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A b s t r a c t

Abstract

This project focuses on a vaccine candidate MSP 119 which is present in the asexual 

blood stages of the malaria parasite’s lifecycle. Immunisation with MSP 119 has been 

shown previously to protect against growth of the blood stage parasite. Previous studies 

have shown there are three types of antibodies produced against Plasmodium 

falciparum MSP 11 9: inhibitory, blocking and neutral with only inhibitory antibodies 

giving protection. It is vital to identify the epitopes recognised by inhibitory antibodies 

to engineer an effective vaccine. The aim of this project is to map the antibody binding 

sites of Plasmodium yoelii (a rodent parasite) MSP 119. Three protective Plasmodium 

yoelii MSP119 specific monoclonal antibodies that had been created previously were 

used. MSP119 variants containing amino acid changes in residues 12, 16, 17 and 28 

were created and binding to the monoclonal antibodies was investigated using western 

blotting, ELISA and surface plasmon resonance analysis. This showed that all four 

residues were involved in antibody binding. A comparison of the residues found to be 

important for MSP119 antibody binding in Plasmodium yoelii and inhibitory antibody 

binding in Plasmodium falciparum show they lie within the same area. This suggests 

there are conserved areas for inhibitory antibody binding across the species implying a 

common mechanism of action. Immunisation studies with the MSP 119 variants have 

shown that changes to residue 28 abolish the protective immune response to challenge 

infection with Plasmodium yoelii YM seen with wildtype MSP 119. Structural NMR 

studies of wildtype and MSP119 variants have shown that residue 28 plays a vital 

structural role. The information presented in this project could be important in 

developing antigens for vaccination to specifically stimulate production of inhibitory 

antibodies. It could help direct research into understanding the mechanism of action of 

inhibitory antibodies and aid in the development of new therapeutic strategies targeting 

MSPI19.
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C h a p t e r  1: I n t r o d u c t i o n

Chapter 1: Introduction

1.1 Malaria

Malaria is a devastating disease. The World Health Organisation (WHO) estimates that 

it causes up to 3 million deaths annually and 2.4 billion people, namely half the world’s 

population is at risk (APPMG, 2005). A large proportion of the malaria deaths are of 

children in Africa where malaria-attributable death rates for children under 5 have been 

reported as high as 25 to 30 % of the total. Malaria is also a large economic burden with 

countries with intensive malaria lagging in growth by 1.3 % per person compared to 

neighbouring non-endemic countries (Breman et a l,  2001).

Malaria is caused by a protozoan called Plasmodium and is transmitted by mosquitoes. 

There are four species of Plasmodium that infect humans: P. falciparum, P. vivax, P. 

ovale and P. malariae. P. falciparum is the most virulent species that affects humans. 

There is a wide range of symptoms associated with malaria, and the cause of these 

symptoms is not always obvious, which can lead to misdiagnosis. If a patient with 

malaria is not treated the patient can deteriorate rapidly as the parasite rapidly replicates 

in the blood stream during the infection (Breman, 2001). The symptoms tend to occur in 

cycles of fever and chills which correspond with phases of the parasite’s life cycle. 

Malaria can lead onto severe malaria and this can include: shock, respiratory distress, 

anaemia, hypoglycaemia and cerebral malaria. The severe malaria can lead to death. 

Malaria can also have long term effects leading to impaired growth and development 

and increased infant mortality. Malaria can also cause significant problems for pregnant 

mothers with the mother suffering from anaemia and hypoglycaemia and the baby being 

bom with a low birth weight and increased risk of infant mortality (Breman, 2001, 

Chiang et al., 2006).
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1.2 Current and future malaria treatments

Figure 1.1 highlights the current and future directions of malaria treatments. The main 

focus of malaria prevention in the early 1960s was to use insecticides such as DDT to 

kill the mosquitoes. The mosquitoes developed resistance to the insecticides and this 

approach was abandoned by the WHO in 1969. Another approach that is being used to 

prevent malaria infection is using insecticide impregnated bednets to stop mosquitoes 

biting people at night and transmitting the disease. This approach is very effective but 

relies on ensuring the bednets are used correctly and are not damaged. Anti-malarial 

drugs have long been used for the treatment of malaria and are still being used. 

Examples of anti-malaria drugs include: Chloroquine, Quinine and Mefloquine. The 

main problem with the anti-malarial drugs is that the Plasmodium parasite is developing 

resistance to them. For example, P. falciparum has developed resistance to Chloroquine 

but it is still widely prescribed because it is cheaper than other anti-malarials and is well 

tolerated. A newer anti-malarial drug, Artemisinin has been developed which is able to 

work against multi-drug resistant P. falciparum but is more expensive than the older 

drugs (Breman, 2001, Chiang et al., 2006). In order for anti-malarial drugs to be used in 

the future new drugs that work by different mechanisms need to be developed that will 

overcome the problem of drug resistance. Any new anti-malaria drugs that are produced 

need to be affordable for malaria endemic countries.

Potential future interventions for malaria control and treatment include: the genetic 

modification of vectors and the development of vaccines. The genetic modification of 

vectors would involve genetically modifying mosquitoes so that they were unable to 

support the lifecycle of the Plasmodium parasite or so that the parasite would die if the 

mosquito ingested it in the blood meal. The aim would be to prevent malaria 

transmission. The genetic modification of mosquitoes may have environmental 

consequences and be unpopular. Work is being carried out to develop vaccines to 

prevent transmission of malaria, develop immunity to malaria and to reduce the severity 

of symptoms (Breman, 2001).
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In addition to new treatments malaria control could involve better education and social 

and political awareness. For example, modifying attitudes to the environment during 

engineering projects such as building dams and new residential areas where this could 

increase mosquito breeding grounds and bring more people into close contact with 

mosquitoes. Altering people’s behaviour and attitude towards malaria in endemic 

countries could also help in the future including improving education about the 

condition, draining swamps and eliminating other mosquito breeding grounds and 

improving availability of rapid diagnostic tests for malaria (Breman, 2001).
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1.3 Vaccines

Vaccines could provide a cost effective method for the control and prevention of 

malaria. Vaccines could be targeted at a number of different groups of people to help in 

controlling the disease including: pregnant women and women of child-bearing age to 

prevent malaria during pregnancy; babies and children in malaria endemic countries that 

have not yet built up any natural immunity to malaria infection and visitors to malaria 

endemic countries.

There are a number of arguments that have led scientists to believe that the development 

of an effective malaria vaccine will be possible. Protective immunity to malaria has 

been induced in every animal model of the disease. In humans, the level of parasitaemia 

and the severity of malaria decrease with age suggesting that repeated infection can 

induce immune responses that affect the parasitaemia and severity of the disease. 

Understanding the way in which the repeated infections induce a protective immune 

response could lead to the development of a vaccine to mimic this induction of 

immunity. Studies have shown that protection against P. falciparum can be passively 

transferred in humans by immunisation with immunoglobulin purified from the blood of 

adults that have been living in malaria endemic countries for their whole lives. The 

studies have shown that antibodies against the blood stage antigens can protect against 

P. falciparum parasite growth in the blood stream and this could mean that if the 

antigens that produce the immune response could be identified and purified for 

vaccination they could potentially induce the same protective immune response 

(Hoffman & Miller, 1996). The final reason to believe that a protective vaccine would 

be possible is from immunisation studies with radiation-attenuated sporozoites in mice 

and humans. In these studies it was found that radiation-attenuated sporozoites induce 

sterile protective immunity. This could suggest that vaccines based on these parasites or 

the proteins they contain could help protect against the disease (Hoffman & Miller, 

1996).
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1.3.1 Vaccine Candidates

The lifecycle of the Plasmodium parasite is made up of a number of distinct stages, 

vaccines are therefore being developed to target the different stages of the lifecycle as 

highlighted in figure 1.2. Three main classes of vaccines are being developed: pre- 

erythrocytic vaccines, erythrocytic vaccines and transmission blocking vaccines.

The aim of developing a pre-erythrocytic vaccine is to stop the parasite when it enters 

the body before it has a chance to get to the erythrocytes. Examples of antigens for this 

type of vaccine include circumsporozoite protein, liver stage antigen-1 and liver stage 

antigen-3. Another approach that is being taken to develop a pre-erythrocytic vaccine is 

by a company called Sanaria who are working on producing irradiated sporozoites for 

use as a vaccine (Chiang et al., 2006).

The aim of an erythrocytic vaccine is to target the asexual erythrocytic parsites. The 

asexual erythrocytic parasites cause the clinical symptoms of malaria and the severity of 

the disease is related to the parasitaemia. An erythrocytic vaccine could reduce the 

severity of the malaria infection, for example, by inducing an antibody response that 

targets proteins on the surface of the merozoite thus blocking erythrocyte invasion and 

stopping the replication of the merozoite in the erythrocyte. The advantage of this type 

of vaccine is it would not be required to induce complete resistance to infection to be 

effective (Miller et a l,  1986). Examples of antigens being developed for this type of 

vaccine include: recombinant proteins based on fragments of merozoite surface protein- 

1, AMA-1 and merozoite surface protein-3.

The aim of transmission blocking vaccines is to induce the production of antibodies in 

the human host that will be ingested in the mosquito’s blood meal. The antibodies will 

react with newly expressed proteins on the surface of the parasite in the mosquito gut 

and prevent transmission of the parasite to the next person the mosquito bites. The 

vaccine may do this by inducing antibodies that stop the migration of the parasite across 

the mosquito midgut. The advantage of this type of vaccine is that the antigens may be 

conserved as the sexual stage parasites do not need to evade the immune system in the 

human host, but the main disadvantage is that vaccines will not protect the individual
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from getting malaria (Chiang et a l , 2006). In addition to the vaccines aimed at the 

individual stages of the parasite life-cycle, multi-protein vaccines are also being 

developed that combine proteins from different lifecycle stages (Hoffman & Miller, 

1996). Novel types of vaccines are also being developed that do not rely on recombinant 

protein production (which can be difficult with malaria parasite proteins) including 

DNA based vaccines, genetically attenuated parasites and edible plant vaccines. There 

is currently no effective malaria vaccine on the market and producing an effective 

vaccine remains a huge future challenge for the malaria vaccine community.
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Figure 1.2: Life cycle of P. falciparum highlighting the immune mechanisms for 

different types of vaccines.

Figure from Hoffman et al. (Hoffman & Miller, 1996)
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1.4 Introduction to MSPlig

This project focuses on a leading vaccine candidate that is present in the asexual blood 

stage of the malaria parasite's life cycle. This is the stage that causes the clinical 

symptoms. The protein is a 19 kDa C-terminal region of the major merozoite surface 

protein 1 (MSP1), designated MSP119. MSP1 undergoes two processing events as 

shown in figure 1.3. The exact function of MSP 1 and the processing events are still 

unclear. It has been suggested that MSP1 is involved in binding to the surface of 

erythrocytes and is involved in recognition of and attachment to these cells (Holder & 

Blackman, 1994). The primary processing event occurs at the end of schizogony around 

the time of merozoite release. Primary processing produces four polypeptides MSP 18 3 , 

MSP 130, MSP 138 and MSP 142 (Holder et al., 1994). The MSP 142 portion of the protein 

is anchored to the membrane by a glycosyl phosphatidyl inositol (GPI) moiety and 

polypeptides are held in a non-covalent complex on the merozoite surface (McBride & 

Heidrich, 1987). The MSP1 complex undergoes a secondary processing event at or 

immediately before erythrocyte invasion where MSP 142 polypeptide is cleaved by 

proteases to MSP 133 and MSP119. The MSP 133 polypeptide is shed from the surface of 

the parasite along with MSP 18 3 , MSP 130 and MSP 13 8 . MSP 11 9 is carried on the surface 

of the invading parasite into the erythrocyte (Blackman & Holder, 1992, Blackman et 

al., 1991). The exact function of this MSP 119 fragment is unclear. Hypotheses that have 

been put forward are that MSP119 could interact with receptor proteins or could provide 

down stream biochemical communication in the cells. It has been suggested that 

MSP119 could be involved in a signalling cascade to indicate that the cell has been 

invaded by the parasite and therefore switch on red blood cell machinery (Holder & 

Blackman, 1994).

It is clear that the secondary processing event needs to occur in order for the merozoite 

to invade the erythrocyte. It has been shown by Blackman et al. that antibodies to 

MSP1 19 inhibit erythrocyte invasion and that MSP 119 can induce an immune response 

that protects against growth of the blood stage parasite (Blackman et al., 1990, 

Blackman et al., 1994).



In order to understand and utilise MSP 119 as a protein for vaccine development you 

must understand the structure of the protein and immunity to that protein.

1.5 Understanding the structure of the protein

Understanding the structure of MSP 119 is vital for its use in developing a vaccine or in 

rational drug design. Analysis of the three-dimensional structure of the protein can help 

to understand how the biological function of the protein is related to the structure and 

can help identify ligand, receptor and antibody binding sites. Understanding the three- 

dimensional structure of MSP 119 for vaccine design is particularly important to identify 

the three-dimensional location of antibody binding epitopes and to identify areas of the 

protein that cannot be changed in a vaccine due to structural constraints (Babon et al., 

2007, Bentley, 2006).

The structure of MSP119 from a number of species has been solved by Nuclear 

Magnetic resonance (NMR) or X-ray crystallography. There are advantages and 

disadvantages of using these two structural methods. NMR involves solving the 

structure of a protein in solution. This means that from NMR a group of structures is 

obtained because the protein is moving around in solution. In order to carry out NMR 

analysis large quantities of soluble purified protein must be produced. A concentration 

of around 1 mM is required to carry out NMR and this means the protein must also be 

stable at this concentration for long periods. The advantage of using NMR to solve the 

structure of a protein in solution is that the methodology can be used to look at the 

dynamics of the protein and to investigate kinetics of the protein binding to ligands. The 

quality of protein structures solved by NMR varies greatly and depends upon the quality 

of the spectra that are obtained. The overall resolution of protein structures solved by 

NMR is lower than for X-ray crystallography. The orientation of some side chains 

including asparagine, glutamine and threonine and the arrangement of hydrogen atoms 

can be distinguished by NMR but not by X-ray crystallography (Creighton, 1997, 

Freifelder, 1999). The main limitation of NMR is the size restriction. Even using 

labelled protein the upper size limit is around 50 KDa as beyond this size spectra 

become too complex and signals cannot be distinguished. There are newer techniques 

that have allowed larger 900 KDa protein structures to be solved but that is unusual for
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NMR (Fernandez & Wider, 2003). X-ray crystallography involves crystallising a 

protein and using X-ray diffraction patterns to solve the structure. X-ray crystallography 

produces higher resolution structures than NMR and does not have an upper size limit. 

The structure of very large proteins and protein complexes such as a ribosome has been 

solved by X-ray crystallography. The main limitation of X-ray crystallography is the 

ability to crystallise the protein as not all proteins crystallise or crystallise in a 

biologically significant way. The quality of the structure also depends strongly on the 

quality of the crystal obtained (Creighton, 1997, Freifelder, 1999). Both methods can be 

used to complement one another and to provide different information about the protein. 

For example, NMR could be used to look at the dynamics of antibody binding to an 

antigen and identify the antibody binding site and X-ray crystallography could be used 

to crystallise the antibody-antigen complex and identify the contact surface between the 

antibody and antigen (Pizarro et al., 2003).

1.5.1 Structure o f MS PI / 9

The structures of MSP119 from P. falciparum (Morgan et al., 1999, Pizarro et al., 2003), 

P. vivax (Babon et al., 2007), P. cynomolgi (Chitarra et al., 1999) and P. knowlesi 

(Garman et a l 2003) have been solved by NMR or X-ray crystallography as described 

in table 1 . 1 .
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Table 1.1: Three-dimensional structures of MSPI19 that have been solved by 

NMR or X-ray crystallography. This table is based on table 1 (Bentley, 2006)

Species PDB

entry

Method Resolution Year Reference

P. cynomolgi 1B9W X-ray 1 . 8  A 1999 (Chitarra et al., 

1999)

P. falciparum 1CEJ NMR 1999 (Morgan et al., 

1999)

P. knowlesi 1N1L X-ray 2.4 A 2002 (Garman et al., 

2003)

P. falciparum- 

Fab complex

IOBI X-ray 2.9 A 2003 (Pizarro et al., 

2003)

P. vivax 2NPR NMR 2007 (Babon et al., 

2007)

The resolution is 'or X-ray crystal structures only.

Figure 1.4 shows the backbone of MSP 119 structures from the different species. The 

overall structure of MSP 119 from the different Plasmodium species is very similar. The 

MSP119 proteins share common structural characteristics. The proteins are composed of 

two epidermal growth factor (EGF)-like motifs. An EGF-motif typically consists of 30 

to 40 amino acids and has a characteristic disulphide bonding pattern that involves three 

intradomain disulphides (Wouters et al., 2005). The main difference between the 

MSP 119 structure of P. falciparum MSP 119 and the other species is the disulphide 

bonding pattern of the first EGF domain. The cysteines in the two EGF-like domains of 

P. falciparum form the classic EGF disulphide bonding pattern of cysteine 1 to 3, 2 to 4 

and 5 to 6. The cysteines in the second EGF domain of MSP 119 from the other species 

form the same disulphide bonding pattern but the bonding pattern for the first EGF 

domain is different. In the first EGF-like domain, disulphide bond 2 to 4 is replaced by 

the side chain of tryptophan and a small residue (valine, isoleucine or threonine) (Babon 

et al., 2007, Garman et al., 2003) which pack together in the same volume as is 

observed for the disulphide bonds. The surface of MSP 119 is charged and the charge 

distribution is unique for each protein (Babon et al., 2007, Garman et al., 2003).
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1.6 Immunity to MSPlig

1.6.1 Evidence from animal studies o f  MSP 119 as a vaccine candidate

Animal studies have provided evidence that MSP 119 has the potential to be a good 

malaria vaccine candidate. Daly et al. expressed MSP 119 as a GST-fusion protein in E. 

coli and used it in immunisation studies in mice using Ribi adjuvant. The immunisation 

studies showed that both inbred and outbred mice that were immunised with the MSP 119 

GST construct were either partially or completely protected against challenge infection 

with lethal P. yoelii YM parasites. Daly et al. showed that the antibodies that were 

produced to MSP119 were able to react with native MSP 119. In this study the GST 

portion of the fusion protein was required for the immune response to MSP 1 ^because 

immunisation with MSP119 with the tag removed did not give protection. It was thought 

that the GST portion may have been playing a role in providing T-cell epitopes (Daly & 

Long, 1993). Ling et al. immunised BALB/c mice with MSP 119 expressed in E. coli as a 

GST-fusion protein and without GST using Freund’s complete adjuvant. The 

immunisation studies showed that MSP 119 alone and GST-MSP119 protected the mice 

against challenge infection with P. yoelii YM. Analysis of the antibody titres of the 

mice showed that the highest antibody titres were seen in the mice that were protected.

In this study, Ling et a l also demonstrated the importance of the disulphide bonds in the 

EGF domain structure for protection. Immunisation with reduced and alkylated MSP119 

protein abolished the protective ability of the protein (Ling et al., 1994). Later 

immunisation studies by Ling et al. using MSP 119 preparations in adjuvants that have 

been developed for clinical use in humans gave protection that was as good as or better 

than the protection observed with Freund’s complete adjuvant (Ling et al., 1997). This 

suggests that the mouse malaria model can be used to test MSP 119 with adjuvants 

relevant to humans. MSP119 from P. yoelii has also been shown to be protective in mice 

using oral vaccination (Zhang et al., 2005).

Wan Omar et al. carried out immunisation studies with recombinant MSP 119 from P. 

berghei. This study showed that when recombinant MSP 119 in a formulation with alum

- 3 2 -



(  l u p l e i  1 . i d i n k I i k  l i o n

was used to immunise 1 0  mice 8  of the mice were protected from challenge infection 

with P. berghei (Wan Omar et al., 2007).

de Koning-Ward et al. developed a rodent model to test immunity to P. falciparum 

(human malaria) MSP119 in vivo. In the model they used allelic replacement to create a 

P. berghei parasite that expressed the P. falciparum form of MSP 119. In these studies 

mice were repeatedly exposed to the chimeric P. berghei-P. falciparum parasites and 

then challenged with homologous parasites. Analysis of the antibodies made to MSP 119 

by these mice indicated that high levels of MSP119-specific invasion inhibitory 

antibodies were produced. These studies showed that the level of these MSP119-specific 

invasion inhibitory antibodies correlated with the level of protection observed during 

challenge infection with blood stage chimeric parasites rather than the total titre of 

MSP119 specific antibodies (de Koning-Ward et al., 2003). These studies therefore 

demonstrated in vivo the importance of the fine specificity of the antibody response to 

MSP119 for protection and the importance of understanding this response to engineering 

a successful vaccine.

1.6.2 Immunity to MSP11 9 in humans

There are conflicting studies about the association of antibody levels to P. falciparum 

MSP119 and their role in protection against malaria. There are a number of studies 

which show an association between antibodies to P. falciparum MSP 119 and protection 

against malaria (Al-Yaman et al., 1996, Branch et al., 1998, Egan et al., 1996, Hogh et 

al., 1995, Riley et al., 1992, Riley et al., 1993). For example, Egan et al. carried out a 

study looking at antibody levels to P. falciparum MSP 119 in children in Sierra Leone 

and Gambia. In these studies they found that there was a significant association between 

antibody response to MSP119 and resistance to clinical malaria infection. They 

calculated that antibodies to P. falciparum MSP 119 in children in Sierra Leone provided 

approximately 40 % protection against clinical malaria (Egan et al., 1996). Riley et al. 

carried out studies of naturally acquired immune responses to P. falciparum MSP1. 

These studies showed that high levels of antibodies were made to the MSP 119 part and 

that these antibodies were associated with protection. The studies showed that the 

presence and levels of antibodies to MSP1 increased with age (Riley et al., 1992, Riley
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et al., 1993). These studies suggest that producing a vaccine that generates an 

appropriate antibody response to MSP 119 has the potential to protect against malaria.

The studies of Dodoo et al. provide an argument that levels of antibodies to MSP119 do 

not correlate with protection. In their studies, Dodoo et al. looked at antibodies to 

MSP119 in Ghanaian children over an 18 month period. In these studies there was no 

difference in levels of antibodies with age and there was no evidence found of an 

association between the presence or level of antibodies against P. falciparum MSP119 

and protection from malaria (Dodoo et al., 1999). Phase I trials at the Walter Reed 

Army Institute of Research with an MSP 119 construct called Falciparum Malaria Protein 

1 in AS02A adjuvant showed that it was safe and immunogenic but when it was tested 

against challenge infection no protection was observed(Chiang et al., 2006).

All the studies together suggest that protection from MSP 119 is more complicated than 

the presence and level of the antibody response but the fine specificity of that response 

is more important in determining protection.

Studies by Nwuba et al. indicate the presence of three types of antibodies to MSP 119 

following natural immune responses to P. falciparum malaria. The antibodies are called: 

inhibitory, blocking and neutral (Nwuba et al., 2002). Inhibitory antibodies inhibit 

erythrocyte invasion. In in vitro studies the inhibitory antibodies have been shown to 

inhibit secondary processing of MSP 1 (Blackman et al., 1994) and this is though to be 

the mechanism by which they inhibit erythrocyte invasion. Blocking antibodies do not 

inhibit erythrocyte invasion or secondary processing. Blocking antibodies interfere with 

the activity of inhibitory antibodies by competing for binding to MSP1. Production of 

blocking antibodies can be induced by areas of MSP 119 that are not the target of 

inhibitory antibodies and they can abolish the activity of inhibitory antibodies. This 

means that in the presence of inhibitory and blocking antibodies secondary processing 

and erythrocyte invasion can occur (Guevara Patino et al., 1997). Blocking antibodies 

are thought to have arisen as an immune evasion mechanism by the parasite to avoid the 

activity of inhibitory antibodies. Neutral antibodies do not inhibit erythrocyte invasion 

or block inhibitory antibodies (Nwuba et al., 2002). The presence of these three types of 

antibodies may explain why there is conflicting data on total antibody levels to MSP 119 

and protection. The studies suggest that understanding the fine specificity of the
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inhibitory, blocking and neutral antibodies could help to develop a vaccine to 

specifically stimulate the production of inhibitory antibodies and therefore be more 

successful in producing the desired immune response than the native protein.

1.6.3 Studies on P. falciparum MSP 119 antibody binding

Studies have been carried out on P. falciparum MSP 119 to map the antibody binding 

sites. Dekker et al. formed complexes of MSP 119 with 12.10 antibody (inhibitory 

monoclonal antibody) and 2 F 1 0  (neutral monoclonal antibody) and analysed them by 

electromicroscopy, analytical ultra centrifugation and dynamic light scattering. This 

analysis showed that the two antibodies formed a ring structure with MSP 119. This 

study therefore provided evidence that the epitopes of the inhibitory antibody ( 1 2 .1 0 ) 

and neutral antibody (2F10) had non-overlapping epitopes on MSP 119 because in order 

to form the ring structure two antibodies with non-overlapping epitopes would be 

required. This study also suggested that the binding epitopes may be located on opposite 

sides of the molecule. Dekker et al. also carried out site directed mutagenesis studies 

making single amino acid changes to MSP 119 and looking at the effect on binding to 

12.10 and 2F10. The site directed mutagenesis studies showed that none of the amino 

acid changes affected the binding to both 12.8 and 2F10. The studies therefore 

suggested that the epitopes for binding to inhibitory and neutral antibodies were distinct 

(Dekker et al., 2004).

Morgan et al. used Transverse Relaxation Optimised Spectroscopy (TROSY) NMR 

epitope mapping techniques to map the binding sites for one neutral (2F10) and two 

inhibitory antibodies (12.8 and 12.10). These studies indicated that there was a close 

relationship between the surface location of binding sites of the inhibitory antibodies 

that was distinct from the neutral antibody binding site (Morgan et al., 2004). The 

studies of Morgan et al. and Dekker et al. have shown that the precise binding epitope 

for the antibodies is very important for their function. The position of the antibody 

binding epitope for 2F10 on the opposite side of the protein from the binding epitope of

12.8 and 12.10 may explain why the neutral antibody 2F10 does not interfere with the 

activity of the inhibitory antibodies (Dekker et al., 2004, Morgan et al., 2004). Morgan 

et al. also carried out cross saturation TROSY NMR studies to more precisely map the
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antibody binding sites of 12.8 and 12.10. The studies map the antibody binding site to 

the first (3-sheet of EGF domain 1 (Morgan et al., 2005).

IJthaipibull et al. used site directed mutagenesis to alter individual amino acids in P. 

falciparum MSP119 and tested binding to inhibitory, blocking and neutral antibodies by 

western blotting and surface plasmon resonance. These studies highlighted individual 

amino acids that were important in binding to different types of antibodies. The study 

suggested that it may be possible to make MSP 119 proteins for vaccination that bind to 

inhibitory antibodies but not to blocking antibodies by using a site directed mutagenesis 

approach to alter combinations of residues involved in blocking antibody binding. 

Uthaipibull et al. also used a PEPSCAN method to look at reactivity of octapeptides 

with the antibodies. PEPSCAN analysis of reactivity with 12.8 (inhibitory monoclonal 

antibody) and 1 E 1 (blocking monoclonal antibody) showed the antibodies have adjacent 

antibody binding sites (Uthaipibull et al., 2001).

Understanding the three dimensional location of the antibody binding sites of inhibitory, 

neutral and blocking antibodies and the fine specificity of these antibodies will help in 

engineering effective proteins for vaccination.

1.6.4 Studies on P. yoelii MSP11 9  antibodies and antibody binding

Some of the residues found to be important for antibody binding are conserved between 

P. falciparum and the rodent parasite P. yoelii MSP 119. P. falciparum and P. yoelii 

MSP 119 have a high degree of sequence similarity with approximately 50 % sequence 

identity. Figure 1.5 shows an alignment of P. yoelii and P. falciparum MSP119 

highlighting the EGF-like motif and conserved residues. Studies using P. yoelii MSP 119 

can be compared to those for P. falciparum to gain information about conservation 

across the species and identify areas of functional conservation.

Spencer et al. produced monoclonal antibodies against P. yoelii MSP1. They looked at 

the ability of the monoclonal antibodies to protect mice against blood stage challenge 

infection with P. yoelii YM by passive immunisation. The purified antibodies were 

injected into groups of mice at the time of parasite challenge and the development of
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parasitaemia was monitored. They identified two monoclonal antibodies (B6  and F5) 

that mediate a substantial reduction in parasitaemia and all the mice in the groups 

injected with them cleared the parasite. They also identified two monoclonal antibodies 

(BIO and G3) that produced partial suppression of parasite growth. B6  and F5 are of the 

lgG3 subclass, BIO is of the IgG2b subclass and G3 is of the IgGl subclass. BIO and 

G3 require both EGF domains of MSP 119 to form their binding epitopes and F5 and B6  

only require the first EGF domain to form their binding epitopes. Western blotting 

analysis of the antibody binding to reduced and alkylated GST-MSP119 have shown that 

the antibody binding epitopes are constrained by the disulphide bonds in MSP119. 

Spencer et al. carried out competition ELISA analysis to compare the binding epitopes 

of the antibodies. The ELISA studies showed that the binding epitopes for BIO and G3 

may be identical as the epitopes overlap. The epitopes for B6  and F5 also overlap each 

over but are clearly distinct binding epitopes. The epitope for B6  and F5 are different 

from those of BIO and G3. The study therefore suggests there are a number of distinct 

antibody binding epitopes on MSP 119 antibodies with the ability to suppress 

parasitaemia in vivo (Spencer Valero et al., 1998).

Benjamin et al. identified differences in the sequence of MSP119 between P. yoelii 

isolates. They expressed MSP 119 recombinant proteins in E. coli from the P. yoelii 

isolates. Binding studies of the recombinant proteins to monoclonal antibodies B6 , F5, 

BIO and G3 were used to identify residues that could be important for antibody binding. 

The antibody binding studies showed that all of the monoclonal antibodies were able to 

bind to the MSP 119 proteins from P. yoelii YM but none of the monoclonal antibodies 

were able to bind to the MSP119 proteins from P. yoelii yoelii 2CL and P. yoelii 

nigeriensis N67. Benjamin et al. were able to identify positions of residues that were 

changed in the isolates that bound to different monoclonal antibodies. Isolates that 

bound to none of the antibodies had changes to residues 12, 31, 41, 47 and 78 of 

MSP 119. Benjamin et al. identified changes to position 16 (lysine to glutamic acid) and 

17 (asparagine to histidine) that may affect binding of B6  and F5 monoclonal antibodies 

to MSP119. They also identified changes to residues 52 and 54 that may affect binding 

of BIO monoclonal antibodies to MSP 119 (Benjamin et al., 1999).
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erythrocyte invasionmerozoite release

Primary processing \ 4 2 u>v secondary processing

Figure 1.3: Schematic showing primary and secondary processing of MSP1.

A : Full length MSP1 before processing.

B: MSP1 following primary processing to form a complex of four polypeptides:

MSP183 (83), MSP 130 (30), MSP138 (38) and MSP142 (42).

C: MSP1 following secondary processing where MSP 142 is cleaved into MSP133 (33) 

and MSP119 (19). MSP 119 remains bound on surface of the merozoite and the rest of the 

complex is shed.

This figure is based on figure 1, Blackman et al. (Blackman et al., 1994)

- 3 8 -



Figure 1.4: Comparison of the backbone of MSPI19 from different plasmodium 

species.

The backbone of the best energy NMR structure of P. falciparum (Morgan et al., 1999) 

MSP 119 is shown with the first EGF domain in red and the second EGF domain in pink. 

The backbone of the best energy NMR structure of P. vivax (Babon et al., 2007)

MSP 119 is shown with the first EGF domain in purple and the second EGF domain is 

green. The backbone of the crystal structure of P. cynomolgi (Chitarra et al., 1999)

MSP 119 is shown with the first EGF domain in dark blue and the second EGF domain in 

light blue. The backbone of the crystal structure of P. knowlesi (Garman et al., 2003) 

MSP 119 is shown with the first EGF domain in orange and the second EGF domain in 

yellow. The N-terminus is shown in black and the C-terminus is shown in grey. The 

very ends of the protein are not defined in all the structures therefore the N and C- 

termini are the last residues shown in the structures.
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EGF-LIKE DOMAIN 1
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Figure 1.5: Alignment of P. yoelii (Py) and P. falciparum (Pf) M SPI19 highlighting 

the conserved residues.

Conserved residues are highlighted in pink. Residues that are part of the conserved EGF 

motif are highlighted green. The alignment is based on figure 3 of Benjamin et al. 

(Benjamin et al., 1999).
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1.7 Aims of the project

The aim of this project is to map the antibody binding sites of P. yoelii MSP119. This 

will allow important residues for antibody binding to be determined. The data will be 

compared to the information in the literature for P. falciparum MSP119 inhibitory 

antibodies to identify common areas of antibody binding. This will indicate if there is a 

common mechanism of action for inhibitory antibodies across the species. This 

information could be important in developing antigens for vaccination to specifically 

stimulate the production of inhibitory antibodies. It could also be useful in directing 

research to understand the mechanism of action of inhibitory antibodies and their use as 

therapeutic agents.

The aim of the project will be broken into three main objectives:

1) A site directed mutagenesis approach will be used to identify important residues for 

antibody binding in vitro and this will be compared to P. falciparum data for inhibitory 

antibody binding.

2) The P. yoelii MSP119 variant proteins produced by site directed mutagenesis will be 

used in immunisation studies to determine whether any differences in in vitro antibody 

binding can correlate with differences in the ability of MSP119 to protect against 

challenge infection in vivo.

3) The structure of P. yoelii MSP 119 and the MSP119 variant proteins will be examined 

by NMR to identify any differences in the structure caused by the amino acid changes 

and to identify if these residues also play a vital structural role. If these residues play a 

vital structural role they may be conserved across the species because of this role and 

may be unable to change due to immune pressure. This will help in identifying any 

residues that cannot be altered in vaccine development due to structural roles.
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Chapter 2: Materials and Methods

2.1 Materials

2.1.1 Buffers and solutions

PBS: 137 mM NaCl, 3 mM KC1, 8  mM Na2HP04, 1.5 mM KH2 P0 4 in dH20

TAE (agarose gel running buffer): Prepared from a fifty times concentrated stock 

containing: 242 g TRIS base, 37.2 g Na2 EDTA.2H20  and 57.1 ml glacial acetic acid per 

litre of water.

Oligonucleotides: synthetic oligonucleotides were all supplied by Sigma Genosys.

Restriction enzymes: All restriction enzymes were obtained from New England 

Biolabs or Roche.

Other general reagents: Chemical and general reagents used in this project were 

purchased from Sigma unless otherwise stated.
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2.1.2 Bacterial cell culture: Bacteria and Plasmids

The following E. coli strains were used:

Strain Supplier Genotype

BL21(XDE3) Stratagene F't ompT, hsdSg, (rg, mg), 

dcm, gal, (XDE3/

XL 1-Blue Supercompetent 

cells

Stratagene recAl endAl gyrA96 thi-1 

hsdR17 supE44 relAl lac 

F' |proAB+ lac P lac ZAMJ5 

Tn 10{tef)]

One Shot TOP 10 competent 

cells

Invitrogen F‘ mcrA A{mrr-hsdRMS- 

mcrBC) §80lacZ AM 15 

AlacXIA recKX araD\Z9 

A(ara-leu)l697 galU galK 

rpsL (StrR) endAX nupG

LB: 1 % w/v bacto-tryptone, 0.5 % w/v bacto-yeast extract, 170 mM NaCl in dH2 0

LB-Agar: 1 % w/v bacto-tryptone, 0.5 % w/v bacto-yeast extract, 170 mM NaCl in 

dFLO with 1.5 % w/v agar

Terrific broth: 12 g tryptone, 24 g yeast extract, 4 ml glycerol, 12.54 g K2HPO4 , 2.31 g 

KH2PO4 per litre of water

SOC: 20 g Bacto tryptone, 5 g yeast extract, 0.584 g NaCl, 0.186 g KC1, 2.033 g 

MgCl2 .6 H2 0 , 2.464 g MgS04 .7H20 , 3.603 g glucose per litre of water
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2.2 Methods: Binding studies

2.2.1 Production o f MSP11 9 variant clones as GSTfusion proteins

The DNA coding for the wildtype MSP 119 of P. yoelii YM has been cloned into the E. 

coli expression vector pGEX3X to produce a GST fusion protein (GST-MSP119). The 

DNA for pGEX3X with MSP 119 was prepared using the QIAprep Spin Minprep kit 

(QIAGEN). QIAGEN miniprep kits are based on a modified alkaline lysis method 

(Bimboim & Doly, 1979) followed by the adsorption of the DNA to a silica based resin 

in the presence of high salt. Bacteria containing the desired plasmid are lysed under 

alkaline conditions and the lysate is subsequently neutralised and adjusted to high salt 

binding conditions. The use of a silica gel membrane optimises the adsorption of the 

DNA in mini-spin columns with the elution of RNA, proteins and metabolites. The 

DNA is subsequently eluted in water after a wash to remove endonucleases and salts.

