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Abstract

Abstract

Roles of Reelin and Disabledl in Neural 

Development in Zebrafish

Reelin and  D isab led l (D abl) are know n to  be involved in neuronal 

m igration  in vertebrates and  in particu lar in rad ia l m igration. Reelin is a 

secreted pro te in  that can b ind  several receptors and  the signal is intracellular 

transduced  by D ab l. The final targets of the Reelin pa thw ay  are m olecules 

th a t regulate  cytoskeletal rem odeling.

In m y project I s tud ied  the expression p a tte rn  of reelin and  dabl in 

several areas of the zebrafish CNS. The differences found in the 

telencephalic expression of reelin and  dabl betw een teleosts and  tetrapods 

are likely to arise from  the process of eversion, w hich is specific for the 

teleost telencephalon. O n the  contrary, all the other regions of the CNS 

presen t a conservative pa ttern  of expression, in com parable structures 

am ong vertebrates, w ith  the only exception of the  olfactory bulb  that does 

n o t express reelin in  zebrafish.

As the dabl gene show s a h igh  degree of com plexity in m am m als and  

mice, I s tud ied  the genom ic organization of the dabl gene in zebrafish and  

found  a sim ilarly complex organization.

In o rder to study  the functions of the Reelin pathw ay  in neuronal 

m igration  in zebrafish, I perform ed loss of function experim ents w ith  

m orpholino  antisense oligonucleotides. I found defects a t level of several
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Abstract

neuronal g roups including the facial branchiom otor nucleus, the M authner 

neurons and  neura l crests.

To investigate w hether the role of dabl in the m igration of these 

neuronal g roups m ay be that of conveying a Reelin signal, I a ttem pt to 

rescue these phenotypes by  overexpressing full length  dabl or truncated  

form s of the p ro te in  tha t lack the Reelin or the CDK5 responsive dom ains. It 

appears tha t the  presence of the tyrosine dom ain, b u t not of the CDK5 

phosphory lation  dom ain, is necessary for partial rescuing of m ost of these 

phenotypes. I also found tha t som e populations of neurons that express dabl 

show  defects in  neurites grow th  in  m orpholino injected embryos.
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A anterior thalamic nucleus CP central posterior thalamic

aa amino acid nucleus
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Acc nucleus accumbens (Xenopus) cvr ventral commissure of

Am amydgala (Xenopus) rhombencephalon
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ap area postrema DB diagonal band area (Xenopus)

ATN anterior tuberal nucleus Dc central zone of D
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terminalis (Xenopus) Dd dorsal zone of D

cb ceratobranchial cartilage DH dorsal horn
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CC crista cerebellaris lobe

Cce cerebellar body Dl lateral zone of D

CG geniculate body (Xenopus) Did lateral zone of D, dorsal part

ch ceratohyal cartilage Dlv lateral zone of D, ventral part

CNC cranial neural crests Dm medial zone of D

CON caudal postirior octaval DON descending octaval nucleus

nucleus DoP dorsal pallium  (Xenopus)
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DP dorsal posterior thalamic 

nucleus

GL glomerular layer of the 

olfactory bulb

Dp posterior zone of D H hindbrain

Dpa dorsal pallidum  (Xenopus) Had dorsal habenular nucleus

dpf days post fertilization Hav ventral habenular nucleus

DT dorsal thalamus He caudal zone of periventricular

Dvc diencephalic ventro-caudal hypothalam us

cluster Hd dorsal zone of periventricular

Dvr diencephalic ventro-rostral hypothalam us

cluster hpf hours post fertilization

e etmoidal plate Hv ventral zone of

ECL external cellular layer of periventricular hypothalam us

olfactory bulb including Hy hypothalam us

mitral cells ICL internal cellular layer of the

EG eminentia granularis olfactory bulb

En entopeduncular nucleus IL intermedio-lateral column

Ep epiphysis IMRF intermediate reticular

Fd funiculus dorsalis formation

Fid funiculus lateralis pars in intermediate columns of the

dorsalis
IZ

spinal cord 
intermediate zone

Flv funiculus lateralis pars
IoL infraorbital lateral

ventralis
IO inferior olive

Fv funiculus ventralis
IRF inferior reticular formation

gc central gray
La lateral thalamic nucleus

(Xenopus)
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LA lateral amygdala (Xenopus) NC nucleus of Cajal

