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“ There are two possible outcomes: if  the result confirms the 
hypothesis, then you have made a measurement. I f  the result 
is contrary to the hypothesis, then you have made a discov- 
ery

— Enrico Fermi
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Abstract

Model-based cluster analysis is a statistical tool used to investigate group- 
structures in data. Finite mixtures of Gaussian distributions are a popular device 
used to  model elliptical shaped clusters. Estim ation of mixtures of Gaussians is 
usually based on the maximum likelihood method. However, for a wide class 
of finite mixtures, including Gaussians, maximum likelihood estimates are not 
robust. This implies th a t a small proportion of outliers in the data could lead 
to  poor estimates and clustering. One way to deal with this is to add a “noise 
component” , i.e. a mixture component th a t models the outliers. In this thesis 
we explore this approach based on three contributions.

First, Fraley and Raftery (1993) propose a Gaussian mixture model with the 
addition of a uniform noise component with support on the data range. We 
generalize this approach by introducing a model, which is a finite mixture of 
location-scale distributions mixed with a finite number of uniforms supported 
on disjoint subsets of the data  range. We study identifiability and maximum 
likelihood estimation, and provide a com putational procedure based on the EM 
algorithm.

Second, Hennig (2004) proposed a sort of model in which the noise component 
is represented by a fixed improper density, which is a constant on the real line. 
He shows th a t the resulting estimates are robust to extreme outliers. We define 
a maximum likelihood type estim ator for such a model and study its asymptotic 
behaviour. We also provide a method for choosing the improper constant density, 
and a computational procedure based on the EM algorithm.

The th ird  contribution is an extensive simulation study in which we measure 
the performance of the previous two methods and certain other robust m ethod­
ologies proposed in the literature.
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CH APTER 1 

An Introduction to Finite Mixture Models

In this chapter we will give a brief overview of finite mixture mod­
els. After having introduced basic definitions and properties we shall 
give some interpretation of samples arising from finite mixture disri- 
butions. We introduce the identifiability problem and its solution for 
some classes of models. As a final step we will review some of the 
estimation methods and clustering techniques.

§1.1. O verview

Statistical analysis via finite m ixture models is a widely used tool employed in 
many scientific fields. Their obvious application is where there is some known 
group-structure in the population of interest, or when the main goal is to reveal 
such group-structure in the data  as in cluster analysis. Due to their flexibility 
mixture models are also being extensively exploited as a semiparametric device 
to model unknown distributional shapes. Fields where mixture models have been 
successfully applied include economics, astronomy, biology, genetics, medicine, 
marketing, engineering, etc. In many areas of statistics such as cluster and dis­
criminant analysis, pattern recognition and survival analysis, methods related to 
mixture models have been a substantial part of the research conducted.

Finite mixture models are models where the distribution function of the prob­
ability measure underlying the process which generates the data is assumed to 
be a convex combination of distribution functions of some param etric family. By 
this, it is clear th a t such models are helpful when some degree of heterogeneity
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characterizes the data. In model-based cluster analysis each group of observa­
tions is treated  as a mixture component, in econometrics given the population of 
interest different sub-populations are represented as a mixture of several compo­
nents. Since any continuous distribution can be approximated arbitrarily well by 
a finite mixture of continuous distributions, mixture models also provide a valid 
semiparametric tool to model unknown distributions. For example Priebe (1994) 
showed th a t with a sample size of 1 0 , 0 0 0  observations, a log-normal distribution 
can be well approximated by a convex combination of about 30 normal distribu­
tions while a kernel density estim ator would consist of a mixture of 1 0 , 0 0 0  normal 
distributions.

The very first analysis involving the use of a finite mixture was due to Pearson 
(1894, 1895). He had to analyse biological data which consisted of the ratio of 
forehead to  body length of 1000 crabs sampled from the Bay of Naples. The data  
presented a positive skewness with th in  tails, so th a t fitting a normal distribution 
was unsatisfactory. Pearson (1894) had the intuition to fit the distribution of the 
data by using a convex combination of two Gaussian densities with unknown 
unequal variances. Since the maximum likelihood estimate for such a model does 
not have a tractable analytical form, Pearson computed the estimated param eters 
by the method of moments. After Pearson’s introduction of mixture models the 
scientific interest in them has been m itigated by the computational difficulties 
implied by any estimation procedure. The method of moments leads to closed 
form estimators only in particular cases. W ith the revolution of computational 
capability the computation of estimators of finite mixture param eters has become 
easier than  before. In fact, with the development of the EM algorithm the 
estimation of the the maximum likelihood estimator for the param eter of many 
mixture models has became feasible in cases.

§1.2. B asic defin itions

Let &  :=  {F(x;6)  : x  G R 9, #  G R fc} be a family of one dimensional distribu­
tion functions over R 9 indexed by a point 6 in a Borel subset of M.k such th a t 
F(x',9)  is measurable on R 9 x  R *\ Let G G ^  be a fc-dimensional distribution 
function. Let J4? be a family of distribution functions. We consider the function 
H{x)  = JKfc F(x; 0)dG(9). H(x)  is a g-dimensional distribution function called 
the mixture (or G-mixture) of &  with G as the mixing distribution. When G is

1We will review the EM algorithm in extensive form in the next few chapters
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discrete with finite support, the set of all finite mixtures J f 7 of the family &  is 
simply the convex hull of i.e.

: =  <H(x)  : H(x)  — TjF(x;Qj),  s > 1 , 7 >  0 ,^ ^ 7 T j =  l , F( x ;6 j )  €  &
3= 1  j = 1

The param eter s can be understood as fixed or free. In this work we will always 
deal with mixtures where the number of components s is fixed and known. How­
ever in many situations one needs to  estimate s, which can be done via Bayes 
Information Criterion (BIC) (see McLachlan and Peel, 2000a). In this work we 
will mainly be interested in finite mixtures; these are mixture distributions where 
the number of components s is finite and the mixing distribution is discrete.
Let X n be a sample of size n, th a t is X n ■= { X \ , X 2 , . . . ,  X n } where Xi  G M9 is 
a random variable for i = 1 , 2 , . . . ,  n. W here possible a realization of the sample 
X n is indicated as the n-tuple of random vectors x^, :=  {x i , X 2 , ■ ■ ■ , ^ n } 5 he. x 7 

is the realization of the random vector Xj .  We assume th a t Xi  is distributed 
according to a probability measure with distribution function in & . We will also 
assume th a t a distribution function F  6  &  has a representation in term s of a 
density function / .  Thus we will usually write a mixture model as the density 
function

s

(1 .1 )
3 = 1

with 77 =  (7Ti, 7T2 , . . . ,  7rs, 6 1 , #2 , • • •, 0«), 0 <  7rj < 1 for every j  = 1 , 2 , . . . ,  s, and 

]Cj=i 713 = 1 - The quantities {^jYj= \ 3X 6 called mixing proportions or weights. 
The distribution function F(x;0j )  and its density f ( x , 9 j )  is usually referred to 
as the jfth mixture component. The model in (1.1) is called an s-components 
mixture.

§1.3. In terp retation  o f m ixture m odels

There are several cases where modelling via mixture models is reasonable. Mix­
ture models are frequently employed to explain data which exhibit heterogeneity 
or group-structure. They are also useful to model data where multi-modality or 
skewness is present. The interpretation of the mixture model differs depending 
on the nature of the particular data  at hand, and on the scope of the analysis. In 
this section we will also introduce how to simulate artificial samples from mixture 
distributions.
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1.3.1 — Mixtures as a tool to fit a distribution

When the exploration of the data  suggests the existence of a multi-modal or 
skewed structure, mixture models can be a useful and flexible semiparametric 
device to  model the underlying distribution. Mixture distributions are often used 
in the context of density estimation. Here we are in a situation where the main 
goal of the analysis is to fit a probability distribution to the data. At one extreme 
of this we have a nonparametric kernel density estimator which can be seen as 
the estimate of a mixture density where the number of components is equal to the 
number of observations and all mixing proportions are assumed to be equal. In 
fact given an observed sample x n drawn from an unknown distribution, a kernel 
density estimate at Xi is the estimate of a density

J =  1 X 7

for an appropriate choice of the constant h  and the function &(•) which can be 
itself a density function. It is easy to see th a t f (x{)  is similar to (1.1) when we set 
7Tj =  1/n, s =  n  and replace f ( x ^  6 ) w ith h ~ lk ( ( x i  — X j ) / h ) .  This shows th a t for 
1 <  s <  n, mixture models can be viewed as a semiparametric tool th a t allows:
(i) to  gain flexibility with the respect to  the fully param etric model (s= l) , and
(ii) it also allows to  keep the dimension of the param eter space finite which avoids 
many problems in the theoretical analysis.

Let us assume th a t the observed sample x n is an i.i.d. drawn from a proba­
bility distribution represented by (1.1). For example, suppose we have observed 
the sample for which we produced the histogram in Figure 1.1 or Figure 1.2. In 
these cases fitting a standard param etric distribution could be unsatisfying and 
the flexibility of mixture models can improve the fit. Here, interest is not in the 
group-structure of the data, so th a t we can interpret each x  as draw indepen­
dently from some distribution having a density function as in (1 .1 ). No particular 
interpretation of the weights {^jYj= \ relevant here. The proper way to simulate 
a sample of n  i.i.d. observations from a mixture distribution would be to compute 
the inverse of the distribution function of the mixture -provided th a t it exists- 
and then to  compute it on a drawn of n  i.i.d. numbers from a Uniform(0 ,1 ) (this 
is just the standard application of the uniform probability theorem). There exists 
another approach to simulation which will be clear in the next few sections.
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Figure 1.1: Histogram for 100 observations drawn from a distribution
0.5Normal(0,1) +  0.5Normal(2, 2). The thicker line represents the density func­
tion of the true underlying distribution.

1.3.2 — Samples with group-structures

In cluster analysis and discriminant analysis, the interest of the researcher is to 
understand the group structure of the population under study. In this case each 
component represents a group in the population with its own behaviour. Here 
we want to physically identify the s mixture components in (1 .1 ) with s exist­
ing groups composing the population under study. We assume th a t there are 
s populations and the number of units drawn from each group is not fixed. In 
this case we can still make sense of the model represented by (1.1). Let Z7 be 
a categorical random variable taking on the values in {1 , 2 , . . . ,  s} with proba­
bilities 7Ti, 7T2 , . . . ,  7rs; and suppose th a t the conditional density of Xi\Zj  = j  is 
f j (xi )  where i =  1, 2 , . . . ,  n  and j  — 1 , 2 , . . . ,  s. The unconditional density (i.e. 
the marginal density) of Xi  is given by f ( x i )  in (1.1). In this case we are writing 
a probabilistic model for the data  generating process where the unknown com­
ponent membership is not taken into account. How to simulate such a sample? 
First let us work with an s-dimensional component label vector Z,; instead of a 
single categorical random variable. Now Z7; is such th a t its j t h  element, Z ^, takes 
value one if Xi is originated by the j t h  mixture component (i.e. X i is a realiza­
tion of the distribution represented by f ( x , 9 j ) ) ,  and zero otherwise. Thus Z7 is 
distributed according to a multinomial distribution consisting of a single draw on 
s distinct categories with probability param eters given by 7r =  (7Ti,7T2 , . . .  ,7rs);
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Figure 1.2: Histogram for 100 observations drawn form a distribution
0.5Normal(0,1 ) +  0.5Normal(5, 2 ). The thicker line represents the density func­
tion of the true underlying distribution.

th a t is
s

P r = = (1.2)
3 =  1

hence
Zj ~  M ultinomials(1 ,7r), 7r =  (7Ti,7T2 , . . . ,  7rs ). (1-3)

As we shall see in the following chapters this formalization will be useful to 
write down the likelihood function for such a probabilistic model. Moreover this 
formalism also gives us a proper method to  simulate samples from a mixture 
distribution. In order to simulate a sample of n  observations from (1.1), where 
the la tter is interpreted as the marginal density of X i , first we draw n  observations 
{ ^ } ”= 1  from Multinomials(1 , 7r). Let [zi\j be the j th  coordinate of the vector zf, 
then let

n j =  =  !}>
T = 1

and draw rij observations from the distribution represented by f ( x i , 6 j) for j  =  
1 , 2 , . . . , s .

In some applications of mixture models the vector Xi  can be physically as­
sociated with some of the m ixture components. In these situations the vector 
Xi  is known together with the label vector and we say th a t Xi  is classified 
with respect of component memberships. In many situations we have a sample

18



of i.i.d. observations from a m ixture distribution as represented by (1 .1 ) and 
the vectors {zi }™=1 are not known. This is the case of unclassified data. There 
are also intermediate situations where the component memberships are partially 
known to the researcher. The rest of this work is devoted to problems related to 
unclassified samples.

§1.4. M u ltim odality  and Shapes o f  M ixtu re D istrib u tion s

Mixture distributions are not necessarily represented by multimodal densities. 
This is shown in the Figure 1.2 and Figure 1.3 where we plotted the graph of 
two different densities of mixtures of Gaussian distributions. Models based on 
mixtures are often used to fit distributions with multiple modes in the density. 
On the other hand one should be aware th a t even in the case where multimodal­
ity does not seem to occur in the data, a mixture structure can still be a feature 
of the underlying data generating process. In some restricted cases the relation 
between the param eters of the mixture distribution and the geometric properties 
of the representing density function axe well known.

In the forthcoming chapters we will be interested mainly in mixtures of uni­
variate normal distributions. Hence it will be worthwhile to mention some of the 
findings about this particular class. In the case of the homoscedastic univari­
ate normal mixtures (i.e. all the component mixtures have the same variance), 
many of the geometric properties have been studied. The multimodality of such 
mixture distributions depend on the separation between the means of adjacent 
components scaled by the variance. Let us consider the mixture density

f ( x )  =  7Ti^(x;/ii,cr) +  ( 1  -  7Ti)0 (x ;/i2 ,cr),

where 4>(x\ a , b) is the density function at a point x, of a normal distribution 
with mean a and standard deviation b. The presence of multimodality in such a 
mixture depends on the distance

A . Imi -M2I.
a  ’

which is the Mahalanobis distance between homoscedastic components. To see 
how the value of A affects the shape of such a mixture density, let us look at the 
plots in Figure 1.3. In such a situation we have two modes when A > 2 . The
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Figure 1.3: Plot of the density functions of mixtures consisting of two univariate 
normal components with equal proportions, variance a 2 — 1 , and means =  0  

and /i2 =  Mi -h &A for A =  0,1, 2 ,4.

case when 1 <  A < 2 is also interesting because the density presents a nearly flat 
region at the maximum. For more details on the exact conditions under which 
the two-component normal mixture is bimodal, see Robertson and Fryar (1968). 
Lindsay and Roeder (1992) also studied some m athem atical transformation of 
the mixture which is able to  establish the presence of multiple components in the 
univariate normal case. Shaked (1980) studies the geometric properties of density 
functions of univariate mixtures from an exponential family in a setup similar to 
tha t of Robertson and Fryar (1968), generalizing some of their results. Ray and 
Lindsay (2005) proposed analytical methods borrowed from topography in order 
to study the geometry of multivariate normal mixtures.

Despite the effort of many researchers in studying the relations between pa­
ram eters’ value and geometrical properties of the mixture models (mainly normal 
mixtures), there is no clear and general answer to these issues. However the topic 
is of extreme relevance because with data  at hand we would like to be able to 
understand the probabilistic structure under the data generating process. In 
particular this happens in cluster analysis where the main interest is to discover
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Figure 1.4: Plot of the distribution function of a mixture consisting of two uni­
variate normal components with equal proportions, variance a 2 =  1 , and means 
p i =  0 and fi2 — 4.

group structures in data.
Studies about shapes of distributions are mainly based on density functions. But 
what happens if we look at the distribution function of a mixture distribution? 
If the components are reasonably separated the distribution function of a normal 
mixture has a shape which alternates regions of concavity and convexity, an ex­
ample being given in Figure 1.4. In Figure 1.5 we represented the density and the 
distribution function of a two components homoscedastic normal mixture with 
two modes. An histogram and the empirical distribution function on a sample 
of 250 units drawn from the same distribution is also presented. We notice th a t 
while the separation of the components is such th a t the density function has two 
modes, the corresponding distribution function does not look clearly different 
from a distribution function associated with a symmetric unimodal density. At 
reasonable graphical resolution of the plot of the graph, the true distribution func­
tions do not seem to suggest th a t its density has multiple well separated maxima. 
The presence of the two modes is not clear from the histogram as well, unless 
we tune ad-hoc the number of cells of the histogram. The empirical distribution 
function seems to approximate the true distribution function quite well, and thus 
it does not reveal any presence of a multi-modal structure. These simple exam­
ples show th a t modelling via mixture distributions should be carefully handed. 
The conclusion here is th a t there are many cases where the exploration of the
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Figure 1.5: Plot of the density and cumulative distribution function of a mixture 
consisting of two univariate normal components with equal proportions, variance 
a 2 = 1 , and means ji\ =  0 and H2 =  2.5. The empirical distribution function is 
also represented for a sample size of 250 from the same distribution.

data does not immediately lead to the correct conclusion about the presence of 
multiple modes in the distribution of the data.

§1.5. Identifiab ility  o f  m ixture d istributions

Let Ve be a family of probability measures indexed by some unknown -  finite 
or infinite dimensional -  index 6  G 0  which we call the parameter. We observe 
an experiment generated by some member of Ve- The main problem of statis­
tical inference is to infer 0 based on observed data. Instead, identification is a 
pre-inferential problem which is devoted to assess whether with enough data  at 
hand it is possible to state th a t different param eter values correspond to different 
probability measures P  G Ve,  where the meaning of the word “different” has to 
be specified. Roughly speaking indentifiability means th a t there exists a sort of 
one-to-one2 correspondence between the indexes 6 G 0  and P  E Ve- The first 
account of identification of m ixture models was given by Feller (1943) and since 
then many results extended th a t work in several directions (we shall review those 
results in the following paragraphs).

2The wording “one-to-one” has not to be taken with its strict mathematical meaning.
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The standard notion of identifiability found in intermediate books (e.g. Casella 
and Berger, 1990, page 511, definition 11.2.1) is that: given a statistical model 
represented by some distribution function F(x: 9), we say tha t the model is iden­
tified if 9 7  ̂ 6 * implies th a t F(x;9)  ^  F(x':9*)3. However identifiability is a 
general concept th a t has to be carefully defined depending on the context.
The very first definition of identifiability for finite mixtures was formalized by 
Teicher (1961). Let us recall the notation used in previous sections. JF := 
{ i?(x; 9) : x  G R9, 9 G Rfc} is a family of distribution functions over R 9 indexed
by a point 9 in a Borel subset of R fc such tha t F ( r ;  9) is measurable on R9 x R fc. 
Let G 6  be a /c-dimensional distribution function with the underlying mea­
sure assigning to tal mass to Rfc. Let be a family of distribution functions. 
We consider a map Q : <£ — > where its image is defined as Q{G)  =  H ,
H(x)  = f Rk F(x; 9)dG(9).  Following Teicher (1961), the mixture model gener­
ated by the family &  with mixing distribution in <£ is said to be identifiable if 
given F  € then Q is a one-to-one map of <£ onto . As we have already 
noticed, when G is discrete, the set of all finite mixtures M 1 of the family &  is 
simply the convex hull of Identifiability of the mixture models means th a t 
the convex hull &  has a unique representation property, which can be translated 
into the following:

D efin ition  1.1. Let be the class of finite mixtures generated by the class 
with discrete mixing distribution. Given

S

H{x,r]) =  ^2*jF(x- , 9 j ) ,  7rj > 0 , 9 j ^ 9 r V j,r =  1, 2 , . . . ,  s, j  ±  r,
j =i

and

2

H{.x,rf)  = Y , < F ( x \ B t \  Vi,fc =  i ±  fc;
1 = 1

implies th a t s = z, and there is some perm utation j  of the 
indexes j  = 1 , 2 , . . . , s  such th a t 7Tj — it- and 9j =  9-., then we say th a t &  
generates identifiable finite mixture distributions.

The definition above has been used to study the identification of a number

3We replaced density functions in the definition given by Casella and Berger (1990) with dis­
tribution functions. The reason is that changing a density function on a set of points which have
zero measure with respect of the underlying measure, provide us with unchanged probabilities
on the support.
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of models. Feller (1943) studied models based on mixtures of gamma densities. 
Teicher (1961) formalized the definition of identifiability for general mixture mod­
els. He extended the results in Feller (1943) showing the identifiability of finite 
mixtures generated by Poisson distributions. He also showed th a t models based 
on mixtures of uniform and binomial distributions are not identifiable. Teicher 
(1963) gave a sufficient condition for identifiability of a general class of finite mix­
ture models and showed th a t mixtures based on univariate Gaussian distributions 
are identifiable. Yakowitz and Spragins (1968) defined identifiability for classes 
of finite mixtures (Definition 1 .1 ) and gave a necessary and sufficient condition 
for the identifiability of such models. The main theorem in Yakowitz and Spra­
gins (1968) states th a t given a discrete mixing distribution the class &  generates 
identifiable mixtures if and only if &  is a linearly independent set over the field 
of the real numbers. They apply their theory showing th a t exponential distri­
butions, multivariate Gaussian distributions, Cauchy distributions and negative 
binomials generate identifiable mixture models. Atienza et al. (2006) weakened 
the assumption of the sufficient conditions given by Teicher (1963) and showed 
th a t mixtures of Log-Gamma distributions and mixtures of Lognormal, Gamma 
and Weibull distributions are identifiable with the respect to the Definition 1 .1 .

1.5.1 — Identifiability and estimation

Identifiability is relevant for estimation. To see why this is case, let us consider 
an example. Let us assume th a t we are estimating the param eters of a non identi­
fiable distribution. In this case once we estimated our param eters we don’t know 
which distribution we have estimated.
Let us go back to the Definition 1 .1 , and let 77 =  (7Ti, 7r2 , . . . ,  nrs, #i, #2 , . . . ,  9S), 
77 G T where T C (0, l ) s x Rfcs. If a model is identifiable with respect to Definition
1.1 this means tha t for every 77 G T there exists a set of param eters T* such th a t 
every 77* G T* give the same value for the mixture distribution function, and each 
vector 77* G T* has the same components as 77 but permuted according to  the 
Definition 1 .1 . We just look for the existence of a perm utation j  where 7iy =  7x*. 
and 6 j =  9*.; this means th a t we identify the distribution up to “component labels 
switching” . This last point is worth to be made as precise as possible. By the 
component label we mean the index j  in the previous expressions. This defini­
tion implies tha t if we have the mixture Hi(x)  — .3F(x; 0i) +  .7F(x; 6 2 ) and we 
“switch the labels” obtaining H 2 {x) =  .7 F ( x ; 9 2 ) +  .3F(x-,0 j), in the definition 
given they represent the same point of the space J f 7, i.e. they “identify” the same
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mixture distribution.

The label switching can be seen as a limitation of identifiability. In fact 
it means th a t a finite number of different param eter vectors define the same 
distribution. Thus when we estimate the param eter of a mixture distribution 
the question is which distribution we have estimated. But for each param eter 
we are able to list all possible param eter vectors tha t give the same distribution. 
Thus we can construct a rule for restricting the param eter space such th a t it 
contains only the vectors of param eters which give different distributions. The 
usual practice is to construct a function L  which maps the vector rj into a vector 
with permuted indexes j  =  1, 2 , . . . ,  s according to some specified rule (e.g. a 
lexicographic order). For example suppose to  consider an 5-component normal 
mixture, so th a t Oj = (fij,<7j), where and CTj are the mean and standard 
deviation parameters respectively. Let us consider the assignment rule L(rj) = fj 
— (7Tj, 7T2, . .  •, TTs, #2 ; • • • ? $s) where {1,2. .  . 5 } is a permutation of the indexes 
j  = 1 , 2 , . . .  , s  according to the lexicographic ordering 6 \ -< 65 -<, ■ ■ ■, -< Qs where 
6 i -< 6 k if and only if /i; < fik, or fii = fik and cr* < <7/-. We can suppose to  look a t a 
region of T  C T where rj 6 T is such th a t L(rf) =  rj. W hen frequentist estimation of 
the param eter rj is considered, this approach does not cause problems. However 
this is not the case in the Bayesian framework where posterior simulation is 
used to make inference (see McLachlan and Peel, 2000a, Chapter 4). These 
problems are not of main interest in this work, so we will not analyze them  in
further details. It is however worth to mention ( and in fact it will be useful
in the next few chapters), th a t the other approach to  solve the problem of label
switching is to look at a param eter space alternative to T. T hat is, we can
look a t  the topological quotient space of T, say T, obtained with respect to  the 
equivalence class over elements if T induced by Definition 1.1. This means tha t 
all point of T giving an equivalent mixture distribution with respect to  Definition
1.1 are collapsed to a single point in T. This is the approach used by Redner 
(1981) to show the strong consistency of the maximum likelihood estim ator for 
mixture distributions. Notice th a t Redner’s approach to consistency applies for 
all possible non identifiable distributions.

In our definition of mixtures we considered the case where proportions are 
all positive and the number of components is fixed. If this was not the case we 
should consider other sources of lack of identifiability. For example we can have a 
(s — l)-components mixture equivalent to an s-components mixture in two cases: 
(i) one of the mixing proportion in the s-components mixture is zero; (ii) two or
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more components in the s-components mixture are the same. Again, this type of 
identifiability problem can be overcome just by restricting the param eter space. 
In this thesis these problems are solved by restricting the class of finite mixture to  
the case when the number of components is fixed and the proportion param eters 
are all positive. And this is not a limit for our analysis.

§1.6. E stim ation

Over the years, a variety of methods have been developed to estimate param ­
eters of finite mixture distributions. In this work we will not trea t the case of 
non-parametric estimation, but we will be interested in the cases when the model
(1 .1 ) is known up to the param eter 77. Parametric estimation methods for mix­
ture models consist of the method of moments, maximum likelihood and many 
minimum distance methods. The main reason for such a huge literature about 
mixture estimation is probably to be attribu ted  to the computational complexity 
associated with it. For instance, it is well known th a t even in the case of the sim­
plest homoscedastic two-normal mixture the maximum likelihood method does 
not lead to a closed form expression for the estimator. In this section we will 
briefly review some of the main methods. Maximum likelihood will be discussed 
extensively in the next chapter.

Pearson (1894) derived the formula for the estimate of the param eters of a 
homoscedastic two-normal mixture by the method of moments. Recently moment 
based methods for mixture distributions estimation received renewed attention 
after the work of Lindsay and Basak (1993) and Furman and Lindsay (1994). 
Quandt and Ramsey (1978) introduced a generalization, the moment generating 
function method, and this can be seen as a minimum distance method. T hat is, 
the mixture parameter is estim ated by minimizing the square distance between 
the moment generating function under the model and the empirical moment gen­
erating function. The moment generating function is defined on the real line for 
any given param eter value, so the method above requires the choice of the points 
of the argument of the moment generating function over which it is computed. 
This choice seems to  be critical, and though it does not affect consistency of the 
estimator, it does affect its efficiency. However Hosmer (1978) noticed th a t the 
moment generating function can be a good alternative to the maximum likeli­
hood estimator in small samples. Kiefer (1978) argued th a t the moment generat­
ing function method introduced by Q uandt and Ramsey (1978) performs better 
than the method of moment introduced by Pearson (1894). Kumar et al. (1978)
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suggested to apply a minimum distance method which makes use of the charac­
teristic function instead of the moment generating function. Recently there has 
been renewed interest in these methods. A complete review is given by Yu (2004).

There are several other ways to  estimate the param eter of mixture models. 
Titterington et al. (1985) offer a comprehensive review of many of them with 
particular emphasis on minimum distance methods based on the distribution 
function. T hat is, the mixture param eter is estimated as the minimizer of some 
distance measure between the empirical distribution function and the distribution 
function under the model. These estimators are attractive in situations where 
they lead to a closed form estimator.

Beyond consistency and efficiency considerations, the main problem of estim a­
tion of mixture distributions is computability. For instance, Karlis and Xekalaki 
(2003) showed tha t the moment generating function estimator by Q uandt and 
Ramsey (1978) is easily computable for two-normal homoscedastic mixture, while 
in the case of a three-normal homoscedastic mixture numerical routines hardly 
produce a sensible estimate. Even with the revolution of high speed computers 
and the fast growth of research in the field of numerical optimization, usually it 
is not easy to compute mixture param eter estimates easily. The maximum like­
lihood method is still the most popular method for estimation of finite mixtures. 
One of the reasons for its popularity is probably the relative ease of computa­
tions. In the case of maximum likelihood, in fact, the possibility to apply the EM 
algorithm (see Dempster et al., 1977) offers a great computational device where, 
for many mixture distributions, at each iteration of the algorithm an exact com­
putation is performed without involving any numerical optimization routine.

§1.7. M odel based clustering

Cluster analysis is mainly interested in understanding group structures in the 
data. Sometimes such structures are suggested by the physical or social meaning 
of the data, sometimes these structures are not evident and the aim of the statisti­
cal analysis is to discover them using clustering techniques. Banfield and Raftery 
(1993) used the wording model based clustering to name an approach where a 
group in a population under study is identified with a probability distribution 
and the whole population is modelled as arising from a mixture distribution. 
McLachlan and Basford (1988) showed the usefulness of mixture models as a way 
of proving an effective clustering for data from many experimental designs.
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In the model based clustering approach each group in the data  is assigned 
to a mixture component. The population of interest is assumed to have a dis­
tribution represented by (1 .1 ) for some choice of s and the component densities. 
Once the param eters in (1.1) are estimated via some of the methods available 
the fitted model is used to establish to which component mixture each datum  be­
longs. This approach consists in associating each group (cluster) to a component 
mixture, and the goal of the analysis is to establish component memberships of 
data. The way to do this will be explained in the next few paragraphs. Of course 
clustering is relevant only in the presence of unclassified data.