Site-directed mutagenesis of wildtype GST-MSP119 was carried out using the 

QuikChange site-directed mutagenesis kit (Stratagene) according to the manufacturer’s 

instructions to produce five variant proteins with single amino acid changes. Primers 

used in the mutagenesis are shown in table 2 . 1  with the bases involved in the amino acid 

changes highlighted in pink.

Table 2.1: Primers used in the Quikchange mutagenesis protocol

Variant Primer 1 Primer 2

Argl2—>Leu 5' GTGTTGATACA^AGATATTCCT 
AAAAATGCTGG3'

5' CCAGCATTTTTAGGAATATCT^T 
GTATCAACAC3'

Lys 16—»Glu 5'CAAGAGATATTCCT|AAAATGCT 
GGATGTTTTAG3'

5'c t a a a a c a t c c a g c a t t t t|a g g a
ATATCTCTTG3'

Asnl7—>His 5'c a a g a g a t a t t c c t a a a|a t g c t
GGATGTTTTAG3'

5'c t a a a a c a t c c a g c a t|t t t a g g a
ATATCTCTTG3'

Glu28—>Lys 5'GAGATGATAATGGTACT|AAGAA 
TGGAGATG3'

5'c a t c t c c a t t c t t|a g t a c c a t t a 
TCATCTC3'

Glu28—»Gln 5'g a g a t g a t a a t g g t a c tJa a g a a 
TGGAGATG3'

5'c a t c t c c a t t c t t|a g t a c c a t t a 
TCATCTC3'
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Pilot mutagenesis studies were carried out to determine the optimum concentration of 

DNA template. This optimum concentration of 50 ng was used for all the mutagenesis 

experiments.

Following mutagenesis the DNA from a number of colonies was prepared using the 

QIAprep Spin Miniprep kit (QIAGEN) and sequenced at the Advanced Biotechnology 

Centre, Imperial College London or Cogenics to confirm the presence of the desired 

amino acid change. The following primers were used: 

pGex seq F 5’ CCAGCAAGTATATAGCATGG 3’

pGex seq R 5’CCGGGAGCTGCATGTGTCACAG 3’

A double variant protein (Lysl6 —>Glu and Glu28-»Lys) was produced using 

Lysl6 —>Glu variant DNA as a template and Glu28—>Lys primers.

2.2.2 Expression o f GST-MSP119 variants

Lysis buffer: 50 mM Tris/Cl pH 8.0, 1 mM EDTA, 0.2 % NP40

The GST-MSP119 variants and the GST-tag alone were all expressed using the same 

method. All expression steps were carried out at 37 °C. A single colony was used to 

inoculate 10 ml terrific broth-ampicillin (100 pg/ml) and grown for 8  hours. This 

culture was used to seed 1 0 0  ml terrific broth-ampicillin ( 1 0 0  pg/ml) and grown 

overnight. This culture was used to seed 500 ml terrific broth-ampicillin (100 pg/ml) 

and grown for 1 hour. The culture was then induced with 1 mM IPTG for 3 hours. 

Following induction, the bacterial cells were harvested by centrifugation at 3000 rpm, 4 

°C for 10 minutes in Beckman J-6 B centrifuge. The soluble fusion protein was 

recovered by resuspending the cells in 30 ml lysis buffer containing 1 mg/ml lysozyme 

(Sigma) and a complete protease inhibitor tablet (Roche). The cell pellets were 

incubated with shaking at 4 °C for 2 hours, with the addition of 10 pi of DNase I 

(Sigma) after 1 hour. The insoluble cell debris was removed by ultracentrifugation at 

30,000 rpm (80,000 *g), 4 °C for 45 minutes (Beckman L7 ultracentrifuge with 70Ti 

rotor). The supernatant was collected.
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2.2.3 Purification o f GST-MSP11 9  variants

Equilibration buffer: 50 mM Tris/Cl, 1 mM EDTA, 0.2 % v/v NP40 pH 8.0

Primary wash buffer: 50 mM Tris/Cl, 1 mM EDTA, 0.2 % v/v NP40 pH 8.0

Secondary wash buffer: 50 mM Tris/Cl, 1 mM EDTA pH 8.0

Elution buffer: 5 mM reduced glutathione, 50 mM Tris/Cl, 1 mM EDTA, pH 8.0

The protein was purified using glutathione agarose (Sigma) at 4 °C. The column was 

equilibrated with 5 column volumes of equilibration buffer. The supernatant was loaded 

onto the column. The column was washed first with 5 column volumes of primary wash 

buffer, followed by 5 column volumes of secondary wash buffer. The protein was eluted 

in 0.5 ml fractions with elution buffer and the fractions analysed by UV spectroscopy 

for the presence of protein. The protein fractions were dialysed against PBS using 

snakeskin pleated dialysis tubing MWCO 3,500 (Pierce). The protein samples were run 

on pre-cast NuPAGE 12 % Bis-Tris polyacrylamide gels in MOPS buffer (Invitrogen) 

and visualised by staining with Coomassie Brilliant Blue R-250 (Sigma). The protein 

was snap frozen and stored in small aliquots at -20 °C.

2.2.4 Quantification o f GST-MSP119 variants

The concentration of the GST-MSP119 variants was estimated by measuring the 

absorbance of the proteins at 280 nm. The following formula was used to calculate the 

concentration: an absorbance reading of 1 . 0  at 280 nm (with a 1 cm path length) 

corresponds to a protein concentration of 0.5 mg/ml.
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2.2.5 Western blotting

Samples of GST-MSP119 variants were diluted in 4x NuPAGE LDS sample buffer 

(Invitrogen). lOx NuPAGE reducing agent was added for western blotting with anti- 

GST antibody. The samples were run on pre-cast NuPAGE 12 % Bis-Tris 

polyacrylamide gels in MOPS buffer (Invitrogen) alongside dual colour protein 

standards (Biorad) and purified GST and BSA as controls. The proteins were transferred 

onto Protran BA nitrocellulose (Schleicher and Schuell Bioscience). The blot was 

blocked with 5 % Marvel milk in PBS. The nitrocellulose was incubated with various 

dilutions of antibodies diluted in PBS, 0.05 % Tween-20 (Sigma) as shown in table 2.2.

Table 2.2: Western blotting antibodies

Antibody Dilution Incubation time

Anti-GST HRP conjugate 

(Amersham Biosciences)

1/5000 40 minutes

B6 (Spencer Valero et al., 

1998)

2  pg/ml 2  hours

F5(Spencer Valero et al., 

1998)

1 0  pg/ml 2  hours

B10(Spencer Valero et al., 

1998)

2  pg/ml 2  hours

Goat anti-mouse IgG (H +L) 

HRP conjugate (Biorad) 

(Secondary antibody)

1 / 2 0 0 0 2 0  minutes

The blots were washed following antibody incubation, 3 times with PBS, 0.05 % 

Tween-20 and once with PBS. The blot was visualised using the ECL kit (Amersham) 

according to the manufacturer’s instructions.
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2.2.5 ELISA analysis o f  GST-MSP11 9 variant proteins

All ELISA experiments were carried out with duplicate plates. All wash steps involved 

3 washes with PBS, 0.05 % Tween-20 and 1 time with PBS. Initial pilot experiments 

were carried out to determine the optimum concentration of goat anti-GST antibody for 

coating the plate. In these experiments a range of concentrations of antibody from 0.2 to 

10 pg/ml were used. The wells of 96-well flat-bottomed ELISA plates (Nunc Maxisorp) 

were coated with 100 pi of 0.4 pg/ml goat anti-GST antibody (Amersham) in sodium 

carbonate buffer (0.1 M, pH 9.6). The plates were incubated overnight at 4 °C and then 

washed. The wells were blocked with 50 pi per well of 1 % BSA in PBS. The plates 

were incubated at 37 °C for 1 hour and then washed. 100 pi of 1 pg/ml of GST-MSP119 

variants in 1 % BSA in PBS were added to the desired wells. PBS and purified GST 

were used as controls. The plates were incubated for 2 hours at 37 °C and then washed. 

100 pi of doubling dilutions of primary antibody (B6 , F5 or B10 (Spencer Valero et al., 

1998)) in PBS were added to the wells. The plates were incubated for 1 hour at 37 °C 

and then washed. 1 0 0  pi of a 1 / 2 0 0 0  dilution of secondary antibody (goat antimouse 

IgG (H+L) HRP, Biorad) in 1 % BSA in PBS was added to the wells. The plate was 

incubated for 30 minutes at 37 °C and then washed. In order to detect the peroxidase, 

100 pi of freshly prepared o-phenylenediamine dihydrochloride (Sigma) in 0.05 M 

phosphate-citrate buffer was added to the wells. The plate was incubated at room 

temperature for 10 minutes before stopping the reaction with 50 pi of 1 M sulphuric 

acid. The absorbance was read at 490 nm.

2.2.6 Surfaceplasmon resonance (SPR) analysis

Measurements were performed on a BIAcore 2000 instrument (Biacore) at 25 °C. PBS, 

0.05 % Tween-20 was used as a running buffer throughout. Anti-GST antibody was 

bound to the surface of a carboxymethyl dextran sensor chip CM5 using the GST 

capture kit and amine coupling kit (Biacore) according to the manufacturer’s 

instructions. The GST-MSP119 variants were bound to the antibody using 70 pi of
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solutions at 10 pg/ml diluted in PBS, 0.05 % Tween-20 for 7 minutes. After injecting, 

the response was allowed to stabilise for 3 minutes. The binding level was recorded.

The binding assays were performed with monoclonal antibodies B6  (1.29 mg/ml), F5 

(1.185 mg/ml) and B 10 (1.18 mg/ml) (Spencer Valero et al., 1998)diluted in PBS, 0.05 

% Tween-20, at a constant flow rate of 5 pi min' 1 for 2 minutes. The binding level at 

steady state was recorded. The chip was washed with 40 pi of regeneration solution (10 

mM glycine-HCl pH 2.2) for 2 minutes to wash off the GST-MSP119-antibody complex. 

Each binding assay was repeated in triplicate. Purified GST was used as a control.

2.2.7 Molecular modelling o f P. yoelii MS PI 19

The Swiss Model Protein Modelling Server (http://swissmodel.expasy.org) (Guex & 

Peitsch, 1997, Peitsch, 1995, Schwede et al., 2003)was used to create a homology 

model of P. yoelii MSP 11 9. The “first approach method” was used. This method does a 

BLAST search for template sequences with 3D-structures in the Protein Databank 

(PDB) and makes a model based on these structures. The PDB structures used for the 

model were crystal and NMR structures of P. falciparum (PDB entries: lob IF (Pizarro 

et al., 2003), lob 1C (Pizarro et al., 2003) and IcejA (Morgan et a l, 1999)); P. 

cynomolgi (PDB entry lb9wA (Chitarra et al., 1999)) and P. knowlesi MSP119 (PDB 

entry lnliC(Garman et a l, 2003)).The model was displayed using Deepview/Swiss Pdb 

viewer (http://www.expasy.org/spdbv) (Guex & Peitsch, 1997, Peitsch, 1995, Schwede 

et al., 2003)and manipulated using the RasTop programme (Valadon, 2007).

2.2.8 In silico variation o f residues in P. yoelii MSP119

The amino acid variations made experimentally were made in silico on the protein 

model using the Deepview/Swiss Pdb viewer (Guex & Peitsch, 1997, Peitsch, 1995, 

Schwede et al., 2003). The “mutate amino acids tool” was used which allows any amino 

acid in the model to be altered and the different possible rotamers to be displayed.
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2.3 Methods: Immunisation Studies

All the animal handling was carried out by Sola Ogun and Madhu Kadekoppala. Mice 

were immunised with the GST-MSP119 variants to investigate their ability to protect 

against parasite challenge.

Groups of six 8 -week-old BALB/c mice (from the Specific Pathogen Free unit, NIMR, 

London, UK) were immunised intraperitoneally (i.p.) with 10 pg of protein in Freund’s 

Complete adjuvant (FCA). The response was boosted by a further two injections of 40 

pg of protein in Freund’s Incomplete adjuvant (FIA) 21 and 42 days later. The proteins 

used in the immunisation studies are described in table 2.3.

Table 2.3: Proteins used in immunisation studies

Group Protein

1 Wildtype GST-MSPI19 

(positive control)

2 Arg 12—>Leu GST-MSP119 variant

3 Lysl6 —»Glu GST-MSP 119 variant

4 Asnl7-»His GST-MSP 119 variant

5 Glu28-»Lys GST-MSP 119 variant

6 Glu28—>Gln GST-MSPI19 variant

7 Lysl6 —»Glu and Glu28—>Lys 

double GST-MSP 119 variant

8 GST (negative control)

The protein was prepared by mixing equal quantities of the protein diluted in PBS with 

FCA for the prime and FIA for the boost.

Serum samples were taken 14 days after the final immunisation. The blood was left for 

30 minutes at room temperature to clot before centrifuging at 4722 x g in a tabletop 

centrifuge to recover the serum. The serum samples were stored at -20 °C. The serum 

samples were used for ELISA analysis as described in section 2.3.1. The mice were
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challenged 15 days after the final immunisation by intravenous (i.v) injection of 5  x 1 0 3 

P. yoelii YM parasitized erythrocytes into the lateral vein of the tail. The parasitaemia 

was followed daily on blood films stained with 20 % Giemsa reagent (BDH).

The parasitaemia was measured by counting the number of parasite-infected cells on the 

Giemsa stained blood films under a microscope. At low levels of infection, 10 fields of 

view containing 200 cells were counted. Low levels of infection were classified as 2.5 

% parasitaemia or less. At high levels of infection (more than 2.5 % parasitaemia), 1 

representative field of view containing 200 cells was counted. The percentage 

parasitaemia was calculated as follows:

(number of parasite-infected cells -s- total number of cells) x 1 0 0  

The infection was followed for at least 21 days and until the mice had cleared the 

parasites. The mice were considered to have cleared the parasites if no parasites were 

detected on at least 3 consecutive days.

2.3.1 ELISA analysis o f  serum samples from immunisation studies

All ELISA experiments were carried out with duplicate plates. All wash steps involved 

3 washes with PBS, 0.05 % Tween-20 and 1 time with PBS. The wells of 96-well flat- 

bottomed ELISA plates (Nunc Maxisorp) were coated with 100 pi of 1 pg/ml of MSP 119 

his-tagged variants (production and purification of his-tagged proteins described in 

section 2.4.17) in sodium carbonate buffer (0.1 M, pH 9.6). The plates were incubated 

overnight at 4 °C and then washed. The wells were blocked with 50 pi per well of 1 % 

BSA in PBS. The plates were incubated at 37 °C for 1 hour and then washed. 100 pi of 

doubling dilutions of serum samples in PBS were added to the wells. The plates were 

incubated for 1 hour at 37 °C and then washed. 100 pi of a 1/2000 dilution of goat 

antimouse IgG (H+L) HRP antibody (Biorad), in 1 % BSA in PBS was added to the 

wells. The plate was incubated for 30 minutes at 37 °C and then washed. In order to 

detect the peroxidase, 1 0 0  pi of freshly prepared o-phenylenediamine dihydrochloride 

(Sigma) in 0.05 M phosphate-citrate buffer was added to the wells. The plate was 

incubated at room temperature for 10 minutes before stopping the reaction with 50 pi of 

1 M sulphuric acid. The absorbance was read at 490 nm.
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2.4 Methods: Protein preparation for structural NMR studies

2.4.1 Production o f MSP11 9  variant clones as his-tagged proteins

The MSP1 19 variants were produced as his-tagged proteins for use in structural NMR 

studies (as described in section 2.5).

2.4.2 Production o f recodonised MSP11 9  variant genes

A construct for the MSP 119 variant genes for expression in Pichia pastoris as a hexahis- 

tagged protein was designed as shown in figure 2.1. The N-glycosylation site NGT was 

changed to DGT.

The MSP 119 variant genes were recodonised for optimum expression in Pichia pastoris 

by GENEART. The genes were supplied cloned into the GENEART standard vector 

and lyophilised.

2.4.3 Preparation o f DNA for electroporation into Pichia pastoris

The scheme used for the preparation of DNA for electroporation into P. pastoris is 

illustrated in figure 2.2. The methods used in this scheme are described below.

2.4.4 Restriction enzyme digestion

Double restriction digests with SnaBl (5 units/pl) and AvrW (4 units/pl) of pPIC9K 

vector (Invitrogen) and GENEART standard vector containing MSP119 variant genes 

were carried out to prepare them for ligation.

Typical restriction digest conditions used were:

3 ug DNA

1 pi Restriction enzyme 1
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1 |*1 Restriction enzyme 2 

3 |*1 10 x BSA (10 mg/ml)

3 (*1 Restriction enzyme buffer

Distilled water up to a final reaction volume of 30 (*1.

Incubation at 37 °C for 1 hour 30 minutes.

2.4.5 Dephosphorylation o f DNA

Calf intestinal alkaline phosphatase (CIP) (Roche) was used to remove 5’ terminal 

phosphate groups from vector DNA prior to ligation reactions, to reduce the likelihood 

of vector re-ligation. 2 units of CIP were added to the digested pPIC9K vector DNA for 

1 hour 40 minutes at 37 °C followed by incubation for 15 minutes at 50 °C. The CIP 

was inactivated following dephosphorylation by incubation at 72 °C for 10 minutes.

2.4.6 Agarose gel electrophoresis

DNA loading buffer: 0.25 % bromophenol blue, 0.25 % xylene cyanol FF and 30 % 

glycerol in water.

DNA markers: 10 |*1 of Quick-Load 1 kb DNA ladder (Biorad) and Quick-Load 100 

bp DNA ladder (Biorad) per gel.

Agarose gel electrophoresis was used for isolation of DNA fragments, DNA agarose gel 

extraction, quantification of DNA and analysing DNA. Agarose gels were made by 

dissolving agarose in 1 x TAE buffer to a final concentration of 1 % agarose w/v. The 

constituents were melted and poured after cooling and the addition of ethidium bromide 

(Biorad) to 0.4 |*g/ml into Anachem gel tanks. Gels were run at 40 mA for the required 

time and the DNA bands were visualised using the UV transilluminator. The 

concentration of DNA was estimated by comparisons of the apparent brightness of the 

ethidium bromide stained sample DNA with the DNA markers.

- 5 4 -



C h a p t e r  2:  M a t e r i a l s  a n d  M e t h o d s

2.4.7 Agarose gel extraction

Digested vector and insert DNA and ligated DNA was purified by gel extraction. DNA 

was extracted from agarose gels by using the QIAquick gel extraction kit (QIAGEN) 

according to the manufacturers’ instructions. The DNA was eluted with 30 pi sterile 

distilled water and subsequently quantified by agarose gel electrophoresis.

2.4.8 Ligation reactions

Digested recodonised MSP 119 variant genes were ligated into digested and 

dephosphorylated pPIC9K vector DNA using T4 DNA ligase (Roche). The following 

conditions were used for ligation reactions:

50 ng Vector DNA

50 ng Insert DNA

1.1 pi T4 DNA ligase buffer

1 pi T4 DNA ligase (1 unit/pl)

Distilled water up to a final reaction volume of 11 pi

Reactions incubated for 18 hours at 16 °C. The ligase was inactivated following the 

ligation by incubation at 65 °C for 10 minutes.

2.4.9 Transformation o f  chemically competent E. coli

2 pi ligation reactions (described in section 2.4.8) were added to thawed 50 pi aliquots 

of One Shot TOP 10 competent cells. After 30 minutes on ice the cells were heat 

shocked in a 42 °C water bath for exactly 30 seconds. After a further 2 minutes on ice, 

250 pi of pre-warmed SOC medium was added to each aliquot and incubated shaking 

(225 rpm) at 37 °C for 1 hour. All of the aliquots were individually spread on prepared 

LB-agar plates containing 50 pg/ml ampicillin to get single colonies. The LB-agar 

plates were incubated at 37 °C overnight.

Following the transformation, DNA from a number of colonies was prepared using the 

QIAprep Spin Miniprep kit (QIAGEN) and sequenced at the Advanced Biotechnology

- 5 5 -



C h a p t e r  2:  M a t e r i a l s  a n d  M e t h o d s

Centre, Imperial College or Cogenics to confirm the presence of the recodonised 

MSP1 19 genes and to confirm there had been no mutations during the DNA preparation. 

The following primers were used:

3’AOXl 5’ GCAAATGGCATTCTGACATCC 3’

a-factor 5’ TACTATTGCCAGCATTGCTGC 3’

2.4.10 Production o f  E. coli glycerol stocks

The colonies were also used to inoculate 2 ml LB and grown shaking overnight at 37 

°C. Following overnight growth, the cultures were divided into 500 pi aliquots and 

sterile glycerol was added to a final concentration of 15 % v/v. The cultures were snap 

frozen and stored at -80 °C.

2.4.11 Large scale DNA purification

The glycerol stocks of Top 10 cells containing the pPIC9K with the recodonised MSP 119 

genes were used to inoculate cultures to produce DNA for purification using the 

QIAGEN HiSpeed Plasmid Midi Kit (QIAGEN) according to the manufacturers’ 

instructions. The DNA was eluted in 500 pi sterile distilled water.

2.4.12 Production o f  Glu28—>Gln his-MSPl 1 9  variant using Quikchange XL site- 

directed mutagenesis kit

Site-directed mutagenesis of wildtype his-MSPl 19 was carried out using the 

QuikChange XL site-directed mutagenesis kit (Stratagene) according to the 

manufacturer’s instructions to produce Glu28—>Gln his-MSPl 19 variant. The following 

primers were used:

E28Qol: 5’ GAGATGACGACGGTACTCAAGAGTGGAGATGTTTGTTG 3’

E28Qo2: 5’ CAACAAACATCTCCACTCTTGAGTACCGTCGTCATCTC 3’
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Following the mutagenesis, DNA from a number of colonies was prepared using the 

QIAprep Spin Miniprep kit (QIAGEN) and sequenced at Cogenics to confirm the 

presence of the desired amino acid change. The following primers were used:

3’AOXl 5’ GCAAATGGCATTCTGACATCC 3’

a-factor 5’ TACTATTGCCAGCATTGCTGC 3’

2.4.13 Linerisation o f  pPIC9K fo r  transformation into Pichia pastoris

The purified pPIC9K with the recodonised MSP 119 genes was linerised for 

transformation into P. pastoris by restriction digestion (as described in section 2.4.4) 

with Sacl (20 units/pl).

2.4.14 Preparation o f  electrocompetent Pichia pastoris

The following P. pastoris strain was used: GS115 (hisA, Mut+, Invitrogen)

YND: 0.67 % Yeast Nitrogen Base without amino acids (BD Difco), 1 % glucose 

Electroporation buffer: 270 mM sucrose, 10 mM Tris-HCl pH 7.5, 1 mM MgCh 

YEPD: 1 % yeast extract, 2 % peptone, 2 % glucose

MD agar: 1.34 % YNB (with ammonium sulphate without amino acids), 4 x 10'5 

biotin, 2 % dextrose with 1.5 w/v agar

A GS115 stab (Invitrogen) was used to inoculate 5 ml YEPD medium and grown 

shaking (250 rpm) at 30 °C overnight. This culture was diluted 100 fold in 100 ml 

YEPD and grown shaking (250 rpm) at 30 °C overnight to an optical density at 600 nm 

of 1.2-1.5. The yeast cells were harvested by centrifugation at 3000 x g 4 °C for 10 

minutes in Beckman J-6 B centrifuge. Following centrifugation, the cells were 

resuspended in 20 ml 50 mM potassium phosphate pH 6.0, 25 mM DTT. The cells were 

incubated for 15 minutes at 30 °C. Following the incubation, the cells were harvested by
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centrifugation at 3000 x g 4 °C for 10 minutes. The cells were washed with 

electroporation buffer as shown in the table below. All wash steps were carried out on 

ice. The cells were harvested by centrifugation at 3000 x g 4 °C for 10 minutes in 

between washes and gently resuspended.

Wash 1 1 0 0  ml electroporation buffer

Wash 2 50 ml electroporation buffer

Following the washes, the cells were resuspended in 500 pi electroporation buffer to 

give approximately 2  * 1 0 10 cells/ml. 60 pi aliquots of cells into transferred into pre­

chilled 2 mm electroporation cuvettes (Biorad). The cells were mixed with lpg of 

recodonised MSP119 variant genes in pPIC9K. For the electroporation a Biorad Gene 

Pulser was used. The Gene Pulser was set at a 1.5 kV pulse with a 25 pF capacitor and 

the pulse controller set at 400 O. After the pulse the time constant was recorded (7.4 ms 

indicated a successful electroporation) and 1ml YEPD was immediately added to the 

cuvettes at room temperature. The cells were incubated at 30 °C for 1 hour. Following 

the incubation, the cells were transferred to 15 ml falcon tubes for washing to remove 

the YEPD medium. The cells were centrifuged at 2000 x g for 10 minutes and then 

washed with 5 ml YND. The cells were harvested by centrifugation at 2000 x g for 10 

minutes and then resuspended in 1 ml YND for plating. 250pl of cells were plated onto 

MD agar plates and incubated at 30 °C for three days. The remaining electroporation 

mixture was stored at 4 °C for plating if there was no growth on the MD agar plates.

2.4.15 Geneticin screening o f  transformants

YEPD-agar: 1 % yeast extract, 2 % peptone, 2 % glucose with 2 % w/v agar

3 ml sterile distilled water was added to the transformant plates. The colonies were 

gently resuspended with a sterile plastic spreader. The cell suspension was transferred to 

a sterile falcon tube. The OD at 600 nm was recorded to determine the concentration of 

cells. Serial dilutions were carried out until at OD at 600 nm of 1 was obtained. This 

was equal to 5  x 1 0 7 cells/ml. 40 pi cells at OD60onm= 1 were added to 960 ml sterile
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distilled water to give a 105 cells per 100 p.1. 100 pi cells were spread onto YEPD agar 

plates containing the following concentrations of geneticin (Geneticin selective 

antibiotic liquid, Invitrogen): no geneticin, 0.25 mg/ml, 0.5 mg/ml, 1 mg/ml and 2 

mg/ml. The plates were incubated for up to 1 week at 30 °C until colonies appeared.

4 large colonies from each 2 mg/ml plate were re-streaked onto fresh YEPD agar plates 

containing 2  mg/ml geneticin to ensure that these colonies could definitely grow at 2  

mg/ml geneticin concentrations. Each of the colonies was used to inoculate 2 ml 

cultures of YEPD and grown overnight shaking (250 rpm) at 30 °C. Following 

overnight growth, the cultures were divided into 500 pi aliquots and sterile glycerol was 

added to a final concentration of 15 % v/v. The cultures were snap frozen and stored at - 

80 °C.

2.4.16 Small scale expression time course in P. pastoris

BMGlc: 100 mM potassium phosphate pH 6.0, YNB (0.34 % w/v) (BD Difco: YNB 

without amino acids and without ammonium sulphate) ammonium sulphate (0 . 2  % 

w/v), biotin (4 x 10‘5 biotin, w/v), Sigma antifoam 289 (0.01 % v/v), D-glucose (0.5 % 

w/v)

BMMY: 100 mM potassium phosphate pH 6.0, YNB (0.34 % w/v) (BD Difco: YNB 

without amino acids and without ammonium sulphate) ammonium sulphate (0 . 2  % 

w/v), biotin (4 x 10"5 biotin, w/v), Sigma antifoam 289 (0.01 % v/v), methanol (1 % v/v)

All expression steps were carried out at 30 °C with shaking (250 rpm). A single colony 

of cells from the 2 mg/ml geneticin plates were used to inoculate 4 ml BMGlc and 

grown for 24 hours. This culture was used to seed 100 ml BMGlc and grown for 

approximately 67 hours. The yeast cells were harvested by centrifugation at 2000 x g 

for 5 minutes at room temperature in Beckman J-6 B centrifuge. The supernatant was 

removed and the cells were resuspended in 50 ml BMMY. The methanol in the BMMY 

was used to induce the expression of the protein using the AOX1 gene. The cells were 

transferred to 250 ml shake flasks and incubated for 96 hours. 100 % methanol was 

added to the cultures to a final concentration of 1 % every 24 hours to replenish the 

methanol that had been used up making the protein. 1 ml aliquots were removed from
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the flasks every 24 hours. The aliquots were centrifuged at 13,000 rpm in a tabletop 

microcentrifuge for 2 minutes at room temperature. The supernatant was transfer to a 

separate tube for analysis. The supernatant and cell pellet were stored at -80 °C until 

required for analysis. After 96 hours the remaining cell culture was centrifuged at 2000 

x g for 10 minutes at room temperature. The supernatant was removed and stored at -80 

°C until required. For analysis, the supernatant aliquots from the time course were 

concentrated 10 times using the vivaspin 5K MWCO concentrator (Vivaspin). The 

supernatant samples were then run on pre-cast NuPAGE 12 % Bis-Tris polyacrylamide 

gels in MES buffer (Invitrogen) and the protein was visualised by staining with 

Coomassie Brilliant Blue R-250 (Sigma).

2.4.17 Large scale expression o f  his-tagged MSP11 9  variants

The labelled 15N labelled ammonium sulphate and 13C labelled glucose and 13C labelled 

methanol were supplied by Cambridge Isotope Laboratories Inc as follows: 13C 

methanol 99%, 15N ammonium sulphate 99% and D-glucose (U-13C6) 99%.

Large scale expression of the all of the his-MSPl 19 variants was carried out with 15N 

labelled ammonium sulphate to make 15N labelled protein for 1-Dimensional and 2- 

Dimensional Nuclear Magnetic Resonance (NMR) analysis. In addition, large scale 

expression of wildtype his-MSPl 19 and Glu28-»Lys his-MSPl 19 variant were carried 

out with 15N labelled ammonium sulphate, 13C labelled glucose and 13C labelled 

methanol to make doubly labelled 15N and 13C labelled protein for 3-Dimensional NMR 

analysis. All expression steps were carried out at 30 °C with shaking (250 rpm). The 

glycerol stocks of cells for each variant were used to inoculate 4 x 5 ml BMGlc and 

grown for 24 hours. These cultures was used to seed 150 ml BMGlc and grown for 

approximately 67 hours. The yeast cells were harvested by centrifugation at 2000 x g 

for 10 minutes at room temperature in Beckman J-6 B centrifuge. The supernatants were 

removed and the cell pellets were washed with 10 ml methanol. The cells pellets were 

resuspended in 4 x 500 ml BMMY in 2 L shake flasks and incubated for 72 hours to 

express the protein. 1 0 0  % methanol was added to the cultures to a final concentration 

of 1 % every 24 hours to replenish the methanol that had been used up making the 

protein. The cells were harvested by centrifugation at 2000 x g for 10 minutes at room
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temperature in Beckman J-6 B centrifuge. The supernatants were transferred to fresh 

tubes. The cell pellets were frozen at -80 °C for analysis if there was no protein in the 

supernatants. Complete EDTA-free protease inhibitor tablets (Roche) were added to the 

supernatants. The supernatants were concentrated using the Quick Stand benchtop 

system (Amersham Biosciences). The supernatants were first passed through a 0.45 

micron filter to remove any cell debris followed by concentration down to 1 0 0  ml using 

a 5,000 Da MWCO hollow fibre filter.

2.4.18 Large scale purification o f  his-tagged MSP11 9  variants

Equilibration buffer: 50 mM NaPC>4 , 300 mM NaCl, pH 7.2

Primary wash buffer: 50 mM NaPC>4 , 300 mM NaCl, 10 mM imidazole, pH 7.2

Secondary wash buffer: 50 mM NaPC>4 , 300 mM NaCl, 20 mM imidazole, pH 7.2

Elution buffer: 50 mM NaPC>4 , 300 mM NaCl, 250 mM imidazole, pH 7.2

The proteins were purified using a batch purification method. All centrifugation steps 

were carried out at 2000 * g for 10 minutes at room temperature. Sodium chloride was 

added to the concentrated supernatants to a final concentration of 300 mM. The pH of 

the concentrated supernatant was increased to pH 7.5 using sodium hydroxide. The 

concentrated supernatant was centrifuged to remove any precipitate. 4 ml Ni-NTA 

agarose (QIAGEN) was washed twice with equilibration buffer and centrifuged between 

each wash. The concentrated supernatant was mixed with the Ni-NTA agarose and put 

onto a rotory shaker overnight at 4 °C to allow maximum binding. The agarose and 

concentrated supernatant was centrifuged to collect the Ni-NTA agarose. The 

supernatant was removed leaving a pellet of Ni-NTA agarose. The Ni-NTA agarose was 

resuspended in 5 ml of concentrated supernatant. The Ni-NTA agarose was loaded into 

a 10 ml disposable plastic column (Pierce) and allowed to settle. The column was 

washed with 4 column volumes of primary wash buffer. The column was then washed 

with 4 column volumes secondary wash buffer. The protein was eluted in 1 ml fractions 

with elution buffer and the fractions analysed by UV spectroscopy for the presence of
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protein. The protein fractions were dialysed against double distilled water using 

snakeskin pleated dialysis tubing MWCO 3,500 (Pierce). The purified protein samples 

were then run on pre-cast NuPAGE 12 % Bis-Tris polyacrylamide gels in MES buffer 

(Invitrogen) and the protein was visualised by staining with Coomassie Brilliant Blue 

R-250 (Sigma).

2.4.19 Quantification o f  his-MSPl 1 9 variants

The concentration of the his-MSPl 19 variants was determined by measuring the 

absorbance of the proteins at 280 nm. The extinction coefficient and molecular weight 

of the wildtype his-MSPl 19 was determined using the ExPASy ProtParam tool (Gill & 

von Hippel, 1989).
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Figure 2.1: his-MSPl 19 variants recodonised gene sequence

A: The recodonised gene sequence for wildtype his-MSPl 19 created by GENEART. The 

his-tag is in pink, the factor Xa cleavage site in blue, the residue 12, 16, 17, 28 

variations are highlighted in red with the codons that are different in the variants are 

written in red beneath the residues. The residue highlighted in green has been changed 

from N in the wildtype to remove the N-glycosylation site.

B: Schematic representation of his-MSPl 19 that was cloned into the pPIC9K vector.
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A
GGTACCTACGTACATCATCACCACCACCACATTGAAGGTAGAGGTGTTGACCCAAAGCAT

CCATGGATGCATGTAGTAGTGGTGGTGGTGTAACTTCCATCTCCACAACTGGGTTTCGTA
H H H H H H I E G R G V D P K H

GTTTGTGTTGACACTAGAGACATCCCAAAGAACGCTGGTTGTTTCAGAGATGACGACGGT
CAAACACAACTGTGATCTCTGTAGGGTTTCTTGCGACCAACAAAGTCTCTACTGCTGCCA 
V C V D T R D I  P K N A G  C_____ F R D D D G

TTG GAA CAT
ACTGAAGAGTGGAGATGTTTGTTGGGTTACAAGAAGGGTGAAGGTAACACTTGTGTTGAG
TGACTTCTCACCTCTACAAACAACCCAATGTTCTTCCCACTTCCATTGTGAACACAACTC 
T E E W R C L L G Y K K G E G N T C V E ___

AAG
AACAACAACCCAACTTGTGACATCAACAACGGTGGTTGTGATCCAACTGCTTCCTGTCAA
TTGTTGTTGGGTTGAACACTGTAGTTGTTGCCACCAACACTAGGTTGACGAAGGACAGTT 
N N N P T C D I N N G G C D _____ P_T A___S___C Q _

AACGCTGAGTCTACTGAGAACTCCAAGAAGATCATCTGTACTTGTAAAGAGCCAACTCCA
TTGCGACTCAGATGACTCTTGAGGTTCTTCTAGTAGACATGAACATTTCTCGGTTGAGGT 
N A E S T E N S K K I  I C T C K E P T P

AACGCTTACTACGAGGGAGTTTTCTGTTCTTCTTCTTCTTAGTAGCCTAGGAGCTC

TTGCGAATGATGCTCCCTCAAAAGACAAGAAGAAGAAGAATCATCGGATCCTCGAG 
N A Y Y E G V F C S S S S *  *

B SnaB\ His-tag Factor Xa MSP119 STOP Avr\\

- 6 4 -



Figure 2.2: Overview of the strategy used to prepare the pPIC9K and his-MSPl 19 

recodonised genes for transformation into yeast.
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2.5 Methods: Nuclear Magnetic Resonance (NMR) Spectroscopy

The NMR spectroscopy experiments and processing of the spectra was carried out by 

Berry Birdsall. The analysis and assignment of the NMR spectra was carried out in 

collaboration with Berry Birdsall. The theory behind the NMR techniques and 

schematic examples of spectra are in chapters 6  and 9.

2.5.1 Preparation o f  his-MSPl 1 9  variants fo r  NMR spectroscopy

NMR buffer: 50 mM potassium chloride, 25 mM potassium phosphate, pH 6.5.

5 mg of the his-MSPl 19 variants were snap frozen and freeze dried in Eppendorf tubes. 

