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A b s t r a c t

The in teraural time difference (ITD) between sounds at the two ears is an im portant cue in 

low-frequency sound localisation. Sensitivity to ITD is created in the medial superior olive 

(MSO), where neurons show an ITD-dependent response tuned to some preferred ITD. The 

traditional model of ITD sensitivity suggests th a t this best ITD  arises from a difference in 

the length of projections from the two ears to the MSO. However, recent experiments in 

gerbil MSO instead indicate th a t glycinergic inhibitory mechanisms are responsible for 

establishing a neuron’s best ITD.

This study examined the role of mechanisms thought to underlie the establishment of 

the best ITD and their effects on shape of ITD tuning curves. The predictions of models of 

these mechanisms were then compared to responses to both pure-tone and broadband noise 

stimuli, recorded from binaural nuclei in the midbrain. Asymmetrical responses were 

observed, indicating some frequency-dependence in the mechanisms determining best delay. 

In addition, an envelope-sensitive component to the noise responses was observed at lower 

frequencies than  previously reported.

While the observed asymmetry was qualitatively consistent w ith the effect of carving 

inhibition, the traditional model of ITD sensitivity could not be distinguished from other 

mechanisms capable of introducing frequency-dependent delays. However, this study shows 

th a t mechanisms usually considered only to affect the best ITD, can have profound effects 

on ITD tuning curve shape. These effects can have a strong impact on the functional 

encoding of ITDs beyond the establishm ent of the best ITD.
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1
In t r o d u c t i o n

The theory of sound localisation based on in teraural time differences (ITDs) is founded on a 

central theory (the Jeffress model, Jeffress 1948) th a t has remained unchallenged for over 

50 years. However, recent work in the field has highlighted key failings of the Jeffress 

model, leading to the emergence of a new model of ITD sensitivity. This thesis address the 

extent to which this new model is a departure from the Jeffress model and the extent to 

which is it constitutes a reshaping of the original theory, with new mechanisms fulfilling 

the same functional roles.

1.1 Sound localisation
Unlike vision, the sensory epithelium of the auditory system does not provide an explicit 

representation of spatial location. Rather, the spatial position of sounds m ust be 

reconstructed from various binaural and monaural cues. Monaurally, some sense of the 

front/back and elevational position of sources can be determined from the position of 

spectral notches th a t arise from the directional filtering of the external ear (the pinna). 

However, to obtain a more precise idea of the azimuthal position of a sound, it is necessary 

to combine information from both ears.

The spatial separation of the two ears ensures th a t a sound source will usually be closer 

to one ear than  to the other. Since the head is acoustically opaque, sound m ust diffract 

around the head to in order to reach the more distant ear. Thus, sound arriving a t the more 

d istant ear will arrive delayed and attenuated relative to the sound arriving a t the closer 

ear, producing both an interaural time difference (ITD) and an in teraural level difference 

(ILD) between the stimuli. Although both these cues provide information about the spatial 

location of a source, in practice hum an, and many animal listeners, preferentially use ITDs 

for low-frequency sounds below 1.5 kHz, and ILDs for high-frequency sounds above 1.5 kHz 

(Rayleigh 1907). This arises because low-frequency sounds can easily diffract around the 

head, producing ILDs of only a few decibels, while for high-frequency sounds the head 

produces a more effective acoustic shadow, leading to ILDs of the order of tens of decibels.
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Figure 1.1 The Jeffress model.
Incoming sounds are  encoded into a  train of action potentials that are transmitted to an array of coincidence detector 
neurons (black dots) through a network of delay lines (“secondary fibers”). The difference in axonal path lengths leading 
to different neurons introduces an internal interaural delay. Only the neuron for which the internal delay is equal and 
opposite to the external ITD at the ears will fire, allowing the ITD to be read out from the array. (Figure from Jeffress 
1948).

ILD is therefore a more effective cue at high frequencies while ITD is more effective a t low 

frequencies.

1.2 The Jeffress model
For over 50 years, the working model of low-frequency sound localisation has been the 

Jeffress model (Jeffress 1948). In this model (Figure 1.1), the temporal structures of the 

sounds received at the two ears are encoded as trains of action potentials in secondary 

fibres. These secondary fibres form a network of delay lines projecting to an array of 

coincidence detector neurons, which fire when action potentials from the two sides arrive 

synchronously. The hypothesised delay line structure is such th a t there are differences in 

propagation time for ipsilateral and contralateral inputs, resulting in an internal ITD  

determined by the position of the coincidence detector in the array. For any given 

azimuthal position, only the neuron whose internal delay compensates for the ITD will fire, 

allowing the ITD to be read out from the array. Thus, the model can therefore be broken 

down into four fundamental concepts:

1. The temporal structure of sound is preserved in the firing patterns of the early stages 

of the auditory system.

2. There exist binaural coincidence detector neurons, sensitive to the interaural timing 

of sounds.

3. The input to these neurons is subjected to an internal delay, which arises from a 

systematic network of delay lines.
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4. The ITD is represented by a place code—the location of peak activity in an array of 

detectors.

Simple and elegant, the Jeffress model was formulated a t a time when little was known 

of the physiology of the auditory system, and it became the framework for subsequent 

physiological investigations. To date, the temporal encoding of sound, the capacity of 

certain neurons to act as coincidence detectors, and the presence of internal delays have all 

been dem onstrated in both birds and mammals. However, the evidence regarding other 

aspects of the model is less straightforward. Although studies in birds have dem onstrated 

the existence of a delay line structure, other mechanisms appear to be a t work in the 

mammal. Although psychophysical models using such a Jeffress-like array of detectors 

have successfully explained many aspects of hum an performance, the physiological 

evidence indicates th a t such an array is unlikely to exist. This evidence both for and 

against a neural implementation of the Jeffress model is discussed in the next section.

1.3 The neural origin of ITD sensitivity
Although Jeffress initially rejected the idea (Jeffress 1948), the weight of evidence over the 

last 50 years suggests th a t principal neurons in the medial superior olive (MSO, a nucleus 

in the brainstem ) fulfil the role of the binaural coincidence detector neurons suggested by 

the Jeffress model. However, before discussing the physiology and response properties of 

these neurons th a t lead to this conclusion, it is im portant to have some understanding of 

the anatomy of the brainstem  and the properties of its inputs.

The MSO is composed of two morphologically and physiologically distinct cell types: 

principal neurons, which act as coincidence detectors, and nonprincipal neurons. The 

principal neurons form a thin, parasagittally oriented, planar structure ju s t a few neurons 

thick in the m ediolateral direction. They are bipolar, with contralateral excitatory inputs 

innervating the ir medial dendrites and ipsilateral excitatory inputs innervating their 

lateral dendrites (Figure 1.2). They are also innervated by somatic inhibitory inputs, which 

will be discussed later.

Inputs to the MSO originate in the anterior ventral cochlear nuclei (AVCN). The AVCN 

consists of two groups of neurons, spherical bushy cells (SBCs) and globular bushy cells 

(GBCs). Both these groups of neurons show temporally precise and highly reproducible 

patterns of firing in response to pure-tone stimulation. This property is largely inherited 

from their inputs (auditory nerve fibres), but is often more temporally precise.

Auditory nerve (AN) fibres originate in the cochlea and receive input directly from inner 

hair cells. The firing rate  of these fibres shows a bandpass dependency on sound-frequency 

th a t is a consequence of the mechanics of the basal membrane. The frequency at which a 

response can be evoked a t the lowest sound level is known as the fibre’s characteristic 

frequency (CF); fibres originating from more apical tu rns of the cochlea show lower CFs 

than those originating from more basal turns. This tonotopic organisation is preserved in 

afferent areas all the way up to auditory cortex, producing separate pathways for the

8
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Figure 1.2 The ITD pathway in the mammalian brainstem.
Incoming sounds are filtered by the cochlea and encoded into a train of action potentials within the auditory nerve, which 
then innervates the cochlear nucleus. Bipolar principal neurons in the medial superior olive (MSO), thought to act as 
binaural coincidence detectors, receive spatially segregated excitatory input from the ipsilateral and contralateral SBCs. 
In addition, these neurons also receive bilateral somatic inhibition from the ipsilateral lateral nucleus of the trapezoid 
body (LNTB) and the contralateral medial nucleus of the trapezoid body (MNTB). Both these nuclei receive inputs from 
globular bushy cells (GBCs) in the VCN through large calyceal synapses and show temporally precise patterns of firing. 
Inset, the location of the nuclei in the brain stem (coronal slice): mauve, the auditory nerve and cochlea; blue, trapezoid 
body nuclei; green, medial superior olive. (Figure from Grothe 2003).

processing of different frequencies. Figure 1.2 can therefore be thought of as showing the 

ITD pathway for only one narrow-range of sound frequencies.

1.3.1 The temporal coding of sound
Much of the work on characterising the temporal properties of the auditory periphery was 

performed with pure-tone stimuli (Johnson 1980, Joris et al. 1994a, Joris et al. 1994b). 

Raster plots of auditory nerve responses to pure-tone stimuli (see Figure 1.3c) show a 

highly regular pattern  of firing, with spikes tending to occur a t a particular phase of the 

stimulus. The precision of this phase locking can be measured using the vector-strength 

statistic (Mardia & Jupp 2000), which is zero when the spike times are independent of the 

phase of the stim ulus and one when spikes only occur at a fixed phase. For very low- 

frequency stimuli, the jitte r in spike timing is low relative to the period of the stimulus and 

so the vector strength is high. However, as the frequency of stimulation increases and the 

jitte r becomes larger relative to the period of stimulation, the phase locking deteriorates. 

Thus, the stochastic nature of the fibre is an inherent limit to the precision of phase locking. 

Even so, auditory nerve fibres are highly precise; in the cat, they can show vector strengths 

of 0.85 at frequencies as high as 1 kHz (Johnson 1980).

An arguably more significant contribution to the limit of phase locking comes from the 

inability of inner hair cells to follow high-frequency tones (due to their membrane 

capacitance) which produces a dramatic decrease in vector-strength at higher frequencies.

9



a

2 0 0 -

tr
LU
CD

Trapezoid body : PHL fiber
100-1

1

g
LU
CO
LU
a:o.

c
200 -

!
•} i

i  i  

t  \
i t

1

! *f r.

l l
.>

100-1

* i
■ t /•

10 15 20 25 150

Vi

/ » : 
% s

V *, 
* .  }

U i _£_U

/, ✓J

Auditory nerve fiber

<c
i
•V
)

•Iv:
i

160 170 180 190 200 210

POST STIMULUS TIME (ms)

Figure 1.3 Dot rasters of responses of neurons in the peripheral auditory system of the cat.
R esponses to pure tone (a, c) and broadband noise (b, d) stimuli for a trapezoid body fibre originating in the AVCN (top) 
and an auditory nerve fibre (bottom). CF, threshold and spontaneous rate were 350 Hz, 23 dBSpL, and 90 sp s~1 (top) 
and 379 Hz, 39 dBSpL, and 57 sp s~1 (bottom). Sound levels (dBSpi.) were: a, 40; b, 60; c, 60; d, 80. Note that the firing 
times are regular and highly reproducible, especially in the trapezoid body fibre. (Figure from Louage et al. 2004).

However, if high-frequency tones are amplitude modulated (AM), inner hair cells can follow 

the envelope of such stimuli. Thus, while high-CF auditory nerve fibres do not phase lock to 

high-frequency tones they show highly precise phase locking to the low-frequency envelopes 

of AM stimuli (Joris & Yin 1992).

Surprisingly, a t the lowest stimulus frequencies, both spherical and globular bushy cells 

in the AVCN are even more temporally precise than the AN (Figure 1.3a). In the cat, 

neurons in the AVCN show vector strengths of over 0.9 for frequencies below 500 Hz, with 

the lowest frequencies reaching vector strengths as high as 0.98—much higher than the 

vector strengths observed in the auditory nerve (Joris et al. 1994a). Another difference is 

tha t the probability of evoking a spike on any given cycle of the stimulus (the entrainment) 

is vastly improved in AVCN. In the cat, the maximum entrainm ent is around one for 

frequencies below 600 Hz, with one spike occurring on every cycle of the stimulus. This 

means tha t the firing rate in these neurons is determined by sound-frequency, increasing 

up to an incredible 600 sp s-1. The entrainm ent in auditory nerve fibres is lower and 

decreases with increasing sound frequency, producing a constant firing rate of around 

250 sp s_1 (Joris et al. 1994a). This improvement in precision and firing probability is 

hypothesised to result from monaural coincidence detection across several auditory nerve 

fibre inputs to the AVCN neuron: highly correlated inputs dominate the firing of the neuron, 

causing rare high-jitter spikes and uncorrelated spontaneous spikes to be ignored (Joris et 

al. 1994a).
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Figure 1.4 Tone-delay function (solid line) recorded from cat MSO.
The number of coincidences varies as the stimuli move in and out of phase. Since the stimuli are periodic, the tuning 
curve is also periodic at the sam e frequency as the stimulating tone (1 kHz). Note that the firing rate can drop below the 
sum of the contralateral and ipsilateral monaural responses (arrows labelled C and I) indicating an inhibitory influence at 
these ITDs. The variation of the vector strength of phase locking to the stimulation frequency (triangles), and the 
spontaneous rate of the neuron (dotted line) are also shown. (Figure from Yin & Chan 1990).

It is clear, therefore, that bushy cells of the AVCN provide precise, reliable, and 

reproducible patterns of input to the MSO—a firm basis for the processing of interaural 

timing differences.

1.3.2 The medial superior olive
Very few in vivo recordings have been obtained from the MSO. Location of the nucleus is 

hampered by its thinness but, even when located, isolation of single neurons proves difficult. 

This has been suggested (Yin & Chan 1990) to be due to a low signal-to-noise ratio arising 

from a combination of strong evoked potentials tha t are highly correlated with the signal of 

interest, and a weak somatic contribution to the action potential (resulting in a weak 

extracellular signal). Recent in vitro recordings in the gerbil confirm tha t the action 

potential recorded a t the soma is weak (10 mV amplitude), suggesting tha t the site of action 

potential initiation is axonally located and tha t back-propagation to the soma is strongly 

attenuated (Scott et al. 2005). However, existing in vivo recordings do offer convincing 

evidence of the role of these neurons as the Jeffress binaural coincidence detectors.

The tone-delay function is a tuning curve recorded by plotting a neuron’s firing rate as a 

function of the interaural time difference (ITD)1’2 of a binaurally presented pure-tone 

stimulus. Figure 1.4 shows a tone-delay function for a low-frequency neuron recorded in 

MSO. As explained in the previous section, the monaural input in response to such a 

stimulus is a train  of action potentials with ISIs distributed around multiples of the period 

of the stimulus. As the stimuli a t each ear move in and out of phase with each other, the 

chance of two spikes being close enough to be considered coincident varies. Tone-delay 

functions recorded in MSO reflect this variation in correlation between input spike trains, 

suggesting th a t they do indeed act as coincidence detectors. Since the response will be 

maximal when ipsilateral and contralateral inputs arrive synchronously, any shift in this

1 Also referred to as the interaural phase difference (IPD) when pure-tone stimuli are used.
2 By convention, positive delays denote a contralateral lead and an ipsilateral lag.
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best ITD3 away from zero indicates th a t an external ITD is required to compensate for an 

internal delay and bring the inputs into register. Experiments in the dog (Goldberg & 

Brown 1969), kangaroo ra t (Moushegian et al. 1975, Crow et al. 1978), cat (Yin & Chan 

1990), rabbit (Batra et al. 1997) and Mongolian gerbil (Spitzer & Semple 1995, Brand et al. 

2002) all show a deviation of best ITD away from zero, supporting the existence of internal 

delays as suggested by Jeffress. Furtherm ore, as expected, the best ITD can be predicted 

from the difference between the phases of phase locking under monaural stimulation 

(Goldberg & Brown 1969, Yin & Chan 1990). The response of MSO neurons to noise and a 

wealth of data recorded in neurons afferent to the MSO are also consistent with the 

coincidence detector interpretation.

The ability of principal neurons in the MSO to act as coincidence detectors is a 

consequence of a low-threshold voltage-activated potassium -current (I k<lva)), which reduces 

the time-window during which the neurons can integrate their inputs (Smith 1995, Scott et 

al. 2005). The role of this potassium current in improving coincidence detection has been 

the subject of several theoretical and experimental studies (Rothman et al. 1993, Rothman 

& Manis 2003c, Svirskis et al. 2004, Slee et al. 2005). Passively, the increased tonic 

conductance a t rest lowers the membrane time constant of the neuron, producing much 

briefer excitatory postsynaptic potentials (EPSP). This is enhanced by the active opening of 

the potassium-channels in response to depolarisation, which inhibits the excitatory input. 

In order for the neuron to spike, it m ust depolarise quickly—if the depolarisation is too slow, 

it will be inhibited by the potassium current and the neuron will be prevented from 

reaching threshold. Only if the rate of depolarisation is faster than the activation kinetics of 

the potassium channel can the neuron spike before the channels open. This has the 

consequence th a t two EPSPs have a much greater chance of evoking an action potential 

when they are coincident than when they are not.

1.3.3 The lateral superior olive

In addition to the MSO, a second brainstem  nucleus shows ITD-dependent variations in 

neuronal firing rates. The lateral superior olive (LSO) receives ipsilateral excitation via the 

ipsilateral AVCN and contralateral inhibition via the ipsilateral MNTB (which is driven by 

the contralateral AVCN). LSO neurons are sensitive to ILDs and are normally considered 

to form part of the ILD-processing pathway. However, at low frequencies, LSO neurons can 

be considered anti-coincidence detectors, with tuning curves th a t resemble an inverted 

version of those in MSO (Spitzer & Semple 1995, B atra et al. 1997, Tollin & Yin 2005)— 

synchronous activation of the inhibitory and excitatory inputs decreases the firing rate 

while antiphasic activation of the inputs increases the firing rate. Neurons in LSO also 

show high expression of I k(lva> (Barnes-Davies et al. 2004) and it is likely tha t similar 

membrane properties to those of the MSO shape their response.

3 Also referred to as best IPD  when pure-tone stimuli are used.

12



1.3.4 Delay lines and inhibition

The strongest evidence for the existence of delay lines comes from studies in the bird. 

Horseradish peroxidise staining of the axon-fibre tracts from nucleus magnocellularis (NM, 

the avian homologue of the AVCN) reveals a delay-line like structure in the contralateral 

projections to the ipsilateral nucleus laminaris (NL, the homologue of MSO) for both chick 

(Young & Rubel 1983) and barn owl (Carr & Konishi 1990). Single NM neurons innervate 

both ipsilateral and contralateral neurons along the whole length of both NLs; while the 

ipsilateral projections show little systematic variation in path-length, the projection to the 

contralateral NL is shorter for more medial NL neurons than for more ventral NL neurons 

(the NL is oriented paracoronally). Furtherm ore, both in vivo recordings from NL in the 

barn owl (Carr & Konishi 1990), and in vitro recordings from NL in the chick (Overholt et 

al. 1992), show a systematic variation in the latencies of inputs along the length of NL 

consistent with the observed delay-line structure.

However, evidence from in vivo recordings in the gerbil MSO casts doubt upon the 

functional relevance of any such network of delay lines in mammals. Iontophoretic 

application of strychnine (a glycine receptor antagonist) during recording produces an ITD- 

dependent increase in firing rate. This has the consequence of shifting the ITD producing 

the peak firing ra te  to around 0 ps (Brand et al. 2002), suggesting th a t any internal delay 

arises chiefly from the action of inhibitory inputs to the neuron and not from the axonal 

delay lines suggested by the Jeffress model. Anatomical evidence for a delay-line structure 

in the mammal is weak, with some level of rostrocaudal difference in path-length for some 

neurons in the cat MSO (Smith et al. 1993, Beckius et al. 1999). While some rostrocaudal 

variation in best ITD has been reported from tuning curves recorded from cat MSO (Yin & 

Chan 1990), the subsequent finding tha t the CF of a neuron and its best ITD are correlated 

(see next section) raises the possibility th a t this may be an artefact resulting from a 

difference in the sampling of CF along this axis. Given th a t fossil evidence shows the 

independent evolution of tympanic ears in the ancestors of frogs, birds and mammals 

(Clack 1997), it is not surprising th a t mammals and birds could have evolved different 

mechanisms for the establishment of internal delays.

The MSO receives inhibitory input from both the ipsilateral lateral nucleus of the 

trapezoid body (LNTB) and the ipsilateral medial nucleus of the trapezoid body (MNTB). 

The inhibition is binaural in origin since the LNTB receives input from the ipsilateral 

AVCN and the MNTB receives input from the contralateral AVCN (Grothe & Sanes 1993, 

Grothe & Sanes 1994; see Figure 1.2). Both nuclei have similar specialisations to those in 

the AVCN, with heavily myelinated axons and receiving large high-fidelity calyceal 

synapses. Low-CF neurons in both the LNTB and the MNTB show a phase-locked pattern 

of firing in response to tonal stimulation (Tsuchitani 1977, Smith et al. 1998), with the 

MNTB further improving phase-locking above the already impressive level shown by the 

AVCN (Kopp-Scheinpflug et al. 2003). The inhibitory input to MSO is therefore likely to be 

phase-locked.
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It was previously hypothesised th a t this inhibition may be out-of-phase (phase locked at 

a different phase to the excitatory inputs), due to the fact th a t minima in MSO tone-delay 

functions often fell below the level of the response to monaural stimulation (Goldberg & 

Brown 1969, Yin & Chan 1990; see Figure 1.4 for an example). However, this situation can 

also arise from excitatory inputs in antiphase producing larger low-threshold potassium 

currents than m onaural stimulation alone (Reyes et al. 1996). That the inhibitory input in 

the mammal is out-of-phase has been demonstrated by intracellular recordings in the gerbil 

brain slice (Grothe & Sanes 1994). By stim ulating incoming fibres both lateral and medial 

to MSO, both excitatory and inhibitory pathways are simultaneously activated, allowing an 

ITD between inputs to be simulated. Application of strychnine reveals a glycinergic 

inhibitory wake after both the ipsilateral and contralateral excitation; this wake is in part 

responsible for the observed out-of-phase inhibition. Despite possible differences in the 

relative timing of excitatory and inhibitory produced by electrical stim ulation as opposed to 

acoustic stim ulation, the time course of the spontaneous inhibitory postsynaptic currents 

(sIPSCs) is slower than  tha t of spontaneous EPSC currents (Magnusson et al. 2005), 

suggesting th a t a glycinergic contribution to out-of-phase inhibition will inevitably exist.

Although it has previously been hypothesised th a t the inhibitory inputs might play a 

role in the determ ination of the tuning in MSO neurons (Batra et al. 1997), there is little 

direct evidence to support a mechanism by which they might do so. Tantalisingly, there is 

evidence from the gerbil tha t the distribution of glycine receptors is essential to this 

mechanism. Before hearing onset, glycine receptors are distributed over both the soma and 

the dendrites of the MSO neurons. However, shortly after hearing onset, there is a critical 

period during which the expression of glycine receptors is refined solely to the soma. If an 

animal is continually exposed to omnidirectional white noise during this critical period, this 

refinement of expression can be blocked (Kapfer et al. 2002). Juvenile animals, and noise- 

reared anim als for whom this refinement is blocked, have longer IPSC time courses 

(Magnusson et al. 2005), and the tuning curves of neurons in the dorsal nucleus of the 

lateral lemniscus4 (DNLL) of these animals have best ITDs around zero (Seidl & Grothe 

2005). There is, therefore, strong evidence th a t the somatic segregation of the inhibitory 

inputs is necessary for the determination of the internal delays observed in vivo. However, 

the exact mechanism by which inhibition shifts the tuning curves is unknown.

1.3.5 The neural representation of ITD

That ITD should be encoded by the peak-firing neuron (or group of neurons) with a 

particular in ternal delay does not intuitively appear to be an ideal code. Neurons in MSO 

are broadly tuned, and respond strongly to ITDs slightly off their best ITD (Figure 1.4). 

Thus, there will not be a single neuron firing in each frequency lam ina while all others are 

silent (as suggested in the Jeffress model), but ra ther a distribution of firing rates across

4 An area that receives direct excitatory input from the ipsilateral MSO and shows similar tuning curves. It is 
therefore used as a proxy through which to observe ITD sensitivity.
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Figure 1.5 Distribution of the magnitude of best ITD in guinea pig inferior colliculus.
The best ITD w as obtained using interaurally time-delayed broadband noise a s  a function of characteristic frequency. 
Both peak-type (filled circles) and trough-type neurons (empty circles) are shown. Note that lower-frequency neurons 
have larger best ITDs than high-frequency neurons, showing peaks outside the physiological range of ITDs (±150 ps, 
dashed line). (Figure from McAlpine et al. 2001).

the whole array of coincidence detectors. The intrinsic noisiness of neural firing rates will 

therefore make it difficult to confidently identify the peak-firing neuron and thereby the 

ITD. A coarse estim ate of the peak firing neuron would of course be possible, and could be 

improved by sacrificing a portion of the limited resources available. For example, taking 

more time to reach a decision, or pooling neurons with the same ITD would allow the 

intrinsic noise to be averaged out and the maximum firing neuron more accurately 

determined. However, limiting resources in this way would involves a trade-off: taking 

longer to decide may lower reaction time, while pooling neurons may lead to some ITDs 

being underrepresented or more coarsely resolved.

The strongest evidence against the local coding hypothesis of the Jeffress model is the 

scarcity of low-CF neurons tuned to low ITDs. Although it is reportedly difficult to record 

single-neuron responses in the MSO, recordings can easily be obtained from the inferior 

colliculus (IC), a nucleus tha t receives direct excitatory input from the ipsilateral MSO, and 

so is often used as a proxy. The internal delay of a neuron can be unambiguously 

determined from its tuning curve recorded in response to interaurally  time-delayed 

broadband noise stimuli (the noise-delay function), since it shows only a single maximum at 

a single ITD. From a large number of such tuning curves recorded from guinea pig IC, 

McAlpine et al. found tha t the best ITD of a neuron (and therefore it’s internal delay) was 

correlated with the neuron’s CF, such th a t the best ITD was around an eighth of the period 

of the neuron’s CF (0.125 eye re CF5, Figure 1.5, McAlpine et al. 2001). This finding has 

been replicated in the IC of the cat (Hancock & Delgutte 2004) and for the best ITDs of tone 

responses recorded a t CF in the DNLL and MSO of the gerbil (Seidl & Grothe 2005, Siveke 

et al. 2006, Brand et al. 2002).

The range of ITDs experienced by an animal is constrained to a narrow physiological 

range th a t is dependent on head-width (gerbil, 120 ps; guinea pig, 150 ps; human, 650 ps); 

ITDs outside of this range are rarely experienced. A direct consequence of the CF

5 Where 1 eye re CF is an amount of time equivalent to the period of the characteristic frequency of the neuron. 
Thus for a neuron with a CF of 500 Hz, a range of 0.125 eye re CF corresponds to 250 ps.
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dependence of the internal delay is tha t the lowest CF neurons are tuned to ITDs outside 

this physiological range. If the system were to use a place code as suggested by Jeffress, 

then such neurons outside the range would be largely useless. Instead, based on the 

observation th a t the steepest slopes of the tuning curves were distributed around zero, 

McAlpine et al. suggested a balance model of ITD sensitivity (McAlpine et al. 2001) where 

the ITD is represented by the relative firing rates of the ipsilateral MSO (coding 

contralateral space) and the contralateral MSO (coding ipsilateral space).

The accuracy with which recorded tuning curves can be used to encode stimuli can be 

addressed with signal detection theory (Green & Swets 1974). By examining the responses 

of a neuron to two stimuli with different ITDs, signal detection theory can be used to 

calculate the probability tha t an ideal observer could use the neuron to correctly 

discriminate these two ITDs. Repeating this for a range of ITDs around a reference ITD 

allows prediction of the ju s t noticeable difference (JND)—the smallest change in ITD from 

the reference th a t can be correctly discriminated 75% of the time. This predicted JND can 

then be compared to the JNDs m easured from psychophysical experiments. Using 

responses recorded from the IC of unanaesthetised rabbit, Fitzpatrick et al. tested the 

JNDs predicted by the Jeffress model (Fitzpatrick et al. 1997). In order to produce JNDs 

similar those exhibited by humans, it was necessary to estim ate ITD using a pool of at least 

40 neurons. It was im portant th a t these neurons were chosen so tha t they uniformly 

sampled the entire range of best ITDs; if chosen randomly, the dearth of low-best ITD 

neurons would have been expected to result in poor JNDs around zero ITD—the very range 

at which ITD acuity is greatest (Mossop & Culling 1998). Furtherm ore, the large pool size 

reduced the uncertainty introduced by the broad tuning-width of neurons discussed earlier. 

Thus, for a place-code similar to th a t suggested by Jeffress to produce low JNDs, it is 

necessary not only to average over a large number of neurons, but also to artificially choose 

them so as to undersam ple the neurons with high best ITDs.

Alternatively, it has been shown th a t similar JNDs can resu lt from the tuning curves of 

single neurons when signal detection theory is applied directly to the difference in firing 

rate for two ITDs (Skottun 1998). This is a consequence of the fact th a t since the slopes of 

tuning curves pass through zero, a small change in ITD produces a large difference in firing 

rate. Applying th is method to single-neuron responses to pure-tone stimuli predicts the 

decrease in JND with stimulus frequency observed in hum ans, and shows th a t the lowest 

JNDs predicted from single neurons (in guinea pig) are comparable with those 

psychophysically m easured for humans (Skottun et al. 2001, Shackleton et al. 2003). This 

indicates th a t hum an performance can be explained by the acuity of single neurons, 

without the need for any pooling.

The maximally coding part of the tuning curve is not around best ITD, but ra ther where 

the gradient of the tuning curve is steep and the noise is low. The distribution of best ITD 

th a t results in the optimal representation (the one that, assuming an ideal observer, 

produces the lowest error in the estimated ITD) is therefore one th a t results in the

16



physiological range being tiled by the slopes of the functions. Where the physiological range 

is narrow relative to the period of the tone stimulus, the optimal distribution of best ITDs is 

formed by two discrete distributions at around ±0.125 eye re CF. At higher frequencies, 

where the physiological range is broad relative to the period of the stimulus, a uniform 

distribution of best ITDs is optimal (Harper & McAlpine 2004). Thus, the optimal 

distribution for any particular animal is dependent on the physiological range (i.e. the 

head-width of the animal) and the range of frequencies over which the animal is sensitive 

to ITDs (i.e. the upper limit on phase locking). Such a finding explains the apparent 

dichotomy between the bimodal distribution of best ITDs seen in the guinea pig (which can 

only phase-lock up to around 1 kHz) and the uniform distribution seen in the barn owl 

(which can phase-lock up to 10 kHz, Wagner et al. 2002).

1.4 Summary
The traditional model of ITD sensitivity was developed by Jeffress in 1948, and a large body 

of evidence supports the existence of the precise temporal coding of sound, and coincidence 

detectors sensitive to microsecond-scale timing-differences. However, in the last decade or 

so, doubts have arisen as to the origin of the internal delays observed in these neurons, and 

the way in which ITD is encoded by the distribution of these internal delays across the 

neural population. The emerging new model of ITD sensitivity uses inhibitory input to the 

MSO to set up two separate populations of neurons with best delays distributed roughly 

around ±0.125 eye re CF. Such an arrangem ent of best ITDs is determined in an 

experience-dependent manner, and is optimal for the commonly experienced range of ITDs. 

An im portant outstanding problem is to relate these findings by investigating the 

mechanism through which the inhibition determines the best delay, and how this might 

affect the coding of ITD.
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2
M e t h o d s

2.1 Surgical procedure
Young-adult pigmented guinea pigs (Cavia porcella) with body masses ranging from 0.3 kg 

to 0.7 kg were anesthetised with an intraperitoneal injection of urethane (1.0 g kgp1 in 25% 

solution of NaCl; Sigma-Aldrich, Poole, UK), and analgesia was induced with a 0.1 ml 

intram uscular injection of Hypnorm (0.315 mg ml-1 fentanyl citrate and 10 mg ml-1 

fluanosine; Janssen-C ilag  Ltd., High Wycombe, UK). Anaesthesia was monitored 

throughout the experiment via the withdrawal reflex, and was maintained with 

supplem entary 0.1 ml doses of Hypnorm as required. Atropine sulphate (0.1 ml; Animalcare 

Ltd., York, UK) was administered subcutaneously to reduce fluid secretion. On completion 

of an experiment, animals were killed with 2 ml Pentoject (sodium pentobarbitone, 

Animalcare Ltd.).

