at 10 pm intervals onto chrome alum/gelatin-coated slides. Slides were 

allowed to dry before being stored at -20 °C.

For fluorescence immunostaining, the slides were rehydrated in 0.1 % Triton 

X-100 in 0.1 M Tris-buffered saline (TBS-T) twice for 5 min. After rinsing, the slides 

were incubated with 20 % donkey serum (DS) in 0.1 M TBS-T for 1 h and then with 

primary antibody in 1% DS / 0.1 M TBS-T overnight at 4 °C. To characterise the

111



Chapter 5 - The NO-cGMP-HCN channel pathway in brainstem and
cerebellum: immunocytochemical studies and sharp electrode recordings

location of N O gcR, I decided to use an antibody raised against a synthetic peptide 

from the /?i subunit of the cyclase because all functional enzymes in the brain are 

thought to consist of this subunit with either a\ or a2 subunits (chapter 1), and 

therefore should detect all known heterodimers. nNOS detection was performed 

using two different antibodies. After rinsing ( 4 x 1 0  min with 0.1 M TBS-T) and 

incubation with FITC- or TRITC-labelled secondary antibodies raised in donkey 

(1:200) for 1 h, the slides were again rinsed ( 4x 10  min with 0.1 M TBS-T) before 

mounting in Vectashield (Vector Laboratories Inc., Burlingame, CA) with DAPI, 

which binds tightly to DNA, hence staining effectively the nucleus; this allows for 

discerning qualitatively if immunolocalisation of the other proteins is extra-nuclear 

or not. The sections were visualised under confocal fluorescence optics (Leica 

Microsystems, UK).

To further characterise the location of nNOS and NOGcR, an 

immunoperoxidase staining procedure was applied. To do this a peroxidase 

suppressor in a methanol solution (Pierce, Rockford, II, USA) was used to inhibit 

endogenous peroxidase activity in order to avoid false positives. As the exact 

requirements for inhibition vary with the tissue and sometimes the primary antibody, 

two parallel sets of slides were employed to allow the inhibitor to be applied before 

the primary antibody incubation in one set and immediately afterwards in another. 

The presence of N O gcR was probed using a rabbit polyclonal antibody raised 

against a synthetic peptide corresponding to the rat sGC /?i subunit (1: 500, 

Cayman Chemical, Ml, USA), while using the Zymed rabbit anti-rat antibody for 

nNOS. The staining procedure was carried out on tissue fixed with 1 % PFA. Again 

this involved rehydration of the slides with 0.1 % TBS-T. Following that, one set of 

slides were incubated with suppressor, the other with TBS-T, for 15 min. After 

rinsing twice with TBS-T for 3 min, the tissue was blocked with 20 % donkey serum 

and then incubated with primary antibody and 1 % donkey serum overnight at 4 °C. 

The slides were rinsed at 10 min intervals, twice with TBS-T and then once with 

TBS, followed by peroxidase suppressor or just TBS for 15 min as appropriate. 

After rinsing with TBS, twice for 3 min, the sections were incubated with donkey 

anti-rabbit biotinylated secondary antibody for 1 h at room temperature. Slides 

were washed (3 x 10 min with TBS) and incubated with Vectastain elite ABC
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(Vecto Labs Ltd, Peterborough, UK) for 45 min, stained for 4 min with 0.05 % DAB 

(3,3’-diaminobenzidine; Sigma, Dorset) then counterstained with Mayer’s 

haemalum (Raymond A Lamb Ltd., Eastbourne) for 15 s. Finally slides were air- 

dried and mounted in DPX medium (Agar Scientific, Stansted).

All results presented are representative examples of sections from two or more 

animals.

The qualitative effect of NO-stimulation in the MNTB was detected using cGMP 

immunohistochemistry following different experimental conditions. Slices were 

exposed to the NO donor, DEA/NO (100 pM) for 5 min at 37 °C. The general 

phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine (IBMX, 1 mM) was 

added 15 min before exposure to the NO donor. Sections were incubated with 

primary sheep anti-cGMP antibody at 1:40,000 and donkey anti-sheep FITC- 

labelled secondary antibody as described above. Resents presented are 

representative example of three slices from three different animals.

The presence of specific HCN subunits was probed using the appropriate antibody 

raised in rabbit from Alomone Labs. HCN 1, 2 and 4 antibodies were used at 1:800, 

1:500 and 1:200 respectively as optimised previously in the laboratory. In an 

attempt to improve the ratio of specific-to-background staining, increased 

permeabilisation and an amplification step were implemented. Following the 

overnight incubation with primary antibody, the slides were rinsed first twice with 

0.3 % TBS-T for 10 min and then once with just TBS. After rinsing, the sections 

were incubated with donkey anti-rabbit biotinylated secondary antibody (1:100) for 

1 h at room temperature. The slides were then washed 3 times with TBS for 10 min 

each, with a subsequent incubation with avidin-Texas Red (1:200; Vector 

Laboratories Inc., Burlingame, CA) for 1 h at room temperature. The slides were 

rinsed again (3x10 min with TBS) and mounted in DAPI-containing Vectashield.
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Electrophysiology

Rat pups ( 9 - 1 3  days old) were killed, and the brains promptly removed and 

immersed in ice-cold high Mg2+/low Na+ aCSF containing (in mM): 250 sucrose, 2.5 

KCI, 6 MgCI2, 2.0 CaCI2, 1.0 NaH2P04.H20, 26.2 NaHC03, and 11 glucose, 

equilibrated with 95% 0 2 - 5% C02. Coronal slices (400 pm) from the cerebellum 

were cut using a Mcllwain chopper. Slices were then incubated at 37 °C for one 

hour, and at room temperature thereafter, in gassed normal aCSF. After this period 

of recovery (at least 60 min), one slice was transferred into a submerged chamber 

and continuously perfused with aCSF. Borosilicate microelectrodes (100-160 MQ; 

Clark capillaries, Reading) were filled with 2 or 3 M KAc. Blind recordings were 

made in either the lateral or interposed DCN. Upon entry into the cell, a strong 

hyperpolarising current bias was applied to promote stability. Membrane voltage 

was filtered at 1 kHz and sampled at 2 kHz using an Axoclamp-2B amplifier (Axon 

instruments, Foster City, CA) in bridge mode. The neuronal membrane potential 

was clamped at around -62 mV (irrespective of offset), as this potential was 

sufficiently hyperpolarising to prevent spontaneous, rhythmic firing. The bridge 

balance was constantly monitored throughout the experiment and adjusted 

appropriately. A 3750 ms hyperpolarising step (figure 5.1) was applied to activate lh 

every 10 s. Prior to this a short (500 ms), small hyperpolarising step was applied 

for calculation of the neuronal input resistance (Rin). Analysis was performed offline 

using Clampfit 8.0 (Axon Instruments, Foster City, CA).

Current

Voltage

Rebound

depolarisatipn

Sag amplitude

Figure 5.1 A schematic of the 
membrane response to a 
hyperpolarising current injection

There is a depolarising sag in the 
membrane potential, indicative of lh 
activation.
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5.4 RESULTS

NOgcR and eNOS immunofluoresence

Cerebellar cortex -  a positive control (figure 5.2) and DCN (figure 5.3)

The presence of the receptor for NO has been well characterised in the cerebellar 

cortex and therefore this brain region was used to test the sGC/?i antibody for 

im mu nocytochemistry. The external granule cell layer, a germinal layer consisting 

mainly of a replicating granule cell precursor pool, showed weak staining. There 

appeared to be fine processes stretching out from the molecular layer and 

extending into this layer. There was a robust staining of the internal granule cell 

layer, which ceases at its boundary with the white matter tracts leading to the deep 

cerebellar nuclei. The Purkinje cell bodies showed weakly granular staining 

throughout the soma; it was difficult to discern the staining of the (proximal) 

dendritic tree because of the coronal sectioning of the cerebellum. This staining 

pattern was consistent with previously, well-established localisation of NOgcR 

expression (Ariano et al. 1982; Ding et al. 2004) or mRNA transcript distribution 

(Gibb & Garthwaite 2001; Pifarre et al. 2007) in the folia.

The anti-eNOS antibody stained the blood vessels as to be expected. In 

addition there was a low-level specific staining throughout the parenchyma of the 

slice, probably representing the endothelial cells of the microvasculature extending 

throughout the cerebellum and the brain as a whole. Co-staining with eNOS was 

used as an additional control for the selectivity of s G C £ i antibody. N O gcR is 

expressed in smooth muscle cells of the blood vessels and therefore should be 

found in close association with eNOS-positive vascular endothelial cells. This was 

indeed the case.

The entire network of neurones comprising the DCN appeared to show weak, 

extranuclear staining for NOgcR- Again there was co-expression of NO gcR P -  

subunit and eNOS in blood vessels.
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Figure 5.2 Immunofluorescent double 
labelling for sG C ^ and eNOS in the 
cerebellar cortex.