The samples were stored at -20 °C until required. The samples were resuspended in 360 

pi NMR buffer and 20 pi deuterium oxide was added to give a protein sample at 1 mM. 

The samples were centrifuged at 13,000 rpm in a tabletop microcentrifuge for 1 minute 

to remove any precipitate. The samples were transferred to shegemi tubes for NMR 

analysis.

2.5.2 15NHeteronuclear Single Quantum Correlation (tsN-HSQC) Spectroscopy

All NMR spectra were recorded at 25 °C (unless otherwise stated) at 600, 700 or 800 

MHz on Varian or Bruker NMR spectrometers. Water suppression was carried out using 

the WATERGATE sequence (Piotto et al., 1992). l5N-HSQC spectra were acquired for 

all 15N labelled his-MSPl 19 variants. The spectra were processed using NMRpipe and 

NMRDraw (Delaglio et a l 1995) and analysed using SPARKY software (Goddard & 

Kneller). The spectra for the his-MSPl 19 variants was overlayed on top of the wildtype 

his-MSPl 19 spectrum in SPARKY to compare the positions of the peaks in the spectra 

to identify areas that had changed.
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2.5.3 Using NMR to determine the 3D structure o f  wildtype his-MSPl 1 9  and 

Glu28->Lys his-MSPl 1 9

All NMR spectra were recorded at 25 °C or 35 °C at 600, 700 or 800 MHz on Varian or 

Bruker NMR spectrometers. Water suppression was carried out using the 

WATERGATE sequence (Piotto et al.. 1992). NMR spectra were acquired for l5N 

labelled proteins and doubly labelled ,3C/15N labelled proteins. The spectra were 

processed using NMRpipe and NMRDraw (Delaglio et al.. 1995) and analysed using 

SPARKY (Goddard & Kneller)and Xeasy (Bartels et al.. 1995) software. The NMR 

spectra were analysed to assign the backbone residues, side chain atoms and long 

distance restraints as shown in table 2.4.

Table 2.4: NMR spectroscopy experiments used in 3D structure determination

Spectrum name Sample Use

l3N -HSQC 15N labelled protein Assigning backbone atoms

i3C -HSQC l5N/l3C labelled protein Assigning backbone atoms 

and side chain atoms

HNCO 15N/I3C labelled protein Assigning backbone atoms

HNCACB i:>N/13C labelled protein Assigning backbone atoms

CBCACONH |:>N/13C labelled protein Assigning backbone atoms

HCCCONH 15N/13C labelled protein Assigning side chain atoms

HCCH-TOCSY 15N/13C labelled protein Assigning side chain atoms

15N —NOESY-HSQC 15N labelled protein Identifying short and long 

distance restraints

l3C-NOESY-HSQC 15N/13C labelled protein Identifying short and long 

distance restraints

l3C -HSQC tuned to 

aromatic region

|:>N/I3C labelled protein Assign aromatic side chains

l3C-NOESY-HSQC tuned 

to aromatic region

1;>N /13C labelled protein Identifying short and long 

distance restraints from 

aromatic residues
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2 15The proteins were dissolved in H2O and a time course of N-HSQC spectra were 

acquired to confirm which N-H protons exchange quickly and which remain. This was 

used to confirm which N-H protons may be involved in hydrogen bonding. N-H protons 

that are involved in H-bonding do not exchange quickly so would be present on the 

spectra in H2O. N-H protons that are not involved in H-bonds and not protected from
■y

exchange would exchange with the H2O and therefore not be visible on the spectra. A 

2D N-NOESY-HSQC spectrum was acquired in "H2O to identify the long and short 

distance restraints from aromatic amino acids.

TALOS was used to obtain a list of dihedral angle restraints. TALOS stands for Torsion 

Angle Likelihood Obtained from Shift and Sequence similarity. It is a database used for 

the prediction of Phi and Psi angles using HA, CA, CB, CO, N chemical shift 

assignments for a protein (Comilescu et al., 1999). TALOS creates a list of predictions 

for the Phi and Psi angles and rates the predictions as good, OK and bad. For structural 

determination all predictions rated as bad or OK were removed.

2.5.4 Structure determination using ARIA 1.2

The peaks for 13C-NOESY-HSQC, 15N-NOESY-HSQC, 13C-HSQC tuned for the 

aromatic region and 2H2 0 -N0 ESY-HSQC spectra were picked manually using 

SPARKY (Goddard & Kneller). The spectra were transferred to Xeasy and the volumes 

of the peaks were determined by integration in Xeasy (Bartels et al., 1995). The peak 

lists for the four spectra: 13C-NOESY-HSQC, lsN-NOESY-HSQC, l3C-HSQC tuned for 

the aromatic region and 2H2 0 -NOESY-HSQC with the chemical shift lists for all the 

side chain atoms (determined from HCCH-TOCSY and HCCONH spectra) were used 

for structural calculations. The list of dihedral angle restraints from TALOS was used as 

a restraint for structural calculations.

Structural calculations were carried out using the ARIA 1.2 software package (Linge & 

Nilges, 1999, Linge et al., 2001, Nilges, 1995, Nilges & O' Donoghue, 1998). ARIA 

stands for Ambiguous Restraints for Iterative Assignments. ARIA interprets the peaks 

that have been picked in the NOESY spectra and defines a list of ambiguous and 

unambiguous NOE restraints based on the picked peaks and the chemical shift lists.
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ARIA uses this information in combination with the dihedral angle restraints to produce 

a family of possible structures. Each ARIA run goes through 8  iterations of structures 

improving the structure each time and finishes by carrying out a water refinement of the 

10 best energy structures it has created. At the end of the ARIA run a list of peak 

violations in the spectra was obtained for the determined structures. The peaks were 

checked manually in SPARKY to examine whether they were background noise on the 

spectra or real peaks. Any noise peaks would be removed.

The structures created by ARIA were displayed in the molecular graphics programme 

MOLMOL (Koradi et a l 1996). The group of structures would be overlayed to see how 

similar they were. MOLMOL was used to calculate potential H-bonds in the structure. 

H-bonds calculated to be in 8  or more out of the 10 structures and confirmed by the
9 1 ̂presence of an N-H peak in the H2O- N-HSQC spectra were included in the ARIA 

calculation for the subsequent run. The spectra were run through ARIA multiple times 

with checking of the spectra and calculating the H-bonds each time to improve the 

structure.

The structure was visualised in Insight II (Dayringer et al., 1986) to identify the 

disulphide bonds. Potential disulphide bonds were added to the ARIA structure 

calculations as shown in table 2.5.

Table 2.5: Ambiguous disulphide bond restraints used in ARIA calculations

Cysteine 8  —» Cysteine 20 

Cysteine 32 —» Cysteine 44 

Cysteine 52 -» Cysteine 65 

Cysteine 59 —> Cysteine 79 

Cysteine 81 —» Cysteine 95

For the final ARIA runs the number of structures made in iteration 8  was increased to 

100 structures and the 20 best energy structures were used in the water refinement. The 

best energy structure for the 20 structures for wildtype MSP119 and Glu28—»Lys 

MSP 119 were used to compare the differences between MSP 119 and Glu28—>Lys

m s p i ,9.
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The quality of the final structures was assessed using PROCHECK NMR (Laskowski et 

a l 1996). The best energy structure for the 20 structures for wildtype MSP 119 and 

Glu28—>Lys MSP 119 were used to compare the differences between MSP 119 and 

Glu28—>Lys MSP1 19. The structures were compared by visualisation using Insight II 

and by using MOLMOL (Koradi et al., 1996) to calculate the surface electropotential.
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Chapter 3: Antibody binding studies on individual amino acid variants

3.1 Introduction

In order to map the antibody binding sites of P. yoelii MSP 119 a site directed 

mutagenesis approach was used to identify individual amino acids that may be involved 

in antibody binding. This approach instead of a random mutagenesis approach was used 

because there was information available in the literature about the potential amino acids 

that may be involved. The site directed mutagenesis protocol that was used is 

summarised in figure 3.1. Three variants with changes to residues 12, 16 and 17 were 

created because of the information in the literature from Benjamin et al. (Benjamin et 

al., 1999) (discussed in detail in section 1.6.4) which suggested that these residues could 

be important for antibody binding from studies of P. yoelii isolates. Residue 28 was 

altered because it is conserved across the species and it has been shown by Uthaipibull 

et al. (Uthaipibull et al., 2001) (discussed in detail in section 1.6.3) to be important for 

P. falciparum inhibitory antibody binding.

The affects of the variations on antibody binding were tested using three methods: 

western blotting, ELISA and surface plasmon resonance analysis. The use of three 

methods was to overcome any limitations of the individual methods and also to confirm 

the accuracy of the data obtained from those methods. Table 3.1 highlights the main 

advantages and disadvantages of the individual techniques.
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Table 3.1: Advantages and disadvantages of western blotting, ELISA and surface 

plasmon resonance

Advantages Disadvantages

Western blotting Quick. Small differences in 

antibody binding may not 

be seen due to saturation of 

the blot.

Small amounts of protein 

can be used.

The exact amount of 

protein that binds to 

nitrocellulose is unknown.

Cheap. Only one antibody 

concentration can be tested 

per blot.

ELISA A series of antibody 

concentrations can be set 

up on one plate and binding 

curves can be gained.

The exact amount of 

protein that binds to the 

plate is unknown.

Quantitative antibody 

binding data.

There can be saturation of 

the signal at high antibody 

concentrations.

Saturation of the signal can 

be overcome as a range of 

antibody concentrations are 

used.

Surface plasmon resonance The amount of protein 

bound to the chip can be 

accurately determined.

The chips that the proteins 

are bound to are very 

expensive.

The amount of antibody 

can be accurately 

determined.

The binding conditions and 

regeneration conditions 

have to be optimised before 

analysis.
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For the antibody binding studies three monoclonal antibodies against MSP1 that were 

created by Lilian Spencer were used called B6 , F5 and BIO. The antibodies and their 

production are discussed in detail in section 1.6.4. B6  and F5 were used because they 

mediate a substantial reduction in parasitaemia and all the mice injected with these 

antibodies clear the parasite following parasite challenge. Competition ELISA 

experiments showed that the epitopes for F5 and B6  overlap each other but are clearly 

distinct epitopes. This would suggest that different information may be gained from 

studying the two antibodies and areas that are important for binding both antibodies 

may be particularly important. B6  and F5 antibody only need the first EGF domain for 

antibody binding. The third antibody BIO was used because competition ELISA 

experiments showed that the epitope for BIO antibody was distinct from that of B6  and 

F5. BIO antibody caused a partial suppression of parasite growth on challenge infection. 

BIO antibody requires both EGF domains for binding (Spencer Valero et al., 1998). 

Using this antibody could therefore help to determine if the variations made have an 

effect on the overall structure of the protein.
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Figure 3.1: Overview of the site-directed mutagenesis protocol used to produce the 

amino acid variations in MSPI1 9.

The QuikChange site-directed mutagenesis kit from Stratagene was used for the 

mutagenesis. This figure is adapted from the QuikChange site-directed mutagenesis kit 

manual. The parental DNA plasmid (wildtype MSP 119 in pGEX3X) is shown in green. 

The mutagenic primers are shown in cyan and the mutated DNA plasmid is shown in 

blue. The mutation is indicated with the pink cross.
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Plasmid Preparation
wildtype M S P I 1 9  in 
pG E X3X

Denature the plasmid and 
anneal primers containing 
the desired mutation

Step 2
Tem perature Cycling

Use PfuTurbo DNA  
polymerase to extend and 
incorporate the mutagenic 
primers resulting in nicked 
circular strands

Step 3
Digestion

Step 4
Transformation

Digest parental DNA  
tem plate with Dpn I

Transform the circular, 
nicked dsDNA into 
XL1-B lue cells

After transformation the 
XL1-Blue cells repair the 
nicked mutated plasmid
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3.2 Expression and purification of GST-MSPlig variants

Four GST-MSP1 19 variants were created by site-directed mutagenesis using the 

sequence of wildtype MSP119 of P. yoelii YM in pGEX3X vector as a template. The 

four variants produced contained a single amino acid change as follows: Argl2—»Leu; 

Lysl6 —»Glu; Asnl7—>His and Glu28—»Lys. The changes to the amino acids are shown 

in figure 3.2. Expression of the GST-MSP119 variants, wildtype GST-MSP119 and GST 

was carried out as described section 2.2. Figure 3.3 shows the expression and 

purification of the Asnl7—»His variant. In this figure there is a clear band at 37 kDa 

representing the GST-MSP119 in the elution fractions (lanes 6-21) from the glutathione 

agarose column. The expression and purification of the wildtype and other GST- 

MSP1 19 variants gave a similar purification profile (data not shown).

The purified proteins were quantified using densitometry and run on a NuPAGE gel to 

confirm the accuracy of the quantification (shown in figure 3.4).

3.3 Western blotting analysis of antibody binding to GST-MSPlio variants

In order to test if the amino acids changed in the GST-MSP119 variants were involved in 

antibody binding, western blotting analysis was carried out. 500 ng of the GST-MSP119 

variants were run on NuPAGE gels under non-reducing conditions for monoclonal 

antibody westerns and reducing conditions for anti-GST antibody westerns. A control 

western blot with anti-GST antibody was carried out as shown in figure 3.5 (top panel). 

This western blot shows binding to all the GST-MSP119 variants confirming that the 

proteins have been expressed. Western blotting analysis with B6 , F5 and BIO antibodies 

(Spencer Valero et al., 1998) show differential binding with the variants (shown in 

figure 3.5). The results are summarised in table 3.2.
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Table 3.2: Effects of amino acid variations on B6 , F5 and B10 binding as 

shown by western blotting (figure 4)

Variant B6 F5 B10

Argl2—>Leu ++ + ++

Lysl6 —»Glu - - ++

Asnl7—>His + ++ ++

Glu28-*Lys ++ - ++

++ —> binding equivalent to wildtype binding

+ —> reduced binding compared to wildtype binding

— > no binding

3.4 ELISA analysis of antibody binding to GST-MSPlio variants

ELISA was used to analyse the kinetics of antibody binding to GST-MSP119 variants 

over a range of antibody concentrations. Initial ELISA experiments involved using a 

range of concentrations of goat anti-GST antibody to determine the optimum 

concentration for wildtype GST-MSP119 capture. The results are shown in figure 3.6, 

this shows an increase in ELISA signal up to 3 pg/ml and indicates an optimum 

concentration of 0.4 p,g/ml.

1 pg/ml GST-MSP119 variants were bound to 0.4 pg/ml goat-anti-GST antibody bound 

to the ELISA plate. The proteins were probed with doubling dilutions of B6 , F5 or BIO 

antibody and 1/2000 dilution anti-mouse IgG HRP conjugate. The peroxidase was 

detected and absorbance was read at 490 nm. The ELISA shows clear differences in the 

binding curves of the GST-MSP119 variants (Figures 3.7, 3.8, 3.9). The differences are 

summarised in table 3.3.
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Table 3.3: Effects of amino acid variations on B6 , F5 and BIO binding curves 

in ELISA experiments (Figures 3.7, 3.8, 3.9)

Variant B6 F5 BIO

Argl2-»Leu ++ + +

Lysl6—>Glu - - +

Asnl7—>His + ++ +

Glu28—>Lys + - +

++ —> binding equivalent to wildtype binding 

+ —> reduction in the steepness of the binding curve 

— > no binding

The results of the F5 ELISA with all the variants are in agreement with the western 

blotting analysis. The results of the B6 ELISA experiments for the Glu28^Lys do not 

agree with the western blotting results since the ELISA shows a reduction in binding 

whereas the western blotting shows no change in binding. The BIO ELISA shows a 

reduction in binding for all the variants whereas the western blotting shows no change 

in binding.

3.5 SPR of antibody binding to GST-MSPlio variants

SPR analysis allows protein interactions to be detected in real time. The technique is 

explained in the schematic in figure 3.10. A sensor chip that is coated in a thin layer of 

gold is used. The protein is immobilised onto the surface of the chip. The ligand is 

passed across the surface of the chip in solution in the flow cell. Polarised light is shone 

at the sensor chip and reflected off. When buffer is passed over the chip with no ligand 

to bind the reflected light may be at an angle shown for point 1 (in figure 3.10). This 

would form the base line of the sensorgram. When the ligand solution flows across the 

chip, ligand would bind to the protein on the chip surface. This alters the refractive 

index at the interface between the chip surface and the ligand solution. This reduces the 

angle of reflected light. This change in angle is proportional to the mass of the bound 

material and is recorded on the sensorgram in arbitrary units called resonance units. For
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example, in figure 3.10, when a small amount is bound as shown at point 2 the angle of 

reflected light is reduced and the resonance units on the sensorgram go up. This is 

because the resonance units are inversely proportional to the angle of the reflected light. 

As more ligand binds as shown at point 3, the signal goes up further. After binding as 

the buffer flows over, the ligand dissociates. To remove all of the ligand a buffer with 

low or high pH is used to disrupt the protein-ligand binding interactions.

For this project, the GST-MSP119 variants were bound to anti-GST antibody 

immobilised on the surface of a CM5 chip and binding assays were performed with B6 , 

F5 and BIO antibodies. A schematic of the sensorgram for the SPR experiments is 

shown in figure 3.11 indicating the positions where the binding levels are recorded. The 

binding in resonance units was converted into percentages to allow comparison between 

the variants (as described in section 2.2.6). The results show the percentage binding, in 

resonance units, of the antibody compared between the wildtype and variants (figures 

3.12, 3.13, 3.14). . The SPR analysis shows clear differences in antibody binding for the 

GST-MSP119 variants. The differences are summarised in table 3.4.

Table 3.4: Effects of amino acid variations on B6 , F5 and BIO antibody 

binding detected by SPR analysis (Figures 3.12, 3.13, 3.14)

Variant B6 F5 BIO

Argl2—>Leu ++ + +

Lysl6 —»Glu - - ++

Asnl7—>His + ++ ++

Glu28—>Lys + - -

++ -> binding equivalent to wildtype binding 

+ -» small reduction in antibody binding 

- —> large reduction in antibody binding

The results for B6  and F5 binding are in agreement with the ELISA data. The results for 

BIO binding in the SPR analysis show a small reduction for the Argl2—»Leu variant and 

a significant reduction of 45 percent for the Glu28—»Lys variant which was not picked 

up by the western blotting.
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Figure 3.2: Single amino acid variations made to wildtype MSPI1 9 .

The left hand panel shows the structures of the amino acids in the wildtype protein. The 

right hand panel shows the structures the amino acids that have been substituted in the 

variants. The areas of the amino acid structures that are different are highlighted in pink. 

This figure was produced using MDL ISIS/Draw 2.5.
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Figure 3.3: NuPAGE gel analysis of Asnl7—>His GST-MSPI19 variant expression 

and purification.

Asnl7—»His GST-MSP119 variant was expressed in a 610 ml bacterial culture by IPTG 

induction (1 mM) for 3 hours. The protein was purified using a glutathione agarose 

column eluting in 0.5 ml fractions with 5 mM reduced glutathione. The protein samples 

were run on a pre-cast NuPAGE 12 % Bis-Tris polyacrylamide gel in MOPS buffer 

under reducing conditions and stained with Coomassie blue. Lane 1 -  molecular mass 

markers, lane 2 -  cell lysate before purification, lane 3 -  flow through from glutathione 

agarose column, lanes 4, 5 -  column washes, lane 6-21 -  elution fractions, lanes 22, 23 

-  elution fractions pooled and dialysed against PBS. The band indicated by the arrow at 

37 kDa is the Asnl7—>His GST-MSP119 variant.
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1 2 3 4 5 6 7

Figure 3.4: NuPAGE gel analysis of 500 ng of GST-MSPI19 variants quantified by 

densitometry.

500 ng of the GST-MSP119 variants was run on a pre-cast 12 % NuPAGE Bis-Tris 

polyacrylamide gel in MOPS buffer under reducing conditions and visualised by 

Coomassie blue staining. Lane 1 -  molecular mass markers, lane 2 -  wildtype GST- 

MSP119, lane 3 -  Argl2-»Leu, lane 4 -  Glu28—»Lys, lane 5 -  Asnl7—>His, lane 6  -  

Lysl6 —»Glu, lane 7 -  500 ng purified BSA.



Figure 3.5: Western blotting analysis of antibody binding to GST-MSP119 variants.

500 ng of the wildtype GST-MSP119 and GST-MSP119 variants were run on NuPAGE 

gels under reducing conditions (anti-GST antibody western blots) or non-reducing 

conditions (B6 , F5, BIO antibody western blots) and transferred to nitrocellulose. GST 

and BSA were used as controls. The anti-GST western blot (top panel) was probed with 

1/5000 dilution anti-GST HRP conjugate. The B6 , F5 and B10 antibody western blots 

were first probed with B6  (2 pg/ml), F5 (10 pg/ml) or B10 (2 pg/ml) followed by 

1/2000 dilution goat anti-mouse IgG HRP conjugate. The bands at 37 kDa are the GST- 

M SPI19 proteins.
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Figure 3.6: Antibody sandwich ELISA to determine the optimum concentration of 

capture antibody.

Goat anti-GST antibody at a range of concentrations between 0.2 and 10 pg/ml was 

used to coat the ELISA plate as the capture antibody. 1 pg/ml of wildtype GST-MSP119, 

GST or PBS was bound to the capture antibody. This was probed with 1.6125 pg/ml B6  

antibody and 1/1000 dilution anti-mouse IgG-HRP. The peroxidase was detected and 

absorbance read at 490 nm. Duplicate plates were used and the mean results are shown 

on the graph.
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Figure 3.7: ELISA of B6  antibody binding to GST-MSPI19 variants.

0.4 pg/ml goat anti-GST antibody was used to coat the ELISA plate as the capture 

antibody. 1 pg/ml of GST-MSP1 19 variants, GST or PBS was bound to the capture 

antibody. This was probed with doubling dilutions of B6  antibody and 1/1000 dilution 

anti-mouse IgG-HRP. The peroxidase was detected and absorbance read at 490 nm. 

PBS was used as a negative control. Duplicate plates were used. The mean results for 

the variant proteins and GST less PBS control are shown on the graph. GST is shown in 

black, wildtype GST-MSPI19 is shown in red, Lysl6 —>Glu (KE16) is shown in green, 

A snl7^H is (NH17) is shown in yellow, Argl2—»Leu (RL12) is shown in blue and 

Glu28-*Lys (EK28) is shown in pink.
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Figure 3.8: ELISA of F5 antibody binding to GST-MSP119 variants.

0.4 pg/ml goat anti-GST antibody was used to coat the ELISA plate as the capture 

antibody. 1 pg/ml of GST-MSP119 variants, GST or PBS was bound to the capture 

antibody. This was probed with doubling dilutions of F5 antibody and 1/1000 dilution 

anti-mouse IgG-HRP. The peroxidase was detected and absorbance read at 490 nm.

PBS was used as a negative control. Duplicate plates were used. The mean results for 

the variant proteins and GST less PBS control are shown on the graph. GST is shown in 

black, wildtype GST-MSPI19 is shown in red, Lysl6 —»Glu (KE16) is shown in green, 

Asnl7—»His (NH17) is shown in yellow, Argl2—»Leu (RL12) is shown in blue and 

Glu28—»Lys (EK28) is shown in pink.
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Figure 3.9: ELISA of BIO antibody binding to GST-MSP119 variants.

0.4 p,g/ml goat anti-GST antibody was used to coat the ELISA plate as the capture 

antibody. 1 pg/ml of GST-MSP119 variants, GST or PBS was bound to the capture 

antibody. This was probed with doubling dilutions of BIO antibody and 1/1000 dilution 

anti-mouse IgG-HRP. The peroxidase was detected and absorbance read at 490 nm.

PBS was used as a negative control. Duplicate plates were used. The mean results for 

the variant proteins and GST less PBS control are shown on the graph. GST is shown in 

black, wildtype GST-MSPI19 is shown in red, Lysl6 —»Glu (KE16) is shown in green, 

Asnl7—»His (NH17) is shown in yellow, Argl2—»Leu (RL12) is shown in blue and 

Glu28—»Lys (EK28) is shown in pink.
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Figure 3.10: Overview of surface plasmon resonance.

A: This panel shows a schematic of the surface plasmon resonance equipment.

B: This panel shows a schematic of a typical sensorgram that is obtained.

The protein is immobilised onto the surface of the chip. The ligand is passed across the 

surface of the chip in solution in the flow cell. Polarised light is shone at the sensor chip 

and reflected off. When buffer is passed over the chip with no ligand to bind the 

reflected light may be at an angle shown for point 1. This would form the base line of 

the sensorgram (B point 1). When the ligand solution flows across the chip, ligand 

would bind to the protein on the chip surface. This alters the refractive index at the 

interface between the chip surface and the ligand solution. This reduces the angle of 

reflected light. This change in angle is proportional to the mass of the bound material 

and is recorded on the sensorgram in arbitrary units called resonance units. For 

example, when a small amount is bound as shown at point 2 the angle of reflected light 

is reduced and the resonance units on the sensorgram go up (B point 2). This is because 

the resonance units are inversely proportional to the angle of the reflected light. As 

more ligand binds as shown at point 3, the signal goes up further. After binding as the 

buffer flows over, the ligand dissociates.
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Figure 3.11: Schematic of surface plasmon resonance sensorgram obtained in the 

experiments in this project.

The top panel shows a schematic representation of the sensorgram. The arrows indicate 

the injections of solutions over the chip. The injection and binding of anti-GST antibody 

is highlighted in green. The injection and binding of GST-MSP119 is highlighted in 

pink. The injection and binding of B6  antibody is highlighted in blue. The 

measurements of GST-MSP119 binding and B6  antibody binding are indicated with 

double headed arrows.

The bottom panel shows the appearance of the chip surface following the injections of 

solutions over the chip.
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Figure 3.12: SPR of B6 binding to GST-MSP119 variants.

The GST-MSP119 variants were bound to anti-GST antibody immobilised on the surface 

of a CM5 chip and binding assays were performed with B6  antibody. The wildtype 

protein is given a binding value in resonance units of 100 %. The variants binding value 

is converted to a percentage of wildtype binding. The experiments are done in triplicate 

and a mean value calculated. The error bars represent ± 1 standard deviation.
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Figure 3.13: SPR of F5 binding to GST-MSPI19 variants.

The GST-MSP119 variants were bound to anti-GST antibody immobilised on the surface 

of a CM5 chip and binding assays were performed with F5 antibody. The wildtype 

protein is given a binding value in resonance units of 100 %. The variants binding value 

is converted to a percentage of wildtype binding. The experiments are done in triplicate 

and a mean value calculated. The error bars represent ± 1 standard deviation.
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Figure 3.14: SPR of BIO binding to GST-MSPI19 variants.

The GST-MSP119 variants were bound to anti-GST antibody immobilised on the surface 

of a CM5 chip and binding assays were performed with B10 antibody. The wildtype 

protein is given a binding value in resonance units of 100 %. The variants binding value 

is converted to a percentage of wildtype binding. The experiments are done in triplicate 

and a mean value calculated. The error bars represent ± 1 standard deviation.
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Figure 3.15: Summary of the effect of single amino acid changes on B6 , F5 and BIO 

antibody binding to GST-MSPI19.

A homology model of P. yoelii MSP 119 was created using the Swiss Model Protein 

Modelling Server (top panel). This figure highlights the 3-D location of the amino acids 

changed in the variant proteins. Argl2-»Leu is shown in green, Lysl6 —»Glu is shown 

in pink, Asnl7—»His is shown in yellow and Glu28—»Lys is shown in blue. The C- 

terminal residue is shown in black and the N-terminal residue is shown in light blue.

The effects of the amino acid changes on B6 , F5 and BIO antibody binding observed in 

the western blotting, ELISA and SPR experiments are highlighted. The residues that 

have no effect on binding are shown in blue, those that result in partial reduction in 

binding are shown in yellow and those that abolish binding are shown in red.
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3.6 Discussion

The results of chapter 3 show that residues 12, 16, 17 and 28 are important for antibody 

binding to P. yoelii MSP 119. The results from the western blotting, ELISA and surface 

plasmon resonance are summarised in figure 3.15 mapped onto the 3-Dimensional 

homology model of P. yoelii (the model is discussed in detail in chapter 6 ). From the 

western blotting, ELISA and SPR the following conclusions can be made. Residue 16 is 

essential for B6  binding and is located in the B6  binding site because Lysl6 —>Glu 

variant abolishes B6  binding. Residues 17 and 28 are involved in B6  binding and are 

located within the B6  binding site because Asnl7—»His and Glu28—»Lys variants 

reduce B6  binding. Residues 16 and 28 are essential for F5 binding and are located in 

the F5 binding site because Lysl6 —>Glu and Glu28—>Lys variants abolish F5 binding. 

Residue 12 is involved in F5 binding and is located within the F5 binding site because 

Argl2—»Leu variant reduces F5 binding. Residues 12 and 28 are involved in BIO 

binding and are located within the BIO binding site because Argl2—»Leu and 

Glu28—>Lys variants reduce BIO binding.

There was a discrepancy in the results for the Glu28—>Lys variant with BIO and B6  

antibodies using western blotting compared to ELISA and SPR. There was no 

difference in binding compared to wildtype MSP 119 seen in the western blotting but 

with ELISA and SPR there was a clear difference in binding. This could be explained 

by the limitations with western blotting as the exact amount of protein that binds the 

nitrocellulose membrane is unknown and when the blot is developed the signal could 

become saturated. In SPR the amount of immobilised protein is measured and the 

differences are taken into account when determining the level of antibody binding. The 

SPR data are therefore a more reliable indicator of quantitative antibody binding.

Spencer et al. carried out competitive ELISA analysis using antibodies against P. yoelii 

MSP 11 9 . The analysis indicated that the epitopes for B6  and F5 antibodies overlapped 

each other but were clearly distinct (Spencer Valero et al., 1998). The data in this 

project supports these findings as they indicate that changes to some residues, e.g. 

residue 16, abolish binding to both antibodies and are hence likely to be located in both

-  103 -



C h a p t e r  3: A n t i b o d y  b i n d i n g  s t u d i e s  o n  i n d i v i d u a l  a m i n o  a c i d  v a r i a n t s

binding sites and changes to some residues e.g. residue 12, only affect binding to one of 

the antibodies. The data in this project suggests that the BIO antibody binding epitope 

overlaps with the F5 and B6 antibody binding epitopes because changing residue 28 

affects F5, B6 and BIO antibody binding suggesting it is in all three binding sites. This 

disagrees with the competition ELISA from Spencer et al. (Spencer Valero et al., 1998) 

which suggests that the BIO epitope does not overlap with F5 or B6. The reason for the 

difference may be because of the methods used. In competitive ELISA analysis there 

may need to be significant overlap between the BIO and B6 or F5 antibody binding sites 

in order to see an effect on binding whereas by site directed mutagenesis individual 

residues in a binding site can be identified.

Benjamin et al. studied antibody binding to sequence variants from P. yoelii isolates 

expressed in bacteria. They indicated Lysl6—>Glu and Asnl7—»His in P. yoelii isolates 

correlated with affecting binding to B6 and F5 antibodies (Benjamin et al., 1999). The 

data in this project for the Lysl6—>Glu variant agrees with the findings of Benjamin et 

al. (Benjamin et al., 1999). The data in this project indicate that Asnl7—>His does not 

affect F5 antibody binding and only reduces B6 antibody binding. This difference may 

be explained as the isolates containing the Asnl7—»His variation also contained 

multiple sequence variations including the Lys 16—»Glu variation and therefore the 

effect of Asnl7—»His alone could not be clearly identified. Benjamin et al. indicated 

that Argl2—>Ser in isolates correlated with no binding to B6, F5 and BIO antibodies 

(Benjamin et al., 1999). In this report an Argl2—»Leu variation was made rather than an 

Argl2—»Ser variation because arginine and leucine are similar in size. These data 

indicated that Argl2—»Leu was important for reduction in F5 and BIO antibody binding 

only, suggesting this is not as important for antibody binding as suggested by Benjamin 

et al. (Benjamin et al., 1999).

Uthaipibull et al. produced a Glu28 variant in P. falciparum which was found to effect 

inhibitory antibody binding (Uthaipibull et al., 2001). This was in agreement with the P. 

yoelii data presented in this project for the Glu28-»Lys variant which shows that 

Glu28—»Lys is important for antibody binding in P. yoelii. This implies that residue 28 

is important for antibody binding across the species and its conservation may be of 

functional importance.
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Chapter 4: Designing a double MSPIiq variant to affect all three

monoclonal antibodies

4.1 Introduction

In this chapter, I will discuss the design of a double MSP 119 variant based on the four 

individual amino acid variants discussed in chapter 3 with the aim of affecting binding 

to B6 , F5 and BIO monoclonal antibodies. The Lysl6 —»Glu M SPI19 variant abolished 

binding to B6  and F5 antibody. This variant therefore provided a good starting point for 

producing a double variant that could affect binding to all three monoclonal antibodies. 

The Glu28—»Lys MSP 119 variant was the only one of the four variants that significantly 

reduced binding to B 10 antibody. A double variant was therefore created with two 

amino acid changes as follows: Lysl6 —»Glu and Glu28—»Lys. The hypothesis for 

antibody binding to the double Lysl6 -»Glu /Glu28—>Lys GST-MSP119 variant would 

be that it would have the combined effect of the two individual variants. The hypothesis 

would therefore be that the double Lysl6 —»Glu /Glu28—>Lys GST-MSP119 variant 

would not bind to F5 and B6  and there would be a reduction in binding to BIO. In this 

chapter, I will compare the binding of the double Lysl6 —»Glu /Glu28—»Lys GST- 

MSP119 variant to the individual Lysl6 —»Glu and Glu28—>Lys GST-MSP119 variants.

4.2 Expression and purification of double Lvsl6 —»Glu /Glu28-»Lvs GST- 

MSPIiq variant

A double Lysl6 —>Glu /Glu 28—»Lys GST-MSP119 variant was created by site-directed 

mutagenesis using the Lysl6 —»Glu MSP 119 gene of P. yoelii YM in pGEX3X vector as 

a template. Expression of the double Lysl6 —»Glu /Glu28—>Lys GST-MSP119 variant 

was carried out as described section 2.2. The protein was purified using a glutathione 

agarose column and quantified using densitometry. Figure 4.1 shows the purification of 

the double Lysl6 -»Glu /Glu28—»Lys GST-MSP119 variant.
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4.3 Western blotting analysis of antibody binding to residues 16 and 28 single

and double GST-MSPlio variants

Western blotting analysis was carried out to compare the binding of the double 

Lysl6 —>Glu /Glu28—»Lys GST-MSP119 variant to the individual Lysl6 —>Glu and 

Glu28—»Lys GST-MSP119 variants. 500 ng of the wildtype GST-MSP11 9 ,  double 

Lysl6 -»Glu /Glu28-*Lys, Lysl6 —>Glu and Glu28—»Lys GST-MSP119 variants were 

run on NuPAGE gels under non-reducing conditions for monoclonal antibody westerns 

and reducing conditions for anti-GST antibody westerns. A control western blot with 

anti-GST antibody was carried out as shown in figure 4.2 (top panel). This western blot 

shows binding to the wildtype, individual and double GST-MSP119 variants confirming 

that the double Lysl6—»Glu/Glu28—»Lys variant has been purified and quantified in the 

same way as the previously produced individual GST-MSP119 variants. Western 

blotting analysis with B6 , F5 and BIO antibodies (Spencer Valero et al., 1998) show 

that the effect of the double Lysl6—»Glu/Glu28-»Lys variant was a combination of the 

effects of the individual residue 16 and 28 variants. The results are summarised in table 

4.1.

Table 4.1: Effects of double and single amino acid variations on B6 , FS and BIO 

binding as shown by western blotting (figure 4.2)

Variant B6 F5 BIO

Lysl6 -»Glu - - ++

Glu28—»Lys ++ - ++

double - - ++

Lys 16—»Glu/Glu28—»Lys

++ —> binding equivalent to wildtype binding

- -» no binding
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4.4 ELISA analysis of antibody binding to residues 16 and 28 double and single 

GST-MSP1 iq variants

ELISA was used to analyse the kinetics of antibody binding to the double and single 

GST-MSP119 variants over a range of antibody concentrations to look for smaller 

differences in binding that may not have been seen on the western blotting. The ELISA 

experiments were carried out using the ELISA conditions that were optimised for the 

analysis of the single amino acid variants described in chapter 3.

1 pg/ml wildtype, double Lysl6—»Glu/Glu28—>Lys, Lysl6 —>Glu and Glu28—»Lys 

GST-MSP119 variants were bound to 0.4 p,g/ml goat-anti-GST antibody bound to the 

ELISA plate. The proteins were probed with doubling dilutions of B6 , F5 or BIO 

antibody and 1/2000 dilution anti-mouse IgG HRP conjugate. The peroxidase was 

detected and absorbance was read at 490 nm. The ELISA results showed that the double 

Lysl6—>Glu/Glu28—>Lys MSP 119 variant gave binding curves that showed a 

combination of the effects of the two single variants. The binding curve for B10 

antibody showed an additive effect of the reduction in steepness in binding curve seen 

for the two single variants with the double variant giving a larger reduction in the 

steepness of the binding curve than the single variants. The results are summarised in 

table 4.2.