Guinea pigs were shaved around the ears, top of head, and throat, and administered 

subcutaneous injections of lignocaine hydrochloride (2%, M artindale Pharmaceuticals, 

Romford, UK) in these areas. The ear canals were visualised by sectioning the tragi, and 

cleared of any debris. A tracheotomy was performed to m aintain airway patency, and the 

animal was positioned in a stereotaxic apparatus, housed in a sound attenuating chamber 

(IAC, Winchester, UK). Custom-made ear bars allowed positioning of the animal within the 

restrain t so th a t the tympanic membrane could be clearly visualised. A homoeothermic 

blanket was used to m aintain body tem perature a t 36 °C and a pump was available to 

provide respiration if required. The skull was levelled stereotaxically, and middle ear 

pressure was m aintained throughout the experiment by ventilating the bullae through 

small cannulae th a t were sealed into the bullae with petroleum jelly. In some animals, the 

posterior fossa was vented to reduce brain pulsation.

A craniotomy above the location of the right IC or the right DNLL was performed, and 

the dura overlying the cortex removed. A warm 4% agar solution was placed over the 

craniotomy and allowed to cool. This reduced brain pulsing, and protected the cortical 

surface from desiccation. An electrode was stereotaxically positioned in the brain above the 

site of either the IC or the DNLL. Either glass-coated tungsten electrodes (manufactured
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in-house) or parylene-coated tungsten electrodes (World Precision Instrum ents, Stevenage, 

UK) were used. A brass screw, positioned in the cortex, approximately 10 mm anterior and 

5 mm contralateral to the recording site, was used as a ground reference.

2.2 Experimental apparatus

2.2.1 Sound delivery and calibration

Acoustic stimuli were delivered via the ear bars using Beyerdynamic DT48 audiological 

speaker transducers (Beyerdynamic, Burgess Hill, UK). Small audiological microphones 

(Knowles FG-series, Knowles Europe, Burgess Hill, UK) were connected to the ear bar 

channels, 1 mm to 2 mm from the tympanic membrane, by high impedance tubing. The 

impulse response of these microphones had been previously calibrated with respect to the 

output of the speakers using a high quality V s"  microphone (Type 4138, Briiel and Kjaer, 

Stevenage, UK), V2" preamplifier (Type 2669, Briiel and Kjaer) and m easurem ent amplifier 

(Type 2610, Briiel and Kjaer). On completion of surgery, it was possible to check the transfer 

function of the system and thereby assess the quality of acoustic coupling. In all 

experiments, the gain of the transfer function was flat to w ithin ±3 dB over the frequency 

range 0.05 to 2 kHz. No significant interaural phase or level differences arising from the 

different transfer functions were observed at any of the frequencies presented in this study.

Sound signal construction was originally performed on TDT System 2 hardware (Tucker- 

Davis Technologies, Alachua, FL, USA), and stimulus generation, stimulus presentation, 

and data collection was performed using software written by Trevor Shackleton (MRC-IHR, 

Nottingham, UK). Later experiments were performed using TDT System 3 hardware 

(Tucker-Davis Technologies), stimulus presentation and data collection were controlled by 

the Brainware program (Jan Schnupp, University of Oxford, UK). Stimulus generation was 

performed using Matlab (The Mathworks, Cambridge, UK), via a Brainware interface 

programmed in Delphi (Borland, Twyford, UK) by the author. Under both systems, all 

stimuli were generated digitally and loaded onto a digital to analogue converter (DAC). 

Stimuli were output a t the maximum possible gain of the DAC and digitally controlled 

analogue attenuators were used to set the sound intensity to th a t required. All stimuli were 

checked in both the spectral and temporal domains before experimentation using a SR780 

spectrum analyser (Stanford Research Systems, Sunnyvale, CA). Stimulus presentation 

and data collection were synchronously triggered via a TTL pulse from the controller 

computer.

2.2.2 Neural recordings

All recorded signals were preamplified using a Medusa preamp and RA16 base station 

(Tucker-Davis Technologies) which 16 bit quantised the signal a t a 25 kHz sampling rate. 

Signals were then filtered and monitored both aurally (over a speaker) and visually (on an 

oscilloscope). In experiments conducted using the System 2 setup, signals were digitally
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highpass filtered at 300 Hz and lowpass filtered a t 10 kHz (on the RA16). Filters were 

implemented using second-order Butterworth filters with 3 dB bandwidths of 10 Hz. An 

analogue filter (PCI, Tucker-Davies Technologies) was then used to highpass filter at

4.5 kHz. In experiments conducted using the System 3 setup, all filtering was performed on 

the RA16; spike trains were highpass filtered a t 300 Hz and lowpass filtered a t 6 kHz.

2.3 Recording procedure

2.3.1 Isolating single neurons

Auditory areas were easily identified by presenting repeated search stimuli while 

advancing the electrode through the brain. Two search stimuli were used: either a pure 

tone (50 ms duration), or a broadband noise stim ulus (50 ms duration, 0.05 to 50 kHz 

bandwidth). Both were presented diotically. Brain regions sensitive to the search stimulus 

could be detected from the sound of evoked potentials locked in to the presentation period of 

the search stimulus. Varying the frequency of a search tone allowed the characteristic 

frequency of the area to be determined, and the electrode was advanced slowly until single 

neurons could be isolated. For the System 2 setup, putative action potentials were recorded 

when the first derivative of the recorded voltage trace passed a specified trigger level. For 

the System 3 setup, putative action potentials were isolated in Brainware based on a 

tem plate m atch to the voltage waveform, defined by a negative threshold crossing, a 

positive threshold crossing, and the time between the negative threshold crossing and the 

peak of the waveform. All putative action potentials were isolated from the voltage trace 

and displayed on a separate oscilloscope, in order to allow confirmation of the presence (or 

absence) of a single-neuron, based on the spike-shape. As a further precaution, the presence 

of a refractory period was verified from autocorrelograms of recorded spike trains. Isolated 

action potentials were monitored throughout the recording; whenever the signal-to-noise 

ratio did not enable clear discrimination of single neurons, the recording was abandoned.

2.3.2 Characterising auditory neurons

The characteristic frequency (CF) of a neuron was defined as the frequency of the pure-tone 

stim ulus a t the lowest sound level able to produce a detectable (audio-visual) change in 

discharge ra te  above spontaneous levels. The threshold of the neuron was defined as this 

minimum sound level. A response-area plot (RSP) was then recorded for the neuron by 

recording the firing rate of the neuron in response to a series of diotically presented tone 

bursts (50 ms duration) th a t covered a range of frequencies and sound levels. Tone bursts 

ranged from 4 octaves below CF to 2 octaves above CF with 4 tones per octave frequency 

sampling, and sound levels covering the range 10 to 100 dBsPL in 5 dBsPL steps. A typical 

response area for an IC neuron can be seen in Figure 2.1. The response of the neuron to 

ipsilateral, contralateral and diotic tone bursts a t CF (50 ms duration, 150 repetitions, 

20 dB above threshold) was also recorded. The latency of the neuron could then be
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Figure 2.1 Example of a response area plot from a neuron in IC.
Colour indicates firing rate (in sp s '1). The CF (442 Hz) and threshold (35 dBsPL) are indicated by a white cross.

determined as the shortest time it took for the neuron to respond to these stimuli, and the 

strength of phase locking of the neuron to CF could be determined for all three cases. 

Finally, the response to a binaural beat stimulus was recorded by presenting a tone a t CF 

to the ipsilateral (to the recording site) ear, and a tone burst 1 Hz above CF to the 

contralateral ear (3 s duration, 10 repetitions, 20 dB above threshold). This was equivalent 

to modulating the interaural phase of a CF tone at a rate of 1 Hz. If the recorded response 

did not appear to be ITD sensitive, the recording was abandoned. All spike isolation and 

characterisation of neurons was performed using the System 2 setup.

2.3.3 Stereotaxic and physiological identification of nuclei

Since the central nucleus of the inferior colliculus is large and unambiguous, precise 

stereotaxic measurements were not always necessary; however, for twelve animals, careful 

stereotaxic coordinates were recorded in order to allow comparison with other nuclei. Low- 

frequency neurons (CF <1.5 kHz) in the IC were found at a mean location 2.5 ± 0.05 mm 

(± SEM) lateral and 0.2 ± 0.08 mm rostral of bregma. Neurons were found at a range of 

depths from 1.8 to 3.8 mm (2.7 ±0.11 mm), relative to a point 8 mm below a calibration 

point attached to the ear-bars (approximately the level of the surface of the cortex). Low- 

frequency neurons in the DNLL were recorded from nine animals, at a mean location

3.1 ± 0.04 mm lateral of bregma, and 0.1 ± 0.06 mm rostral of bregma, at a range of depths 

from around 4.1 to 7.1 mm (5.3 ± 0.13 mm, interquartile range). The wide range of neuronal 

depths was most likely a consequence of developmental variations in head size, since the 

mean depth of DNLL neurons in each animal was strongly correlated with body mass 

(r = 0.87, P<  0.001, Pearson’s correlation coefficient), with the DNLL located more 

ventrally for larger animals. No such correlation was observed for IC (P  = 0.88, Pearson’s 

correlation coefficient). The body masses of the animals used in the DNLL study varied 

from 0.27 kg to 0.53 kg (median 0.34 kg), while the body mass of the animals in the IC 

study varied from 0.32 kg to 0.75 kg (median 0.49 kg). Consequently, the apparent
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Figure 2.2 Depth of DNLL and IC neurons recorded in this study
The depth below the surface of the cortex of low-frequency neurons (CF ^  1.5 kHz) recorded from the IC (red crosses) 
and the DNLL (blue circles), as  a function of the body m ass of the animal. Note that while, the depth of the IC is 
relatively independent of body mass, the DNLL was located increasingly ventrally as the animal developed.

dorsoventral proximity of the two nuclei was likely to be a consequence of the differing 

range of head sizes in the two groups (Figure 2.2).

The dorsal approach used in this study made it possible to observe the tonotopic 

gradient in IC using pure-tone search stimuli. Both the CF of single neurons and the 

frequency to which the evoked potentials in IC showed the greatest response increased 

towards higher frequencies at deeper levels. The transition out of the IC and into the 

lateral lemniscus could be identified from the absence of any action potentials and the 

increased strength of the evoked potentials. The frequency to which the evoked potentials 

showed the strongest response was initially high, decreasing ventrally towards the low- 

frequency area of DNLL, and increasing again below the level of the DNLL. On most 

penetrations, the lemniscus was interrupted by a large non-auditory area. The DNLL was 

observed to be distinct from other nuclei, with large, triphasic action potentials, which were 

easily isolated from the background evoked activity of the lemniscus.

The location of the nucleus determined in this study corresponds to an area th a t has 

previously been histologically verified to be the DNLL (Dr SE Boehnke and Prof D 

McAlpine, unpublished data). In term s of their response properties, DNLL neurons showed 

shorter latencies, sharper phase locking, and narrower frequency tuning curves in response 

to pure-tone stim ulation than neurons in IC with comparable CFs. Neurons in the VNLL 

were easily distinguished from those in the DNLL by their high threshold and preference 

for broadband stimuli. Thus, in term s of both anatomical location and physiological 

properties, the DNLL could be easily distinguished from other nuclei with a high level of 

confidence.

2.4 Stimuli

2.4.1 Tone-delay functions

Tone-delay functions were generated (using the System 2 setup) by varying the interaural 

phase difference between binaurally presented pure-tone stimuli. Stimuli were presented at
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Figure 2.3 A rate-intensity function obtained from IC using uncorrelated noise stimuli.
The threshold of this neuron to pure-tone stimulation at its CF (708 Hz) was 30 dBsPL- R esponses could be evoked at 
lower spectral levels because of the broader range of spectral content of the noise stimulus. Noise stimuli for this neuron 
were presented at a  spectral level of 15 dBspu in order to obtain the most linear response.

100 kHz sampling rate, and were 50 ms long, with 2 ms ramped-cosine onsets/offsets, and a 

minimum inter-stim ulus interval of 150 ms. Tone bursts were presented at characteristic 

frequency and a t a level 20 dB above threshold. The IPD was varied between ±1.5 eye and 

the resultant firing rate on each presentation recorded. The complete set of IPDs was 

repeated 10 times, in a different pseudorandom order on each repeat.

2.4.2 Noise-delay functions

System 3
The majority of noise-delay functions presented in this thesis were generated using the 

System 3 setup. Noise bursts of 300 ms duration were generated digitally at a sampling 

rate of 50 kHz via the inverse Fourier transform. The power spectrum of each noise burst 

was flat, covering a frequency range from 50 Hz to 5 kHz, while the phase spectrum was 

pseudorandomly distributed from a uniform circular distribution. Stimuli were gated with a 

5 ms ramped-cosine window before presentation. Windows were triggered synchronously to 

ensure th a t there were no onset time differences between ipsilateral and contralateral 

stimuli. For each presentation, a new sample of noise was generated and presented 

ipsilaterally (the right ear). The contralateral (left ear) stimulus was formed by time 

delaying the ipsilateral noise stimulus for a range of ITDs from -1.5 to +1.5 eye re CF. The 

complete set of ITDs was repeated 10 times using a fresh sample of noise for each 

presentation, and in a different pseudorandom order on each repeat. The minimum inter­

stimulus interval was 600 ms, although in practice it was much higher due to the 

computational overheads of stimulus generation.

The sound level a t which the stimuli were presented was determined by binaurally 

presenting independent (and therefore uncorrelated) samples of the noise stimulus to 

different ears, and recording the firing rate obtained as the spectral level (the level of each 

component in the stimulus) was varied from -20 to +50 dBsPL (see Figure 2.3). Noise 

stimuli were presented in the middle of the dynamic range of this function. Spectral levels
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ranged from 15 to 45 dBsPL per component in IC (equivalent to a stimulus intensity of 

around 45 to 75 dBsPL), and from 5 to 20 dBsPL in DNLL (35 to 50 dBsPL).

System 2
Eleven of the noise-delay functions recorded in the IC were recorded using the old System 2 

setup. With a few minor differences, stimuli were similar to those generated using System 3. 

The noise bursts were generated with Rayleigh-distributed power spectra, and were 

presented at a 100 kHz sampling rate for 50 ms, with 2 ms ramped-cosine onsets/offsets, 

and an minimum inter-stim ulus interval of 150 ms. Only five independent samples of noise 

were pre-calculated for each recording, and each sample was repeated twice. No obvious 

difference was noticed between responses to the stimuli collected using the different setups.

2.4.3 Dual-delay functions

The dual-delay function is an extension of the noise-delay function, originally used to 

investigate coincidence detection properties of the MSO (Yin et al. 1987). In this stimulus, 

in addition to all the underlying components in the noise burst being interaurally time 

delayed, they are also interaurally phase delayed. Thus, a family of noise-delay functions 

are obtained, one for each IPD.

Since the System 2 setup did not allow total control over the stim ulus spectrum, stimuli 

were generated using the Matlab programming environment, and loaded into a buffer 

onboard the System 3 hardware, ready for triggering. Noise bursts were identical to those 

described in the previous section, except th a t the contralateral stim ulus was formed from 

the ipsilateral noise stimulus by both time delaying the ipsilateral phase spectrum 9l (/*) by 

r  seconds and phase delaying it by <p radians

9c (f) = °\ (f)  + 27r/ ’r  +  0 (2.1)

This was performed for a range of ITDs from -1.5 eye re CF to +1.5 eye re CF in 

0.05 eye re CF steps and a range of IPDs from -0.375 eye to 0.5 eye in 0.125 eye steps. Each 

ITD/IPD pair was repeated 10 times using a fresh sample of noise for each presentation. On 

each repeat, all presentations of each ITD/IPD pair were randomly interleaved, to control 

for any effect of neural adaptation. The level of the stimulus was determined from the 

response of the neuron to uncorrelated noise as discussed in the previous section.
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3
A s y m m e t r y  in R e s p o n s e s  t o  

P u r e - T o n e  S t im u l i

3.1 Introduction
Given the widespread use of the Jeffress model in the psychophysical literature, it is 

tem pting to assume th a t the effect of inhibition in the MSO is to set up a Jeffress delay-line 

system under some degree of plastic control—a time delay tuned during development to the 

distribution of ITDs in the environment. However, it has been previously been suggested 

th a t the delay introduced by the effect of inhibition cannot be described as a pure time 

delay, but ra th e r is dependent upon the frequency of stimulation. The purpose of this 

chapter is to examine how inhibition might influence the shape of responses of neurons to 

interaurally delayed pure-tone stimuli.

3.1.1 Phase plots

As explained in the Introduction (Section 1.3.2), the internal delay can be determined from 

the best IPD (the IPD a t which the neuron fires maximally), and is most robustly estim ated 

using the Fourier transform of the response. A phase plot is produced by repeating this 

procedure for the range of frequencies to which the neuron is sensitive, and plotting the 

best IPD against stimulation frequency. If the internal delay is a pure time delay then the 

best IPD will be given by the equation

4){f) =  27r/Y0 (3.1)

where f  is the stimulation frequency and r 0 is a time delay referred to as the 

characteristic delay (CD). Thus, the Jeffress model predicts th a t the phase plot will be 

linear, and intercept both the x- and y-axes a t the origin (Figure 3.1a).

However, such a plot is uncommon. The data are often better described by a model 

incorporating an additional phase delay known as the characteristic phase (CP), which 

produces a nonzero y-intercept (Figure 3.1b)
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Figure 3.1 Phase plots recorded from IC.
a, a linear phase plot produced by a pure time delay. Note that the regression line intercepts the y-axis around zero, b, a 
linear phase plot with a som e phase component to the delay. Note the nonzero y-intercept. c, a nonlinear phase plot, (a 
and b from McAlpine et al. 1996, c from McAlpine et al. 1998).

<t>(f) = 27r/V0 + 0 O (3.2)

Neurons recorded from the LSO, for example, show CPs around 0.5 eye because of their 

inverted tuning curve shape.

Still, some phase plots are not completely captured by this model, and are better 

described by a nonlinear dependency of the phase on the frequency of stimulation (Figure 

3.1c). Forty percent of ITD sensitive neurons recorded from the superior olivary complex6 

(SOC) show significant deviation from linearity (Batra et al. 1997). In general, there is no 

typical phase plot in the SOC, the DNLL, or the IC; ra ther a mixture of linear and 

nonlinear relationships with a range of CPs (Batra et al. 1997, McAlpine et al. 1998, 

Kuwada et al. 2006).

3.1.2 Mechanisms producing phase delays

The characteristic phase and nonlinear phase plots are clearly deviations away from the 

pure time delays predicted to arise from axonal conductance delays in the Jeffress model. 

B atra et al. (B atra et al. 1997) hypothesised th a t this range of phase plots observed in the 

SOC was a consequence of the influence of inhibition in the MSO. They suggested th a t 

precisely timed inhibition in a fixed temporal relationship with the excitation could shift 

the best IPD away from tha t arising from the excitatory inputs alone. The temporal 

relationship between the inhibition and excitation was hypothesised to arise from a 

Jeffress-like axonal conductance delay (constant for all frequencies), with the consequence 

th a t the tim ing of the inhibitory input with respect to the phase of the excitatory input 

would vary as the frequency of stimulation changed. Because of this, a range of both linear 

and nonlinear phase plots could result. This effect of precisely timed inhibition has been 

suggested as a mechanism capable of explaining the observed effect of inhibition in the 

MSO (Grothe 2003). Grothe suggested th a t while excitatory inputs are identical with no 

internal delay between them, leading contralateral inhibitory input would carve out the 

leading edge of the contralateral excitatory inputs, effectively delaying the centroid and

6 The superior olivary complex is a structure consisting of the medial superior olive, the lateral superior olive, and 
several periolivary nuclei.
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introducing an internal delay. Thus if this carving inhibition  were blocked with strychnine, 

the internal delay would disappear as observed in vivo.

However, alternative explanations for such phase plots also exist. Since sound takes a 

different amount of time to reach different tonotopic positions on the basilar membrane, 

then an internal delay will result from any interaural difference in this group delay th a t 

might be produced by inputs to MSO with mismatched CFs. Since the group delay imposed 

by the cochlea is frequency-dependent, this stereausis mechanism (Shamma et al. 1989) 

would be expected to yield nonlinear phase plots.

Another alternative is th a t nonlinear phase plots in the IC can be explained by the 

convergence of two delay-sensitive inputs on to the same neuron. By selectively suppressing 

one of two inputs, the area of the phase plot corresponding to the other input can become 

linear, albeit with some CP (McAlpine et al. 1998, Shackleton et al. 2000). Although this 

study says little about the phase plots observed in the MSO, it cautions against the use of 

the IC as a proxy when trying to understand MSO processing.

3.2 Modelling the effect of inhibition
Because of its coincidence-detecting properties, the ITD-dependent variation in the firing 

rate of an MSO neuron is often modelled as the cross-correlation of the cochlea-filtered 

input stimuli (Colburn 1973, Yin et al. 1987). However, such a model only considers the 

function of these neurons in term s of spike processing, and does not consider the 

contribution of sub-threshold synaptic events to spiking. Such a model is therefore 

inadequate when seeking to address w hat effect inhibitory inputs might have upon the 

spiking of a neuron. At the other extreme, a biophysical model exists th a t is capable of 

reproducing the carving effect of inhibition, producing contralaterally delayed tuning 

curves when the inhibition is present, and tuning curves centred around zero when it is not 

(Brand et al. 2002). However, the time course of the modelled inhibitory synaptic current is 

unrealistically fast; when set to a more plausible speed, it fails to shift the tuning curve 

away from zero (Zhou et al. 2005). While this does not disprove the carving hypothesis, it 

does highlight the flaws inherent in using complex models when a large degree of 

uncertainty exists over the parameters. The model is based on a model of bushy cells in the 

AVCN, where only the low threshold potassium channels were characterised for the bushy 

cells themselves (Rothman et al. 1993). Other channels had kinetics obtained from non- 

auditory neurons in a variety of species (some amphibian), and some channels known to be 

present in MSO neurons were omitted (such as the hyperpolarisation-activated nonselective 

cation channels, I h ) .  Although both updated kinetic schema and alternative biophysical 

models of MSO are available (Agmon-Snir et al. 1998, Svirskis et al. 2002, Rothman & 

Manis 2003a, Rothman & Manis 2003b, Rothman & Manis 2003c, Zhou et al. 2005), such 

complex models are laborious to run and difficult to generalise. I t was hoped tha t a simpler 

models could provide a more intuitive description of the system (albeit a t the expense of 

accuracy).
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The model used by B atra et al. to explain the nonlinear phase plots in the SOC is simple, 

with few starting  param eters, and addresses the sub-threshold integration within the 

neuron (Batra et al. 1997). The ipsilateral excitatory input v IE(f) , the contralateral 

excitatory input vCE (f), and the contralateral inhibitory input vCI (t) , are all described by a 

sinusoids with different amplitudes (representing different synaptic strengths). The inputs 

are then interaurally delayed (including any interaural differences in conductance times), 

summated, and the response of the neuron is proportional to the amplitude of the resulting 

sinusoid

r(r)  oc max[vIE (t) + vCE [t + te + r) + vcl (t -(- r 7 + r) j (3.3)

where r  (t) is the response of the neuron to an ITD of r  ms. By independently varying the 

interaural delays for the excitation te and the inhibition r 7, B atra et al. were able to 

qualitatively reproduce a range of nonlinear phase plots. With a few modifications, a model 

such as this can be used to develop an intuition for the sub-threshold effect of inhibition on 

tuning curve shape, for a variety of stimuli.

3.2.1 An ITD energy model

The use of the amplitude to determine the output firing rate of the neuron in (3.3) does not 

easily generalise to other inputs. Only if all the inputs to (3.3) were pure sinusoids would 

their sum be a pure sinusoid. For this reason, and others th a t will shortly become clear, the 

response was modelled in line with the energy model used to explain the shape of binocular 

disparity tuning curves (Ohzawa et al. 1990, 1997).

The MSO neuron is considered an inhomogeneous Poisson process, with a probability of 

firing proportional to the squared sum of the postsynaptic responses originating from the 

contralateral and ipsilateral inputs. The firing rate of the neuron is therefore given by 

integrating this value over time

r W * J o d t \v 1 W + vc (* +  r )ll (3'4)

The half-wave rectification nonlinearity (denoted by [•] ) is incorporated to ensure th a t the 

probability of firing could not be negative. If the inputs are assumed to be positive, then 

this half-wave rectification can be ignored, and for large T  and small r  , (3.4) can be 

simplified to yield a predicted tuning curve proportional to the cross-correlation of the 

postsynaptic responses

Thus the model in (3.4) is line with the cross-correlation model of MSO neurons.

In their original model, B atra et al. assume th a t all inputs follow the same sinusoidal 

time course, but they allow the amplitude and phases to differ. In order th a t the tuning 

curve should peak a t zero ITD in the absence of inhibition, it is assumed th a t any internal 

delay between the excitatory inputs is zero (i.e. te — 0 in (3.3)) and (for simplicity) the
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excitatory inputs are assumed to be of equal strength. This leaves only two param eters: a , 

the strength of the contralateral inhibition relative to th a t of the excitation, and (3, the 

time lead of the inhibition over the contralateral excitation (denoted as r7 in (3.3)). Since 

the time course of the inhibition is otherwise identical to th a t of the contralateral excitation, 

the contralateral postsynaptic response can be described by a linearly filtered version of the 

contralateral excitatory input

VC (*) = V C E  ( t )  -  V CI  (t) = vCE (0 -  « V C E  ( t  + P) (3.6)

Defining the linear kernel

K(t) = 6 ( t) -a 6 ( t  + p )  (3.7)

where 6{t) is the Dirac delta function, allows (3.4) to be rew ritten as

1  ̂ 2 
r (r ) CXT  S o ^ [ v ieW + vce(' + t)*k(*  + t)]+ (3.8)

Finally, for the purposes of developing some intuition of the effect, if all inputs are 

reasonably assumed to follow the same time course v (f) , and the half-wave rectification is 

ignored, the response can be expressed as a filtered version of the autocorrelation of the 

input distribution vx (t)

r ( r )  = a0 4-ax vx ( t)* k ( t)  (3.9)

where a0 and ax are constants of proportionality. Thus, from the definition of k (t) , the 

ITD tuning curve can be considered to be composed of two components: an excitatory 

component centred a t zero ITD and an inhibitory component centred a t -(3 . The excitatory 

component arises from the correlation between the excitatory inputs, while the inhibitory 

component arises from the anti-correlation between the ipsilateral excitatory and the 

contralateral inhibitory component. Despite (3.9) being an approximation, if the excitatory 

inputs are considered to be purely positive then the approximation is reasonable, with large 

differences expected only when the inhibition is unmatched by the excitation, producing a 

large negative potential. Although it might be desirable to introduce bilateral inhibition 

into (3.9), this has been avoided since the positive correlation between inhibitory inputs 

would erroneously raise the firing rates for the approximation.

3.2.2 Frequency-dependent delays

If the input v(t) is a pure sinusoid, from (3.9) the response will be

t ( t )  = a0 + a1 A k (/’)cos[27t/,t  + (/■)] (3.10)

where Ah (/*) is the amplitude spectrum of /c(r) and <f)K (f) is its phase spectrum. Since the 

best IPD of the response to any arbitrary frequency f  is given by ~4>h. (/*), the effect of the 

inhibition on the purely sinusoidal stimuli used by B atra et al. can be understood by 

examining the phase spectrum of k ( t )
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Figure 3.2 Phase plots predicted by carving inhibition.
Phase plots produced for sinusoidal inputs by the model in (3.9). a, the relative strength of inhibition is fixed at 0.5 and 
the lead time is allowed to vary, b, lead time is fixed at 0.2 ms and the relative strength is allowed to vary. The early 
portion of the plot is linear and passes through zero, correspond to a pure time delay for low-frequency neurons. 
However, at som e frequencies the gradient of the plot is zero, corresponding to a  pure phase delay.

[ asin(27r/7?)
<f>K (f) = a rc ta n   ' . 7

acos(2nf/3) — 1
(3.11)

If inhibition is blocked by setting a = 0 , then 4>K (f ) = 0 for all frequencies, producing a flat 

phase plot. However, for a > 0 , the best IPD will have some level of frequency dependency.

Figure 3.2 shows a variety of phase plots predicted for various values of a and (3. Since 

any given neuron will only respond to a narrow range of frequencies, the phase plots 

recorded experimentally would only appear as a small portion of the graphs shown. Clearly, 

a wide range of resultant phase plots is possible. For one range of frequencies, the phase 

plot can appear linear with a CP of zero (corresponding to a pure time delay); for others, the 

gradient of the phase plot can be zero, corresponding to a pure phase delay. Between these 

two extremes, a large number of intermediate plots are possible with both CD, CP, and 

varying degrees of curvature—consistent with the majority of phase plots observed in the 

SOC (Batra et al. 1997). The more complex phase plots are not predicted by (3.11) but are 

uncommon and are likely to be reproduced by the inclusion of LNTB-mediated ipsilateral 

inhibition in the model. In general however, the majority of the explanatory power of the 

model of Batra et al. can be retained without the need for a difference in the axonal 

conductance delays between excitatory inputs.

3.2.3 Modelling the input to MSO

For simplicity, B atra et al. assumed th a t a sinusoidal pure-tone stimulus would induce a 

sinusoidal pattern  of input to the MSO neuron. However, due to the high precision of phase 

locking in the AVCN, it is likely th a t this input would be more tightly distributed than a 

sinusoid and so contain harmonic distortions. Since the modelled effect of the inhibition 

introduces frequency dependency into the internal delay, w hat response would be predicted 

if more than one frequency were present in the stimulus?

Assuming th a t the neuron receives a large number of independent but identically 

distributed inputs, the net postsynaptic response resulting from the combined activity of
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these inputs would be expected to reflect their original distribution. This original 

distribution can be estim ated experimentally from the peristimulus-time histogram (PSTH) 

of neurons in the AVCN. As discussed earlier, these neurons fire regular phase-locked 

trains of action potentials in response to pure tones, with ISIs distributed a t multiples of 

the period of the stimulation (see Figure 1.3). Thus, the PSTH, and therefore the 

postsynaptic response elicited by a pure tone, would be well described by a periodic function, 

but one th a t is sinusoidal only to a first approximation.

Let x(t) be a stochastic process representing the firing of a single AVCN input in 

response to the pure-tone stimulation. Based on studies of the response of the AVCN to 

pure-tone stimuli (Joris et al. 1994a), it is reasonable to assume th a t AVCN neurons will 

tend to fire at a fixed phase of the stimulus (which for simplicity is defined to be zero), with 

some cycle-to-cycle jitte r in the spike timing

x M =  £  s/ ( * - " T - 0  (3-12)
n= - *x

where T  is the period of stimulation and the amount of jitte r is determined by the random 

variable , which is unimodally distributed around zero in line with period histograms 

observed in AVCN (Joris et al. 1994a) . The variable probability of firing on any given cycle 

is modelled using the random variable sn , which takes the value one with probability e 

(the entrainm ent) and is zero otherwise. £n and sn are assumed to be independent of each 

other.

The net input arising from a large number of independent AVCN inputs (but with the 

same phase of phase locking) may therefore be reasonably assumed to be

x(t) = p(*)*£<5T(£) (3.13)

where <5T(f) is a Dirac comb with period T  and p(t) is the probability distribution of the 

jitter. If not all inputs are phase locked to exactly the same phase, but instead are 

distributed around some common phase, this can be modelled by increasing the variance of 

the jitter. Finally, the net synaptic response can be determined by convolving the net input 

distribution w ith the EPSP or the IPSP appropriate to the polarity and origin of the input

ViE (0 = x W * eiM  (3.14)

vcEW = x W *ecW  (3.1-5)

vci(0 = x W *icW  (3.16)

where ej (t) and ec (t) are the ipsilateral and contralateral EPSPs and ic (t) is the 

contralateral IPSP. For simplicity, it is assumed th a t

ei (̂ ) = ec (0 = ic (0 (3.17)

From (3.14)-(3.16), it can be seen th a t the predicted autocorrelation of the postsynaptic 

responses vx (r) in (3.9) is given by

vx (r) = eST (t) * px (r) * ex (r) (3.18)
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where px (r) is the autocorrelation of the jitte r distribution and ex (t) is the 

autocorrelation of the EPSP waveform. Replacing <5T (r) by its Fourier series

vx (T) = 2/*£^sgn(n)cos(27rn/‘r) * px (r) * ex (r) (3.19)

it is clear th a t the autocorrelation (and similarly the input and the response) is formed from 

the summed activity of filtered harmonics. Since the contralateral and ipsilateral jitte r 

distributions and EPSPs are assumed to be unimodal and identical, then both px (r) and 

ex (r) will be unimodal and symmetric about r = 0 , and will act as lowpass filters, 

attenuating the harmonics.