A-D, Both proteins were found throughout the 
folia. In most layers, the two proteins 
colocalised, particularly in the blood vessels 
(arrows). sGCfJ  ̂ immunoreactive fibres can be 
seen extending into the external granule cell 
layer (arrow head) which are probably Bergmann 
glial processes.
E,F Controls in which sections were exposed 

only to secondary antibody. There was a very low 
background of non-specific binding.
Scale bar = 100 pm; Ext G = external granule cell 
layer; M = molecular layer; P = Purkinje cell layer; 
Int G = internal granule cell layer.
G, Key to the schematic overlay in D to outline 
the anatomv of the cerebellar cortex.

sGC/31

External granule 
cell layer

Molecular layer

Purkinje cell layer

Internal granule 
cell layer

To DCN
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Figure 5.3 Double immunostaining in the DCN

There was diffuse, extranuclear expression of NOGcR in the parenchyma of the DCN.
There was some degree of overlap with eNOS in blood vessels.
Scale bar = 1 00  pm.

NOgc^  and nNOS immunofluorescence

Cerebellar cortex (figure 5.4) and DCN (figure 5.5)

There was a good overlap between these two proteins in the cortex as a whole -  

the molecular layer neuropil was homogeneously stained as was the granule cell
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layer. The Purkinje cells were devoid of nNOS staining as in adult tissue (Vincent & 

Kimura 1992; Rodrigo et al. 1994). Cells in the inner part of the molecular layer, 

around the Purkinje cells were heterogeneous in their staining for nNOS. The 

distribution of nNOS was consistent with that found in the aforementioned studies.

In the DCN, strong nNOS immunoreactivity was found in a few large cells 

and also as a sparse network of fibres and punctae radiating throughout the 

nucleus. Neurones showing positive signal for nNOS did not show expression of 

NOgcR- As for figure 5.3, there was a weak, homogeneous extranuclear sGC/?i 

staining in the DCN neuronal population.

NOqcR and nNOS immunohistochemistry in the cerebellum

The relatively weak, but specific staining in the DCN for NOgcR and nNOS 

prompted the use of the peroxidase technique that improves resolution of a 

particular epitope by virtue of its intrinsic property of signal amplification.

N O gcR staining in the cerebellar cortex was as for the fluorescence data 

(figure 5.6A). In particular it was clear that the granule cells and the glomeruli, 

where granule cell dendrites are contacted by incoming mossy fibres expressed 

N O gcR- The white matter tracts connecting the cortex and DCN were virtually 

devoid of receptor for NO. In contrast, the outline of the DCN was clearly 

discernable by the presence of N O gcR immunoreactivity throughout the nuclei. The 

larger DCN neurones showed dense staining throughout their cytoplasm (figure 

5.6B).

nNOS staining (figure 5.7) was similar to that found using 

immunofluorescence patterns. Staining in the somata of Purkinje cells was faint or 

absent. In the DCN, the sparse network of positive fibres was more clearly seen as 

a widely-distributed plexus of varicose fibres seemingly contacting every neurone.

NOgcR and nNOS immunohistochemistry in the brainstem

There was intense sGC/?i staining in descending motor fibres of the pyramid, while 

the decussating axons running to the MNTB were immunonegative (figure 5.8A-C). 

The principal cells of the MNTB showed expression of N O gcR throughout the 

nucleus (figure 5.8D) as seen before in the adult (Fessenden et al. 1999).
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Figure 5.4 sGC/?i and nNOS 
immunolabelling in the cerebellar cortex

A-D, There was a diffuse nNOS staining 
of the molecular and internal granule cell 
layers, but an apparent lack in the 
Purkinje cells.

E, A higher power view from C (white 
box) showed a good match between 
sGC/?! and nNOS, except in the Purkinje 
cell (small arrows) layer and the external 
granule cell layer. In the inner part of the 
molecular layer there are neurones that 
only express sGC/?i (large arrows).

Scale bar = 100 pm
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sGCi?i

Overlay

Figure 5.5 Double-labelling immunofluorescence for NOGcR and nNOS in the interposed 
DCN

A diffuse staining of sGQ£?r subunit was seen throughout the DCN, with a few intensely 
staining nuclei. Similarly nNOS showed a low level of expression throughout the DCN, with 
a number of positive neurones distributed throughout the tissue as well as a spread of 
unconnected tendrils. Proteins showed a mutually-exclusive pattern of expression.
Scale bar = 50 pm
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Figure 5.6 sGC/?i-immunoreactivity in the cerebellum

Ai, The NOGcR appeared to be expressed in all layers of the cortex. Arrows: Purkinje 
cells; gl: glomerulus
Aii, A control in which the section was incubated with secondary antibody only; there 
was a very low background of non-specific binding.
B, sGC0i staining, at various magnifications (i-iii), was seen throughout the cytoplasm of 
the majority of the dentate DCN (outline marked by dashed red line) neurones. The 
prominent staining in the DCN makes it clearly discernable from the surrounding white 
matter tracts (Bi) connecting the DCN to the cortex.
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Figure 5.7 nNOS-immunohistochemistry in the cerebellum

A, Specific staining in the molecular and granule cell layer as seen in figure 5.3. There 
was little-to-no signal in the Purkinje cells.
B, Within the dentate and interposed DCN, there was a distinct subset of nNOS- 
expressing neurones, from which a network of varicose fibres extend throughout the 
tissue. There was no nNOS staining in the white matter between the cortex and DCN 
(B1; red dashed line traces the outline of the DCN).
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Within the same coronal section of brainstem, there were the trigeminal motor and 

mesencephalic trigeminal neuronal populations. Both sets of neurones displayed 

sGC/?i-immunoreactivity (figure 5.8E,F) as expected from previously published 

data on NO regulation (Abudara et at. 2002; Pose et a/. 2003). This suggests that 

the sGC/?i antibody was staining appropriately in brainstem sections.

nNOS expression (figure 5.9) was much weaker than that seen for sGQ8. The 

ventral part of the pontine reticular nucleus, just dorsal to the pyramid, showed a 

number of densely stained neurones from which a net of varicose fibres extended 

throughout the parenchyma of the nucleus (figure 5.9B,C). There was a very weak 

staining in the pyramids (figure 5.9D,E), complementing the NO gcR pattern. 

Positive nNOS-immunoreactivity was seen at a very low level throughout the 

principal MNTB neurones and as distinct, apparently cytoplasmic granules (figure 

5.10).

NO-stimulated cGMP immunohistochemistry

The above results indicating the presence of NOS and N O gcR in the MNTB and 

DCN suggested the existence of a functioning NO-cGMP pathway. To test further 

the hypothesis that the NO-cGMP signalling cascade is present, qualitative 

analysis of cGMP levels using immunohistochemistry was carried out.

Basal cGMP levels in brainstem slices containing the MNTB and levels in 

the presence of the non-selective phosphodiesterase inhibitor, IBMX (1 mM) were 

quite low, just above background fluorescence. The exposure of brainstem slices 

for 5 min to 100 pM DEA/NO, in the presence of IBMX, resulted in an obvious 

elevation of cGMP levels in MNTB neurones and the pyramids (n=3; figure 5.11). 

This result also confirms that slices prepared using this method, as for 

electrophysiological recordings, are indeed capable of responding to NO with a rise 

in cGMP levels.
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linal NeuronesMesencephalic

Trigeminal Motor Pool

iliperior Olivary Complex
MNTB

Pyramid

VENTRAL

Figure 5.8 NOqcR immunoreactivity in the 
auditory brainstem

A, Low-power field of the pyramid and MNTB  
(dashed oval) on one side of the trapezoid body 

| (solid red line indicates the midline).
! B, Little-to-no non-specific background signal
! using the secondary antibody only.

C, Intense sGCJ3  ̂ staining appeared to be 
found in the motor fibre pyramidal tract, but

; none in the fibres running to and from the
! midline.

D, Obvious, granular staining in the principal 
! cells of the MNTB.

E, F, Prominent NO-receptor staining was 
found in the trigeminal motor pool and 
mesencephalic trigeminal neurones 
respectively.
G, Schematic diagram highlighting the anatomy 
of the auditory brainstem, and the regions 
discussed above.
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Figure 5.9 nNOS peroxidase staining in the brainstem

A, Low magnification indicated a low-level, diffuse staining throughout the auditory 
brainstem and an intense labelling in the ventral pontine reticular nucleus (PnV).

B,C, Higher magnification of the PnV. Prominently stained neurones can be seen with a 
network of varicose fibres ramifying throughout the nucleus.

D.E, Within the pyramid, there was a weak staining in the motor fibre pyramidal tract but 
not in the decussating fibres running across the field of view.
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Figure 5.10 nNOS immunoreactivity in MNTB principal neurones from figure 5.9

A, A low level of nNOS staining can be seen over the entire MNTB and a network of 
varicose fibres at its dorsomedial edge.
B,C, Higher power field of parts of the MNTB. Principal cells show a diffuse as well as a 
distinct granule staining.
D, Background staining from the secondary antibody only.
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Figure 5.11 cGMP immunohistochemistry in MNTB slices

cGMP levels under basal conditions and in the presence of 1 mM IBMX are both low, 
similar to background with the secondary (2°) antibody only. cGMP levels are greatly 
increased in the presence of 100 pM DEA/NO.

