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ABSTRACT

Anatomical facts dictate that a foveally fixated word is represented by nodes o f a 

neural network distributed across the two hemispheres. However, the mechanisms 

and implications o f this lateralization are poorly understood. This thesis aimed to 

explore segregated and integrated hemispheric processes in the visual and motor 

cortices by applying unilateral transcranial magnetic stimulation (TMS) over 

cortical areas involved in visual and movement perception.

In a visual letter recognition task, unilateral TMS over the visual cortex impaired 

processing in the contra-, but not ipsilateral visual field. Crucially, such selective 

contralateral effects were found for the left and right sides o f foveal targets. The 

results imply that each primary visual cortex in itia lly processes the contralateral 

part o f foveal stimuli.

To extend these results from letters to whole word recognition processes, a left or 

right precue was followed by a word/pseudoword. Visual word recognition was not 

affected by attentional cues unless the characters were scattered into letter arrays 

such that word shape was completely distorted. For distorted words, the lateralized 

cues had significant ipsilateral effects, in line with the single letter recognition 

findings.

To establish the neural correlates o f early hemispheric integration o f visual stimuli, 

the crossed-uncrossed difference (CUD) paradigm was applied. The CUD was 

increased by inhibiting the crossed latencies, but only when TMS was applied to 

the hemisphere receiving visual information. Interhemispheric transmission was 

further studied by recording blood flow change at the unstimulated motor cortex by 

near infrared spectroscopy. The results revealed that the significantly increased 

oxy-haemoglobin and slightly decreased deoxy-haemoglobin outlasted the 1 Hz 

stimulation by up to 40 minutes.
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In summary, the results support the split fovea theory that assumes split projection 

o f visual stimuli between the hemispheres, and shed light on the mechanisms and 

temporal dynamics o f interhemispheric transmission o f visuospatial stimuli.
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CHAPTER 1: INTRODUCTION

I f  one were to identify the most salient features o f the human brain, compared with 

that o f other primates, hemispheric asymmetry would be high on one’s list. Views 

o f asymmetry in the primate brain range from claims o f no asymmetry in the rhesus 

monkey, to some asymmetry in chimpanzees and clear left right asymmetry in 

humans (Yeni-Komshian &  Benson, 1976). Other studies o f gorillas and other 

monkeys have reached similar conclusions (Groves &  Humphrey, 1973; LeMay &  

Geschwind, 1975). An intriguing question is whether cerebral asymmetry in 

humans in any way reflects our uniqueness, in particular because o f the 

lateralisation o f language functions. Lateralisation raises many questions about 

how the hemisphere’s share, compete and coordinate to execute cognitive 

functions. For example, when a word enters the visual cortex, does each 

hemisphere have the whole word or only the contralateral part? It is well-known 

that the meaning o f the word is generally processed by the left hemisphere but it is 

not clear whether there are conditions under which the left dominance breaks up. It 

is also not clear how visual information across the hemispheres is funnelled into 

action systems. The main aim o f this thesis is to investigate hemispheric 

interactions in vision and language, and in particular to explore the means by which 

bilateral representation in the visual cortex can produce unitary perceptions and 

actions.

In the first chapter, I give a brie f review o f the relevant literature regarding 

hemispheric asymmetries and their functional meaning. Chapter 2 details the 

techniques used in my experimental chapters. Chapters 3 to 6 report the results o f 

my empirical work, and in the final chapter I propose an integration o f the results 

and discuss the implications o f my findings for future work in this field.

Comparison of the left and right hemispheres

To the naked eye the human brain appears to be made o f two similar hemispheres. 

With the exception o f the pineal gland, brain structures in one hemisphere can be 

found in the other hemisphere, allowing some leeway for minor differences in size
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and location. Each cerebral hemisphere can be divided into four lobes: Frontal, 

parietal, temporal and occipital. Much research on hemisphere asymmetries has 

concentrated on the temporal lobe (see review, Shapleske, Rossell, Woodruff, &  

David, 1999). The left planum temporale is sheetlike, roughly triangular 

structure, which lies in the superior surface o f the temporal lobe within the 

SF(sylvian fissure)” (p.27 o f Shapleske, Rossell, Woodruff, &  David, 1999). On 

average, this is one third longer and travels 3 mm more anterior in the left than the 

right hemisphere (Geschwind &  Levitsky, 1968; Wada, Clark, &  Hamm, 1975). 

This is but one example o f gross hemispheric differences, but it has been associated 

with several uniquely human features, such as late brain development and language 

functions (Chi, Dooling, &  Gilles, 1977; Galaburda, Corsiglia, Rosen, &  Sherman, 

1987; Rumeau et al., 1994).

A general rule o f brain anatomy is that one hemisphere is primarily responsible for 

information processing and action in contralateral space or by the contralateral part 

o f the body. However, it is clear that this generalisation can be overstressed. For 

example, even aspects o f language, the most lateralised o f functions, require the 

right hemisphere in processing tone, the semantic meaning o f concrete nouns, 

metaphor and humour (see review, Springer &  Deutsch, 1997). Clearly, how well 

we understand brain lateralisation depends on how well we understand the 

components o f cognitive tasks. To illustrate this I w ill briefly discuss aspects o f 

temporal lobe language functions and parietal lobe attention functions.

Temporal Lobe and Language

The early study o f language was restricted to the left hemisphere following the 

identification o f Broca’s and Wernicke's areas (Broca, 1861; Wernicke, 1874). 

Damage to Broca’s area (Brodmann area 44/45) results in a productive aphasia. 

The content o f the patients talk contains only keywords despite the fact that they 

understand spoken and written language very well. In contrast, patients with 

damage to Werknicke’s areas (posterior part o f Brodmann area 22) are able to 

speak fluently, but the content lacks meaning and the comprehension o f written and 

spoken language is poor. I f  the arcuate fasciculus, connecting these two areas, is 

damaged, patients w ill suffer a conduction aphasia in which auditory
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comprehension and speech articulation are preserved, but patients find it d ifficu lt 

to repeat heard speech (Carlson, 2005). These disorders w ill not be observed it 

corresponding regions o f the right hemisphere have been damaged. Further, 

following left hemisphere damage there are often generalised deficits in motor 

control including in the facial muscles required for speech and in the hands 

required for sign language (Hickok, Bellugi, &  Klima, 1996; Kimura &  Watson, 

1989). Detailed examinations o f motor deficits and brain organisation (Scheibel et 

al., 1985; Steinmetz, Volkmann, Jancke, &  Freund, 1991) have led to the 

hypothesis that linguistic functions and hand dexterity may share a neural basis 

(see review, Josse &  Tzourio-Mazoyer, 2004). However, at least one case in the 

literature suggests that writing and verbal naming can be independently controlled 

by the two hemispheres (Baynes, Eliassen, Lutsep, &  Gazzaniga, 1998).

The left hemisphere has more capacity for dealing with written words and this is 

reflected in higher accuracy and shorter reaction times in word recognition tasks 

when stimuli are presented in the right rather than the left visual field -subjects to 

which I w ill return in my empirical work. In general, processing time w ill increase 

or accuracy w ill decline as the number o f letters in a word increases. This is called 

the length effect and it reveals an interesting difference between the two 

hemispheres. The response to stimuli in the left visual field increased linearly in 

time as a function o f the number o f letters. Stimuli presented in the right visual 

field, however, do not suffer from this effect (Ellis, 2004; Young &  Ellis, 1985). 

This effect cannot be explained without a good understanding o f the processing o f 

written words in the two hemispheres. For example longer words tend to have a 

smaller neighbourhood size (N-value), which designates as the number o f other 

words o f the same length that d iffer from it by a single letter. Lavidor and Ellis 

(2002a;, 2002b) manipulated word length and neighbourhood value to examine the 

interaction with visual field presentation. They found that high neighbourhood 

value words presented in the left visual field are processed faster than low 

neighbourhood value words, but there was no effect o f neighbourhood value when 

stimuli were presented in the right visual field. This effect can be eliminated by 

presenting the stimuli vertically (Bub &  Lewine, 1988), in mlxEd CaSe (Fiset &  

Arguin, 1999), and in stepped format (Young &  Ellis, 1985). In contrast, the right 

hemisphere contributes to lexical processing associated with nouns and metaphor.
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Neuropsychological investigations o f split brain patients for example, have shown 

that they can identify nouns with the right hemisphere (Gazzaniga, 1970); and can 

also identify verbs, adjectives and some grammatical and syntactic structures 

(Zaidel, 1990). Patients with damage to the right hemisphere may suffer deficits in 

interpreting metaphors and proverbs (Winner &  Gardner, 1977) and in word 

association (Nakagawa, 1991).

Thus it seems that phonological processes are mainly subserved by left hemisphere 

brain regions, including Broca's, Wernicke's, the Middle Temporal gyrus and to a 

lesser extent the right superior temporal regions (Demonet et al., 1992; Mazoyer et 

al., 1993; Zatorre, Evans, Meyer, &  Gjedde, 1992). The right hemisphere 

specializes in other aspects o f language such as rhythm and prosody. Brain imaging 

studies for example have implicated the right temporal pole (Mazoyer et al., 1993), 

the right prefrontal cortex (Zatorre, Jones-Gotman, Evans, &  Meyer, 1992) and the 

right superior temporal cortex in a range o f language related functions required for 

interpretation o f meaning. Correspondingly, patients with right hemisphere lesions 

often speak with a flattened intonation and have d ifficu lty in judging the emotional 

tone o f speech (Heilman, Scholes, &  Watson, 1975).

Parietal lobe and attention

The parietal lobe is thought to be necessary for the selection and maintenance o f 

attention. Like the left hemisphere specificity for language, the right parietal lobe 

seems to be dominant in spatial functions. For example, visual neglect, a 

phenomenon in which there is a misperception o f space and objects in space 

contralateral to the lesion, is primarily associated with right parietal damage and is 

rarely seen following damage in the homologous region o f the left hemisphere 

(Heilman, Watson, &  Valenstein, 1993). Neglect has also been observed in 

audition (Bellmann, Meuli, &  Clarke, 2001) and the somatosensory system 

(Bellmann, Meuli, &  Clarke, 2001) and the right parietal cortex seems to be critical 

in these modalities as well as in vision. Neglect can gradually recover and evolve 

into extinction such that patients are able to detect a contralesional stimulus when 

presented alone but not when a competing stimulus is simultaneously presented in 

the ipsilesional field. However, although the extinguished stimulus is ignored.

16



information from it can still be processed, presumably in the right hemisphere via 

the ventral object processing stream (Driver, Vuilleumier, Eimer, &  Rees, 2001). 

For example, patients with right parietal damage are able to successfully compare 

the extinguished stimulus with the stimulus presented in the ipsilesional visual 

field (Volpe, Ledoux, &  Gazzaniga, 1979), and also to integrate an extinguished 

stimuli into the perception o f an illusory contours (Vuilleumier, Valenza, &  Landis, 

2001).

The left parietal lobe, in contrast, has been associated with the motor attention. 

Paying attention to the planned movement o f hands induces left lateralised 

activation in the parietal cortex (Rushworth, Krams, &  Passingham, 2001). In 

addition, compared with single finger responses, independent o f hand, a finger 

choice task cued by the position o f a marker on the screen evoked more activation 

in the left and right intra-parietal sulcus (Schluter, Krams, Rushworth, &  

Passingham, 2001). Rushworth et al. (2001) also showed the effects o f parietal 

lobe damage on motor attention. When the pre-cue correctly predicted the location 

o f the target, patients with either left or right parietal lobe damage performed 

equally well. However, an incorrect cue yielded large deficits in patients with left 

parietal damage, thus indicating that these patients are unable to disengage motor 

attention from the incorrect cued movement. As in the findings on spatial attention, 

the coverage o f motor attention by the left parietal lobe is bilateral in space (Colvin, 

Handy, &  Gazzaniga, 2003).

Rushworth et al. (2001) applied transcranial magnetic stimulation (TMS) to 

differentiate motor and spatial attention in the left and right parietal lobes. Motor 

attention was only disrupted by TMS on the left supramarginal gyrus and spatial 

attention was impaired only by TMS o f the right angular gyrus. These results 

provided further evidence that the left parietal lobe was the motor analog, in 

attentional terms o f the right parietal lobe for space.
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Interactions between left and right hemispheres

The corpus callosum

Anatomically there are several routes that connect the two halves o f the brain: The 

corpus callosum, the anterior &  posterior commissures, the hippocampal 

commissure and the sub-cortical commissures (Nieuwenhuys, Voogd, &  van 

Huijzen, 1990, p. 365). The Corpus callosum is a thick bundle o f fibers connecting 

cerebral hemispheres and is the major highway o f interhemispheric transmission. 

The anterior commissure lies near the hypothalamus and forms a bridge between 

the left and right lenticular nuclei, a collective term for the putamen and globus 

pallidus. The posterior commissure is located between the pineal body and the 

cerebral aqueduct. The hippocampal commissure, also called the commissure o f 

the fornix, links the left and right hippocampus. The subcortical commissures lie 

mainly in the diencephalon.

The corpus callosum grows rapidly during the first two years o f life, almost 

reaching the lower end o f the adult size range and continues to grow for 

approximately the first 25 years o f life (Pujol, Vendrell, Junque, Marti-Vilalta, &  

Capdevila, 1993). Its main function is believed to be the exchange o f information 

between the two hemispheres, be it for coordination, facilitation or inhibition 

(Springer &  Deutsch, 1997). Split brain patients are a valuable source o f 

information regarding the exchange o f information between the two hemispheres 

With the corpus callosum being a target site in operations to relieve intractable 

epilepsy, studies have been able to establish that the anterior regions and posterior 

regions subserve different information transfer (Funnell, Corballis, &  Gazzaniga. 

2000; Gazzaniga, 1989; Suzuki et al., 1998). For example, one patient in whom the 

splenium was sectioned could not name an object presented in the left visual field 

over several weeks o f testing. Subsequently he was able to achieve this transfer o f 

tactile cues via the anterior portion o f the corpus callosum. This shared ability was 

later lost following a second operation in which the anterior corpus callosum was 

also sectioned (Sidtis, Volpe, Holtzman, Wilson, &  Gazzaniga, 1981).



A complete resection o f the corpus callosum results in two relatively independent 

cerebral hemispheres. The examples are dramatic and convincing, and span visual, 

verbal, tactile and higher cognitive functions. Wolford, M ille r and Gazzaniga 

(2000), for example, have proposed two very different strategies used by the two 

hemispheres. They have described the left hemisphere as being an interpreter o f 

information, employing knowledge and expectations about the world, whereas the 

right hemisphere responds on the basis o f salience. In one experiment (Wolford, 

M iller, &  Gazzaniga, 2000), subjects were presented with stimuli that could appear 

in either the upper or lower visual fields with varying probability. When the stimuli 

were presented to the right hemisphere, the subjects guess where the next stimulus 

would be simply went for the highest frequency location on every trial. When the 

stimuli were presented to the left hemisphere, however, the interpreter adopted a 

frequency matching strategy which resulted in a less successful performance than 

the right hemisphere. This is an important case because it shows that whether or not 

a hemisphere is dominant depends on the demands o f the task: Here we have the 

smart, linguistic, hypothesis generating hemisphere performing worse than the 

“ minor” hemisphere. The interpreter can be seen at work again when split brain 

subjects are presented with two visual stimuli, one in each hemifield, 

simultaneously. Split brain patients only gave verbal reports o f the object presented 

in the right visual field but were able to rationalise their choices when they reached 

for a different object presented in the left visual field (Gazzaniga, 2000; see also 

Baynes, Wessinger, Fendrich, &  Gazzaniga, 1995)

In some rare cases there is agenesis o f corpus callosum, yet subjects with this 

condition can grow up with normal cognitive abilities (Springer &  Deutsch, 1997), 

saved for some specific impairments in tasks requiring into hemispheric transfer o f 

motor and visual spatial skills or in some tasks requiring integration o f visual and 

tactial information over both sides o f the body (Lassonde, Sauerwein, &  Lepore, 

1995) in addition the subjects may sometimes have a consistent deficit in 

phonological processing, although overall language development may be normal 

(Temple &  Isley, 1994). These data suggest that the corpus callosum, although 

critical in the normal integration o f the hemispheres can, over the course o f 

development, be compensated for by the non callosal commissural pathways.
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Word recognition

When a word is presented at the centre o f fixation, each hemisphere receives the 

part o f the word falling in the contralateral visual field. Lavidor et al. (2001) have 

exploited this in studies o f split fovea processing. They adjusted the location 

around fixation o f a centrally presented word in order to manipulate the number o f 

letters appearing in the right or left visual field. They observed longer latencies in a 

word recognition paradise when more o f the letters fell in the left visual field, but 

no effects o f the number o f letters following in the right visual field. In a 

subsequent study (Lavidor, Hayes, Shillcock, &  Ellis, 2004), Lavidor’s group used 

words with the same number o f letters but a different neighbourhood size on the 

lead part or end part o f the words. The lead part o f a centrally presented word w ill 

normally be processed by the right hemisphere, and the end part by the left 

hemisphere. In agreement with 2001 study, they found that right hemisphere 

processes but not left hemisphere processes were affected by neighbourhood size. 

The results were taken as evidence that foveal mechanisms o f word recognition are 

the same as those in parafoveal areas. This raises a perennial issue in vision 

research: is the fovea split in the cortical representation o f the visual field? I w ill 

return to this question in Chapter 3.

Visuomotor integration

When a visual stimulus triggers a motor response, it involves information transfer 

between the visual and motor cortices, and this may require interhemispheric 

transfer. In studying the pathway from vision to action, two topics are o f particular 

relevance to the goals o f this thesis. The first concerns time: how long does it take 

information to travel between the two hemispheres? One mode o f measurements 

adopts Poffenberger’s paradigm o f comparing reaction times in conditions in 

which information may be crossed or uncrossed between hemispheres. This is 

called the crossed-uncrossed difference or CUD. It is well established that 

responses in uncrossed conditions are faster than responses in uncrossed conditions. 

In normal subjects the CUD is several milliseconds, and o f course this is much 

larger in split brain and acallosal subjects (Roser &  Corballis, 2002). The second 

topic o f particular relevance is the issue o f which parts o f the corpus callosum are 

involved in transmission. This seems to depend on specific tasks and stimulus
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properties. For example, one study mentioned above has shown that the posterior 

part o f the corpus callosum is related to the transmission o f visual stimuli. Patients 

with a lesion o f the posterior body o f the corpus callosum also show the prolonged 

CUD (Peru, Beltramello, Moro, Sattibaldi, &  Berlucchi, 2003). Recent functional 

imaging imaging studies, however, have suggested that the genu, in the anterior 

part o f corpus callosum, is activated by crossed conditions (Omura et al., 2004; 

Weber et al., 2005). It has been argued that the anterior portion is important for 

motor transmission but these data suggest that other brain areas, including regions 

o f the parietal cortex and some subcortical areas are all so important (Forster &  

Corballis, 2000; Weber et al., 2005). Other evidence shows an asymmetry in 

interhemispheric transfer depending on whether the transfer is from left to right or 

right to left (Forster &  Corballis, 2000; Velay &  Benoit-Dubrocard, 1999). I w ill 

focus on this issue in Chapter 5.

Motor cortex lateralisation

Transmission between hemispheres needs to allow facilitatory and inhibitory 

signals to keep the two hemispheres functioning in concert. Interhemispheric 

inhibition has been reported by Ferbert et al. (1992) who showed that a single 

conditioning shock to one hemisphere resulted in a weaker response o f the 

ipsilateral hand by a subsequent test shock six to thirty milliseconds later delivered 

to the motor cortex o f the opposite hemisphere. Increasing the intensity o f the 

conditioning stimulus increases the duration o f this interhemispheric inhibition (De 

Gennaro et al., 2004; Ferbert et al., 1992). Similarly, exercising the hand in normal 

subjects produces a pre-activation in the corresponding hemisphere and decreased 

blood flow in the ipsilateral sensory motor cortex (Allison, Meador, Loring, 

Figueroa, &  Wright. 2000; Newton, Sunderland, &  Gowland, 2005). This 

inhibition occurs at the cortical level (Di Lazzaro et al., 1999). For example, 

patients with an absence or abnormalities o f the corpus callosum have delayed or 

absent inhibition responses (Bonato et al., 1996; Mochizuki, Huang, &  Rothwell, 

2004; see also Reddy et al., 2000). It seems that the critical site in this transmission 

is the anterior part o f the corpus callosum (Meyer, Roricht, Grafin von Einsiedel, 

Kruggel, &  Weindl, 1995). Further evidence supporting the idea that the anterior 

half o f the corpus callosum mediates between motor regions is found in musicians
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who have a significant increase in volume o f this region (Schlaug, Jancke, Huang, 

Staiger, &  Steinmetz, 1995). However, it has also been suggested, on the basis o f 

neuropsychological patient studies that the posterior half is also critical even 

though it is more commonly associated with visual functions (Meyer, Roricht, &  

Woiciechowsky, 1998).

Transcranial magnetic sitmulation has been used to study interhemispheric 

inhibition and it has been reported that 1 Hz stimulation above motor threshold can 

increase the excitability o f the contralateral, unstimulated hemisphere (Schambra, 

Sawaki, &  Cohen, 2003). However there are some variable results in the study o f 

hemispheric interactions and similar paradigms, using subthreshold stimulation, 

have reported inhibition (Strens et al., 2002) and facilitation (Kobayashi, 

Hutchinson, Theoret, Schlaug, &  Pascual-Leone, 2004). The frequency o f 

magnetic stimulation also has variable effects. Stimulation delivered at 5 Hz was 

found to magnify the motor evoked potential (MEP) on the ipsilateral hand 

(Gorsler, Baumer, Weiller, Munchau, &  Liepert, 2003), but it did not change the 

coherence between two hemispehres (Oliviero, Strens, Di Lazzaro, Tonali, &  

Brown, 2003).

Taken together, the body o f psychological, developmental, neuropsychological, 

electrophysiological, brain stimulation and brain imaging data point to two 

hemispheres poised in fine balance to enable humans to acquire and utilize a wide 

range o f sensory and cognitive capacities. In this thesis, I address some o f the 

outstanding issues from the level o f the very origin o f asymmetrical input, that is, 

in the fovea, through to the integration o f visual and motor information, and on to 

the problem o f attentional asymmetries. In doing so it was necessary to establish 

behavioural parameters, to be able to stimulate the human brain with a fine 

temporal resolution, to be able to record from the brain using near infrared 

spectroscopy and to combine magnetic brain stimulation with the recording o f the 

bloodflow. In the next chapter, I w ill introduce the techniques used in this thesis.
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CHAPTER 2: GENERAL METHOD

Transcranial Magnetic Stimulation (TMS)

What TMS is and how it works

TMS uses a magnetic field which crosses the scalp into brain and induces 

environmental changes outside and inside neurons, thus the influencing the firing 

rate o f the neurons (Nagarajan, Durand, &  Warman, 1993). The principle o f TMS 

can be traced back to Michael Faraday’s discovery o f electromagnetic induction in 

1831. In any circuit a rapid current change w ill produce a magnetic field which in 

turn induces an electric current in another circuit. In the case o f TMS, this second 

circuit is the brain (Walsh &  Rushworth, 1999; see review, Hallett, 2000). To 

achieve this, a large and rapidly changing current are required to generate a 

sufficient magnetic field. Figure 1 shows the sequence o f events in a typical TMS 

pulse (Walsh &  Cowey, 2000)

The induced electric field depends on the orientation o f the cells relative to the 

direction o f the induced field and TMS is, therefore, more likely to stimulate 

neurons parallel to the cortical surface (Bohning et al., 1999). The effect o f TMS on 

the nervous system can be viewed from an anatomical or functional perspective. 

Take TMS on the motor cortex for example, and assume the index finger can be 

slightly raised when the hands are relaxed. TMS can excite the motor cortex and 

trigger muscles to raise the index finger. However, i f  volunteers need to use the 

index finger to precisely press a button, the reaction time would be delayed or 

accuracy would be impaired: The apparent excitation caused by the TMS would 

interfere with behaviour. From this behavioural aspect, TMS impairs performance.
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Figure 1: TMS and the brain.
An electrical current of up to 8 kA is generated by a capacitor (a) and discharged into a 
circular, or figure-of-eight shaped, coil which in turn produces a magnetic pulse of up to 2 T 
(b). The pulse has a rise time of about 200 ps and a duration of 1 ms and owing to its 
intensity and brevity changes at a rapid rate (c). The changing magnetic field generates an 
electric field (d) resulting in neural activity or changes in resting potentials (e). The net 
change in charge density in the cortex is zero. The pulse shown here is monophasic, but in 
studies that require repetitive pulse TMS (rTMS), the waveform will be a train of biphasic 
pulses which allow repeated stimulation. (Figure adapted from Walsh & Cowey, 2000, with 
permission)

The spatial and temporal resolution of TMS

The spatial and temporal resolution of TMS with respect to other techniques is 

shown in Figure 2. However, it is also useful to consider what has been called its 

cognitive or functional resolution (Walsh & Pascual-Leone, 2003). TMS 

interference effects can help to establish the necessity of an area for a given 

function and thus complements the correlative data from other techniques such as 

positron emission tomography (PET), functional magnetic resonance imaging 

(fMRI), magnetoencephalography (MEG), and event related potentials (ERPs).
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Figure 2: The spatial and temporal resolution of TMS, compared with other 
techniques.
The x-axis is the dimension of spatial resolution. The stimulated area of TMS is larger than 
that of single cell recording, and could be smaller than that of EEG. The y-axis is the 
temporal resolution. The affected area by TMS would be between ms and several minutes. 
The third dimension is the interference. Unlike fMRI, ERP and single cell recording which 
passively record the brain activity, TMS actively interferes with the brain activity (Figure 
adapted from Walsh & Cowey, 2000, with permission).