LGE and from the lateral ni nucleus isthmi

ganglionic eminence nin interpeduncular nucleus

lc locus coeruleus nmlf nucleus of medial

LCa caudal lobe of cerebellum longitudinal fascicle

LH lateral hypothalam ic nucleus nlv lateral nucleus of valvula

Ilf lateral longitudinal fascicle OB olfactory bulb

LTP long-term potentation oc optic chiasma

lot lateral olfactory tract otc otic capsule

LP lateral pallium  (Xenopus) ot optic tract

LS lateral septum  (Xenopus) pc posterior commissure

Lvn lobus of the VII PG preglom erular nuclei

LX vagal lobe PG1 lateral preglomerular nucleus

M mesencephalon PGm medial preglomerular

m Meckel's cartilage nucleus

MeA medial am ygdala (Xenopus) PL postirior lateral line

MGE medial ganglionc eminence PoA preoptic area

MFn medial funicular nucleus PPa anterior part of parvocellular

mlf medial longitudinal fascicle preoptic nucleus,

ML mitral cell layer (Xenopus) PPd dorsal part of periventricular

m n m otom eurons pretectal nucleus,

mo morpholino Pi pituitary

MON medial octavolateral nucleus PPp parvocellular preoptic

mot

MP

medial olfactory tract 

medial pallium  (Xenopus)

nucleus
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PPv ventral part of periventricular SVZ subventricular zone

pretectal nucleus, SC suprachiasmatic nucleus

pq palatoquadral cartilage SD saccus dorsalis

Pr pretectal nuclei SRF superior reticular formation

PI/PTB protein St striatum  (Xenopus)

interaction/phosphotyrosine T telencephalon

binding dom ain TeO optic tectum

PSm magnocellular superficial Tg trigeminal ganglion

pretectal nucleus Tg tegmental area

PSp parvocellular superficial Th thalamic nuclei

pretectal nucleus TL torus longitudinalis

PTN posterior tuberal nucleus Tla lateral torus

r rhombomere Tp posterior tuberculum

RT rostral tegmental nucle (Xenopus)

RF reticular formation TPp periventricular nucleus of

sac stratum  album  centrale posterior tuberculum

sfgs stratum  fibrosum et griseum TS torus semicircularis

superficiale TSc central nucleus of torus

sgc stratm griseum centrale semicircularis

sgp stratum  griseum TSvl ventrolateral nucleus of torus

periventriculare semicircularis

sgt secondary gustatory tract UTR untraslated region

so stratum  opticum V ventricle

soL supraorbital line v3 3rd ventricle

spmo splice morpholino v4 4th ventricle
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V ventral telencephalic area

Va anterior trigeminal nucleus

Val lateral division of cerebellar

valvula

Vam medial division of cerebellar

valvula

Vb posterior trigeminal nucleus

Vc central nucleus of V

Vd dorsal nucleus of V

VH ventral horn

VI lateral nucleus of V

VL ventrolateral thalamic

nucleus

VM ventrom edial thalamic

nucleus

Vpa ventral pallidum  (Xenopus)

Vs supracom m issural nucleus of

V

vs vagus sensory ganglion

VT ventral thalam us

Vv ventral nucleus of V

III/TV oculomotor and throclear

nerve nuclei

VI abducens nerve nucleus

VII facial nerve motor nucleus

VIIs sensory root of the facial 

nerve

VIII octaval nerve 

VZ ventricular zone

IX glossopharingeal nerve nuclei

X vagal nerve nuclei

Xm vagal nerve motor nucleus

Xs vagal nerve sensory nucleus

(solitary tract nucleus)

XI ipoglossal nerve nucleus

Zii zona limitans intrathalamica
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Chapter 1 General Introduction

CHAPTER 1 

1.1. General Introduction

N euronal m igration is a process that starts at early stages of 

developm ent of the  organism . The nervous system  of vertebrates is an 

extrem e exam ple of complexity and  variety  in  the range and  extent of 

neuronal m igrations.

The vertebrate  neura l tube possesses a germ inal zone, the ventricular 

zone (VZ), w here neurons are generated th rough  sym m etrical and  

asym m etrical m itotic divisions. From  the VZ, postm itotic neurons m igrate 

radially  an d  tangentially  to reach specific positions, w hence they  grow  

axons to innervate  their targets. This is a critical step in the developm ent of 

the synaptic circuits of the brain.