Thus, it can be seen tha t if the phase locking in AVCN is sharp and the synaptic kinetics 

are fast (relative to the period of stimulation), then significant harmonic activity will be 

present in the inputs. In contrast, if the phase locking is poor (or equivalently if the 

distribution of the phase of phase locking is broad), or if the synaptic kinetics are sluggish 

(again relative to the period of stimulation), then the level of harmonic distortion will be 

reduced. In practice however, it is unlikely th a t the harmonics could be eliminated without 

overly attenuating the fundamental, which, in term s of the output of the neuron, would 

produce only weak modulation to IPDs and a large IPD insensitive baseline. Since the jitte r 

measured in AVCN is low (Joris et al. 1994a) and the synaptic currents recorded in MSO 

neurons are fast (Magnusson et al. 2005), it seems likely th a t some level of harmonic 

distortion should be present in the postsynaptic response, and more so at the lower 

frequencies.

If we assume th a t px (r) * ex (r) is Gaussian, then a good model for vx (r) will be the 

wrapped normal distribution. Since this is well approximated by a Von Mises distribution 

(Mardia & Jupp 2000), a more practical form of (3.19) is given by

where 7  is the concentration parameter. For large values of 7 , the tuning curve is sharp 

and the harmonic distortion is high; for low values of 7  , the tuning curve is broad and the 

distortion is low. This approximation is satisfactory for values of 7  greater than  1.4 

(corresponding to vector strengths greater than 0.57, Mardia & Jupp 2000). At lower values, 

the Von Mises approximation underestim ates the degree of harmonic distortion. In lieu of 

detailed knowledge of the distribution of the jitte r and the EPSP shapes, the Von Mises 

distribution is felt to be reasonable model to use to investigate the possible effects of the 

carving inhibition.

3.2.4 Asymmetric tuning curves

Substituting the Fourier series of vx (r) into (3.9) gives

(3.20)

r(r)  = a0 cos(27ra/Y) *k(t) (3.21)
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Figure 3.3 The effect of the second harmonic on tuning curve shape.
a, both the fundamental (0.5 kHz, top trace) and its second harmonic (1 kHz, middle) are delayed by the sam e time 
delay (250 ps), resulting in a  symmetric function when they are added (bottom), b, the fundamental and its harmonic are 
delayed by different time delays, resulting in a skewed response (bottom).

which is the tuning curve produced by harmonically distorted inputs resulting from pure- 

tone stimuli. vx (r) is assumed to be symmetric about r  = 0 since both px (r) and ex (r) 

are symmetric about r  = 0 , as discussed in the last section. This symmetry comes about 

from the fact th a t its harmonics are in cosine phase, and so are all symmetric around the 

line r  = 0. However, it can be seen from (3.21) th a t the effect of inhibition will be to phase 

delay the fundamental by <f>K (/*) rad and the nth harmonic by <j>K[nf) rad. If « (r )  were 

implementing a pure time delay

each harmonic would be shifted by the same amount of time, preserving the symmetry 

around the line r  =  —r 0 (Figure 3.3a). However, if there were some phase component to the 

delay

where sin(</>0) ^  0 , then the fundamental and the harmonics would be shifted by different 

amounts of time resulting in an asymmetric tuning curve (Figure 3.3b). More specifically, 

the symmetry will only be preserved when the phase disparity

between each of the harmonics and the fundamental is either 0 eye or 0.5 eye.

Thus, the Jeffress model predicts symmetrical tuning curves, and carving inhibition 

predicts asymmetric tuning curves. However, whether or not the inhibition does produce an 

asymmetric tuning curve for any given stimulus is param eter dependent. Consider the set 

of param eter values resulting in the red curve in Figure 3.2a. For frequencies up to about 

0.5 kHz, the curve is approximately linear, with the consequence tha t there will be no 

phase disparity between the fundamental and the second harmonic for pure-tone stimuli 

below 0.25 kHz. If the response is not strongly distorted, any contribution from the third 

and higher harmonics will be negligible, resulting in a symmetric tuning curve. Thus while

<f>* (f) = 2tr/V0 (3.22)

4>k (nf) = 2nnfr0 + 0O (3.23)

(3.24)
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Figure 3.4 Tone-delay functions predicted for carving inhibition.
Tone-delay functions arising from numerical simulation of (3.8) for an exponentially distorted input (see text for details) 
of frequency 500 Hz with vector strength: a, 0.9; b, 0.8; c, 0.7; and d, 0.6. Inhibition led excitation by 0.2 ms and the 
relative strength of inhibition varied from 0.2 (blue trace) to 1 (magenta) in 0.2 steps.

the inhibition can produce an asymmetric tuning curve, it will not necessarily do so on 

every occasion.

3.2.5 Simulated tone-delay functions

Since the prediction of asymmetric tuning curves discussed above relied on an 

approximation, the original model including half-wave rectification (3.8) was numerically 

integrated for inputs of the form

v(f) =  exp[7Cos(27r/£)] (3.25)

in order to examine the symmetry of the predicted tuning curves. A forward difference 

method of integration was used with a 10 ps time step. Use of (3.25) was motivated by the 

Von Mises approximation to the wrapped normal discussed earlier for (3.20). The higher 

the concentration param eter 7  , the more precise the phase locking of the input.

Figure 3.4 shows tuning curves resulting from a range of different values of the 

param eters a  , (3 and 7  . The effect of inhibition can be seen most clearly for a very 

precisely phase-locked input (Figure 3.4a). When the inhibition was absent, the tuning 

curve peaked a t zero ITD. As the strength of the inhibition increased, the inhibition began 

to carve out the tuning curve, affecting contralateral lagging (negative) ITDs more than
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contralateral leading delays and producing a pronounced shoulder in the tuning curve. For 

such precisely timed inputs, the effect of the inhibition was localised to ITDs around — (3 .

If the concentration param eter was lowered, degrading the precision of the input, then 

both the underlying tuning curves became broader, and the effect of the inhibition became 

less localised (Figure 3.4b-d). A similar effect resulted from leaving the concentration 

param eter fixed but increasing the stimulation frequency. Thus, for the lowest vector 

strengths (or highest frequencies), the asymmetry resulting from the inhibition was weak, 

resulting in a gently skewed tuning curve.

Quantifying the asymmetry
In order to assess the variation in the skewness of the tuning curves with the various 

param eters, the degree of asymmetry was quantified using the symmetry index (SI)

SI = ^ -  sin (0 2 - 2 ^ )  (3.26)
A

where An and <pn are the amplitude and phase of the n th harmonic of the tuning curve7. 

Contributions of higher harmonics to the total asymmetry were ignored as they were 

expected to be negligible due to the lowpass selectivity of (3.25). The SI will therefore be 

zero if the fundam ental and second harmonic are delayed by the same amount of time, or if 

there is no harmonic distortion. If the second harmonic “leads” the fundamental, 

sharpening the left-hand slope (relative to the peak) as in Figure 3.3b, then the SI will be 

positive; if it “lags” the fundamental, sharpening the right-hand slope, then the SI will be 

negative.

While the phase disparity defined in (3.24) could have been used alone, factoring in the 

relative amplitude of the second harmonic normalised for the level of modulation. For 

neural data, this allowed comparison between different neurons and ensured th a t the effect 

of harmonics arising from noise was not overstated.

The effect of inhibition on the shape of tone-delay functions
Tuning curves were simulated for a range of param eters over a 65 point sampled range of 

IPDs from -0 .5  to +0.5 eye. Figure 3.5 shows the variation in the best IPD, the SI, the 

phase disparity, and the power ratio (between the second harmonic and the fundamental) of 

the simulated tuning curves, as a function of the model param eters. Although the effects of 

lagging inhibition (P < 0  ) are not shown, they can be simply deduced from Figure 3.5 by 

considering the effect of reflecting the tuning curve in the y-axis. Positive best IPDs and 

phase disparities will become negative while the power ratio will remain the same, 

producing negative SI values.

7 The SI is the normalised area inside the Lissajous curve formed by the first two harmonics. If no phase 
discrepancy exists then the curve will be a parabola and the area will be zero. If some discrepancy exists however, 
the curve will form a figure-of-eight pattern and the area constrained by the curve will be nonzero.
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The simulated tuning curves behaved as expected from the analytical model. The best 

IPD was largely independent of the degree of phase locking of the input and had a similar 

form to the predicted phase-plots arising from (3.11) (shown in Figure 3.2). Because of this, 

the phase disparity showed a similar level of independence. The variation of the power ratio 

was dependent on all three param eters, although the concentration param eter showed the 

strongest influence since it determined the level of harmonic activity in the input. The 

variation of the power ratio with respect to the inhibitory param eters was largely 

independent of the concentration param eter, and reflected the frequency selectivity of the 

inhibitory filter. Because of this decrease in the power ratio, the SI also inevitably 

decreased with the concentration param eter, as the influence of the second harmonic on the 

tuning curve shape weakened. Similar to the phase-disparity, the variation in the SI value 

with the inhibitory param eters was largely independent of the degree of phase locking and 

showed a similar dependency on the inhibitory param eters as the best IPD.
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Figure 3.5 Predicted effect of carving inhibition and phase locking on the shape of tone-delay functions.
C hanges in simulated tuning curves a s  functions of the lead and relative strength of the inhibition for four different 
strengths of input phase locking (columns). The lead time of the inhibition has been expressed in cycles in order to 
normalise for stimulus frequency. The best IPD (top row) and the phase disparity (second row) were largely independent 
of the precision of the input. The power ratio (third row) and SI (bottom row) showed dependency on all three 
parameters.

In general, precisely phase-locked inputs together with strong inhibition tha t lead 

excitation by around 0.25 eye, produced strong harmonic activity and a pronounced 

asymmetry. If the precision of phase locking fell (decreasing the harmonic activity), or if the 

inhibition grew weaker or moved in-phase with the excitation, then the asymmetry was 

reduced.
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3.3 Results

3.3.1 Tone-delay functions in the MSO

If the model of carving inhibition is correct, tone-delay functions in MSO would be expected 

to show a skew asymmetry similar to tha t predicted in the previous section. The data 

available from neurons in the MSO are scarce and few studies permit calculation of the SI 

of the tuning curves from the published data, since the range of IPDs used m ust evenly 

sample at least one complete period. Ten tuning curves plotted in this way from 

histologically identified neurons have been reported: five from the kangaroo ra t 

(Moushegian et al. 1975; their Figures 3, 4, 5, 9), four from the cat (Yin & Chan 1990; their 

Figures 2, 3, 4), and one from the gerbil (Spitzer & Semple 1995, their Figure 2). The 

median skew for these tuning curves was calculated to be 0.01 (interquartile range -0.01 to 

0.04), which was not significantly different from zero (P  = 0.75, sign test), indicating no 

significant bias in skew away from zero. Furthermore, since the median magnitude of the 

skew was 0.02, any asymmetry was weak. The median power ratio for the neurons was 

-12  dB (interquartile range -9  to -15 dB) and the median best IPD was 0.06 eye (R  = 0.76, 

P < 0.001, Rayleigh test), indicating th a t harmonics were present and th a t any inhibition 

was strong enough to shift the best IPD away from zero. Despite this, there was little 

asymmetry, casting doubt on the validity on the carving model outlined above.

However, this result m ust be treated with caution. At the time these studies were 

carried out, tuning curves were expected to be symmetrical; there may have been a bias 

towards choosing more symmetrical tuning curves as exemplars of those recorded from 

MSO. For this reason, it was desirable to carry out a new study involving a larger number 

of neurons under more controlled conditions. The ideal experiment would have been to 

compare the skew of tone-delay functions recorded from the MSO in control conditions, with 

those recorded during application of strychnine. However, due to the difficulty of isolating 

neurons in the MSO mentioned earlier, combined with the difficulties inherent in the use of 

a iontophoresis electrode, it was felt th a t it would be preferable to record from a proxy 

nucleus afferent to the MSO. Since it is known th a t the IC is an unreliable proxy (McAlpine 

et al. 2001), it was decided to record from the dorsal nucleus of the lateral lemniscus 

(DNLL). The DNLL is potentially a site of lower convergence than  the IC, as suggested by 

the stronger phase locking and narrower tuning curves reported for the DNLL compared 

with the IC. I t was hoped tha t this assumption could be tested by comparing results 

obtained in DNLL with those observed in IC.

3.3.2 Tone-delay functions in the DNLL

Tone-delay functions were recorded from 38 neurons in the DNLL: 18 neurons were 

recorded by the author and 20 neurons were drawn from an earlier study (Dr SE Boehnke

and Prof D McAlpine, unpublished data). Stimuli were presented a t the characteristic
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Figure 3.6 Examples of tone-delay functions recorded from DNLL.
R esponses were usually unimodal with positive skew, a, a rare example of a negatively skewed response. Note that the 
right-hand slope of the tuning curve (relative to the peak) is steeper than the left-hand slopes, b, a neuron showing 
strong positive skew (the left-hand slope is steeper). In addition, this neuron shows an unusual bimodal tuning curve 
(see text for discussion), c-f, typical responses showing a  slight positive skew for a range of BFs. See Table 3.1 for 
characteristic frequencies and other measurem ents.

ID CF
(Hz)

Best IPD
(eye) SI

Power
Ratio
(dB)

30302 102 0.13 -0.12 -16
34502 295 0.14 0.11 -6
27907 329 0.13 0.02 -12
30901 480 0.18 0.13 -15
34603 536 0.24 0.06 -22
34602 939 0.14 0.09 -19

Table 3.1 CFs and tone-delay function properties of neurons shown in Figure 4.6.

frequency of the neuron, at a level 20 dB above threshold. Full details of procedures and 

stimuli are presented in the Methods chapter (Section 2.4.1).

Tone-delay functions tha t were not significantly modulated were assumed to be IPD 

insensitive and were omitted from further analysis. This was tested via a bootstrap test 

where the tuning curve was resampled by randomly reselecting the firing rate at each IPD 

from the distribution of firing rates in the original tuning curve (with replacement), 

effectively eliminating any modulation. This resampling was repeated 1000 times. By 

measuring the amplitude of modulation at CF for each resample, the distribution of

34602-DNLL-939
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Figure 3.7 Best IPDs of tone-delay functions in DNLL.
a, the distribution of best IPD as a  function of the characteristic frequency. Best IPD was independent of CF. b, 
histogram of recorded best IPD values. For most neurons, best phase was in the range 0 to 0.25 eye.

amplitudes under the null hypothesis of IPD insensitivity could be estimated. If the 

amplitude of the original tuning curve was greater than tha t of 95% of those in the null 

distribution, then the null hypothesis tha t the neuron was IPD insensitive was rejected at 

the P < 0.05 level. Only one neuron was not significantly modulated in response to IPD and 

so was removed from further analysis.

Examples of recorded tuning curves can be seen in Figure 3.6. In general, tuning curves 

were periodic and unimodal with the exception of two neurons, both of which showed 

secondary modes half a cycle away from the main peak (see Figure 3.6b). This was not due 

to post-inhibitory rebound spiking since the onset of firing a t these IPDs was consistent 

with the onset a t all other IPDs. The bimodality may have been due to either convergent 

input, or antiphase-locked firing in the inputs to MSO.

Best delays
The location of the peak of the tuning curves was estimated by measuring the best IPD of 

the neuron from the phase of the fundamental (CF) component of the tuning curve. In 

agreement with other studies in both MSO (Brand et al. 2002) and DNLL (Seidl & Grothe 

2005, Siveke et al. 2006), best IPD was independent of characteristic frequency (P  > 0.1, 

Mardia’s linear-circular rank correlation; Mardia & Jupp 2000) with the mean best IPD 

relatively constant around 0.13 eye (R  = 0.86, P < 0.001, Rayleigh test, see Figure 3.7). The 

majority of neurons (3%7) showed best IPDs in the range 0 to 0.25 eye with only a few 

neurons peaking a t ipsilateral leading delays (Yzi neurons, -0.25 to 0 eye).

The best IPD can also be defined more in line with the Jeffress model, as the IPD at 

which the firing rate  of the neuron is maximal. In order to estimate this peak IPD, the 

tuning curve was smoothed with a three-point moving-average filter, and the first 

derivative of the tuning curve at each IPD was estimated from the difference in firing rate 

of the two neighbouring ITDs. Zero crossings in the first derivative were then located using 

linear interpolation and the peak ITD was taken to be the positive-to-negative zero crossing 

corresponding to the highest firing rate. Estimated in this manner, the mean best IPD fell
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Figure 3.8 The power ratio for tone-delay functions in DNLL.
The power ratio as a function of the characteristic frequency. Power ratios are shown for both half-wave rectified (grey 
crosses) and non-rectified (blue circles) tuning curves.

slightly to 0.11 eye (R  = 0.84, P <  0.001, Rayleigh test), which was significant (P<  0.001, 

sign test).

Harmonic distortion
Before analysing the degree of distortion in the tuning curves, several neurons (x%i) were

tuning curves. Such nonlinearity, potentially arising at the level of the DNLL, would 

introduce harmonic distortions into the tuning curve, increasing the power ratio and 

lowering the degree of asymmetry (discussed later). Since such nonlinearity was not 

accounted for in the model, in order tha t the recorded responses might be as close as 

possible to the hypothesised output of MSO, any neurons showing a mean firing rate of 

0 sp s_1 in response to any IPD were excluded.

In order to estimate the degree of harmonic distortion, the ratio of the power in of the 

second harmonic to the power of the fundamental was calculated using the Fourier 

transform of the tuning curve. Third and higher order components had little effect on 

tuning curve shape, accounting for a median 2% of the variance (interquartile range 1% to 

3%). Much of this was likely a consequence of noise in the recordings. Individual inputs to 

the MSO show a decrease in the vector strength of phase locking from 0.99 for the lowest 

frequencies to around 0.6 a t 1 kHz (Joris et al. 1994a). From Figure 3.5, it can be seen tha t 

for these input vector strengths, the power ratio should show a decline with CF from 

around 0 dB to around -15 dB. However, although the power ratio appeared to show a 

decrease a t higher CFs (Figure 3.8) this was not significant (P = 0.12, Spearman’s rank 

correlation coefficient). Instead, it appeared tha t the reason for the lack of significant 

correlation was the presence of only weak distortion in three neurons with the lowest CFs— 

the very neurons expected to show the highest level of distortion. Excluding these three 

neurons resulted in a significant negative correlation (r = -0.49, P  = 0.017). However, 

visual inspection of the tuning curves of these neurons (e.g. Figure 3.6a) revealed no 

artefactual explanation for the low level of distortion, indicating th a t these data points 

were reliable and so could not be considered outliers. In fact, the low-CF data point with the

excluded from subsequent analysis because they showed half-wave rectification of their
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Figure 3.9 Asymmetry of tone-delay functions in DNLL.
a, the distribution of SI as a  function of characteristic frequency. Data from both half-wave rectified (grey crosses) and 
non-rectified (blue circles) tuning curves are shown. The degree of skew was independent of CF. b, histogram of SI 
values. For most neurons, SI was positive and clustered between 0 and 0.2. c, variation in SI with power ratio, d, the 
phase disparity as  a function of the power ratio. The phase disparity decreased as  the degree of distortion increased, 
suggesting the presence an additional nonlinearity not accounted for in the model.

high power ratio appeared to be more of an outlier, with the high power ratio an artefact of 

very weak IPD sensitivity and a noisy tuning curve.

Skewness
The skewness of the tuning curves was measured by the SI, calculated using the Fourier 

transform of the tuning curves. Since the phase locking of inputs to the MSO decreases 

with CF, and since the power ratio appeared negatively correlated with CF, it might be 

expected from (3.26) th a t the degree of asymmetry should also have decreased with 

increasing CF. In fact, no significant correlation could be observed between the magnitude 

of the SI and the CF of the neuron (Figure 3.9a; P = 0.076, Spearman’s rank  correlation 

coefficient). For the majority of neurons the SI was positive (^ 2 7  neurons, Figure 3.9b) 

leading to a median SI of 0.07, which was significantly different from zero (P  < 0.001, sign 

test). This indicated tha t although slight, the skew was not an artefact of noise in the 

recordings and tended to be positive.

The lack of correlation of the magnitude of the SI with CF was surprising given tha t the 

magnitude of the SI was defined in (3.26) to be dependent on the power ratio, and tha t the 

power ratio appears to decrease with CF. Indeed, the data did show a correlation between 

the magnitude of the SI and the power ratio (r = 0.45, P = 0.018, Spearman’s rank 

correlation coefficient; Figure 3.9c). The lack of correlation with CF appeared to be a
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Figure 3.10 Relationship between tuning an asymmetry for tone-delay functions in DNLL.
a, the relationship between SI and the best IPD. b, the relationship between phase disparity and best IPD. Neither the 
SI nor the phase disparity showed any correlation with best IPD.

consequence of a decrease in the phase disparity at higher power ratios (Figure 3.9d; 

r  = 0.29, P < 0.05, M ardia’s linear-circular rank correlation8), with near zero disparity at 

the highest levels of distortion. Such a correlation was not predicted by the model (see 

Figure 3.5) and could not be explained through a mutual CF dependency since the phase 

disparity showed no correlation with CF (P > 0.1, Mardia’s linear-circular rank  correlation).

It is possible th a t this correlation reflects a static nonlinearity after the level of the MSO, 

similar to the half-wave rectification discussed earlier. Such a nonlinearity would be 

expected to introduce harmonic distortions in phase with the fundamental of a skewed 

tuning curve, which, when combined with the existing distortions, would reduce the phase 

disparity—an effect th a t can be seen to be demonstrated by the half-wave rectified tuning 

curves in Figure 3.9d. Although the exclusion of the half-wave-rectified tuning curves from 

the analysis means tha t this particular nonlinearity cannot explain the observed 

correlation, other nonlinear relationships between input and output cannot be so easily 

detected. For example, a quadratic input-output dependency in DNLL would introduce 

second harmonics but could not be distinguished from nonlinearities introduced at an 

earlier stage. The existence of such nonlinearity would make it difficult to assess the 

recorded responses in relation to the model outlined previously.

As might be expected from the reduction of both the skew and the phase disparity at 

higher CFs, no correlation with best IPD was observed for either the skew (Figure 3.10a; 

P > 0.05, M ardia’s linear-circular rank correlation) or the phase disparity (Figure 3.10b; 

P = 0.56, M ardia’s circular-circular rank correlation; Mardia & Jupp 2000). In an attem pt 

to control for the effect of any nonlinearity, any data showing a power ratio greater than 

-12 dB were omitted and this analysis repeated. However, this had little effect on the 

measured correlations. In the simulations shown in Figure 3.5, for any particular vector 

strength of input, the SI appeared well correlated with the best IPD. While this correlation 

may be weak for the recorded data because of a wide range of input vector strengths, the 

relationship between best IPD and phase disparity was expected to be constant across a

8 Throughout this text, in the context of Mardia’s linear-circular rank correlation, r refers to the normalised 
correlation coefficient Dn.
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Figure 3.11 Examples of tone-delay functions recorded from IC.
Tuning curves in IC appeared more skewed than those in DNLL, with curves in IC often showing a  shoulder (b, c, e), 
which was often pronounced enough to become a secondary mode (d). See Table 3.2 for characteristic frequencies 
and other m easurem ents.

ID CF
(Hz)

Best IPD 
(eye) SI

Power
Ratio
(dB)

41203 112 0.09 0.05 -5

26201 184 0.41 0.41 -6

26501 215 0.06 -0.26 -10

26001 288 0.31 0.87 0
42302 293 0.25 0.53 -6

26203 313 0.16 0.01 -18

Table 3.2 CFs and tone-delay function properties of neurons shown in Figure 3.11.

range of input vector strengths. This lack of correlation indicates th a t the degree of 

asymmetry and the tuning of the responses may not be determined by the same mechanism.

There were also more general disagreements with the proposed model of the effect of the 

inhibition, in term s of the direction of skew and the sign of the best IPD. Although the 

majority of the 33 neurons9 peaking at contralateral leading delays showed positive skew 

and were therefore qualitatively consistent with the predicted effect illustrated, some of 

these neurons ( ¥ 33 ) showed strong negative skew. Although, the neuron with the most 

negative SI was likely to be an outlier (due to a noisy tuning curve), the other two data 

points appeared to be reliable. Another disagreement with the predictions of the model was

9 Half-wave rectified responses were included in this analysis. While the nonlinearity will lower the magnitude of 
the asymmetry, it is not expected to have any systematic effect on the direction of the skew.
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tha t all of the four responses peaking a t ipsilateral leading delays showed positive skew 

when they would be expected to show negative skew. The relationship between the 

asymmetry and the best IPD does not therefore appear to be in agreement with tha t 

predicted by the proposed effect of inhibition.

3.3.3 Tone-delay functions in the IC
Tone-delay functions were recorded from 64 neurons in the inferior colliculus: 36 neurons 

were recorded by the author, and 28 neurons were drawn from the Boehnke-McAlpine data 

set. One neuron was not significantly modulated in response to IPDs and so was excluded 

from analysis.

Examples of recorded tuning curves can be seen in Figure 3.11. The large majority of 

tuning curves were unimodal; a larger proportion of bimodal responses were found in the IC 

(% 3 neurons, three from the same animal, see Figure 3.lid )  than in the DNLL (¥ 3 7  neurons), 

but this was not significant (P = 0.94, x 2 test). Additionally, several unimodal responses (5/58 

neurons) showed a distinct shoulder (Figure 3.11b, c, e) not observed in the DNLL 

responses. The modality of the tuning curve could be considered the endpoints of a 

continuum of different levels of skewing, with bimodal responses showing higher SI values. 

This apparent difference in modality between the IC and the DNLL was therefore expected 

to be reflected in a difference in the SI statistic.

Best delays
Similar to the DNLL, the best IPD was independent of CF (P  > 0.1, Mardia’s linear-circular 

rank correlation) with the mean best IPD relatively constant around 0.14 eye (R  = 0.70, 

P<  0.001, Rayleigh test; see Figure 3.12). Despite this similarity in mean best IPD, the 

distributions in IC and DNLL were significantly different (P = 0.029, uniform scores test; 

Mardia & Jupp 2000), reflecting the broader range of best IPDs in the IC.

When the peak of the tuning curve was used to estimate the best IPD, the mean best 

IPD was 0.11 (R  = 0.73, P < 0.001, Rayleigh test), a significant reduction in the estimated 

value (P = 0.043, sign test). Interestingly, estimating the mean best IPD from the peak of

CF (kHz) Best IPD (eye)

Figure 3.12 B est IPDs of tone-delay functions in IC.
a, the distribution of best IPD as a function of the characteristic frequency. Best IPD was independent of CF. b, Best 
IPD is clustered roughly around an eighth of a cycle. Note that the range of phases was broader than that in DNLL.
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Figure 3.13 The power ratio for tone-delay functions in IC.
Variation in the power ratio a s  a function of the characteristic frequency of neurons in IC. Power ratios are  shown for 
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the tuning curve caused the distributions of best IPD for the IC and DNLL to cease to be 

significantly different (P = 0.18, uniform scores test). The difference in the phase of the 

fundamental in the two areas is a reflection of the increased prevalence in IC of highly 

asymmetric tuning curves with secondary modes and shoulders.

Harmonic distortion
Like the tuning curves in DNLL, third and higher order components had little effect on the 

tuning curve shape, accounting for a median 2% of the variance (interquartile range 3% to 

4%). Again, much of this was likely to arise from noise in the recordings. Unlike the tuning 

curves in DNLL, the power ratio for the IC tuning curves showed a significant negative 

correlation with CF (Figure 3.13a; r  = -0.33, P = 0.013, Spearman’s rank correlation 

coefficient). However, the distribution in IC was similar to th a t in DNLL, with low power 

ratios at the lowest CFs, higher power ratios around 300 Hz, and a fall-off in power ratio at 

higher frequencies. The median power ratio in IC was 3 dB higher than tha t in DNLL 

(P = 0.010, Wilcoxon rank-sum test) suggesting a higher level of distortion in the tuning 

curves in IC.

Skewness
The median SI in IC was 0.06 (Figure 3.14b) which was significantly different from zero 

(P = 0.04, sign test), indicating a general bias towards positive skews in the IC. As expected 

from the larger change in best IPD when the peak of the tuning curve was used as an 

estimator, the interquartile range of SI values was much broader in IC (0.30) than  in the 

DNLL (0.06). This was confirmed by the fact tha t a significant difference in the SI 

distributions for the two nuclei (P = 0.046, Kolmogorov-Smirnov test) could not be 

explained by a difference in the median SI values (IC: 0.06, DNLL: 0.07), which were nearly 

identical (P = 0.89, Wilcoxon rank-sum test).

As in the DNLL, the magnitude of the SI showed no correlation with the CF of the 

neuron (Figure 3.14a; P = 0.67, Spearman’s rank correlation coefficient), but was correlated 

with the power ratio as expected from (3.26) (Figure 3.14c; r = 0.57, P < 0.001, Spearman’s
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Figure 3.14 Asymmetry of tone-delay functions in IC.
a, the distribution of SI a s  a function of the characteristic frequency. Data for both half-wave rectified (grey circles) and 
non-rectified (red crosses) tuning curves are shown. The degree of skew was independent of the CF. b, histogram of SI 
values. Tuning curves in IC showed a wider range of both positive and negative skews than seen in DNLL. c, 
Distribution of SI as a function of the power ratio. The relationship reflects the fact that, by definition, the magnitude of 
the SI is determined by the power ratio, d, Distribution of the phase disparity a s  a function of the power ratio. The phase 
disparity was not correlated with the degree of distortion.

rank correlation coefficient). Unlike DNLL, there was no correlation between the phase 

disparity and the power ratio (Figure 3.14d; P > 0.1, M ardia’s linear-circular correlation 

coefficient) indicating tha t the suggested additional nonlinearity was not present in IC.

In contrast to DNLL, there was a significant correlation between the SI and the best 

IPD in the IC (r = 0.15, P  < 0.05, Mardia’s linear-circular rank correlation), and a weak but 

significant positive correlation between the phase disparity and the best IPD (r = 0.09, 

P = 0.015, Mardia’s circular-circular rank correlation coefficient10). Visual inspection of the 

relationship (Figure 3.15a) showed tha t as the magnitude of the best IPD increased, the 

asymmetry also increased, in line with the hypothesised effect of the inhibition.

Of the eight responses with negative best IPDs, only four had positive skews. The 

neuron with the largest SI showed a very eccentric bimodal tuning curve; the other three 

neurons had best IPDs close to zero, and were consistent with main cluster of data points in 

the distribution. There was a much greater proportion of neurons with positive best IPDs 

and negative skews in the IC (19/s5 neurons) than in the DNLL (P = 0.023, Z-test) which did 

not appear to a consequence of noisy tuning curves. The large number of such neurons 

indicates th a t zero SI does not appear to correspond to zero best IPD as predicted by the 

carving model.

10 Throughout this text, in the context of Mardia’s circular-circular rank correlation, r refers to the normalised 
correlation coefficient ro.
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Figure 3.15 Relationship between tuning an asymmetry for tone-delay functions in IC.
a, the relationship between SI and the best IPD. b, the relationship between phase disparity and best IPD. The 
asymmetry increased with best ITD.

3.4 Discussion
In this chapter, a previously developed model of the effect of inhibition in the MSO was 

extended to consider the effect of inhibition on more plausible harmonically distorted inputs 

to the MSO. The internal delay produced by the model was frequency-dependent and so 

capable of delaying different harmonic distortions by different time delays, producing an 

asymmetric tuning curve. Responses recorded in both DNLL and IC showed a bias towards 

positive best IPDs and positive skews, in broad agreement with the predictions of the model. 

However, when examined in more detail, the shape of the tuning curve did not appear to 

agree with tha t predicted by the model.

3.4.1 Alternative sources of asymmetric tuning curves

Before considering what conclusions can be made from the shape of tuning curves observed 

in IC and DNLL, it is necessary to consider alternative mechanisms capable of generating 

the observed asymmetry.

Adaptation and plasticity
A common explanation for a similar asymmetry observed in binaural beat stimuli (where 

the IPD is dynamically varied) is spike-rate adaptation. In the experiments presented here, 

any such effects were controlled for by allowing the neuron time to recover between 

presentations, and by presenting the stimuli in pseudorandom order. It is therefore 

unlikely th a t spike-rate adaptation would have had any systematic effect on the tuning 

curve shape.

An alternative form of adaptation tha t might explain the asymmetry would be some 

context-dependent plasticity in the shape of the tuning curve. For example, it is known tha t 

neurons in IC adjust their spike-thresholds over time in order to keep the dynamic range of 

their level timing curves around recently experienced sound levels (Dean et al. 2005). If the 

best IPD was not stable over the course of the recording, a skewed tuning curve could result.
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However, no significant variation in best IPD with repeat number was observed for the 

neurons in this study (data not shown) suggesting th a t such a mechanism did not 

contribute to the asymmetry.