With respect to temporal resolution, TMS is like EEG, ERP and MEG at the level 

of a few milliseconds. The rise time of the coil current is less than 200 ps, and the 

whole duration of a single pulse lasts approximately 1 ms. Nevertheless, the 

duration of the effect in the cortex is difficult to determine with absolute precision 

because the neurons stimulated by TMS take time to recover to the normal 

functional state. Thus, the interaction of the duration of TMS pulses and an area’s 

involvement in a task is a probabilistic issue (Figure 3) (Walsh & Cowey, 2000). 

Functionally, TMS effects can be distinguished in steps of 10 or 20 ms (Amassian 

et al., 1989; Pascual-Leone & Walsh, 2001).

The spatial resolution of TMS relies on the type of coil and the neurons underlying 

the coil. There are two types of coil in common use, circular and figure-of-eight. 

The bigger the coil, the deeper the penetration of the stimulation (Rudiak & Marg, 

1994). The peak of the induced electric field by a circular coil is not in the centre, 

but around the ring (Figure 4). The induced electric field in the centre is 30% less
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Figure 3: Temporal relationship between transcranial magnetic stimulation 
and behaviour.
A probabilistic picture of the relationship between pulse strength and behavioural effects. 
The upper panel shows that the intensity of the transcranial magnetic stimulation (TMS) 
pulse is greatest close to the time of onset and then declines within one millisecond. The 
effect this has on behaviour is a function of the intensity of the physiological effects of TMS 
and the probability that the neurons stimulated are critical to the task, a: The pulse here 
would not have a behavioural effect because it is applied too early, b: The pulse here 
would interfere with behaviour because an early (that is, high) phase of the TMS noise is 
applied even though the probability of the area’s involvement is low. c,d: Similarly, the 
pulses here would have a behavioural effect because of the high probability of the area’s 
involvement at the time of the pulse. c,e: Although the pulses applied here arrive at similar 
parts of the probability curve, the neural noise at e is higher because there is no recovery 
time. So the product of neural noise and neural necessity would be higher at e than at c. 
The appropriate application of TMS may have effects at times well before b and c or well 
after e, the reported peak. (Figure adapted from Walsh & Cowey, 2000, with permission)

than that adjacent to the coil windings (Bohning, 2000). However, the 

figure-of-eight coil has increased focality in the centre (Ueno, Tashiro, &  Harada, 

1988) because the two circular coils carry current in opposite directions, and where 

the coils meet, there is a summation of the electric field. The end windings of the 

figure-of-eight coil have only half the intensity of the centre and the focal effective 

volume, only 3 cm long by 2 cm wide by 2-3 cm deep (Bohning, 2000). Figure 5 

illustrates the area affected by the two types of coil.

The precise area affected by the induced field is not easy to define. It is hard to tell, 

for example, how many neurons traverse the induced field (primary affected area)
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Figure 4: Distribution of the induced electric fields by a circular (top) and 
figure-of-eight (bottom) stimulating coil.
The circular coil has 41.5 mm inside-turn diameter, 91.5 mm outside turn diameter (mean 
66.5 mm) and fifteen turns of copper wire. The figure-of-eight coil has five 6 mm inside-turn 
diameter, 90 mm outside-turn diameter (mean 73 mm), and nine turns of copper wire on 
each wing. The outline of each coil is depicted with dashed white lines on the 
representation of the induced fields. The electric field amplitude is calculated in a plane 20 
mm below a realistic model of the coil (dl/dt = 108 A s~1). (Figure created by Anthony 
Barker; used with permission.)

Figure 5: Cartoon-like representation of regions targeted by TMS using a 
circular or figure-of-eight-shaped coil over the scalp.
Given the differences in induced fields, the results of an experiment done with the 
figure-of-eight coil may not be reproducible with a circular coil centered over the same 
brain region because different brain areas would be affected. (Figure adapted from Walsh 
& Pascual-Leone, 2003, with permission)



and how many of those activated will trigger a series of trans-synaptic transmission 

effects (secondary affected areas). However, the stimulation areas can be inferred 

by a subtraction method, based on physical models (Barker, 1999). I f  a coil located 

in the central site of figure 6 disrupts a behavioural task, the effective areas of 

stimulation could be said to be anywhere within, around, or connected to the 

neurons crossed by the induced field. I f  the coil is moved to either side of the 

effective stimulation point and the new sites fail to disrupt the behavioural task, the 

overlap between the central and either of the two lateral sites can be said to be an 

ineffective region, and the most effective field is the central sub-region (hot spot) 

(Walsh & Cowey, 2000).

Wassermann et a l (1999) indicated the spatial resolution of TMS was within 5-22 

mm of PET activation in the hand primary motor area. Several studies have also 

shown that TMS effects can be reduced remarkably just by moving a coil a few 

millimetres away from the ‘hot spot’ (Barker, Jalinous, & Freeston, 1985; Kammer, 

1999; Paus & Wolforth, 1998; Schluter, Rushworth, Passingham, & Mills, 1998). 

With regard to secondary affected areas, Ilmoniemi et a l  (1997) observed that the 

ipsilateral hemisphere was activated (as measured by EEG) 7 ms after the right 

occipital lobe was stimulated by TMS, and the contralateral hemisphere was then 

activated 28 ms after TMS.

Figure 6: Subtractive lesion analysis applied to TMS.
From models of TMS-induced electric fields one can infer the region of stimulation. By 
stimulating at neighbouring regions on the scalp the inferences can be refined and, 
notwithstanding the uncertainty of any one field, reasonable functional anatomical 
attributions can be made. The ‘coils’ and induced fields in this figure are illustrative of the 
methodological rationale and do not represent real configurations and effects. (Figure 
adapted from Walsh & Cowey, 2000, with permission)

Gcrfs
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TM S and striate cortex

Since the visual cortex was originally reported as a good target o f TMS study 

(Amassian et al., 1989), subsequent TMS research on the striate cortex can be 

divided into three major categories: (i) phosphene threshold (PT) studies, (ii) 

mapping o f phosphenes and scotomas and ( iii)  behavioural tasks. The following 

w ill separately introduce TMS studies in each category.

TMS and phosphene threshold (PT)

A "phosphene" is a visual sensation that is produced by something other than light 

falling on the retina. When poking your eyeball with a finger, you may see spots 

lines or stars. These are "pressure phosphenes", produced by mechanical 

stimulation o f retinal nerve cells. "Electrical phosphenes" can be produced by 

passing electric current through the retina, or through the visual cortex o f the brain 

(Wade, 1998; Walsh &  Pascual-Leone, 2003). PT is the lowest TMS intensity that 

makes a subject see phosphenes. The measurement depends on several parameters, 

such as the coil type, size, location, and TMS pulse frequency and duration. Many 

PT experiments have adopted the figure-of-eight coil (Boroojerdi et al., 2000; 

Kammer, 1999; Kammer, Beck. Erb, &  Grodd, 2001; Ray, Meador, Epstein, 

Loring. &  Day, 1998; Sparing et al., 2002; Stewart, Walsh, &  Rothwell, 2001), 

instead o f the round coil (Kastner, Demmer, &  Ziemann, 1998) because o f the 

focality mentioned in the previous section. The size o f figure-of-eight coil among 

the different experiments ranges from 7.5 cm to 10.0 cm in outer diameter. The 

usual location o f TMS stimulation is along the midline o f the inion (Ray, Meador, 

Epstein, Loring, &  Day, 1998; Stewart, Walsh, &  Rothwell, 2001), or the striate 

cortex around the inion (Boroojerdi et al., 2000; Kammer, 1999; Kastner, Demmer, 

&  Ziemann, 1998; Sparing et al., 2001). PT remains consistent when measured at 

weekly intervals (Stewart, Walsh, &  Rothwell, 2001) and is reduced by paired 

TMS pulses (Boroojerdi, 2002; Ray, Meador, Epstein, Loring, &  Day, 1998; 

Sparing et al., 2002). Repetitive TMS evokes phosphenes readily and the higher 

frequency, the lower PT.
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In addition to TMS parameters, ongoing brain activation w ill have an influence on 

PT. Visualizing letters reduced PT(Sparing et al., 2002) possibly by raising the 

base level o f activation (Kosslyn et al., 1999). In summary, phosphenes can be 

induced by TMS over the striate cortex and the threshold w ill be reduced when 

more TMS is delivered.

Mapping phosphenes and scotomas

When TMS elicits phosphenes, the phenomenon each volunteer sees w ill be 

different. The most common phosphenes are like flashes or spots o f light; a simple 

geometrical figure like a straight or curved line, bar, triangle or circle; and its 

colour is usually white or grey. There are also some complex phosphenes, like 

irregular contours, multiple scattered shapes, kinetic phosphenes, and even colours 

(Fernandez et al., 2002; Kammer, 1999; Ray, Meador, Epstein, Loring, &  Day,

1998). There are also some examples o f phosphenes experienced as dark on light 

(Fernandez et al., 2002).

The location o f phosphenes is basically contralateral to the site o f TMS. When 

moving the TMS coil laterally, phosphenes move away from the midline. Whereas, 

when moving the coil dorsally, phosphenes are located in the lower visual field or 

in both lower and upper visual fields, but rarely exclusively in the upper visual field 

(Cowey &  Walsh, 2000; Kammer, 1999).

I f  a phosphene occurs at the same time as a visual stimulus, it may impair visual 

performance; in other words, TMS can induce an artificial scotoma. Mapping 

scotomas and phosphenes is, therefore, necessary to define the relationship 

between them. Kammer (1999) found that in 9 out o f 15 cases phosphene location 

matched the scotoma’s; the others being either incongruent or not producing a 

scotoma. Among the nine matched cases, only two had equally sized scotomas and 

phosphenes, the others having a larger scotoma area (four cases) or a smaller 

scotoma area (three cases).
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To summarize, then, TMS effects in the visual cortex can produce different kinds 

o f phosphenes, from simple geometrical figures to complex forms or colours. The 

location o f phosphenes is basically contralateral to the coil position, and mostly in 

the lower visual field. Scotomas can be induced by phosphenes to interfere with 

judgements o f visual stimuli. The locations o f phosphene and scotomas are 

sometimes similar.

TMS and cognitive behavioural tasks

The first successful TMS experiment on the human brain was in 1985. Barker et al. 

(1985) placed an excitation coil on a subject’s scalp over the motor cortex and 

recorded muscle-action potentials from the contralateral abductor d ig itii minimi 

muscle. The Subject’s muscle contraction was observed without discomfort. 

Subsequently, Amassian et al. (1989) interrupted letter recognition contralateral to 

the TMS coil over the occipital cortex. In the following decade, many varieties o f 

tasks were used in TMS experiments. The discussion below surveys some o f the 

TMS experiments most pertinent to my work.

A simple task is the detection o f a non-meaningful visual stimulus. In assessing 

transmission time across the corpus callosum, subjects only need press a key when 

detecting a LED. The location o f the visual stimulus w ill interact with the 

responsding hand, and reaction time (RT) w ill be faster when the visual stimulus is 

ipsilateral to the response hand, and slower i f  the visual stimulus is contralateral to 

the response hand. This RT difference between the two conditions is the so called 

cross-uncrossed difference (CUD) and it has been verified in many experiments 

(Brysbaert, 1994; Chiang, Walsh. &  Lavidor, 2004; Fendrich &  Gazzaniga, 1989; 

Harvey, 1978; Lavidor &  Ellis, 2003). Marzi et al. (1998) applied single pulse 

TMS over the occipital cortex 50 ms after the presentation o f a LED and found that 

TMS magnified CUD. RT was prolonged when the visual information needed to 

cross to the contralateral hemisphere that controls the hand to make the response. 

Epstein and Zangaladze (1996) adopted a similar non-meaningful task, an asterisk 

disappearing from an array o f six asterisks. The maximal impairment by TMS was 

discovered when applied 62 ms after visual stimulation and the coil displacement 

was 4 cm above the inion.
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The TMS effect seems to be restricted to recent processing event in the brain. 

Maccabee et al. (1991) showed TMS can unmask a visual mask, rather than the 

visual stimulus. However, a non-linear combination effect o f mask and TMS was 

found recently (Kammer, Scharnowski, &  Herzog, 2003).

The effective time o f TMS delivery on cognitive tasks was initia lly found between 

80 and 100 ms after the visual stimulus. In the range o f SOA=40-140 ms, there was 

incomplete impairment, and beyond the range there was no effect (Amassian et al., 

1989). However, re-examining the differences between SOAs in different 

experiments it seems clear that some factors need to be considered before directly 

seeking “ magic times” (Walsh &  Pascual-Leone, 2003; Walsh &  Rushworth, 

1999)

TMS intensity has an important influence on timing. In some studies, it has been 

shown that the shorter the visual simulation, the longer is required for visual 

processing and transmission, and hence the optimal SOA o f impairment is 

apparently delayed (Amassian et al.. 1989; Beckers &  Homberg, 1991; Kammer, 

Scharnowski, &  Herzog, 2003; Marzi et al., 1998; Masur, Papke, &  Oberwittler, 

1993). Task difficulty also plays a role in determining the time window o f 

impairment. Sternberg's short-term-memory scanning task is presumably more 

difficult than detection o f LED or letters and in this task, the impairment o f 

scanning rate occurred at SOAs between 154 or 210 ms (Beckers &  Homberg, 

1991).

Recently the study o f neuronal interactions has shown that back-projections to the 

striate cortex is necessary for awareness and perception (Pascual-Leone &  Walsh, 

2001). Further, Juan and Walsh (2003) showed that striate cortex was still 

important for visual processing up to 200 to 240 ms after visual stimulation offset, 

in addition to the more common early times around 80-120 ms.

To sum up, varying tasks have all been used to show that TMS can interfere with 

information processing in the striate cortex. Timing studies indicate that there are 

at least two critical time zones for TMS impairment, one about 100 ms after visual



stimulus offset, indicating the early process o f visual information, and the other 

involved in the back projections from higher cortical areas.

TM S  and motor cortex

The demonstrative phenomenon o f TMS over the primary motor cortex is the 

twitch o f the contralateral hand muscle. The motor threshold is usually defined as 

the minimum intensity o f TMS to elicit a small (usually 50 fi V) motor evoked 

potential (MEP) at the target muscle in at least half o f the trials (Rothwell et al.,

1999).

MEPs can be influenced by the parameters o f TMS. High frequencies and high 

intensity o f stimulation lead to an increase o f MEP excitability, and the effective 

period after stimulation is positively related to these parameters (Pascual-Leone, 

Valls-Sole, Wassermann, &  Hallett, 1994; Wu, Sommer, Tergau, &  Paulus, 2000). 

On the other hand, stimulation at below MEP threshold usually requires longer 

trains to have any lasting effects (Maeda, Keenan, Tormos, Topka, &  

Pascual-Leone, 2000a;, 2000b).

In contrast, low frequency TMS usually results in suppression o f MEP excitability. 

The stimulation o f 0.9 Hz or 1 Hz with high intensity (115% o f motor resting 

threshold) over the primary motor cortex suppressed the MEP input-output curve, 

and increased resting motor threshold for up to 30 min after the end o f stimulation 

(Chen et al., 1997; Muellbacher, Ziemann, Boroojerdi, &  Hallett, 2000). On the 

other hand, the stimulation with subthreshold intensity (e.g., 85% o f motor resting 

threshold) had a much weaker effect on MEP excitability as compared with 

suprathreshold rTMS (Fitzgerald, Brown, Daskalakis, Chen, &  Kulkarni, 2002). 

Nevertheless, the EEG result showed, under subthreshold stimulation, that the 

coherence o f alpha band was increased (i.e., lowered EEG power) for up to 25 

minutes on the stimulated motor cortex, but not on the contralateral motor cortex 

(Strens et al., 2002). The discrepancy might be explained i f  the inhibition o f 

subthreshold stimulation could be restricted to the cortical level, but not extend to 

the corticospinal connection.
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Near Infrared Spectroscopy (N IRS)

What NIRS is and how it works?

Everyday we are surrounded with electromagnetic energy. Some we can sense, like 

radio, visible light and heat. Some is beyond our sensation, like the Sun’s 

ultraviolet and even gamma rays from stars or radioactive substances. Each type of 

energy has a different range of wavelengths in the electromagnetic spectrum 

(figure 7). The visible light is approximately between 400 and 700 nm in 

wavelength. The infrared waves are just between visible red light and the 

microwave portion, approximately from 700-100,000 nm, which can be further 

divided into three sub-categories: near, mid and far. It is generally accepted that 

near infrared light is approximately below 1,300 nm and the commonest 

application is the remote control of TVs.
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Figure 7: The electromagnetic spectrum
The infrared region of the spectrum is labeled by the red arrow, and the near infrared is 
next to the visible spectrum (adopted form the website: 
http://www.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.html)

When a light (Io) transmits through a non-scattering monochrome medium, the 

output light (I) will be attenuated because some of the light is absorbed by the 

medium. The phenomenon can be described by the Beer-Lambert Law (named 

after the two scientists Johann Heinrich Lambert (1728-1777) and August Beer 

(1825-1863)), which states the light absorbance of the medium (A) has the linear
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relationship between the concentration o f the medium (c) and the distance the light 

travels through the medium.

A = acd = -logio (Io/I) (equation 1)

Where a is the specific extinction coefficient o f the medium. By measuring the Io 

and I, we can get the relationship between the extinction coefficient and the 

absorption spectrum (Sassaroli &  Fantini, 2004). For example, water, 80% o f adult 

brain tissues (Woodard &  White, 1986), has relatively low absorbance between 

200-900 nm. Beyond 900 nm, its absorbance surges up quickly (figure 8 ).
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Figure 8: The absorption spectrum of pure water
(adopted form Elwell C. & Hebden J. at the website: 
http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/nirs.htm)

Once knowing the extinction coefficient o f pure water, we can get the 

concentration o f another glass o f water by measuring the attenuation (I0 and I). 

When there is a mixture o f substances in the medium, the total absorbance ( A t )  is 

the sum o f the absorbance o f each component:

A j — A] + A : + A 3 + ...+  A n (equation 2 )

However, light in the medium, especially in biological tissues, could probably be 

scattered by the cell membranes and the boundaries between various organelles, 

like mitochondria, ribosomes, fat globules, glycogen and secretory globules. The
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scattered light increases the travel path in the medium and, as a result, increases the 

probability o f absorption or loss o f detection. The effects appear in the Modified 

Beer-Lambert Law as the following (Chance, Anday, &  Nioka, 1998):

A = acd*DPF + G = -logio ( Io/I) (equation 3)

Where G means light loss and DPF is the differential pathlength factor, accounting 

for the increased path length. Due to the unknown G, we can’t know how much the

light is absorbed and scattered when measuring the Ioand I (attenuation). Thus, the

concentration o f the medium can’t be measured either. However, we can actually 

get the change in concentration o f the medium i f  we assume G does not change 

during the measurement.

(A 2-A 1) = a(c2-Ci)d*DPF (equation 4)

This is the reason why some measured values are differential concentration from 

the time o f initial measurement.

Absorption spectrum of Haemoglobin

It is well known that oxygen is essential for cells to produce energy that it is carried 

to the cells in the blood stream. Hemoglobin is the key chemical compound that 

combines with oxygen (oxygenated haemoglobin, CLHb) from the lungs and 

carries the oxygen to cells throughout the body. Once the oxygen has been 

transmitted to the cells, the CLHb w ill have changed into deoxyhaemoglobin (HHb). 

The more active the cells are, the more oxygen is needed. The increased need for 

oxygen means blood flow is required. Thus, the change o f haemoglobin may be an 

index o f cell activities.

The absorption spectrum o f haemoglobin is shown in figure 9. The left panel 

indicates the short waves o f visible light is absorbed by haemoglobin and, therefore, 

the arterial blood appears red. The right panel is the enlarged scale o f the extinction 

coefficient which shows in the longer wavelength o f near infrared spectrum 

(800-1,000 nm) that CLHb has more absorbance than HHb. Nevertheless, the
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opposite pattern happens in the shorter wavelength o f near infrared spectrum 

(700-800 nm). Around the 800 nm, both CbHb and HHb have the same extinction 

coefficient. According to equations 2 and 4, the total differential concentration o f 

haemoglobin can be measured independent o f tissue oxygenation.
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Figure 9: The absorption spectrum of 0 2Hb and HHb
(adopted form Elwell C & Hebden J at the website:
http://www.medphys.ucl.ac.ukyresearch/borl/research/NIR_topics/nirs.htm)

In the range o f near infrared wavelength, there are other substances that can be 

considered as non-interfering in measurement, such as water, lipid and melanin. 

Water is easily transparent and is clinically considered as a constant absorber. The 

lipid, though containing 10-40% o f tissue, has a similar absorbance spectrum to 

water. Melanin, an effective absorber o f ultraviolet region o f spectrum, can also be 

thought o f constant and oxygen independent. Nevertheless, there are some 

substances that can absorb near infrared as well. Cytochrome oxidase (CO) is an 

enzyme, existed in the mitochondria membrane, which helps regulate oxygen 

metabolism o f the respiratory chain. Although the detection o f its stable 

concentration in the short term can be resolved by using dual-wavelength 

spectroscopy, there are some debates and inconsistency with CO measurement in 

the human (V illringer &  Chance, 1997; see review, Obrig &  Villringer, 2003). 

Other substances are also able to absorb near infrared, e.g., haemoglobin 

compounds, like carboxyhaemoglobin, haemiglobin and sulfhaemoglobin. Despite 

this, they are either in very low concentrations in normal healthy subjects or have a 

low extinction coefficient on the near infrared spectrum.
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The features of NIRS

NIRS is also a non-invasive tool to measure changes o f oxygenation state in the 

human brain (Jobsis, 1977). Unlike other imaging technologies, like fMRI, PET 

and MEG, the cost o f NIRS is much cheaper in terms o f set-up, operation, 

maintenance and data interpretation. Moreover, the full apparatus can be operated 

outside the lab or hospitals, and can be conveniently transferred between sites. The 

portability can suit some patients who can't move into the chamber o f fMRI, PET 

or MEG, and allow researchers to investigate brain-related processes in the natural 

environment (M iyai et al., 2001; Okamoto et al., 2004).

However, the spatial resolution o f NIRS is not as good as fMRI. The input light (Io) 

and the output light (I) consist o f a pair o f optodes 2-4 cm apart and placed on the 

skull. The depth o f light penetration o f the optodes is considered to be equal to 

one-quarter to three quarters o f the distance o f the optodes (Gratton, Maier, Fabiani, 

Mantulin, &  Gratton, 1994). On the other hand, the temporal resolution o f NIRS 

can reach 50 ms (Gratton, Corballis, Cho, Fabiani, &  Hood, 1995), which can 

monitor real-time change o f blood flow in the target area.

When adopting NIRS, there are some practical considerations to improve the 

validity o f measurement (Chance, Anday, &  Nioka, 1998). The most concern 

surrounding NIRS results is the difficulty in identifying the target area associated 

with the activation measured. The other concern is that o f impairing the 

transmission o f emitter optode (Io) and receiver optode (I) by skin pigmentation 

and hair color. Dark hair can absorb the light because o f the melanin content. The 

best way to avoid the difficulty is to cut the hair out around the measurement area. 

Without the hair intervention, the thickness o f skull, dura matter and cerebral spinal 

fluid (CSF) are thought to be causes o f interference in the NIRS signal. It may be 

the reason why some subjects do not give NIRS signal, even i f  they are bald.

NIRS and the brain

Since Jobsis (1977) first demonstrated that NIRS could be used to monitor the 

degree o f oxygenation o f certain brain areas, several studies have shown the
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validity o f NIRS in the brain research. These w ill be briefly reviewed in the 

following.

One o f the common tasks used in NIRS study is the finger tapping exercise. The 

best observation o f surging CLHb and plunging HHb was exercising finger tapping 

at least 3 times per second; and the faster the frequency, the better activation in the 

contralateral motor cortex (Kuboyama, Nabetani, Shibuya, Machida, &  Ogaki, 

2004; Obrig, Hirth et al., 1996; see also Obrig, W o lf et al., 1996).

