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Abstract

The insects possess one of the most instantly recognisable bodyplans. This thesis 

addresses the evolution of one characteristic feature of the insects: the intercalary 

segment of the head. This small, appendageless segment is the homologue of the 

ancestral crustacean second antennal segment and its evolution underlies the loss of the 

second pair of antennae in the insect head.

There is little consensus between different methods of phylogenetic reconstruction as to 

which crustacean group the insects are most closely related to. This question is 

addressed by compiling a multigene dataset and running a number of Bayesian 

phylogenetic analyses to investigate the effects of analysing the data under different 

models of evolution. In addition, Bayes factor hypothesis tests addressing the position 

of the insects within the Pancrustacea are described.

The rest of the thesis addresses the developmental changes underlying the evolution of 

the intercalary segment. Almost everything that is known about the development of this 

segment in the insects comes from Drosophila. However, it is not clear exactly what 

constitutes the segment in the fly embryo. Specifically, it is unclear whether a pair of 

lobes behind the Drosophila stomodeum -  the hypopharyngeal lobes -  belong to the 

intercalary or mandibular segment. Using a detailed comparison of expression patterns 

between Drosophila and the red flour beetle Tribolium, the segmental affinity of these 

lobes is resolved.

Finally, a screen to identify potential candidate genes for patterning the intercalary 

segment is described. The screen makes use of the Berkley Drosophila Genome Project 

expression pattern database to identify genes expressed in the segment of the fly. 

Having identified orthologues of the genes in Tribolium using the genome sequence on 

BeetleBase, their expression patterns are examined in the beetle. Genes with conserved 

expression are deemed good candidates for a more widespread role in patterning the 

segment.
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Chapter 1: 
Introduction

1.1 Evo-devo and the evolution of morphology

1.1.1 Structure, Junction and morphology

In the closing lines of The Origin o f Species, Charles Darwin described the evolution of 

“endless forms most beautiful and most wonderful” (Darwin, 1859). Understanding 

this diversity of organismal form has long provided fertile ground for biological 

enquiry. At the turn of the nineteenth century the great German polymath Johann 

Wolfgang von Goethe and the French naturalist Etienne Geoffroy Saint-Hilaire 

independently conceived of the notion of studying structural correspondences between 

the forms of different organisms. The significance of this “structuralist” view of 

morphology is seen most clearly when contrasted with the alternative “functionalist” 

view; these two perspectives are perhaps best exemplified by the contrasting views of 

Geoffroy and another great French naturalist George Cuvier, which lay behind one of 

the most famous and vigorous debates in biology.

Cuvier saw that animals shared distinct structural plans. Most notably he grouped the 

animals into his four embranchements (Vertebrata, Articulata, Molluska and Radiata) 

based on four distinct nervous systems. His structural groupings represented different 

functional needs; for example all vertebrates have similar structures because they carry 

out a similar set of functions. Importantly, for Cuvier the different morphologies 

represented by the embranchements were completely unrelated, so any comparison 

between them was essentially meaningless (Amundson, 2005, Hall, 1996). In summary,
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an organism’s structure was entirely the result of its function; the different structural 

plans represented groups of organisms carrying out similar functions.

Geoffroy also argued that the morphologies of all organisms conformed to structural 

plans. However, his notion of a structural plan differed from Cuvier’s. Geoffroy 

argued that different organisms were composed of the same elements, and homologous 

elements could be found between the different organisms. For example he proposed 

that a mammalian shoulder girdle and a fish pectoral fin possessed homologous 

elements. Indeed, he believed that there was one archetype from which all animal 

morphologies could be derived (Amundson, 2005, Hall, 1996). In summary, an 

organism’s morphology was a variant on a structural plan and function was secondary. 

This clearly opposed Cuvier’s view that an animal’s morphology was entirely 

dependent on its functional needs. A stormy series of eight debates before the 

Academie Royale des Sciences ensued between them, in which Geoffroy argued for 

homologies between Cuvier’s distinct embranchements.

Cuvier’s ideas were incompatible with any form of change between different 

morphologies; if environments changed, species would go extinct. For Geoffroy, if 

environments changed, the elements within a structural plan could adapt (Hall, 1996). 

After the publication of The Origin o f Species in 1859, the idea of change between 

organisms with different morphologies became accepted; organisms were related 

through descent with modification. This provided a framework in which the 

structuralist perspective championed by Geoffroy could be understood. Homologous 

structures exist between different organisms as they have undergone different 

modifications during their separate descents from the common ancestor. Studying 

morphology in this manner became the dominant approach to studying evolution in the 

following decades (Amundson, 2005). This led to the establishment of questions about 

how different morphologies are related: which structures are homologous between 

different organisms and how did they differentiate?
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1.1.2 Evo-devo and the evolution ofbodyplans

This structuralist approach to evolution was common during the late nineteenth and 

early twentieth centuries. During the twentieth century, with the advent of the Modem 

Synthesis (the union of Darwinian natural selection with Mendelian genetics), 

evolutionary biology came to be dominated by population genetics (Gould, 2002). In 

the 1930s J. B. S. Haldane, R. A. Fisher and Sewell Wright formulated mathematical 

theories as to how genes would spread in populations and in the following decades 

several studies on natural populations were carried out to validate these theoretical 

predictions (Arthur, 2004). However, in the past few decades the rise of evolutionary 

developmental biology -  or evo-devo as it is commonly known -  has breathed new life 

into the structuralist approach to the study of morphological evolution (Hall, 2003).

Evo-devo is concerned with comparing development between different organisms (the 

process by which the morphology of an individual is built), to understand how changes 

in development lead to evolutionary changes in the phenotype. These studies have 

investigated a broad range of issues in morphological evolution such as the loss of eyes 

in cave dwelling forms of a single fish species (Yamamoto, et al., 2004) and the 

evolution of wing spots in different Drosophila species (Gompel, et al., 2005). Evo- 

devo studies have also compared development across much greater phylogenetic 

distances. Perhaps most notable have been the attempts to infer the form of the 

ancestral bilaterian and try to understand how it diversified into the range of 

morphologies seen across the Metazoa today (for example Hejnol and Martindale, 

2008)

One of the most important concepts for these broad phylogenetic evo-devo studies has 

been that of the bodyplan. The essence of this concept is summed up nicely by 

Valentine and Hamiltion (1998) who describe a bodyplan as “the assemblage of 

morphological features that is found among members of a higher taxon”. 

Understanding how morphology has evolved at this broad phylogenetic level can be 

seen as trying to understand how different bodyplans have evolved. Bodyplans can 

differ greatly, however -  compare for example the morphology of an arthropod with a
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vertebrate -  and so when addressing bodyplan evolution, it is first necessary to 

understand how the conserved bodyplans of the different taxa are structurally related.

Evo-devo studies have helped to resolve such questions about homology. For example, 

comparisons of gene expression domains have helped to resolve the homology of 

arthropod head segments (Damen, et al., 1998, Telford and Thomas, 1998). Only once 

such homologies have been established can the developmental comparisons between the 

homologous structures give insight into the changes underlying the morphological 

differences. It is perhaps in these broader comparative studies that evo-devo bears 

most resemblance to the nineteenth century structuralist approach.

1.1.3 The role of phylogeny in evo-devo

Modern evo-devo studies are carried out in a robust phylogenetic framework (Hall, 

2003). Only by mapping the different character states of a homologous structure onto a 

phylogeny can a morphological transition be defined (Telford and Budd, 2003). It is 

perhaps less obvious that an established phylogeny is also necessary to understand the 

developmental changes that occurred during a given morphological transition.

It is not enough to compare the development of one taxon exemplifying the ancestral 

state and one the derived state, especially when looking at a character conserved across 

a bodyplan. There are several examples to suggest that the development of a 

phenotypically conserved structure can vary between taxa. For example, in the fruit fly 

Drosophila melanogaster, the leg patterning gene Distal-less (Dll) is repressed by the 

two hox genes expressed in the abdomen: Ultrabithorax (Ubx) and abdominal-A (<abd- 

A) (Vachon, et al., 1992). It has therefore been suggested that the loss of legs in the 

insect abdomen is the result of repression from both these genes (Levine, 2002). 

However, in the red flour beetle Tribolium castaneum only abd-A represses appendage 

development; Ubx does not (Lewis, et al., 2000). This shows that the use of a single 

taxon as an exemplar can be misleading. Jenner (2006) argues that even the common 

practice of choosing a supposedly underived basal taxon as an exemplar is 

“metaphysically” flawed.
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Given this potential diversity in development even within a conserved morphological 

structure, the role of an established phylogeny is illustrated in figure 1.1. When there is 

a clade displaying a derived character state, nested within a larger group displaying the 

ancestral state, a phylogenetic framework is needed to infer the ancestral developmental 

pathways at both ends of the stem lineage (the lineage of extinct taxa leading to an 

extant “crown group”) within which the morphological transition occurred. Only once 

these developmental pathways have been inferred can the developmental changes 

associated with the transition itself be inferred.

Character
state

Developmental
pathway

DI  Stem lineage

Character transition:
A > D

Developmental transition: 
A* > D*

Figure 1.1. The importance of phylogeny in evo-devo. The schematic represents a clade showing a 
derived character state (D) nested within a larger group showing the ancestral state (A). The transition 
from the ancestral state to the derived state (A to D) occurs within the stem lineage. The 
developmental transition underlying this character transition can be inferred by comparing the 
developmental pathway for the ancestral character state at the base of the stem lineage (A*) with the 
developmental pathway for the derived state at the top of the stem lineage (D*). The stem lineage is 
composed of extinct organisms, so these developmental pathways must be inferred from the 
developmental pathways in extant organisms. The developmental pathways of various extant taxa are 
known: A,, A2 and A3 for the ancestral character state and Dlt D2 and D3 for the derived character 
state. As the developmental pathways producing a conserved morphological character can vary it is 
necessary to compare across A,, A2 and A3 to infer A*, and D1? D2 and D3 to infer D*. However, as is 
indicated by the dashed lines, the developmental pathways in these extant taxa differ in how closely 
related they are to each other and in the case of A„ A2 and A3, how closely related they are to A*. As 
it is most parsimonious to expect a feature of development shared by two organisms to be preset in 
their common ancestor, a knowledge of the phylogeny is needed to infer A* and D*.
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1.2 The evolution of the insect bodyplan

1.2.1 Studying insect bodyplan evolution

Without doubt, one of the most instantly recognisable bodyplans is that of the insects. 

The insects are one of the most well known groups in terms of their ecological 

dominance, making up over half of all named species and occupying almost every 

conceivable terrestrial and freshwater habitat (Brusca and Brusca, 2003, Grimaldi and 

Engel, 2004). This diversity is found within a strongly conserved bodyplan (the main 

features of which are illustrated in figure 1.2). The insects have a head with a single 

pair of antennae and three pairs of mouthpart appendages (although these may be 

considerably modified for different modes of feeding), a thorax with three pairs of 

uniramous (unbranched) walking legs, and a legless abdomen (although some basal 

insects have various styli on at least some abdominal segments) (Richards and Davies, 

1977). Insects also share a number of other features such as Malpighian tubules for 

osmoregulation and a tracheal system for breathing, and their embryos contain the 

amnion and serosal membranes.

Head AbdomenSingle pair of antennae N .
Three pairs of mouthparts 9

r

j
Thorax

Three pairs of legs

Figure 1.2. Illustration of the insect bodyplan. The major features of the insect bodyplan are 
clearly shown in an insect such as a locust. The body is divided into three parts: a head bearing a 
single pair of antennae and three pairs of mouthparts, a thorax bearing three pairs of uniramous 
(unbranched) legs and a legless abdomen (although some basal insects have various styli on at least 
some abdominal segments).
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In terms of evo-devo, the insect bodyplan is of particular interest. As was illustrated 

above, when studying bodyplan evolution it is necessary to understand how the 

bodyplans of different organisms are structurally related through different lines of 

descent from a common ancestor, and the insect bodyplan is particularly suited to this 

type of study. Like all arthropods, insects are segmented organisms. The three major 

regions of the insect bodyplan (the head, thorax and abdomen) are groups of like 

segments that form functional units, known as tagmata (Brusca and Brusca, 2003). The 

thorax, for example, is a set of three segments each bearing a pair of appendages 

specialised as legs. This view of the bodyplan can be extended to all the other 

arthropod groups (Brusca and Brusca, 2003). The crustaceans (a diverse assemblage 

including familiar forms such crabs, water fleas and barnacles), the chelicerates (of 

which spiders and scorpions are the best known members) and the myriapods 

(millipedes, centipedes and some lesser known groups) all have bodyplans that can 

largely be defined by different patterns of tagmosis (see figure 1.3).

Clearly this view of arthropod bodyplans is an oversimplification. There are many 

important bodyplan features that cannot be accounted for by patterns of tagmosis, such 

as the Malpighian tubules or the tracheal system of the insects. However, viewing the 

evolution of the various arthropod groups in terms of their patterns of tagmosis sets up a 

clear framework to understand how some of the most important features of the various 

bodyplans evolved. How does segment number change, how are segments grouped into 

tagmata and within these tagmata how do segments evolve their particular 

specialisations? This framework makes studying the evolution of the insect bodyplan 

particularly appealing.

1.2.2 Insect developmental systems

There is perhaps a more critical feature that makes the insect bodyplan an attractive 

system to study. Any evo-devo study needs organisms that are amenable to 

developmental investigation. A number of different insects spanning the whole group 

have been used for developmental studies (see figure 1.4). Apart from the 

developmental model organism Drosophila (Diptera), a number of sophisticated
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Figure 1.3. The different arthropod bodyplans. (Previous page). The main features of the 
bodyplans characterising the different arthropod groups are summarised. For each group the pattern 
of tagmosis is given, including the number of segments making up each tagma and the appendage 
types present (uniramous, biramous or phyllopodous) (based on Brusca and Brusca, 2003). For each 
group the bodyplan is represented with a schematic of a member of the group, illustrating how the 
types of appendages on the different segments vary along the body. The different tagmata are shown 
in different shades of grey. The bodyplans for the entognathous hexapods (collembolans, proturans 
and diplurans) are not shown as they are largely the same as the insect bodyplan. The myriapod 
bodyplan is represented by the chilopods which do not show the different numbers of tergites to 
stemites seen in the other myriapod groups (diplopods, symphylans and pauropods). There is no 
single crustacean bodyplan. Therefore, the bodyplans of the major crustacean subgroups are shown. 
For the malacostracans, the eumalacostracan bodyplan is shown; the bodyplan of the phyllocarids 
(basal malacostracanas) is largely the same although there are minor differences. The maxillopod 
bodyplan is largely shared by a number of crustacean groups, most notably the copepods, the 
cirripedes and arguably the ostracods.
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Figure 1.4. Insect phylogeny and the distribution of developmental systems. The phylogenetic 
relationships of some of the best known insect orders are shown. Orders containing insects that have 
been used for developmental study are marked in red. These orders represent a range of states for 
some of the important characters of insect morphology and development which vary across the group 
(shown on the right). These are the presence of wings (pterygote as opposed to apterygote), the ability 
to fold wings over the abdomen (neopteran as opposed to palaeopteran) and complete metamorphosis 
(holometabolous as opposed to hemimetabolous where nymphal stages resemble adults but are 
sexually immature and have wing buds). The phylogenetic relationships are largely based on 
Kristensen (1981) and Grimaldi and Engel (2004).
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techniques such as transgenics are being developed for Tribolium (Coleoptera) 

(Klingler, 2004). The parasitoid wasp Nasonia vitripennis (Hymenoptera) and within 

the hemimetablolous insects the milkweed bug Oncopeltus fasciatus (Hemiptera) and 

the cricket Gryllus bimaculatus (Orthoptera) are amenable to simple functional studies 

using RNAi (for example Hughes and Kaufman, 2000, Lynch, et al., 2006, Miyawaki, 

et al., 2004). Even the basal apterygote insect Thermobia domestica (Zygentoma) has 

been used for studying expression patterns (for example Peterson, et al., 1999).

There are several other arthropods for which developmental techniques are also being 

developed. The crustaceans Parhyale hawaiensis, Artemia franciscana and Daphnia 

pulex, the myriapods Strigamia maritima and Glomeris marginata and the chelicerate 

Cupiennius salei have all been used for comparative developmental studies (for 

example Chipman, et al., 2004, Copf, et al., 2003, Papillon and Telford, 2007, 

Pavlopoulos and Averof, 2005, Prpic and Tautz, 2003, Stollewerk, et al., 2003). 

Therefore, not only is it eminently feasible to infer the ancestral mode of development 

for an insect character, it is also possible to make inferences for the mode of 

development of the homologous character in other arthropods.

It is important to point out that there are a few small groups of arthropods that I have 

not yet introduced, known as the entognathous hexapods, which share many of the 

features of the insect bodyplan (Richards and Davies, 1977). These taxa (the 

Collembola, Protura and Diplura) have essentially the same pattern of tagmosis as the 

insects and they are generally seen as the sister-taxa to the insects; together with the 

insects they form the Hexapoda (Luan, et al., 2005). Questions regarding the evolution 

of many features of the insect bodyplan can be extended into a larger hexapod 

bodyplan. I will generally not discuss this larger hexapod bodyplan. So far the 

entognathous hexapods have not proved amenable to developmental study so it is not 

practical to discuss inferring developmental states for characters shared across the 

hexapods. Whilst a large number of developmental systems makes the insects a good 

system for evo-devo studies, this cannot be said of the larger hexapod grouping.
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1.3 Arthropod phylogeny and the insect bodyplan

1.3.1 Arthropod phylogeny and the position of the insects

It was shown above (in section 1.1.3) that any evo-devo study needs to be viewed in a 

phylogenetic context. Arthropod phylogeny has long proved an area of intense debate 

and much controversy has existed over the interrelationships of the four major 

arthropod classes: the hexapods (including the insects), the myriapods, the crustaceans 

and the chelicerates (for a review see Regier and Shultz, 1997). One long-standing area 

of agreement, however, was the grouping of the hexapods with the myriapods in a 

group named the Atelocerata (also Tracheata or Antennata). These two groups share a 

number of characters (Dohle, 1998, Kraus, 1998, Regier and Shultz, 1997): both have a 

head with a single pair of antennae, both lack multiramous (branched) appendages and 

both were argued to have ‘telognathic’ mandibles, where the mandibles bite at the tip. 

This is in contrast to crustaceans, which have two pairs of antennae and were described 

as having gnathobasic mandibles, where the base of the appendage handles the food (the 

distal portion of the appendage being reduced to a palp) and to the chelicerates, which 

do not possess antennae or mandibles. Both crustaceans and chelicerates also contain 

members with multiramous appendages. Additionally, the insects and myriapods share 

the tracheal system for breathing and osmoregulate using Malpighian tubules.

In the last decade and a half, this traditional view of a close relationship between the 

insects and myriapods has been challenged. A number of molecular phylogenetic 

analyses, based on a range of genes, have addressed the relationships of the arthropod 

taxa. These studies repeatedly uncovered evidence to support a close relationship 

between the insects and the crustaceans to the exclusion of the myriapods (Cook, et al., 

2001, Cook, et al., 2005, Friedrich and Tautz, 1995, Giribet, et al., 2001, Giribet, et al., 

2005, Hwang, et al., 2001, Lavrov, et al., 2004, Mallatt and Giribet, 2006, Mallatt, et 

al., 2004, Nardi, et al., 2003, Negrisolo, et al., 2004, Pisani, et al., 2004, Regier and 

Shultz, 1997, Regier and Shultz, 2001, Regier, et al., 2005, Shultz and Regier, 2000, 

Spears and Abele, 1998, Turbeville, et al., 1991). This grouping has also been 

supported by mitochondrial gene order (Boore, et al., 1998).
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In addition to the molecular evidence, this so called Pancrustacea (or Tetraconata) 

hypothesis has gained additional support from recent work looking at the nervous 

system. Ommatidial structure, the presence of neuronal stem cells, brain structure and 

patterns of serotonin-immunoreactive neurons have all been argued to support a 

grouping of insects and crustaceans (Harzsch, 2004, Harzsch, et al., 2005). While this 

has strengthened the Pancrustacea hypothesis, several features supporting the 

Atelocerata have been refuted or questioned. Most notably work looking at the 

expression of the gene Dll,  a marker for the distal parts of appendages, has 

demonstrated that insects and myriapods, like crustaceans, have gnathobasic mandibles, 

not telognathic mandibles as previously argued (Popadic, et al., 1998, Popadic, et al., 

1996). It is also likely that several of the other features supporting the Atelocerata are 

the result of convergent evolution to a terrestrial mode of life, as basis for homology has 

been questioned (Dohle, 1998, Kraus, 1998).

1.3.2 Crustacean diversity and the insect bodyplan

The grouping of the insects with the crustaceans has major implications for the 

evolution of the insect bodyplan. Under the Atelocerata hypothesis this bodyplan 

would have been derived from a larger group bearing the many features shared between 

the insects and myriapods: a head with a single pair of antennae, uniramous legs, 

trachaea and Malpighian tubules. Understanding the evolution of the insects would 

have centred on how the segment number stabilised and how the distinctive pattern of 

tagmosis seen in the insects was derived most probably from a more homonomous 

bodyplan as seen in the myriapods.

Under the Pancrustacea hypothesis, the morphological transitions involved in the 

evolution of the insect bodyplan are much less clear. Firstly, the crustaceans are made 

up of a number of different subgroups. The most speciose of these are the Malacostraca 

(including a range of well known forms such as crabs, lobsters, woodlice and mantis 

shrimps) and the Branchiopoda (which include brine shrimps, water fleas and tadpole 

shrimps). The crustaceans also include a number of taxa that were previously grouped 

together as the “Maxillopoda” -  now believed to be a polyphyletic group (Mallatt and
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Giribet, 2006, Regier, et al., 2005, Wills, 1998) -  the most important of these being the 

Cirripedia (the barnacles) and the Copepoda (a large marine radiation including many 

planktonic forms), as well as the Ostracoda (seed shrimps) which were also sometimes 

placed in the “Maxillopoda”, and the enigmatic Remipedia and Cephalocarida. These 

groups have very different bodyplans (see figure 1.3), not just in comparison to the 

insects, but also to each other. Most notably, the patterns of tagmosis and the structure 

of the appendages differ greatly between the various groups.

It is not immediately obvious how the insects relate to this assemblage. There are no 

overwhelming crustacean synapomorphies which would exclude the insects from falling 

within the group (although some characters that support a monophyletic Crustacea are 

given inEdgecombe, 2004). Moreover, such is the diversity of crustacean morphology, 

that there has been little consensus between the many attempts to reconstruct crustacean 

phylogeny based on morphology alone (Wills, 1998). Whilst there may be 

overwhelming molecular and neurobiological evidence in support of an insect- 

crustacean clade, these methods have been unable to resolve precisely how the insects 

relate to the crustaceans. In the absence of an established phylogeny it is difficult to 

make any hypotheses for the character transitions involved in the evolution of insect 

tagmosis or appendage type as the immediate outgroup is not known.

There are other uncertainties associated with a crustacean origin for the insects. For a 

number of features the insects clearly show a derived state, but the crustacean 

homologue is unclear, such as the tracheal system and Malpighian tubules -  although 

there have been some recent advances in this area (Franch-Marro, et al., 2006). The 

crustacean origin for the insects has, therefore, made several of the transitions involved 

in the origin of the insect bodyplan difficult to define. There is one insect feature where 

the transition from ancestral crustacean state to a derived state in the insects is clear, 

however, namely a segment in the insect head known as the intercalary segment.
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1.4 The intercalary segment

1.4.1 The importance of the insect intercalary segment

In spite of the diversity of crustacean bodyplans, one feature that is conserved across the 

different crustacean groups is the presence of two pairs of antennae (Brusca and Brusca, 

2003). This contrasts with the single pair seen in the insects. Comparisons of the 

expression of the segmental marker gene engrailed (en) between insects and crustaceans 

have shown that this is underpinned by a very simple difference (see figure 1.5). The 

crustacean head consists of a pregnathal head with two antennal segments (the 

segmental composition of the more anterior portions of the head is still debated) 

followed by the three mouthpart segments of the gnathal head (the mandibular segment 

and two pairs of maxillary segments) (Scholtz, 1995). This head structure is conserved 

in insects, except that the homologue of the second antennal segment is a small, 

appendageless segment called the intercalary segment (Scholtz, 1998).

Insect Crustacean

Figure 1.5. Comparison of the segmental compositions of insect and crustacean heads.
Schematics depict en expression (grey) in the embryonic heads of an insect (based on Triboliwn 
castaneum) and a crustacean (based on Parhyale hawaiensis, see Browne, et al., 2005) marking out the 
different segments. The segmental compositions of the heads are essentially the same: both have 
three pairs of mouthpart segments -  a mandibular segment and two maxillary segments (the insect 
second maxillary segment is called the labial segment) -  and both have an anterior antennal segment. 
The main difference is that where the crustaceans have a large appendage bearing second antennal 
segment, the insects have the small appendageless intercalary segment; these segments are marked in 
bold, an, antennal segment; ic, intercalary segment; lb, labial segment; lr, labrum; mn, mandibular 
segment; mx maxillary segment.
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Despite the absence of a resolved pancrustacean phylogeny, the grouping of the insects 

with the crustaceans means that the ancestral state to the insect intercalary segment is 

the crustacean second antennal segment. This transition underlies the loss of the 

crustacean second antennae and so is one of the most characteristic transitions in the 

evolution of the insect bodyplan. Even if the insects are the sister-group of a 

monophyletic Crustacea rather than falling within a paraphyletic crustacean group, the 

intercalary segment must still have evolved from an appendage bearing segment and the 

crustaceans are the closest outgroup for comparison.

As was illustrated above, however, to describe fully the developmental changes behind 

the transition, it is still necessary to have a resolved pancrustacean phylogeny and to 

know the sister-group to the insects. Besides the importance of knowing how the 

insects relate to the different crustaceans for understanding the various other character 

transitions involved in the evolution of insect bodyplan, this is also necessary to 

understand the developmental changes behind the evolution of the intercalary segment.

1.4.2 Features of the intercalary segment

In order to describe the developmental changes underlying the transition from the 

second antennal segment to the intercalary segment, it is first necessary to clarify the 

precise morphological transformations that have occurred. A typical arthropod segment 

bears a number of features: there are paired appendages, mesodermal coelomic cavities 

(also known as somites), and neuromeres (Matsuda, 1965). The crustacean second 

antennal segment largely conforms to this canonical segmental structure (Anderson, 

1973). For the insect intercalary segment, paired neuromeres are easily identifiable 

giving rise to the tritocerebrum of the insect brain (Harzsch, 2004). However, this is a 

plesiomorphic character seen across all the arthropods and is not related to the evolution 

of the intercalary segment. For the other features of a segment, the intercalary segment 

shows a clear derived morphology. I will now document these derived features of 

intercalary segment morphology.
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Loss of appendages

As detailed earlier, probably the most striking feature of the intercalary segment is the 

lack of the pair of appendages seen in the ancestral crustacean second antennal segment. 

Whilst appendages are not present on the intercalary segment in the adult heads of any 

insect, a number of paired bulges seen on this segment in various insects have been 

described as transient appendages that are resorbed later in development (Roonwal, 

1937, Tamarelle, 1984). This is most obvious in the immediate sister taxa to the 

insects, the entognathous hexapods (Ikeda and Machida, 1998, Tamarelle, 1984, 

Uemiya and Ando, 1987).

It has also been argued by some authors that the labrum represents the appendages of 

the intercalary segment (Haas, et al., 2001). This has been supported by various sources 

such as its innervation from the tritocerebrum -  the neuromere belonging to the 

intercalary segment (Boyan, et a l, 2002). However, it seems improbable that the 

labrum represents the appendages of the intercalary segment, as crustaceans possess a 

pair of antennae on their second antennal segment -  the homologue of the intercalary 

segment -  as well as possessing a labrum. In response to this criticism, it has been 

claimed that the labrum represents the endites of an intercalary appendage (or the 

second antenna) (Haas, et al., 2001). Whilst this appears unlikely, if it were true, the 

evolution of the intercalary segment would still involve the large-scale reduction of the 

appendage belonging to the segment, but the endites of the appendage would not have 

been lost in the insects.

Derived coelomic sacs

One of the most careful descriptions of mesoderm development in the classical 

literature is by Ullmann (1964). She describes the mesoderm of the intercalary segment 

of the beetle Tenebrio molitor as having a different histology to that of other segments, 

and the timing of the formation of the intercalary coelomic sacs differs from other 

segments. Ullmann (1964) also describes these intercalary sacs as giving rise to a 

transient embryonic structure known as the suboesophagal body, although other authors 

attribute this structure to the mandibular segment (Roonwal, 1937). It is not clear what
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the crustacean homologue of the suboesophagal body is. De Velasco et al. (2006) also 

argue that a major embryonic derivative of the intercalary segment not recognised in the 

classical histological studies are hemocytes. The derivatives of the intercalary segment 

mesoderm are very different to those of a canonical segment.

A vestigial segment

In many ways, the intercalary segment appears to be a vestigial segment. It appears so 

reduced that until recently even its existence had been questioned (Singh, 1981). The 

expression of the segment polarity gene en in Drosophila and a range of other insects 

unequivocally demonstrated the existence of the segment (Diederich, et al., 1991, 

Rogers and Kaufman, 1996, Schmidt-Ott and Technau, 1992). However, it is notable 

that here the en stripes are highly reduced in size and their onset delayed relative to 

those of other segments. Along with the loss of appendages, these observations fit in 

with the idea that the segment is largely vestigial when compared to its crustacean 

homologue.

The intercalary segment and adult head

So far, these descriptions of the insect intercalary segment have largely been restricted 

to embryological features. As Matsuda (1965) points out, in postembryonic stages the 

insect head is composite and compact. External structures, musculature and innervation 

show high degrees of fusion or reduction making it very hard to establish what 

structures belong to which of the different segments. Whilst there have been various 

theories, such as the insect hypophrarynx deriving from the intercalary segment, 

specifically from a pair of lobes called the hypopharygeal lobes (or hypopharynxhocker) 

(Matsuda, 1965, Roonwal, 1937), these theories have often been questioned (for 

example Wolff and Scholtz, 2006). Therefore, whilst the differentiation of the 

intercalary segment into adult structures is clearly of great interest, it will not be 

discussed further.
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1.4.3 Development o f the intercalary segment

Very little is currently known about the genetics underlying the development of the 

intercalary segment. In Drosophila, the overlapping expression domains of the three 

head “gap-like” genes orthodenticle (otd), empty spiracles (ems) and buttonhead (btd) 

have been implicated in the establishment of the segments of the procephalon, including 

the intercalary segment (Cohen and Jurgens, 1990); this model of head segmentation is 

illustrated in figure 1.6. Aspects of this model have been questioned in Drosophila 

(Gallitano-Mendel and Finkelstein, 1998, Wimmer, et al., 1997), but recent work has 

clearly shown that these large overlapping domains do not define the head segments in 

Tribolium (Schinko, et al., 2008). Whilst the late expression and function of Tc-otdl 

resemble the gap-like role of Drosophila otd, Tc-ems expression and function does not 

span the range of segments seen in its Drosophila orthologue (being restricted to the 

posterior ocular region and anterior antennal segment), and Tc-btd is not required for 

head cuticle formation. This suggests that the role for the head gap-like genes in 

establishing the intercalary segment may not be conserved in other insects.

Head segments: lb hbhb | hs an | ic mnl

btd
ems

1

mx

Figure 1.6. The role of the head gap-like genes in the establishment of head segments of 
Drosophila. The schematic represents the overlapping sets of segmental defects in cephalic “gap­
like” mutants, btd mutants lose antennal, intercalary and mandibular segment structures and segment 
polarity gene expression, ems mutants lose antennal and intercalary segment structures and segment 
polarity gene expression, as well as some preantennal structures and the preantennal en head spot, otd 
mutants lose antennal segment structures and segment polarity gene expression, as well as some 
preantennal structures, the en head spot and the wg head blob. Therefore, it has been argued that the 
overlapping domains of the gene expression, shown in the schematic, are required for the 
establishment of the head segments: btd alone for the mandibular segment, btd and ems for the 
intercalary segment, btd, ems and otd for the antennal segment and ems and otd for the anterior head. 
Based on figure 3 from Cohen and Jurgens (1990). an, antennal; ic, intercalary; hb, head blob; hs, 
head spot; lb, labrum; mn, mandibular; mx maxillary.
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A few more genes have been implicated with a role in patterning the segment in 

Drosophila, knot (kn) has been implicated in establishing the posterior boundary of the 

intercalary segment in the fly, seemingly working downstream of the head gap-like 

genes (Crozatier and Vincent, 1999). Two further genes, cap‘n ’collar (cnc) and 

crocodile (croc) have been implicated along with kn in the differentiation of the ventral 

intercalary segment of Drosophila (Hacker, et al., 1995, Rogers and Kaufman, 1997, 

Veraksa, et al., 2000). However, the roles of these genes in patterning the intercalary 

segment have been questioned (Mohler, et al., 1995, Seecoomar, et al., 2000). It is 

unclear whether or not the part of the embryo in which these genes are expressed and 

which they pattern, is in fact part of the intercalary segment.

The hox genes have been implicated in controlling the identity of several segments in 

the arthropods (Hughes and Kaufman, 2002b) and the anterior-most two hox genes 

labial (lab) and proboscipedia (pb) are expressed in the intercalary segment. However, 

neither gene has an obvious role in patterning the segment, lab is expressed in the 

segment throughout the insects (although this in contentious in Drosophila) (Angelini, 

et al., 2005, Diederich, et al., 1989, Nie, et al., 2001, Peterson, et al., 1999), but, where 

investigated, the function of this gene is unclear. In both Drosophila and Oncopeltus 

there is no obvious phenotype in lab mutants or RNAi knock downs relating to the 

intercalary segment (Angelini, etal., 2005, Merrill, et al., 1989). pb is also expressed in 

the intercalary segment of several insects (although not in Drosophila): transcripts 

accumulate in the intercalary mesoderm late in development, but no intercalary 

phenotype has been reported from any functional work on pb (Hughes and Kaufman, 

2000, Rogers, etal., 2002, Shippy, etal., 2000).

Interestingly, co-expression of the head gap-like genes ems and btd has been implicated 

in giving the intercalary segment its identity in Drosophila (Schock, et al., 2000). This 

suggests that the identity of the intercalary segment may not be conferred by the hox 

genes, but rather by the combinatorial action of the head gap-like genes. However, as 

has already been seen, the functions of the Drosophila head gap-like genes are unlikely 

to be conserved in other insects.
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In summary, little is known about intercalary segment development. For the genes with 

conserved expression patterns in the intercalary segments of a range of insects, their 

roles in patterning the segment are unclear {lab and pb). Moreover, whilst a number of 

other genes have been implicated in patterning the segment in Drosophila and their 

functions are better understood, they either seem to be not conserved in other insects 

{ems and btd), or it is unclear whether they are actually involved in patterning the 

Drosophila intercalary segment {kn, cnc and croc).

1.5 Aims and objectives

In this thesis I investigate the evolution of the insect intercalary segment. As I have 

demonstrated, there is not a well-established phylogenetic framework in which to make 

developmental comparisons and little is currently known about the development of this 

segment in the insects. My investigations, therefore, relate to two main objectives: 

establishing a resolved phylogeny for the Pancrustacea and advancing the understanding 

of intercalary segment development.

In chapter 3 I address the first of these objectives. I apply the increasingly common 

approach of using a multigene dataset to analyse the phylogeny of the Pancrustacea. I 

compile and analyse a large dataset consisting of genes previously used to in arthropod 

phylogenetics as well as some newly sequenced genes, addressing various uncertainties 

in how to analyse such data. Using the most appropriate method of analysis I run a 

series of hypothesis tests investigating the support for different positions of the insects.

In chapters 4 and 5 I address the second objective. Firstly, it is unclear what constitutes 

the intercalary segment in the model organism Drosophila melanogaster from where 

most of what is known about the development of the segment comes. In chapter 4 I 

present a comparative study of gene expression patterns between Drosophila and the 

red flour beetle Tribolium castaneum aimed at resolving this issue.
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In chapter 5 I attempt to expand the number of candidate genes for patterning the 

intercalary segment. I present a screen using Drosophila and Tribolium aimed at 

finding novel genes with conserved expression in the intercalary segment, as these 

would appear likely candidates for a role in the development of the segment.
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Chapter 2: 
Materials and Methods

I will now present the general methods used for this thesis, namely molecular cloning 

and sequencing (section 2.1), phylogenetic techniques for the analysis of pancrustacean 

phylogeny (section 2.2) and embryological techniques for studying the red flour beetle 

Tribolium castaneum and the fruit fly Drosophila melanogaster (section 2.3). Specific 

modifications to these general methods are documented within the individual chapters.

2.1 Molecular cloning and sequencing

In order to sequence genes for molecular phylogenetic analysis (chapter 3) or to 

synthesise probes for in situ hybridisation (chapters 4 and 5) the genes of interest had to 

be cloned into plasmid vectors. The fragments of interest were first amplified by the 

polymerase chain reaction (PCR). Reagents that did not belong to a kit were made 

according to Sambrook and Russell (2001), unless stated otherwise.

2.1.1 Polymerase chain reaction

A standard set of PCR conditions were used to amplify fragments for cloning. 

Reactions were carried out using the Roche Taq DNA Polymerase set (DNA Taq 

polymerase and lOx buffer; Cat. No. 1 596 594), the AB gene dNTP set (high
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concentration; Cat. No. AB-0315) and with primers ordered from Thermo Electron or 

MWG. dNTP and primer stocks were diluted to the given concentration with Milli-Q 

water. Reactions were carried out in a total volume of 30 /d with the following volumes 

of reagents:

3.0 /d lOx buffer

22.8 jA Milli-Q water

1.0/d dNTP (5mM)

1.0 pi\ Forward primer (lOnM)

1.0 /d Reverse primer (lOnM)

1.0 /d DNA

0.2 /d Taq DNA polymerase

Concentrations of the DNA samples varied. In several cases where PCRs only yielded 

a small amount of product, increasing the amount of DNA added to 2.0 pi\ often 

improved the yield.

PCR reactions were carried out in a Bio-Rad iCycler, Applied Biosystems GeneAmp 

PCR system 2700 or a G-Storm Thermal Cycler. Reactions were carried out in batches 

containing different sets of primer pairs. Different primer pairs with different melting 

temperatures were often run simultaneously. To ensure annealing in all reactions the 

annealing temperature was set to 2°C below the lowest melting temperature (Tm) for any 

of the primers in one batch. Melting temperatures were estimated by the simple 

empirical rule known as “the Wallace rule” (Sambrook and Russell, 2001):

Tm (in °C) = 2(A+T) + 4(G+C)

where A, T, C and G are the number of each base in the oligonucleotide. In some cases, 

certain primer pairs only gave a small amount of product. Often the melting 

temperatures of these primer pairs were much higher than the annealing temperature 

used. Repeating the reaction with an annealing temperature closer to the melting 

temperature regularly improved the efficiency of the reaction. Extension times were 

matched to the estimated fragment length, assuming a transcription rate of 1000 bp/min.
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Unless stated otherwise, a basic PCR cycle was used consisting of 1 cycle extended 

DNA denaturation of 2 min at 94°C, followed by 35 cycles of 30 sec denaturation at 

94°C, 30 sec annealing at a temperature as calculated above and extension for the 

appropriate length of time at 72°C, followed by a final extension step of 10 min at 72°C.