It is clear th a t model based clustering is beyond exploratory data analysis. 
Since statistical inference is used to discover group structures, these techniques 
allow to apply inferential methods to test the validity of the conclusions about 
the structures discovered. In fact by the use of testing techniques this approach 
gives us the possibility to assess in a rigorous way whether apparent clusters are 
due to random fluctuations in the data. In this thesis we will not be interested 
in testing; our aim is to estim ate clusters via the statistical procedure we will 
describe in this section.

We assume th a t X n {X i, X 2 , . . . ,  X n} is a sample from a mixture distri­
bution represented by (1 .1 ), the n-tuple Xn '■= {^1 ,^ 2 , • • • ,^n} is the realization 
of the random variables in X Let S : Xn — ► {1,2 , . . .  ,s} be an assignment 
function, th a t is, S(xi) = j  means th a t the zth observation is assigned to  the jth. 
component mixture. The optimal Bayes assignment function is defined by

<5(xi) := axgmaxhe{12 ^ s]Th(xi),  (1.4)

where Tj(xi) is the probability th a t the ith  observation has been drawn from 
the j t h  component. In the framework of the notation used in Section 1.5, 
Tj(xi) =  Pt  {Zij = l \x{}. W hen the mixture density is (1.1), then Tj(xi) = 
7Tjf(xi,6j)/f(xi,r]).  Thus the optimal Bayes assignment function consists of as­
signing the the observation Xi to  the component j  if 7Tjf(xi,  9j) >  ttkf(x{, 9k) for 
all k 6  {1, 2 , . . . ,  s} \  {j}. We notice th a t <5 (re*) is not always a singleton. In this 
case the observation can be arbitrarily assigned to one of the elements in S(xi) 
unless other restrictions are imposed. By doing this we assume th a t the cost of 
misallocation with respect to each component is equal. Given the model (1.1) the 
optimal Bayes assignment function can be estimated by the plug-in rule. T hat
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is, once the param eter 77 is estimated by 77, the assigment can be done taking an 
element of

<5(z,) := argmdJLh e { l 2  ^7rhf ( x i J h). (1.5)

This approach has been extensively applied with success in many practical situ­
ations and it will be used in our investigations in the next few chapters.

§1.8. C onclusions

In this introduction we gave some basic definition for mixture models. We also 
tried to give a brief presentation of the many ways a mixture distribution can 
be used to model a given dataset. Of course our presentation was not complete 
in any sense. The theory of mixture distributions has been extensively studied 
in the last century as well as problems of identification and inference related 
to them. For a comprehensive introduction to mixtures with references see for 
example Titterington et al. (1985) or McLachlan and Peel (2000a). If the theo­
retical investigation of mixture models produced a huge amount of research and 
literature, the production of applied works is even bigger. W ith the revolution of 
high speed electronic computers the estimation of high-dimensional param eters 
becomes easier and applications of mixture models become more and more popu­
lar. In the previous section we described one of the many uses of mixture models,
i.e. clustering. McLachlan and Peel (2000a) is a good source where a consider­
able number of applications are presented and references given. Beyond cluster 
analysis there are many fields of statistical science where mixture models are 
successfully used: regression theory, neural networks, hidden Markov models and 
many others. The two cited references are good sources to  get a comprehensive 
overview about finite mixture models.
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CH APTER 2

Maximum Likelihood Estimation of Finite Mixtures

In this chapter we shall review the relevant literature about esti­
mation of mixture distributions via the maximum likelihood method. 
Asymptotic properties of the maximum likelihood estimator will be 
discussed in detail. We introduce the general formulation of the EM 
algorithm and provide a description of its implementation in the case 
of finite mixtures. Convergence of the EM algorithm is also discussed.

§2.1. In troduction

In Chapter 1 we introduced some of the methods of estimation for param eters 
of finite mixtures with a fixed number of components where the mixing distri­
bution is unknown and component densities are known up to their parameters. 
In the past, maximum likelihood estimation of finite mixtures has received lim­
ited attention due to its computational complexity. When the model satisfies the 
Cramer-Rao regularity conditions1, the maximum likelihood estimator is derived 
solving a system of possibly nonlinear equations. In the case of finite mixtures in 
most cases these equations have no closed form solutions.
Baker (1940), Rao (1948) and Mendenhall and Hader (1958) derived iterative 
procedures to solve the maximum likelihood equations for two-normal compo­
nent mixtures in the univariate case. Rao (1948) used the method of scoring,

1This wording basically means that the assumptions set by Cramer (1946) in order to get 
consistency and asymptotic normality are satisfied. This also means that assumptions that allow 
us to write the Fisher information in terms of first derivatives of the log-likelihood functions are 
also satisfied.
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while Mendenhall and Hader (1958) relied on Newton-Raphson methods. De­
spite the successful implementation in the case of a two-normal mixture, these 
iterative methods for solving equations were unsatisfying in cases. As computer 
power become available with less constraints, maximum likelihood estimation 
was explored for a variety of mixture models. Mixture of Gaussian distributions 
were the most studied. Hasselblad (1966) studied the the maximum likelihood 
estimator for mixtures with an arbitrary but finite number of components. A 
two-normals multivariate mixture with common but unknown covariance m atrix 
was first studied by Day (1969) and then by John (1970). The case with an arbi­
trary  number of multivariate Gaussian components was studied by Wolfe (1970) 
and in more detail by Peters and Walker (1978). Redner (1981) proved the strong 
consistency for non-identifiable distributions for a class of estimators which con­
tains the maximum likelihood as a special case. The work by Redner (1981) 
applies to a general class of distributions which includes finite mixtures. H ath­
away (1985) proposed a constrained maximum likelihood estimator for univariate 
finite mixtures of Gaussian distributions and studied the strong consistency of 
such an estimator.
Gaussian mixtures occupied a considerable space in the literature about mix­
ture distributions. The book by McLachlan and Peel (2000a) gives an overview 
of many applications where the maximum likelihood method is applied to non­
normal mixture models. In the most part of the literature cited above the max­
imum likelihood estimator is studied for experimental designs with unclassified 
observations. Hosmer (1978) investigated the maximum likelihood estimator for 
many experimental designs where classified, unclassified and also partially clas­
sified data are available. Finally we note the paper by Laird (1978) where it is 
shown th a t under various regularity assumptions the maximum likelihood esti­
m ate of a mixture with possibly an infinite number of components is actually a 
finite mixture density.

In this section we will define maximum likelihood estimates for mixture distribu­
tions. Let us assume th a t A,;, i =  1 , 2 , . . . ,  n, are random variables defined on R9, 
Xn = {Ai, X 2 , . . . ,  A n} is an i.i.d. sequence from a distribution having density

§2.2. M axim um  likelihood estim ates

S

(2 . 1)
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where f j  is a density on M9, s < + 0 0 , 0 <  nj < 1, £ • = 1  = h  e, e
for some pj > 1. The number of components s is fixed and known. We set 
rj = (7Ti, 7t2 , . • • ,7ra, 0i,02> - ..  A ) ,  with 77 G T. Let Xn = { x i , x 2, . .. , x n} an 
observed sample, i.e. a realization of the sequence of random variables X n .  The 
likelihood function associated with the sample is given by

n s

L{r],Xn) = Y [ ^ r , n j f j (xi ,9j ). (2.2)
i=1 j = 1

The maximum likelihood estimator is defined as

fjn :=  argm ax77€rL(77,xIL). (2.3)

The likelihood above is suited for all those situations where we have unclassified 
data coming from populations of which the distributions are represented by the 
densities f j  j  =  1, 2 . . . ,  s. The maximum likelihood estimator is equivalent to

rjn :=  a r g m a x T7er/(77,Xn),

where l(rj,xn) is the log-likelihood function, i.e.

l ( r ) , X n ) =
i= i

TjfjiXi.Oj)
3 =  1

(2.4)

The maximum likelihood estim ator is probably the most popular statistical tool 
and a huge amount of literature has been devoted to it over the years. Particular 
attention has been given to the study of the maximum likelihood estimator for 
mixtures where a number of issues arise relating to analytical and computational 
problems.

The first problem is th a t we cannot always rely on the fact th a t the estim ator 
defined in (2.3) exists. The log-likelihood function may be unbounded over T so 
tha t l(p,Xn) does not achieve a global maximum. The simplest example of such 
a problem is when the density in (2 .1 ) is made up to s > 1 univariate normal 
components. In this case setting one of the component’s mean equal to one of 
the observations, say fi\ =  aq, and letting the corresponding standard deviation 
<7 i — > 0, makes the likelihood L ( r j , X n )  — > + 0 0  given all the other param eters 
fixed. There are a number of solutions to this problem. In the case of normal 
mixtures DeSarbo and Cron (1988) proposed a constrained maximum likelihood
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estimator where the standard deviations of the component mixtures are larger 
than a positive constant, i.e. they considered constraint of the type a 3 > co > 0  

for j  = 1 , 2 , . . . , s  and some fixed and known c q . Hathaway (1985) studied a 
different type of constraints on the variances with m m lj ( a r/ a j ) =  cq > 0. He 
showed th a t the corresponding maximum likelihood estimator is strongly consis­
tent, i.e. it converges to the true param eter almost surely. While the constraints 
proposed by DeSarbo and Cron (1988) do not lead to scale equivariant maximum 
likelihood estimates, the constraints studied by Hathaway (1985) do. Recently 
another approach to deal with the unboundness of likelihood function has been 
introduced by Ciuperca et al. (2003). The authors proposed a penalized max­
imum likelihood estimator and showed th a t it is consistent and asymptotically 
normal. We remark th a t in the case of normal mixtures the existence of the 
maximum likelihood estimate occurs in the case of previously classified data.

In the case th a t the number of components s is fixed and the mixture model 
is defined with mixing proportions being larger than zero as in (2 .1 ), then there 
is still a sort of lack of identifiability due to label switching. If the distribution 
represented by (2 .1 ) is identifiable with the respect to definition 1 .1  in chapter 1 , 
each param eter tj obtained by permuting the pairs (71y, 03 ) gives us an equivalent 
distribution. If the likelihood is maximized at the true param eter value, say 77°, 
the maximum is not unique because for every perm utation of the pairs (tv®, 9®) 
we get a param eter vector giving the same likelihood value of rp.

Multiple maxima occur also for reasons not related to lack of identifiability. 
Usually the likelihood surface of a mixture has many local maxima and flat re­
gions. When the estimator has no closed form solution, numerical computational 
methods have to be used. These methods are usually able to find a stationary 
point for the likelihood and it is not always the case th a t one of these points is 
the largest local maxima.

The traditional approach to  find the maximum likelihood estimator, is to first 
derive a system of likelihood equations which have to be satisfied by the estimates. 
If the mixture density is continuous and differentiable on the param eter space and 
under other regularity conditions, the estimator defined in (2.3) should satisfy the 
system of equations

V^Z (77; Xn) =  0 (2.5)

where V ^Z ^r^ ,) is the vector of partial derivatives of I with respect of 77 com­
puted at point 77 =  y for a given observed sample x n . The conditions in the
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following analysis are derived in Peters and Walker (1978) and they come from 
the application of Kuhn-Tucker’s sufficient conditions for a constraint maximum 
(see Bazaxaa et al., 2006, Chapter 4). Since the mixing proportions are con­
strained to be in (0 ,1 ) and Y l j=l Ti ~  the likelihood equations for the mixing 
proportions should also satisfy the condition

where tt = (7Ti, 7r2 , . . . ,  7rs), Y f j=i Ti = ^  >  0  for all j  =  1 , 2  . . . ,  s, and w is the
corresponding maximum likelihood estimator. Let Uj be an s-dimensional vector 
th a t has all components equal to zero unless the j th  component which is one. 
The condition above implies th a t

with equality for all those j  for which Ttj > 0. The la tter is equivalent to

with equality for all those j  for which ttj > 0. Multiplying each side of the 
expression above by 7fj yields likelihood equations in the form

The latter equation plays an im portant role especially in context of the EM algo­
rithm  which we will review in the following chapters. By considering the m atrix 
of the second partial derivatives of l{r}\Xn) with respect of 7r (provided th a t they 
exist), it is easy to verify its concavity for any fixed values of 0\ . . . . ,  6 S. It follows 
th a t for any fixed value for the param eters 6 \ , . . . ,  9S, the equations in (2.6) are 
necessary and sufficient for a maximum with respect to the proportion param ­
eters. The set of equations in (2.5) however are necessary but in general not 
sufficient for the maximum with the respect to all parameters.

In general likelihood equations for maximum likelihood estimates of mixture 
param eters have no closed form solution. This happens for example in the case of 
Gaussian mixtures. Numerical routines are used to compute maxima of l(rj,xn) 
and in many cases numerical methods are only able to provide a local maximum.

Va-ZO?; X n?{7T  ~  7r) <  0 VtT ^  7T,

V J { f i \ X r J { u j  -  7 r)  < 0; all j  =  1,2 , . . .  ,s; (2 .6 )

1

(2.7)
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However, depending on the shape of the likelihood surface there could be a huge 
number of local maxima, and each time the local maximum giving the largest 
likelihood value has to be chosen.

§2.3. A sym p to tic  properties for m axim um  likelihood  estim ates

Maximum likelihood estimates are usually strongly consistent and asymptotically 
normal. By strong consistency we mean th a t the estimator converges almost sure 
to the true param eter which generated the sample. There are two useful ap­
proaches to show strong consistency of the maximum likelihood estimator. One 
approach invented by Cramer (1946) is to assume some restriction about deriva­
tives and moments of the log-likelihood function and then to use these conditions 
to show strong consistency and asymptotic normality by use of a Taylor expan­
sion of the log-likehhood function. The other approach followed by Wald (1949) 
is not to make any assumption about the differentiability of the log-likelihood 
function and to show strong consistency under set of very general conditions 
mainly involving the expected value of the log-likelihood. W ald’s approach is not 
able to lead to statements about the convergence in distribution of the estimator. 
Here we will review the two approaches since this will be useful afterward. The 
treatm ent we will give is quite general and does not only apply to finite mixture 
models. We will continue to maintain the notation as in the previous sections, 
but it is understood th a t the following statem ents are valid for any maximum 
likelihood estimator for which the assumptions given here with respect to the 
density and log-likelihood function are valid.

First we will consider the case where differentiability assumptions are made. 
The notation 770 will indicate the param eter which generated the sample x n ac­
cording to the model described in (2.1). Also F(x\rj) is the distribution func­
tion of (2 .1 ). Sometimes, when not ambiguous, we will indicate /o =  / ( x ; 77o), 
F0 =  F(x;  %)

A ssu m p tion  2 .1 . The support of /  does not depend on the param eter value,
i.e. the set S f  := {x  : f ( x ; 77) >  0} does not depend on 77 G T.

A ssum ption  2 .2 . The param eter space T is open in (0 ,1 )* x .

A ssum ption  2.3. W ith rj') := {77 G T : \\rj' — r]\\ < £}, for any e > 0,

sup
776^ ( 77°)

df{x-ri)
dr]

<  00,
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sup
776^ ( 77°)

d 2 f{x-r])
< 00.

drjdrf

A ssu m p tion  2.4. The function Z(77; Xn) is bounded above on T, it is differentiable 
up to  the th ird  order, with continuous first and second order derivatives.

A ssu m p tion  2.5. For all 77 € T,

d  log f (x ;  rj)
dVi

< U(x),
d2 log f ( x -  77)

dVidrij
< Uj(x),

d 3 log /(x ; 77)
dr]idr]jdrjk —  Ujk (%) 5

for t i (x) ,t i j(x) , ti jk{x)  integrable functions for all i , j , k  = 1 , 2 , ,  s.

Assumptions 2.4 and 2.5 are needed in order to exchange derivatives and inte­
grals (by applying the dominated convergence theorem). Under the assumptions 
above the Fisher information at the true param eter is well-defined. This means 
th a t I(r}o) <  + 0 0  where

<91og/((r; 77) 'd  log f { x \ 77)'
drj drj dF0. (2 .8)

Theorem  2.1. Under assumptions 2.1-2.5, as n  — ► 0 0 , there exists a sequence 
{Vn}n> 1 of solutions of the likelihood equations (2.5) such that (i) 77* 770; (H)

~ Vo) Normal(0 , / ( 77o)_1).

We will not prove the previous theorem because it is part of the standard sta­
tistical literature at an advanced level. This same theorem was proved in Cramer 
(1946) for general smooth maximum likelihood estimation, and then extended 
by Chanda (1954) to the multidimensional case. This theorem is only local, in 
the sense tha t it states tha t there exists a sequence of solutions of the likelihood 
equations which converges to the true param eter with probability one as the size 
of the sample gets infinitely large. Also, a -^/n-scaled version of this sequence is 
asymptotically normally distributed. The set of Assumptions above are fulfilled 
in many situations, for instance for Gaussian mixtures.

Wald (1949) approached the issue of the convergence of the maximum likeli­
hood estimator in a more general setup looking for a global characterization of 
the problem. The first question to  answer is whether the sequence of roots of log- 
likelihood equations converges to the maximum likelihood estimates. Moreover 
Theorem 2.1 does not say anything about whether the limit point of the sequence 
of solutions of the likelihood equations is unique. However Wald’s theory is not 
applicable when the distribution which generates the sample is not globally identi­
fiable. As we noted in Chapter 1 identifiability is a concept of equivalence referred
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to some family of probability distributions. The concept of identifiability can be 
defined depending on the class of problem we are considering. Suppose th a t we 
have a statistical experiment produced by drawing observations from a distribu­
tion function -F(x; a ) , where a G A  and F  belongs to some family of distributions 
T .  By “global identifiability” we mean the following: if a /  a* this implies th a t 
F (x ; a ) ^  F(x; a*) for at least one value of x  in the support of F. It is clear th a t 
the definition in 1.1 is not about global identifiability. In fact, as already noted, in 
the case of the finite mixture distribution represented by (2 .1 ), any perm utations 
of the pairs will give the same value for the distribution. Redner (1981)
extended W ald’s approach to cases where global identifiability does not hold.

Here we present the theorem by Redner (1981) which is useful to establish 
strong convergence for maximum likelihood sequences of estimates of many mix­
tures models. Before giving the main theorem we need to state the set of as­
sumptions needed and some new notation. If not stated, the notation used in 
the previous presentation is used. Again, we adapt the presentation to our finite 
mixtures setup, however the following theory is applicable to more general models 
where the following assumptions hold. Let =  {77 G T : H77 — 7/ | |  <  r}  be
a closed ball of radius r  > 0. For 77 G T and r ,  s > 0 we denote

f{x ,r j , r)  =  sup f(x,rj')-, f*(x ,  77, r) =  max {1 , / (x ,  77, r )}  ,
X]'ejVT{r])

h ( x , s ) =  sup f ( x ,  77); h*(x, s) = max {1 , h(x, s)} .
■n ĵVsir) 0)

A ssum ption  2.6. T is a compact set.

Let r  be the quotient topological space obtained by collapsing the set C(rj') :=
{77 G T : F(-; 77) =  F(-; 77')} in a point 77' G f .

A ssum ption  2.7. For each  77 G T a n d  su ffic ien tly  sm all r  a n d  su ffic ien tly  la rg e

J log /* (x , r},r)dFo(x) < oc (2.9)

J  log  h*(x, s)dFo(x) < 00 (2-10)

A ssum ption  2.8. For any sequence {^n}n>i, if \Vn\ — y then f(x;r)n) — ► 0
at any x, except perhaps on a set X  which has zero measure according to Fq, 
and does not depend on the sequence {?7n}n>i-
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A ssu m p tion  2.9. For any sequence {r}n}n>i if On — ► 0 > then f{x\rjn) — ► 
f ( x ;  r]) a t any x,  except perhaps on a set X  which has zero measure according to 
Fo, and it may depend on the limit point rj but not on the sequence {T]n}n>i-

A ssu m p tion  2.10. f  |log f ( x ;  770) | dFo(x) < 0 0 .

T heorem  2.2 (Wald, Redner). I f  assumptions 2.6-2.10 are satisfied, then the 
sequence {on}n> 1 of maximum likelihood estimates is strongly consistent, i.e.

z as 
On ---- ► 00-

Roughly, Wald-Redner’s theorem above ensures tha t under some condition 
the maximum likelihood estimates is strongly consistent for the set of param eters 
C ( t)q) as defined in assumption 2.6. However, in order to get the previous result 
the sequence of the maximizers of the likelihood has to exist, i.e. the likelihood 
has to have a maximum. For some popular mixture distributions this does not 
happen, for instance the case of mixtures of univariate Gaussian distributions 
when the param eter set is not suitably restricted. In these cases a constrained 
maximum likelihood estimate has to be considered.

Asymptotic results are only meaningful for large samples. Hence in order to 
make sense of these results in practical applications we need to understand what 
happens when n  is not large enough. In small samples simulation results showed 
tha t when the components are not well separated the maximum likelihood method 
does not provide very accurate estimates. Redner and Walker (1984) presented 
a simulation study where the maximum likelihood estimates are computed for 
a model with two univariate homoscedastic normal components with proportion 
param eter 7r =  0.3, standard deviation cr = 1 and pi — P2 = 1- They showed th a t 
a sample size of 106 observations is needed to ensure th a t the estimated standard 
deviation of each component of the estimated vector of param eters (7Ti, pi,  112, or) 
is less than or equal to 0.1. Several authors addressed the issue of the poor per­
formance of the maximum likelihood estimates when the sample size is small. 
Hosmer (1973) argued th a t with poor separation of the components and with a 
sample size of about hundred observations, maximum likelihood estimates have 
to be handled with extreme care. On the other hand Day (1969) and Hassel- 
blad (1966) found tha t the maximum likelihood estimator performs better than 
the method of moments estimator especially when the components are poorly 
separated. Hosmer (1978) argued th a t the moment generating function method 
proposed by Quandt and Ramsey (1978) outperforms the maximum likelihood 
estimator in small samples.
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§2.4. T he EM  algorithm

The expectation maximization algorithm, also known as EM algorithm, is a 
widely used device to compute maximum likelihood estimates in the case of in­
complete data. In many situations the algorithm provides sequence of steps at 
which exact computations are made, and the iterative procedure leads to  a local 
maximum of the likelihood function. The algorithm was first developed for a 
number of special cases and the first unifying theory was given in Dempster et al. 
(1977). Here we present the general theory and then we will give an overview of 
some issues about its application to  finite mixtures models.

Let y  be a measurable space called the “complete data  space” , y x(y)  
is a measurable map of y  onto a measurable space X  called the “incomplete 
data space” . Let f ( y , 4 >) be a density function over y ,  with ^  G fi an indexing 
param eter for / .  The density g(x; 4>) is the density induced by f ( y ; 4>) through the 
map x(y).  The ultimate goal here is to have a maximum likelihood estimate of <j>. 
For a given x  G X  the aim of the EM algorithm is to  maximize the “incomplete 
data log-likelihood” L(<f>) =  log p(:r; q.i») over 12. Let y{x)  — { j / G } 7 : x(y)  =  x}. 
The conditional density k(y\x;4>) on y  is given by

k{y\x] (j)) = ^ , for x(y)  G X .
9 W  <p)

For any <f>, <\>' G 12 we construct two functions

Q O M ') :=  [  f i o g f ( y , 4>)]k(y\x;4)f)dy.
Jy(x)

(2 .11)

and
i f ( 0 , 0 ') :=  [  \[ogk{y\x-,(j))]k{y\x\(l)')dy,

Jy(x)
(2 .12)

provided th a t the integrals above are well-defined. By properties of logarithms it 
easy to  see th a t L(<f>) = Q(q!>, </>') — H(4>, (j)').

Let t =  0,1, . .T denote the iteration index, and the value of <fi derived at 
the tth  iteration. Let <^°) be an arbitrarily fixed initial value for the param eter 
of interest. The algorithm is as follows:

1. fix G 12;

2. For all t = 1, 2,... do the following up to convergence:
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(a) E-step: determine Q(0, 0 ^ ) ;

(b) M -step: choose 0(t+1) =  a rg m a x ^ ^ Q ^ ,  0^0-

In order to be well-defined the algorithm needs th a t the maximization in the 
M -step to be well-defined, i.e. we need to assume th a t argmax^gQ Q(0, 00 exists 
for any choice of 0' £ ft. The key fact about the EM algorithm lies in the fact th a t 
at each iteration the likelihood is increased, i.e. L(0(t+1O > L (0 ^ ) ,  t =  0,1 , . . . .  
This is because the M -step ensures Q{(f^t+l\(jP^) > Q (0 ^ , 0 ^ )  and by Jensen’s 
inequality i /(0 ( t+1O 0 ^ )  < H . This fact implies th a t the sequence of 
log-likelihood values at each step {!/*)]• >Q is monotonically increasing. This is 
a fundamental property th a t will be of central importance to show convergence 
of the algorithm.

2-4-1 — Convergence of the E M  algorithm

In this section we ask ourself whether convergence of the algorithm is achieved, 
and what can be said about { 0 ^ } t>o- Convergence of the algorithm has been 
established first by Dempster et al. (1977). Their paper contained some mistakes. 
Wu (1983) corrected those mistakes and presented the theory tha t we will review 
here. In general it is not true th a t the EM algorithm converges to a point of 
the param eter space where the log-likelihood function is globally maximized. As 
we have already pointed out, usually the log-likelihood function has several local 
maxima. It can also have flat regions where the log-likelihood has very tiny vari­
ations. Since the algorithm should stop when two successive iterations differ by 
less than a small value it is likely th a t it stops at some point which might not 
even be a local maximum.

Redner and Walker (1984) gave a portm anteau theorem about convergence 
which we will report here. This theorem essentially summarizes the paper of Wu 
(1983). We assume th a t (2.11) and (2.12) are well-defined for every (p,4>' £ ft and 
tha t axgmax^g^ Q{4>, 00 exists for any choice of 0 ' € ft.

T heorem  2.3. For a given 0̂ °̂  £ ft, let { 0 ^ } t>o be a sequence in fl satisfying

0 (t+1) £ argm ax^en Q(0, 0 (t)) t = 1 , 2 , . . . ;

Then { £ (0 (t))}t>o increases monotonically to a limit L* (possibly infinite). Fur­
thermore, denoting by C the set of limit points of { 0 ^ } t>o in ft, one has the 
following:
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1 . C is closed in Q;

2 . I f  {4>( t ) } t> 0  is contained in a compact subset of fl, then £  is compact;

is contained in a compact subset of Q, and || <p^ — (fP 1̂ || —* 0
as t —» oo for a suitable norm ||-|| on fl, then £  is connected as well as 
compact;

4. I f  L((f)) is continuous in Q, and £  ^  0, then L* is finite and L((f>) = L* for  

4> £ £;

5 . I f  Q(4>t4>>) and H((f)^(f)') are continuous in (f) and and differentiable at
<f = <f)' — <f> G £,  then L* is a stationary point of L and the likelihood
equations = 0 are satisfied at 4> G £.

The theorem above characterizes the set of all limit points of the sequence 
{(f> ^ } t > 0 provided by the EM algorithm. However, the theorem does not guar­
antee tha t L* is the global maximum of the log-likelihood function when it exists. 
The theorem developed above only says th a t under some regularity conditions the 
EM algorithm converges to a point of stationarity of the log-likelihood function. 
This means th a t the question of whether a converging sequence of iterations leads 
to the maximum likelihood estimate remains unanswered. Wu (1983) highlighted 
th a t the question can only be answered in particular cases tha t are difficult to  
check. For example when L(<f) is unimodal in Q, and continuity assumptions over 
Q are satisfied, then the sequence { < ^ } t>0 produced by the EM algorithm con­
verges to the unique global maximum of L  which coincides with the maximum 
likelihood estimator. Also when Q((jP+l\  (fP^) > Q((fP\ (fP^) a t each iteration 
it is possible to show tha t L* in the theorem 2.3 is at least a local maximum. 
However the condition Q ( p t+1\ < f ^ )  > Q((fP\<fP^) is not easily verifiable and 
in general it is not easy to assess whether the sequence provided by the EM 
algorithm converges to the global maximum of the log-likelihood.

2-4-2 — E M  algorithm for mixture distributions

Computation of the maximum of the likelihood of a sample of unclassified data 
when the population is assumed to be distributed according to  a finite mixture 
distribution is not easy. We interpret the sample of un-classified data  as an 
incomplete data vector where the component label is the missing information. 
We are interested in the situation described in Section 1.3.2 in Chapter 1, and 
all the notations remain the same if not otherwise specified.
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The observed vector Xi is being viewed as incomplete because the associ­
ated vector of component-labels zt is missing. The complete data  is given by 
the 2 n-tuple of vectors yc = (xi, X2 , . . . ,  x n, z\,  Z2 , ■ ■ ■, zn). Here the n-tuple z  =  
(zi, 2 2 , . . . ,  zn) are considered as realizations of the random variables Zi,  Z 2 , . . . ,  Z n 
previously described. As we already noticed, when X i ,  X 2 , - • •, X n are i.i.d., we 
will be willing to  assume th a t Z \ , Z %,. - •, Zn are distributed according to m ulti­
nomial distribution (see (1.3)). We denote the n-tuple of incomplete data with 
y0 = (xi ,X2 , . . .  , xn). The corresponding complete data likelihood is given by

to take the conditional expectation of the complete data log-likelihood given the 
observed data and the current value of the param eter at iteration t. Hence

P r (*) {Zij =  1 |y0} =  Tj(xi' Here Tj(xf, 77^ )  is the posterior probability th a t 
the observation x % has been produced by the j?th component mixture with the 
posterior probability evaluated a t the current approximation of the param eter

for j  =  l , 2 , . . . , s  and i = 1,2, . . . , n .  Using (2.13), (2.14) and (2.15) we have

n s

l c(v) : = n n < ^ ^
t=i j=i

thus the complete data log-likelihood is given by

s n

lc(<t>) = logL c(r)) -  EE z ^  (log7Tj +  log f j ( x i , d j ) ) . (2.13)
j = 1 i= i

The definition of the EM algorithm only requires to  derive the Q function (E - 
step) being maximized at each iteration (M -step). In the E-step we just have

QWi-.rr'1) = E„(,) Mvlvo)}- (2.14)

The notation E (t) means th a t the expectation is taken using . Now E (t) [Z^\yQ]

77^ ;  tha t is

(2.15)
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that

s n

Q(rj,rj{t)) =  E^t) EE zi j (log E? +  log f j ( x i, 9j)) \y0

j = 1 i=i
s n= EE E^w felyo] (log7Tj + l o g / J (x?. ^ ) )

j=l 1=1
5 n= EE Tj(xi;r)W) (logtTj + lo g  f j { x i , 6j))  (2.16)

j=i t=i

Given the current value of the param eter r)^\ at the M -step we choose 77^+1) as 
the maximizer of Q(t),7 For most finite mixture distributions 6j only affects
the density f j  so tha t the M -step consists of performing a number of separate 
maximizations. The t +  1st M -step for a general finite mixture distribution has 
solution

j  =  1 ,2 , . . .  ,s. Equation (2.17) ensures th a t at each step the proportions com­
puted are non-negative and sum up to one. This is not surprising because the 
expression in (2.17) is exactly the same as (2.7). The latter was derived solving 
the likelihood equations, and taking into account the constraints over the mixing 
proportion parameters. At each iteration the proportion relative to the j t h  com­
ponent is computed as the “average” posterior probability, tha t the observations 
Xi, i =  1, 2 , . . . , n, belong to the jith component mixture. The solution of the 
maximization problem in (2.18) has also a nice interpretation. In fact, 
in (2.18) can be seen as a weighted maximum likelihood of 6j  when the whole 
population is distributed according to Fj. Thus, 6^+l  ̂ has usually a closed form 
expression which makes the EM algorithm appealing.