To validate NIRS in brain research one must compare the results with that o f other 

imaging techniques, like PET and fMRI. Studies have indicated that the results o f 

NIRS and PET are coherent and the best correlation happens in the outer 1 cm o f 

the brain tissue, i.e., from the gray matter (Hock et al., 1997; Okada et al., 1997; 

V illringer &  Chance, 1997). NIRS also has a strong correlation with fMRI, both in 

its spatial and temporal dimensions (Hirth et al., 1996; Kato, Izumiyama, Koizumi, 

Takahashi, &  Itoyama, 2002; Mehagnoul-Schipper et al., 2002; Toronov et al., 

2001). In some cases, NIRS is even better than fMRI in the detection o f the 

activation areas in the damaged brain (Sakatani, Murata, Fukaya, Yamamoto, &  

Katayama, 2003).

Little research has been done using the combination o f NIRS and TMS. In these 

studies, NIRS was applied to the motor cortex which had been stimulated by TMS, 

either immediately or later. Oliveri et al. (1999) showed that stimulation over 2 

minutes at a low frequency can evoke an increase o f CLHb in 5 min, although HHb 

did not change at all. Noguchi et al. (2003) used a single pulse o f TMS and found 

that C>2Hb and EMG were dependent on the intensity o f stimulation. 

Supra-threshold stimulation would boost both indices, but sub-threshold 

stimulation only induced a hameoglobin change.

In summary, NIRS uses optical transmission into the brain to measure blood How 

changes, especially haemoglobin and deoxy-haemoglobin. Due to its optical device, 

the spatial resolution is limited to the outer layers o f the cortex, but the temporal 

resolution is much better than some existing imaging techniques. In addition, the 

results o f NIRS are consistent with PET and fMRI. The other advantages, like low
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cost, easy manipulation and high mobility, make NIRS a useful prospect in the 

research o f cognitive neuroscience.
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CHAPTER 3: THE SPLIT-FOVEA IN THE 

VISUAL CORTEX

Visual information presented to the right o f fixation (in the right visual field or 

RVF) is projected to the visual cortex o f the left cerebral hemisphere (LH) and 

information presented to the left o f fixation (in the left visual field or LVF) is 

projected to the visual cortex o f the right cerebral hemisphere (RH). Because it has 

been assumed that there is an overlap o f the visual fields along the vertical meridian, 

giving both hemispheres access to foveal stimuli, and because homonymous 

hemianopia is often accompanied by foveal sparing (wherein anything between 1 

and 10 degrees, o f central vision is preserved on the same side as the homonymous 

defect, (Leff, 2004), it is often assumed that the representation o f foveal stimuli 

requires no further exploration (e.g., Brandt, Stephan, Bense, Yousry, &  Dieterich, 

2000; Petit et al., 1999; Trauzettel-Klosinski &  Reinhard, 1998; Victor, Conte, &  

Iadecola, 1991).

In an influential paper, Leventhal et al. (1988) reported that some retinal ganglion 

cells project to the ‘wrong’ laminae o f the lateral geniculate nucleus. This was 

particularly so for ganglion cells in the nasal hemiretina. The interpretation was 

that the crossing o f the nasal fibers in the optic chiasm is not complete, allowing 

some projections from the nasal part o f the retinae to reach the ipsilateral 

hemispheres. Hence foveal stimuli, viewed by the nasal retina, are projected to the 

contralateral visual cortex. Figure 10 demonstrates the contralateral and ipsilateral 

projections from the hemiretinae when presented with a foveal target, according to 

Leventhal et al.'s (1988) model. I w ill term this model here the bilateral projection 

theory'. Other animal studies (Fukuda, Sawai, Watanabe, Wakakuwa, &  Morigiwa, 

1989; Stone. 1966; Stone, Leicester, &  Sherman, 1973) supported this model 

which is usually taken as an explanation o f foveal sparing in hemianopia (Zihl, 

1989).
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Figure 10: A bilateral projection model of the foveal area assuming 
ipsilateral projections from the nasal hemiretinae.

A problem for the bilateral projection theory is that behavioral studies have 

consistently failed to provide evidence o f the functional role o f the putative 

bilateral representation o f the fovea in humans. Harvey (1978), for example, 

presented visual targets to the left and right o f fixation at various retinal loci and 

found a separation between crossed and uncrossed responding at all retinal loci. 

Targets located 0.25° and 0.5° from fixation, i.e. in the region o f the nasotemporal 

overlap, produced a reaction time difference between crossed and uncrossed 

responding just as large as at the other loci. I f  an area o f functioning overlap 

projecting to both cerebral hemispheres exists, then the need for interhemispheric 

crossing would be eliminated (Harvey, 1978; Haun, 1978; Lines &  Milner, 1983). 

Recent behavioral studies also failed to support the bilateral representation theory 

(Brysbaert, 1994; Fendrich &  Gazzaniga, 1989; Fendrich, Wessinger, &  Gazzaniga, 

1996; Lavidor, Ellis, Shillcock, &  Bland, 2001; Lavidor, Ellison, &  Walsh, 2003; 

Sugishita, Hamilton, Sakuma, &  Hemmi, 1994). These studies have suggested that 

the foveal area is functionally split between the two hemispheres: this alternative is 

termed the split fovea theory (Shillcock, Ellison, &  Monaghan, 2000).
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Another challenge to the bilateral view is that although most hemianopia patients 

have preserved vision o f the central area (forveal sparing, see Zihl, 1989), up to 

36% o f them do not, a phenomenon termed foveal splitting (Celesia, Meredith, &  

Pluff, 1983). The bilateral theory easily accommodates the foveal sparing 

phenomenon but not the foveal splitting (Leff, 2004).

However, despite the absence o f behavioral evidence for the bilateral projection 

theory, it is still influential and as a consequence, the implications o f split foveal 

representations on cognitive models o f visual recognition are under-explored. In 

addition, since most hemianopia patients have preserved vision in the central area 

(foveal or macular sparing), the bilateral projection account o f the foveal area still 

dominates (see Trauzettel-Klosinski &  Reinhard, 1998). The chapter aimed 

therefore to examine the question o f the foveal representation by testing visual 

recognition at different eccentricities in a patient with a lower field quadrantanopia. 

More importantly, to show that by temporarily disrupt processing in the right and 

left hemispheres o f healthy observers with TMS, it could reproduce the foveal 

splitting pattern seen in the patient. The goal was to test which o f the two theories, 

the split or the bilateral projection, can better resolve the foveal representation 

question.

Experiment 1 -  Quadrantanopia

A subject VN has a quadrantanopia in her lower RVF, due to a lesion caused by 

surgical removal o f the occipital cortex above the calcarine sulcus in the left 

hemisphere (Trevethan &  Sahraie, 2003).

Static Humphrey perimetry, usingthe 10-2 programs (Trevethan &  Sahraie, 2003), 

revealed a visual field defect which covered the right lower quadrant o f her visual 

field (see the upper panel o f Figure 11). Note that the values in the perimetry 

diagram that represent V N ’s perception o f targets that are 1° to the right o f fixation 

are well below normal performance yet above threshold (-26 dB in the left eye and 

-30 dB in the right eye (International Perimetry Standard). Such borderline values 

allow some vision; hence foveal sparing in certain visual conditions and foveal
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splitting in other conditions may be found. In light o f the borderline values it was 

important to test the left eye and the right eye o f VN separately. In addition, testing 

V N ’s monocular performance would allow direct testing o f a prediction derived 

from Leventhal et al. (1988) (see Figure 10), who suggested that the ipsilateral 

projections from the nasal retinae would lead to foveal sparing in the eye 

contralateral to the lesion, and foveal splitting in the eye ipsilateral to the lesion.

Method

Subject

VN is a 29 year old female who underwent brain surgery aged 21 to remove an 

arterovenous malformation in her left occipital lobe. Her visual symptoms began 

when she was aged 15 and she had two posterior cerebral artery emboli 4 months 

prior to surgery. The lesion is in the left posterior parietal and occipital areas 

involving the superior aspect o f the primary visual cortex. The lesion resulted in a 

visual field defect which covered the right lower quadrant o f her visual field 

(Trevethan &  Sahraie, 2003). VN is right handed according to the Edinburgh 

handedness questionnaire (Oldfield. 1971).

Stimuli

For the letter/digit classification task, nine digits and nine letters (A, H, M, T, U, V, 

W, Y, X) were selected. Each stimulus was randomly presented at one o f eight 

presentation locations, four in the upper visual field (0.5° above fixation) and four 

in the lower visual field (0.5° below fixation). In each upper or lower field, there 

were four locations: 3° from fixation to the left or right (LVF and RVF, 

respectively), and 0.5° from fixation to the left or right (foveal-LVF and 

foveal-RVF, respectively). V N ’s vision in the upper visual field, within the foveal 

area, is normal (see Figure 11) and serves as a baseline for comparison with her 

impaired lower VF.

Because visual acuity declines when stimuli appear at non-foveal locations 

(Bouma, 1973), para-foveal targets were increased in size. The M-scaling I 

employed has been verified with behavioral data (Rovamo &  Virsu, 1979), and
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also been applied to digits (Strasburger, Harvey, &  Rentschler, 1991) and letters 

(Goolkasian, 1994). According to the formula, stimuli presented 3° away from 

fixation were 1.71 times bigger than stimuli presented 0.5° degree from fixation. I 

piloted the sizes o f the foveal and parafoveal targets (N=10 right-handed 

participants) to ensure equal performance at all eccentricities.

Targets presented foveally were 0.87 cm high (0.5°), and the size o f the parafoveal 

targets was 1.49 cm high (0.85°).

Apparatus and procedures

Stimuli were presented on a PC using E-prime software. The participant sat with 

her head supported by a chin-rest and head-strap in order to secure head position 

and stabilize fixation at a distance o f 1 m from the screen. There were two blocks o f 

left-eye presentations and two for right-eye presentations. The subject wore an 

eye-patch to cover the unused eye. Each experimental block considered o f 144 

trials (nine letters and nine digits in eight presentation locations). Each trial began 

with a fixation point appearing in the centre o f the screen for 500 ms. The fixation 

point was replaced by a central red circle that was simultaneously presented with 

the target for 50 ms (based on a pilot study reaching 85% accuracy with this 

duration). The stimuli (letters or digits) were randomly presented at one o f the eight 

possible eccentricities. After presenting the red circle and the stimulus, a 

subsequent mask was displayed for 2 seconds at the stimulus location. The 

participant's task was to decide, as quickly and as accurately as possible the right or 

left mouse keys (order o f response keys was counter-balanced). A blank screen was 

displayed for 500 ms to end the cycle, followed by the fixation point for the next 

trial.

Result

V N ’s 10-2 perimetry and experimental results are presented in Figure 11. In the 

letter/digit classification, a sequence o f x2 tests revealed that V N ’s performance 

was significantly above chance level (50%) in all conditions except the lower RVF 

including the foveal region. This was found for the left and right eyes separately.
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Figure 11: Humphrey 10-2 perimetry and experimental results of VN
The Upper panel was 10-2 perimetry data of VN’s right and left eyes. Values represent the 
difference in decibels (dB) between VN’s test result and the expected age-corrected 
normal values at each point in the central 10° of the visual fields. The lower panel presents 
% of correct letter/digit classification by VN at 8 eccentricities. Note that VN’s performance 
reflects the perimetry data for these eccentricities.

Discussion

VN's performance in the letter/digit classification task reflects foveal splitting and 

not sparing. Leventhal et al. (1988) suggested that the ipsilateral projections from 

the nasal retinae would lead to foveal sparing in the eye contralateral to the lesion 

(which is the right eye for VN), and foveal splitting in the eye ipsilateral to the 

lesion (the left eye for VN). This prediction does not fit VN's data, as the same 

(poor) results were found in the foveal-RVF targets in both eyes. In fact, many 

previous studies with hemianopia and quadrantanopia patients have reported 

results that do not fit Leventhal et al.'s model (see Ehlers, 1975; Williams &  Gassel, 

1962; but see Trauzettel-Klosinski &  Reinhard, 1998 for contrasting results).

However I should be cautious as this pattern could be task-dependent and visual 

tasks that do not require target identification or classification may reveal different
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results. Given V N ’s perimetric thresholds, it is possible that the poor vision in the 

lower RVF would be enough to allow simple target detection, hence foveal sparing 

may be observed under certain conditions (see Trevethan &  Sahraie, 2003). 

Nevertheless a recent hemianopia case (Upton, Hodgson, Plant, Wise, &  Leff, 

2003) reported foveal splitting in the contralateral eye, in line with our results and 

in contradiction to the bilateral projection predictions.

The next stage o f the investigation was to test healthy observers with the same task 

while applying TMS over the right or left visual cortex in order to mimic V N ’s 

visual field defect in normal observers with TMS, while investigating the 

involvement o f the two hemispheres in representing foveal targets.

Experiment 2 -  TMS Induced Suppression

Amassian et al. (1989) were the first to demonstrate suppression o f visual 

perception with TMS; participants were unable to identify visually presented 

letters when a TMS pulse was given over the occipital pole between 80 ms and 100 

ms after the letter was briefly presented. Following Amassian et al. (1989) and 

others’ demonstrations o f the effects o f TMS on visual cortical processing (e.g., 

Cowey &  Walsh, 2000; Kammer, 1999; Lavidor &  Walsh, 2003; Pascual-Leone &  

Walsh, 2001), it should be possible to impair letter/digit classification when 

stimulating left or right visual cortex to evaluate the extent to which the hemifields 

overlap along the vertical meridian.

According to the bilateral representation theory, unilateral TMS over the visual 

cortex would not impair the processing o f foveally-presented targets, as a complete 

copy o f the target is still projected to the un-stimulated hemisphere. On the other 

hand, the split fovea theory prediction is that unilateral TMS would impair target 

classification processes, as the parts o f the target contralateral to TMS are 

temporarily inaccessible.

Repetitive transcranial magnetic stimulation (rTMS) was applied over the left and 

right occipital cortex o f normal observers during a letter/digit classification task to
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investigate the extent to which target recognition processes could be accounted for 

according to the split fovea theory. The targets were presented at four different 

eccentricities, similar to the eccentricities employed with VN. The experiment 

tested the prediction that unilateral TMS would interfere with letter/digit 

classification in the contralateral visual field. Crucially, the split fovea theory 

predicts that the same patterns would be obtained for the foveal-LVF and 

foveal-RVF targets.

Method

Design

A 4 x 4 x 2 factorial design (target location: LVF, foveal-LVF, foveal-RVF and 

RVF) x (TMS: no stimulation, sham-TMS, RH stimulation, or LH stimulation) x 

(target type: letter, digit) was used in a within-subjects design. Dependent variables 

were response time and percent o f incorrect responses. The application o f rTMS 

occurred in alternating blocks o f single hemisphere stimulation. The other 

variables were randomly applied.

Participants

Nine native English-speaking participants, 5 females and 4 males, took part in the 

experiment. A ll o f the participants had normal or corrected to normal vision and 

were aged between 22 and 41 (mean 30.8, sd 6.5). A ll the participants were 

right-handed and scored at least 80 in the Edinburgh Handedness Inventory 

(Oldfield, 1971), with mean score o f 94.4 (sd 6).

Before taking part in the experiment, participants signed a consent form and 

reported absence o f epilepsy, or any other neurological conditions as part o f the 

screening procedures. This experiment was reviewed and approved in advance by 

the Joint UCL/UCLH Committees on the Ethics o f Human Research.

Stimuli

For the letter/digit classification task, 9 digits and 9 letters (A, H, M, T, U, V, W, Y, 

X) were selected. The stimuli were identical to those used with VN. Stimuli were
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presented at four eccentricities on the horizontal meridian. The 4 locations were 3° 

to the left o f fixation (LVF), 0.5° to the left (foveal-LVF), 0.5° to the right 

(foveal-RVF) and 3° to the right o f fixation (RVF). Stimulus size was scaled for 

eccentricity (see Experiment 1). Targets presented foveally were 0.87 cm high 

(0.5°), and the size o f the parafoveal targets was 1.49 cm high (0.85°).

TMS equipment

The stimulator used was a Magstim TM model 200 (Super Rapid Magstim, 

Whitland, Dyfed). Magnetic stimulation was applied at 65% o f the maximum using 

a figure-of-eight 70-mm coil. Previous studies have demonstrated that magnetic 

stimulation using this type o f coil can produce functionally dissociable effects that 

are restricted to a scalp area within a radius o f 0.5-1 cm (Brasil-Neto, McShane, 

Fuhr, Hallett, &  Cohen, 1992). The centre o f the coil was positioned over the site to 

be stimulated such that the windings were at 90° to the scalp and the handle pointed 

vertically.

Apparatus and procedure

Prior to experiments, TMS-induced phosphenes were used to establish that the 

magnetic stimulation was localised to the contralateral visual field. Thus in the 

initial stage o f the experiment I probed the occipital cortex with TMS in an attempt 

to locate left and right field stationary phosphenes, respectively with right and left 

hemisphere magnetic stimulation. Stationary phosphenes are an established 

consequence o f visual cortical TMS (Flotson, Braun, Herzberg, &  Boman, 1994; 

Rammer. 1999; Marg, 1991), and following Lavidor et al. (2003) (see also Stewart, 

Battelli, Walsh, &  Cowey, 1999) can be used to select an area to stimulate in 

subsequent experiments.

Participants wore a latex swimming cap and sat with their head supported by a 

chin-rest and head-strap in order to secure head position and stabilize fixation. 

Stimulation sites were the right and left cortices. The upper edge o f the inion was 

marked on the cap, and another point (the reference point) was marked 2 cm above 

it. The occipital hemispheric sites that were marked on the cap were 1.5cm to the 

left o f the centre point (left hemisphere site, LH) and 1.5cm to the right o f the
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central point (right hemisphere site, RH). The coordinates were selected initia lly on 

the basis o f previously successful studies with TMS, that reported stationary 

phosphenes (Cowey &  Walsh, 2000; Kammer, 1999) and the suppression o f visual 

perception tasks with TMS at similar sites (Kammer, 1999; Lavidor &  Walsh, 

2003).

In a darkened room, participants closed their eyes while TMS was delivered to the 

RH and LH points. Participants were asked to indicate whenever they saw a 

phosphene, and to describe its position in space. TMS was applied at increasing 

intensities until participants reported seeing phosphenes regularly and reliably. For 

some participants, the magnetic stimulation sites were changed in a 

‘win-stay/lose-shiff paradigm (Ashbridge, Walsh, &  Cowey, 1997) to locate 

regions on the scalp which resulted in phosphene perception, however the change 

from the initial 1.5 cm points were minimal (less than 0.5 cm). For the main 

experiment, the effective phosphene sites were used for each participant with a 

fixed 65% o f the stimulator output, a level selected on the basis o f previous 

experiments, and found to be sufficient to disrupt perception without masking 

stimuli with overt phosphenes.

At the experimental stage, rTMS was applied at 10 Hz frequency for 500 ms from 

the onset o f the target presentation on the computer screen while participants were 

performing the letter/digit classification task. See the timeline o f the main 

Experiment in Figure 12.

The experimental trials were employed in 6 blocks, 72 trials in each block. There 

were two blocks in which rTMS was applied over the right occipital cortex, two 

blocks with rTMS over the left occipital cortex, two non-TMS blocks and two 

sham-TMS blocks. The order o f the experimental blocks was counter-balanced. In 

the sham-TMS blocks, the reversed coil was positioned over the left or right visual 

cortex, with the current directed away from the cortex.
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Figure 12: Time line of the TMS experiment (Experiment 2)

Results

Reaction times and percent o f incorrect responses to letter/digit classification in the 

different experimental conditions are summarized in Table 1.

Reaction times

The application o f rTMS had a significant effect (F p ^ fH  1.5, p<0.01), with RTs 

being slowed when TMS was applied to the LH (mean = 564 ms) or to the RH site 

(mean=570 ms) compared with the no TMS mean o f 545 ms or sham-TMS (mean 

= 547 ms, all post hoc differences were Bonferroni corrected to p<0.05). Target 

location did not have a significant effect on RTs (F(324)=0.85, ns). Since the 

no-TMS and the sham-TMS conditions did not differ, I averaged RTs in these two 

conditions. 1 calculated the difference between performance under TMS and the 

baseline conditions, creating two measures, one for TMS over the LH and one for 

TMS over the RH. These measures that represent the TMS effect size are plotted in 

Figure 13 as a function o f target location. The interaction between rTMS site (RH, 

LH) and target location was significant (F(3,24)=3.63, p<0.05), and the patterns o f 

the interaction can be clearly seen in Figure 13. At the RH site, the rTMS effect (i.e., 

the RT costs) is significantly larger for targets located at the LVF and foveal-LVF 

locations when compared to RVF or foveal-RVF locations (all post hoc differences 

were Bonferroni corrected to p<0.05). rTMS effects when stimulating the LH site 

showed the complementary effects.
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Table 1: Mean RTs and percent of incorrect responses in Experiment 2.
The table displayed the RT and SD (both measured in milliseconds), and the error percent 
as a function of target eccentricity and TMS condition.___________
No TMS LVF Foveal-LVF Foveal-RVF RVF

Mean RT 542 544 555 541

(SD) 97 89 94 98

% error 6 4 5 3

TMS-RH

Mean RT 596 580 563 542

(SD) 105 86 94 93

% error 4 6 4 6

TMS-LH

Mean RT 558 550 584 562

(SD) 97 89 95 97

% error 5 5 6 3

ShamTMS

Mean RT 547 544 557 539

(SD) 88 74 111 83

% error 5 5 4 6

As can be seen in Figure 13, the effects for each visual field are largest when the 

contralateral hemisphere is stimulated, and there are no differences in the TMS 

effects between the foveal and more parafoveal targets within each hemifield. 

Paired /-tests with Bonferroni correction for multiple comparisons revealed the 

following significant differences (£><0.05) in accordance with the split fovea theory 

predictions.
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Figure 13: rTMS effect of experiment 2.
rTMS effect is graphed as a function of target eccentricity and the coil location (labeled as 
the inset). TMS effect is the reaction time change in ms caused by TMS

LVF target classification was significantly more impaired by TMS over the right 

occipital cortex (52 ms delay relative to the no-TMS condition) than by the 

ipsilateral TMS (15 ms delay with LH-TMS). Similarly, foveal-LVF targets were 

significantly more impaired by RH-TMS (36 ms delay) than by the ipsilateral TMS 

(6 ms delay with LH-TMS).

RVF target classification was significantly more impaired by TMS over the left 

occipital cortex (22 ms delay relative to the no-TMS condition). This pattern was 

true for foveal-RVF targets as well (32 ms contralateral delay vs. 9 ms ipsilateral 

delay).

The contralateral TMS effects for LVF and foveal-LVF targets did not differ 

significantly (52 ms and 36 ms, respectively). Also the ipsilateral TMS effects in 

these locations did not differ (15 and 6 ms, respectively).

The contralateral TMS effects for RVF and foveal-RVF targets did not differ 

significantly (22 and 32 ms, respectively). Also the ipsilateral TMS effects in these 

locations did not differ (0.5 and 9 ms, respectively).
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Error rates

Error rates in the different experimental conditions are summarized in Table 1. The 

application o f rTMS and target location did not have a significant effect on error 

rates, possibly due to ceiling effects or to the common finding that, as explained by 

the view o f TMS acting as neutral noise, TMS may slow down subjects without 

necessarily preventing them form carrying out the task correctly (Walsh, Ellison, 

Ashbridge, &  Cowey, 1999).

General Discussion

rTMS to the left or right visual cortex during letter/digit classification task to 

targets at different eccentricities impaired performance only to the contralateral VF 

targets in accordance with the main predictions o f the split fovea hypothesis. 

Crucially, the results o f this chapter have shown that the predicted contralateral 

rTMS effects were also true for foveal targets. The practical implication o f this 

finding is that the functional visual fields start immediately to the left and right o f 

fixation (see also Brysbaert, 1994).

The TMS effects o f this chapter for the briefly presented targets are consistent with 

other TMS findings with occipital stimulation in which TMS is only able to disrupt 

perceptual judgements i f  the relative duration o f presentation is short (e.g., 

Amassian et al., 1989), or stimuli are close to luminance detection thresholds (see 

Kammer &  Nusseck, 1998). I did not find significant TMS effects on accuracy, 

however when using cognitive tasks simple accuracy changes are less common 

than RT (see Walsh &  Pascual-Leone, 2003, p84-89 for discussion o f why RT 

deficits can occur, indeed be predicted to occur, without any effect on errors).

One possible concern is whether the reported TMS effects were confounded with a 

potential alerting bias induced by auditory or somatosensory artefacts o f TMS. 

Auclair and Sieroff (2002), for example, have shown recently that a lateralised cue 

(a brief presentation o f LVF or RVF digit, in their study) improved identification o f 

letters that were ipsilateral to the cue. The noise a TMS coil makes during 

stimulation, may act as an exogenous spatial cue, being a right cue when TMS is
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applied over the right occipital cortex, and a left cue when TMS is applied over the 

left occipital cortex. However this was not the case, as sham rTMS did not affect 

performance.