Panels on the right show nuclear staining using DAPI; white dashed line indicates the 
midline; dashed oval indicates MNTB; scale bar = 200 pM

Control
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HCN immunofluoresence

In order elucidate the hypothesised composition of HCN channels in the MNTB and 

DCN, I used polyclonal antibodies against HCN1, HCN2 and HCN4 that yielded 

positive results in the literature (Koch et al. 2004; Leao et al. 2005). Anti-HCN2 

stained the cytoplasm and plasma membrane of the entire MNTB as well as the 

surrounding regions (figure 5.12A). To improve the signal-to-noise ratio, I used an 

amplification step, but this yielded only non-specific binding (figure 5.12B). All 

batches of HCN antibodies subsequently received were ineffectual, and it 

appeared that other researchers that had previously demonstrated successful 

stainings were now experiencing the same problems (K.E. Leao, personal

communication). Therefore further attempts at HCN staining were abandoned.

Sheep B3 

nNOS

Figure 5.12 HCN immunohistochemistry was inconclusive
A, HCN2 immunoreactivity was found diffusely in the MNTB, both cytoplasmic and on the 
cell membrane. There was also a lot of staining in the surrounding parenchyma. Double 
labelling with a different nNOS antibody to that shown prior figures confirmed the strong 
staining in the ventral pontine reticular nucleus (PnV) and little in the MNTB.
B, An additional amplification step failed to improve the signal-to-noise of HCN2. Again, 
double-labelling with nNOS showed a low level in the MNTB with an intense network of 
nNOS-positive cells in the PnV.
Scale bar = 1 0 0  pm; dashed white line indicates the location of MNTB; insets are 
secondary antibody only.
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Microelectrode recordings

The expression of NOS and NO gcR at this age of rats suggested that the level of 

cGMP should be elevated in response to an NO signal. To test if the lack of NO- 

stimulated modulation of HCN channels seen in chapter 4 was due to whole-cell 

dialysis of intracellular contents, the apparently less disruptive sharp 

microelectrode current-clamp technique was employed. nNOS staining in the 

MNTB was quite light, while the presence of a mesh of nNOS-positive varicose 

fibres ramifying throughout the DCN suggested that NO is likely to play an 

important physiological role in this part of the cerebellum. For these reasons, the 

recordings were made in the interposed or dentate DCN.

In the presence of 500 nM TTX and 1 mM 4-AP, there was a depolarising sag, an 

index of lh. in the membrane voltage during a long hyperpolarising step. After 

cessation of the hyperpolarising step, there was a prominent rebound 

depolarisation with one or more associated spikes presumably caused by 

activation of Ca2+ channels (chapter 4). The mean Rin of the cells was 63 ± 8.6 MQ 

(range 33-92; n=7), comparable to previous reports (Aizenman et al. 2003). The 

addition of 2 mM Cs+ to block lh removed the depolarising sag (figure 5.13).

Figure 5.13 Removal of the 
depolarising sag by 2 mM Cs+

The negative current injection 
caused a much greater 
hyperpolarisation in the membrane 
potential, likely due to block of lh. 
There was also repetitive spiking 
activity.

The application of 100 pM DEA/NO resulted in a decrease in the 

depolarising sag (n=5 of 5; figure 5.14A; 10 ± 1.3 mV significantly decreased to 4 ± 

0.5 mV: Student’s paired f-test; p<0.02). This change was completely reversible 

following wash out of NO. The amplitude of the depolarising sag reflects the

Control 

2 mMCs*

20 mV
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disparity in the activation level of lh at the holding potential and at the membrane 

potential in response to the negative current step. During the application of NO, 

there was also a decrease in the Rin (figure 5.14B), indicative of an increase in a 

membrane conductance, probably carried by HCN channels. If the recording was 

sufficiently stable, reapplication of NO caused a similar reproducible decrease in 

the depolarising sag and input resistance (figure 5.15).
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Figure 5.14 Microelectrode current-clamp recordings of DCN neurones (n=5)

A typical example of the change in membrane properties

Ai, The bath application of 100 pM DEA/NO caused a reversible decrease in the depolarising 
sag in the membrane potential following a hyperpolarising current injection, 
ii Closer observation of the voltage changes following offset of the negative current step 
showed a reversible change in the rebound potentials.

Bi, Current was injected to maintain the holding potential around -49 mV.
ii, The depolarising sag in the membrane potential during a long hyperpolarising current (-0.4 
nA) injection.
iii, There was a concomitant decrease in input resistance during the presence of NO.

This cell was recorded in the presence of 1 mM 4-AP and 500 nM TTX.
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Closer interrogation of the rebound depolarisation after termination of the 

hyperpolarising step showed that there were reproducible, reversible changes in 

the Ca2+ spikes following NO application (figure 5.14Aii). There was an obvious 

decrease in the amplitude, with little increase in the time to peak (figures 5.16 and 

5.17).
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Figure 5.15 The time course of reproducible changes in DCN neurones during NO 
application

The same neurone as figure 5.14; values are taken from voltage traces recorded every 10 s.

A, 3 applications of 100 pM DEA/NO lead to similar decreases in sag amplitude. These 
changes reversed on wash out.
B, The decreases in sag amplitude mirrored the decreases in input resistance during the 
presence of NO.
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Figure 5.16 The changes in the first Ca2+ spike of the rebound depolarisation

From the same cell as figure 5.14, the time to peak and the peak potential of the first spike 
of the rebound depolarisation are displayed with the changes in the depolarising sag from 
figure 5.13. Red rectangles denote the presence of 100 pM DEA/NO.
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Figure 5.17 The changes in the second Ca2* spike of the rebound depolarisation

From the same cell as figure 5.14, the time to peak and the peak potential of the 
second spike of the rebound depolarisation are displayed with the changes in the 
depolarising sag from figure 5.13. Red rectangles denote the presence of 100 pM 
DEA/NO.
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In two cells, application of NO caused a different series of changes including a 

marked membrane depolarisation and accompanying changes in Rin (figure 5.18). 

These changes were extremely slow to reverse. The membrane potential was 

exceedingly difficult to maintain using current injection and was abandoned in this 

case.
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Figure 5.18 The adverse change in the properties of the neurone during exposure and 
wash out of 100 pM DEA/NO

A, Initially there was a small decrease in the sag followed by a 3-fold increase. This was in 
concert with a rise in input resistance and excess depolarisation of the membrane potential.
B, Example traces before, during and after DEA/NO application.
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5.5 DISCUSSION

This chapter focused on the presence of NO-cGMP-HCN channel pathway in the 

MNTB and DCN. The results of immunological detection of the proteins in the NO- 

cGMP pathway in the MNTB and DCN suggest that in the juvenile rat, both nNOS 

and NOqcR are expressed.

The juvenile cerebellar cortex displayed a pattern of sGQffi- 

immunoreactivity similar to that of the adult (Ding et al. 2004). The presence of 

NOgcR in the DCN has been demonstrated in whole brain parasagittal sections in 

the juvenile (Gibb & Garthwaite 2001) and adult (Ding et al. 2004) rat; I found a 

similar homogeneous presence of the receptor throughout the DCN. The prominent 

presence of nNOS in a small number of scattered, isolated neurones and the 

dense network of associated varicose fibres in the DCN presented here, mirror the 

expression pattern seen in the adult rat (Vincent & Kimura 1992; Rodrigo et al. 

1994). This arrangement coupled with the mutually-exclusive and almost 

ubiquitous expression of NOgcR suggests NO may be acting as a paracrine agent 

in the DCN.

The young MNTB displayed expression of NOqcR throughout this part of the 

trapezoid body. This homogeneity and strength of signal is in contrast to the sparse 

presence of mRNA signal in the adult (Fessenden et al. 1999). However this may 

just result from a disparity in transcription and translation levels, or perhaps that 

there is a slow turnover of the protein leading to accumulation. The weaker, more 

diffuse staining of nNOS in the juvenile MNTB mirrors the adult NADPH- 

diaphorase activity and mRNA transcript levels (Fessenden et al. 1999). The 

apparent presence of both proteins in the MNTB suggests that it may be acting as 

an autocrine factor. The stimulation of native NOgcR by DEA/NO resulted in an 

elevation in the cGMP levels throughout the superior olivary complex, previously 

seen in the adult (Southam & Garthwaite 1993) suggesting a functional NO-cGMP 

pathway.