In the case th a t f j ( x ; 6 j ) is the density of a Gaussian distribution for all 
j  =  1,2, . . . , s ;  with 6 j =  (/ij,<Jj) where /ij is the mean param eter and Oj the 
standard deviation, the M -step with respect of the Gaussian parameters is simple 
to compute

(2.17)

and
71

6 f +1) = argrnax6j ^  T j f a , 7?(t>) log 6 j), (2.18)
7=1
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M? +1) =  — 7----- m  (2.19)

and

- f 1’ \ £ " =1 ^

As explained in the previous section the EM algorithm does not always con­
verge to the global maximum of the log-likelihood (provided th a t it exists). A 
convergent sequence of estimates produced by the EM algorithm can either con­
verge to a local maximum, to a global maximum or to a point at which the log- 
likelihood is flat. Very often the log-likelihood function has several local peaks 
due to the random fluctuations in the sample at hand. One should always run 
the EM algorithm for a set of different starting values, and then choose the EM 
solution which gives the largest log-likelihood value. Seidel et al. (2000) showed 
tha t different strategies for starting values can lead to  quite different estimates 
in the context of mixtures of exponential distributions. In their book McLachlan 
and Peel (2000a) argued th a t in the case of multivariate normal mixtures the 
definition of appropriate starting values for the proportion parameters and vari­
ance matrices is of primary im portance in order to get reasonably good estimates. 
Several methods of fixing starting values have been proposed in the literature. 
McLachlan and Peel (2000a) review most of them. Karlis and Xekalaki (2003) 
conducted a simulation study in order to  compare the estimates obtained by 
the EM algorithm using different existing strategies to fix starting values. They 
also propose a new method based on a partitioning strategy of the data. Their 
simulation study is about mixtures of two and three univariate Gaussian com­
ponents with equal variances. One of the main findings in the paper by Karlis 
and Xekalaki (2003) is th a t even for the case of a two-component homoscedastic 
Gaussian mixture, some of the strategies commonly used in practice (e.g. ran­
dom starting values) can lead to estimates which are quite far from the underlying 
true param eter even for large sample size. They also showed tha t in the case of 
a three components homoscedastic Gaussian mixture all the existing methods 
including the one they proposed have difficulties when the proportions are not 
equal across the components. This is to stress th a t convergence of the EM algo­
rithm  is not about global convergence to the global maximizer of the likelihood. 
Different starting values can produce different estimates so tha t computations 
and conclusions have to be made with extreme care.
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§2.5. C onclusions

In this chapter we gave a summary of the estimation theory for finite mixture 
models when the number of components is fixed and known. We discussed several 
estimation methods tha t have been proposed in the literature and we highlighted 
the im portant role of the maximum likelihood method. We stressed the impor­
tance of identifiability and we discussed some of the im portant issues th a t relate 
identifiability to estimation. We presented the maximum likelihood theory as­
suming differentiability of the log-likelihood function. We also stated the strong 
consistency of the maximum likelihood estimator in a more general setup without 
differentiability assumptions. Even if the maximum likelihood estimator has very 
good asymptotic properties, in many situations the researcher must take care of 
the sample size. In fact, several authors have shown tha t this estimator can ex­
hibit poor performance when the sample size is not large enough. We presented 
the theory of the EM algorithm for finite mixtures and we also highlighted several 
issues about how a wrong choice of the starting values can affect its performance.
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C H A P T E R  3

Identification and Estimation of Location-Scale 
Mixtures with Uniform Noise

In this chapter we shall study a finite mixture model where uniform 
components are mixed with distributions belonging to some location- 
scale family. This class of models has been introduced by Fraley and 
Raftery (1998) in cluster analysis and have been suggested as a device 
to achieve robustness. Hennig (2004) studied robustness properties of 
several mixture models including the one we will study when there is 
just one uniform component. We will study identifiability, maximum 
likelihood estimation and com putation via the EM algorithm.

§3.1. In troduction

Maximum likelihood estimation of mixtures of Gaussian distributions is a widely 
used technique in cluster analysis, classification and density estimation. In cluster 
analysis maximum likelihood for Gaussian mixtures was first studied by Wolfe 
(1967) and Day (1969); a comprehensive source on the topic is the book by 
McLachlan and Peel (2000a). Banfield and Raftery (1993) introduced the term  
“model based cluster analysis” to identify all those methods where groups in a 
population under study are associated with the components of a mixture dis­
tribution. Banfield and Raftery (1993) contains an extensive summary on the 
subject. Applications to density estimation and discrimination are discussed in 
Hastie and Tibshirani (1996) and Roeder and Wasserman (1997). However, the 
maximum likelihood estimator of the param eters of a finite normal mixture with 
fixed number of components is not robust against outliers. In fact, the estim ator
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of the mean of each component is a weighted sum of observations and for each 
observation the weights sum up to 1 (see chapter 2 sec. 2.2 and sec. 2.4); th a t 
means th a t at least one of these param eters can become arbitrarily large if a 
single extreme point is added to the dataset.

A number of approaches has been proposed to overcome this problem. Fraley 
and Raftery (1998) proposed a model where a component accounting for “noise” is 
added to a mixture of Gaussian distributions. The noise is modelled as a uniform 
distribution on the convex hull (the range in one dimension) of the data. Another 
strategy is to model the data via finite mixtures of t-distributions instead of Nor­
mals, and the motivation is th a t t-distributions have heavy tails so th a t they are 
better in fitting data points distant from the center of the distribution. However, 
t-distributions are not able to fit extreme outliers (see Hennig, 2004). Maxi­
mum likelihood estimation of mixtures of t-distributions is extensively treated  in 
McLachlan and Peel (2000a). A further approach is to use robust estimators such 
as Huber (1964, 1981) M-estimators. These correspond to maximum likelihood 
estimators for finite mixtures of H uber’s least favorable distributions (see Huber, 
1964). M-estimators are considered in Campbell (1984), McLachlan and Basford 
(1988) and Kharin (1996), amongst others. These methods have been shown 
to have better robustness properties (see Banfield and Raftery, 1993; McLach­
lan and Peel, 2000a). Kharin (1996) and Hennig (2004) have studied theoretical 
foundations of such statistical procedures. Kharin (1996) studied the case of fi­
nite Gaussian mixtures with fixed number of components. He showed th a t as 
the sample size goes to infinity and under certain assumptions on the speed of 
the convergence of the proportion of contamination to 0, Huber’s M -estimator 
performs better than the maximum likelihood estimator. Hennig (2004) defined 
robustness measures for cluster analysis and studied robustness properties of the 
maximum likelihood estimator for mixtures of a general class of location-scale 
models including cases where the presence of outliers is taken into account by the 
addition of a “noise” component. Hennig (2004) also studied robustness of an 
estimator defined as the maximizer of an improper log-likelihood where a fixed 
constant (improper) density on the real line is added to a mixture of location- 
scale distributions. He showed th a t while the estimator with improper density is 
robust against extreme outliers, this is not the case for the maximum likelihood 
estimator of the model with uniform noise. However the model with uniform 
noise has good robustness properties when the outliers are not extremely large. 
In Chapter 4 we will show this by a Monte Carlo experiment.
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The main interest of this chapter is to  study identifiability and maximum 
likelihood estimation of a model with uniform noise. The case of the fixed im­
proper density will be analyzed in the next chapter. Banfield and Raftery (1993) 
proposed a model where one uniform distribution is mixed with a finite num­
ber of normal distributions (from now on this will be labeled “Gaussian-uniform 
mixture model”). In this chapter we will study the general case when a finite 
number of uniform distributions is mixed with a finite number of distributions 
belonging to  some family satisfying a given set of assumptions. The Gaussian- 
uniform mixture model will be a particular case of such a general class of models. 
For this class we will study identifiability, maximum likelihood estimation and 
computation of the maximum likelihood estimates.

In this section we introduce the notation and the main assumptions about the 
general model under study. Let 0 <  s <  oo be the number of components in our 
mixture distribution, and let q be the number of uniform components 0 <  q < s 
in the mixture. Let X  be a real valued random variable distributed according to  
the following distribution function:

where 77 =  (7r,0), ir =  (711, 7r2, . . . ,  7rs), 0 < tt3 < 1, ^ = 1 ^ 3  =  1- Here 6  =  
(#1 , 6 2 , . . . ,  0 S), where 6 k = ( ,  bk), a,k and bk take values on the real line, and 
—00 < a,k < bk < + 0 0  for each k  =  1, 2 , . . . ,  q. Thus n G (0, l ) s, 9k G © 1  :=  M2? 

for k = 1,2, . . . ,<7. The param eter 61 lies in some finite dimensional space © 2  

for each I = q + l ,q  + 2 , . . .  ,s. Furthermore the param eter space is denoted by 
r  :=  (0, l ) s x M.2q x ©2~9- U is the uniform distribution function, i.e.

k = 1, 2 , . . . ,  q, with 1^ being the indicator function of the set A. The distribution 
function U has the density

§3.2. T he m odel

Q s

(3.1)
I— <7 + 1

X — CLf*
U { x : @ k )  —  ^ l[afc,5fc] (^) +  l(bfc,+oo) ( x )

The distribution function $  belongs to  a family of distributions satisfying
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A ssum ption  3.1. $(x;0), 6 G ©2 , is absolutely continuous with respect to the 
Lebesgue measure. It has density 0(:r;0),0  G ©2 , which is continuous both with 
respect to x  G R  and 6  G ©2 .

For notational convenience we will often rewrite the model in (3.1) as

S

V) - = Y 1  * jFv3 (3-2)
j = 1

where Vj = {1 , 2} for j  =  1 , 2 , . . . ,  s, when Vj = 1 then FVj = U. whenever Vj =  2  

then FVj = $ . Moreover g(x’, 77) will denote the density of G{x-,rj).

§3.3. Identifiab ility

3.3.1 — Identifiability of ‘‘heterogeneous” mixtures

In section 1.5 (chapter 1) we introduced the identifiability problem for general 
finite mixtures. From now onward we will refer to definition 1.1 as “single family 
identifiability” . This wording will become clear in the next few paragraphs. In 
this section we define and study the identifiability of a class of models which 
consists of a mixture of distributions coming from different families. We are in 
a situation where a finite number of distributions belonging to a general class of 
continuous distributions is mixed with a finite number of uniform distributions. 
We call such a mixture distribution “heterogeneous” . Here the term heteroge­
neous mixtures means tha t the components in the mixture belong to different 
families of distributions. Such a statistical model can be very attractive in all 
those situations where the underlying heterogeneity in the data generating pro­
cess is strong enough to let us consider th a t groups of observations come from 
populations with completely different features. In fact the uniform distribution 
here is introduced as a probabilistic model for noise, while $  should represent the 
probabilistic structure of the clusters under study. Here we do not require th a t 
the number of components is known, nor do we require th a t the number of com­
ponents belonging to each of the families of distributions is known. This situation 
is more general than tha t of the model proposed by Fraley and Raftery (1998), 
where the number of uniform components is considered as fixed and known. In 
fact in the uniform-normal mixture model proposed by Fraley and Raftery (1998) 
the number of uniform components is fixed to be one.

We now refer to section 1.5 (chapter 1 ) where we presented the definition 
of identifiability as given by Teicher (1961). Let us assume th a t with
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k =  1, 2 , . . . ,  m, are all families of probability distribution functions. For each k , 
Fk(x;6 ) G 0 G ©&, and 0/- is some finite dimensional param eter space. A 
general element of the set of finite mixtures generated by the class S  = U™=1<̂ k 
will be called heterogenous mixture distribution. Teicher’s definition of identifi- 
ability does not require th a t the number of components in each family is fixed. 
However this is relevant in a situation where membership to different popula­
tion components have different meaning. In our model for example we want to  
distinguish between noise components and non-noise components, and we want 
tha t the number of distributions belonging to each of the family composing the 
mixture is identified. To see why definition 1.1 does not take into account the 
identifiability of family memberships let us consider some results in the paper by 
Atienza et al. (2006). The authors studied the identifiability a model proposed 
by Marrazzi et al. (1998) in the context of fitting the length of stay in a hospital; 
the model is a mixture of three components: one Lognormal, one Gamma and 
one Weibull distribution. Atienza et al. (2006) gave a new sufficient condition for 
identifiability of finite mixtures following Teicher’s definition, and baaed on this 
they showed the identifiability of the afore-mentioned class of mixtures. How­
ever, following the proof of their Theorem 3 it is clear tha t for some values of the 
parameters, a component having Gamma distribution cannot be distinguished 
from a component having Weibull distribution. Thus the number of components 
belonging to each family cannot be identified.

Here we will give a definition of identifiability which is similar to the one given 
by Teicher (1961) but adds some more restrictions so tha t family membership of 
components is taken into account in the sense explained above. It should now be 
clear why we named the identifiability defined by Teicher as “single family iden­
tifiability” . Before we give our definition, let us introduce some more notation.

We will consider the set of all heterogenous finite mixtures generated by S  
with a discrete mixing distribution. Let s < +oo be the number of components of 
the heterogenous mixture, and let c =  (ni,  n 2 , . . . ,  n m) be a vector of natural num­
bers where n*., k = 1 ,2 , . . .  ,m,  indicates the number of distributions belonging 
to & k being present in the mixture. From now on it is understood th a t c is finite, 
and of course it must be s = n k ■ We will call c the “composition” index.
J S  is the family of all the finite mixtures generated from S  with a discrete mix­
ing distribution. A general element of J S  will be H c(x-:rj) =  (x ’ @j)->
where kj G { 1 , 2 , . . . , m)  for j  = 1,2 , , s,  expresses the “family membership”

50



of the j th  component (e.g. &2 =  1 means tha t the distribution of the second 
mixture component belongs to J ^ i) .  The param eter rj lies in the param eter set 
f2, and 77 =  (7Ti,. . . ,  7rs , 6\, . . . ,  0S). We will consider the following definition:

D efin itio n  3.1 (Global Identifiability). Let Jff  be the class of finite mixtures 
generated by the class <f. Let Jif* C Jff, and H c 6 Jff*. Given

s

H c(x,rj) = '2 2 irjFVj(x;0j ) , 7Tj > O,0j ^ 0 r Vj ,r  = 1 ,2 , . . .  ,s,  j  ^  r,
3 = 1

and

z

Hc. ( x , v * ) = Y , 7Ti F'’A x '’ej ) ’* j > ° ’e ' j ? 6t  Vj ,k =  l , 2 , . . . , z ,  j ^ k - ,
3=1

if H c{’,rj) — H c*(-,rf) implies s = z, and th a t there exists a perm utation j  
of the indexes j  =  1 , 2 , . . . ,  s such th a t nj =  7r |, Oj =  6 -., kj =  kj, for kj, kj € 
{ 1 , 2 , . . . ,  m}  , and c =  c*, then we say th a t <§ generates globally identifiable finite 
mixture distributions in

As highlighted before, we use the wording global identifiability to make a 
distinction between the notion of identifiability given in definition 3.1 with the one 
given in definition 1.1. The latter refers to Teicher’s definition which we named 
“single family identifiability” . W ith reference to definition 3.1, we require th a t 
the perm utation of the component label (the index j )  is constructed so th a t for 
each family we identify the parameters, obtaining TTjF^ (x: 6j ) =  7r|F ^  (x: 0 |), 
and at the same time we require th a t the number of distributions identified in 
the family ^  is consistent with the composition index c. To see the relevance of 
this argument let us refer to the model proposed by Banfield and Raftery (1993). 
In th a t case we require th a t not only the uniform parameters, the Gaussian 
param eters and all proportions are identified but we also require th a t it is possible 
to identify the number of noise components and Gaussian components, and which 
param eter belongs to which family. Notice th a t we have defined identification for 
a subclass Jff* of the class of finite mixtures generated by <§. This allows to study 
identifiability also when we restrict some of the families For example in our 
situation we have to restrict the family of one-dimensional uniform distributions.

3.3.2 — The identifiability of the model with uniform noise

First, we will introduce some notation and assumptions and we also reconcile 
the exposition here with the notation used in the previous sections. We consider
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the model defined in Section 3.2 with the addition of the following definitions: 
(i) is the family of all uniform distributions with support on an interval; (ii) 
ê 2  is a family of one dimensional distributions satisfying assumption 3 .1 . Finite 
mixtures generated by & 2  are assumed to be identifiable in the sense of definition 
1 . 1 .

Let rii — q, ri2 — s — q and let c =  (q, s — q) be the composition index. Jt? 
is the family of finite mixtures generated by S’ =  U J^2 , obtained by mixing 
q distributions from and s — q distributions from ^ 2 - The function gc{x\rf) 
will denote the density of the distribution function Gc{x\rf) as defined in Section 
3.2. Gc(x ; 77) is an element of J f ,  with 77 G T. Jtf* C J4? is the set of mixtures 
generated by £  such tha t if Gc{x\ 77) belongs to  then [at , bt] fl [ar , br] =  0 for 
all r, t = 1 , 2 , . . . ,  q and r t.

To show identifiability here we will make use of arguments based on deriva­
tives so th a t it is necessary to introduce some more notation before we can state 
and prove the next result. The reason is th a t the uniform parameters coincide 
with the extreme of the uniform supports, and at these points the distribution 
function is not differentiable. By identifying the set of points where the distri­
bution function is not differentiable we have identified the uniform components. 
The density gc{x\rj) is discontinuous at a finite number of points, namely at 
x  € W  :=  {ai, 6 1 , 0 2 , 6 2 , . . . ,  ag, 6 9}. Thus by properties of the Riemann integral, 
dGc(x-,r))/dx — gc(x; 77) at all x  E R \1F. However, right and left derivatives of 
Gc at all points in W  exist and can be found by taking right and left limits of 
derivative quotients. The notation D ~ ( j7) and D+ (77') stands for the left and 
right derivative of Gc respectively, and these derivatives are evaluated at a point 
y when the parameter vector is 77', i.e.

, = lim Gc(.y +  t - , r / ) - G c( y r f )
y w ' no t

„+( ,) = l k a GJ ^ + t ; v ' ) - G c(y , y’)
y w ' no t

Computing these derivatives for the model (3.2) and for h — 1, 2 , . . . ,  q will give 
us

s - q

Dah^i) =
I—9+1
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D ih fa) =  T ~ z  h Y 1  'Kltfah'A)',h ah , . .l=q+ 1

= 673T + E
/=g+l

=  5 1  7170(6^0/).
Z=g+ 1

P ro p o s itio n  3.1. The class S  =  U Ĵ 2  generates globally identifiable hetero­
geneous mixtures in Jif* C Jif.

Proof. Let us assume tha t Gc{x\rj) =  ( jc* (a;; 77*), i.e.

s z

E ̂  (*; e>) = E ̂  to ffV> (3-3)
j= l j'=l

for every x, Vj G {1,2} and j  =  1, 2 , . . . ,  s , . . .  2 , i.e. without loss of generality we 
assume th a t s < z. For a given function f ( y ,  z) differentiable at least on a subset 
of its own domain, we define the set

provided tha t all at points in S f( z )  left and right partial derivatives of /  exist. 
The assumption tha t Gc(x;r]) =  Gc*(x]r}*) implies th a t S G (tj) = S G iv*)- If

c c*

i f  (A) stands for the cardinality of the set A,  then # ( S G (77)) =  # ( S G (v*)) — 2q
c c*

which means tha t the number of the uniform components q is uniquely identified.
Given a finite set A  := {2/1 , 2/2 ? • • •, Vn}, with yi G K al i i  =  1 , 2 , . . . ,  n, fi{A) G Mn
denotes a vector where the components are all the elements of A. Furthermore 
fi(A) is defined as /2 (A) = (y(1), y (2), . . .  , y (n)) where y(i) is such th a t y(i) < y (i+1) 
all i = 1 ,2 , . . .  , n  -  1 . Now, fi(SGc(r])) = (x(1), x (2), . . .  , x (2q)) = fi(SG^  (17*)) =  
(x*^,x*2y . . .  , 2 *2q))- reca^ ^  ^  is sef °I mixtures generated
by £  such tha t if Gc(x;rj) belongs to then [at ,bt] H [ar ,br\ = 0 for all
r , t  =  1 ,2 , . . . , ( 7  and r t. Thus, we take a set of pairwise different indexes

53



t{ £  { 1 ,2 , . . . ,  s} with i =  1 , 2 , . . . ,  q and we fix

Or i  ( a r i , b r i )

Or2 (CLf2')bf2) (^(3)? *̂ (4))5

@rg =  i a r q i b f q ) =  {%(2q- \ ) -> x (2q)) -

Let us take another set of pairwise different indexes U G {1, 2 , . . . ,  s} with i =  
1, 2 , . . . ,  q and we fix

%  =

=  K . % )  =  (*(S).*(4)).

/2(5'gc(t7)) =  /1{Sg V*)) implies th a t 0*. = 0£ for all i =  1,2, Let us
consider the equation

for alH =  1, 2 , . . . ,  q. By applying derivatives’ formula in page 51, these equations 
give 'Kri —  7 al H =  1, 2 , . . . ,  q. Hence, we have tha t there exists a perm utation 
j  of the indexes j  =  l , 2 , . . . , s , . . . z  such th a t if j  =  r* then j  =  t,;, for which 
Oj = (dj,b j) — 0* = (a?, 6*), 7rj = it* and Vj = m  =  1. By this we have

J J J J
identified the number of uniform components, and all their parameters. W ithout 
loss of generality let us assume th a t =  ti for all i =  1 , 2 , . . . , < 7  and th a t
r i , r 2, . . . , r g =  1 , 2

For j  = q -f 1 , q +  2 , . . . ,  s , . . . ,  z all the mixture components belong to & 2  

and q is identified as well. We consider the one-to-one transformation tt3 =  
7T-J-/(1  — Y lQj = 1 H') f°r J =  9  +  1, 9  +  2 , . . . ,  s , . . . ,  z; and 7f* is defined analogously. 
Note th a t the denominator of TCj is identified, in fact it depends on 7Ti, 7t2 , . . . ,  TTq 
which has been already identified. By (3.3) and the previous results we can write

s z

5 3  * j FVi(x , e j ) =  53 n;Fv, (x , e; ) .  (3 .4 )
j=q+ 1 j=q+ 1
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By assumption the class of finite mixtures over ^  is identifiable with respect to 
definition 1.1, thus we have that: (i) s = z  and these indexes are identified; (ii) 
there exists some permutation j  of indexes j  =  <7 + l , g + 2 , . . . , s  such th a t ttj =  tt? 
and 6 j  = 0-.. But, iij = tt*. implies 7Tj =  7rL Thus the s — q components belonging 
to J^, their parameters and their mixing proportions are identified. The proof is 
completed by noting tha t having identified q and s it also results th a t c = c*. ■

Given the proposition above we can easily get the next result.

C orollary 3.1. Let & 2  be the class of Gaussian distributions, then the class 
^  =  J^ 2  generates globally identifiable mixtures in Jif.

Proof. The result follows easily by noting that: (i) Gaussian distributions satisfy 
assumption 3.1; (ii) they are single family-identifiable by theorem 3 in Yakowitz 
and Spragins (1968). M

We defined so tha t it contains uniform distributions having not intersect­
ing support and this can be explained with an example. Let us assume th a t 
J^i contains all uniform distribution with support on a real interval, and let us 
consider the following mixture distribution

i t f (x ;O,2)  +  iu ( : r ;2 ,4 )  +  lF (T ;0 ) ,

where F  is some distribution function satisfying assumption 3.1. We notice th a t 
l/3 t/(x ;0 , 2) +  1 / 3t/(m; 2,4) =  2/3U(x;  0,4) so th a t identifiability does not hold. 
In fact, not only the parameters of the uniform distributions are not identifiable 
but also the composition index referring to the uniform components would not 
be identifiable.

In this section we studied the identifiability for some class of mixture dis­
tributions. We gave a new definition of identifiability which takes into account 
heterogeneity in the mixture, and we showed tha t a wide class of mixtures with 
uniform components are identifiable. In the literature the model consisting of a 
Gaussian-uniform mixture has been proposed by Fraley and Raftery (1998). This 
model has also been used to overcome problems of robustness. In this proposal 
the number of uniform components is fixed to be one, but we could be interested 
in determining whether the number of noise components is zero, one or even more 
than one. The estimation of the number of noise components requires th a t this 
number is identified. We extended this model to the case when more then one 
uniform components is added to a mixture of a class of continuous location-scale
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mixtures and we showed th a t the resulting mixture is identifiable. Mixtures with 
more than one uniform component are interesting because if we have more than 
one outlier which are well separated we could fit these outliers by more than one 
uniform components. For instance the empirical distribution of financial market 
risk measures (e.g. the so called market beta) often presents a small proportion 
of extreme points in both tails, and these points could be fitted using two uniform 
components.

§3.4. M axim um  likelihood estim ation

In this section we will study maximum likelihood estimation of the distribution 
in (3.1) when s and q axe fixed and known. We consider the problem of existence 
of the maximum likelihood estimate, as well as its asymptotic properties. We 
will show th a t under some constraint on the param eter space the maximum like­
lihood estimate exists. Furthermore we will show tha t this estimate is strongly 
consistent, i.e. the sequence of maximum likelihood estimates converges almost 
surely to the true parameter as the sample size becomes arbitrarily large.

3.4-1 — Existence

In his classical work, Day (1969) studied finite mixtures of normal distributions. 
He highlighted several issues including the problem of the unboundness of the like­
lihood function. Let us assume th a t for a given sample X n {Xi, X 2 , . . . ,  X n} 
is an i.i.d. sequence of random variables distributed according to a finite mix­
ture of m  Gaussian distributions. The log-likelihood function associated with a 
realization := {xi, X2 , . . . ,  x n} of X n is given by

n

L n ( 0  := J^ logp(x* ;£ ) 
i= l

where p(x;£) is the density of a finite mixture of m  Gaussian densities. Here 
£ =  (7Ti,. . . ,  7rm,//i, <7i,. . .  ,/ im, crm), with 7Tj being the proportion of the j th  
component, and fij and oy being the mean and standard deviation of the j t h  
component respectively; j  = 1,2, . . . , m .  If we fix fij =  Xj and take oj arbi­
trarily close to 0 then Ln(£) — > + 0 0 . This means th a t a global maximum fails 
to exist and numerical optimization algorithms would fail. As noted by Tanaka 
and Kawakami (2007), this problem also affects the wider class of location-scale 
mixtures. To overcome the unboundeness of the likelihood function two different 
constrained maximum likelihood estimators have been proposed.
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DeSarbo and Cron (1988) studied the case of finite mixtures of normal dis­
tributions and they constrained the param eter space requiring th a t Gj > c > 0, 
for all j  =  1, 2 , . . . ,  m.  These constraint lead to a well-defined optimization pro­
gram for which a maximum of the likelihood function exists and it is shown to be 
strongly consistent (see Redner, 1981). However the choice of the constant c is 
critical. If c is chosen large enough such th a t for some j  the true aj < c the maxi­
mum likelihood estimator is obviously not consistent. This issue has been studied 
by Tanaka and Kawakami (2007) for general location-scale finite mixtures. Let 
<7 j now be the scale parameter of the j th  location-scale component, Tanaka and 
Kawakami (2007) considered constraints of the type: oy- > cn, cn = cq exp(—n d), 
Co >  0, 0 <  d < 1, j  =  1, 2 , . . . , m.  As n  (the sample size) goes to infinity the 
sequence of constraining constants {cn}n>1 converges to 0. Under this type of 
constraints the authors showed th a t a sequence of maximum likelihood estimates 
is strongly consistent. A drawback of this kind of restriction is th a t maximum 
likelihood estimators are no longer scale equivariant because the scale of the data  
can be made smaller than the fixed constraining constant by multiplying all the 
observations by a real number.

In the case of normal mixtures Day (1969) noted tha t spurious maximiz­
ers of the likelihood function, corresponding to param eter points having some 
component standard deviations very small relative to others, are generated by 
small number of sample points grouped sufficiently close together. Dennis (1981) 
proposed to  constrain the param eter space imposing th a t minijcn/crj > c for a 
constant c E (0,1], i , j  =  1,2, . . . , s .  Hathaway (1985) showed th a t the afore­
mentioned set of constraints leads to a well posed optimization program and 
th a t the corresponding sequence of maximum likelihood estimates are strongly 
consistent. These types of constraints have the advantage th a t the constrained 
maximum likelihood estimator will be scale equivariant.