2.1.2 Reverse Transcriptase PCR

RNA samples had to be reverse transcribed into cDNA before fragments could be 

amplified. This was done by Reverse Transcriptase PCR (RT-PCR), using a protocol 

kindly provided by Dr Sarah Bourlat. First the RNA was denatured. 0.5 pi\ RNA was 

mixed with 2.5 pi\ Milli-Q water and heated to 65°C for 10 min in a thermocycler. This 

was followed by first strand synthesis using the Roche Expand Reverse Transcriptase 

set (Expand Reverse Transcriptase, 5x concentration Expand Reverse Transcriptase 

buffer and dithiothreitol (DTT)), Roche Hexanucleotide mix (Cat. No. 11785826001), 

dNTP (AB gene dNTP set (high concentration; as above) and Roche Protector RNase 

Inhibitor (Cat. No. 3335399). The hexanucleotide mix was diluted in Milli-Q water ten­

fold before use. First strand synthesis was carried out in a total volume of 10 y\ with 

reagents added to the denatured RNA in the following volumes:

2 p\ 5x concentration Expand Reverse Transcriptase buffer 

2.25 ]A Milli-Q 

0.5 ]A DTT

0.5 p\ Hexanucleotide mix

1 \i\ dNTP

0.25 ]A RNase Inhibitor

0.5 pi\ Expand Reverse Transcriptase

First strand synthesis was performed in a thermocycler with annealing at 25°C for 10 

min, reverse transcription at 42°C for 60 min and inactivation at 95°C for 10 min.
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The total 10 p\ cDNA product was used for PCR, with reagents and cycling conditions 

as described in section 2.1.1. Reactions were carried out in a total volume of 25 p 1 and 

reagents were added in the following volumes:

10 p\ First strand synthesis product

2.5 p\ lOx buffer

9.4 p\ Milli-Q water

1.0 //I dNTP (5mM)

1.0 p\ Forward primer (lOnM)

1.0 p\ Reverse primer (1 OnM)

0.1//I Taq DNA polymerase

For certain applications (see section 2.3.4), the entire cDNA was used not used in the 

PCR, but was stored as a stock. In these cases, the RT-PCR reaction was carried out in 

a total volume of 20 p\, with the volumes of reagents in the denaturation and first strand 

synthesis steps doubled. cDNA was stored at -20°C.

2.13 PCR product isolation and purification

It was possible that the PCR had amplified fragments other than the one desired, 

especially if using degenerate primers (as in section 2.2.3). Therefore, to confirm that 

the PCR had amplified the desired fragment and to isolate that fragment, the PCR 

products were separated by agarose gel electrophoresis (see section 2.1.4). DNA was 

visualised on a UV light box and bands of the expected size were excised with a scalpel.

The excised DNA was purified from the gel using the QIAGEN QIAquick Gel 

Extraction Kit (Cat. No. 28706) or the QIAGEN MinElute Gel Extraction Kit (Cat. No. 

28606). For both kits, DNA is adsorbed to a silica membrane in the presence of high 

concentrations of salt, whilst impurities and contaminants pass through the membrane. 

DNA is then eluted into an elution buffer. The QIAquick kit can produce 30 p 1 elutant, 

whilst the MinElute kit produces a more concentrated DNA extract in a volume of 10 

p\. The more concentrated extract was used in cases when there were problems in
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cloning that could have been due to DNA concentration. 2 pi\ of the purified PCR 

product were run on an agarose gel to confirm that the purification was successful.

2.1.4 Agarose gel electophoresis

Agarose gel electrophoresis was used to separate DNA fragments of different sizes. As 

the fragments of interest tended to be 0.5-1.5 kb, gels were made with 1% agarose in lx 

TBE or lx TAE. Ethidium bromide was added to the gel (approximately 1 pi (at 10 

mg/ml) per 200 ml), allowing visualisation of DNA under UV light. A 1 kb ladder 

(Invitrogen 1 kb DNA Ladder; Cat. No. 15615-024) was also run with the samples, 

allowing the size of the DNA fragments to be judged.

2.2.5 Cloning

The purified PCR fragments were cloned into the TOPO TA cloning pCR II-TOPO 

vector (Cat. No. K4600-40) or Promega pGEM-T Easy vector (Cat. No. A1360). Both 

kits are suitable for cloning PCR products amplified with a Taq DNA polymerase. The 

TOPO TA cloning system uses a topoisomerase to insert the product into the vector, 

whilst the pGEM-T Easy system uses a ligase. For both kits, cloning reactions were 

carried out according to the manufacturers instructions and in both cases the cloning 

reaction was left for the longest suggested time (1 hr at room temperature for the TOPO 

TA cloning system and overnight at 4°C for the pGEM-T Easy vector system). Two 

different systems were used as recovering transformants with the correct insert proved 

problematic.

The products of the cloning reaction were transformed into the TOPO TA cloning 

TOP10 chemically competent Escherichia coli cells (Cat. No. K4600-40), TOPO TA 

cloning TOP10F’ chemically competent E. coli cells (Cat. No. K4650-40), or New 

England Biolabs NEB 5-alpha competent E. coli cells (Cat. No. C2991H) depending on 

which cells were available. Transformations were carried out according to the
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manufacturers instructions. 2 //I of cloning reaction product were used for all 

transformations. Heat-shocking was carried out in a water bath.

Cells were screened for the presence of a plasmid with an insert. Transformed cells 

were plated onto LB nutrient agar plates (7.5 g agar per 500 ml LB) containing 

carbenicillin (60 ^g/ml). Plates were prepared by plating 40 pi\ X-gal (20 mg/ml in 

dimethlyformamide) and if TOP10F’ or NEB 5-alpha cells had been used for the 

transformation 10 pi 1 100 mM IPTG. Both the pCR II-TOPO vector and the pGEM-T 

Easy vector contain an ampicillin resistance gene allowing only transformed cells to 

grow in the presence of ampicillin or its derivatives (such as carbenicillin). Both 

vectors also have their insert site within the coding sequence of B-galactosidase. When 

grown in the presence of X-gal cells with an insert have a disrupted B-galactosidase and 

appear white, whilst cells without an insert have a functional B-galactosidase and appear 

blue.

Colonies with an insert were picked using a 10 pi\ pipette tip or a sterile toothpick and 

spotted onto an LB agar plate containing carbenicillin (60 piglnA) and colonies were 

grown overnight at 37°C. To confirm whether the insert was of the expected size, 

colony PCR was performed on the colonies.

2.1.6 Colony PCR

Colony PCR was carried out using the Roche Taq DNA Polymerase, the AB gene 

dNTP set (high concentration) and with primers designed to bind to the SP6 and T7 

polymerase sites flanking the insert ordered from Thermo Electron or MWG. dNTP 

and primer stocks were diluted to the given concentration with Milli-Q water. 

Reactions were carried out in a total volume of 25 pi\ with the following volumes of 

reagents:



42

2.5 p\ lOx buffer

21 pi\ Milli-Q water

1.0 //I dNTP (5mM)

0.2 ]i\ SP6 primer (lOOnM)

0.2 ]A T7 primer (lOOnM)

0.1 ]i\ Taq DNA polymerase

Colonies were transferred into the reaction mix using a 10 ]A pipette tip or a sterile 

toothpick. 6-12 colonies were picked for each cloning reaction to increase the chances 

of picking a colony with the correct insert. Colony PCR was carried out in a 

thermocycler using a PCR cycle consisting of 1 cycle extended DNA denaturation of 2 

min at 94°C, followed by 35 cycles of 30 sec denaturation at 94°C, 45 sec annealing at 

50°C and 1 min extension at 72°C, followed by a final extension step of 7 min at 72°C.

Colonies containing the correct sized insert were cultured to amplify the number of cells 

with the insert. Colonies were picked with a 10 p\ pipette tip or a sterile toothpick and 

transferred to culture tubes containing 1 ml LB medium containing carbenicillin (60 

fig/ml) and grown overnight at 37°C on a shaker at 200 rpm.

2.1.7 Minipreps

To isolate the plasmid DNA from the bacterial cells, minipreps were performed using 

the QIAGEN QIAprep Spin Miniprep Kit (Cat. No. 27106) according to the 

manufacturers instructions. Cells cultures were first transferred to 1.5 ml Eppendorf 

tubes and cells were pelleted by centrifugation in a microcentrifuge at 8000 rpm. Once 

resuspended, the kit was used to lyse cells under alkaline conditions after which, DNA 

was bound to a silica membrane in the presence of high salt and washes performed to 

remove endonucleases and salts. The plasmid DNA was eluted into 50 pi\ elution 

buffer.
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2.1.8 Sequencing

Sequencing reactions were carried out using the Applied Biosystems BigDye 

Terminator v l.l  Cycle Sequencing Kit (Cat. No. 4337450). The manufacturers 

instructions were followed with minor modification. Reactions were carried out in a 

total volume of 10 \A with the following volumes of reagents:

2 pi\ 5x BigDye sequencing buffer

3.5 pi 1 Milli-Q water

1 ]A sequencing primer (3 nM)

2.5 ]A plasmid

1 \A BigDye Terminator ready reaction mix

Sequencing primers were designed to bind to the polymerase sites that flank the insert 

region (primer sequences given in appendix 2, table A2.3), and each insert was 

sequenced from both ends. Sequencing was carried out in a thermocycler with an initial 

denaturation step of 1 cycle of 3 min at 96°C, followed by 25 cycles of 20 sec at 96°C, 

10 sec at 50°C and 4 min at 60°C.

Sequencing reactions products were sent to the Natural History Museum Sequencing 

Facility for the sequence to be read. They were sent as dried DNA pellets. To pellet the 

DNA, sequencing reaction products were first precipitated by adding 20 ]A Milli-Q 

water, 70 jA 100% ethanol and 2 ji 1 sodium acetate (3 M) and incubating for 1 hr at 

room temperature. Precipitated DNA was pelleted by centrifugation at 13000 rpm in a 

microcentrifuge for 20 min. The liquid phase was discarded and the pellet washed by 

the addition of 100 jA 70% ethanol. The ethanol was removed and the pellet left to dry 

by placing in a rack on a 50°C heating block for approximately 15 min.
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2.2 Phylogenetic techniques

I now present the methods used for the analysis of pancrustacean phylogeny (chapter 3). 

These include methods used for constructing the multigene dataset, analysing the 

phylogenetic signal in the dataset, running the phylogenetic analyses and using decision 

criteria to compare between different models.

2.2.1 Compiling the dataset -  an overview

To compile a large multigene dataset for investigating pancrustacean phylogeny a 

search of the GenBank database (Benson, et al., 2007, http://www.ncbi.nlm.nih.gov) 

was carried out to collect arthropod sequences representing as many genes as possible. 

This search recovered a range of genes from the different datasets previously used to 

analyse arthropod phylogeny. The genes with the broadest representation of arthropod 

sequences were the nuclear ribosomal RNAs 18S and 28S, the small nuclear RNA U2, 

the nuclear protein coding genes elongation factor-la (EF-la), RNA polymerase II 

(Poin), elongation factor-2 (EF-2), histone H3, enolase and glyceraldehyde 3-phosphate 

dehydrogenase (G3PDH), and complete mitochondrial genomes. The sequences for 

these different genes did not necessarily represent the same species. However, if the 

different genes had sequences for species that could be confidently assigned to a 

monophyletic group, then a composite sequence representing that higher “taxonomic 

unit” could be used in the phylogenetic analysis.

In order to construct such taxonomic units, the species for which sequences were 

recovered were first organised into monophyletic groups. The criteria guiding which 

groups were chosen are outlined in section 2.2.2. For several of these groups, there 

were gaps in the dataset where sequences were missing for particular genes. Where 

material could be obtained, genes were sequenced to fill the gaps (see section 2.2.3). 

Sequences for the different genes within a monophyletic group were then concatenated 

to give multigene sequences representing the different taxonomic units. This is detailed 

in section 2.2.4.

http://www.ncbi.nlm.nih.gov
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2.2.2 Arranging sequences into monophyletic groups

The species for which there was sequence data were arranged into monophyletic groups 

that represented a diversity of pancrustacean taxa.

The major crustacean groups

Sequences were grouped into the major crustacean subdivisions: the Malacostraca, the 

Branchiopoda and the recently discovered Cephalocarida and Remipedia. As the 

maxillopods are now thought to be a polyphyletic assemblage (Mallatt and Giribet, 

2006, Regier, et al., 2005, Wills, 1998), sequences were grouped into the major 

maxillopod taxa, in particular the Cirripedia and the Copepoda. Sequences from other 

maxillopod taxa that were well represented in GenBank were also included. Also it is 

unclear whether the two main divisions of the ostracods -  the Myodocopa and the 

Podocopa -  form a monophyletic group (Home, 2005, Regier, et al., 2005), so these 

were treated as separate clades.

Hexapod taxa and outgroups

As the monophyly of the hexapods has been questioned (Nardi, et al., 2003), it was 

necessary to distinguish between the true insects (the Insecta) and the entognathous 

hexapod taxa. Further, as there has been little consensus regarding the position of the 

different entognathous hexapod groups relative to the insects (Luan, et al., 2005), it was 

important to distinguish between the Diplura and the Collembola. The Protura are 

poorly represented in GenBank and so were not considered. As outgroup taxa, both 

Myriapoda and Chelicerata were used as there has been a large amount of debate as to 

whether the myriapods are the sister group of the Pancustacea (Mandibulata hypothesis) 

or whether they are the sister-group of the Chelicerata (Myriochelata/Paradoxopoda 

hypothesis) (Mallatt, et al., 2004, Pisani, et al., 2004). A range of outgroup taxa were 

used as it has been shown that outgroup choice can affect the results of a phylogenetic 

analysis (Rota-Stabelli and Telford, 2008).
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Subdividing groups

Where possible, attempts were made to break these major groups into smaller 

subgroups, as this would provide more sequences, representing the diversity within the 

groups. For example, rather than compiling a single chimeric sequence representing the 

Malacostraca, attempts were made to group the different malacostracan sequences 

according to the five major subdivisions of the Malacostraca, namely the Eucarida, 

Peracarida, Hoplocarida, Syncarida and Phyllocarida. This often introduced gaps into 

the final chimeric sequence.

2.23 Sequencing additional genes

Complete 28S ribosomal RNA sequences were added for four taxa: Porcellio scaber 

(Malacostraca, Peracarida), Folsomia Candida (Collembola), Lepas sp. (Cirripedia) and 

Calanus simullimus (Copepoda). Partial 28S was added for Balanus crenatus 

(Cirripedia). Genomic DNA samples were kindly donated for Lepas, and B. crenatus 

by Prof. Jean Deutsch and for C. simullimus by Dr Charles Cook, and RNA for F. 

Candida was kindly donated by Dr Sarah Bourlat.

Genomic DNA extraction

P. scaber specimens were collected from a London garden and identified using a 

number of online keys. To minimise food contamination animals were starved for a 

week in a Petri dish with damp tissue paper. The animals were killed by immersion in 

100% ethanol and a single specimen was ground in liquid nitrogen with a pestle and 

mortar. Genomic DNA was extracted from this specimen using the QIAGEN Genomic- 

tip 20/G kit (Cat. No. 10223) (the mass of the animal fell below the 20 mg cutoff that 

the kit is suitable for) in conjunction with the QIAGEN Genomic DNA Buffer Set (Cat. 

No. 19060). The kit was used to lyse cells before binding genomic DNA to an anion- 

exchange resin under low-salt and pH conditions, whilst impurities were washed off. 

DNA was then eluted in a high-salt buffer before being precipitated to remove salts.
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DNA was resuspended in 0.1 ml pH 8.0 TE buffer. To confirm that the extraction was 

successful, 2 pi 1 samples were run on a 1% agarose gel.

Polymerase chain reaction

The 28S gene was amplified by a standard PCR protocol, as described in section 2.1.1 

(again using a standard Taq DNA polymerase), with 1 cycle extended DNA 

denaturation of 2 min at 94°C, followed by 35 cycles of 30 sec denaturation at 94°C, 30 

sec annealing at a temperature as calculated in section 2.1.1 and 2 min extension at 

72°C, followed by a final extension step of 10 min at 72°C. Degenerate primers 

designed against an alignment of metazoan taxa at a range of sites along the 28S gene, 

were kindly provided by Dr Sarah Bourlat (primer sequences are given in appendix 2, 

table A2.1). As 28S is a large gene (approximately 4 kb long), it proved difficult to 

amplify the whole gene as one fragment (the Taq DNA polymerase used was suitable 

for templates < 3 kb -  see section 2.1.1). Therefore, primer pairs were chosen that 

would allow 28S to be amplified in smaller (typically about 1.5 kb) overlapping 

fragments. In certain cases, there appeared to be difficulties in the subsequent cloning 

of the PCR products. As a potential problem was the size of the fragments, in certain 

cases, primer pairs were chosen to amplify smaller fragments (approximately 0.5 -  1 

kb).

Gene cloning and sequencing

Amplified fragments were cloned and sequenced as described in section 2.1. In some 

cases, the insert was large and so sequencing from the SP6 and T7 primers did not 

produce a long enough sequence to cover the whole insert. In these situations 

sequencing was repeated using primer sites that lay within the insert. Either the original 

28S primers were used if there was an appropriately positioned site, or new primers 

were designed, which were complementary to sequence in the insert. To confirm that 

the sequences were from the required gene from the specimen of interest, a BLAST 

(Basic Local Alignment Search Tool, Altschul, et al., 1990) search was performed. The 

BLAST algorithm compares a query sequence against sequences in a database and gives 

statistically supported alignments. Before the BLAST search, the primer sequence was
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identified and removed from the sequence file, as was any plasmid sequence. The 

sequences were compared against the GenBank database using the blastn algorithm, 

which compares a nucleotide sequence against a nucleotide database. If the highest 

scoring hits were from the 28S of other closely related arthropods, then it was most 

probable that the required fragment had been sequenced.

Sequence assembly

The complete 28 S sequences were assembled from the smaller overlapping fragments 

using the SeqMan software from DNASTAR Lasergene v7.0. Sequences were 

imported and assembled into a contig. Primer and vector sequences were removed, and 

the chromatogram was inspected and the fragment sequences were truncated where the 

quality of the peaks deteriorated. Where possible, multiple clones were sequenced for 

each fragment (ideally three or four), and the sequences were inspected for ambiguous 

sites, where bases differed between the fragments. Where these ambiguities were 

present, the chromatogram was checked to see if either sequence had any obvious 

anomalies, otherwise, the site was marked with ambiguous nucleotide characters.

2.2.4 Constructing concatenated sequences

Selecting sequences and taxa for concatenation

Once the additional sequences had been added, genes that did not have a broad 

representation across the clades of interest (described in section 2.2.2) were discarded; 

namely the snRNA U2, the nuclear protein coding genes enolase and G3PDH. This left 

the rRNAs 18S and 28S, EF-la, PolII, EF-2, H3 and the complete mitochondrial 

genomes. The sequences of these genes for the different species within each 

monophyletic group were then combined to give a multigene sequence representing the 

group. The accession numbers for these sequences are given in appendix 1, table A 1.1.

There is always a risk that sequences from taxa even within the same monophyletic 

group may evolve under different pressures and at different rates. Therefore, attempts
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were made not to concatenate sequences from phylogenetically distant taxa, if it could 

be avoided. Within each clade, sequences were selected for concatenation from species 

that formed as small a monophyletic group as possible, provided that this did not lead to 

a loss of large amounts of sequence data. If decreasing the size of the taxonomic group 

only led to the loss of a small amount of sequence data (typically fewer than 400 extra 

sites out of a total alignment length of near 17000) then the smaller group was used.

For example, within the malacostracan subgroup Peracarida, the three taxa Armadillium 

valgare, Asellus aquatica and Porcellio scaber representing the order Isopoda, together 

provided sequences for 18S, 28S, EF-la, Pol II, EF-2 and H3 comprising around 9600 

bases. Armadillium and Porcellio belong to the suborder Oniscidea whilst Asellus 

belongs to the suborder Asellota. Removing Asellus would decrease the total length of 

the concatenated sequence by approximately only 300 bases (by removing the H3 

sequence). However, this would also decrease the size of the taxonomic group over 

which sequences would be concatenated from an order (Isopoda) to a suborder 

(Oniscidea) (taxonomic rankings from Martin and Davis, 2001). Therefore, the 

sequences from Asellus were removed to maintain the smaller taxonomic group. This 

process resulted in a range of taxonomic units representing a range of differently sized 

taxonomic groups.

Sequence alignment

Once all the genes had been chosen and the taxonomic units defined, sequences were 

aligned for each gene in the dataset. For protein coding genes, nucleotide sequences 

were aligned according to their translated amino acid sequence using the TranslatorX 

software (Telford, unpublished).

For the rRNAs, sequences were aligned to include secondary structural information. 

28S and 18S rRNA sequences aligned according to their secondary structure were 

dow nloaded from the European Ribosomal RNA database 

(http://bioinformatics.psb.ugent.be/webtools/rRNA) in the dedicated comparative 

sequence editor (DCSE) format. These were converted into nexus format using the 

Ystem software (Telford, et al., 2005) and used as a template for the alignment of the

http://bioinformatics.psb.ugent.be/webtools/rRNA
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arthropod rRNA sequences, using the profile alignment mode in ClustalX (1.83). For 

28S, the sequences were aligned to the five ecdysozoan taxa present in the original 

DCSE file, and for 18S, the eleven arthropod taxa were used (sequences from closely 

related taxa, such as the several Diptera, were removed). The taxa used and the 

accession numbers for the sequences are given in appendix 1, table A 1.2.

The Xstem and Ystem software (Telford, et al., 2005) were used to convert the 

secondary structure information in the DCSE files into a form that could be used by 

phylogeny software such as MrBayes. The quorum values for Ystem were set so that 

for a site to be annotated as a stem site, it had to be present in 3/4 of the annotated taxa.

All alignments were inspected by eye in MacClade 4.06 and areas of poor alignment 

were realigned manually. Sites that could not be aligned satisfactorily across taxa were 

excluded, and sites within single taxa that could not be aligned convincingly were 

replaced with “?”. At this point the mitochondrial rRNAs (12S and 16S) and the 

mitochondrial protein coding gene ATP8 were removed from the dataset as they 

contained too few sites that could be aligned convincingly.

Concatenating to produce chimeric sequences

The aligned sequences of the different genes within each taxonomic unit were 

concatenated using a Perl script for assembling chimeric sequences from expressed 

sequence tags (see Bourlat, et al., 2006). To produce the multigene sequences for some 

taxonomic units, a choice had to be made between several species with sequences for 

the same gene. For example, within the malacostracan taxon Oniscidea, a choice had to 

be made between 18S from Armadillium vulgare and from Porcellio scaber. The Perl 

script ranked all available sequences for that taxon according to their average distance 

from all other sequences in the alignment. A composite was built up using as much of 

the shortest average distance sequence as was present and then adding to it missing 

regions (if any) from the next ranked sequence until as full a length sequence as 

possible was built up. This was also used to deal with EF-la in Drosophila. Here there 

appeared to be two paralogues for the gene, so both copies were put in the alignment 

and the Perl script was used to select the shortest branch.
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Further preparation

In the mitochondrial genome of arthropods, the codon AGG has been shown to be 

variable in the amino acid it codes for (Abascal, et al., 2006). As this could be a source 

of homoplasy and bias, the codon was replaced by NNN, or X when sequences were 

coded as amino acids. For phylogenetic analyses where protein coding genes were 

coded as amino acids, the nucleotide sequences were translated to amino acid sequences 

using MacClade 4.06.

2.2.5 Analyses of signal in the dataset

Three methods were used to examine sets of aligned sequences for their phylogenetic 

content (likelihood-mapping and saturation plots) and for their compositional 

homogeneity (nucleotide composition plots).

Likelihood-mapping

Likelihood-mapping (Strimmer and vonHaeseler, 1997) implemented in TREE- 

PUZZLE 5.2, is a method to visualise the phylogenetic content of a set of aligned 

sequences. Quartets of taxa are sampled, and for each quartet the likelihood of each of 

the three possible fully resolved topologies is calculated. The more signal in the data, 

the more quartets where one topology is much more likely than the other two. This is 

represented graphically by plotting the likelihood of quartets on a triangular plot where 

points in the comers represent fully resolved quartets, points in the lateral regions 

represent partly unresolved quartets and points in the centre represent fully unresolved 

quartets. The proportion of fully resolved quartets can be taken as a measure of 

phylogenetic signal in the data. The analysis was run modelling substitutions using a 

General Time Reversible (GTR) model (where each different nucleotide substitution 

can occur at a different rate) with a four-category gamma distribution (to avoid 

problems of underparameterisation). For other settings, the defaults were used. Taxa 

for which there was over 90% missing sequence were excluded from the analysis.
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Saturation plots

Saturation plots are a method to visualise whether a set of aligned sequences has been 

saturated with mutations, which would obscure any phylogenetic signal. A number of 

different variants of this type of plot have been described in the literature; I follow the 

method used by Negrisolo et al. (2004). For each taxon pair, the uncorrected (“p”) 

distance calculated in PAUP 4.0b 10, was plotted against the maximum likelihood 

distance calculated by TREE-PUZZLE 5.2 (see above). Where signal is present, the 

uncorrected (“p”) distance increases linearly with the maximum likelihood distance. 

However, as the uncorrected (“p”) distance does not account for base pairs where 

multiple substitutions have occurred, when the signal is saturated the plot levels off at 

an uncorrected (“p”) distance of 0.75.

Nucleotide composition plots

Compositional heterogeneity within a dataset can be problematic for phylogenetic 

reconstruction. For example, shared compositional biases can often lead to artefactual 

attraction between taxa (Hassanin, et al., 2005). Nucleotide composition plots allow a 

simple visual comparison of the nucleotide composition between taxa. The proportion 

of each base was calculated using the show nucleotide frequencies option in MacClade

4.06 and these were plotted for each taxon using Microsoft Excel v.X. Where 

nucleotide composition was largely homogeneous amongst taxa, the plots of nucleotide 

frequencies appear flat for each base. Where nucleotide composition was 

heterogeneous, nucleotide frequencies appear more variable between taxa.

2.2.6 Bayesian phylogenetic analysis

Bayesian phylogenetic analyses were performed using MrBayes v3.1.2 (Huelsenbeck 

and Ronquist, 2001, Ronquist and Huelsenbeck, 2003). The dataset was partitioned 

differently depending on the modelling strategy used for each analysis, and the 

substitution model for each partition was as specified in the modelling strategy. For the 

analyses where the protein coding genes were coded as amino acids, model-jumping
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between fixed rate amino acid models was implemented, allowing the MCMC to pick 

the best model. The Cprev model of amino acid substitution was replaced by a model 

of amino acid substitution based on Metazoan genomes (Rota-Stabelli and Telford, 

unpublished). The substitution matrix, transition-transversion ratio, shape of the 

gamma distribution and state frequency parameters were unlinked between the different 

partitions. Constraints on tree topology were only used when stated. For other settings 

the default conditions were used.

The analysis was run for an initial 4 million generations. Four chains were run, one 

cold and three heated (using the default settings), and the posterior distribution was 

sampled every 100 generations. Log likelihoods were plotted against generation for 

every 1000th generation and inspected by eye. If the distribution appeared to have 

reached a plateau (taken as showing no obvious upwards trend for over 2 million of the 

4 million generations), the analysis was terminated. If a plateau had not been reached, 

the analysis was successively run for a further 2 million generations until a plateau 

appeared to have been reached. Once the log likelihood values were judged to have 

reached a plateau, a consensus tree was generated using the sumt command in MrBayes. 

The bumin was set to exclude all but the final 2 million generations.

2.2.7 emulating convergence diagnostics

Two diagnostics were calculated to examine whether two runs of a modelling strategy 

had converged on the same posterior probability distribution: the average standard 

deviation of taxon bipartiton posterior probabilities -  referred to as the split frequencies 

-  which indicates the extent of topological convergence between the two runs, and the 

distribution of log likelihoods, which indicates whether the two runs have reached a 

plateau at the same distribution of log likelihood values.

Calculating split frequencies

Using the online software AWTY (Nylander, et al., 2008), the frequency of each taxon 

bipartition in the posterior sample for each run was output using the Showsplits analysis.
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To assess the difference in the frequency of each bipartition, the standard deviation was 

calculated for each bipartition (the standard deviation was used rather than the 

difference, as this is a standard approach used in software such as MrBayes for 

assessing convergence). The average standard deviation of taxon bipartition 

frequencies was then calculated as an overall diagnostic for the similarity in the sample 

posterior of the two runs. The smaller the average, the better the convergence.

Distribution of log likelihoods

The arithmetic means of the post bumin log likelihoods were calculated using Microsoft 

Excel v.X. To make computation easier, these were calculated for every 1000th 

generation. Additionally, the spread was compared by calculating the range in which 

95% of likelihood values fell. Again this was calculated in Microsoft Excel v.X using 

the PERCENTILE option. These two measures were plotted for each pair of runs to 

allow graphical comparison.

2.2.8 Bayes factors

Bayes factors test whether the data supports one of two competing models. The 

hypotheses could be different models for sequence evolution (such as different 

partitioning strategies) or different phylogenetic hypotheses, where the Bayesian 

analysis was run with a constrained tree topology. The Bayes factor (BF) is the ratio of 

marginal likelihoods (the likelihood of the data under a particular model after 

integrating across parameter values) from two competing models (Brown and Lemmon, 

2007). Bayes factors are not used in a normal statistical test, where a hypothesis is 

accepted or rejected relative to some arbitrary cutoff; rather they evaluate the relative 

merits of competing models (Nylander, et al., 2004).

The test statistic 21n(BF21) was used, where BF21 is the Bayes factor for model 2 over 

model 1, and this was interpreted according to the guidelines of Kass and Raftery (1995 

cited in Nylander, et al., 2004) (see table 2.1). The value of 21nBF = 10 is often used 

alone as a simple cutoff, as in Brown and Lemmon (2007), where 21n(BF21) > 10
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indicates significant support for model 2, 10 > 21n(BF21) > -10 indicates ambiguity and 

21n(BF21) < -10 indicates significant support for model 1.

Table 2.1. Interpretations of Bayes 
factors (BF21) based on Nylander et al. 
(2004).

2In(B21) Evidence against M,

0 to 2 

2 to 6

not worth more than a 
bare mention 

positive
6 to 10 strong

>10 very strong

The marginal likelihood for a particular model is difficult to calculate. However, the 

harmonic mean of the likelihood values can be used as an estimate (Newton and 

Raftery, 1994 cited in Brown and Lemmon, 2007). Therefore, the 21n(BF21) statistic 

was calculated as:

21n(BF21) = 2[ln(HM2) -  ln(HM,)]

where HM2 is the harmonic mean of the posterior sample of likelihoods from model 2 

and HM! is the harmonic mean of the posterior sample of likelihoods from model 1. 

Harmonic means were output by the sump command in MrBayes. The same bumin was 

used as for the consensus trees (section 2.2.6).

2.2.9 Information criteria

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) 

indicate the fit of a model to the data, taking into account the complexity of the model: 

the likelihood of the model is penalised as a function of the number of parameters 

(Posada, 2003). Both criteria should be applied in a likelihood framework; however, 

here they are used in a Bayesian framework, assuming that the harmonic mean of the 

posterior distribution is a reasonable estimate for the maximum likelihood (as in 

McGuire, et al., 2007). The AIC and BIC were calculated as follows:
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AIC = -21+2K 

BIC = -2l+Kin(n)

where I is the log likelihood (estimated as the post bumin harmonic mean as used for 

the Bayes factors), K is the number of estimable parameters and n is the sample size 

(approximated by the total number of characters in the alignment). A difference in the 

value of the AIC or BIC (A(AIC) or A(BIC)) >10 between two models is taken as strong 

support for one model over another (Posada and Buckley, 2004).

2.3 Embryological techniques

I now present the various methods used for producing the Tribolium and Drosophila 

gene expression patterns documented in chapters 4 and 5. I include the methods used 

for identifying the orthologues of Drosophila genes in the Tribolium genome.

2.3.1 Stock maintenance

Tribolium

Three vials of Tribolium castanuem of the San Bernardino wildtype strain were kindly 

donated by Dr Gregor Bucher. Beetle stocks were maintained in 1 1 Tupperware boxes 

on wholemeal flour at room temperature. Wholemeal flour was first sterilised by 

heating at 65°C for at least 24 hr, and was then passed through a 500 pm  sieve to 

remove large particles to aid subsequent separation of beetles from the flour.

Beetles were transferred onto clean flour every 6 months. Adult beetles, pupae and 

final instar larvae were separated from the flour using an 800 pm  sieve. This sieve also
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separated exuviae and dead beetles from the flour. The exuviae and some of the dead 

beetles were removed by gently blowing over the sieve plate. The adults and larvae 

were separated from the remaining dead beetles by paper transfer. Beetles were placed 

onto a sheet of paper which was turned vertically. Only the living beetles held onto the 

paper allowing their separation from dead individuals. Sieve plates were always 

sterilised after use by heating to 65°C.

Drosophila

Five vials of Drosophila melanogaster were kindly donated by Prof. Ernst Wimmer. 

Two of the lines contained the UAS-ems construct, whilst three contained the Gal4 

driver for use in misexpression the empty spiracles gene across the anterior of the 

embryo (Schock, et al., 2000). Embryogenesis of all lines was wildtype and the most 

vigorous line was used for embryo collection. Flies were maintained in vials on ASG 

food with a few grains of dried yeast at 25°C and were transferred onto new food 

approximately every two weeks, using C 02 to anaesthetise the flies during transfer. The 

recipes for the various Drosophila media are given in table 2.2.

Table 2.2. Media for fly culturing. The recipes given are for 
the stated amount of the media. Volumes were altered when 
different amounts of the media were needed.

Medium Recipe
ASG Food Water 500 ml

(makes 500 ml) Agar 5g
Sugar 42.5 g
Yeast 10 g
Maize 30 g

Nipagin 12.5 ml

Grape plates Water 1000 ml
(makes -80 purps) Agar 50 g

Grape juice 600 ml
More water 100 ml

Nipagin 42 ml

Yeast paste Dried yeast 10 g
(makes 10 ml) Water 10 ml
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2.32 Embryo collection

Tribolium

Adult beetles were transferred onto plain flour by paper transfer (as described in section

2.3.1). Plain flour was first sterilised at 65°C for at least 24 hr and was then passed 

through a 250 pm  sieve. Embryos were collected every 4-5 days; during this period of 

time at room temperature embryos reached early germband retraction. Beetles were 

first removed from the flour by passing through a 500 pm  sieve. Embryos were then 

separated from the flour by passing through a 250 pm  sieve. Beetles were returned to 

the flour and left to continue laying. Embryo collection was continued until egg 

production was low, at which point the beetles were transferred back to wholemeal 

flour.

Drosophila

Adult Drosophila were transferred from vials into bottles containing ASG food and a 

few grains of dried yeast to allow culture sizes to increase. After 3-4 weeks at 25°C 

adult flies were transferred to new bottles containing ASG food and a few grains of 

dried yeast and allowed to lay eggs. 10 days after laying began, new flies started to 

emerge. Old adults were removed and newly emerged adults were collected. 50 female 

flies and 30-40 male flies were placed in new bottles containing ASG food and a few 

grains of dried yeast and allowed to mate. After 1-2 days, female flies were transferred 

to grape agar purps with yeast paste and allowed to lay. Purps were replaced twice 

daily. After one day of laying, embryo collection began. Flies were left to lay for 10- 

14 hr, after which time purps were collected. Embryos were washed off the purps using 

PBT (see table 2.3) and transferred into a 15 ml Falcon tube using a plastic Pasteur 

pipette. Embryo collection was carried out for 2 days. The recipes for the various 

Drosophila media are given in table 2.2.
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Table 2.3 Reagents for Tribolium and Drosophila embryology. The recipes given are 
for the stated amount of the reagent. Volumes were altered when different amounts of the 
reagents were needed.

Reagent Recipe
PBT 250 ml PBS

(makes 250 ml) 500 /d 10% TWEEN 20

PEMS 400 ml Water
(makes 400 ml) 12.08 g Pipes

800/d MgS04 (1 M)
800/d EDTA (pH 8.0,0.5 M) 

to pH 6.9 with NaOH

Hybe-A 25 ml Deionised formamide
(makes 50 ml) 12.5 ml 20x SSC 

to pH 5.5 with HC1 
to 50 ml with water

1 ml Sonicated salmon sperm DNA (10 mg/ml)
250/d tRNA (20 mg/ml)
25 /d heparin (100 mg/ml)

Hybe-B 25 ml Deionised formamide
(makes 50 ml) 12.5 ml 20x SSC 

to pH 5.5 with HC1 
to 50 ml with water

Blocking buffer 500 g Bovine serum albumin
(makes 50 ml) 1 ml Sheep serum 

to 50 ml with water

Staining buffer 5 ml Tris-Cl (pH 9.5,1 M)
(makes 50 ml) 2.5 ml MgCl2 (1 M)

1 ml NaCl (5 M) 
to 50 ml with water

250 /d 10% TWEEN 20

Inactivation buffer 50 ml Hybe-B
(makes 50 ml) 500 pi 10% TWEEN 20

750 pi 20% SDS
25 pi Heparin (100 mg/ml)
50 /d Sonicated salmon sperm DNA (10 mg/ml)

Note. All reagents made up according to (Sambrook and Russell, 2001) unless stated 
otherwise. For 10% TWEEN 20 use SIGMA TWEEN 20 (Cat. No. P9416) diluted 10-fold 
in water, for sheep serum use SIGMA Sheep Serum (Cat. No. S2263), and for bovine 
serum albumen use SIGMA Albumin from bovine serum (Cat. No. A4503).
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2.3.3 Embryo dechorionation

For both Tribolium and Drosophila, embryos were transferred to egg baskets and 

dechorionated by washing in 50% bleach for 2 min. Egg baskets were made by 

attaching a polyamide screen 100 y\ mesh over the end of a 50 ml Falcon tube. 

Embryos were then washed in deionised water to remove bleach.

2.3.4 Tribolium RNA extraction and cDNA synthesis

Tribolium RNA was extracted from embryos using the TRIZOL extraction protocol 

kindly provided by Dr Nikola Michael Prpic. Embryos were collected over 5 days as 

this time period contained the stages of interest (see section 2.2.2), and therefore the 

relevant mRNAs were being expressed. Dechorionated embryos were transferred into a 

sterile Eppendorf tube to a depth of 3-5mm and homogenised in 750 pi\ TRIzol 

(Invitrogen Cat. No. 15596-026). To remove cell debris, the homogenate was 

centrifuged for 10 min at 13000 rpm at 4°C after which the clear pinkish liquid was 

transferred to a new tube and incubated for 5 min at room temperature. 200 p\ 

chloroform were added and mixed by gently shaking. This mixture was incubated for 

10 min at room temperature before centrifugation for 15 min at 4°C, producing two 

phases.

RNA was contained in the top phase which was transferred to a new tube, and the RNA 

precipitated by adding 500 p\ isopropanol and mixing by gently shaking. The mixture 

was incubated for 10 min at room temperature and then centrifuged for 10 min at 4°C. 

The supernatant was discarded, leaving a pellet of RNA. This was washed by adding 1 

ml 70% ethanol and incubating for 5 min at room temperature, before spinning at 13000 

rpm for 10 min at 4°C. The ethanol was removed and the pellet was left to air dry on 

ice (to prevent RNA degradation) until all the ethanol had evaporated (approximately 10 

min). The pellet was dissolved in 50 p\ Milli-Q water. This gave an RNA extract at a 

concentration of approximately 3000 ng/pl (Coulcher, J. F., personal communication). 

2 p\ of the RNA extract was run on a 1% agarose to confirm the extraction had worked.
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RNA extracts were stored at -80°C. cDNA was synthesised from the RNA as described 

in section 2.1.2. cDNA was synthesised in batches of 20 pi 1 and stored as a stock.

2.3.5 Identifying Tribolium orthologues of Drosophila genes

BLAST search ofBeetleBase

Tribolium orthologues of Drosophila genes were identified in the Tribolium genome by 

a BLAST search of the Tribolium Genome Database resource BeetleBase V2.0 

(BeetleBase website: http://www.bioinformatics.ksu.edu/BeetleBase). The protein 

sequences of the Drosophila genes of interest were downloaded from the GenBank 

database for use as the query sequences in the BLAST search. Using the BLAST option 

in BeetleBase, the query sequences were compared against the All Tribolium sequences 

database using the tblastn algorithm, which compares a protein query sequence against 

a nucleotide sequence database dynamically translated in all reading frames.