Table 4.2: Effects of single and double amino acid variations on B6, FS and B10 

binding curves in ELISA experiments (Figures 4.3, 4.4, 4.S)

Variant B6 F5 B10

Lys 16—>Glu - - ++

Glu28—>Lys + - +

double 

Lys 16—»Glu/Glu28—>Lys

+

++ —» small reduction in the steepness of the binding curve

+ -» large reduction in the steepness of the binding curve 

- —> no binding
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Figure 4.1: NuPAGE gel analysis of double Lysl6—>Glu/Glu28—>Lys GST-MSPI19 

variant expression and purification.

Lysl6—»Glu/Glu28—»Lys GST-MSPI19 variant was expressed in a 610 ml bacterial 

culture by IPTG induction (1 mM) for 3 hours. The protein was purified using a 

glutathione agarose column eluting in 0.5 ml fractions with 5 mM reduced glutathione. 

The protein samples were run on a pre-cast NuPAGE 12 % Bis-Tris polyacrylamide gel 

in MOPS buffer under reducing conditions and stained with Coomassie blue. Lane 1 -  

molecular mass markers, lane 2 -  cell lysate before purification, lane 3 -  flow through 

from glutathione agarose column, lanes 4-5 -  column washes, lane 6-7 -  elution 

fractions pooled and dialysed against PBS. The band indicated by the arrow at 37 kDa is 

the Lysl6—»Glu/Glu28—»Lys GST-MSP119 variant.
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Figure 4.2: Western blotting analysis of antibody binding to residues 16 and 28 single and

double GST-MSP119 variants.

500 ng of the wildtype, Lysl6 —»Glu, Glu28—>Lys and Lys 16—»Glu/Glu28—»Lys GST- 

MSP1 19 variants were run on NuPAGE gels under reducing conditions (anti-GST 

antibody western blots) or non-reducing conditions (B6 , F5, BIO antibody western 

blots) and transferred to nitrocellulose. GST was used as a control. The anti-GST 

western blot (top panel) was probed with 1/5000 dilution anti-GST HRP conjugate. The 

B6 , F5 and B10 antibody western blots were first probed with B6  (2 pg/ml), F5 (10 

pg/ml) or B10 (2 pg/ml) followed by 1/2000 dilution goat anti-mouse IgG HRP 

conjugate. The bands at 37 kDa are the GST-MSP119 proteins.
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Figure 4.3: ELISA of B6  antibody binding to residues 16 and 28 single and double GST-

MSP119 variants.

0.4 pg/ml goat anti-GST antibody was used to coat the ELISA plate as the capture 

antibody. 1 pg/ml of wildtype, Lysl6 —»Glu, Glu28—>Lys, Lysl6—»Glu/Glu28->Lys 

GST-MSP119 variants, GST or PBS was bound to the capture antibody. This was probed 

with doubling dilutions of B6  antibody and 1/1000 dilution anti-mouse IgG-HRP. The 

peroxidase was detected and absorbance read at 490 nm. PBS was used as a negative 

control. Duplicate plates were used. The mean results for the variant proteins and GST 

less PBS control are shown on the graph. GST is shown in orange, wildtype GST- 

M SPI19 is shown in blue, Lysl6 —»Glu GST-MSP119 variant is shown in red,

Glu28—»Lys GST-MSPI19 variant is shown in green and Lysl6—»Glu/Glu28—»Lys 

GST-MSP119 variant is shown in pink.
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Figure 4.4: ELISA of F5 antibody binding to residues 16 and 28 single and double

GST-MSP119 variants.

0.4 pg/ml goat anti-GST antibody was used to coat the ELISA plate as the capture 

antibody. 1 pg/ml of wildtype, Lysl6 —»Glu, Glu28^-Lys, Lysl6-»Glu/Glu28—>Lys 

GST-MSP119 variants, GST or PBS was bound to the capture antibody. This was probed 

with doubling dilutions of F5 antibody and 1/1000 dilution anti-mouse IgG-HRP. The 

peroxidase was detected and absorbance read at 490 nm. PBS was used as a negative 

control. Duplicate plates were used. The mean results for the variant proteins and GST 

less PBS control are shown on the graph. GST is shown in orange, wildtype GST- 

M SPI19 is shown in blue, Lysl6 —»Glu GST-MSPI19 variant is shown in red,

Glu28—»Lys GST-MSPI19 variant is shown in green and Lysl6-»Glu/Glu28-»Lys 

GST-MSP119 variant is shown in pink.
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Figure 4.5: ELISA of BIO antibody binding to residues 16 and 28 single and double

GST-MSPI19 variants.

0.4 pg/ml goat anti-GST antibody was used to coat the ELISA plate as the capture 

antibody. 1 pg/ml of wildtype, Lysl6 -»Glu, Glu28—»Lys, Lysl6—»Glu/Glu28->Lys 

GST-MSP119 variants, GST or PBS was bound to the capture antibody. This was probed 

with doubling dilutions of BIO antibody and 1/1000 dilution anti-mouse IgG-HRP. The 

peroxidase was detected and absorbance read at 490 nm. PBS was used as a negative 

control. Duplicate plates were used. The mean results for the variant proteins and GST- 

Tag less PBS control are shown on the graph. GST is shown in orange, wildtype GST- 

MSP119 is shown in blue, Lysl6 ^ G lu  GST-MSP119 variant is shown in red,

Glu28—»Lys GST-MSPI19 variant is shown in green and Lysl6—»Glu/Glu28-»Lys 

GST-MSP119 variant is shown in pink.
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4.5 Discussion

The double Lysl6->Glu/Glu28->Lys GST-MSP1 19 variant described in this chapter 

was designed to affect binding to B6 , F5 and BIO monoclonal antibodies. The 

hypothesis for antibody binding to the double Lys 16—>Glu/Glu28-»Lys GST-MSP119 

variant was that it would have the combined effect of the single residues 16 and 28 

variants. This would mean that it would not bind to B6  and F5 and would show reduced 

binding to BIO. The western blotting and ELISA experiments presented here have 

proved the hypothesis correct as it has shown that the double Lysl6—»Glu/Glu28—»Lys 

GST-MSP119 variant abolishes binding to B6  and F5 antibody and reduces BIO 

antibody binding. The reduction in BIO antibody binding shown in the ELISA 

experiments indicates an additive effect on the antibody binding with the double variant 

resulting in a larger reduction in the steepness of the antibody binding curve than the 

individual variants. The ELISA data suggests that both residues 16 and 28 are involved 

in B 1 0  antibody binding and that by altering two residues that are involved in antibody 

binding it makes it more difficult for BIO to bind therefore resulting in a larger 

reduction in binding.

- 118 -



C h a p t e r  5: I m m u n i s a t i o n  s t u d i e s  1 -  d o  t he  M S P  1 1>, v a r i a t i o n s  a f f e c t  p r o t e c t i o n ?

Chapter 5: Immunisation studies 1 -  do the MSPIiq variations affect

protection?

5.1 Introduction

The amino acid variations in the MSP 119 variant proteins discussed in chapters 3 and 4 

showed an affect on binding to monoclonal antibodies in vitro. The three antibodies that 

were used in the binding studies in chapters 3 and 4 were produced by Spencer et al. 

(Spencer Valero et al., 1998). Spencer et al. (Spencer Valero et al., 1998) tested the 

ability of the monoclonal antibodies to suppress parasitaemia in mice during challenge 

infection with P. yoelii YM by passive immunisation with the monoclonal antibodies. 

These studies showed that B6  and F5 antibodies suppressed the challenge infection and 

that BIO antibody partially suppressed the challenge infection. These data could suggest 

that the MSP 119 variants proteins may produce different antibodies in vivo to the 

wildtype protein.

In this chapter, I will discuss the immunisation studies that were designed to look at the 

affect of the amino acid variations on the ability of MSP 119 to protect against challenge 

infection with the lethal P. yoelii YM parasite. Previous studies by Daly et al. (Daly & 

Long, 1993) showed that mice immunised with GST- MSP 119 fusion proteins produced 

high titres of anti-MSPl antibodies and the mice were protected from challenge 

infection with the lethal P. yoelii YM parasite. Ling et al. (Ling et al., 1994) confirmed 

that MSP 119 alone and GST-MSP119 was able to protect against challenge infection and 

that the conformation of the protein was important for protection. The immunisation 

studies discussed in this chapter are based on the experimental design of Ling et al. 

(Ling et al., 1994).

The following hypothesis will be tested in the immunisation studies: there is one area 

that is important for binding of antibodies that protect against parasite challenge. There 

could be a number of outcomes to the immunisation studies: no difference in protection; 

a small difference in protection or no protection with the MSP 119 variant proteins. If 

there is no difference in the protection between the wildtype and MSP119 variant
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proteins, this could suggest that the individual amino acid changes are too small to have 

a significant effect on the immune response to the protein and the antibodies produced. 

This could also mean that the hypothesis is incorrect and that there are multiple sites 

that are important in the binding of antibodies that protect against parasite challenge. If 

there is a small difference in protection, this could suggest that the antibody response 

that is important in protection against parasite challenge is targeted at the region where 

the amino acid variation is and that the antibodies produced cannot recognise the native 

protein and therefore give protection. It could suggest that the amino acid change was 

too small to completely block protection and that some antibodies with the ability to 

protect against parasite challenge that are still able to recognise the native protein have 

been produced. It could again suggest that there could be multiple sites that are 

important in producing the protective immune response and that the change has affected 

one of them but antibodies produced to the other sites can still lead to protection. If 

there is no protection with the MSP 119 variant proteins this could suggest that there is 

only one area that is important for the production of antibodies that protect against 

challenge infection and that the amino acid change to that area has altered the area 

enough to result in antibodies made to this area not recognising the native protein and 

not providing protection.

ELISA experiments will also be discussed in this chapter to compare antibody titres 

between the mice immunised with the wildtype and GST-MSP119 variant proteins 

because previous immunisation studies using M SPl^have suggested an important role 

of antibodies in the protection given by MSP 119. The immunisation studies with MSP 119 

by Ling et al. (Ling et al., 1994) showed the level of antibody produced against the 

parasite was highest in the mice that were protected from challenge infection (Ling et 

al., 1994). It could therefore be hypothesized that the level of antibody against wildtype 

MSP 119 may be lower for the mice immunised with the MSP 119 variant proteins if they 

reduce the level of protection in the immunisation studies.
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5.2 Immunisation studies with MSPlio variants

The immunisation studies were carried out as described in materials and methods 

section 2.3. Immunisation studies were carried out with the four single amino acid 

variants (Argl2-»Leu, Lysl6 —»Glu, Asnl7—>His, Glu28—»Lys) and one double amino 

acid GST-MSP119 variant (Lysl6—»Glu/Glu28—>Lys). Wildtype GST-MSPI19 was used 

as a positive control and purified GST was used as a negative control. Following 

immunisation with the GST-MSP119 variants, the mice were challenged with P. yoelii 

YM parasitized erythrocytes. The parasitaemia was followed daily on Giemsa stained 

blood films. The percentage parasitaemia was determined to compare between the 

variants. The graphs in figures 5.1 to 5.7 show the parasitaemia for each mouse in the 

groups. Figure 5.1 shows the parasitaemia for the mice immunised with wildtype GST- 

MSP11 9 .  This shows that five of the mice immunised with wildtype GST-MSP119 were 

able to clear the parasites. Four of the mice had very low parasitaemia and one had 

higher parasitaemia. One of the mice was unable to clear the parasites and was killed by 

a schedule one method on day 7. Figure 5.2 shows the parasitaemia for the mice 

immunised with GST as negative controls. This shows a rapid increase in parasitaemia 

up to day 6  and all the mice were killed by a schedule one method on day 7. Figure 5.3 

shows the parasitaemia for the mice immunised with Argl2-»Leu MSP 119 variant. This 

shows that four of the mice were able to clear the parasites and had very low 

parasitaemia. Two mice were unable to clear the parasites with one mouse starting with 

a low parasitaemia until day 10 and then a rapid increase. Figure 5.4 shows the 

parasitaemia for the mice immunised with Asnl7—»FIis MSP 119 variant. This shows that 

three of the mice were able to clear the parasites. The other three mice did not clear the 

parasites and were killed by a schedule one method on day 7 although the parasitaemia 

of two of the mice were low (13 % and 39.5 %). Figure 5.5 shows the parasitaemia for 

the mice immunised with Lys 16—»Glu MSP119 variant. This shows that five of the mice 

were able to clear the parasites, three of the mice had low parasitaemia and two had 

higher parasitaemia with peak parasitaemia of 64.5 % and 46 %. One mouse was killed 

by a schedule one method on day 8  but had low parasitaemia of 19 %. Figure 5.6 shows 

the parasitaemia for the mice immunised with Glu28-»Lys MSP 119 variant. This shows 

that all of the mice had a rapid increase in parasitaemia and none of the mice were able
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to clear the parasites. All of the mice were killed by a schedule one method, four on day 

8  and two on day 12. Figure 5.7 shows the parasitaemia for the mice immunised with 

the double Lysl6—>Glu/Glu28—>Lys MSP1 19 variant. This shows that three mice had a 

rapid increase in parasitaemia and two were killed by a schedule one method by day 7 

and the other on day 13. The other three mice had very high parasitaemia throughout the 

experiment with a peak at day 12. Figure 5.8 shows the average parasitaemia of the six 

mice in the groups. It shows that the overall patterns of parasitaemia for the wildtype, 

Argl2—>Leu, Lysl6 —>Glu and Asnl7—»His MSP119 variants were very similar with low 

parasitaemia. The overall patterns of parasitaemia for the Glu28—»Lys and 

Lys 16—»Glu/Glu28—»Lys MSP 119 variants were different from the wildtype with larger 

increases in parasitaemia and higher parasitaemia.

5.3 ELISA analysis of antibody titres following immunisation with MSPlio 

variants

The antibody titres following immunisation with the GST-MSP119 variants were 

compared to those of the wildtype GST-MSP119 immunisations to determine whether 

any differences in protection from parasite challenge could be explained by differences 

in the level of antibody response to the GST-MSP119 variants. The ELISA experiments 

were carried out as described in materials and methods (section 2.3.1). In the ELISA 

experiments his-tagged wildtype MSP 119 was used to analyse the antibody levels 

instead of GST-MSP11 9 .  This was to avoid problems associated with the production of 

antibodies to the GST portion of GST-MSP119 which could saturate the ELISA signal 

making it difficult to see small differences in antibody titre to the MSP 119 portion. 1 

pg/ml wildtype his-MSPl 19 was bound to the ELISA plate (the production of his- 

MSP119 is described in section 2.4). The proteins were probed with doubling dilutions 

of pooled serum samples from the six mice in the groups and 1 / 2 0 0 0  dilution anti­

mouse IgG HRP conjugate. The peroxidase was detected and absorbance was read at 

490 nm. The ELISA results are shown in figure 5.9. The ELISA results show that all the 

mice immunised with all of the GST- MSP119 variants had produced antibodies to 

MSP 11 9 .  The binding curve for the mice immunised with GST shows that the ELISA 

system used is specific for antibody binding to MSP 11 9 .  The ELISA results show that
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there is no significant difference between the antibody titres produced by the mice 

immunised with wildtype GST-MSP119 and the variant proteins. The results show a 

possible small reduction in the antibody titre for mice immunised with Glu28-»Lys and 

double Lysl6 —>Glu/Glu—>Lys MSP119 variant.
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Figure 5.1: Course of P. yoelii YM infection in mice immunised with wildtype 

MSP119.

Six BALB/c mice were immunised with 10 jug of wildtype MSP 119 in FCA followed by 

two injections with 40 pg of wildtype MSP 119 in FIA 21 and 42 days later. The mice 

were challenged 15 days after the final immunisation with 5  x 103 P. yoelii YM 

parasitized erythrocytes. The parasitaemia was followed daily from day 3 on Giemsa 

stained blood films. The percentage parasitaemia for the individual mice in the group is 

plotted on the graph. Asterisks indicate when a mouse died or was killed by a schedule 

one method.
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Figure 5.2: Course of P. yoelii YM infection in mice immunised with purified GST.

Six BALB/c mice were immunised with 10 pg of GST in FCA followed by two 

injections with 40 pg of GST in FLA 21 and 42 days later. The mice were challenged 15 

days after the final immunisation with 5 x 103 P. yoelii YM parasitized erythrocytes. 

The parasitaemia was followed daily from day 3 on Giemsa stained blood films. The 

percentage parasitaemia for the individual mice in the group is plotted on the graph. 

Asterisks indicate when a mouse died or was killed by a schedule one method.
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Figure 5.3: Course of P. yoelii YM infection in mice immunised with Arg 12—»Leu 

MSP119 variant.

Six BALB/c mice were immunised with 10 fig of Argl2-»Leu MSP 119 variant in FCA 

followed by two injections with 40 pig of Argl2—>Leu MSP 119 variant in FIA 21 and 42 

days later. The mice were challenged 15 days after the final immunisation with 5 x 103 

P. yoelii YM parasitized erythrocytes. The parasitaemia was followed daily from day 3 

on Giemsa stained blood films. The percentage parasitaemia for the individual mice in 

the group is plotted on the graph. Asterisks indicate when a mouse died or was killed by 

a schedule one method.
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Figure 5.4: Course of P. yoelii YM infection in mice immunised with Asnl7—>His 

MSPI19 variant.

Six BALB/c mice were immunised with 10 jig of Asnl7—>His MSP119 variant in FCA 

followed by two injections with 40 fig of Asnl 7-»His MSP 119 variant in FLA 21 and 42 

days later. The mice were challenged 15 days after the final immunisation with 5 x 103 

P. yoelii YM parasitized erythrocytes. The parasitaemia was followed daily from day 3 

on Giemsa stained blood films. The percentage parasitaemia for the individual mice in 

the group is plotted on the graph. Asterisks indicate when a mouse died or was killed by 

a schedule one method.
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Figure 5.5: Course of P. yoelii YM infection in mice immunised with Lysl6 -»Glu 

MSP119 variant.

Six BALB/c mice were immunised with 10 jig of Lysl6 -»Glu MSP 119 variant in FCA 

followed by two injections with 40 jxg of Lysl6 —»Glu MSP 119 variant in FIA 21 and 42 

days later. The mice were challenged 15 days after the final immunisation with 5 x 103 

P. yoelii YM parasitized erythrocytes. The parasitaemia was followed daily from day 3 

on Giemsa stained blood films. The percentage parasitaemia for the individual mice in 

the group is plotted on the graph. Asterisks indicate when a mouse died or was killed by 

a schedule one method.
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Figure 5.6: Course of P. yoelii YM infection in mice immunised with Glu28-»Lys 

MSP119 variant.

Six BALB/c mice were immunised with 10 pig of Glu28-»Lys MSP 119 variant in FCA 

followed by two injections with 40 pig of Glu28-»Lys MSP Invariant in FIA 21 and 42 

days later. The mice were challenged 15 days after the final immunisation with 5 x 103 

P. yoelii YM parasitized erythrocytes. The parasitaemia was followed daily from day 3 

on Giemsa stained blood films. The percentage parasitaemia for the individual mice in 

the group is plotted on the graph. Asterisks indicate when a mouse died or was killed by 

a schedule one method.
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Figure 5.7: Course of P. yoelii YM infection in mice immunised with double 

Lysl6-»Glu/Glu28—>Lys M SPI19 variant.

Six B ALB/c mice were immunised with 10 pig of double Lysl6—»Glu/Glu28—»Lys 

MSP 119 variant in FCA followed by two injections with 40 pig of double 

Lysl6->Glu/Glu28—>Lys MSP119 variant in FLA 21 and 42 days later. The mice were 

challenged 15 days after the final immunisation with 5 x 1 03 P. yoelii YM parasitized 

erythrocytes. The parasitaemia was followed daily from day 3 on Giemsa stained blood 

films. The percentage parasitaemia for the individual mice in the group is plotted on the 

graph. Asterisks indicate when a mouse died or was killed by a schedule one method.
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Figure 5.8: Course of P. yoelii YM infection in groups of mice immunised with 

wildtype and MSP119 variants.

Groups of six BALB/c mice were immunised with 10 pg of wildtype or MSP 119 variants 

or GST in FCA followed by two injections with 40 pg of protein in FIA 21 and 42 days 

later. The mice were challenged 15 days after the final immunisation with 5 x 1 0  P. 

yoelii YM parasitized erythrocytes. The parasitaemia was followed daily from day 3 on 

Giemsa stained blood films. The average percentage parasitaemia for the groups are 

plotted on the graph. The average parasitaemia for mice immunised with wildtype 

MSP 119 is shown in red, with GST is shown in pink, with Argl2—>Leu MSP 119 variant 

is shown in black, with Asnl7—»His MSPI19 variant is shown in purple, with 

Lysl6—»Glu MSPI19 variant is shown in cyan, with Glu28—»Lys MSP119 variant is 

shown in blue and with double Lysl6—»Glu/Glu28—»Lys MSP 119 variant is shown in 

orange. Asterisks indicate when a mouse died or was killed by a schedule one method.
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Figure 5.9: Antibody binding curves for pooled serum from groups of mice 

immunised with wildtype and M S P I 1 9 variants against his-tagged wildtype 

M SP119.

1 pg/ml of his-tagged wildtype MSP 119 was bound to the ELISA plate. This was probed 

with doubling dilutions of serum samples from the mice immunised with wildtype and 

MSP1 19 variants and 1/2000 dilution anti-mouse IgG-HRP. The peroxidase was 

detected and absorbance read at 490 nm. PBS was used as a negative control. Duplicate 

plates were used. The mean results for the variant proteins and GST less PBS control 

are shown on the graph. The serum samples for the six mice in the groups were pooled 

together. Serum from mice immunised with GST is shown in pink, with wildtype 

M SPI19 is shown in red, with Lysl6 —»Glu M SPI19 is shown in cyan , Asnl7—»His 

M SPI19 is shown in purple, Argl2—»Leu M SPl^is shown in black, Glu28—»Lys 

MSP119 is shown in blue and Lysl6—»Glu/Glu28—»Lys is shown in orange.
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5.4 Discussion

The immunisation studies presented in this chapter, have suggested that there are 

differences between the protection observed following immunisation with the wildtype 

protein and with the variants. The overall results for the mice immunised with GST has 

shown that the GST-portion of the GST-MSP119 is not protecting the mice from 

challenge infection. This confirms that the protection seen in the experiment for the 

other groups is a result of the MSP119 portion. The overall results have shown that the 

immunisation with wildtype protein protects against parasite challenge because the 

parasitaemia is low and the mice clear the parasite. The protection and low parasitaemia 

seen in these immunisation studies for the wildtype GST-MSP119 is in agreement with 

the protection observed by Daly et al. (Daly & Long, 1993) and Ling et al. (Ling et al., 

1994). Immunisation with Argl2—»Leu, Lysl6 —>Glu and Asnl7—»His MSP 119 variants 

protects against parasite challenge and mice clear the parasite in a similar way to 

immunisation with the wildtype protein. Immunisation with Glu28—»Lys and double 

Lysl6—>Glu/Glu28-»Lys has a significant affect on protection compared to the 

protection seen for the wildtype protein. Immunisation with the Glu28—»Lys MSP 119 

variant does not protect against parasite challenge this suggests that residue 28 is in the 

important area of the protein for the production of antibodies that protect against 

parasite challenge. This could mean that when the mice are immunised with 

Glu28—>Lys MSP 119 variant they either do not produce antibodies to the area of the 

protein containing residue 28 or they produce antibodies to this area but the difference 

to residue 28 means that the antibodies are not able to bind to the wildtype MSP 11 9 .

This would mean that on challenge infection the antibodies produced would be unable 

to provide a protective immune response. The results for the Glu28—»Lys MSP 119 

variant could agree with the hypothesis for the immunisation studies that there is one 

area that is important for the binding of antibodies that protect against challenge 

infection and by changing residue 28 in this area the response produced no longer 

protects against parasite challenge.

The parasitaemia counts for the individual mice showed that there was some variation 

between the individual mice in the group. This may have been because of variations in 

the experiment that could not be controlled. The mice used in the immunisation study
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were cousins because there were too many mice required for just brothers and sisters to 

be used. This could have introduced some genetic variation between the mice which 

could have resulted in differences in immunity. Small differences in the amount of 

antigen the mice were immunised with could have occurred and this could have 

influenced the level of immune response. Differences in the uptake of the antigen 

between the individual mice following immunisation could have influenced the immune 

response produced. The behaviour of the individual mice may have influenced the 

progression of malaria, for example if a mouse was not eating or drinking as much as 

the other mice it could become unwell more quickly and be less able to fight the 

disease. The method of measuring the parasitaemia could also have introduced 

inaccuracies in the experiment because it relied on one person visually counting slides. 

If the mice were anaemic this could have lead to inaccuracies in the counts because the 

blood smears from the anaemic mice did not give an even coverage of blood cells and 

cells appeared in clumps. This could have lead to the blood cells that were counted to 

not be representative of the overall parasitaemia. The parasites could have sequestered 

in the spleen, brain or other organs and this would not be taken into account by counting 

the parasites in the peripheral blood and could result in lower counts and inaccuracies if 

variant proteins had altered the level of sequestration. Additional errors could have been 

introduced in the decisions regarding when to kill the mice by a schedule one method as 

some mice became unwell at very low parasitaemia levels while other mice were well at 

high parasitaemia. For example, the results for the individual mice immunised with 

Asnl7-»His MSP 119 variant shows that 3 mice cleared the parasites and the other 3 

mice were killed by schedule one method on day 7 with relatively low parasitaemia 

levels.

The ELISA results show that there is no significant difference between the antibody 

titres to wildtype MSP119 produced by the wildtype and MSP 119 variant proteins. There 

is a small possible reduction for the Glu28—>Lys MSP 119 and the double 

Lysl6—>Glu/Glu28—>Lys MSPI19 variant proteins. This suggests that the overall 

antibody titre may not be that important for protection against challenge infection. This 

disagrees with the immunisation studies of Ling et al. (Ling et al., 1994) where the 

antibody response to the parasite was highest in the mice that were protected against 

parasite challenge. The ELISA data presented in this chapter suggested that the overall
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antibody titre may not be that important in determining if the protein protects against 

challenge infection but could suggest that instead the fine specificity of the antibody 

produced may be the most important factor in determining protection.
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Chapter 6: Structural analysis of MSPlio variants

6.1 Introduction

In chapters 3-5 the affects of the amino acid variations to MSP 119 on the ability of it to 

bind to antibodies has been investigated. The data has suggested that the amino acid 

variations at residues 1 2 , 16, 17 and 28 are important for antibody binding in vitro and 

for residue 28 in vivo. Any changes to the amino acid composition and sequence of a 

protein, even changing just a single amino acid can potentially affect the wider 3D 

structure of the protein. It is therefore important to confirm whether the individual 

amino acid changes made in this project have affected the overall 3D structure of the 

protein.

In this chapter, I am going to describe the approach taken to identify structural 

differences between the wildtype MSP119 and the MSP 119 variants. There was no 

structure available for P. yoelii MSP 119 but there were structures available for MSP 119 

from other species. The first approach that was taken to analyse the structural 

differences was to create a homology model of P. yoelii MSP 119 using the structures 

that were available in the Protein Databank for MSP 119 structures from other species. 

The second approach that was taken to analyse structural differences in more detail was 

to carry out 15N-HSQC NMR analysis. In order to carry out the NMR analysis his- 

tagged proteins were created using P. pastoris to obtain milligram quantities of pure 

protein.

6.2 Molecular modelling of P. voelii MSPlig

The homology model of P. yoelii MSP 119 was created using the Swiss Model Homology 

Modelling Server (Guex & Peitsch, 1997, Schwede et al., 2003). The Swiss Model 

Homology Modelling Server uses an automated approach to create a model of a protein 

based on structures of homologous proteins that are available in the protein databank.
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The modelling procedure consists of four steps (Schwede et al., 2003) as described in 

table 6.1.

Table 6.1: The steps carried out by the Swiss Model Homology Modelling Server to 

create a homology model.

Step Procedure

1 Selection of template sequences from 

PDB.

2 Alignment of up to 5 template sequences 

against the target sequence.

3 Building the model based on average 

backbone atom positions of the templates 

and then building the side chains.

4 Evaluation of the model and energy 

minimisation.

The homology model is shown in the top panel of figure 6.1. The positions of the 

amino acid variations were identified using Deepview/Swiss Pdb viewer and 

RasTop. The model suggested residues 12, 16, 17 and 28 were found on the 

surface of the protein. In order to predict the effects of changing the amino acids 

on the protein, the amino acids were changed in silico using Deepview/Swiss Pdb 

viewer. The in silico variations are shown in figure 6.1. This figures shows that 

there is a small difference in the size of the residues in the Argl2—»Leu and 

Glu28-»Lys variations. The Lysl6—»Glu variation gives a residue that sticks out 

much less in the optimum rotamer conformation and the Asnl7—»His variation 

gives a larger residue that sticks out more. For the Glu28—»Lys variation there 

appears to be a difference in the angle of the side chain when looking at the 270° 

rotation. When Glutamic acid 28 is changed to lysine in the model, the lysine 28 

residue appears to be angled downwards away from residue 12 whereas in the 

wildtype model it appears to be below residue 12.
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6.3 Expression and purification of his-MSPlio variants

In order to carry out NMR analysis at least 5 mg of purified protein was required for 

each variant. The expression of GST-MSP119 in E. coli (described in chapter 3) resulted 

in microgram quantities of protein. The GST-tag on the protein is around 25 kDa in size 

and contains many different amino acid residues. The GST-tagged MSP 119 variant 

proteins were therefore unsuitable for use in NMR analysis because the large tag would 

create lots of NMR signals that would be hard to distinguish from those belonging to the 

protein. The overall size of the GST-tagged protein would also cause problems in 

obtaining good NMR spectra.

In order to make milligram quantities of protein, the MSP119 variants were expressed in 

P. pastoris as his-tagged proteins. The his-tag was added to the gene construct to allow 

for easy purification of the proteins using nickel resin. The his-tag would not interfere 

with the NMR analysis as it only contains 6  histidine residues that could be identified in 

the NMR spectra as they would form peaks in the same area as histidines that were not 

in folded proteins.

The P. pastoris system was chosen because it has been shown in the literature to give 

high yields of proteins (Romanos et a l , 1992, Sreekrishna et a l, 1997) including human 

EGF and murine EGF (Clare et a l, 1991). The proteins are expressed from the alcohol 

oxidase gene (AOX1) which catalyses the first step in the metabolism of methanol. 

When methanol is added to the cells, the AOX1 promoter induces protein production to 

give high levels of expression of recombinant protein. The AOX1 gene has a very 

strong promoter which means that when the cells are grown in methanol up to 30 % of 

total soluble proteins are AOX1 protein products. The pPIC9K plasmid was chosen for 

expression in Pichia pastoris because this vector gives expression of secreted proteins 

in the medium via the a-factor signal sequence. P. pastoris secretes very low levels of 

native proteins into the culture medium which means that by expressing the MSP 119 

proteins as secreted proteins it will help make the purification of the protein easier by 

limiting the amount of protein contaminants present before purification.
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The gene for MSP119 is very AT-rich. This makes it difficult to express in P. pastoris. 

Initial expression studies were carried out with the native wildtype MSP 119 and MSP 119 

variant genes. This gave little or no protein expression (data not shown). In order to 

obtain high yields of protein in P. pastoris the genes for the MSP119 proteins were 

recodonised (as described in section 2.4.2) to increase the GC content as this has been 

shown by Woo et al. to increase protein yields (Outchkourov et al., 2002, Woo et al., 

2002).

The recodonised MSP 119 variants genes were cloned into pPIC9K (as described in 

section 2.4). Small scale (50 ml) expression tests were carried out with the MSP 119 

variants over 96 hours to determine the expression time that gives the best yield of 

protein with the lowest amount of protein breakdown and contaminants. The results for 

the small scale expression test are shown in figure 6.2. The MSP 119 variants proteins 

appear as clear bands between 15 and 20 kDa. This shows that all of the MSP119 

variants have been expressed at all the time points. It suggests that the best time for 

protein expression is 72 hours as the level of protein increases up to 72 hours and there 

is no significant increase after 72 hours at the 96 hour time point.

The MSP 119 variant proteins from the small scale expression test were purified using 

Ni-NTA agarose. This is shown in figure 6.3 for the wildtype protein (panel A) and 

Glu28—>Lys MSP1 19 variant (panel B). This shows that the protein has been purified 

successfully using the Ni-NTA (shown in lane 6). It shows a low molecular weight 

contaminant present after the purification. This contaminant was removed during the 

dialysis step. The protein would be pure enough for NMR analysis.

For NMR analysis to compare the wildtype and MSP119 variant proteins, 15N labelled 

protein was required. 15N labelled protein was produced by substituting the ammonium 

sulphate in the culture medium with 15N labelled ammonium sulphate. The ammonium 

sulphate in the culture medium was providing the sole nitrogen source for the 

production of the protein, by substituting it with 15N labelled ammonium sulphate the 

protein produced would incorporate 15N instead of 14N into the proteins. Large scale 

expression of the MSP 119 variants was carried out to produce the 5 mg of pure protein 

required for NMR analysis. The large scale expression and purification of wildtype
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(panel A) and Glu28->Lys MSP119 variant (panel B) is shown in figure 6.4. This 

confirms that the 15N labelled proteins were expressed and purified. The other MSP119 

variants were expressed and purified in the same way as wildtype and Glu28—»Lys 

MSP 119 variant (data not shown).

6.4 “ N-HSOC NMR analysis of his-MSPl.o variants

MSP 119 is around 12 kDa. One dimensional 'H-NMR spectra would therefore have a 

very large number of overlapping peaks for all of the protons in the protein. Figure 6.5 

shows the ID 1 H-NMR spectra for the wildtype (panel A) and Glu28—»Lys variant 

(panel B). This shows a very large number of overlapping peaks for both structures and 

shows that the overall shape of the spectra is the same for both proteins. This can only 

give limited information about the proteins and does not allow the individual amino 

acids that have moved to be identified. Labelling the proteins with 15N can overcome 

this problem because it is possible to take advantage of the larger chemical shift 

dispersion than (Norwood et al., 1989) and run 2D and 3D NMR experiments. The 

15N labelled proteins were used in 2D 15N-HSQC spectroscopy experiments. HSQC 

stands for Heteronuclear Single Quantum Correlation spectroscopy. In the 15N-HSQC 

spectra, there is a peak for every bonded directly to 15N. This means that a peak will 

be seen for the backbone NH of every amino acid in the protein apart from proline. The 

side chain NH for arginine, asparagine and glutamine will also be seen. The position of 

the peak will depend upon the chemical environment of the amino acid residue. This 

will depend upon the type of amino acid residue, the conformation of the protein 

backbone and the nearby amino acid residues.

The position of the peaks can identify if a protein is folded. If the amino acids were in a 

random coil conformation, each type of amino acid would be chemically equivalent. 

This would mean that each type of residue would give a peak in a particular position on 

the spectra. If the amino acids are in a folded protein, the individual amino acids are 

chemically non-equivalent as their chemical shifts will depend on the conformation of 

the protein backbone and the nearby amino acid residues. The overall shape of the 

spectrum will therefore confirm if the MSP 119 variants are still folded. If the proteins 

are folded the peaks will be spread out across the spectrum. If the protein is unfolded
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the chemical shifts will be equivalent for each type of amino acid and only a few signals 

will be seen instead of lots of spread out signals.

The positions of the individual ^N-'H peaks can be compared for the wildtype and the 

MSP 119 variants. If a peak has moved, this will indicate that this amino acid is in a 

different chemical environment. This will suggest that this area of the molecule has 

changed. The main limitation of the 15N-HSQC experiment is that the distance moved in 

the 15N or *H dimension cannot be directly correlated to a movement in angstroms. It 

can only suggest the amount of chemical perturbation of that residue. A schematic 

representation of a 15N-HSQC spectrum is shown in figure 6 . 6  (panel A) with the 

assigned wildtype MSP 119 15N-HSQC spectra (panel B) (assignment of the wildtype 

MSP 119 spectra will be discussed in chapter 9).

15N-HSQC spectra were acquired at 25 °C for each of the MSP 119 variants as described 

in section 2.5.2 of materials and methods. The spectra were overlayed on top of the 

wildtype MSP 119 spectra using SPARKY software (Goddard & Kneller). The spectra 

were compared to identify NH peaks that had moved. For the Argl2—>Leu, Lysl6 —>Glu 

and Asnl7—>His variants, the spectra were assigned based on the wildtype spectrum.

For the peaks that had moved, it was assumed that the peak would correspond to the 

assignment of the closest wildtype peak. This approach was used because very few 

residues had moved which meant there were few ambiguities as to where the peaks had 

moved to. For the Glu28-»Lys variant, the spectrum was assigned independently of the 

wildtype spectrum and 3D 13C and 15N NMR experiments (as discussed in chapter 9). 