Here we study the existence of the maximum likelihood estimates of the model
(3.1) under some additional assumptions about <$. We do not trea t estimation 
of the number of components. Prom now onward it is assumed th a t s and q are 
fixed and known. Let us go back to the notation fixed in Section 3 . 2  and let 
us denote 6 i = (/i/, 0 7 ), /i* E R, 07 G R + \ {0} for each I =  q +  1 , q -j- 2 , . . . ,  s, 
61 G 0 2  :=  R s _ 9  x R^_9\  {0} for I = q +  1, q -f 2 , . . . ,  s. The param eter space is 
now denoted by T := [0 , l]s x R s ~ 9 x R^_9\  {0 }.
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A ssu m p tio n  3.2. The density 0 belongs to the location-scale family, i. e.

Furthermore 0(x; 9) is continuous with respect to 6 at all x, and it is measur­
able for every 9\ lim ^ i^^  <j>(z) = 0 , 0(0) < oo, lima|o 0(^5 9) = 0 for all x  ^  fi, 
moreover 0(x; 6) is monotonically increasing for each x  G (—oo, /i] and it is mono- 
tonically decreasing for each x  G \/i, +oo).

R e m a rk  3.1. This assumption implies th a t if x  = fi than lima|o 0(^5 #) =  +oo. 
Let us take two points: x  =  /i and y ^  /i. By the Assumption 3.2, as a  J, 0 then 
0(x;0) — > +oo, (f>(y;9) — ► 0; but 0(y; #)0(x; 0) — ► 0. This means th a t as a 
goes to zero 0(y; 9) converges to zero at speed faster than th a t of 0(x; 9) going 
to infinity.

Now we go back to model (3.1). Let Xn ■= {Al, X 2 , . . . ,  X n} be a se­
quence of i.i.d. random variables with distribution function G{x\rf). Let x n :=  
{xi,X 2 , . . .  ,x n} be a realization of X n with associated log-likelihood function

n
L n(y) ■= logg(xi; 11). (3.5)

i= i

Notice th a t if for some i and k we take x* =  a*,, a choice of b arbitrarily close to 
a,k will make the likelihood unbounded. The same happens in the normal m ixture 
case, if for some i and j  we choose X; =  and we take aj close to zero. The two 
effects are related by noting th a t taking a^ close to  b^ means tha t the variance 
of the kth. uniform component becomes arbitrarily small. In fact, we could have 
parameterized the uniform components in terms of the mean and scale param eter, 
however in order to  show the next results the parametrization adopted is more 
convenient.

We denote vj =  Oj for j  — q + 1 , . . . ,  s and Vj =  (bj—a,j)/y/l2 for j  — 1 , 2 , . . . ,  q 
(which is the standard deviation for the j th  uniform component). We define the 
constrained parameter set as

Tc := < 77 G T : min — > c > 0, c G (0,1] I . (3.6)
L t,r vr J

R e m a rk  3.2. This constraint implies th a t if one of the scale param eters gets ar­
bitrarily small all the other scale param eters have to converge to zero at the same 
rate. Let us take vmin := min-fr^;.) =  1 , . . . ,  s} and i;max := max {v j ; j  =  1 , . . . ,  s},
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the constraint above implies th a t vmin > cvmax. This implies th a t the param e­
ters of the kth uniform components have to be such th a t bj — a,j > \ / 1 2 ct'rn,ax. 
Therefore, if all the other variances are kept fixed, the constraint above puts a 
bound on the minimum length of the support of the uniform components.

We define the constrained maximum likelihood estim ator as

fin := argm axr?ercLn(77) (3.7)

The existence of fjn is not immediate. The constrained param eter set Tc is not 
compact, and moreover the log-likelihood function L n{r}) it is not continuous on 
T and Tc. The function L n{ri/) has infinitely many points of discontinuity. To 
see this let us assume, without loss of generality, tha t there is just one uniform 
component (i.e. q =  1 ), and let us simplify the notation by imposing a\ = a 
and b\ =  b. The notation stands for the ith  order statistic of the observed 

sample; i.e. <  x(i) <  x (i+i) fc>r  each X{ G Xn, i =  2, . . .  ,n  — 1. For every
vector rj such tha t £(i_i) <  a < x ^  L n(rj) is discontinuous at all points 77 such 
th a t b = X({), £ (j+1), • • •, x {n)- Similarly for all vector 77 such th a t x ^  < b < x (i+i) 
L n (rj) is discontinuous at all points rj such tha t a = X(\),X(2), ■ ■ ■,x (i)-

In order to show tha t L n(rj) achieves its maximum on Tc we will give some 
intermediate Lemmas before we state and prove the main proposition. The next 
remark will be useful throughout the proofs of the following lemmas and propo­
sition.

R e m a rk  3.3. Let 77 e Tc be such th a t the uniform parameters of the j th  uniform 
component fixed to be a,j =  xp and bj =  x t , for some j  =  1 , . . .  ,q and p , t  =
l , . . . , n ,  with p t and xp < x t . Let N ~ ( x p) =  [xp — £ ,xp) and N ^ ( x t ) = 
(xt , x t +  f], where £ and ^ are positive real numbers fixed so tha t N e{xp) and 
N^(x t ) do not contain any data point. If 77' G Tc coincides with 77 except th a t 
a’- G N e{xp) and 6 ' G N^(xt), it follows th a t L n(r}') < L n{rj). In fact, in order to 
maximize the log-likelihood function with respect to the parameters of the j th  
uniform component, we need to  choose the parameters so tha t the length of the 
support of the jfth uniform density is minimized for any given number of data  
points contained in it.

L em m a 3.1. Let x n contain at least s -f 1 distinct points. Then, under Assump­
tion 3.2, supr?€pc L n{rj) =  sup7?6 pc L n{rf), where Tc is a compact set contained in
r c.
Proof. We want to show th a t in order to maximize the value of L n {rj), the choice 
of 77 G Tc can be bounded. First let us fix some notations: we denote m n :=
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min{xi, i = l , . . . , n }  and M n max{xt , i =  The proof is now
divided in four parts.
Part A. Let us take rf E Tc with g!- < m n for some j  =  q +  1 , . . . ,  s. We also 
consider the vector rf' E Tc which is equal to rf except th a t g"  =  m n. This 
implies th a t L n(g') < L n(rf) .  By analogy we take rf E Tc with g!- > M n for 
some j  =  q +  1 , . . . ,  s. Then we consider the vector rf' E Tc which is equal to rf 
except th a t g"  =  M n. This implies tha t L n(rj') < L n (rj").
P art B. Now let us take rf E Tc such th a t a'k =  m n and b'k =  M n for some 
k = 1 , . . . ,  q. The parameter rf' E Tc is equal to rf except th a t the param eters 
of the kth uniform component are such tha t ak < m n and bk > M n. By the 
arguments given in Remark 3.3 it follows tha t L n{rj") < L n {rj').
P art C. Unboundness of the summands of the likelihood function can happen 
when the scale parameter of a location-scale density gets arbitrarily small and 
the corresponding location param eter is fixed to be equal to one of the data  points. 
Unboundness also happens when the support of a uniform density becomes so 
small tha t it collapses on a single data point. By Remark 3.2 we know th a t if 
one of the scale parameters gets arbitrarily close to zero, all the others also get 
arbitrarily close to zero at the same rate. Let us take a sequence {^t}t>i such 
tha t vl- I 0 for all j  =  1 , . . . ,  s while all the other param eters are fixed. For 
each t > 1 , let us fix (without loss of generality ) a1- = Xj for all j  =  1 , . . . ,  q 
and — Xj for all j  =  q +  1 , . . . ,  s. Furthermore vj  [ 0 means th a t cr* j  0 for 
all j  =  g +  1, . . .  s and 6* [ xj  for all j  =  1 . . .  q. By assumption the vector x n 
contains at least s +  1 points. W ithout loss of generality let as assume th a t x n 
contains just 5 +  1 points, the case when m  > s +  1 goes along the same lines. 
The log-likelihood Ls+i(ryf) can be rewritten as

Ls+iirf) = l o g  . (3.8)

By Assumption 3.2 as t — ► oo then g(xi ; rj1) — >• +oo for each i = 1 , . . . ,  5 , and 
g(xs+i] rf) — > 0. However by Remark 3.1, we know th a t g(xs+i;r]t ) converges to 
zero at a speed faster than of g(xi\ i f )  diverging to +oo, i — 1 , . . . ,  s. The la tter 
means th a t as t — ► oo then L s+\{rf) — > —oo.
Part D. If one of the scale param eter gets arbitrarily large, Vj becomes arbitrarily 
large for all j  =  1 , . . . ,  s. Let us take a sequence {rjt}t>l, where rjt is such th a t 
(?j — ► +oo for all j  = q +  1 , . . . ,  5 . The latter implies th a t bl- — a* — > +oc for 
all j  = 1 , . . . ,  q. By Assumption 3.2, as t — * oo then L n (rf) — ► —oo.
By the results in A-D we can conclude th a t s u p ^ ^  L n{rj) =  su p ^ j^  L n(rj); where
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r c :=  [0,1]® x ©! x 0 2, with

Oi := {6k E 0 i  : m n < ak < bk <  M n, k =  1, . . .  q} , (3.9)

and

0 2  :=  {0j E © 2  : rrin < Vj <  M n,a  < Oj < a, j  — q +  1 , . . . ,  s} , (3.10)

for some choice of the constants a, and a  such tha t 0 < g_ < a  <  oo. The sets ©i 
and © 2  axe now compact as well as the set Tc. ■

L em m a 3.2. Let Xn contain at least s +  1 distinct points, and let rj* E Tc 
be a local maximum for L n {rf). Then p* is such that for all k = 1 ,2 , . . .  ,q, 
(ak ^ k )  either coincides with a pair of distinct points in Xn, or (ak,b£) is such 
that =  \/12cvmax, where Vmax = max{v*,j  =  1 , . . . , s} and the interval
[a^,6 ]̂ contains at least one data point.

Proof. Under the assumptions of the Lemma above r f  is a local or a global 
maximum for the log-likelihood function over Tc. Going back to the proof of 
Lemma 3.1 (Part B) we recall th a t m n < < M n for all k =  1 , . . .  ,q, where
m n and M n are the minimum and the maximum data point respectively. Let us 
denote Vmax — max{t>*; j  =  1 , . . . , s}. Under the assumption th a t x n contains at 
least s +  1 distinct points, because of Part C in the proof of the Lemma 3.1 and 
Remark 3.2, it follows th a t — a*k > \ZT2cvmax > 0 for each k =  1 , . . . ,  q. Prom 
now onward p*(ak ,bk) E Tc denotes the param eter vector with all components 
equal to those of r f  except the parameters of the kth  uniform component which 
axe set to be ak,bk. Also if y is a data point, then N f ( y ) = [y — e,y)  and 
N f ( y )  = (y,y  + e], where e >  0 is such tha t N f ( y )  and N f ( y )  do not contain 
any data point. Let {x(i),X(2), ■ ■ • ,^(n)} be the set of all distinct points of x n 
such tha t x ^  < X(i+i) alH  =  1 , 2 , . . . ,  n — 1 . Let us consider two pairs of distinct 
data points, x ^ )  and X(e), with d, e = 1 , . . .  ,n, d < e, and x ^  —x > \/T 2 ci;ma3:. 
There are three cases: (i) the interval (x(d), X(e)) contains at least a pair of distinct 
data points; (ii) the interval (x(<f),X(e)) does not contains any data  point; (iii) the 
interval (x^)^(e)) contains just one data point.
Case (i). We assume tha t the interval (x(d),X(e)) contains more than one distinct 
data points. Let us consider the points X(d+i) and X(e- i) ,  with d +  1 < e — 1. 
Now there are two further cases: (i.a) X(e-i)  — x^+i)  > y/l2cvmax', or (i.b) 

•̂ (e—1) ‘Ud-t-l) ^  VlZcVmax-
Case (i.a). First we assume th a t X(e- i)  — £(d+i) >  \F&cvmax. By Remark 3.3
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we conclude th a t for any possible £, £ >  0 and any ak G N e ( x ^ )  and bk G 

A + (z (e)), L n(rj*(ak,bk)) < L n (r]*(x{d), x {e))). Applying the same argument as 
above: for any possible £,£ >  0 and any ak G N E (x{d+1)) and bk G 

L n(rj*(ak,bk)) < z (e-i)))- This means th a t either ?7*(z(<i+i), ^(e-i))
and 77* (5(d), i ( e)) are candidates for a local maximum. Case (i.b). We now assume 
the case when X(e_j) — £(d+i) <  cumax. As before, for any possible e, £ > 0 
and any a*, G N ~ ( x ^ )  and bk G A ^a^g)), it follows th a t L n(r}*(ak ,bk)) < 

L n{v*{x(d),X(e)))- Now, the pair (ak,bk) =  ((^(d+i), Z(e-i))) is not contained in 
the constrained parameter space since the constraint does not hold. Let us take 
any (a'k, b'k) such tha t b'k — a'k — y/l2cvmax and a'k < x^d+1  ̂ < X(e-i )  < b'k . Notice 
tha t the corresponding param eter 77' now lies on the boundary of r c. By the 
same argument as before, for any possible e,£ > 0  and any ak G N e (ajr.) and 
bk G N ^ ( b k), it follows tha t L n{rf(ak,bk)) < Ln{rf (a!k,b'k)). Which means th a t 
either r ] * ( x ^ , x ^ )  and r)*(ak,bk) are candidates for a local maximum.
Case (ii). We assume tha t the interval ( x ^ , x ^ )  does not contain any data  
point. We can apply the same argument as before and show th a t 77* (#(«*), 5(e)) 
is a local maximum. Case (iii). We assume th a t the interval ( r ^ ) , r ( e)) contains 
just a single distinct data point. By applying the same argument as in part (i.b), 
we conclude tha t either r ] * ( x ^ , x ^ )  and rj*(a'k ,bk) are candidates for a local 
maximum; where a'k and b'k are such th a t b'k — a'k =  y/T2cvmax and x ^  <  a'k and 
b’k < x (e).
Parts (i.a)-(iii) complete the proof. ■

Notice tha t the Lemma above only concentrates on a single uniform compo­
nent. When we deal with all the q uniform components we have to take into 
account tha t we are assuming th a t all uniform supports are disjoint interval. 
Hence it must be th a t al < b{ < , . . . , <  a* < b*.

P ro p o s itio n  3.2. Let Lemmas 3.1 and 3.2 hold. Under Assumption 3.1, L n (rj) 
achieves its maximum over r c.

Proof. Let 77* be a local maximum, and v* := m a x f^ , v ^ , . . . ,  f*}. We recall 
tha t Lemma 3.1 implies th a t vmax is contained in a closed and bounded real 
interval. For all possible values of 1;max (as defined in the previous lemma) we 
know all possibile values of the uniform parameters for which the corresponding 
77 is a candidate for a local maximum. This can be done applying Lemma 3.2. 
Let L n(fj) be the log-likelihood function when all uniform parameters are fixed 
in order to get a local or global maximum. The new vector of param eters is 
now 77 — (7Ti,. . . ,  7rs, 9q+i , . . . ,  0S), while all the uniform parameters are set as
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defined in the previous Lemma. The param eter fj lies in E [0, l]s x ©2, where ©2 
corresponds to the set defined in (4.8). By Assumption 3.1, L n(fj) is continuous on 
the compact set [O,l]s x 0 2, and hence has a maximum. Applying this argument 
for all possible values of we can find all possible local maxima of L n {rj) on 
Tc, and hence among these we get the global maximum. ■

3-4-2 — Asymptotic analysis

In this section we will study the asymptotic properties of the estimator defined 
in (3.7) and under some additional assumptions we shall show th a t it is strongly 
consistent for the true parameter. The technique usually used to show consistency 
and asymptotic normality for the sequence of the maximum likelihood estimates 
consists of assuming differentiability of the likelihood function, plus other regu­
larity conditions about continuity and integrability of derivatives of the likelihood 
function up to the third order. The afore-mentioned set of assumptions is also 
known as Cramer-Rao regularity conditions. The standard asymptotic analysis 
for maximum likelihood estimators can not be used here. We have several prob­
lems: (i) the model (3.1) implies a likelihood function with infinitely many dis­
continuity points; (ii) in order to  achieve a global maximum for the log-likelihood 
we need to restrict the param eter space to a set which is not compact; (iii) the 
distribution we want to estimate is identifiable only up to label switching.

Wald (1949) studied a general class of estimators of which the maximum 
likelihood is a particular case, and he showed strong consistency under general 
conditions not involving derivatives of the likelihood function. However, in W ald’s 
approach it is assumed th a t the param eter space is compact and th a t the model 
is fully identifiable. This is not the case in our situation. In fact, the param e­
ter space is not compact because we allow each cq >  0 for all / =  q +  1 , . . . ,  s 
and ak < bk k =  1 , . . . ,  q. Furthermore, full identifiability is not achieved. In 
fact by Proposition 3.1 we are able to distinguish two distributions in &  only 
up to components label switching. Redner (1981) extended the results in Wald 
(1949). First he defined consistency for sequences of estimates of param eters of 
non-identifiable distributions, and then he showed the consistency of sequences of 
maximum likelihood estimates for such distributions. However, Redner’s theory 
deals with compact param eter spaces. Kiefer and Wolfowitz (1956) studied the 
class of estimators introduced by Wald (1949) in the case when the param eter 
space is not compact. On the other hand the authors assume full identifiability 
of the model as in Wald (1949).
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Hathaway (1985) studied the strong consistency of the maximum likelihood 
sequence for finite mixtures of Gaussian distributions on a constrained set of the 
same kind as (3.6). The author used the theory of Kiefer and Wolfowitz (1956) 
with an approach similar to tha t employed by Redner (1981). Here we will adopt 
a similar approach. We will give some additional notation, and after th a t we 
shall state and prove some intermediate lemmas.

Prom now onward 770 E  Tc will denote the true parameter, i.e. G(x.t)q) is the 
distribution which generated the sample Xn.  As in Kiefer and Wolfowitz (1956) 
we define a metric S on T:

3s
V*) := E | arctan rf  — arctan r f  | ,

3=1

for all 77, 77* 6 T with rf  being the jrth component of the vector 77. We complete 
the set Tc with all limits of its Cauchy sequences. That is, Tc is the set Tc along 
with the limits of its Cauchy sequences in the sense of 5. As in Hathaway (1985) 
we will show tha t sufficient conditions given by Kiefer and Wolfowitz (1956) hold. 
In some cases this set of sufficient conditions is not easy to  show for the density of 
one observation. In Section 6 of Kiefer and Wolfowitz (1956) it is argued th a t in 
some cases it is easier to work with the joint density of a vector of observations. 
This strategy is discussed in more detail by Perlman (1972).

Let Y  =  (Ai, X 2 , ■.., X m) be a vector of m  random variables independently 
distributed according to G(x; 77). Let gm (y ; rf) the joint density of the component 
of Y.

L em m a 3.3. We assume that {77̂  }t>1 is a sequence in T c and 77* E f c. For every 
sequence rf  — » r f , gm(y',yt) — ► gm{y',r)*); except perhaps on a set E  C Rm 
which depends on 77* and whose Lebesgue measure is zero.

Proof. Since 4> is continuous (Assumption 3.1) we only have to take care of the 
discontinuities introduced by the uniform components. Let us take a sequence 
{77*} > 1 converging to r f  in f c. If the point y E  Rm, y =  (xi, x2, . . . ,  x m) is such 
tha t Xi 7  ̂a^ and Xj bI for all z =  1 , 2 , . . . ,  777. and k = 1 , 2 , . . . .  q than it easy to 
see tha t the thesis of the statem ent holds because l[at b*](x,:) — ► l[a*,6*] (^?.) f°r 
all k , i. This is not the case for all points y’ E  E  where for some k and i there is 
some al  =  x ' and/or =  x '. Thus the statem ent above holds, in fact the set E  
depends on the limit point r f  and has zero Lebesgue measure. ■
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The joint density of m  observations <7m(y; 77) is itself a mixture of sm compo­
nents each one having the form

rn
<?(?/; 7, 7?) =  I I  fpr(Xr'i°jr)l

r= 1

where the param eter 7  denotes the vector of indexes (ji,  J 2 , • • • , jm)  w ith j r G 
{1,2, . . . , s }  for all r =  1,2 Moreover, pr =  1 if j r G {1, . . . ,<7}, and
pr = 2 if j r G {q +  1, . . .  , s}. As indicated before f i  = u and — 4>. Also, 

= (aj n bjr) for Jr e {1, 2, . .  -, q} and 6jr = (pjr , aj r ) for j r G {q +  1 , . . . ,  s}. 
For any 7  =  (ji, j 2, ■ ■ ■ J m )  let us denote

771
*r(7) =

r = l

The joint density of the vector y can be written as

sm

9m(y;v) = ^ 2 ^ ( i h ) g ( y n h , v )
h= 1

where 7 1 , . . . ,  7 sm are all possible vectors 7  obtained by combining the sets of 
indexes {ji,  j 2, • • •, jm}  with j r G {1, 2 , . . . ,  s} for all r  =  1, 2 , . . . ,  m.

Now we prove two intermediate Lemmas which will be useful to show th a t 
Kiefer-Wolfovitz sufficient conditions for the consistency of the maximum likeli­
hood estimator are satisfied for the joint density of m  observations, w ith m  > s. 
From now onward E will denote the expectation operator under the distribution 
G; Erj'f stands for the expectation of the function /  under the distribution G 
with the parameter 77'. Before to state and prove the next Lemma we consider 
the following

A ssu m p tio n  3.3. For some j  =  q +  1 , . . . ,  s, E ^  log 4>(x; //■, cr°) > — 0 0 , where 
pP-, a® are components of rjo

L em m a 3.4. Let Assumption 3.3 hold. Then for any m  > s Evo logpm(y; 770) > 
—0 0 .

Proof. Let us choose h* such that: 7 *̂ =  ■ ■ ■ ,j*},  j* £ {<? +  1, • • •, s}, and
j* is such th a t E ^  log 0(x; pP-*, cr®,) > — 0 0 . The existence of such a 7 h* is ensured
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by Assumption 3.3. The following chain of inequalities completes the proof:

E770 9 m (ViVo) = E770 ' ° g E  *(7h)9(y,nfh,'Oo) > Evo l o g 7r (7^ ) ^ ( y ; 7/i* ,7?o) >
h=l

m
l o g T T ^ . )  +  lo g g(y; jh*, 770) >  l o g T r ^ . )  +  E770 £  log</>(xr ;^°» ,< 7° ,)  >

r — 1
m

log 7r(7^.) +  E ^  log (j)(xr - /i° ., o-°.) >  -o o
r — 1

In order to prove the next Lemma a further Assumption is needed.

A ssu m p tio n  3.4. Let X  and Y  be two random variables independently dis­
tributed according to G , and let denote the expectation under (7, then

Erjo sup log /I, a) < + 0 0 , (3.11)
(yLX,cr)€KxR-|- &

for any finite t > 1 .

The Assumption above is fulfilled when f> is Gaussian, this will be stated in 
a Corollary 3.2.

L em m a 3.5. Let Assumptions 3.2 and 3.4, hold, then for any m  > s,

Erjc sup loggm(y; rf) < + 0 0 . 
r?erc

Proof. The thesis of the Lemma is true if

Er70 sup log g(y; 7 , 77) < + 0 0  (3.12)

holds for all possible indexes 7 .  In order to show (3.12) we introduce a convenient 
parametrization of the uniform components in G in term s of their means and 
standard deviations1. For all A; =  1, 2 , . . . ,  q we fix fik =  (ak +  bk)/2, cr*. =  
{bk ~  ak) /VT2. N ow u(x; 6k) =  u{x\ Pk,&k) with

u { x \ p k , ° k )  =  ^ / Y 2 a k ^ ^ k - V 3 a k -iMk+ V 3 a k}'

1Here the parametrization of the uniform components in terms of their means and standard 
deviations eases the notation.
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We now assume tha t m  = s +  1. For each index 7  all the factors of g(y','y,T]) 
are bounded over r c unless we take aPr close to 0 and fiPr = x r for some r =
1 , 2 , . . . ,  5  + 1  and pr G {1, 2}. Let gm(y, J, v) be such th a t s — 1 of its components 
are set such th a t their location parameters are equal s — 1 of the components in 
y. Hence for some indexes h, t G {1 ,2 , . . . ,  s +  1} and 2  E {1, 2 , . . . ,  s +  1} we can 
write

sup log(?(y;7,77) < sup log Q - ^ - f p ^ X h ]  p z , az) fpt( x p p z , <j2), (3.13)
verc T?erc Gz

where Q is some finite constant.
We now consider the above inequality in three possible cases: (i) ph = Pt — 2; 
(ii) ph = p t = 1; (iii) ph = 1 and pt = 2.
Case (i). If ph = Pt = 2, then f Ph = f Ph =  0, applying the operator E^0 on both 
the left and right-hand side of (3.13), by Assumption 3.4 the condition (3.12) 
holds proving the statement.
Case (ii). If ph = Pt = 1, then f Ph =  f Ph = u. Let us introduce the function 

A l  ( x t , X h ]  P z , & z )  =  l o g  8 + 1  l [ Mz-V ^ o -z ;M2+ v /3 ^ ] ( ; r ^ )^ [ /x 2- v /3 a 2 ;Mz +  V/3o--](:r:i)?
u z

with Q 1 a finite constant. We note tha t Ai(xf,  Xh\pz , &z) < T  < +0 0  for some
T  and any choice of p z and oz at any Xh and Xt. Whence

s u p  A l  ( x t , xh-,pz,(7z) < T  < + 0 0 .
■nerc

This means tha t the condition (3.12) holds proving the statement.
Case (iii). Let us now assume th a t Ph — 1 and Pt — 2 then f Ph =  u and f Pi =  0. 
We introduce the function

A 2 ( X t ,  Xh,  p z , Gz )  — l o g  S+1 -̂{ij,z - y / S a z ;^z + V S a z -,} ( x h ) 4>( x t i  P z ,  a z )?

where Q2 is some constant. By Assumption 3.2

A / . f log -SfT0 (£v ££), if x t , x h e [pz -  \[Zvz \ p z +  V3cr^; ];
A  2 \ X U X h - , P z , ( y Z) =  \

[ —0 0 , otherwise.

We observe tha t for some T 7, A 2{xt , Xh’, p z , <?z) < T'  < + 0 0  for any choice of 
(,Pz, &z) at any Xh and x t except when x t = Xh- In fact when x t — Xh we can take 
P z  = %t — Xh and az j  0 making A 2(pz , <xz) approaching to + 0 0 . Notice th a t the
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set of points where Xh =  Xt has zero Lebesgue measure in R2. Whence

Em sup A 2{xu x h\ p z , a z) =  
v e r c

/+oo r+ o o
/ sup A 2 (xt , X h -[JLZ, crz)g(xt; r)0)g(xh-r)0)dxhdxt < T  <  + 0 0 ,

-OO J— OO H z , & z

which implies tha t (3.12) holds, and this proves the statement. The proof is 
completed by noting tha t any m  > s +  1 would not change the the cases (i)- 
On). ■

Wald (1949) and Kiefer and Wolfowitz (1956) assumed th a t the model is fully 
identifiable. In our context the definition of identifiability allows for components 
label switching. The approach used by Redner (1981) and Hathaway (1985) to 
overcome this difficulty is to work with a properly defined quotient topological 
space of the parameter set. We define the set

C(rf) :=  177 G Tc : J  g(t\rj)dt = J  g(t\rf)dt \/x G r J  .

Let f c be the quotient topological space obtained from Tc by identifying C(rf') to 
a point rf =  77'. As in Redner (1981) by using the theory of Kiefer and Wolfowitz 
(1956) it is possible to show strong consistency of the sequence of maximum 
likelihood estimates on the quotient space Tc. Before we state and prove the next 
result we need to set up some more notations:

JfE{rj) := {g e  Tc : V77* G C(rj') S(rj, 77*) < e} ,

where e > 0 .

P roposition  3.3. Under the assumptions of Lemmas 3.3, 3.4 and 3.5, for any 
e > 0 there exists h(e) G (0,1) such that

P r l  lim sup <  h(e)n \  = 1 (3.14)\"-°°,erc\^too)nr=i5(:I:.;l?o) W J

Proof. Assumptions 3.1 and 3.2 fulfill Assumptions 1 and 3 in Kiefer and Wol­
fowitz (1956) for the joint density if m  > s. On the other hand, Lemmas 3.3, 3.4 
and 3.5 fulfill Assumptions 2  and 5 in Kiefer and Wolfowitz (1956) for the joint 
density if m  > s. This implies th a t the result (2.12) in Kiefer and Wolfowitz 
(1956) holds (see also comments in Section 6  in Kiefer and Wolfowitz (1956) and
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the paper by Perlman (1972)) and hence the equation 3.14 above holds proving 
the statement. ■

The result above implies convergence of the maximum likelihood estim ator 
on the quotient space. The sequence of estimators defined in (3.7) is strongly 
consistent for f)o, i.e. ~r)n t)q. By Proposition 3.1 this means th a t whenever 
n  is infinitely large the sequence of estimates ~r\n converges almost surely to a 
point 7)0 which coincides with 770 up to permutation of the pairs (7^ 0 , #7,0 ) via 
permutation of the indexes j  — 1 , 2 , . . . ,  s. The case where (fi is a Gaussian density 
is easily obtainable.

C orollary 3.2. Let 4>{x\ p, a ) be the Gaussian density with mean parameter p  
and standard deviation a , then Proposition 3.3 holds.

Proof. When 0(x; p, a) is the Gaussian density with mean param eter p  and stan­
dard deviation a Assumptions 3.1-3.3 are fulfilled. The proof now rest on the 
verification of Assumption 3.4. Since <j){x\ p, a) is the Gaussian density then

log ^4>(x;p,a)<f>(y,p, a) = B (p ,a )  = l o g e x p { - - ^ [ ( x  -  p )2 + {y -  p )2}}

for some t > 1. The maximum of B(p,  a) exists on R x R+ , this can be verified 
along the same line of the arguments given in proof of the lemma 3.1 (parts A, 
C). Since B (p ,a )  is continuous and differentiable on R x R+ , we derive the first 
order conditions for a maxima and we obtain tha t these are satisfied at

* 2  +  2/ * \x — y\
p = —-— , and a —

2 -\/2(£ +  2)

By simple calculations we get

t+ 2
■£>( * ! 2 (t +  2 ) 2 exp{ — (t +  2)/2} T
B{p  , a ) =  log------------ :--------[Tjio------------  =  log12; — y\i+2 \x — y\t+2

for 0 < T  < + 0 0 , where the constant T  depends on t. Therefore

Ejh, sup log -^(f)(x; p, a)<l>(y, p, a) =  a*) (3.15)
( / i ,a )6 lx R + ®

But

/+OO /‘+OO
/ log \x -  y\g{x\ r)o)g{y; r)o)dxdy < + 0 0 .