This chapter has shown that a subject suffering from a partial lesion in her left 

occipital cortex failed to discriminate letters from digits when targets were 

presented 0.5° to the right and below fixation, and hence did not show foveal 

sparing in this task. However the main novelty reported here is not the patient data 

(such cases have been reported before, for a review see Leff, 2004), but rather the 

direct testing, by TMS, o f a prediction from Leventhal’s work in monkeys. I found 

significant behavioral disruption induced by TMS during letter/digit classification 

for a group o f normal observers (experiment 2) that replicated V N ’s performance. 

Letters and digits that were only half a degree away from fixation were affected by 

contra, but not ipsilateral TMS. This also speaks to the fact that the TMS current 

effects did not spread to the un-stimulated hemisphere.

These results suggest it is unlikely that two complete copies o f the centrally 

presented word were processed in each hemisphere. However, independent 

representations do not preclude interactions between the two hemispheres and 

when the target is presented in the region o f greatest representational overlap (i.e., 

at fixation in the midline) it may be the case that any disruption to the processing 

may interfere with either competition or co-operation between the hemispheres that 

is a feature o f normal processing (e.g., Hilgetag, Theoret, &  Pascual-Leone, 2001; 

Seyal, Ro, &  Rafal, 1995; Walsh, Ellison, Ashbridge, &  Cowey, 1999). Thus the 

results obtained here cannot preclude the possibility o f some functional role for the 

nasal ipsilateral projection, as the unilateral TMS may disrupt processing o f the 

foveal stimuli due to its (possible) effects on the co-operative hemispheric 

interactions across the foveal region. However, interhemispheric interactions seem 

an unlikely explanation o f our results since other studies suggest that secondary 

activations are too weak to be behaviorally effective (Kammer, Beck, Erb, &  

Grodd, 2001; Pascual-Leone et al., 1999; Walsh &  Pascual-Leone, 2003).

The contralateral inhibitory effects found were the results o f a temporary 

stimulation o f the (healthy) primary visual cortex. When a person with a permanent
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lesion in her left visual cortex (VN) was tested with the same task, she failed to 

discriminate letters from digits when targets were presented in her lower RVF, 

contralateral to the lesioned cortex. This failure was not surprising as it reflected 

the lesion location. However, in line with the split fovea predictions, the same 

failure occurred with foveal targets, that were only slightly to the right o f fixation. 

This is a strong test o f the split fovea predictions, as the same subject was able to 

respond accurately to targets that were in the upper RVF, near or far from fixation, 

but not to targets at the lower RVF, near or far from fixation.

Although V N ’s results clearly show she has foveal splitting rather than foveal 

sparing, there is still a need to offer an alternative account for the phenomenon o f 

foveal sparing other than the bilateral projection. This is because more than 60% o f 

hemianopic patients show foveal sparing rather then splitting (Celesia, Meredith, &  

Pluff. 1983). It has been suggested that central vision occupies a larger area o f the 

visual cortex than peripheral vision and that this area is less likely to be affected by 

random damage (such as strokes). According to this alternative view, foveal 

sparing would not be due to the fact that a unilateral stroke leaves the contralateral 

brain tissue unaffected but to the fact that the stroke spares some o f the ipsilateral 

brain tissue responsible for central vision (Leff, 2004). The alternative explanation 

is in line with the recently shown correlation between foveal sparing and spared 

ipsilateral brain tissue as revealed by magnetic resonance imaging (Gray, Galetta, 

Siegal, &  Schatz, 1997). Additional alternative arguments have been put forward to 

account for macular sparing, suggesting that the phenomenon reflects: (a) 

incomplete damage to the visual pathways (e.g., Wilbrand, 1926 cited in Bischoff, 

Lang, &  Huber, 1995; Horton &  Hoyt, 1991), (b) some immunity from infarcts o f 

occipital pole due to overlap o f the blood supplies from the middle and posterior 

cerebral arteries (e.g., Smith &  Richardson, 1966) or (c) results from unusual 

Fixation strategies adopted by hemianopic patients (Bischoff, Lang, &  Huber, 

1995).

1 conclude that central vision is not bilaterally represented in the primary visual 

cortex - an observation that has repercussions for any anatomically constrained 

psychological model o f visual processing (Brysbaert, 2004). The nature and quality 

o f the bilateral information may be further tested with different visual tasks that
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require different resolution, from simple target detection to the whole word 

recognition.
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CHAPTER 4: WORD AND NON-WORD 

RECOGNITION AND THE SPLIT FOVEA

The main argument o f the split fovea theory (that was presented in Chapter 3) is 

that the representation o f foveal stimuli is split down the midline between the two 

cerebral hemispheres (see Shillcock, Ellison, &  Monaghan, 2000, for a review ). A 

number o f recent theories o f word identification have taken the “ split fovea” into 

account, with the two hemispheres dealing with the beginnings and ends o f words 

in different ways (Brysbaert, 1994; Brysbaert, 2004; Ellis, 2004; Lavidor, Ellis, 

Shillcock, &  Bland, 2001; Lavidor, Ellison, &  Walsh, 2003; Lavidor, Hayes, 

Shillcock, &  Ellis, 2004; Lavidor &  Walsh, 2003). However, as Bowers and Turner 

(2005) commented, it is interesting to note that most word recognition researchers 

have not taken this anatomical constraint into consideration in their studies. The 

implicit assumption has been that information presented to the fovea is bilaterally 

projected, with two hemispheres processing complete words separately. Here I w ill 

explore the implications o f the split fovea theory on word recognition processes, in 

particular when spatial cueing procedes word presentation. Spatial cueing is 

particularly relevant to the split fovea theory because, i f  one assumes that the 

processing o f words is initia lly split between the two hemispheres, right and left 

sided spatial cues might have selective effects on word segments (that is right and 

left segments) rather than on whole words.

Spatial attention (SA) is a well-researched area and, although there are many 

similes to describe its effects, it is generally accepted that spatial attention involves 

bringing into the ‘spotlight’ o f active processing some object or location. A popular 

paradigm to study spatial attention is the Posner paradigm (Posner, 1980). In this 

paradigm, an observer must detect a signal at one o f two locations, with a precue 

indicating the probable signal location. A ‘ valid ’ cue (signal at the cued location) 

typically leads to faster and more accurate responses, compared to an ‘ invalid’ cue. 

Common explanations o f the cueing effect hinge upon the concept o f a limited 

attentional resource unevenly distributed across the visual field, causing an
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increase o f perceptual quality at the attended (cued) location relative to the 

unattended (uncued) location.

Despite much research, spatial attention effects on visual word recognition (VW R) 

are still unclear. McCann, Folk and Johnston (1992) argued that spatial attention 

and visual word recognition operated independently and that spatial attention must 

be focused on the letter string in order to support word recognition processes. This 

independence means that the lexical status o f the cued words does not matter, 

because the spatial cueing can improve performance for all word types, including 

high-frequency words, low-frequency words and pseudowords (McCann, Folk, &  

Johnston, 1992). A similar conclusion was reported by Ortells, Tudela, Noguera 

and Abad (1998), in a divided visual field study, where all the attentional 

manipulations were effective, but they did not interact with word familiarity.

Alternatively, others described SA and VWR as interactive, for example Stolz and 

McCann (2000); that is, attention has selective effects on VW R which depend on 

the lexical status o f the word target, the semantic context, and has significantly 

larger facilitatory effects on pseudowords when compared with words. An earlier 

ERP study (McCarthy &  Nobre, 1993) also concluded that spatial selective 

attention can modulate the degree to which words are processed.

The interactive attentional effects on VWR may take place either during the initial 

uptake o f orthographic information (Stolz &  McCann, 2000) or during later stages 

in word recognition where, according to the late-selection theories, spatial attention 

can operate after stimulus identification and semantic processing (Sieroff &  Posner, 

1988). The implication o f late-selection theories is that word identification would 

be unaffected by whether or not spatial attention is focused on the word.

Within the framework o f early attentional effects on word recognition, two theories 

explain how the familiarity o f the letter string can modulate the influence o f spatial 

attention. The replacement theory considers that letter processing may be less 

affected by spatial attention in words than in pseudowords because letters in words 

can be partially activated and recovered by top-down processes (Mozer &  

Behrmann, 1990) The redistribution theory suggests that the lexical status o f a
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letter string directly affects the distribution o f attention in reading. According to the 

redistribution theory, the deployment o f attention is different in the case o f words 

and pseudowords. For words, letter identification may benefit from a deployment 

o f spatial attention from the cue location to the entire spatial extent o f the stimulus, 

which would assist letter identification in the un-cued side as well. The 

identification o f pseudowords, on the other hand, would require a sequential 

process and would not be influenced by a redistribution o f attention on the whole 

letter string (Auclair &  Sieroff, 2002).

To distinguish between the two contrasting theories regarding SA and VWR 

(independent or interactive effects), Auclair and Sieroff (2002) have used the 

Sieroff and Posner (1988) cueing procedure. A lateralized cue indicated in advance 

either the beginning (left) or the end (right) o f foveally presented letter strings that 

participants were instructed to read aloud. Results showed that the precue had a 

stronger influence on pseudoword than on word identification, with letter 

recognition in the left segment o f the centrally-presented target affected by a left 

but not a right cue, and complementary, the right cue affected the right segment o f 

the centrally-presented target but not the left cue. However, results showed that 

shorter words were also influenced by the cue location when exposure duration was 

reduced. Auclair and Sieroff (2002) concluded that their results are compatible 

with an early role o f spatial attention in letter string processing, but they also 

suggested that the lexical status o f a letter string can directly influence the 

distribution o f attention before the identification process is completely achieved. 

Although orienting o f spatial attention seemed heavily involved in pseudoword 

identification, some spatial attention mechanism also operated in the case o f 

familiar words.

Auclair and Sieroff were focusing on the attentional aspects o f their study and their 

theoretical framework is spatial attention theory; however, by predicting 

lateralized cueing effects on foveally presented targets they implicitly assume 

(although did not discuss it) that representation o f centrally presented words is split 

between the two cerebral hemispheres along the vertical midline. Without such an 

assumption, there is no reason to predict that the left segment o f centrally presented 

words w ill be affected by a left but not right cue, and, correspondingly, that the
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right segment would be affected by right but not left cue. I f  two segments are 

bilaterally projected to both hemispheres, then left and right cues should have the 

same effect as all the letters o f the target are both in the left and right hemispheres. 

Note that the position and the brie f duration (83 ms) o f the left and right cues in 

Auclair and S ieroff s study, imply that the cues are presented in the left or right 

visual field (respectively), therefore in itia lly projected to the contralateral 

hemisphere. Presenting the lateralized cues and referring to the left and right 

segments o f centrally presented words, as reported in Auclair and Sieroff (2002), 

actually links their research with a different discipline - lateralized word 

recognition.

A typical finding in lateralization studies o f visual word recognition is a robust 

right visual field (RVF) advantage, that is performance to words presented to the 

right visual field is better than to words presented to the left visual field (for a 

review see Ellis, 2004). Several explanation were offered to account for this robust 

RVF advantage, for example, that it reflects that left hemisphere (LH) superiority 

in language tasks (Gazzaniga, 2000) or that differences in the visual acuity o f the 

initial letters benefit the right but not the left visual field (Kirsner &  Schwartz, 

1986), or reading habits in English (Battista &  Kalloniatis, 2002).

Alternatively, Nicholls and colleagues (Lindell &  Nicholls, 2003; Nicholls &  

Wood, 1998; see also Mondor &  Bryden, 1992) have suggested that the 

hemisphere’s different word recognition strategies place different demands on 

attentional resources. The LH 's parallel encoding process is specialized for the 

recognition o f whole words (Chiarello, 1988), and is capable o f identifying large 

chunks o f information even in the absence o f directed spatial attention (LaBerge &  

Brown, 1989).

To assess the contribution o f attention to the L H ’s observed superiority for word 

recognition. Lindell and Nicholls (2003) have employed a spatial cueing paradigm 

with divided visual field word presentation. They manipulated the cue position 

relative to the target word. There were three types o f cues that appeared either to 

the left o f the lateralized word (beginning cue), or to the right o f the target word 

(end cue), or at both visual fields (a neutral cue). The results indicated no effect o f
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cue position on RVF/LH performance, consistent with the idea that the LH enjoys 

an attentional advantage by its ability to deploy attention in parallel across the 

stimulus. In contrast, there was a facilitative effect o f the beginning cue in the 

LVF/RH (where the cue was presented about 6° to the left o f fixation) which was 

significantly larger than the cueing effect o f the end cue (which was presented 

about 1.5 0 to the left o f fixation). The authors argued that for LVF/RH words, the 

beginning cue draws spatial attention to the initial letter cluster, enabling efficient 

implementation o f the RH’s sequential strategy. In addition, Lindell and N icholls’s 

(2003) results implied that lexical processes might be facilitated by paying 

attention to the beginning o f words, rather than the end o f words, in line with the 

claim that spatial attention is involved in the lexical processing o f words (McCann, 

Folk, &  Johnston, 1992).

Lindell and Nicholls’s (2003) results contrasted Auclair and S iero ff s (2002) on 

several points. First, the facilitatory cueing effects Lindell and Nicholls reported 

occurred for words, while Auclair and Sieroff did not find cueing effects for words 

(relative to pseudowords). Second, Lindell and Nicholls reported that only left cues 

did affect performance, while Auclair and Sieroff found symmetrical (ipsilateral) 

cueing effects for both the left and right cues.

By presenting left and right precues before centrally presented words, and 

assuming that the split fovea theory is valid, there are two contrasting predictions 

derived from Auclair and Sieroff (2002) and Lindell and Nicholls (2003) studies. 

According to the split fovea theory, the left segment o f the centrally presented word 

is projected to the RH, while the right segment is projected to the LH. According to 

Auclair and Sieroff, both visual fields would benefit from the cueing, with a left 

cue more beneficial to LVF stimuli (i.e., left segment) than a right cue, and a right 

cue more beneficial to RVF stimuli (i.e., right segment) than a left cue. However, a 

prediction derived from Lindell and Nicholls theory would claim that the left cue 

would benefit the left segment, as Auclair and Sieroff predicts, however, there w ill 

be no cueing effect for the right segment by the right cue as there are no additive 

attentional effects in the RVF/LH.
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A third contrasting prediction is that i f  the split fovea theory is not valid, there w ill 

be no cueing effects at all, as the centrally presented words are bilaterally projected 

to both hemispheres, therefore eliminating the potential facilitation from a spatial 

cue to the left or right visual field.

The experiments in this chapter aim to explore these contradictory predictions. The 

reported experiments manipulated pre-cue positions in order to test how spatial 

cueing modulates lexical processing o f words and pseudowords within the 

framework o f the split fovea theory. Subjects were presented with a sequence o f a 

pre-cue, a rapid visual stimulus (letter strings) and a mask. The task was to report 

the letters o f the visual stimulus. The manipulations o f the pre-cue included types 

(digits, arrows or squares, see Experiments 1 to 4), locations (right, left, far left and 

far right, Experiments 3 and 4), and salience (bigger and different colours for the 

right cues, Experiments 5 to 7). Aiming to increase cueing effects, Experiments 8 

and 9 presented mis-aligned letter strings and the task was letter search.

Experiments 1 and 2

Since Auclair and Sieroff (2002) did not consider the split fovea theory, I first aim 

to replicate Experiment 1 in their paper but from the split fovea point o f view. 

Another justification for this replication is the need to establish the lateralized 

cueing patterns w ith English words (Auclair and Sieroff used French words).

Method

Design

A 2 x 2 x 2 factorial design (cue location: LVF, RVF) x (stimulus length: 6 or 8 

letters) x (stimulus type: real or pseudo-words) was used in a within-subjects 

design. In Experiment 1 the precues were digits, and in Experiment 2 the precues 

were arrows, on the left visual field and ‘< ’ on the right.
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Participants

Experiment 1. Twelve native English-speakers, 8 females and 4 males, aged 

between 21 and 29 (mean 24.4, sd 2.8). A ll but two the participants were 

right-handed and the mean score was 79.6 (sd 31) in the Edinburgh Handedness 

Inventory (Oldfield, 1971).

Experiment 2. Six native English-speakers, 2 females and 4 males, aged between 

22 and 35 (mean 26.5, sd 5.2). A ll the participants were right-handed and the mean 

score was 97.5 (sd 4.2) in the Edinburgh Handedness Inventory (Oldfield, 1971).

A ll participants o f both experiments had normal or corrected to normal vision and 

were naive to the paradigm and the purpose o f the experiments.

Stimuli

Eighty English content words (nouns, verbs and adjectives) and eighty 

pseudowords were used as stimuli. H a lf o f the words had six letters and half had 

eight letters. Real word sets were matched on written frequency (Kucera &  Francis, 

1967), imageability and age o f acquisition. The pseudowords were generated from 

the ARC nonword database (Rastle. Harrington. &  Coltheart, 2002). Pseudowords 

were also made o f six and eight letters in equal proportion. The stimuli for 

Experiments 1 and 2 are presented in Appendix 1.

The stimuli (words and pseudowords) were presented in 21-point uppercase 

Courier New font. The letters appeared white on a black background to minimize 

flicker. The stimuli were presented for 30 ms at screen centre. Figure 14 illustrated 

the size and distances (in visual angle) o f the precues and the visual stimuli.

Apparatus and procedure

Stimuli were presented on a 17-inch CRT (800 x 600 pixels) triggered by E-prime 

software. Each participant sat with their head supported by a chin-rest and 

head-strap in order to secure head position and stabilize fixation at a distance o f 1 

m from the screen. Each experiment consisted o f 172 trials, including 12 trials for
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Figure 14: The visual angle of cues and stimuli
The black numbers represent stimuli size in Experiment 1, which were nearly identical to 
the sizes reported by Auclair & Sieroffs (2002), denoted by grey numbers. The values 
before and after the slash were the visual angle for the 6 or 8-letter stimuli, respectively.

practice at the beginning. Each trial began with a fixation point appearing in the 

centre o f the screen for 500 ms. The fixation point was replaced by digits or arrows 

on the left or right visual field for 80 ms. Following the lateralized precue, the 

stimuli (words or pseudowords) were randomly and centrally presented for 30 ms. 

After presenting the stimulus, a subsequent mask was displayed at the stimulus 

location. The mask was big enough to cover the previous cue areas. The 

participant’s task was to report, as accurately as possible, the digit (only in 

Experiment 1) and the letters o f the stimulus (oral report). Participants’ responses 

were recorded for further analysis. Pressing the space bar was required to initiate 

the next trial. Figure 15 illustrated the timeline o f the experiments.

P IG E O N

30 ms

80 ms

500 ms

W aiting for response

Figure 15: Timeline of Experiments 1 and 2
Each trial started with a fixation cross presented for 500 ms, followed by a pre-cue to the 
left or right of fixation for 80 ms, immediately replaced by a 30 ms target stimulus. A mask 
was presented on the screen until participants’ responses. The timeline was also 
applicable to all the experiments in this chapter, with the exception of Experiments 6 & 7.
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Data Analysis

Participants’ responses was scored according to Sieroff and Posner’s (1988) and 

Auclair and S ieroff s (2002) scoring methods. Each letter string was first divided 

into two parts, left segment that included the letters to the left o f fixation (3 and 4 in 

case o f 6- and 8-letter strings, respectively) and right segment with the right o f 

fixation letters. The percentage o f correctly recognized letter was then calculated 

separately for the left and right halves o f the stimuli. The differences in 

performance between the left and right parts was calculated using the Laterality 

Index, defined as 100 x (R -  L)/(R + L), in which R represented the mean 

percentage o f letters correctly identified for right segment trials. A negative 

L-Index implies that more letters were recognized in the left than the right segment. 

A positive L-Index implies that more letters were recognized in the right than the 

left segment. A null L-index means equal performance at the left and right 

segments o f the centrally presented letter strings.

Results and discussion

In Experiment 1, the responses were calculated and analyzed only when the 

pre-cue (digit) was correctly reported. A ll subjects were at least 95% correct, with 

total mean percentage o f 98.23, (sd 0.014). The results o f Experiment 1 are 

presented in Table 2.

There was a significant lexicality effect, (F(i n)=8.48, p<0.05), with a more 

negative laterality index for pseudowords than for words (i.e., better performance 

at the left than the right segment). There were no further significant main effects or 

interactions.

In line with Auclair and Sieroff (2002), the results o f Experiment 1 reflect laterality 

effect for pseudowords but not for words. However, in contrast to Auclair and 

Sieroff (2002), there were no cueing effect for pseudowords. In Auclair and 

S ieroff s (2002) study, the right precue changed the Laterality Index towards the 

positive values: for the 6- and 8-letter pseudowords, the Laterality Indices were 

3.79 and 10.85, respectively. In contrast, in the current Experiment 1, the
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corresponding values are -13.71 and -11.31 for the 6- and 8-letter pseudowords, 

respectively.

Table 2: Percentage of letters correctly recognized in the left and right 
segments and the Laterality Index as a function of stimuli lexicality, length 
and cue location (Experiment 1)._______________________________________

Segment

Left Right Laterality Index

Stimuli Length Cue loc M SD M SD M SD

Words 6 Left 97.30 2.71 94.95 5.39 -1.28 1.90

Right 95.36 4.72 94.95 4.59 -0.21 1.83

8 Left 93.05 10.16 91.69 8.78 -0.64 3.85

Right 92.02 8.54 87.69 14.74 -2.93 5.04

Pseudo 6 Left 81.63 12.17 68.79 16.05 -9.31 9.99

words Right 82.52 11.67 64.22 17.43 -13.71 10.93

8 Left 64.50 15.29 57.56 17.55 -6.27 17.82

Right 68.47 14.27 55.43 17.33 -11.31 14.79

The significant advantage o f letter identification at the left segment o f centrally 

presented pseudowords (and words) might suggest that subjects tended to scan the 

letters from left-to-right, a tendency affected by natural reading habits, that 

overrides the predicted cueing effects. In an effort to minimize scanning habits and 

encourage right-to-left scanning o f the stimuli following the right cue, Experiment 

1 was replicated, with informative arrows as precues rather than digits (Experiment 

2). The results are summarised in Table 3.

There was a significant lexicality effect, with negative laterality index for 

pseudowords but not for words (F(i 5)=7.49, p<0.05). In addition, stimuli length 

interacted with lexicality (F(i<5)=14.12, p<0.05). Simple effect analysis revealed 

that 8-letter pseudowords had a more negative Laterality Index than 6-letter 

pseudowords (-11.68 versus -7.66, F(15^=27.03, p<0.01), but there was no 

differences in laterality index for 6- and 8-letter words (-1.00 versus -0.92, 

F(i 5)=0.01, p>0.05). There were no further significant main effects or interaction.
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Table 3: Percentage of letters correctly recognized in the left and right 
segments and the Laterality Index as a function of stimuli lexically, length 
and cue location (Experiment 2).______________________________________

Segment

Left Right Laterality Index

Stimuli Length Cue loc M SD M SD M SD

Words 6 Left 98.91 1.93 96.31 5.28 -1.39 1.89

Right 99.52 0.75 98.30 1.96 -0.62 0.89

8 Left 97.74 3.52 94.99 6.99 -1.52 2.07

Right 97.37 2.79 96.85 5.12 -0.31 1.83

Pseudo 6 Left 88.71 10.72 79.30 14.54 -6.02 5.72

words Right 88.75 11.34 75.37 19.99 -9.30 10.82

8 Left 82.21 12.96 67.11 19.93 -11.67 12.05

Right 81.32 6.38 65.18 12.95 -11.69 8.39

Both Experiment 1 and 2 showed similar patterns o f absolute advantage for letter 

recognition in the left segment o f centrally presented letter strings, a left bias that 

was stronger than the potential cueing effects even when the cue was a clear 

right-to-left arrow (Experiment 2). The slightly odd results o f Experiment 2 o f the 

better performance for the longer pseudowords might result from the small sample 

size. However, it is clear from both experiments that the ipsilateral cueing effects 

reported by Auclair and Sieroff (2002) were not replicated.

Experiment 3

The failure to replicate Auclair and S ieroff s (2002) results led me to design a new 

experiment (Experiment 3), where a different cueing paradigm was used, following 

Lindell and Nicholls’s (2003). They used four cue positions combined with divided 

visual field presentation and reported selective cueing effects.
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Method

Design

A 4 x 2 x 2 factorial design (cue location: left-far, left-near, right-near, right-far) x 

(stimulus length: 6 or 8 letters) x (stimulus type: real or pseudo-words) was used in 

a within-subject design. Pre-cues format, size and location are illustrated in Figure 

16.

0.4° I I I
0.29°

0.29° PIGEON
I I I  I
LF LN  RN RF

Figure 16: The arrangement of pre-cues and stimuli in Experiments 3 & 4
The pre-cue was a pair of two rectangles which would appear at one of four possible 
locations: left-far (LF), left-near (LN), right-near (RN) and right-far (RF), following Lindell 
and Nicholls (2003). The black numbers represent stimulus size, the values before and 
after the slash were the visual angle of 6 or 8-letter stimuli, respectively.