The focus of m y thesis is the involvem ent of Danio rerio Reelin and 

D isabledl (D abl) in  neuron  m igration. The Reelin/D abl pathw ay has been 

stud ied  extensively in the m ouse b rain  in relation w ith  the developm ent of 

the cortical plate. A lthough the zebrafish b rain  does no t p resent a 

telencephalic cortex, it show s subdivisions of the forebrain tha t are highly 

conserved am ong vertebrates (see fig.8 A and  B paragraph  4.2), as are the 

m olecules involved in  m igration and  determ ining  the dorso-ventral and  

anterior-posterior pa ttern  of the brain.
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I started  m y project looking at the anatom y of the zebrafish brain  and 

com paring the zebrafish reelin expression pattern  to w hat is know n in the 

other vertebrates. Then, taking advantage of the potentialities of the 

zebrafish m odel I perform ed genom ic and  functional studies of zebrafish 

dabl th a t is a m ain effector m olecule dow nstream  of Reelin.

The study  of the m echanism s and  the m olecules involved in  neuron  

m igration is of fundam ental im portance to understand  how  this 

developm ent process w orks to shape the vertebrate brain.

1.2. Factors and signals involved in neuron migration

N euronal m igration is a process tha t requires a fine orchestration of 

factors and  signals to allow  the correct positioning of neurons. In general, 

neuronal m igration is regulated  by  three im portan t factors:

1. Cytoskeletal changes tha t perm its m ovem ent

2. Factors that stim ulate the  m ovem ent and direct m igrating cells tow ard  

their target (chem otropic m olecules and  cell surface receptors)

3. S tructural elem ents that guide or constitute the substrate for neuron  

m igration (i.e. axons or dendrites of other neurons and  glia).

15
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1.2.1. Molecules involved in cytoskeletal changes during 

migration

M olecules that control cytoskeletal changes are im portant players in 

neuronal m igration. M igrating neurons are strongly polarized w ith  a 

leading  and  a trailing process w ith  a polarized organization of the 

underly ing  cytoskeleton (fig.l).

The polarity  of the m igrating neuron  is given by  the form ation of 

cytoskeletal structures, such as m icrotubules and  actin filam ents that are 

constantly tu rn ing  over. In the m igrating cell, m icrotubules are arranged 

w ith  the m inus ends (the extrem ity that can depolym erize and  becam e 

shorter) near the center of the cell, anchored at the centrosom e, w hich in 

tu rn  is usually  located near the nucleus (Rodriguez, 2003). The m icrotubule 

p lus end (the one th a t can polym erize and becam e longer) poin t tow ards the 

leading  edge. A t the level of the leading processes there are lam ellipodia

Figure. 1. Cytoskeletal changes and neuron migration.

A) Actin (red) and microtubules (green) can have three kinds of interactions. Interaction (1) shows a 
protein that displays both actin- and microtubule-binding sites and could provide a static crosslink 
between the two polymers, as hypothesized for MAP. Interaction (2) shows a complex between an 
actin-based motor (blue) and a microtubule-based motor (orange) like for example non muscular 
Myosin and Kinesin, whereas interaction (3) shows a complex between a motor (yellow) and a 
binding protein (pink), as in the case o f Dynein and LIS 1.The last two types of interactions could 
move actin and microtubules. B-C) Example of microtubule-based nuclear translocation during 
neural migration. In (B), scheme of a neuron; the migrating nucleus associates tightly with the 
centrosome. Filopodia and lamellapodia form at level o f the leading hedge. (A) The migration starts 
in the leading process with the microtubule extension that might be regulated by DCX (blue) and 
other MAPs. Then, LIS1 (pink) interacting with mNudE at the centrosome reduced the 
polymerization of microtubules at the minus end, possibly by regulating the y-tubulin-complex. As 
a result, microtubules shorten at the minus end and the nucleus is pulled towards the leading edge of 
the migrating neuron. A dark line depicts the membrane of the radial glial fibre, to which the 
migrating neuron is attached. Modified from Rodriguez et al., 2003 and Feng & Walsh 2001.
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Chapter 1 General Introduction

and filopodia, form ed principally by F-actin (fig.IB).

Actin filam ents and m icrotubule dynam ics are regulated by a w ide 

variety of p ro tein ts including Rho fam ily GTPases as well as the 

m icrotubule-associated proteins (MAPs). MAPs include proteins im portan t 

for transient stability (Tau), m otor proteins (Dyneins and  Kinesins) and  

proteins (DCX and  LIS1) that m ediate the b ind ing  to actin filam ents (Dent & 

Gertler, 2003). M APs, such as DCX and  LIS1 are involved in  the 

translocation of the  cell soma, w hich facilitates the m igration (fig. 1C). 