This apparent presence of the proteins of the NO-cGMP pathway in the 

DCN prompted further electrophysiological investigation, but using the less 

disruptive recording technique of high resistance microelectrodes. Utilising this
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method, there was a reproducible regulation by NO of the slow depolarising sag in 

membrane potential during a negative current step. These effects occurred with 

little delay on application of DEA/NO and reversed almost immediately following 

wash out. This would suggest that the changes are caused by the acute formation 

of cGMP, although no attempt was made to inhibit N O gcR using ODQ to test this 

hypothesis (Garthwaite et al. 1995). The depolarising sag is an index of the 

activation of lh; the opening of HCN channels causes an inward current following a 

hyperpolarising stimulus. A decrease in sag size is indicative of less lh being 

available to be activated by the hyperpolarising step. This suggests there was a 

larger lh at the holding potential suggesting a depolarising shift in the voltage 

dependence of lh. In tandem with the decrease in sag size, there was also a 

decrease in the input resistance consistent with elevated HCN channel activity. 

Therefore, current-clamp measurements made without vastly perturbing the 

intracellular milieu indicate a functional NO-cGMP-HCN channel pathway in these 

neurones.

In addition to changes in the magnitude of the voltage sag, there were 

reversible depressions in the peak potentials of the rebound depolarisation. These 

peaks are presumably carried by a low-threshold T-type Ca2+ channel as TTX- 

sensitive Na+ channels are blocked. The decrease in the peaks could be a direct 

effect of increases in cGMP; there is some evidence in the literature of the acute

inhibition of L-type Ca2+ channels by cGMP and cGK (Quignard et al. 1997; Liu et

al. 1997); however reports on the effects of cGMP on T-type channels are sparse 

and appear to involve transcriptional regulation (Zeng et al. 2005). Alternatively the 

apparent effects of NO on lh and therefore the voltage sag and input resistance 

may have caused these changes because the rebound depolarisation is known to 

be driven by interplay between HCN and T-type channel activity (Aizenman & 

Linden 1999). Further work in voltage-clamp mode would be required to elucidate 

this relationship. A potential link would be very interesting because LTP at the

inhibitory synapse between the Purkinje cell and DCN neurones requires a

sufficient rebound depolarisation to elicit Na+ spikes as well as a rise in Ca2+ in the 

dendrites (Aizenman et al. 1998). It has also been shown that in vivo injection of a 

NOS inhibitor into the interpositus nucleus of the DCN delays the formation of
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learning-related neuronal activity in the interpositus as well as the conditioned 

response of rabbit classical eyelid conditioning (Allen & Steinmetz 1996). Therefore 

an effect on HCN channels and/or T-type channel function may provide a means 

for NO to play a role in plasticity in the DCN.

In two cells, the profound depolarisation of the membrane potential and 

increased input resistance suggests that NO could be engaging a different 

signalling cascade. Another putative target, in addition to N O gcR, is cytochrome c 

oxidase, which is the terminal component in the mitochondrial respiratory train 

(Cooper 2002). By competing with oxygen at this site, NO inhibits oxidative 

phosphorylation and hence, decreases ATP levels with various pathological 

repercussions (Erecinska & Silver 2001; Brown 2001; Moncada & Erusalimsky 

2002). For example, decreases in available ATP would decrease the activity of the 

Na+-K+ ATPase, explaining the depolarisation in membrane potential. This action of 

NO occurs at a concentration about thirty-fold greater than that necessary to 

engage N O gcR activity (Bellamy et al. 2002). The magnitude of the NO signal in 

the neurone will depend on its spatial location because of diffusion and inactivation 

of NO by the slice (Hall & Garthwaite 2006). Therefore if the cell is nearer to the 

surface of the slice, it will experience a much greater concentration of NO and 

therefore be more prone to metabolic inhibition.

The results presented here suggest a functional NO-cGMP-HCN channel pathway 

in the DCN and most probably in the MTNB. Further study of the pathway by 

voltage-clamp will be necessary to confirm this function. This is described in the 

following chapter.
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Chapter 6 - Optimising patch pipette solutions for 

studying the NO-cGMP-HCN channel pathway
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6.1 INTRODUCTION

In regard to the NO-cGMP-HCN channel pathway, the inconsistently negative 

results recorded in voltage-clamp mode (chapter 4) in tandem with the consistently 

positive regulation of the voltage sag using sharp electrode current-clamp (chapter 

5) suggest a methodological problem intrinsic to the whole-cell technique. This 

‘whole-cell’ discrepancy is usually explained by the invasiveness of the technique 

as it causes ‘wash out’ of the intracellular milieu; after formation of a tight high 

resistance seal, the rupture of the membrane encircled by the patch pipette 

exposes the cellular contents to the pipette whole-cell solution (WCS); the WCS is 

far larger in terms of volume and results in rapid equilibration by diffusion 

(Sakmann & Neher 1984). On the other hand, sharp electrodes have a much 

smaller diameter usually about 0.1 - 0.01 pm compared to 1 - 2 pm for patch 

pipettes. Therefore, not only do sharp electrodes cause less physical damage to 

the cell, but they also decrease the extent of diffusion of contents of the pipette into 

the cell. Therefore it is quite conceivable that in the whole-cell configuration, 

dialysis of the normal sub-cellular molecular gradients could occur.

This scenario is particularly true for HCN channels. Since the discovery and 

characterisation of lh, the initial rundown of the current caused by a hyperpolarising 

shift in the steady-state activation curve has been well documented (Ludwig et al. 

1998; Wainger et al. 2001; Wang et al. 2001; Zagotta et al. 2003). In these whole

cell and inside-out patch studies, the investigation of channel properties and its 

modulation were performed after a 10 min period to allow stabilisation of the 

response to voltage steps. I too found an intial shift in the voltage-dependence of lh 

in MNTB and DCN neurones (chapter 4) This particular ‘in vitro’ phenomenon has 

recently been ascribed, in part, to the loss of the regulatory factor, PI(4,5)P2, from 

the phospholipid membrane in the vicinity of the HCN channel (Pian et al. 2006; 

Zolles et al. 2006). Therefore it is apparent that the specific contents of the whole

cell solution are particularly important in affecting normal cellular function and 

therefore the results recorded and interpretations formed.

In the case of the NO-cGMP signalling pathway, the production of cGMP 

from GTP by N O gcR is dependent upon and regulated by a number of inter-related 

factors, namely Ca2+, Mg2+ ATP and GTP. At physiological concentrations of Mg2+
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(-300 pM; Traut 1994), Ca2+ binds to a high affinity site on the enzyme, inhibiting 

its activity (Kazerounian et al. 2002). The extent of inhibition is concentration- 

dependent being about 10 % at 100 nM and 90 % at 1 pM. These Ca2+ 

concentrations straddle much of the physiologically relevant range (Clapham 1995) 

meaning that this inhibitory site is perfectly tuned to regulate NOgcR in response to 

(sub-)cellular calcium fluctuations. ATP also acts as an inhibitor, decreasing 

NOgcR activity by 50 % at 1 mM in the presence of 100 pM GTP (B. Roy, Personal 

Communication), both of which are thought to be the physiological concentrations 

(Horie & Irisawa 1989; Gribble et al. 2000); maximal inhibition occurred at 10 mM. 

The mode of action for ATP is thought to be through binding to an allosteric site, 

perhaps the pseudosymmetric site (Chang et al. 2005).

Clearly, the precise components, particularly the concentrations of these 

four species, making up the whole-cell solution will therefore affect the ability of the 

NOgcR to respond to a NO signal and the subsequent signalling to the HCN 

channels.

6.2 AIM

This chapter investigated the WCS using a standard biochemical assay for N O gcR 

activity and cGMP production as measured by radioimmunoassay. The WCS was 

optimised and modified to yield good cyclase activity and then used in 

electrophysiology to study the modulation of HCN channels by NO.

HYPOTHESIS: The whole-cell solution affects the NO-cGMP-HCN channel 

signalling pathway.
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6.3 METHODS 

Enzyme Activity Assay

From other work within the laboratory, a buffer that yields excellent activity from 

isolated, purified N O gcR was chosen as a benchmark of good activity for 

optimisation of the whole-cell solution. This normal assay buffer (NAB) had the 

following composition: 50 mM Tris/HCI, 3 mM MgCI2 (which is in excess of 

nucleoside triphosphates), 0.1 mM EGTA, 1 mM GTP, and 0.5 mg/ml bovine 

serum albumin (BSA), prewarmed to 37 °C and at pH 7.4.

50 ng/ml of purified NOqcR in 100 pi NAB were exposed to 20 pM DEA/NO 

for 2 mins. 50 pi of the reaction mixture was inactivated by immersion in 200 pi of 

inactivation buffer, preheated to 90 °C. The composition of inactivation buffer was 

50 mM Tris, 4 mM EDTA at pH 7.4. The inactivated sample was mixed and frozen 

at -20 °C until use. The levels of cGMP per sample were measured by 

radioimmunoassay, using an antibody generated in house by Dr Giti Garthwaite, 

and expressed relative to the amount of protein. In every case, three independent 

trials were carried out for each experiment and the resulting data expressed as 

mean ± sem.

Bound and Determined

During the optimisation of WCS, the free concentrations of Mg2+ were calculated 

using the computer program, Bound and Determined (Brooks & Storey 1992). This 

tool facilitated the preparation of solutions containing known concentrations of 

Mg2+-ligand (ATP, GTP and EGTA) complexes.