Participants

Six native English-speakers, 3 females and 3 males, aged between 21 and 27 (mean 

24.3, sd 2.2). A ll participants were right-handed and scored at least 90 in the 

Edinburgh Handedness Inventory (Oldfield, 1971), with total mean score o f 96.7 

(sd 5.2). A ll participants had normal or corrected to normal vision and were naive 

to the paradigm and the purpose o f the experiments.

Stimuli

In total, one hundred and thirty-two English content words (nouns, verbs and 

adjectives) and one hundred and thirty-two pseudowords were used as stimuli. H alf 

o f the words had six letters and half had eight letters. The stimuli included the 160 

letter strings used in Experiments 1 and 2, and additional stimuli, which are
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presented in Appendix 2. The word sets were matched on written frequency 

(Kucera &  Francis, 1967), imageability and age o f acquisition.

Apparatus and procedure

Apart from the precues format and location, the procedure was similar to the 

procedure o f Experiments 1 and 2.

Results and discussion

Table 4 displays the mean percentage o f letters correctly identified at the left and 

right segments o f the stimuli, and the Laterality Index.

Table 4: Percentage of letters correctly recognized in the left and right 
segments and the Laterality Index as a function of stimuli lexicality, length 
and cue location (Experiment 3)._______________________________________

Stimuli Length Cue loc

Segment

Left

M SD

Right

M SD

Laterality Index 

M SD

Words 6 LF 95.06 8.74 95.68 7.58 0.38 1.02

LN 97.78 5.44 96.32 6.54 -0.79 0.97

RN 96.39 7.92 94.88 11.62 -1.00 2.45

RF 97.45 3.65 96.68 4.83 -0.42 1.55

8 LF 96.54 6.55 93.38 8.58 -1.74 3.27

LN 91.41 13.79 86.82 17.49 -3.09 4.04

RN 91.14 12.65 86.90 16.31 -2.77 3.49

RF 98.61 3.40 93.17 6.51 -2.91 3.49

Pseudo 6 LF 82.72 11.69 73.42 19.30 -7.29 9.89

words LN 76.74 14.18 62.80 23.63 -13.06 15.14

RN 75.30 20.80 61.07 19.07 -10.97 6.08

RF 80.28 13.32 63.75 18.58 -12.94 11.22

8 LF 60.72 18.77 61.02 21.93 -0.77 7.01

LN 63.01 24.57 51.51 28.89 -13.72 17.83

RN 62.24 19.34 55.23 29.68 -11.71 17.11

RF 62.01 19.64 57.28 27.51 -7.67 17.20
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Statistical tests showed a significant main effect o f cue locations (F(3j5)=3.39, 

p<0.05), where a significant difference was found only between the left-far cues 

(LF) and the left-near cues (LN) (-2.36 versus -7.66, Turkey’s HSD test). However, 

stricter post-hoc comparison (like Bonferroni t-test and Scheffe’s test) did not 

show any significant differences between the four cue locations.

There was a length by stimulus type interaction (F(i,5)=12.28, p<0.05). Simple 

effect results revealed that the 8-letter pseudowords had less negative Laterality 

Index than 6-letter pseudowords (-8.47 versus -11.05 F(i 5)=7.29, p<0.05), and 

there was no difference between 6- and 8-letter words (-0.46 versus -2.63, 

Fd.5^5.09, p>0.05). There were no further significant main effects or interactions.

Auclair and S ieroff s (2002) findings would imply that the left cues (LF and LN) 

w ill have a negative Laterality Index; and the right cues (RN and RF) w ill have a 

Laterality Index towards the positive range (right segment advantage). Applying 

Lindell and Nicholls’s (2003) conclusions to Experiment 3, on the other hand, 

would imply that only the left-far cue (LF) w ill improve the report on the left 

segment (i.e., a more negative Laterality Index). However, when only 

pseudowords were extracted into the statistical analysis, no cueing effects were 

found, not even trends in the predicted directions. In order to verify that the failure 

to get cueing effects in 3 consecutive experiments thus far is not an artefact o f the 

particular stimuli, I designed Experiment 4 with stimuli that were used previously 

and yielded ipsilateral cueing effects (Sieroff &  Posner, 1988).

Experiment 4

Sieroff and Posner (1988) successfully demonstrated that cues in the right visual 

field improved letter recognition in the right segment o f centrally presented 

pseudowords, and as a result, alleviated the negative Laterality Index, (however, 

subjects were still recognizing more letters at the left segment o f the pseudowords). 

On the other hand, my previous experiments in this chapter did not clarify what the 

Tight’ cue contributes to the letter recognition. Experiment 4 therefore is going to
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employ the exact visual stimuli o f Sieroff and Posner (1988) in order to verify 

whether the failure to generate right cueing effects might be due to the particular 

stimuli I used.

Method

Design

A 4 x 2 x 2 factorial design (cue location: left-far, left-near, right-far, right-near) x 

(stimulus length: 6 or 8 letters) x (stimulus type: real or pseudo-words) was used in 

a within-subjects design. Pre-cues format, size and location were identical to the 

cue specifications in Experiment 3.

Participants

Six native English-speakers, 2 females and 4 males, aged between 19 and 30 (mean 

23.0, sd 4.5). A ll but one participants were right-handed and the mean score was 

76.7 (sd 33.3) in the Edinburgh Handedness Inventory (Oldfield, 1971).

Stimuli

Sixty 8-letter words and eighty 8-letter pseudowords were taken from Sieroff and 

Posner (1988), and are presented in Appendix 3. To allow length manipulation I 

added sixty-six 6-letter words and sixty-six 6-letter pseudowords (taken from 

Experiment 3).

Apparatus and procedure

Apart from the different stimuli, the procedure was similar to the procedures o f 

Experiment 3.

Results and discussion

Table 5 displays the mean percentage o f letters correctly identified at the left and 

right segments o f the stimuli, and the Laterality Index.
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There was a significant lexicality effect, with more negative value for pseudowords 

(-0.71 for words versus -9.95 for pseudowords, F(15>= 15.07, p<0.05). There were 

no further significant main effects or interactions.

Table 5: Percentage of letters correctly recognized in the left and right 
segments and the Laterality Index as a function of stimuli lexicality, length 
and cue location (Experiment 4)_______________________________________

Stimuli Length Cue loc

Segment

Left

M SD

Right

M SD

Laterality Index 

M SD

Words 6 LF 97.07 3.83 98.09 2.71 0.54 1.52

LN 97.94 4.17 97.07 2.79 -0.42 1.59

RN 99.15 2.09 96.84 4.10 -1.20 1.80

RF 99.39 0.96 96.61 2.89 -1.43 1.10

8 LF 98.08 3.53 97.44 3.99 -0.33 1.33

LN 94.51 4.90 93.04 8.88 -0.92 3.00

RN 95.55 5.32 93.55 7.21 -1.12 1.68

RF 97.67 2.85 96.15 4.21 -0.80 2.36

Pseudo 6 LF 92.12 5.87 77.46 11.58 -8.98 5.37

words LN 85.25 12.86 78.71 12.15 -3.96 5.36

RN 86.79 8.54 77.83 15.08 -6.05 5.80

RF 89.68 9.12 84.52 9.75 -3.04 2.65

8 LF 75.55 22.48 59.12 21.23 -13.28 8.85

LN 80.00 16.30 61.87 22.72 -14.52 15.29

RN 77.67 19.86 61.73 21.40 -12.88 9.45

RF 82.23 14.71 61.74 23.84 -16.90 16.76

Experiment 4, that employed the 8-letter pseudowords from Sieroff and Posner 

(1988), also failed to replicate the cuing effect reported by Sieroff and colleagues, 

or the alternative cueing effects predicted from Nicholls and colleagues. The 

Laterality Index o f right-far (RF) cues was -16.90, sliding down from -13.28 o f 

left-far (LF) cues. It is not in agreement with Sieroff and Posner’s results (1988), 

where the right cue decreased laterality from -21.7 (following a left cue) to -12.2. 

However, Experiments 1-4 systematically indicated that the right cue did not
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alleviate the negative Laterality Index. Because Experiment 4 employed the same 

stimuli as Sieroff and Posner (1988), it is clear that the failure to create cueing 

effects was not due to the stimuli used in Experiments 1-3. In the following 

experiments (5-7) I aim to present a more salient right cue in order to generate the 

cueing effects reported by Sieroff and colleagues.

Experiments 5,6 and 7

One o f the best ways to capture attention is to present a salient stimulus which 

would be automatically detected because some o f its features, e.g., colour, size or 

orientation, are considered to be primary and be processed in parallel by special 

modules (Treisman, 1988). In order to magnify the differences between the left and 

right cues, the cues on the right visual field w ill be presented in a red colour in 

Experiments 5 and 6, and be widened into bars as well in Experiment 7. In addition, 

the left cues were smaller (0.29° o f visual angles rather than 0.4° as in Experiments 

1-4).

Method

Design

A 4 x 2 x 2 factorial design (cue location: left-far, left-near, right-near, right-far) x 

(stimulus length: 6 or 8 letters) x (stimulus type: real or pseudo-words) was used in 

a within-subjects design. However, the pre-cues differed from the previous 

experiments. The cues on the left side (LF and LN) were reduced from 0.4° into 

0.29° o f visual angles in length. Their colour was black (as in the previous 

experiment). The right cues in Experiments 5 and 6 were kept in the original size 

(0.4° o f visual angles, see Figure 16), but were presented in red. In Experiment 7, 

the cues were widened into bars o f 1.9° x 0.4° (see details in Figure 17). There was, 

therefore, no difference between RN and RF locations, since there was only one 

location (R) on the right visual field due to the increased cue size.
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Figure 17: The arrangement of pre-cues and stimuli in Experiment 7
The pre-cue was a pair of two rectangles which would appear at one of two possible 
locations to the left of fixation: left-far (LF), left-near (LN), and in one location to the right of 
fixation. The right, red cues were extended to 1.9° width. The black numbers represent 
stimuli size, the values before and after the slash were the visual angle for the 6 or 8-letter 
stimuli, respectively.

Participants

Experiment 5. Six native English-speakers, 2 females and 4 males, aged between 

20 and 26 (mean 21.2, sd 2.4). All but two participants were right-handed and the 

mean score was 65.0 (sd 44.9) in the Edinburgh Handedness Inventory (Oldfield, 

1971).

Experiment 6. Six native English-speakers, 3 females and 3 males, aged between 

19 and 26 (mean 24.0, sd 2.6). All but one participants were right-handed and the 

mean score was 74.1 (sd 24.8) in the Edinburgh Handedness Inventory (Oldfield, 

1971).

Experiment 7. Six native English-speakers, 4 females and 2 males, aged between 

19 and 27 (mean 21.7, sd 3.3). All but one participants were right-handed and the 

mean score was 79.2 (sd 25.2) in the Edinburgh Handedness Inventory (Oldfield, 

1971).

Stimuli

The visual stimuli of Experiments 5, 6 and 7 were identical to the stimuli used in 

Experiment 4.
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Procedure

Apart from the different cues, the procedures o f Experiments 5-7 were similar to 

the procedures o f Experiment 4, with a longer presentation time for pre-cues in 

Experiments 6 and 7 (120 ms rather than 80 ms), again in the effort to produce 

cueing effects.

Results and discussion

The Laterality Index o f Experiments 5, 6 and 7 are presented in Table 5, 6 and 7, 

respectively. Statistical tests o f the three experiments each showed that the 

pseudowords had a more negative Laterality Index than words (-11.71 versus -0.20, 

F(i,5)=1 1.47, p<0.05 in Experiment 5; -10.00 versus -1.04, F(i 5j=7.40, p<0.05 in 

Experiment 6 ; -12.34 versus -5.34, F, 1̂ = 6 .23, p=0.055 in Experiment 7). There 

were no further statistically significant main effects and interactions.
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Table 6: Percentage of letters correctly recognized in the left and right 
segments and the Laterality Index as a function of stimuli lexicality, length 
and cue location (Experiment 5)_______________________________________

Segment

Left Right Laterality Index

Stimuli Length Cue loc M SD M SD M SD

Words 6 LF 98.91 1.84 98.80 2.10 -0.06 1.55

LN 98.43 2.73 96.83 6.68 -0.91 3.68

RN 99.65 0.85 98.11 2.30 -0.79 0.80

RF 99.35 1.60 97.36 4.54 -1.05 2.61

8 LF 98.90 1.94 99.21 1.94 0.16 0.38

LN 97.40 5.13 96.93 3.93 -0.22 1.50

RN 96.18 6.77 98.16 2.88 1.11 2.72

RF 97.59 3.88 97.96 3.18 0.20 0.49

Pseudo 6 LF 91.05 7.28 76.80 11.78 -8.84 4.66

words LN 90.85 9.80 76.86 18.22 -9.24 9.87

RN 91.49 5.90 76.34 18.57 -10.17 11.74

RF 93.38 6.21 78.58 14.85 -9.25 7.54

8 LF 79.88 15.00 62.18 16.64 -13.07 10.25

LN 76.07 15.10 57.77 16.34 -14.25 12.53

RN 76.49 14.84 56.16 20.81 -16.96 12.89

RF 76.41 20.68 59.04 15.10 -11.88 19.48
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Table 7: Percentage of letters correctly recognized in the left and right 
segments and the Laterality Index as a function of stimuli lexicality, length, 
and cue location (Experiment 6)________________________________________

Stimuli Length Cue loc

Segment

Left

M SD

Right

M SD

Laterality Index 

M SD

Words 6 LF 97.29 3.41 94.80 5.70 -1.10 2.16

LN 95.59 5.36 92.92 8.19 -1.36 3.84

RN 97.39 4.27 94.14 5.35 -2.01 2.43

RF 97.61 3.19 93.28 8.04 -2.61 4.11

8 LF 88.23 17.06 89.06 20.85 -0.46 7.01

LN 88.48 13.56 86.57 16.40 0.09 1.52

RN 94.46 6.83 93.53 8.87 -1.29 1.94

RF 93.11 8.01 92.74 7.71 0.38 1.06

Pseudo 6 LF 83.85 10.67 68.74 18.92 -11.95 15.02

words LN 79.68 12.88 57.72 27.03 -17.00 21.00

RN 81.23 11.79 60.16 27.06 -15.89 18.35

RF 72.17 15.92 63.79 23.13 -4.88 13.26

8 LF 57.53 24.26 51.61 21.19 -6.28 10.91

LN 57.63 19.66 48.41 21.42 -7.47 9.96

RN 58.45 18.63 47.81 20.79 -13.44 16.74

RF 55.43 22.15 48.16 20.37 -3.07 10.43
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Table 8: Percentage of letters correctly recognized in the left and right 
segments and the Laterality Index as a function of stimuli lexicality, length 
and cue location (Experiment 7)_______________________________________

Stimuli Length Cue loc

Segment

Left

M SD

Right

M SD

Laterality Index 

M SD

Words 6 LF 77.91 26.47 74.42 26.20 -2.31 4.48

LN 79.20 28.89 69.26 37.02 -12.03 16.59

RN 76.27 27.93 65.41 36.13 -13.73 18.30

RF 76.77 24.98 71.56 32.23 -6.69 10.49

8 LF 72.91 28.00 73.97 27.24 1.16 7.88

LN 66.84 37.63 62.54 40.45 -5.04 12.59

RN 62.91 33.31 60.05 37.82 -6.68 10.38

RF 66.08 34.10 66.56 31.51 2.63 10.74

Pseudo 6 LF 61.15 30.44 46.05 30.98 -17.77 15.23

words LN 62.03 25.75 49.73 28.81 -17.49 18.02

RN-RF 57.40 30.88 46.67 27.24 -11.05 13.85

8 LF 45.80 25.30 34.72 16.45 -10.45 13.64

LN 40.06 25.15 31.53 17.34 -7.80 19.27

RN-RF 39.14 26.40 31.74 20.53 -9.45 7.26

Comparative analysis of Experiments 1-7

Figure 18 presents the Laterality Index o f Experiments 5, 6 and 7. The right, 

rectangular red cues (RF) o f Experiment 5, presented for 80 ms, did not alleviate 

the laterality o f the LF cues for the 6-letter pseudowords (-9.25 versus -8.84), but 

slightly did so for the 8-letter pseudowords (-11.88 versus -13.07). When 

increasing the presentation time o f the cues to 120 ms in Experiment 6, the right-far 

cues (RF) decreased the negative Laterality Index o f both 6-letter and 8-letter 

pseudowords, compared with the left-far cues (LF). A similar pattern o f decreased 

negative values (i.e., smaller LVF advantage following a right cue) was found in 

Experiment 7 (-11.05 versus -17.77 for 6-letter stimuli; -9.45 versus -10.45 for
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8-letter stimuli). This tendency o f reversing the laterality index direction in 

Experiments 5-7 was not found in Experiments 1-3 (see Figure 19).

The combined results o f Experiments 1-3 showed a significant interaction between 

the stimulus type and cue location (F(i>23)=5.02, p<0.05). Simple main effect 

analysis revealed that for pseudowords, right-far cue (RF) yielded more negative 

Laterality Index than the left-far cue (LF) (-11.20 versus -7.06, F(i23)=10.56, 

p<0.01). However, both cues did not generate different Laterality Index for words 

(-1.11 versus -1.00, F(i 23)=0.01, p>0.05).

In fact, the trend o f the interaction is totally reversed between the first three 

experiments (Experiments 1, 2 and 3) and the last two experiments (Experiments 6 

and 7). The statistical results o f the combined data o f Experiments 6 and 7 revealed 

the same interaction effect between stimulus type and cue locations (F(u d = 10.74, 

p<0.01). However, the trend is reversed with reduced laterality effects for 

pseudowords following a right-far cue (RF) (-7.11 versus -11.61 with left cue, 

F ( i j i )= 14.94, p<0.01). No such differences were found for words (-1.57 versus 

-0.68, F(i,n)=0.59, p>0.05).

The comparison o f the first three and the last two experiments indicates that the 

duration o f the pre-cue may be o f importance. Experiments 1 to 5 have manipulated 

the visual stimuli and the types o f pre-cues, but none o f them replicated the cueing 

effects predicted by Sieroff and Posner’s (1988). In Experiments 6 and 7, the more 

salient right cues resulted in a less negative laterality index.
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Figure 19: The Laterality Index of Exp 1, 2 & 3 as a function of stimuli 
lexicality, length and cue location.

Experiment 8

The previous experiments ( l -7) have revealed that subjects tended to report more 

letters from the left than the right segment o f centrally presented letter strings. This 

tendency was so strong that it overrode potential cueing effects from right-sided



pre-cues, that were predicted based on Auclair and S ie ro ff s (2002) findings. It is 

possible that the left segment advantage in my experiments was the result o f 

reading habits in English, which proceed from left to right in natural reading. When 

presented with words and pseudowords, subjects tended to scan the stimuli 

according to the normal reading direction that is from left to right. Such directional 

scanning under conditions o f brief exposure and masking (as in Experiments 1-7) 

might account for the superior recognition o f the left-of-fixation letters.

Experiment 8 was designed in order to eliminate possible scanning effects in a 

spatial cueing letter recognition task. The idea was to present letters in a scattered 

array, such that letters are not arranged in a word format, as were the words and 

pseudowords o f the previous experiments. I f  the scanning from the left tendency 

only accompanies word recognition processes, it w ill not be evident with the 

scattered letter arrays, allowing therefore potential spatial cueing effects at the right 

side o f fixation (following a right cue). The task was letter search in letter array o f 2, 

4 or 8 letters, where target letters were located to the left or right o f fixation, 

following spatial cues that were presented to the left or right o f fixation. Apart from 

the distortion o f word shape by scattering the letters, Experiment 8 was similar in 

terms o f cue location and duration, and target exposure duration to Experiments 

1-7.

Method

Design

A 2 x 3 x 2 factorial design (cue location: LVF, RVF) x (stimulus size: 2, 4, or 8 

letters) x (target location: LVF, RVF) was used in a within-subjects design. The 

dependent variables were percentage o f correct responses (ACC) and reaction time 

(RT). Cue and target location were identical at 80% o f all trials (valid cues).

Participants

Twenty four participants, 13 females and 11 males, aged between 22 and 34 (mean 

25.8, sd 3.1). A ll but one participants were right-handed and the mean score was 

91.3 (sd 15.6) in the Edinburgh Handedness Inventory (Oldfield, 1971). Every
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participant had normal or corrected to normal vision and was nai've to the paradigm 

and the purpose o f the experiments.

Stimuli

One hundred trials o f 2-, 4- and 8-letter arrays were used as stimuli. Every array 

consisted o f one target letter (A, B, C, X, Y, Z) and some flankers (H, I, M, O, T, U, 

V, W), all randomly selected for every trial. The visual array was scattered in a 

square, 3 x 3  degrees in size, such that in each trial the target letter was presented 

randomly to the left or right o f the fixation point. The letter arrays were presented 

in 10-point Courier New font, black on a white background.

Apparatus and procedure

Stimuli were presented on a PC using E-prime software. Each participant sat with 

their head supported by a chin-rest and head-strap in order to secure head position 

and stabilize fixation at a distance o f 1 m from the screen. The experiment 

consisted o f 340 trials, including 40 trials for practice at the beginning. Each trial 

began with a fixation point appearing in the centre o f the screen for 500 ms. The 

fixation point was replaced by a star sign (pre-cue) for 80 ms, to the right or left o f 

fixation. The letter arrays was then presented for 30 ms, randomly with 2, 4 or 8 

letters that included the target letter presented to the left or right o f fixation. The 

participant’s task was to press kY ’ key as quickly as possible i f  they detected a 

target letter in the array. Then the participant was requested to take time to report 

what the target letter s/he detected and where (right or left) the target letter 

appeared. Participants’ responses were recorded for further analysis. Figure 20 

illustrated the timeline o f the experiment.
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Figure 20: Timeline of Experiment 8
Each trial started with a fixation cross presented for 500 ms, followed by a pre-cue on the 
target location (80% of trials) for 80 ms, immediately replaced by a 30 ms letter arrays. A 
blank screen replaced the letter arrays until participant’s responses. In the example 
illustrated in Figure 20, the target letter is X at the LVF, and the cue is not valid (20% of 
trials) since it was presented at RVF. The manipulation of cue location and target location 
was aimed to test the ipsilateral cueing effects predicted by Auclair and Sieroff (2002).

Data Analysis

RTs were analyzed only for correct responses. Reaction times that were less than 

140 ms or longer than 2000 ms were discarded either as anticipatory or excessively 

lengthy, respectively. There were 110 discarded trials out o f 5687 trials (1.93%).

The results are plotted in Figure 21 and Figure 22. In the accuracy data (Figure 21), 

there was a significant effect o f array size (F(2,46)=75.56, p<0.01), and the three 

categories were each different (88%, 75% and 56% for 2, 4 and 8 letters, 

respectively). There was an interaction between cue and target location 

(F(i,23)=28.67, p<0.01). Simple main effect analysis showed that recognition o f the 

left target letter was better following a left cue (80%) than a right cue (67%), 

F( i,23>= 11-24, p<0.01. In contrast, recognition o f the right target letter was better 

following a right cue (81%) than following a left cue (64%), F(i,23>= 17.89, p<0.01. 

Finally, a three-way interaction o f array size, cue and target location was 

significant (F(2,45>= 16.78, p<0.01). As was shown in Figure 21, the interaction o f 

cue and target location increased with array size. For 2-letter arrays, cue and target 

location did not interact. For 4-letter arrays, recognition o f the left target letter was 

better following a left cue (83%) than a right cue (70%), F(i,45,=9.23, p<0.01. In

Results and discussion
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contrast, recognition o f the right target letter was better following a right cue (84%) 

than following a left cue (66%), F(i>45)=22.90, p<0.01. For 8-letter arrays, 

recognition o f the left target letter was better following a left cue (67%) than a right 

cue (41%), F(i 45)=26.31, p<0.01. In contrast, recognition o f the right target letter 

was better following a right cue (70%) than following a left cue (43%), 

F(i,45)=46.55, p<0.01.
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Figure 21: Percentage of letters correctly recognized in the left and right 
segments of the letter arrays as a function of array size, target location and 
cue location (Experiment 8)
On the Y axis, 1 indicates 100% and 0.5 indicates 50% correct responses.

In the RT data (Figure 22), there was a significant effect o f array size (F(2;46f=7.93, 

p<0.01), in which responses to 2-letter array (659.5 ms) were faster than to 8-letter 

array (726.6 ms), however, both were indifferent from 4-letter array (703.6 ms). 

There was an interaction between cue and target location (F{i.23>=60.66, p<0.01). 