-OO J — OO

The last inequality proves the statement. ■
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While we have shown th a t the sequence of maximum likelihood estimates 
converges with probability one to  the true param eter on the quotient space we 
do not provide any asymptotic normality result. There are two main reasons for 
this: (i) while probability statem ents such as strong or weak consistency on the 
quotient space are easily interpretable, this is not the case for the convergence 
in distribution; (ii) asymptotic normality is usually obtained approximating the 
log-likelihood function using Taylor expansion and then applying some central 
limit theorem. In the case under study the log-likelihood function is not even 
continuous and derivatives-based approximation is impossible.

§3.5. C om putations via  th e  EM  algorithm

In Chapter 2 Section 2.4 we introduced the general theory about the EM 
algorithm. Here we will discuss the algorithm for the likelihood function based on 
the mixture model with uniform noise. We rewrite the density of the distribution 
(3.2) as

S

9(x ,v)  ■= '5O,*jfvj f a 0 j ), (3.16)
j = 1

where all the notations of Section 3.2 are maintained, f Vj is the density of FVj. 
Therefore for j  =  1 , . . . ,  q, Vj =  1 and f Vj =  u ; for all j  =  q +  1 , . . . ,  s, Vj = 2  
and f Vj = (p. The EM algorithm we study here is intended to seek a maximum 
for the log-likelihood function ln (r]) = Y^i=i^°Z9{x i'->ri) over the constrained set 
Tc. Let the index t = 1, 2 , . . .  be the iteration index of the algorithm, and let us 
introduce the following notations

(t) fv3{xt-Of )
W- ■ — —-------------  •

M g{xi-,-qV))

Q(l7, Tj(t)) = ^ 2 ^ 2  WiJ l0g +  ]C  i t ,  W?3 l0g A  0y);
j = 1 i= 1 j — 1 i=1

the quantity wf^  can be interpreted as the estimated posterior probability at 
the iteration t th a t the observation Xi has been drawn from the j t h  mixture 
component. For a given choice of c e  (0,1], the algorithm is as follows:

1. fix € Tc;

2. For a l l t  =  1, 2,..., up to convergence do the following:
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(a) E-step: determine Q(rj, 77^ ) ;

(b) M -step: choose 77^+^ =  a r g m a x ^ ^ Q ^ ,  77^ ) .

In the case of our finite mixture the M-step at iteration t is simply to compute

7rj t+1) =  n_1 j  = 1’ (3-17)
7 - 1

71

0jt+1) =  a r g m a x ^ i c f ]  log f Vj(xn Qj) j  =  1, 2 , . . . ,  s. (3.18)
i= i

Wu (1983) established the theory of convergence of the EM algorithm under 
the assumption tha t the function Q computed in the E-step is continuous and 
differentiable at any iteration in all its arguments. Theorem 4.1 in Redner and 
Walker (1984) offers a summary of the results in Wu (1983). Under the assump­
tion th a t 4> is continuous with respect of Bj the M-step is clearly well-defined for 
all j  = <7+1, • • •, s. However the discontinuities introduced by the uniform compo­
nents create some inconvenience. Fraley and Raftery (1998) proposed the model 
with one uniform component plus a finite number of Gaussian components. They 
fixed the uniform parameters such th a t uniform support is the range of the data2. 
This approach was also followed by Dean and Raftery (2005) where they used 
a one-dimensional normal-uniform mixture model for differential gene expression 
detection for cDNA microarrays. In the next proposition we show th a t this ap­
proach leads to an inconsistent estimate. Before we do that, let us introduce 
some notations. Given the sample X n we define two functions: for a constant 
/ i G R ,  m n{h) :— min{:c; £  X n : Xi > h} and M n(h) : =  max {x t £  X n : X{ <  h}.

P ro p o s itio n  3.4. For j  = 1 ,2 , . . .  ,q let 6 with — 0 0  < < + 0 0  be

the initial values for the uniform parameters. Suppose that the interval [Uj°\ ^° ')] 
contains at least two data points. Let n be fixed and finite. Then at any iteration 
t — 1, 2 , . . .  an EM  solution is such that = m n( a ^ ) <  b ^  =  M n ( b ^ )  for all 
j  = l , 2 , . . . , q .

Proof. At iteration t +  1 the computation of the uniform parameters is done by 
solving the M-step for the uniform component, which is

n
(ajm ) ,&j1+1)) := argm ax(ab)e0l c 6j);

i= 1

2In their paper Fraley and Raftery (1998) used the convex hull of data since they treated the 
the multidimensional case.
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where the set ©i corresponds to  (4.7) and 0 i ?c := {6 G © 1  : a < 6},

( i )  1
wU  :=  v ------------------------------- '

Qi(aj-> bj) :=  log

(&(*) - a {f )  9(x i'i 77(t)) ’

bj dj

Prom now onward every argument is intended to be valid for all j  =  1, 2 , . . . ,  q. 
Let us consider the first iteration, i.e. t =  1 . Any CL'p < a.p and b p  > b p  is not 

a solution in the the M-step above. In fact for all i such th a t X{ bp]

we have w\°j =  0 , while for all i such th a t x t 6  [aP  ,bp]  it results th a t 

(bP  — a ^ ) -1 < ( b p  — a ^ ) -1 . The latter implies tha t for every i = 1, 2 , . . . ,  n 

w p q i ( a , p , b P )  < w P jq i (aP ,bP ) .  Therefore the solution for the M-step has 

to be searched in [0 ^ , 6 ^ ] .  For all i such tha t Xi € > 0 .  If

xi [0 ^ , 6 ^ ]  it follows th a t q i ( a p , b P )  = —oo. Hence, the optimal solu­

tion is thus to take the smallest interval containing all Xi £ [ap  -b^p], therefore 

a P  =  m n( a P ) and b^p = M n(bP).  If we assume tha t a p  and b^p are two 

data points, then it is easy to  see th a t a,p = a p  and b p  = b p .  Now since 

m n( a p ) and M n(b p )  are two data points, taking t  =  2  and applying the same 

argument would lead us to conclude tha t a p  = m n ( a p ) and h p  =  M n( b P ) at
any iteration t = 1 ,2 ,___ Notice th a t since the param eter has to  lie in Tc, then
a choice of initial values such th a t m n ( a p )  < Mn ( b P ) completes the proof. ■

Let us assume tha t is the limit point3 of an EM run for a given set of 
starting values when the sample is X^.  We consider a random sequence j t p  |

of starting values, for each n we initialize the algorithm with rjn'* and we compute 
the limit point . We assume th a t the sequence of starting values for the 
uniform parameters ^ ° n ) | > converges in probability to the finite limits

(aj°oo’ ^foo) f°r 3 ~  : 2 , . . . ,  g. We recall th a t aJ;o and bj.o are the true uniform
parameters.

P ro p o s itio n  3.5. I f  b^P) ̂  (aj,o> kj, o) f or aH j  =  1? 2 . . . .  ,q, the sequence
{rlnM }n>i d°es n°t converge in probability to t)q.

Proof. It follows easily from Proposition (3.4). We showed th a t for n  fixed an EM 
run will lead us to a f p  =  m n ( a ^ )  and b f P  =  Afn(6 ^ ) . But m n ( a p )  a f ^

3Up to this point we did not discuss about convergence of the EM algorithm for this model.
We take convergence of the algorithm for granted at this point.
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If we have one uniform component and we always fix <  m in{X n} and 
fen0'* > max {Xn} as Fraley and Raftery (1998) proposed, it is easy to see th a t for n 
large the estimate computed by the EM algorithm are m n (an ) — min {Xn} — > 
—oo and M n (bn ■*) =  max {Xn} + 0 0 . Which means th a t the uniform compo­
nent estimator vanishes as n  gets large.

Proposition 3.4 above simply says tha t whatever is the pair of initial values 
for the parameters of each of the uniform components, if they coincide with a 
pair of distinct data points, then the EM algorithm will not update them. If 
these initial values do not coincide with pairs of distinct data points then they 
are updated only at the first step with pairs of data points. Proposition 3.4 
together with Proposition 3.3 suggest a way to implement the EM algorithm 
which eventually lead to a maximum likelihood estimate. The la tter is ju st to 
initialize the algorithm with the uniform components initialized for all pairs of 
data points, then for each initialization we compute a solution and we choose the 
one associated with the largest likelihood.

Let us put it formally. The strongly consistent constrained maximum likeli­
hood estimator defined in (3.7) is such th a t the estimates of dj^n and bj^n coincide 
with data points for all n  and j  =  1,2, . . .  ,q.. Let Dn be the set of all pairs 
of distinct points of the observed sample Xn such tha t if (xr , x p) 6  D n then 
x r < xp, for p ,r  =  1, 2 , . . .  , n  and r  ^  p. Assuming th a t there are z < n  dis­
tinct points in xn, the cardinality of D n will be d = z(z  — l)/2.  Let Yn be the 
set of all possible unordered ^-tuples of elements of D n, assuming th a t d > q. 
The cardinality of Yn will be h =  (d +  q)\/(d\q\). We denote an element of 
Yn with yr = ((ai,r, ,r), (a2 ,r, ^2,r), • • •, (aq,r, bq,r)); the vector 7]r is the param ­
eter 77 E r  with the uniform param eters set to be pairs of distinct data  points: 

Vr =  (TL,r, • • •, 7Ts,r,Vr, #g+i,r, • • •, @s,r)- As before the iteration index is t while 
e >  0 is a fixed constant. Moreover for r  =  1 , 2 , . . . ,  h



and s n s n

Q i V r , ^ )  = Y 1 ^ 2 Wt l r  +  Y  5 Z  WiJ,r ^ g  f Vj (x7 ~ 0^r) .
j=l i— 1 j =1 i=l

We now give the afore-mentioned implementation of the EM algorithm:

1. For r = 1 , 2 , . . . ,  h fix t t ^ ,  t t ^ ,  . . . ,  and ^ + 1>r, . . . ,  0 $ ,

2. For all r = 1 , 2 , . . . ,  h do {
for all t = 1 , 2 , up to convergence compute the following:

(a) E-step: determine Q(r]r , 77̂ ) ;

(b) M-step: choose = axgmaxr}r£rcQ(r]r , 77̂ ) .

}
Store ln (r7*), where 77* is the param eter for which convergence in the con­
dition above occurs.

3. Compute 77* =  argmax,. {Zn(?7r)}r=i

That is, in the M-step we get rid off the maximization over the uniform param ­
eters. In fact, as noted before by Lemma 3.2, if we set the uniform param eters 
to distinct pairs of points we find a local maximum for the likelihood function. 
This follows from the fact th a t the log-likelihood function is at a local maximum 
each time the uniform parameters are set to be a pair of distinct points. Let us 
denote © 2 ,c :=  {0 G ©2 '■ mini j  <r7;\<Jj > c}, the M-step for each r  =  1, 2 , . . . ,  h is 
just to compute

7^r+1) =  77“ 1 W ^ r, (3-19)

n
^ {j , r 1)’crj>+1)) =  arg max Y wi?jr log 0(^5 (3 -2 0 )J (H^j )ee2,c^  ,J’

When (j> is the Gaussian density, this is just the constrained problem studied 
in Hathaway (1986). Notice tha t the constraint with respect of the uniform 
parameters is embodied in the construction of the set Yn. Convergence of the 
afore-mentioned EM algorithm follows easily:

P ro p o s itio n  3.6. For each r =  1 , 2 , . . . ,  h the revised E M  algorithm converges 
to a point 77* £ r c and the solution 77* =  argm ax7?€rcZn(77) exists.

Proof. By Proposition 3.2 the maximum of the log-likelihood function exists on 
r c. By the same argument in Theorem 4.1 in Redner and Walker (1984) the
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log-likelihood function increases at each step. By the the same arguments in the 
proof of 3.2 the M-step has a solution at each t for any r. Applying the proof of 
Theorem 4.1(v) in Redner and Walker (1984) we get the result. ■

Depending on the number of observations and the number of uniform compo­
nents the algorithm described can be computationally infeasible. However, when 
we have more than one uniform component the computational complexity can 
be reduced under some assumptions on the true model. In practice we need to 
consider some selection rule which allows us to reduce h. This will be seen in 
more details within the simulation study which we will explore in Chapter 5.

§3.6. C onclusions

In this chapter we defined a mixture model where a finite number of uniform 
densities is mixed with a finite number of location-scale densities. We estim ate 
such a model by maximum likelihood. This model is suggested when outliers are 
mostly concentrated on a certain region of the data range. We defined and showed 
identifiability for this model as well as we developed the estimation theory. The 
asymptotic for such an estimator is not trivial. The log-likelihood function is not 
continuous and in order to get an equivariant estimator we need to restrict the 
parameter space by non-smooth constraints. However, we have been able to show 
tha t the sequence of maximum likelihood estimates is strongly consistent. We 
also developed the EM algorithm for such an estimator and we highlighted some 
practical problems when the number of uniform components is larger than  one.
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C H A P T E R  4

Robust Improper Maximum Likelihood Estimator

In this chapter we study an estimator which is defined as the 
maximizer of the sample mean of the logarithm of an improper density. 
We provide a justification for it in terms of robustness, we develop 
the related asymptotic theory, and we derive a computational method 
based on the EM algorithm.

§4.1. Introduction

In this chapter we introduce a robust method to do model-based cluster analysis. 
We will introduce an estimator which is the maximizer of the sample mean of 
the logarithm of an improper density. The idea and the motivations for such an 
estimator has been presented in the work of Hennig (2004). The author built 
the robustness theory for model-based cluster analysis based on the concept of 
breakdown behaviour (see Hampel, 1971; Donoho and Huber, 1983). He showed 
th a t the maximum likelihood estimates for a wide family of finite mixtures of 
location-scale distributions are not robust against outliers. The family under 
consideration also includes finite mixtures of Gaussians, Gaussians plus uniform 
noise supported on the range of the data (see Fraley and Raftery, 1998), as well 
as finite mixtures of t-distributions. The afore-mentioned paper also proposed 
the following robust methodology: given the finite location-scale mixture under 
consideration, the author suggested to add a component represented by a constant 
density over the real line (an improper density). This improper density has 
the role to catch even extreme outliers. The maximizer of the log-likelihood 
function associated with the improper density is breakdown-robust even in the
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presence of extreme outliers. For mixtures with fixed number of components this 
methodology exhibits the best breakdown behaviour amongst those considered 
in the afore-mentioned paper. In this chapter we will refer to such estim ator 
as the “robust improper maximum likelihood estim ator” . In Hennig (2004) the 
value of this constant improper density is considered to be fixed. The author also 
gives some guidelines about how to fix it in real situations. The paper by Hennig 
(2004) does not contain any estimation theory about the proposed methodology, 
nor it does contain empirical evidence of performance.

The main contribution of this chapter is the following: (i) we construct an 
estimation theory for the robust improper maximum likelihood estim ator (Sec­
tion 4.2 and 4.3); (ii) we provide a feasible computational method to compute 
the resulting estimator based on the EM algorithm (Section 4.4); (iii) we argue 
tha t the choice of the constant improper density is crucial and not trivial. We 
also propose a data-dependent methodology for choosing the improper density 
(Section 4.5). We conducted an extensive simulation study where the robust im­
proper maximum likelihood estimator has been compared against other robust 
alternatives under a variety of data generating processes. The simulation study 
will be presented in the next chapter.

§4.2. M odel and estim ation

4-2.1 — Data generating process and model

Let (fi, A, V)  be a probability space. Let X  be a real valued random variable 
defined on the afore-mentioned space. In this thesis we are mainly interested 
in one dimensional random variables. However, the results of the theory pre­
sented here are easily applicable to multidimensional random variables w ith­
out any restriction. The random variable X  has a proper distribution func­
tion Q which represents the measure V.  Let X n be a random sample from 
Q, i.e. Xn '■= {X i ,  X 2 , . . . ,  X n}, where all X{ are independent replicas of X , 
i =  1 , 2 , . . . ,  n. The vector of observations Xn '■= { ^ 1 , £ 2 , . . . ,  x n} is a realization 

of Xn-

The distribution Q is the true data generating process. In other words Q is 
the distribution behind the collected data. The researcher does not know Q and 
his or her aim is to infer some of its features. Our ultim ate goal here is not to 
provide an estimate of Q, we do not even attem pt to estimate it. While the ap­
proach presented here can be adopted in more general situations -  we will come

77



back to  this point later -  the class of problems we are mainly interested in, are 
of the type of clustering and classification.

In our context, we are interested in those situation where Q generates data 
with group structure. As highlighted before, we are also interested in situations 
where outliers are present in the data. We want to be able to infer the group 
structure of the data and summary statistics for the sub-populations composing 
the sample. For each Xi G x n we want to infer to which of the sub-population r ,  
belongs, and we to produce statistics for location and scale measures for all the 
sub-populations. The strategy presented here is the following: (i) the researcher 
assumes tha t there are s sub-populations; (ii) we model the data as coming from 
a finite mixture with components represented by densities belonging to  some 
parametric family; (ii) we add a component represented by a constant density 
on the real line, i.e. an improper density. The la tter component has the role 
of capturing noise. The resulting mixture density representing the population 
is improper; (iii) we maximize the associated “improper” sample log-likelihood 
function in order to estimate location, scale and proportion parameters; (iv) such 
estimate is used to assign data  points to groups via the Bayes’ rule.

There is an im portant issue to be stressed before we introduce notation and 
assumptions. It should be clear now tha t it is not assumed th a t the da ta  are 
generated by a probability measure represented by an improper density. The 
true (and unknown) data generating process is Q. Instead we define an improper 
density as a device to estimate some of the features of the population. In classical 
parametric maximum likelihood estimation, we assume tha t the family of proba­
bility models under which we build the likelihood function is the same family of 
models to which belongs the distribution generating the data. Here the perspec­
tive is different, we do not assume any model for the data generating process, 
and we built a “pseudo-model” which consists in an improper density function 
with the role of capturing some features of the population under study. The 
term pseudo-model is due to the fact the we want to distinguish this approach 
with the classical parametric set-up described above. In some particular case the 
pseudo-model can be interpreted as model, but this will be clearer thereafter and 
we shall discuss tha t in Section 4.4. The idea presented here -  and the related 
theory th a t we are going to develop -  is applicable in more general situations 
beyond classification and cluster analysis.

We now describe our pseudo-model in more details. Let $(x; /i, a) be a distri­
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bution function on the real line parameterized in term s of a location param eter 
H G R and a scale parameter a  G R+. &(x: /i, a) is represented by a density func­
tion <t>(x;n,cr). More assumptions about <p will be given to prove the following 
statements. The role of $  is to catch the structure of the sub-populations, while 
the pseudo-model for the main population is given by a finite mixture where 
each component is distributed according to $ . We are in a situation where the 
researcher knows how many sub-populations are present. Hence, from now on­
wards the number of groups in the population under study is fixed to be equal to 
s, with 1 < s < oo. This means tha t s ought not to be estimated from the data. 
Our main aim is to take into consideration the presence of outliers or noise. As 
before in this thesis the term noise means observations th a t are not supposed to 
be coming from any of the sub-populations. We account for noise by introducing 
a further mixture component with a density which is constant over the real line, 
let us say tha t it is c G (0, c]. Therefore, we account for the presence of noise by 
introducing an improper constant density. We name the la tter the “noise com­
ponent” . The value of c is fixed throughout the rest of the chapter. Later we 
will discuss criteria to choose suitable value for the c. The pseudo-model we are 
going to consider is the following

where rj = (tti, . . .  , n s, p2, • • • • <72-.... <rs), 0 < ttj < 1 for j  = 1 . . . . ,  s, and
Ylj=i nj ~  1- The ultimate goal is to estimate the param eter rj G T, with 
T := [0, l]s x Rs-1 x R+_1\{0}. Our Ac is not a proper density. The improper 
density c can be thought as the approximation of the density of the noise com­
ponent. The latter can be everything, but here the model is built following some 
simple considerations based on the meaning tha t we attach to the noise compo­
nent: (i) the noise is understood here as a component having a large support 
and a small density value, (ii) the noise component can cause extreme outliers, 
so th a t a noise component has to attach positive probabilities even to events cor­
responding to extreme values.

When an estimate of rj is available we then have statistics about location and 
scale measures of the sub-populations, and we can also assign observations to 
the sub-populations. Let f)c>n be an estimate of rj based on the observed sam­
ple Xn, than we can compute f c n̂ ( i , j )  =  (p{xi\ jlc-n, f)c,n) for all
i =  1, 2 , . . . ,  n and j  — 1, 2 , . . . ,  s. The quantity rCiTl(z, j )  can be interpreted as

S

(4.1)
J'=2
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the “improper posterior probability” (conditioning on the observed sample) th a t 
the observation Xi comes form the j th  group in the population. The term  “im­
proper” is due to the fact th a t \ c(xi,Vc,n) is an improper density. In particular 
rc<n( j  1 ) =  7Tj’nc/Xc(xi\ r)c,n) defines the “improper posterior probability” th a t the 
ith observation is generated by the noise component. In same situations f c n (z, 1) 
can also be interpreted as posterior probability, and we shall discuss these things 
in the following sections.

The estimated vector rj can be used to classify points. First we compute

f*n(i) := arg max fc,n ( i,j) ,  i =  l , 2 , . . . , n ;  (4.2)

based on this, the ith  observation is assigned to the the j t h  component if f * n(i) =  
j .  In the next paragraph we are going to describe the method of estimation used 
to compute r)niC.

4.2.2 — Robust improper maximum likelihood estimator

The estimation of the param eter 77 is obtained via the maximization of the “im­
proper” sample log-likelihood function associated with \ c(x,rj). Before we intro­
duce the new estimator we need to set some additional assumptions on (p.

A ssu m p tio n  4.1. The density 0 belongs to the location-scale family, i. e.

<p(x -.e) = U  ( ^ j ) .

Furthermore 0 (x; 9) is continuous with respect to 9 at all x, and it is measur­
able for every 9\ lim ^ i^^  0 (z) =  0, 0(0) < 00, limCTj0 0 (r; 9) =  0 for all x ^  p. 
moreover 0 (r; 9) is monotonically increasing for each x  £ (—00, p] and it is mono- 
tonically decreasing for each x  £ [p, +oc).

The Assumption above includes a wide variety of models including those 
considered by Hennig (2004). Notice tha t if 0 is the Gaussian density, it is easily 
shown tha t it satisfies Assumption 4.1. We now introduce the target function 
tha t we maximize in order to obtain our estimator:

1 n
IcAv)  '■= -  y ^ J o g \ c{xi,Tj). (4.3)n *—'

7 = 1

We call l^ni l)  the “improper log-likelihood function” . Our estimate of rj would
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be a maximizer of However the function lc,n (v) is n° t bounded over T.
In fact -  as already highlighted in the previous chapters -  if we take fij = x r for 
some i = 1, . . . , n  and j  = 1 , . . . ,  s then for oy J, 0  we get lc,n (v) — * +oo.

In order to obtain a maximum we need to restrict the param eter space. The 
kind of scale-equivariant constraints studied in Hathaway (1985) and in the pre­
vious chapter are not feasible in this situation. Those constraints work in sit­
uations when summands of the log-likelihood function go to zero at a certain 
speed when the scale parameters get arbitrarily close to zero and the location 
parameters are different from data point values. This argument does not ap­
ply in this situation because the presence of the improper term in Ac causes 
Ac(x,T}) > ttic > 0 for all x  G M. The restricted param eter space we adopt here 
is Tf := {r) 6  T : a j > t > O.j = 2 , . . . ,  s}.

Unfortunately the function lc.n(v) cannot be expected to have a unique max­
imum. If we take the vector 77 and we permute some of the triples (7iy,/ij,ay) 
we still obtain the same value for /Ci„. This is a label-switching problem which 
also occurs in classical mixture estimation as seen in previous chapters. While 
in classical mixture model estimation we know tha t the only source of multiple 
maxima is the label-switching problem, this is not the case here. Together with 
label-switching there could be other causes for multiple maxima. Thus we define 
the improper maximum likelihood estimator (RIMLE) as a member of the set of 
maxima of the target function, th a t is

f)c,n G A c,n := a rg m ax lc,n{v)- (4-4)r?er,

The choice of f]c n̂ among the members of Ac ri is irrelevant to prove the next 
lemmas. Moreover, the RIMLE is not scale-equivariant. In fact for a given fixed 
t if we multiply all the observations for some constant, it can be th a t the scale 
of one of the sub-population becomes smaller than t and thus it is not contained 
in the constrained set anymore. The next Lemma proves th a t under such a 
constraint a global maximum for the improper log-likelihood function does exist.

P ro p o s itio n  4.1. Under Assumption f . l  h.niv) achieves its maximum on T<

Proof. The proof goes along the same lines as in Lemma 3.1 in Chapter 3. F irst 
we show tha t there exists a compact set f* C T, such tha t supT?Gr< l^niv) — 
sup^ j^  Let us fix some notations: we denote m n :=  minjxi ,  i =
l , . . . , n }  and M n := max{x,, i = l , . . . , n } .  The proof is now divided into
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two parts.
Part A. Let us take 7/  E T* with /1' < m n for some j  = 2 , . . . ,  s. We also consider 
the vector 77" G Tt which is equal to 77' except th a t /1" = m n. This implies th a t 
lc,n{v') S  Ic.niv") because the density 0 (x;/i,cr) is monotonically increasing for 
each x  € (—0 0 ,/i) by Assumption 4.1. By analogy we take rj' € with /1 ' > M n 
for some j  = 2 , . . . ,  s. Then we consider the vector 77" G Tt which is equal to  77' 

except th a t //" =  Mn. This implies tha t l^niv') <  lc,n(v')-
P art B. Let us take a sequence ? where 77* is such th a t a k — > +oc for
some j  =  2 . . . . ,  s. The vector 77' € Tt is equal to 77*. except th a t all scales de­
pending on k are now fixed. As k gets large enough the component densities 
depending on k will take values close to zero for all finite x , this mens th a t 
Urn*—►00 n̂,c (Vk) < InArf)- 
By the results in parts A and B we can conclude th a t swpveTt l^niv) — suPj7ei\ IcAv)-  
where f t  := [0 , l]s x M *- 1  x S f” 1, with

M n :=  {/i 6  R : 77in < /i < M n} , (4.5)

and
St,n :=  {a 6  M : 0 < f <  (T <  a} , (4-6)

for some choice of the constant a < +oc. The sets M n and St.n are now compact 
as well as the set ft- By Assumption 4.1 lc,n(v) is continuous on f t  which implies 
tha t it achieves its maximum. The latter completes the proof. ■

§4.3. Strong C onsistency

In classical parametric maximum likelihood theory we assume th a t there is a 
“true” parameter value which generated the statistical experiment under study.
In this setup consistency means convergence in probability or almost sure con­
vergence to the true parameter. Here we do not have a true param eter and 
consistency means convergence in probability or almost sure convergence of a 
sequence of estimators to some point in the parameter space. We want to study 
conditions under which for n  large enough a sequence {77c.n}n>i approaches some 
value 77* e r< with probability one. Under some regularity conditions if for n 
large the sequence of functions {/n,c(7?)}n> 1 converges uniformly to some function 
Zc(77), and 77* is the unique maximizer of lc{v) then we can show th a t the sequence 
of maximizers of fjc_n converges to 77*. This approach dates back to the seminal 
work of Jennrich (1969), and it is part of the more recent developments of the
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empirical processes theory (see Van der Vaart and Wellner, 1996). Unfortunately 
the function Ic(t}) cannot be expected to have a unique maximum in this setup. 
Under some regularity conditions we shall show th a t as n gets large then

uniformly over IV Let us suppose th a t 77* is a global maximum for If
we take the vector 77* and we permute some of the triples (7r*,/2*,cr*) we still 
obtain the same integral lc(v*)- Again this is due to the label-switching problem. 
Again, there could be other causes for the existence of multiple maxima, and the 
set of maximizers of /c(^) could even not be countable. We avoid the problem 
of multiple maxima of the asymptotic target function studying convergence on 
a quotient topological space of T. This method will be clearer later. Before we
procede with the next Lemmas we need to introduce a further

A ssu m p tio n  4.2. For every p  and a such tha t 77 G Tt there exists a measurable 
function t{x) such tha t | log 0 (x;/i, cr)| < t(x) for every z, and t{x) is integrable 
with respect to Q.

L em m a 4.1. Under Assumption 4-2, there exists a function T  integrable with 
respect to Q such that | log Ac(z; 77)! < T{x) for every x and 77.

Proof. We define the following sets: A  := {x  G R : Xc(x;rj) > 1 }, and B  :=  {x  G
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R : Ac(x) < 1}. The following chain of inequalities proves the statement

The next Proposition establishes tha t the functional version of our target 
function achieve its maximum over I \ .

P ro p o s itio n  4.2. Under Assumptions 4-1 and 4-2, lc{r)) achieves its maximum  
over Tt .