The All Tribolium sequences database on BeetleBase V2.0 largely contains unannotated 

contigs as well as ESTs and published sequences. Therefore, several BLAST searches 

recovered isolated stretches of sequence similarity within the contigs. The stretches of 

nucleotide sequences showing similarity to Drosophila were extracted. Often 

successive stretches of alignment were identified in the same contig that matched 

successive regions of the query sequence. In these cases it was assumed that the 

Tribolium sequences were parts of the same gene, separated either by more divergent 

areas of poorer alignment with Drosophila, or by introns.

Reciprocal BLAST

The stretch of alignment with the highest E-value was likely to belong to the direct 

orthologue of the original Drosophila gene. To confirm that this was the case, the 

highest scoring alignment was used as the query sequence and a BLAST search was 

performed against the Drosophila melanogaster protein database on NCBI BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), using the blastx algorithm, which compares a

http://www.bioinformatics.ksu.edu/BeetleBase
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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nucleotide query sequence translated in all reading frames against a protein sequence 

database. In cases where multiple stretches of alignment appeared to correspond to one 

gene, a concatenated sequence was used at the query. For a direct one-to-one orthology, 

the original Drosophila gene had to be recovered as the highest scoring sequence, 

judged by the E-value. Additionally, the next highest scoring stretches of alignment in 

the Tribolium genome were also compared to the Drosophila protein database by a 

BLAST search. These could not recover the original Drosophila gene, as this would 

suggest that there had been Tribolium gene duplications or Drosophila gene losses.

2.3.6 Cloning Tribolium orthologues

Tribolium orthologues were amplified from Tribolium cDNA (see section 2.2.4) by 

PCR (as described in section 2.1.2). A PCR cycle was used consisting of 1 cycle 

extended DNA denaturation of 2 min at 94°C, followed by 35 cycles of 1 min 

denaturation at 94°C, 2 min annealing at a temperature as calculated in section 2.1.1 and 

extension for the appropriate length of time at 72°C, followed by a final extension step 

of 10 min at 72°C. Specific primers were designed against the Tribolium sequences 

identified by the reciprocal BLAST search (section 2.2.5). Primer pairs were typically 

designed to amplfy partial cDNAs of 0.5-1.0 kb.

Various criteria were taken into account when designing primers. Primers were 21 

nucleotides long and the melting temperatures of a primer pair were, where possible 

designed to be within 2-4°C of each other, as calculated by “the Wallace rule” (section

2.1.1). Additionally, primers were inspected by eye for any obvious sequence that 

would anneal to themselves, and primer pairs were inspected by eye for any obvious 

complementary sequences that could dimerise.

PCR products were purified and cloned, as described is section 2.1. To confirm that the 

desired partial cDNA had been cloned, the insert was sequenced (as decribed in section

2.1.8). The sequencing products were converted into FAST A files and were compared 

to the Tribolium sequences identified in the reciprocal BLAST search, using MacClade 

4.06.
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2.3.7 Drosophila clones

Cloned complete cDNAs of Drosophila genes were ordered from the Drosophila Gene 

Collection Release 3.0 (DGCr3) through Geneservice. cDNAs were sent cloned into 

either the pOT2, pFLC-1 or pBS vectors and sent transformed into E. coli cells streaked 

out on LB agar containing antibiotic. Clones were treated according to the distributors 

instructions. Clones were first streaked out on LB agar plates containing either 

carbenicillin (60 //g/ml) or chloramphenicol (25 //g/ml) to isolate individual colonies. 

The antibiotic used depended on the vector: the pFLC-1 or pBS vectors contained an 

ampicillin resistance gene whilst the pOT2 vector contained a chloramphenicol 

resistance gene. 10 colonies were picked for each clone and grown up on LB agar 

containing the appropriate antibiotic. Colonies were picked and cultured in LB 

containing the appropriate antibiotic (at 1 p\ per 1 ml LB) and miniprepped as described 

in section 2.1.7. To confirm the cDNAs were for the correct genes, the inserts were 

sequenced as described in section 2.1.8, and the sequence outputs were aligned to 

sequences of the complete cDNA downloaded from the GenBank database. For the 

pFLC-1 and pBS vectors, primers complementary to the T7 and T3 polymerase sites 

flanking the cDNA insert were used for sequencing. For the pOT2 vector, primers 

complementary to the SP6 and T7 polymerase sites flanking the cDNA insert were used 

for sequencing

2.3.8 RNA probe synthesis

Labelled RNA probes were synthesised for in situ hybridisation. Digoxigenin (DIG) 

labelled probes were used in standard in situ hybridisations for the detection of the 

transcripts of a single gene. Fluorescein labelled probes were used for detecting the 

transcripts of a second gene in double in situ hybridisations. Probes were synthesised 

using a protocol provided by Dr Nikola Michael Prpic.
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PCR to generate probe synthesis template

One clone with the required cDNA insert was chosen for each gene for probe synthesis. 

Before transcription, the stretch of the plasmid containing both the insert and the 

polymerase start sites was amplified by PCR. Reactions were carried out in a total 

reaction volume of 100 pi, using the Roche Taq DNA Polymerase and the AB gene 

dNTP set (high concentration) (as described in section 2.1.1). Primers designed to 

regions flanking the polymerase sites were used (primer sequences are given in 

appendix 2, table A2.4). Reactions were carried out with the following volumes of 

reagents:

10 pi lOx buffer 

76 pi Water

4 pi dNTP (5 mM)

5 pi Forward primer (10 nM)

5 pi Reverse primer (10 nM)

0.2 pi Template

0.5 pi Taq DNA polymerase

A PCR cycle was used consisting of 1 cycle extended DNA denaturation of 1 min at

94°C, followed by 30 cycles of 30 sec denaturation at 94°C, 45 sec annealing 45°C and

1 min 30 sec extension at 72°C, followed by a final extension step of 7 min at 72°C.

PCR products were purified using the QIAGEN QIAquick PCR Purification Kit (Cat 

No. 28106). Gel purification (section 2.1.3) was not used as the PCR reaction used 

specific primers against a plasmid vector so it was very unlikely that undesired 

fragments would be amplified. DNA was adsorbed to a silica membrane in the 

presence of high concentrations of salt, whilst impurities and contaminants pass through 

the membrane. DNA is then eluted into an elution buffer. Accoring to the kit manual, 

the spin columns can bind up to 10 pg DNA, which is eluted into 30 pi elution buffer at 

a 90-95% efficiency. Therefore, a template concentration of up to approximately 300 

ng/pi could be recovered, depending on the efficiency of the PCR reaction.
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Probe synthesis

In order to bind to the target mRNA, probes had to be synthesised from the antisense 

strand. The orientation of the insert in the vector was judged from the sequencing 

products and the correct polymerase to synthesise the antisense strand was chosen. The 

transcription reactions were carried out in a total volume of 10 pil using either the Roche 

SP6 RNA Polymerase set (SP6 RNA polymerase and lOx transcription buffer; Cat. No. 

10 810 274 001), the Roche T7 RNA Polymerase set (T7 RNA polymerase and lOx 

transcription buffer; Cat. No. 10 881 767 001) or the Roche T3 RNA Polymerase set 

(T3 RNA polymerase and lOx transcription buffer; Cat. No. 11 031 163 001) depending 

on the clone. Either the Roche DIG RNA labelling mix (Cat. No. 11 277 073 910) or 

the Roche Fluorescein RNA labelling mix (Cat. No. 11 685 619 910) was used 

depending on the probe being made. Roche Protector RNase inhibitor was also used to 

prevent RNA degradation. Reagents were used in the following volumes:

6 pi\ Purified PCR product (approximate concentration 300 ng/pi\)

1*1 lOx transcription buffer

1*1 lOx RNA labelling mix

1 pil RNase inhibitor

1*1 RNA polymerase

The transcription reaction was run for 2 hr at 37°C in a hybridisation oven.

To terminate transcription 1 pi 1 EDTA (pH 8.0, 0.5 M), 90 pi\ Milli-Q and 1 pi\ tRNA 

(20 mg/ml) were added, and the mixture was gently mixed and spun down. To 

precipitate the labelled RNA probes 45 pil ammonium acetate (10 M) and 435 pi\ 100% 

ethanol were added, the mixture was gently mixed and spun down and then incubated 

for 1 hr at -20°C. To wash the probe the mixture was then centrifuged for 20 min at 

13000 rpm before removing the liquid and adding 500 ji\ 75% ethanol. This was 

incubated on ice for 5-10 min before being centrifuged for 10 min at 13000 rpm. The 

ethanol was removed and the pellets air dried on ice until residual ethanol had 

evaporated (approximately 10-15 min). Probes were dissolved in 100 pil Milli-Q water. 

2 pil of the probe was run on a 1 % agarose gel to confirm synthesis had been successful.
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A regular agarose gel (as described is section 2.1.4) was used rather than an RNA 

denaturing gel. Probes were stored at -80°C.

Probe concentrations varied (as indicated the intensity of the bands on the agarose gel). 

However, the manufacturer’s instructions for the DIG and Fluorescein RNA labelling 

mixes state that approximately 10 pig of full length labelled RNA are transcribed from 1 

pig linear template DNA. Given the approximate mass of the template DNA of a little 

under 2 pig (6 pil at approximately 300 ng/pil), approximately 20 pig labelled probe was 

synthesised, giving a final concentration of around 200 ng/pil (after dissolving in 100 

*1).

2.3.9 Embryo fixation

Tribolium and Drosophila embryos were fixed according to the protocol of Dr Gregor 

Bucher. Using a paintbrush, freshly dechorionated embryos were transferred into 30 ml 

bottles (Fisher, Catalogue number FB73250) containing 12 ml heptane, 4 ml PEMS (see 

table 2.3) and 600 pil SIGMA 37% formaldehyde (F-1635). Embryos were fixed at 

room temperature for 30 min on a shaking platform (approximately 200 rpm). Shaking 

at 37°C for 20 min did not appear to affect fixation.

Embryos were devitellinised by methanol shocking. 16 ml methanol (room 

temperature) was added to the fixation mixture and vigorously shaken for 30 sec. The 

bottle was swirled and devitellinised embryos fell to the bottom whilst embryos with the 

vitellin membrane attached remained at the water-heptane interface. Devitellinised 

embryos were collected with a glass pipette and transferred to a 15 ml Falcon tube.

For Tribolium, methanol shocking alone often did not recover many embryos. Many 

embryos with the vitellin membrane attached remained at the water-heptane interface. 

To remove the vitellin membrane these embryos were repeatedly aspirated and expelled 

vigorously through a 0.7 mm needle using a syringe (30 or 50 ml). As with the 

methanol shock, devitellinised embryos fell to the bottom of the bottle and were
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collected with a glass pipette. Once collected, embryos were rinsed twice by replacing 

the methanol and stored in methanol at -20°C until required.

2.3.10 In situ hybridisation

In situ hybridisation in both Tribolium and Drosophila was carried out according to the 

protocol of Dr Gregor Bucher (as described in Wohlffom, et al., 2006). Compositions 

and recipes for buffers are given in table 2.3. In the following descriptions, rinsing 

embryos refers to simply replacing the buffer and washing embryos refers to replacing 

the buffer and rotating on a wheel for a given amount of time.

Embryo preparation

Embryos were removed from storage at -20°C and transferred into 1.5 ml Eppendorf 

tubes. A depth of 2-3 mm of embryos in an Eppendorf tube (approximately 200 

embryos for Tribolium and 300 embryos for Drosophila) was sufficient for one in situ 

hybridisation. Embryos were first rinsed in clean methanol and then in 50% 

methanol/PBT. This was followed by post-fixation in 1 ml PBT with 140 p\ 37% 

formaldehyde for 15 min on a wheel. Embryos were then washed by rinsing twice in 

PBT followed by three 5 min washes in PBT. This was followed by a Proteinase K 

digestion; embryos were incubated on a wheel for 5 min in 1 ml PBT with 5 p 1 

Proteinase K (Roche Proteinase K (Cat. No. 3 115 828) diluted ten fold in PBT). The 

Proteinase K digestion was stopped by rinsing twice in PBT, followed by post-fixing in 

1 ml PBT with 140 p\ 37% formaldehyde for 15 min rotating on a wheel. Embryos 

were then rinsed twice in PBT, followed by a 5 min wash in PBT and a further rinse.

Hybridisation

Before hybridisation, embryos were first washed in 250 p\ PBT with 250 p\ Hybe-B 

buffer, which was replaced by 250 p\ Hybe-B. This was then replaced with 250 p\ 

Hybe-A buffer, and the embryos were prehybridised for 1 hr at 65°C in a water bath. 

After prehybridisation as much Hybe-A was aspirated as possible, the probe was then
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diluted in 30 pil which was added to the embryos. The concentrations of the probes 

varied (as described in section 2.3.8); for details on optimising the volume of probe 

used see section 2.2.12. Embryos were hybridised overnight at 65°C.

Post-hybridisation

After hybridisation, 500 pil Hybe-B (prewarmed to room temperature) was added to the 

embryos, keeping at 65°C until the embryos settled. This was replaced with 500 pil 

Hybe-B and incubated at 65°C for 15 min. Embryos were then transferred to room 

temperature and diluted by adding 500 pil PBT, after which they were blocked by 

rinsing and then washing for 5 min, 15 min and then 20 min in 1 ml blocking buffer (the 

blocking buffer was kept on ice).

The DIG-labelled probe was detected with an alkaline phosphatase conjugated anti-DIG 

antibody. Embryos were rotated on a wheel for 1 hr in 1 ml blocking buffer with 0.5 jA 

Roche Anti-Digoxigenin-AP, Fab fragments (Cat. No. 11 093 274 910). After the 

antibody incubation, embryos were first rinsed twice, and then washed for 5 min, 20 

min then twice for 30 min in blocking buffer if still available, otherwise in PBT.

Staining

Expression patterns were visualised using the NBT/BCIP system. The yellow substrate 

BCIP is metabolised by the alkaline phosphatase coupled to the anti-DIG antibody in 

the presence of NBT to give a dark blue product. Embryos were first rinsed then 

washed for 5 min in staining buffer. Embryos were then stained in 1 ml staining buffer 

with 20 pil Roche NBT/BCIP stock solution (Cat. No. 1 681 451). Embryos were 

transferred to watch glasses for the stains to develop. Stains were developed in the dark 

at room temperature. To monitor the development of the stain, embryos were 

periodically inspected under a dissecting microscope. When the stain had developed to 

the desired level, the staining reaction was terminated by washing three times for 10 

min in PBT. Stained embryos were stored at 4°C in 1 ml PBT with 100 pil 37% 

formaldehyde.
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2.3.11 Double in situ hybridisation

Double in situ hybridisation was carried out according to the protocol of Dr Gregor 

Bucher (as described in Wohlfrom, et al., 2006). The protocol was largely the same as 

for the standard single in situ hybridisation, with a few modifications. The 

hybridisation step was carried out with probes for the two genes of interest; one DIG- 

labelled, the other fluorescein-labelled. The expression patters for the two genes were 

the visualised successively. First, the fluorescein-labelled probe was detected with 

alkaline phosphatase conjugated anti-fluorescein antibodies and visualised using the 

Fast Red system. The substrate Fast Red TR/Naphthol AS-MX is metabolised by the 

alkaline phosphatase coupled to the anti-fluorescein antibody to give an intense red 

stain. After developing the first stain, the DIG-labelled probes were visualized as for a 

standard single in situ hybridisation. Generally the weaker probe was DIG labeled. The 

modifications to the protocol will now be detailed.

Embryo preparation and hybridisation

The preparation of embryos was the identical to the standard single in situ hybridisation. 

For the hybridisation step, where the single DIG-labelled probe was added to 30 jA 

Hybe-A and incubated for 10 min for the standard in situ hybridisation, both the DIG- 

labelled and fluorescein-labelled probes were added for double in situ hybridisation.

Visualising the fluorescein-labelled probe

Post-hybridisation washes were carried out as for the standard single in situ 

hybridisation, except that for the antibody incubation, an anti-fluorescein labelled 

antibody was used rather than an anti-DIG antibody. Embryos were rotated on a wheel 

for 1 hr in 1 ml blocking buffer with 0.5 y\ Roche Anti-Fluorescein-AP, Fab fragments 

(Cat. No. 11 426 338 910). Subsequent wash steps were as for the single in situ 

hybridisation.

The expression pattern for the fluorescein labelled probe was visualised, using the Fast 

Red system. Embryos were rinsed and washed for 5 min in 0.1 M Tris-HCl, pH 8.2.
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Embryos were stained using Sigma SIGMAFAST Fast Red TR/Naphthol AS-MX 

Tablets (Cat. No. F4648) in a volume of 1 ml as according to the manufacturers 

instructions. Stains were developed and monitored as for the NBT/BCIP system. 

Stains often developed more slowly using the fluorescein probes with Fast Red, so if 

embryos had not stained to the desired level in 4-5 hr, they were left overnight at 4°C. 

When the embryos had stained sufficiently, staining was terminated as for the 

NBT/BCIP system, except that formaldehyde was not added.

Visualising the DIG-labelled probe

To visualise the DIG-labelled probe, activity of the alkaline phosphatase coupled to the 

anti-fluorescein antibody had to be inactivated. PBT was replaced by 1 ml inactivation 

buffer, prewarmed to 65°C, and incubated at 65°C for 15 min in a heating block. 

Embryos were then cooled to room temperature in the inactivation buffer 

(approximately 20 min). 500 p\ inactivation buffer was replaced with 500 pi\ PBT. 

From this point embryos were treated as for post-hybridisation in a standard single in 

situ hybridisation, using an alkaline phosphatase couple anti-DIG antibody, and 

developing the stain with the NBT/BCIP system.

2.3.12 Reducing background

For some genes there were high levels of background. Two steps were varied in an 

attempt to reduce background: probe concentration, and using a preabsorbed antibody.

Probe concentration

Reducing the amount of probe could reduce background although too little probe could 

result in a weak signal. As a starting point, in situ hybridisation was carried out using 5 

pil of probe. If there was a poor signal to background ratio, in situ hybridisation was 

repeated using up to a 50x dilution of the probe concentration.
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Antibody preabsorption

The use of a preabsorbed antibody to detect the probe appeared to reduce background 

levels for several probes. This was particularly noticeable when using fluorescein 

labelled probes (the effect was less noticeable for DIG labelled probes). To preabsorb 

the antibody, fixed embryos were transferred to an Eppendorf tube (a similar amount of 

embryos to an in situ hybridisation). Embryos were washed four times for 20 min in 

blocking buffer. After the last wash, the blocking buffer was removed and replaced 

with 1 ml fresh blocking buffer and 50 p\ undiluted antibody, and this was incubated 

overnight at 4°C. The supernatant was removed and stored at 4°C. For the antibody 

incubation, to maintain the same antibody concentration, 10 pi preabsorbed antibody 

was added to the 1 ml blocking buffer.

2.3.13 Embryo preparation and image acquisition

For both Tribolium and Drosophila, embryos were transferred to a watch-glass and 

examined under a dissecting microscope. The desired embryos were selected and 

transferred to a spot of glycerol on a microscope slide using a 10 p\ Gilson pipette. For 

lateral view, a cover slip was placed over the embryo, and the specimen rolled into the 

correct orientation. For Tribolium embryos the head was first freed of yolk using a 

flame sharpened tungsten needle, wax mounted in a 20 p\ pipette tip. For flat mounted 

Tribolium embryos, the embryo was transferred to glycerol and yolk removed, first 

being broken up with a pair of forceps and then carefully removed with an eyebrow 

hair, wax mounted in a 20 p\ pipette tip. For flat mounted Drosophila embryos, the 

embryos were split dorsally using a flame sharpened tungsten needle, allowing the 

germband to be flattened. Brightfield and DIC images were taken with a Zeiss 

AxioImager.Ml coupled to a Zeiss AxioCam HRc. Brightness and contrast were 

adjusted with the GNU Image Manipulation Program (GIMP) 2.2.10.
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Chapter 3:
Pancrustacean phytogeny and the

position of the insects

3.1 Summary

In this chapter I address the issue of pancrustacean phylogeny and the position of the 

insects. A number of recent molecular phylogenetic analyses of the arthropods based 

on a variety of datasets have had a broad enough sampling of crustacean taxa to allow 

an accurate placement of the insects within the group. However, these different 

analyses have not reached a consensus on the phylogeny of the Pancrustacea or which 

crustacean group is the sister taxon to the insects. I have addressed these questions with 

a multigene Bayesian phylogenetic analysis. I have compiled the various genes used in 

previous analyses of arthropod phylogeny to produce the largest dataset yet used for a 

Bayesian analysis of a taxonomically diverse pancrustacean phylogeny, constructing the 

dataset to give a broad representation of crustacean taxa, and adding new sequences of 

28S ribosomal RNA to fill in important gaps. I ran a number of analyses addressing 

areas of uncertainty in how to model a multigene dataset. First I addressed the 

heterogeneity in the evolutionary process between the different codon positions of 

protein coding genes. I then addressed the effect of changing the model of nucleotide 

substitution. I also investigated the effect of modelling the data with protein coding 

genes coded as amino acid sequences. These different analyses find strong support for 

grouping the insects with the other hexapod taxa, and grouping these hexapods with the 

branchiopod crustaceans. Finally I ran a series of hypothesis tests using Bayes factors
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which illustrate that a grouping of the hexapods with the branchiopods receives very 

strong support over almost all other placements of the hexapods in the Pancrustacea.

3.2 Introduction

As we have seen, the recognition of a crustacean origin for the insects has 

revolutionised our understanding of insect bodyplan evolution. It has opened up a 

number of questions, perhaps the biggest being how the insect bodyplan fits into the 

diversity of crustacean bodyplans that were introduced in chapter 1. Resolving this 

issue will not only help clarify what transitions took place during the evolution of the 

insect bodyplan, but will also provide a framework within which to infer the 

developmental changes that took place during these character transitions. However, as 

will now be seen, resolving pancrustacean phylogeny and the position of the insects has 

been problematic. This is the issue that I address in this chapter.

3.2.1 Different hypotheses for pancrustacean phylogeny

In recent years, numerous molecular phylogenetic analyses have been published, with a 

broad enough sample of crustacean taxa to allow a detailed placement of the insects 

within the Pancrustacea. Of particular importance have been analyses based on three 

different datasets: 1. the three nuclear protein coding genes elongation factor-la (EF- 

la ) , RNA polymerase II (PolII) and elongation factor-2 (EF-2) (Regier and Shultz, 

2001, Regier, et al., 2005), 2. complete nuclear ribosomal RNAs 18S and 28S (Mallatt 

and Giribet, 2006, Mallatt, et al., 2004), and 3. the mitochondrial protein coding genes 

(for example Carapelli, et al., 2007, Cook, et al., 2005, Hassanin, 2006, Hassanin, et al., 

2005, Lavrov, et al., 2004, Nardi, et al., 2003). However, rather than clarifying the 

position of the insects, there has been a lack of consensus between these analyses. For a 

summary see figure 3.1.
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A - Nuclear protein coding genes EF-1a, 
Polll and EF-2 based on Regier et al. (2005)

B - Nuclear ribosomal RNAs 18S and 
28S based on Mallatt and Giribet (2006)
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Figure 3.1. Hypotheses for the phylogeny of the Pancrustacea favoured by analyses of different 
datasets. Schematics showing the relationships between the major pancrustacean taxa favoured by 
(A) nuclear protein coding genes (EF-la, Pol II and EF-2) as seen in the analyses of Regier et al. 
(2005) (based on the maximum likelihood analysis of amino acid sequences shown in their figure 1) 
and (B) nuclear ribosomal RNAs (complete 18S and 28S) as seen in the analyses of Mallatt and 
Giribet (2006) (based on the maximum likelihood analysis shown in their figure 1). The similar 
topologies supported by these analyses are not recovered by the analyses of (C) mitochondrial protein 
coding genes, as seen in Cook et al. (2005) (based on the Bayesian analysis of an amino acid dataset 
shown in their figure 4). Pancrustacean phylogeny has also been inferred from (D) neurobiology 
largely based on brain anatomy, as seen in Fanenbruck et al. (2004) (based on their figure 4). Where 
applicable (A, B, C), nodes that the authors claim to be supported by non-parametric bootstrapping are 
indicated with black half circles. For a more detailed treatment of the phylogenetic hypotheses for the 
Pancrustacea recovered by different datasets and the support for the different groupings, see section 
3.2.1.

The most broadly sampled analyses based on the nuclear rRNAs (Mallatt and Giribet, 

2006) and the nuclear protein coding genes (Regier, et al., 2005) find largely the same 

topology for the Pancrustacea (see figure 3.1 A and B). The Bayesian and likelihood 

analyses of combined 18S and 28S rRNAs and Bayesian, likelihood and parsimony 

analyses of concatenated sequences for the three nuclear protein coding genes support 

grouping the insects with the other hexapod taxa (the collembolans and diplurans).
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They support a closer relationship for these hexapods to the branchiopods than to the 

malacostracans, which themselves group with the cirripedes. Also, both analyses place 

the ostracods at the base of the Pancrustacea, although with weak support.

There are some differences in particular relating to the position of the copepods relative 

to the hexapods. The different methods of analysis of the nuclear protein coding genes 

all support grouping the copepods with the malacostracans and cirripedes, while the 

hexapods form an unresolved group with the branchiopods and the two enigmatic taxa: 

the remipedes and cephalocarids (these two taxa were not represented in the rRNA 

analyses). In contrast, the Bayesian and likelihood analyses of the rRNAs support a 

placement of the copepods as the sister taxon to the hexapods. However, Mallatt and 

Giribet (2006) question this position for the copepods. Their parametric bootstrap 

analyses could not reject a hexapod-branchiopod sister-grouping and these tests grouped 

the copepods with the malacostracans and cirripedes in the best alternative tree.

The topologies supported by these nuclear gene analyses are not recovered by the 

analyses based on mitochondrial genes (as illustrated in figure 3.1 C). Bayesian and 

likelihood analyses of nucleotide and amino acid sequences of mitochondrial protein 

coding genes (including analyses with a model of amino acid substitution based on 

pancrustacean mitochondrial genomes (Carapelli, et al., 2007)) do not recover a 

monophyletic hexapod group; the insects group with the malacostracans and 

branchiopods, to the exclusion of the collembolans (Carapelli, et al, 2007, Cook, et al., 

2005, Lavrov, et al., 2004, Nardi, et al., 2003). The insects tend to be recovered as the 

sister-group to a malacostracan-branchiopod clade, although some analyses place them 

as the sister-group to the malacostracans (Carapelli, et al., 2007, Nardi, et al., 2003). 

The maxillopod crustaceans are often recovered as a clade, sometimes as the sister- 

group to the collembolans (Cook, et al., 2005, Lavrov, et al., 2004), whilst the remipede 

and cephalocarid are generally unstable leading to their exclusion from some analyses 

(Cook, et al., 2005). However, whilst the relationships supported by mitochondrial 

genes tend to receive strong support from Bayesian posterior probabilities, they receive 

poor bootstrap support and Cook et al. (2005) were unable to reject alternative 

hypotheses, most notably for hexapod monophyly.
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Phytogenies based on mitochondrial genes have often recovered unexpected results and 

their use in phylogenetics has been questioned (Curole and Kocher, 1999). Recently, 

attempts have been made to address some of the biases in mitochondrial genomes which 

could be problematic for phylogenetic reconstruction. In particular, Hassanin et al. 

(2005) demonstrate that mitochondrial genomes have a strand asymmetry in their 

nucleotide composition (with one strand bias towards A and C, the other towards T and 

G), leading to an asymmetric mutational constraint. When either individual genes or 

the control region are reversed in their orientation, the mutational constraint reverses, 

changing the frequency of different mutation types within a gene. This leads to long- 

branch attraction artifacts between the taxa with the reversed mutational constraints. 

Hassanin et al. (2005) show that the removal of taxa with reversed mutational 

constraints, or recoding the neutral or quasineutral mutations (their “Neutral Transitions 

Excluded” model) addresses these long-branch attraction artefacts. They also recover a 

monophyletic hexapod group in some of their analyses. However, this grouping is not 

recovered in the taxonomically broader analysis of Hassanin (2006) which also 

addresses the problems of strand asymmetry, and there is no specific support for the 

close relationship between the hexapods and branchiopods which is supported by the 

nuclear analyses. The relationships between the different pancrustacean groups tend to 

resemble the previous mitochondrial analyses, again with tow bootstrap support.

Nuclear genes have not been subjected to the criticism that mitochondrial genes have 

been. However, it has been difficult to find any convincing support from other sources 

for the close relationship between the hexapods and branchiopods supported by the two 

nuclear datasets. The other major source of evidence for pancrustacean phytogeny has 

been from neurobiology, and in particular from brain anatomy and the structure of the 

optic lobes. Phylogenetic reconstructions based on these data have supported neither 

the nuclear nor the mitochondrial based phytogenies (figure 3.1 D), instead supporting a 

grouping of the hexapods with the malacostracans and the remipedes, to the exclusion 

of branchiopods and maxillopod taxa -  collectively referred to as the “Entomostraca” 

(Fanenbruck, et al., 2004, Harzsch, 2002, Sinakevitch, et al., 2003). It is, therefore, 

currently uncertain where the insects fall within the Pancrustacea.
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3.2.2 Different approaches to multigene analysis

Recently, many phylogenetic problems such have been tackled by combining the data 

from the various different analyses into a single large analysis. However, there has 

been a degree of controversy as to how best to combine the different datasets. Two 

main approaches have been advocated: “supermatrix” and “supertree” (Bininda- 

Emonds, et al., 2003, Gatesy, et al., 2002). Under the supermatrix approach the 

primary source data (for example sequences or morphological characters) are combined 

into a single matrix and analysed simultaneously. In contrast, under the supertree 

approach the topologies supported by different datasets are encoded into a matrix and 

used to generate a tree. There has been a degree of controversy as to which mode of 

analysis is more appropriate.

One of the main criticisms the supertree approach has received is that primary 

characters are duplicated amongst the source trees (Gatesy, et al., 2002). Also, there 

has been criticism for the inclusion of poor quality source trees, for example by poorly 

justified trees or trees with a priori phylogenetic constraints. It has been argued that 

these factors result in trees which can be “imprecise summaries of previous work” 

(Gatesy, et al., 2002). In contrast, the supermatrix approach has been criticised for 

discarding useful sources of phylogenetic data (Bininda-Emonds, et al., 2003). 

Phylogenetic hypotheses which are not based on character data cannot be coded into a 

matrix and their emission represents a loss of phylogenetic information. Also, 

supermatrices can be computationally more complex to analyse than supertrees, 

especially when they include different models for data from different sources (see 

section 3.2.3).

Bininda-Emonds et al. (2003) argue that both supermatrix and supertree approaches are 

useful summaries of their respective source data. Depending on the choice of tree 

weighting and the inclusion of source trees, supertrees can be precise summaries of 

previous work. On the other hand, the computational complexity associated with the 

supermatrix approach is being reduced. The advent of Bayesian phylogenetics has 

made the analysis of large datasets more tractable (Huelsenbeck, et al., 2001). I take a
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supermatrix approach to address the question of pancrustacean phylogeny and the 

position of the insects.

I have compiled the different datasets previously used to address arthropod phylogeny 

to produce the largest multigene supermatrix dataset yet used for a Bayesian analysis of 

the Pancrustacea. Although all the major crustacean and hexapod groups are 

represented although not every gene is represented for every taxon, Philippe et al. 

(2004) have shown that even an important amount of missing data (for example 25%) is 

only a minor problem for likelihood analyses of large datasets. Moreover, Wiens and 

Moen (2008) demonstrate that in a Bayesian framework taxa with up to 95% missing 

data can be accurately placed provided the overall number of characters is large. 

However, whilst phylogenetic analyses can cope with missing data, where possible I 

have added new sequences to fill important gaps in the previous datasets. However, as I 

will now discuss, there are a number of important factors to consider when analysing 

such multigene datasets.

3.2.3 Considerations when analysing a multigene dataset

Multigene datasets often combine genes from a range of different sources and these are 

likely to evolve under different pressures and constraints (Castoe, et al., 2004). 

Consider the different sources of data used to analyse arthropod phylogeny: 

mitochondrial genes appear to evolve at much higher rates (Curole and Kocher, 1999) 

and have different nucleotide compositions to nuclear genes which can affect 

phylogenetic analyses (Hassanin, et al., 2005). Similarly, protein coding genes appear 

to evolve under different constraints compared to rRNAs. For protein coding genes, 

substitutions are under different constraints at different codon positions (Bofkin and 

Goldman, 2007). For rRNAs, substitutions are constrained by base pairing in paired 

“stem” regions but not in unpaired “loop” regions (Telford, et al., 2005). Therefore, it 

is unlikely that one model can account for the heterogeneities in such a multigene 

dataset.
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A common way of dealing with these heterogeneities has been to group sites evolving 

under similar pressures into predefined partitions (Castoe, et al., 2004). The different 

partitions are free to evolve under different models. For some types of data there is 

strong support for particular partitioning strategies and models of analysis. For 

example, when analysing rRNA sequences there is evidence that sites belonging to stem 

and loop regions should be placed into separate partitions (Telford, et al., 2005), and 

stem sites should be modelled with a doublet model to account for the constraints of 

base pairing (Schoniger and von Haeseler, 1994).

However, the most appropriate partitioning strategy is not always clear. For example, 

there is little consensus as to how to model the heterogeneities between codon positions. 

Some authors advocate removing the third codon position as the high rate of 

substitution at this position means that it is often saturated whilst others advocate 

placing the different codon positions in different partitions (for example Brandley, et 

al., 2005, Regier and Shultz, 2001). It is also unclear how best to allocate models of 

nucleotide substitution to different partitions (Nylander, et al., 2004). Incorrect 

modelling of a dataset can lead to problems associated with both overly simple models 

(underparameterisation) and overly complex models (overparameterisation) (Lemmon 

and Moriarty, 2004).

Fortunately, a number of different decision criteria can be used to select the most 

appropriate modelling strategy for a particular dataset, such as the Bayes factors and the 

Akaike information criterion (Posada, 2003, Posada and Buckley, 2004). Also, the 

phylogenetic signal in a set of aligned sequences can be analysed, which can indicate 

whether parts of a dataset, such as the third codon position, should be removed: 

likelihood-mapping (Strimmer and vonHaeseler, 1997) or saturation plots (as in 

Negrisolo, et al., 2004) can be used to investigate the level of phylogenetic signal 

within a dataset, and factors such as compositional heterogeneity, which may bias 

phylogenetic reconstruction (Hassanin, et al., 2005) can be examined.
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3.2.4 Problems with convergence

There are also potential problems relating to running Bayesian analyses on large 

(multitaxon) datasets. One particular problem relates to the convergence of the Markov 

chain Monte Carlo (MCMC) on the posterior distribution. In theory, an MCMC will 

eventually converge on the posterior probability distribution, but in practice, there can 

be various difficulties (Beiko, et al., 2006, Huelsenbeck, et al., 2002). For example, an 

MCMC can get stuck in one region of parameter space before reaching the posterior 

distribution; the chain oscillates around what appears to be a stable likelihood value 

before starting to climb to higher likelihood values. Also, there can be problems with 

the MCMC mixing through the posterior probability distribution. The chain can get 

trapped on a single mode of a multimodal distribution and therefore not sample the 

entire distribution. For datasets with over 30 taxa, multimodality has been shown to be 

a problem (Beiko, et al., 2006). There are various criteria for judging when the MCMC 

has converged on the posterior distribution, such as graphically inspecting log 

likelihood values or comparing the tree topologies sampled from the posterior 

distribution. However, it is often said that whilst convergence is easy to reject it is 

“impossible” to accept (Beiko, et al., 2006).

I present an analysis of pancrustacean phylogeny, taking these various considerations 

into account. I run a number of analyses examining which is the most suitable way to 

model the data. First I investigate the effect of different treatments of the codon 

positions. I analyse the signal at each position to assess whether there is any a priori 

basis for favouring a particular treatment and I run a number of analyses under different 

partitioning strategies, using a number of decision criteria to select the most suitable 

model for the data. I then investigate the effect of analysing the data under different 

models of nucleotide substitution, again using different decision criteria to select the 

most appropriate modelling strategies. I also investigate the effect of analysing the data 

coded as an amino acid sequence. For all analyses, I examine whether the MCMC has 

converged on the posterior distribution. I then specifically address the question of the 

position of the insects within the Pancrustacea. Using the most suitable modelling 

strategy for the data, I use Bayes factors to carry out a set of hypothesis tests. I 

investigate whether the grouping of the hexapods with the branchiopod crustaceans that
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is supported by the different analyses I have run, is favoured over alternative 

placements of the hexapods in the Pancrustacea.

3.3 Materials and Methods

3.3.1 Compiling a multigene dataset for analysing pancrustacean phylogeny

A multigene dataset for analysing pancrustacean phylogeny was compiled as described 

in section 2.2.1. Arthropod sequences for a range of genes were downloaded from 

GenBank and organised into monophyletic groups representing a diversity of crustacean 

taxa (section 2.2.2). Genes were sequenced to fill in gaps in the dataset (section 2.2.3) 

and the sequences of the different genes were concatenated into multigene sequences 

representing the different crustacean groups (section 2.2.4).

3.3.2 Gene by gene analysis of the dataset

The dataset was analysed to estimate the proportion of invariant sites and the nucleotide 

frequency for each gene. In PAUP* (Swofford, 2002), a neighbour joining tree was 

generated for each gene using a GTR model for the distance option with default 

settings. Using each tree, likelihood scores were then evaluated for that gene. The 

likelihood settings for the analyses were set to estimate the rate matrix for a GTR, the 

nucleotide frequencies, the proportion of invariant sites and the shape parameter for a 

four category gamma distribution.
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3.3.3 Analysis of the phylogenetic signal at the different codon positions

The phylogenetic signal at the three different codon positions of the nuclear and 

mitochondrial partitions was analysed using likelihood-mapping, saturation plots and 

nucleotide composition plots as described in section 2.2.5.

3.3.4 Phylogenetic analysis and convergence on the posterior distribution

Bayesian phylogenetic analyses were run as described in section 2.2.6. The criteria 

used for terminating the analysis do not guarantee that the MCMC will have converged 

on the posterior distribution. To confirm that the topologies sampled by the MCMC 

were repeatable a second independent run was carried out for each analysis. The second 

MCMC was run for the same number of generations as the first, and for longer if it did 

not appear to have reached a plateau in that time. The extent of topological 

convergence between the two runs was assessed by calculating the split frequencies (see 

section 2.2.7).

It is important to point out that non-convergence on a topology could result from one 

MCMC getting stuck at a lower likelihood distribution. Here the run with the higher 

likelihood could be an accurate reflection of the posterior distribution. However, 

caution should be exercised when interpreting these cases; in the absence of topological 

convergence, the topology seen in the higher likelihood run cannot be guaranteed to be 

representative of the posterior distribution. Non-convergence could also result from 

incomplete sampling of the posterior distribution by one or both MCMCs. In this 

situation, both runs would have reached a plateau at the same distribution of log 

likelihoods, but it is possible that neither run is an accurate reflection of the posterior 

distribution. To distinguish between these two situations, the distributions of log 

likelihoods were compared graphically (section 2.2.7).

As a rule, discussions of topology and comparisons between models are restricted to the 

run with the higher log harmonic mean of the likelihoods (output by the MrBayes sump
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command) even if both runs showed good topological convergence and sampled similar 

log likelihood distributions.

3.3.5 Selecting the most appropriate model

Bayes factors were used to select the most appropriate model for the data (section

2.2.8). Several studies have found that Bayes factors support parameter rich models. 