Simple main effects analysis showed that recognition o f the left target letter was 

faster following a left cue (593.8 ms) than following a right cue (806.2 ms), 

F ( i ,23)= 3 2 .8 6 , p<0.01. In contrast, recognition o f the right target letter was faster 

following a right cue (607.9 ms) than following a left cue (805.8 ms), F(i 23)=29.09, 

p<0.01. There was no three-way interaction (F(2,38)=0.15, p>0.05), as the 

interaction patterns were alike for each array size.
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Figure 22: Response times to letters correctly recognized in the left and 
right segments of the letter arrays as a function of array size, target location 
and cue location (Experiment 8)

In Experiment 8, a significant ipsilateral cueing effect, in RT and accuracy, was 

found, with better performance in the LVF arrays following a left but not a right 

cue, and the complementary pattern for RVF arrays following a RVF but not LVF 

cue. This significant ipsilateral pattern reflects the predicted cueing effects (Auclair 

&  Sieroff, 2002; but notLindell &  Nicholls, 2003) that were not found in 

Experiments 1-7. Since the cueing procedure in Experiment 8 was similar to the 

paradigms employed in Experiments 1-7, apart from the way the target letters were 

presented (in wordlike format in Experiments 1-7 or in a scattered letter array in 

Experiment 8), the conclusion is that the ipsilateral cueing has increased effects 

when target letters are not grouped in word shapes. The cueing effect also increased 

when the to-be-searched array included more letters. The result implies that 

left-to-right scanning that is associated with natural reading interfered with 

potential spatial cueing effects during word recognition. However, when the form 

o f the word was disassembled in a way that made left-to-right scanning 

uninformative, the spatial cues played a role in guiding attention to the letter array 

and improved performance in the cued locations.
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Experiment 9

The parafoveal display o f Experiment 8 served to establish the cueing effects in 

less-than optimal locations, where I predicted (and found) facilitatory ipsilateral 

cueing effects when the form o f a word was disassembled, based on a spatial 

orientation paradigm (Posner, 1980). To determine whether the cortical 

representation o f foveal stimuli is split or bilaterally represented in both 

hemispheres, I replicated Experiment 8 but with a foveal display (Experiment 9). 

The foveal display served as the critical test for the split fovea theory, where I 

predicted ipsilateral facilitatory effects for the left- and right-of-fixation letters 

following a left or right cue, respectively. This is because i f  I assume that briefly 

presented foveal information is bilaterally projected to both hemispheres, then 

unilateral cues w ill become uninformative.

The prediction that the ipsilateral cues would have facilitative effects on the left 

and right segment o f the foveal letter array is based on Auclair and S ieroff s 

findings (Auclair &  Sieroff, 2002) and on the facilitative cueing effects I found in 

Experiment 8 for the parafoveal displays. However, there is an alternative 

prediction, which still supports the split fovea theory yet predicts inhibitory 

ipsilateral cueing effects. Recently it was suggested that attention enhances spatial 

resolution in the cued location (Lee, Itti, Koch, &  Braun, 1999; Talgar, Pelli, &  

Carrasco, 2004; Yeshurun &  Carrasco, 1998). These authors showed facilitatory 

cueing effects when higher resolution was required for the task, but also inhibitory 

cueing effects when resolution at the cued location was higher than the optimal 

needed for the task. For a texture segregation task, Yeshurun and Carassco (1998) 

observed that attention improved performance at peripheral locations where spatial 

resolution was too low, but impaired performance at central locations where spatial 

resolution was too high. Therefore, in visual search tasks in which observers’ 

performance is slower and less accurate as target eccentricity increases, due to the 

lower spatial resolution o f the periphery, cueing the target location diminished this 

eccentricity effect.
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I f  the split fovea theory is valid, then left cues should affect performance to stimuli 

presented just left o f fixation, and correspondingly, right cues should affect 

performance to stimuli just right o f fixation. If, however, stimuli in the foveal area 

are bilaterally projected, lateralized cues should not affect performance as there is 

not a single ‘ valid’ location (right or left). Whether this cueing effect is facilitatory 

(Posner, 1980) or inhibitory (Yeshurun &  Carrasco, 1998) is a function o f the 

spatial resolution at target location and o f the task at hand.

For the letter search task in unstructured letter arrays, it was established that 

performance is optimal at foveal rather than parafoveal locations (Bertera &  

Rayner, 2000). That implies that enhancing further the resolution in foveal letter 

arrays may impair performance, as resolution would become too high (Yeshurun &  

Carrasco, 1998), like watching a picture from a too-close distance. Therefore 

inhibitory ipsilateral cueing are predicted for foveal arrays based on spatial 

resolution enhancement theory (Yeshurun &  Carrasco, 1998).

The letter array in Experiment 9 was reduced to 0.5 degree to the left and right o f 

fixation to ensure foveal presentation. Because the reduced scattered area only 

accommodates 4 letters at most, presentation o f 8-letter arrays was not possible.

Method

Design

A 2 x 2 x 2 factorial design (cue location: LVF, RVF) x (stimulus size: 2, 4 letters) 

x (target location: LVF, RVF) was used in a within-subjects design. The dependent 

variables were percentage o f correct responses (ACC) and reaction time (RT). Cue 

and target location were identical at 80% o f all trials (valid cues).

Participants

Twenty eight participants, 18 females and 10 males, aged between 19 and 35 (mean 

24.4, sd 4.5). A ll but two participants were right-handed and the mean score was 

88.21 (sd 22.9) in the Edinburgh Handedness Inventory (Oldfield, 1971). Every



participant had normal or corrected to normal vision and was nai've to the paradigm 

and the purpose o f the experiments.

Stimuli

One hundred and fifty  trials o f 2- and 4-letter arrays were used as stimuli. Every 

array consisted o f one target letter (A, B, C, X, Y, Z) and some flankers (H, I, M, O, 

T, U, V, W), all randomly selected for every trial. The visual array was scattered in 

a square, 1 x 1 degrees in size, such that in each trial the target letter was presented 

randomly to the left or right o f the fixation point. The letter arrays were presented 

in 7-point Courier New font, black on a white background.

Apparatus and procedure

Apart from the array size, the procedure was similar to the procedure o f 

Experiment 8.

Data analysis

Due to disk faults, there was no RT data in 8 out o f 28 participants, but accuracy 

data were kept for all participants. RTs were analyzed only for correct responses. 

Reaction times that were less than 140 ms or longer than 2000 ms were discarded 

either as anticipatory or excessively lengthy, respectively. There were 53 discarded 

trials out o f 5023 trials (1.06%).

Results and discussion

The results are plotted in Figure 23 and Figure 24. In the accuracy data, there was a 

significant effect o f array size (F(i ,27)— 13.43, p<0.01), with better recognition o f 

2-letter array (86%) than 4-letter array (81%).

There was a significant interaction between cue and target location (F(i,27)=4.46, 

p<0.05). Simple main effect analysis did not reveal any significant differences in 

the recognition o f the target letter following a left or a right cue. However, 

recognition o f the left target letter was worse following a left cue (82%) than a right 

cue (85%). Complementary, the recognition o f the right target letter was worse 

following a right cue (81%) than a left cue (84%).
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In the RT data (Figure 24), there was a significant effect o f array size (F ( ij9)= 13.72, 

p<0.01), with a faster recognition o f 2-letter array (469.58 ms) than 4-letter array 

(514.37 ms). There was a significant interaction between cue and target location 

(F(i,i9)=4.84, p<0.05). Simple main effects analysis did not reveal any significant 

differences in the recognition o f the target letter following a left or a right cue. 

However, the data showed that the recognition o f the left target was slower 

following a left cue (509.79 ms) than following a right cue (475.24 ms). In contrast, 

recognition o f the right target letter was slower following a right cue (513.41 ms) 

than following a left cue (469.45 ms).

In Experiment 9, a significant interaction between cue location and target location 

was found. However, the cueing effects, both in RT and accuracy, were inhibitory. 

In other words, the cue ipsilaterally preceding the target letter inhibited the 

recognition o f the target letter. Even though this is contrary to the results o f 

Experiment 8 which reported the facilitatory cueing effects o f the cue on the 

ipsilateral target letter, the results o f Experiment 9 further confirmed the prediction 

o f the split fovea theory because ipsilateral parafoveal cueing effects, though 

negative, were found for foveal displays.

Previous research has demonstrated the phenomenon o f inhibitory cueing effects 

on foveal displays (Yeshurun &  Carrasco, 1998) by arguing the spatial resolution 

in the fovea was highly enhanced by attention. According to Yeshurun and 

Carrasco’s (1998) results, the function o f attention (pre-cue) was to enhance the 

spatial resolution o f the visual stimulus (signal enhancement), and the attention 

effect actually depended on the match between the enhanced signal and the size o f 

the filter. The enhanced stimulus (that is following the cue) w ill improve 

performance when the stimulus exceeds filter size. In contrast, the enhanced 

stimulus would impair performance when it located within the filter. Yeshurun and 

Carrasco have shown that the cue impaired performance at about 1° o f visual angle 

in the viewing distance o f 57 cm, but the impairment reduced to 0.66° when the 

viewing distance was increased to 228 cm. In my Experiment 9, the viewing 

distance was 100 cm, the dropping performance by cued stimulus would definitely 

happen within the scattered visual array, i.e., in the fovea area. Thus, the negative
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cueing effects o f Experiment 9 are compatible with Yeshurun &  Carrasco (1998) 

and with the split fovea theory.

Another possible reason for the negative cueing effects would be the abrupt onset 

o f the pre-cue. Breitmeyer and Valberg (1979) found that the oscillation o f 

peripheral grating only impaired the visibility o f the foveal area, but not the 

visibility o f the peripheral visual field. In Experiment 9, the visual array followed 

immediately by the pre-cue, and both were black on a white background. It might 

be that the pre-cue served as the abrupt onset before the visual array.

In summary, the visual search task in the foveal area was affected by parafoveal 

cueing, which complied with the prediction o f the split fovea theory. Although the 

ipsilateral cueing effects were inhibitory, rather than facilitative as in Experiment 8, 

it may be explained by the spatial resolution enhancement theory or the abrupt 

onset o f the pre-cue. In any case, the ipsilateral cueing effects found in 

Experiments 8 and 9 are both in line with the split fovea theory.

General Discussion

In the present experiments. I aimed to explore the role o f spatial cues in the 

processing o f visual words/pseudowords within the framework o f the split fovea 

theory. Experiments 1 to 5 showed that more letters at the left than at the right 

segment o f centrally presented pseudowords were correctly reported, whether the 

cue was in the left or right visual field. Experiments 1-5 failed to replicate the 

predicted cueing effects (i.e., Auclair &  S ieroff s prediction) where recognition o f 

the left letters was supposed to be improved following a left but not a right cue, and 

vice versa for the right o f fixation letters. In addition, the results o f Experiments 1 

to 5 showed no cueing effects for words, as opposed to Lindell and N icholls’s 

(2003) findings. In experiments 6 and 7 ,1 increased the salience o f the pre-cue and 

increased the cue duration from 80 ms to 120 ms. The change did not alter the result 

pattern for words, however, there were cueing effects for pseudowords, in line with 

Auclair and Sieorff (2002), and Sieorff and Posner (1988). In Experiments 8 and 9, 

when the word shape o f the letter strings was broken into a scattered visual array,
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significant cuing effects emerged, both in the para-fovea and fovea areas, in line 

with the split fovea theory. The conclusions are that visual word recognition is not 

easily modulated by the passive exogenous cues, unless the cues are salient enough 

and are presented for long enough to allocate attention; or the standard word shape 

is disassembled.

The findings reported here support the view that spatial attention affects visual 

word recognition, in line with Stolz and MaCann (2000), because there were 

selective attentional effects on word recognition which depended on the lexical 

status o f the word target. Visual word recognition has been argued to be obligatory 

and rapid, it would be triggered by the appearance o f the stimulus in the visual field 

(Brown, Gore, &  Carr, 2002). However, the automatic notion has been also 

challenged by some research (e.g., Manwell, Roberts, &  Besner, 2004; Risko, Stolz, 

&  Besner, 2005; Stolz &  McCann, 2000). For example, Stolz and McCann (2000) 

found that the semantic priming effect occurred mainly when the prime cue shared 

location with the target word (e.g., 80% o f valid trials). When the number o f valid 

trials was reduced to 50%, the spatial precuing and semantic priming did not 

interact. Risko et al. (2005) also showed that Stroop effect happened only when the 

target word was the colour carrier; however, when the colour was carried by a 

separated word or a bar, no Stroop effect was found. The lack o f Stroop effect 

implied that the target word would not be automatically activated.

In the word recognition and attention experiments mentioned in the previous 

paragraph, the spatial cues had dual function: not merely a spatial cue which 

passively reduced the uncertainty o f target’s location, but also a stimuli which is 

actively associated with the target word, for example semantic priming or a colour 

name. In contrast, in Sieroff and Posner (1988), Auclair and Sieroff (2002) and the 

experiments in this chapter, the cue was not associated with the centrally presented 

target words. It is possible that the cues were more prone to be ignored by subjects 

when having no association with the target. In line with this possibility, previous 

research had shown that pre-cues do not necessary capture attention (Yantis &  

Jonides, 1990) and could be modulated by endogenous attention (Fenske &  Stolz, 

2001; Folk, Remington, &  Johnston, 1992). In the current experiments, 

participants did not need to attend to the exogenous cue, unless it was coloured and
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lasted long enough (Manwell, Roberts, &  Besner, 2004). Even when the colour 

distractor was a digit string, it did not affect word recognition processing (Roberts 

&  Besner, 2005, experiment 8). The failure o f Experiments 1-7 here to produce 

cueing effects is therefore in line with previous studies that have used similar types 

o f cues (Manwell, Roberts, &  Besner, 2004; Roberts &  Besner, 2005).

When the target string becomes a pseudoword, the reciprocal loop between the 

lexicon and the letters would be broken because pseudowords could not activate 

the lexicon to assist letter recognition. The lack o f top-down support implied that 

pseudowords required a sequential process and were spelled out. It was shown that 

attentional scanning is influenced by reading direction (Battista &  Kalloniatis, 

2002), therefore, the left-to-right scanning made the beginning letters/left part o f 

pseudowords the key features o f lexical access. That scanning bias might explain 

the significant left segment advantage that was found over and above the cueing 

effects (as measured by the negative laterality index) in Experiments 1-5. Only 

when salient cues were employed in Experiments 6 and 7 was the laterality index 

reduced. In addition, a salient exogenous cue might not trigger spatial attention to 

intervene in lexical processing (Roberts &  Besner, 2005), until it has lasted for a 

minimum period (Auclair &  Sieroff, 2002; Manwell, Roberts, &  Besner, 2004). 

Indeed the longer cue duration in Experiments 6 and 7 increased the cueing effects 

on letter recognition.

As opposed to Experiments 1-7, significant ipsilateral cueing effects emerged 

when word shape was distorted (Experiments 8 and 9). Previous research has 

indicated that distorted word shape, for instance vertical presentation, case 

alternation or stepped format would interfere with the lexical access (Bub &  

Lewine, 1988; Ellis, Brooks, &  Lavidor, 2005; Fiset &  Arguin, 1999; Young &  

Ellis, 1985). Indeed when in experiments 8 and 9 characters were scattered such 

that word shape was completely distorted, letter search was significantly 

modulated by the spatial cue.

In summary, word recognition appears to be an autonomous process and resistant 

to passively exogenous cues. Subjects’ strategy and the task demand could 

dominate the process. However, pseudowords or the deformed words would leave
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the autonomous process vulnerable to salient and longer exogenous cues, and 

modulate lexical process, thus producing cuing effects on letter identification in 

pseudowords. The ipsilateral parafoveal cueing effects on foveal targets found in 

Experiments 8 and 9 are in line with the split fovea theory.
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CHAPTER 5: CROSSED-UNCROSSED 

DIFFERENCE (CUD) IN THE VISUOMOTOR 

CORTICES

The cross-uncrossed difference (CUD) is a method for studying the transfer o f 

sensory and motor visuomotor information across the corpus callosum (Marzi, 

Bisiacchi, &  Nicoletti, 1991). When the visual stimulus is presented to one 

hemifield, the reaction time (RT) when using the ipsilateral hand (uncrossed 

response) is faster than when responding with the contralateral hand (crossed 

response) and the CUD represents the time taken to transfer information from one 

hemisphere to the other (Lavidor &  Ellis, 2003).

Marzi et al. (1998) employed transcranial magnetic stimulation (TMS) over the 

occipital cortex to investigate the callosal basis o f the CUD and found a significant 

TMS effect in delaying RT only when visual information had to be transferred 

across the brain. The results were based on comparisons between the crossed and 

uncrossed conditions, but without further separation between the contralateral and 

ipsilateral TMS effects. In chapter 3 ,1 have shown contralateral, but not ipsilateral, 

TMS effects on visual targets located in the right and left visual field (RVF and 

LVF, respectively)- repetitive TMS (rTMS) over the right occipital cortex had a 

significant inhibitory effect on letter/digit decision performance for left, but not 

right, visual field targets, and the complementary pattern o f rTMS effect was 

obtained with left hemisphere stimulation which significantly impaired lexical 

decision to RVF, but not LVF targets (Chiang, Walsh, &  Lavidor, 2004). Similar 

selective patterns were found, either for a letter/digit task (Amassian et al., 1989), 

or a lexical decision task (Lavidor &  Walsh, 2003). The aim o f the current study 

was therefore to study the CUD effect with TMS over the occipital cortex, while 

distinguishing between ipsilateral and contralateral TMS effects.
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Methods

Design and stimulus

A 5 x 2 x 2 factorial design (TMS: no stimulation, RH stimulation, LH stimulation, 

and two sham-TMS conditions) x (target position: LVF or RVF) x (responding 

hand: right or left) was used for the experiment; all within subject variables. The 

application o f repetitive transcranial magnetic stimulation (rTMS) was presented in 

alternating blocks o f single hemisphere stimulation. Responding hand was 

manipulated in fixed blocks, and target position was randomly manipulated.

The combination o f responding hand, TMS location, and target position created the 

CUD experimental conditions, which are shown in Figure 25. In the crossed 

condition, the hemifield and hand were on opposite sides, while in the uncrossed 

condition, the hemifield and hand were on the same side.

The stimulus was a white circle with 0.86 degree in diameter, presented for 110 ms 

5° to the left or right o f fixation (LVF and RVF, respectively). Four blocks o f 92 

trials were used, where no stimulation (60 trials) and rTMS (32 trials) were 

randomly delivered. In order to avoid continuous responses, 12 additional trials in 

each block were catch trials, without any visual stimulus. H a lf o f trials were 

combined with rTMS. For the sham conditions, another four blocks o f 27 trials 

were delivered, where eight out o f 24 trials and three catch trials were accompanied 

by sham rTMS. The total number o f trials for each participant was 524, including 

60 catch trials.

Participants

Eleven neurologically healthy participants, 6 females and 5 males, and aged 

between 22 and 34 (mean 26.3, sd 3.9) with normal or corrected to normal vision, 

took part in the experiment. A ll participants were right-handed, scoring at least 75 

in the Edinburgh Handedness Inventory (Oldfield, 1971), with total mean score o f 

94.6 (sd 7.5). The experiment was reviewed and approved in advance by the Joint 

UCL/UCLH Committees on the Ethics o f Human Research, and all participants 

signed the informed consent form.
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CROSSED UNCROSSED

c
Figure 25: Crossed-uncrossed conditions of visual cortex stimulation and 
responding hand
For convenience, only responses using the left hand are shown, although both hands were 
used in a balanced sequence. In the crossed condition, visual cortex stimulation and hand 
are on opposite sides, while in the uncrossed condition, the hemifield and the hand are on 
the same sides. a,d: rTMS applied to the same side as the visual cortex processing the 
visual stimulus; b, c: rTMS applied to the visual cortex not involved in stimulus detection 
(from Marzi et al., 1998, with permission)

Apparatus and procedure

For the TMS trials, rTMS was applied by using 70 mm figure-of-eight coil for 500 

ms (10 Hz, 60% o f the maximum output o f about 2-T, MagStim model 200, 

Magstim, Whitland, Dyfed, UK). Before the experiment was conducted, the coil 

was first positioned 2 cm laterally and 2 cm above the inion, then moved to find the 

best place where it produced contralateral phosphenes (Kammer, 1999; Marg, 

1991). The location was then fixed for the participant during the whole experiment.

For the sham trials, two figure-of-eight coils were attached together. The inactive 

coil was placed on the same stimulation location, and an active coil was placed at 

90°, through which no current was passed to the inactive coil. Because the active
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coil was away from the skull, the brain was not stimulated but participants were 

exposed to the unilateral click and to the vibration o f the active coil.

The experiment was conducted in a dark room. Stimuli were presented on a PC 

using E-prime software (Psychology Software Tools). Each participant sat with 

their head supported by a chin-rest and head-strap in order to secure head position 

and stabilize fixation at a distance o f 1 m from the screen. Every trial began with a 

cross (10 point Courier New font) appearing in the centre o f the screen for 500 ms. 

At random intervals (from 300 ms to 900 ms), the cross was replaced with no 

stimulus or a white circle for 110 ms on the LVF or RVF. Following the target 

disappearance, a blank screen o f 1000 ms was presented while waiting for the 

participant’s responses, replaced again by a new sequence o f fixation, target and 

blank screen. On the rTMS trials, stimulation was given for 500 ms at the time o f 

target appearance. Participants were requested to fixate the cross and press a space 

bar with the index finger as quickly as possible when the target (i.e., the white 

circle) was detected.

Data Analysis

When the response rate for catch trials was greater than 15% or the missing 

responses rate to the visual target was over 10%, the data were deleted, resulting in 

nine valid participants out o f the original eleven. RTs that were less than 140 ms or 

longer than 800 ms were discarded either as anticipatory or excessively lengthy, 

respectively. Discarded trials were 0.7% o f the total RTs.

Because the aim o f the study was to examine potential TMS effects on the CUD 

and not to test hemispheric differences in target identification per se, the results 

from targets presented to RVF and LVF were pooled together and analyzed in 5 x 2 

repeated measures ANOVA, with TMS condition (five levels) and CUD (crossed, 

uncrossed) as the within-subject variables.

Results

The results are plotted in Figure 26. Analysis o f RT data showed a main effect o f 

TMS (F(4 32)=13.74, pO.001). Scheffe’s post-hoc comparisons (p < 0.05) revealed
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that the no-TMS condition was significantly slower than the TMS or the sham 

conditions. Although the main effect o f the CUD was not significant, the results 

were in the expected direction with faster responses in the uncrossed than the 

crossed condition (278 ms versus 284 ms, F(i 8)=2.8, p=0.1).

O f greater interest was the significant interaction o f the CUD and the TMS 

condition (F(4>32)=2.81, p<0.05). Simple main effects o f the interaction revealed 

that the only condition where the crossed and uncrossed conditions differ 

significantly occurred when TMS was applied over the contralateral visual cortex 

under the crossed response.

To investigate further the individual contribution o f each hemisphere to the CUD 

inhibition induced by TMS applied over the contralateral visual cortex, I separated 

the crossed and uncrossed responses to RVF and LVF trials (only for the 

contralateral rTMS stimulation). A repeated measures ANO VA revealed a 

significant CUD effect (F(i g)=6.22, p<0.01), but no visual field effect. In addition, 

visual field did not interact with the crossed-uncrossed responses, and the CUD 

effect size was similar in both visual fields.
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Figure 26: Reaction time (RT) of the uncrossed and crossed conditions as a 
function of target position and magnetic stimulation (top panel) and TMS 
effect on the CUD (lower panel)
Top panel: The left two bars were RTs when rTMS was applied to the occipital cortex 
ipsilateral to the visual stimulus. The contralateral conditions were rTMS treatment on the 
occipital cortex contralateral to the visual target. The sham condition was exposing 
participants to the click sound produced by the rTMS but not the magnetic stimulation. The 
magnetic condition was real rTMS treatment over the occipital cortex processing 
(contralateral) or non-processing the visual target (ipsilateral). The right pair of bars 
represents the no-TMS condition. Error bar is the standard error of each condition.
Lower panel: RT differences between the crossed and uncrossed conditions. The positive 
bars denoted that the RT at the crossed condition were slower than RT at the uncrossed 
condition, while negative bars represented faster RT in the crossed than the uncrossed 
condition.
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Discussion

The aim o f this study was to investigate the crossed-uncrossed difference (CUD) 

by applying rTMS over the left or right occipital cortex during a lateralized target 

detection task. The results have shown that, relative to sham TMS, the CUD was 

increased by inhibiting the crossed latencies. The significant TMS effect was 

symmetrical at both hemispheres. These results substantially confirm those o f 

Marzi et al. (1998). There is, however, a notable exception-the only condition 

yielding an enlarged CUD in the current study was when the coil was positioned in 

the contralateral visual cortex, relative to the hemifield in which the visual target 

was presented. In contrast, Marzi et al. (1998) reported that the effect was found 

when the TMS coil was applied to the hemisphere contralateral, but also ipsilateral, 

to the visual target.