Proof. By the Lemma 4.1 and by the dominated convergence theorem, for any 
sequence {77jfc}*>i,

Part A. Let us take a sequence {?7a;}a:>1 : where none of the elements of 77*. depends

W ithout loss of generality we assume tha t j  £ {2 , 3 , . . . ,  q] for some q < s. We 
also consider a vector 77', which is the same vector as rjk with all the location

S

+  |log 7Tic| +  'Y^7TjtJ(x) 1 b (x ) = T(x)
J=2

By Assumption 4.2 T{x)  is integrable with respect to Q.

the latter will be useful throughout the proof. Now we want to show th a t there 
exists a compact set Tt C Tt such th a t supFt lc(rj) = suppt This is showed
in two steps along the same lines of the proof of the Proposition 4.1.

on k except some of the the location parameters p-. — > ± 0 0 , for some index j .
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parameters fixed to be /i ', with <  oo for all j  =  2 , . . . ,  q. By Assumption 4.1 
we can write

^lim log I 7Ti c + E
°° \  j=2 .7=9+1

/  «
< log I 7TiC + ^ 2  7Ty0(m; / l ' , C^) +  7Tj(p(x\ flj, CTj)

\  3 =2 J = 9 + l

Integrating both sides of the previous inequality against dQ , taking limits and
applying the dominated convergence theorem we get lim ^oo  lc(rjk) <  lei7}')- 
Part B. We now assume th a t {^}fc>i is a sequence where all the elements of 77*. 
do not depend on k except some of the the scale param eters ak — > + 0 0 , for 
some index j .  W ithout loss of generality we assume again th a t j  G 2, 3 , . . . .  q for 
some q < s. We also consider a vector 77', which is the same vector as 77*. with all
the scale parameters fixed to be Oj <  + 0 0 , for all j  = 2 , . . . .  q. By Assumption
4.1 we can write

lim log j 7Tic +  E
° °  \  3 =2 .7=9+1

( q<  log I 7TXC +  Kj&ix] Hj- Gj) +  ĵ<f>{x\ Mj, & j)
\  3 =  2 .7=9+1

By the same argument as above we have tha t l im /^ ^  lc(r)k) < lc(rj'). By results

in part A and B we can conclude tha t s u p ^ ^  lc(v) — suPr)eTt ^c(v)- where T* :=
[0,1}S x M s~l x E*'_1, with

M  := { /1  G M : fi < /i < /i} , (4-7)

and
Et :=  {a 6 R : t < cr < <7 } , (4-8)

for some choice of the constants o f — o o < / i < / i <  + 0 0  and d < + 0 0 . The sets 
M  and E t are now compact as well as the set Tt .
Part C. For any sequence {r]k}k<i, such tha t 77*. — >■ 77 we have tha t

lim log Ac(:r; Vk) =  logAc(x ;77),
k—►■DO

and the latter is implied by Assumption 4.1. By applying the dominated conver-
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gence theorem we get the continuity of lc(-). The continuity of lc(-) together with 
the compactness of T* proves the desired result. ■

The previous result implies th a t there exists 77* G Tt such th a t lc(v*) is a global 
maximum. Notice tha t by the previous remark the maximum is not unique. We 
also notice tha t a maximum for lc is contained in Tt C Tt . Thus even if we refer 
to Tt, it is obvious tha t whenever 77* is maximum for lc, then 77* is contained 
in Tt . In order to deal with multiple maxima we need to introduce some more 
notation. We define the set

H(rj') := j?? G Tt : J  log Ac(x; rj)dQ = J  log Ac(x; p')dQ^  .

Let 5 a distance on T, (e.g. the Euclidian distance), for any e > 0 we define 

^ ( 7/ )  ■= {77 G f t : V77* G ^ ( 77') $(V,V*) < £} 5

and

r (V,£)  : = r (v W ) .

The set T(jj',e) contains all the points of Tt th a t are distant at least an e from 
all those points of Tt th a t give a value for the functional version of the target 
function equal to Idrf)- Let us define the equivalence relation ~  as follows:

V(77, 77') G r t, 77 ~  77; <̂> Zc(?7) =  Zc(77;).

Let r  the space obtained from f< by identifying H{r]') to a point f}' — 77'. More 
precisely the space T is the quotient topological space generated by the equiva­
lence relation ~  on the space Tt . It is easy to see tha t

T(V',e) = f t\B e(v'),

where B £(fj') is an open ball of radius e centred on rf G T. This will allow us to 
show consistency on the quotient space, and this strategy is inspired by the work 
of Redner (1981) about strong consistency of the maximum likelihood estimator 
for non identifiable distributions.

P ro p o s itio n  4.3. Let X i , . . . ,  X n an iid sample from Q, under Assumptions 4-1 
and 4-2, for every e > 0 and for any sequence {77c,n}n>i of maximizers for lc n

V {3 n 0 : \ / n > n 0 fjc,n G T(r7*, e)} =  0 (4.9)
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Proof. Part A. By Assumption 4.1 Xc(x\r)) is continuous in 77 at any x  and it 
is measurable with respect to  Q a t each 77. By Lemma 4.2 Tt C T* is compact 
and it contains a maximum for lc. By Lemma 4.1 there exists T(x)  which is an 
integrable function with respect to Q , and such tha t |Zc(̂ tr; 77) | < T(x).  Sufficient 
conditions for Theorem 2 in Jennrich (1969) are satisfied, which implies tha t 
In , c i v )  converges uniformly to lc{rj) with probability one on T t , i.e.

sup |lc,n(v) ~  ldv)\  0. (4.10)
■neTt

Part. B. Now we want to show tha t lc{Vc,n) lei7!*)- Let us consider the 
following chain of inequalities:

0 5: lc{flc,n)

=  lc,n{f)c,n)  “t” lc,n{f)c,n) ^ciflc.n)

— ^c(^7*) ĉ ,n{f)c,n) ĉ{f)c,n)

< 2 sup |Zc,n(77) -  ^ ( 77)1 0
rjeTt

which implies tha t l c {Vc,n) Zc(77*)-
Part C. By continuity of lc{v) 311 d Proposition 4.2 we have tha t for every e > 0 
there exists a (3 > 0 such th a t lc(77) +  j3 < lc(v*) f°r ad V £ T(r]*,e). Let us 
consider two sets

A n :=  { to  £  12 : f]c,n £  ^ ( 77̂ , c ) } ,

and

-®n :=  ^ 12 : \ lc(j)c,n) lc(ri*)\  ^  P }  ■

By construction A n C B n for all n, which means th a t V { A n} < V { B n} for all n. 
By Part B, for large n  we have tha t V { B n} =  0, which implies th a t for n  large 
enough V { A n} =  0. The la tter proves the desired result. ■

The previous Proposition implies strong convergence on the quotient topo­
logical space, i.e. 77̂  — > t)* ■

§4.4. C om putation  o f th e  R IM LE

In this section we propose an EM algorithm to compute the improper maximum 
likelihood estimator and we show tha t the theory of the convergence of the EM 
algorithm still holds. The reason for this is th a t the improper density c can be
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interpreted as the value of a uniform density supported on a subset of R  contain­
ing all data points. If this is the case, Ac can be interpreted as proper density, 
and implementation of the EM algorithm’s machinery follows easily.

Let us give an example to show this interpretation. We consider a collection 
of q < n  disjoint intervals such tha t their union

9= 1

contains the data set. We introduce the following density function

Q
K x ) = (4-n )

9 = 1

The density h attributes a value c to all those points which are contained in H . 
The h is a uniform density on a disconnected subset of R.  Since c is positive, in 
order to obtain a proper density function we need tha t the integral of h over R  

is equal to 1. That is

/ ■+3C 9 ^ rbg 9 ^

/ h(x)dx — 2_2 /  = c ^ ^ ( b g — ag) — 1 .
9 = 1  9 9 = 1

Hence, we can choose the intervals [ag,bg] such tha t

_ 1

H l = l ( b 9 - a 9 V

and we obtain a proper density h which has constant value c a t all points in
H. In particular c is the reciprocal of the Lebesgue measure of the set H.  The 
density h is one of the many possible interpretations of c. We note th a t if we as­
sume tha t the distribution Q is represented by a mixture of s — 1 ^-densities plus 
a component having density h, then the model underlying the data generating 
process would coincide with the pseudo-model Ac. Notice th a t this interpretation 
allows us to justify many different values for the c. If we need a small c we can 
take q = 1, ai small enough and b\ large enough so tha t [ai,£>i] contains all the 
data points. In the latter case c can be less than the reciprocal of the range 
of the data. When (f) is Gaussian, taking c equal the reciprocal of the range of 
the data would lead to the model proposed in Fraley and Raftery (1998). If we 
need a large value of c, it suffices to take the intervals [ag ,bg] small enough but



containing each a single data point. In this case the sum of the lengths of the 
intervals can be made very small. This means th a t the value of c would be large.

We must stress that the construction of such a density h  depends on the data 
set. But in practice this helps for the implementation of an EM algorithm which 
is the aim of this section. The EM algorithm is intended to seek for a maximum 
of the improper log-likelihood function

over the constrained set T*. Let the index k  =  1 ,2 , . . .  be the iteration index 
of the algorithm. Along the same lines as in previous chapters we introduce the 
following notations

n s

A c{xi\rj^k))
j  = 2 ,3 , . . . , s ;

n s n s

Q ( W fc)) = EL log TT] +  lo g C + ]T  WW  log 0 { X i : f l j . o 3 )

i =  1 3 =  1 j = l 3 =2

n s
7 ,  f l j , (Tj )

Xc{x:r])

and

For a given choice of t , the algorithm is as follows:

1 . fix r /0) 6  Tt ;

2. For all k  = 1 ,2,..., up to convergence do the following:

(a) E-step: determine Q{r],rj^):

(b) M-step: choose — a rg m a x ^ j^ Q ^ ,

The M-step at iteration k is simply to compute



n

) =  arg max V* } log pj,  < j j )  j  =  2,3, . . . , s .  (4.13)
I I  -  /T -  > /  * ■»

As in the case of the maximum likelihood estimator for the mixture with uniform 
noise, here the M-steps axe simply to compute a weighted maximum likelihood 
estimator for each of the location-scale components. This reduces the complex­
ity of the computational effort by a considerable margin. Of course when <fi is 
Gaussian, the M-step in 4.13 becomes

for each j  =  2 , 3 , . . . ,  s.

P roposition  4.4. Under assumption 4-1, the E M  algorithm converges to a point 
r f  e  Tt , and the point rj* possibly belongs to argm axT?erflc,n{v)-

Proof. Since for any data set Ac can be interpreted as a proper density, the

Proposition 4.2 the maximum of the sample improper log-likelihood function 
exists on Tt. By Theorem 4.1 in Redner and Walker (1984) the improper log- 
likelihood function increases at each step. By the the same arguments in the 
proof of Proposition 4.2 the M-step has a solution at each step for any c. By

considerations. He also illustrated some examples. However this is not an easy 
task. In the next chapter we will show in detail an experimental study where 
we compare several robust alternatives to the maximum likelihood estimation 
for Gaussian mixtures. Monte Carlo experiments suggest th a t the RIMLE has 
very attractive properties when we are able to give a reasonable choice of the 
c. However the choice of c is not trivial. Under a variety of data generating 
processes we discovered th a t a bad choice of c can make this estimator the worst 
both in terms of estimated parameters and clustering performances.

theory about EM algorithm presented in Redner and Walker (1984) applies. By

Theorem 4.1(v) in Redner and Walker (1984) we get the result.

§4.5. Selection  o f th e  im proper density

Hennig (2004) suggested tha t the choice of the c could be driven by subject m atter
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To show the importance of the selection of the c we provide here some exper­
imental results. We consider the following data generating process:

0.1U(17,25) +  0.30N(1, .5) +  0.25N(7, 2) +  0.35N(14,1.5).

As usual N stands for the Gaussian probability model and U for the uniform 
model. The Gaussian components are parameterized as N(/x, a 2) where is the 
mean and a2 is the variance. This model is also considered in the next chapter, 
we shall discuss it in more detail. It consists of a mixture of three reasonably 
separated normal components plus a uniform noise component with support on 
the right hand side of the non-noise components. We define the noise as the set 
of points coming from the uniform distributions. We estimate the RIMLE with 
<fi equal to the Gaussian density, and s =  4. Computations are done via the 
EM algorithm previously defined. We take a fine grid of values for c £ [0,0.2], 
The grid consists in 500 equidistant points, say c^, for h =  1 ,2 ,...,500 (this 
means tha t distance between two successive points is about 4 x 10-4 ). For each 
n =  50, 200, 500 we do do the following

1 . we draw 1 0 0 0  samples (replicas).

2. For each sample we compute the RIMLE for each c^. h =  1 .2__ .500.
Here the Gaussian components are ordered by increasing means (if two 
components result to have the same mean we order them by increasing 
variance). The RIMLE is used to classify points via the Bayes rule described 
in Section 4.2. We obtain the percentage of misclassified points (a point is 
misclassified if it is not assigned to the component th a t generated it).

3. For each c^, for h =  1 ,2 ,..., 500 we compute the mean of the misclassifica- 
tion percentage across the 1 0 0 0  values obtained in the 1 0 0 0  replicas.

The results of this experiment are reported in Fig. 4.1. Notice th a t we did not 
consider values of c > 0 . 2  because these would produce an average misclassifica- 
tion percentage approximately equal to 100%. We notice the following:

• the methodology can lead to a really small average misclassification per­
centage: for n = 50 the minimum is 4% with c = 0.0151, for n = 200 it is 
2.5% with c = 0.0175, and for n = 500 we get 1.8% with c =  0.0150.

• The behavior of the curve of the average misclassification percentages as 
a function of c seems to follow a certain path. It monotonically decreases
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Figure 4.1: Average misclassification percentage vs fixed values of the improper 
density c for sample size n  =  50,200,500 computed over 1000 repetitions

relatively fast up to a minimum and than monotonically increases relatively 
fast up to 1 0 0 % where it stays for large c.

• There exists an interval of values of c, where the average misclassification 
percentage is small. The curvature of the graph in the region where we get 
the minimum average misclassification percentage is relatively picked. The 
latter means that it is easy to end up with a bad choice of c leading to  a 
large misclassification percentage.

• The behaviour described here has been replicated under other data gen­
erating processes. In fact, we also explored situations where the noise is 
generated with distributions other than the uniform, and the non-noise com­
ponents are not Normals (we shall discuss these models in the next chapter). 
This does not mean tha t the arguments given here are of general validity. 
This is a summary of empirical evidence accumulated by experience with 
many artificial statistical experiments.

This example, and the large empirical evidence not presented here, convinced us 
that we need a method to select c based on the data. In particular, we considered 
different data dependent choices of the c based on a grid of candidates. We 
describe five alternatives here. For all these alternatives, first we fix a range of
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possible candidates [0, c] (the choice of c is discussed afterwards). We take a grid 
of equally spaced values in [0 , c], say { c i ,Cm}, and for each c^, h =  1 , 2 , . . . ,  m,  
we do the following:

A ltern ative  A: we perform an EM run and we compute fjCh,n, which is used to 
classify points. We remove points classified as noise to obtain a filtered data 
set which includes only points from the s — 1 <^-loca,tion-scale components. 
Then we remove the improper component from i)Ch,n and we rescale the 
proportions obtaining an s — 1 </>-location-scale mixture. We use this vector 
to compute the Kolmogorov distance between the empirical distribution 
function Fn (ECDF) and the distribution function of the estim ated s — 1 
<p-location-scale mixture computed over the filtered data  set. At the end we 
choose the c* which minimizes the Kolmogorov distance and we take the 
corresponding t)c* .

A lternative B: we perform an EM run and we compute f]Ch,n-, which is used to 
classify points. As before, we obtain a filtered data set which includes only 
points from <?i>-location-scale components. Then we remove the improper 
component from rjCh,n and we rescale the proportions obtaining the param ­
eter vector of a proper s — 1 (^location-scale mixture. We use the latter 
as initial value to perform a further EM run for an s — 1 ^-location-scale 
mixture over the filtered data set, we thus obtain the estimate We
compute the Kolmogorov distance between the ECDF and the distribution 
function of the estimated s — 1 </>-location-scale mixture under rjs-i,h com­
puted over the filtered data set. We choose the c* which minimizes the 
Kolmogorov distance and we take the corresponding fjc*̂n.

A lternative C: we perform an EM run and we compute fjCh,n■ We use this 
vector to compute the quantity

D h =  max |Fn(x{) -  An {xi, f)ChiTl) \ ,i

where:

An(x,;,77Chin) = 7 T 1 Ch ( X i  -  min X n )  +  ^  7tj^(Xj: jlj, Gj),

and i =  l , 2 , . . . , n ,  h = 1,2 , . . . , m .  The quantity A n(xi, f]Ch >n) can be 
interpreted as a pseudo-distribution function associated with the improper 
density ACh(-,?)Ch,n) computed on Xi. Notice tha t the la tter does not exist
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when n  goes to infinity. We choose the c* which minimizes the D^ and we 
take the corresponding f)c- n.

A ltern ative D: we perform an EM run and we compute r)Chjn, which is used to 
classify points. We remove noise points to obtain the filtered data set which 
includes only points from estimated (^-location-scale components. Then 
we remove the noise component from f)Ch,n and we rescale the proportions 
obtaining the parameter vector of an s — 1 </>-location-scale mixture. We 
use the latter as initial value to perform a further EM run for a proper s — 1 
^-location-scale mixture over the filtered data  set. We obtain the estimate 
r)s-i,h and the corresponding sample log-likelihood value Thus, we
choose the c* which gives the largest sample log-likelihood value and we 
take the corresponding ffc- n.

A lternative E: we perform an EM run and we compute fjCh,n- We use this 
vector to compute the posterior probability th a t each observation is not an 
outlier. Hence we obtain a weighted data set, and based on it we compute 
the Kolmogorov distance between the corresponding ECDF and the proper 
distribution function of an s — 1 (^-location-scale mixture. The la tter is 
obtained removing the improper component from f)Ch.n and rescaling the 
proportion parameters. As usual we choose the c* which minimizes the 
Kolmogorov distance and we take the corresponding f)C’ ,n-

We implemented all these alternatives and we evaluated their performances for 
several data generating processes. Method B always leads to very attractive per­
formances both in terms of the estimation of rj and in term s of classification. 
The performances of this method seems to not depend on the particular model. 
Method C performs slightly worse than B, the remaining methods always select a 
c which is too large or too small, and this often depends on the model. Moreover 
this methodology is well defined for multidimensional data sets even though the 
computation of multidimensional distribution function can add some com puta­
tional complications.

Notice tha t method B implies a decision about the upper bound of the im­
proper density, tha t is the c. However this is not critical. In fact, if c is large 
enough, then we end up with a situation where all data points are classified as 
noise, and this is not interesting to us. The value c could be defined such th a t the 
proportion of noise points classified at the beginning of the procedure described

94



under alternative B does not exceed a%. The choice of the a  depends on the 
type of problem we will analyze.

§4.6. C onclusions

Based on the work by Hennig (2004) in this chapter we defined an estim ator which 
is the maximizer of the pseudo-log-likelihood function associated to a mixture 
of location-scale densities with the addition of a noise component represented 
by an improper density on the real line (i.e. a constant). We provided the 
estimation theory showing that, for fixed number of components and fixed value 
of the improper density, the RIMLE is strongly consistent for the maximizer of 
the integral of the pseudo-log-density function with respect to the distribution 
function which generated the data. We advise to use such a method whenever 
the outliers spread over the entire data-range. The selection of the constant 
density value is crucial and we also proposed several methodologies to optimally 
select this value based on the dataset at hand. We advise to  use the value of the 
improper constant density th a t minimizes the Kolmogorov distance between the 
distribution function of the estimated model w ithout the noise component and 
the empirical distribution function; where both distributions are computed over 
the data not assigned to the noise component. Before we conclude this chapter 
we want to stress that the robustness theory developed by Hennig (2004) is for 
fixed value of the improper density. Here we provide a methodology to select the 
improper density, so th a t an extension of Hennig’s theory to this case is necessary 
in order to justify this approach. Moreover, convergence theory developed in this 
chapter also refers to the case when the improper density is fixed. Asymptotic 
theory for the case when the improper density is estimated by method B could 
also be developed, but this is not trivial.
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C H A P T E R  5

Empirical Evidence

In this chapter we present a simulation design to compare six 
robust alternatives to the maximum likelihood estimator for Gaussian 
mixtures after which we draw some conclusions.

§5.1. In troduction

In the previous chapters we developed the statistical theory for two robust al­
ternatives for model-based clustering: the maximum likelihood estimator (MLE) 
for mixtures with uniform noise (see Chapter 3), and the robust improper maxi­
mum likelihood estimator (RIMLE, see Chapter 4). In this chapter we compare 
empirically these methods with Banfield and Raftery’s (1993) approach with the 
uniform noise supported on the data range, McLachlan and Peel’s (2000b) t- 
mixture approach and the standard maximum likelihood estimation for Gaussian 
mixtures (see Table 5.1). The empirical comparison is made based on simulations 
of several data generating processes with different features. We compare these 
methodologies from two points of view: clustering performance and quality of 
estimates. The empirical results suggest th a t in the presence of noise the max­
imum likelihood estimator is seriously affected. Some of the robust alternatives 
considered in this thesis dramatically improve the standard maximum likelihood 
method. However, some of these alternatives also should be implemented care­
fully - particularly when the sample size is not large.

The chapter is organized as follows: in Section 5.2 we describe the estimators 
and methods being compared; in 5.3 we introduce the data generating processes
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Table 5.1: Methods under comparison in the simulation study.

M ethods under com parison C ode
MLE with uniform noise G
Banfield and Raftery’s approach R
RIMLE, improper density fixed IF
RIMLE, improper density optimally selected IS
McLachlan and Peel’s approach, degrees of freedom fixed TF
McLachlan and Peel’s approach, degrees of freedom estimated TE
MLE for normal mixtures N

and simulation procedures; in 5.4 we discuss the measures adopted to evaluate the 
performances of the methods under study; and in 5.6 we provide some conclusions.

§5.2. E stim ators and m ethods

In this section we describe the estimators and methods we propose to  compare. 
The general structure of the simulation study is as follows. First, we consider 
several data generating processes, and for each we consider a sample size of 
n  =  50, 200, 500. For each data generating process and for each sample size we 
draw 1 0 0  samples (replicas), and for each replica we apply seven different estima­
tion methods. For each estimator we perform clustering and compute summary 
statistics to evaluate relative performance. The data generating processes are de­
scribed later. Here we describe the estimation methods with particular attention 
to computational issues. We should stress here th a t we deal only with the case 
where the number of mixture components is fixed and known. In particular, each 
of the estimated models includes s components, one of which is the noise compo­
nent. The results in the previous chapters are derived mainly for one-dimensional 
random variables, therefore, in this chapter, we also deal with one-dimensional 
random variables. The seven methodologies we apply will be identified by the 
codes: R,G,IF,IS,TF,TE,N.

5.2.1 — Gaussian mixtures with uniform noise (G,R)

In Chapter 3 we introduced the maximum likelihood estimator for uniform- 
location-scale mixtures. The theory we have developed is rather general and 
applies to the case where the mixture includes a finite number of uniform com­
ponents -  with disconnected supports -  and a finite number of distributions
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belonging to some location-scale family. The methods described here consist of 
a mixture of uniform and Gaussian. In particular, we consider the maximum 
likelihood estimator for a mixture composed of one uniform component (repre­
senting noise) and s — 1 Gaussian components. We do not actually compute the 
maximum likelihood estimator, but only an approximation. The meaning of the 
term “approximation” will become clear. We will consider two approaches:

• The methodology proposed by Banfield and Raftery (1993). This consists 
of fixing the uniform component such tha t it has support equal to  the range 
of the data. Recall tha t the resulting solution obtained by applying the EM 
algorithm eventually provides one of the potentially many local maxima. 
This methodology provides a maximum likelihood estimator only in some 
cases, depending on the data generating process (we will say more on this 
subsequently ). This approach will be coded as “R” (meaning “range” ).

• The second approach is to better approximate the maximum likelihood 
estimator studied in Chapter 3. This methodology is identified as “G” 
(meaning “grid”).

Im plem entation o f th e  G -m ethod. As highlighted at the end of Chapter 
3, the computational burden introduced by the uniform component makes this 
estimator difficult to compute. Even with one uniform component the com puta­
tional complexity is high. To refer back to Section 3.5, if we have only one uniform 
component, we should initialize the EM algorithm for each possible pair of data 
points, and for all those pairs of values of the uniform parameters, which are at 
the border of the constrained set defined in (3.6). This would be unrealistic even 
for n  =  50. We could forget the borders of the constrained set defined in (3.6), 
and initialize only the EM algorithm for each possible pair of data  points. But 
for n  =  50 this is already a heavy computational load. We adopted a practical 
solution, which is to consider only pairs of points selected on a grid, on the set 
of data points. In order to make the computations feasible, for each n  we chose 
a different size of grid of data points. For each replica the methodology was as 
follows:

1 . given the sample size, we define a grid of equi-spaced points on the range 
of the data. The size of the grid decreases as the sample size increases. 
For n =  50 the grid consists of 20 points, for n  =  200 the grid consists 
of 15 points, and for n  =  500 it consists of 10 points. Then, for each 
point in the defined grid we take the nearest data point. It can happen
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th a t two points in the selected grid are very close to each other, and the 
distance between the two points in each pair will determine the variance of 
the uniform component in the corresponding EM solution. The algorithm 
described in Section 3.5 makes use of the constraint defined in (3.6). For 
simplicity we did not implement the numerical routines taking account of 
such constraints. Instead, we coded the EM algorithm so th a t the pair of 
points that define a uniform component with small variance will not be 
considered. Therefore, one point is eliminated from the grid if the distance 
from the nearest point is less than 1% of the interquartile range. Thus, for 
some sample sizes it could be tha t the grid of data  points actually considered 
has a number of points tha t is smaller than  the prescribed number.

2 . We defined the initial values for all other parameters. The initial value 
of the proportion of the noise (uniform) component is fixed at 0.05. This 
choice is because in many real life applications it is reasonable to assume 
tha t the proportion of noise is small compared to proportions of the other 
components. The proportions of the other components are initialized at 
equal value: 0.95/(s — 1). The variances of the Gaussians are all initialized 
equal to 1 . Of course, in real applications the choice of the variance can 
be made data dependent (e.g. the choice can be based on the interquartile 
range), but such a choice should be made depending on the data. The 
means of the Gaussians are initialized so th a t given the sample x n the ini­
tial means fi\ < / /2  < , • • • ,  <  P s-i are such th a t the intervals [min(xn), pi], 
[/is-i, m ax(rn)], and 1] for all j  =  2 , 3 , . . .  ,s  — 3 contain the same 
proportion of data points. Again, this choice will not always provide rea­
sonable results in real applications.

3. Given the grids of data points selected previously, say yi < y2 yg, 
we define all possible pairs (yr , yp) such tha t yr < yp. For each of these pairs 
we run an EM algorithm. In each of these runs the uniform param eters are 
fixed at equal to the composed pair, while all other parameters are initialized 
as described above. The resulting procedure is an application of the EM 
algorithm described in Section 3.5 with q =  1 and the number of pairs of 
data points for the uniform is reduced to a subset of all possible pairs. For 
variances of the uniform components, we coded the EM algorithm such tha t 
if one component reaches a very small variance, i.e. 1 0 -3 , the algorithm 
stops. We checked for whether this ever happened in the simulations and 
it does not seem to. The EM algorithm stops when either the number of
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iterations exceeded 500 or when the difference in the log-likelihood values 
in two successive iterations is less than or equal to  1 0 -6 .

4. For each run of the EM algorithm we compute the resulting value of the 
log-likelihood function at the point where the EM stopped. We chose the 
parameter vector th a t corresponds to the largest log-likelihood value. This 
means that we estimated the uniform param eters with the corresponding 
pair of data points for which the EM solution provided the largest log- 
likelihood value.

5. In Chapter 3 we discussed the identifiability of such a model. We can iden­
tify the number of uniform components and their parameters. On the other 
hand, the Gaussians are identifiable only up to component label switching. 
This means tha t in permuting the triples of proportions, means and vari­
ances of the Gaussian components, we still have the same estim ated distri­
bution. This is relevant when we use clustering and want to compare the 
performance of this method compared to  others. We need to decide wThich 
distribution we have estimated in the previous step. To do this we apply 
lexicographic ordering criteria. Given the triples of Gaussians param eters 
7tj,p,j,Vj, for j  = 2,3, . . . , s ,  we consider a perm utation j  of the indexes 

j  = 2,3, . . . , s  such th a t fij < Aj+i? if Aj — Aj+i then fy < fy+1, and if 
Vj = Vj+1 then ttj < 7Tj+1. Actually, the probability is th a t /fy =  /fy+i is 
zero, but this could be due to numerical approximations in the com puta­
tions. The resulting estimated distribution from the previous step will have 
the parameter vector

(7fi,d, b, 7fp/ fy, fy, 7r2 , p>2 ,V2 • • • ; /A, fy ),

where (7fl 5a , 6 ) are the uniform parameters.

6 . The estimated parameter vector is used to classify points via Bayes5 rule. 
The set of noise points is identified with the set of points assigned to the 
uniform component.

Im plem entation  o f the R -m ethod . This is very similar to the method de­
scribed above . The procedure is the same except tha t we do not select the 
grid of points for estimating the uniform parameters. For each replica we run 
just one EM algorithm and the uniform param eters are estimated as min(xn) 
and max(x^). The initialization of the algorithm, as well as all other details, re­
main the same as before. This corresponds with what Fraley and Raftery (2002)
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propose.

5.2.2 — Gaussian mixtures with improper density (IF,IS)

The estimator discussed in this section is the RIMLE as presented in Chapter 5. 
In this simulation study we consider s — 1 Gaussian components plus the constant 
improper density. As discussed in Chapter 5 the choice of c for the improper den­
sity value, is critical. We include two approaches: one with the improper density 
value selected using method B discussed in Section 4.5, which we refer to as “IS” 
(meaning “improper density selected” ); in the other we fix the improper density 
value, a method tha t we refer to as “IF ” (meaning “improper density fixed”). No­
tice tha t with the IS-method the value c depends on the sample, thus it changes in 
each replica, while with the IF-method, c is fixed for every sample size and replica.

Im plem entation  of th e  IS-m ethod. For each data generating process and 
each replica the methodology is as follows:

1 . We define the initial values for all parameters. This is done in the way 
that was used for the G-method. The proportion of the noise (improper) 
component is fixed at 0.05, and the proportions of the other components are 
initialized with equal value 0.95/(s — 1 ). Means and variances of Gaussian 
components are initialized in the same way as used for the G-method.