Electrophysiology

Following the outcome of the biochemical investigation, the optimised WCS was 

used to investigate the NO-cGMP-HCN channel pathway in DCN and MNTB 

neurones under whole-cell voltage-clamp as described in chapter four. Briefly, the 

effects of the NO donors, DEA/NO and PAPA/NO were assessed by constructing 

steady-state activation curves to tail currents in response to voltage steps.
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Gramicidin- and amphotericin-based perforated-patch recordings were also 

made from visually-identified large DCN neurones. The pipette solution contained 

(in mM): 150 KMeS04, 10 KCI, 10 HEPES, 4 NaCI, 0.1 EGTA, 1 MgCI2. The pH 

was adjusted to 7.39 - 7.4 and the osmolarity to 280-290 mOsm / I. Open pipette 

resistance was 2-4 MQ. A gramicidin stock solution was made in DMSO at 1 g / ml. 

Gramicidin or amphotericin was added to the pipette solution to a final 

concentration of 120-200 or 90 pg / ml respectively just before use and clarified 

through a 0.45 or a 0.8 pm filter. Stable access resistances were obtained 20-90 

min after forming a gigaohm seal. If there was an abrupt increase in the amplitude 

of recorded current, signalling that the membrane had ruptured, the experiment 

was terminated.

Acutely dissociated cells were prepared from cerebellar slices containing the 

DCN using a technique used to record lh previously (Simeone et al. 2005). PIPES 

buffer, at pH 7.4 and 290-300 mOsm / 1, contained (in mM): 86 PIPES, 30 NaCI, 3 

KCI, 2 MgCI2, 10 glucose. A small volume of this solution in a Petri dish was 

heated to 37 °C in a water bath. Protease XXIII was added at 0.33 mg / ml of 

PIPES and equilibrated for 5 min. Cerebellar slices were placed into this solution 

for 10 min to allow sufficient chemical breakdown of the extracellular matrix. This 

reaction was stopped by transferring the slices into an oxygenated PIPES solution 

containing 1 mg / ml Protease XXIII inhibitor and 1 mg / ml BSA. Using a dissecting 

microscope, the DCN was ‘cored’ out using an adapted hypodermic needle and 

placed into an eppendorf tube with 0.5 ml of the same solution. The DCN tissue 

was triturated using three glass pipettes of decreasing diameters, each for -  1 min. 

The dissociated tissue was dropped onto glass coverslips coated in poly-D-lysine 

and at least 15 min was allowed for the neurones to adhere to coverslip. The 

oxygenated external solution contained (in mM): 80 NaCI, 2.5 KCI, 1.3 MgCI2, 0.5 

CaCI2, 0.1 CdCI2, 11 glucose, 5 HEPES. The WCS contained (in mM): 150 

KMeS04, 10 KCI, 10 HEPES, 4 NaCI, 4 MgATP, adjusted to pH 7.4 and had an 

osmolarity of -290 mOsm / I. The largest cells, that were reasonably isolated and 

agranular, with several processes were selected for electrophysiological 

investigation. All recordings were performed at room temperature to prolong the 

lifetime of the cells (B. Lancaster, personal communication). The neurones were
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photographed using a Hamamatsu C4742-95 camera and the Kinetic Imaging 

Lucida 2000 system.

Modelling the NO profile across the slice

Diffusion of NO into the slice from the aCSF approximates to the one-dimensional 

diffusion from one infinite planar source of NO. This is because the bulk of NO 

entering the slice will be on the top cut surface, as the under surface of the slice is 

in contact with the bottom of the bath and the sides are relatively small compared 

to the entire surface area of the coronally-cut surface. Intuitively, the concentration 

of NO at a certain point in the slice (x) will be determined by the difference in 

diffusion into the slice, as described by Fick’s law, and inactivation by the slice. If 

inactivation is assumed to be first order with respect to NO and to be Michaelis- 

Menten in nature:

g[M?] ^ [ N O ]  [NO]
dt dx2 K m + [NO]

D is the diffusion constant for NO (3.3 x 10'5 cm2 / s); Vmax and Km are 

approximately 1.5 pM I s  and 10 nM respectively as measured recently in rat 

cerebellar slices (Hall & Garthwaite 2006). Numerically solving this equation to 

steady state, with NO at the edge of the slice fixed as the bath NO concentration, 

generates predicted profiles of NO concentration across the slice. All partial 

differential equations were solved using the pdepe function in MATLAB 6.5 (The 

Mathworks Inc., MA, USA); this gave a read out of concentration of NO as a 

function of the distance into the brain slice.
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6.4 RESULTS

In the first instance, each of the individual constituents of the previously used WCS 

solution was added separately to NAB in order to see if one particular component 

inhibited N O gcR • The widespread presence of NaCI and KCI in biology suggested 

that perhaps the MeS04' anion or the HEPES buffer species may have been 

interfering with the NO-induced cGMP production. It is known that HEPES buffer, 

unlike Tris buffer, has been implicated in a process that consumes NO by reaction 

with the superoxide ion, 0 2" (Keynes et al. 2003). However, the individual WCS 

components had no significant detrimental effect on the cGMP produced from a 2 

min exposure to 20 pM DEA/NO (figure 6.1 A).

To try to replicate the conditions to which the cellular cyclase enzyme would 

be exposed during the whole-cell recordings, the purified N O gcR was added 

directly to the WCS. The original WCS contained 4 mM ATP and being mindful of 

the concentration-dependent inhibitory actions of ATP previously described, I 

examined the effect on cGMP production of the original 4 mM concentration, the 

highly unphysiological, zero ATP situation as well as an apparent physiological 

concentration of 1 mM (Gribble et al. 2000) that should only inhibit N O gcR by 

approximately 50 % (Ruiz-Stewart et al. 2004). None of these three conditions 

yielded results comparable to the NAB (figure 6.1B). In fact, cGMP production was 

almost reduced to zero.

To optimise the WCS, direct comparisons with NAB were made in order to 

identify the key deficiencies in the WCS. The NAB, like many other buffers 

employed in biochemistry, is used as it provides conditions for excellent cyclase 

activity, rather than reflecting true intracellular conditions. I therefore tested various 

identified components at concentrations intermediate to the optimal (NAB) values 

and to the published and reasonably well accepted physiological levels (table 6.1).
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Figure 6.1 The effect of the whole-cell solution on cGMP production by purified NOGcR 
during 2 min exposure to 20 pM DEA/NO at 37 °C

A, The individual constituents of the W CS, namely (in mM) 150 KMeS04, 10 KCI, 10 HEPES 
and 4 NaCI, added separately to NAB, had no significant effect on the production of cGMP 
by the purified enzyme (n=3; mean ± sem in red; student’s unpaired f-test).

B, NOgcR was added either to NAB or the entire W CS with 0 ,1  or 4 mM ATP. Generation 
of cGMP by the cyclase was significantly inhibited to virtually nothing irrespective of ATP 
concentration (n=3; mean ± sem in red; student’s unpaired f-test, p<0001 (*)).
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(all in mM, unless otherwise 

stated)
NAB WCS

BSA 0.5 mg / ml

Tris/HCI 50

Mg Cl 2 3

EGTA 0.1

Na+ - GTP 1 0.4

Mg2" - ATP 4

HEPES 10

K M eS04 150

KCI 10

NaCI 4

Table 6.1 A comparison of the composition of experimental solutions

NAB contains BSA, which presumably acts to coat all the non-specific 

protein binding sites on the reaction vessel, thereby maximising the amount of 

purified cyclase available to engage NO. In the absence of BSA, the activity of the 

cyclase was significantly reduced to about approximately half of the control value 

(figure 6.2A) Therefore 0.5 mg / ml BSA was added to all modified WCS henceforth.