The double Lysl6—»Glu/Glu28—»Lys variant spectrum was assigned based on the 

wildtype and the Glu28—>Lys variant spectra. The chemical shift differences in the !H 

and 15N dimension were combined using the formula:

Absolute ((variant 15N chemical shift -  wildtype 15N chemical shift) -r 5) + Absolute 

(variant *H chemical shift -  wildtype lH chemical shift)) -s- 2

The combined chemical shift differences were plotted on bar charts. Figure 6.7 shows 

the spectrum for Argl2—»Leu variant in black overlayed on top of the wildtype 

spectrum shown in red (top panel). This shows that overall, the spectra were the same 

and that the very few NH peaks had moved. The peaks that had moved in the 

Argl2-»Leu variant spectrum can be seen in the histogram (bottom panel). This
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indicates that there was very little movement in this spectrum compared to the wildtype 

and indicates that the largest movement seen was for residue 13 NH and there were no 

large clusters of movement. Figure 6.8 shows the spectrum for Lysl6—>Glu variant in 

cyan overlayed on top of the wildtype spectrum shown in red (top panel). This shows 

that overall the chemical shifts of most of the residues are unchanged between the two 

spectra. The peaks that had moved in the Lysl6—>Glu variant spectrum can be seen in 

the histogram (bottom panel). This indicates that there was very little movement in this 

spectrum compared to the wildtype and indicates that the largest movement seen was 

for residue 16 NH itself and there were no large clusters of movement. Figure 6.9 shows 

the spectrum for Asnl7—»His variant in purple overlayed on top of the wildtype 

spectrum shown in red (top panel). Similarly, this shows that overall the spectra were 

the same and that very few NH peaks have moved as seen in the histogram (bottom 

panel). The largest movement seen is for residue 17 NH itself and there are no large 

clusters of movement. Figure 6.10 shows the spectrum for Glu28—»Lys variant in blue 

overlayed on top of the wildtype spectrum shown in red (top panel). It is clear that the 

two spectra are quite different. In contrast to Argl2-»Leu, Lysl6-»Glu and 

Asnl7—>His there were a large number of NH peaks that had moved in both the 15N and 

*H dimensions. The peaks that had moved in the Glu28—>Lys variant spectrum can be 

seen in the histogram (bottom panel). This indicates that there are a number of clusters 

of movement including between residues 5 and 14, 19 and 22, 27 and 31 and at the end 

of the protein around residue 95. Figure 6.11 shows the spectrum for the double 

Lysl6—»Glu/Glu28-»Lys variant in gold overlayed on top of the wildtype spectrum 

shown in red (top panel). This shows a number of NH peaks had moved in both the 15N 

and *H dimension. The peaks that had moved in the double Lysl6—»Glu/Glu28—»Lys 

variant spectrum can be seen in the histogram (bottom panel). This indicates that there 

are a number of clusters of movement including between residues 5 and 14, 19 and 22, 

27 and 31 and at the end of the protein around residue 95. Figure 6.12 shows the 

spectrum of the double Lys 16—»Glu/Glu28—»Lys variant (shown in gold) overlayed on 

top of the Glu28—>Lys variant spectrum (shown in blue). This indicates that these two 

spectra are very similar suggesting that the majority of the movement seen for the 

double Lysl6—>Glu/Glu28—»Lys variant can be seen with just the Glu28—>Lys 

variation. Figure 6.13 shows a histogram comparing the combined chemical shift 

difference for Lysl6—»Glu variant (shown in cyan), Glu28—»Lys variant (shown in
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blue) and double Lysl6->Glu/Glu28—»Lys variant shown in gold. This indicates that 

the majority of the chemical shift differences seen in the double 

Lysl6—»Glu/Glu28-»Lys variant are from the addition of the chemical shift differences 

for the individual residue 16 and 28 variations. It also shows that there are no additional 

differences in the double Lysl6—»Glu/Glu28—»Lys variant that do not appear in the 

individual variants.

Figure 6.14 shows the residues corresponding to the NH peaks movements (of 0.05 ppm 

or more) in the spectra highlighted on the 3D structure of wildtype P. yoelii MSP 119 

(the production of the 3D structure of wildtype P .yoelii MSP 119 will be discussed in 

chapter 9). This shows that the NH peaks that have moved in the Argl2—»Leu variant 

spectrum correspond to residues that are in direct contact with residue 12. For the 

Lysl6 —>Glu variant there are no NH peaks apart from residue 16 that have moved more 

than 0.05 ppm. The NH peaks that have moved in the Asnl7—>His variant spectrum are 

located in the same half of the first EGF domain as residue 17 but are not all in direct 

contact with residue 17. The NH peaks that have moved in the Glu28—>Lys variant 

spectrum correspond to residues that are covering a large part of the first EGF domain 

and part of the second EGF domain and include residues that are not in contact with 

residue 28. The NH peaks that have moved in the double Lysl6—»Glu/Glu28—»Lys 

variant spectrum correspond to residues that are covering a large part of the first EGF 

domain and part of the second EGF domain in the same way as the Glu28—»Lys variant. 

The NH peaks that have moved in the double Lys 16—>Glu/Glu28—»Lys variant 

spectrum also correspond to residues close to residue 16.
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Figure 6.1: In silico variation of residues in P. yoelii M SPI19 model.

The amino acid residues that were altered experimentally were altered in silico on the P. 

yoelii MSPligmodel using Deepview/Swiss Pdb viewer. The wildtype P. yoelii MSPI19 

model is shown in the top panel and the models with the amino acids altered are shown 

in the lower panels. Argl2—»Leu is shown in green, Lysl6 —»Glu is shown in pink, 

Asnl7—»His is shown in yellow and Glu28->Lys is shown in blue. The C-terminal 

residue is shown in black and the N-terminal residue is shown in light blue.
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Figure 6.2: NuPAGE gel analysis of the expression time course for his-M SPli9

variants in Pichia pastoris.

50 ml cultures of GS115 cells containing multiple copies of the wildtype and variant 

MSP1 19 genes were induced with methanol to express the proteins over 96 hours. 1 ml 

samples were removed every 24 hours. The supernatant was concentrated 10 times and 

run on pre-cast NuPAGE 12 % Bis-Tris polyacrylamide gels in MES buffer under 

reducing conditions and stained with Coomassie blue. The NuPAGE gels for the 24, 48, 

72 and 96 hour time points are shown. Lane 1 -  molecular mass markers, lane 2 -  

GS115 control cells, lane 3 -  GS115 cells expressing wildtype MSP 119, lane 4 -  GS115 

cells expressing Argl2—>Leu M SPI19 variant, lane 5 -  GS115 cells expressing 

Lysl6 —»Glu MSP119 variant, lane 6  -  GS115 cells expressing Asnl7—»His MSP119 

variant, lane 7 -  GS115 cells expressing Glu28—»Lys MSP 119 variant, lane 8  -  GS115 

cells expressing double Lysl6->Glu/Glu28->Lys MSP 119 variant. The bands between 

15 and 20 kDa are the his-MSPl 19 variant proteins.
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Figure 6.3: NuPAGE gel analysis of the purification of 50 ml cultures of wildtype and

Glu28—»Lys MSP1 19 variant his-tagged proteins expressed in Pichia pastoris.

The wildtype and Glu28—»Lys MSP119 variant were expressed in 50 ml yeast cultures 

by methanol induction (1 %) for 96 hours. The protein was purified using a Ni-NTA 

agarose column washing with 10 mM imidazole, followed by 20 mM imidazole and 

eluting with 250 mM imidazole. The protein samples were run on pre-cast NuPAGE 12 

% Bis-Tris polyacrylamide gels in MES buffer under reducing conditions and stained 

with Coomassie blue.

A: The NuPAGE gel for wildtype MSP119 purification. Lane 1 -  molecular weight 

markers, lane 2 -  culture supernatant before purification, lane 3 -  flow through from Ni- 

NTA agarose column, lanes 4, 5 -  column washes, lane 6 -  elution, lane 7 -  dialysed 

elution. The wildtype MSPI19 protein runs around 15 kDa.

B: The NuPAGE gel for Glu28—»Lys MSP119 variant purification. Lane 1 -  molecular 

weight markers, lane 2 -  culture supernatant before purification, lane 3 -  flow through 

from Ni-NTA agarose column, lanes 4, 5 -  column washes, lane 6 -  elution, lane 7 -  

dialysed elution. The Glu28—>Lys MSP119 variant protein runs around 15 kDa.
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Figure 6.4: NuPAGE gel analysis of the purification of 15N labelled wildtype and Glu28—»Lys 

MSPI19 variant his-tagged proteins for NMR analysis.

The wildtype and Glu28—>Lys MSP119 variant were expressed in 4 x 500 ml yeast 

cultures by methanol induction (1 %) for 72 hours. The protein was purified using a 

batch method with Ni-NTA agarose washing with 10 mM imidazole, followed by 20 

mM imidazole and eluting with 250 mM imidazole. The protein samples were run on 

pre-cast NuPAGE 12 % Bis-Tris polyacrylamide gels in MES buffer under reducing 

conditions and stained with Coomassie blue.

A: The NuPAGE gel for wildtype MSP 1 ^purification. Lane 1 -  molecular weight 

markers, lane 2 -  culture supernatant before purification, lane 3 -  flow through from Ni- 

NTA agarose column, lanes 4, 5 -  column washes, lane 6  -  elution, lane 7 -  5 pi 

dialysed elution, lane 8  -10 pi dialysed elution, lane 9 -1 5  pi dialysed elution. The 

wildtype MSP 119 protein runs around 15 kDa.

B: The NuPAGE gel for Glu28—»Lys MSP Invariant purification. Lane 1 -  molecular 

weight markers, lane 2 -  culture supernatant before purification, lane 3 -  flow through 

from Ni-NTA agarose column, lanes 4, 5 -  column washes, lane 6  -  elution, lane 7 - 5  

pi dialysed elution, lane 8  -10 pi dialysed elution, lane 9 -  15 pi dialysed elution. The 

Glu28->Lys MSP 119 variant protein runs around 15 kDa.
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Figure 6.5: ID NMR Spectra for wildtype M SPI19 and Glu28-»Lys M SPI19 proteins.

A: ID *H NMR Spectra for wildtype MSP11 9 .  The labels indicate the approximate 

chemical shift ranges for protons in proteins (Edwards & Reid, 2000).

B: ID ]H NMR Spectra for Glu28—»Lys MSP 119 variant protein.

The spectra were acquired at 600 MHz at 25 °C in 25 mM potassium phosphate buffer, 

50 mM KC1, pH 6.5.
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Figure 6 .6 : 1 5N-HSQC Spectrum of  wildtype M S P I 1 9 .

A: Schematic representation of a 15N-HSQC Spectrum.

B: 15N-HSQC Spectrum of wildtype MSP 119 with NH assignments. The spectrum was 

assigned using the data from HNCACB, CBCACONH and 15N -NOESY-HSQC NMR 

spectra.
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Figure 6.7: Comparison of Argl2-»Leu M SPI19 variant and wildtype M SPI19

15N-HSQC N M R  spectra.

Top: The 15N-HSQC spectrum of Argl2—>Leu MSP 119 variant is shown in black 

overlayed on top of the wildtype MSP 119 spectrum (shown in red) using SPARKY 

software. The spectra were acquired at 600 MHz at 25 °C in 25 mM potassium 

phosphate buffer, 50 mM KC1, pH 6.5.

Bottom: Histogram showing the combined 15N and !H chemical shift differences for the 

Argl2—»Leu MSP 119 variant 15N-HSQC spectrum compared to the wildtype spectrum. 

The following equation was used to combine the chemical shifts:

Absolute ((variant 15N chemical shift -  wildtype 15N chemical shift) 4  5) + Absolute 

(variant *H chemical shift -  wildtype !H chemical shift)) 4  2
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Figure 6 .8 : Comparison of L ysl6 —»Glu M S P I 19 variant and wildtype M S P I 19

l5 N-HSQC NMR spectra.

Top: The 15N-HSQC spectrum of Lysl6-M31u MSP119 variant is shown in cyan 

overlayed on top of the wildtype MSP 119 spectrum (shown in red) using SPARKY 

software. The spectra were acquired at 600 MHz at 25 °C in 25 mM potassium 

phosphate buffer, 50 mM KC1, pH 6.5.

Bottom: Histogram showing the combined 15N and *H chemical shift differences for the 

Lysl6 —»Glu MSP 119 variant 15N-HSQC spectrum compared to the wildtype spectrum. 

The following equation was used to combine the chemical shifts:

Absolute ((variant 15N chemical shift — wildtype 15N chemical shift) 4 - 5) + Absolute 

(variant *H chemical shift -  wildtype *H chemical shift)) 4 - 2
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Figure 6.9: Comparison of A snl7—»His M SPI19 variant and wildtype M SPI19

i5N-HSQC NMR spectra.

Top: The 15N-HSQC spectrum of Asnl7—vHis MSP 119 variant is shown in purple 

overlayed on top of the wildtype MSP 119 spectrum (shown in red) using SPARKY 

software. The spectra were acquired at 600 MHz at 25 °C in 25 mM potassium 

phosphate buffer, 50 mM KC1, pH 6.5.

Bottom: Histogram showing the combined 15N and !H chemical shift differences for the 

Asnl7-»His MSP 119 variant 15N-HSQC spectrum compared to the wildtype spectrum. 

The following equation was used to combine the chemical shifts:

Absolute ((variant 15N chemical shift -  wildtype 15N chemical shift) t 5 )  + Absolute 

(variant *H chemical shift -  wildtype !H chemical shift)) + 2
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Figure 6.10: Comparison of Glu28->Lys M S P I 19 variant and wildtype M S P I 19 ,sN-HSQC

NMR spectra.

Top: The 15N-HSQC spectrum of Glu28—»Lys MSP 119 variant is shown in blue 

overlayed on top of the wildtype MSP119 spectrum (shown in red) using SPARKY 

software. The spectra were acquired at 600 MHz at 25 °C in 25 mM potassium 

phosphate buffer, 50 mM KC1, pH 6.5.

Bottom: Histogram showing the combined 15N and !H chemical shift differences for the 

Glu28—>Lys MSP 119 variant 15N-HSQC spectrum compared to the wildtype spectrum.

The following equation was used to combine the chemical shifts:

Absolute ((variant 15N chemical shift -  wildtype 15N chemical shift) -r 5) + Absolute 

(variant chemical shift -  wildtype *H chemical shift)) 4 - 2
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Figure 6.11: Comparison of double L ysl6—»Glu/Glu28—»Lys M SPI19 variant and

wildtype MSP1,, lsN-HSQC NMR spectra.

Top: The l5N-HSQC spectrum of double Lysl6—»Glu/Glu28—>Lys MSP119 variant is 

shown in gold overlayed on top of the wildtype MSP 119 spectrum (shown in red) using 

SPARKY software. The spectra were acquired at 600 MHz at 25 °C in 25 mM 

potassium phosphate buffer, 50 mM KC1, pH 6.5.

Bottom: Histogram showing the combined 15N and !H chemical shift differences for the 

double Lysl6^Glu/Glu28-»Lys MSP119 variant 15N-HSQC spectrum compared to the 

wildtype spectrum. The following equation was used to combine the chemical shifts: 

Absolute ((variant 15N chemical shift -  wildtype 15N chemical shift) -r 5) + Absolute 

(variant ]H chemical shift -  wildtype *H chemical shift)) -r 2
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Figure 6.12: Comparison of double Lysl6—»Glu/Glu28—»Lys and Glu28-»Lys 

MSP1,9 variants lsN-HSQC NMR spectra.

The 15N-HSQC spectrum of double Lys 16—>Glu/Glu28—>Lys MSP119 variant is shown 

in gold overlayed on top of the Glu28-»Lys MSP 119 variant spectrum (shown in blue) 

using SPARKY software. The spectra were acquired at 600 MHz at 25 °C in 25 mM 

potassium phosphate buffer, 50 mM KC1, pH 6.5.
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Figure 6.13: Comparison of the combined 15N and *11 chemical shift differences of 

double Lysl6—»Glu/Glu28-»Lys, Glu28—>Lys and Lysl6->Glu MSPI19 variants 

compared to wildtype MSPI19.

Histogram showing the combined 15N and 'H chemical shift differences for the double 

Lysl6—»Glu/Glu28—»Lys, Glu28—»Lys and Lysl6 —>Glu MSP 119 variants 15N-HSQC 

spectra compared to the wildtype spectrum. The double Lysl6—»Glu/Glu28—»Lys 

MSP1 19 variant is shown in gold. The Glu28—»Lys MSP 119 variant is shown in blue and 

the Lysl6 —>Glu MSP 119 variant is shown in cyan.

The following equation was used to combine the chemical shifts:

Absolute ((variant 15N chemical shift -  wildtype 15N chemical shift) 4- 5) + Absolute 

(variant !H chemical shift -  wildtype chemical shift)) 4- 2
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Figure 6.14: Mapping the NH peaks that have moved in the 15N-HSQC spectra 

onto the 3D structure of P. yoelii MSPI19.

The residues corresponding to the NH peaks that have moved more than 0.05 ppm for 

the combined chemical shift difference in the 15N-HSQC spectra for the variants 

compared to the wildtype MSP 119 have been mapped onto the best energy NMR 

structure for the wildtype P. yoelii MSP11 9 . The calculation of this structure is 

discussed in chapter 9. The residues that have been changed in the variants are shown in 

red. The residues corresponding to the NH peaks that have moved more than 0.05 ppm 

are coloured as follows: Argl2—»Leu in black; Lysl6 —>Glu in cyan; Asnl7—»His in 

purple; Glu28-»Lys in blue; the double Lysl6—>Glu/Glu28—»Lys in gold. The first 

EGF domain is shown in white and the second EGF domain is shown in grey. The C- 

terminal residue is shown in bright pink and the N-terminal residue is shown in light 

pink. For the Lysl6 —»Glu variant there are no amino acids coloured cyan as the 

chemical shifts changes are all less than 0.05 ppm.
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6.5 Discussion

The in silico variations of the residues on the P. yoelii model showed only minor visible 

structural changes for the Lysl6 —»Glu, Asnl7—»His and Glu28—»Lys variants. For 

Argl2-»Leu variants there were no visible structural changes to the protein. This was a 

model structure and may not represent what would be seen in the actual protein.

The data has shown that P. pastoris is a good system to create milligram quantities of 

15N labelled protein and that by producing the protein in a secreted form the protein 

could be purified for NMR analysis.

The spread of NH peaks in the wildtype MSP 119 spectra has confirmed that the protein 

is folded because the glycine peaks at the top of the spectra are clearly spread out which 

would indicate they were in a folded protein. If all the glycines, for example, had 

appeared as a single peak or very close together this could have suggested the protein 

was not folded. The overall dispersion of the peaks in the spectra for all the MSP 119 

variants was very similar to the wildtype protein. This suggests that the amino acid 

variations to the proteins had not completely denatured the proteins or affected the 

overall folding of the proteins. The spectra for the Argl2—>Leu variant and Lysl6 —»Glu 

variant showed that only the NH peaks corresponding to amino acids in direct contact 

with residues 12 or 16 had moved. This indicates that any changes in the protein 

structure as a result of the residues 1 2  or 16 variations were localised around the 

individual residues. This would suggest that there were no significant structural 

differences between these proteins and the wildtype which means that I can be confident 

that the changes in antibody binding seen in chapter 3 are a direct result of the changes 

to the individual residues. For the residue 12 and 16 variations this agrees with the 

prediction of the affect of changing the amino acids from the in silico variations on the 

P. yoelii model. The spectra for the Asnl7—»His variant showed that NH peaks 

corresponding to residues in close proximity to residue 17 had moved and not just those 

residues in direct contact with residue 17. This may be because the amino acid was 

changed to a histidine. Histidine is an aromatic amino acid and the ring produces a ring 

current effect. This means that the protons in the plane of the ring can be shifted to a 

lower field and the protons that are above and below the plane of the ring can be shifted
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to a higher field and the shift can be large. This can mean that the affect of inserting an 

aromatic amino acid into the protein can have a large affect on the chemical shifts of the 

NMR peaks but not necessarily such a large affect on the actual protein structure. There 

is movement to residue 29 which is further away from residue 17. The movement to this 

residue may be due to an error in the assignment of this peak in the Asnl7—»His variant 

spectrum as this is an area where there is overlap of NH peaks in the wildtype spectra 

which could result in difficulties in confirming where the NH peak in Asnl7—>His has 

moved to. In order to confirm if residue 29 has moved, 3D NMR studies would need to 

be carried out to confirm where the peak for residue 29 is in the Asnl7—»His variant. 

The NMR data for Asnl7—»His suggests that the changes in the antibody binding (seen 

in chapter 3) were a direct result of the variation to residue 17 as most of the NH peaks 

that have moved corresponded to amino acids in close proximity to residue 17. This is 

in agreement with the prediction for the residue 17 change on the P. yoelii model as it 

showed only minor visible structural differences.

The Glu28—>Lys variant HSQC spectrum was visually very different from the wildtype. 

Most of the NH peaks corresponding to the first EGF domain had moved in the spectra 

and some by a large amount. For example, valine 9 has shifted 1.49 ppm and aspartic 

acid 10 has shifted 1.27 ppm upfield in the !H dimension suggesting that there may be 

hydrogen bonds missing or broken involving these NHs in Glu28—»Lys variant. This 

suggests that there is a lot of structural perturbation in the first EGF domain as a result 

of the residue 28 variation. There were also NH peaks corresponding to the end of the 

second EGF domain that had moved in the spectra. This indicates that the residue 28 

variation has had a large affect on the structure as it has affected the second domain 

when residue 28 is found in the first EGF domain. The Glu28—»Lys variant spectrum 

data therefore indicates that I cannot be confident that the changes in antibody binding 

and loss of protection in vivo for Glu28—»Lys variant were a direct result of the change 

to residue 28. The changes in antibody binding and in vivo loss of protection are 

therefore a result o f the structural changes that have occurred due to the change in 

residue 28. The 15N-HSQC spectroscopy alone can only identify the areas of the protein 

that may have changed it cannot confirm how those areas have changed. The large 

change in the structure of Glu28-»Lys variant was not predicted by the in silico 

variation of this residue in the model. In the model, the only change that was seen was a
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difference in the angle of residue 28 relative to residue 12. The difference between the 

in silico prediction and the NMR prediction may be because for the in silico prediction 

the amino acid has been inserted into the position for the residue and the optimum 

rotatomer confirmation has been found. The in silico prediction has not moved the 

backbone and neighbouring amino acids as a result of the change in residue. This shows 

that in silico predictions of amino acid changes using Deepview/Swiss Pdb viewer 

cannot always give reliable predictions if the amino acid change leads to lots of changes 

to the surrounding amino acids in the protein. The spectrum for the double 

Lysl6-»Glu/Glu28-»Lys variant was very similar to the spectrum for the Glu28-»Lys 

variant and that the chemical shift differences were a result of the combination of the 

difference for the Lysl6—»Glu and Glu28-*Lys variant. This shows that the antibody 

binding data to the double Lysl6—»Glu/Glu28-»Lys variant was a result of the 

structural changes that had occurred due to the changes to residue 16 and 28 and not a 

direct affect of binding to residue 16 and 28.

The data presented in this chapter has indicated that the residue 28 variation causes 

significant structural perturbation to the protein and that the in silico variation of the 

protein model is unable to predict this. The data shows that further structural analysis is 

required to determine the affects on the structure of the residue 28 variation and to 

determine if this residue has an important function in the structure of the protein.
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Chapter 7: Designing and analysing a Glu28—>Gln MSPIiq variant

7.1 Introduction

The antibody binding studies of residue 12, 16, 17 and 28 shown in chapter 3 indicated 

that all of the residues were important for antibody binding. Only one of the amino acid 

variants, Glu28—»Lys showed an affect on protection obtained by immunisation with the 

protein in vivo. The NMR studies in chapter 6  showed however that the Glu28—»Lys 

MSP 119 variant displayed a high level of structural perturbation in comparison to the 

wildtype protein. This meant that I could not be confident that the effect on antibody 

binding and on in vivo protection was a result of the change to residue 28 and not the 

structural changes arising as a result of the change. In this chapter, I will describe the 

production and analysis of a Glu28—>Gln MSP 119 variant to examine whether or not 

residue 28 is important for antibody binding. Figure 7.1 shows the differences between 

glutamic acid, lysine and glutamine. The residue 28 change from glutamic acid to lysine 

involves a change in charge from negative to positive and an increase in size. If the 

glutamic acid residue was involved in a charged interaction with surrounding amino 

acids, this reversal in charge could have resulted in the amino acid repelling 

neighbouring residues resulting in a structural change. A change from glutamic acid to 

glutamine involves a change in charge from negative to no charge but no change in size. 

It could be predicted that if the glutamic acid residue was involved in a charge 

interaction that the loss of charge may stop this interaction but would not repel the 

surrounding amino acids. This could potentially lead to less of a structural change. In 

this chapter, I will also compare the structure of the Glu28—»Gln MSP 119 variant to the 

wildtype protein and Glu28—»Lys MSP 119 variant to examine whether this smaller 

difference has a less significant affect on the structure.
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Uncharged

Figure 7.1: Differences between glutamic acid, lysine and glutamine side chains.

The left hand side shows the structure of glutamic acid 28 in the wildtype protein. The 

right hand side shows the structures of lysine and glutamine. The areas of the side 

chains that are different from glutamic acid are highlighted in pink. This figure was 

produced using MDL ISIS/Draw 2.5.
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7.2 Expression and purification of Glu28—>Gln GST-MSPIiq variant

A Glu28—»Gln GST-MSP119 variant was created by site-directed mutagenesis using the 

sequence of wildtype MSP119 of P. yoelii YM in pGEX3X vector as a template. 

Expression of the Glu28—»Gln GST-MSP1 19 variant was carried out as described 

section 2.2. The protein was purified using a glutathione agarose column and quantified 

using densitometry. The expression and purification of Glu28—»Gln GST-MSP119 

variant gave a similar purification profile to the other GST-MSP119 variants discussed 

in chapter 3.

7.3 Western blotting analysis of antibody binding to residue 28 GST-MSPlig 

variants

In order to examine whether the alteration from glutatmic acid 28 to glutamine would 

affect antibody binding, western blotting analysis was carried out. 500 ng of the 

wildtype GST-MSPI19, Glu28—»Lys and Glu28—>Gln GST-MSPI19 variants were run 

on NuPAGE gels under non-reducing conditions for monoclonal antibody westerns and 

reducing conditions for anti-GST antibody westerns. A control western blot with anti- 

GST antibody was carried out as shown in figure 7.2 (top panel). This western blot 

shows binding to the wildtype and residue 28 GST-MSP119 variants confirming that the 

Glu28—»Gln has been purified and quantified in the same way as the previously 

produced wildtype and Glu28—»Lys GST-MSPI19 variant. Western blotting analysis 

with B6 , F5 and BIO antibodies (Spencer Valero et al., 1998) show that the Glu28-»Gln 

variation has the same affect on binding as the Glu28-»Lys variation. The results are 

summarised in table 7.1.
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Table 7.1: Effects of residue 28 variations on B6, F5 and B10 binding as 

shown by western blotting (figure 7.2)

Variant B6 F5 B10

Glu28—>Gln ++ - ++

Glu28—»Lys ++ - ++

++ —> binding equivalent to wildtype binding 

— > no binding

7.4 ELISA analysis of antibody binding to residue 28 GST-MSPIiq variants

ELISA was used to analyse the kinetics of antibody binding to GST-MSP119 variants 

over a range of antibody concentrations to look for subtle differences between the 

residue 28 variations that may not have been seen in the western blotting. The ELISA 

experiments were carried out using the ELISA conditions that were optimised for the 

analysis of the other amino acid variants described in chapter 3.

1 pg/ml wildtype and residue 28 GST-MSP119 variants were bound to 0.4 pg/ml goat- 

anti-GST antibody bound to the ELISA plate. The proteins were probed with doubling 

dilutions of B6 , F5 or BIO antibody and 1/2000 dilution anti-mouse IgG HRP 

conjugate. The peroxidase was detected and absorbance was read at 490 nm. The 

ELISA data for F5 antibody (shown in figure 7.4) shows that both variations to residue 

28 abolish F5 binding. The ELISA data for the B10 (shown in figure 7.5) and B6  

(shown in figure 7.3) antibodies show that there is a very similar effect on antibody 

binding for the residue 28 variants with both changes reducing the steepness of the 

curve but the Glu28—»Gln variation reduces the steepness of the curve to a lesser extent.
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7.5 Expression and purification of GIu28-»Gln his-MSPlio variant

In order to carry out NMR analysis of the Glu28—»Gln MSP 119 variant milligram 

quantities of his-tagged protein were required. The recodonised wildtype MSP 119 gene 

in the pPIC9K vector was used as a template to produce a recodonised Glu28—»Gln his- 

MSP119 gene using the XL-site directed mutagenesis kit. The recodonised Glu28-»Gln 

MSP1 19 gene was cloned into pPIC9K (as described in section 2.4). Large scale 

expression of the Glu28-^Gln his-MSPl 19 variant was carried out using the optimised 

protocol for expression derived for the other 5 his-MSPl 19 variants described in chapter 

6 .

7.6 15N-HSOC NMR analysis of Glu28-»Gln his-MSPl.. variant

In order to identify differences in the protein structure of Glu28—»Gln his-MSPl 19 

variant compared to wildtype and Glu28—»Lys his-MSPl 19 variant 2D 15N-HSQC NMR 

experiments were carried out. A 15N-HSQC spectrum was acquired at 25 °C for 

Glu28—>Gln his-MSPl 19 variant as described in section 2.5.2 of materials and methods. 

The spectrum was overlayed on top of the wildtype spectrum using SPARKY software 

(Goddard & Kneller). The spectra were compared to identify NH peaks that had moved. 

Since a large number of peaks had moved in comparison to the wildtype spectrum (as 

shown in figure 7.6) the NH peaks that had moved could not be accurately assigned by 

comparing to the wildtype and assuming the peak corresponded to the closest assigned 

wildtype peak. The Glu28—»Gln his-MSPl 19 variant spectrum was therefore assigned by 

acquiring 15N-HSQC-NOESY spectra at 25 °C and comparing the peak patterns with 

the 15N-HSQC-NOESY spectra for wildtype MSP 119 and Glu28—»Lys his-MSPl 19 

variant (discussed in chapter 9) to confirm the identities of NH peaks. Figure 7.6 shows 

the spectrum for Glu28—»Gln MSP 119 variant in green overlayed on top of the wildtype 

spectrum shown in red (top panel). This clearly shows that the two spectra are quite 

different with a large number of NH peaks moving in both the 15N and !H dimensions. 

The peaks that have moved in the Glu28—»Gln MSP 119 variant spectrum can be seen in 

the histogram (bottom panel). This indicates that there are a number of clusters of
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movement including between residues 5 and 14, 19 and 23, 27 and 31 and residue 95. 

The residues corresponding to NH peak movements of 0.05 ppm or more in the 

spectrum were mapped onto the 3D structure of wildtype P. yoelii MSP 119 (the 

production of the 3D structure of wildtype P. yoelii MSP 119 will be discussed in chapter 

9) as shown in figure 7.7. This shows that the residues corresponding to the NH peaks 

that have moved in the Glu28->Gln MSP 119 variant spectrum correspond to residues 

that are covering a large part of the first EGF domain and part of the second EGF 

domain and include residues that are not in direct contact with residue 28.

The 15N-HSQC spectrum for Glu28—»Gln MSP 119 variant was compared to the 15N- 

HSQC spectrum for Glu28—>Lys MSP 119 variant to see if there was less movement. 

Figure 7.8 shows the Glu28—»Gln MSP119 variant spectrum in green overlayed on top of 

the Glu28—»Lys MSP 119 variant spectrum in blue and wildtype MSP 119 in red. This 

shows that there are areas of the Glu28-»Gln MSP 119 variant spectrum where the peaks 

are in-between the wildtype peaks and the Glu28-»Lys MSP 119 variant peaks 

suggesting that some of the peaks have not moved as far in the Glu28—>Gln MSP 119 

variant spectrum. The histogram in figure 7.9 shows the combined chemical shift 

difference for the *H and 15N dimension for the Glu28-»Gln MSP119 variant spectrum in 

green and Glu28—»Lys MSP 119 variant spectrum in blue. This shows that the overall 

pattern of the histogram is the same suggesting that the same residues have moved. The 

histogram in figure 7.10 compares the difference between the combined chemical shift 

difference for the Glu28—>Gln and Glu28—»Lys MSP119 variants. In this histogram, the 

combined chemical shift difference for Glu28—»Gln MSP 119 variant has been taken 

away from the Glu28—»Lys MSP 119 variant combined chemical shift difference. The 

bars with positive values therefore indicate NHs that have moved more in the 

Glu28—»Lys MSP1 19 variant and the bars with negative values indicate NHs that have 

moved more in the Glu28—>Gln MSP Invariant. This histogram shows that overall the 

chemical shift differences are larger for the Glu28-»Lys MSP 119 variant and show the 

most difference for residues 9, 10, 13, 21, 22, and 29 to 31. This histogram also shows 

that for residues 11,12 and 28 there is a larger chemical shift difference for Glu28—»Gln 

MSP 119 variant.
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Figure 7.2: Western blotting analysis of antibody binding to residue 28 GST-

MSP119 variants.

500 ng of the wildtype GST-MSP119 and residue 28 GST-MSP119 variants were run on 

NuPAGE gels under reducing conditions (anti-GST antibody western blots) or non­

reducing conditions (B6 , F5 and BIO antibody western blots) and transferred to 

nitrocellulose. GST and BSA were used as controls. The anti-GST western blot (top 

panel) was probed with 1/5000 dilution anti-GST HRP conjugate. The B6 , F5 and B10 

antibody western blots were first probed with B6  (2 pg/ml), F5 (10 pg/ml) or B10 (2 

pg/ml) followed by 1/2000 dilution goat anti-mouse IgG HRP conjugate. The bands at 

37 kDa are the GST-MSP119 proteins.
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Figure 7.3: ELISA of B6  antibody binding to residue 28 GST-MSP119 variants.

0.4 jug/ml goat anti-GST antibody was used to coat the ELISA plate as the capture 

antibody. 1 pg/ml of wildtype GST-MSPI19, residue 28 GST-MSP119 variants, GST or 

PBS was bound to the capture antibody. This was probed with doubling dilutions of B6  

antibody and 1/1000 dilution anti-mouse IgG-HRP. The peroxidase was detected and 

absorbance read at 490 nm. PBS was used as a negative control. Duplicate plates were 

used. The mean results for the variant proteins and GST less PBS control are shown on 

the graph. GST is shown in black, wildtype GST-MSPI19 is shown in red, Glu28—»Lys 

GST-MSP119 variant is shown in blue and Glu28—»Gln GST-MSP119 variant is shown 

in green.
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Figure 7.4: ELISA of F5 antibody binding to residue 28 GST-MSP119 variants.

0 . 4  pg/ml goat anti-GST antibody was used to coat the ELISA plate as the capture 

antibody. 1 p.g/ml of wildtype GST-MSPI19, residue 28 GST-MSP119 variants, GST or 

PBS was bound to the capture antibody. This was probed with doubling dilutions of F5 

antibody and 1/1000 dilution anti-mouse IgG-HRP. The peroxidase was detected and 

absorbance read at 490 nm. PBS was used as a negative control. Duplicate plates were 

used. The mean results for the variant proteins and GST less PBS control are shown on 

the graph. GST is shown in black, wildtype GST-MSP119 is shown in red, Glu28—»Lys 

GST-MSPI19 variant is shown in blue and Glu28-»Gln GST-MSP119 variant is shown 

in green.

- 187-



Ab
so

rb
an

ce
 

at 
49

0 
nm

Chapter 7: Designing and analysing a Glu28—>Gln MSP 119 variant

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.000 0.002 0.004 0.006 0.008 0.010 0.012

F5 antibody concentration (mg/ml)

- 1 8 8 -



Figure 7.5: ELISA of BIO antibody binding to residue 28 GST-MSP119 variants.

0.4 pg/ml goat anti-GST antibody was used to coat the ELISA plate as the capture 

antibody. 1 pg/ml of wildtype GST-MSP11 9 ,  residue 28 GST-MSP119 variants, GST or 

PBS was bound to the capture antibody. This was probed with doubling dilutions of 

BIO antibody and 1/1000 dilution anti-mouse IgG-HRP. The peroxidase was detected 

and absorbance read at 490 nm. PBS was used as a negative control. Duplicate plates 

were used. The mean results for the variant proteins and GST less PBS control are 

shown on the graph. GST is shown in black, wildtype GST-MSP119 is shown in red, 

Glu28—»Lys GST-MSP119 variant is shown in blue and Glu28—»Gln GST-MSP119 

variant is shown in green.
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Figure 7.6: Comparison of Glu28->GIn M SPI19 variant and wildtype M SPI1 9 1 5N-

HSQC NMR spectra.