2. The initial vector is used to apply methodology B, described in section 4.5. 
The EM algorithm is coded so th a t if one component reaches a variance 
less than or equal to 10—3, the algorithm stops. The EM algorithm stops 
either when the number of iterations exceed 500, or when the difference in 
the log-likelihood values for two successive iterations is less than or equal 
to 10~6. In none of the simulations did the algorithm reach the limit of 500 
iterations.

3. The parameters referring to Gaussian components are ordered using the 
lexicographic ordering described before. The resulting estimated vector 
was used to classify points via the Bayes rule. The set of noise points is 
identified with the set of points assigned to the improper component.

Im plem entation  o f th e  IF-m ethod. Hennig (2005) offers some guidelines for 
the choice of the constant improper density, on the basis of subject m atter con­
siderations. In a simulation study such as ours, we do not have information other 
than on the drawn sample. We should not take account of knowledge related
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to the data generating processes in order to adjust tuning constants. Therefore, 
what value of c should we consider? Under these conditions it is impossible to 
formulate any reasonable choice for c. The objective of this study is twofold: we 
want to demonstrate the potential of this methodology compared to the alter­
natives; and we want to compare the performances of the IS and IF methods. 
For each data generating process considered, we calibrated the value of c so tha t 
the estimator ensures the lowest average misclassification percentage for a sample 
size of n  =  200. The rationale for this choice is th a t we can fix a value of c th a t 
allows the best performances of this methodology in term s of clustering, for the 
mid-sized sample. This merely illustrates the potential of the methodology under 
study; this procedure is not usable in real situations. In fact, to do this calibra­
tion of c requires that the researcher knows the true groups in the data, which 
is not feasible in reality. Thus, the value of the fixed c and the corresponding 
performances of the IF method should only be taken as a benchmark. This will 
tell us how fax we can go with the improper density approach once the selection 
of c becomes optimal.

The calibration was made using the procedure described in Section 4.5. For 
each of the data generating processes the RIMLE estimator will consist of s — 1 
Gaussian components plus the constant improper density. We take a fine grid 
of values for c 6  [0,0.2]. The grid consists of 500 equidistant points, say c/, , for 
h = 1,2, ...,500 (this means th a t the distance between two successive points is 
about 4 x 10-4 ). For a sample size n = 200 we do the following:

1 . we draw 1 0 0 0  samples.

2. For each sample we compute the RIMLE for each c^, h =  1,2,..., 500. using 
the EM algorithm described in 4.4. Initialization of the means, variances 
and proportion parameters is done as for the G-method and R-method. 
In the same way the param eter vector computed by the EM algorithm 
is ordered using the same lexicographic ordering. This latter was used to 
assign data points to the components according to the Bayes rule introduced 
in Section 4.2. We then obtain the percentage of misclassified points.

3. For each c^. h =  1, 2,.... 500, we compute the mean of the misclassification 
percentages across the 1 0 0 0  replicas.

4. We choose the c* tha t achieves the lowest misclassification average percent­
age.
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The resulting values of c* are used as the fixed improper density value in the 
IF method. Note that the calibration is not performed on the same samples els 

used in the comparison. Recall th a t c* is fixed for each data generating process 
and it is maintained as equal across replicas and sample sizes. As highlighted in 
Chapter 4.2 we do not consider the values of c > 0.2 because this would result 
on average in 1 0 0 % of the points classified as noise.

Given the value c*, this method is implemented in the same way as the IS- 
method except for point 2. In fact, in this case we do not have to select the value 
c depending on the sample, but can simply use the initial vector to s ta rt the EM 
algorithm described in 4.4 with the improper density fixed at c*.

5 .2 .3— t-mixtures (TF,TE)

Another alternative for robust model-based clustering is to use t-mixtures. McLach- 
lan and Peel (2000b) ELrgue th a t for elliptical shaped clusters with longer than  
normal tails or atypical observations, the use of normal components may affect the 
fit of the data. The strategy proposed by the authors is as follows: (i) to model a 
sample of iid observations as arising from a finite mixture of t-distributions; (ii) 
to estimate the parameters via the maximum likelihood method, with estimates 
computed with the EM algorithm; (iii) to use the vector of estimated param e­
ters to assign data points to components and to isolate noisy observations. The 
definition of noise in McLachlan and Peel (2000b) is provided later (see Section 
5.3.3). The approach developed by the authors does not assume th a t the sample 
is drawn from a finite t-mixture. They just make use of finite t-m ixtures as a 
fitting device. Here, we describe the methodology and the related com putational 
procedure.

We consider a finite mixture of univariate t-distributions with s — 1 compo­
nents. For x  € R a finite mixture of t-density is defined as

is the vector of proportions, locations and scale parameters; 0  <  ttj < 1 for

(5.1)

u  =  (9 i 5 9 2 -, ■ ■ ■ 5 9 s - i ) is the vector of degrees of freedom,

6  — (7Ti,7T2, • • • , 7Ts—1, M l , M2, • • • , M s - 1 , ^ 1 ,  ^2,  • • • j ^ s - l )

all j  =  1 , 2 , . . . ,  s — 1 and ^ 7Tj =  1 . The function ip is the density of a
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t-distribution with g degrees of freedom:

ip{x\fi ,a:g) =
r

(5.2)9 + 1  -
2

where

(5.3)

S(x.g,,a)  denotes the Mahalanobis squared distance between x  and fi. W hen a 
random variable X  is distributed according to a t-distribution represented by the 
density in (5.2), if g > 1 then E[X] =  /i, and if g >  2 then Var[X] =  g(g — 2)~1a 2. 
When the degrees of freedom tend to infinity the density ip tends to a Gaussian 
density.

In the strategy proposed by McLachlan and Peel (2000b) the iid sample is 
modelled as arising from a finite t-m ixture with a fixed number of components, 
say s — 1. Their aim was to estimate the param eters via the maximum likelihood 
method. Hence, the estimates considered are defined as the maximizer of the 
log-likelihood function:

where Xi ,x 2 , . . . , r n is the observed sample. In many situations the degrees of 
freedom are considered to be fixed, and only proportions, scale and location pa­
rameters are estimated. This considerably simplifies the maximization above. If 
we want the heaviest tails but still want the means and variances of the subpop­
ulations to be defined, we can fix the degrees of freedom to be equal to 3. But 
how does this affect the other estimated parameters? There is little discussion 
in the literature about fixed degrees of freedom vs estimated degrees of freedom. 
However, we implemented this method with both estimated degrees of freedom 
and fixed degrees of freedom. When we discuss the experimental results, we will 
see tha t this makes a difference.
The maximization above can be done by applying the EM algorithm or its ECM 
variant. The ECM is an EM variant introduced by Liu (1997) for the case where 
the degrees of freedom have to be estimated. These computational procedures 
are described in detail in McLachlan and Peel (2000a).

After estimating the s — 1 t-components the authors propose a further step in

n

(6n, un) =  argm ax log t(x,: 6, u),
i=i
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which outliers are identified. Once we obtain the estimates (6n , un) -  the method 
is the same as when the degrees of freedom are fixed -  we compute the following 
quantities:

f ( i ,  j )  : =  ( 5 .4 )

t(x;0,u)
for each i = 1 , 2 , . . . ,  n  and j  — 1 , 2 , . . . .  s — 1 . The quantity f ( i ,  j ) is the estimated 
posterior probability tha t the ith  observation belongs to the j t h  group. The 
quantities above are used to compute

r*(i):=  arg max f ( i , j ) ,  i =  l , 2 , . . . , n ;  (5.5)
j = l , 2 , . . . , s - l

and based on these, the ith  observation is assigned to the j t h  component if 

f*(i) = j .

Prom these s — 1 estimated subpopulations noise is identified using the fol­
lowing method. McLachlan and Peel (2000b) considered the statistic

s - l

C (0 =  5 Z 1 {r *(0 = 3 W x i',P‘j > ° rj , 9 j )  (5-6)
j = i

If this statistic is sufficiently large the iih  observation is classified as noise. The 
logic of this is that if the point X{ is far away from the nearest location param eter 
it is considered to be noise. To decide how large the statistic C(i) must be in
order to classify the ith  observation as noise, the authors proposed to compare
C(i) with the 95th quantile of the Chi-square distribution with 1 degree of free­
dom. Thus, the point Xi is classified as noise if C(i) > 3.841459. The authors 
do not offer a clear explanation of why C(i) should be distributed according to 
a Xi- Once the statistic C(i) is computed for each t =  l , 2 , . . . , n w e  can form a 
further group, the sth group, which includes only noisy observations.

Im plem entation o f th e  T F and TE m ethod . As pointed out already, in this 
comparison we consider both estimated and fixed degrees of freedom. For the 
case with the estimated degrees of freedom we implement the ECM as described 
in Liu (1997). In each run of the EM /ECM , we initialize the proportions and 
location parameters as in the G method. The scale parameters are set equal 
to 1 for all components. More attention has been given to degrees of freedom. 
During our experiments we noted th a t the ECM algorithm does not move too 
far from the starting values with respect to degrees of freedom. This is possibly
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due to the fact that the log-likelihood surface has many local maxima or has flat 
regions with respect to the degrees of freedom. We could find no research on 
this topic. A good practice would be to run the ECM several times, with many 
possible combinations of initial values for the degrees of freedom, and then select 
the solution that corresponds to the highest log-likelihood value. However, our 
simulation study is already very complex to allow to accomodate these further 
computational complications. The majority of the components in our data  gen­
erating processes are Gaussians. For a t-distribution, in order to approximate a 
Gaussian distribution, we need at least 30 degrees of freedom. When the degrees 
of freedom are estimated they are initialized to be equal to 15 for each component. 
This number provides a starting distribution th a t is halfway between Gaussian 
tails and heavier tails. We think this approach is fair. We will comment more 
on the estimated degrees of freedom in subsequent sections. For the t-m ixture 
with fixed degrees of freedom we consider them equal to 3 for all components. 
This choice guarantees the heaviest tails for the population components and also 
tha t their means and variances are well-defined. For each data generating process 
the t-m ixture estimator is implemented as follows, for each sample size and each 
repetition:

1 . if the number of groups in the data is s (including noise), we initialize an 
s — 1 components t-m ixture as described previously.

2 . We compute the maximum likelihood estim ator of a s — 1 t-m ixture, we or­
der the triples of parameters (ftj, Aj, ^ j) by the same lexicographic ordering 
described above where fij and o3 play the same role as the mean and stan­
dard deviations in the Gaussian based methods previously described. The 
vector of degrees of freedom (fixed or estimated), is ordered accordingly.

3. The ordered estimated parameter vector is used to assign points to the 
s — 1 components and the sth  noise component is identified as previously 
described.

4. In order to make comparisons we compare moments of the simulated sub­
populations with moments of the estimated sub-populations. For this method 
it is not possible to use the parameters of the s — 1 originally estimated com­
ponents, to estimate the moments of the s components (including the noise). 
For each of the s components we compute the means, variances, and pro­
portions of points in each of the groups obtained in the previous clustering. 
This is to enable us to compare the means, variances and proportions of 
the estimated groups with the true corresponding values.
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5.2.4 — Normal mixtures (N)

Many of the data generating processes under consideration will be chosen as a 
Gaussian mixture with some contamination. In order to assess the gain intro­
duced by the previous robust alternatives we also consider the maximum likeli­
hood estimator for normal mixtures. This will be denoted as “N-method”. When 
applying this method we do not have a noise component, th a t is, the number of 
mixture (normal) components is fixed at s — 1. The computations are done via 
the EM algorithm, as described in Chapter 2.

For each data generating process and each replica the methodology is as fol­
lows:

1 . We define the initial values for all parameters. The proportions of all com­
ponents are initialized at a value equal to 1 / ( 5  — 1 ). Means and variances of 
the Gaussian components are initialized in the same way as for G-method.

2. The initial vector is used to run an EM algorithm. The EM algorithm is 
coded such that if one of the components reaches a variance less than  or 
equal to 10~3, the algorithm stops. The EM algorithm stops either when the 
number of iterations exceeds 500 or when the difference in the log-likelihood 
values in two successive iterations is less than or equal to 1 0 -6 .

3. The parameters tha t refer to Gaussians components are ordered by the 
same lexicographic ordering as before. The resulting estimated vector is 
used to classify points via the Bayes rule. By construction, the percentage 
of points assigned to noise by this method will be zero.

§5.3. D ata  generating processes

We considered six different data generating processes which are described and 
analyzed. In any simulation study the goal of the analysis is twofold: to test how 
good is a procedure against an alternative even under extreme situations; the 
simulated data should be realistic, by which we mean likely to  occur in the real 
world. This is a complex trade-off and we have tried to optimize it. Throughout 
the rest of this chapter, N(/i,v)  is the Gaussian probability model with mean 
p and variance v ; U(a,b) is the uniform probability model with support on the 
interval [a, 6]. For g > 2, Tg(fi,v) is the non-central T-student probability model 
with g degrees of freedom, location param eter p and variance v. Note th a t we 
parameterized the T-distribution in term s of variance, assuming tha t g > 2; the
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reason for this will become clear later. Also, the squared location param eter of a 
Tg(ii, v ) is given by v{g -  2 )/g.

5.3.1 — Side, inside and wide uniform noise

We considered a class of data generating models in which a number of Gaussian 
components are mixed with a uniform (noise) component. Noise here is defined 
as those points drawn from the uniform mixture component. We consider three 
alternatives, each of which differs from the other two in terms of the position 
of the uniform support relative to  the means of the normals. We refer to these 
models as side-noise, inside-noise, and wide-noise.

Side-noise. The model is

0.1U(17,25) +  0.30N(0,1.5) +  0.25N(7,2) +  0.35N(14,1.5). (5.7)

The proportion of the noise is 10%. This is the same for almost all the data 
generating processes considered. This means th a t with n =  50, on average, we 
have only 5 points from the noise component. Even if in a real situation the noise 
could be much more than 1 0 %, we are interested in all those situations where the 
noise consists of a relatively small proportion of the observed data. In fact we 
want to  assess whether this method can be used to identify noise even when the 
expected number of noise points is as low as 5 (which is the case when n — 50 
and the noise proportion is 10%). The noise produced in this model is located 
on the right of the mean of the largest normal. Fig. 5.1 at the end of this chap­
ter, is a histogram of the sample of 200 points drawn from this model. We also 
report the density associated with the model computed over the sample points. 
The uniform noise is located on the right of the histogram making the right tail 
of the distribution much heavier than the left one. The density clearly has a 
discontinuity around 17, which is the lower limit of the support of the uniform 
component.
Note tha t the Gaussian components are reasonably separated (this can be seen in 
Fig. 5.1), they have relatively small variances, and their proportions do not devi­
ate much from 0.9/3, which would be as if there were equal proportions for all the 
Gaussians. Hosmer (1978) showed tha t when the number of normal components 
is larger than two and the separation between components is small, the solution 
provided by the EM algorithm is usually a poor approximation for the maximum 
likelihood estimate. In our experiments we noted also tha t this happens par­
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ticularly when the variances in the underlying normals are relatively large and 
the proportions deviate considerably from equality. This latter effect was doc­
umented by Karlis and Xekalaki (2003). No explanation is provided. However, 
these problems are not the focus of this research and we want to isolate these 
phenomena from our study. Hence, the choice of well separated Gaussian com­
ponents, with relatively small variances and not very dissimilar proportions. For 
the sake of comparability of results, this choice is maintained for all subsequent 
models.
Inside-noise. The model is

0.1U(11,19) +  0.30N(0,1.5) +  0.25N(7,1.5) +  0.35N(21, 2 ). (5.8)

The model is similar to the previous one with the exception th a t the uniform 
noise is now located in the region between the tails of two normals. At the end of 
this Chapter we show the sample of 200 points drawn from this model together 
with the density computed over the sample points in (Fig. 5.2).
W ide-noise. The model is as follows:

0.1U(0,2 1 ) +  0.45N(7, 2 ) +  0.45N(14,1.5). (5.9)

Here, the uniform noise spreads over the entire range of the data. The histogram 
of the sample of 2 0 0  points drawn from this model, and the related density 
computed over the sample points in Fig. 5.3 can be found at the end of the 
chapter. The R-method is expected to make sense in this situation.

5.3.2 — Outlier process

This model consists of a two-normal mixture plus two extreme outliers, drawn 
from a uniform distribution in each replica. The outlier process is as follows: 
in each repetition of the simulation study for sample size equal to n  we draw a 
sample of n — 2  points from the mixture model

0.5N(0,2) +  0.5N(5,1 .2 ), (5.10)

and then add two outliers from U(20, 25). Of course, this is not precisely a 
simulation of a mixture because the number of points drawn from the uniform 
are fixed at two in any replica. The expected number of points from each of the 
normal components in any repetition is 0.5(n — l ) / n ,  while the proportion of the 
noise/outliers points is 2 f n  in all replicas.
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We need to explain the term  outliers as used in this contest. In general a point 
is seen as being an outlier if it is far away from the bulk of the data. But how 
fax away must it be to be considered an outlier? Here, the aim is not to  give 
a definition of an outlier; however, it is im portant to  provide some justification 
for our choice of the outlier generator. Our outlier generator generates points 
uniformly distributed across the interval [20, 25]. W ith a probability approaching 
1 , we expect that points less than or equal to 2 0  will not be generated from the 
model (5.10). Thus, we categorize the points from U(20, 25) outliers. In Fig. 5.4, 
at the end of the chapter, we present a histogram of a sample of 2 0 0  points drawn 
using this process.

5.3.3 — t-noise

Here the noise component is extracted by identifying as noise those points in the 
tails of the t-components. McLachlan and Peel (2000b), in their paper apply this 
methodology in a multidimensional setup. In particular, the authors present a 
data set generated by a mixture of two normals plus a small proportion of noise 
points generated by a uniform distribution. The example has two dimensions. 
The uniform noise has support over the entire convex hull of the data. This would 
correspond in one dimension to the wide-noise data generating process proposed 
here. Based on this data set the authors apply TE method, but with all the 
normal components having the same scale m atrix and degrees of freedom1. The 
authors claim that this methodology provides good results even though these 
comments are based on just one artificial data set.

All the data generating processes previously defined are based on Gaussians 
plus uniform noise. The G, R, IF,and IS methods are all based on estimating a 
Gaussian mixture plus some noise. However, we also wanted to assess the G, R, 
IF, IS and N methods with the data generating process based on a finite mixture 
of t-distributions. In particular, we wanted to consider a data generating process 
based on a t-mixture where the noise is produced exactly as defined by method 
TF and TE. In other words, we generate data from a t-m ixture and then define 
the set of noise points as those points belonging to the tails of the t-components. 
To see how this works, let us go back to the density in (5.1). Suppose we draw 
an artificial sample from a distribution with the density (5.1). We consider the

JThis means that the degrees of freedom are estimated under the constraint that they are 
equal for all components.
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following model:

0.4T3 (0 ,2 ) +  0.3Tlo(6 ,2 ) +  0.3Tlo(12,1 ). (5.11)

Suppose tha t the sample is x \ ^ , X2 j 2. ■ ■., x nj n, where j i  G {1, 2 , . . . ,  s — 1 }, 
is the ith observation and is generated by the j i th  component. For each 

observation we compute the quantity S7 =  S(xr_J t; fij, o3. v3). Assuming th a t we 
can approximate the distribution of Si with a Chi-square with 1 degree of freedom, 
a point Xijt will be classified as noise if Si is larger than or equal to the 9 5 th  
percentile of the Chi-square distribution with 1 degree of freedom (which is equal 
to 3.841459). Finally, we compute the proportions, means and variances of the 
“true” groups including the noise, to compare with the other methods. The 
choice of this particular model is founded on the fact that: (i) we wanted a 
data generating process tha t produced samples, which, from inspection of the 
histograms and other tools, appeared similar to the samples produced by some 
of the previous processes; (ii) based on the arguments put forward previously, we 
also wanted separation between the mixture components; (iii) we built a process 
which over 500 replicas produced noise components with an average proportion 
equal to 10.7%, which is near the expected proportion of noise points considered 
for some of the other models under study.

5.3.4 — Normal mixture

We want to investigate the behaviour of methods G, R, IF, IS, TF and TE in 
situations when no noise is present in the data. This is im portant, to assess 
whether these methodologies are able to discriminate between presence and ab­
sence of noise in the data. Under this data generating process a good method 
should produce a near-to-zero per cent estimate for the proportion of noise. To 
this end, we consider the three normals mixture model:

0.4N(0,2 ) +  0.3N(6,2 ) +  0.3N(12.1 ) (5.12)

Fig. 5.6 provides a representation of the histogram and the density.

§5.4. E valuation o f perform ances

For each replica we computed the estimated param eters and misclassification 
percentages. At the end of this process we stored all the information required to 
compute quantities of interest to make comparative judgements about alternative
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procedures. The comparisons are based on two aspects: estimated parameters 
vs true parameters, and misclassification percentages. We deal with these two 
aspects separately. Each of the data  generating processes will generate two tables 
of output with quantities related to the evaluation of the two aspects.

M isclassification percentage. The main interest in this thesis is model-based 
clustering analysis. In this context we need to know how many points are misclas- 
sified and by which methods. For each replica we compared the true clusters with 
the estimated clusters. We simulated a data set for each data point recording the 
component to which it belongs. When the estimated clusters were available we 
compared the estimated clusters with the true clusters and computed the percent­
age of points wrongly assigned to each component and the (global) percentage 
of points wrongly assigned by the method under consideration. Note th a t both 
the true parameter vectors and the estimated param eters are ordered using the 
lexicographic ordering previously defined. For each sample size we averaged these 
percentages over the 1 0 0  replica.

E valuation o f estim ated  param eters. Recall th a t in most of the situations 
under consideration the data generating process does not coincide with the model 
estimated. For example, consider the side-noise data generating process. When 
we consider the application of the R and G methods, then the density representing 
the data generating process and the estimated density belong to the same family 
and are both indexed over the same param eter space. However, if we consider the 
TF method, this is not the case. In order to make comparisons we compared the 
true means, variances, and proportions with the estimated proportions, means 
and variances. This methodology is well defined because for all the data generat­
ing processes considered the means and variances of all the components are well 
defined.

The evaluation is based on the L\  distance for vectors of classes of parameters. 
We recall tha t if x, y £ Kp, the L\  distance between x  and y is defined as

p
d{x ,y ) =  \xj - y l \.

i= 1

Moreover the evaluation is based on classes of param eters rather than single 
parameters or the entire param eter vector. The reasons for this are as follows:

• if we consider summary statistics (e.g. means over replicas) of some mea-
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sure of the distance (e.g. the absolute value difference) between the true 
parameters and moments and their estimates, in most cases this would 
involve too many numbers to  keep track of.

• On the other hand, we could consider summary statistics (e.g. means over 
replicas) of the distances (e.g. the L\ distance) between the true and the 
estimated parameter vectors. This approach has the drawback th a t it ho­
mogenizes the differences in the different types of param eters in the mixture. 
To explain this point better, let us consider an example. We assume tha t 
for some component j  the true proportion is tt® =  0 .1  while the true vari­
ance is v® = 5; method A  provides the following estimates 7r^ =  0.2 and 
v?  =  5, while method B  provides 7rj3 =  0.1 and v?  =  5.1. Suppose we 
consider the L\  distance between the estimated param eter vector and the 
true parameter vector. We can easily see th a t the contribution given by 
the variance and the proportion to the distance of the true and estimated 
parameter vectors for the j th  component are the same for both methods. 

That is, these contributions are \7rj ~ 7rf \ J<~\vj ~ vf \  — \7rj ~ 7rj \ J r \vj ~ vj\ 
=  0.1. However, the effect on the mixture distribution caused by a change 
of 0 .1  in the proportion of some component2, is much bigger than the effect 
of a change of 0.1 in some of the variance. This is because here we are 
comparing proportions, means and variances which have different domains.

Based on this consideration we made comparisons for classes of param eters or 
moments. Let us assume th a t the data generating process consists of s compo­
nents, including the noise component. Prom now onward, the noise component is 
first component. Let 7r^, tt®, ■ ■., 7r® be the true proportion parameters, fi®, • • •, 
the true means and v$. . - • ,v°  the true variances of the non-noise components. 
Suppose, for instance, tha t an estimation method A produces the following esti­
mates 7Tj4, Tr^,. . . ,  7r^, /x^, . . . ,  f i f  and v £ , . . . .  v f .  For each replica we consider 
the L\  distances of the three different classes of vectors: proportions, means and 
variances. That is, for each replica we compute

dn = Y / \ x ° , - i r f l  d„ =  y > “ - M;4|. dv = Y ^ \ v 03 - v f \ .
3=1 3 =2  j = 2

Note that dM and dv do not contain means and variances for the noise component. 
This is because not all the methods studied estimate a noise component with a 
well defined probability distribution with a mean and a variance, and also th a t in

2This means that there is a total change of -0.1 in the proportion of the other components
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many applications noise param eters are not interesting. For each sample size the 
evaluation is based on the 90%-upper-trimmed means (over the 100 replicas) for 
the three distances above. The 90%-upper-trimmed means are the means th a t 
are computed considering only value less than or equal to the 90% quantile. This 
is because in some replicas the EM algorithm solution can be strongly dependent 
on the initial values, and in some situations this could cause anomalous values in 
the above distances. Of course, it would not be reasonable to trim  the average 
distances from below because they are bounded below by zero. O ther details in 
the design of this simulation study are highlighted later.

§5.5. R esu lts

In this section we describe how the methodologies under study perform for each 
of the data generating processes. There are two tables related to  each data 
generating process: the first reports the average misclassification percentages, and 
the second reports the upper-trimmed means of the distances for the three classes 
of parameters described above. In our simulation study we stored information 
about Monte Carlo expected values for each estimate and the standard errors. 
For the sake of brevity, we do not report all these numbers although we will 
comment on some interesting aspects.

5.5.1 — Side-noise and inside-noise

In Tables 5.2 and 5.3 we report the results for the side-noise model. This data 
generating process consists of one uniform noise component plus three Gaussian 
components (components 2 to 4). We recall th a t in this case the G method is only 
an approximation of the maximum likelihood estimator because this methodol­
ogy only looks for one of the many local maxima. Also recall th a t the N method, 
which is the maximum likelihood for a three normals mixture, does not estimate 
noise. First, we discuss performances in terms of clustering. Table 5.2 reports 
the average (across replicas) misclassification percentages. We report the global 
average percentage, which is the average percentage of points wrongly assigned 
to the four components. We also report the individual average misclassification 
percentages. These are average (across replicas) proportions of points wrongly 
assigned to a certain component. This table structure, reporting clustering per­
formance, is used for all the models considered.
Table 5.2 shows that the best overall performance is achieved by the IS method. 
Its global average misclassification percentages are 13.8% for n=50, 4.1% for
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n = 200 and 2.17% for n  =  500. For n  =  200 the IF achieves a global average 
misclassification rate even lower than th a t of the IS method, but we should re­
member that we calibrated the fixed c in order to get the best performances with 
the medium average sample size of n  =  200. In Table 5.3, the c column reports 
the average c computed across the replica for the IS method. We also report the c 
fixed for the IF method, which is constant over each replica for each sample size. 
We note that the average c selected by the IS m ethod is close to the benchmark 
c obtained via the calibration for sample size n  =  200, 500, while for n — 50 this 
is not the case. However, for n =  50 the IF method vs IS method performance 
is fairly similar in terms of global misclassification. The G method comes close 
to the IS and IF methods only for n = 500. This means th a t we need a certain 
number of noise points to get a pair of points th a t reasonably approximate the 
uniform support. In fact, if we look at the simulation outputs we find th a t the 
Monte Carlo expected values for the lower limits of the uniform distribution are 
9.97 and 9.98 for n = 50 and n =  200 respectively, which are far away from the 
true value (17). The G, on the other hand, does not perform very well for all the 
sample sizes. The same holds for the TF and TE methods. The overall worst 
performances resulted from using the N method.
Table 5.3 also provides some im portant insights. First, performance in term s of 
clustering reflects the quality of the estimates. By inspecting the upper-trimmed 
distances of classes of parameters we see tha t the relative performance of each of 
the five methods is also confirmed for quality of estimates. One im portant point 
tha t emerges from this table is th a t for the TF and TE method it seems tha t 
poor performance is related to poor performance in term s of variance estimation. 
This is also the case for some of the subsequent data generating processes. If we 
look at Table 5.3 we can see tha t while the behaviour of the estimated propor­
tions and locations does not differ very much from those provided by the other 
methods, the variances are estimated with a rather large error. We can also see 
th a t this phenomenon is stronger when the degrees of freedom are fixed. We 
recall th a t in a t-mixture component with degrees of freedom greater than 2, the 
estimated variance depends on both the degrees of freedom and the squared scale 
parameter. The problem may be tha t the EM /ECM  algorithm does not provide 
a good approximation for the maximum likelihood estimates of these parameters. 
However, this will be evaluated in the case of the t-noise models. In fact, in tha t 
case we have a correspondence between the data generating process and the esti­
mated model, and this kind of consideration will be easier. There is another issue 
related to t-mixtures: the standard errors of the estimated degrees of freedom are
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huge (when compared with those for the other parameters) for all sample sizes. 
This is the same for all the data  generating processes.

Tables 5.4 and 5.5 show th a t the behaviour of the inside-noise data generating 
processes is the same as in the case of side-noise, and the same comments apply. 
This suggests that wherever the support of uniform noise is placed, the estimators 
perform analogously.