A major difference between the two solutions is the complete absence of 

free Mg2+ ions in the WCS. GTP requires Mg2+ to be bound, forming MgGTP, in 

order for it to act efficiently as a substrate for the N O gcR (Kimura et al. 1976); the 

stoichiometry of the binding is thought to be 1:1, meaning there is approximately 2 

mM excess of Mg2+ ions in NAB. This excess is much greater than the apparent 

physiological level of free Mg2+ of 0.25 - 1 mM (Grubbs 2002). Therefore as a 

compromise 1 mM MgCI2 was added to the WCS, giving an excess of at least 0.6 

mM after equilibration with 0.4 mM GTP. This excess is similar to the apparent free 

Mg2+ in cultured dorsal root ganglion neurones (Gotoh et al. 1999). The ATP used 

is added as a Mg-salt, unlike GTP which is a Na-salt, and therefore should not 

affect the free Mg2+ (Bound and Determined). In the presence of 0 or 1 mM ATP, 

the addition of MgCI2 resulted in little or no production of cGMP (figure 6.2A).
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Figure 6.2 Further optimisation of W CS for cGMP production by purified NOgcR

A, The importance of BSA (0.5 mg / ml) being present in the NAB was addressed on the left 
of the panel. It was therefore added to all reaction vessels henceforth. Adding 0.6 mM  
excess MgCI2 ± 1000 units / ml SOD to W CS did not significantly rescue the production of 
cGMP by the purified enzyme compared to control NAB levels. This result was the same at 0 
and 1 mM ATP (n=3; mean ± sem in red; student’s unpaired t-test, p<0.003 (t), p<0.0001 

r))-B, The introduction of 0.1 mM EGTA, to buffer Ca + , restored the ability of NOgcR to produce 
cGMP in W CS compared to NAB. In addition to the Mg2+ and GTP concentrations in (A), 
similar values to NAB levels were tried, as indicated by the legend (n=3; mean ± sem in red; 
student’s unpaired f-test, p<0.02 (f) , p<0.01 (*)). 0.5 mg / ml BSA was added to every tube.
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Although HEPES individually had no effect on the cGMP accumulation, 

there remained the remote possibility of an interaction of HEPES with other 

components of WCS, perhaps trace contaminants, leading to the formation of 0 2"  

and the consumption of NO (Keynes et al. 2003). To address this issue, 

superoxide dismutase (SOD) was added at a final concentration of 1000 U / ml to 

remove 0 2 ‘ from the solution. Again, this supplement to WCS was insufficient to 

rescue N O gcR activity as indicated by the lack of production of cGMP (figure 6.2A). 

SOD was therefore no longer added to the WCS.

NAB contains 0.1 mM EGTA affording the capacity to buffer Ca2+, which is 

an important regulator of NOgcR activity not so far investigated. Trace Ca2+- 

impurities in standard reagents (typically < 0.01 %) such as the K+ salts used in the 

WCS could give a final Ca2+ concentration in the low micromolar range. At this 

concentration, the fractional activity of the enzyme would be reduced to virtually 

zero (B. Roy, Personal Communication). Therefore 0.1 mM EGTA was included in 

the modified WCS. In a simultaneous attempt to generate some activity, another 

set of conditions in which the concentrations of GTP and excess Mg2+ were 

matched to NAB values was investigated. As can be seen from figure 6.2B, Ca2+- 

buffering rescued the activity of the purified cyclase. In the case of 0 mM ATP, the 

cGMP accumulation was completely restored to control levels using both sets of 

GTP and Mg2+ concentrations. At 1 mM ATP, the level of cGMP is approximately 

half that produced in the absence of this nucleotide. There was no significant 

difference in NOgcR activity between the 0.4 mM GTP, 0.6 mM excess Mg2+- and 1 

mM GTP, 3 mM excess Mg2+-containing WCS.

It now appeared that the problem of chemical dialysis or inhibition of the NO-cGMP 

pathway by the original WCS had been solved. Therefore the next logical step was 

to use the new, modified WCS for whole-cell voltage-clamp electrophysiology in 

order to study the NO-cGMP-HCN channel pathway. For this, the composition of 

the WCS was (in mM): 150 KMeS04, 10 KCI, 10 HEPES, 4 NaCI, 1 MgCI2, 0.1 

EGTA, 1 MgATP, 0.4 NaGTP at pH 7.4 and 285 ± 5 mOsm / I. Despite 

reproducible success in the isolated biochemical assay, the new WCS failed to
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Figure 6.3 Lack of effect of DEA/NO application on lh in DCN principal neurones using the 
optimised W CS (n=2)

A, The steady-state activation curves constructed from tail currents following a series of 
voltage steps. It can be seen that there is no obvious shift in the curve in response to 10 
or 50 pM DEA/NO.
B, The timecourse for wash in of 50 pM DEA/NO. Each point represents the lh activated 
following a 500 ms-long, small hyperpolarising voltage step (see C) at 10 s intervals. 
There was little-to-no change in the current amplitude, mirroring the lack of change in a.
C, Sample recordings prior to and during DEA/NO application at 50 and 280 s (see B) 
respectively.
This neurone was clamped at -45 mV in the presence of 1 mM 4-AP and 500 nM TTX .
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produce depolarising shifts in the HCN channel activation curves or changes in lh 

amplitude following wash in of the DEA/NO in DCN projection neurones (n=2; 

figures 6.3). PAPA/NO was used instead of DEA/NO because this donor has 

slightly slower release kinetics (chapter 2); this increases the temporal window for 

maximal NO release. Similarly, PAPA/NO failed to cause an obvious change in 

HCN channel function in DCN (n=2; data not shown) and MNTB (n=2; figure 6.4) 

principal neurones. Therefore using the whole-cell configuration, no obvious 

modulation of HCN channel function by the NO-cGMP pathway was observed.

From the positive results using sharp electrodes in the previous chapter, the 

next natural step was to use a voltage-clamp technique that doesn’t disturb the 

intracellular environment. The perforated-patch recording configuration allows the 

measurement of whole-cell currents much less invasively than the standard patch- 

clamp or microelectrode approaches. This time, the application of PAPA/NO 

caused an increase in the amplitude of lh activated by small hyperpolarising step 

(figure 6.5A,B). This was because of a depolarising shift in the voltage-dependence 

of HCN channel activation (figure 6.5C). The kinetics of activation were also 

increased (figure 6.5D). These effects of NO were reversible. In all cells exposed to 

PAPA/NO (n=4 of 4), there was a reversible regulation of HCN channel function. 

This effect was clearly concentration-dependent; 2 cells exposed to 100 pM 

PAPA/NO showed a reversible 12.3 and 13.2 (figure 6.5F) mV depolarising shift in 

V ii2, the 3rd cell exposed to 50 pM PAPA/NO displayed a 5.3 mV (figure 6.5E) 

change and the 4th cell demonstrated a 4 mV shift in response to 10 pM (figure 

6.5C).

The most desirable thing would be to elucidate these concentration- 

dependent effects on V1/2 curves, but a major deficit in the current approach was 

the inability to know the concentration of NO to which the cells are exposed. As 

described in chapter 1, there are a number of processes, both characterised and 

uncharacterised, that lead to the inactivation of the NO signal. Recent work using 

indirect measurements of NO levels in the brain led to the construction of a model 

for the inactivation of NO by cerebellar slices (Hall & Garthwaite 2006). Adapting 

this model, it was clear that concentrations drop steeply from the outside to the
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Figure 6.4 The lack of effect of PAPA/NO application on lh in MNTB neurones at 30 - 
32 °C using the optimised W CS (n=2)

A, The steady-state activation curves constructed from tail currents following a series of 
voltage steps. It can be seen that there is no obvious shift in the curve in response to 100 
pM PAPA/NO.
B, The currents generated in response to the voltage steps (see inset) used to generate 
tail currents to construct the activation curve. There is a clear initial run-down of the 
current.

1 mM 4-AP and 500 nM TTX were present throughout.
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Figure 6.5 The reversible modulation of 
lh by PAPA/NO application in large DCN 
neurones using the perforated-patch 
voltage clamp technique

A, Timecourse of changes in the 
amplitude of lh upon bath application of 
10 pM PAPA/NO. This effect reversed 
on wash out.
B, Examples of traces from A before, 
during and after NO exposure.
C, Steady-state activation curves 
showing a reversible depolarising shift in 
the voltage-dependence of HCN channel 
activation in the presence of NO.
D, 10 pM PAPA/NO caused a reversible 
decrease in the activation kinetics of lh 
as determined by double exponential fits 
to the charging curve.
E, The effect of 50 pM PAPA/NO on the 
steady-state activation curves for lh in a 
different cell
F, The effect of 100 pM PAPA/NO in a 
further cell.

1 mM 4-AP and 500 nM TTX were 
present throughout.
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inside of the slices (figure 6.6) The marked nature of these gradients is noteworthy; 

for example, in the case of 10 pM PAPA/NO, the concentration of NO is near- 

maximal at 25 pm and almost reduced to nil at 50 pm from the top cut-surface. 

Therefore the exact positioning of the neurones is clearly problematic for assessing 

quantitatively the engagement of the channels by cGMP upon exogenous NO 

application.

 1 nM PAPA/NO
 10

-------- 100

0.1 -

0.01 -

0 100 200 300

1 nM DEA /N O

 50
 100

Oz 0.1 -

0.01 -

0 100 200 300

Distance into the slice (nm)

Figure 6.6 Inactivation of NO is predicted to limit penetration of NO released from 
donors into the brain slices

Steady-state NO profiles (note log scale) across a 350 pm slice modelled following 
exposure to constant bath NO, which was taken as the approximate peak value 
released from the concentration of DEA/NO and PAPA/NO used (see Chapter 2.2).

In an attempt to circumvent this problem, experiments were carried out on 

acutely isolated DCN neurones; the removal of the parenchyma would allow the 

neurones to be exposed directly to known, clamped NO concentrations (Griffiths et 

al. 2003). In the first instance, the whole-cell voltage-clamp was used to assess the 

presence of lh in the dissociated cells, which have lost a lot of their dendritic tree. 