Mismatched input phase-locking
The supposed symmetry of the tuning curve in the absence of inhibition is based on the 

assumption th a t the jitte r in the input spike trains is identical, which would cause the 

cross-correlation of the jitte r distribution px (r) to be symmetrical and centred at zero. 

However, if the jitte r distributions for the two inputs differed, then this would not be the 

case— vx(t) would be asymmetrical in (3.9), producing asymmetric tuning curves without 

the need for inhibition. Such a difference could arise from a difference in the distribution of 

the phase of phase locking of the inputs, or from differences in the shape of the jitte r 

distribution itself.

Mismatched synaptic time courses
Similar to the above argument, it can be seen from (3.19) th a t another way to produce an 

asymmetric tuning curve in the absence of carving inhibition is for the ipsilateral and 

contralateral inputs to have different EPSP time courses. If the ipsilateral EPSP were 

faster than  the contralateral EPSP (in both rise-time and decay-time) then the 

autocorrelation ex ( r ) , and consequently the tuning curve, would be shifted away from zero 

and would show positive asymmetry without the need for inhibition. Such a difference in 

time course is a consequence of the model of the effect of inhibition in the MSO proposed by 

Zhou et al. (Zhou et al. 2005), where the contralateral EPSP is slowed relative to the 

ipsilateral EPSP by the high inhibitory conductance a t the soma of the neuron.

Stereausis
In its traditional incarnation, stereausis cannot explain the observed asymmetry. Since the 

stimulation frequency was held constant over the course of the recording and only the ITD 

was varied, any interaural difference in group delay would have remained constant. 

Furthermore, since the harmonics would be expected to be created in phase (or in 

antiphase) with the fundamental, no phase-disparity could exist, and the resultant tuning 

curve would be symmetric. Any different group delay applied to distortions created in the 

cochlea would not affect the tuning curve since, due to the frequency selectivity of the 

cochlea, they would be represented in a separate tonotopic lam ina from the fundamental.

However, more generally, there may be some variation in the firing properties of 

neurons across different frequency lamina. Thus, for example, a mismatch in the CF of the 

inputs might result in a mismatch in input phase locking, which would produce an 

asymmetric tuning curve as described above. This could be considered an effect of 

stereausis, albeit in a different sense to th a t traditionally suggested.
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Convergent delay-sensitive input
The most likely confound of the interpretation of asymmetry in the tuning curves arises 

from the violation of the assumption tha t the neurons recorded from only receive a single 

delay-sensitive input from an MSO principal neuron. From (3.9) it can be seen th a t the 

proposed effect of inhibition can be equivalently interpreted as a simple linear combination 

of two delay-sensitive inputs: one input is excitatory with zero best IPD, and the other is a 

contralateral inhibitory projection with a negative best IPD. In general, (3.9) can be easily 

reinterpreted to apply to any pair of convergent inputs—the contralateral inhibitory input 

can transformed into an ipsilateral excitatory input by setting a  < 0 and 3 < 0 , and since 

convergent input is not constrained to have zero best IPD, the reference (zero) IPD can be 

freely redefined. Thus, the carving model can be thought of a specific instance of a more 

general convergence model defined by a restricted set of param eters.

3.4.2 Explaining the observed asymmetry

While there are several possible explanations for the observed asymmetry, it may be 

possible to distinguish between them based on the expected characteristics of the induced 

asymmetry. In particular, the degree to which carving inhibition and convergence can be 

distinguished is of interest, as these were felt to be the most likely contenders.

Asymmetry in 1C
As discussed a t the s ta rt of this chapter, the effects of convergent delay-sensitive input from 

neurons with different frequency selectivity are expected to be apparent in the IC data. 

Consider an IC neuron receiving two excitatory inputs from MSO: one on-CF, originating 

within the same frequency lamina as the IC neuron and strong enough th a t it determines 

CF; and one off-CF, weaker and tuned to different frequency. The best IPD of either input 

for a given stimulation frequency f  will be

best IPD = CD x f  + CP (3.27)

and will be around 0.125 eye for a pure tone a t the input’s own CF (Brand et al. 2002). Thus, 

while the on-CF input would peak at 0.125 eye, the off-CF input would be expected to peak 

at some other IPD, resulting in a mismatch in best IPDs. Assuming simple linear 

combination of the inputs as in (3.9), the mismatch in best IPD would result in an 

asymmetric tuning curve and would shift the best IPD away from 0.125 eye, similar to the 

effect of carving inhibition (as discussed in the previous section). If both inputs had the 

same best IPD, then no asymmetry would be expected and the best IPD would not be 

affected. If the off-CF input had a best IPD 0 to 0.5 eye greater than th a t of the on-CF input, 

then positive asymmetry would result and the best IPD would be shifted up towards higher 

values. If the off-CF input had a best IPD 0 to 0.5 eye less than th a t of the on-CF input, 

then negative asymmetry would result and the best IPD would be shifted down towards 

lower values. The larger the mismatch in best IPD, the stronger the asymmetry and the 

further the deviation in best IPD.
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Such a pattern  of convergence would predict the correlation between phase disparity and 

best IPD seen in Figure 3.15d, with positively skewed tuning curves biased towards higher 

best IPDs and negatively skewed tuning curves biased towards lower best IPDs, but with 

zero asymmetry occurring around some positive best IPD. A similar correlation would be 

predicted for an inhibitory off-CF input.

While, for convergent inputs, the best IPD measured from the phase of the fundamental 

would not reflect the best IPD of either input, the best IPD measured from the peak of the 

tuning curve would be largely determined by the best IPD of the stronger on-CF component. 

This provides an explanation for the fact tha t the distribution of best IPD estimated from 

the peak was be narrower than tha t estimated from the phase of the fundamental—the 

peak ITD reflects the distribution of the best IPD of inputs from a single lamina. This 

potentially large discrepancy raises the question of which of the two methods should be 

used to estimate best IPD in IC. Estim ating the best IPD from the peak of the tuning curve 

would better reflect the tuning of a single input and could significant effect the shape of 

phase plots in the IC.

Finally, for high input power ratios and large differences in best IPD, convergent input 

would result in a bimodal tuning curve, with each mode produced by the peaks of the 

underlying tuning curves. Such neurons are responsible for the observed power ratios of 

around 0 dB, which show roughly the same degree of modulation to the second harmonic as 

to the fundamental.

Asymmetry in DNLL
The negative correlation between the phase disparity and the power ratio observed in the 

DNLL was not predicted by the model of carving inhibition. One possible explanation is 

th a t this correlation was introduced by nonlinear processing in MSO or DNLL not 

accounted for by the model. If the firing rate of a DNLL neuron were nonlinearly sensitive 

to an input w ith an asymmetric tuning curve

r DNLL ( T )  ~  f  [r asym (T)] (3.28)

then additional harmonics would be created by the nonlinearity f  [•]. These harmonics 

would be created in phase with the fundamental and so decrease the phase disparity of the 

harmonics, reducing the asymmetry. While some neurons might be strongly nonlinear, with 

tuning curves showing a high power ratio and a low phase disparity, others may be more 

linear, showing a lower power ratio and a higher phase disparity. This different degree of 

linearity in the population could explain the reduction in phase disparity at higher power 

ratios. Any additional nonlinearity could also arise in the MSO from a different relationship 

between subthreshold response and spike output than  th a t described in the model.

An alternative explanation tha t does not require additional nonlinearity is th a t the 

correlation could be a consequence of convergence in the DNLL. If a neuron in DNLL 

received two excitatory inputs from MSO, with symmetric tuning curves and similar best
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IPDs, then the asymmetry of the resulting tuning curve would be slight but the power ratio 

would be high. If the best IPDs were moved slightly further apart, then the asymmetry 

would increase and the power ratio would decrease, since the second harmonics of the two 

inputs would be closer to being in antiphase than would the fundamentals. Thus, the 

correlation between the phase disparity and the power ratio could be a consequence of a 

variation in the difference in best IPD of convergent inputs. Such a mismatch in best IPD 

may arise from random differences in best IPD for neurons of the same CF, or it may result 

from a small mismatch in the CF of the inputs. I t is worth noting th a t if the output of 

DNLL were additionally nonlinearly dependent on the sum of its convergent inputs, then a 

further reduction in the asymmetry at higher power ratios would be expected.

Both the model of carving inhibition and the proposed pattern of convergence illustrated 

above predict a positive correlation between the best IPD of the tuning curve and the phase 

disparity. Such a correlation was not observed in DNLL, which favours an origin of 

asymmetry unrelated to any mechanism affecting best IPD.. However, the narrow range of 

best IPDs in DNLL and any reduction in the phase disparity by an additional nonlinearity 

would have made it difficult to observe any correlation. With more data, such a correlation 

may have become apparent.

There is evidence th a t a relationship between ITD tuning and asymmetry does exist. In 

agreement with the findings here, Seidl and Grothe (Seidl & Grothe 2005) found th a t the 

maximum slopes of DNLL tuning curves in the gerbil were on the left-hand slope of the 

tuning curve implying th a t they were positively skewed. More interestingly, for animals 

with abnormal development of inhibitory synapses in MSO (due to being reared in 

omnidirectional white noise), the peak of the tuning curves was distributed around zero and 

th a t the maximum slope was on the side of the curve nearest zero as would be expected 

from the carving model. However, this does not rule out a convergence mechanism as any 

effect on the tuning curves in MSO would also influence the pattern  of convergence in 

DNLL.

While the presence of convergent delay-sensitive input has been previously observed in 

IC (McAlpine et al. 1998), this was only possible for inputs where there was a large 

difference in CF. Because of the narrow range of SI values and best IPDs observed in DNLL 

compared to IC, it seems likely th a t any mismatch in CF in DNLL is likely to be small and 

th a t a similar approach would be unlikely to be successful. Another approach, if the 

convergent input were of mixed polarity, would be to use the iontophoretic application of 

inhibitory neurotransm itter antagonists in the DNLL to attem pt to reveal a change in the 

symmetry. However, if some asymmetry remained, it would still not be possible to 

determine w hether this was due to asymmetry in the MSO tuning curve or due to the 

convergence of excitatory inputs.
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Asymmetry in MSO
The negligible asymmetry demonstrated by neurons recorded in studies in MSO suggests 

tha t the model of carving inhibition presented here is inadequate a t predicting the effect of 

inhibition a t the MSO. However, the analysed data set may be biased towards more 

symmetric tuning curves. Firstly, there is a possibility th a t other authors may have had an 

unconscious preference for more symmetric tuning curves when selecting exemplars. 

Secondly, the median best IPD for the available data was only 0.06 eye, suggesting a bias 

towards low best IPD neurons, which are expected to show lower asymmetries. Finally, the 

median power ratio was -12  dB, which, for the DNLL, would lie within the range for which 

the phase-disparity was highly attenuated. Comparing the data from MSO with th a t from 

DNLL, little difference was observed between the tuning curves in MSO and those obtained 

from high power ratio, low best IPD neurons in DNLL. Thus, the lack of asymmetry in 

MSO may be explained by a biased data set or a consequence of an additional nonlinearity 

not accounted for in the model. However, without direct evidence from the MSO it is 

impossible to determine which (if any) of these possibilities is the case.

3.4.3 Conclusion

The proposed mechanism of carving inhibition can produce a frequency-dependent delay 

th a t can lead to asymmetry in the tuning curves of delay-sensitive neurons. However, a 

similar effect is predicted by the convergence of multiple delay-sensitive inputs at the level 

of the IC and the DNLL. While the DNLL appeared to be a better proxy for the MSO than 

the IC, it was not possible to be certain th a t the observed asymmetry was due to carving 

inhibition. In order to progress on this particular question, it is necessary to record directly 

from the MSO. However, as stated earlier this is an unattractive option due to the difficulty 

involved.
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4
A s y m m e t r y  in R e s p o n s e s  t o  

N o i s e  S t im u l i

4.1 Introduction
So far, the analysis of the tuning properties of neurons has focused upon their responses to 

interaurally delayed pure-tone stimuli. However, neurons show sensitivity to a broad range 

of sound-frequencies, the response to each of which can be subjected to a different internal 

delay despite travelling through the same pathways. The purpose of the study presented in 

this chapter was to address the effect of frequency-dependent delays on spectrally rich 

stimuli containing multiple frequency components.

The noise-delay function is a tuning curve recorded from a neuron by presenting a 

broadband-noise stimulus binaurally and varying the in teraural time difference. It is 

ethologically more relevant than pure tones, since neurons can respond to the frequencies 

in which they are more interested (as defined by their frequency tuning curves). The noise- 

delay function takes the form of a damped sinusoid with a carrier frequency around the CF 

of the neuron (Figure 4.1). The degree of damping reflects the bandwidth of the frequency 

selectivity of the neuron, with broader bandwidths producing more damped responses (Yin 

et al. 1986, Chan et al. 1987, Yin et al. 1987, Joris et al. 2005). It is similar in appearance to 

the composite delay function formed from the sum of several tone-delay functions recorded 

for pure-tones across the range of frequencies for which the neuron is sensitive. However, 

there is disagreement as to how similar these two different tuning curves actually are.

Neurons in IC are often divided in to peak-type neurons (Figure 4.1a) and trough-type 

neurons (Figure 4.1b). The majority of neurons recorded in IC are peak type, which make 

show a dominant central peak in their noise-delay function, and are thought to inherit their 

ITD sensitivity from MSO. Trough-type neurons show a prominent central trough in their 

noise-delay functions, and are thought to inherit their ITD sensitivity from LSO.
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Figure 4.1 Examples of noise-delay functions recorded from IC.
a, a peak-type response. The response showed a prominent central peak at positive ITDs. The CF for this neuron was 
302 Hz. b, a trough-type response. The response showed a prominent central trough at negative ITDs. The CF for this 
neuron was 293 Hz.

The best ITD is defined as the ITD at which the noise-delay function is maximal. For peak- 

type neurons, it provides a measure of the internal delay of the MSO neuron from which 

the neuron under investigation inherits its ITD sensitivity.

Noise-delay functions were obtained for 28 IC neurons and 14 DNLL neurons. Full 

details of procedures and stimuli are presented in the Methods chapter (Section 2.4.2). 

Briefly, broadband noise stimuli (0.05 to 5 kHz) were digitally generated, and binaurally 

presented with some time delay applied to the stimulus in the contralateral ear. Three IC 

neurons were trough-type and so were excluded from analysis.

The best ITD was determined for each neuron by smoothing the noise-delay function and 

locating zero crossings in its first derivative (see Section 3.3.2 for detailed methods). The 

ITD at which the gradient of the function was maximal (most positive) was also of interest, 

and so was determined from zero crossings in the second derivative of the tuning curve.

4.2.1 The distribution of best ITD in IC

The distribution of best ITD observed in IC was in line with previous findings in the IC of 

the guinea pig (McAlpine et al. 2001) and cat (Hancock & Delgutte 2004). Best ITDs were 

largely outside of the physiological range (±150 ps) and showed a negative correlation with 

CF (Figure 4.2a; r = -0.60, P  = 0.0016, Spearman’s rank correlation coefficient). Based on a 

much larger sample size, McAlpine et al. concluded tha t the best ITD was relatively 

constant when expressed in terms of cycles of CF and distributed around 0.125 eye re CF 

(McAlpine et al. 2001, Palmer et al. 2002). Figure 4.2b shows the best ITD expressed in 

eye re CF. While the median value was 0.14 eye re CF (interquartile range 0.09 to 

0.17 eye re CF) there was still significant correlation with CF (r = 0.46, P  = 0.020, 

Spearman’s rank correlation coefficient). This also appeared to be true for the data in the

4.2 The distribution of best ITD
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Figure 4.2 Best ITDs for noise-delay functions recorded from IC.
a, the distribution of the best ITD (red triangles) of peak-type neurons as a function of CF. The ITD at which the tuning 
curve has maximum gradient is also shown (black circles). Both the best ITD and slope ITD were CF-dependent. b, the 
sam e data a s  in a, expressed in terms of the period of CF. Note that while the best ITD was largely outside the 
physiological range (grey area), the slope ITD was inside the physiological range at the higher frequencies. The dotted 
line represents the inverse relationship between best ITD and CF where best ITD is 0.125 eye re CF. The data only 
loosely followed this relationship.

original study (McAlpine et al. 2001) but was not discussed. Thus the assertion th a t the 

data is distributed around 0.125 eye re CF is only a coarse description of the distribution.

The ITD of maximum gradient (the slope ITD ) was positively correlated with CF 

(r = 0.59, P = 0.002, Spearman’s rank correlation coefficient), but largely confined to the 

physiological range. When the slope ITD was expressed in units of eye re CF, this 

correlation disappeared (P = 0.41), and the slope ITD showed a median value of 

-0.05 eye re CF (interquartile range -0.09 to -0.03 eye re CF). While the distribution of the 

obtained values of slope ITD are in agreement with those obtained by others, the CF 

dependence of this slope ITD is a novel finding.

4.2.2 The distribution of best ITD in DNLL

Figure 4.3a shows the location of best ITD (measured in ms) as a function of the CF for 14 

neurons in the DNLL. In agreement with the IC, the best ITD was negatively correlated 

with CF (r = -0.66, P  = 0.013, Spearman’s rank correlation coefficient), and all but one 

neuron showed best ITDs outside of the physiological range. After being converted into 

units of eye re CF (Figure 4.3b), the best ITD was found to be independent of CF (P = 0.23) 

with a median value of 0.16 eye re CF (interquartile range 0.12 to 0.18 eye re CF). However, 

the best ITDs observed in DNLL did not appear to be different from those in observed in IC.

Unlike the IC, the slope ITD in DNLL was independent of CF (Figure 4.3a; P = 0.33, 

Spearman’s rank  correlation coefficient), with a median value of -90 ps (interquartile range 

-10 to -220 ps). The median slope ITD was not significantly different from zero (P = 0.057, 

sign test) suggesting tha t the distribution was centred a t 0 ps. However, the observed 

distribution did not appear to be different from tha t observed in IC, and the lack of 

correlation with CF was likely a consequence of fewer recordings of the very lowest 

frequency neurons from the DNLL.
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Figure 4.3 Best ITDs for noise-delay functions recorded from DNLL.
a, the distribution of best ITD (blue triangles) of peak-type neurons as a function of CF. The ITD producing the 
maximum gradient (black circles) is also shown, b, the sam e data as in a, expressed in eye re CF. The relationship was 
similar to that observed in IC (Figure 4.2).

4.3 The Gabor model
If the Jeffress model were correct, the delay line system would have to be such that neurons 

with lower CFs would have larger path-length differences than neurons with higher CFs. 

The time delay introduced by these path-length differences would therefore result in the 

observed CF dependency of the best ITD. In contrast, the model of carving inhibition 

presented in Chapter 3 is capable of producing both time and phase delays, depending on 

the timing and strength of the inhibitory input. This provides an alternate explanation for 

the CF-dependence of the best ITD observed in mammals. If units with different CFs all 

received carving inhibition that resulted in a phase delay of 0.125 eye, then an inverse 

relationship between CF and best ITD would be produced. It was therefore of interest to 

examine the contribution of time and phase delays to noise-delay functions, to establish 

which played the dominant role in the determination of best ITD.

Gabor functions (Gabor 1946) have been previously used in visual neuroscience to model 

simple cell receptive fields (Marcelja 1980) and binocular disparity tuning curves (Sanger 

1988, Nieder & Wagner 2000). In the temporal domain, Gabor functions are sinusoids 

modulated by Gaussian envelopes, which appear similar to noise-delay functions. Because a 

Gabor function is expressed in the frequency domain by a Gaussian power spectrum and a 

linear phase spectrum, it can be thought of as a model of the composite curve resulting from 

the sum of sinusoidal tone-delay functions for a neuron with a linear phase plot and a 

Gaussian frequency-timing curve. If the system were linear, then the noise-delay function 

would be expected to be identical to this composite curve. By fitting Gabor functions to 

noise-delay functions, various parameters of interest can be estimated (McAlpine & Palmer

2002), including the relative contributions of phase and time delays to the best ITD 

(Wagner & Frost 1993).
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Figure 4.4 A linear model of ITD sensitivity.
Input noise stimuli are linearly filtered by the cochlear filters before being cross-correlated by the MSO. Frequency- 
dependent internal delays are modelled by filtering the contralateral input to the model.

4.3.1 Derivation of the model
The suitability of the Gabor function as a model of noise-delay functions can be derived by 

extending the model introduced in the previous chapter (Section 3.2) to noise stimuli. 

Compared to peripheral responses to tones, little is known about the peripheral response to 

noise. For simplicity, the input was assumed to be narrowband filtered by the cochlea, and 

it was assumed tha t the postsynaptic response in the MSO would follow the shape of the 

resulting waveform. The MSO itself was modelled as a cross-correlator (as in the previous 

chapter), and rather than modelling carving inhibition, a more general frequency- 

dependent internal delay was modelled by filtering the contralateral input to the MSO. A 

schematic of the resulting model is shown in Figure 4.4.

Assuming th a t the input stimulus s(^) is sufficiently broadband so as to be correlated 

with itself only a t zero lag, the predicted response of the neuron will given by

r(r)  =  a0 + a 1h x (r )* /c (r )  (4.1)

where h x (r) is the cross-correlation of the impulse responses of the cochlear filters and 

k ( t )  is a filter implementing the frequency-dependent delay. If the cochlear filters are 

assumed to be identical (i.e. no stereausis) and to have Gaussian frequency selectivity, then 

h x (r) will be a Gabor function

h x (r) =  exp[—7t& 2 t 2 ] c o s ( 2 7 t£ t )  (4.2)

where fc is the centre frequency of the cochlear filters and b is their equivalent rectangular 

bandwidth11 (Appendix 8.1). For simplicity, the frequency-dependent delay is assumed to be 

linear with a nonzero characteristic phase, and any frequency selectivity of k(t ) is ignored. 

This produces the prediction tha t the output of the MSO can be described by the Gabor 

function

r  ( t )  = a0 + a1 exp -irb2 ( r  -  r 0  f  cos [2?r£ ( t  -  r 0) +  0O ] (4.3)

where a0 , ax are linear coefficients, and r 0 and <j)Q are the characteristic delay and the 

characteristic phase of the internal delay.

11 The equivalent rectangular bandwidth (ERB) of a filter is defined as the width in hertz of a boxcar filter with 
equivalent total power and equivalent peak power as the filter in question.
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Figure 4.5 Noise-delay functions predicted by the Gabor model.
Noise-delay functions (red curve) with best ITDs of 0.25 eye re CF implemented by a, a pure time delay and b, a pure 
phase delay. The time delay shifts both the envelope (grey) and the carrier (red), whereas the phase delay only shifts 
the carrier, leaving the envelope peaking at zero ITD. Note the asymmetric side peaks and side troughs in b.

Since the noise-delay functions of interest are obtained from either the IC or DNLL, the 

neuron being recorded from may have some effect on the tuning curve. For simplicity, it is 

assumed tha t each neuron receives only a single delay-sensitive input and tha t the output 

firing rate of the neuron is linearly related to the input firing rate. However, since neurons 

cannot fire at negative firing rates, the response is half-wave rectified. This gives the final 

model for IC and DNLL responses

r (r ) =  {a o + a i exP - 7r&2 (r  -  To f  cos[27ifc ( t - t 0) +  <£0]j (4.4)

While this model makes several assumptions tha t might not be reasonably expected to 

hold, it was hoped tha t it would serve as a reasonable approximation and thereby provide 

estimates of the param eters of interest when regressed to data obtained from DNLL and IC.

4.3.2 Phase delays and carrier asymmetry

The CD and CP param eters of the Gabor model provide a means through which to estimate 

the time and phase contributions to the best ITD. If the internal delay for a given neuron 

were purely composed of a Jeffress-like time delay with no CP (i.e. if 4>0 were zero), then the 

carrier component of the response would peak a t the same delay as the envelope, resulting 

in side troughs and side peaks of equal height (Figure 4.5a). However, if there were some 

characteristic phase, it can be seen from (4.4) th a t the sinusoid would be shifted within the 

envelope, causing the side peaks and side troughs to be different heights (Figure 4.5b). 

Since such carrier asymmetry is often observed in IC noise-delay functions (see Figure 4.1), 

it was felt th a t there could be a strong phase contribution to the internal delay tha t was not 

evident when probing the system using tones.

4.3.3 Results

The model in (4.4) was then fitted to the recorded noise-delay functions by finding the 

param eters which minimised the sum-squared error between the estimate and the data.
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Both peak-type and trough-type neurons were analysed, 28 neurons from IC and 14 

neurons from DNLL.

Regression algorithm
The nonlinear regression of the Gabor model to the data was implemented using the 

Matlab function ls q n o n lin ,  which uses a subspace trust-region algorithm. All param eters 

were constrained to be positive except for the internal time delay r 0 and the internal phase 

delay (f>0  , which were left unconstrained. The starting point for each regression was 

determined from a rough estimate of the param eters of each tuning curve. The initial 

carrier frequency fc (measured in kHz) was set to the CF of the neuron and the bandwidth 

b (in kHz) was then estimated from fc using the equation

b =  0.3 £ 056 (4.5)

which gives the ERB bandwidth of guinea-pig auditory-nerve frequency-tuning curves as a 

function of their characteristic frequency (Evans 2001). The baseline firing rate  in response 

to uncorrelated noise was estimated from the response to the most negative ITD presented, 

and a rough estimate of the envelope of the function was then constructed by smoothing the 

squared deviation of the data from this baseline with a five-point moving average filter. The 

centroid of this envelope was then used as an estim ate of the internal time delay r 0. The 

internal phase delay <f>0 was then estimated from the phase of the frequency component of 

the response with frequency fc, adjusted for r 0. Estim ates for a0 and al were initially set 

to zero and one respectively; by performing a linear regression of the Gabor function 

produced from (4.3) using these estimates to the data, it was possible to improve the 

estimates of the linear coefficients a0 and ax.

Results of regression
Some examples of fits resulting from the regression procedure are shown in Figure 4.6 and 

the fitted param eter values in Table 4.1. The regression converged for all neurons within a 

median 15 iterations. The median R 2 statistic for the IC data was 0.82 (interquartile range 

0.73 to 0.91) and 0.91 (0.85 to 0.94) for the DNLL. The R 2 statistic was significantly higher 

for the DNLL fits than  the IC fits (P = 0.018, Wilcoxon rank-sum test), suggesting th a t the 

DNLL data were better described by the Gabor model. However, although a large amount 

of the variance was explained by the model, the residuals showed significant ITD- 

dependence for most of the responses (DNLL: 9/u  neurons, IC: 19As neurons; P > 0.05, W ald- 

Wolfowitz runs test). This indicated th a t the Gabor model did not completely capture the 

shape of the noise-delay functions.

For many of the fits (Figure 4.6a-c, f), the majority of the explained variance arose from 

fitting only the main peak and main trough of the data. The regression algorithm achieved 

this by overestimating the bandwidth param eter, which narrowed the envelope of the fitted 

function so th a t it covered fewer periods of the sinusoidal component than were present in 

the data. Any periods outside the envelope were effectively ignored, fitted with a flat line.
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Figure 4.6 Gabor fits of noise-delay functions from IC and DNLL.
Recorded noise-delay functions (black) from the IC (top row) and DNLL (bottom row) are shown overlaid on top of the 
fitted Gabor functions (red). The envelope structure of the fitted waveform is shown in grey. See Table 4.1 for estimated 
parameters, characteristic frequencies, and R2 values. The bandwidths of the responses were overestimated leading to 
non-central peaks and troughs being ignored. This is most evident in a, where the overestimation of the bandwidth 
resulted in a large underestimation of the carrier frequency.

Param eter Estimates
ID CF

(Hz)
R 2 ao 

(sp S '1)

a, 
(sp s -1)

fc
(Hz)

b
(Hz)

To
(ps)

(f>0
(eye)

26004 299 0.94 25 1178 23 895 277 0.24

41203 112 0.88 12 24 186 310 234 0.17
42304 220 0.81 25 22 268 228 376 0.03
27907 329 0.89 38 41 332 237 662 -0.05
34601 470 0.91 18 21 516 347 364 -0.01
34603 536 0.92 29 40 461 525 283 -0.07

Table 4.1 Results of the Gabor fits in Figure 4.6.

This neglect of the response a t more extreme ITDs had little impact on the total squared 

error, due to comparatively little of the total variance being present a t these ITDs.

This overfitting of the central portion of the response can be seen for the population as a 

whole from the range of bandwidth param eters resulting from the regression (Figure 4.7). 

The estimated bandwidths were all higher than expected from auditory nerve recordings in 

the guinea pig (Evans 2001). Many bandwidths were so broad th a t fewer than two cycles of 

the sinusoid occurred within ±2 standard deviations of the envelope, suggesting tha t at 

least one of the side peaks or side troughs visible in the response was ignored by the fitted 

model. For some neurons (Figure 4.6a), the estimated envelope was narrower than half the 

period of the sinusoid, with the consequence tha t only a single maxima or minima of the
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Figure 4.7 Gabor model parameters for noise-delay functions from IC and DNLL.
The estimated ERB bandwidth and the estimated carrier frequency resulting from the Gabor fits is shown for the 
responses recorded from IC (red crosses) and DNLL (blue circles). Estimated bandwidths were far wider than those 
measured from auditory nerve recordings (black line, Evans 2001). The shaded region corresponds to bandwidths that 
result in envelopes so narrow such that only one to two periods of the sinusoid can be accommodated within ±2 
standard deviations. All points above this region show less than one cycle of the sinusoid. The large number of neurons 
within and above this region indicates a systematic overestimation of the bandwidth.

sinusoidal component contributed to the fits. This resulted in highly unreliable estimates of 

the frequency and phase of the sinusoids, as can be seen from the number of responses in 

Figure 4.7 with estimated carrier frequencies near zero.

One possible reason for the tendency to focus on the data at more central ITDs was the 

higher intrinsic variance of such data points due to their higher firing rates. In order to 

compensate for this ITD dependency in the underlying variance, the fitting was repeated 

using a least-squares regression tha t was unweighted by the inverse square of the firing 

rate at each ITD. However, this change made little difference to the results, suggesting that 

this was not the factor responsible for the overestimation the bandwidth.

Another possible reason for the overestimation of the bandwidth was th a t the regression 

algorithm might have converged upon a local solution. In order to attem pt to locate any 

global minimum, a number of variations on the regression procedure were tested: different 

methods for estimating the initial parameters, different regression algorithms, and taking 

the best of several regressions obtained using different initial estimates. Although 

inaccurate initial estimates could lead to very poor fits, the results presented in this 

chapter were generally robust. In a final attem pt to force the algorithm not to ignore the 

side peaks of the response, the bandwidth was constrained to lie within a likely range of 

values. However, in such cases the algorithm set the bandwidth to the maximum possible, 

which produced a lower R 2 than when the bandwidth was unconstrained. Thus, the 

overestimation of the bandwidth did not result from a failure to find the global minimum in 

the param eter space.

Instead, the main reason for the failure appeared to be a difference between the 

envelope structure of the responses and the envelope structure of the Gabor model. For 

example, while w hat appeared to be a reasonable fit was achieved for the response shown 

in Figure 4.6e, the error could have been reduced further if the positive envelope (the upper 

envelope) of the fit were made a little deeper and narrower, and the negative envelope (the 

lower envelope) a little shallower and broader. However, these are clearly contradictory
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transformations for the Gabor function since the amplitude and width of both the positive 

and negative envelopes are controlled by the same param eters and are constrained to be 

identical. While making both envelopes deeper would have decreased the error arising from 

the peaks of the response, it would have increased the error arising from the troughs. 

Similarly for the response shown in Figure 4.6f, the error could have been further 

minimised if the positive envelope of the fit were shifted towards positive ITDs and the 

negative envelope estimate were shifted towards negative ITDs. Again, this was not 

possible. Shifting both envelopes in one direction would have decreased the error arising on 

one side of zero but would have increased it on the other. By overestimating the bandwidth, 

thereby narrowing both envelopes, any areas of the response th a t contradicted the Gabor 

model could effectively be ignored by the minimisation algorithm. The failure to increase 

the explained variance at extreme ITDs was compensated for by concentrating on the fine- 

detail of the response at central ITDs. The overestimation of bandwidth (and the significant 

residual variance) indicates tha t Gabor functions are not suitable models of noise delay 

responses in the IC and the DNLL.