Top: The 15N-HSQC spectrum of Glu28—»Gln MSP119 variant is shown in green 

overlayed on top of the wildtype MSP 119 spectrum (shown in red) using SPARKY 

software (Goddard & Kneller). The spectra were acquired at 600 MHz at 25 °C in 25 

mM potassium phosphate buffer, 50 mM KC1, pH 6.5.

Bottom: Histogram showing the combined 15N and !H chemical shift differences for the 

Glu28—»Gln MSP 119 variant 15N-HSQC spectrum compared to the wildtype spectrum. 

The following equation was used to combine the chemical shifts:

Absolute ((variant 15N chemical shift -  wildtype 15N chemical shift) -r 5) + Absolute 

(variant *H chemical shift — wildtype !H chemical shift)) -r 2
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Figure 7.7 : Mapping the NH peaks that have moved in the Glu28-»GIn MSPI19 

variant lsN-HSQC spectra onto the 3D structure of P. yoelii MSPI19.

The residues corresponding to the NH peaks that have moved more than 0.05 ppm for 

the combined chemical shift difference in the 15N-HSQC spectra for the variants 

compared to the wildtype MSP 119 have been mapped onto the best energy NMR 

structure for the wildtype P. yoelii MSP11 9 .  The calculation of this structure is 

discussed in chapter 9. The residue 28 is shown in red. The residues corresponding to 

the NH peaks that have moved more than 0.05 ppm in the Glu28—»Gln MSP 119 variant 

15N-HSQC spectra are shown in green. The first EGF domain is shown in white and the 

second EGF domain is shown in grey. The C-terminal residue is shown in bright pink 

and the N-terminal residue is shown in light pink.
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Figure 7.8: Comparison of Glu28—»Gln M SPI19 variant, Glu28—»Lys M SPI19 variant and

wildtype MSP119 lsN-HSQC NMR spectra.

The l5N-HSQC spectrum of Glu28-»Gln MSP119 variant is shown in green overlayed 

on top of the Glu28—»Gln MSP1 19 variant (shown in blue) and the wildtype MSP 119 

spectrum (shown in red) using SPARKY software. The spectra were acquired at 600 

MHz at 25 °C in 25 mM potassium phosphate buffer, 50 mM KC1, pH 6.5.
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Figure 7.9: Comparison of the combined 15N and chemical shift differences of 

Glu28—>Gln and Glu28—>Lys MSPI19 variants compared to wildtype MSPI19.

Histogram showing the combined 15N and !H chemical shift differences for the 

Glu28^Gln and Glu28—>Lys MSP119 variants 15N-HSQC spectra compared to the 

wildtype spectrum. The Glu28->Gln MSP 119 variant is shown in green and the 

Glu28—»Lys MSP 119 variant is shown in blue.

The following equation was used to combine the chemical shifts:

Absolute ((variant 15N chemical shift -  wildtype 15N chemical shift) t 5) + Absolute 

(variant !H chemical shift -  wildtype !H chemical shift)) -*■ 2
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Figure 7.10: Differences between the combined 15N and !H chemical shift 

differences of Glu28—»Gln and Glu28->Lys MSPI19 variants compared to wildtype 

MSPI19.

Histogram showing the difference between the combined 15N and !H chemical shift 

differences for the Glu28—»Gln and Glu28—»Lys MSP 119 variants 15N-HSQC spectra 

compared to the wildtype spectrum. The positive values indicate where the chemical 

shift difference is larger for the Glu28—»Lys MSP119 variant 15N-HSQC spectrum. The 

negative values indicate where the combined chemical shift difference in larger for 

Glu28—»Gln MSPI19 variant 15N-HSQC spectrum.

The following equation was used to combine the chemical shifts:

Absolute ((variant 15N chemical shift -  wildtype 15N chemical shift) 5) + Absolute 

(variant !H chemical shift -  wildtype chemical shift)) -r 2  

The following equation was used to calculate the difference between the combined 

chemical shifts:

Glu28—>Lys MSP1 19 variant combined chemical shift - Glu28 ^Gln MSP119 variant 

combined chemical shift.
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7.7 Discussion

The data presented in this chapter have shown that overall the Glu28—>Gln MSP 119 

variant affects antibody binding in the same way as the Glu28-»Lys MSP 119 variant. 

This suggests that even small changes with just a loss of charge can affect antibody 

binding.

The 15N-HSQC NMR spectrum for Glu28-»Gln was visually very different to the 

wildtype with most of the NH peaks in the first domain moving and some by a large 

amount. This suggests that there is a lot of structural perturbation as a result of the 

Glu28—»Gln variation. This means that I cannot be confident that the differences in 

antibody binding were a direct result of the change to residue 28 and not the structural 

changes as a result of the variation. The comparison of 15N-HSQC NMR spectrum of 

Glu28->Gln MSP 119 variant to the Glu28—»Lys MSP 119 variant showed a very similar 

pattern of peak movement. The distance of peak movement was generally less for the 

Glu28—»Gln MSP 119 variant suggesting there is less structural perturbation as a result of 

Glu28—»Gln variation. Five of the residues that have moved significantly more in the 

Glu28-»Lys MSP 119 variant are charged residues. The charged residues may have 

moved more in the Glu28—>Lys MSP 119 variant because the positively charged residues 

may be repelled by the lysine in the variant, whereas they could have been attracted in 

the wildtype. The negatively charged residues may have been repelled by glutamic acid 

in the wildtype but now attracted by lysine in the variant. The Glu28-»Gln MSP 119 

variant may therefore not have had such a significant affect on the charged residues 

when compared to Glu28->Lys MSP 119 variant because the change to an uncharged 

residue would not repel or attract the charged residues. This could mean that for the 

Glu28—»Gln MSP 119 variant any charged residues that were being attracted by the 

glutamic acid may not be attracted as closely but would not be pushed away which 

could lead to less change in the chemical environment of the residues and therefore less 

movement in the spectrum.

The larger change in peak position for residue 12 in the Glu28—>Gln MSP119 is difficult 

to explain. Residue 12 is a positively charged residue and I would have predicted a
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larger change in the Glu28->Lys MSP 119 variant because the lysine may have repelled 

this residue. The larger change in peak position for residue 12 in Glu28—»Gln MSP 119 

variant may be because the residue has moved to a chemical environment that is more 

different than the environment it has moved to in the Glu28—>Lys MSP 119 variant 

resulting in a big shift in the spectrum. The larger change in peak position for residue 28 

in the Glu28—»Gln MSP119 variant spectrum may be because the positions of a glutamic 

acid residue and a glutamine residue in a 15N-HSQC spectrum could be further apart 

than the positions of a glutamic acid and a lysine residue in a l 5N-HSQC spectrum.

The differences in the positions of the peaks in the 15N-HSQC spectra can only be an 

indicator of the level of structural perturbation and cannot identify the exact changes to 

the structure. I can therefore conclude that it is likely that the Glu28—»Gln MSP 119 

variant has caused less changes to the structure as the level of structural perturbation is 

less but cannot confirm the exact changes.
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Chapter 8: Further immunisation studies 2 -  do the residue 28 variants

affect protection differently?

8.1 Introduction

The immunisation studies in chapter 5 showed that immunisation with Glu28—>Lys and 

double Lysl6-»Glu/Glu28—»Lys MSP119 variants did not protect against subsequent 

challenge infection with P. yoelii YM. Wildtype M SPI19 and the residue 12, 16 and 17 

variants were able to protect against challenge infection. The 2D 15N-HSQC NMR 

studies in chapter 6  showed that the Glu28—»Lys variation caused a large amount of 

structural perturbation to the protein. This meant that I could not be confident that the 

affect on in vivo protection observed for the Glu28-»Lys MSP119 variant was a direct 

result of the variation to residue 28. A Glu28->Gln MSP 119 variant was created and 

antibody binding was analysed (as described in chapter 7). This showed that the 

Glu28->Gln MSP 119 variant had a very similar effect on antibody binding in vitro as the 

Glu28—»Lys MSP1 ]9 variant. 2D 15N-HSQC NMR studies on the Glu28-»Gln MSP119 

variant suggested that this change caused less structural perturbation than the 

Glu28—>Lys MSP 119 variant.

In this chapter, I will discuss immunisation studies to look at the affect on protection of 

the residue 28 variants. The studies will compare the affect on in vivo protection of the 

Glu28—»Lys, Glu28—>Gln and the double Lysl6->Glu/Glu28->Lys MSP 119 variants. 

There could be a number of outcomes of the immunisation studies: the Glu28—»Gln 

MSP 119 variant could have the same affect on protection as the Glu28—>Lys and the 

double Lysl6-*Glu/Glu28—»Lys M SPI19 variants; the Glu28—>Gln MSP119 variant 

could have less of an affect on protection than the Glu28—»Lys and double 

Lysl6—»Glu/Glu28—»Lys MSP 119 variants or the Glu28—>Gln MSP 119 could have no 

affect on protection.

ELISA experiments will also be discussed in this chapter to compare the antibody titres 

from immunisation with wildtype and residue 28 MSP 119 variants versus wildtype
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MSP1 19 protein and residue 28 variant proteins. The ELISA studies will examine if 

there is a difference in the fine specificity of the antibody responses to the wildtype and 

residue 28 MSP 119 variants that could explain any differences in protection.

8.2 Immunisation studies with residue 28 MSPlto variants

The immunisation studies were carried out as described in materials and methods 

(section 2.3). Immunisation studies were carried out with the five single amino acid 

variants (Argl2->Leu, Lysl6 -*Glu, Asnl7—»His, Glu28-»Lys, Glu28->Gln) and one 

double amino acid GST-MSP119 variant (Lysl6—>Glu/Glu28—>Lys). Wildtype GST- 

MSP119 was used as a positive control and purified GST was used as a negative control. 

Following immunisation with the GST-MSP119 variants, the mice were challenged with 

P. yoelii YM parasitized erythrocytes. The parasitaemia was followed daily on Giemsa 

stained blood films. The percentage parasitaemia was determined to compare between 

the variants. The overall results of the immunisation studies (data not shown) confirmed 

the results obtained in the first immunisation studies in chapter 5 without the 

Glu28—»Gln MSP1 19  variant. In this chapter, I will therefore only focus on the results of 

the immunisation studies for the residue 28 MSP 119 variants (and wildtype MSP1 19 and 

GST as the controls).

The graphs in panel A of figures 8.1 to 8.5 show the parasitaemia for each of the mice in 

the groups. Figure 8.1, panel A, shows the parasitaemia for the mice immunised with 

wildtype GST-MSP119. This shows that five of the mice immunised with wildtype GST- 

MSP119 were able to clear the parasites. Two of the mice had very low parasitaemia and 

three had higher parasitaemia. One of the mice was unable to clear the parasites and was 

killed by a schedule one method on day 17. Figure 8.2 shows the parasitaemia for the 

mice immunised with GST as negative controls. This shows a rapid increase in 

parasitaemia up to day 6  and all the mice were killed by a schedule one method on day 

7. Figure 8.3, panel A, shows the parasitaemia for the mice immunised with 

Glu28->Lys MSP119 variant. This shows that four of the mice had a rapid increase in 

parasitaemia up to day 6  or 7 and were killed by a schedule one method on day 6  or 7. 

One mouse had a lower parasitaemia but was killed by a schedule one method on day 

13 due to the severity of malaria symptoms. One mouse was able to clear the parasites.
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Figure 8.4, Panel A, shows the parasitaemia for the mice immunised with the double 

Lysl6-»Glu/Glu28—>Lys MSP1 19 variant. This shows that five of the mice had a rapid 

increase in parasitaemia and were killed by a schedule one method. One mouse had high 

parasitaemia but was able to clear the parasites. Figure 8.5, panel A, shows the 

parasitaemia for the mice immunised with Glu28—»Gln MSP 119  variant. This shows that 

four of the mice had a rapid increase in parasitaemia and were killed by a schedule one 

method. The other two mice had very low parasitaemia and were able to clear the 

parasites.

Figure 8 .6 , panel A, shows the average parasitaemia of the six mice in the groups. The 

average parasitaemia is less clear than the individual parasitaemia counts seen in figures 

8.1 to 8.5 because in each of the groups the parasitaemia for at least one mouse did not 

follow the parasitaemia for the rest of the group. The overall results suggest that the 

parasitaemia is higher in the early days of the infection for the mice immunised with the 

residue 28 variants than the mice immunised with the wildtype variants.

8.3 ELISA analysis of antibody titres following immunisation with residue 28 

MSPItq variants

The antibody titres following immunisation with the GST-MSP119 variants were 

compared to those of the wildtype GST-MSP119 to determine whether any differences 

in protection from parasite challenge could be explained by differences in the level of 

antibody response to the GST-MSP119 variants. The ELISA experiments were carried 

out as described in materials and methods (section 2.3.1). In the ELISA experiments 

his-tagged wildtype MSP 119 was used to analyse the antibody levels instead of GST- 

MSP11 9 .  This was to avoid problems associated with the production of antibodies to the 

GST portion of GST-MSP119 which could saturate the ELISA signal making it difficult 

to see small differences in antibody titre to the MSP 119 portion. 1 pg/ml wildtype his- 

MSP119 was bound to the ELISA plate (the production of his-MSPl 19 is described in 

section 2.4). The proteins were probed with doubling dilutions of pooled serum samples 

from the six mice in the groups and 1/2000 dilution anti-mouse IgG HRP conjugate.

The peroxidase was detected and absorbance was read at 490 nm. The ELISA results 

are shown in figure 8 .6 , panel B. The ELISA results show that all the mice immunised
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with all of the GST- MSP1 19 variants had produced antibodies to MSP119. The binding 

curve for the mice immunised with GST shows that the ELISA system used is specific 

for antibody binding to MSP 119. The ELISA results show that there are no significant 

differences between the pooled antibody titres for the mice immunised with the residue 

28 variant MSP1 19 proteins and wildtype MSP 119. The average absorbance difference 

between the residue 28 variants and the wildtype MSP 119 was 0.13.

ELISA experiments were also carried out with the serum from each individual mouse in 

the group using the same experimental conditions as were used for testing the pooled 

sera to examine whether the results of the pooled sera were an accurate reflection of the 

results obtained with the serum from the individual mice. The ELISA results for serum 

from the individual mice may also explain why some of the mice in a group had high 

parasitaemia while others had low parasitaemia. The ELISA results for the serum from 

individual mice immunised with wildtype MSP119 are shown in figure 8.1, panel B. The 

results show that all of the mice immunised with wildtype MSP 119 have produced 

antibodies to wildtype MSP 119 and that all of the antibodies titres are very similar. The 

ELISA results for the serum from individual mice immunised with Glu28—»Lys MSP 119 

variant are shown in figure 8.3, panel B. The ELISA results show that there is a 

significant difference between the antibody binding curves for the individual mice 

immunised with Glu28—»Lys MSP119. The ELISA results for the serum from individual 

mice immunised with the double Lysl6—»Glu/Glu28-»Lys MSP119 variant are shown in 

figure 8.4, panel B. The ELISA results show that there are differences in the antibody 

titres with a spread of antibody titres from mouse two and four having lower antibody 

titres and mouse one having the highest antibody titre to wildtype MSP 119. The ELISA 

results for the serum from individual mice immunised with Glu28—»Gln MSP 119 variant 

are shown in figure 8.5, panel B. The ELISA results show that there are differences in 

the antibody titres for the individual mice with a narrow spread of antibody titres from 

mouse four having the highest antibody titre and mouse one and two having the lowest 

antibody titres to wildtype MSP 119.

- 2 0 6 -



Chapte r  8: Further i m m u n i s a t i o n  s tudies  do  the res idue 2 8  v a i m n t s  a s l eet  p r o te c t i o n  di t lerentlv' . ’

8.4 ELISA analysis of serum antibodies against wildtype MSPlio and residue 28

MSPlig variants

ELISA experiments were carried out binding Glu28—»Lys, Glu28—>Gln, and double 

Lysl6—»Glu/Glu28-»Lys MSP119 variants to the ELISA plate and probing with 

doubling dilutions of the serum from the individual mice immunised with Glu28—»Lys, 

Glu28—»Gln, and double Lysl6-»Glu/Glu28—»Lys MSP1 19 variants. The experiments 

were carried out to compare the antibody titres to the residue 28 variants and the 

wildtype protein. This could confirm if there were lots of antibodies being made to the 

area that had been changed in the residue 28 variants. If a large proportion of the 

antibody response had been to the area of the protein that had been altered in the residue 

28 variants, I would expect a difference in the antibody titre for the serum antibodies 

binding to the residue 28 variants compared to the wildtype MSP 119.

Figure 8.7, panel A shows the antibody binding curves for the serum from the 

individual mice immunised with Glu28—>Lys MSP 119 binding to his-tagged 

Glu28—»Lys MSP 119. This shows that there is a spread of antibody titres for the serum 

of the individual mice that follows the same pattern as the antibody titres to wildtype 

MSP 119. Figure 8.7, panel B shows the antibody binding curves for the sera from the 

individual mice immunised with Glu28—>Lys MSP 119 binding to his-tagged 

Glu28—»Lys MSP1 19  (outline shapes) and binding to his-tagged wildtype MSP 119 (filled 

in shapes). This shows the antibody titres to the Glu28->Lys MSP 119 and wildtype 

MSP 119 proteins are different. For all the mice apart from mouse four the antibody titres 

to the wildtype MSP 119 protein are lower than to the Glu28—»Lys MSP 119 protein. For 

mouse four the antibody titres are very similar to both proteins. The biggest difference 

between antibody binding to the two proteins is for mouse three. Figure 8 .8 , panel A 

shows the antibody binding curves for the serum from the individual mice immunised 

with double Lysl6—>Glu/Glu28—>Lys MSP 119 variant binding to his-tagged double 

Lysl6-»Glu/Glu28—»Lys MSP 119 variant. This shows that there is a spread of antibody 

titres for the serum of the individual mice that is less spread out than the titres seen to 

wildtype MSP 119 but follows the same pattern. Figure 8.7, panel B shows the antibody 

binding curves for the serum from the individual mice immunised with double
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Lysl6-»Glu/Glu28—>Lys MSP 119 variant binding to his-tagged double 

Lysl6—»Glu/Glu28—>Lys MSP 119 variant (outline shapes) and binding to his-tagged 

wildtype MSP 119 (filled in shapes). This shows the antibody titres to the double 

Lysl6->Glu/Glu28—>Lys MSP119 variant are higher than the antibody titres to the 

wildtype MSP 119. Figure 8.9, panel A shows the antibody binding curves for the serum 

from the individual mice immunised with Glu28—»Gln MSP 119 variant binding to his- 

tagged Glu28—»Gln MSP 119 variant. This shows that there is a spread of antibody titres 

for the serum of the individual mice to Glu28—»Gln MSP119 variant that is more spread 

out than the titres seen to wildtype MSP119. Figure 8.9, panel B shows the antibody 

binding curves for the sera from the individual mice immunised with Glu28->Gln 

MSP 119 variant binding to Glu28-»Gln MSP 119 variant (outline shapes) and binding to 

his-tagged wildtype MSP119 (filled in shapes). This shows the antibody titres to the 

Glu28->Gln MSP 119 variant are higher for mouse three to six than the antibody titres to 

the wildtype MSP 119. The antibody binding titres to Glu28—»Gln MSP119 variant for 

mouse one and two are very similar to the antibody titres to wildtype MSP119.

In order to look at the cross-reactivity of the sera from the mice immunised with 

wildtype MSP119 with the residue 28 proteins, ELISA experiments were carried out 

binding Glu28—»Lys, Glu28—»Gln and double Lysl6-»Glu/Glu28-»Lys MSPI19 

variants to the ELISA plate and looking at binding of doubling dilutions of the pooled 

sera from the mice immunised with wildtype MSP 119. The ELISA experiment would 

confirm if there were antibodies made to areas of the residue 28 variant proteins that 

were not altered by the variations. The results are shown in figure 8.10. The antibody 

binding curves for binding to wildtype MSP119 is show in red, binding to Glu28—»Lys 

MSP 119 variant is shown in blue, binding to the double Lysl6—»Glu/Glu28—»Lys 

MSP1 19 variant is shown in orange and binding to Glu28—»Gln MSP 119 variant is 

shown in green. The ELISA shows that the antibody binding curves for the wildtype 

pooled sera to the wildtype MSP 119 and the residue 28 variants are very similar. The 

antibody titre for the wildtype pooled sera to Glu28—»Lys is slightly less than to the 

wildtype and other residue 28 variants.
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Figure 8.1: Course of P. yoelii infection in mice immunised with wildtype M SPI19

and antibody binding curves.

A: Six BALB/c mice were immunised with 10 pg of wildtype MSP 119 in FCA followed 

by two injections with 40 pg of wildtype MSP119 in FIA 21 and 42 days later. The mice 

were challenged 15 days after the final immunisation with 5 x 1 0  P. yoelii YM 

parasitized erythrocytes. The parasitaemia was followed daily from day 3 on Giemsa 

stained blood films. The percentage parasitaemia for the individual mice in the group is 

plotted on the graph. Asterisks indicate when a mouse died or was killed by a schedule 

one method.

B: 1 pg/ml of his-tagged wildtype MSP 119 was bound to the ELISA plate. This was 

probed with doubling dilutions of the serum samples from mice immunised with 

wildtype MSP 119 and 1/2000 dilution anti-mouse IgG-HRP. The peroxidase was 

detected and absorbance read at 490 nm. PBS was used as a negative control. Duplicate 

plates were used. The mean results for each individual mouse less PBS control are 

shown on the graph.
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Figure 8.2: Course of P. yoelii infection in mice immunised with GST.

A: Six BALB/c mice were immunised with 10 jug of GST in FCA followed by two 

injections with 40 |ug of GST in FIA 21 and 42 days later. The mice were challenged 15 

days after the final immunisation with 5 x 103 P. yoelii YM parasitized erythrocytes. 

The parasitaemia was followed daily from day 3 on Giemsa stained blood films. The 

percentage parasitaemia for the individual mice in the group is plotted on the graph. 

Asterisks indicate when a mouse died or was killed by a schedule one method.
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Figure 8.3: Course of P. yoelii infection in mice immunised with Glu28—»Lys

MSP119 variant and antibody binding curves.

A: Six BALB/c mice were immunised with 10 pg of Glu28->Lys MSP119 variant in 

FCA followed by two injections with 40 pg of Glu28-»Lys MSP119 variant in FIA 21 

and 42 days later. The mice were challenged 15 days after the final immunisation with 5
'i

x 10 P. yoelii YM parasitized erythrocytes. The parasitaemia was followed daily from 

day 3 on Giemsa stained blood films. The percentage parasitaemia for the individual 

mice in the group is plotted on the graph. Asterisks indicate when a mouse died or was 

killed by a schedule one method.

B: 1 pg/ml of his-tagged wildtype MSP119 was bound to the ELISA plate. This was 

probed with doubling dilutions of the serum samples from mice immunised with 

Glu28—>Lys MSP 119 variant and 1/2000 dilution anti-mouse IgG-FlRP. The peroxidase 

was detected and absorbance read at 490 nm. PBS was used as a negative control. 

Duplicate plates were used. The mean results for each individual mouse less PBS 

control are shown on the graph.
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Figure 8.4: Course of P. yoelii infection in mice immunised with the double

Lysl6->Glu/Glu28—»Lys MSP119 variant and antibody binding curves.

A: Six BALB/c mice were immunised with 10 jag of the double

Lysl6->Glu/Glu28—»Lys MSP 119 variant in FCA followed by two injections with 40 jog 

of the double Lysl6—>Glu/Glu28-»Lys MSP 119 variant in FIA 21 and 42 days later. The 

mice were challenged 15 days after the final immunisation with 5><10 P. yoelii YM 

parasitized erythrocytes. The parasitaemia was followed daily from day 3 on Giemsa 

stained blood films. The percentage parasitaemia for the individual mice in the group is 

plotted on the graph. Asterisks indicate when a mouse died or was killed by a schedule 

one method.

B: 1 pg/ml of his-tagged wildtype MSP 119 was bound to the ELISA plate. This was 

probed with doubling dilutions of the serum samples from mice immunised with the 

double Lysl6—»Glu/Glu28-»Lys MSP 119 variant and 1/2000 dilution anti-mouse IgG- 

HRP. The peroxidase was detected and absorbance read at 490 nm. PBS was used as a 

negative control. Duplicate plates were used. The mean results for each individual 

mouse less PBS control are shown on the graph.
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Figure 8.5: C ourse o f P. yoelii infection in m ice im m unised w ith G lu28->G ln

M SP 1 19 variant and antibody binding curves.

A: Six BALB/c mice were immunised with 10 pg of Glu28—>Gln MSP119 variant in 

FCA followed by two injections with 40 pg of Glu28—»Gln MSP 119 variant in FIA 21 

and 42 days later. The mice were challenged 15 days after the final immunisation with 5 

x 10 P. yoelii YM parasitized erythrocytes. The parasitaemia was followed daily from 

day 3 on Giemsa stained blood films. The percentage parasitaemia for the individual 

mice in the group is plotted on the graph. Asterisks indicate when a mouse died or was 

killed by a schedule one method.

B: 1 pg/ml of his-tagged wildtype MSP119 was bound to the ELISA plate. This was 

probed with doubling dilutions of the serum samples from mice immunised with 

Glu28—>Gln MSP119 variant and 1/2000 dilution anti-mouse IgG-HRP. The peroxidase 

was detected and absorbance read at 490 nm. PBS was used as a negative control. 

Duplicate plates were used. The mean results for each individual mouse less PBS 

control are shown on the graph.
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Figure 8 .6 : Course of P. yoelii YM infection in groups of mice immunised with

wildtype and residue 28 M SPI19 variants and antibody binding curves.

A: Groups of six BALB/c mice were immunised with 10 pg wildtype or MSP 119 

variants or GST in FCA followed by two injections with 40 pg of protein in FIA 21 and 

42 days later. The mice were challenged 15 days after the final immunisation with 5 x 

103 P. yoelii YM parasitized erythrocytes. The parasitaemia was followed daily from 

day 3 on Giemsa stained blood films. The average parasitaemia for the groups is plotted 

on the graph. The average parasitaemia for the mice immunised with wildtype MSP 119 

is shown in red, with GST is shown in pink, with Glu28-»Lys MSP 119 variant is shown 

in blue, with double Lysl6—»Glu/Glu28—>Lys MSP 119 variant is shown in orange and 

with Glu28-»Gln MSP 119 variant is shown in green.

B: 1 pg/ml of his-tagged wildtype MSP119 was bound to the ELISA plate. This was 

probed with doubling dilutions of the serum samples from mice immunised with 

wildtype and residue 28 MSP119 variantand 1/2000 dilution anti-mouse IgG-HRP. The 

peroxidase was detected and absorbance read at 490 nm. PBS was used as a negative 

control. Duplicate plates were used. The mean results for the wildtype, variant protein 

and GST less PBS control are shown on the graph. The serum samples for the six mice 

in the groups were pooled together. Serum from mice immunised with wildtype MSP 119 

is shown in red, with GST is shown in pink, with Glu28—»Lys MSP119 variant is shown 

in blue, with double Lysl6-»Glu/Glu28—»Lys MSP 119 variant is shown in orange and 

with Glu28—»Gln MSP 119 variant is shown in green.
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Figure 8.7: Antibody binding curves for serum from mice immunised with

Glu28-»Lys MSP119 variant against his-tagged wildtype and Glu28—>Lys M SPI19

variant.

A: 1 pg/ml of his-tagged Glu28->Lys MSP119 variant was bound to the ELISA plate. 

This was probed with doubling dilutions of the serum samples from mice immunised 

with Glu28->Lys MSP119 variant and 1/2000 dilution anti-mouse IgG-HRP. The 

peroxidase was detected and absorbance read at 490 nm. PBS was used as a negative 

control. Duplicate plates were used. The mean results for each individual mouse less 

PBS control are shown on the graph.

B: 1 pg/ml of his-tagged wildtype MSP 119 and his-tagged with Glu28—»Lys MSP 119 

variant was bound to the ELISA plate. This was probed with doubling dilutions of the 

serum samples from mice immunised with Glu28—»Lys MSP119 variant and 1/2000 

dilution anti-mouse IgG-HRP. The peroxidase was detected and absorbance read at 490 

nm. PBS was used as a negative control. Duplicate plates were used. The mean results 

for each individual mouse less PBS control are shown on the graph. Serum from mouse 

one is shown in red, from mouse two is shown in pink, from mouse three is shown in 

dark blue, from mouse four is shown in cyan, from mouse five is shown in green and 

from mouse six is shown in brown. The antibody binding curves for the sera binding to 

his-tagged wildtype MSP 119 is shown with filled in shapes and the antibody binding 

curves for the sera binding to his-tagged Glu28—»Lys MSP 119 variant is shown with 

outlined shapes.
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Figure 8.8: Antibody binding curves for serum from mice immunised with double

L ysl6—»Glu/Glu28—>Lys M SPI19 variant against his-tagged wildtype and double

Lysl6-»Glu/Glu28—»Lys M SPI19 variant.

A: 1 pg/ml of his-tagged double Lysl6—>Glu/Glu28—»Lys MSP 119 variant was bound to 

the ELISA plate. This was probed with doubling dilutions of the serum samples from 

mice immunised with double Lysl6—»Glu/Glu28—»Lys MSP 119 variant and 1/2000 

dilution anti-mouse IgG-HRP. The peroxidase was detected and absorbance read at 490 

nm. PBS was used as a negative control. Duplicate plates were used. The mean results 

for each individual mouse less PBS control are shown on the graph.

B: 1 pg/ml of his-tagged wildtype MSP 119 and his-tagged double 

Lysl6—>Glu/Glu28—»Lys MSP 119 variant was bound to the ELISA plate. This was 

probed with doubling dilutions of the serum samples from mice immunised with double 

Lysl6-»Glu/Glu28—»Lys MSP Invariant and 1/2000 dilution anti-mouse IgG-HRP.

The peroxidase was detected and absorbance read at 490 nm. PBS was used as a 

negative control. Duplicate plates were used. The mean results for each individual 

mouse less PBS control are shown on the graph. Serum from mouse one is shown in 

red, from mouse two is shown in pink, from mouse three is shown in dark blue, from 

mouse four is shown in light blue, from mouse five is shown in green and from mouse 

six is shown in brown. The antibody binding curves for the sera binding to his-tagged 

wildtype MSP 119 is shown with filled in shapes and the antibody binding curves for the 

sera binding to his-tagged double Lysl6—»Glu/Glu28—»Lys MSP 119 variant is shown 

with outlined shapes.
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Figure 8.9: Antibody binding curves for serum from mice immunised with

GIu28->Gln M SP1 1 9  variant against his-tagged wildtype and Glu28—>Gln M SP I 1 9

variant.

A: 1 pg/ml of his-tagged Glu28—>Gln MSP119 variant was bound to the ELISA plate. 

This was probed with doubling dilutions of the serum samples from mice immunised 

with Glu28—>Gln MSP Invariant and 1/2000 dilution anti-mouse IgG-HRP. The 

peroxidase was detected and absorbance read at 490 nm. PBS was used as a negative 

control. Duplicate plates were used. The mean results for each individual mouse less 

PBS control are shown on the graph.

B: 1 pg/ml of his-tagged wildtype MSP 119 and his-tagged with Glu28—»Gln MSP 119 

variant was bound to the ELISA plate. This was probed with doubling dilutions of the 

serum samples from mice immunised with Glu28—»Gln MSP119 variant and 1/2000 

dilution anti-mouse IgG-HRP. The peroxidase was detected and absorbance read at 490 

nm. PBS was used as a negative control. Duplicate plates were used. The mean results 

for each individual mouse less PBS control are shown on the graph. Serum from mouse 

one is shown in red, from mouse two is shown in pink, from mouse three is shown in 

dark blue, from mouse four is shown in cyan, from mouse five is shown in green and 

from mouse six is shown in brown. The antibody binding curves for the sera binding to 

his-tagged wildtype MSP 119 is shown with filled in shapes and the antibody binding 

curves for the sera binding to his-tagged Glu28—»Gln MSP 119 variant is shown with 

outlined shapes.
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Figure 8.10: Antibody binding curves for serum from mice immunised with 

wildtype MSP119 against his-tagged residue 28 MSPI19 variants.

A: 1 pg/ml of his-tagged wildtype, Glu28—>Lys, double Lysl6-»Glu/Glu28—»Lys and 

Glu28—»Gln MSP 119 variant was bound to the ELISA plate. This was probed with 

doubling dilutions of the serum samples from mice immunised with wildtype MSP 119 

and 1/2000 dilution anti-mouse IgG-HRP. The peroxidase was detected and absorbance 

read at 490 nm. PBS was used as a negative control. Duplicate plates were used and the 

mean results minus PBS control are shown on the graph. Antibody binding to wildtype 

MSP 119 is shown in red, binding to Glu28—»Lys MSP 119 variant is shown in blue, 

binding to the double Lysl6—»Glu/Glu28—>Lys MSP 119 variant is shown in orange and 

binding to Glu28—>Gln MSP 119 variant is shown in green.
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8.5 Discussion

The immunisation studies presented in this chapter, have suggested that there are 

differences between the protection observed following immunisation with the wildtype 

protein and with the residue 28 variants. The overall results for the mice immunised 

with GST have shown that the GST-portion of the GST-MSP119 is not protecting the 

mice from challenge infection. The overall results have shown that immunisation with 

wildtype MSP 119 protects against parasite challenge because five of the mice clear the 

parasite. Immunisation with the double Lysl6^>Glu/Glu28->Lys MSP 119 variant does 

not protect against parasite challenge as all of the mice have high parasitaemia and only 

one mouse clears the parasites. The one mouse (mouse one) that had lower parasitaemia 

and cleared the parasites had an enlarged spleen and this could suggest that the parasites 

were being sequestered and that the parasitaemia may have been higher than what was 

observed from counting blood films. Immunisation with the Glu28—»Lys MSP 119 

variant does not protect against parasite challenge as five of the mice were unable to 

clear the infection. The one mouse (mouse one) that had lower parasitaemia and was 

killed by a schedule one method on day 14 had malaria symptoms that were consistent 

with a higher parasitaemia than was counted from the blood films suggesting 

sequestration of parasites. The results from the immunisations with Glu28—»Gln 

MSP 119 variant were mixed. Four of the mice had a rapid increase in parasitaemia and 

were unable to clear the parasite. The results of the four mice suggested that the 

immunisations with Glu28—»Gln MSP 119 variant does not protect against parasite 

challenge. The other two mice however had very low parasitaemia with 0 % 

parasitaemia for a large proportion of the counts. These data would suggest protection 

by immunisation with Glu28—»Gln MSP 119 variant. There could have been error 

introduced into this group when the parasitized erythrocytes were administered to the 

mice with these two mice possibly getting less parasites or even no parasites.

The parasitaemia counts for the individual mice showed that there was variation 

between the individual mice in the group. This may have been because of variations in 

the experiment that could not be controlled. The mice used in the immunisation study 

were cousins because there were too many mice required for just brothers and sisters to
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be used. This could have introduced some genetic variation between the mice which 

could have resulted in differences in immunity. Small differences in the amount of 

antigen the mice were immunised with could have occurred and this could have 

influenced the level of immune response. Differences in the uptake of the antigen 

between the individual mice following immunisation could have influenced the immune 

response produced. The behaviour of the individual mice may have influenced the 

progression of malaria, for example if a mouse was not eating or drinking as much as 

the other mice it could become unwell more quickly and be less able to fight the 

disease. The method of measuring the parasitaemia could also have introduced 

inaccuracies in the experiment because it relied on one person visually counting slides. 

If the mice were anaemic this could have lead to inaccuracies in the counts because the 

blood smear from the anaemic mice did not give an even coverage of blood cells and 

cells appeared in clumps. This could have led to the blood cells that were counted to not 

be representative of the overall parasitaemia. The parasites could have sequestered in 

the spleen, brain or other organs and this would not be taken into account by counting 

the parasites in the blood and could result in lower counts and inaccuracies if variant 

proteins had altered the level of sequestration. For example, this may have occurred for 

mouse one in the group immunised with the double Lysl6—»Glu/Glu28—»Lys MSP 119 

variant as this mouse had an enlarged spleen. Additional errors could have been 

introduced in the decisions regarding when to kill the mice by a schedule one method as 

some mice became unwell at very low parasitaemia levels i.e. mouse one in the group 

immunised with Glu28—»Lys MSP119 variant, while other mice were well at high 

parasitaemia i.e. mouse five in the group immunised with wildtype MSP 11 9 .