There are several possible explanation for the different patterns revealed here and 

those reported previously by Marzi et al. (1998). First let me consider stimulation 

location. Marzi et al. (1998) avoided putting the coil in a location where TMS 

might induce phosphenes, while here I used a location yielding phosphenes, which 

is probably a visual cortex location most likely V1/V2. It is possible than that 

Marzi et al. (1998) stimulated the extrastriate cortex, where areas are heavily 

inter-connected (relative to the primary visual cortex, given the sparseness o f 

callosal connections within V I )  (Clarke &  Miklossy, 1990; Marzi, 1986). The 

CUD effect reported here, caused by a stimulation o f the primary visual cortex, was 

mainly related to a disruption o f the visual output to the callosum, while in Marzi et 

al. (1998) there was a disruption o f the callosal transmission in the inter-connected 

areas o f the extrastriate cortex. In line with this account, while Marzi et al. (1998) 

adopted intensity o f 80% o f output, here I applied only 60%. The higher intensity 

might also contribute to the TMS effects on the other, non-stimulated hemisphere 

via the transcranial connections in areas 18 and 19.

Another general difference between the two TMS-CUD studies is, obviously, the 

TMS procedure: Marzi et al. (1998) employed a single-pulse TMS, while here I 

employed repetitive TMS. However, the implications o f the different procedures 

warrant further investigation.
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Both the sham and rTMS manipulations sped up response times, when compared 

with the no-TMS control condition, in accordance with Marzi et a l (1998). This 

feature o f TMS is well documented (Walsh &  Pascual-Leone, 2003, pp84-89), and 

might result from alertness or inter-sensory facilitation (Hershenson, 1962; 

Nickerson, 1973).

One possible concern is whether the reported TMS effects were confounded w ith 

potential attentional bias induced by auditory or somatosensory artefacts o f TMS. 

Auclair and Sieroff (2002), for example, have shown that a lateralized cue 

improved identification o f letters that were ipsilateral to the cue. The noise a TMS 

coil makes during stimulation, might act as an exogenous spatial cue, being a right 

cue when TMS is applied over the right occipital cortex, and a left cue when TMS 

is applied over the left occipital cortex. However, this was not the case, because the 

significant CUD effect was found with a real, but not sham stimulation.

The CUD task might include, in addition to the intrahemispheric and the 

interhemispheric transmission, sensory-motor integration, decision-making and 

preparation o f motor response in the premotor cortex (Iacoboni &  Zaidel, 2004; 

Marzi et al., 1999; Tettamanti et al., 2002). The stronger activation o f the follow ing 

areas was observed in the crossed, but not uncrossed conditions: the superior 

parietal cortex (Iacoboni &  Zaidel, 2004; Marzi et al., 1999), premotor cortex 

(Tettamanti et al., 2002) and the occipital cortex (Marzi et al., 1999). In contrast, 

there was no clear activation in the uncrossed condition, except anterior to the 

ventral anterior commissure plane (Marzi et al., 1999). In addition, the superior 

parietal cortex is heavily interconnected, both anatomically and functionally, w ith 

the dorsal premotor cortex (Wise, Boussaoud, Johnson, &  Caminiti, 1997). I w ill 

term those areas required in the crossed condition as “ the contralateral pathway’’ , 

and the areas involved in the uncrossed condition “ the ipsilateral pathway” . It is 

possible that weaker visual output, resulting from a TMS application over one 

visual cortex, might not, or barely, activate “ the contralateral pathways” . In 

contrast, the same residual visual information might be sufficient to activate “ the 

ipsilateral pathway” because it might be either resistant to the decay o f the visual 

information, or compensated for the TMS-induced weaker visual information. In
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line with this account, some studies have shown that the ipsilateral hemisphere can 

be activated by TMS over the occipital cortex (Ilmoniemi et al., 1997), and the 

intra-cortical facilitation can happen at the motor cortex when TMS is applied over 

the premotor area (Munchau, Bloem, Irlbacher, Trimble, &  Rothwell, 2002). 

Moreover, TMS over the motor cortex can elicit suppression o f the contralateral 

motor cortex via transcallosal route (Trompetto et al., 2004).

In summary, the interhemispheric transfer o f visuomotor information was found 

here to be affected by TMS only when the hemisphere contralateral to the visual 

stimuli was involved. The results show, therefore, that interhemispheric transfer 

can be affected by interfering with the activity o f a primary sensory area. However, 

further research is required to disentangle the consequences o f interference to the 

interhemispheric information transfer at the primary visual cortex, the extrastriate 

and perhaps the pre-motor areas.
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CHAPTER 6: USING NEAR INFRARED 

SPECTROSCOPY AND TRANSCRANIAL 

MAGNETIC STIMULATION TO INVESTIGATE THE 

MOTOR CORTEX

Repetitive transcranial magnetic stimulation (rTMS) can modulate cortical function by 

enhancing or decreasing cortical excitability depending on the parameters o f 

stimulation. Generally, high frequency stimulation (>= 5 Hz) facilitates cortico-spinal 

excitability, but low frequency stimulation (<= 1 Hz) inhibits it (Maeda, Keenan, 

Tormos, Topka, &  Pascual-Leone, 2000a; Pascual-Leone et al., 1998). Although 

inhibition by 1 Hz TMS has been reported at the stimulation site and can outlast the 

stimulation by 15-30 minutes (Chen et al., 1997; Fitzgerald, Brown, Daskalakis, Chen, 

&  Kulkami, 2002; Muellbacher, Ziemann, Boroojerdi, &  Hallett, 2000; Pal et al., 2005; 

Plewnia, Lotze, &  Gerloff, 2003), there is no consensus about the induced change at the 

homologous site in the unstimulated hemisphere. Some researchers have noted 

activation (Gilio, Rizzo, Siebner, &  Rothwell, 2003; Kobayashi, Hutchinson, Theoret, 

Schlaug, &  Pascual-Leone, 2004; Pal et al., 2005; Pascual-Leone et al., 1998; Plewnia, 

Lotze, &  Gerloff, 2003; Schambra, Sawaki, &  Cohen, 2003), but deactivation has also 

been observed (Wassermann, Wedegaertner, Ziemann, George, &  Chen, 1998).

The interhemispheric connections between the motor cortices have been examined in 

several previous studies (Ferbert et al., 1992; Meyer, Roricht, Grafin von Einsiedel, 

Kruggel, &  Weindl, 1995; Meyer, Roricht, &  Woiciechowsky, 1998). One proposal is 

that 1 Hz repetitive stimulation reduces interhemispehric inhibition and thus activates 

the contralateral motor cortex (G ilio, Rizzo, Siebner, &  Rothwell, 2003; Pal et al., 

2005). However, one imaging study showed that, at the stimulated site, rCBF gradually 

increased by up to 20% during 30 minutes o f 1 Hz TMS, and then gradually decreased 

down to 6% in the 10 minutes following stimulation. Furthermore, decreased rCBF in 

the opposite hemisphere was also detected during stimulation, but no data have shown 

how long the negative effect may last after stimulation (Fox et al., 1997). Another 

imaging technique, near infrared spectroscopy (N1RS), has also been used to study
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TMS effects. Single pulse TMS activated the motor cortex by increasing the 

oxyhaemoglobin (C^Hb) level (Noguchi, Watanabe, &  Sakai, 2003). Applying low 

frequency rTMS for 2 minutes also increased the C^Hb level in the stimulation area 

(Oliviero et al., 1999). According to the Fick principle, the increase in C^Hb 

concentration can be considered as an index o f raised blood flow. Nevertheless, the 

increased CfHb level in these two studies (Noguchi, Watanabe, &  Sakai, 2003; 

Oliviero et al., 1999) only recorded for a maximum o f 5 minutes after stimulation, far 

shorter than the behavioral effects. For example, Kobayashi et al. (2004) indicated that 

ipsilateral finger movements were improved for at least 10 minutes following 1 Hz 

TMS. Moreover, little research has concentrated on the haemoglobin changes, 

especially at the homologous non-stimulated motor cortex after 1 Hz stimulation. This 

chapter aims to use NIRS to investigate how long the effects o f 1 Hz stimulation in the 

contralateral hemisphere can last.

Method

Design

A 2 x 6 factorial design (TMS: sham and real) x (time block: before TMS, after TMS 1, 

2, 3, 4 and 5) was used in a within subject design. The task was to move the right thumb 

as quickly as possible to sequentially press hard on the index, middle, fourth and little 

finger, and then reverse the sequence. The task was self-paced. A full block consisted o f 

10 cycles o f 30-second moving (on-state) and then 60-second rest (off-state). 

Inter-block interval was 10 minutes (see the details in Figure 27). NIRS was fixed over 

the hand area o f left motor cortex and TMS was delivered over the right motor cortex.

NIRS A0 A l A2 A3 A4 A5
15 min ------* i*     *  H -  -  -  -

* --------------------------------------- J   "S  h* *  h«-----

IM S  break break break break
20 m in 10 m in 10 m in 10 m in 10 min

Figure 27: Time line of NIRS measurement
NIRS was applied over the left motor cortex and blood flow changes recorded before TMS (A0) 
and after TMS in 5 different blocks (A1 to A5). Every block was 15 minutes long, consisting of 
10 cycles of 30 seconds in the on-state and 60 seconds in the off-state. Inter-block interval was 
10 minutes.
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Participants

Five healthy male subjects, aged between 24 and 40 (mean 32.4, sd 8.5), participated in 

the experiment. A ll participants were right-handed and scored at least 90 in the 

Edinburgh Handedness Inventory (Oldfield, 1971), with total mean score o f 96.0 (sd 

4.1). The experiment was reviewed and approved in advance by the Joint UCL/UCLH 

Committees on the Ethics o f Human Research, and subjects signed a consent form.

TMS and NIRS apparatus

TMS was applied using a 70 mm figure-of-eight coil for 20 minutes (1 Hz, 115% o f the 

motor threshold; MagStim model 200, Magstim, Whitland, Dyfed, UK). The TMS coil 

was placed over the right motor cortex and the motor threshold was determined by the 

MOBS algorithm (Tyrrell &  Owens, 1988) (I would like to thank Dr. Kai Thilo, 

Department o f Physiology, University o f Oxford, for providing the software used in the 

threshold procedure).

For the sham condition, two figure-of-eight coils were attached together. The inactive 

coil was placed on the same stimulation location, and an active coil was placed at 90°, 

through which no current was passed to the inactive coil. Since the active coil was away 

from the skull, the brain was not stimulated but subjects were exposed to the unilateral 

click and to the vibration o f the active coil.

A NIRO-200 monitor (Hamamatsu Photonics K.K., Japan) was used to monitor 

concentration change o f 02Hb and deoxy-hemoglobin (HHb) at 6 Hz sampling rate. 

Briefly, a laser source emits light guided to the subjects’ head through a fiber-optic 

bundle, a so-called “ optode” . Optodes were positioned over the left motor cortex. 

Interoptode distance was 3 cm. The placement o f optodes was across the motor cortex 

and with the emitter at the posterior, which was in line with the best orientation o f the 

probe to obtain robust measurements o f CbHb and HHb (Toronov et al., 2001).

Procedure

The experiment began with the localization o f motor cortices with BrainSight system 

(Magstim, Whitland, Dyfed, UK). The hand area was found by locating the superior 

genu, convex anteriority, o f the motor cortex (Pizzella, Tecchio, Romani, &  Rossini,
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1999). Those subjects who did not have structural images had the motor cortex located 

by TMS. Final verified locations were conducted by TMS to find out the best coil 

position for the production o f contralateral finger twitches. The locations were then 

fixed through the whole experiment. Participants were then instructed to do the finger 

tapping task. Every subject was told when to start moving fingers and when to stop, 

total 10 cycles o f 30-second moving (on-state) and then 60-second rest (off-state). After 

the first block o f 10 cycles, 1 Hz TMS (or sham-TMS) was applied over the right motor 

cortex for 20 minutes. After stimulation, another 5 blocks o f 10 cycles o f finger tapping 

were recorded, with an inter-block interval o f 10 minutes. Every subject had to come 

back on a second day to repeat the same procedure except for the TMS treatment. Three 

subjects were treated with 1 Hz TMS on the first day and the sham-TMS on the other 

day. Two subjects received the opposite order o f treatments.

Data Analysis

Because the NIRO-200 monitor does not allow for absolute quantification o f baseline 

values, data were related to a baseline o f zero calculated from the 10 seconds before 

stimulation (finger moving) onset. To cope with the delayed change o f the 

physiological data, the sampling period o f the off-state was the combination o f two 

periods: 10 seconds before the onset o f the on-state and 10 seconds starting from 20 

seconds after the onset o f off-state. The period o f activation was sampled for 20 

seconds starting from 5 seconds after the onset o f the on-state. A regression line was 

plotted, based on the sampling data o f the off-state, to eliminate the fluctuation o f the 

baseline over time. Each data point (including on- and o ff states) was subtracted from 

the corresponding value on the regression line. The sampling period o f on-state and 

off-state is graphed in Figure 28.

The folding average cycle in one block was the median value o f 10 cycles o f off- and 

on-states, represented as rest and activation, respectively in order to avoid sudden 

spikes from unknown factors. The mean o f each folding average cycle was calculated 

and the difference between the off-state and on-state was used for Statistical analysis 

(two-way repeated measure ANOVA).
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Figure 28: Sampling period of on-state and off-state for every cycle
The blue trace figuratively represents as the actual curve from NIRS 200. The red line marks 
the sampling period of the activation. The green lines marks the sampling periods of the 
off-state: the first part was 10 seconds before the on-state and the second part was 10 seconds 
starting from 20 seconds after the off-state.

Results

The results are plotted in Figures 3, 4 and 5. In the A 02Hb data (Figure 29), there was a 

significant interaction between TM S and time block (F(5?2o)=4.55 , p<0.01). Simple 

main effect analysis showed that, during the time block of A l (i.e., the first 15 minutes 

after stimulation), the increase o f A 0 2Hb was higher following 1 Hz TMS (1.10 pM) 

than the sham stimulation (0.64 pM), F(i,2o)=29.61, p<0.01. Similarly during the period 

A2, the increased A 02Hb level was still higher for the 1 Hz (0.99 pM) than the sham 

stimulation (0.72 pM), F(i,2o)=10.58, p<0.01. There were no differences between the 

TMS and the sham stimulation in other time blocks (i.e., A0, A3, A4 and A5).

For AHHb the data are plotted in Figure 30. There were no significant main effects or 

interactions for either indices. However, in the time block of A0 (before stimulation), 

the levels of AHHb change varied between the TMS and the sham stimulation. In order 

to reveal the stimulation effect on the AHHb change, the values of AHHb change in A 1 

to A5 were subtracted from those at A0. This showed that, in the time block o f A l,  

AHHb level decreased more following TMS (-0.037 pM), compared with the increase 

following the sham stimulation (0.028 pM).
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Figure 29: The concentration of A02Hb as a function of recording time block and

The symbols, A0-A5, on the X axis indicate 15-minute periods of NIRS recording, AO marks the 
recording before stimulation, and A1 to A5 the recording after stimulation, with an inter-block 
interval of 10 minutes. The asterisks each show that the level of A02Hb is significantly higher 
following real stimulation than sham stimulation, at the time block of A1 and A2. Bars show the 
standard error for each data point.

The sum o f AC^Hb and AHHb, plotted in Figure 31, can be integrated as the total 

change o f blood volume (ABL) (Delpy et al., 1988). There was a significant interaction 

between TMS and time block (F(520)=3.49 , p<0.05). Simple main effect analysis 

showed that, during the time block o f A l (i.e., the first 15 minutes after stimulation), 

the increase o f ABL was higher following 1 Hz TMS (0.87 pM) than the sham 

stimulation (0.58 pM), F(i,20)= 10.94, pO .O l. During the period o f A2, the increased 

level o f ABL was still higher for the 1 Hz (0.83 pM) than the sham stimulation (0.64 

pM), F(i 20)= 4 .4 8 , p<0.05. There were no differences between the TMS and the sham 

stimulation in other time blocks (i.e., A0, A3, A4 and A5).

TMS
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Figure 30: The concentration of AHHb as a function of recording time block and 
TMS
The symbols, A0-A5, on the X axis indicate 15-minute periods of NIRS recording, A0 marks the 
recording before stimulation, and A1 to A5 the recording after stimulation, with an inter-block 
interval of 10 minutes. Bars show the standard error for each data point.
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Figure 31: The relative change of blood volume as a function of time block and 
TMS
The sum of AHHb and A02Hb was considered as the relative change of the blood volume (ABL). 
The symbols, A0-A5, on the X axis indicate means 15-minute periods of NIRS recording, A0 
marks the recording before stimulation, and A1 to A5 the recording after stimulation, with an 
inter-block interval of 10 minutes. Bars show the standard error for each data point.



Discussion

The results showed that, following 1 Hz TMS over the motor cortex, blood flow 

increased in the homologous, unstimulated motor cortex in the contralateral 

hemisphere, as evidenced by the raised level o f ACLHb for 40 minutes after the 

stimulation. The change was not produced by the sham stimulation. Although the 

changes o f AHHb level were not coupled with AC^Hb and not statistically significant, 

the trend revealed that, compared with the levels before stimulation (AO), a decrease in 

AHHb was observed in the A l period (i.e., 15 minutes after stimulation).

The value o f AHHb was small and could be easily influenced by other factors. For 

example, the smaller decrease o f AHHb may have been compensated by the 

over-supply in oxygen demand for the finger tapping, a fast and localized increase in 

blood flow in the respective cortical area (Fox, Raichle, Mintun, &  Dence, 1988; 

Villringer &  Dimagl, 1995). In line with the prediction, the estimated blood volume 

change (= A02Hb -t- AHHb) (Delpy et al., 1988) increased during the finger movement.

The results are in line with past research indicating increased activation in the 

contralateral non-stimulated motor cortex following TMS (Gilio, Rizzo, Siebner, &  

Rothwell, 2003; Kobayashi, Hutchinson, Theoret, Schlaug, &  Pascual-Leone, 2004; 

Pal et al., 2005; Pascual-Leone et al., 1998; Plewnia, Lotze, &  Gerloff, 2003; Schambra, 

Sawaki, &  Cohen, 2003), but also extend past imaging studies using low frequency 

magnetic stimulation which recorded blood flow only at the stimulation site (Fox et al., 

1997; Noguchi, Watanabe, &  Sakai, 2003; Oliviero et al., 1999). The data also offer 

physiological evidence o f a basis for behavioural effects up to 10 minutes after 

stimulation (e.g., Kobayashi, Hutchinson, Theoret, Schlaug, &  Pascual-Leone, 2004). 

The longer lasting effect in my results may be due to the difference o f TMS intensity. 

Unlike Kobayashi et al’s experiment (2004) which used 90% o f motor threshold (MT), 

the current experiment adopted 115% MT. The suprathreshold stimulation caused 

muscle twitches and one might argue that the twitches changed the ongoing afferent 

input or influence the non-stimulated motor cortex. However, past research using 

suprathreshold stimulation found decreased motor excitability without effects on motor 

performance, e.g. pinch force/acceleration, finger-tapping speed, or learning ability 

(Chen et al., 1997; Muellbacher, Ziemann, Boroojerdi, &  Hallett, 2000; Muellbacher et
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al., 2002). Further, inhibition by 1 Hz TMS at the site o f stimulation has been 

considered a cortical effect rather than due to efferent effects (Chen et al., 1997; Maeda, 

Keenan, Tormos, Topka, &  Pascual-Leone, 2000b; Touge, Gerschlager, Brown, &  

Rothwell, 2001). Similarly, TMS effects on the non-stimulated motor cortex have been 

interpreted as cortical in orgin (Daskalakis, Christensen, Fitzgerald, Roshan, &  Chen, 

2002; Ferbert et al., 1992; Hanajima et al., 2001). For example, Plewnia et al., (2003) 

used suprathreshold stimulation and activated the non-stimulated homologous motor 

cortex through the reduction o f intra-cortical inhibition, but without changes in MEP at 

hand muscles.

In a PET study, Fox et al. (1997) found increased blood flow in the stimulated motor 

cortex and decreased blood flow on the contralateral site, which was different from the 

current results; however, Fox et al., monitored blood flow change during the magnetic 

stimulation and it provides evidence o f inhibitory interhemispheric pathways between 

motor cortices (Gerloff et al., 1998; Meyer, Roricht, Grafin von Einsiedel, Kruggel, &  

Weindl, 1995; Pal et al., 2005). This kind o f pathway would also explain the crossed 

decrease in excitability o f Wassermann et al.’s results (1998). Additionally, the 

inhibitory interhemispheric connections may compromise the crossed increase effects 

on the non-stimulated motor cortex (Chen et al., 1997; Muellbacher, Ziemann, 

Boroojerdi, &  Hallett, 2000; Plewnia, Lotze, &  Gerloff, 2003; Schambra, Sawaki, &  

Cohen, 2003) by claiming that 1 Hz TMS reduced the excitability in the stimulated 

motor cortex, which would then decrease the inhibitory influence on the homologous 

area (Pal et al., 2005). As a result, the raised activity occurred in the non-stimulated 

motor cortex.

In the current study, only one channel was placed over the non-stimulated motor cortex. 

More channels in further studies, e.g., on the stimulated motor cortex and adjacent areas 

in both hemispheres, to monitor the blood flow change over time may yield better 

measures o f the relationship between the two hemispheres and o f the effects o f 1 Hz 

TMS on behaviour.

In summary, 1 Hz TMS inhibited the motor cortex and its inhibitory interhemisphreic 

pathway; as a result, the homologous motor cortex in the unstimulated hemisphere was 

enhanced in terms o f activated blood flow by voluntary finger tapping, as evidenced by

113



the increased CbHb and slightly decreased HHb. The effects lasted for 40 minutes after 

stimulation.
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CHAPTER 7: CONCLUSIONS AND FURTHER 

RESEARCH DIRECTIONS

The experiments reported in this thesis were designed to explore segregated and 

integrated hemispheric processes in the visual and motor cortices. The main method 

was applying unilateral transcranial magnetic stimulation (TMS) over various cortical 

areas while subjects performed a range o f tasks, from visual recognition o f letters, 

visuomotor speed responses, to finger tapping.

Within the framework o f interhemispheric integration, the main research question for 

the visual modality was the nature o f foveal representation in the primary visual cortex. 

In particular, subjects’ focus on a word presented in the centre o f a screen to test the 

hypothesis that the cortical representation o f the word in the striate visual cortex 

contains all the letters (bilateral projection theory) or only the contralateral segment o f 

the word (split fovea theory). The visual tasks included letter/digit discrimination 

(Chapter 3), cued letter search (Chapter 4) and word recognition tasks (Chapter 4). In 

general, visual stimuli were presented in the screen centre in these experiments while 

TMS was applied over the right or left visual cortex. Using these strategies, the 

experiments aimed to answer the following questions.

Split fovea theory and word recognition

1. Is the cortical representation o f words in the early visual cortex functionally 

split along the vertical meridian?

2. Is the process o f word recognition (for centrally presented words) affected by 

lateralized attentional pre-cues?

In the visuomotor task (Chapter 5), subjects made a speeded response while detecting a 

stimulus appearing on either side o f the screen. The crossed-uncrossed difference 

(CUD) paradigm was used to assess the information transferring from one hemisphere 

to the other. As in the visual task, unilateral TMS over the visual cortex was applied 

during the CUD paradigm, aiming to answer the following questions:
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Crossed and uncrossed differences (CUD)

3. Is the stimulus represented in one or both visual cortices?

4. Is the information transferring to the other hemisphere via the corpus callosum 

(the crossed route) more vulnerable to TMS than the uncrossed route?

Interhemispheric integration was also studied using a pure motoric task (Chapter 6). 

Subjects moved their right thumb to tap on the other right fingers before and after 

low-frequency TMS over the ipsilateral motor cortex, aiming to answer the following 

research questions.

TMS effects on the un-stimulated motor cortex

5. What is the TMS effect on the homologous motor cortex o f the other 

(un-stimualted) hemisphere, as measured by oxy-hemoglobin (C^Hb), 

deoxy-hemoglobin (HHb) and blood flow change (BL)?

6. How long w ill the TMS effect last after stimulation?

The following sections discuss the results o f each o f these investigations and their 

interpretation and suggest potential future research directions.

Split fovea theory and word recognition

The split fovea theory asserts that the representation o f the foveal area in the primary 

visual cortex is split along the vertical meridian. The right side o f the vertical meridian 

is projected to the left visual cortex and vice versa. The split representation o f the foveal 

area is similar to the contralateral projection o f the left and right visual fields to the right 

and left visual cortices respectively. Therefore, the whole visual field can be grouped 

into two parts: the left and right sides o f fixation. In accordance with the main 

predictions o f the split fovea hypothesis, the results o f Chapter 3 showed that rTMS to 

the left or right visual cortex during letter/digit classification impaired performance 

only to the contralateral (to stimulation) visual field targets. Crucially, the results have 

shown that the predicted contralateral rTMS effects were also true for foveal targets. 