However, it is not clear whether this is truly because the data are very heterogeneous 

and the additional parameters are required to model it adequately, or whether Bayes 

factors tend to support the addition of parameters even when it is not necessary (Brown 

and Lemmon, 2007). Therefore, two additional selection criteria were used: the Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC). These 

criteria penalise the addition of parameters to a model. The AIC and BIC should be 

applied in a likelihood framework; therefore, estimates of the criteria were used derived 

from the Bayesian analyses (see section 2.2.9).

3.3.6 Tests of phylogenetic hypotheses

Bayes factors were used to carry out phylogenetic hypothesis tests. Bayes factors were 

calculated as in section 2.2.8; the different models were Bayesian analyses, constrained 

to different tree topologies. In certain cases (see section 3.4.6) the marginal likelihood 

was also calculated by an alternative method, known as smoothing (Suchard, et al., 

2005). This is implemented in Tracer vl.4 (Rambaut and Drummond, 2007). The 

Bayes factor was calculated as in section 2.2.8, with the harmonic mean replaced by the 

smoothed marginal likelihood estimate.

For some applications (see section 3.4.6) it was also useful to know how variable the 

marginal likelihood estimate was, as this would affect the size of the Bayes factor. 95% 

confidence intervals were calculated for the marginal likelihood estimates. The 

marginal likelihood is estimated in Tracer vl.4 (either as a harmonic mean or a 

smoothed estimate). This calculates the standard error from a bootstrap analysis (using
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1000 replicates). The 95% confidence interval was calculated as /±1.96SE where / is 

the marginal likelihood estimate and SE is the standard error.

3.4 Results

3.4.1 The dataset

To address pancrustacean phylogeny I compiled a dataset representing 41 taxa from 

across the arthropods. The dataset consists of 16370 nucleotide sites from three 

different sources: rRNAs (18S and 28S), nuclear protein coding genes (EF-la, PolII, 

EF-2 and histone H3) and mitochondrial protein coding genes. As there is evidence that 

these different types of data evolve under different constraints (see section 3.2.3) they 

should be treated as different partitions in a phylogenetic analysis. Inspecting the 

nucleotide frequencies of the different genes by eye (table 3.1) supports a difference in 

evolutionary process between the different sources; the nuclear genes generally have all 

nucleotides at a frequency of about 25%, whilst mitochondrial genes have elevated 

levels of A and T. Also, the mitochondrial protein coding genes tend to have a lower 

proportion of invariant sites than the nuclear protein coding genes, suggesting a faster 

rate of substitution (the very low proportion of invariant sites for NAD2 appears to be 

the result of a divergent sequence for Lepeophtheirus, as indicated in table 3.1). The 

proportion of invariant sites for 18S is very low compared to the other nuclear genes 

(10.30% compared to over 30%). However, this seems to be largely due to a divergent 

sequence for Speleonectes. This taxon proved very difficult to align with the other 18S 

sequences, and when it is removed the estimated proportion of invariant sites increases 

to 20.14% (see table 3.1).

Importantly, all the major crustacean groups, and a range of hexapod taxa, including the 

entognathous hexapods are represented in the dataset. There are newly sequenced 28S 

rRNAs for four previously underrepresented groups: the Collembola



Table 3.1. Core data for the different genes comprising the multigene dataset. The gene length is given for each gene, as are the proportion of invariant sites and the 
frequency of each nucleotide as described in section 3.3.2. The other parameter values from these analyses (nucleotide substitution rates and gamma distribution shape 
paramter) are also given.

Nuclear
rRNA Protein

Mitochondrial protein

18S 28S EF-la PolII EF-2 H3 ATP6 COX1 COX 2 COX3 CYTB NADI NAD2 NAD3 NAD4 NAD4L NAD5 NAD6
Gene length 

(nucleotide sites) 1510 2311 1131 2124 2064 324 345 1476 591 759 1065 618 282 189 711 45 765 60

Invariant sites 
(%)

10.30*
(20.14) 34.77 35.25 35.38 39.22 50.34 9.24 29.00 10.69 17.02 21.08 20.33 1.00*

(10.03) 22.32 13.72 18.44 22.91 15.05

Nucleotide 
frequency (%)

A 24.96 25.96 28.26 27.99 28.17 23.82 34.26 36.59 36.52 35.33 34.45 30.70 36.22 27.70 28.50 28.48 31.18 24.86
C 23.52 22.78 23.33 22.52 22.58 29.53 14.59 15.36 16.51 15.79 16.68 9.67 19.40 15.54 14.50 12.80 12.72 12.67
G 29.34 28.79 22.51 22.84 22.03 23.42 12.34 11.25 11.27 12.21 10.70 16.98 10.86 18.78 15.76 23.13 15.48 19.18
T 22.18 22.46 25.90 26.65 27.22 23.23 38.81 36.80 35.70 36.68 38.18 42.65 33.52 37.98 41.25 35.59 40.62 43.30

Substitution rate
A<->C 1.167 1.128 1.718 2.346 2.125 1.941 1.732 0.537 0.726 1.092 1.158 0.248 0.103 10.854 0.086 0.001 0.246 8.1E+4
A<->G 2.821 2.639 3.426 4.225 4.210 5.746 4.139 4.746 4.708 4.720 4.064 6.585 2.310 17.090 4.476 7.3E+5 4.893 1.2E+5
A<->T 1.097 1.217 2.160 2.064 2.329 4.518 0.906 0.628 0.888 1.510 0.552 1.112 0.380 9.885 1.183 2.9E+5 1.257 3.8E+4
C<->G 0.592 0.802 2.068 1.612 2.449 2.233 6.519 3.950 3.167 3.882 3.310 5.635 2.022 8.008 3.113 9.1E+5 4.203 4.7E+4
C<->T 4.787 5.227 6.148 7.739 7.814 7.330 10.950 7.035 6.151 9.357 7.705 6.164 1.406 44.816 2.851 8.0E+5 6.063 1.7E+5
G<->T 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Gamma 
distribution shape 0.510 0.575 0.935 0.844 1.028 1.164 0.375 0.490 0.463 0.525 0.565 0.625 0.383 0.932 0.721 0.845 0.656 1.283

parameter
* For 18S and NAD2 the proportions of invariant 
(Speleonectes for 18S and Lepeophtheirus for NAD2).

sites were very low. Inspection of the alignments for these genes indicated that they included very divergent taxa 
The proportions of invariant sites with these taxa removed are indicated in parentheses.

ooUl
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Table 3.2. Summary of taxa used in the multigene dataset and the make up of the sequences. Taxa 
are organised into the major pancrustacean groupings, and the length of sequence in total and in each of 
the different data types (nuclear rRNAs, nuclear protein encoding genes and mitochondrial protein
encoding genes) is given. The total length of sequence for each type of data is also given, as is the 
average length of the sequence across all taxa. Complete or near complete sequences are shown in bold. 
Sequences including new data are in italics.

Taxa
Number of sites

Nuclear Mitochondrial Total
sequence % completerRNA Protein Protein

Insec ta
Acrididae 2616 1456 6893 10965 67.0
Archaeognatha 2642 5567 6906 15115 92.3
Blattaria 3820 5494 6892 16206 99.0
Drosophila 3782 5643 6906 16331 99.8
Hexagenia 2551 5306 0 7857 48.0
Lepismatidae 3821 5547 6906 16274 99.4

Diplura
Campodeoidea 2451 5547 0 7998 48.9
Japygoidea 1860 4637 6892 13389 81.8

Collembola
Entomobryomorpha 3669 5467 0 9136 55.8
Podura 3739 4783 6906 15427 94.2

Branchiopoda
Artemia 3790 5129 6796 15714 96.0
Daphniidae 3772 1111 6906 11789 72.0
Limnadiidae 2626 5496 0 8122 49.6
Triops 3817 5528 6906 16251 99.3

Malacostraca
Leptostraca 2408 5487 0 7895 48.2
Oniscidea 3707 5279 0 8986 54.9
Reptantia 3815 5508 6871 16194 98.9
Stomatopoda 3820 5509 6885 16214 99.0

Cirripedia
Balanidae 3480 5419 6906 15805 96.5
Lepas 3634 5231 0 8865 54.2
Pollicipes 2395 322 6906 9622 58.8
Sacculinidae 2476 5377 0 7853 48.0

Copepoda
Calanoida
Cyclopidae
Lepeophtheirus
Tigriopus

Branchiura 
Argulus 

Podocopa ("Ostracoda") 
Cyprididae

Myodocopa ("Ostracoda") 
Cypridinidae 

Cephalocarida 
Hutchinsoniella

3714 5220 0
3789 5222 0
1506 0 6634
3475 322 5718

3740 5231 6878

3778 5189 0

2982 5231 6630

1673 5305 6878

8934
9011
8140
9515

15849

8967

14843

13856

54.6
55.0
49.7
58.1

96.8

54.8 

90.7 

84.6
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(Table 3.2 continued)
Number of sites

Total
sequenceTaxa Nuclear Mitochondrial % complete

rRNA Protein Protein
Remipedia

Speleonectes 1577 4643 6871 13092 80.0
Outgroup: Myriapoda

Lithobius 3513 5546 6871 15931 97.3
Pauropodidae 1720 5547 0 7267 44.4
Scutigerellidae 3358 5128 0 8486 51.8
Spirostreptida 3774 5212 6906 15892 97.1

Outgroup: Chelicerata
Limulus 3820 5323 6885 16029 97.9
Mastigoproctus 1714 5206 3453 10373 63.4
Mygalomorphae 3819 2663 6827 13310 81.3
Phalangida 1730 5509 0 7239 44.2
Pyncnogonida 3802 5547 3416 12765 78.0
Scorpiones 3772 2882 6603 13257 81.0

Total number of sites 3821 5643 6906 16370 100.0

Mean number of sites per taxon 3121 4629 4318 12067 73.7
% complete 81.7 82.0 62.5 73.7

(Entomobryomorpha), the Cirripeida (Balanidae and Lepas), the Copepoda (Calanoida) 

and the Malacostraca (Oniscidae). There are still gaps in the dataset, with not every 

taxon having sequence data for every gene. However, the dataset was constructed so 

that across all the broadly recognised higher groupings (such as the major crustacean 

subgroups), every gene was present in at least one taxon. This is summarised in table 

3.2.

3.42 Signal at different codon positions

Before analysing the data under different treatments of codon position, the signal at 

each codon position was investigated to see whether there was any a priori reason to 

favour a particular treatment for the different codon positions.

Phylogenetic content o f signal

Likelihood-mapping showed that for the three codon positions in each of the nuclear 

and mitochondrial datasets there were comparable levels of signal (figure 3.2). All
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Figure 3.2. Likelihood mapping plots for each codon position of the nuclear and mitochondrial 
partitions. (A-C) nuclear partitions, (D-F) mitochondrial partitions, (A, D) first codon position, (B, 
E) second codon position, (C, F) third codon position. The percentages give the proportion of points 
falling in the different regions. For both the nuclear and mitochondrial partitions all codon positions 
show a majority of fully resolved quartets (points falling in the comers of the plots) and there is no 
obvious difference in signal between the different codon positions. For the nuclear partition all three 
codon positions (A-C) have approximately 90% fully resolved quartets and for the mitochondrial 
partition all three codon positions (D-F) have 80-90% fully resolved quartets.
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Figure 3.3. Saturation plots for each codon position of the nuclear and mitochondrial 
partitions. (A-C) nuclear partitions, (D-F) mitochondrial partitions, (A, D) first codon position, (B, 
E) second codon position, (C, F) third codon position. Taxon pairs belonging to morphologically 
well-supported groups (Insecta, Diplura, Collembola, Branchiopoda, Malacostraca, Cirripedia, 
Copepoda, Myriapoda and Chelicerata) are shown in red. All plots show a linear relationship between 
the GTR + G distance and the uncorrected (“p”) distance, indicating the presence of signal in the data. 
For the two third codon positions (C, F), the plots level off at an uncorrected (“p”) distance of 0.75 
indicating a degree of signal saturation. Additionally, for both nuclear and mitochondrial partitions, 
the distance measures for the second codon positions (B, E) are shorter than for the first codon 
positions (A, D) suggesting heterogeneity in the evolutionary process between the codon positions.
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Figure 3.4. Composition plots for each codon position of the nuclear and mitochondrial 
partitions. (A-C) nuclear partitions, (D-F) mitochondrial partitions, (A, D) first codon position, (B, 
E) second codon position, (C, F) third codon position. For both nuclear and mitochondrial partitions, 
composition is most homogeneous at the second codon position (B, E) as seen in the relatively flat 
plots of nucleotide frequency across taxa. In contrast, composition is most heterogeneous at the third 
codon position (C, F) as seen in the large variability in the frequency of each nucleotide across taxa. 
Taxa are in alphabetical order. For the nuclear partition Lepeophtheirus was omitted, as there was no 
sequence data in the partition. For the mitochondrial partition, the following taxa were omitted as 
there was no sequence data in the partition: Calanoida, Campodeoidea, Cyclopidae, Cyprididae, 
Entomobryomorpha, Hexagenia, Lepas, Leptostraca, Limnadiidae, Oniscidea, Pauropodidae, 
Phalangida, Sacculinidae, Scutigerellidae.
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three nuclear codon positions had over 90% fully resolved quartets, and all three 

mitochondrial codon positions had between 80% and 90% fully resolved quartets. This 

was largely mirrored in the saturation plots (figure 3.3). These plots show that for the 

first and second codon positions of both the nuclear and mitochondrial partitions, there 

was no saturation of signal. As expected, there appears to be some heterogeneity 

between these codon positions, as for both nuclear and mitochondrial genes, the 

distances are wider for the first codon positions than for the second codon positions. 

For the third codon positions, in both the nuclear and mitochondrial partitions, a large 

amount of the data fell on a slope indicating that there was signal in the data. However, 

there was a degree of saturation, as both plots levelled out at an uncorrected (“p”) 

distance of 0.75. Therefore, whilst likelihood-mapping gives no basis for removing the 

third codon positions, saturation plots do give some support for their removal.

Nucleotide composition

Plots of nucleotide composition (figure 3.4) show that for both the nuclear and 

mitochondrial partitions, at the second codon positions nucleotide frequencies are 

largely homogeneous across taxa. For both nuclear and mitochondrial datasets, 

composition appears less conserved at the first codon positions, with the mitochondrial 

first position seemingly more heterogeneous than the nuclear. For both types of data, 

the third positions appear very compositionally heterogeneous. This supports the 

removal of the third codon positions, as compositional heterogeneity could potentially 

be problematic for phylogenetic reconstruction. These results also suggest that there are 

compositional differences between the codon positions.

3.4.3 Comparison of different modelling strategies

Comparison o f the different codon partitioning strategies

The above analyses of signal at the different codon positions give some support to 

removing the third codon positions. However, as this was not unanimously supported 

by the different analyses, I ran Bayesian phylogenetic analyses under different



Table 3.3. Summary of the models used in the different analyses of pancrustacean phylogeny. The partitions used and the substitution models 
used in each partition are indicated.

rRNA Nuclear protein encoding Mitochondrial protein encoding
Model name Stem Loop Codon Codon Codon Codon Codon Codon

position 1 position 2 position 3 position 1 position 2 position 3
Comparisons of partitioning models

Complete dataset

C.-GTR+G GTR+G with 
doublet model GTR+G GTR+G GTR+G

c 2-g tr + g GTR+G with 
doublet model GTR+G GTR+G GTR+G GTR+G GTR+G

Cr GTR+G GTR+G with 
doublet model GTR+G GTR+G GTR+G GTR+G GTR+G GTR+G GTR+G

Third codon position removed

R.-GTR+G GTR+G with 
doublet model GTR+G GTR+G - GTR+G -

r 2-g tr + g GTR+G with 
doublet model GTR+G GTR+G GTR+G - GTR+G GTR+G -

Comparisons of substitution models

r2-gtr
GTR with doublet 

model GTR GTR GTR - GTR GTR -

r 2-hky+g HKY+G with 
doublet model HKY+G HKY+G HKY+G - HKY+G HKY+G -

r2-hky
HKY with doublet 

model HKY HKY HKY - HKY HKY -

Amino acid encoded proteins

Amino acids GTR+G with 
doublet model GTR+G Reversible jump model Reversible jump model
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partitioning models of codon position with and without the third positions (table 3.3). 

The complete dataset (including the third positions) was analysed under three different 

partitioning models (Cl5 C2 and C3 in table 3.4). In addition, a reduced dataset with the 

third positions excluded was analysed under two different partitioning models (Rj and 

R2 in table 3.4). Substitution rates in each partition were modelled using a GTR with a 

four category gamma distribution to avoid the risks of underparameterisation. A 

proportion of invariable sites was not included in the model as it has been argued that 

the gamma distribution is sufficiently general to allow for very low rates at some sites 

(Yang, 1996).

Table 3.4. Alternative partitioning strategies for dealing with heterogeneities between the different 
codon positions. Partitioning strategies are given for the complete dataset and a reduced dataset with the 
third codon position removed.

Partitioning name Partitions Number of 
partitions

Complete dataset

c ,
rRNA stem, rRNA loop, nuclear protein all codon positions, 
mitochondrial protein all codon positions 4

C2

rRNA stem, rRNA loop, nuclear protein first and second codon 
positions, nuclear protein third codon positions, mitochondrial 
protein first and second codon positions, mitochondrial protein 
third codon positions

6

C3

rRNA stem, rRNA loop, nuclear protein first codon positions, 
nuclear protein second codon positions, nuclear protein third 
codon positions, mitochondrial protein first codon positions, 
mitochondrial protein second codon positions, mitochondrial 
protein third codon positions

8

Third codon position 
removed

R.
rRNA stem, rRNA loop, nuclear protein all codon positions, 
mitochondrial protein all codon positions 4

r 2

rRNA stem, rRNA loop, nuclear protein first codon positions, 
nuclear protein second codon positions, mitochondrial protein 
first codon positions, mitochondrial protein second codon 
positions

6

The fit of the different modelling strategies to the data for the complete and reduced 

datasets were compared using Bayes factors. Comparison of the three different 

partitioning strategies for the complete dataset showed that increasing the partitioning 

of the dataset increases the fit of the model to the data (see table 3.5). Increasing
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Table 3.5. Bayes factors and estimates of AIC and BIC for comparisons between 
different modelling strategies. Model comparisons are given as Model/Model,. Model 
comparisons are organised by whether they compared between different partitioning models of 
the codon positions or between different models of nucleotide substitution.

Models 21n(BF21) A(AIC) A(BIC)
Comparisons of partitioning models

Complete dataset
Cr GTR+G / C2-GTR+G 3064.51 3020.51 2851.04
C3-GTR+G / Cr GTR+G 10990.30 10902.30 10563.36
C2-GTR+G / Cr  GTR+G 7925.79 7881.79 7712.32

Third codon position removed
R2-GTR+G / R,-GTR+G 2748.25 2704.25 2541.28

Comparisons of substitution models
R2-GTR+G / r 2-h k y + g 1948.45 1888.45 1666.21

r 2 g t r + g  / R2-GTR 33877.97 33865.97 33821.52
r 2-g tr + g  / r 2-h k y 40972.61 40900.61 40633.92
r 2-h k y+ g  / R2-GTR 31929.52 31977.52 32155.31
r 2-h k y+ g  / r 2-h k y 39024.16 39012.16 38967.71

r 2-gtr  / r2-h k y 7094.64 7034.64 6812.40

partitioning also improved the fit of the model to the data for the reduced dataset. All 

Bayes factors were orders of magnitude greater than the cutoff value of 10. Estimates 

of the AIC and BIC also supported increasing the partitioning of the dataset (see table 

3.5). As with the Bayes factors, all the differences in AIC and BIC were orders of 

magnitude above their cutoff values of 10. This supports the use of the fully partitioned 

models (C3 and R2).

As there were potential problems with the convergence of the MCMC on the posterior 

distribution, it was necessary to examine whether the two runs of each model had 

converged on the posterior distribution. For both models of the reduced dataset (Rj and 

R2) the two runs appear to have converged on the posterior distribution. For each model 

both runs sampled similar distributions of log likelihoods (figure 3.5) and the sampled 

topologies were similar as indicated by the split frequencies (table 3.6). This suggests 

that the topologies of the consensus trees are accurate reflections of the posterior 

distributions.

In contrast for all three models of the complete dataset (Cl5 C2 and C3), the alternative 

runs appear to have reached plateaus at lower distributions of log likelihoods, notably so
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Figure 3.5. Comparisons of the distributions of log likelihoods for the two runs of each modelling strategy. For each modelling strategy the arithmetic mean of 
the post bumin log likelihood values is plotted for the two runs. Bars show the range of the middle 95% of the log likelihood values. The different models are 
summarised in table 3.2. The extent of the overlap of the two distributions gives an indication of whether they have sampled the same distribution of log likelihood 
values. For the Rr GTR+G, R2-GTR+G, R2-HKY+G and Amino acids models, the two runs appear to have sampled similar distributions of log likelihoods. For the 
other models, one run appears to have sampled a lower distribution of log likelihoods than the other.
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Table 3.6. Split frequencies for the different modelling strategies. Elevated values 
(>0.05) suggesting notable differences in the topologies sample are shown in bold. Models 
are organised by whether they addressed different partitioning models of the codon 
positions, different models of nucleotide substitution or coding the protein sequences as 
amino acids.

Model name Split frequency
Comparisons of partitioning models

Complete dataset

CrGTR+G 0.005
Q-GTR+G 0.040
Cr GTR+G 0.160

Third codon position removed

Ri-GTR+G 0.006
R2-GTR+G 0.020

Comparisons of substitution models
r2-gtr 0.108

r 2-h k y + g 0.009
r 2-h k y 0.222

Amino acid encoded proteins
Amino acids 0.070

for model C3 (figure 3.5). This suggests that at least one of the runs did not converged 

on the posterior probability distribution. However, for the Cx model the split frequency 

was low, indicating that the two runs still recovered a similar topology. This suggests 

that the recovered topology may still be an accurate reflection of the posterior 

distribution. In contrast, the C2 and C3 models had elevated split frequencies, especially 

for model C3 (table 3.6). As the topologies of the preferred runs were not recovered by 

the alternative runs, they may not be reliable reflections of the posterior distributions.

The most appropriate treatment of the different codon positions therefore appears to be 

partitioning the codon positions, as for both the complete and reduced dataset the most 

partitioned models were supported by the different decision criteria used, and to remove 

the third codon position, as the runs with the third position included appeared to have 

problems converging on the posterior distribution.



97

Comparison o f models o f nucleotide substitution

All the above analyses were run modelling nucleotide substitutions in every partition 

using a GTR model with a gamma distribution to avoid the problems of 

underparameterisation. However, this is a highly parameter rich model which could 

potentially lead to problems resulting from overparameterisation (Lemmon and 

Moriarty, 2004). I therefore also ran Bayesian analyses modelling the nucleotide 

substitution rate in each partition with less parameter rich models, namely: GTR 

without a gamma distribution, HKY with a gamma distribution and HKY without a 

gamma distribution (table 3.7). All analyses were run using the reduced dataset, and the 

R2 partitioning model (table 3.3), as this treatment was favoured by the above 

comparisons.

Table 3.7. Alternative models of nucleotide substitution and the number 
of model parameters. Number of parameters are given for the model alone, 
and for the whole modelling strategy when used with the R2 partitioning 
strategy.

Substitution
model

Number of parameters in 
substitution model

Total parameters under R2 
partitioning strategy

GTR+G 7 78
GTR 6 72

HKY+G 3 48
HKY 2 42

Bayes factors comparisons of the different models of nucleotide substitution showed 

that the most parameter rich model (GTR+G) was the most appropriate model for the 

dataset (table 3.5), receiving strong support over the next best model (HKY+G). 

However, the addition of parameters alone did not improve the fit of the model to the 

data, as modelling the data with an HKY+G (48 parameters) received strong support 

over the more parameter rich GTR model (72 parameters). Modelling the data with a 

GTR in turn received strong support over the HKY model. In all cases, Bayes factors 

were orders of magnitude greater than the cutoff value of 10. Estimates of the AIC and 

BIC gave the same relative support for the different models (see table 3.5). As with the 

Bayes factors, all the differences in AIC and BIC were orders of magnitude above their 

cutoff value of 10.
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As with the GTR+G model, the two runs of the HKY+G model appear to have 

converged on the same posterior distribution. They sampled similar log likelihood 

values (figure 3.5), and they recovered very similar topologies, as indicated by low split 

frequencies (table 3.6). In contrast, for both the GTR and HKY models, the alternative 

run reached a plateau at a lower set of log likelihood values (figure 3.5) and the two 

runs sampled different sets of topologies indicated by the elevated split frequencies 

(table 3.6). None of the alternative models of nucleotide substitution appear preferable 

to the GTR+G.

Coding proteins as amino acid sequences

The dataset was also analysed with the protein coding genes recoded as amino acid 

sequences (table 3.3). The MCMC was set to select the most suitable model of amino 

acid substitution for the nuclear and mitochondrial partitions. Topological convergence 

appeared poor, reflected by elevated split frequencies (0.070; table 3.6). Surprisingly, 

the log likelihoods appeared to sample similar values (figure 3.5) suggesting that the 

two runs may have converged on the same posterior distribution but not sampled it 

adequately. Due to better convergence, the analysis of the favoured model coded as a 

nucleotide sequence appears more compelling than the analyses coded as an amino acid 

sequence.

3.4.4 Pancrustacean phylogeny

The phylogeny of the Pancrustacea supported by the favoured model of analysis {R2- 

GTR+G) is shown if figure 3.6. Despite the differences in the fit of the different models 

to the data, a number of groupings were supported across all modelling strategies. 

These groups are summarised in table 3.8. All the analyses recovered the 

morphologically well-supported pancrustacean groups. The Diplura, Collembola, 

Branchiopoda, Malacostraca, Cirripedia and Copepoda were recovered with a Bayesian 

posterior probability (BPP) of 1.00, as were the outgroup taxa (Myriapoda and 

Chelicerata). The Pancrustacea were also recovered with a BPP of 1.00. The only 

anomalous result related to the Insecta. All models recovered the group with a BPP of
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Figure 3.6. Consensus tree showing pancrustacean phylogeny analysed under the R2-GTR+G 
model. The analysis used the reduced dataset (third codon position excluded) and a GTR+G model of 
nucleotide substitution; see table 3.3. The major pancrustacean groups are marked, as are the 
outgroups. The positions of the remipede Speleonectes and the cephalocarid Hutchinsoniella within 
the hexapods are indicated with an arrowhead and an arrow respectively. All nodes receive Bayesian 
posterior probability support values of 1.00, apart from the nodes marked with black half circles 
where the support value is indicated.



Table 3.8. Support for groupings within the Pancrustacea across the different modelling strategies. Bayesian posterior probability support values are given for the 
pancrustacean groupings that are well supported across the different modelling strategies. Speleonectes and Hutchinsoniella are omitted from these groupings as there are 
reasons to believe that their positions are artefactual (see section 3.3.1). The sister-groups to these two taxa are shown below.

Complete dataset Third codon position 
removed Simpler models

Amino acids
C.-GTR+G Q-GTR+G C3-GTR+G R,-GTR+G R2-GTR+G r 2-h k y+g r 2- g t r r2-hky

Support for major pancrustacean groupings
Insecta 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00
Diplura 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Collembola 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hexapoda 1.00 0.70 1.00 1.00 0.99 1.00 1.00 - 0.62
Branchiopoda 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Malacostraca 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cirripedia 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Copepoda 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ostracoda (Cyprididae + Cypridinidae + Argulus) - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hexapoda + Branchiopoda 0.62 0.60 1.00 1.00 1.00 1.00 1.00 - 0.58
Malacostraca + Cirripedia 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Malacostraca + Cirripedia + Copepoda 1.00 0.74 1.00 1.00 1.00 1.00 1.00 - 0.84
Pancrustacea -  “Ostracoda" - 1.00 1.00 1.00 1.00 1.00 1.00 - 1.00
Pancrustacea 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Myriapoda 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Chelicerata 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Positions of Speleonectes and Hutchinsoniella
Speleonectes + Diplura 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -
Hutchinsoniella + Speleonectes + Diplura - - - 1.00 0.87 0.99 - - -
Speleonectes + Hutchinsoniella - - - - - - - - 0.62
Hutchinsoniella + Drosophila - - 1.00 - - - - 0.98 -
Hutchinsoniella + Cyprididae 1.00 - - - - - - - -
Hutchinsoniella + Copepoda - - - - - - 1.00 - -
Hutchinsoniella + Hexapoda + Branchiopoda - 0.60 - - - - - - -
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1.00, apart from the C3-GTR+G and R2-HKY models where Hutchinsoniella fell within 

the insects as the sister to Drosophila (although in both cases, this grouping received 

strong support, with a BPPs of 1.00 and 0.98 respectively).

The position o f the insects

Almost all the analyses recovered a hexapod assemblage where the Insecta, Diplura and 

Collembola grouped together to the exclusion of the various crustacean groups. Only 

the R2-HKY model failed to recover this grouping (see table 3.8). However, as was seen 

in section 3.4.3 this model showed one of the poorest fits to the data and the 

convergence diagnostics suggested that it might not have converged on the posterior 

distribution. In fact, the alternative run under the model recovered many differences in 

topology from the preferred run (see table 3.9).

Other than the R2-HKY analysis, the only exception to this hexapod monophyly is that 

the remipede Speleonectes was repeatedly recovered within this hexapod assemblage as 

the sister-group of the Diplura with strong support (table 3.8). Only in the analysis of 

the Amino acids model was this grouping not recovered. Additionally, in the favoured 

R2-GTR+G analysis Hutchinsoniella also grouped with this assemblage. This was also 

seen in the well-supported alternative models for the reduced dataset (Rr GTR+G and 

R2-HKY+G). The two best fitting analyses of complete dataset (CS-GTR+G and C2- 

GTR + G ) and the Amino acids analysis recovered alternative positions for 

Hutchinsoniella (and Speleonectes for the Amino acids analysis) (see table 3.8), but 

these runs were demonstrated in section 3.4.3 to show poor convergence. Inspection of 

the consensus tree topologies for the alternative runs shows that the topologies only 

differ from the preferred runs in the placement of Hutchinsoniella (and Speleonectes for 

the Amino acids analysis) (see table 3.9). This suggests that these modelling strategies 

had particular difficulty in placing these taxa, making their position in the preferred runs 

questionable. The positions of Speleonectes and Hutchinsoniella as successive sister- 

groups to the Diplura (recovered by the favoured R2-GTR+G analysis) appear the best 

supported.
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Table 3.9. Topological differences in the relative positions of the major pancrustacean groups 
between the preferred run and the alternative run for each model. Different groupings recovered by 
the two runs are shown and taxa whose positions varied between the two runs are in bold. Only 
differences in the overall topology are shown, not differences in Bayesian posterior probability support 
values for clades, as it is difficult to interpret differences in support values when various taxa differ in 
their placements between the runs. Models are organised by whether they addressed different partitioning 
models of the codon positions, different models of nucleotide substitution or coding the protein sequences 
as amino acids.

_________ Model name_______  Preferred run Alternative run
Comparisons of partitioning 

models

Complete dataset
C,-GTR+G

C,-GTR+G

Q-GTR+G 
Third codon position removed

R,-GTR+G
R2-GTR+G

Hutchinsoniella + Hexapoda + 
Branchiopoda 

Hutchinsoniella + Drosophila

Hutchinsoniella + Copepoda 

Hutchinsoniella + "Ostracoda"

Comparisons of substitution 
models
R2-GTR

r 2-h k y + g
r2-h k y

Speleonectes + Diplura

Hutchinsoniella + Copepoda 
Collembola + Branchiopoda 
"Ostracoda" + (Copepoda + 

Collembola)
(Malacostraca + Cirripedia) at

base of Pancrustacea

Speleonectes + "Ostracoda"

Hutchinsoniella + Drosophila 
Collembola + Copepoda 
"Ostracoda" at base of 

Pancrustacea
(Malacostraca + Cirripedia) +
(Copepoda + Hutchinsoniella)

Amino acid encoded proteins 
Amino acids (Hutchinsoniella + Speleonectes)

+ (Hexapoda + Branchiopoda)

Copepoda + (Malacostraca + 
Cirripedia)

Speleonectes + Diplura 
Hutchinsoniella + Copepoda

((“Hexapoda” + Speleonectes) + 
Branchiopoda) + (Copepoda + 

Hutchinsoniella) + (Malacostraca 
+ Cirripedia)

This hexapod group (with or without Speleonectes and/or Hutchinsoniella) was 

generally strongly supported (table 3.8), with only the analysis of the C2-GTR+G and 

Amino acids models receiving less than a BPP of 0.99. The analyses also all recovered 

the branchiopods as the sister-group of this hexapod group (with or without 

Speleonectes and/or Hutchinsoniella). This grouping was strongly supported in the 

analyses of R 2-GTR+G, R^GTR+G, R2-HKY+G, R2-GTR and CS-GTR+G models,
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although support was reduced in the analyses of the C2-GTR+G, Cr GTR+G and Amino 

acids models (BPP approximately 0.60).

Other features o f pancrustacean phylogeny

The malacostracans consistently grouped with the cirripedes (BPP of 1.00 across all 

analyses), and the copepods were recovered as the sister-group to this clade (apart from 

in the unfavoured R2-HKY analysis). This grouping was generally well supported (table 

3.8), although it received weaker support from the analysis of model C2-GTR+G where 

Hutchinsoniella also fell in the group as the sister taxon to the copepods, and in the 

analysis of the Amino acids model. All analyses recovered an assemblage of the two 

ostracod taxa with the branchiuran Argulus at the base of the Pancrustacea, with strong 

support, with the exception of the poorly favoured R2-HKY model and the Cr GTR+G 

model. The Cr GTR+G model recovered the myodocopan ostracod (taxon 

Cypridinidae) at the base of the Pancrustacea with Argulus, whilst the podocopan 

ostracod (taxon Cyprididae) grouped with Hutchinsoniella and the malcostracan- 

cimpede-copepod assemblage. However, as was seen in section 3.4.3, although the two 

runs under this modelling strategy seem to have reliably converged on the same 

topology (judging by the split frequencies), it showed the poorest fit to the data for the 

analyses of the complete dataset.

3.4J5 Hypothesis tests

The above analyses consistently recover a sister-group relationship between the 

hexapods and the branchiopods. To test how well this hypothesis was supported, Bayes 

factors were used to compared the hexapod-branchiopod grouping to other possible 

placements of the hexapods in the Pancrustacea. The different positions to which the 

hexapods were constrained are summarised in table 3.10. As well as grouping the 

hexapods with each of the major pancrustacean groupings (hypotheses Hr H4), the 

hexapods were also constrained to group with various assemblages of crustaceans that 

were repeatedly supported in the previous analyses (hypotheses H5 and Hg). Also,
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Table 3.10. Different hypotheses for the position of the hexapods. These 
hypotheses were used to constrain the hexapods to different places in the 
Pancrustacea for the Bayes factor hypothesis tests.

Hypothesis name Constraint
Null hypothesis

Ho Hexapods + Branchiopods
Alternative hypotheses

H, Hexapods + Malacostracans
h 2 Hexapods + Cirripedes
h 3 Hexapods + Copepods
h 4 Hexapods + "Ostracods"

h 5

Ho

h 7

h 8

Hexapods + Malacostracans + Cirripedes

Hexapods + Malacostracans + Cirripedes + 
Copepods

Branchiopods + Malacostracans + Cirripedes +
Copepods

Branchiopods + Malacostracans + Cirripedes +
Copepods + "Ostracods"

constraints were run which separated the hexapods from the branchiopods by excluding 

them from various crustacean groupings (hypotheses H7 and H8).

The two taxa Hutchinsoniella and Speleonectes were removed from these analyses, as 

the position of Hutchinsoniella was very unstable between the previous analyses, whilst 

the strongly supported position of Speleonectes (as the sister-group to the Diplura) is 

likely to be artefactual (see section 3.5.1 for a detailed discussion). Otherwise, any 

constraints excluding these taxa from the hexapods could artificially reduce the 

likelihood of the analysis. To confirm that the removal of these taxa would not affect 

the recovered topology, the analysis was rerun with the two taxa removed using the R2 

model of the reduced dataset (as the analyses of this dataset appeared to converge better 

than those of the complete dataset) and modelling nucleotide substitutions with a 

GTR+G (as this model best fit the data in the previous analyses). This did not have any 

significant effect on the recovered topology (see figure 3.7) and the topology was 

reproduced by the alternative run: the two runs sampled similar log likelihood values 

(figure 3.8) and the split frequencies were low (table 3.11).



105

0.95

HEXAPODA
Archaeognatha
Hexagenia

Lepismatidae
Drosophila 

Acrididae 
Blattaria__________

INSECTA

Campodeoidea□Japygoidea__
Entomobryomorpha 

 Podura________

DIPLURA

□ COLLEMBOLA

Artemia 
Triops

Daphniidae 
Limnadiidae_____

BRANCHIOPODA

Sacculinidae
Balanidae

Lepas
Pollicipes__
Leptostraca

CIRRIPEDIA

Reptantia
Oniscldea

Stomatopoda.

MALACOSTRACA

Calanoida

Cyclopidae 
--------------Tigriopus

Lepeophtheirus

COPEPODA

Cypridinidae
—  Argulus 
Cyprididae.

"OSTRACODA"

LLO 54

L—̂ 099*

MYRIAPODA
Lithobius-------------

- Spirostrept ida
---------------- Pauropodidae
--------------------------------S cu tig ere llid ae_

 Pycnogonida
Limulus CHELICERATA

Phalangida
Scorpiones 

Mastigoproctus
Mygalomorphae__

OUTGROUPS

o.i

Figure 3.7. Consensus tree showing pancrustacean phylogeny with Speleonectes and 
Hutchinsoniella removed. The analysis used the reduced dataset (third codon position removed) and 
was analysed under the R2 partitioning strategy and a GTR+G model of nucleotide substitution. The 
major pancrustacean groups are marked as are the outgroups. All nodes receive Bayesian posterior 
probability support values of 1.00 , apart from the nodes marked with black half circles where the 
support value is indicated.
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Figure 3.8. Comparisons of the distribution of log likelihoods for the two runs under the different topological constraints. For
each topological constraint the arithmetic mean of the post bumin log likelihood values is plotted for the two runs. Bars show the range 
of the middle 95% of the log likelihood values. The different topological constraints are summarised in table 3.9. The distribution of log 
likelihoods for the two runs of the unconstrained analysis is also shown. The extent of the overlap of the two distributions gives an 
indication of whether they have sampled the same distribution of log likelihood values. For all constraints the two runs appear to have 
sampled similar distributions of log likelihoods.
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Table 3.11. Split frequencies for the unconstrained and constrained 
runs without Hutchinsoniella and Speleonectes. All values are less 
than 0.05 indicating that the two runs sampled similar topologies.

Constraint Split frequency
Unconstrained 0.007

Ho 0.018
Hi 0.023
h 2 0.032
h 3 0.014
h 4 0.015
h 5 0.006
Ho 0.041
h 7 0.010
h 8 0.015

Bayes factors

As in section 3.4.3 Bayes factor analyses were carried out using the preferred run for 

each analysis and the harmonic means were used as estimates for the marginal 

likelihoods. In addition, Bayes factors were also calculated using smoothed estimates 

of marginal likelihoods (Suchard, et a/., 2005). For Bayes factor hypothesis tests to be 

reliable, the chain must have converged onto the posterior probability distribution. For 

all the different hypotheses, the two runs appeared to be sampling similar log likelihood 

values, and the split frequencies were generally low (in all cases below 0.05) (see figure 

3.8 and table 3.11). If the runs had converged, pooling the data from the two runs for 

each constraint should not affect the Bayes factor values. Under this assumption of 

convergence, Bayes factors were also calculated after pooling the posterior distributions 

for the two runs of each hypothesis.