5.5.2 — Wide-noise

Tables 5.6 and 5.7 refer to the wide-noise model. The R method here, could 
provide a maximum likelihood estimator as described in previous chapters. In 
fact, this method always fixes the uniform distribution as having support for the 
entire data-range. The G method also provides a maximum likelihood estima­
tor when the uniform component takes a pair of points equal to the minimum 
and maximum of the observations. Of course, since the computations axe made 
via the EM algorithm there is no guarantee th a t the estimates coincide with the 
maximum likelihood estimate. If we look at Table 5.6 we can see tha t for n  =  500 
the performance of the R, IF, IS and TE methods is very similar in term s of the 
global clustering performance. However, the improper density approach is once 
again a winner because, for smaller sample sizes, it outperforms the G and all 
other approaches. However, this result does not imply tha t RIMLE is better 
than maximum likelihood. In fact, it should be remembered th a t unfortunately 
there is no guarantee tha t an EM run provides the actual maximum likelihood 
estimator. We also note tha t as the sample size increases the G method and the 
R m ethod get very close to IF and IS. This is because as the sample size increases, 
the number of noise points in the data set increases and there is a better chance 
th a t the G method estimates a uniform component with support over the range 
of the data. Looking at the output from the simulations we can see th a t for 
n  =  500 in 98% of the replica the support of the uniform component estimated 
by the G method coincides with range of the data. Hence, in all these cases the 
G and R methods will yield the same answer.
Wlien the sample size is small (n =  50), the G method performs rather badly. 
In this case, we expect only five noise points in the data set. These are expected 
to be spread across the entire range of the data. Some of these noise points will 
be produced in the region where the normal components have the majority of 
their probability masses. This makes it very difficult to select a pair of data 
points approximating the uniform noise using this method. W ith side-noise and
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inside-noise this difficulty does not emerge, probably because in these cases the 
uniform points spread out in regions where the normals have limited amounts of 
probability mass. Relatively speaking, the TE method performs better than the 
TF approach. Looking at the global average misclassification percentages, we can 
see tha t as the sample size increases all the methods tend to converge in terms 
of performance, with the exception of TF, TE and N. The composition of the 
global average misclassification percentage is also informative. From the column 
headed “noise” we can see th a t overall the IS and IF methods give the lowest aver­
age proportion of points originated by non-noise components and assigned to the 
noise component. This phenomenon is quite strong for small sample sizes. The 
two methods based on t-mixtures always produce the largest average proportion 
of points wrongly assigned to the noise component, even for n = 500.
Let us now consider Table 5.7. As before performance in term s of clustering is 
related to performance in terms of estimates. As in the cases studied previously, 
the optimal c computed in the IS method is a long way below the fixed c values 
(i.e. 0.043) for small sample sizes.

5.5.3 — The outlier process

In the outlier process the number of noise points is fixed for all the replicas. This 
means th a t the true proportion of noise decreases as the sample size increases. 
That is, the true proportion of noise is 4% for n  =  50, 1% for n  =  200 and 
0.4% when n = 500. If we look at Table 5.8 we can see tha t the N method 
would be seriously affected by the presence of extreme outliers. The second 
worst method is again the TF followed by the TE. It is hard to identify a winner 
in this case. Despite its behaviour for small samples, the G method achieves the 
highest global average misclassification percentage for n =  500. Moreover, the 
G method performs rather badly in this situation when the sample size is small. 
The outliers are placed at the right of the second normal components with a 
mean equal to 5. The minimum value expected for the outlier is 20, with 25 the 
maximum expected value. When n = 50, placing the uniform support such th a t it 
includes points at the right-most normal pays off in term s of the likelihood value. 
This is demonstrated by the fact tha t the large average global misclassification 
percentage is mainly due to points wrongly assigned to the noise component. 
These points mostly come from the normal distribution having the largest mean. 
The R method exhibits a global average misclassification percentage, which is 
near to the optimum for all n. The IF method produces the best numbers in 
terms of clustering, however it is not so far from the R method. The IS does
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not perform well for small sample sizes, but for larger n  its performance is close 
to the best. Prom Table 5.9 we can see th a t the IS tends to select a c which, 
on average, is much larger than the fixed. It is interesting tha t for n =  50 the 
difference between the fixed c and the average selected c is around 0.001, but 
the difference between the average global misclassification percentages produced 
by the IF and IS method is about 2.12%. This la tter point should convince us 
tha t small variations in c can produce fairly wide differences in the final results. 
This again confirms that a data-driven method to optimally fix the c is needed. 
Prom Table 5.9 we note again th a t with the exception of the N and T F  methods, 
means are estimated with similar precision . On the other hand, we observe more 
variations in the estimations of variances and proportions.

5.5.4 — t-noise

In this data generating process noise is defined as points arising from the tails 
of the t-distributions. The model simulated produces on average about 10% of 
noise (as the processes analysed so far). This time the TF and TE methods axe 
estimators th a t identify noise as it is defined. As we would expect, these methods 
are the best performers. Let us look at the Table 5.10. The TE achieves the best 
global average misclassification percentage for all sample sizes and the TF  the 
second best. From inspection of the stored simulation outputs we can see tha t 
while the true degrees of freedom for the three t-components where (3,10,10) ,the 
Monte Carlo expected values for their estimates are (99, 88,114) for n  =  50; (94, 
76, 94) for n  — 200; (92, 71,102) for n  =  500. These estimates also have a rather 
large Monte Carlo standard error. Hence, the EM /ECM  algorithm solution does 
not provide a good answer in terms of estimated degrees of freedom. This is an 
interesting point because we are not aware of any empirical analyses of perfor­
mance for the maximum likelihood estimator for t-mixtures. The variance of the 
t-component is determined by the squared scale parameters multiplied by a term 
larger than one which depends on the degrees of freedom (see previous sections). 
If we look at Table 5.11 we see tha t the TE and TF provide good estimates of 
the population variances. The solution provided by the EM /ECM  algorithm is 
such tha t the scale parameters are underestimated and the degrees of freedom 
are overestimated. The two kinds of bias balance out so th a t the variability of 
each component is reasonably matched. This can also happen because of the 
many local maxima of the likelihood surface. If the variability of the mixture 
component is fitted, the bias for the degrees of freedom will seriously affect the 
kurtosis characteristic of the estimated subpopulations distributions. None of
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the literature documents these anomalies. Future empirical investigations should 
explore the computational performances of the EM /ECM  algorithm.

Referring back to Table 5.10, we can see th a t method N produces the worst 
global average misclassification percentage. Method G is worse than N for n = 
50, it improves for increasing n  to match the performance of the R method for 
n = 500. The IF method provides a better answer than the IS, even though both 
are median performers overall. For a sample size n =  50 IS produces the nearest 
average global misclassification percentage to th a t of the TE and TF  methods. 
On the other hand, for larger sample sizes the IF method produces a result closest 
to tha t for the TE and TF methods. In this case, the IS method has the problem 
tha t it selects a c that is too small compared to the fixed one (see Table 5.11). 
Note tha t the IS always produces the lowest average percentage of points wrongly 
assigned to the noise component.

5.5.5 — Normal mixtures

The normal mixture model is introduced to check what happens when there is no 
noise in the data. If we look at Table 5.12 it is obvious th a t the best performance 
is achieved by the N method, which is the maximum likelihood method. W hat 
is of interest is whether the IF method produces almost the same performances 
as the N methods. We can see that the performance of the IF method is close 
to N and not only for the calibrating sample size n =  200. The IS method is 
also very close to the N method, even though its performance deteriorates mod­
erately as the sample size increases. This is because as n grows we have more 
and more points from the tails of the normal sub-populations, and many of these 
points will be assigned to the noise component, which will have a larger improper 
density value compared with tha t of the normals in their tails. In fact, if we ex­
amine the average misclassification percentages by components, we can see tha t 
the greater part of the contribution to the global average percentage comes from 
points wrongly assigned to the noise component. The G and R methods perform 
rather badly for small sample sizes, and even for larger sample sizes their per­
formance does not come close to tha t of the N method. The TF method shows 
the worst performance. The TE method does better than the TF method even 
though for large sample sizes its performance is a long way from th a t of the N 
method. As we can see from the Table 5.12 the problem with the two methods 
based on mixtures of t-distributions, is tha t they wrongly assign too many points 
to the noise component. This is because these methods assign points to the noise
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component under the tails of the t-distributions. From Table 5.13 we can see 
that the selected c is larger than the fixed c for all n  > 50, while for n = 50 
it is approximately equal to zero. Again, this is because as n  increases there 
axe more points originating from the tails of the normals, which are caught by 
the improper noise component. From Table 5.13 it can be seen th a t the ranking 
of methods in terms of clustering performance is confirmed by the ranking in 
term s of estimates. As in the previously analysed cases, it seems th a t most of 
the variation can be found in the proportions and variances estimates, while the 
estimation of means among the methods, seems to be rather homogeneous except 
for small sample sizes.

From an inspection of the outputs of the simulations we can see th a t if we 
apply the TE method, the estimation of the degrees of freedom is reasonably 
accurate. We know from distribution theory th a t a t-distribution with larger 
degrees of freedom approximates a standard Gaussian distribution (in practice, 
degrees of freedom bigger than 30 will provide a good approximation). We report 
tha t the Monte Carlo expected values for the estimated degrees of freedom are al­
ways bigger than 70 for all n and for all components. However, the Monte Carlo 
standard errors for the estimated degrees of freedom and scale param eters are 
large when compared with the Monte Carlo standard errors for the proportions 
and locations parameters.

This data generating process raises another im portant issue. If we want to 
account for the possibility tha t there is noise in our data set we want to  rely on 
a method tha t estimates the proportion of the noise at zero when there is no 
noise in the data. If we look at the Monte Carlo expected values for the noise 
proportion, we see that only the IS method estimates on average 0% (at the 
third decimal point) for all sample sizes. The IF method on average estimates 
a noise proportion of 3%, 4% and 3% for n  =  50. 200, 500 respectively; while 
the TE method estimates a noise proportion on average of 5%, 5% and 4% for 
r? =  50, 200,500 respectively. All the other methods estimate an average noise 
proportion of 10% or more, even for n = 500.

§5.6. C onclusions

In this chapter we developed an extensive simulation Monte Carlo experiment 
with which we explored empirically the performance of several robust m ethod­
ologies for model-based cluster analysis. We compared the two estimators we have
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developed in Chapters 3 and 4 with Banfield and Raftery’s (1993) approach with 
the uniform noise supported on the data range, McLachlan and Peel’s (2000b) 
t-mixture approach and the standard maximum likelihood estimator for Gaus­
sian mixtures (see Table 5.1). Prom the empirical results it emerges th a t the 
performance of the methods under study depends on the underlying data  gener­
ating process. However, we can say th a t the RIMLE method with the constant 
improper density optimally selected is a good safeguard in the sense th a t it per­
forms rather good in many different situations. In many situations is is either 
our first best or the second best. When the RIMLE is the second best it results 
to be very close to the first best.
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Figure 5.1: Histogram for a sample of 200 points drawn from the side-noise 
probability model (5.7). The black line represents the density function under the 
model. Circles on the bottom represent the non-noise points in data set, while 
strokes represent noise points.
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Figure 5.2: Histogram for a sample of 200 points drawn from the inside-noise 
probability model (5.8). The black line represents the density function under the 
model. Circles on the bottom represent the non-noise points in data set, while 
strokes represent noise points.
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Figure 5.3: Histogram for a sample of 200 points drawn from the wide-noise 
probability model (5.9). The black line represents the density function under the 
model. Circles on the bottom represent the non-noise points in data set, while 
strokes represent noise points.
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Figure 5.4: Histogram for a sample of 200 points drawn from the outliers process. 
The black line represents the density function under the model (5.10). Notice tha t 
this is the density of the two normal mixtures in (5.10). Circles on the bottom 
represent the non-noise points in data set, while strokes represent outliers.
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Figure 5.5: Histogram for a sample of 200 points drawn from the T-noise model 
(5.11). The black line represents the density function under the model. Circles 
on the bottom represent the non-noise points in data set, while strokes represent 
noise points.
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Figure 5.6: Histogram for a sample of 200 points drawn from the Gaussian mix­
ture model (5.12). The black line represents the density function under the model. 
Single points are reported on the bottom.
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Table 5.2: Average misclassification percentages for the “Side noise model” . The 
components’ average misclassification percentage is the average percentage of 
points wrongly assigned to tha t component. Percentages are computed with 
respect to n.

N Method Global Component
Noise 2 3 4

50 G 20.760 12.440 0.700 5.180 2.440
R 19.460 14.320 0.620 4.020 0.500
IF 13.880 3.160 0.680 6.460 3.580
IS 13.800 3.000 1.140 6.720 2.940
TE 19.340 3.020 1.920 6.980 7.420
TF 19.520 6.280 1.940 5.920 5.380
N 22.300 — 2.060 7.480 12.76

200 G 5.060 4.650 0.100 0.170 0.140
R 10.390 10.050 0.010 0.310 0.010
IF 3.790 1.210 0.100 0.460 2.040
IS 4.080 2.560 0.060 0.770 0.700
TE 8.450 3.460 0.020 0.010 4.960
TF 10.650 6.210 0.010 0.950 3.480
N 13.790 — 0.180 0.460 13.14

500 G 2.690 2.240 0.120 0.200 0.130
R 8.080 8.070 0.000 0.010 0.010
IF 2.400 0.860 0.080 0.120 1.340
IS 2.170 1.480 0.080 0.130 0.480
TE 7.290 3.240 0.010 0.020 4.020
TF 9.460 6.140 0.000 0.000 3.310
N 13.290 — 0.190 0.100 13.00
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Table 5.3: Upper-trimmed means of distances for classes of parameters for
the “Side noise model”. For the methods IF and IS we also report the average
value for the improper density c.

N Method c dv
50 G — 0.32 1.45 2.45

R — 0.46 1.03 2.60
IF 0.020 0.23 1.15 2.41
IS 0.012 0.24 1.02 2.09
TE — 0.20 1.42 5.48
TF — 0.19 1.25 4.61
N — 0.34 1.80 13.99

200 G — 0.17 0.38 1.13
R — 0.39 0.40 1.75
IF 0.020 0.13 0.43 1.16
IS 0.018 0.16 0.39 1.13
TE — 0.11 0.53 2.55
TF — 0.13 0.50 2.68
N — 0.31 1.02 14.22

500 G — 0.09 0.23 0.57
R — 0.37 0.26 1.48
IF 0.020 0.11 0.28 0.72
IS 0.019 0.12 0.25 0.69
TE — 0.09 0.41 2.13
TF — 0.13 0.39 2.46
N — 0.31 1.03 14.31
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Table 5.4: Average misclassification percentages for the “Inside noise model” . 
The components’ average misclassification percentage is the average percentage 
of points wrongly assigned to th a t component. Percentages are computed with 
respect to n.

N Method Global Component
Noise 2 3 4

50 G 21.38 16.74 0.38 2.00 2.26
R 15.90 12.60 0.62 1.26 1.42
IF 11.40 3.60 0.72 3.74 3.34
IS 10.40 2.94 0.98 3.84 2.64
TE 13.28 3.22 1.70 5.38 2.98
TF 14.04 6.36 1.66 3.54 2.48
N 13.62 — 1.78 7.30 4.54

200 G 7.33 5.82 0.07 0.17 1.27
R 8.87 7.51 0.01 0.01 1.35
IF 6.54 1.19 0.04 0.85 4.46
IS 5.76 3.46 0.02 0.03 2.25
TE 8.54 3.44 0.01 2.02 3.08
TF 8.88 6.05 0.00 0.44 2.39
N 10.83 — 0.03 5.03 5.78

500 G 5.68 3.96 0.06 0.30 1.35
R 7.19 5.72 0.00 0.00 1.46
IF 5.35 0.88 0.03 0.08 4.35
IS 4.88 2.53 0.01 0.02 2.32
TE 7.03 3.19 0.00 0.86 2.98
TF 8.00 5.60 0.00 0.06 2.33
N 10.62 — 0.02 4.52 6.08
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Table 5.5: Upper-trimmed means of classes of parameters for the “Inside noise
model”. For the methods IF and IS we also report the average value for the
improper density c.

N Method c d-n dv
50 G — 0.39 1.77 2.31

R — 0.41 1.04 2.29
IF 0.024 0.23 1.18 2.39
IS 0.013 0.22 1.11 2.40
TE — 0.17 1.44 4.66
TF — 0.16 1.21 3.07
N — 0.27 1.71 7.82

200 G — 0.21 0.44 1.09
R — 0.32 0.46 1.42
IF 0.024 0.13 0.66 1.55
IS 0.026 0.17 0.50 1.21
TE — 0.10 0.68 2.02
TF — 0.11 0.54 1.50
N — 0.23 1.36 7.57

500 G — 0.16 0.31 0.79
R — 0.28 0.33 1.06
IF 0.024 0.10 0.48 1.19
IS 0.027 0.15 0.38 0.93
TE — 0.07 0.45 1.24
TF — 0.10 0.38 1.18
N — 0.23 1.23 7.42
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Table 5.6: Average misclassification percentages for the “Wide noise model” . 
The components’ average misclassification percentage is the average percentage 
of points wrongly assigned to th a t component. Percentages are computed with 
respect to n.

N Method Global Component
Noise 2 3

50 G 30.64 23.74 4.14 2.76
R 14.24 9.58 2.52 2.14
IF 9.04 0.92 4.64 3.48
IS 9.78 2.24 4.48 3.06
TE 10.06 3.70 3.56 2.80
TF 12.24 6.76 3.12 2.36
N 10.96 — 5.64 5.32

200 G 9.50 2.98 3.45 3.07
R 8.10 1.89 3.25 2.96
IF 7.59 0.46 3.75 3.39
IS 8.20 1.42 3.60 3.18
TE 9.54 4.32 2.75 2.46
TF 11.17 6.56 2.39 2.22
N 10.22 — 5.10 5.12

500 G 7.58 0.92 3.63 3.03
R 7.55 0.92 3.60 3.03
IF 7.51 0.30 3.94 3.27
IS 7.78 0.71 3.85 3.22
TE 9.15 4.04 2.82 2.29
TF 10.84 6.26 2.50 2.08
N 10.33 — 5.27 5.06
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Table 5.7: Upper-trimmed means of classes of parameters for the “Wide noise
model”. For the methods IF and IS we also report the average value for the
improper density c.

N Method c djr d/j, dv
50 G — 0.43 1.03 1.82

R — 0.30 0.45 1.23
IF 0.043 0.17 0.43 1.07
IS 0.018 0.18 0.42 1.04
TE — 0.13 0.42 1.05
TF — 0.12 0.43 1.18
N — 0.22 0.48 1.77

200 G — 0.10 0.20 0.48
R — 0.09 0.19 0.44
IF 0.043 0.08 0.19 0.43
IS 0.032 0.11 0.20 0.54
TE — 0.06 0.20 0.66
TF — 0.06 0.21 0.91
N — 0.20 0.31 1.86

500 G — 0.05 0.13 0.30
R — 0.05 0.12 0.29
IF 0.043 0.06 0.13 0.32
IS 0.036 0.08 0.13 0.42
TE — 0.04 0.12 0.57
TF — 0.04 0.13 0.86
N — 0.20 0.29 2.02
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Table 5.8: Average misclassification percentages for the “Outliers model” . The 
components’ average misclassification percentage is the average percentage of 
points wrongly assigned to tha t component. Percentages are computed with 
respect to n.

N Method Global Component
Noise 2 3

50 G 24.92 19.40 3.38 2.14
R 3.74 0.48 1.66 1.60
IF 3.14 0.08 1.64 1.42
IS 5.26 2.36 1.48 1.42

TE 7.36 3.80 0.38 3.18
TF 10.08 5.48 2.02 2.58
N 25.38 — 9.78 15.60

200 G 3.90 1.45 1.02 1.43
R 2.53 0.07 1.03 1.43
IF 2.48 0.01 1.03 1.44
IS 3.36 0.92 0.99 1.45
TE 7.25 5.62 0.68 0.95
TF 9.49 8.10 0.53 0.86
N 22.18 — 0.00 22.18

500 G 2.34 0.00 1.02 1.32
R 2.35 0.01 1.02 1.32
IF 2.33 0.00 1.01 1.31
IS 2.67 0.34 0.99 1.33
TE 6.77 5.13 0.74 0.90
TF 10.01 8.88 0.40 0.73
N 14.20 — 0.01 14.20
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Table 5.9: Upper-trimmed means of classes of parameters for the “Outliers
model”. For the methods IF and IS we also report the average value for the
improper density c.

N Method c d-K dfx dy
50 G — 0.21 3.41 1.11

R — 0.09 0.41 0.90
IF 0.015 0.06 0.40 0.85
IS 0.016 0.11 0.41 0.96
TE — 0.11 0.42 1.14
TF — 0.16 0.51 1.40
N — 0.50 0.83 19.59

200 G — 0.02 0.20 0.38
R — 0.03 0.20 0.39
IF 0.015 0.02 0.20 0.39
IS 0.024 0.05 0.19 0.45
TE — 0.10 0.20 0.85
TF — 0.15 0.22 1.06
N — 0.51 1.68 10.84

500 G — 0.01 0.12 0.25
R — 0.02 0.12 0.25
IF 0.015 0.01 0.12 0.25
IS 0.023 0.03 0.12 0.28
TE — 0.10 0.14 0.76
TF — 0.17 0.14 1.09
N — 0.34 1.39 5.95
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Table 5.10: Average misclassification percentages for the “T-noise model” . The 
components’ average misclassification percentage is the average percentage of 
points wrongly assigned to tha t component. Percentages are computed with 
respect to n.

N Method Global Component
Noise 2 3 4

50 G 24.12 16.10 3.12 2.78 2.12
R 13.18 9.12 1.40 2.08 0.58
IF 11.42 4.88 2.12 3.36 1.06
IS 10.98 1.52 3.58 3.78 2.10
TE 8.84 1.92 2.08 3.10 1.74
TF 9.96 4.72 1.12 2.72 1.40
N 12.44 — 5.22 4.18 3.04

200 G 11.49 5.38 3.02 1.53 1.56
R 6.66 2.02 2.41 1.22 1.02
IF 6.25 2.75 1.94 0.90 0.67
IS 7.89 0.95 3.27 2.10 1.58
TE 4.77 0.96 1.70 1.24 0.87
TF 4.82 3.13 0.69 0.76 0.24
N 11.04 — 5.93 2.31 2.79

500 G 7.76 0.60 3.34 2.09 1.73
R 7.36 0.22 3.45 2.08 1.60
IF 4.39 1.65 1.66 0.59 0.50
IS 6.71 0.29 3.11 1.87 1.45
TE 3.26 0.44 1.26 1.00 0.56
TF 3.73 2.76 0.37 0.47 0.14
N 10.41 — 5.52 2.41 2.48
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Table 5.11: Upper-trimmed means of classes of parameters for the“T-noise
model”. For the methods IF and IS we also report the average value for the
improper density c.

N Method c d-jx d̂ i dv
50 G — 0.33 0.70 1.15

R — 0.28 0.37 0.74
IF 0.056 0.20 0.36 0.84
IS 0.010 0.19 0.35 1.08
TE — 0.10 0.33 0.71
TF — 0.10 0.32 0.61
N — 0.20 0.41 1.60

200 G — 0.15 0.18 0.74
R — 0.14 0.15 0.48
IF 0.056 0.17 0.14 0.40
IS 0.037 0.10 0.16 0.80
TE — 0.06 0.14 0.37
TF — 0.05 0.14 0.32
N — 0.20 0.20 1.68

500 G — 0.08 0.11 0.78
R — 0.08 0.11 0.73
IF 0.056 0.16 0.09 0.26
IS 0.048 0.07 0.10 0.66
TE — 0.04 0.09 0.22
TF — 0.04 0.08 0.25
N — 0.20 0.13 1.68
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Table 5.12: Average misclassification percentages for the “Gaussian model". The 
com ponents’ average misclassification percentage is the average percentage of 
points wrongly assigned to  th a t component. Percentages are computed with 
respect to  n.

N Method Global Component
Noise 2 3 4

50 G 29.72 26.70 0.48 1.56 0.98
R 25.64 24.18 0.22 0.98 0.26
IF 3.52 0.00 0.76 2.18 0.58
IE 4.48 1.14 0.70 2.28 0.36
TE 7.16 4.64 0.58 1.68 0.26
TF 11.92 10.16 0.40 1.24 0.12
N 3.48 — 0.76 2.14 0.58

200 G 17.51 16.04 0.69 0.68 0.10
R 9.82 8.81 0.38 0.60 0.03
IF 2.08 0.00 0.72 1.19 0.17
IE 2.71 0.72 0.68 1.17 0.14
TE 5.95 4.63 0.42 0.84 0.05
TF 10.62 9.82 0.20 0.57 0.03
N 2.07 — 0.72 1.18 0.17

500 G 6.33 5.16 0.41 0.62 0.14
R 4.06 2.73 0.47 0.73 0.12
IF 1.67 0.00 0.59 0.89 0.18
IE 2.03 0.39 0.58 0.89 0.18
TE 5.33 4.33 0.32 0.62 0.06
TF 10.34 9.81 0.16 0.34 0.03
N 1.67 — 0.59 0.89 0.19
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Table 5.13: Upper-trimmed means of classes of parameters for the “Gaussian
noise model". For the methods IF and IS we also report the average value for
the improper density c.

N M ethod c d-x d . dv
50 G — 0.57 1.35 2.61

R — 0.62 0.94 2.69
IF 0.001 0.13 0.75 1.68
IS 0.000 0.15 0.77 1.77
TE — 0.18 0.76 1.91
TF — 0.26 0.83 2.15
N — 0.13 0.75 1.68

200 G — 0.36 0.60 1.45
R — 0.35 0.41 1.47
IF 0.001 0.07 0.38 0.80
IS 0.014 0.10 0.38 0.93
TE — 0.12 0.39 1.29
TF — 0.20 0.41 1.81
N — 0.06 0.38 0.80

500 G — 0.19 0.31 0.92
R — 0.19 0.25 0.87
IF 0.001 0.04 0.24 0.52
IS 0.014 0.06 0.24 0.59
TE — 0.10 0.26 1.10
TF — 0.19 0.27 1.73
N — 0.04 0.24 0.52
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C H A PTER  6

Concluding Remarks

§6.1. C ontributions

Model-based cluster analysis is a statistical tool used to  investigate group-structures 
in data using finite m ixture models. Gaussian distributions are a popular device 
used to model elliptical shaped clusters and the estimation of mixtures of Gaus- 
sians is usually based on the maximum likelihood method. In this thesis we focus 
on m ixture models for one-dimensional random variables. Throughout this work 
the number of components is considered to be fixed and known. For a wide class 
of finite m ixtures, including Gaussians, maximum likelihood estimates are not 
robust. This implies tha t a small proportion of outliers in the data could lead to 
poor estim ates and clustering.

One way to deal with this is to  add a ‘‘noise component", i.e. a mixture com­
ponent th a t models the outliers. In this thesis the word “noise" is used to identify 
all those data  points which are extraneous to the sub-populations of interest . We 
made three main contributions.

In Chapter 3 we introduced a model which is a finite mixture of location- 
scale distributions mixed with a finite number of uniforms supported on disjoint 
subsets. We defined and proved the identifiability for such a model. Moreover, 
we introduced the maximum likelihood estim ator and we showed its existence 
and consistency. We also provided a com putational procedure based on the EM 
algorithm. Because of the com putational complexity due to the presence of the 
uniform components, we also suggest some strategies to handle these problems.
In C hapter 5 we explored the properties of this strategy empirically. It turns out 
th a t this methodology is particularly suited when there are points from the noise 
component localized in a certain region of the data-range. In these situations this 
m ethod is able to achieve very good clustering performances.
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Our second theoretical contribution is the development of the robust improper 
maximum likelihood estim ator (RIMLE). Hennig (2004) proposed a pseudo-model 
in which the noise component is represented by a fixed improper density, th a t is. 
a constant on the real line. He showed th a t the resulting estimates are robust 
to  extreme outliers. The la tter is the main motivation for our investigation. We 
defined a pseudo maximum likelihood estim ator for such kind of model and we 
stated  conditions under w7hich we showed th a t the RIMLE is strongly consistent 
for the maximizer of the integral of the pseudo-log-likelihood function with re­
spect to  the distribution function w7hich generated the data. Furthermore we 
developed a successful methodology to  select the value of the improper density 
value based on the dataset. This strategy has been also investigated on the basis 
of the empirical study presented in Chapter 5. The empirical performance of the 
RIMLE is very encouraging (see the next few7 paragraphs).

The third contribution of this thesis is an extensive simulation study in which 
we measure and compare the performance of the previous two methods and cer­
tain other robust methodologies proposed in the literature. The RIMLE in gen­
eral performs better than the other methods. In fact, in all the situations, except 
the case when data are generated from t-m ixtures. the RIMLE performs better 
than the other methods. But the performance of the RIMLE in the case of data 
from t-m ixtures is not dram atically different from the performance of the maxi­
mum likelihood estimator for t-m ixtures.

The RIMLE is fairly good at detecting w7hen there is no noise in the data. In 
particular, this methodology offers the overall best performance when the sample 
size is small. In fact. wrhen the sample size is small (n = 50, in our study) perfor­
mance in the presence of noise is seriously affected for some of the methodologies. 
In particular, the maximum likelihood for the mixture model of Gaussians and 
uniforms — - even w7hen the da ta  generating process includes uniform noise — 
show’s poor performance for small sample sizes.

As a last point we would warn tha t the maximum likelihood estim ator for t- 
m ixtures w7ith fixed degrees of freedom can be dangerous. This is dem onstrated by 
the case when the data generating process is based on a m ixture of t-distributions.
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§6.2. Future works

The next step would be to  extend these results to multidimensional random vec­
tors which is of more interest for applications of model-based clustering. Even 
though the maximum likelihood estim ator for mixtures of loc.ation-scales with 
uniforms resulted to be fairly good in some situations, its use in the m ultidimen­
sional case would be limited by the resulting computational complexity.

The most interesting extension to the multidimensional case seems to be the 
RIMLE. While the statistical theory we developed in Chapter 4 can be easily 
adapted to multidimensional random  vectors, it has to be assessed wThether the 
selection method for the im proper constant density value also works in a m ulti­
dimensional setup.

It would be interesting to define the selection method as an estim ator and to 
explore its asymptotic properties. The issue of asymptotic distributional proper­
ties for such methods is also a challenge.
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