4.4 Envelope asymmetry
The dual-delay function (Yin et al. 1987) is the tuning curve recorded in response to a 

binaurally presented noise stimulus with both an interaural time difference (ITD) and an 

additional in teraural phase difference (IPD). This is achieved by presenting a noise 

stimulus th a t has been both time and phase shifted (via the Fourier transform) to one ear 

and the original stimulus to the other. For the linear Gabor model, a phase delay of one of 

the input stimuli is equivalent to an internal phase delay of the same magnitude. Such a 

stimulus would therefore be expected to result in a family of noise-delay functions where 

the carrier for each function is phase-shifted within the envelope of the response (Figure 

4.8).

This has the consequence tha t for a close sampling of IPD, the envelope structure of the 

response can be clearly observed. It was hoped th a t this would allow the time and phase 

contributions to the internal delay to be directly measured from the peak of the envelope 

and the offset of the sinusoid within the envelope, without having to fit a model to the 

response. In addition, since this envelope structure appeared responsible for the failure of 

the regression of the Gabor model, it was hoped tha t it would reveal those aspects of the 

Gabor model th a t made it unsuitable for modelling noise-delay functions.

4.4.1 A linear model of dual-delay functions

Before proceeding, it is necessary to consider w hat form the response to the dual-delay 

stimulus would take if some of the assumptions underlying the Gabor model were incorrect. 

The Gabor model can be considered a specific instance of a more general linear model 

defined by constraining the cochlear filters to be identical with Gaussian frequency
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Figure 4.8 Examples of dual-delay functions predicted by the Gabor model.
The response takes the form of a family of phase-delayed Gabor functions. Coloured numbers indicate the IPD (in 
cycles) for which the corresponding curve was predicted, a, Response predicted for a Gabor model for which the 
internal delay is a  pure time delay (c.f. Figure 4.5a). b, Response predicted for a Gabor model for which the internal 
delay is a  pure phase delay (c.f. Figure 4.5b).

selectivity and constraining the internal delay to be linear. The more general model 

presented in (4.1) is not novel—the filtered and delayed cross-correlation is a common 

conceptual model for the response of MSO neurons. The addition of the k(t) filter merely 

allows various internal delay mechanisms to be incorporated.

Since the modelled cochlear filtering is linear, the effect of phase delaying the 

contralateral noise stimulus relative to the ipsilateral noise stimulus is equivalent to 

leaving the noise stimulus unchanged but incorporating an additional phase delay into the 

phase-spectrum of the contralateral filter. This, in turn, will produce an equivalent phase 

shift in the cross-correlation of the two filters. Thus, for a dual-delay stimulus with an 

interaural time difference r  and an interaural phase difference (IPD) <f> , the response 

predicted from (4.1) would be

r ( r  \ (f>) = a0 + a1h x (r |0 )* k ( t)  (4.6)

where h x (r | <j>) is the phase-delayed cross-correlation of the cochlear-filter impulse 

responses and «(r) is an arbitrary filter tha t can implement any internal delay mechanism.

Since the cochlear filters are expected to be narrowband then the response will be of the 

form

r ( r |0 )  = ao e(r)cos[27r^r + 0(t) +  <£]*k(t) (4.7)

where fc is the carrier frequency, e(r) is the amplitude envelope and 0 ( t) is the 

instantaneous phase of the response (see Appendix 8.2). If  k ( t )  implements linear delay 

with CD r 0 and CP <j>0, the response will be given by

r ( t  14>) = a0 +a1 e (r -  t 0)cos[2tt/c (r  -  t 0) + -  r 0) + 0 -  0O] (4.8)

Clearly, for such a response, the positive envelope + e ( r - r 0) and the negative envelope 

— e  (r — r 0) are symmetrical.

This can be shown for the more general case in (4.6), without making assumptions about 

the form of « ( r ) . If the positive and negative envelopes of the response are defined as the 

maximum and minimum responses a t each ITD

-0.25 0
-0.25

-0.125 
-Q.375

0.125
0.375

0.125 

-0.125
0.375 

-0.375
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e+ (t) = m ax[r(r | </>)] 

e. (r) = m in[r(r | 0)] (4.10)

(4 .9 )

From the linearity of (4.6), it can be seen th a t since

h x (T 10 + tt) = - h x (r \4>) (4.11)

it can be shown tha t

e+ (r) = ao - e-(T) (4.12)

Thus, a more general model of the response, based on the filtered cross-correlation of the 

stimulus and capable of modelling any nonlinear phase plot, predicts th a t the envelopes 

should be the same (complementary) shape. This would be expected to hold regardless of 

the form of the cochlear filters and regardless of whether the delay arose from stereausis, 

Jeffress-like time delays or carving inhibition.

4.4.2 Results

Dual-delay functions were recorded for 21 neurons from the IC and 15 neurons from the 

DNLL. Full details of recording procedures and stimuli param eters can be found in the 

Methods chapter (Section 2.4.3). Briefly, 300 ms noise bursts were presented roughly 20 dB 

above each neuron’s threshold to uncorrelated noise. The ITD between the noise bursts was 

varied from -1.5 to 1.5 eye re CF while the IPD was varied from -0.375 to 0.5 eye in 

0.125 eye steps. All stimuli were presented in pseudorandom order, and a new sample of 

noise was generated on each presentation.

Examples of responses recorded from DNLL can be seen in Figure 4.9 and examples 

from IC in Figure 4.10. All responses appeared to be modulated by IPDs, which was 

confirmed using a modified version of the bootstrap test presented in Chapter 3 (P < 0.05). 

This was unsurprising, however, since any neurons not showing IPD-sensitive responses to 

pure-tone stimuli were abandoned before recording the dual-delay function.

Responses are not symmetrical
Nearly all of the illustrated responses showed deviation away from the envelope structure 

predicted by the Gabor model shown in Figure 4.8. In most responses, the positive envelope 

was deeper than  the negative envelope or vice versa (rate asymmetry; Figure 4.9b-f; Figure 

4.10a-d, f). Furthermore, in many neurons the maximum of the positive envelope and the 

minimum of the negative envelope were a t different ITDs (delay asymmetry; Figure 4.9b-c; 

Figure 4.10b-c), often occurring on opposite sides of zero ITD. Some envelope shapes often 

did not match a t all—in the responses shown in Figure 4.9d and Figure 4.10d, one envelope 

was bimodal while the other was unimodal.

Such asymmetries provide an explanation of the inability of the Gabor model to fit the 

responses. In particular, the poor fit to the main peak of the type shown in Figure 4.6e was
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Figure 4.9 Dual-delay functions recorded from DNLL.
The characteristic frequencies of the neurons were: a, 329 Hz; b, 536 Hz; c, 302 Hz; d, 939 Hz; e, 470 Hz; and f, 
102 Hz. Envelope structures were asymmetric; positive and negative envelopes showing different depths, and maxima 
and minima often at different delays (see the predicted tuning curve in Figure 4.8 for a comparison and colour key).

a consequence of rate asymmetry, and the poor fits in Figure 4.6a, b, f  can be accounted for 

by the presence of the delay asymmetry.

Responses are not linear
Such asymmetries contradicted the prediction th a t the envelopes should be of the same 

shape. In order to test whether the data could be described by a linear model, the DC 

response r0(r) was determined at each ITD by averaging the responses over IPD. If a 

response was of the form in (4.6), then when averaging over IPD, antiphasic pairs of stimuli 

should cancel, producing a constant response independent of the ITD

ro (r ) =  ( r (r  l<£))0 = a o (4 -!3 )
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Figure 4.10 Dual-delay functions recorded from IC.
The characteristic frequencies of the neurons were: a, 337 Hz; b, 745 Hz; c, 313 Hz; d, 564 Hz; e, 775 Hz; and f, 
293 Hz. Again, responses showed asymmetric envelope structures (see the narrowband tuning curve in Figure 4.8 for a 
comparison and colour code).

This was tested using Friedman’s non-parametric ANOVA. The use of Friedman’s test 

allowed the ANOVA to be performed within repeats, thus controlling for any differences in 

firing rate tha t might arise between repeats due to adaptation effects. Significant variation 

in r0 (r) was observed for 19/2 i neurons in the IC and 15/is neurons in the DNLL (P  < 0.05). 

This significant variation in the DC response as a function of ITD indicates tha t the 

recorded responses in the IC and DNLL cannot be well described by a linear narrowband 

response of the form in (4.6).

Of the two IC neurons tha t failed the test, one was unusual since it showed only a weak, 

labile response to interaurally time-delayed noise, producing a noisy tuning curve. This
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neuron was therefore excluded from all subsequent analysis. The other IC neuron that 

failed the test (P  = 0.10) did appear to show asymmetric envelopes, but only five repeats of 

the stimulus were available. It was felt th a t with more repeats, the noise would have been 

reduced and a significant ITD-dependence would have been seen in the DC response.

Quantifying the asymmetry
In order to assess the asymmetries for the population as a whole it was necessary to find 

some method of quantifying them. The positive and negative envelopes of the recorded 

responses were determined from the dual-delay functions by interpolating the sampling of 

IPD up from 8 points to 1024 points (via the Fourier transform), and then determining the 

maximum and minimum firing rates a t each ITD. In order to remove some of the noisiness, 

the resulting waveforms were then smoothed using the “robust loess” algorithm (smooth 

function, Matlab). This used a robust least squares method in order to fit a quadratic 

polynomial with a span of 25% of the entire data set around each data point. The value 

predicted by each polynomial a t the central data point was then taken as the value of the 

envelope a t th a t point. Extracted envelopes were visually inspected to ensure tha t they 

matched the envelope structure.

The degree of rate asymmetry was assessed by examining how much of the total area 

between the envelopes was above the baseline firing rate ( A+ ) and how much below ( A_ ). 

The baseline firing rate (the response to uncorrelated noise) was estimated from the 

average value of the sixteen data points a t the most extreme ITDs. The rate asymmetry 

index (RAI) was then defined as

R A i= A+ -A _  (4i4)
A+ + A

Thus if the majority of the area enclosed by the envelopes were above baseline, the RAI 

would be positive (with a maximum of +1) whereas if the majority of the area were below 

the baseline then the RAI would be negative (with a minimum of -1). If the areas above 

and below baseline were equal then the RAI would be zero, indicating no rate asymmetry.

The existence of multimodality in some of the envelopes made it difficult to define the 

delay asymmetry and so it was measured only for tuning curves where both envelopes were 

unimodal. It was therefore necessary to visually inspect the envelopes to determine the 

level of modality in each envelope before the delay asymmetry could be calculated. The 

delay asymmetry was measured as the difference in ITD between the peak of the positive 

envelope and the trough of the negative envelope

Delay Asymmetry = Peak ITD -  Trough ITD (4.15)

The peak of the positive envelope and the trough of the negative envelope were located from 

zero crossings in their first derivatives, using the same method used to locate the peak of 

the tone-delay functions in Chapter 3 (Section 3.3.2).
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The degree of asymmetry in dual-delay functions in IC and DNLL
The measured RAI for neurons in both the DNLL and IC can be seen in Figure 4.11a. The 

majority of RAI values in the DNLL were above zero, and the RAI was positively correlated 

with CF (r = 0.69, P = 0.006, Spearman’s rank  correlation coefficient), with little or no 

asymmetry at the lowest CFs. Neurons in the IC, however, often showed negative RAI 

values (7/20 neurons) and showed no correlation with CF (P = 0.43, Spearman’s rank 

correlation coefficient).

In the DNLL, both envelopes were unimodal for 10/is neurons, and 4/is neurons showed 

unimodal positive envelopes but multimodal negative envelopes. The remaining neuron 

showed a unimodal positive envelope but a relatively flat negative envelope. Thus for the 

DNLL any multimodality was restricted to the negative envelope. In the IC, both envelopes 

were unimodal for W20 neurons, ¥ 2 0  neurons showed multimodality in one or both of 

envelopes, and ¥ 2 0  neurons showed one envelope th a t appeared relatively unmodulated by 

ITD.

The delay asymmetries measured for the responses where both envelopes were unimodal 

are shown in Figure 4.11b. Responses in the DNLL showed a range of delay asymmetries— 

both positive and negative—resulting in a median DA of 0.05 eye re CF th a t was not 

significantly different from zero (P = 1.00, sign test). In the IC however, the majority of 

responses showed positive asymmetry with their positive envelopes peaking a t more 

positive ITDs than those at which their negative envelopes showed a trough. The median 

delay asymmetry was 0.17 eye re CF, which showed a significant bias towards positive 

values (P = 0.007, sign test). For IC, with the exception of a single high-frequency data 

point, the DA appeared to be correlated with the CF. Ignoring the sign of the delay 

asymmetry, a correlation between the magnitude of the DA and the CF of the neuron could 

be seen (r = 0.75, P  = 0.002, Spearman’s rank correlation coefficient). A similar correlation 

appeared to exist for the DNLL but this was not significant (P = 0.2, Spearman’s rank 

correlation coefficient).

The reason for this CF dependency in delay asymmetry could be seen by examining the 

location of the peaks of unimodal positive envelopes (Figure 4.11c) and the troughs of the 

unimodal negative envelopes (Figure 4. lid ). The locations of the peaks showed no variation 

with CF in either DNLL (P = 0.42, Spearman’s rank  correlation coefficient) or IC (P = 0.56), 

remaining relatively constant a t around 0.14 eye re CF and 0.13 eye re CF respectively. 

However, in both nuclei, the location of the trough of the negative envelope appeared to 

shift away from zero ITD with increasing CF, with a significant correlation between the 

magnitude of the trough ITD and the CF for both DNLL (r = 0.70, P  = 0.031, Spearman’s 

rank correlation coefficient) and IC (r = 0.74, P <  0.001). Thus, the CF dependence of the 

delay asymmetry appeared arise from a CF-dependent shift in the trough ITD of the 

negative envelope.
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Figure 4.11 Measures of asymmetry in dual-delay functions from IC and DNLL.
a, the distribution of the Rate Asymmetry Index as a function of the CF for neurons in DNLL (blue circles) and IC (red 
crosses). The RAI increased with CF for the DNLL. b, the distribution of the degree of delay asymmetry (in cycles re 
CF) a s  a function of CF. The magnitude of the delay asymmetry appeared to increase with CF for both IC and DNLL. c, 
The distribution of the peak ITD of the positive envelope as a  function of CF. d, The distribution of the trough ITD of the 
negative envelope a s  a function of CF. The outward shift in the negative envelope trough combined with the constancy 
of the positive envelope peak was responsible for the increase in delay asymmetry with CF. e, the degree of delay 
asymmetry as a function of the best ITD. Larger best ITDs appear to produce larger delay asymmetries, f, the sam e 
data a s  in e expressed in milliseconds. The delay asymmetry and the best ITD no longer appear correlated.

The magnitude of the delay asymmetry was correlated with the best ITD (Figure 4.l ie )  

for both the IC (r = 0.67, P  = 0.008, Spearman’s rank  correlation coefficient) and the DNLL 

(r = 0.67, P = 0.039). This suggested tha t whatever mechanism was responsible for shifting 

the best ITD away from zero was also responsible for producing the delay asymmetry. 

However, when expressed in milliseconds (Figure 4.Ilf), there was no correlation between 

the two measures in either IC (P = 0.11) or the DNLL (P = 0.73), suggesting tha t any 

correlation may have arisen from the co-dependence of both the delay asymmetry and the 

best ITD on the CF of the neuron.
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4.5 Discussion

4.5.1 Best ITD and slope ITD

The distribution of best ITD and slope ITD in IC was in accordance with tha t previously 

observed (McAlpine et al. 2001, Hancock & Delgutte 2004). The distribution of best ITD in 

DNLL was the same as tha t in IC, suggesting th a t the distribution in MSO would also be 

similar. While the peaks of tone-delay functions in the MSO and DNLL have previously 

been described as being distributed around 0.125 eye re CF, this is only a crude 

approximation. In fact, the best ITD (in ps) was not inversely proportional top the CF and 

even when converted to cycles of CF, the median value in both IC and DNLL was greater 

than 0.125 eye re CF.

Arguably, too much attention has been paid to the location of the best ITDs and this 

detracts from the more striking distribution of the slope ITDs. In both IC and DNLL the 

slope ITDs are more tightly clustered around the midline than  best ITDs are around their 

median. Thus, a systematic variation in best ITD may not in of itself be the goal of the 

system, but rather a means through which effect the more functionally im portant position 

of the slope ITDs can be established. However, the tighter distribution of the slope ITDs 

around zero comes from a weaker dependence on the CF (compared to tha t of the best ITDs). 

While for most of the data the slope ITDs are only slightly below zero ITD, for the very 

lowest CFs the slope ITDs can be outside of the physiological range. Since noise-delay 

functions provide the greatest acuity a t ITDs more negative than their slope ITD 

(Shackleton et al. 2003), these neurons do not appear to efficiently encode ITDs within the 

commonly experienced range. This would be expected to result in poorer midline JNDs at 

these lowest frequencies.

4.5.2 Gabor fits

The difference in side-trough depth often observed in responses to noise was thought to 

indicate the presence of a strong phase component to the internal delay. It was hoped tha t 

such a finding might provide an explanation for the observed phase-like dependency of the 

best ITD on CF. Although the Gabor function used to model the data and estimate the 

phase delays explained a large fraction of the variance, this appeared to be an artefact of 

overfitting the response at central ITDs. This overfitting lead to unreliable param eter 

estimates, suggesting th a t the Gabor function was not suitable for the purpose it was 

intended. The reason for the failure of the Gabor model to fit the data appeared to be the 

large degree of asymmetry observed in IC and DNLL. It was therefore not possible to 

determine w hether the observed difference in side-trough depth was a consequence of a 

phase component to the internal delay or a consequence of the delay asymmetry.



4.5.3 Asymmetry in noise-delay functions

Only two dual-delay functions have been previously illustrated, both recorded from cat IC 

(Yin et al. 1987). The symmetry of one of these cannot be observed since the negative 

envelope cannot be seen and the other appears largely symmetrical. Twelve dual-delay 

functions were recorded in the Yin et al. study and some would be expected to have shown 

the asymmetry observed here. However, any asymmetry (or lack thereof) is not mentioned. 

Since the purpose of th a t study was to highlight the similarity of the response to tha t 

expected from a cross-correlation model (with particular reference to any phase modulation), 

it is possible th a t any asymmetry was overlooked. Delay-asymmetric tuning curves can be 

clearly observed in several examples of low-frequency neurons recorded from a similar 

study in the IC of the cat (Joris et al. 2005), indicating th a t the asymmetries observed in 

this study are present and are not unique to the guinea pig.

Since the more general linear model presented in this chapter also predicted 

symmetrical envelopes, the failure of the Gabor model was not merely a failure to use the 

correct param eters for the cochlear filters or the delay mechanism. Instead, the observed 

shape of the noise responses suggests th a t some mechanism not accounted for in the linear 

model is playing a significant role. Possible mechanisms underlying these asymmetries will 

be discussed in the next chapter.
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5

T h e  O r i g i n  o f  A s y m m e t r i e s

5.1 Introduction
While the linear model in the previous chapter suggested th a t it should be possible to use 

noise-delay functions to investigate the nature of the internal delay, this was hindered by 

the presence of the rate and delay asymmetries in the noise-delay functions. In order to 

progress it was necessary to understand the origin of these asymmetries and, ideally, to 

factor them in to new model of ITD processing.

The symmetrical envelope structure predicted by the general model presented in the 

previous chapter arises from its linearity. Any interaural phase-shift of the input stimuli 

produces an equivalent phase shift of the output (with the exception of the DC component), 

and so (4.11) holds and the envelopes remain symmetrical. In order to produce 

asymmetrical envelopes it is necessary to introduce distortions are not put into antiphase 

by an interaural phase shift of the input stimuli of 0.5 eye. This requires the introduction 

of nonlinearity into the model.

5.2 Correlation-dependent nonlinearities
One of the simplest ways of producing rate asymmetric responses, is for the output of the 

MSO to be nonlinearly dependent on the cross-correlation of the cochlea-filtered input 

stimuli

r ( r | 0 )  = fx [hx(r - T o \(f>)} (5.1)

For simplicity, the effect of inhibition has been ignored. A response of this form has the 

potential to produce rate-asymmetric responses as illustrated in Figure 5.1. In this example, 

the positive envelope has been stretched and the negative envelope compressed, resulting 

in a positive rate  asymmetry.

However, responses of the form in (5.1) cannot produce delay asymmetric responses. 

Since the envelopes of delay-symmetric functions are unimodal, it can be concluded tha t 

fx (•) is a monotonic function over the range of input correlations. Because of this, the peak 

of the positive envelope and the trough of the negative envelope of the response will occur
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Figure 5.1 Rate-asymmetric response produced by a correlation-dependent nonlinearity.
The linear narrowband response (left) becomes rate asymmetric (right) after being stretched by an expansive 
correlation-dependent nonlinearity (middle). R esponses to 0 eye IPD (red) and 0.5 eye IPD (blue) are highlighted, all 
other IPDs are shown in grey.
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Figure 5.2 Delay-asymmetric response produced by convergence.
A combination of an ipsilaterally originating excitatory input (top left) and a contralaterally originating inhibitory input 
(bottom left) can produce a response with a positive delay-asymmetry (right). R esponses to 0 eye IPD (red) and 0.5 eye 
IPD (blue) are highlighted, all other IPDs are shown in grey.

at the same ITDs as those of the input. Thus, since h x (r | 4>) is delay-symmetric (Section 

4.4.1), the response will also be delay-symmetric.

The observed delay asymmetry can be produced by the convergence of rate-asymmetric 

delay-sensitive inputs. If neurons in DNLL and IC receive two inputs from two different 

MSO neurons, then the noise-delay response can be modelled as the sum of two rate- 

asymmetric noise-delay responses

r(r\(f)) = a0 + a j rx (r | 4>) + a2 r2 ( t  | </>) (5.2)
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Figure 5.3 Rate asymmetry cannot be explained by correlation-dependent nonlinearities.
a, A rate-asymmetric tuning curve simulated by passing a Gabor function through an exponential nonlinearity, b, A rate- 
asymmetric tuning curve obtained from a neuron in DNLL. Note the equivalence contour (black) formed by the 
intersection of antiphasic ITD functions. For the tuning curve simulated using a  correlation-dependent nonlinearity, the 
crossing points lie along the zero-correlation line. For the recorded response, these crossing points are ITD dependent, 
elevated above the zero-correlation line at central ITDs. Responses to Ocyc IPD (red) and 0.5 eye IPD (blue) are 
highlighted, all other IPDs are shown in grey.

where r, ( t  10) and r2 (r 14>) are nonlinearly dependent on the cross-correlation as in (5.1).

If one input were ipsilateral in origin and excitatory, and the other contralateral in 

origin and inhibitory, then the resultant tuning curve would show positive delay 

asymmetry as is observed in IC and DNLL (Figure 5.2). Both nuclei are known to receive 

contralateral inhibition: the DNLL receives inhibitory inputs from contralateral DNLL, and 

the IC receives inhibitory input from both contralateral IC and contralateral DNLL. In 

addition, the IC also receives excitatory input from contralateral LSO, which, due to the 

trough-type responses from this nucleus, would produce a similar effect to contralateral 

inhibition. Thus, it is plausible th a t the observed delay asymmetry is a product of the 

convergence of delay-sensitive input at the level of the DNLL and IC.

5.2.1 Equivalence contours

Figure 5.3 shows a rate-asymmetric response simulated using (5.1), and the recorded 

response for which it is a model. Despite the similarity of the envelope structure, close 

inspection of the fine structure reveals an im portant distinction. For the simulated tuning 

curve, pairs of ITD functions recorded at antiphasic IPDs all intersect each other at the 

same firing rate. This is because, from (4.11) and the monotonicity of fx ( ), such crossing 

points correspond to an underlying correlation of zero

fx [h x (T —r o I 0)] =  fx [h x (T — To I 4 + *■)] =► h x (r  — T0 I 4>) =  h x (r -  r0 | <p + tt) =  0 (5.3)

Since the nonlinearity is dependent only on the underlying correlation, the firing rate at 

these intersections (the equivalence contour) is expected to be identical to the response of 

the neuron to uncorrelated noise—a constant, independent of the ITD. In contrast, the 

recorded tuning curve shows a distinct ITD dependence in this equivalence contour, 

suggesting tha t correlation-dependent nonlinearity is not an adequate model of delay- 

symmetric dual-delay functions.

Unit 34601 -DNLL-470
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Figure 5.4 Equivalence contours of four delay-symmetric dual-delay functions from DNLL.
R esponses to 0 eye IPD (red) and 0.5 eye IPD (blue) are highlighted, all other IPDs are shown in grey. The black line 
shows the equivalence contour. All neurons showed significant ITD dependency in the predicted response (p<0.001) 
with the exception of a (p=0.90). CFs of the neurons were: a, 329 Hz; b, 460 Hz; c, 470 Hz; and d, 623 Hz. The 
responses at all other IPDs are shown in grey.
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In order to investigate the equivalence contour for all recorded neurons, the Fourier 

series of each response

r (T I 0) =  Xyan (T)COS[ft0 + 9n (t)] (5.4)
n= 0

was determined using the Fourier transform, and the equivalence contour calculated as

z(r) = ao (T) _  a2 (r) + a4 (r) (5.5)

If a response is well described by a nonlinear function of correlation as in (5.1), then this 

equivalence contour would be expected to be independent of ITD and would intersect phasic 

and antiphasic noise-delay functions a t the same points, thus meeting the looser definition 

given earlier (see Appendix 8.3).

Equivalence contours are shown for four neurons from DNLL in Figure 5.4, and for four 

neurons from IC in Figure 5.5. None of these neurons appeared to show a strong delay 

asymmetry. With the exception of the response shown in Figure 5.4a, all of the responses 

showed significant ITD dependency in their equivalence contours (P < 0.05, W ald- 

Wolfowitz runs test).

Although flat equivalence contours were only expected for delay-symmetric tuning 

curves, all were tested. The majority of neurons in IC (W20 neurons) and DNLL (12/is 

neurons) showed significant variation in their equivalence contours (P < 0.05). Any lack of
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Figure 5.5 Equivalence contours of four delay-symmetric neurons from IC.
R esponses to 0 eye IPD (red) and 0.5 eye IPD (blue) are highlighted, all other IPDs are shown in grey. The black line 
shows the equivalence contour. All neurons showed significant ITD dependency in the predicted response (p<0.01). 
CFs of the neurons were: a, 210 Hz; b, 215 Hz; c, 240 Hz; and d, 337 Hz.

significant variation appeared to be a consequence of noise in the equivalence contour 

swamping any slower ITD dependency (with the exception of Figure 5.4a). This finding 

indicated tha t few of the recorded tuning curves were well described by the nonlinear model 

described in (5.1), either because of their delay asymmetry or, where delay-symmetric, 

because of the ITD dependency of the equivalence contour.

Since the correlation-dependent nonlinearity cannot adequately describe the observed rate- 

asymmetric responses as proposed in the previous section, a new model of ITD processing is 

required. In particular, the new model m ust be able to account for the ITD-sensitive, IPD- 

insensitive offset of the equivalence contour. One likely explanation for such an offset is an 

additional component to the response tha t is not sensitive to the carrier of the response but 

is sensitive to correlations in the envelopes of the input stimuli to MSO. Such an envelope- 

sensitive component has been previously demonstrated for high-CF neurons in the IC (Joris

An envelope sensitive component can be introduced into a narrowband signal through a 

combination of nonlinear distortion and lowpass filtering (Appendix 8.4). This can be

5.3 Envelope sensitivity

2003).

simply seen from the quadratic term of any nonlinearity, which is separable into a lowpass 

distortion and a second-harmonic narrowband distortion
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e(r)2 cos2 \2nfcT + 0(t) + 0] = — e(r)2 + — e(r)2 cos[47r£r 4- 20(r) + 2<̂>] (5.6)
■ . < 2 2________________________________________

quadratic term  lowpass distortion narrowband distortion

On its own, the lowpass distortion is solely dependent on the envelope. However, in the 

presence of the second-harmonic distortion, this envelope sensitivity is not reflected in the 

overall response, since the lowpass distortion pairs up with other even-order harmonic 

distortions to improve the sensitivity to the carrier (by sharpening IPD tuning). A kind of 

balance can therefore be considered to exist between the lowpass distortion and the second- 

harmonic distortion. If this balance is disrupted, for example by attenuating the second- 

harmonic distortion using a lowpass filter, then there will be some residual envelope 

sensitivity in the response arising from the unpaired lowpass component. This method of 

generating an envelope-sensitive component in a previously narrowband signal can be used 

to explain the observed envelope sensitivity

5.3.1 Envelope sensitivity in the output from the MSO

The simplest way of producing an envelope sensitive component to the response would be to 

lowpass filter the nonlinear correlation-dependent response in (8.22)

r ( r | 0 )  = fx [hx ( r - r o |0)]*A(r) (5.7)

where A (r) is some lowpass filter. As in the example above, this lowpass filtering would 

remove the harmonic distortions, leaving a residual envelope-sensitive lowpass component. 

Thus (5.7) provides a model of rate-asymmetric responses capable of producing an ITD- 

dependent equivalence contour. Delay-asymmetric responses could be produced by 

convergence as suggested earlier.

However, while such a mechanism may explain the observed responses, it is hard to 

discern w hat process could plausibly fulfil the role of the lowpass filter A(t). While the 

filtering arising from the membrane time constant is lowpass, it is a temporal filter and 

A(t) requires interaction between responses at different ITDs. Since these different ITDs 

were presented in pseudorandom order, it is hard to see how any temporal filter could fulfil 

the role of A(t) . The only obvious way to effect interaction across ITD after the level of the 

MSO is through convergence of delay-sensitive input. Convergence of a large degree of 

inputs with identical CFs might be expected to show a distribution of best ITDs around 

0.125 eye re CF, effectively producing a lowpass filter.

5.3.2 Envelope sensitivity in the input to MSO

A more plausible way of creating an envelope-sensitive component to the response would be 

to introduce an envelope sensitive component into the input to the MSO. As discussed in 

the previous section this can be done through a combination of nonlinear distortion and 

lowpass filtering of the inputs to MSO

v 1(t) = f1[hl ( t )*8(t) \*\( t )  (5.8)
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Figure 5.6 An envelope-sensitive  m odel of ITD sensitivity.
Filtered input stimuli are nonlinearly processed and lowpass filtered to model an envelope-sensitive component into the 
MSO. Frequency-dependent internal delays are modelled by filtering the contralateral input to the model and the MSO 
is modelled as  a cross-correlator.

v c (t + T\<f>) = fc [hc (t + r  | 4>) * s(*)] * \  (t) (5.9)

A schematic of the resulting model is shown in Figure 5.6. Since this introduces an 

envelope-sensitive component to the input, the response

r ( r | 0 )  =  vI (t) * vc (t | (t>) = vx (r  | <f>) (5.10)

would be expected to contain a term  sensitive to the cross-correlation of these envelope- 

sensitive components, in addition to a term  sensitive to the cross-correlation of the carrier- 

structure sensitive components (and several cross-terms).

Such a model is easier to justify mechanistically than th a t in the previous section. At 

high frequencies, (5.8) and (5.9) can be thought of as modelling the cochlear envelope 

sensitivity. Such a process has been previously suggested to explain the phase locking to 

the envelope of high-frequency sounds in the auditory nerve: the stereocilium kinetics 

distort the injected current to the inner hair cell creating harmonics, which when lowpass 

filtered by the membrane time-constant, results in a membrane potential th a t follows the 

envelope of the input stimulus. This cochlear envelope sensitivity has been proposed to 

explain the high-CF ITD sensitivity observed in the IC (Joris 2003).

However, cochlear envelope sensitivity is unlikely to explain the low-CF envelope 

sensitivity observed here. In Chapter 4, the input to MSO was assumed to vary linearly 

with the cochlea-filtered input stimulus. However, as discussed in Chapter 3 (Section 3.2.3) 

earlier, a similar assumption for pure-tone stimuli underestim ated the degree of phase 

locking in the input to MSO. In order to model a higher degree of phase locking, the input 

was assumed to be nonlinearly dependent on the output of the cochlea, and the 

postsynaptic response arising from each side was determined by convolving the input spike 

distribution with the EPSP (or IPSP) for those inputs. This reasoning, applied to noise 

responses, provides an alternate justification for inputs of the form (5.8) and (5.9).