The ELISA results for the pooled serum samples show that there is no significant 

difference between the antibody titres to wildtype MSP 119 produced by the wildtype 

and residue 28 MSP119 variant proteins. This suggests that the overall antibody titre 

may not be that important for protection against challenge infection. The ELISA results 

for the serum for the individual mice in the groups suggested there was more variation 

in the antibody titres. For the group of mice immunised with the wildtype MSP 11 9 ,  the 

antibody titres were all very similar. The antibody titre for mouse two that behaved 

differently to the other mice in the group and had a steady increase in parasitaemia did 

not have a significantly lower antibody titre than the rest of the mice in the group. This
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suggests that there is not a clear correlation between the antibody titre and the ability of 

the mouse to protect against subsequent parasite challenge. This disagrees with the 

immunisation studies of Ling et al. (Ling et al., 1994) where the antibody response to 

the parasite was highest in the mice that were protected against parasite challenge. The 

immunisation studies for the mice immunised with the residue 28 variants showed that 

there was more of a spread of antibody titres. The mice with the highest antibody titres 

in the group were those that survived the longest. There was more variation in the mice 

with lower antibody titres in the groups with mice with very similar antibody titres 

behaving differently on parasite challenge. For example, in the group immunised with 

the double Lysl6—»Glu/Glu28-»Lys MSP119 variant, mouse two and four had very 

similar antibody titres but mouse two had a very rapid increase in parasitaemia and was 

killed by a schedule one method on day 7 and mouse four had a slower increase in 

parasitaemia and was killed by a schedule one method later on day 11. This shows that 

the antibody titres cannot be used as a prediction of the protection or course of the 

infection. The differences between the antibody titres for the residue 28 variants binding 

to wildtype MSP 119 and residue 28 variant MSP 119 protein suggests that a portion of the 

antibodies made to MSP 119 are made to an area that is altered in the residue 28 variants. 

The relatively small difference between the binding to wildtype and residue 28 variants 

suggests that the portion of antibodies made to the area altered by residue 28 variants is 

only a small portion of the antibodies made. This suggests that the majority of the 

antibody response is made to the rest of the molecule that is not affected by the residue 

28 variation. This observation is confirmed by the ELISA studies in this chapter for the 

binding of the pooled wildtype sera to the wildtype and residue 28 variant proteins. 

These data showed that there was no significant difference (with only a small difference 

with Glu28—»Lys variant protein) between the binding to wildtype MSP 119 and the 

residue 28 MSP 119 variants. The data suggests that the majority of the antibodies 

produced on immunisation with MSP 119 do not protect against challenge infection but 

only a small proportion of the antibodies that are made have the fine specificity to 

protect against challenge infection.

- 2 3 0 -



<'hapter 9: S o l v i n g  the .U)  structures  o l 'wi lc l tvpe  I', y o d i i  M S P  1 |„ and ( ilu'2X vL.\ s M S P  i v a r i a n t  us i ng
N M R

Chapter 9: Solving the 3D structures of wildtype P. voelii MSPIiq and 

Glu28—>Lvs MSPIiq variant using NM R

9.1 Introduction

In this chapter, I will describe the calculation of the structure of wildtype MSP119 using 

NMR analysis. The predictions of structural changes as a result of the variations to 

MSP 119 and the 15N-HSQC NMR spectra discussed in chapter 6  showed that in silico 

variation of the residues in the model was unable to accurately predict the differences in 

protein structure. It is therefore important to have an accurate protein structure to 

understand the affects on the structure caused by the amino acid variations.

There were limitations in the creation of the homology model (discussed in chapter 6 ) 

which means that it may not accurately reflect the structure of P. yoelii MSP 119. The 

main limitation for the accuracy was the sequence identities of the template structures 

that were used. The sequence identities of the templates are listed in table 9.1. This 

shows that the sequence identities were around 50 % or less which means that the 

model’s reliability would be decreased compared to a model made with higher levels of 

sequence identity (Schwede et al., 2003).

Table 9.1: Sequence identities of the template MSPI19 sequences used in the 

creation of the homology model

Species PDB structures Sequence identity (%)

P. falciparum lob IF (Pizarro et al., 2003) 49.95

lob 1C (Pizarro et a l, 2003) 49.95

IcejA (Morgan et al., 1999) 49.95

P. cynomolgi lb9wA (Chitarra et a l, 1999) 46.55

P. knowlesi InliC (Garman et a l, 2003) 50.84
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In this chapter I will also describe the calculation of Glu28—»Lys MSP 119 variant 

protein using NMR analysis. The change to residue 28 affected in vitro antibody 

binding (as discussed in chapter 3) and resulted in loss of protection in in vivo studies 

(as discussed in chapters 5 and 8 ). The 2D 15N-HSQC NMR analysis (as discussed in 

chapter 6 ) indicated that there was a large amount of structural perturbation to the first 

EGF domain of the protein as a result of the Glu28-*Lys variation. The 2D NMR 

analysis could not explain why this change to residue 28 had caused the level of 

structural perturbation and what the actual changes to the structure were. The best way 

to confirm how the Glu28—»Lys variation had affected the structure of the protein was 

to calculate the structure of this variant and compare it to the wildtype structure.

The protein structures were not calculated for the other MSP 119 variant proteins because 

with the exception of the double Lysl6—»Glu/Glu28—»Lys variation and Glu28—»Gln 

variation there were very few NH peaks that had moved in the 2D 15N-HSQC NMR 

spectra suggesting very little structural perturbation. The Glu28—»Lys variant also had 

the largest biological affect on the protein therefore understanding it would be more 

biologically significant than solving the structures of the other variants.

9.2 Expression and Purification of 13C/15N labelled his-MSPlio

For the 3D NMR analysis, proteins labelled with 15N and 13C were required. The Pichia 

pastoris expression system (described in chapter 6 ) was used to make doubly labelled 

15N/13C proteins. In order to make 15N and 13C doubly labelled protein, the ammonium 

sulphate in the culture medium was substituted with 15N labelled ammonium sulphate 

and the methanol was substituted with 13C labelled methanol. The yeast uses the

methanol as the sole carbon source for protein expression. This means that by
12 12 substituting the methanol with C labelled methanol all of the protein will contain C

instead of 12C. Large scale expression of the wildtype MSP 119 and Glu28—»Lys MSP119

variant was carried out to produce the 5 mg of pure protein required for NMR analysis.

Figure 9.1 shows the wildtype MSP119 and Glu28-»Lys MSP119 variant proteins before

purification. This confirmed that the yeast were able to produce the proteins with the

addition of 13C labelled methanol.
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9.3 Assigning NMR Spectra for wildtype and Glu28—>Lvs MSPIiq variant

13C and 15N 3D NMR Spectra were acquired for wildtype and Glu28—»Lys MSP 119 

variant as described in materials and methods (section 2.5). The spectra were assigned 

manually using Sparky (Goddard & Kneller) and Xeasy (Bartels et a l 1995) software. 

Figure 9.2 shows how the NMR spectra were used to determine the protein structures.

9.3.1 HNCACB and CBCACONHNMR spectra

The first stage involved assigning the backbone atoms. HNCACB and CBCACONH 

spectra were used for sequential assignment of the amino acid residues and to assign the 

NH peaks on the 15N-HSQC spectra. The spectra are named after the magnetisation 

transfer. The magnetisation transfer for the HNCACB and CBCACONH are shown in 

figure 9.3 (panel A).The HNCACB spectrum correlates the amide proton (NH) with the 

Ca and Cp. In the HNCACB spectra there are 4 peaks for each NH as follows: Ca of 

the preceding amino acid; Cp of the preceding amino acid; Ca of the amino acid the 

NH belongs to and Cp of the amino acid the NH belongs to. A schematic representation 

of this spectrum is shown in figure 9.3 (panel B). The assignment of residues 55 to 65 

for wildtype MSP 119 is shown in figure 9.4. This shows a small portion of the 

HNCACB spectra split into strips for the NH chemical shifts. The Ca assignments are 

shown in red and the Cp assignments are shown in blue. For residues 57 and 58 there 

are only Ca peaks as these residues are glycines and there is a gap in the spectra for 

residue 61 because this is a proline and prolines do not have an NH peak on the 

spectrum. The CBCACONH spectrum (shown in the schematic in figure 9.3, panel B) 

correlates the amide proton (NH) with the Ca and Cp through the C=0. This means that 

in this spectrum only peaks for the Ca and Cp of the preceding amino acid and not the 

amino acid residue itself are present. The CBCACONH spectrum was therefore used to 

help in the assignment of the HNCACB spectra as it indicated which peaks were from 

the preceding amino acid. The assignments from these two spectra were used to assign
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the 15N-HSQC spectra as shown in figure 9.5. The peaks with no labels are the peaks 

corresponding to the histidine tag and the factor Xa cleavage site.

9.3.2 HCCCONH and HCCH-TOCSYNMR spectra

The second stage in assigning the spectra was to assign the side chain residues. 

HCCCONH and HCCH-TOCSY spectra were used to assign the side chain protons and 

carbons. The HCCCONH correlates the amide proton (NH) of the amino acid with the 

*H in the side chain of the preceding amino acid. The HCCCONH spectra were assigned 

using the NH assignments from the 15N-HSQC experiments and the HNCACB 

experiments. The pattern of the !H in the side chain is characteristic of the amino acid 

type and can help identify the amino acid. Figure 9.6, 9.7 and 9.8 show three strips for 

three different amino acids from the wildtype M SPI19 HCCCONH spectra. Figure 9.6 

shows the NH chemical shift for valine 93 with the peaks for the *H side chain 

resonances of the preceding amino acid glycine 92. The two H a are not chemically 

equivalent and therefore appear as two separate peaks on the spectra. Figure 9.7 shows 

the NH chemical shift for alanine 18 with the peaks for the !H side chain resonances of 

the preceding amino acid asparagine 17. Asparagine 17 is an example of an amino acid 

that has an AMX spin system. This means that it will have a characteristic pattern of 

one Ha and two HP peaks. Other AMX amino acids include: cysteine, aspartic acid, 

serine, histidine, phenylalanine, tyrosine and tryptophan. Glutamic acid, glutamine and 

methionine show a very similar peak pattern to AMX amino acids apart from two 

additional peaks for Hy and are called AM(PT)X amino acids. Figure 9.8 shows the NH 

chemical shift for isoleucine 78 and the *H side chain resonances of the preceding 

amino acid isoleucine 77. Unlike the peak pattern for AMX and AM(PT)X amino acids, 

isoleucine has a unique peak pattern consisting of 6  peaks.

The HCCCONH spectrum only allows assignment of the !H side chain resonances and 

not the 13C side chain resonances. The HCCCONH spectrum provided a stepping stone 

for assigning all the side chain resonances using the HCCH-TOCSY spectrum. The !H 

side chain assignments from the HCCCONH spectrum and the Ca and Cp assignments 

from the HNCACB spectrum were used as a starting point for assigning the HCCH- 

TOCSY spectrum. HCCH-TOCSY stands for 1H-13C-13C-1H total correlation
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spectroscopy and is used for the assignment of !H and 13C resonances (Cavanagh et al., 

2007). The magnetisation transfer for this experiment is shown in figure 9.9 (panel A).

In the spectrum there are peaks for the !H side chain resonances at the chemical shift for
1 Teach of the C side chain atoms. A schematic representation of the peak pattern that 

was seen for an aspartic acid residue is shown in figure 9.9, panel B. For the aspartic 

acid residue, it has a Ca and Cp, therefore the peaks of the *H side chain resonances are 

seen at two 13C chemical shifts (one set of peaks for Ca and one set of peaks for Cp). 

The two Hp are coupled to each other which means there will be two lines of peaks for 

the Cp chemical shifts (as seen in figure 9.9, panel B). A 13C-HSQC spectrum was used 

to help in the assignment of the HCCH-TOCSY spectrum. In the 13C HSQC spectrum 

there is a peak for each proton directly bonded to the carbon i.e. Ca-Ha, Cp-Hp2 and 

Cp-Hp3. There are no peaks to the adjacent carbons i.e. Ca- Hp2.

9.3.3 Determining distance restraints fo r  wildtype and Glu28 —>Lys MSP 11 9

The HNCACB, CBCACONH, HCCCONH and HCCH-TOCSY experiments showed 

interactions between *H, 15N and 13C atoms through covalent bonds. In order to 

calculate the 3D structure of the protein information about interactions through space
1 r  1-3

were required. This was achieved by acquiring 3D N-HSQC-NOESY spectra and C- 

HSQC NOESY spectra for wildtype and Glu28—>Lys MSP 119 variant.

NOESY stands for Nuclear Overhauser Effect spectroscopy. The Nuclear Overhauser 

Effect or NOE is a through space interaction between protons that does not require 

through bond coupling. A 2D ^ ^ H  NOESY spectrum correlates hydrogen atoms that 

are less than 5 A apart in space. On the NOESY spectrum cross peaks are therefore seen 

for hydrogen atoms that are less than 5 A apart. The intensity of the peak is proportional 

to r - 6  where r is the intemuclear distance. For M SPI19, 3D 15N-HSQC-NOESY spectra 

were acquired because 2D 'H ^H  NOESY experiments would have resulted in overlap 

of the ’H-'H NOE cross peaks. The 3D 15N-HSQC NOESY experiment overcomes this 

by combining the 15N-HSQC and NOESY experiments. This means that the overlapped 

*H cross peaks are resolved over the chemical shift frequencies of the directly attached 

15N. This is shown in the schematic representation in figure 9.10. The 13C-HSQC-
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NOESY combines the 13C-HSQC and NOESY experiments. The 15N-HSQC-NOESY 

and 13C-HSQC-NOESY experiments give information about the conformation of the 

protein and protein folding. They can also confirm residue assignments because 

residues have NOEs to their own side chain hydrogens, a-helices and (3-sheets can be 

identified in the NOESY spectra. The strips for residues 20 to 22 in the 15N-HSQC- 

NOESY spectrum of wildtype MSP 119 are shown in figure 9.11. These residues form 

part of the p-sheet. In the figure, the NOEs between adjacent NHs are very small. This 

is because in a p-sheet they are far apart. In a p-sheet there are strong NOEs between 

the Ha of residue i and the NH of residue i +1. The a-helix shows a different pattern of 

NOEs to the p-sheet, with NOEs observed to residues that are 3 apart in the primary 

sequence. For an a-helix there are strong NOEs between NH of residue i and NH of 

residue i +1 and between Hp of residue i and NH of residue i + 1. Figure 9.12 shows the 

strips for residues 9 to 11 from the wildtype MSP 119 15N-HSQC-NOESY spectra, which 

are involved in a turn. The NHs are close together for all three residues therefore there 

are NOEs between all of them. For the 15N-HSQC-NOESY spectra and 13C-HSQC- 

NOESY spectra for the wildtype and Glu28—»Lys MSP 119 variant the NH was assigned 

for each residue and the NOE peaks were picked. The individual NOE peaks were not 

assigned manually but were assigned using ARIA to calculate the protein structures (as 

described in section 9.4.1).

9.3.4 Predicting Phi and Psi angles using TALOS

The chemical shifts of the backbone atoms of the protein are sensitive to the local 

conformation of the backbone. It has been observed that the difference between the 

chemical shifts observed in the spectra (called the secondary chemical shift) and the 

chemical shift expected if that residue was in a random coil conformation is correlated 

with the secondary structure of the protein. In order to predict the backbone angles of 

the protein to help calculate the structure TALOS was used. TALOS stands for Torsion 

Angle Likelihood Obtained from Shift and Sequence Similarity. TALOS is a database 

system of 186 proteins for the prediction of phi and psi torsion angles. In order to 

predict the backbone angles, TALOS uses the Ca, Cp, CO, H a and N chemical shift 

assignments for the protein and compares them to homologous proteins that have
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similar secondary chemical shifts. TALOS provides a list of possible phi and psi angles 

for each residue and rates how good these predictions are (Comilescu et al., 1999).

Since TALOS predicts the phi and psi angles and is not an experimental measure there 

is the possibility of errors, therefore only TALOS predictions that were rated as good 

were used in the structural calculations.

9.3.5 D2 O exchange analysis

Hydrogen bonding (H-bonding) is important in the stability of a protein structure. 

Information can be obtained on H-bonding in proteins by resuspending the protein in 

2H20  (D20) before NMR analysis. When proteins are dissolved in D20  the NH and OH 

protons exchange with the D20  to give ND and OD. When 15N-HSQC NMR data are 

acquired for a protein sample in D20 , only NHs where the proton has not exchanged 

will be visible as a peak on the spectrum. NHs that have not exchanged are said to be 

protected. There are two ways in which the NH can be protected. In a large protein the 

NH can be protected if it is in the core of the protein and the solvent cannot get to this 

part of the protein. The NH can also be protected if it is involved in a hydrogen bond. 

When the protein is in solution the hydrogen bonds will be continuously breaking and 

re-forming. The faster the rate of breaking, the less strong the hydrogen bond and the 

more quickly the D20  will be able to exchange with the NH. This means that the rate of 

NH exchange correlates with the strength of the hydrogen bonds. If the hydrogen bonds 

are very strong, it will take a very long time for the NH to exchange. If the hydrogen 

bonds are weaker, it will take less time for the NH to exchange. If the NH is not 

involved in any hydrogen bond or not buried in the centre of a very large protein the NH 

will exchange instantly with the D20 . Time course studies running 15N-HSQC spectra 

with protein in D20  can highlight the residues in the protein that are protected from D20  

exchange and therefore could be involved in hydrogen bonding.

D20  exchange time courses were acquired for wildtype and Glu28—»Lys MSP 119 

variant to identify potential hydrogen bonds and the strength of the hydrogen bonds. 

Comparing the D20  exchange time course data for the two proteins can identify areas of 

structural differences where hydrogen bonds may have been broken in the Glu28—>Lys 

MSP 119 variant. The wildtype and Glu28—>Lys MSP119 were resuspended in D20  and 

15N-HSQC spectra were acquired every 5 minutes for 2 hours at 25 °C. The NH peaks
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were assigned based upon the 15N-HSQC spectra in water. The rate of exchange of the 

protons with deuterium was determined and plotted on the histogram. The histogram in 

figure 9.13 shows the rate of exchange of NH in the wildtype MSP 119 in red and 

Glu28—»Lys MSP119 variant in blue. For NHs that were exchanging very quickly i.e. in 

less than 5 minutes, a rate of exchange could not be accurately determined so these 

residues were given an arbitrary value of 0. For NHs that were exchanging very slowly 

i.e. in greater than 3000 minutes, a rate of exchange could not be accurately determined 

so these residues were given an arbitrary value of 3000. The histogram shows that there 

are clear differences in the rate of exchange of NH in the two proteins in the first EGF 

domain (residues 1 — 48). In particular there is a cluster of NHs between residues 7 —10 

where there is instant exchange in the Glu28—»Lys MSP 119 variant and slower exchange 

for the wildtype MSP11 9 .  There are also differences in the rate of exchange between 

residue 2 1 - 2 9  where there is a slower rate of exchange in the wildtype MSP 119. There 

are fewer differences in the rate of exchange between the two proteins in the second 

EGF domain (residues 49 -  99). The rates of exchange for the two proteins are mapped 

onto the best energy wildtype MSP 119 NMR structure in figure 9.14.
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9.4 Calculating the 3D structure of wildtype and Glu28—>Lvs MSPIiq variant

9.4.1 ARIA

ARIA was used to calculate the structure of wildtype and Glu28—»Lys MSP 119 variant 

as described in materials and methods (section 2.5.4). ARIA stands for Ambiguous 

Restraint for Iterative Assignment. The role of ARIA is to assign ambiguous NOEs 

during the structure calculation. It does this by using ambiguous distance restraints and 

employing an iterative assignment strategy. An overview of the operations performed 

by ARIA is shown in figure 9.15. ARIA uses the complete assignment of proton 

chemical shifts and a list of partially assigned NOEs to calculate a group of structures. 

ARIA assigns each NOESY spectra separately and merges the data. ARIA creates a list 

of ambiguous distance restraints from the NOE peaks based on the chemical shift 

coordinates of the peak compared to the assignment list. It uses the list of restraints to 

calculate a set of structures. ARIA goes through eight iterations to improve the energy 

of the structure and finishes with a water refinement step. When ARIA has calculated 

the structures it creates a list of ambiguous and unambiguous NOEs and creates a list of 

peak violations that do not fit with the calculated structures. The violation list is 

checked manually to examine whether the violations were a result of an assignment 

error or if the peak is an artefact from water or a contaminant in the sample. In addition 

to the assignment list and NOESY spectra additional restraints can be put into ARIA for 

use in structural calculations. For wildtype and Glu28—»Lys MSP 119 variant the TALOS 

derived dihedral angle restraints were used in the calculations. A list of H-bonds was 

also added to the calculations as an iterative process by calculating the H-bonds (as 

described in section 2.5.4) and looking at the affect on subsequent ARIA calculations. 

Five disulphide bonds were also added to the structural calculations in an iterative 

process (as described in section 2.5.4). The final numbers of NOE distance restraints 

that were used in the final iteration of the ARIA structure calculations for wildtype and 

Glu28—»Lys MSP 119 variant are shown in table 9.2 and 9.3.
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Table 9.2: ARIA NOE distance restraints used in the final structural calculation of 

wildtype MSPI19

intra-residue sequential medium range long range

Unambiguous 1038.0 566.0 2 1 2 . 0 708.0

Ambiguous 103.8 151.9 109.9 341.3

Total 1141.8 717.9 321.9 1049.3

Table 9.3: ARIA NOE distance restraints used in the final structural calculation of 

Glu28—»Lys MSP1, 9

intra-residue sequential medium range long range

Unambiguous 845.0 457.0 179.0 667.0

Ambiguous 115.2 133.6 93.8 312.4

Total 960.2 590.6 278.8 979.4

Figure 9.16 shows the backbone traces of the twenty lowest energy structures for 

wildtype MSP 119 shown in red and orange and for Glu28—>Lys MSP119 variant shown 

in blue and cyan. The backbone traces for the group of wildtype structures show that the 

first EGF domain structures converge very closely and the second EGF domain 

structures do not converge as closely. The backbone traces for the group of Glu28—»Lys 

MSP 119 variant structures show that the first EGF domain structures also converge very 

closely and the second EGF domain structures do not converge as closely.

9.4.2 Evaluating the quality o f  the NM R structures

Procheck NMR was used to create Ramachandran plots to determine how good the 

wildtype and Glu28-»Lys MSP 119 variant structures were. The ramachandran plots for 

group of the twenty best energy structures for wildtype is shown in figure 9.17 and for 

Glu28—»Lys MSP 119 variant in figure 9.19. Figure 9.18 and 9.20 show the 

Ramachandran plots for the best energy structure for wildtype and Glu28-»Lys 

respectively. All the Ramachandran plots show that all of the structures have over 90 %
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of the residues with phi and psi angles in the most favoured and additional allowed 

regions for proteins.

9.5 Comparing the 3D NMR structure of wildtype P. voelii MSPIiq to the 

homology model

The best energy NMR structure of wildtype MSP 119 was compared to the homology 

model (the creation of the homology model is discussed in chapter 6 ) using RasTop and 

MolMol. Figure 9.21 panels A and B show the backbone of the NMR structure of 

wildtype MSP 119 and homology model respectively. The backbone structures were 

superimposed using residues 10 to 90 as shown in figure 9.21 panel C. Residue 1 to 10 

and 90 to 99 were not used for superimposition because the very ends of the protein are 

not as well defined in the NMR structure as they would be moving around in the 

solution. Superimposing the backbone structures shows there are clear differences 

between the homology model and the NMR structure. The areas where there are 

significant changes in the backbone conformation are shown in the figure. The areas 

include residues 8  to 1 1  shown in blue and cyan; residue 1 2  shown in bright yellow and 

pale yellow; residues 70 to 75 shown in black and grey and residues 80 to 8 8  shown in 

dark green and light green. The comparison of the secondary structural elements of the 

NMR and homology model shown in figure 9.21 panel D suggests that the majority of 

the secondary structure is the same. The main difference between the homology model 

and NMR structure is an additional a-helix around residues 8  to 11. The other changes 

in the shape of the backbone seen in panel C correspond to loop areas.

9.6 Comparing the 3D NMR structure of wildtype and Glu28—>Lvs MSPIiq 

variant

The best energy structure of the wildtype and Glu28—»Lys MSP 119 variant were 

compared using Insight II, MolMol, RasTop and Deep View/ Swiss PDB viewer to 

identify differences between the structures. The 2D 15N-HSQC NMR spectra shown in 

chapter 6  suggested that the majority of differences between the wildtype and 

Glu28—»Lys MSP 119 variant were in the first EGF domain. This suggests that the
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comparison between the first EGF domain of the two structures will explain the affects 

of the residue 28 variation. The second EGF domain for Glu28—»Lys MSP 119 variant is 

not as well defined as the first EGF domain. This means that very small differences 

between the second EGF domain of wildtype and Glu28-»Lys MSP119 variant may not 

be real. In the comparison between wildtype and Glu28—»Lys MSP119 variant I will 

therefore focus on the first EGF domain and the interface between the two domains. 

Figure 9.22 shows the first EGF domain of the two proteins superimposed using 

residues 8  to 48. The residues at the ends of proteins are not as well defined because 

they are moving around in solution therefore residues 1 to 7 were not used for 

superimposing the structures. Superimposing the first EGF domain indicates there are 

differences between the two proteins in particular there is a difference in the shape of 

the loop consisting of residues 9 to 14. Figure 9.23 shows the residues where the NH 

peak in the 2D 15N-HSQC NMR spectrum had moved 0.2 ppm or more mapped onto 

the wildtype structure (panel A) and the Glu28—»Lys MSP 119 variant structure. The 

amino acid residues are coloured according to their properties: positively charged 

residues are shown in blue; negatively charged residues are shown in red, aromatic 

residues are shown in yellow and the other residues are shown in green. This shows that 

the side chain orientations of the residues have altered between the two proteins. Valine

9 has moved further out in the Glu28-*Lys MSP 119 variant. The other residues where 

there is a significant difference between the two proteins appear to be charged residues. 

The differences to the charged residues can be seen more clearly in figure 9.24 which 

shows only the charged residues where the NH moved more than 0.2 ppm in the 2D 

15N-HSQC spectrum compared to the wildtype. This figure shows that arginine 12 and 

aspartic acid 13 appear to have swapped places between the wildtype and Glu28-»Lys 

MSP 119 variant with aspartic acid 13 moving towards lysine 28 and arginine 12 moving 

away. Arginine 31 has moved from pointing between the two EGF domains in the 

wildtype structure to being curved in Glu28-^Lys MSP 119 variant. Arginine 22 has also 

moved in the Glu28->Lys MSP 119 variant, moving away from lysine 28. Aspartic acid

1 0  has moved away from arginine 1 2  towards arginine 2 2  and lysine 28.

The orientation of the two EGF domains relative to each other appears to be different 

between wildtype and Glu28—>Lys MSP 119 variant. In the interface between the 

domains there are four of the aromatic residues positioned very closely together. Figure
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9.25 shows the aromatic residues in the two proteins. The residues are coloured 

according to the type of residue with phenylalanine shown in pink, tyrosine shown in 

green, tryptophan shown in purple and histidine shown in yellow. This shows that the 

orientation of the side chains of the aromatics at the interface between the two domains 

has changed between wildtype and Glu28-»Lys MSP 119 variant. The orientation of 

phenylalanine 21 and 94 has changed significantly between the wildtype and 

Glu28-»Lys MSP 119 variant. The orientation of tyrosine 89 has also changed.
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Figure 9.1: NuPAGE gel analysis of expression of doubly labelled 1 3C/15N M SPI19

proteins in P. pastoris.

2 *500 ml cultures of GS115 cells containing multiple copies of the wildtype and 

Glu28-»Lys MSP 119 genes were grown in cultures containing 15N labelled ammonium 

sulphate induced with 13C labelled methanol to express the 13C/15N labelled proteins 

over 96 hours. 1 ml samples were removed every 24 hours. The supernatant was 

concentrated 10 times and run on pre-cast NuPAGE 12 % Bis-Tris polyacrylamide gels 

in MES buffer under reducing conditions and stained with Coomassie blue.

Lane 1 -  molecular mass markers, lane 2 -  Sample of supernatant from GS115 cells 

expressing wildtype MSP 119 after 24 hours, lane 3 -  GS115 cells expressing wildtype 

MSP 119 after 48 hours, lane 4 -  GS115 cells expressing wildtype MSP 119 after 72 hours, 

lane 5 -  GS115 cells expressing wildtype MSP 119 after 96 hours, lane 6  -  GS115 cells 

expressing Glu28-»Lys MSP 119 variant after 24 hours, lane 7 -  GS115 cells expressing 

Glu28—»Lys MSP 119 variant after 48 hours, lane 8  -  GS115 cells expressing 

Glu28—»Lys MSP119 variant after 72 hours, lane 9 -  GS115 cells expressing 

Glu28->Lys MSP119 variant after 96 hours .

The bands between 15 and 20 kDa are his-MSPl 1 9 .
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Figure 9.2: Schematic representation of how NMR spectroscopy was used for

structural determination of wildtype M SPI19 and Glu28—>Lys M SPI19 variants.

The steps are in black. The NMR experiments that were carried out for each step are in 

blue. The tools that were used to calculate restraints from the NMR data are in pink. The 

dashed arrows indicate where the data are used to check assignments and predictions in 

the spectra and then repeating the structural calculations.
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Figure 9.3: HNCACB and CBCACONH spectra.

A: The magnetisation transfer in the HNCACB and CBCACONH experiments. The 

magnetisation transfer is indicated by the blue arrows. In the HNCACB experiment, the 

magnetisation is transferred from the amide NH of residue i to the Ca (CA) of the 

preceding residue (i -1) and then to the CP (CB). The magnetisation is also transfer from 

the NH of residue i to the CA and then CB of residue i. In the CBCACONH experiment 

the magnetisation must go through the C=0, this means that the magnetisation is 

transferred from the CB of residue i-1 to the CA of i-1 and then through the C=0 to the 

NH of residue i. The magnetisation does not transfer to the CA and CB of residue i. 

Residue i is in red and i-1 is in black.

B: This shows a schematic representation of three strips for the HNCACB and 

CBCACONH of three sequential residues. The peaks for CA are shown in blue, the 

peaks for CB are shown in red. The peaks corresponding to CA of residue i and i-1 are 

labelled. The red dashed line indicates the connection between the CB of the 

neighbouring residues and the blue dashed line indicates the connection between the CA 

of the neighbouring residues.
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Figure 9.4: Assignment of residues 55 to 65 in the HNCACB spectrum of wildtype

MSP119.

This figure shows the strips from the HNCACB spectrum of wildtype MSP 119 for 

residues 55 to 60 and 62 to 65. There is no strip for proline 61 because it does not have 

an NH peak. The spectrum shows the Ca and Cp peaks at the chemical shift for the 

amide proton of the residue. In each strip there are peaks for the C a and Cp for the 

residue and peaks for the Ca and Cp for the preceding residue. The red and blue lines 

show how the HNCACB spectrum can be assigned by walking along the C a and Cp of 

adjacent residues. The connections between Ca are shown in blue and the connections 

between Cp are shown in red.
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Figure 9.5: Assigned 15N-HSQC spectra for wildtype and Glu28—»Lys M SPI19 variant.

Assignment of 15N-HSQC Spectra of wildtype MSP119 (shown in red) and Glu28—»Lys 

MSP1 19  (shown in blue) at 25 °C. The spectra were assigned using the data from the 

HNCACB, CBCACONH and l5N-NOESY-HSQC NMR spectra. The unlabelled peaks 

are for the his-tag and the residues in the linker between the his-tag and the protein.
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Figure 9.6: Assignment of side chain 'H  of glycine in HCCCONH spectrum.

A: Structure of glycine in a protein. The names of the hydrogens are shown in red.

B: A strip from the HCCCONH spectra of wildtype MSP 119 at the chemical shift for 

valine 93 NH showing the ]H peaks for the preceding amino acid glycine 92.

G92H A2-V93N-HN

G92HA1—V 93N —HN
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Figure 9.7: Assignment of side chain *H of asparagine in HCCCONH spectrum.

A: Structure of asparagine in a protein. The names of the hydrogens are shown in red. 

B: A strip from the HCCCONH spectra of wildtype MSP 119 at the chemical shift for 

alanine 18 NH showing the lH peaks for the preceding amino acid asparagine 17.
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Figure 9.8: Assignment of side chain *H of isoleucine in HCCCONH spectrum.

A: Structure of isoleucine in a protein. The names of the hydrogens are shown in red. 

B: A strip from the HCCCONH spectra of wildtype MSP 119 at the chemical shift for 

isoleucine 78 showing the *H peaks for the preceding amino acid isoleucine 77.
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Figure 9.9: HCCH-TOCSY NMR spectrum.

A: The magnetisation transfer in the HCCH-TOCSY experiment. The magnetisation 

transfer is indicated by the blue arrows. The magnetisation is transferred from the 

proton to the directed attached carbon atom, then to the neighbouring carbon atom and 

finally to the attached proton. Residue i is in red and i-1 is in black.

B: The structure of aspartic acid in proteins. The protons are named in red and the 

carbons are named in pink.

C: A schematic representation of the HCCH-TOCSY spectra focusing on areas of the 

spectra in different planes that show the complete spin system of an aspartic acid 

residue. The top box represents the Ca (CA) plane showing the peak for Ha (HA) on 

the diagonal (represented by the dashed line) and the peaks for H(32 and Hp3 (HB). The 

lower box represents the Cp (CB) plane showing two peaks on the diagonal 

(represented by the dashed line) for each of the HB protons and the cross peaks between 

them.
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Figure 9.11: 1 5 N-HSQC NOESY spectrum for wildtype M S P I 1 9  residues 20 to 22

highlighting the NOEs between residues in a P-sheet.

Panel A: shows the arrangement of adjacent residues in a P-sheet. The blue arrow 

shows the NOE between the H a (HA) of residue i and the NH of residue i +1.

Panel B: shows the strips for the NH 15N chemical shift for residues 20, 21 and 22 

which are part of a P-sheet. The blue lines indicate the NOEs between the HA of 

adjacent residues. The black line indicates the NOE between the NH of residue 20 and 

2 1 .
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Figure 9.10: Schematic representation of a 3D 15N-HSQC-NOESY experiment.

This figures shows how the 3D 15N-HSQC-NOESY experiment is made up of lots of 

2D 1H/1H NOESY spectra combined in a third 15N-dimension to reduce overlap of 

diagonal peaks arising from individual amide protons.

Part A: shows a cube representing the 3D 15N-HSQC-NOESY experiment consisting of 

lots of 2D NOESY spectra stacked up on top of each other.

Part B: shows selected slices (planes) from the cube. Each slice shows only the 

diagonal peaks for the amide protons that have a particular 15N chemical shift.

Part C: shows a 15N-!H projection of the data in the 3D-15N-HSQC-NOESY 

experiment by looking down on the cube. This view looks like a 2D 15N-HSQC 

spectrum. This figure is from figure 17.5.18 (Edwards & Reid, 2000).

-259-



Figure 9.12: 1 5 N-HSQC NOESY spectrum for wildtype M S P I 1 9  residues 9 to 11

highlighting the NOEs between residues involved in a turn.

Panel A: shows the alignment of adjacent residues involved in a turn. The nitrogen 

atom is highlighted in blue and the hydrogen atom is highlighted in green. The 

hydrogen atom is on top of the nitrogen pointing out of the page. This shows that the 

NH is close for all three residues involved in the turn.

Panel B: shows the strips for the NH 15N chemical shift for residues 9, 10 and 11 which 

are part of a turn. The blue lines indicate the NOEs between the NH of adjacent 

residues. This shows that there are strong NOEs between the NH of adjacent residues.
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Figure 9.13: Histogram of D2 O exchange rates for wildtype and Glu28—»Lys

M SPI19 variant.

The histogram shows the log D2O exchange rates for wildtype MSP119 in red and 

Glu28—»Lys MSP 119 variant in blue. The D2 O exchange rates were calculated from a 

D2O exchange time course where the proteins were dissolved in D2O and 15N-HSQC 

were acquired every 5 minutes for 2 -  3 hours at 25 °C. The NHs that were exchanging 

with the D2 O in less than 5 minutes were given an arbitrary value of 0 and the NHs that 

were exchanging with the D2O in more than 3000 minutes were given an arbitrary value 

of 3000. Prolines residues have been given a value of 0 as they have no NH to 

exchange.
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Figure 9.14: The residues protected from D2 O exchange mapped onto the best 

energy wildtype MSPI19 NMR structure.

The residues where the amide proton was protected from exchange are mapped onto the 

best energy wildtype MSP 119 NMR structure for the wildtype protein (top panel) and 

Glu28-»Lys MSP1 19  variant (bottom panel). Residues where the amide proton 

exchanged in less than 5 minutes and were therefore not protected from exchange are 

shown in yellow. Residues where the amide proton took longer than 3000 minutes to 

exchange and were therefore protected from exchange are shown in purple. Residues 

where the amide proton took between 5 minutes and 3000 minutes to exchange and 

were therefore partially protected from exchange are shown in green. Proline residues 

are shown in white as they do not have an NH residue to exchange.
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Chapter 9: Solving the 3D structures o f  wildtype P. yoelii MSP 119 and Glu28—>Lys MSP 119 variant using
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Figure 9.15: Schematic overview of the operation performed by ARIA.

This figure is based on figure 1 (Nilges et al., 1997).
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Figure 9.16: 20 best energy structures of wildtype and Glu28—>Lys MSP119 variant.