Preferred runs

Using the harmonic mean as an estimate of the marginal likelihood the Bayes factor 

analyses (summarised in table 3.12) found very strong support for the hexapod- 

branchiopod grouping (hypothesis Ho) over all of the other placements of the hexapods 

(Bayes factors >10). The only exception was the grouping of the branchiopods with the 

malacostracans, cirripedes and copepods to the exclusion of the hexapods (hypothesis 

H7), where there was only strong support favouring the hexapod-branchiopod grouping 

with the Bayes factor falling below the cutoff of 10 (Bayes factor = 7.41).
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Table 3.12. Bayes factors support for the hexapod-branchiopod grouping over other 
placements of the hexapods. The 21n(BF) statistic gives the support for hypothesis Hq over the 
specified alternative hypothesis. Different values of this statistic are given based on two 
different estimated for the marginal likelihood (harmonic mean and smoothed estimates) and 
using the posterior distribution of the preferred run alone and the two runs pooled together. 
Bayes factors giving ambiguous support (see section 2.2.8) are in bold.

Alternative
hypothesis

Preferred run Pooled runs

Harmonic mean
Smoothed
marginal
likelihood

Harmonic mean
Smoothed
marginal

likelihood
H, 195.39 195.08 198.60 198.69
h 2 157.07 164.69 150.63 166.00
h 3 33.14 28.42 30.40 30.04
H4 53.20 51.46 39.55 55.45
h 5 85.76 83.09 80.71 86.60
H* 25.90 32.12 33.49 37.83
h 7 7.41 5.73 -5.50 11.30
h 8 23.19 33.23 32.33 41.26

Plotting 95% confidence intervals for these marginal likelihood estimates shows that 

some estimates have quite high variances (figure 3.9). In particular, there was a large 

amount of overlap in the distributions for hypotheses Ho and H7, suggesting that the 

Bayes factor value for the hexapod-branchiopod hypothesis could be an over- or 

underestimate.

Using smoothed estimates of marginal likelihoods Bayes factors the hypothesis Hq was 

again favoured very strongly (Bayes factor >10) over all other hypotheses. The only 

exception was again hypothesis H7 where the hexapod-branchiopod group received 

smaller positive support (Bayes factor = 5.73). Inspection of 95% confidence intervals 

shows that the smoothing gives tighter estimates of marginal likelihoods, suggesting 

that the Bayes factor values are more reliable (figure 3.9).

Pooled runs

Bayes factor estimates using the harmonic mean for pooled data give the same overall 

results as for the tests using the preferred runs: the hypothesis Ho is favoured very 

strongly over all other hypotheses, with the exception of hypothesis H7 (table 3.12). 

Here, in fact, there is positive support for the alternative hypothesis (Bayes factor = - 

5.50), although 95% confidence intervals again show that there is variability in the
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estimates (figure 3.9). Calculating Bayes factors with smoothing again gives the same 

results (table 3.12), except that the hypothesis Hq now also receives very strong support 

over the hypothesis H7 (Bayes factor = 11.30). However, 95% confidence intervals 

show that there is a slight degree of variability in the estimates of the marginal 

likelihoods, and given that the Bayes factor is so close to the cutoff value (figure 3.9), it 

is difficult to argue confidently that the Bayes factor is greater than this value.

In summary, Bayes factor hypothesis tests give strong support to the hexapod- 

branchiopod grouping over all other hypotheses with the exception of excluding the 

hexapods from a grouping of the branchiopods with the malacostracans, cirripedes and 

copepods. Although there does appear to be some support for the hexapod-branchiopod 

grouping, the various different forms of the hypothesis test were ambiguous as to 

whether there was significant support over the alternative hypothesis.

3.5 Discussion

I have presented an analysis of pancrustacean phylogeny, specifically investigating the 

position of the insects. I have used a multigene dataset; the largest dataset yet used for a 

Bayesian analysis of pancrustacean phylogeny. I will now discuss the major 

phylogenetic results.

3.5.1 Pancrustacean phylogeny and the position of the insects

General comments

Due to various uncertainties in how best to model the data, I ran a number of analyses 

using different models of evolution. Whilst some models appeared to fit the data 

substantially better than others, all analyses recovered all the morphologically well-



I l l

supported taxa (Insecta, Diplura, Collembola, Branchiopoda, Malacostraca, Cirripedia, 

Copepoda, Myriapoda and Chelicerata) with strong posterior probability support. 

Therefore, even though there were many gaps in the dataset, there were no obvious 

artefactual placements of any taxa belonging to any of the well-established groups.

The position o f Speleonectes and Hutchinsoniella

The only unexpected results related to the positions of the remipede Speleonectes and 

the cephalocarid Hutchinsoniella. All my analyses of nucleotide sequence found 

Speleonectes within the hexapods as the sister-group of the Diplura. Also, several 

analyses found strong support for H utchinsoniella  as the sister-group to this 

Speleonectes-DipXxKa. group. This position, within the hexapods has not previously been 

suggested, and is unexpected. Both the remipedes and the cephalocarids are aquatic 

crustaceans with very distinctive bodyplans, so their placement within a highly 

tagmatised hexapodous terrestrial group is difficult to understand.

For Hutchinsoniella it is noteworthy that across all the different modelling strategies the 

position of this taxon was very variable, and its position varied between the preferred 

and alternative runs for several models. This is true to a lesser extent with Speleonectes 

where the position varied between the preferred and alternative runs for the amino acid 

coded analysis and the analysis using the R2-GTR model. This instability between and 

within analyses gives reason to suspect that the placements of these two taxa within the 

hexapods may be artefactual. Interestingly, it has been shown that unstable taxa can 

artificially reduce the posterior probability support for a stable group by moving in and 

out of the group during one run of an MCMC (Dunn, et al., 2008). Importantly, this 

could potentially be the reason for the reduced support for the Hexapoda and Hexapoda 

+ Branchiopoda as well as the Malacostraca + Cirripedia + Copepoda in the amino acid 

coded analysis and the analysis under the C2-GTR+G model, as Hutchinsoniella and 

Speleonectes differ in their placements relative to these groups in the two runs of each 

analysis.

Based on analyses of nuclear protein coding genes, Regier et al. (2005) found the 

remipede and cepahlocarid taxa grouping with the hexapods and branchiopods,
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although they found little support for a more resolved position within this group. They 

suggested that this hexapod-branchiopod-remipede-cephalocarid clade may be a “near­

shore or marginal marine” group. Due to the difficulties I have shown for placing these 

taxa and the anomalous nature of their favoured positions, at the moment it is difficult 

to argue confidently for a close association with the hexapods. Investigations into 

potential biases in the signal are needed to see if any artefact in the data can be 

identified, which could be attracting these two taxa to a position with the diplurans.

The position o f the insects

There was strong support for grouping the insects with the entognathous hexapod taxa: 

the diplurans and the collembolans. Speleonectes and Hutchinsoniella were also 

recovered within this grouping, but as these positions appear to be artefactual (as 

discussed above) there is support for a monophyletic Hexapoda. The recovery of the 

Hexapoda is in keeping with traditional views of arthropod phylogeny, and the position 

supported by the analyses based on nuclear datasets (Mallatt and Giribet, 2006, Mallatt, 

et al., 2004, Regier, et al., 2005), in contrast to the dual origins of the hexapods 

supported by the various mitochondrial studies (Cook, et al., 2005, Hassanin, 2006, 

Hassanin, et al., 2005, Lavrov, et al., 2004).

Across the different analyses there was also consistently strong support for a sister- 

group relationship between the hexapods and the branchiopods, a result that had 

previously been supported by the analyses of the nuclear protein coding genes and 

rRNAs. It is notable, however, that in the Bayes factor hypotheses tests, the support for 

this hexapod-branchiopod group over a topology where the branchiopods were 

constrained to group with the malacostracans, cirripedes and copepods fell below the 

critical cutoff value for Bayes factors of 10. This was the only alternative hypothesis 

over which the hexapod-branchiopod grouping did not receive very strong support.

Therefore, whilst the posterior probability support values for the various taxon 

bipartitions of the most suitable modelling strategies provide overwhelming evidence 

for a hexapod-branchiopod grouping, Bayes factor hypothesis tests give weaker support, 

providing some support to an alternative position of the branchiopods. Interestingly, the
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Hypothesis H o: Hypothesis H?:
Hexapods + Branchiopods Branchiopods + Malacostracans + 

Cirripedes + Copepods

Hexapoda 

Branchiopoda 

Copepoda 

Cirripedia 

Malacostraca 

Ostracoda

Figure 3.10. Alternative positions for the branchiopods under the hexapods + branchiopods 
constraint (hypothesis Hq) and the branchiopods + malacostracans + cirripedes + copepods constraint 
(hypothesis H7). Schematics of the consensus trees for the analyses run under the two constraints 
show that the alternative positions for the branchiopods only require the movement of the branchiopod 
branch (blue) across one node (red circle) in an otherwise stable topology.

consensus trees for the two analyses show that the only difference between the two 

hypotheses is in the movement of the branchiopods across one node in an otherwise 

stable tree (figure 3.10). This resembles a soft polytomy, suggesting that there may be a 

weak signal at this node rather than the branchiopods being attracted to very different 

places in the tree.

A hexapod-malacostracan relationship is strongly rejected

The different analyses found strong support for a number of other features of 

pancrustacean phylogeny. Of particular interest was the position of the malacostracans. 

This group of crustaceans had previously been implicated in the origins of the 

hexapods, most recently on the basis of shared features of the brain (for more discussion 

of this see section 3.5.2). One of the strongest results of all my analyses, however, was
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the grouping of the malacostracans with the cirripedes. This was recovered with high 

posterior probability support across all different modelling strategies. Additionally, the 

different analyses also found strong support for grouping this malacostracan-cirripede 

clade with the copepods. Although this grouping was not as strongly supported as the 

malacostracan-cirripede group, it does place further taxonomic distance between the 

hexapods and malacostracans. Also, the in the Bayes factor hytpothesis tests, the 

hypothesis constraining the hexapods with malacostracans was one of the least favoured 

hypotheses. These results strongly argue against any close relationship between the 

hexapods and malacostracans.

Support values

It is notable that several of these groups identified within the Pancrustacea are 

supported by high posterior probabilities. However, it has often been argued that 

posterior probabilities give over-confidence in results (for example Huelsenbeck, et al., 

2002). It is possible that the high level of support is an artefact. An alternative method 

of assessing support is bootstrapping, which tends to give more conservative estimates. 

However, programmes for bootstrapping do not implement the doublet model used in 

these analyses, and so for now it is not possible to provide this alternative measure of 

support. Therefore, it is sensible to view the high support values with caution. The 

ambiguity in the support for the hexapod-branchiopod group identified in the hypothesis 

tests may in fact be an accurate reflection of an actual lower level of support for the 

group. In the absence of bootstrapping, such hypothesis tests may be one way of testing 

the support for important nodes in the tree.

3.52 Comparison to previous analyses

One of the motivating factors behind this study was to address the uncertainties in 

pancrustacean phylogeny between the previous analyses of the smaller datasets, by 

using a combined analysis.
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Analyses o f nuclear datasets

As has already been described, the combined analysis largely resembles the smaller 

analyses based on the two nuclear datasets: the protein coding genes EF-la, Pol II and 

EF-2 by Regier et al. (2005) and the 18S and 28S rRNAs by Mallatt and Giribet (2006). 

One of the important differences between these two studies was the position of the 

copepods, with the protein coding genes supporting a position with the malacostracans 

and cirripedes, whilst the rRNAs gave some support for a position as sister-group to the 

hexapods. My analysis gives strong support to the former of these two hypotheses, with 

the copepods repeatedly grouping with the malacostracans and cirripedes with posterior 

probabilities close to 1.00 in the best-supported analyses. Furthermore, the Bayes factor 

hypothesis tests also found very strong support for the hexapod-branchiopod sister- 

grouping over a hexapod-copepod sister-grouping. Therefore, this combined dataset 

finds no support for grouping the hexapods with the copepods. It seems that the 

hexapod-copepod sister grouping supported by the rRNAs is, as Mallatt and Giribet 

(2006) suggest, an analytical artefact perhaps relating to the divergent sequence of the 

single copepod represented (Mallatt, et al., 2004).

Analyses o f mitochondrial genomes

The analyses presented here recover a different phylogeny for the Pancrustacea to that 

favoured by the several analyses based on mitochondrial genomes (Carapelli, et al., 

2007, Cook, et al., 2005, Hassanin, 2006, Hassanin, et al., 2005, Lavrov, et al., 2004, 

Nardi, et al., 2003). These mitochondrial analyses recovered paraphyletic hexapods, 

with the insects grouping with the malacostracans and branchiopods to the exclusion of 

the collembolans and the maxillopod crustaceans. However, as discussed above, it 

bears strong resemblance to the topologies based on the individual nuclear datasets.

It is possible that this is a genuine signal from the combined nuclear and mitochondrial 

datasets. The mitochondrial genes are fast evolving and so there may be less signal in 

the data to conflict with the signal of the nuclear genes; the low proportion of invariant 

sites compared to the nuclear genes (see table 3.1) are suggestive that this may be the 

case. When analysed alone this lack of signal may lead to an artefactual topology. It is
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noteworthy that the mitochondrial analyses did not receive strong support from non- 

parametric bootstrapping and alternative hypotheses could not be rejected (Carapelli, et 

al., 2007, Cook, et al., 2005, Hassanin, 2006, Hassanin, et al., 2005, Lavrov, et al., 

2004, Nardi, et al., 2003). In contrast the topologies recovered by the analyses of the 

nuclear datasets were generally strongly supported by non-parametric bootstrapping 

(Mallatt and Giribet, 2006, Regier, et al., 2005). A gene by gene investigations of the 

phylogenetic content of each nuclear and mitochondrial gene (for example through 

likelihood mapping or saturation plots) could give an indication of the signal in the two 

datasets. If there is a weaker signal in the mitochondrial datasets than the nuclear 

datasets, then the resemblance of my combined analysis to the nuclear analyses is not 

unexpected.

However, the resemblance of my multigene analyses to the nuclear gene analyses could 

be an artefact resulting from the composition of the dataset. Out of the 16370 

nucleotide sites (including third positions), 9464 are from nuclear genes (18S, 28S, EF- 

la, EF-2, PolII and H3) whilst 6906 are from mitochondrial genes. Furthermore, the 

mitochondrial sites in the dataset have more incomplete taxa, being only 62.5% 

complete compared to 81.9% for nuclear genes. Therefore, the signal of the nuclear 

genes may have swamped the signal from the mitochondrial genes. It is difficult to see 

how this could be tested without sequencing more mitochondrial genomes, although 

perhaps analysing a reduced dataset containing fewer nuclear sites could give an 

indication as to whether the nuclear signal had obscured the mitochondrial signal.

Implications for arthropod neurobiology

Apart from the molecular phylogenetic analyses, the most notable other source of data 

that has been put forward to support the Pancrustacea comes from neurobiology. Of 

particular interest are analyses based on brain morphology. Based on proposed shared 

derived features of the optic lobes it was suggested that the insects and malacostracans 

form a clade (Harzsch, 2002, Sinakevitch, et al., 2003). Specifically, pterygote insects 

and decapods have three optic neuropils connected by chiasmatising fibres, whilst 

“entomostracan” crustaceans (represented by the branchiopods) have only two neuropils 

connected by parallel fibres.
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Our results strongly reject this hypothesis. In fact, constraining the hexapods to group 

with the malacostracans was one of the most strongly rejected hypotheses. Our results 

would mean that these similarities in brain structure evolved convergently. There is 

some evidence that there has been at least some convergence in the optic lobes of 

pterygotes and decapods. In the basal members of the insects and malacostracans, 

namely the Archaeognatha and the Phyllocarida respectively, the optic lobes only 

consist of two neuropils (although these are connected by chiasmatising fibres) 

(Sinakevitch, et al., 2003). Therefore, there is at least some level of variability in brain 

structure within the insects and malacostracans, and so it is not unreasonable to suggest 

that their shared brain structure could have evolved convergently.

3.53 Methodological considerations

The primary goal of the analyses described in this chapter was to resolve pancrustacean 

phylogeny and the position of the insects. However, in running the analyses, a number 

of different phylogenetic methods were used. Various considerations relating to the use 

of these methods are worthy of a brief discussion.

Modelling strategies and convergence

A range of different treatments of codon position and substitution model were run, as 

the most appropriate model to analyse the data was not obvious on the basis of any a 

priori evidence. Whilst there was a large amount of topological agreement between the 

different analyses, it was clear the different models behaved differently. This was most 

obviously seen in topological differences between the consensus trees or in differences 

in the posterior probabilities for various groupings. There also seemed to be differences 

in how well the MCMCs converged on the posterior distribution.

There is a suggestion that the MCMC had more trouble converging on the posterior 

distribution when there was a poorer fit of the model to the data. This was seen most 

clearly when the effect of different models of nucleotide substitution was investigated 

(section 3.4.4). As the fit of the model to the data was worse when the GTR or HKY
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substitution models were used without gamma distributions -  as shown by Bayes 

factors and the estimates of the AIC and BIC -  the topological convergence between the 

runs fell and the runs did not plateau with the same distribution of log likelihoods.

Additionally, in the investigations of different treatments of the codon positions (section 

3.4.3) there appeared to be more problems with convergence when the third codon 

position was included. In these modelling strategies (C^ Q  and C3) the two runs 

sampled different log likelihood distributions and for two of the models (C2 and C3) the 

topological convergence between the runs was poorer. These problems were not 

apparent for the two runs without the third codon positions. The investigations of 

nucleotide composition (section 3.4.2) suggested that there was a large degree of 

heterogeneity at the third position for both nuclear and mitochondrial genes. Perhaps 

there were difficulties in modelling this heterogeneity and these difficulties led to 

problems with convergence.

These inferences are all based on how well two runs converged for each model. To 

make any strong statements on how the fit of a model affects convergence on the 

posterior distribution more runs would be needed. However, the results presented here 

give some potentially interesting insights.

Bayes factors: Favoured models

Bayes factors were used extensively as a means of choosing between different models 

and different phylogenetic hypotheses. This was partly due to their ease of use, as at the 

simplest level all that is needed is the harmonic mean of the sampled log likelihood 

values, and also because the use of likelihood based methods was not possible as the 

preferred models could not be implemented in likelihood packages. However, a number 

of features relating to the use of Bayes factors became apparent, which warrant 

discussion.

There have been questions about how Bayes factors respond to the addition of 

parameters, with several studies suggesting that Bayes factors tend to support parameter 

rich models. It is therefore important to note that in my analyses increasing the number
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of parameters did not necessarily improve the fit of the model to the data. In my 

investigation of different nucleotide substitution models whilst the best modelling 

strategy in terms of models was the most parameter rich (GTR+G), the HKY+G fit the 

data better than the more parameter rich GTR. The heterogeneity between sites 

provided by the gamma distribution appears to be more important than the 

heterogeneity in the substitution process provided by the GTR model.

Bayes factors: Potential problems

My use of Bayes factors also highlighted various important features that need to be 

considered when using this method. Bayes factors require an estimate of the marginal 

likelihood: most commonly the harmonic mean is used. However, as was shown for the 

hypothesis tests (section 3.4.6), constructing 95% confidence intervals shows that these 

estimates can have a high variance. Whilst this may not be a problem if the Bayes 

factor estimates are orders of magnitude greater than the cutoff of 10 (as in sections

3.4.3 and 3.4.4) it could be a potential problem when Bayes factors are smaller (as in 

section 3.4.6). It is, therefore, important to consider this variability and use a possibly 

less variable estimate of the marginal likelihood, such as using smoothing to be 

confident in the results of the tests, or at least calculate the variance.

Perhaps more importantly, for a Bayes factor to be reliable, the run must have 

converged on the posterior distribution. Using split frequencies and examining the 

distributions of log likelihoods I judged that my different runs had converged on the 

posterior distribution. Also, pooling the two runs did not affect the overall result: the 

hexapod-branchiopod grouping was favoured over all other hypotheses other than the 

branchiopod-malacotsracan-cirripede-copepod grouping. Despite this, some hypotheses 

did change their Bayes factor values by around 10 for example the hypothesis grouping 

the hexapods with the ostracods (hypothesis H4). Whilst in this situation the overall 

result was not affected, as the Bayes factor was considerably greater than 10, in 

different circumstances such a change could have been significant. Therefore, it is 

important to consider potential problems with convergence in order to have confidence 

in Bayes factors.
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3.6 Conclusions

I set out to analyse pancrustacean phylogeny and in particular the position of the 

insects, assembling the largest yet multigene dataset with a broad representation of 

hexapod and crustacean taxa. Importantly, my analyses have provided strong support 

for a phylogeny of the Pancrustacea with a monophyletic Hexapoda and a sister-group 

relationship between these hexapods and the branchiopod crustaceans. Using Bayes 

factor hypothesis tests I have been able to reject a number of alternative hypotheses for 

sister-groups to the hexapods that had been proposed in the literature, such as the 

hexapod-copepod sister-group relationship supported by the analyses of 18S and 28S 

rRNAs and the hexapod-malacostracan sister-group supported by brain morphology. 

This emerging picture of pancrustacean phylogeny will provide a framework in which 

to ask questions about insect bodyplan evolution and to infer developmental changes 

underlying the morphological transitions. In the following chapters I will now address 

one such transition, namely the evolution of the intercalary segment of the insect head, 

in particular investigating how the segment develops in the insects.
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Chapter 4: 
The D r o s o p h i l a  intercalary segment and 
the affinity of the hypopharyngeal lobes

The results described in this chapter are currently in press: Economou, A. D. and 

Telford, M. J. Comparative gene expression in the heads of Drosophila melanogaster 

and Tribolium castaneum and the segmental affinity of the Drosophila hypopharyngeal 

lobes. Evol. Dev. In Press.

4.1 Summary

In this chapter I address the issue of what constitutes the intercalary segment in the 

model organism Drosophila melanogaster. The Drosophila embryonic head has a pair 

of structures lying behind the stomodeum known as the hypopharyngeal lobes. 

Traditionally they have been seen as part of the intercalary segment. More recent work 

looking at the position of the lobes relative to various marker genes has been somewhat 

equivocal: segment polarity gene expression has been used to argue for a mandibular 

affinity of these lobes, whilst the expression of the anterior-most hox gene labial {lab) 

has supported an intercalary affinity. I have addressed the question of the segmental 

affinity of the hypopharyngeal lobes by conducting a detailed comparison of gene 

expression patterns between Drosophila and the red flour beetle Tribolium castaneum, 

in which the intercalary segment is unambiguously marked out by the expression of lab. 

I demonstrate that there is a large degree of conservation in gene expression patterns 

between Drosophila and Tribolium, and this argues against an intercalary segment 

affinity for the hypopharyngeal lobes. The lobes appear to be largely mandibular in
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origin, although some gene expression attributed to them appears to be associated with 

the stomodeum. I propose that the difficulties in interpreting the Drosophila head result 

from a topological shift in the Drosophila embryonic head, associated with the derived 

process of head involution.

4.2 Introduction

Having addressed the issue of pancrustacean phylogeny and the position of the insects, I 

now concentrate on the development of the intercalary segment. As was illustrated in 

chapter 1, only a limited amount is known about intercalary segment development and 

the majority of what is known comes from the vast literature from the model organism 

Drosophila melanogaster. However, there are difficulties in extrapolating from what is 

known in the fly to other insects, largely because there is a lack of consensus as to what 

constitutes the Drosophila intercalary segment. In this chapter I address this issue.

The difficulty in interpreting the Drosophila intercalary segment stems from the highly 

derived mode of head embryogenesis seen in the fly. As with other cyclorrhaphan flies, 

Drosophila head embryogenesis is notable for the process of head involution. The head 

segments pass through the stomodeum (for a detailed description see Turner and 

Mahowald, 1979) giving rise to the acephalic maggot larva. This larva possesses an 

atypical set of head structures, with the cells giving rise to the typical insect head of the 

adult being set aside as imaginal discs (Younossi-Hartenstein, et al., 1993). The 

structures of the larval head have proved very difficult to homologise with the 

components of the canonical insect head (Jurgens, et al., 1986).

Prior to involution the fly embryo does not bud out head appendages as insects typically 

do; rather the embryonic head has the appearance of a series of lobes (figure 4.1 A). 

During germband retraction a further set of lobes form immediately posterior to the 

stomodeum: the hypopharyngeal lobes (Turner and Mahowald, 1979). These have
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Figure 4.1. The Drosophila head and the hypopharyngeal lobes. (A) Schematic of the head of a 
Drosophila stage 11 embryo showing the series of lobes that make up the embryonic head, and the 
primordium of the hypopharyngeal lobes posterior to the stomodeum. (B) Different interpretations of 
the hypopharyngeal primordium as the ventral intercalary segment or the anterior mandibular 
segment. The hypopharyngeal primordium (grey) has been argued to be ventral intercalary as it lies 
medial to the lab domains (red) (Rogers and Kaufman, 1997). It has also been interpreted as 
mandibular as it lies posterior to the segment polarity gene stripes of the intercalary segment {en 
expression is shown in brown) (Diederich, et al., 1989, Diederich, et al., 1991, Mohler, et al., 1995, 
Seecoomar, et al., 2000). The extent of the intercalary segment in the two interpretations in marked 
out in blue. The stomodeum and cephalic furrow are also marked. The expression of lab and en is 
based on Mahaffey et al. (1989). an, antennal; cf, cephalic furrow; cl, clypeolabral; hi, primordium of 
the hypopharyngeal lobes; ic, intercalary; la, labial; mx, maxillary; mn, mandibular; pc, procephalic, 
st, stomodeum.
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traditionally been interpreted as part of the intercalary segment (Rogers and Kaufman, 

1997), largely due to their position posterior to the stomodeum where the intercalary 

segment is found in other insects, but also by comparison to the paired lobes, often 

called hypopharyngeal lobes (or hypopharynxhocker) known to arise from the 

intercalary segment in numerous other insect groups (Roonwal, 1937, Wolff and 

Scholtz, 2006).

Based on the interpretation of the Drosophila hypopharyngeal lobes as intercalary 

derivatives, three genes have been implicated in patterning the segment: cap ‘n ’collar 

(cnc), knot {kn) (synonymous with collier {col)) and crocodile {croc), cnc (a leucine 

zipper transcription factor) is expressed posterior to the stomodeum in the developing 

hypopharyngeal lobes (Mohler, et al., 1991), and is required for the differentiation of 

the posterior pharyngeal wall (Mohler, et al., 1995) -  a structure mapped to the 

hypopharyngeal lobes by Jurgens et al. (1986). kn (a COE transcription factor) is 

expressed along the intercalary-mandibular boundary and appears to be required for the 

expression of cnc in the hypopharyngeal lobes, as well as for the expression of the 

intercalary segment polarity genes (Crozatier, et al., 1999, Seecoomar, et al., 2000). 

croc (a fork head transcription factor) is also expressed posterior to the stomodeum in 

this hypopharyngeal region and is required for the formation of the posterior pharyngeal 

wall (Hacker, et al., 1995), although it is not clear from published literature how its 

expression and function fit in with that of cnc and kn.

However, this interpretation of the Drosophila head has been questioned. Diederich et 

al. (1989, 1991) argue that there is no association between the hypopharyngeal lobes 

and any en expression, proposing that they therefore belong to the anterior of the 

mandibular segment. Similarly, Mohler et al. (1995) and Seecoomar et al. (2000) argue 

that expression of two of the genes that are required to pattern the lobes {cnc and kn 

respectively) lies posterior to the intercalary hedgehog {hh) stripes and should therefore 

be considered part of the mandibular segment.

A problem with these arguments, as Rogers and Kaufman (1997) point out, is that there 

is a large gap separating the stripes of intercalary segment polarity gene expression and 

this is a derived feature of Drosophila. Other insects do not show such a large
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separation of their engrailed (en) stripes as Drosophila, and Rogers and Kaufman 

(1997) argue that en is a poor marker for the Drosophila intercalary segment. Rather, 

they propose that lab is an appropriate marker for the intercalary segment as it is 

expressed throughout the segment in other insects. They argue that this is also the case 

in the early Drosophila embryo as is shown by Diederich et al. (1989); lab is expressed 

throughout the intercalary segment before fading from the ventral regions that give rise 

to the hypopharyngeal lobes. The two different interpretations of the intercalary 

segment are shown in figure 4.1 B.

In other insects such as the red flour beetle, Tribolium castaneum, where lab expression 

is seen in a continuous domain that unambiguously marks the intercalary segment (Nie, 

et al., 2001) these difficulties in identifying the intercalary segment do not exist. There 

is no suggestion of fading from the ventral part of the segment as in Drosophila. If the 

genes expressed in the Drosophila hypopharyngeal lobes can be demonstrated to have 

conserved patterns of expression in Tribolium, then it should prove relatively easy to 

determine whether any given pattern of gene expression belongs to the intercalary 

segment or to the mandibular segment.

I have identified and cloned partial cDNAs of Tribolium orthologues of the three genes 

-  cnc, croc and kn -  that are involved in patterning the Drosophila hypopharyngeal 

lobes. I examined the expression patterns of these genes in Tribolium embryos and 

compared them to what is seen in Drosophila. Where necessary, I also re-examined the 

expression patterns in Drosophila to facilitate detailed comparisons between the two 

insects, through time. I used double in situ hybridisations in both Tribolium and 

Drosophila to compare the expression patterns of the genes of interest to lab and to 

each other. This approach allows me to rule out an intercalary segment affinity for the 

fly hypopharyngeal lobes and a role in intercalary segment development for the genes 

that pattern the lobes. I also propose an explanation for what underlies some of the 

peculiarities of gene expression in the Drosophila embryonic head.
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4.3 Materials and Methods

Tribolium and Drosophila stocks were maintained as described in section 2.3.1, and 

embryos were collected and fixed as described in sections 2.3.2, 2.3.3 and 2.3.9. 

Tribolium orthologues of the Drosophila genes were identified in the Tribolium genome 

(see section 2.3.5; accession numbers for Drosophila query sequences are given in 

appendix 1 table A1.3) and partial cDNAs were amplified by PCR from Tribolium 

cDNA (primer sequences are given in appendix 2, table A2.2) and cloned (see sections

2.3.4 and 2.3.6). For cnc, the B isoform was used as the query sequence in the BLAST 

search as this is the isoform that has been implicated in head development (Veraksa, et 

al., 2000). Tc-lab was cloned using primers designed against the published sequence 

(Nie, et al., 2001) and a clone of Tc-en was kindly donated by Dr Andrew Peel. For 

Drosophila genes, complete cDNAs were ordered from the Drosophila Gene Collection 

as described in section 2.3.7 (clone names are given in appendix 3, table A3.1). In situ 

hybridisation was carried out as described in section 2.3.10 using DIG labelled probes 

(see section 2.3.8). Double in situ hybridisation was carried out as described in section 

2.3.11 using DIG labelled probes and fluorescein labelled probes (see section 2.3.8). 

Embryos were prepared and imaged as described in section 2.3.13.

4.4 Results

Unambiguous orthologues of cnc, croc and kn were identified in the Tribolium genome. 

I first describe the expression of these three genes in Tribolium, comparing them to the 

Drosophila expression patterns. Where necessary, I present a re-examination of the 

Drosophila pattern.
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4.4.1 Expression of cap‘n’collar orthologues in Tribolium and Drosophila

Tc-cnc shows many similarities in its expression to its Drosophila ortholog. There is an 

anterior domain of expression, which resolves to the labrum, and a posterior domain, 

which resolves to the mandibular segment (figure 4.2 A, C, E). This resembles the 

“cap” and “collar” of expression seen in Drosophila (Mohler, etal., 1991) (although the 

exact segmental affinity of the “collar” in Drosophila is uncertain given the ambiguities 

over the hypopharyngeal lobes). In addition, during late germband extension, the 

anterior domain in Tribolium extends posteriorly to form a ring around the stomodeum 

(figure 4.2 C, E). My re-examination of Drosophila shows a very similar expression 

domain posterior to the stomodeum, which also appears during germband extension 

(figure 4.2 D). The major difference between Tribolium and Drosophila is that, whilst 

there is a gap between this stomodeal domain and the “collar” of expression in 

Tribolium, these two domains abut in Drosophila (compare figure 4.2 E with figure 4.2 

D). In the germband extended Drosophila embryo, this results in a continuous domain 

of expression from the mandibular lobes extending throughout the hypopharyngeal 

primordium (figure 4.2 F) as described in Mohler et al. (1991).

There are also similarities in the early expression of cnc. As in Drosophila, there is no 

expression in the prospective mesoderm of Tribolium (figure 4.3 B) (compare to 

Mohler, et al., 1991). However, there are also some subtle differences in the early 

expression. In Tribolium, the anterior domain is initially seen as a pair of expression 

domains at the anterior of the embryo (figure 4.3 C). The single continuous anterior 

expression domain is only seen later (figure 4.3 D). In contrast, no initial pair of 

expression domains has been described for Drosophila (Mohler, et al., 1991). Also, 

whilst in Drosophila the “cap” of expression appears before the “collar” (Mohler, et al., 

1991), in Tribolium it is the other way round (figure 4.3 A).

4.42 Expression of crocodile orthologues in Tribolium and Drosophila

Tc-croc has a dynamic expression pattern, which recapitulates many of the features 

described for its Drosophila orthologue (Hacker, et al., 1995). Expression is first seen
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Figure 4.2. Expression of cap‘n ’collar orthologues in Tribolium  and Drosophila. (A, C, E)
Tribolium, (B, D, F) Drosophila. Ventral views, oriented with anterior up. Nomarski images. In both 
Tribolium and Drosophila, cnc orthologues are first seen in an anterior domain and a more posterior 
band; posterior to the head lobes in an early germband extending Tribolium embryo (A) and anterior 
to the cephalic furrow in an early germband extending (stage 7) Drosophila embryo (B). In 
Tribolium, the anterior domain resolves to the labrum, and the posterior domain to the mandibular 
segment, as seen in a late germband extending embryo (C). In addition, the anterior domain in 
Tribolium appears to extend posteriorly around the forming stomodeum (C), and by the end of 
germband extension, this domain forms a ring around the stomodeum (E). Similarly in Drosophila, 
by late germband extension (stage 9) (D), expression is seen extending from the posterior of the early 
“cap” of expression, to form a ring around the stomodeum. Unlike Tribolium, this domain abuts the 
“collar” of expression. By the end of germband extension (stage 11) (F), when the Drosophila head 
lobes have formed, expression has resolved to the labrum, the mandibular segment (as seen by 
expression throughout the mandibular lobes), and the primordium of the hypopharyngeal lobes (as 
seen by expression extending from the mandibular lobes to the posterior edge of the stomodeum). 
Note that the “cap” of expression appears broken into two (asterisk in B and D), as the procephalic 
lobe was split dorsally to allow the embryo to be flattened, cf, cephalic furrow; hi, primordium of the 
hypopharyngeal lobes; lb, labrum; mn, mandibular lobes; st, stomodeum.
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Figure 4.3. Early expression of Tribolium cap*n’collar. Ventral views, oriented with anterior up. 
Nomarski images. Tc-cnc is First seen as a distinct band of expression immediately posterior to the 
head lobes in the gastrulating embryo (A). A close up of the same embryo (B) shows that this band of 
expression does not extend into the forming mesoderm (arrow). There is also potential faint 
expression at the anterior of the embryo (arrowhead). By early germband extension a clear posterior 
“collar” of expression can be seen (C). The faint anterior expression can now be seen as a clear pair 
of domains. Later in germband extension (D) the “collar” is still visible and the anterior pair of 
domains have joined together to form a single “cap” of expression at the anterior of the embryo (D).
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in an early anterior domain (figure 4.4 A) before retracting from the anterior-most 

region which appears to correspond to the prospective stomodeum (figure 4.4 C). 

Expression then further reduces, with transcripts not seen in the forming labrum when it 

is first clearly visible (figure 4.4 E). This leaves an expression domain immediately 

posterior and lateral to the stomodeum in the late germband extending embryo (figure

4.4 G). Detailed comparison of the Tribolium expression pattern (figure 4.4 A, C, E, G) 

with Drosophila (figure 4.4 B, D, F, H) show how consistent the similarities are. Given 

the proposed role of croc in patterning the Drosophila intercalary segment (Hacker, et 

al., 1995), it is noteworthy that expression is not extensive in the D rosophila  

hypopharyngeal primordium (figure 4.4 H).

Although there are many striking similarities in the expression patterns of Drosophila 

and Tribolium croc, there are some subtle differences in the modulations. Whilst in 

both Drosophila and Tribolium croc orthologues are expressed in the mesoderm early in 

embryogenesis (figure 4.5 C and D), in Drosophila this early mesodermal expression of 

croc fades, and the expression in the ectoderm is unconnected ventrally (figure 4.5 F). 

The domain posterior to the stomodeum of older embryos is seen later (figure 4.5 H). 

This is not the case in Tribolium. After the posterior mesodermal expression of Tc-croc 

has faded (figure 4.5 E) there is no obvious gap in the expression of in the ventral 

ectoderm.