5.3.3 Envelope sensitivity and tuning curve asymmetry

The envelope-sensitive component to a response can directly create the rate-asymmetries 

observed in the previous chapter by offsetting the envelope of the fine structure sensitive 

component of the response in an ITD dependent manner. Figure 5.7 shows an example of
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Figure 5.7 Envelope sensitivity can produce rate and delay asymmetric responses.
a, Example of the creation of rate asymmetry by envelope sensitivity. The envelope-sensitive component to the 
response (middle) directly offsets the otherwise symmetrical linear component (top), resulting in a  rate-asymmetric 
response (bottom) with a ITD-dependent equivalence contour. Note that both components have been delayed by the 
sam e time delay, b, Example of the creation of delay asymmetry by envelope sensitivity. The envelope-sensitive 
component to the response (middle) is asymmetric with respect to the envelope of the linear component (top), as a 
consequence of the frequency-dependent delay arising from carving inhibition. This results in a  delay-asymmetric 
response (bottom). The components in b were produced from those in a using the model of carving inhibition with a 
lead time of 0.125 eye re CF and relative strength 0.8.

how rate asymmetry can be introduced into an otherwise symmetrical fine-structure 

sensitive response, by an envelope-sensitive component of the response.

Having reproduced the rate asymmetry, the delay asymmetry can be simply reproduced 

through convergence as discussed for the nonlinear model (Figure 5.2a). However, carving 

inhibition may also provide an explanation for the asymmetry. In the first model, the 

distortions are created after the level of the MSO; thus, carving inhibition would not be 

expected to make a difference to the symmetry of the tuning curve. However, in the second 

model, where the envelope sensitivity is present in the input to the MSO, carving inhibition 

becomes a potential cause of delay asymmetry. Factoring the carving inhibition in to the 

contralateral input in (5.10) produces a response of the form

r(r|<^) = vx ( r | 0 ) * « ( r )  (5.11)

Since the lowpass envelope-sensitive distortion is of a lower frequency than the linear 

fine-structure-sensitive component, the two would be differently affected by the frequency- 

dependent delay arising from the carving inhibition. If the envelope-sensitive component
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were no longer symmetrical with respect to the envelope of the fine-structure component, a 

delay asymmetric tuning curve would result (Figure 5.2b). However, as was the case with 

the skew asymmetry in tone-delay functions, no delay asymmetry would result if the effect 

of the carving inhibition were a pure time-delay, or if the level of distortion were negligibly 

low. Thus, the delay-symmetric responses observed (largely in DNLL) may be a 

consequence of a low level of distortion, or a dominant time component to the internal delay.

5.4 Discussion
In this chapter, possible mechanisms underlying the rate and delay asymmetry observed in 

responses to the dual-delay stimulus were investigated. A simple nonlinear dependency on 

the cross-correlation of input stimuli was able to produce rate asymmetric responses, and 

the convergence of such responses could account for the delay asymmetry. However, a 

degree of envelope sensitivity was observed in the responses, which the correlation- 

dependent nonlinearity was unable to explain.

By incorporating nonlinear distortions into the input to MSO, an envelope-sensitive 

component to the response could be produced, which was capable of directly producing the 

rate asymmetry. Delay asymmetric responses could be produced either from convergence 

mechanisms or from the frequency-dependent effect of carving inhibition on the distorted 

input.

5.4.1 The origin of envelope sensitivity

An envelope-sensitive component to ITD tuning curves has been previously demonstrated 

for high-CF neurons in the cat IC (Joris 2003). Joris showed th a t the strength of this 

envelope-sensitive component increased with increasing CF, to the extent tha t for CFs 

greater than 2 kHz, the response was completely insensitive to changes in IPD. In order to 

investigate w hether the cochlear envelope sensitivity was responsible for this envelope 

component in the IC response, Joris examined the cross-correlation of responses to noise 

recorded in the auditory nerve. By cross-correlating spike trains recorded from a single 

neuron in response to both correlated and anticorrelated noise stimuli, the 0 eye IPD and 

0.5 eye IPD noise-delay functions expected from such inputs could be determined. While 

these correlograms also showed a CF-dependent degree of envelope sensitivity, the CF of 

the transition from carrier to envelope sensitivity was higher for these auditory nerve 

derived responses than for IC, and there was little envelope sensitivity for CFs less than 

1 kHz.

Cross-correlograms produced for low-CF auditory nerve fibres and low-CF AVCN 

neurons are shown in Figure 5.8. While the AN correlograms show little or no ITD- 

dependence in their equivalence contours, the AVCN correlograms show equivalence 

contours th a t drop below the response to uncorrelated noise. The failure of these 

correlograms to show an elevated equivalence contour, together with the lower CF of
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Figure 5.8 Cross-correlograms of peripheral responses to noise.
The cross-correlograms recorded for both AN (left column) and AVCN (right column) in response to correlated (thick 
black line) and anticorrelated (thin black line) noise. The average level of the response to uncorrelated noise 
(normalised to 1) has been superimposed in red. Middle plots also show the recorded response to anticorrelated noise 
(dotted black line). Note that for AN the equivalence contour is similar to the response to uncorrelated noise. In the 
AVCN the equivalence contour dips below the response to uncorrelated noise at central ITDs. In neither case  does 
the response resemble than in the IC or the DNLL, suggesting that there is an enhancem ent of envelope sensitivity in 
the MSO. (Figure adapted from Louage et al. 2004, 2005, 2006).

transition from carrier to envelope sensitivity observed in AN compared to IC, indicates the 

input to MSO is not sufficient to explain the envelope sensitivity observed in the responses 

in IC and DNLL. This suggests an enhancement of envelope sensitivity a t or after the level 

of MSO.

One possible explanation for the observed difference in envelope sensitivity is th a t the 

cross-correlograms produced from the AN and AVCN responses effectively model an MSO 

neuron as a perfect coincidence detector, firing an output spike only when two input spikes 

are perfectly synchronous. In reality, coincidence detection in MSO is imperfect: two input
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spikes can trigger an output spike even when not perfectly synchronous. This time-window 

o f coincidence detection arises from the temporal smearing of the spike energy by the EPSP, 

which as discussed earlier, can lowpass filter the stimulus, enhancing the contribution of 

the envelope-sensitive component.

In addition, Joris and colleagues only looked at responses predicted by a single neuron. 

The response of AVCN neurons of roughly the same CF to the same noise stimulus are 

expected to be well correlated—if not then the MSO would show no ITD dependency in its 

response to noise stimuli. However, as discussed for tone responses in Chapter 3, the 

pooling of AVCN inputs with slight differences in their spike timing distributions would be 

expected to smear the joint spike timing distribution compared to tha t of a single fibre. This 

pooling would effect an additional lowpass process, enhancing the envelope sensitivity in 

the response.

Another source of additional envelope sensitivity is a direct input to midbrain neurons. 

While it seems unlikely tha t convergent low-frequency inputs could result in such 

sensitivity, input from a high-CF neuron would be envelope sensitive (due to the cochlear 

envelope sensitivity). However, such an input seems unlikely since no sensitivity to high- 

frequency tones was observed for the recorded neurons. Alternatively, the envelope- 

sensitive component could arise from a descending input from some higher area tha t 

encodes the azimuthal position of sounds. Due to the relationship between azimuthal 

position and ITD, such an input might be expected to produce an ITD-dependent offset. 

However, since anticorrelated sounds (i.e. those at 0.5 eye IPD) are diffuse and cannot be 

assigned an azimuthal position, it is likely tha t such a descending input would drop out at 

such IPDs. Since this IPD dependency was not observed, such an input seems unlikely.

A large number of explanations exist for the apparent increase in envelope sensitivity 

between the AVCN and the IC and DNLL. However, it is not possible to distinguish 

between such mechanisms using the data presented here—direct recordings from MSO 

would be required to test most of these hypotheses.

5.4.2 “Envelope sensitivity”

Traditionally, “envelope sensitivity” has referred to the responses of neurons to sinusoidally 

amplitude modulated pure-tone stimuli (SAM). Applying the term  “envelope sensitivity” to 

the IPD-insensitive responses observed in this study is misleading in several ways. While 

the SAM stim ulus itself has an easily-observed envelope, the noise stimulus itself does not. 

Instead, the envelope is imposed by the narrowband filtering on the basilar membrane. 

Furthermore, while responses to SAM stimuli reflect the shape of the stimulus envelope, 

the IPD-insensitive component of the dual delay responses is unlikely to directly reflect the 

envelope imposed by the cochlea. Thus, while a largely semantic point, it is felt th a t the 

term  coarse-structure sensitivity is a preferable description of the IPD-insensitive 

component observed in responses to noise stimuli.
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5.4.3 The source of tuning curve asymmetry

If the model incorporating nonlinearity in the input to MSO is correct, then it is hard to 

make any strong conclusions based on the existence of delay-asymmetric responses. The 

large number of spectral components arising from distorted noise stimuli produces a large 

number of cross-terms in the cross-correlation and makes it difficult to obtain a neat closed- 

form expression for the responses (Appendix 8.5). In general, if the cochlear filters are 

identical (i.e. no stereausis), the EPSPs are identical (i.e. no Zhou-style inhibition) and if 

the delay is purely a Jeffress-like time delay, then the inputs to MSO would be identical. 

The predicted response would therefore be an autocorrelation, symmetrical about best ITD 

with rate-asymmetry but no delay-asymmetry. Thus, delay-asymmetry in MSO responses is 

inconsistent with this traditional model. However, since the neurons in IC and DNLL may 

receive convergent delay-sensitive input, then this traditional model cannot be rejected. 

Distinguishing between these two mechanisms would require direct recordings from MSO.
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6
C o m p o n e n t s  o f  D u a l - D e l a y  

F u n c t i o n s

6.1 Introduction
By characterising dual-delay functions in term s of their Fourier series expansion, it was 

hoped tha t a phenomenological model of ITD tuning curves responses could be produced 

th a t would allow the factors responsible for the asymmetry to be determined. Each dual­

delay function was analysed with respect to the Fourier series expansion

r (r  I <t>) = X X  Mcos[n</> + 0n (t)]
n=0

= Z X ( r i^) (6-1)71 = 0

where each component rn (r | 0), its amplitude envelope an (r) , and its phase response 

9n ( t )  were obtained from the Fourier transform of the dual-delay function r ( r  | 0 ) with 

respect to the IPD 0 . Of particular interest were the lowpass component r0 (r | 0) , the 

coarse-structure sensitive component of the response, and the linear component rx (r | 0), 

which is linearly dependent on IPD. Because of this linearity, it was hoped tha t this 

component could provide a measure of the time and phase components of the internal delay, 

fulfilling the original purpose of the Gabor model.

6.2 The relative contribution of components
The contribution of each component to the response as a whole can be assessed from the 

proportion of the total variance tha t it contributes. Figure 6.1a shows the proportion of 

explained variance for each component and Figure 6.1b shows the cumulative sum of these 

contributions—the proportion of variance explained by the n th -order and lower components. 

The same data set was used as in Chapter 4, 20 neurons from IC and 15 neurons form 

DNLL. Four neurons showing half-wave rectification of their tuning curves were omitted
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Figure 6.1 Contribution of distortions to the total variance of DNLL dual-delay functions.
a, the median proportion of explained variance for each component of the response. Error bars show interquartile range.
b, the median cumulative explained variance for each additional component. Error bars show interquartile range, c, the 
proportion of explained variance in the harmonic (2nd-order and higher) components a s  a function of the CF of the 
neuron. Data for both the IC (red squares) and the DNLL (blue circles) is shown. Harmonic components make less 
contribution at higher CFs. d, the proportion of explained variance in the lowpass component as a function of the CF of 
the neuron. In the DNLL, the contribution of the lowpass component increases with CF.

from this analysis in order to avoid overestimating the level of distortion th a t might be 

present in the MSO (V20 IC neurons, 3/is DNLL neurons).

The DNLL showed very little harmonic distortion (i.e. the 2nd-order and higher 

components were low), with the lowpass distortion r0 (r) and the linear component r: (r | 4>) 

accounting for a median 98% of the variance, indicating th a t the response could be well 

described by just the first two components. The IC on the other hand showed more 

harmonic activity with the first two components only accounting for a median 87% of the 

total variance. The inclusion of the second-order component r2 ( r  | <j>) increased the 

proportion of explained variance to 95% for the IC, but only slightly increased it for the 

DNLL to 99%. This suggested tha t while a first-order model was sufficient to describe most 

of the DNLL responses, a second-order model was required in order to describe responses in 

IC with a similar level of accuracy.

Figure 6.1c shows the total variance explained by the harmonic (2nd-order and higher) 

components. The explained variance in the harmonics decreased as a function of the 

characteristic frequency of the neuron for both the DNLL (r -  -0.59, P = 0.038, Spearman’s 

rank correlation coefficient) and the IC (r -  -0.51, P  = 0.028). Such a correlation was likely 

a reflection of the decrease in phase locking observed at higher CFs. If this were simply a 

decrease in the strength of the nonlinearity in the system then the proportion of variance
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explained by the lowpass distortion would also be expected to decrease at higher CFs. 

Instead, it can be seen for the DNLL (Figure 6.Id) th a t as the CF of the neuron increased, 

more of the variance of the response was explained by the lowpass distortion (r = 0.73, 

P = 0.007, Spearman’s rank correlation coefficient) suggesting tha t this was not the case. In 

the IC no significant positive correlation was observed (P = 0.48, Spearman’s rank 

correlation coefficient).

6.3 Components of DNLL dual-delay functions
Each component of the responses was examined in order to determine its contribution to 

the shape of the tuning curve. Particular attention was paid to the linear component, since 

as shown in the previous section, it made the dominant contribution to the shape of the 

response. Since the contribution of third-order and higher distortions was negligible, they 

were not analysed.

6.3.1 The linear component

Phase response
All responses in DNLL appeared to show a linear phase response as evidenced by the fact 

tha t the cosine-transformed phase responses of the linear components were near perfect 

sinusoids (Figure 6.2). In order to test this, the phase of the linear component 91 (r) was 

fitted to the model

( t ) =  2 n f cT - 0 c ( 6 . 2 )

by finding the values of the param eters fc (the carrier frequency) and 9c (the carrier phase) 

which maximised the equation

'Y2wi cosf^ (r.) — 9X (t. )j (6.3)
i =0

Assuming th a t the residuals had a von Mises distribution, estimates resulting from the 

maximisation of (6.3) corresponded to the maximum-likelihood estimates of the param eters 

of (6.2) (Gould 1969, Mardia & Jupp 2000). To compensate for the uncertainty in the 

measured phase response, resulting from the relatively stronger contribution of noise at 

extreme ITDs, the amplitude envelope at each ITD was used as a weighting factor

w i —  a i ( T i )  ( 6 .4 )

The regression was performed as for the Gabor fits in Chapter 3, using the Matlab 

function fm inunc to maximise (6.3) via a subspace trust-region algorithm. All param eters 

were unconstrained in the regression, with initial estimates determined from the highest- 

power component in the Fourier transform of q (r | 0) . Helical regression to a circular 

variable is highly sensitive to initial param eters (Gould 1969), since the helix can make 

several complete loops between each data point; resulting in multiple solutions for fc .
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Figure 6.2 Carriers of linear components of DNLL dual-delay functions.
Cosine transformed phase spectra are shown (black) together with fitted sinusoids(red). Weighted Ff values for the fits 
were: a, 0.99; b, 1.00; c, 0.97; d, 0.99; e, 0.99; and f, 0.82. Original dual-delay functions shown in Figure 4.9.

However, since different solutions were at least a factor of 10 apart for this data set, the 

correct solution could be assumed to be tha t with an fc nearest CF.

The regression converged and was significant for all neurons (P < 0.05, F-test). 

Goodness-of-fit was assessed using a circular version of the R 2 statistic—the proportion of 

the (weighted) circular variance explained by the model, as a fraction of the total (weighted) 

circular variance. This R 2 value for the fits ranged from 0.81 to 1.00 with a median value of 

0.97 (interquartile range 0.91 to 0.99) indicating tha t the phase was linear with respect to 

ITD over the central region of the response (see Figure 6.2). Although there were large 

errors at the more extreme ITDs, these made little contribution to the residual (circular) 

variance because of the weighting factors. However, these errors did not appear to be a 

consequence of noise. For 13/i5 neurons, the residuals showed a showed systematic deviation

88



n 0.8 
*

0.6
0 . 4

0.2

10 0 . 5

CF (kHz)

c
0 . 2 2

0 . 2

0 . 1 8

o '> 0 . 1 6

o 0 . 1 4o

0 . 1 2

0 .1

0 . 0 8

0 . 2 5

0.2

o>>o
O

0.1

0 . 0 5  k --
0 . 0 5  0 .1 0 . 1 5  0 . 2  0 . 2 5

O o
O o

o o '
o
o

o
o
o

r^x) peak ITD (eye re fc)

O

0 . 5 1 1 . 5

f (kHz)

Figure 6.3 Carrier frequency and carrier phase of linear components of DNLL dual-delay functions.
a, the estimated carrier frequency as a function of the CF of the neuron. Note that while for most neurons the carrier 
frequency is roughly equal to CF, a  number of neurons show a large difference between the two. b, the estimated 
carrier phase as a function of the peak ITD of the linear component (expressed in cycles of the carrier frequency). The 
similarity of the two m easures is expected from the fact that the linear component dominates the response and the peak 
response is expected when the sinusoidal component of the response is maximal, c, The joint distribution of the carrier 
frequency and carrier phase.

with ITD (P < 0.05, circular runs test; Mardia & Jupp 2000), indicating tha t there was 

significant phase modulation in the linear components of these neurons, albeit with a weak 

effect. Visual inspection of these responses showed a broad increase in the instantaneous 

frequency at central ITDs, which was largely captured by the fits. The majority of 

unexplained variance therefore arose from the slower instantaneous frequency in the tails 

of the tuning curves.

The estimated carrier frequency (Figure 6.3a) was significantly higher than the CF 

(P = 0.035, sign test), with a median carrier frequency to CF ratio of 1.1 (interquartile 

range 1.0 to 1.3). Several neurons appeared to respond at carrier frequencies around twice 

the CF, with ratios between 1.7 and 1.8. No secondary modes were visible at antiphasic 

IPDs in the tone-delay functions of these neurons, so this was not an artefact of the 

processes responsible for the bimodal tuning curves in Chapter 3.

The estimated carrier phase (Figure 6.3b) determined the location of the peak ITD of the 

linear component, with no significant difference between the two measures (P = 0.67, sign 

test). The carrier phase was independent of fe (P > 0.1, M ardia’s linear-circular rank 

correlation coefficient) with median value 0.18 eye (interquartile range 0.15 to 0.20 eye).
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Figure 6.4 Amplitude envelopes of linear components of DNLL dual-delay functions.
a, the smoothed amplitude envelopes for all 15 neurons recorded from DNLL, normalised by the maximum firing rate. 
The ITD has been expressed in eye re fc and adjusted so that the centroid of the square of each envelope occurs at 
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Amplitude envelope
The degree of damping in the amplitude envelope of the linear component is an indication 

of the bandwidth of the neuron. Figure 6.4a shows the normalised envelopes of the linear 

components, where the ITD is expressed in term s of cycles of fc (eye re fc). The envelopes 

were smoothed by a three-point moving-average filter and shifted so tha t the centroid of the 

squared function occurred at zero ITD. Two distinct clusters of responses were 

distinguishable—one that was narrowly tuned with half-widths less than 1.2 eye re fc (5/is 

neurons), and one that was more broadly tuned (10/is neurons).

A power-law relationship of the form y =  kx° existed between the carrier frequency and 

the half-width of the envelopes (Figure 6.4b). An analysis of covariance performed on the 

log-transformed data revealed no significant difference in the power-term c for the two 

groups (P = 0.23), but did reveal a difference in the scaling-constant k (P < 0.001). The 

fitted power-term was -0.89 (± 0.05, SEM), meaning tha t the half-width in both groups was 

approximately inversely proportional to the carrier frequency, as reflected by their close 

within-group correspondence in Figure 6.4a. The scaling-constant was 1.1 for the narrowly 

tuned group and 1.7 for the broadly tuned group—while the former showed two complete 

cycles of the carrier in their tuning curves, the la tter showed around half a cycle extra.
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Figure 6.4c shows the data in Figure 6.4a normalised to have a half-width of one unit. 

The envelopes for both the broadly tuned and narrowly tuned groups were the same 

structure, and could be transformed onto one another through a combination of translation 

and dilation. Although a Gaussian (as used in the Gabor model) fitted this envelope shape 

well (r = 0.96, Figure 6.4d), the majority of the explained variance occurred at central ITDs 

and the broad tails of the envelopes could not be captured. To determine if the tails were an 

artefact of a noise floor, preventing the envelope from reaching zero at extreme ITDs, the 

neurons were visually examined for any obvious sinusoidal variation of the carrier within 

the tail. However, because the range of ITDs presented to each neuron was scaled by CF, 

the tails could only be observed for the five neurons with narrowly tuned envelopes. While 

% of these neurons showed noisy responses in the tails, for % neurons the carrier within 

the tail was modulated at a lower frequency than it was at central ITDs (see discussion of 

frequency modulation in previous section). However, extrapolation from these two neurons 

to the population as a whole is unlikely to be reliable, particularly since they are drawn 

from the minority of narrowly tuned responses.

Characteristic delay and characteristic phase
The original reason for fitting the Gabor model to noise-delay functions was to investigate 

the composition of the delay responsible for the CF-dependent distribution of best ITDs
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observed in IC. Assuming that, in the absence of any internal delay, the response would 

have been an autocorrelation with all components symmetrical around zero

rx ( r )  =  a x ( t ) c o s (27 t̂ t ) ( 6 .5 )

then the linearity of the phase response of the linear component suggested tha t the internal 

delay could be expressed as a combination of a time delay and a phase delay— equivalent to 

the characteristic delay and the characteristic phase normally defined for pure-tone 

responses. Any CD r 0 would have influenced both the carrier and the envelope equally, 

while any CP <j>0 would only have affected the sinusoidal component. Thus, the linear 

component of the response could be expressed as

ri(r) = ai(T- ro)COS[27r/c(T- To)-^o] <6-6)

In order to reduce the effect of the noisy tails of the envelope, the CD was estimated from 

the centroid of the squared amplitude envelope. The CP was then estimated from the 

disparity between the carrier phase Qc and tha t predicted by the CD

<t>0=9c - 2'KfcT0 <6 -7 )

Similar to the best ITD, CDs were negatively correlated with fc when expressed in ms 

(Figure 6.5a; r -  -0.53, P = 0.044, Spearman’s rank correlation coefficient). When expressed 

in eye re fc, the CD was independent of the carrier frequency (P = 0.35), with a median 

value of 0.16 eye re fc (interquartile range 0.12 to 0.23 eye re fc), which was consistent with 

tha t expected for the best ITD.

The characteristic phase (Figure 6.5b) was clustered around zero with a mean value of 

-0.01 eye (R  = 0.84, P < 0.001, Rayleigh test), and was strongly correlated with the 

characteristic delay (Figure 6.5c; r = 0.44, P < 0.05, Mardia’s linear-circular correlation 

coefficient). The combined effect of the CD and the CP produced a tighter distribution of 

carrier phases than expected from either acting alone.

6.3.2 The lowpass component

The lowpass components for the six neurons from DNLL illustrated in Figure 4.9 are shown

in Figure 6.6. All but one of the components showed significant modulation to ITD (P < 0.05,

Wald-Wolfowitz runs test); the one neuron th a t failed (Figure 6.6c, P  = 0.078) appeared to 

do so due to a combination of the narrow tuning of the response and a high level of noise. 

Strongly asymmetric neurons showed more asymmetric lowpass components, with a deep 

trough to the left of the central peak (Figure 6.6b, c). Interestingly, the lowpass component 

often appeared Mexican-hat shaped (Figure 6.6e, f), with suppression of the firing rate 

either side of the main peak. While some lowpass components appeared to lack this 

suppression, this may have been a consequence of the narrow range of ITDs sampled 

(±1.5 eye re CF), and a wider range of sampling may have revealed the side-toughs. The 

lowpass distortions were visually assessed in order to determine whether such a structure 

was likely. w/is neurons in the DNLL showed a lowpass distortion th a t appeared to have a
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Figure 6.6 Lowpass components of DNLL dual-delay functions.
The responses can often be seen to be Mexican-hat shaped with a suppression of the response either side of the main 
peak (e.g. e, f). Original dual-delay functions shown in Figure 4.9.

trough either side of the main peak (e.g. Figure 6.6a, e, f), Y15 neurons showed only one 

trough to the left of the main peak, but appeared likely to be triphasic (e.g. Figure 6.6b, d). 

Only Vis neurons appeared unlikely to be Mexican ha t shaped (Figure 6.6c).

To investigate any dependency of the shape of the lowpass component on CF, the peaks 

and troughs were identified by smoothing the lowpass components using a three-point 

moving-average filter and locating zero crossings in the first derivative (see Section 3.3.2 

for a more detailed method). One neuron (Figure 6.6c) was omitted since it was not possible 

to reliably locate the peak in the response.

The peak ITD of the lowpass component occurred around the peak ITD of the envelope of 

the linear component (i.e. the CD), with no significant difference between the two (Figure
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a, the peak ITD of the lowpass component compared to the characteristic delay m easured for the linear component, the 
dotted line indicates the line of equality, b, the ITD of the side-troughs as a function of the carrier frequency of the linear 
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6.7a; P  = 0.18, sign test). Like the CD, the peak ITD was constant when measured in cycles 

of CF (or fc) with a median value of 0.18 eye re CF (0.21 eye re fc).

Figure 6.7b shows the ITD of the side troughs relative to the peak ITD as a function of 

the carrier frequency. Both the left and right side troughs occurred at the same distance 

either side of the peak ITD, and this distance was dependent on fc (and CF). This was 

confirmed using an analysis of covariance on the absolute value of the displacement from 

the peak ITD. The two sets of data did not differ significantly in terms of slope (P = 0.27), or 

in terms of y-intercept (P = 0.55). Consequently, both groups could be fit by a single linear 

trend (R 2 = 0.91, P  < 0.001, F-test), with a slope of 1.0 ms (±0.2 ms, 95% confidence
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Figure 6.9 Comparison of carriers of linear and second-order components of DNLL dual-delay responses.
a, the estimated carrier frequency for the 2nd-order component as a function of that of the linear (18,-order) component.
b, the estimated carrier phase. Note that both parameters appear to be roughly twice the value of those obtained for the 
linear component (dotted lines). Only estimates resulting from significant fits are shown.

intervals) and a y-intercept of 0.54 eye re fc (±0.12 eye re fc).

6.3.3 The second-order component
Figure 6.8 shows the second-order components of the dual-delay functions shown in Figure 

4.9. The modulation depths were low compared to the linear component, as expected from 

the low proportion of variance explained by these distortions. They therefore had little 

impact on the shape of the final response of these neurons. Six neurons (6/is) showed 

significant ITD dependency in their second-order components for 0 eye IPD (P < 0.05, W ald- 

Wolfowitz runs test). The neurons tha t failed this test appeared to have second-order 

components arising largely from the noise in the original responses; as such, their ITD 

dependency was random and so failed the runs test.

For the second-order component to have an effect on the delay asymmetry of the total 

response, the distortion must be asymmetric with respect to the linear component. Either 

the sinusoidal term  of the second-order component could be out of phase with that of the 

linear component (as for the skewed tone-delay functions, Chapter 3), or the amplitude 

envelope could be asymmetric with respect to th a t of the linear component, or both. In order 

to assess these possibilities, the shape of the second-order component was investigated.

Phase Response
The phase responses of the second order distortions were fitted with a linear function of 

ITD, as described for the linear component. In order to avoid false solutions, the estimated 

carrier frequency was constrained to be positive and to be less than five times the CF of the 

neuron. Since the data were noisier than the phase response of the linear component, the 

asymptotic test statistic previously used to assess the significance of the fit was unlikely to 

be valid (Gould 1969). Instead, a permutation test was used where the phase response (and 

weighting factor) at each ITD was randomly reassigned to a different ITD and then fitted 

by the linear model. This was repeated 100 times in order to estimate the null distribution 

of the residual circular variance under the null hypothesis of no ITD sensitivity in the



response. If residual circular variance obtained from the original data was less than 99% of 

values in the null distribution, then the fit was taken to be significant a t the P < 0.01 level. 

The reason for such a stringent threshold was to attem pt to reduce the effect of noise on the 

measured parameters.

The algorithm converged upon a solution for all neurons and despite the number of 

neurons failing the runs test, most responses were well fit by a linear function, with 10/is 

neurons showing significant fits. Since neurons failing this test were better described by a 

model tha t was insensitive to ITD, they were considered not to show a significant second- 

order component and were rejected from all subsequent analysis. The median R 2 value for 

the significant fits was 0.53 (interquartile range 0.49 to 0.63) and only one neuron (Vio) 

showed any significant ITD-dependence in its residuals (P = 0.048, circular runs test). Thus, 

for most neurons the linear approximation was sufficient to describe the phase response. 

Although this was likely due to a low signal-to-noise ratio for these second-order 

components rather than a lack of any phase modulation, the fits gave a good indication of 

the shape of the second-order components.

The estimated carrier frequency of the second-order component was distributed around 

twice tha t of the linear component (Figure 6.9a), with no significant difference between the 

two (P = 1.00, sign test). In addition there was little phase-disparity between the second- 

order and linear components (Figure 6.9b), with the majority of neurons showing estimated 

carrier phases tha t were around twice the value of tha t estimated for the linear component 

(P = 0.34, sign test). Only three neurons appeared to deviate from this trend (Figure 6.8b- 

d), at least two of which were strongly affected by noise. The sinusoidal component of the 

second-order component in the DNLL was therefore largely symmetric with respect to tha t 

of the linear component.

Amplitude envelope
For some responses, it appeared tha t the amplitude envelopes for the second-order
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Figure 6.10 Amplitude envelopes of second-order components of DNLL dual-delay functions.
a, smoothed amplitude envelopes for all 11 neurons showing significant modulation to ITD, normalised by maximum 
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continuum, d, the distribution of CP as a function of the CD for both the second harmonic (blue circles) and the linear 
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component were quite dissimilar to those of the corresponding linear component. For 

example, the responses in Figure 6.8b, and f  appeared to be bimodal while their linear 

components showed only unimodal envelopes. However, such features could have been an 

artefact of noise in the recording. The majority of amplitude envelopes were unimodal 

(Figure 6.10a) with half-widths in line with those expected from quadratic distortion of a 

Gabor function (Figure 6.10b; P = 0.11, sign test). Three neurons deviated from this trend, 

but appeared to do so because of noise (e.g. Figure 6.10c).

Characteristic delay and characteristic phase
Despite the similarity in the shape of the amplitude envelope of the linear and second-order 

components, there was considerable difference in the location of the peak of the amplitude 

envelope (the CD). The CD, estimated as before from the centroid of the squared amplitude 

envelope, was significantly lower than tha t of the linear component (Figure 6.10a; P = 0.022, 

sign test). This was surprising since the CD is presumed to be constant, regardless of 

spectral content. Instead, the lower CD appeared attributable to an apparent continuation 

of the carrier-frequency dependency of the CD observed for the linear component (Figure
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Figure 6.12 Contribution of distortions to the degree of asymmetry in DNLL dual-delay functions.
a, The RAI of an approximation formed by only the lowpass and linear components, compared to the RAI of the original 
response, b, The delay asymmetry of the sam e lowpass approximation, compared to that of the original response, c, 
The RAI of an approximation formed by only the harmonic (second-order and higher) and linear components, compared 
to the RAI of the original response, d, The delay asymmetry of the harmonic approximation, compared to that of the 
original response. Note that when the lowpass component is present, the approximation retains the original asymmetry; 
when absent, the approximation is more symmetrical.

6.10c). Expressed in cycles of the carrier frequency (of the second distortion), the CD had a 

median value of 0.09 eye re fc (interquartile range 0.01 to 0.16 eye re fc).

The CP of the second-order component was not significantly different to tha t of the 

linear component (Figure 6.10b; P = 0.34, sign test), indicating th a t the CP was the same, 

independent of spectral content. However, any difference may have been missed because of 

the test being underpowered. Unlike the linear component, no systematic covariation in CD 

and CP was observed (Figure 6.10d; P > 0 .1 , M ardia’s linear-circular rank correlation 

coefficient).

6.3.4 The origin of asymmetry in DNLL dual-delay functions

The asymmetries observed in DNLL chiefly arose from the lowpass component— 

components third-order and greater were negligible, and the contribution of the second- 

order component was weaker and more indirect than  tha t of the lowpass component. While 

removing the harmonic components from the responses produced little change in 

asymmetry, removing the lowpass component produced a much more symmetrical response 

(Figure 6.12). The envelope structure of the final response was therefore formed by direct 

summation of the envelope structure of the linear component and the lowpass component 

(Figure 6.13).
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Figure 6.13 The origin of asymmetry for DNLL dual-delay functions.
R esponses in DNLL are well approximated by the sum of the linear component (top) and the lowpass component 
(middle). Original responses shown in Figure 4.9. a, if the lowpass distortion is symmetrical with respect to the linear 
response then it will not produce any delay asymmetry. However, it will affect the positive envelope more than the 
negative envelope, producing a rate asymmetry, b, if the magnitude of the distortion is large, then bimodality can result 
in the lower envelope, c, if the lowpass distortion is asymmetric with respect to the linear response, a delay asymmetry 
is produced.