The practical implication o f this finding is that the functional visual fields start 

immediately to the left and right o f fixation. However, it is yet to be determined
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whether the representation o f the vertical meridian itself is split. Anatomical evidence 

indicated that some retinal ganglion cells near the fovea could project to both 

hemispheres (Leventhal, Ault, &  Vitek, 1988). Nevertheless, even for stimuli presented 

only 0.25° away from fixation, there was no functioning overlap projection to both 

cerebral hemispheres (Harvey, 1978). Visual stimuli so close to fixation is practically 

the vertical midline area, therefore, even i f  there were bilateral cortical projections 

within 0.25° in the retina, it would have no significance.

In order to reach the recognition o f a word, the left and right segments o f a word need to 

be integrated across hemispheres to access orthographic, phonological and semantic 

information. Due to the lateralization o f language to the left hemisphere (Cohen et al.,

2000), the left segment (i.e., letters in the left visual field) need to be transferred 

through the splenium o f the corpus callosum to the language structures uniquely within 

the left hemisphere (for a review see Bub, Arguin, &  Lecours, 1993). In particular, the 

mid-portion o f the left fusiform gyrus may correspond to the visual word form (VW F) 

system (Cohen et al., 2000; Warrington &  Shallice, 1980).

The function o f the VWF system has been reported for visual letter strings, in which the 

letter string can be identified independently o f the visual fields o f presentation, the 

colour or geometric features, such as case, size and font type (Cohen et al., 2002; 

Warrington &  Shallice, 1980). In addition, pseudowords would activate the VWF area 

as well as real words, but not consonant strings (Cohen et al., 2002; Dehaene, Le Clec, 

Poline, Le Bihan, &  Cohen, 2002; Rees, Russell, Frith, &  Driver, 1999; Xu et al., 2001). 

The main difference between pseudo- and real words lies in the semantic meaning. 

However, both obey phonological and orthographic letter combination rules. In 

contrast, consonant strings, unlike real and pseudo-words, do not follow letter 

combination rules and can not translate into phonology. This suggests that VWF area 

would be a stage prior to semantic analysis.

Pammer et al., (2004) used magnetoencephalography (MEG) to record brain activities 

during the first 500 ms o f a lexical decision task and found that interhemisphere transfer 

happened in the first 200 ms post stimulus, predominately in the left posterior fusiform 

gyrus (BA 18/19, posterior to the VWF), and greater synchrony for words than 

pseudowords (anagrams o f real words in that study) in the anterior part o f the fusiform
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gyrus, en route to VWF area. The VWF area was then activated in the temporal range o f 

100-300 ms post stimulus, in line with the 250 ms post stimulus activation which was 

found to be correlated with behavioural lexicality effects (Cohen et al., 2000; Nobre, 

Allison, &  McCarthy, 1994). However, areas in the frontal lobe (inferior frontal gyrus, 

BA44/6, IFG) responded before VWF area, especially for anagrams and might be 

associated with phonological processing. Based on these results, Pammer et al. (2004) 

suggested that word recognition may be represented in a parallel distributed network, 

and not by an orderly sequence o f transformation from visual input to motor output.

I have shown that the two cerebral hemispheres differ in the way they process letter 

strings. In addition, spatial attention might have different effects on visual word 

recognition in the two hemispheres. Some researchers have argued that spatial attention 

must be focused on the letter string in order to support word recognition processes 

(McCann, Folk, &  Johnston, 1992; Risko, Stolz, &  Besner, 2005). The results o f 

Chapter 4 showed that visual word recognition was not easily modulated by passive 

exogenous cues. It is possible that subjects were in a highly focused attentional state 

(i.e., paying attention to the word strings) and the abrupt onsets (i.e., precues) did not 

automatically capture attention (Yantis &  Jonides, 1990). The word recognition 

occurred in the reciprocal loop between the lexicon and the letters. When the target 

string becomes a pseudoword, the reciprocal loop between the lexicon and the letters 

would be broken because pseudowords could not activate the lexicon to assist letter 

recognition. In line with our findings, recent research showed that a salient exogenous 

cue might not trigger spatial attention to intervene in lexical processing (Roberts &  

Besner, 2005), unless it lasted long enough (Auclair &  Sieroff, 2002; Manwell, Roberts, 

&  Besner, 2004; Nicholls &  Wood, 1998).

Future research might consider how other factors interact with the split fovea 

representation, for example sub-cortical contributions (Sergent, 1987), gender 

differences (Shaywitz et al., 1995) and right-to-left reading habits, e.g., in Hebrew 

(Deutsch &  Rayner, 1999). In addition, the implication o f split fovea theory can be 

applied to normal reading behaviours (for a review, see Shillcock, Ellison, &  

Monaghan, 2000), or extend out to face and object recognition (Lavidor &  Walsh,

2004).
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Crossed and uncrossed differences (CUD)

Jeeves (1969) pointed out that crossed motor responses to lateralized visual input were 

abnormally long in acallosal subjects. The CUD paradigm aimed to study the transfer 

o f sensory and motor (visuomotor) information across the corpus callosum (Marzi, 

Bisiacchi. &  Nicoletti, 1991; Poffenberger, 1912). Chapter 5 used the CUD paradigm 

and applied rTMS over the left and right occipital cortex during a target detection task. 

The results showed symmetrical rTMS effects in both hemispehres. The magnetic 

stimulation increased the CUD only when the coil was positioned in the contralateral 

visual cortex, relative to the hemifield in which the visual target was presented.

The results emphasized two points. First, the rTMS effects were found in the the contra, 

but not ipsilateral hemifield. TMS effects did not spread to the un-stimulated 

hemisphere, in line with TMS studies on the visual cortex (Amassian et al., 1989; 

Epstein. Verson, &  Zangaladze, 1996; Walsh &  Cowey, 2000). Second, it is unlikely 

that the visual stimulus was processed in both hemispheres. Were the stimulus 

represented in both hemispheres, there would not be any TMS effects on the CUD 

because the un-stimulated hemisphere w ould have a copy o f the stimulus and could 

complete the task without interference. However, the results o f Chapter 5 did not 

support such a prediction.

Several imaging studies o f the CUD paradigm have shown that activation in the right 

superiror parietal area (BA7) was highly correlated with the crossed conditions 

(Iacoboni &  Zaidel. 2004; Marzi et al., 1999; Tettamanti et al.. 2002; Weber et al.,

2005). In addition, right parietal lesions typically impair interhemispheric transfer in 

the CUD paradigm (Marzi, Bongiovanni, Miniussi, &  Smania, 2003). These data also 

suggest that some areas o f the corpus callosum transferring the information to the right 

BA7. might be the site o f interhemispheric transfer for the CUD paradigm. It has been 

suggested that the splenium o f the corpus callosum contains the fibers interconnecting 

the posterior parietal area, e.g., BA7 (de Lacoste, Kirkpatrick, &  Ross, 1985). Lesions 

in the posterior body o f the corpus callosum markedly prolonged the CUD (Corballis, 

Corballis, &  Fabri, 2004; Iacoboni, Ptito, Weekes, &  Zaidel, 2000; Peru, Beltramello, 

Moro. Sattibaldi. &  Berlucchi, 2003). However, other imaging studies (Marzi et al., 

1999; Tettamanti et al., 2002), together with neuropsychological (Thut et al., 1999) as



well as electrophysiological (M ilner &  Lines, 1982; Rugg, Lines, &  Milner, 1984; Thut 

et al., 1999) data suggest that interhemispheric transfer occurred in the anterior part o f 

the corpus callosum. There is evidence based on a patient with a corpus callosum lesion, 

where the splenium was spared, and the CUD effect for this patient was similar to those 

w ith complete corpus callosotomy (Tomaiuolo, Nocentini, Grammaldo, &  Caltagirone,

2 0 0 1 ).

There might be more than one specific site for the transfer o f visuomotor information. 

Looking at the crossed condition only, when the visual stimulus is presented to the right 

hemifield and reached the left visual cortex, it needs to cross the hemispheres to the 

right superior parietal lobule (BA7), and then to the right motor cortex via an 

intrahemispheric route to command the left hand. The site o f interhemispheric transfer 

would in this case be at the splenium o f the corpus callosum (de Lacoste, Kirkpatrick, &  

Ross, 1985). In contrast, when the visual stimulus is in the left hemifield, the site o f 

interhemispheric transfer would be different. The right BA7, receiving the ispilateral 

projection from the right visual cortex, needs to get information to the opposite motor 

cortex to command the right hand. In this case, the interhemispheric transfer would 

more likely be in the anterior corpus callosum, due to heavy interconnections between 

the premotor cortices (Wise, Boussaoud, Johnson, &  Caminiti, 1997). Future research 

is required to explore the sites o f this visuomotor information.

TMS effects on the un-stimulated motor cortex

TMS can not only influence stimulated areas, but also affect remote un-stimulated areas 

by triggering a series o f trans-synaptic transmission (Ilmoniemi et al., 1997). Chapter 6 

used low-frequency (1 Hz) stimulation on the right motor cortex to measure the activity 

o f the left motor cortex with the indices o f oxyhaemoglobin (CLHb) and 

deoxyhaemoglobin (HHb). The results found significant increases in CLHb and blood 

flow change (the sum o f ():H b  and HHb) that lasted 40 minutes after stimulation, and 

slightly decreased HHb in the first 15 minutes following stimulation.

The interhemispheric inhibitory connections between the motor cortices have been 

previously observed (Ferbert et al., 1992; Meyer, Roricht, Grafin von Einsiedel, 

Kruggel, &  Weindl, 1995; Meyer, Roricht, &  Woiciechowsky, 1998). Activation o f
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one motor cortex with a single stimulation would induce an inhibition on the opposite 

un-stimulated motor cortex. However, 1 Hz repetitive stimulation would reduce the 

interhemispehric inhibition by activating the contralateral motor cortex (G ilio, Rizzo, 

Siebner, &  Rothwell, 2003; Pal et al., 2005). Ipsilateral Unger movements were 

improved for at least 10 minutes follow ing 1 Hz TMS (Kobayashi, Hutchinson, Theoret. 

Schlaug, &  Pascual-Leone, 2004). In line with these data. Chapter 6 revealed changes 

o f CLHb and HHb in the homologous motor cortex contralateral to the stimulated 

hemisphere.

In addition to 1 Hz stimulation, another way to study the interhemispheric inhibition is 

to apply paired pulse TMS. The standard method o f paired stimulation is to place a 

suprathreshold conditioning TMS pulse (CS) over the motor cortex, which then inhibits 

the size o f motor evoked potential (MEP) produced by the test TMS (TS) o f the 

opposite motor cortex. The interval between CS and TS was around 6-50 ms (Ferbert et 

al., 1992). Less than 6 ms caused facilitatory effects (Hanajima et al., 2001). 

Interhemispheric inhibition between motor cortices appeared to be mediated to a large 

extent by transcallosal excitatory connections that terminated inhibitory' interneurons 

(Daskalakis. Christensen. Fitzgerald, Roshan, &  Chen, 2002; Ferbert et al., 1992; 

Hanajima et al., 2001). The CS activated the stimulated motor cortex, and then 

enhanced the excitatory interconnection which triggered inhibitory interneurons on the 

opposite motor cortex. As a result, decreased activity occurred in the un-stimulated 

motor cortex. 1 Hz stimulation, in contrast, inhibited the stimulated motor cortex first, 

which induced the low activity o f the inhibitory interneurons in the un-stimulated 

motor cortex. The effect, therefore, made hand movement easier to elicit and activate 

the un-stimulated motor cortex.

Further research o f the effects I Hz stimulation and measuring resulting haemoglobin 

changes requires recording from more channels over areas adjacent to the motor cortex. 

This may reveal other areas also affected by stimulation and allow one to map the 

haemoglobin change among these areas over time post-'I'MS. In addition to 

fundamental research on IM S  effects on physiology, 1 Hz stimulation is being 

investigated as a potential treatment o f some motor disorders, like Parkinson’s disease 

(Buhmann et al., 2004) and amyotrophic lateral sclerosis (ALS) (D i Lazzaro et al., 

2004). Furthermore, the possibility that 1 Hz stimulation changed activity in the
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contralateral hemisphere has been applied to other topics, e.g., hemispatial neglect 

(Brighina et al., 2003), tactile extinction (O liveri et al., 1999) and aphasia (Martin et al., 

2004).

Conclusions

The thesis aimed to explore how the two hemispheres operate to execute different tasks, 

from encoding visual input to producing motor output. In the visual word recognition 

task (Chapter 3), centrally presented words tested the split fovea theory, which 

predicted that each primary visual cortex only processes the contralateral part o f the 

stimulus. Methods included disrupting one side o f the visual cortex with TMS in 

normal subjects, and examining a subject with a quadrantanopia. The results broadly 

supported the prediction o f the split fovea theory'.

To extend the results to whole word recognition processes, Chapter 4 requested 

subjects to report the letters o f a word/pseudoword preceded by a precue in the left or 

right visual field. The results suggested that visual word recognition was not affected 

by attentional cues (i.e.. automatic reading) unless the characters were scattered such 

that word shape was completely distorted. Letter search was then significantly 

modulated by spatial cues and the ipsilateral parafoveal cueing effects on foveal targets 

further supported the split fovea theory.

In the visuomotor task, the CUD paradigm was chosen to reveal the information flow' 

from visual output to motor input. Information transferring via the corpus callosum 

originally takes more time than intracortical information transmission. The results o f 

Chapter 5 showed that the TMS effect only occurred when the visual stimulus was in 

the contralateral hemifield. In addition, the crossed condition was more vulnerable to 

the I MS interference than the uncrossed condition, which increased reaction times for 

the crossed condition.

Previous research reported that the interhemispheric connection between the motor 

cortices has been reported as inhibitory. Chapter 6 aimed to understand information 

transfer between the left and right motor cortices. 1 Hz TMS was applied to the right 

motor cortex and the activity o f the un-stimulated (left) motor cortex was monitored
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with NIRS while subjects were doing finger tapping task. The results showed that the 

significantly increased oxy-haemoglobin and slightly decreased deoxy-haemoglobin 

outlasted the 1 Hz stimulation by up to 40 minutes. The results not only supported the 

notion that 1 Hz stimulation activated the un-stimulated motor cortex through the 

interhemispheric communication, but also provided long-lasting physiological 

evidence o f changes in the un-stimulated motor cortex.

In summarv, the two hemispheres process visual information independently in the early 

stages o f visual processing and subsequently cooperate via the corpus callosum to 

achieve full word recognition or to make a speeded response with the hand contralateral 

to the visual stimulus. The motor cortex can also be activated through the corpus 

callosum by magnetic stimulation to the opposite motor cortex. These experiments 

reported in this thesis therefore tested several hypotheses regarding the segregation and 

integration o f visual and visuomotor processes, and have established a number o f new 

findings relevant to further progress in this field.
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Appendix 1

Stimuli for Experiments 1 and 2 (Chapter 4)

6 - le t i e r s t im u li 8 - le t i e r s t im u li

w o r d s p s e u d o w o r d s w o r d s p s e u d o  w o r d :

A U  R I A I. B U I . C K S A B  S T R A C  I B UU I Z Z I i  D

A U T U M N D R  YU I S A I . T I T U D U C 1.1: 1 M B  U D

B O R D 1 R U O  R l . T S A L U M I N U M C O U G H Q U I

C AS  T O R U R I I  -. c u: A N  G U I C  A N C W A I U U E  D

C H A P  U I. F U R S  I U A P  P U A U S  U U I . U I G H C  S

C H U R R Y G H IR D  S B A T I !  R O  0  M U R O U N N  I: D

D  U C U IT G H  R A I N B R O C H U R E G H O U D G U D

D U  N 1AI . G H R  IL.L C H A M P  10 N G U R U  A B U S

G 0  S P U U G H U L C H C H A R C  0  A L G H R U  A T T S

H U N G  U R G N O  R T S C H E U R F U L G H R O A T T S

I N S U C T G 0  A R  U U C U A R  I N U T H U 1 G H U U D

10 D I N  U G O U G H Z C U R R U  N C  Y K U I G  H M  B S

K U N' n  u: U H O  L R U S D  U U I N  I T U K W’ A I L L E  D

U U X U R  Y J IG H B S D O  W N P O l ' R K W U I G H K S

M  A I D I i  N K A I C  K S D R  A W  B A C  K N IG H N T H  S

M A R V U  U K N Y Q  L: U U X T  U R N  Al . P U I G H N  T U

M  IS li R Y K R I  N C  I I I A C  11 IT Y P H U  A S  S U D

M  O R T  Al . U A R  s n I A R  u w u: 1. 1. P I I  0  U G  H C  K

m o  n v u l.u: A K K S I U 11 N U S S P H R U N  I C H

O I I I  I T p m u  u. s G R A D U  A I T : P R U L' G N U D

P A C K I  I P H O  P C I H li S I I A T I P R I G H C li D

P A R  D O  N P L A G N  S H I T H  U R T O P S A U G  U S  T

P IP I N G P R I  I  N S I U L U S  10 N P S A U G  U T S

P 0  IS O N P S I N C S U O  V U U O  R N P S U U M  B U D

P O I IS H 0  U I R N I M O  D U  R A T  U Q L' A I K  K li D

P R 11 S 1 R H I p u: D M O  M  U N T U M Q U U IG H C  S

R 1 P A I R R 11 O A P S N O  R T H U R N Q U U  IG H U D

S A Y ' A G  U R 1 I O O  I S N V M  U R O L ' S R H L M S  S U D

S H A K I  R S A L  I I S 0  V l i  R S  H O  T S C K L ' I U D I i

S H O  W 1 R S M  Y  1 I I  S P A R T I C  Ul i S I I  A IP P U D

S 0  U IR I S N O U R S P A T I U  N C  u: S H A U G  H D E

S T A R C  H S P O A D U P R li C I N C I S H R I U Q  U U

S I A  IT I S 0  U O  B B P U R C  H A S  u S K W’ li li Q U l i

T A l l  O R S I A I  M S R I A 1 I IR M S K W ' I U  K U S

H I  R 1 A D T U U  I I S S c L ' UP T O  R S T O  LI ( i  H Z  li

i l l  R 111 I R  1C I t S 1 N T I i N L  U T H R O  R U U i S

M M  B 1 R W R A i s u S U B L ' R B  A N W  I I  A U G  H D E

1 R A N  U 1 W  R I  A C  K U N  S T U  A D Y W H O  A R K  li I )

I Y R A N  1 W R  Y Q  I I U P  S F A I R S W’ R U I G H N D

v i o  I u i Y A U N D U W I I  11 I R I D W R O  U G  I I S  I
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Appendix 2

Added stimuli for Experiment 3 (Chapter 4)

6 - Ic t t c r s t i m u li 8 - le t t c r s t i m u li

u  o r d s p s c u d o w o r d s \v o r d s p s e u d o w o r d :

B O  1 11 I: R B A U L D E A B S O L U T E C R E I N  N  E D

B U R I A l . B E N T C H A L L  I A N  C E E E E  I G I I  D E

C 11 R O  M l i B O A R L S B A R  B li C U E F R E I G H D E

C R A V E  N C  H O  R K E B I N O  M  I A L G H L Y N T S  E

D E P U T Y C  W E R G N C A U T I O  U S K N  E I G H  E D

D E S  P O T D  A I M  E S C H A N D L E R K N O  A Z Z E D

E N I G M A D A U N T E C H A R  M  I N  G N O  U G H T C H

F R E N  Z  Y F I R G N S C I V I E  I A N P H A L N Q  U E

L A B 0  l ! R G H O  R E D C O  M  P R IS E P H L O  R N T E

M A R B L E H A W N T E C U S  T O  M E  R R H A I L E  E D

M A R G  I N J I G N  E D E E E G A N C  E R H A R P H E D

M  E A D O  W P H E L K S F A I T H F U L R H A U  S S E D

P I G E 0  N P H L Y N T F E M  I N I N  E R H O  A L L E D

P L A N E T P L I T E S G R U  li S 0  M  E S C K A I E E S

P L U N G E Q  U A K T E H O N E S T L Y S C K E U P E D

R A C  K E T S H A Q  U E M A R G  I N A L S C K O O L D E

S C R  E A M S K R U D E M I N S  T R E E S C K O U L E D

S H I E  E D S L A  I T S M O I S T U R E S C K  W  I R M  S

S H I V E R S T O  R Z E M  U S I C I A N S H R U N Q  U E

S H R  I L K S U N Q U E P A  V E  M  li N  T S K R I M P C  E

S I N  G E R I I I  Y N / I i P E R I O  D I C S K R I M P  T E

S K E ' I ' C H V O  R N  I E R E G 10 N  A L S M E R C  I I E D

S I R I D  li W H I N Z E S I I O W R O O  M S P U N D G E D

S T R I P  E W O l ' G  H K S U R V I V A L S Q  U I N I C  E

T U M B L E W R E U M B V A U L T I N G S T A U G  H L D

U N R E S T W R U C H E V I O  L E N C  E W H  A U L L I i D

142



Appendix 3

8-letter visual stimuli from Sieroff & Posner (1988)

n o n c o m p o u n d  w o r d s  p s c u d o w o r d s

A H  R I P  T L Y  

A  B S O  L U  I E  

A B S  I R A C  T 

A C  A D  E M  I C 

A C  C I D  l  N  I 

A C  C U R A C  Y  

A C  T I V I T Y  

A C  T U A L L Y  

A L T H O U G H  

A M  L R I C A N  

A S  S L M  B L V' 

A T T O R N  L Y  

B L C O M  I N G 

B L  W I L D  L R 

B t )  U N  D A R  Y  

B U S  I N L S S 

C A L L  N D A R  

C A P  A C  1 1 Y  

C A I l: G O  R Y  

C H A R  M  I N G 

C O M  P I. A I N  

C O N S I D  I- R 

C O N  T R A S  I 

D A U G H T E  R 

I )  E C L M  B L R 

D L  1.1VH R Y

d l : m o c  r a t  

D I S  A S  i t : r  

I )  IS P A I C H 

I L I  P H A N  I

L N  L)L A  V O  R 

L A C  I L I T Y

g  l: n  l: r o u s

I I  L R IT A G  L 

I N C R L A S  E 

I N D U S  T R Y  

K A N G  A R O  O  

M A I N T A I N  

M  O  N  U M  L N  T  

P A R  A D I S  E 

P E C  U L I A R  

P E R S  U A D E  

P R O G R E S S  
P R O P  E R T Y  

R E A P  P E A R  

R E C E 1YE R 

R E C O  R I )  E R 

R E G  IS I E R 

R E S  O L U T E  

S C H E  D U L E  

S H E P  H E R D  

S H O  U L D E R  

S Q  U I R R E L 

S U R G  I C A L  

S Y M P  H O  N  Y  

T E L E G R A M  

T H O R O  U G  H  

T O  M O  R R O  W  

I R O  U S  E R S  

U N B R O K  E N

A C  K O  R B  O  D  

A L P  E T A M  Y  

B E N  O  K  A N  I 

B I M  C O G  E N  

B L A N  I F E R 

C A L O N I M P  

C H U L S  E D E  

C L A D A R N  E 

C O  R O  M  E V E  

C R E D O  R E R  

C R O N S E D 1  

D A C  I M  O  C E  

D A C  T I N C  F, 

D A R M L A N K  

D E  V I N  A R  Y  

D O  R U L E S  H 

D O S  Y M O  B E 

D O  W L A D O  N  

E N T A R O S  T  

F E R O W I R K  

E E  T I M  A L K  

G E R E T R I S  

G U R  L I S  E R  

H E N  1 L AS  E 

H E W I A R V E  

H O  T H A G  U L  

HO W A M E S  I 
H U R O G  H O  I 

K A W D B A R C  

K O  B I R  A D E  

K O  B R O  K A M  

I . A R C  I G U S  

T A R O  D I R  A  

L A W  B L O  N S 

L E A S A F E R S  

L E B U L B E L  
L O  D E R B O  L 

I. Y T A C  U L A  

M  A K M I D A L  

M A N  A L I N  D

M  I N A I A N  I 

M  I R C H A N G  

M O  C R A  L E C  

M O S H L E N O  

M O T A M E R O  

N A C  K N E M I  

N E T O N B A K  

N O  B R E K U N  

N O  B Y D U R A  

P A S  H D  A C  T  

P E R S G O R S  

P H O  S K R O  W  

P O  R Y P  U R L  

P Y B  U R I A L  

R A L E C  N A D  

R O B A T H O M  

R O  L E  V O  D A  

R U E S  D A P  E 

R U S O T R  E S 

R Y G O  K A L I  

R Y N D U S  I I 

S E D  L E N  E S 

S E N  A B  I R E  

S E T A S  I R O  

S H O  L E S  P E  

S I B S  U N  E S  

S IS T R E  D A  

S U R O L E L Y  

S U R O N E G  E 

T A B  C R  A S  I 

T A M E R G O L  

I E  L U S  O  B A  

I E  S U R O  I l:

T O N I S A R C  

U G  A D R E T H  

V O  R E D A N  E 

W A R T H W I D  

W  E V E  R I I  E N  

W O  D E  L I R B  

Y E  D E E R  I V
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