4.4.3 Expression of Tribolium knot

Early Tc-knot expression strongly resembles what is seen in its Drosophila orthologue 

as described by Crozatier et al. (1996, 1999). Transcripts first accumulate at the 

posterior of the procephalon behind the Tribolium head lobes (figure 4.6 A), which 

compares with expression immediately anterior to the Drosophila cephalic furrow 

(Crozatier, et al., 1996). As with Drosophila, this early blastodermal expression is 

bounded posteriorly by the Tc-hh expressing cells of the mandibular parasegment 

boundary (parasegment 0; figure 4.6 B). Anteriorly, Tc-kn abuts the antennal domain of 

Tc-hh (figure 4.6 B). This also appears conserved with Drosophila, although Crozatier 

et al. (1999) describe this anterior hh domain as an asegmental cephalic domain.
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Figure 4.4. Similarities in the expression of crocodile orthologues in Tribolium and Drosophila.
(A, C, E, G) Tribolium, (B, D, F, H) Drosophila. (A, B, E-H) Ventral view of embryos, oriented with 
anterior up. (C, D) Lateral view of embryo, oriented with anterior left. Nomarski images. In both 
Tribolium and Drosophila, expression is first detected at the anterior of the early embryo, as can be 
seen in the gastrulating Tribolium embryo (A) and the cellular blastoderm (stage 5) Drosophila 
embryo (B). In both, expression then fades from the anterior-most region of the embryo, as seen in 
the early germband extending Tribolium embryo (arrow in C) and the early germband extending 
(stage 7) Drosophila embryo (D); this region appears to correspond to the prospective stomodeum in 
both insects. Expression in Tribolium is further reduced as the germband extends (E), with no 
expression visible in the forming labrum. Transcripts are seen in a pair of lateral domains linked 
posteriorly by a thin line of cells. This resembles what is seen in the germband extending (stage 9) 
Drosophila embryo (F); lateral expression is joined by a thin line of cells posterior to the forming 
stomodeum. At this point, however, expression is still seen dorsal to the forming stomodeum in the 
prospective Drosophila labrum (expression in F is continuous dorsally in the Drosophila embryo, but 
appears broken as the procephalic lobe was split to allow the embryo to be flattened; marked by 
asterisks). By late germband extension in Tribolium, transcripts are seen posterior and lateral to the 
stomodeum, and in the procephalon (G). This resembles the germband extended (stage 11) 
Drosophila embryo (H); expression lies along the posterior limit of the stomodeum, and extends 
laterally into the procephalon. By this stage expression is no longer seen in the dorsal region 
corresponding to the labrum. It is also noteworthy that expression is not very extensive in the 
primordium of the hypopharyhngeal lobes, with transcripts only seen along its anterior extent with a 
thin posterior projection, hi, primordium of the hypopharyngeal lobes; lb, labrum; st, stomodeum.
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Tribolium croc

Figure 4.5. Differences in the early expression of crocodile orthologues in Tribolium and 
Drosophila. (A, C, E, G) Tribolium, (B. D, F, H) Drosophila. Ventral view of embryos, oriented 
with anterior up. Nomarski images. In both Tribolium and Drosophila, expression is first detected at 
the anterior of the early embryo, as can be seen in the gastrulating Tribolium embryo (A) and the 
cellular blastoderm (stage 5) Drosophila embryo (B). In Tribolium this expression extends posteriorly 
along the prospective mesoderm in the middle plate (mp in A). This expression in the Tribolium 
middle plate persists through gastrulation and is seen in the developing mesoderm of Tribolium (arrow 
in C). Similarly, expression can be seen in the mesoderm of an early germband extending (stage 7) 
Drosophila embryo (arrow in D). In both Tribolium and Drosophila this mesodermal expression 
fades as seen in the germband extending Tribolium embryo (E) and the germband extending (stage 8) 
Drosophila embryo (F). Arrows in E and F mark the region from which expression has faded. In 
Drosophila this leaves a ventral break in croc expression. No such break is seen in Tribolium croc 
expression (arrowhead in E). Later in germband extension, expression patterns of Tribolium and 
Drosophila come to resemble each other once again, as seen in the late germband extending Tribolium 
embryo (G) and the late germband extending (stage 9) Drosophila embryo (H). In both there are the 
lateral domains of expression joined ventrally by a thin domain of expression (arrows in G and H).
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Figure 4.6. Expression of Tribolium knot. (A-C, E-H) Ventral view of embryos, oriented with 
anterior up. (D) Lateral view of embryo, oriented with anterior left. (A, C-F) Nomarski images. (B) 
Expression of Tc-kn (red) and Tc-hh (blue). (G) Expression of Tc-kn (red) and Tc-en (blue). (H) 
Expression of Tc-kn (red) and Tc-wg (blue). Brightfield images. Expression is seen in the germ 
rudiment (A), as a band across the embryo coincident with the posterior of the head lobes. An 
approximately similar staged embryo (B) shows that this band of Tc-kn abuts the large cephalic 
domain of Tc-hh expression anteriorly (the posterior extent of this domain appears to correspond to 
Tc-hh expression in the antennal segment by comparison to Farzana and Brown (2008), and the 
mandibular stripe of Tc-hh posteriorly. Early in germband extension (C, D), expression fades from 
the posterior of this domain. The persisting posterior expression (arrow) appears to be mesodermal, as 
it lies medially (as seen in C) and at a deeper layer (as seen in D). Later in germband extension (E) 
expression is lost from the posterior mesoderm and from the anterior of the domain. In a slightly 
older germband extending embryo, when the appendages are beginning to form (F), expression lies at 
the boundary of the intercalary and mandibular segments. The anterior boundary of this expression is 
parasegmental (G, H), lying coincident with the intercalary Tc-en stripes (G), but immediately 
posterior to the faint intercalary Tc-wg spots (H; arrow marks the position of Tc-wg spots), an, 
antennal; cp, cephalic; ic, intercalary; mn, mandibular; mx, maxillary.
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Expression is then lost from the anterior and posterior-most parts of this early domain 

(figure 4.6 C-E), leaving a band of expression at the intercalary-mandibular boundary 

(figure 4.6 F), with an anterior coincident with the Tc-en expressing cells of the 

intercalary segment (figure 4.6 G, H).

The main difference in expression regards the mesoderm. In the early Tribolium 

embryo, there is expression across the middle plate (figure 4.6 A), which persists 

through germband extension (figure 4.6 C, D). In contrast there is no expression in the 

prospective mesoderm in the Drosophila blastoderm (Crozatier, et al., 1996). 

Mesodermal kn is only seen later in Drosophila development (Seecoomar, et al., 2000).

4.4.4 Expression of orthologues o/cap‘n’collar and crocodile relative to labial in 

Tribolium

The many striking similarities in the expression patterns between Tribolium and 

Drosophila for the orthologues of the three genes cnc, croc and kn suggest that there is 

expression in homologous structures. It was important, therefore, to establish whether 

any of the genes are expressed in the Tribolium intercalary segment. So far, I have only 

shown a clear intercalary aspect to Tc-kn, where its expression is coincident with the 

intercalary Tc-en stripes (figure 4.6 G), as seen in Drosophila. To investigate whether 

Tc-cnc or Tc-croc have any expression in the intercalary segment, I examined their 

expression relative to Tc-lab, which unambiguously marks the Tribolium intercalary 

segment. Neither Tc-cnc nor Tc-croc shows any expression in the Tc-lab domain. The 

“collar” of Tc-cnc expression lies posterior to the domain of Tc-lab throughout 

embryogenesis, showing the anterior boundary of this domain to be mandibular and the 

domain behind the stomodeum lies anterior to Tc-lab expression (figure 4.7 A and B). 

Similarly, the domain of Tc-croc expression lies anterior to the Tc-lab domain 

throughout embryogenesis (figure 4.7 C and D). Therefore neither Tc-cnc nor Tc-croc 

is expressed in the Tribolium intercalary segment.
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Figure 4.7. Expression of crocodile and cap‘n ’collar orthologues relative to labial orthologues in 
Tribolium and Drosophila. (A-D) Tribolium (E-H) Drosophila. Ventral view of embryos, oriented 
with anterior up. (A, B, E, F) Expression of cnc orthologues (blue) and lab orthologues (red). (C, D, 
G, H) Expression of croc orthologues (blue) and lab orthologues (red). Brightfield images. 
Expression of Tc-cnc does not overlap with Tc-lab. In the germband extending embryo (A) Tc-cnc 
lies posterior to Tc-lab expression. This relative expression is maintained in the germband extended 
embryo (B). By this stage the stomodeal domain of Tc-cnc is also present and lies anterior to Tc-lab 
expression. Similarly Tc-croc expression does not overlap with Tc-lab. Early in germband extension 
Tc-croc lies anterior to Tc-lab (C). This relative expression is maintained in the germband extended 
embryo (D) where Tc-croc is seen to lie anterior to Tc-lab. In the Drosophila germband extending 
(stage 9) embryo (E) lab expression is seen in two domains which are split across cnc expression. 
There does not appear to be any overlap between cnc and lab expression, although the stomodeal 
domain of cnc expression is faint and it is hard to make out whether it overlaps lab expression. This 
relative expression cnc and lab is maintained in the germband extended (stage 11) embryo (F). By 
this stage, the domains of lab expression are broadly separated, and are split across the domain of cnc 
expression which marks out the hypopharyngeal lobes. There is no obvious overlap between cnc and 
lab expression. Similarly, in the germband extending (stage 9) Drosophila embryo (G), the domains 
of lab expression appear to be split across the domain of croc expression, although there does appear 
to be a small degree of overlap between the expression domains (arrow). This relative expression 
croc and lab is maintained in the germband extended (stage 11) embryo (H), although the overlap 
between croc and lab expression can no longer be seen.
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4.4.5 Relative expression o/cap‘n’collar, crocodile, knot and labial in Drosophila

The exclusion of Tc-cnc and Tc-croc from the Tribolium intercalary segment coupled 

with the similarities in expression with their Drosophila orthologues, strongly suggest 

that their expression in the primordium of the Drosophila hypopharyngeal lobes does 

not indicate that these are part of the intercalary segment either. To investigate this 

possibility further, and to gain a better understanding of which segments the domains of 

gene expression belong to, I carried out a detailed investigation of the relative gene 

expression patterns in Drosophila, to see which features of Tribolium expression are 

conserved.

In Tribolium, Tc-cnc and Tc-croc are expressed immediately posterior to the 

stomodeum, in what appears to be an overlapping domain, bounded posteriorly by 

intercalary Tc-lab expression. In Drosophila, when the stomodeal domain of cnc 

expression can be seen distinct from the early “collar” of expression at stage 9, the 

domain strongly resembles croc expression behind the stomodeum at the same stage 

(compare figure 4.2 D with figure 4.4 F). Double in situ hybridisation for cnc and croc 

in a stage 9 embryo show that these two genes are precisely co-expressed posterior to 

the Drosophila stomodeum (figure 4.8 A). The domain of Tc-cnc and Tc-croc co- 

expression posterior to the Tribolium stomodeum and anterior to the intercalary 

segment appears conserved in Drosophila.

The major difference between Drosophila and Tribolium relates to cnc expression: 

whilst the anterior stomodeal and the “collar” of expression lie adjacent to each other in 

Drosophila (figure 4.2 D, F), the stomodeal expression is separated from what is clearly 

a mandibular “collar” of expression in Tribolium (figure 4.2 E). As it has been argued 

that kn lies on the intercalary-mandibular boundary in Drosophila (Crozatier, et al., 

1999), and I have shown that this expression is conserved in Tribolium (figure 4.6 G 

and H), I looked at the expression of croc, relative to kn in Drosophila. As expected, in 

a stage 9 embryo, croc lies immediately anterior to kn expression but does not overlap 

(figure 4.8 B). This non-overlapping expression appears to be maintained in later stages 

as the posterior-most limit of croc expression moves further posterior (figure 4.8 C, D).
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Figure 4.8. Relative expression of crocodile, cap‘n ’collar and knot in Drosophila. Ventral view of 
flattened embryos, oriented with anterior up. (A) Expression of cnc (blue) and croc (red). (B, C) 
Expression of croc (blue) and kn (red). Brightfield images. (D) Expression of kn. Nomarski image. 
In the germband extending embryo (stage 9), cnc and croc clearly overlap in the region posterior to 
the stomodeum (A). At the same stage, kn expression lies anterior to and abuts croc expression (B). 
In a slightly older embryo (stage 10) croc expression appears to have extended posteriorly through the 
domain of kn expression (arrow in C). However, closer examination of kn expression at the same 
stage (D) suggests that the midline expression of kn is largely mesodermal (arrow) corresponding to 
the late mesodermal domain of expression reported by Seecoomar et al. (2000). Additionally, 
ectodermal kn expression is broken at the midline (arrowhead). This suggesting that there may not 
actually be any co-expression of kn and croc.
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By stage 11 the expression of kn has largely faded (Crozatier, et al., 1999) so this 

expression could not be followed further.

My results suggest that Drosophila and Tribolium differ in the relative position of their 

stomodeal cnc and croc expressing domain: in Tribolium this domain is separated from 

the mandibular expression of Tc-cnc and Tc-kn by Tc-lab, whilst in Drosophila the 

stomodeal cnc and croc expression lies adjacent to the cnc and kn expression. Tc-cnc 

and Tc-croc do not show any overlap with the intercalary marker Tc-lab in Tribolium. I 

therefore asked whether this situation was conserved in Drosophila. Double in situ 

hybridisation for cnc and lab and croc and lab shows that whilst at stage 9 there is some 

possible overlap of expression between cnc and croc with lab expression (figure 4.7 E 

and G), by stage 11 there is no overlap between cnc or croc and lab (figure 4.7 F and 

H). lab expression appears to be split by the domain of stomodeal cnc and croc 

expression.

4.5 Discussion

The results presented here show that the three genes with a role in the development of 

the Drosophila hypopharyngeal lobes {cnc, croc and kn) have multiple conserved 

features of expression in Tribolium. However, comparison with Tc-lab expression, 

which unambiguously marks the intercalary segment in Tribolium, demonstrates that 

Tc-croc and Tc-cnc are not expressed in this segment in the beetle. Only Tc-kn has an 

obviously intercalary aspect to its expression. I further demonstrated that the 

differences between Drosophila and Tribolium can be explained by the movement of a 

single domain of expression. Both insects have a region behind the stomodeum which 

expresses cnc and croc orthologues. In Tribolium, this domain is separated from the 

more posterior expression of cnc and kn orthologues by Tc-lab expression, whilst in 

Drosophila, these two domains are adjacent, splitting the expression of lab.
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4.5.1 A derived topology for the Drosophila embryonic head

In the light of these results I propose that the differences in expression patterns can be 

explained by a simple difference in the topology of the embryo, in the context of 

conserved expression in homologous structures. Both Drosophila and Tribolium share 

a segmental register of gene expression, with cnc orthologues in the mandibular 

segment, lab orthologues in the intercalary segment and kn orthologues along the 

boundary. There is also conserved expression of cnc and croc orthologues associated 

with the stomodeum. Where they differ is in the position of the stomodeum (and the 

associated expression of cnc and croc orthologues) in the segmental register: in 

Tribolium, as in other insects, the stomodeum lies anterior to the intercalary segment 

(and Tc-lab expression), whilst in Drosophila it has a more posterior position, lying 

immediately anterior to the mandibular segment (splitting the lab expression). These 

relative patterns of gene expression are summarised in figure 4.9. Drosophila differs
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Figure 4.9. Relative expression patterns of cap‘n’collar, crocodile, knot and labial orthologues in 
Tribolium and Drosophila. Schematic showing the relative expression patterns of cnc (blue), croc 
(green), kn (yellow) and lab (red) orthologues relative to the stomodeum (grey) in Tribolium and 
Drosophila. The positions of the antennal, intercalary, mandibular and maxillary segments are marked 
by their en expression (brown). Tribolium and Drosophila show the same patterns of gene expression, 
except that in Drosophila, the stomodeum and its associated expression has a more posterior position 
in the segmental register, lying anterior to the mandibular segment and cnc expression, while splitting 
the intercalary segment and lab expression. Several aspects of relative gene expression from 
Crozatier et al. (1996), Mahaffey et al. (1989), Mohler et al. (1995) and Nie et al. (2001) are included 
in the schematics, an, antennal; ic, intercalary; mn, mandibular; mx, maxillary.
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from Tribolium in that the intercalary segment is split by the stomodeum. As the 

hypopharyngeal lobes of Drosophila derive from cnc and croc expressing cells they do 

not belong to the intercalary segment, as suggested previously (Mohler, et al., 1995, 

Seecoomar, et al., 2000). Rather, the lobes appear to be a composite structure; they are 

largely mandibular in origin, deriving from the “collar” of cnc expressing cells, whilst 

the anterior-most portion derives from the cnc and croc expressing cells associated with 

the stomodeum.

This difference in topology is likely to be related to the derived mode of head 

embryogenesis seen in Drosophila. As has already been seen, the embryonic head of 

Drosophila has the derived appearance of a series of lobes. As part of this restructuring 

of the embryonic head, it seems that the intercalary segment has come to lie dorsal to 

the mandibular segment rather than the more anterior position in other insects. It has 

previously been noted that the segmental axis of Drosophila has a marked S-shaped 

deflection (Schmidt-Ott and Technau, 1992). Consequently, the stomodeum now lies in 

front of the mandibular segment. It is important to remember that the mouth of an 

arthropod is ancestrally an anterior structure. In several outgroup taxa to the arthropods 

such as the tardigrades as well as in various stem arthropods such as Kerygmachela, it 

has a terminal position, and has subsequently been ventralised in the arthropods (Budd, 

2001). This means that historically, the mouth, and therefore the stomodeum do not 

belong to any particular segment. It is therefore, not unreasonable to argue for a 

movement in its position in the segmental register in association with a dramatic change 

in early embryonic movements.

4.52 Derived features of labial expression in Drosophila

This interpretation is in marked contrast Rogers and Kaufman’s (1997) proposal that the 

Drosophila hypopharyngeal lobes are the ventral part of the intercalary segment, which 

lies behind the stomodeum as in other insects (as summarised in figure 4.1 B). Their 

argument was based on the observation that the hypopharyngeal lobes derive from 

tissue that previously appeared to express the intercalary segment marker lab. In their 

description of lab expression, Diederich et al. (1989) show that lab is expressed across
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the embryo. Moreover, my double in situ hybridisations give some support for the co­

expression of the stomodeal domain of cnc and croc with this lab domain in the earlier 

embryonic stages.

However, I do not believe that this contradicts the interpretation of the Drosophila 

intercalary segment I have presented. My arguments for homology are based on shared 

details of cnc and croc expression in Drosophila and Tribolium. It seems very unlikely 

that any new expression domain in the ventral intercalary segment in flies would 

resemble so strongly the expression and modulations of the domain anterior to the 

intercalary segment in beetles. Whilst it may be true that these cells expressing cnc and 

croc do transiently express lab earlier in embryogenesis, this difference in expression 

with Tribolium is most likely a result of the derived embryogenesis of Drosophila. The 

blastoderm of Drosophila is topologically a very different environment to the germ 

rudiment of Tribolium and it is therefore likely that the early regulation of gene 

expression differs between the two. It is possible that lab is first expressed in a more 

extensive domain in the fly which is subsequently refined. Homology should not be 

assigned on the basis of shared expression of a single gene. Rather, detailed similarities 

in the relative positions and timings of expression for several genes, such as those 

presented here should be used to assign homology.

4.5.3 Differences in the early embryology of Drosophila and Tribolium

This argument relies on the homology of the expression of cnc and croc orthologues 

behind the stomodeum of Drosophila and Tribolium. However, there are differences in 

the early modulations of this domain, in particular for croc. In Drosophila a gap was 

reported in the ventral expression of croc which was bridged later by the stomodeal 

domain. Such a gap in expression could not be seen in the Tribolium orthologue 

suggesting that the stomodeal expression may not be a domain which appears late in 

embryogenesis, but instead part of the early anterior domain of expression. It is 

therefore necessary to address what lies behind these early differences in expression.
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The position of the foregut anlage, from which the stomodeum forms, differs between 

Drosophila and Tribolium (see figure 4.10). In Drosophila, the ventral furrow (from 

which the prospective mesoderm forms) stops posterior to the foregut anlage (de 

Velasco, et al., 2006). In contrast, the prospective mesoderm of Tribolium (the middle 

plate) runs to the anterior-most point of the embryo (Handel, et al., 2000). The precise 

position of foregut anlage has not yet been fate mapped in the beetle, but as it is an 

ectodermal structure it must be bisected by the prospective mesoderm.

Drosophila

Foregut anlage
Invaginating mesoderm

Figure 4.10. Differences in the location of the foregut anlage in Drosophila and Tribolium.
Schematics showing the position of the foregut anlage (blue) relative to the invaginating mesoderm 
(red) in a late blastodermal Drosophila embryo and a germ rudiment Tribolium embryo (yellow 
represents yolk). Embryos shown in ventral view with anterior up. In Drosophila the foregut anlage 
lies anterior to the site of meodermal invagination (the ventral furrow). In contrast, the prospective 
mesoderm in Tribolium (the middle plate) runs to the anterior point of the embryo and therefore splits 
the foregut anlage (an ectodermal structure). The dashed lines surrounding the Tribolium foregut 
anlagen indicate that its position is predicted, as it has not been fate mapped. Schematics based on de 
Velasco et al. (2006) for the position of the Drosophila mesoderm relative to the foregut anlage and 
Handel et al. (2005) for the location of the prospective mesoderm of Tribolium.
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These differences in the relative positions of the prospective mesoderm and the foregut 

anlage have clearly altered the embryology of the prospective stomodeum. In 

Drosophila, the foregut anlage is always a single domain, whilst in Tribolium the two 

halves of the foregut anlage must come together as the prospective mesoderm 

invaginates. Given this difference in early embryology, it is not surprising that the early 

gene expression associated with the forming stomodeum differs. Interestingly, the 

position of the forming mesoderm posterior to the foregut anlage in Drosophila means 

that the developing mesoderm undergoes anterior migration from the anterior ventral 

furrow (de Velasco, et al., 2006); such migrations do not occur in other Tribolium 

where the prospective mesoderm runs to the anterior of the embryo. It seems that these 

differences in mesodermal embryology also appear to be associated with differences in 

gene expression; as I showed, Tc-kn is expressed in the head mesoderm from early on in 

Tribolium, but only at a later stage in its Drosophila orthologue. The expression 

patterns must be interpreted in the context of the embryology.

4.5.4 Implications for the Drosophila head fate map

My results are in agreement with the arguments made by Mohler et al. (1995) and 

Seecoomar et al. (2000) that the hypopharyngeal lobes do not represent a major 

embryonic component of the intercalary segment. However, there are important 

differences from my interpretation. Whilst both these studies argue that the 

hypopharyngeal lobes belong to the mandibular segment, I have shown that some 

aspects of gene expression that have previously been attributed to the hypopharyngeal 

lobes (namely croc expression and part of cnc expression) do not belong to the 

mandibular segment. Rather I argue that they belong to a distinct domain associated 

with the stomodeum. Therefore the lobes are a composite structure, the posterior being 

part of the mandibular segment and the anterior deriving from cells associated with the 

stomodeum.

This has implications for the Drosophila  head fate map and in particular the 

primordium of the posterior pharyngeal wall (ppw). Jurgens et al. (1986) showed that 

ablation of the hypopharyngeal lobes led to the loss of the ppw. However, Mohler et al.
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(1995) questioned this interpretation, arguing that cells originating at the base of the 

labrum were found in the ppw. They suggested that some of these cells may have been 

ablated by Jurgens et al. (1986) as well as the cells residing in the hypopharyngeal 

lobes. My results support the view of Jurgens et al. (1986). Mutants of cnc and croc 

lose the ppw and I have shown that these genes are co-expressed behind the stomodeum 

in part of the hypopharyngeal lobes. Therefore, it seems likely that they are involved in 

the differentiation of the hypopharyngeal lobes to a pharyngeal fate. This is not to say 

that cells at the base of the labrum do not also contribute to the ppw. The cnc and croc 

expressing domain and the base of the labrum lie immediately posterior and anterior to 

the stomodeum respectively. Given that the ppw lies immediately anterior to the 

oesophagus, an origin from cells immediately posterior and anterior to the stomodeum 

would be expected.

Functional work in Tribolium would be required to confirm whether this domain 

expressing cnc and croc gives rise to part of the foregut. Interestingly Rogers et al. 

(2002) also identified a similar domain of cnc expression in the milkweed bug 

Oncopeltus fasciatus. Whilst they argued that it belonged to the anterior intercalary 

segment, this assignment was made in the absence of any markers. In the light of my 

results it seems likely that this domain is homologous to the stomodeal domain that I 

have identified in Drosophila and Tribolium. It therefore seems that this expression 

domain is conserved more widely in the insects, although Rogers et al. (2002) do not 

report the presence of this domain in the firebrat, Thermobia domestica.

4.6 Conclusions

I addressed the issue of what constitutes the intercalary segment in the model organism 

Drosophila melanogaster, specifically asking whether a pair of lobes behind the 

stomodeum -  the hypopharyngeal lobes -  constitute the ventral part of the intercalary 

segment. I took a comparative approach and demonstrated that the genes expressed in
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the Drosophila hypopharyngeal lobes are expressed in homologous structures in the red 

flour beetle Tribolium castaneum, but that these genes are not expressed in the 

intercalary segment of either insect. On this basis, two of the genes previously 

implicated in patterning the Drosophila intercalary segment -  cnc and croc -  do not 

appear to have a role in the development of the segment. Therefore, very few genes are 

known with a clear role in patterning the intercalary segment in Drosophila and other 

insects; only kn and lab have conserved expression patterns between the beetle and fly. 

In the following chapter I address this issue, using the comparative approach presented 

here to find more candidate genes for patterning the insect intercalary segment.
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Chapter 5: 

The development of the intercalary 
segment and the search for new genes

5.1 Summary

Little is known about how the intercalary segment develops in the model organism 

Drosophila melanogaster or any other insect. In this chapter I attempt to further what is 

known about insect intercalary segment development. I present a screen to identify 

additional candidate genes for patterning the segment, searching for genes with 

conserved expression patterns in the intercalary segments of Drosophila and Tribolium 

castaneum. I first identified genes with expression in the intercalary segment of 

Drosophila, by searching through the Berkley Drosophila Genome Project expression 

pattern database. I then identified orthologues of these genes in Tribolium genome 

using the BeetleBase database. I finally carried out in situ hybridisations for these 

genes in Tribolium to see if the intercalary segment expression pattern in Drosophila is 

conserved. Using this screen I identified four genes with expression patterns associated 

with the intercalary segment; one with expression in the posterior intercalary segment 

ectoderm and three with expression in the intercalary segment mesoderm. Moreover, I 

suggest that the three genes with conserved expression in the intercalary segment 

mesoderm are specifically expressed in developing hemocytes; possibly the major 

mesodermal derivative of the segment.
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5.2 Introduction

Having resolved what constitutes the intercalary segment of the model organism 

Drosophila melanogaster, it seems that very few genes appear to have a clear role in 

patterning the intercalary segment, even in the fly. As we have seen, the head gap-like 

genes have a well-characterised role in establishing the segment, but this is not 

conserved in red flour beetle Tribolium castaneum. Only knot (kn) has a definite role in 

the development of the segment in Drosophila and a conserved expression pattern in 

Tribolium. cap‘n ’collar (cnc) and crocodile (croc) which had previously been 

implicated in patterning the segment in the fly, are not expressed in the intercalary 

segment in either Drosophila or Tribolium. Also, whilst the Drosophila expression 

pattern of labial (lab) does now appear to be the same as in other insects, lab mutants in 

the fly and RNAi knock downs in the milkweed bug Oncopeltus fasciatus have shown 

no obvious phenotype relating to the intercalary segment.

Given that the intercalary segment has a very derived morphology in comparison to the 

ancestral crustacean second antennal segment, there is clearly a lot about its 

development that is not known. It is probable that there are still a number of genes that 

play a role in the patterning of the segment that have not yet been discovered. For 

example, the segment possesses no appendages and no genes have been implicated in 

any developmental basis to this. Also, the structure of the mesodermal somites is unlike 

that of any other segment, yet it is not known how they differentiate differently to any 

other segment.

Fortunately, studies of development in the arthropods and in particular the insects are 

greatly aided by the many resources created for the study of Drosophila. Drosophila is 

arguably the best-studied organism in terms of its developmental genetics, with only 

Caenorhabditis elegans being understood to anything like a comparable level. 

Consequently, the techniques available for studying the fly surpass those available for 

any other arthropod. As well as a range of embryological tools for studying 

Drosophila, there are an increasingly large number of online resources. Many of these 

are provided by the Berkeley D r o s o p h i l a  Genome Project (BDGP;
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http://www.fruitfly.org/). The BDGP is a consortium of the Drosophila Genome 

Centre, whose goals are to finish the sequence of the euchromatic genome of 

Drosophila melanogaster to high quality and to maintain biological annotations of this 

sequence. One of the further aims of the BDGP is to characterise the sequence and 

expression of Drosophila cDNAs. As part of this project they have used high- 

throughput RNA in situ hybridisation to establish a database of gene expression patterns 

during embryonic development of Drosophila (Tomancak, et al., 2002).

This BDGP expression pattern database provides a source of expression patterns for a 

number of genes, including many as yet unstudied genes, only known by their 

annotation identifier (CGnnnn or CGnnnnn). The expression patterns in the database 

are grouped into various developmental stages, and within each stage are annotated by 

the embryonic structures each gene is expressed in. These annotations allow the 

database to be searched for expression in particular embryonic structures during the 

different developmental stages. A number of genes expressed in a particular part of the 

embryo can be recovered, several of which may be unstudied genes not previously 

implicated in the development of that structure. Given that lack of knowledge about the 

development of the intercalary segment, the database provides a potential source of 

genes with localised expression in and around the segment. Such genes are obvious 

candidates for a role in patterning the Drosophila intercalary segment.

However, head development in Drosophila has a number of derived features for an 

insect. As was discussed in chapter 4, several features of Drosophila head embryology 

appear derived, most likely as a result of head involution. These morphogenetic 

movements almost certainly have unique gene expression patterns associated with them. 

Also, several features of early Drosophila head development are not conserved in other 

insects. It has already been seen that the overlapping expression domains of the gap­

like genes that play a role in the segmentation of the Drosophila head are not conserved 

in Tribolium. In addition, the morphogen Bicoid that is involved in regulating much of 

early gene expression in the head is unique to the higher Diptera (Lynch, et al., 2006, 

Schroder, 2003). It is, therefore, unclear to what extent a solely Drosophila based 

model of intercalary segment development would be applicable to other insects.

http://www.fruitfly.org/
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In spite of these derived features of Drosophila  head development, it is not 

unreasonable to assume that the conserved morphological features of the fly intercalary 

segment would be underpinned by at least some features of development conserved in 

other insects. For example, despite the many difference in early head development, the 

hox genes Deformed (.Dfd), Sex combs reduced (Scr) and proboscipedia (pb) appear to 

have several conserved functions in patterning the posterior head and mouthparts in a 

range of insects (Hughes and Kaufman, 2002b). Searching for the features of 

Drosophila intercalary segment development that are conserved in other insects would 

seem to be a productive approach to studying insect intercalary segment development.

Based on this premise I have carried out a screen to identify new candidate genes for 

patterning the intercalary segment. Specifically, I have looked for genes with conserved 

expression patterns between Drosophila and Tribolium. Firstly, using the BDGP 

expression pattern database, I identified genes with an intercalary segment expression 

pattern in Drosophila. I identified orthologues in Tribolium and cloned partial cDNAs. 

I examined their expression patterns in Tribolium  to see if they had conserved 

expression in the intercalary segment. This approach successfully recovered a set of 

genes with conserved expression patterns between the fly and beetle.

5.3 Materials and Methods

5.3.1 Screening the BDGP expression pattern database

The BDGP expression pattern database was searched for genes with expression patterns 

relating to the intercalary segment. The annotations do not go down to the level of 

structures as specific as individual segments. Therefore, to find expression patterns 

potentially relating to the intercalary segment, using the Basic Search option the 

database was searched for genes with expression in the procephalic ectodermal and 

head mesodermal anlagen and primodia (see table 5.1 for the precise search terms used).
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Table 5.1. Search terms used in the Basic search of the 
BDGP expression pattern database. Combinations of the 
embryonic stage and corresponding embryonic structure are 
given.

Stage Embryonic structure
4-6b procephalic ectoderm AISN
7-8 procephalic ectoderm Anlage
9-10 procephalic ectoderm PR
4-6b head mesoderm AISN
7-8 head mesoderm anlage

9-10 head mesoderm P2 PR

The search recovered a number of genes with a range expression patterns in the head. 

Many genes recovered by the search were expressed in structures that were not relevant 

to the intercalary segment. For example, only a subset of expression patterns in the 

procephalic ectoderm Anlage for a stage 7-8  embryo would be relevant to the 

intercalary segment. The expression patterns for all the genes recovered by each search 

were inspected by eye, and genes with expression in structures deemed to be relevant to 

the intercalary segment were selected (see section 5.3.2). Annotations are described by 

the BDGP as a “work in progress” (http://www.fruitfly.org/ex/FAQ.htm) and so there 

could be a level of inaccuracy. For example expression in some stages may be missed 

or germ layers could be misidentified. Therefore, all stages were inspected for any 

possible intercalary segment expression, not just the stage specified in the search. All 

genes with possible intercalary segment expression patterns were selected, not just 

regulatory genes such as transcription factors and signalling proteins, which would be 

expected to have a developmental role. Other genes with localised expression patterns 

could have roles in the differentiation of specific segmental structures.

5.3.2 Intercalary segment expression patterns

Potential expression in the intercalary segment ectoderm was based on similarity to the 

two genes known to have localised expression in the segment, namely lab and kn (see 

chapter 4). These domains are summarised in figure 5.1 A-C. Genes with expression 

patterns resembling these domains, or with distinctive patterns within or bordering these 

domains were selected.

http://www.fruitfly.org/ex/FAQ.htm
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Ectodermal expression

cf cf

st

Mesodermal expression

T-bar

Figure 5.1. Schematics showing domains of gene expression associated with the intercalary 
segment. Areas of interest are shown in orange. A-C show the domain of expression in the ectoderm 
in a late blastoderm embryo (A), gastrulating embryo (B) and germband extending embryo (C). The 
position of the cephalic furrow (cf) marking the back of the procephalon is shown in A, B and C, and 
the position of the stomodeum (st) is shown in C. D and E show the domain of expression in the 
mesoderm during gastrulation. The cephalic furrow and the anterior “T-bar” of the ventral furrow 
(see de Velasco, et al., 2006) are shown in D and E. The extent of the internalised mesoderm is 
marked by the dashed line.
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Potential expression in the intercalary mesoderm was as described by de Velasco et al. 

(2006). They argue that the region between the front of the ventral groove (the “T- 

Bar”) and the cephalic furrow of the gastrulating embryo (their primary head mesoderm 

domains B and C) belongs to the intercalary segment (summarised in figure 5.1 D, E). 

Genes with expression in these areas also were selected. For older embryos, genes with 

expression patterns in the posterior head mesoderm were also selected.

5.33 Identification of Tribolium orthologues

Tribolium orthologues of the genes selected from the BDGP expression pattern database 

search were identified by a BLAST search of the Tribolium genome followed by a 

reciprocal BLAST search of Drosophila proteins, as described in section 2.3.5 

(accession numbers for Drosophila query sequences are given in appendix 1 table 

A 1.3). Several of the Drosophila candidate genes had multiple isoforms in GenBank. 

To identify the most appropriate isoform for use as the query sequence in the BLAST 

search, the different isoforms were aligned using MacClade 4.06, and the isoform which 

represented most sequence was chosen. In cases where different isoforms had very 

different sequences, all were used as query sequences.

5.3.4 Tribolium in situ hybridisation screen

Tribolium stocks were maintained as described in section 2.3.1, and embryos were 

collected and fixed as described in sections 2.3.2, 2.3.3 and 2.3.9. Partial cDNAs of the 

Tribolium orthologues of Drosophila intercalary segment genes were amplified by PCR 

from Tribolium cDNA (primer sequences are given in appendix 2, table A2.2) and 

cloned (see sections 2.3.4 and 2.3.6). In situ hybridisation was carried out as described 

in section 2.3.10 using DIG labelled probes (see section 2.3.8); 5 p\ of probe was used. 

In the cases when no stain showed up within 4-5 hours, embryos were left to develop 

the stain at 4°C overnight. To confirm that when probes did not show any localised 

expression it was not due to a general problem affecting the batch of embryos used or 

the buffers used, a positive control was run at the same time, using the same batch of
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embryos and buffers. This was typically using the probes for Tc-cnc, Tc-croc or Tc-kn 

(see chapter 4). Embryos were prepared and imaged as described in section 2.3.13.

During the course of the screen it had become apparent that preabsorbing the antibody 

and using less probe reduced background for fluorescein labelled probes and marginally 

improved the signal to background ratio for DIG labelled probes (see section 2.3.12). 

Therefore, to produce clearer expression patterns, for these final genes 0.5 pi 1 probe was 

used and the anti-DIG antibody was preabsorbed to Tribolium embryos. To investigate 

whether the altered conditions could have recovered localised expression patterns that 

would have been missed under the previous set of conditions, a batch of genes was 

chosen for which Tribolium in situ hybridisation under the original conditions displayed 

either high background or no localised expression pattern. These were repeated under 

the new conditions. This did not affect whether an expression pattern was recovered or 

not.

5.3.5 Detailed examination of Tribolium and Drosophila expression patterns

For a few of the genes, a subsequent more detailed examination of the Tribolium 

expression patterns was carried out and the Drosophila expression patterns were also 

examined. Tribolium in situ hybridisation was carried out using the DIG labelled 

probes synthesised in section 5.3.4. Other Tribolium techniques were as described in 

section 5.3.4. For Drosophila, complete cDNAs were ordered from the Drosophila 

Gene Collection as described in section 2.3.7 (clone names are given in appendix 3, 

table A3.1) and DIG labelled probes were synthesised as described in section 2.3.8. 

Drosophila stock maintenance, embryo collection and fixation were as described in 

sections 2.3.1, 2.3.2, 2.3.3 and 2.3.9. For both Tribolium and Drosophila in situ 

hybridisation was carried out as described in section 2.3.10; conditions were varied to 

reduce background as described in section 2.3.12. Tribolium and Drosophila embryos 

were prepared and imaged as described in section 2.3.13.
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5.4 Results

5.4.1 BDGP expression pattern database screen

Screening the BDGP expression pattern database recovered 63 genes with expression 

patterns relating to the Drosophila intercalary segment. These expression patterns are 

shown in figure 5.2. Out of these 63 genes, 21 had possible expression in the 

intercalary ectoderm. 14 of these genes had expression patterns associated with the 

posterior of the procephalon (by comparison to the search images in figure 5.1 A and 

B). The remaining 7 showed other distinctive domains of expression associated with 

the intercalary ectoderm (expression within or along the edges of the areas of interest 

marked in figure 5.1 A-C). 42 genes had expression patterns relating to the intercalary 

segment mesoderm. Of these, 24 had expression patterns associated with the early 

intercalary segment mesoderm (by comparison to the search images in figure 5.1 D and 

E), whilst 18 were expressed later on in the posterior head mesoderm. The domains of 

expression of these genes are summarised in table 5.2. Additionally, out of the 63 

genes, 33 were previously unstudied genes only known by their annotation identifier. 

The rest were named genes, which had been studied to different extents, but as yet had 

not been explicitly implicated in patterning the intercalary segment. For simplicity, 

genes will be referred to by their annotation identifiers even if they have been named.

5.4.2 Identifying Tribolium orthologues

It was not possible to identify Tribolium orthologues for all 63 of these Drosophila 

genes using a BLAST search of the Tribolium genome followed by a reciprocal BLAST 

search of the Drosophila protein database. I will now describe the different outcomes 

of the reciprocal BLAST search, which are summarised in table 5.3.
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A - Expression at the posterior of the procephalon 
GC30ft7 GC3424 CG3732 GC5059

CG11798 CG13651

CG31607 CG32434

GC13894

GC6096 CG11208

CG18375

B - Other expression associated with the intercalary 
segment ectoderm
CG5893

CG17786

CG7271 CG12708 CG 13475

CG31629 CG318T1

#
Figure 5.2. Drosophila gene expression patterns relating to the intercalary segment. Embryos 
orientated with anterior left. Most embryos are in lateral view with dorsal up. Some embryos are in 
ventral view. Stages vary between genes. Genes with similar expression patterns have been grouped 
together. Expression patterns are grouped according to whether the gene is expression in the 
ectoderm (A and B) or the mesoderm (C and D). Ectodermal genes with expression patterns at the 
posterior of the proecphalon (expression associated with the cephalic furrow) are shown in A. Other 
ectodermal expression patterns potentially relating to the intercalary segment are shown in B. 
Mesodermal genes with expression patterns in the gastrulating embryo between the T-bar and cephalic 
furrow (as in de Velasco, et al., 2006) as shown in C. Mesodermal genes with later expression in the 
posterior procephalon are shown in D. Genes are labelled according to their annotation identifier. 
Images have been taken from the BDGP expression pattern database (http://www.fruitfly.org/cgi- 
bin/ex/insitu.pl).

http://www.fruitfly.org/cgi-
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C - Expression in the early mesoderm
CG1322 <CG3184

CG4280 iCG4501

r ZZ
CG6207 iCG9005

%

CG10521 CG10746

CG11188 CG12177

CG31150 CG32372

*  ♦

CG3879 CG4261

M  Qf

CG5840 CG6117

CG10130

CG11051 CG11100

CG13037 CG15162

CG33099

(Figure 5.2 continued)



D - Expression in the late mesoderm
GC14m GC1942 CG3597

CG4322 CG5663 GC8036

•  #
GC9148

CG10960

GC17932

GC9415

CG11415

t o

GC32858

CG9520

GC11546

GC3792

GC9171

CG10072

GC15211

(Figure 5.2 continued)
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Table 5.2. Drosophila genes recovered by searching the BDGP expression pattern database for 
expression in the intercalary segment Genes are grouped according to similar expression patterns (see 
figure 5.2). Genes are named according to their annotation identifier; where the gene has been named 
this is given as well. The total number of genes expressed in each region is indicated at the bottom.