Rate asymmetry
When the lowpass component was symmetrical with respect to the envelope of the linear 

component then a rate-asymmetric function resulted (Figure 6.13a). Since the linear 

component itself is rate symmetric, any rate asymmetry is expected to come directly from 

the lowpass component. In order to measure its rate-asymmetry, the RAI was calculated for 

the lowpass component. The baseline firing rate was determined from the average firing 

rate a t the two most extreme ITDs. The RAI was then measured as before, using (4.14) 

where was the area above the baseline and below the lowpass component and A_ was 

the area below the baseline and above the lowpass component. The RAI of the lowpass 

component was correlated with the RAI of the whole function (Figure 6.14a; r = 0.68, 

P = 0.007, Spearman’s rank correlation coefficient), confirming its determ inant role in 

producing the rate-asymmetry.

Since the side troughs were shallow, the majority of the lowpass component was above 

the baseline response to uncorrelated noise. Thus, the stronger the contribution of the 

lowpass component to the shape of the tuning curve, the more positive the RAI. This
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Figure 6.14 Correlates of asymmetries in DNLL dual-delay functions.
a, the rate asymmetry of the dual-delay function as a function of that of the lowpass component. The more rate 
asymmetric the lowpass component, the more rate asymmetric the final response, b, the delay asymmetry a s  a function 
of the difference in side-trough depths. As the left side-trough becom es deeper, the delay asymmetry becomes more 
positive, c, the RAI as a function of the proportion of explained variance in the lowpass component. The stronger the 
lowpass component, the stronger the rate asymmetry, d, the magnitude of the delay asymmetry as a function of the 
rate asymmetry. The larger the rate asymmetry, the more pronounced the delay asymmetry.

relationship can be seen from Figure 6.14c, which shows a positive correlation of the RAI 

with the proportion of variance explained by the lowpass component (r = 0.71, P = 0.004, 

Spearman’s rank correlation coefficient). The increase in RAI with CF observed in the 

DNLL (Figure 4.11) was therefore a consequence of the stronger contribution of the lowpass 

component at higher CFs (Figure 6. Id). This was confirmed by the fact that, after adjusting 

for the proportion of variance explained by the lowpass component, the correlation between 

CF and RAI was no longer significant (P > 0.1, Spearman’s rank  correlation coefficient).

Bimodality
Because of their side troughs, the lowpass components were narrower than the envelope of 

the linear component. Thus, a strong lowpass component could result in bimodality in the 

negative envelope (Figure 6.13b). Since the lowpass component in DNLL was largely above 

the baseline (with the exception of Figure 6.6c), bimodality was only observed in the 

negative envelope of DNLL (Section 4.4.2).

Delay asymmetry
Delay asymmetry resulted when the lowpass component was asymmetric with respect to 

the envelope of the linear component (Figure 6.13c). For the more dramatic asymmetries,
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the left hand side trough was deeper than tha t on the right (as shown in Figure 6.13c). 

However, if the side-trough depth was low, the position of peaks were relatively unaffected, 

producing little delay asymmetry—although the asymmetry at more extreme ITDs could be 

quite marked (see Figure 5.4b). For the 6/u  neurons where both envelopes were unimodal 

and both side troughs could be observed, the difference in side-trough depth was a strong 

determinant of delay asymmetry (Figure 6.14b; r = 0.89, P = 0.033, Spearman’s rank 

correlation coefficient).

Since the peak of the lowpass component occurred roughly around the CD of the linear 

component, the peak ITD of the positive envelope was not strongly affected by the lowpass 

component. However, the trough ITD of the negative envelope was shifted towards the 

deeper side trough. As the CF increased, the contribution of the lowpass component to the 

final response increased (Figure 6. Id), and the side troughs moved further out (Figure 6.7b), 

increasing the trough ITD and the delay asymmetry (see Figure 4.11). This produced a 

relationship between the rate asymmetry and the delay asymmetry where the neurons with 

the highest rate asymmetries also showed the highest delay asymmetries (Figure 6.14d; 

r = 0.90, P = 0.002, Spearman’s rank correlation coefficient). The one exception to this was 

the response shown in Figure 6.6c, which showed a largely negative-going lowpass 

component. This reduced the RAI compared to tha t expected from the magnitude of its 

delay asymmetry.

Given tha t the RAI is correlated with CF, and tha t the degree of delay asymmetry is 

correlated with the RAI, it is perhaps surprising th a t the degree of delay asymmetry is not 

correlated with CF (Figure 4.11). However, the degree of delay asymmetry is not solely 

determined by CF-dependent factors such as the RAI, but will also be affected by factors 

showing no apparent correlation with CF, such as the difference in side-trough depths in 

the lowpass component and the offset of the peak ITD of the lowpass component relative to 

the CD. It is these CF-independent factors tha t are likely responsible for lack of a 

significant relationship between the CF and the magnitude of delay asymmetry.

6.4 Components of 1C dual-delay functions
The dual-delay functions recorded from IC were analysed in the same manner as those 

recorded from DNLL. Unlike the DNLL, the second-order component had a stronger 

contribution to the response and so it was likely th a t this would play a more prominent role 

in determining the symmetry of the dual-delay function.
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Figure 6.15 Carriers of linear components of IC dual-delay functions.
Cosine transformed phase spectra are shown (black) together with fitted sinusoids(red). Weighted F? values for the fits 
were: a, 0.99; b, 0.89; c, 0.70; d, 0.91; e, 0.96; and f, 0.96. Original dual-delay functions shown in Figure 4.10.

6.4.1 The linear component

Phase response
The phase response of the linear component of the IC dual-delay functions was fitted with a 

linear model as for those in DNLL. Figure 6.15 shows the results of the regression for the 

neurons illustrated in Figure 4.10. The regression converged for all neurons and was 

significant (P  < 0.05, F-test). The R 2 value for the fits ranged from 0.37 to 0.99 with a 

median value of 0.91 (interquartile range 0.81 to 0.96). Like the DNLL, the phase was 

largely linear over the central region of the response, with the unexplained variance arising 

at the extreme ITDs where the noise was having the strongest effect. However, these errors
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Figure 6.16 Carrier frequency and carrier phase of linear components of IC dual-delay functions.
The IC data (red crosses) is shown together with the DNLL data (grey circles) for comparison, a, the estimated carrier 
frequency as a function of the CF of the neuron. Note that at higher BFs, the IC tends respond with a carrier frequency 
below the CF of the neuron, b, the estimated carrier phase as a function of the peak ITD of the linear component 
(expressed in cycles of the carrier frequency). The similarity of the two m easures is expected from the fact that the 
linear component dominates the response and the peak response is expected when the sinusoidal component of the 
response is maximal, c, The joint distribution of the carrier frequency and carrier phase.

did not appear to be solely a consequence of noise, since for 15/20 neurons the residuals 

showed a showed systematic deviation with ITD (P < 0.05, circular runs test), indicating 

significant phase modulation. Visual inspection of the fits revealed that, similar to DNLL, 

there appeared to be an increase in the instantaneous frequency at more central ITDs.

The median R 2 value in IC was 0.06 lower than the median R 2 value in DNLL (P = 0.005, 

Wilcoxon rank-sum test). However, it was impossible to say whether this was due to a 

difference in phase modulation, or the higher level of noise in IC compared to DNLL.

The estimated carrier frequencies (Figure 6.16a) were greater than CF at low CFs and 

lower than CF at high CFs, this was significant since the difference between CF and fc was 

correlated with CF (r = 0.86, P  < 0.001, Spearman’s rank correlation coefficient). This 

relationship was similar to that observed in the DNLL at low frequencies, but the limiting 

of carrier frequency at higher ITDs appeared to be unique to the IC. Because this limiting 

did not appear to be present in DNLL, it is unlikely tha t this reflected a limit to phase 

locking in the peripheral auditory system.

The estimated carrier phase can be seen in Figure 6.16b. As expected, the carrier phase 

determined the peak ITD of the linear component, producing no significant difference 

between the two measures (P = 0.12, sign test). There was some overestimation of the peak
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Figure 6.17 Amplitude envelopes of linear components of IC dual-delay functions.
а, the normalised smoothed amplitude envelopes for all 20 neurons recorded from IC (red curves). Curves for the DNLL 
are shown for comparison (grey). The ITD has been expressed in eye re fc and adjusted so that the centroid of the 
square of each envelope occurs at zero, b, the distribution of the half-widths of the envelopes in a as a  function of the 
carrier frequency (red crosses). The DNLL data is shown for comparison (grey circles). The regression line for the IC 
data is shown in red. c, the sam e data as in b where the ITD has been normalised so that the half-width of each 
envelope is one. d, a Gaussian fit to the normalised IC envelopes in c.

ITD (e.g. Figure 6.15b) due to phase modulation of the sinusoidal component not captured 

by the regression.

Amplitude envelope
Figure 6.17a shows the normalised envelopes of the linear components in the IC, where the 

ITD is expressed in terms of cycles of fc and the envelope has been shifted so tha t the 

centroid of the squared function falls at zero ITD. Similar to the narrowly tuned group in 

DNLL, a clear power-law relationship of the form y  =  kxc was present between the carrier 

frequency and the half-width of the envelope, with an estimated value of k of 1.1 and c of 

-0.90 (Figure 6.17b; P<  0.001, F-test). An analysis of covariance revealed no significant 

difference between the IC neurons and the narrowly tuned group of DNLL neurons for 

either the power term  (P = 0.83) or the scaling-constant {P = 0.90).

The shape of the envelope appeared to be consistent with those from other IC neurons 

and those in the DNLL (Figure 6.17c). The envelope shape was loosely Gaussian (Figure

б.17d, R 2 = 0.89), but again there were problems with broad tails to the distribution. 

Several neurons showed modulation of the sinusoid within these tails, which was 

inconsistent with a mere noise floor. It therefore appeared tha t while a Gabor model could
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Figure 6.18 Characteristic delay and characteristic phase of linear components of IC dual-delay functions.
IC data (red crosses) is shown along with the DNLL data for comparison (grey circles), a, distribution of the estimated 
characteristic delay as a function of the carrier frequency of the linear component. The physiological range is shown in 
grey and the black dotted line indicates the relationship expected for best ITD. b, the estimated characteristic phase as 
a function of the carrier frequency of the linear component, c, joint distribution of the estimated CD and CP. Note that 
the combined effect of the CD and the CP produces a narrower range of carrier phases than produced by either alone.

capture much of the variance of the linear component, its suitability would be restricted to 

central ITDs.

Characteristic delay and characteristic phase
The distribution of CD for the linear components in IC (Figure 6.18a) was similar to tha t 

observed for DNLL, except for the larger proportion of neurons with CDs inside the 

physiological range. Furthermore, the trough-type units in IC showed negative CDs, 

indicating th a t their amplitude envelope peaked at ipsilateral-leading delays. The 

distribution of CP (Figure 6.18b) was also similar, except for the few neurons with CPs near 

0.5. As expected, both the large CPs and negative CDs arose from the trough-type neurons, 

consistent with a joint distribution of CD and CP similar to th a t observed in DNLL (Figure 

6.18c). Thus, in both IC and DNLL, the combined effect of the two different delays is 

preserved so th a t the peak ITD of the linear component is relatively constant across CF.

6.4.2 The lowpass component

The lowpass components for the six IC neurons shown in Figure 4.10 are shown in Figure 

6.19. The IC showed a higher degree of heterogeneity in the shape of these components 

than was observed in DNLL, with only 5/2o responses appearing likely to be Mexican-hat
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Figure 6.19 Lowpass components of IC dual-delay functions.
The responses appear more heterogeneous than those observed in DNLL, with more pronounced side troughs. Original 
dual-delay functions shown in Figure 4.10.

shaped. While the majority of neurons showed a pronounced peak at central ITDs (12Ao 

neurons; Figure 6.19b, c), a few showed a pronounced trough ( ¥ 2 0  neurons; Figure 6.19d, f), 

and several neurons showed both a prominent peak and a prominent trough (V20 neurons; 

Figure 6.19a, e). Most of the responses showed at least one peak and a t least one trough in 

the range of ITDs recorded: V20 neurons showed side troughs on both the left and the right 

of the largest peak (Figure 6.19c, e), ¥ 2 0  neurons showed only a right side trough, and V20  

neurons showed only a left side trough (Figure 6.19b, d). Of the remaining neurons, V20  

neurons showed only a peak and ¥ 2 0  neurons showed only a trough (Figure 6.19f). Other 

oddities could also be identified, for example ¥ 2 0  of the responses appeared to show several 

peaks and troughs (Figure 6.19c), and ¥ 2 0  of the responses showed a large difference in 

response at extreme ITDs of opposite sign (Figure 6.19a).

Even when strongly modulated, the lowpass components in IC were less smooth than 

those recorded in DNLL, making reliable analysis of the shape of curves difficult. Broadly 

speaking, the lowpass component could produce an asymmetric either by being asymmetric, 

or, if symmetrical, by having it’s axis of symmetry offset from the peak of the envelope of 

the linear component. Figure 6.20a shows the deviation from CD of the closest peak or 

trough. There was usually either a peak or a trough around the characteristic delay, with 

no systematic difference between the two (P = 1.00, sign test), although for some neurons 

the difference could be large. The three trough-type neurons tha t showed negative CDs and 

CPs around 0.5 eye showed troughs in their lowpass component around CD.
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Figure 6.20 Shape characteristics of the lowpass component of IC dual-delay functions.
IC data (red) is shown along with the DNLL data for comparison (grey), a, The distribution of the ITD of the nearest 
peak (upwards triangles) or trough (downwards triangles) to the characteristic delay measured for the linear 
component. The dotted line indicates the line of equality, b, the ITD of the side-troughs as a function of the carrier 
frequency.

The majority of neurons showed asymmetric lowpass components with one prominent 

peak and one prominent trough. Figure 6.20b shows the variation in the position of the 

identifiable side troughs with respect to the peak of the lowpass component. The position of 

the side trough was identical to tha t in DNLL when viewed in term s of cycles of CF, with no 

difference in either the slope of the relationship (P = 0.97, analysis of covariance) or the y- 

intercept (P = 0.29). Both sets of data were therefore fit by a single linear trend (R2 = 0.63, 

P <  0.001, F-test), with a slope of 1.2 ms (±0.3 ms, 95% confidence intervals) and a y- 

intercept of 0.41 eye re CF (±0.13 eye re CF). The similarity between the IC and the DNLL 

decreased slightly when the data were compared in terms of fc , due to the difference in the 

CF-dependence of fc for the two nuclei. While fc is useful for comparing the structure of the 

linear components of the two nuclei, it is clearly less useful when comparing the lowpass 

components.

6.4.3 The second-order component

Figure 6.21 shows the second-order components for the dual-delay functions shown in 

Figure 4.10. As expected from the higher explained variance, the second-order components 

in IC made a stronger contribution to the shape of the dual-delay function than those in 

DNLL, with modulation depths on a par with those of the lowpass components. The 

majority of responses in IC (1V/20 neurons) showed significant ITD dependency in their 

second-order components at 0 IPD (P < 0.05, Wald-Wolfowitz runs test), indicating th a t for 

these responses, the second-order components were not a consequence of noise in the 

recording.

Phase response
The phase spectrum of the second-order components in IC were well fit by a linear function, 

with W20 neurons showing significant fits (P < 0.01, bootstrap test), with a median R 2 value 

of 0.66 (interquartile ranges 0.44 to 0.81). Neurons failing this test were considered to show 

negligible second-order components and were excluded from subsequent analysis. Only four
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Figure 6.21 Second-order components of IC dual-delay functions.
A colour key for the IPD is given in a. All neurons showed significant ITD dependency in the 0 eye IPD response, with 
the exception of b. P values resulting from the significance test were: a, p=0.015; b, p=0.080; c, p=0.043; d, p=0.002; e, 
p=0.002; and f, p<0.001. Original dual-delay functions shown in Figure 4.10.

of the significant fits showed significant variation in their residuals (P < 0.05, circular runs 

test), indicating no significant phase modulation.

Similar to the DNLL, the estimated carrier frequency of the second-order component 

was around twice th a t of the linear component (Figure 6.22a), with no significant difference 

between the two (P = 1.00, sign test). While there was no significant phase disparity for the 

population as a whole (P = 0.79, sign test), several neurons in IC appeared to show a high 

degree of phase disparity, which did not appear to be a consequence of noise. The sinusoid 

of the second-order component was therefore more asymmetric with respect to th a t of the 

linear component in IC than in DNLL.
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Figure 6.22 Comparison of carriers of linear and second-order components of IC dual-delay responses.
IC data (red crosses) is shown along with the DNLL data for comparison (grey circles), a, the estimated carrier 
frequency for the 2nd-order component as a function of that of the linear (1s,-order) component, b, the estimated carrier 
phase. Note that both parameters appear to be roughly twice the value of those obtained for the linear component 
(dotted lines). Only estimates resulting from significant fits are shown.

Amplitude envelope
The majority of amplitude envelopes were roughly unimodal as can be seen from Figure 

6.23a. The half-width of the majority these envelopes was roughly equal to tha t expected 

from quadratic distortion of a Gabor function (Figure 6.10b; P = 0.057, sign test). Six 

neurons deviated from this trend, showing higher half-widths. Only one of these appeared 

to do so because of multimodality (Figure 6.2Id), the higher half-widths for the other five 

appeared to be a measurement artefact arising from the noisiness of the amplitude 

envelopes (e.g. Figure 6.21b).

Characteristic delay and characteristic phase
The distribution of the CD observed in IC was similar to th a t in DNLL, with a lower CD for 

the second-order component than for the linear component (Figure 6.24a). Although, this 

difference in CD for the two components was not significant (P  = 0.057, sign test), the lower 

CD appeared to be a continuation of the fc dependency of the CD observed for the linear

-2 0 2 0 0.5 1 1.5 2 2.!
ITD (normalised) 1st-order half width (eye re CF)

Figure 6.23 Amplitude envelopes of second-order components of IC dual-delay functions.
IC data (red) is shown along with the DNLL data for comparison (grey), a, smoothed amplitude envelopes for all 14 
neurons showing significant modulation to ITD, normalised by maximum firing rate. The ITD has also been normalised 
so that the half-width of each envelope is one. b, the distribution of half-widths of the amplitude envelopes of the 
second-order components, compared to those for the linear components. The dotted line shows the half-width predicted 
for the second-harmonic component of a  Gabor function that has been distorted by a quadratic nonlinearity.
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delay and characteristic phase of linear and second-orderFigure 6.24 Comparison of characteristic 
components of IC dual-delay functions.
a, the CD estimated from the second-order component compared to that from the linear component. IC data (red) is 
shown along with the DNLL data for comparison (grey). The dotted line indicates the line of equality. The two different 
components provide different estimations of CD. b, the CP estimated from the second-order component compared to 
that from the linear component. IC data (red) is shown along with the DNLL data for comparison (grey). A similar 
estimate is provided by the different components, c, The distribution of the CD (in ms) as a function of the carrier 
frequency for both the second-order component (red crosses) and the linear component (grey circles). Note that both 
distributions appear to form a continuum, d, the distribution of CP as a function of the CD for both the second harmonic 
(red crosses) and the linear components (grey circles).

component (Figure 6.24c).

Although there were outliers, the CP of the second-order component was not 

significantly different from tha t of the linear component (Figure 6.24b; P = 0.42, sign test). 

No systematic covariation in CD with CP was observed for the second-order component 

(Figure 6.24d; P > 0.1, Mardia’s linear-circular rank correlation coefficient).

6.4.4 The origin of asymmetry in IC dual-delay functions

In the IC, the second-order component explained as much variance as the lowpass 

distortion, suggesting a stronger contribution to the response than in the DNLL. A large 

degree of asymmetry persisted when either the lowpass or the harmonic distortions were 

removed from the responses (Figure 6.25), suggesting th a t both components had some effect 

on the asymmetry.

When the harmonics were removed the RAI decreased slightly for all neurons (P = 0.041, 

sign test), indicating tha t the harmonics were sharpening the linear component, as 

expected from the fact tha t the carrier of the second-order component was closer to being in 

phase with tha t of the linear component than in antiphase. Removing the harmonics
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Figure 6.25 Contribution of distortions to the degree of asymmetry in IC dual-delay functions.
a, The RAI of an approximation formed by only the lowpass and linear components, compared to the RAI of the original 
response, b, The delay asymmetry of the sam e lowpass approximation, compared to that of the original response, c, 
The RAI of an approximation formed by only the harmonic (second-order and higher) and linear components, compared 
to the RAI of the original response, d, The delay asymmetry of the harmonic approximation, compared to that of the 
original response. Note that when the lowpass component is present, the approximation retains the original rate 
asymmetry; when absent, the approximation is more symmetrical. However, both the harmonic and lowpass 
components appear to play a  role in determining the delay asymmetry.

attenuated the rate asymmetry, but it was not eliminated and there was a residual 

correlation between the RAI of the approximation and tha t of the original response (r = 0.69, 

P < 0.001, Spearman’s rank correlation coefficient).

Both removing the harmonic components and removing the lowpass component each had 

a small effect of on the delay asymmetry. The lowpass component appeared to make the 

stronger contribution, which might be expected given the deep left hand side trough 

observed in most responses.

Rate Asymmetry
Asymmetry in IC appeared to be have been largely produced by the lowpass component 

through similar mechanisms to tha t in DNLL (Figure 6.26). Similar to the DNLL, the rate 

asymmetry was largely determined by the lowpass component, with the RAI showing a 

strong correlation with the RAI of the lowpass component (Figure 6.27a; r = 0.93, P < 0.001, 

Spearman’s rank correlation coefficient). Unlike DNLL, in IC there was no bias towards 

positive RAI values in IC (Figure 4.11). This was because the IC showed more trough-type 

responses, which produced lowpass components with more prominent negative-going 

portions than positive-going portions. An inverse relationship between the RAI and the CP 

of the linear component was observed (Figure 6.27b; r = 0.49, P  < 0.01, M ardia’s linear-
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Figure 6.26 The origin of asymmetry for IC dual-delay functions.
R esponses in IC are well approximated by the sum of the linear component (top) and the lowpass component (middle). 
Original functions shown in Figure 4.10. a, if the lowpass distortion is relatively symmetrical with respect to the envelope 
of the linear response then any delay asymmetry will be low. However, it will affect the positive envelope more than the 
negative envelope, producing a rate asymmetry, b, if the lowpass distortion is asymmetric with respect to the envelope 
of the linear response, a more delay asymmetric response is produced, c, if the magnitude of the lowpass component is 
large, then bimodality can result.

circular rank correlation coefficient), indicating th a t the more trough-type the neuron, the 

more negative its RAI; the more peak-type the neuron, the more positive its RAI.

Bimodality
The higher incidence of bimodality in IC, and the fact th a t it could occur in either envelope, 

was a consequence of the more complex and varied shape of the lowpass components. While 

the DNLL showed stereotyped lowpass components with only a single peak and at most two 

troughs, the lowpass component in the IC could show multiple troughs and peaks th a t could 

produce bimodality in either envelope (e.g. Figure 6.26c).

Delay Asymmetry
The delay asymmetry in IC could be produced through an offset of the peak ITD of the 

lowpass component relative to the CD of the linear component (Figure 6.26b), or by a 

prominent side trough (Figure 6.26c). Since the side troughs moved further out as CF 

increased (Figure 6.20), a similar shift might be expected to be produced in the negative
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Figure 6.27 Correlates of rate-asymmetry in IC dual-delay functions.
a, the rate asymmetry of IC dual-delay functions as a function of that of the lowpass components (red crosses). The 
more rate asymmetric the lowpass component, the more rate asymmetric the final response. DNLL data (grey circles) 
shown for comparison, b, the rate asymmetry as a function of the characteristic phase of the linear component. The 
closer the CP is to 0 eye (i.e. peak-type), the more positive the rate asymmetry, the closer the CP is to 0.5 eye (trough- 
type), the more negative the RAI.

envelope of the response. This provided a possible explanation of the observed CF 

dependency of the delay asymmetry observed in IC (Figure 4.11). However, the 

heterogeneity of the observed lowpass components made it difficult to identify a single 

param eter th a t was a strong determinant of the delay asymmetry in IC. This may also have 

been a consequence of a significant contribution from the second-order component for some 

neurons.

6.5 Discussion
The linear component appeared to be well described by a Gabor function and, accordingly, 

the R2 values produced by the Gabor fits to the noise-delay functions reflected the 

proportion of explained variance in the linear component. The significant residual variation 

resulting from the Gabor fits therefore largely arose from the distortion terms, particularly 

the IPD-insensitive lowpass component. This coarse-structure-sensitive component is the 

main contributor to the asymmetry of the dual-delay functions.

In the DNLL, at higher CFs, the fall off of the variance explained by the higher-order 

components, and the simultaneous increase in the variance explained by the lowpass 

component, suggested that the coarse-structure sensitivity arose from the lowpass filtering 

of distortions, as suggested in the last chapter. With distortions introduced by nonlinearity 

but with higher-order distortions filtered out by some lowpass process. In such a model, if 

the corner-frequency of this lowpass filter were reasonably constant for different CFs (as 

would be expected if it were determined by EPSP time-course), then as the CF increased 

the harmonics would be more attenuated, increasing the contribution of the relatively 

unattenuated lowpass distortion.

In IC, no such increase with CF in the variance explained by the lowpass component was 

observed. However, differing patterns of convergence for different neurons may explain this 

lack of correlation.
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6.5.1 The linear component

Carrier frequency
From the assumptions underlying the linear model presented in Chapter 4, the carrier 

frequency of the response of the neuron was expected to be the same as its CF. However, in 

DNLL the carrier frequency was in fact greater than the CF, possibly indicating a 

systematic underestimation of the true CF.

The CF was determined from the dichoticly presented pure tone capable of eliciting a 

response at the lowest sound intensity. Consider two tone-delay functions recorded for 

frequencies from the same neuron, if both were equally well modulated and had the same 

best ITD (producing different best IPDs), then the response a t 0 eye IPD would be weaker 

for the higher frequency stimulus. Thus, the choice of CF is biased towards frequencies 

slightly lower than the true CF, due to their stronger response at 0 eye IPD. To eliminate 

such a bias it would be necessary to present a range of IPDs when determining CF. 

However, any such errors in CF estimation are likely to be small since the lower 

modulation depth at frequencies off-CF should limit the bias.

For CFs below 500 Hz, the carrier frequency observed in IC was greater than CF, 

similar to tha t in DNLL. However, at CFs above this level, the carrier frequency was lower 

than CF. Although this could have arisen from a shift from a systematic underestimation of 

CF to a systematic overestimation, it is not clear why this should have occurred for IC and 

not DNLL. One possibility is that the carrier frequency in IC may be lowered by an input 

whose own CF is a constant fraction of tha t of the other (on-CF) input. Thus, the difference 

between the resultant carrier frequency and the CF would be CF-dependent; combined with 

any systematic underestimation of CF, this could produce the relationship observed in IC.

The relationship observed here for the IC, was not observed in a similar study in the IC 

of the cat (Joris et al. 2005). In tha t study, a t low frequencies, the carrier frequency was 

approximately equal to CF, and while at higher CFs the carrier frequency did fall below CF, 

this did not begin to happen until around 2 kHz. While this may reflect different limits to 

phase locking in the two species, it may also arise from different methods of estimating the 

carrier frequency. Joris et al. used a Fourier transform of the linear component to estimate 

CF, which is less sensitive to the phase modulation at central ITDs than the method used 

here. Thus, the apparent underestimation of CF may arise from the carrier frequency 

reported here being more sensitive to the increased instantaneous frequency observed at 
central ITDs.

The half-width of the amplitude envelope and stimulus intensity
The bandwidth of the cochlear filters is known to increase with CF (Evans 2001), and this 

is reflected in the CF-dependent decline in half-width for the linear components in both IC 

and DNLL. The half-widths observed in IC were narrower than most in DNLL, suggesting 

a broader bandwidth in IC relative to DNLL. Since the IC data were obtained using stimuli
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a median 15 dB higher than the DNLL data, it is possible this difference in half-width could 

be a consequence of an increase in bandwidth a t higher sound levels. This is supported by 

the finding tha t narrowly tuned neurons observed in the DNLL were recorded using stimuli 

a median 10 dB higher than those for the more broadly tuned group. Furthermore, this 

narrowly tuned group contained the three neurons tha t showed carrier frequencies furthest 

from CF, suggesting tha t this too could have been a consequence of the higher sound level 

for these stimuli. If the carrier frequency were determined by the best modulation 

frequency—the frequency at which the tone-delay function has the greatest modulation 

depth—then the data may reflect a suprathreshold shift of this best modulation frequency 

towards frequencies above CF.

However, both the half-width and the carrier frequency in IC is independent of sound 

intensity (Joris et al. 2005) suggesting tha t the broader bandwidth in IC and the neurons 

with the high carrier frequencies are not artefacts of higher stimulus intensities. An 

alternative explanation for the broader bandwidths would be more across-CF convergence 

in IC than in DNLL. This would be a source of off-best-IPD input, which was proposed in 

Chapter 3 (Section 3.4.2) to account for the higher skew of tone-delay functions in IC.

For the same spectral level, more of the total power of the stimulus would be captured 

by higher bandwidth neurons and so a lower threshold would be expected. In fact, the 

higher bandwidth IC neurons showed higher thresholds, possibly because of convergent 

inhibition or different spike-thresholds in these neurons. To ensure that all neurons 

received the same effective sound level, higher thresholds were compensated for by 

presenting stimuli at higher levels. The use of the same sound level in both nuclei would 

have meant presenting stimuli near threshold in IC and near saturation in DNLL. While 

adaptation mechanisms in IC can shift the IC intensity tuning curve, the threshold cannot 

be reduced below tha t measured here (Dean et al. 2005), and it is not known whether such 

mechanisms could shift the threshold in DNLL up to levels equivalent to tha t in IC. Thus, 

the level of stimuli used here was felt to be the best method of ensuring a robust response 

from both nuclei.

The composition of the internal delay
From the linearity of the phase responses of the linear component, the internal delay could 

be seen to be composed of a time delay (the CD) and a phase delay (the CP). The CD played 

the major role in establishing the best ITD of the neuron, which then appeared to be tuned 

by the CP to produce the required distribution of best ITDs (and therefore slope ITDs). A 

similar co-dependence was previously observed from phase-plots recorded in the IC 

(McAlpine et al. 1996). Whether the CD and CP measured in this way are the same as 

those measured for a tone stimulus cannot be addressed with the available data.
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6.5.2 The second-order component

The noisiness in the estimated parameters for the second-order components makes 

confident statements about the general shape of the second-order component difficult. The 

observed second-order components appeared to be in line with tha t expected from quadratic 

distortion of the linear components, with the exception tha t the CD obtained was much 

lower than expected. This appeared to be due to a CD tha t was dependent on the carrier 

frequency of each component, and not a constant as would be expected for an axonal 

conductance delay. While this is suggestive of frequency-dependent mechanisms discussed 

in earlier chapters, a lack of a clear model of the effect of inhibition on this component 

makes it difficult to interpret this finding.

6.5.3 The lowpass component

The lowpass component in DNLL
In the presence of carving inhibition, the lowpass component of the response would be 

expected to be of the form

ro (T) = g(T) * «(t) = g(r) -  ag(r -  0) (6.8)

where g(r) is the lowpass distortion in the absence of any internal delay. Since the

envelope of the linear component was unimodal, g(r) might also be expected to be 

unimodal, and so from (6.8), the lowpass response would be expected to be biphasic, with 

the inhibition creating a deep side trough to the left of the main peak. However, the 

lowpass components observed in DNLL appeared to be largely triphasic with two side 

troughs.

This Mexican-hat shape could be produced by allowing the inhibitory second term  in 

(6.8) to be broader than the excitatory first term. In terms of the model, this would

correspond to a broader lowpass filter for the cross-correlation of the contralateral

inhibitory input and the ipsilateral excitatory input, than for the cross-correlation of the 

excitatory inputs to MSO. This could be justified as corresponding to the longer synaptic 

time course for inhibition than excitation (Magnusson et al. 2005).

Alternatively since the low threshold potassium channels are known to highpass filter 

input to the MSO (Slee et al. 2005), this could combine with the lowpass processes to create 

a more bandpass frequency-selectivity in MSO. This attenuation of the lowest frequencies 

in the input would result in a periodic lowpass component as observed in DNLL. Similarly, 

g(r) itself could have bandpass selectivity due to processing before the level of the MSO 

(although this appears unlikely from the responses recorded in AVON).