The structures of wildtype and Glu28—>Lys MSP 119 variant were calculated using 

ARIA (Nilges, 1995, Nilges & O' Donoghue, 1998). The 20 best energy structures were 

displayed and superimposed using residues 10-90 using Insight II (Dayringer et al., 

1986). For wildtype MSP 119 the first EGF domain is in red and the second EGF domain 

is in orange. For Glu28—>Lys MSP 119 variant the first EGF domain is in blue and the 

second EGF domain is in cyan.
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Chapter 9: Solving the 3D structures o f  w ildtype P. yo e lii MSP1 !9 and G lu28-»L ys MSP1 x9 variant using
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Number of non-glycine and non-proline residues 1660 100.0%
Number of end-residues (excl. Gly and Pro) 20
Number of glycine residues (shown as triangles) 180
Number of proline residues 120

Total number of residues 1980

Figure 9.17: Ram achandran plot of the 20 best energy wildtype M SPI19 

structures.

This Ramachandran plot shows the psi and phi angles for all the residues in the 20 

best energy wildtype MSP119 structures. The Ramachandran plot was created 

using Procheck NMR (Laskowski et al., 1996)
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C hapter 9: Solving the 3D structures o f  w ildtype P. yoe lii M S P119 and G lu28->L ys M S P119 variant using
NM R
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Residues in disallowed regions 2 2.4%

Number of non-glycine and non-proline residues 83 100.0%

Number of end-residues (excl. Gly and Pro) 1

Number of glycine residues (shown as triangles) 9
Number of proline residues 6

Total number of residues 99

Figure 9.18: Ram achandran plot of the best energy wildtype M SPI19 

structure.

This Ramachandran plot shows the psi and phi angles for all the residues in the 

best energy wildtype MSP 119 structure. The Ramachandran plot was created using 

Procheck NMR (Laskowski et al., 1996)
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Figure 9.19: Ram achandran plot of the 20 best energy Glu28-»Lys M SPI19 

variant structures.

This Ramachandran plot shows the psi and phi angles for all the residues in the 20 

best energy Glu28—»Lys MSP119 variant structures. The Ramachandran plot was 

created using Procheck NMR (Laskowski et al., 1996)
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Chapter 9: Solving the 3D structures o f  w ildtype P. yoe lii M S P 1 19 and G lu28->L ys MSP1 i9 variant using
N M R
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Figure 9.20: R am achandran plot of the best energy Glu28—»Lys MSPI19 

variant structure.

This Ramachandran plot shows the psi and phi angles for all the residues in the 

best energy Glu28—»lys MSP 119 variant structure. The Ramachandran plot was 

created using Procheck NMR (Laskowski et al., 1996)
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Figure 9.21: Comparison of the best energy wildtype MSPI19 NMR structure and 

the homology model.

A: The backbone structure of the best energy wildtype MSP 119 NMR structure. The first 

EGF domain is shown in red and the second EGF domain is shown in orange.

B: The backbone structure of the homology model of MSP 11 9 .  The first EGF domain is 

shown in pink and the second EGF domain is shown in purple.

C: The backbone structure of the homology model in pink superimposed onto the best 

energy wildtype MSP 119 NMR structure in red using residues 10 to 90. The areas that 

are particularly different are highlighted. The areas include residues 8  to 11 shown in 

blue and cyan; residue 12 shown in bright yellow and pale yellow; residues 70 to 75 

shown in black and grey and residues 80 to 8 8  shown in dark green and light green for 

the NMR structure and homology model respectively.

D: A comparison of the secondary structural elements of the best energy NMR structure 

in red and homology model in pink.

This figure was prepared using MolMol(Koradi et al., 1996) and RasTop.
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Figure 9.22: Comparison between the backbone structure of the first EGF domain

of wildtype and Glu28—>Lys MSPI19.

The first EGF domain of wildtype in red is superimposed onto the Glu28—»Lys MSP119 

in blue using residue 8  to 48. This figure was prepared was prepared using Swiss Model 

(Guex & Peitsch, 1997).
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Figure 9.23: Comparison of the orientation of the residues in wildtype and

Glu28—>Lys MSPI19 variant that have moved 0.2 ppm in the ,sN-HSQC spectrum.

The side chains of the residues that have moved 0.2 ppm in the Glu28—>Lys 15N-HSQC 

spectrum compared to the wildtype spectrum are shown on the best energy structures 

for wildtype and Glu28—»Lys MSP 119 variant to compare the orientation of the residues.

The first EGF domain of the wildtype structure is in red and the second EGF domain is 

in orange. The first EGF domain of Glu28—>Lys MSP 119 variant is in blue and the 

second EGF domain is in cyan. The residues is coloured according to their properties as 

follows: positively charged residues are in blue; negatively charged residues are in red; 

aromatic residues are in yellow and all other residues are in green.

This figure was prepared using RasTop.
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Figure 9.24: Comparison of the orientation of the charged residues in wildtype and

Glu28->Lys MSPI19 variant that have moved 0.2 ppm in the 1 5N-HSQC spectrum.

The side chains of the charged residues that have moved 0.2 ppm in the Glu28—>Lys 

15N-HSQC spectrum compared to the wildtype spectrum are shown on the best energy 

structures for wildtype and Glu28-»Lys MSP 119 variant to compare the orientation of 

the residues.

The first EGF domain of the wildtype structure is in red and the second EGF domain is 

in orange. The first EGF domain of Glu28—>Lys MSP119 variant is in blue and the 

second EGF domain is in cyan. The residues is coloured according to their properties as 

follows: positively charged residues are in blue and negatively charged residues are in 

red.

This figure was prepared using RasTop.
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Figure 9.25: Comparison of the orientation of the aromatic residues in wildtype

and Glu28—>Lys MSPI19 variant.

The side chains of the aromatic residues are shown on the best energy structures for 

wildtype and Glu28—>Lys MSP 119 variant to compare the orientation of the residues.

The first EGF domain of the wildtype structure is in red and the second EGF domain is 

in orange. The first EGF domain of Glu28—»Lys MSP 119 variant is in blue and the 

second EGF domain is in cyan. The residues is coloured according to the type of 

aromatic residue: phenylalanine residues are shown in pink; tyrosine residues are shown 

in green; tryptophan residues are shown in purple and histidine residues are shown in 

yellow.

This figure was prepared using RasTop.
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9.7 Discussion

The quality of the NMR structures of the wildtype P. yoelii MSP119 and Glu28—»Lys 

MSP 119 variant that have been presented in this chapter are of comparable quality to the 

published NMR structures for P. falciparum and P. vivax MSP 119. In the Ramachandran 

plots for the wildtype and Glu28—»Lys MSP 119 variant 77.1 % of residues have their phi 

and psi angles in the most favoured regions. The published NMR structures for P. 

falciparum (Morgan et al., 1999) and P. vivax (Babon et al., 2007) have 54.9 % and 69 

% of their residues with phi and psi angles in the most favoured regions.

The comparison of the homology model with the wildtype P. yoelii MSP 119 NMR 

structure has shown that the homology model can predict the overall fold of the protein 

but cannot accurately predict all areas of the protein structure and the orientation of the 

amino acid side chains. This may be because P. falciparum, P. cynomolgi and P. 

knowlesi MSP 119 structures that were used to make the homology model all share the 

EGF motif consensus sequence but the rest of the areas of the sequence have lower 

sequence similarity. This would make it difficult for the Swiss Model Homology 

Modelling server (Guex & Peitsch, 1997) to accurately predict the orientation of the 

side chains. The differences between the homology model the NMR structure around 

residues 8  to 1 2  suggest why the in silico variation of residue 28 was unable to 

accurately predict the changes in this area that were seen in the Glu28—>Lys MSP 119 

variant NMR structure.

The D2 O exchange studies have identified differences in the hydrogen bonding between 

the wildtype and Glu28—»Lys MSP 119 variant NMR structures. The rapid exchange 

rates from residues 7 to 10 seen in the Glu28—»Lys MSP 119 variant suggests these 

residues are not involved in hydrogen bonding but in the wildtype there is slower 

exchange indicating protection due to the presence of hydrogen bonds in this area. This 

suggests that in this area of the structure the hydrogen bonds have broken in 

Glu28—»Lys MSP 119 variant. This may mean that the structure in this area for 

Glu28—>Lys MSP 119 variant is not as rigid as the structure in the wildtype. This
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difference in hydrogen bonding is in agreement with data for the 15N-HSQC NMR 

spectra which suggested that the hydrogen bonds in residues 9 and 10 had been broken 

because they had shifted upfield between the wildtype and Glu28-»Lys MSP 119 variant. 

In the wildtype 15N-HSQC they were in a position where they were shifted downfield in 

comparison to the other residues in the protein indicating that they were involved in 

hydrogen bonding because of the shifting of the residues, whereas in Glu28-»Lys 

MSP 119 variant they were further upfield suggesting they were not involved in a 

hydrogen bond. The area between residues 21 and 29 also indicated a difference in 

protection in the D2O exchange experiments. This difference in protection in this area 

could suggest the variation to residue 28 has opened up this area of the protein and 

made it less rigid resulting in making the area more accessible to the solvent.

The comparison of the wildtype and Glu28—>Lys MSP 119 variant NMR structures show 

clear differences in the first EGF domain. The data suggests glutamic acid 28 is in a 

negatively charged area of the protein and by replacing the negatively charged glutamic 

acid 28 with a positively charged lysine this has had an affect on the surrounding 

charged residues. The data suggests that residue 28 is interacting with arginine 12 in the 

wildtype structure and that when residue 28 is changed to a lysine this then repels 

arginine 12. The movement of arginine 12 influences the nearby negatively charged 

aspartic acid residues 1 0  and 13 with residue 13 appearing to swap places with arginine 

12. The movement of aspartic acid 10 and 13 may be a result of an attraction from the 

positively charged lysine 28 side chain whereas the glutamic acid 28 in the wildtype 

would have repelled the aspartic acid residues. The data could suggest that the area 

around glutamic acid 28 is forming a charged antibody binding pocket and that 

antibodies could be recognising this area due to the interaction with the charged side 

chains. The wider implication of the variation to residue 28 altering the orientation of 

the two EGF domains relative to one another could be an affect on the orientation of the 

aromatic amino acids in the interface between the two domains. The aromatic residues 

phenylalanine 21 and 94 are in the interface between the two domains and are close to 

the area that has been disrupted by the residue 28 variation. The side chain orientation 

of these two residues has altered between the wildtype and Glu28—>Lys MSP 119 variant 

NMR structures. This could be contributing to altering the orientation of the two EGF 

domains because phenylalanine is a large bulky residue. The movement of the aromatic
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residues could explain why such a large number of residues had shifted in the 2D 15N- 

HSQC spectrum for Glu28-»Lys MSP 119 variant. The ring current effect of the 

aromatic ring of the aromatic residue affects amino acids that are in the same plane as 

the aromatic ring. This would mean that where the orientation of the aromatic residue 

has altered this could change which of the surrounding amino acid chemical shifts are 

influenced by the ring current effect.

The NMR structures presented in this chapter have shown that the alteration of residue 

28 from a glutamic acid to a lysine has had a significant affect on the first EGF domain 

of the protein concentrated around the charged residues around residue 28. This 

suggests that residue 28 has a vital role in shaping the structure of the protein in that 

area. It indicates that the affects on antibody binding of the Glu28—>Lys MSP 119 variant 

cannot be a direct result of binding to residue 28 itself but due to the alterations of the 

structure of the protein and the charge distribution in the area of the protein around 

residue 28. The implications of the changes in the charge distribution for the 

immunology of the protein will be discussed in detail in chapter 1 0 .
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Chapter 10: Discussion

10.1 Introduction

In this thesis, I have mapped the antibody binding sites of antibodies to P. yoelii 

MSP 119 by investigating the affect of single and double amino acid changes to the 

protein on antibody binding. The results of the antibody binding studies by western 

blotting, ELISA and surface plasmon resonance that were obtained are summarised in 

table 1 0 .1 .

Table 10.1: Summary of the affect of the amino acid variations to MSP119 on 

monoclonal antibody binding

Variant B6 F5 BIO

Argl2—»Leu ++ + ++

Lysl6 —»Glu - - ++

Asnl7—»His + ++ ++

Glu28—»Lys + - +

double - - +

Lysl6—»Glu/Glu28—»Lys

Glu28—»Gln + - +

- —» variation abolishes antibody binding

+ —» variation partially reduces antibody binding

++ —» variation has no affect on antibody binding

The MSP 119 variant proteins were used in in vivo immunisation studies to investigate 

the affect of the variation on the ability of the proteins to protect against challenge 

infection and to see if this correlated with the in vitro data. The in vivo immunisation 

studies showed that the Arg 12—»Leu, Lysl6 -»Glu and Asnl7—»His MSP119 variant 

proteins protected against subsequent parasite challenge in the same way as the wildtype 

protein. This showed that even though residue 16 abolished antibody binding in vitro to 

B6  and F5 antibody it did not translate to an affect in vivo. Immunisation with
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Glu28—»Lys, double Lysl6-^Glu/Glu28-»Lys and Glu28—»Gln MSP 119 variant 

proteins did not protect against parasite challenge in vivo. ELISA experiments 

examining the antibody titres of the mice immunised with the wildtype and MSP 119 

variants showed that there was no significant difference between the antibody titres for 

the mice immunised with wildtype MSP 119 and the MSP 119 variants. This meant that 

the overall antibody titre could not be used to predict the ability of the protein to protect 

against parasite challenge. When the ELISA titres for the mice immunised with 

Glu28—»Lys, double Lysl6—»Glu/Glu28^Lys and Glu28—»Gln MSP 119 variant against 

wildtype protein were compared to those against the variant protein it was found that 

the antibody titres to the variant protein were slightly higher. This suggested that a small 

proportion of the antibody response to MSP 119 was specific to the area of the protein 

altered by the residue 28 variants. The data suggested that the fine specificity of the 

antibody response is more important than the overall antibody titre in determining 

whether the antibody response will be able to protect against parasite challenge.

Structural studies were carried out to compare the structure of the wildtype and variant 

proteins. This confirmed that for the residue 12, 16 and 17 variants there were no 

significant structural differences and the results of the in vitro and in vivo experiments 

were a direct result of the changes to the individual residue. The structural studies for 

the residue 28 variants suggested there was significant structural perturbation as a result 

of these variations. The structure of wildtype and Glu28—»Lys MSP 119 variant 

confirmed that the residue 28 variation had significantly altered the first EGF domain 

and the residues in the interface between the two EGF domains. This suggests that 

residue 28 may have a vital structural role.

In this chapter, I will discuss the structure-function relationship between wildtype 

MSP119 and Glu28—»Lys MSP119 variant. The structure of the P. yoelii MSP119 will be 

compared to the structures of MSP 119 from other species. The amino acid variations 

will be compared to those in the literature for other species to examine whether similar 

residues are involved. I will also discuss the implications of the work presented in this 

thesis for other studies and future work.
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10.2 Electrostatic potential of wildtype and Glu28—>Lvs M SPIiq variant

The electrostatic potentials for the wildtype and Glu28—>Lys MSP 119 variant proteins 

were determined using MOLMOL(Koradi et a l 1996) and mapped onto the surface of 

the proteins. The electrostatic surface potential is shown in figure 10.1 for wildtype and 

Glu28—»Lys MSP1 19 variant. This shows that there are distinct clusters of positively and 

negatively charged residues on the surface of the two proteins. For the wildtype protein 

in the 180° rotation there is a large positively charged area at the top of the protein with 

a large negatively charged area below including glutamic acid 28 and aspartic acid 24. 

For the Glu28->Lys MSP1 19 variant there is a clear difference in the charge distribution 

on the surface compared to the wildtype protein especially around residue 28. In the 

Glu28—»Lys MSP1 19 variant the positively charged lysine 28 has introduced a positively 

charged area where there was just a negatively charged area in the wildtype protein.

This change is seen clearly in the 90° rotation where lysine 28 in the Glu28—»Lys 

MSP 119 variant is in a positively charged area with a few negative residues around it 

and in the wildtype protein glutamic acid 28 is in a negatively charged area with a 

positively charged area next to it including arginine 1 2 .

10.3 Comparison of electrostatic potential of wildtype M S P I iq  from different 

species

Figure 10.2 shows an alignment of the amino acid sequence of wildtype P. yoelii 

MSP 119 and wildtype P. falciparum MSP 119. This shows that the primary EGF 

structural motif (highlighted in green) is conserved across the species. The backbone 

structure of P. yoelii MSP 119 and P. falciparum MSP 119 was superimposed using 

residues 10 to 90 in MOLMOL (Koradi et a l 1996) to compare similarities between 

the two proteins (shown in figure 10.3). The backbone for P. yoelii MSP 119 is shown in 

red and the backbone for P. falciparum MSP 119 is show in green. This shows that the 

overall structure of the two proteins is conserved and the overall secondary structural 

elements are the same for the two proteins. The biggest differences between the two 

proteins occur in the looped regions where there are no secondary structural elements.
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The electrostatic potentials for P. yoelii MSP 119 and P. falciparum MSP 119 proteins was 

determined using MOLMOL(Koradi et al., 1996) and mapped onto the surface of the 

proteins (shown in figure 10.4). This shows that there are distinct clusters of positively 

and negatively charged residues on the surface of the two proteins but the distribution of 

charges is different. The 0° face is very similar for the two proteins and on the 90° face 

the P. yoelii protein has more charged residues particularly a cluster of negatively 

charged residues around glutamic acid 28. The 180° face shows more differences 

between the two proteins. The P. yoelii protein has very distinct positively and 

negatively charged areas with a positively charged area at the top and a negatively 

charged area below. The P. falciparum protein has a negatively charged cluster of 

residues but has individual positively charged residues instead of a distinct cluster of 

positively charged residues.

In the literature the electrostatic potential of P. vivax, P. cynomolgi and P. knowlesi has 

been compared to P. falciparum MSP 119 (Babon et al., 2007, Garman et al., 2003, 

Pizarro et al., 2003). The electrostatic potential for P. yoelii MSP 119 was also compared 

to the electrostatic potential of P. vivax, P. cynomolgi and P. knowlesi MSP 119 (as 

shown figure 10.5) to see if the electrostatic potential was more similar to these 

proteins. This figure shows that the proteins have a different distribution of charged 

residues on the surface compared to P. yoelii and each other. P. vivax, P. cynomolgi and 

P. knowlesi MSP 119 all have large areas of negatively charged residues and individual 

or smaller groups of positively charged residues but the distribution of these areas 

differs between the proteins. For P. yoelii a large area of positive charge at the top of 

180° face is only seen for this species.
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Figure 10.1: Comparison of electrostatic potential of wildtype and Glu28—»Lys

MSPI19 variant

The electrostatic potentials of wildtype and Glu28-»Lys MSP119 variant are mapped 

onto the molecular surface of the proteins. The electrostatic potentials were calculated 

using MOLMOL (Koradi et a l 1996). Red represents negative charge and blue 

represents positive charge.
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Figure 10.2: Alignment of P. yoelii (Py) and P. falciparum (Pf) MSPljg highlighting 

the conserved residues.

Conserved residues are highlighted in pink. Residues that are part of the conserved EGF 

motif are highlighted in green. The alignment is based on figure 3 of Benjamin et al. 

(Benjamin et al., 1999)
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Figure 10.3 C om parison o f  P. yoelii and P. falciparum  M S P I 19 N M R  structures.

The backbone of the best energy NMR structure of P. yoelii MSP119 (shown in red) 

superimposed on top of the backbone of the best energy NMR structure of P. 

falciparum MSP 119 (Morgan et al., 1999) (shown in green). The backbones are 

superimposed using residues 10-90 in MOLMOL (Koradi et al., 1996) and the 

secondary structural elements are displayed.
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Figure 10.4: Comparison of electrostatic potential of P. yoelii and P. falciparum

MSP119

The electrostatic potentials of P. yoelii and P. falciparum MSP 119 are mapped onto the 

molecular surface of the proteins. The electrostatic potentials were calculated using 

MOLMOL (Koradi et a l 1996). Red represents negative charge and blue represents 

positive charge. E37 labelled on the P. falciparum MSP119 structure is the equivalent of 

E40 in the P. yoelii MSP119 structure.
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Figure 10.5: Comparison of electrostatic potential of M SPl^from  different species.

The electrostatic potentials of P. yoelii (Py), P. cynomolgi (Pc)(Chitarra et al., 1999), P. vivax (Pv) 

(Babon et al., 2007), P. knowlesi (Pk) (Garman et al., 2003) and P. falciparum (Pf) (Morgan et al., 

1999) MSP 119 are mapped onto the molecular surface of the proteins. The electrostatic potentials 

were calculated using MOLMOL (Koradi et al., 1996). Red represents negative charge and blue 

represents positive charge.
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10.4 Discussion

10.4.1 Structure function relationship of wildtype P. yoelii MSP11 9  and

Glu28—>Lys MSP11 9  variant

The data have shown that by altering residue 28 to a lysine this has disrupted the 

electrostatic potential of the protein in the area around residue 28. These data are in 

agreement with the structural NMR studies presented in chapter 9, which show that 

there had been significant movement of the charged residues in the first EGF domain. 

The electrostatic potential data explain why changing from a negatively charged 

glutamic acid residue to a positively charged lysine residue can have such a significant 

impact on the protein. The 90° face of the protein (shown in figure 10.1) has a very 

different charge distribution in the Glu28—>Lys variant and the wildtype protein; this 

would present a very different face to the antibodies and could explain why binding to 

B6 , F5 and BIO was affected by this variation. The large number of charged residues on 

the surface of the protein in this area suggests that there is a charge interaction with 

antibodies binding to the surface. This would mean that if the recognition of the 

antibody binding site by the antibody relied on a charge interaction with the surface of 

the protein, the antibody would not recognise the Glu28—»Lys protein as the same 

protein because it has a positively charged area where the wildtype protein had a 

negatively charged area. The positively charged area of the Glu28—>Lys variant could 

potentially repel the antibody. The differences in electrostatic potential between the two 

proteins could also explain the differences in antibody titre to wildtype protein and 

Glu28—>Lys MSP 119  for mice immunised with Glu28—»Lys MSP 11 9 .  This is because 

antibodies that had been made to the area around residue 28 for the Glu28—»Lys 

MSP 119 protein would recognise a positively charged protein surface and therefore may 

be repelled by the negatively charged surface of the wildtype protein. Other areas of the 

wildtype and Glu28-»Lys MSP 119 have a very similar electrostatic potential and 

structure (as shown in the NMR studies in chapter 9), which would suggest that 

antibodies made to the rest of the Glu28->Lys MSP 119 protein would be able to 

recognise and cross-react with wildtype MSP11 9 .
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The electrostatic potential for the wildtype protein could help to explain why the residue 

1 2 , 16 and 17 variants did not show large structural differences and did not affect in 

vivo protection. The Argl2—»Leu variant involved changing an amino acid that is very 

close to residue 28 but it only involved losing a charge and is not found in the middle of 

the positively charged area. The Lysl6 —»Glu variant involved changing from a positive 

to a negative charge but this residue is found in an area of the protein where there are 

few charged residues. This would mean that by changing the charge of this one residue 

it would be unlikely to have a huge affect on the neighbouring uncharged residues 

therefore keeping the structure around it intact. The significant affect that the 

Lysl6 —»Glu variation has on B6  and F5 antibody binding could involve a specific 

charge interaction between the antibody and lysine that would not occur with the 

negatively charged glutamic acid residue. This could also explain why the residue 16 

variant did not have an affect in vivo because antibodies made to the area of the protein 

could potentially cross react with the wildtype protein because the change is very 

localised.

10.4.2 Structural comparison between P. falciparum and P. yoelii

The structural comparison between P. yoelii MSP119 and P. falciparum MSP 119 has 

shown that the overall secondary structural elements are conserved across the species. 

This would agree with the alignment of the amino acid sequences of P. yoelii and P. 

falciparum MSP 119 which shows that the EGF structural motif is conserved across the 

species and the cysteine residues for five out of the six disulphide bonds in P. 

falciparum are conserved in P. yoelii. The differences between the loop regions of the 

proteins could be explained by the differences in sequences of the two proteins as the 

size and charges of the individual amino acids could shape these regions that are not 

held in a defined secondary structure. The electrostatic potential of the P. yoelii and P. 

falciparum MSP 119 protein has shown that although there is overall conservation of the 

backbone structure of the two proteins there is not a conserved pattern of charges on the 

surface of the protein. The differences between the electrostatic potential of the two 

proteins could be explained by the difference in charges of the individual residues that 

make up the proteins.
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The differences between the electrostatic potential of P. yoelii MSP 119 and P. vivax, P. 

cynomolgi and P. knowlesi MSP 119 suggest that the charge distribution on the surface of 

proteins is not conserved and is individual for each protein. This is in agreement with 

the published comparisons between P. falciparum and P. vivax, P. cynomolgi and P. 

knowlesi (Babon et al., 2007, Garman et al., 2003, Pizarro et a l, 2003), which showed 

that the electrostatic potentials of the proteins were different and that this may have 

been due to the low sequence similarity between the proteins.

10.4.3 Comparison of P. yoelii and P. falciparum antibody binding sites

Studies have been carried out by Morgan et al. (Morgan et al., 2005, Morgan et al., 

2004) and Uthaipibull et al. (Uthaipibull et al., 2001) to map the binding sites of P. 

falciparum MSP 119 inhibitory antibodies. These data can be compared to the P. yoelii 

data presented in this thesis to determine whether there is a common area for inhibitory 

antibody binding. Figure 10.6 highlights the residues that affect inhibitory antibody 

binding in P. falciparum from the literature (Morgan et al., 2005, Morgan et al., 2004, 

Uthaipibull et al., 2001) aligned against P. yoelii MSP 11 9 .  This figure shows that 

residue 28 is conserved across the species. Uthaipibull et al. produced a Glu28-»Ile 

variant which was found to affect inhibitory antibody binding (Uthaipibull et al., 2001). 

This was in agreement with the P. yoelii data presented in this thesis for the 

Glu28—»Lys and Glu28->Gln variant. The antibody binding studies imply that residue 

28 is important for inhibitory antibody binding across the species and its conservation 

may be of functional importance. The NMR structure of the Glu28—»Lys P. yoelii 

MSP 119 variant presented in this thesis however suggests that residue 28 plays a vital 

structural role for P. yoelii MSP 11 9 .  This could therefore suggest that residue 28 plays a 

vital structural role across the species because the variation to this residue in P. 

falciparum had a significant affect on antibody binding. The structure of Glu28-»Ile 

from P. falciparum was not solved but it could be predicted from my data that it could 

have a significant structural affect on the protein. Residues 16 and 17 were found to be 

important in antibody binding in this thesis but variations in the equivalent residues by 

Uthaipibull et al. (Uthaipibull et al., 2001) in P. falciparum did not show an important 

role. Residue 16 is not conserved across the species so this may explain the difference
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for this residue. The residues shown to be important by Uthaipibull et al. (Uthaipibull et 

al., 2001 )for inhibitory antibody binding are mapped onto the NMR structure of P. 

yoelii MSP 119 (shown in figure 10.7, panel B). This indicates that the residues identified 

by Uthaipibull et al. (Uthaipibull et al., 2001)to be important for inhibitory antibody 

binding are located close to the residues shown to be important for antibody binding in 

this thesis.

The cross saturation NMR studies of Morgan et al. indicate that one of the interfaces for 

inhibitory antibody binding to P. falciparum MSP 119 lies between residues 16 and 22 

(shown in figure 10.6) (Morgan et al., 2005, Morgan et al., 2004). These data agree with 

the findings in this thesis which indicate that residues 16 and 17 are important for 

antibody binding. Residues 12 and 28 shown in this report to affect antibody binding lie 

outside the areas indicated by Morgan et al. (Morgan et al., 2005, Morgan et al., 2004) 

to affect P. falciparum inhibitory antibody binding but there is a small number of 

residues located around these two residues in the NMR structure of P. yoelii MSP 119 

(shown in figure 10.7, panel C) that do affect inhibitory antibody binding. The epitope 

mapping NMR studies from Morgan et al. (Morgan et al., 2005, Morgan et al., 2004) 

showing that residue 28 does not affects inhibitory antibody binding in P. falciparum 

but the surrounding residues do have an affect could support the structural NMR studies 

carried out in this thesis on P. yoelii MSP 119 which suggested that the variation to 

residue 28 had caused significant structural perturbation and that this structural 

perturbation was responsible for the affect on antibody binding.

The data from Morgan et al. (Morgan et al., 2005, Morgan et al., 2004) and Uthaipibull 

et al. (Uthaipibull et al., 2001) indicate that residues 12, 16, 17 and 28 shown in this 

thesis to affect P. yoelii MSP 119 antibody binding lie within the same area of MSP 119 as 

the residues identified as important for binding in P. falciparum. This suggests that 

there are specific areas that are important for inhibitory antibody binding across the 

species rather than the exact same residues being involved. This could imply that there 

is a common mechanism of action for the inhibitory antibodies across the species.

The identification of a common location for inhibitory antibody binding could be 

important in developing antigens for vaccination to specifically stimulate production of 

inhibitory antibodies. The potential identification of a common mechanism for
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inhibitory antibody action could help direct studies to understand the mechanism of 

action for these antibodies and to develop new therapeutic strategies targeting MSP 119
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Figure 10.6: Alignment of P. yoelii (Py) and P. falciparum  (Pf) MSPI19 highlighting 

the four P. yoelii variants produced in this thesis relative to residues shown to 

affect P. falciparum MSPI19 inhibitory antibody binding.

The residues altered in this thesis are highlighted in pink. The residues shown through 

site directed mutagenesis by Uthaipibull et al. (Uthaipibull et al., 2001) to affect 

inhibitory antibody binding are highlighted in blue. The residues shown through cross 

saturation NMR studies to be in the binding site interface of inhibitory antibodies, 12.8 

and 12.10 by Morgan et al. (Morgan et al., 2005, Morgan et al., 2004)are highlighted in 

green. The residue highlighted in yellow was shown by Uthaipibull et al. (Uthaipibull et 

al., 2001) and Morgan et al. (Morgan et al., 2005, Morgan et al., 2004) to be important 

for inhibitory antibody binding. The alignment is based on figure 3 of Benjamin et al. 

(Benjamin et al., 1999).
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Figure 10.7: Important residues for inhibitory antibody binding in P. falciparum MSPI19 

mapped onto the NMR structure of P. yoelii MSPI19.

A: The locations of the four amino acids changed in P. yoelii are highlighted on the NMR 

structure of P. yoelii MSP 119: Argl2—»Leu is shown in black, Lysl6 —»Glu is shown in cyan, 

Asnl7-»His is shown in purple and Glu28-»Lys is shown in blue.

B: The residues shown through site directed mutagenesis by Uthaipibull et al. (Uthaipibull et 

al., 2001) to affect inhibitory antibody binding are highlighted in orange (in first EGF 

domain) or brown (in second EGF domain).

C: The residues shown through cross saturation NMR studies and chemical shift perturbation 

to be in the binding site interface of inhibitory antibodies 12.8 and 12.10 by Morgan et al 

(Morgan et al, 2005, Morgan et a l, 2004) are highlighted in orange (in first EGF domain) or 

brown (in second EGF domain).

The C-terminal residue is shown in bright pink and the N-terminal residue is shown in light 

pink.
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10.5 Overall implications of this work

The data presented in this thesis could have implications for future research on MSP 119 

in P. yoelii and P. falciparum and for vaccine development involving protein 

engineering. In this thesis, I have shown that by altering a single residue (residue 28) on 

the surface of the protein, it can have a significant effect on the structure of the protein. 

This information is important for engineering proteins for vaccination because single 

amino acid changes are frequently made to proteins to help with large scale expression 

of the protein. For example, glycosylation sites and cleavage sites may be removed.

This work has shown that a surface residue which had been predicted to be unlikely to 

have a large structural effect can affect the structure. The data shows that when making 

small changes to proteins for vaccine development it is vital to confirm that the structure 

remains intact even if the residue appears to be on surface of the protein. The data 

presented in this thesis for the residue 28 variant have also indicated this residue as a 

potential residue for conservation in MSP 119 across the species for structural reasons 

and residue 28 is not part of the published conserved EGF structural motif. These data 

therefore suggest that there may be more structurally conserved residues in MSP 119 and 

identifying these residues will help in determining what changes can be made to 

MSP 119 to alter the immunogenicity for vaccination without altering the structure. It 

also suggests that you could have a residue like residue 28 that appears to be in the area 

of antibody binding that does not change under immune pressure because it plays a 

structurally important role.

The immunisation studies and ELISA antibody titres following immunisation with P. 

yoelii MSP 119 presented in this thesis have shown that antibody titres in mice do not 

necessarily correlate with protection and that the fine specificity of the antibodies is 

more important in determining protection. This has implications for both immunisation 

studies in mice and the immune response to MSP 119 in humans. These data suggest that 

measuring overall antibody titres will not provide an accurate determination of a 

protective immune response to malaria. It suggests that different indicators of protection 

need to be developed in order to test the effectiveness of engineered MSP 119 proteins as 

vaccines.
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The comparison of the antibody binding sites in P. falciparum and P. yoelii MSP 119 has 

suggested a common area for antibody binding across the species. This could help direct 

further research with P. falciparum MSP 119 which could help in the development of 

antigens for vaccination to specifically stimulate the production of inhibitory antibodies. 

The data could also help to target studies to understand the mechanism of action of the 

antibodies to help develop new therapeutic strategies targeting MSP 119.
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10.6 Future Work

The data presented in this thesis have identified important residues for antibody binding 

and a potentially important structural residue and have identified areas of the protein 

that are important in the ability of MSP 119 to provide protection against parasite 

challenge. The data have suggested conservation across the species of important areas 

for antibody binding to the protein. The data have raised questions and indicated future 

research directions to further understanding of antibody binding to MSP 119 across the 

species.

The immunisation studies presented have shown that the fine specificity of the antibody 

response to MSP 119 is important in protection against parasite challenge and that 

immunisation with residue 28 MSP 119 variant proteins does not protect against 

challenge infection. In order to confirm the theory that the important antibodies for 

protection are raised towards the areas of the protein that are altered in the residue 28 

variants passive immunisation studies could be carried out. This would involve passive 

immunisation of mice with the antibodies generated to the residue 28 MSP 119 variant 

proteins and then challenging the mice with P. yoelii YM parasites. If all the antibodies 

that are involved in protection against the parasite are made to the area of the protein 

altered in the residue 28 variant you may expect that the antibodies would not be able to 

bind to the native MSP 119 on the parasite and therefore not give a protective immune 

response.

The 2D 15N-HSQC data for the Glu28->Gln MSP119 variant suggested that it caused 

less structural perturbation than the Glu28—>Lys MSP 119 variant. Further structural 

NMR studies could be carried out to fully understand the structural changes caused by 

the Glu28^Gln variation. This could help to explain why Glu28->Gln MSP 119 

variation causes significant structural perturbation whereas the Argl2—»Leu variation 

which is located in the same area of the protein does not significantly alter the structure.

Transfection studies of the P. yoelii parasite could be carried out to introduce the 

residue 28 variations to examine whether the variations have an affect on the viability of
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the parasite in vivo. If the parasite is viable immunisation studies immunising the mice 

with the Glu28—»Lys MSP 119 variant protein and challenging with the residue 28 

variant parasite could be performed to see if the protein is able to protect against 

homologous parasite challenge.

In this thesis I have focused on antibodies that protect against parasite challenge with P. 

yoelii YM and compared the results to P. falciparum inhibitory antibodies. Assays need 

to be developed to identify if there are inhibitory, blocking and neutral antibodies 

against P. yoelii infection like those that occur in humans following P. falciparum 

malaria infection. If blocking antibodies were identified, the site directed mutagenesis 

and antibody binding study approach that was taken in this thesis could be applied to 

mapping the epitopes for blocking antibodies. Immunisation studies could be carried out 

to determine if it is possible to knock out the binding sites for blocking antibodies while 

maintaining the ability of MSP 119 to protect against parasite challenge.

In order to confirm whether the data gained in this thesis for P. yoelii MSP 119 can be 

translated to P. falciparum the variations to the equivalent residues could be made to P. 

falciparum MSP 119 to see if they affect binding to the inhibitory antibodies. Residue 28 

(residue 26 in P. falciparum) was identified for study in this thesis because it was a 

important residue for P. falciparum inhibitory antibody binding in the site directed 

mutagenesis studies of Uthaipibull et al. (Uthaipibull et al., 2001). However the data I 

have presented in this thesis have suggested that in P. yoelii residue 28 has a vital 

structural role therefore the role of the equivalent residue on the structure of P. 

falciparum should be investigated to examine whether this residue has a conserved 

structural function across the species. This could involve making a P. falciparum 

Glu26—»Lys MSP119 variant and carrying out 2D 15N-HSQC NMR analysis to look for 

any potential structural perturbation and if there was significant structural perturbation, 

3D NMR analysis could be carried out to solve the structure of the variant and identify 

the structural role of the residue.
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