Unfortunately, in all cases (n=6) the neurones did not display the characteristic 

time-dependent inward current following the onset of a hyperpolarising step. The 

cells did however display prominent Na+ currents (figure 6.7).
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B
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-50 mV
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3nA
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-60 mV 
-90 mV—

Figure 6.7 The lack of an obvious, time-dependent, hyperpolarisation-activated current in an 
acutely dissociated DCN neurone

A, A picture of the isolated cells; the white arrow indicates the large neurone with a large 
process from which the recordings were made.
B, There was no appreciable inward current during a series of 2 s hyperpolarising steps from 
a holding potential of -50 mV.
C, In response to a 8 ms depolarising step from a holding potential of -90 mV, there was a 
sizeable inward current and a latter outward component.
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6.5 DISCUSSION
This investigation of the effect of WCS on NOgcR activity, as measured by cGMP 

accumulation, confirmed my hypothesis, and has clarified several issues and 

identified some problems. Firstly, there was effectively negligible cGMP production 

using the original WCS at all tested concentrations of ATP. This could contribute to 

the negative results obtained in chapter 4 using the whole-cell technique; the 

chemical composition of the original WCS negated the expected stimulatory effect 

of NO. Secondly, it highlighted that certain conditions are absolutely necessary to 

ensure the capability of the cyclase to respond to an NO signal.

The body of literature on NO-cGMP signalling reports different experimental 

techniques and solutions. Extracellular recording techniques are particularly 

beneficial in that they are completely non-invasive, thereby maintaining the cellular 

contents, as well as permitting one to follow changes over a long timescale. This 

has been used successfully, for example, to look at the role of NO in hippocampal 

LTP (Musleh et al. 1993), the part played in the spontaneous activity of the medial 

vestibular nuclei (Podda et al. 2004) and the effect of NO on HCN channels in the 

optic nerve (Garthwaite et al. 2006). Despite the aforementioned benefits, further 

and more detailed information on individual neurones requires the use of the highly 

invasive whole-cell technique.

Previous published work studying the NO-cGMP signalling pathway using 

the whole-cell technique had outcomes that in the light of my results now seem 

quite difficult to interpret given the chemical dialysis of the intricate conditions 

required for NOgcR activation and cGMP production. For example, the role of NO 

in the sensitisation of the TTX-resistant Na+ current (TTX-R lNa) was recorded in 

the presence of 3 mM ATP and 0 mM GTP with sufficient EGTA and Mg2+. It is 

claimed that this process requires a low basal level of NO that is independent of 

NOqcR activation and cGMP as indicated by use of the specific cyclase blocker, 

ODQ (Aley et al. 1998). This interpretation is difficult to accept in that the fractional 

activity of the cyclase would have been reduced by ~ 25 % using 3 mM ATP; there 

was also no GTP substrate available for cyclisation. More recently, a novel NO 

indicator, formed by concatenating part of the haem domain of the cyclase and 

GFP, was introduced virally into murine cerebellar Purkinje cells in vivo to measure
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changes in NO during parallel fibre stimulation. The LTP produced required NO, 

but was cGMP independent (Namiki et al. 2005). Despite the WCS containing the 

necessary calcium buffering and sufficient GTP, there was no Mg2+ to bind to the 

GTP and 4 mM ATP will greatly inhibit the cyclase meaning that the possible 

cGMP-dependent role had been occluded.

Despite my best efforts to optimise the WCS in order to create prime 

conditions within physiological limits for NO-stimulated cGMP production, I was still 

unable to measure an appreciable effect on HCN channel function. It seems 

unlikely that this is due to the chemical dialysis of the NO-cGMP pathway. Previous 

work using WCS containing appropriate ATP, GTP and Mg2+ concentrations with 

Ca2+-buffering have shown positive effects of exogenous NO involving other end 

targets such as cGK (Arancio et al. 1996; Arancio et al. 2001). Therefore it seems 

that the whole-cell technique disrupts the NO-cGMP-HCN channel pathway in 

some way. This problem has been hinted at in the study of this pathway in the 

trigeminal motor pool (Abudara et al. 2002). However, the lh of the neurones of the 

substantia gelatinosa show positive regulation by an NO donor, and mimicked by 

Br-cGMP, under the whole-cell voltage clamp (Kim et al. 2005). The WCS 

contained (in mM): 2 MgATP, 0.1 Na2GTP, 1 MgCI2 and 0.5 EGTA. This reinforces 

and confirms my biochemical results of the conditions required for good NOgcR 

activation; an intermediate level of ATP to maintain the cell energetically, while not 

extensively inhibiting the cyclase; a representative physiological level of GTP with 

an excess of Mg2+; sufficient calcium buffering. Similarly, NO was able to positively 

shift the activation curve of HCN channels in SAN cells using a WCS of 

comparable composition (Barbuti et al. 2004). In these two examples there is not a 

disruption of the entire NO-cGMP-HCN pathway unlike that seen here in the DCN.

In some neurones such as those in the MTNB, DCN and perhaps the 

trigeminal motor pool, the WCS may affect how the NO-cGMP pathway interacts 

with HCN channels. The ability of HCN channels to respond to cGMP is not 

affected by the whole-cell technique as indicated by results using WCS loaded with 

the nucleotide (chapter 4). Therefore perhaps it is a physical disruption, rather than 

a chemical wash out. This may explain the out-of-place positive effect, in only two 

cases, of NO application on lh, if this disruption had not fully occurred. If the
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disruption is indeed physical, it suggests perturbations in normal localisation of the 

proteins involved. HCN4 subunits have been shown to co-localise with caveolin-3 

in SAN cells (Barbuti et al. 2004). Caveolin is an integral membrane protein found 

throughout the cerebral cortex and cerebellum (Cameron et al. 1997) that gives 

rise to small invaginations of plasma membrane known as caveolae. These are 

flask-shaped microdomains particularly rich in, and functionally heavily dependent 

upon cholesterol (Allen et al. 2007). In the cardiovascular system, eNOS is 

localised in caveolae (Garcia-Cardena et al. 1996), which compartmentalise 

N O gcR and PKG (Linder et al. 2005). Indeed, activation of N O gcR has been shown 

to activate its translocation to the NOS-containing caveolar fraction (Zabel et al. 

2002). Therefore it is possible that these structures tie the NO-cGMP-HCN 

pathway together. Perhaps the establishment of the whole-cell mode results in the 

loss of cholesterol as is the case for another membrane lipid, PIP2, which also 

regulates HCN channels (Pian et al. 2006). This loss of caveolar function may 

disrupt the connection of the NO-cGMP and HCN channels or perhaps prevent the 

translocation of N O gcR to the area of membrane where the HCN channels are 

present.

The implication of this biochemical investigation is that greater care will have 

to be taken when studying the NO-cGMP signalling pathway using whole-cell 

intracellular recordings, particularly for the NO-cGMP-HCN channel pathway. For 

example, perforated-patch recordings have been used successfully to study NO- 

cGMP-HCN function in SAN/atrial preparations (Herring et al. 2001). It will be 

necessary to always perform a non-invasive voltage-clamp technique to eliminate 

the possibility of losing activity or connectivity of certain signalling cascades and 

pathways.

This use of the perforated-patch technique finally suggests that HCN 

channels in DCN principal neurones are indeed regulated by exogenous NO, 

confirming the interpretation of the sharp electrode recordings in chapter five. From 

the whole-cell results in chapter four, this is presumably through cGMP. The 

inactivation of NO by the brain tissue, as well as the inability to discern the precise 

position of the cell within the slice, precludes the collection of useful, quantitative 

data, such as the EC5ofor positive shifts in Vi/2. In an attempt to surmount this
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obstacle, recordings were made from acutely dissociated neurones. Unfortunately I 

was unable to obtain a current recording with an obvious time-dependent, 

hyperpolarisation-activated component. This is in contrast to HCN single channel 

recordings in isolated CA1 pyramidal cells (Simeone et al. 2005) and the Cs+- 

sensitive current in dissociated cerebellar Purkinje cells (Swensen & Bean 2003). 

One explanation for this disparity may be that in these studies, there were sufficient 

channels in the remaining soma and remnants of the apical dendritic tree and 

basal processes. However, I tried to pick large cells with a relatively long dendrite 

or process, yet the neurones displayed negligible lh, suggesting HCN channels 

were mainly located in the processes sloughed off during the isolation and 

trituration. The cells appeared classically ‘axonal’ displaying a prominent Na+ 

current and as such are quite often used for the study of Na+ channel function (Kuo 

& Lu 1997; Gu et al. 2005b). Therefore another method would be required to 

‘isolate’ the principal neurones in a manner amenable to using known NO 

concentrations. One such means is the ‘rollerdrum’ organotypic slice culture that 

causes the neurones to spread out into a monolayer, while relatively maintaining 

the original cellular architecture depending on the age of animal used (Gahwiler 

1981).
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7.1 THE ENIGMATIC NATURE OF NO

Being such an unconventional transmitter, developing a conceptual framework for 

synaptic NO signalling has been problematic, not least because NO is very difficult 

to measure at physiological concentrations and in discrete synaptic locations. By 

analogy with the numbers of NMDA receptors, there may only be 10-100 nNOS 

molecules per synapse. Assuming that native nNOS has a similar activity to that 

exhibited by the purified enzyme and that, once made, it is dispersed by diffusion, 

active NO concentrations (in the 0.1-1 nM range) would only be found very locally, 

within a submicrometer radius (Garthwaite 2005; Hall & Garthwaite 2006). Hence, 

NO from nNOS may only be able to function in subsynaptic dimensions, implying 

that it signals between closely juxtaposed elements, such as the pre- and 

postsynaptic specializations. Recently, a tonic source of NO, via cGMP, 

persistently engages HCN channels (at least, in vitro) in optic nerve (Garthwaite et 

al. 2006). The aim of this study was to attempt to identify the connection between 

NO signalling and HCN channel function in other brain regions.