A more obvious source of such a lowpass component would be the convergence of a 

broadly tuned contralateral inhibitory input with a more narrowly tuned ipsilateral 

excitatory input. The broader tuning of the inhibitory input could indicate th a t the 

inhibitory input is from a lower frequency lamina.
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The lowpass component in IC
The lowpass component in IC was more heterogeneous than th a t in DNLL, but it usually 

showed at least one dominant trough and one dominant peak around zero ITD. Such a 

pattern could have formed from the convergence of two delay-sensitive inputs: one peak- 

type input and one trough-type input. Peak type inputs to IC are provided by excitatory 

projections from ipsilateral MSO and trough-type inputs can arise from either an inhibitory 

projection from contralateral IC or DNLL, or an excitatory projection from contralateral 

LSO. Neurons receiving a stronger peak-type input would show a higher peak in the 

lowpass component, neurons receiving a stronger trough-type input a deeper trough, and 

neurons receiving a balance of the two somewhere in the middle. Such a process would 

affect both the CP of the linear component and the rate-asymmetry of the response and so 

could explain the negative correlation between the RAI and CP. For responses not entirely 

determined by a single peak- or trough-type input, delay asymmetry would also be expected. 

Thus, intermediate-type responses hypothesised to arise from such convergence appear to be 

responsible for the delay symmetry in IC.
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7
D i s c u s s i o n

7.1 Summary
For over half a century, the Jeffress model has served as the framework for the 

investigation of neurophysiological mechanisms of ITD processing. While much of the model 

has proved remarkably prescient in the light of current understanding, other aspects of the 

model have been found wanting. In mammals in particular, both the mechanism through 

which the internal delay is established and the neural representation of ITDs have been 

shown to be different from those proposed in the Jeffress model. Internal delays are 

produced not by a delay-line network but by the effect of inhibition in MSO neurons. ITDs 

are encoded not by the most active neuron in a continuous array, but by the relative 

activity of two discrete populations of neurons. This study plays an im portant role in 

attempting to relate these recent observations by addressing how inhibitory internal-delay 

mechanisms might affect tuning curve shape.

The model of carving inhibition presented in Chapter 3 was capable of producing a 

variety of phase plots depending on the timing and strength of the inhibitory input. While 

for some param eter ranges, the inhibition could effect a time delay, at others it could result 

in a more phase-like delay. This provided a possible explanation for the CF-dependence of 

the best ITD observed in mammals. If units had similar param eters across all the CF 

laminae th a t resulted in a large phase component to the best ITD, then this could produce 

the almost inverse relationship between CF and best ITD. However, the phase contribution 

to the best ITD was found to be low, suggesting instead th a t a CF-dependent variation in 

the time component of the delay was largely responsible.

However, the effect of the inhibition could not entirely be described by a time delay. In 

the IC and DNLL, both the ITD tuning curves recorded for pure-tone stimuli and those 

recorded in for noise stimuli were asymmetric. In both of these cases, frequency dependency 

in the delay resulting from the effect of inhibition in the MSO could provide a qualitative 

explanation for the asymmetry. Tone-delay functions were skewed by a second-harmonic 

component for which carving inhibition resulted in a different time-delay than for the 

fundamental component. For noise-delay functions, the asymmetric envelope structures
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observed could be accounted for by a different effect of carving inhibition on the coarse- 

structure-sensitive component than on the fine-structure sensitive component.

If the DNLL is an accurate reflection of the output of the MSO, these asymmetries 

suggest tha t inhibition in the MSO cannot be considered a replacement for the axonal delay 

lines in the original Jeffress model since it affects not only the best ITD but the entire 

shape of the tuning curve. Understanding the impact of the carving inhibition on the shape 

of ITD tuning curves is important in understanding how the neural representation for ITD 

is constructed.

7.2 Differences between IC and DNLL
This study adds to a growing body of work examining the properties of neurons in the 

DNLL in non-echolocating mammals (Brugge et al. 1970, Seidl & Grothe 2005, Siveke et al. 

2006, Kuwada et al. 2006). Little is known of the function of the DNLL in these animals. It 

is thought to provide feed-forward delay-sensitive GABAergic inhibition to the IC in order 

to sharpen ITD tuning curves, but iontophoretic applications of SR95531 (“gabazine”, a 

GABAa antagonist) in the inferior colliculus in guinea pig have not revealed the changes in 

ITD tuning expected for such inputs (Ingham & McAlpine 2005). This is surprising, since 

the DNLL is estimated to be the source of one third of the inhibitory afferents to the IC in 

cat (Shneiderman & Oliver 1989). However, this may reflect a species difference or may be 

a consequence of local inhibition within the inferior colliculus dominating any inhibition 

originating in the DNLL.

7.2.1 Convergence

Responses in the DNLL were more symmetrical than responses in IC, with lower levels of 

skew in their tone-delay functions and lower delay asymmetry in their noise-delay 

functions. Tuning curve shapes were more homogenous compared to IC and showed less 

extreme features. One possible explanation of this is tha t convergence in DNLL is either 

absent, or at lower than in IC and restricted to a narrow range of CFs. This would produce 

a narrower range of input best ITDs, resulting in a more symmetrical tuning curve shape. 

Furthermore, lower convergence would provide an explanation for the narrower frequency- 

tuning curves in DNLL and the broader envelopes observed in the noise responses. I t is 

unlikely th a t any convergent inputs to DNLL can be dissociated using the suppression 

method of McAlpine et al. (McAlpine et al. 1998) due to the similarity of the CFs of the 
inputs.

In comparison, the IC would be expected to receive input with a broad range of best 

ITDs. Since the delay asymmetry in IC was usually positive, with the peak of the negative 

envelope at ipsilateral leading delays, it seems likely th a t these neurons in IC receive an 

ipsilateral excitatory projection from MSO, and an inhibitory projection from contralateral 

IC or DNLL (or an excitatory projection from the contralateral LSO). Such patterns of
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inhibition may be discernable using iontophoresis in IC. However, if the secondary input is 

excitatory then it will be mediated by the same neurotransm itter as the primary input 

making dissociation of the inputs via the use of antagonists impossible.

7.2.2 Distortion

The contribution of the second-order component to the final response was consistently 

higher in IC than in DNLL. While this may have been an artefact of a higher noise floor, it 

may also be an indication of additional nonlinear processing in IC. Another explanation is 

convergence: at some delays, a secondary input could have enhanced the second-harmonic 

component of the primary input while suppressing the fundamental component.

7.2.3 Noise

Tuning curves in IC were noisier than in DNLL, as evidenced by the higher noise floor 

observed in the power spectrum of the responses. Isolation of neurons is harder in IC than 

in DNLL due to the smaller spike height and stronger evoked potentials. However, since 

great care was taken during the experiments to ensure clean single-neuron recordings, the 

noisiness of IC compared to DNLL cannot be explained by rogue spikes in the recording. In 

addition, since firing rates in DNLL were higher than  in IC, the higher noise could not be 

explained by a simple firing-rate-dependent noise process.

Analysis of the trial-to-trial variability (around the mean response over all trials) 

showed tha t for responses to both tones and noise, the variability of the response in IC on 

the initial trial was much higher than on subsequent trials, whereas in the DNLL the 

degree of variability was the same on each trial (data not shown). This difference in 

variability could reflect either a change in tuning curve shape or a change in the mean 

firing rate on each trial. However, since for tone stimuli, there was no change in the best 

IPD over the repeats (Section 3.4.1). It is more likely tha t this was more reflective of spike- 

rate adaptation rather than any adaptation in the underlying tuning parameters.

Interestingly, this suggests tha t the apparent noisiness of IC tuning curves could be due 

to such adaptation. Experiments using binaural stimuli have demonstrated tha t the IC is 

likely to show strong spike-rate adaptation (Ingham & McAlpine 2004). If such adaptation 

is weaker or absent in DNLL, then the lower degree of a stationary in the IC could explain 

the noisier tuning curves.

7.3 Relationship to binocular disparity tuning curves
Interestingly, both the rate and delay asymmetries observed here for ITD tuning curves can 

also be observed in binocular-disparity (BD) tuning curves recorded from cat visual cortex 

(Cumming & Parker 1997). The mechanism suggested to explain the rate-asymmetry for 

BD tuning curves is half-wave rectification of the input before the cross-correlation stage in 

simple cells (Read et al. 2002). The convergence of two simple cells on one complex cell
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therefore produces the observed delay asymmetry (i.e. a convergence mechanism). Such a 

model does not predict the elevated equivalence contours for rate asymmetric responses. 

However, it is difficult to determine from the published responses whether these contours 

are elevated for rate-asymmetric BD tuning curves. Whatever mechanisms are at work in 

one modality may well be applicable in the other. It would therefore be of interest to record 

from BD-sensitive neurons using dual-delay functions and compare them to the results 

obtained here.

7.4 Functional consequences

7.4.1 Asymmetry and psychophysical acuity

One of the studies most directly relevant to these findings is tha t of Hancock and Delgutte 

(Hancock & Delgutte 2004). Hancock and Delgutte constructed a model of IC based on a 

population of symmetrical noise delay responses of the form

r ( T )  =  f x [h x ( T - T 0 ) ]  (7.1)

where h x ( r )  was the bandpass function resulting from the cross-correlation of two 

identical fourth-order gammatone filters, and fx (•) was a quadratic correlation-dependent 

nonlinearity. They simulated a population of neurons for a range of CFs and best ITDs 

(sampled in eye re CF), the distribution of which was estimated by regression of the model 

to a large number of tuning curves recorded in cat IC. For each tuning curve in the model, 

its ability to discriminate between two ITDs was determined from the difference in firing 

rates at these two ITDs (using the d ' statistic). These values were combined across neurons 

(assuming an ideal observer) producing the probability tha t the two ITDs could be correctly 

discriminated for the model as a whole. The ju st noticeable difference in ITD from a 

particular reference ITD was then determined, by finding change in ITD th a t could be 

correctly discriminated from the reference ITD with a probability of 75%. These model 

JNDs were then compared with the JNDs measured for human psychophysical performance.

While human JNDs for noise stimuli are lowest around a reference ITD of zero and 

increase as the reference ITD increases to more positive values (Mossop & Culling 1998), 

the JNDs obtained from the model were relatively independent of the reference ITD. This 

was a consequence of the symmetry of the tuning curves and the broad range of best ITDs 

in the model. Because of the symmetry, slopes either side of best ITD provided equally good 

discriminability, and the wide range of best ITDs ensured tha t some of these falling slopes 

fell into the physiological range. Because of the ideal observer assumption, low acuity 

neurons were effectively ignored, producing little difference between the acuity a t zero ITD 

and tha t a t nonzero ITDs. In order to predict the ITD dependent increase in JND, the 

model was modified by pooling (i.e. summating) the tuning curves across CF before 

calculating d ' values, thereby producing asymmetric tuning curves and reducing the acuity
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off zero ITD. Hancock and Delgutte therefore concluded tha t pooling across CF in higher 

auditory areas is necessary to explain the poorer human JNDs away from zero ITD.

However, the Hancock and Delgutte model has several shortcomings, which challenge 

this conclusion. In particular, their model incorporates neither the delay asymmetry, nor 

the coarse-structure sensitivity observed in this study. Much as the failure of the Gabor 

model to incorporate these characteristics lead to unreliable param eter estimates, here too 

any delay asymmetry or coarse-structure sensitivity would be compensated for in the fit by 

a combination of a nonzero CP and overestimation of the bandwidth or the degree of 

nonlinearity. Although they reported a mean R 2 value of 0.93, this was likely due to a bias 

towards low-frequency neurons and overfitting of the central ITDs as observed for the 

Gabor model. The inadequacy of such a model will be especially pronounced for CFs above 

1 kHz, where the coarse-structure sensitivity arising from the cochlear envelope sensitivity 

begins to dominate the response (Joris 2003). Ironically, since the range of ITDs tested was 

around 600 ps, it is these very neurons tha t provide falling slopes within the physiological 

range—the source of the unwanted acuity. Furthermore, responses observed for neurons 

with CFs greater than 2 kHz—not considered by Hancock and Delgutte—show only coarse- 

structure sensitive responses, with one slope through zero and the other outside the 

physiological range (Joris 2003). These neurons will selectively increase the acuity around 

zero ITD only. Thus, the finding that the JNDs do not increase with ITD is highly 

dependent on the generalisation of low-CF fine-structure sensitivity to CFs where the 

tuning curves are likely to be very different.

The tuning curves used by Hancock and Delgutte also did not contain any delay 

asymmetry, and this alone may be sufficient to explain the improved JND at the midline. 

Since positive and negative envelopes in IC peak on opposite sides of zero, the rising slope 

is sharpened relative to the falling slope, leading to higher acuity around zero ITD and 

lower acuity at larger ITDs. Furthermore, Hancock and Delgutte did not include the 

contralateral IC in their model. The best ITD distribution for this population of neurons 

will be the mirror image of tha t shown in this study, with high acuity rising slopes around 

the midline and falling slopes at negative ITDs. They would therefore improve acuity 

around zero but not at the higher (more positive) ITDs, further amplifying the ITD 

dependency of the JNDs.

It is likely th a t factoring the findings of this study (and others), the model of Hancock 

and Delgutte could produce the ITD dependent increase in Human JNDs without recourse 

to pooling over CF.

7.4.2 The optimal neural representation of ITD

When Harper and McAlpine (Harper & McAlpine 2004) investigated the optimal encoding 

of IPDs of tones, they modelled the tone-delay functions symmetrically, fitting only the 

rising slope of responses recorded from IC. Although their findings are sufficiently general 

tha t asymmetric tuning curves will make little difference to the predicted distributions of
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best ITD, it would be of interest to determine how asymmetry could co-vary with best IPD 

to improve coding (by introducing a second harmonic with its own independent best IPD). 

For example, at low CFs the optimal asymmetry would be expected to sharpen only the 

slopes within the physiological range; at CFs where the homogenous distribution occurs, 

both slopes are required for coding so either no asymmetry (or an equal amount of both 

positive and negative asymmetry) may be preferable.

A more productive course of investigation would be to consider the optimal encoding of 

noise stimuli. Although Harper and McAlpine reported similar best ITD distributions 

arising from a Gabor model of noise-delay functions, this did not consider coarse-structure 

sensitivity. By allowing the best ITD of coarse- and fine-structure sensitive components to 

vary independently, the optimal distribution of each could be determined. While it would be 

interesting to determine whether the observed asymmetry is predicted, the predicted 

distribution of the coarse-structure best ITDs of high-CF neurons would be of particular 

interest. This distribution is unknown and would provide a strong test of both the optimal 

encoding model and the slope coding hypotheses.

If the increasing JNDs with ITD discussed in the previous section were not predicted, 

then it would be interesting to determine why the more optimal representation is not used. 

One possibility is tha t tha t tuning curves are not as free to vary in nature—where there 

may be ethological or physiological costs to any changes—as they are in the model. In 

particular, if the existence of (low-CF) coarse-structure sensitivity results in a suboptimal 

solution, then it could be considered an undesirable side effect of slower EPSP time courses. 

However, the energetic costs to increasing these time courses (higher resting membrane 

conductance, faster glutamate reuptake) may be too great to justify an increase in the 

efficiency of the code.

7.4.3 The four-channel model

One suggested method of encoding both the interaural correlation and the interaural delay 

of stimuli is the four-channel model (Marquardt & McAlpine 2001). This model uses four 

IPD-tuned channels for each frequency lamina: two channels sensitive to correlated inputs, 

tuned to ±0.125 eye (representing the two MSOs); and two other channels tuned to 

±0.125 eye, but sensitive to anti-correlated inputs (representing the two LSOs). The 

combined activity of the four channels within each frequency band thereby provides a 

quadrature representation of the temporal coherence of the noise stimuli and the 

instantaneous interaural phase difference within tha t band.

However, the results presented in Chapter 6 indicate tha t the phase-like variation of 

best ITD with CF is not due to a phase delay, but is largely attributable to a time delay 

tuned to the CF of the neuron. If the bandwidth of the neuron is narrow, then the difference 

between the responses obtained for a pure time delay will be little different from those 

obtained with a pure phase delay. Both the internal delays and the coarse-structure
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sensitivity observed in this study should be factored into the model to determine what 

impact they may have.

7.5 Future work

7.5.1 The DNLL as a proxy nucleus for MSO

Although the lower degree of asymmetry in DNLL compared to IC suggests that it is a 

better proxy, exactly how good it is will likely depend on the question being addressed. 

While it may be reasonable for general insights into the nature of ITD tuning, for more 

detailed questions, such as those examined here, direct recordings from MSO are preferable.

The most significant limitation of this study was inability to discern between the effect 

of convergence and the effect of the inhibition, due to lack of direct recordings from MSO. 

Since the hurdle to obtaining single-neuron recordings in MSO is the high background 

noise and low-amplitude action potentials, cell-attached recordings in vivo may be a 

productive method of obtaining clean, high-quality recordings from this area.

However, for conclusive answers about the role of inhibition in determining the tuning 

properties of MSO, it is necessary to obtain in vivo intracellular recordings from neurons in 

the MSO. Despite the significant difficulties posed by the thinness of the MSO and the 

heavy myelination in the area, such recordings are thought possible. While the patch-clamp 

method is the preferred method of obtaining intracellular recordings (due to the minimal 

disruption of the plasma membrane), there has recently been some success in obtaining 

sharp-microelectrode recordings from nucleus laminaris, the avian homologue of MSO 

(Funabiki & Konishi 2005). Such experiments are likely to be difficult and low yield, but 

they would allow direct investigation of the role of inhibition and other mechanisms in 

establishing the tuning of MSO.

7.5.2 Modelling dual-delay functions

This study was motivated by a fundamental problem in neuroscience: tha t of addressing 

the impact of cellular level processes—such as the biophysical effect of inhibition—upon the 

tuning curve of a neuron. While the effect can be demonstrated with complex biophysical 

models, such models take a long time to simulate and the level of understanding obtained is 

conditional—the complexity of such models may lead to a lack of robustness, with a high 

dependency upon a specific configuration of input param eter values. In many models (e.g. 

Brand et al. 2002), there is a large degree of uncertainty around the true param eter values. 

There is also little knowledge about the representation of noise stimuli in the peripheral 

auditory system. This uncertainty was found to be a major limiting factor when attem pting 

to investigate dual-delay functions predicted by biophysical models of MSO.

The solutions to these problems attempted in this study, were to make assumptions 

about the response of the AVCN to noise based on the response to tones, and to attem pt to 

simplify the cellular level processes in order to capture the behaviour of the neuron with a
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much smaller and more general set of starting assumptions. While a reasonable approach, 

the level aimed for was arguably overly simplified. The combination of generality and 

uncertainty meant tha t a closed form for the response could not be determined, limiting the 

possible analysis.
While one solution would be to better characterise the response of AVCN neurons to 

noise, an alternative line of enquiry would be instead to use a different stimulus. 

Sinusoidally amplitude modulated (SAM) stimuli contain far fewer spectral components, 

which would allow more detailed quantitative modelling and analysis. A couple of 

responses for such stimuli were recorded in IC by the author, and showed the expected 

rate- and delay-asymmetries. Since the envelope can be varied by changing the beat 

frequency, it may be easier to investigate the mechanisms underlying the envelope 

sensitivity.

With a more accurate model of the input to the MSO, it would be more feasible to 

investigate biophysical models of carving inhibition. Nevertheless, to get around the 

uncertainty over the parameters, a simple Morris-Lecar type model could be used (Agmon- 

Snir et al. 1998), which has relatively fewer param eters to investigate. Such a model could 

more realistically capture aspects of the inhibition th a t may play an important role such as 

its interaction with the low-threshold voltage-activated potassium channels. Another use 

for such a model would be to inject simulated inputs into MSO neurons in vitro to try to 

reproduce the ITD tuning curves, allowing a more direct investigation the effect of carving 

inhibition.

7.6 Final Words
The original aim of this study was to identify the effect of inhibition in the MSO on the ITD 

tuning curves. While it was not possible to isolate the effect of inhibition from similar 

frequency-dependent processes, an unexpected outcome to this study was the discovery of 

coarse-structure sensitivity in the responses of low-CF neurons, which indicated a limit to 

the temporal precision of the MSO at lower timescales than previously considered. While 

this coarse-structure sensitivity may arise as a side effect of a physiological limit on the 

temporal precision, an alternative possibility is tha t it improves the coding of ITD. In order 

to better understand the neural representation of ITD, further investigation of both the 

origin of this coarse-structure sensitivity and the role of inhibition in the MSO is necessary.
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8
M a t h e m a t i c a l  A p p e n d i x

8.1 The Gabor model

8.1.1 Derivation of the Gabor model

In order to derive the Gabor model, it is assumed th a t ipsilateral and contralateral cochlear 

filters are identical (i.e. no stereausis) with power spectrum

l H ( / ' ) f = f [ T ( / ' - £ ) + * ( / ■ + £ ) ]  ( 8 . D

where f0 is the centre frequency, and T (/*) is a Gaussian with zero DC gain, unit integral, 

and equivalent rectangular bandwidth b

T( f )  = ^-exp(-7i f / b 2) (8.2)

The cross-spectrum of the impulse response of the filter is obtained from the W iener- 

Khinchin theorem

^[hxMl(/) = |H(/-)|2
= + + (8.3)

and from the modulation theorem of the Fourier transform, the autocorrelation h x (r) can 

be defined in term s of an amplitude modulated sinusoid

h x(T)= jrf’1[T (/‘) ](r)-cos (27^7-) (8.4)

Using the identity

|exp(-a;e2)j(&) = J^-exp(—7x2k 2 / a ) (8.5)

it can be seen th a t the envelope of (8.4) is Gaussian and tha t h x (r) is a Gabor function

hx (r) = exp(-7r62T2)cos(27r/cr) (8.6)
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8.1.2 Effect of internal delays

Since the model is time invariant, the effect of an internal time delay r0 can be simply 

incorporated by translating the entire response

h x (r) = exp -7r62 ( t  -  r0f  cos[27r£ ( t  -  r0)j (8.7)

Differences in interaural phase caused by an internal phase delay 0O can be modelled by 

phase delaying only the contralateral signal. Since the system is linear, this is equivalent to 

phase delaying the cross-spectrum. Thus, from Appendix 8.2, provided the bandwidths of 

the cochlear filters are sufficiently narrow, the response will be given by

h x (t) = exp -tt62 (r -  r0 )2 cos [2?xfe (r -  r0) -  0O ] (8.8)

8.2 Phase delayed narrowband signals

8.2.1 Phase delayed signals

Let s (t) be a signal with Fourier transform S (/')

a( t )~S( f )  (8.9)

If each frequency component in S (f) is phase delayed by 0 , the resulting spectrum will be 

of the form

S ( / 1 0) = S (f) exp [i sgn (/) 0]

= S (f) cos (0) + i sgn (/) S (f) sin (0) (8.10)

where sgn(/*) enforces the conjugate symmetry of S (f) ensuring tha t s(t) remains real 

valued. Given that

n[s ( t ) ] ^ - i s ga( f ) S( f )  (8.11)

where ?f[s(f)] is the Hilbert transform of s(t) , the phase delayed signal can be seen to be 

expressed in the temporal domain by

s (t I 0) = s (t) cos (0 ) -  H [s (t)] sin (0) (8.12)

8.2.2 Narrowband signals and phase delays

A narrowband signal s(t) is a signal that has limited support in the frequency domain such 

tha t S (f) is nonzero only in the range 0 < f  < 2fc, where fc is the carrier frequency of the 

signal. Using Bedrosian’s Theorem it can be shown (Hahn 1996) tha t for a narrowband 
signal

s(*) = e (*) cos [27r#+ #(*)] (8.13)

the Hilbert transform is given by

H [s (*)] = e(t) sin [27vfct + 0 (*)] (8.14)
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Thus, from (8.12), the phase delayed narrowband signal will be given by

s (t | 0) = e (t) cos (2,77fct + 9 (t) + (p)j (8.15)

Therefore, it can be seen from (8.15) tha t for narrowband signals, a phase delay does not 

affect the envelope of the response but merely phase shifts the carrier.

8.3 Measuring the equivalence contour
If a purely rate asymmetric response can be described by a nonlinear dependency on the 

narrowband cross-correlation then it can be expressed in term s of a power series

r ( r  | 4>) = Y ^a n e(r)'! cos'1 [<9(r) + 0] (8.16)
71 =  0

This in turn  can be represented in terms of a Fourier series (in term s of 0 ) by substituting 

in the Fourier series of the raised-power cosine terms

r (T 10) = S fn[e (r - r o)]COS[ ^  + ' i6,(r - r o)] (8.1-7)
71 =  0

where fn [•] are a series of polynomials whose exact form depends on the coefficients an (see 

Appendix 8.4 for derivation). Since at any point on the equivalence contour the underlying 

correlation will be zero

e(r)cos[^(r) + 0] = 0 (8.18)

the equivalence contour for any ITD can be found by substituting the value of 0 necessary 

to satisfy (8.18) into (8.17)

Z( T) =  Z f n [ e ( T - To ) ] COS
.  2 ,

=  X X  [e (T -  To)](-! )"  (8 -19)
71 =  0

Thus for a response tha t can be described by the 4th-order Fourier series

r (T I 4>) = X X  (r )cos[n<t> + <9n ( r )] (8.20)
0

it follows th a t if (8.16) holds then

z(r) = a0 (r) -  a2 (r) + a4 (r) = fx (0) (8.21)

The equivalence contour defined in this way is therefore expected to be equivalent to the

response to uncorrelated noise and to be independent of ITD.

8.4 Creating envelope sensitivity

8.4.1 The Fourier series of distorted narrowband signais

If a narrowband signal s(f), is phase delayed by some phase 0 before being nonlinearly 

distorted, the resulting signal v (t \ 0) can be written as a power series
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v ( t  | 0) = f  [s(t  | 0)] =  J 2 a n e ( t )n cos” [2nfet  +  0( t)  + ct>\ (8 .2 2 )

Since the Fourier series of the raised power cosine term s is given by

cos” (jc) = cos(ux) (8.23)
u= 0

with Fourier coefficients

0 n + u is odd

n + u is even
(8.24)

(8.22) can be rewritten as a Fourier series
"X "X

v (* I 0) = £  y ^ an^u e (tT cos[27mfct + u0(t) + u<j>\

x
= ^ f u [e(f)]cos[27rw££ + uO(t) + u4>\ (8.25)

u= 0

Thus, it can be seen tha t the effect of the correlation-dependent nonlinearity is to introduce 

a series of harmonic distortions into the response. For u > 0 each distortion is narrowband 

with a carrier frequency that is a harmonic of th a t of the original signal. The distortion 

generated for u = 0 is lowpass, independent of the IPD, and dependent solely on the 

envelope of the original signal

8.4.2 Envelope sensitivity

As can be seen from (8.24), the odd-power terms in (8.22) contribute only to the odd-order 

distortions in (8.25), and the even-power terms contribute only to the even-order distortions. 

The envelope-sensitive lowpass distortion is therefore generated entirely by the even-power 

terms. In isolation, the lowpass distortion is envelope sensitive, but this envelope 

sensitivity is not reflected in the overall response. In the presence of the other even-order 

distortions, the lowpass distortion pairs up with other even-order harmonic distortions to 

improve the sensitivity to the carrier (by sharpening IPD tuning). A kind of balance can 

therefore be considered to exist between the even-order terms in (8.25). If this balance is 

disrupted, then the even-order distortions will no longer combine to produce the even-power 

terms of (8.22) and the unmatched lowpass component will produce a residual envelope- 

sensitive component in the response. Closer inspection of (8.19) reveals th a t it is this 

unmatched lowpass component that is measured by the equivalence contour.

The purpose of this section is to attempt to produce an expression for the response 

predicted for inputs to MSO containing envelope sensitivity as outlined in Chapter 5

(8.26)

8.5 Responses to envelope-sensitive inputs
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(Section 5.3.2). In such a model the inputs are filtered in the cochlea, nonlinearly distorted 

and lowpass filtered. The average response of an MSO neuron to such inputs will therefore 

be of the form

r (T I <!>) = ^ f 0 d tv i M vc (t + r \ < t >) *  k ( t )  (8.27)

where k ( t )  is the model of carving inhibition as outlined in Chapter 3 (Section 3.2), Vj(£) 

is the ipsilateral input, and vc (t + r  | (j>) is the contralateral input for an ITD r  and an IPD 

(f>. The inputs are given by

Vj (t) = fj [hj (t ) * s(f)] * Aj (t) (8.28)

vc (t + t  | 0) = fc [hc ( t )  * s(t + t  | 0)] * Ac (t) (8.29)

where s(£|0) is the noise stimulus, hj(£) and hc (t) are the ipsilateral and contralateral

cochlea-filter impulse responses, fj (•) and fc (•) are the nonlinearities, and X1 (t ) and Ac (t)

are the lowpass filter impulse responses.

For such inputs the expected response can be equivalently rewritten as

r (T W  = ^ - / 0 d tv i W vc(* + T W * « W * A x (r) (8.30)

vI^) = fI [hI (f)*s(#)] (8.31)

vc (* + r |0 )  = fc [hc (t + r\<l>) * s(f)] (8.32)

where Ax (r) is the cross-correlation of the lowpass component impulse responses.

Let the nonlinear inputs given in (8.31) and (8.32) be defined in terms of their power 

series

v i W =  J2aj [h i W  * s W f  <8 -3 3 )
J - - 0

vc (t + r\(t>) = [hj (t + T\(t>)*s(t + r ) f  (8.34)
k = 0

Using these inputs in (8.30), predicts the response:

r(r)  = Ax (t) * « (t) Zi* (r  I (8-35)
7 = 0  k = 0

where Zj>k (r | <p) is the cross-correlation of the ipsilateral filtered stimulus to the y'th power 

and the contralateral filtered stimulus to the &th power

zj,k (r  I <f>) = [h i W * s^)]-7 ★ [hc (t 14>) * s(*)]* (8.36)

Expressing the convolutions and the cross-correlation in (8.36) as integrals gives

/ \ 1 P ^  P  P   ̂ j + k

Z„.m(T|0) = =rJo d t j d a .  - j  s(* + T W  <8-37>
U=1 v = j + l

This can in turn  be decomposed to
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zj,k (T I <l>) = f dai - f  daj+k u J+k (a )h i K ) - h i  ( ^ ) h c (aj+1 + T  I 0 ) - h c (aj+k + T \ ( f > )  (8.38)

where a  is an N  -tuple of the integration variables arising from the convolutions and 

UN (o) is the (N  -  l)th -order correlation of the noise stimulus

1 71
U n  ( CT)  =  ^ / 0 d t s ^ - a ^ - s t y - a , , )

«(s(o r1)---s(a^)) (8.39)

Consider the case for N  = 2. If two variables ax and a2 are not equal, then s(cr1) and s(cr2) 

will be independent, with the consequence tha t U2 (a) will be the square of the first 

moment of the noise process. If the variables are equal then s ( a 1) =  s(cr2) , and U2(a) will 

be the second moment.

U2(a) =

,2
(s (a ))

'  (8.40)
\ S\a ) ) ai =<J2

More generally, the value of UN (a) depends upon the partitioning of the a  variables based 

on equality. Let qa be the partition of {l,...,iV} defined by the equivalence relation 0a , 

such tha t

a0ob = aa = a b (8.41)

This results in a set of equivalence classes each corresponding to a different element of a . 

If ax and a2 are in the same equivalence class then o1 = a2 . If qa contains nx equivalence 

classes containing only one element, n2 classes containing two elements, and so on, the 

value of UN (a ) will be

U N (a) = /*> '"*  (8.42)

where \i'n denotes the nth moment of the noise stimulus. Since the probability density 

function of the noise process is defined to be symmetrical around zero mean, then the odd- 

order moments will all be zero. Therefore, if any equivalence class contains an odd number 

of elements, UN (a) will be zero. If N  is odd this cannot be avoided, with the consequence 

tha t UN (a ) will also be zero in this circumstance.

0 nx n3 ^  0

Un (o) = - ^ ;2r »  n, = n, = ... = 0 (a43)

Putting (8.43) back into (8.38), it can be seen tha t the integration need only be considered

for values of a  where the partition q0 is a member of QN , the set of all partitions of

{l,...,iV} where each equivalence class contains an even number of elements

Zj.k (T I <t>) = j i Q  dar --daJit Ulrt (ojhjfaJ.-.h,. (ct.+4 -  r | o)
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In general, the response of the neuron will be dependent on several terms of the form 

(hj'h * hcmi^(h/h where each na +ma is even. No further simplification was

possible.
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