Ectodemal expression Mesodermal expression
Posterior procephalon Other Early Late

CG3097 CG5893 - Dichaete CGI322 - Zn finger CG1444
CG3424 (D) homeodomain 1 (zfhl) CG1942
CG3732 CG7271 CG3184 CG3597
CG5059 CGI2708 CG3879 - Multi drug CG3762 - Vha68-2

CG5249 - Blimp-1 CGI3475 - HGTX resistance 49 (Mdr49) CG4322 - moody
CG5575 - ken and CG 17786 CG4261 - Helicase CG5663

barbie (ken) CG31629 89B (Hel89B) CG8036 - Dipeptidase
CG6096 - E(spl) CG31811 - centaurin CG4280 - croquemort C (Dip-C)

region transcript M5 gamma 1A (cenGlA) (crq) CG9148 - supercoiling
(HLHmS) CG4501 - bubblegum factor (scf)
CGI 1208 (bgm) CG9171

CGI 1798 - charlatan CG5840 CG9415-Xfco;c
(chn) CG6117 - cAMP- binding protein-1

CG13651 - distal dependent protein (Xbpl)
antenna-related (danr) kinase 3 (Pka-C3) CG9520

CGI 3894 CG6207 CGI0072 - sugarless
CGI 8375 CG9005 (sgl)
CG31607 CG9238 CG10960

CG32434 - schizo (siz) CG10130 - Sec61b 
CG 10521 - Netrin-B 

(NetB)
CG 10746 
CGI 1051 
CGI 1100 
CGI 1188 
CG12177

CGI3037 - 
mitochondrial 

ribosomal protein S34 
(mRpS34)

CG15162 - 
Misexpression 

suppressor ofras 3 
(MESR3)

CG31150 
CG32372 

CG32423 -  alan 
shepard (shep)

CG33099

CGI 1415- 
Tetraspanin 2A 

(Tsp2A)

CGI 1546 - kermit 
CG15211 

CGI7932 - Ugt36Bc 
CG32858 - singed (sn)

14 1 24 18
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Table 5.3. Summary of the results of the reciprocal BLAST search 
for direct orthologues of the D rosophila  genes with expression 
patterns relating to the intercalary segment. Genes are grouped 
according to whether the BLAST search of the Tribolium genome 
recovered no similar sequences or multiple similar sequences, or whether 
the reciprocal BLAST search of the Drosophila protein database was 
unable to distinguish a direct orthologue from potential paralogues or did 
identify a direct orthologue. For the genes where a direct orthologue was 
identified in the Tribolium  genome, genes where primers were not 
designed are shown in italics. The number of genes in each category is 
shown at the bottom. For more details see section 5.4.2.

No similar 
sequence

Multiple similar 
sequences

Potential
paralogues

Direct
orthologues

CG5059 
CG7271 
CG9005 

CG 10746 
CGI 1051 
CGI 1100 
CG 12708 
CGI 3894 
CG15211 
CG 17786 
CG31607 
CG31629 
CG33099

CG3879
CG6117
CG10960

CGI 942 
CG3097 
CG3424 
CG3597 
CG3762 
CG5663 
CG6096 
CG8036 
CG9171 
CGI0521 
CGI 3651 
CGI 7932

13 12

CGI 322 
CG1444 
CG3184 
CG3732 
CG4261 
CG4280 
CG4322 
CG4501 
CG5249 
CG5575 
CG5840 
CG5893 
CG6207 
CG9148 
CG9238 
CG9415 
CG9520 

CG 10072 
CG10130 
CGI 1188 
CGI 1208 
CG11415 
CGI 1546 
CGI 1798 
CG12177 
CGI3037 
CGI 3475 
CG15162 
CGI 8375 
CG31150 
CG31811 
CG32372 
CG32423 
CG32434 
CG32858 

35
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No similar sequence

For 13 of the 63 Drosophila genes, no Tribolium sequence could be identified which 

showed similarity to the Drosophila query sequence. At best Tribolium sequences 

could be found that showed similarity to only a small fraction of the Drosophila query 

sequence, and the quality of alignment was poor (a BIT score of less than 80). The 

BLAST search returned similar sequences in the Tribolium genome for the remaining 

50 genes.

Mutliple similar sequences

For three genes, a large number of Tribolium sequences showed high levels of similarity 

to the Drosophila query sequence, making it impractical to extract and process all the 

sequence fragments for the reciprocal BLAST search of the Drosophila protein 

database. Therefore, these genes with multiple similar sequences were set aside from 

the analysis for practical reasons.

Potential paralogues

It was not possible to distinguish between a direct orthologue and a potential paralogue 

using the reciprocal BLAST search for a further 12 of the genes. Either the Tribolium 

sequence with the highest E-value recovered genes in Drosophila other than or as well 

as the original query sequence, or multiple highly scoring Tribolium sequences 

recovered the original Drosophila query sequence. In these cases it was difficult to 

ascertain which Tribolium sequence was orthologous to the original Drosophila 

sequence, if indeed any direct orthologue existed. Therefore, these genes were also 

excluded from the analysis.

Direct orthologues

For the remaining 35 genes, the reciprocal BLAST recovered a clear Tribolium 

orthologue. Primers were designed to PCR amplify partial cDNAs of these genes for
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probe synthesis. For three of these genes primers were not designed and so partial 

cDNAs were not amplified.

5.4.3 Tribolium expression patterns

Expression patterns were examined for the 32 genes with orthologues in Tribolium for 

which primers were synthesised. No clear Tribolium expression pattern could be seen 

for 15 of these genes. Either no expression pattern was clearly visible, or the embryo 

stained strongly with background. A variety of expression patterns were seen in the 

remaining 17 genes, not all relating to the intercalary segment. These are presented in 

figure 5.3. I will now describe the Tribolium expression patterns, illustrating where 

they appear to be conserved with Drosophila. Table 5.4 summarises which genes had 

localised expression patterns and which of these had expression patterns associated with 

intercalary segment.

Ectodermal expression

Four of the genes with Tribolium expression patterns had Drosophila orthologues where 

expression was associated with the posterior of the procephalon (figure 5.3 A). One of 

these genes (7c-CG32434) showed no expression associated with the posterior of the 

procephalon in Tribolium. Instead, there appeared to be expression associated with the 

middle plate and the prospective mesoderm, although this was not very striking. The 

other three genes all showed a band of expression across the anterior of the embryo. 

Tc-CG5249 and 7c-CG18375 both showed a band of expression immediately posterior 

to the head lobes, where gene expression associated with the intercalary segment would

Figure 5.3. Tribolium expression patterns for orthologues of the genes with expression patterns 
relating to the Drosophila intercalary segment. (Following page).. Embryos orientated with 
anterior to the left. Brightfield images. For each gene, expression patterns are shown around the time 
of gastrulation and at early, middle and late times in germband extension. For 7c-CG4501 and Tc- 
CG 11415, expression in germband retracting embryos are also shown as there is no obvious 
expression during earlier stages. Genes are presented grouped in accordance with where their 
Drosophila orthologue was expressed, namely the posterior of the procephalon (A), other ectodermal 
expression domains (B), early mesodermal expression (C) and late mesodermal expression (D). 
Expression patterns are not shown for genes that did not have any localised expression.
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A - "Posterior procephalon" group genes 

7C-CG5249 7c-CG5575

7c-CG 18375



B - "Other ectodermal expression" group genes 

7c-CG5893 13475

7c-CG31811

(Figure 5.3 continued)
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C - "Early mesodermal expression" group genes 

7C-CG1322 7C-CG4501

<

■ m

r %

7c-CG6207 7c-CG9238

I P

(Figure 5.3 continued)
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C (continued)

7c-CG32372 7c-CG32423

(Figure 5.3 continued)
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D - "Late mesodermal expression" group genes 

7c-CG4322 7c-CG11415

V

7c-CG11546 7c-CG32858■ ■

(Figure 5.3 continued)
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Table 5.4. Summary of Tribolium  expression patterns. Genes are 
organised according to the expression patterns of their Drosophila 
orthologues (see table 5.2) and are grouped according to whether a detailed 
examination showed expression associated with the intercalary segment (see 
section 5.4.4), or there was a localised expression pattern elsewhere in the 
embryo, or there was no localised expression.

Ectodermal Mesodermal
Posterior

procephalon Other Early Late

Expression associated with the intercalary segment
Tc-CG5249 Tc-CG32423 

Other localised expression patterns

Tc-CG4322 
Tc-CG32858

7c-CG5575 Tc-CG5893 Tc-CG 1322 Tc-CG11415
Tc-CG 18375 Tc-CG13475 Tc-C G4501 Tc-CG 11546
7c-CG32434 Tc-CG31811 Tc-CG6207 

Tc-C G9238 
Tc-C G32372

No localised expression
7c-CG3732 Tc-C G3184 Tc-CG1444

Tc-CG 11208 Tc-CG4261 Tc-C G9148
Tc-CG 11798 Tc-CG4280 Tc-CG9520

Tc-CG5840 Tc-CG10072
Tc-CG10130
Tc-CG12177
Tc-CG 13037
Tc-CG31150

be expected. For 7c-CG5575 the band of expression lay too posteriorly from the head 

lobes to be implicated in the intercalary segment.

A further three genes with Tribolium expression patterns had Drosophila orthologues 

with other expression patterns in the intercalary ectoderm (7c-CG5893, Tc-CG 13475 

and 7c-CG31811; figure 5.3 B). None of these three genes appeared to show 

intercalary segment specific expression in Tribolium. 7c-CG31811 had localised 

expression in the head, but in head lobes not the intercalary segment. 7c-CG5893 and 

Tc-CG13475 had segmentally repeating expression patterns.
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Mesodermal expression

The remaining 10 genes with Tribolium expression patterns had Drosophila orthologues 

with expression in the potential intercalary mesoderm (figure 5.3 C and D). 6 of these 

genes do not appear to show any expression associated with the intercalary segment. 

Three of them (Tc-CG6207, 7c-CG9238 and 7c-CGI 1415) were expressed in the head, 

but this expression did not appear to relate to the intercalary segment. The remaining 

four genes (Tc-CG1322, Tc-CG4322, Tc-CG32423 and Tc-CG32858) all showed a 

striking domain of expression coincident with the posterior-most extent of the head 

lobes; the region associated with the intercalary segment. Whilst Tc-CGI322 and 7c- 

CG32858 also had expression in other regions of the embryo, expression of 7c-CG4322 

and 7c-CG32423 was restricted to this domain in the head.

5.4.4 Detailed examination of the candidate intercalary segment genes

I further examined the Tribolium expression patterns for the genes that appeared to 

show conserved expression associated with the intercalary segment to confirm whether 

or not there was in fact expression in the segment.

Ectodermal expression

Tc-CG18375 is expressed posterior to the head lobes. However, closer inspection of its 

expression showed that whilst there is a band of expression at the back of the 

procephalon, this is in fact associated with the mandibular segment (figure 5.4 A and 

B). Additionally expression is restricted to the mesoderm (figure 5.4 C), not the 

ectoderm as was originally expected.

Tc-CG5249 (see figure 5.4 D-G) has a complicated expression pattern. Expression is 

seen in the germ rudiment in a series of bands, including one immediately posterior to 

the head lobes, as well as further expression in the prospective head mesoderm and 

across the head lobes (figure 5.4 D). These bands persist through gastrulation (figure

5.4 E). As the germband extends, transcripts are maintained immediately posterior to
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Tribolium CG18375

Tribolium CG5249

Figure 5.4. Gene expression at the posterior of the Tribolium procephalon. (A-C) Expression of 
7c-CG 18375. (D-G) Expression of Tc-CG5249. (A, B. D-G) Ventral views of embryos orientated 
with anterior up. (C) Lateral view of embryos orientated with anterior left. Nomarski images. 7c- 
CG18375 expression is first seen during early germband extension as a faint band across the embryo 
posterior to the head lobes (A). As the germband extends further and the segments become 
morphologically distinguishable, expression intensifies and appears to reside in the mandibular 
segment (B; arrowheads mark the approximate position of the intercalary-mandibular segment 
boundary). Additionally, expression appears restricted to the mesoderm (C). 7c-CG5249 expression 
is first seen in the germ rudiment as a series of bands across the embryo; one immediately posterior to 
the head lobes, with a further two bands in the trunk and faint expression across the head lobes (D). 
This pattern persists through gastrulation (E). As the germband extends (F), the band of expression at 
the posterior of the head lobes perisits, whilst the expression across the head lobes begins to fade and 
the expression in the trunk undergoes a complicated series of modulations. As the segments become 
morphologically distinct (G), the expression at the posterior of the head lobes can be seen to largely 
reside in the mandibular segment, extending into the posterior intercalary segment (arrowheads in G 
mark the approximate position of the intercalary-mandibular segment boundary).
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the head lobes, whilst the more posterior bands undergo a series of complex 

modulations (figure 5.4 F). The band of expression at the base of the head lobes is still 

apparent when the segments become morphologically distinct (figure 5.4 G). At this 

point, it largely appears to be associated with the mandibular segment. However, the 

anterior-most limit of expression appears to extend into the intercalary segment. 

Therefore, expression of 7c-CG5249 does appear to be associated with the intercalary 

segment.

Mesoderm.

Tc-CG1322, Tc-CG4322, 7c-CG32423 and 7c-CG32858 all showed a striking central 

domain of expression coincident with the posterior-most extent of the head lobes; a 

region that appears to correspond to at least part of the intercalary segment. However, 

closer inspection of Tc-CG1322 suggests that the expression of this gene is not localised 

to the intercalary segment but rather is expressed throughout the mesoderm (figure 5.5). 

The stronger expression associated with the intercalary segment appears to be because 

this block of mesoderm does not show the typical spreading seen in the mesodermal 

somites of the other segments, and so whilst expression in mesodermal tissue has 

thinned out in other segments, it remains as a large block beneath the intercalary 

segment (figure 5.5 D and E). This block of mesoderm does eventually spread (figure

5.5 F), but even at this stage does not appear typical for a mesodermal somite.

Expression for the other three genes (Tc-CG4322, 7c-CG32423 and 7c-CG32858) is 

localised to the domain coincident with the posterior of the head lobes (figure 5.6), 

which would appear to correspond to the intercalary mesoderm (compare with the 

intercalary segment mesoderm in figure 5.5). 7c-CG32858 does have a more extensive 

early expression pattern (as shown in figure 5.3), but by late germband extension this 

has become restricted to the domain coincident with the posterior of the head lobes 

(figure 5.6 G-H). Expression in this domain does not persist past the end of germband 

extension. Tc-CG4322 and Tc-CG32423 do not show extensive early expression 

patterns (as shown in figure 5.3). For Tc-CG32423 (figure 5.6 C-F), transcripts begin to 

accumulate early during germband extension, and persist until late germband extension. 

In contrast, expression of Tc-GC4322 (figure 5.6 A and B) is very transient late in
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Tribolium CG1322

Figure 5.5. Expression of Tribolium CG1322. (A, C, D, F) Ventral views of embryos orientated 
with anterior up. (B, E) Lateral view of embryos orientated with anterior left. Nomarski images. 7c- 
CG1322 is expressed through out the developing mesoderm. Transcripts are first found along the 
middle plate in the germ rudiment (A), and then are restricted to a deeper layer of the embryo after 
gastrulation (B). As mesodermal somites form during early germband extension, the expression 
pattern then breaks into repeated units (C) and spread laterally as the germband further extends (D), 
before associating with the forming appendages (F). This is exemplified by the maxillary segment 
(marked with an arrowhead in C, D and F). Expression associated with the intercalary segment (the 
domain between the antennal and mandibular mesoderm, marked with an arrow in C, D, E and F) 
remains intense during germband extension (C and D) as cells expressing the gene remain in a large 
domain and do not spread out laterally (block of cells indicated by arrow in E). By late germband 
extension (F) this intercalary domain begins to break down and spread laterally.
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Tribolium CG4322

Tribolium CG32423

Tribolium CG32858

Figure 5.6. Gene expression in the Tribolium intercalary segment mesoderm. (A, B) Expression 
of 7c-CG4322. (C-F) Expression of 7c-CG32423. (G-I) Expression of Tc-CG32858. (A, C-E, G, H) 
Ventral views of embryos orientated with anterior up. (B, F, I) Lateral view of embryos orientated 
with anterior left. Nomarski images. 7c-CG4322 is expressed in a central domain coincident with the 
posterior-most extent of the head lobes transiently late in germband extension (A). Expression is 
restricted to the mesoderm (B). 7c-CG32423 is expressed in a central domain coincident with the 
posterior-most extent of the head lobes from early in germband extension (C). As germband 
extension continues this domain of expression intensifies (D) before reducing in size by late germband 
extension (E). Expression is restricted to the mesoderm (F). 7c-G32858 expression is restricted to a 
central domain coincident with the posterior-most extent of the head lobes in the later stages of 
germband extension (G, H). Expression is restricted to the mesoderm (I).



173

germband extension. Importantly, for all three genes, expression in this domain appears 

restricted to the mesoderm, being localised in a layer of the embryo beneath the 

ectoderm.

5.4.5 Expression of mesodermal genes in Drosophila

The three genes identified as expressed in the Tribolium intercalary mesoderm were 

expressed in a single central domain. In other segments mesoderm spreads laterally to 

form somites. Therefore the Tribolium expression patterns appear atypical for the 

mesoderm. I examined the expression patterns of the three genes in detail in 

Drosophila (figure 5.7), where the development of the head mesoderm has been 

described (de Velasco, et al., 2006).

CG4322, CG32423 and CG32858 are all expressed in what de Velasco et al. (2006) 

describe as the intercalary mesoderm. All three genes are first seen at the anterior of the 

ventral furrow -  anterior to the cephalic furrow or behind the “T-bar” (figure 5.7 A, B, 

E-G, K and L) -  with expression subsequently spreading laterally along the posterior of 

the procephalon (figure 5.7 C, H, J, M and O). There are differences in the relative 

timings of expression. CG32423 is expressed first, with transcripts accumulating in the 

gastrulating (stage 7) embryo (figure 5.7 F). Expression of CG4322 and CG32858 is 

first seen in the germband extending (stage 8) embryo (figure 5.7 A and K). However, 

expression of CG4322 is most transient with transcripts not seen after late germband 

extension (stage 9) (figure 5.7 C and D), whilst in the germband extended (stage 11) 

embryo CG32423 and CG32858 are expressed extensively across the back of the 

procephalon (figure 5.7 J and O).
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Figure 5.7. Gene expression in the Drosophila intercalary segment mesoderm. (Previous page). 
(A,-D) Expression of CG4322. (E-J) Expression of CG32423. (K-O) Expression of CG32858. (A, 
C, F, H, J, K, M, O) Ventral views of embryos orientated with anterior up. (B, D, E, G, I, L, N) 
Lateral view of embryos orientated with anterior left. Nomarski images. CG4322 expression in first 
seen in the germband extending (stage 8) embryo in a central domain immediately anterior to the 
cephalic furrow (cephalic furrow marked by arrowhead in A and B). Later in germband extension 
(stage 9) the domain of expression has begun to spread laterally (C). By this stage expression is 
clearly restricted to the mesoderm (D). CG32423 expression is first seen in the gastrulating (stage 6) 
embryo at the anterior of the ventral furrow (arrow in E marking the position of the T-bar). In the 
germband extending (stage 8) embryo (F, G) this domain is seen to lie immediately anterior to the 
cephalic furrow (cephalic furrow marked by arrowhead in F and G). Later in germband extension 
(stage 9) this domain of expression has begun to spread laterally (H) and is restricted to the mesoderm 
(I). In the germband extended (stage 11) embryo, expression has spread across the posterior of the 
procephalon (J). CG32858 expression is first seen in the germband extending (stage 8) embryo (K, L) 
in a central domain immediately anterior to the cephalic furrow (cephalic furrow marked by 
arrowhead in K and L). Later in germband extension (stage 9) this domain of expression has begun to 
spread laterally (M) and is restricted to the mesoderm (N). In the germband extended (stage 11) 
embryo, expression has spread across the posterior of the procephalon (O).

5.5 Discussion

The screen described in this chapter was designed to identify genes with conserved 

expression in the intercalary segment between Drosophila and Tribolium. The aim of 

the screen was to identify potential candidate genes for patterning the intercalary 

segment. Four genes were recovered: CG5249 in the posterior intercalary segment 

ectoderm and CG4322, CG32423 and CG32858 in the intercalary segment mesoderm.

5.5.7 Methodological factors contributing to a lack of conservation

This screen was based on the assumption that there would be a number of genes 

involved with patterning the intercalary segment across the insects, and that any such 

genes would have conserved expression associated with the segment. It is, therefore, 

surprising that only four genes with potential intercalary segment expression patterns 

were recovered from an original set of 63 Drosophila candidates identified in the BDGP 

expression pattern database. The small proportion of genes with a conserved expression 

pattern suggests that the developmental processes involved in patterning the segment
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are not conserved between the two insects. However, a number of methodological 

factors could have contributed to this discrepancy.

Selection of Drosophila candidate genes

The first step in the screen protocol was to select Drosophila gene expression patterns 

associated with the intercalary segment, from the BDGP expression pattern database. It 

is possible that several of these candidate genes were not in fact expressed in the 

Drosophila intercalary segment. In some cases, the proposed intercalary segment 

expression may have been an artefact. For example, two of the areas of interest -  the 

back of the procephalon and the intercalary mesoderm -  appear to be associated with 

thicker layers of embryonic tissue resulting from the various furrows that form during 

gastrulation. The thicker tissue could make background or a more widespread 

expression pattern look like more intense staining in these areas. This could explain the 

apparent intercalary segment expression for genes like CGI322, CG3184 and CG3732. 

In fact, CGI322 has been studied in Drosophila where it is known as zinc-finger 

homeodomain protein 1 (zfh-1) (Lai, et al., 1991) and it is expressed throughout the 

mesoderm. If the proposed intercalary expression patterns of these genes are interpreted 

as artefacts, then the expression patterns are in fact conserved in Tribolium. Tc- 

CG3184 and 7c-CG3732 showed no localised expression in the beetle, whilst 7c- 

CG1322 is expressed throughout the mesoderm.

Other genes had striking Drosophila expression patterns, with features in the head 

which were interpreted as belonging to the intercalary segment, and several aspects of 

these expression patterns appeared to be conserved in Tribolium. However, whilst the 

expression in the head did appear to be conserved, it was clearly not localised to the 

intercalary segment. This suggests that the original Drosophila expression pattern was 

misidentified as being associated with the intercalary segment. For example, in both 

insects CGI3475 is expressed along the embryonic midline and whilst Drosophila has 

two distinctive domains in the head, in Tribolium this is clearly just a bifurcation of the 

trunk domain of expression. In the light of these probable expression artefacts and 

misidentifications, it seems that the levels of conserved gene expression patterns
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between Drosophila and Tribolium are higher than four genes out of 63, although not 

all the conserved genes relate to the intercalary segment.

Genes were misidentified as being expressed in the intercalary segment as a result of the 

way they were chosen from the BDGP expression pattern database. Selection of 

Drosophila genes was deliberately naive. Genes with questionable intercalary segment 

expression patterns were included to ensure that no true intercalary genes were missed. 

The in situ hybridisations for the candidate genes could have first been repeated in 

Drosophila before looking at Tribolium, perhaps with segmental marker genes. This 

would have confirmed whether or not a gene was expressed in the Drosophila 

intercalary segment. However, it made more sense to investigate the beetle first, as this 

addressed the vital issue of conservation as well as whether there was expression in the 

intercalary segment. For the same reason an extensive investigation of the Drosophila 

literature was not undertaken at the start of the screen, even though such a review would 

have shown that genes such as CGI322 (zfh-1) do not have localised expression in the 

Drosophila intercalary segment (Lai, et al., 1991).

Removal o f genes from the dataset

In situ hybridiation was only carried out for Tribolium genes where direct orthology 

could be established with Drosophila; by definition an expression pattern can only be 

conserved in an orthologue. For a number of genes direct orthologues could not be 

identified either because too many similar sequences were identified in the Tribolium 

genome for the reciprocal BLAST search to be practical, or because the reciprocal 

BLAST procedure could not distinguish a direct orthologue from possible paralogues. 

However, problems preventing the identification of an orthologue do not mean that no 

orthologue was present in Tribolium. It is possible that the genes discarded from the 

screen do have a conserved intercalary segment expression pattern.

Similarly, primers were not designed for three of the genes where direct orthologues 

had been identified. However, primers could have been designed and probes 

synthesised. These genes could have conserved expression patterns in the intercalary 

segments of Drosophila and Tribolium and this could be examined. Once the various
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stages where genes were discarded for practical reasons are accounted for, the pool of 

Drosophila genes is reduced from 63 to 45 (three genes had multiple similar sequences, 

for 12 genes direct orthologues could not be distinguished from possible paralogues and 

for three genes primers were not designed).

In situ hybridisation conditions

A number of genes with clear Drosophila expression pattern showed no localised 

expression in Tribolium. It is possible that this is a true reflection of gene expression in 

Tribolium. However, all probes were synthesised from cDNA so there must have been 

some level of expression at some point during embryogenesis. It is possible that for 

several of the genes in Tribolium there was localised expression, but this was not 

detected due to problems with the probes. For example, some probes may not have 

been sensitive enough to detect a potentially weak expression pattern.

There are a number of ways in situ hybridisation conditions could be optimised to try to 

address such practical problems, for example a range of probe concentrations could 

have been tried for each gene. Also, different probes could have been synthesised for 

each gene by amplifying different partial cDNAs. However, these measures were not 

practical when screening through a large set of genes. Therefore, it is possible that 

some genes with conserved expression were missed because the expression pattern was 

not visualised.

5.52 The level of conserved expression between Drosophila and Tribolium

Various methodological factors could, therefore, have contributed to the discrepancy 

between the original number of candidate genes in Drosophila, and the number with a 

conserved expression pattern in Tribolium. However, there are clearly genes where the 

Drosophila expression pattern was not conserved in Tribolium. A number of genes 

showed obvious expression around the Drosophila intercalary segment, but had 

different expression patterns in Tribolium. For example CG4501 shows striking 

expression in the head mesoderm of Drosophila as well as segmentally repeated
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expression along the trunk of the germband retracting embryo. In the Tribolium 

orthologue only the trunk expression was observed.

Also, whilst it is true that for the genes where a direct orthologue could not be 

indentified there may still have been a Tribolium orthologue, there is no reason to 

expect that this would be the situation. In many cases these paralogy relationships 

could have involved gene duplications and deletions between the two insects and so it is 

possible that the Drosophila intercalary candidate genes were novel genes, or the 

Tribolium orthologues were lost. It is noteworthy that in the BLAST search of the 

Tribolium genome, a small group of genes showed no sequence similarity in Tribolium. 

This may have been because the Tribolium genome sequence was not complete. 

However, it is more likely that these were genuine examples where there was no 

Tribolium orthologue. The split between the lineages leading to Drosophila and 

Tribolium is ancient -  fossil beetle remains are known from the Permian (over 250 

million years ago) (Lubkin and Engel, 2005). Moreover, comparisons of the Tribolium 

genome with other insect and vertebrate genomes show that whilst 15% of the predicted 

16,404 Tribolium genes have universal single copy orthologues and 9% have insect 

specific orthologues, “thousands” of genes appear to be species specific, with no 

orthologue in Drosophila or any genome examined (Richards, et al., 2008).

Unfortunately, the various methodological factors make it difficult to give a proportion 

of genes which have conserved expression. However, it is clear that whilst some 

features of development are conserved, others are not. This emphasises the importance 

of comparing across organisms when trying to understand how a bodyplan character is 

patterned. It is of interest to know what (if any) aspects of intercalary segment 

patterning the genes with conserved expression are involved with, and indeed whether 

there is any reason why some aspects of development are more likely to vary between 

closely related organisms than others. Further work looking at the different functions of 

the genes expressed in the intercalary segment should begin to shed light on this.
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5.5.3 Implications for the development o f the intercalary segment

The screen protocol identified four genes with conserved expression patterns associated 

with the intercalary segment. In the absence of functional work nothing can be said 

about any precise role the genes have in the development of the intercalary segment or 

its evolution. However, there are some important points which can be made based on 

the expression patterns.

Drosophila and the function o f CG5249

CG5249, for which the Tribolium orthologue is expressed in the ectoderm overlapping 

the posterior of the intercalary segment, has previously been studied in Drosophila 

where it is known as Blimp-1 (Ng, et al., 2006). The early Drosophila expression 

pattern appears conserved with Tribolium. There are three bands of expression with one 

at the posterior of the procephalon and there is further expression in the anterior head. 

Moreover, the modulations seen in the beetle and the fly are remarkably similar, with 

the expression at the posterior of the procephalon persisting after the rest of the 

expression has mostly faded. Further in situ hybridisations with markers are required to 

see the extent to which this expression at the back of the procephalon is conserved.

Ng et al. (2006) comment that the expression of Blimp-1 is reminiscent of a gap gene. 

Indeed, the expression at the back of the procephalon is similar to the various genes 

involved with the development of the intercalary segment such as kn or the head “gap­

like” genes of Drosophila. Like these genes it also encodes a transcription factor 

(containing a zinc finger and SET/PR domain). However, in Drosophila Blimp-1 

function has been studied and RNAi shows the gene has a role in patterning the 

tracheae. There was no obvious early gap-like phenotype. The authors suggest that the 

gene is dispensable for segmentation. If this is the case, then the gene cannot have a 

conserved function in patterning the intercalary segment between the beetle and fly. 

However, as illustrated in chapter 1, several studies have shown the early head 

development in Drosophila has many derived features. The Drosophila head gap genes 

are not conserved in Tribolium in terms of either expression or function. Therefore, it is 

still interesting to investigate the function of the Tribolium orthologue of Blimp-1 (Tc-
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CG5249), to see if there is any function affecting the intercalary segment in the beetle. 

If there were, it would be a suitable candidate gene for further study in other insects.

Gene expression in the mesoderm of Drosophila and Tribolium

Drosophila and Tribolium ortholgues of CG4322, CG32423 and CG32858 all appear to 

show mesodermal expression associated with the intercalary segment. All three genes 

have been studied at some level in Drosophila: CG4322 is known as moody (Daneman 

and Barres, 2005), CG32423 is known as alan shepard (shep) (Bjorum, 2006) and 

CG32858 is known as singed (sn) (Cant, et al., 1994). However, none of the genes 

have been implicated in mesodermal development, and the behaviour of the tissue 

expressing these genes in Tribolium appears atypical for mesoderm. In all other 

segments, mesoderm spreads laterally to form paired coelomic sacs (Handel, et al., 

2005). Paired somites have been described in the intercalary segment of other insects, 

such as the beetle Tenebrio molitor, although these are of a derived cell type and form 

late (Ullmann, 1964). It is, therefore, unclear what part of the mesoderm these genes 

are expressed in. The anterior midgut of insects also forms from the anterior middle 

plate although its exact position is unknown in Tribolium. Classical fate mapping 

studies in a range of insects locate the midgut anlage just posterior to the stomodem 

(Anderson, 1973) and in Drosophila, the primordium of the anterior midgut and the 

intercalary segment mesoderm both form from the B-C regions of the prospective head 

mesoderm of de Velasco et al. (2006). Therefore, it is even conceivable that these 

genes are not expressed in the intercalary segment mesoderm of Tribolium but rather 

the anterior midgut.

There are many similarities between Tribolium and Drosophila in timings of expression 

for these three genes. In both insects shep (CG32423) orthologues are expressed 

earliest and moody (CG4322) orthlogues have the most transient expression. The 

conserved timings suggest conserved expression. However, in Drosophila these three 

genes are clearly expressed in the mesoderm. The expression of transcripts spreads 

laterally across the posterior of the procephalon, and the expression along the posterior 

of the procephalon is in the region described as intercalary mesoderm by de Velasco et 

al. (2006). Interestingly, the mesodermal cells deriving from the intercalary segment of
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Drosophila are described as crystal cells -  a subset of hemocyte cells. Hemocyte 

development has been studied in the moth Manduca sexta (Nardi, 2004). Here stains 

for granular cells (a type of hemocyte) show them in a central mesodermal domain in 

the head, behind what appears to be the intercalary segment.

Tc-moody, Tc-shep and Tc-sn are expressed in a central domain in the Tribolium head, 

resembling the site of formation of hemocytes in Manduca. Furthermore, in Drosophila 

the orthologues of these three genes are expressed in what appear to be prospective 

hemocytes, and their timings of expression are conserved in Tribolium. This suggests 

that the three genes may have conserved expression in the prospective hemocytes of 

Tribolium as well. This is of considerable interest, as de Velasco et al. (2006) argue 

that hemocytes are the major mesodermal derivative of the insect intercalary segment.

It is worth noting that although these three genes have previously been studied in 

Drosophila, they have not been studied to a great extent and so it is probable that they 

have as yet unknown functions. However, based on what is known about their 

functions, there are some aspects that could be of potential interest to intercalary 

segment development, sn has been implicated in actin bundle formation, being required 

for bristle formation and nurse cell cytoplasm transport (Cant, et al., 1994). It is not 

immediately obvious what role such a gene could have in hemocyte formation, shep 

produces a putative RNA binding protein suggesting a possible regulatory role in 

development, but as yet has only been implicated in gravitaxis (Bjorum, 2006). moody 

produces a G protein-coupled receptor suggesting a possible role in signalling. 

Moreover, this gene has been implicated in the formation of the blood-brain barrier 

(Daneman and Barres, 2005) which could be of potential interest to the intercalary 

segment as hemocytes give rise to blood cells.
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5.6 Conclusions

I presented a screen to find new candidate genes for patterning the intercalary segment. 

Searching for genes with conserved expression patterns in the intercalary segments of 

the fruit fly Drosophila melanogaster and the red flour beetle Tribolium castaneum 

recovered four such genes: one expressed in the posterior intercalary segment ectoderm 

in a domain reminiscent of the head gap-like genes and kn, the other three expressed in 

the intercalary segment mesoderm in what may be precursors of hemocytes. Given the 

range of embryonic structures for which expression patterns are annotated in the 

Berkley Drosophila Genome Project expression pattern database, this approach of 

searching for conserved expression between Drosophila and Tribolium seems to be a 

productive method for finding new candidate genes for patterning a range of structures. 

Also, it is apparent that whilst some genes with expression in the Drosophila intercalary 

segment have conserved expression in the Tribolium intercalary segment, others do not. 

This emphasises the importance of taking a comparative approach when studying the 

development of a conserved morphological feature; any one organism is likely to have 

several derived features.



184

Chapter 6: 
Discussion

6.1 Overview

In this thesis I set out to investigate the evolution of the insect bodyplan and in 

particular, the key transition from the crustacean second antennal segment to the 

intercalary segment of the insect head. I first set out to establish a phylogenetic 

framework in which to view this transition. I investigated the phylogeny of the 

Pancrustacea and the position of the insects, finding further evidence for a close 

relationship between the hexapods and the branchiopod crustaceans (chapter 3). I then 

concentrated on the development of the intercalary segment. First I addressed the 

problem of what constitutes the intercalary segment in the embryo of the model system 

Drosophila melanogaster. I presented a detailed comparison of gene expression 

between the fruit fly and the red flour beetle Tribolium castaneum, confirming that the 

hypopharyngeal lobes of the Drosophila embryo do not belong to the intercalary 

segment as had previously been thought (chapter 4). Then, I presented a screen to find 

more candidate genes for patterning the intercalary segment, recovering four genes with 

conserved expression patterns associated with the intercalary segment of Drosophila 

and Tribolium: one gene with expression in the posterior intercalary segment ectoderm 

and three genes with conserved expression in the intercalary segment mesoderm 

(chapter 5).
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6.2 Implications of phytogeny

6.2.1 Inferring ancestral developmental pathways

In chapter 1 1 outlined the importance of having an established phylogenetic framework 

for evolutionary developmental studies, such as the evolution of the intercalary 

segment. An established phylogeny allows the development of the ancestral and 

derived character states to be inferred at both ends of the stem lineage. Only in this 

framework can the developmental changes underlying the morphological transition 

within this lineage be inferred. In this light, one of the most important results to come 

from the phylogenetic work presented in chapter 3 is that the branchiopod crustaceans 

were placed closer to the insects than the malacostracan crustaceans.

The importance of this result becomes apparent when the distribution of crustacean 

developmental systems is considered. The majority of crustaceans that have proved 

most amenable to developmental studies are either branchiopods (for example Artemia 

franciscana and Daphnia pulex (Copf, et al., 2003, Papillon and Telford, 2007)) or 

malacostracans (for example Parhyale hawaiensis, Orchestia cavimana and Porcellio 

scaber (Abzhanov and Kaufman, 1999, Pavlopoulos and Averof, 2005, Wolff and 

Scholtz, 2006)). In the absence of a phylogenetic framework there would always be a 

degree of ambiguity in any developmental comparison between an insect and 

crustacean. For example a developmental comparison between the insects and the 

branchiopod crustaceans may highlight developmental changes that appear to be 

associated with a morphological transition. However, branchiopod development could 

well have several derived features, and therefore may not represent the ancestral state at 

the base of the insect stem lineage. Making comparisons with the malacostracan 

crustaceans would remove the ambiguity. As the malacostracans form an outgroup to 

the insect-branchiopod grouping, if the developmental state is shared between the 

branchiopods and malacostracans it is likely to represent the ancestral state at the base 

of the insect stem lineage.
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6.2.2 The diversification of the arthropods

The emerging picture of pancrustacean phylogeny should give further insight into how 

the insect bodyplan evolved. The characters found in the different crustacean groups 

can be mapped onto the phylogeny allowing the identification of further character 

transitions involved in the evolution of the insect bodyplan. Knowing the patterns of 

tagmosis or the appendage types of successive outgroups to the insects should allow the 

morphological transitions giving rise to the distinctive insect bodyplan to be inferred.

In chapter 1 I illustrated how the different crustacean groups have very different 

bodyplans, and how in the face of this morphological diversity there was little 

consensus between different morphology based crustacean phylogenies. In the context 

of the phylogenetic framework that I have recovered, it is very difficult to find any 

convincing synapomorphies between these different groups to support any nodes in the 

tree. This makes it very difficult to establish any morphological transitions involved in 

the evolution of the insect bodyplan.

It is important to remember that although my analyses gave strong support to a 

hexapod-branchiopod sister-grouping, the hypothesis tests did show some ambiguity in 

the signal regarding the position of the branchiopods, in many ways resembling a soft 

polytomy. This could be the result of a rapid diversification at the base of the 

Pancrustacea. Interestingly, the hexapods (including the insects) and the major 

crustacean groups appear to inhabit very different ecological niches. The hexapods are 

a terrestrial radiation, the branchiopods a freshwater radiation, the copepods have many 

planktonic forms, the cirripedes are sessile filter feeders and the malacostracans include 

a diversity of forms living in all aquatic and some terrestrial environments (Brusca and 

Brusca, 2003). It is, therefore, conceivable that if the Pancrustacea did undergo a very 

rapid diversification, it was driven by an ecological radiation into these different niches. 

This could have been coupled with an equally rapid diversification of their morphology 

to fit these niches, obscuring any morphological synapomorphies.

However, it is also noteworthy that there are several crustacean groups I could not 

position in my phylogenetic analysis. I could not resolve the positions of the remipedes
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and cephalocarids, and there are various poorly known crustacean groups such as the 

mystaccocarid crustaceans, which were not represented in the analysis, as there is little 

sequence data. Moreover, there are a number of fossil crustaceans which show little 

affinity to any of the major groups such as Cambronatus, Wingertshellicus and 

Eschenbachiellus (Briggs and Bartels, 2001). As all these different groups show a 

number of bodyplans different to those of the taxa that I was able to position in the tree, 

it is still possible that a crustacean phylogeny could be established from which the 

character transitions involved in the evolution of the insect bodyplan could be inferred. 

Further phylogenetic analyses, both molecular and morphological are needed.