7.2 THE NO-cGMP-HCN CHANNEL PATHWAY IN HIPPOCAMPAL 

AXONS

The background to this line of enquiry identifies tonic (endothelial) and phasic 

(neuronal) sources of NO; these complementary supplies must synergise in order 

to generate LTP in the CA1 area (Hopper & Garthwaite 2006). Synaptic plasticity 

typically depends on activation of afferent axons at different frequencies, and on 

cyclic nucleotides. Using hippocampal slices, I examined the hypothesis that these 

properties may be linked at the level of axonal HCN channels. Extracellular field 

recordings of the fibre volley in the Schaffer collaterals, indicated HCN channels to 

be important in conduction at 5 Hz, but much less so at 30-100 Hz. Tests using NO 

as well as cGMP analogues indicated that, at 5 Hz, there was little or no 

modulation of axon conduction by cGMP. Whole-cell recordings from the somata of 

CA3 neurones were used to investigate HCN channels more directly. When the 

axons were stimulated at 5 Hz under control conditions, there was a 

hyperpolarisation of the membrane, increased latency to peak of the action 

potential, and an increase in the amplitude of the after-depolarization, but no
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change in the amplitude of the hyperpolarisation-activated current at physiological 

membrane potentials. After block of HCN channels, there was an increase in the 

amplitude of the spike after-depolarization during baseline (0.2 Hz) stimulation. At 

5 Hz, the after-depolarization amplitude increased further and there was an 

increase in latency for action potential firing and in the holding current. Confirming 

the extracellular recordings, exogenous NO had no effect on the hyperpolarisation- 

activated current. In conclusion, although HCN channels are important in 

maintaining the fidelity of axon conduction during relatively low frequencies, they 

are unlikely to be cyclic nucleotide-sensitive isoforms, suggesting that the actions 

of cAMP or cGMP in synaptic plasticity are exerted elsewhere.

It is disappointing that the function of vascular endothelial-derived, tonic NO, 

seen in the optic nerve (Garthwaite et al. 2006), was not present in the Schaffer 

collateral/commissural axons. Perhaps the investigation of the distribution of HCN 

channel subunits, with sufficiently high resolution immunolabelling, in other nerve 

fibres to identify HCN2- or HCN4-containing channels could be used to further 

study this particularly revolutionary mechanism of blood vessels signalling to CNS 

axons through NO.

7.3 THE NO-cGMP-HCN CHANNEL PATHWAY IN THE DEEP 

CEREBELLAR NUCLEI

Subsequent to the work within the hippocampus, the aim was to identify CNS 

neurones in which the hypothesis that endogenous NO regulates HCN channels 

can be directly tested. Dense immunostaining for N O gcR was found in the principal 

neurones of the DCN and throughout the neuropil. Whole-cell and perforated-patch 

voltage-clamp recordings showed that perfusion of Br-cGMP or NO produced a 

positive shift in the activation curve by -10 mV in both cases, consistent with 

potential regulation by the endogenous NO-cGMP pathway. Current-clamped 

measurements indicated a reproducible and reversible effect of NO on the 

membrane sag, an index of HCN channel activation; there was also an apparent 

effect on the rebound depolarisation, which would be particularly pertinent during 

the cessation of GABAergic input from Purkinje cells in the cortex.
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This identification of a set of CNS neurones regulated by bath-applied NO 

provides a system in which HCN channel function could act as a readout for NO 

signalling. The identified susceptibility of the signalling pathway to dialysis by the 

whole-cell solution using patch pipettes necessitates the use of the perforated 

patch technique, which would likely provide a better (more stable) estimate of the 

efficacy of NO for causing a depolarising shift in the voltage dependence of lh. 

Transduction through NO gcR could be confirmed using ODQ (Garthwaite et al. 

1995). The use of the roller-drum organotypic method (Gahwiler 1981) will 

minimise the problem of NO consumption generating steep gradients across the 

depth of the slice.

By analogy with optic nerve recordings, tonic NO from the capillary network 

may modulate the channels, which could be examined in the organotypic slice 

cultures, although it would probably be simpler in acutely-prepared slices. Bath 

application of L-NNA to block NOS could identify if there is a tonic NO source 

acting on the neurones. Immunocytochemical studies identified a network of 

nNOS-positive neurones and ramifying fibres in the DCN, as in the adult, 

representing a further potential physiological source of NO. To study this in the first 

instance, one could electrically activate these cells using a stimulation electrode as 

used before in the cerebellum (Anchisi et al. 2001) after pharmacologically blocking 

glutamatergic and GABAergic transmission. Ultimately, in vivo recordings from the 

DCN would be required to determine the influence of the nNOS-derived NO on the 

large, projection DCN neurones in the intact architecture containing the 

physiologically-relevant cellular connections and networks.

The lack of information on endogenous NO signals is the major deficit in the 

current understanding of NO signalling within the nervous system and beyond. The 

prior determination of the concentration-effect relationship for NO and the V1/2 of 

HCN channels in the DCN neurones will provide a means to quantify the NO 

produced from both constitutively-expressed forms of NOS. In turn, this will give a 

great insight into the endogenous NO signals in terms of their amplitude, duration, 

distance or frequency.
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7.4 PHYSIOLOGICAL SIGNIFICANCE OF THE DATA

The molecular targets and site of action of the eNOS-derived tonic source of NO in 

Schaffer Collateral-CA1 LTP are unknown. The work in my thesis goes some way 

to suggest that the presynaptic axon is not a target for regulation by this 

constitutive level of NO, nor by a phasic source such as that from nNOS activation. 

NO may therefore be acting only at the activated synapse. Recently it was 

described that hippocampal GABAergic interneurones express N O gcR (Szabadits 

et al. 2007). The greater electrophysiological implications have not as yet been 

elucidated, but the presence of NO-cGMP signalling in these interneurones is likely 

to have important implications for NO and synaptic plasticity (Makara et al. 2007). 

Furthermore, interneurones are known to transcribe mRNA encoding HCN channel 

subunits (Bender et al. 2001), and therefore the NO-cGMP-HCN channel pathway 

may be of significance in these cells.

My preliminary data indicated that HCN channel function in MNTB principal cells 

was modulated by cGMP. If one assumes that the apparent lack of modulation by 

NO was due to whole-cell dialysis, then there could be an important role played by 

this signalling molecule in the juvenile brainstem: At this age, the glutamate- 

stimulated excitatory current in the MNTB neurones is mainly carried by NMDA 

receptors (Joshi & Wang 2002), and the NMDA receptor-NO-cGMP signalling 

cascade has been well characterised elsewhere (Christopherson et al. 1999). The 

cGMP-mediated positive shift in the activation curve of lh usually results in an 

increased rate of activation and current amplitude, both of which are known to 

decrease the delay to the initiation of an action potential in MNTB neurones (Leao 

et al. 2006a); this could have important implications in the processing of auditory 

information at the downstream lateral superior olivary nucleus.

In the principal neurones of the DCN, the polarity of synaptic plasticity is affected 

by the degree of rebound depolarisation-driven postsynaptic spiking (Aizenman et 

al. 1998). The induction of the rebound depolarisation is dependent on the size and 

duration of hyperpolarising prepulse (Aizenman and Linden 1999), two factors that 

have clear implications for the activation of HCN channels, which are known to
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contribute to the depolarising envelope. My results suggest that NO signalling 

within the DCN modulates HCN channel function shifting the steady-state 

activation curve to more positive voltages; this would be expected to increase the 

total lh, and therefore increase the rebound depolarisation and spiking. The NO- 

cGMP-HCN channel pathway may play an important role in modulating the polarity 

of synaptic plasticity. It has also been shown that in vivo injection of a NOS 

inhibitor into the interpositus nucleus of the DCN delays the formation of learning- 

related neuronal activity in the interpositus as well as the conditioned response of 

rabbit classical eyelid conditioning (Allen & Steinmetz 1996). Therefore the NO- 

cGMP-HCN channel pathway may have an important function in the DCN, 

particular the interposed and dentate nuclei, which are known to be concern motor 

learning, certain reflexes and voluntary movement.
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