6.3 Patterning the intercalary segment

I now turn to the developmental changes underlying the transition from the crustacean 

second antennal segment to the insect intercalary segment. I identified several genes 

with conserved intercalary segment expression patterns between Drosophila and 

Tribolium (chapters 4 and 5). Whilst the conserved expression patterns suggest that 

these are all good candidate genes for further study in Drosophila and Tribolium, and 

more widely in the insects, based on expression patterns alone little can be said about 

their roles in patterning the intercalary segment, and therefore any potential role in the 

evolutionary transition. For example, as was discussed in chapter 5, CG5249 {Blimp-1) 

may have a conserved expression pattern including the posterior intercalary segment of 

Drosophila and Tribolium, but it does not appear to have a role in the development of 

the Drosophila head. However, there is good reason to think that these genes may be of 

potential importance for understanding the development of several of the derived 

features of intercalary segment morphology outlined in chapter 1.
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6.3.1 knot and the reduction in size of the intercalary segment

knot (kn) shows a conserved expression pattern between Drosophila and Tribolium. 

The gene is involved in establishing intercalary segment polarity gene expression in 

Drosophila, suggesting that this may be the case in Tribolium too. It is not immediately 

obvious what role kn could have played in the evolution of the intercalary segment from 

the second antennal segment. Segment polarity gene expression in the intercalary 

segment is not an insect specific feature; like any segment, the crustacean second 

antennal segment also has segment polarity gene expression at its posterior boundary 

(Browne, et al., 2005). As kn is involved with the establishment of segment polarity 

gene expression, there is no reason to expect it to be involved in the evolution of the 

derived features of the intercalary segment.

However, one of the striking features of the intercalary segment is its reduced size and 

the general vestigial appearance of the segment. As was pointed out in chapter 1, the 

size of the intercalary segment polarity gene stripes is also reduced, and the onset of 

their expression is delayed relative to the other cephalic segments. Potentially, this 

reduction and retardation of expression could be related to the overall reduction in the 

size of the segment. Given that kn is involved in the regulation of these stripes, it is 

possible that studying the regulation of segment polarity gene expression through kn 

may give some insight into the overall reduction of the segment.

6.3.2 Hemocytes and the intercalary segment mesoderm

In chapter 5, I identified three genes that appear to have conserved expression in the 

intercalary segment mesoderm of Drosophila and Tribolium. Moreover, I proposed that 

these three genes are expressed in the prospective hemocytes. If they are involved in 

the differentiation of the intercalary segment mesoderm to this fate, then their role in the 

evolution of the intercalary segment could potentially be very important. Hemocytes 

appear to be the major derivative of the intercalary segment mesoderm (de Velasco, et 

al., 2006). The only other structure that has been argued to derive from the intercalary 

segment mesoderm is the suboesophagal body, and its intercalary origins are debated
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(Roonwal, 1937, Ullmann, 1964). However, this appears to only be a transient 

embryonic structure and its significance is uncertain.

Also, it is unclear whether the intercalary segment produces any muscle -  the major 

mesodermal derivative of other segments, twist (twi) is expressed in cells that will 

differentiate into muscle -  high levels of twi promote the formation of somatic 

mesoderm and suppress that of other mesodermal derivatives (Handel, et al., 2005) -  

but in their description of Tribolium twi, Handel et al. (2005) do not appear to show any 

expression between the mandibular and antennal mesoderm, namely in the intercalary 

segment mesoderm.

In contrast, the mesoderm in the crustacean second antennal segment gives rise to 

typical somites (Anderson, 1973). There does not appear to be any literature on the 

origin of hemocytes in crustaceans so it is unclear whether these also derived from the 

second antennal segment. If they are not, then the production of hemocytes from the 

intercalary segment would be a novelty associated with the evolution of the intercalary 

segment from the second antennal segment. It is therefore of considerable interest to 

further study hemocyte development in both insects and crustaceans. The three genes I 

have identified would seem to be good candidates for investigation.

6.3 3  Intercalary segmental identity

My results, therefore, provide starting points for the investigation of two important 

features of intercalary segment development: the reduction in size of the segment and 

the derived fate of its mesoderm. However, the allocation of intercalary segment 

identity is still unclear. The screen described in chapter 5 recovered no obvious 

candidate genes. Such a gene would be of interest as it may give insight into the other 

major morphological feature of the intercalary segment, namely the loss of its 

appendages. For example the hox gene abdominal-A (abd-A) has been implicated in 

allocating segmental identity to the insect abdominal segments, and it appears to repress 

leg development in both Drosophila and Tribolium (Lewis, et al., 2000, Vachon, et al., 
1992).
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It is not obvious that the existence of any such gene should be expected. The most 

obvious candidates for such a role are the hox genes, and whilst labial {lab) is expressed 

throughout the segment in all insects investigated (including Drosophila as I showed in 

chapter 4), it does not have a role in segmental identity where studied {Drosophila and 

the milkweed bug Oncopeltus fasciatus). However, the head gap genes empty spiracles 

{ems) and buttonhead {btd) have been implicated in segmental identity in Drosophila. 

This suggests that there may not be a single gene giving the intercalary segment its 

identity in the way the hox genes typically do for several segments (Hughes and 

Kaufman, 2002b). Rather, genes may operate in a combinatorial manner. As the roles 

that ems and btd play in Drosophila are not conserved in Tribolium, it is unlikely that 

they are conserved more widely in the insects. However, the possibility that the co­

expression of gap-like genes may be involved in allocating segmental identity in other 

insects makes the function of genes with gap-like expression patterns, like Blimp-1, of 

considerable interest.

There is one final issue relating to segmental identity that is worth discussing, lab and 

proboscipedia {pb) are expressed in the second antennal segment of the crustacean 

Porcellio, and in the homologous segment in other arthropods (Abzhanov and 

Kaufman, 1999, Damen, et al., 1998, Hughes and Kaufman, 2002a, Telford and 

Thomas, 1998). It would be of interest to know whether the second antennal segment 

(and its myriapod and chelicerate homologues) is allocated its identity in the canonical 

fashion by these hox genes or by other genes as seems to be the case in the insects. If 

there does appear to be a transition from the hox genes to other genes, it would be 

interesting to know when this occurred and indeed whether it played any role in the 

transition from the second antennal segment to the intercalary segment.

6.3.4 Development and evolution of intercalary segment

Functional interactions

The different genes identified in this thesis present several possible lines of enquiry into 

the developmental changes underlying the evolution of the insect intercalary segment
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from the crustacean second antennal segment. However, to understand fully this 

transition, it is necessary to understand the various functional interactions involving 

these and other genes, and the roles they play in the patterning and differentiation of the 

segment. If, for example, the three genes expressed in the intercalary segment 

mesoderm were involved with hemocyte development, it would be necessary to know 

what genes they regulate, whether any of these genes are involved in the differentiation 

to hemocytes or even whether they are involved in regulating each other. Ultimately, a 

gene regulatory network of the interactions involved in the patterning and 

differentiation of the intercalary segment could be constructed, to describe how the 

segment develops.

It is important to point out that the approach I have taken in this thesis to identify 

candidate genes -  looking for conserved gene expression associated with the intercalary 

segment -  could miss a number of possibly important functional interactions that could 

have played a part in the evolution and development of the segment, namely inhibitory 

interactions. As was discussed above, twi, which is involved in the differentiation of 

mesoderm into muscle, does not appear to be expressed in the intercalary segment. 

Therefore, an important step in the evolution of the segment would have been the loss 

of this muscle fate. It is possible that twi is being repressed in the intercalary segment 

(although it is also possible that its expression is not being promoted). If this is the 

case, then any interaction inhibiting its expression is of considerable importance for 

understanding intercalary segment development and evolution. The same could also be 

true for genes in the appendage formation pathway, such as Distal-less (Dll) which 

could be involved in the loss of appendages on the segment. In these cases, the novel 

feature associated with the segment would be a lack of expression, not the presence of 

localised expression.

The comparative approach

The studies into intercalary segment development I have presented in this thesis outline 

one very important theme in evo-devo, namely the need for a comparative approach 

when trying to infer the developmental process underlying a conserved structure. The 

comparisons between Drosophila and Tribolium reaffirm the variability in early
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development between the two insects, both in terms of in embryology and 

developmental genetics. It is important to remember that no one organism can be used 

as an exemplar typifying the development of a bodyplan feature, especially an organism 

as derived as Drosophila.

The studies presented here were of comparisons between Drosophila and Tribolium. 

For example, I showed that kn has a conserved pattern of expression between the two 

insects, suggesting a conserved function in regulating intercalary segment polarity gene 

expression. I proposed that kn could be involved in the reduction of the intercalary 

segment polarity gene expression based on functional interactions seen in Drosophila, 

and based on the conserved pattern of gene expression seen in Tribolium such a 

function could be conserved in the beetle. However, even if any such function were 

shown to be conserved between Drosophila and Tribolium, this would only be 

conservation between two holometabolous insects. Before being able to argue a role for 

kn in the reduction of segment polarity gene expression in the insect intercalary 

segment, it would be necessary to demonstrate conservation across the hemimetabolous 

and apterygote insects.

If any functional interaction involved in the development of the Drosophila and 

Tribolium intercalary segments are shown to not be conserved in more basal insects it 

would be important to know what regulatory interactions are occurring instead. For 

example, if kn is not involved in regulating intercalary segment polarity gene expression 

outside of Drosophila, it would be necessary to find out what genes do regulate the 

segment polarity genes in other insects, and what those genes are doing in Drosophila. 

In this way, the regulatory interactions with conserved functions in intercalary segment 

development across the insects could be identified, as could interactions where the 

Drosophila state is derived. This way a gene regulatory network describing the 

ancestral mode of development at the base of the insects (D* in figure 1.1) could be 

inferred. Such a model could then be used for comparisons with crustaceans, allowing 

the identification of the developmental changes associated with the morphological 

changes that occurred during the evolution of the intercalary segment.
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6.4 Further work

6.4.1 Resolving pancrustacean phylogeny

The multigene phylogenetic analysis presented in chapter 3 was largely in agreement 

with the smaller analyses based on the nuclear datasets. Combining these smaller 

datasets resolved issues such as the position of the copepods. Possibly, adding more 

genes may help to resolve issues such as the positions of the remipedes and the 

cephalocarids which my analysis was unable to resolve. A common approach currently 

used in phylogenetics to generate large datasets is to use expressed sequence tags 

(ESTs). At the moment, it is unlikely that this kind of data will be generated for 

obscure groups like the remipedes and the cephalocarids. However, this may be 

feasible in the future as the costs of producing the data falls.

In the short term, a more realistic aim may be to increase the number of taxa represented 

in the analysis. For example, there are a number of other remipede taxa other than 

Speleonectes. Perhaps some of these will not show the artefacts in their sequence that 

are probably found in Speleonectes, and have made it so difficult to place. Also, the 

addition of other enigmatic taxa to the dataset, such as the mystaccocarid crustaceans 

mentioned earlier may help to give the more complete picture of pancrustacean 

phylogeny needed to understand the morphological transition which took place in the 

diversification of the group.

6.4.2 The development of the intercalary segment

As was demonstrated above, the studies in chapters 4 and 5 recovered a number of 

genes with conserved expression patterns between Drosophila and Tribolium. The 

expression patterns suggest that the genes have potentially very interesting roles in 

evolution of the intercalary segment. It is now important to investigate the functions of 

these genes in both Drosophila and Tribolium, to see whether they have conserved roles 

in the development of the segment.
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The function o/knot

Drosophila kn mutants lose expression of engrailed (en) and wingless (wg) and have 

reduced levels of hedgehog {hh) (Crozatier, et al., 1999). RNAi can be used to knock 

kn out in Tribolium and the expression of the three segment polarity genes can be 

examined by in situ hybridisation. This would show whether the regulatory interactions 

seen in Drosophila are conserved in Tribolium.

However, as was discussed above, simply demonstrating a conserved role for kn in 

regulating the intercalary segment polarity genes would not be of significance for 

understanding the evolution of the intercalary segment. In Drosophila, misexpression 

of ems in the prospective mandibular segment has been argued to transform its identity 

to that of the intercalary segment, partly on the basis of a duplication of the smaller 

segment polarity gene stripes typical of the intercalary segment (Schock, et al., 2000). 

This provides a system to investigate whether the reduced size of the segment polarity 

gene stripes is dependent on kn expression. In situ hybridisation for kn in flies with this 

proposed homeotic transformation would show whether the kn expression domain is 

duplicated or expands to encompass the mandibular-maxillary segment boundary as 

well as the intercalary-mandibular boundary. If this is not the case, then it would be 

very unlikely that kn is involved in regulating reduced size of the segment polarity gene 

stripes; rather it would just be involved in establishing segment polarity gene expression 

in the insect intercalary segment.

The function of mesodermal genes

For the three genes showing conserved expression in the intercalary segment mesoderm, 

namely CG4322 {moody), CG32423 {alan shepard {shep)) and CG32858 {singed {sn)), 

it is not obvious how to assay their function. RNAi could be performed in both 

Drosophila and Tribolium, but there are no obvious markers to investigate phenotypes 

relating to the mesoderm; cuticle preps only show ectodermal features. I have 

suggested that these genes may be involved in the development of hemocytes. There 

are potential markers to investigate whether these three genes are in fact involved in the 

development of this major intercalary segment derivative. Nardi (2004) shows that
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developing hemocytes (specifically the granular cells) in the moth Manduca sexta can 

be marked with lectins, in particular peanut agglutinin (PNA). First it would be 

necessary to show that this is a conserved marker for granular cells in Drosophila and 

Tribolium, and that it stains the cells which express moody, shep and sn orthologues. If 

this proves to be the case, then each of the three genes could be knocked out with RNAi 

and staining for PNA could show whether hemocyte development has been affected. A 

positive result would suggest a role in hemocyte development.

The function o/Tribolium Blimp-1

CG5249 {Blimp-1) does not appear to have a role patterning the Drosophila head (Ng, 

et al., 2006). However, as was discussed above, it is still necessary to investigate 

whether it has any such function in the Tribolium head. 7c-CG5249 could be knocked 

out in Tribolium with RNAi and larval cuticles examined for any obvious defects to the 

head. If, as has been argued for Drosophila, the gene does not have an early segmental 

function in the head, then there should not be any such cuticular defects. In this 

situation, then it seems unlikely that the gene would have a broader role in patterning 

the insect intercalary segment. Otherwise, it would also be useful to detail the extent of 

intercalary segment expression, which could be done by double in situ hybridisation 

with marker genes such as the segment polarity genes en, wg and hh.

Broader conservation

If any of these genes were shown to have a conserved function between Drosophila and 

Tribolium  in patterning the intercalary segment, it would then be necessary to 

investigate whether or not the function is conserved more broadly in the insects. Both 

the beetle and fly are holometabolous insects and so a conserved function would not 

necessarily represent the ancestral state for the insects. The obvious starting point 

would be to see if the expression pattern is conserved in other insects such as 

Oncopeltus, the cricket Gryllus bimaculatus and the firebrat Thermobia domestica\ 

three insects that span the diversity of the hemimetabolous and apterygote insects. 

Moreover, RNAi has been developed for Oncopeltus and Gryllus allowing assays of 

conserved function (Hughes and Kaufman, 2000, Miyawaki, et al., 2004). If any
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conservation were identified across the insects, the next obvious question would be 

whether the gene is present in the crustaceans, where it is expressed and what it does. 

For crustaceans such as Daphnia and Porcellio, in situ hybridisation is established 

(Abzhanov and Kaufman, 1999, Papillon and Telford, 2007) so it would be straight 

forwards to examine expression patterns.

6.5 Concluding remarks

The evolution of the insect intercalary segment from the crustacean second antennal 

segment provides us with a very elegant system for studying the developmental changes 

underlying the evolution of a novel morphological feature. Not only is there a clear 

segmental homology which has allowed the specific morphological transition to be 

defined, but there is also a diversity of insects and crustaceans amenable to 

developmental study making it feasible to investigate this transition. However, despite 

the considerable potential in studying the evolution of the intercalary segment, a great 

deal of uncertainty has surrounded many important issues: the phylogenetic position of 

the insects has been unclear and little was known about how the segment develops.

The phylogenetic and developmental studies I have presented in this thesis have begun 

to resolve some of these areas of uncertainty. I have helped to establish an emerging 

phylogenetic framework in which to view developmental changes underlying the 

evolution of the intercalary segment, and I have recovered a number of genes with 

possible roles in the evolution of several of the important derived features of the 

segment. I have also demonstrated that when studying such questions about bodyplan 

evolution, it is important to take a comparative approach. There is good reason to be 

optimistic that advances can be made in our understanding of this evolutionary 

transition.
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The insect intercalary segment has the potential to be an important case study for evo- 

devo. The insights it can give us into how developmental change underlies 

morphological evolution should help to us understand the diversification of Darwin’s 

“endless forms”.
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Appendix 1: 
Accession numbers

Below are presented tables of accession numbers for the various sequences used in the 

different studies. Table A 1.1 provides the accession numbers for all the sequences used 

in the construction of the multigene dataset for analysis of pancrustacean phylogeny. 

Table A1.2 provides the accession numbers for the aligned and annotated 18S and 28S 

ribosomal RNA sequences (downloaded from the European Ribosomal RNA database) 

used as templates for producing alignments of the two genes. Table A 1.3 provides that 

accession numbers for the Drosophila sequences used as queries in the BLAST search 

of BeetleBase.



Table A 1.1. Accession numbers for sequences used in assembling the multigene dataset. Accession numbers are given for all taxa from which sequences were 
used to construct the chimeric concatenated sequences. Accession umbers of newly sequenced data are in bold.

Taxonomic unit Species
Nuclear genes

28S 18S EF-la PolII EF-2 H3
Mitochondrial

genomes

Acrididae Melanoplus sp. 
Locusta migratoria

AY 125286 AF423803
AF370793 AY077627 AF370817 NC 001712

Archaeognatha Machilis sp. 
Machibides sp.

Machiloides banksi

Allomachilis froggarti 
Nesomachilis australica

Pedetontus saltator

Petrobiinae gen. sp.

AY521735
AY084061

AF138990,
AF137390 AF138991, AF240822

AF138992

U90056 U90041,
AY305610 AY305520

AF110864

AF110865

NC 006895

Argulus Argulus sp.

Argulus nobilis 
Argulus americanus

AY210804

M27187

AY305544,
AY305461 AY305545, AY305491

AY305546

NC 005935

Artemia Artemia sp. AY210805 X03349
Artemia salim  X01723 U10331 AF240815

Artemia franciscana NC 001620



(Table A 1.1 continued)

Taxonomic unit Species

Balanidae

Blattaria

Calanoida

Balanus balanus 

Balanus crenatus

Semibalanus balanoides

Megabalanus spinosus 
Megabalanus volcano

Gromphadorhina laevigata 
Gromphadorhina portentosa

Periplaneta americana

Periplaneta fuliginosa

Calanus simullimus 

Calanus pacificus

Eurytemora affinis

Campodeoidea Campodeidae sp. 
Campodea tillyardi

Eumesocampa frigilis

Nuclear genes Mitochondrial
28S

AY520594
EU914254

18S 

A Y520628

AY520626

AY520633

EF-la PolII

AF063404

AF138971, 
AF138972, 
AY305549

EF-2

AF240817

H3

AF370818

AY520694

AY210819
Z97592

AY305602,
AF370792 U90054 AY305603, AY305517 AF370816

U90040

EU914255
L81939

AF138977,
AF063408 AY305557, AY305497

AY305558

AY338649
AF173234 AF110860

genomes

NC 006293

NC 006076

AF138978,
AF137388 AF138979, AF240818

AF138980



(Table A 1.1 continued)

„ . Nuclear genes MitochondrialTaxonomic unit Species -----
28S 18S EF-la PolII EF-2 H3 genomes

Cyclopidae Cyclopidae sp. 
Eucyclops serrulatus 

Acanthocyclops viridis

Acanthocyclops vernalis 

Mesocyclops edax

AY210813
L81940

AY626999
AY305534, 

AY305458 AY305535,
AY305536

AY305470 AY305589,
AY305590 AY305511

Cyprididae Cyprididae sp. 
Cypridopsis japonica

Cypridopsis vidua

AY210815 AY210816
AB086321

AF138997,
AF063414 AF138998, AF240825

AF138999

Cypridinidae Skogsbergia lerneri 

Vargula hilgendorfii

AF363319, AY305616,
AF363331, AF363297 AY305477 AY305617, AY305522
AF363347
AF363317,
AF363332, AB076654
AF363357

AY305618

NC 005306

Daphniidae Daphnia occidentalis AF346510
Daphnia pulex AFO14011

Scapholeberis mucronata AF526282
NC 000844



(Table A 1.1 continued)

Taxonomic unit Species

Drosophila Drosophila melanogaster

Entomobryomorpha Folsomia Candida
Orchesella villosa

Orchesella imitari

Hexagenia Hexagenia sp.

Hexagenia limbata

Hutchinsoniella Hutchinsoniella macracantha

Japygoidea Parajapyx isabellae
Heterojapyx sp.

Metajapyx subterraneus

Japyx solifugus

Nuclear genes Mitochondrial
28S 18S EF-la PolII EF-2 H3

M21017 M21017 M27431 XI5805 X81207NM 206593

EU914252 AY555515 AY555561
AY555514

AY305599, 
AY305473 AY305600,

AY305601

AY305515,
AY305516

AY 125276 AY121136 AY125223

AY305584,
AY305585,

AY305469 AY305586, AY305510
AY305587,
AY305588

AF138984,
AF370811 L81935 AF063411 AF138985, AF240820 AF110867

AF138986

AY596395 AY145135
AY555524 AY555567

AF137389 AF138987, AY305503,
AF138988 AY305504

genomes

NC 001709

NC 005937

NC 007214



(Table A 1.1 continued)

Taxonomic unit Species
Nuclear genes

28S 18S EF-la Poin EF-2
_________Mitochondrial
H3 genomes

Lepas Lepas sp. 
Lepas anatifera

Lepas anserifera

EU914256
L26516

AY305569,
AY305466 AY305570, AY305505

AY305571

Lepeophtheirus

Lepismatidae

Leptostraca

Lepeophtheirus salmonis

Ctenolepisma longicaudata

Ctenolepisma lineata

Thermobia domestica 
Lepisma saccarina 

Lepisma sp.

Paranebalia longipes 
Paranebalia belizensis 

Nebalia sp.

Nebalia hessleri

AF208263

AY210810 AY210811

AF370790
X89484

AF138973,
AF063405 AY305553, AY305494

AY305554
NC 006080

AY555568

AY744899 AY744905
AY743952

L81945 AF110869
AF138996,

AF063413 AY305594, AY305513
AY305595

Limnadiidae Limnadopsis birchii 

Limnadia lenticularis

AY744897
AF138989,

L81934 AF063412 AY305575, AY305507
AY305576



(Table A 1.1 continued)

Taxonomic unit Species
Nuclear genes

28S 18S EF-la PolII EF-2 H3
Mitochondrial

genomes

Limnadiidae (cont.) 

Limulus 

Lithobius

Mastigoproctus

Mygalomorphae

Oniscidea

Pauropodidae

Limnadopsis birchii

Limulus polyphemus

Lithobius sp. 
Lithobius variegatus

Lithobius forficatus

Lithobius sydneyensis

Mastigoproctus giganteus

Aphonopelma hentzi 
Aphonopelma sp. 

Aphonopelma chalcodes 
Atrax sp. 

Ornithoctonus huwena

Porcellio scaber 
Armadillidium vulgare

Pauropodidae gen. sp. 
Pauropodinae gen. sp.

Allopauropus proximus

AY744889 AY744903

AF212167 L81949 U90051 U90037 AF240821 AF370813 NC 003057

AY210825
AF000773

AY310212,
AF240799 AY310213, AY310267

AY310214

AF062989 AF005446 U90052 U90038 AF240823

AF110853

AY210803
XI3457 

AF370784

EU914253 AJ287062
AJ287061

AF005466 AF005451

U90045 U90035
AF110877

U90046 AY305548 AF240816

AY305541,
AY305460 AY305542, AY305490

AY305543

AF110857

NC 002629

AY731174

NC 005925



(Table A 1.1 continued)

Taxonomic unit Species
Nuclear genes

28S 18S EF-la PolII EF-2 H3
Mitochondrial

genomes

Phalangida Nipponopsalis abei

Equitius doriae 
Equitius sp.

AF138993,
AF124975 AF124948 AF137391 AF138994, AF240824

U91503 U37003
AF138995

AF110875

Podura Podura aquatica
A Y 3 0  S 6 0 4

AY210838 AF005452 AY305474 AY305518AY305605 NC 006075

Pollicipes Pollicipes pollicipes 
Pollicipes polymerus

AY520616
AY520651 AY520719 NC 005936

Pyncnogonida Callipallene sp. 

Colossendeis sp.

Endeis laevis

Endeis spinosa 
Ammothella biunguiculata

Tanystylum orbiculare

AY210807 AF005439
AF138974,

AY210809 AF005440 AF063406 AY305555, AY305495
AY305556

AF138981,
AF005441 AF063409 AF240882, AF240819

AF240883
AY731173

AF110874

AF063417 AF139013,
AF139014 AF240831

223



(Table A 1.1 continued)

Taxonomic unit Species
Nuclear genes

28S 18S EF-la PolII EF-2 H3
Mitochondrial

genomes

Reptantia Panulirus argus

Panulirus japonicus 
Callinectes sapidus

Libinia emarginata

Homarus americanus 
Eriocheir sinensis 

Portunus trituberculatus

AY210833,
AY210834, AY743955
AY210835

AF249298

AY743953 U90050

AF235971

AY305572,
AY305573, AY305506
AY305574

AF370819

NC 004251 
NC 006281

NC 006992 
NC 005037

Sacculinidae Sacculina carcini

Loxothylacus texanus

A Y520622 AY265366

L26517 AY305467

AY520724

AY305577,
AY305578,
AY305579,
AY305580

AY305508

Scorpiones Pandinus imperator 
Lychas marmoreus

Centruroides sculpturatus

AY210830 AY210831
AF110876

AF240988, 
AF240840 AF240989,

AF240990
Centruroides limpidus 

Mesobuthus gibbosus
NC 006896 
NC 006515



(Table A 1.1 continued)

Taxonomic unit Species
Nuclear genes

28S 18S EF-la Poin EF-2 H3
Mitochondrial

genomes

Scutigerellidae

Speleonectes

Spirostreptida

Stomatopoda

Hanseniella sp. 

Scutigerella sp.

Speleonectes gironensis 

Speleonectes tulumensis

Orthoporus sp. 

Orthoporus ornata

Trachyiulus nordquisti

Thyropygus sp.

Squilla empusa 
Squilla mantis 

Kempina mikado 
Gonodactylus sp.

Neogonodactylus oerstedii

Harpiosquilla harpax

AY210821, AY210823 U90049AY210822 
AY084064 AY336742 AF137392

AF370810

L81936 AF063416

AY210828 AY210829

AY210842 L81946

AF370802
L81947

AY305565, 
AF138982

AF139008, 
AF139009

AF240827

AF240829

AF240802

AY305479

AF240934, AY310273, 
AF240935 AY310274
AY305623, 
AY305624, 
AY305625, 
AY305626

AY305525

AY305591,
AY305471 AY305592, AY305512

AY305593

AF110856

AF110873

NC 005938

NC 003344

NC 006081

NC 006916
K>
K >
l h



(Table A 1.1 continued)

Taxonomic unit Species
Nuclear genes Mitochondrial

28S 18S EF-la PolII EF-2 H3 genomes

Tigriopus Tigriopus californicus 

Tigriopus japonicus

AY599492,
AY599492,
AF363324,
AF363340,
AF363350

AY599492 X52393

NC 003979

Triops Triops sp.

Triops longicaudatus

Triops australiensis 
Triops cancriformis

AY210844

AF144219 090058 AY305622 AY305524

AF110870
NC 004465

226
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Table A 1.2. Taxon names and accession numbers of sequences 
from European Ribosomal RNA database used as templates for 
aligning 18S and 28S rRNAs.

Species Accession number

18S Argulus nobilis M27187
Artemia salina X01723

Callipallene gen. sp. AF005439
Cormocephalus monteithi AF173249

Daphnia pulex AF014011
Drosophila melanogaster M21017

Gromphadorhina portentosa Z97592
Umulus polyphemus L81949
Lithobius variegatus AF000773

Milnesium tardigradum U49909
Podura aquatica AF005452

Priapulus caudatus X87984
Squilla empusa L81946

Triops longicaudatus AF144219

28S Aedes albopictus L22060
Anopheles albimanus L78065

Caenorhabditis elegans X03680
Chironomus tentans X99212

Drosophila melanogaster M21017
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Table A1.3. Accession numbers for sequences of Drosophila genes used as queries in 
the BLAST search of BeetleBase. Where more than one isoform of a gene was used as a 
query sequence, accession numbers are given for all genes used in the BLAST search.

Gene Accession number Gene Accession number
cnc AAC72879 CG9520 NP 723427
croc P32027 CG10072 NP 476980
kn P56721 CG10130 NP 652037
wg NP 523502 CG 10521 NP 511155
hh NP 001034065 CG10746 NP 542444

CGI 322 P28166 CG10960 NP 648605
CG1444 NP 572420 CGI 1051 Q9VU58
CG1942 NP 610318 CGI 1100 NP 730768
CG3097 NP 572259 CGI 1188 NP 609066
CG3184 NP 572341 CGI 1208 NP 611460
CG3424 NP 648327 CGI 1415 NP 525037
CG3597 NP 608674 CGI 1546 NP 652028
CG3732 NP 611692 CGI 1798 NP 611013
CG3762 NP 652004 CG12177 NP 572911
CG3879 NP 523724 CGI 2708 NP 727875
CG4261 NP 732097 CGI 3037 NP 524104
CG4280 Q27367 CGI 3475 NP 652614
CG4322 NP 569970 CGI 3651 NP 651343
CG4501 NP 524698 CGI 3894 NP 612054
CG5059 NP 649239 CG15162 NP 523597
CG5249 NP 647982 CG15211 NP 572653
CG5575 NP 523833 CG17786 NP 651231
CG5663 NP 650192 CGI 7932 NP 652627
CG5840 NP 650632 CGI 8375 NP 788423
CG5893 NP 524066 CG31150 NP 732076
CG6096 NP 524511 CG31607 NP 723350
CG6117 P16912 CG31629 NP 001097107
CG6207 NP 648448 CG31811 Q9NGC3
CG7271 NP 649041 CG32372 NP 729265
CG8036 NP 649812 CG32423 NP 729054
CG9005 NP 610688 CG32434 NP 996129
CG9148 NP 477392 NP 730594
CG9171 NP 723117 CG32858 NP 511076
CG9238 NP 648708 CG33099 NP 788714

CG9415 NP 524722 
NP 726032



Appendix 2: 
Primer sequences

Below are presented tables of the primer sequences used in the different studies. Table 

A2.1 gives the sequences of the primers used to amplify 28S rRNA. Table A2.2 gives 

the sequences of the primers used to amplify partial cDNAs of Tribolium genes. Tables 

A2.3 give the primer sequences used for sequencing reactions. Table A2.4 give the 

primer sequences used for amplifying probe synthesis templates.



Table A2.1. Sequences of primers used to amplify fragments of 28S 
rRNA. _____________________

5’ -  Forward U178 GC ACCCGCTG AA YTT AAGC A
U212 GG A AAAG A AACT AACMRGG A
U427 TCGGGTTGTTTGRGARTGCA
U541 AGAGAGAGTTCAARAGKRCGTGA
U940 GGCCACCCTCTCGACCGT

U1148 GACCCGAAAGATGGTGAACTA
U1372 ACG AT CTC AACCT ATTCTC AAACT
U1640 CCTGAAAATGGATGGCGCT
U1846 AGGCCGAAGTGGAGAAGGGTT
U2229 TACCCATATCCGCAGCAGGTCT
U2562 AAACGGCGGGAGTAACTATGA
U2771 AGAGGTGTAGGATARGTGGGA
U3119 TTAAGCAAGAGGTGTCAGAAAAGT
U3139 A AGTT ACC AC AGGG AT A ACT GGCT

3’ -  Reverse L538 ACGTACTTTTGAACTCTCTCTTCA
LI 149 CATACTTCACCATCTTTCGGGT
LI 344 C AAGGCCTCT AATC ATTCGCT
L1642 CCAGCGCCATCCATTTTCA
L1964 AATATTAACCCGATTCCCTTTCG
L2230 AGACCTGCTGCGGATATGGGT
L2450 GCTTTGTTTTAATTAGACAGTCGGA
L2630 GGG AATCTCGTTAATCCATTCA
L2984 CTG AGCTCGCCTT AGG AC ACCT
L3358 AACCTGCGGTTCCTCTCGTACT
L3449 GATTCTGACTTAGAGGCGTTCA
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Table A2.2. Sequences of primers used to amplify Tribolium partial cDNAs. The approximate 
size of the amplified fragment is given, as this is the size of the probe synthesised from the 
fragmnent.

GAT TAC AGC TAT ACG AGT CGG 
GTC AGC CAG ACT CAA AAT CTG 750 bp

ATG CAT ACG ATT TTC ACC GAA 
CTC CTT CTC GCG GAG GGC GTC 500 bp

GGA ATA CAG TAT AGG CTG CAG 
ATG CCT GGG AAT GAG CTT TTG 900 bp

ACA TAC CCA TCG GAT AAC TAC 
CCT TTT GAC TTG CAT CCA CTT 550 bp

GGA TGC AGG GAA ACT GCC TTC 
AAC GCA AGT ATG TAT GGT TCT 1000 bp

TAT AAC CAG GAC ATC GTC TTC 
ACT GTC AAT GGT CGC GTA ACA 800 bp

GTC CGA GTC CGT TCG TTA ATT 
CAC GTG GTG CTT GTG CTT GAA 900 bp

ACT GAT GGA ATT GGC AAA GCC 
GGA GTA TTC GGA GTT CAA GTC 500 bp

GAG GCG TGG ATT TGT GCC TTT 
TGA CCA ATC AGC CCC ATA AGC 500 bp

AAT TTC GCC CGC CGT AAC AAC 
GTC AGA CTC GTG CTC CTT ATA 500 bp

GCC CTT CGT GAA ATA ATC ACC 
TAT AAA AGG ACA TGC GGC ATG 1000 bp

CCG ATT CCG ATG TAC ATC GAG 
CAC TGG ATA CCA TAA TTC CCC 650 bp

ATG TTC TGC TTC ATC GTC CTC 
GTA GAT TAG GAT GTA GCC CAG 800 bp

GCG AAT GCT CTT AAA GGC TCG 
AAG TTC CTT CAA ACG CCC CGT 700 bp

TAC CCC CTG AAG AAG AAG GAC 
ACA ACT CGT CGT CTT CCA ATG 450 bp

GAC AAT TAC GTT GTG ACT CCG 
CGG TCC TGA CAA ATG CCT GAT 800 bp

TCT CGA GTG GTT CGA GTG ATG 
ATT CGT GTC CCT CAC CAT TTG 300 bp

Tc-cnc

Tc-croc

Tc-kn

Tc-lab

Tc-wg

Tc-hh

7c-CG1322

7c-CG1444

7c-CG3184

7c-CG3732

7c-CG4261

7c-CG4280

7c-CG4322

7c-CG4501

7c-CG5249

7c-CG5575

7c-CG5840

Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse
Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse

Forward
Reverse
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(Table A2.2 continued) 
7c-CG5893

7c-CG6207

7c-CG9148

Tc-C G9238

7c-CG9520

Tc-CG10072

Fc-CG 10130

Tc-CG 11208

7c-CG11415

Tc-CG 11546

Tc-CG 11798

Tc-CG 12177

Tc-CG 13037

Tc-CG 13475

Tc-CG18375

Tc-CG31150

Tc-CG31811

Forward ATG AAC GCC TTC ATG GTC TGG
Reverse ATA CAT AAC TGG GAC CGG CCT

Forward CTG TAT GTA ATA ACC CCG ACC
Reverse CTT CTT CGT TTG CGT GTG CCA

Forward AAG GAC GGA TAC ATT TCG CGG
Reverse CTT TGT TAG CTG TTC GTC GGC

Forward GTT CGA GTC ATG ACG GAA CCT
Reverse TTC ATT CTC GTT GCA ACG GAA

Forward GGC AAG AGG TGC AAC AAG TTG
Reverse GAG ACA CTT CCC CAT TTC GAC

Forward CCA ACG TGT AGT GTC ATA GCT
Reverse AGT CGC AAC TTC GGA AAC ATC

Forward ACT GTT AGG CAG AGG AAG ACC
Reverse AGA CCT AGT GTA CTT TCC CCA

Forward ATC CAC TAC ATC GGC ATG CGT
Reverse CAG CCT AGC CCC TAA TAA CAA

Forward TAC ATC GGG CTG TAT GTC TTG
Reverse ATG GAA GAA CGG ATT TCC GGT

Forward GTG AAA AGC GAA GAC GCT CTC
Reverse CTC AAT CAC CAA GTC GTC AGT

Forward ATA ACC AGG AAG CTC TAC GGC
Reverse CTC ATG CCG CGT AAA TAG GTC

Forward TAC ACC GCA GTT GGA AAC ATC
Reverse GAA TGC CTC AGC ATC AAA CTG

Forward AAC TTC GGT GTG GGC CGA TTA
Reverse CTC TTC CGC AAC CCT GTA ITT

Forward TTC CAG GGA CTC GTC TCC AAC
Reverse TTC TTG TTT CCG CTT GGC CGT

Forward CTT GAA GGC GAG CTG GAA TTG
Reverse CCA CCA TTC CCT TTC ATT CTC

Forward GCG TCC GTT CTG TAC ATC AAG
Reverse CAT GTA CGA GTG CAC GAA ACG

Forward AGA ATG AAG AGT AGT GGG GTG
Reverse GTT TGA ACT GCA GAC AGC ATC

650 bp 

650 bp 

650 bp 

450 bp 

400 bp 

700 bp 

200 bp 

700 bp 

400 bp 

600 bp 

900 bp 

500 bp 

400 bp 

300 bp 

500 bp 

700 bp 

700 bp
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(Table A2.2 continued)
7c-CG32372 Forward

Reverse
AAG ATC TCC TTC AGC AAG CTG 
CTG AAG GCC CAC AAT CTC TTG 900 bp

7c-CG32423 Forward
Reverse

ATA AGA GGA CTG AAT CCG ACC 
ACC GTC GGC AAA CAA GAC CAA 500 bp

7c-CG32434 Forward
Reverse

TCG GGA ATG CAA GTC GAT GTT 
TAG CTC AGC CTC AAT CCT CAA 800 bp

7c-CG32858 Forward
Reverse

ATC CAC GTT GAT GCC AAC ATC 
TTC GCC CCG TTC GAC TTG AAT 800 bp

Table A2.3. Sequences of primers used for sequencing reactions. 
Primers are named according to the cloning vector polymerase sites to 
which they were designed to anneal.

SP6 GAT TTA GGT GAC ACT ATA
T7 TAA TAC GAC TCA CTA TAG GG
T3 AAT TAA CCC TCA CTA AAG GGA

Table A2.4. Sequences of primers used for amplifying probe synthesis 
template. Primers pBS-A and pBS-E were used with pCR II-TOPO, pGEM- 
T Easy, pFLC-1 and pBS vectors, and primers OTf and OTr with the pOT2 
vector.

pBS-A CTA TGA CCA TGA TTA CGC CAA G
pBS-E TAA CGC CAG GGT TTT CCC AGT
OTf AAT GCA GGT TAA CCT GGC TTA TCG
OTr AAC GCG GCT ACA ATT AAT ACA TAA CC



234

Appendix 3: 
D r o s o p h i l a  clone references

Below is presented a table of the specific Drosophila clones ordered from the BDGP for 

each gene.

Table A3.1. Name of Drosophila clones 
used for each gene.

Gene Clone
cnc LD12047
croc RH24787
kn RE03728
lab RE63854

CG32423 RH63980
CG4322 RE06985

CG32858 RH62992