O verall the interactions betw een actin and  m icrotubules or m icrotubules 

and  MAPs determ ine the extension of the leading edge. The leading edge is 

form ed by a m eshw ork of Actin, w here m icrotubules converge. Inside the 

lam ellipodia and  filopodia, the contact betw een m icrotubules and  actin, a 

process m ediated  by  tip-associated proteins (tyrosine kinase-interacting 

proteins), is believed  to signal to the cell to allow for dynam ic m odulation of 

actin structures. Specifically, Rho GTPases are im portant for transducing  

extracellular signals and for polarizing cells that m igrate tow ard  or aw ay 

from  the attractan t o r repellent source (fig. 2; Raftopoulou & Hall, 2004).
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Slit

Robo

NeuropilinDec
Plexin

Rac

Rac

RhoGTPase

Actin polymerization

Directional Migration

Figure 2. Scheme o f the pathways involved in neuron migration.

Netrins Shts, Ephrins, Semaphorins activate or inactivate Rho, Rac and Cdc42 GTPases throught 
their receptors DCC, Unc-5, Eph, Robo and Neuropilin. The final target is the cytoskeletal Actin 
polymerization and finally the control of neuron migration. Modified from Park et a l, 2002.
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1.2.2. Chemoattractant and chemorepellent molecules are 

involved in neuron migration.

Chem oattractant and  chem orepellent m olecules have the function of 

guid ing  cells in their m igration by  acting as attractive or repellent signals. 

Some of these m olecules are diffusible and  potentially  create gradients 

detected by  the m igrating cells through different receptors on the cell 

surface. In addition, it is possible that signaling m olecules have com bined 

effects operating sim ultaneously.

A m ong the several families of guidance m olecules there are four 

m ajor families described here that are involved in  neuronophilic 

(independent of a rad ial glial substrate) and  axonophilic (dependent on 

axons as substrate) interactions, nam ely, N etrins, Slits, Ephrins and 

Sem aphorins (fig.2).

The receptors that b ind  these cell surface or secreted m olecules perm it 

the transduction  of extracellular signals to intracellular signals that have as 

their targets m olecules involved in cytoskeletal changes (fig.l).
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1.2.3. Neurite growth and its relation with neuronal 

migration

D uring m igration, neurons use their leading edge to explore their 

su rroundings and  can use axons and  dendrites of others neurons as 

substrates to reach their final destinations.

The leading edge processes are com m only short, b u t there are also 

m igrating neurons, as for exam ple the inferior olivary neurons, that have 

long processes identical in m orphology to axons (Bourrat & Sotelo, 1988; 

Bloch-Gallego et al, 1999). Finally it is also possible to find long leading edge 

processes, as in  pontine neurons, w here axonal m arkers are m issing (Bourrat 

& Sotelo, 1988; Bloch-Gallego et a l , 1999).

In general, the grow th  cones of neuronal leading processes and of 

axons follow  attractive and  repulsive signals to arrive at their final target. In 

fact, chem oattractants and  chem orepellents such as Netrins, Ephrins, Slits 

and  Sem aphorins are determ inant for both  axon pathfinding  and  neuron  

m igration (Sugimoto et al, 2001; Causeret et al, 2002). Nevertheless, there is 

a substantial difference betw een a neu ron  that is m igrating and  a neuron 

tha t is only extending its axon and this is the process of nucleokinesis 

(Lam bert de Rouvroit & Goffinet, 2001). Nucleokinesis describes the 

translocation of the nucleus tow ards the leading edge perm iting the 

m igration of the entire cell.

The reiterative elongation of the leading process and  the subsequent 

translocation of the cell body are im portan t events of neuron  m igration.
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These coordinated m ovem ents are continuously repeated un til the neuron  

reaches its final destination.

In sum m ary, neuronal m igration is the resu lt of the fine orchestration 

of intracellular events that in  response to extracellular signals allow the 

neuron  to coordinate its cytoskeletal dynam ics and  find its correct position 

inside the brain. The type of neuron, the structural environm ent, th rough  

w hich it m oves, and  the signaling m olecules in  the extracellular m atrix w ill 

determ ine the pa ttern  of m igration.

1.3. General modes of migrations

Four general m igration m odes have been described in the developing 

m am m alian brain, nam ely, radial m igration, tangential m igration, chain 

m igration and m ultipolar m igration. All these m odes of m igration have 

been studied  and  described in the developing telencephalon.

1.3.1 Radial migration

Radial m igration is defined as the m ovem ent of neurons in a direction 

perpendicular to the pial surface. This kind of m igration can happen  by  

som al translocation or can involve glia-guided locom otion (fig.3a, b).
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svz

LG

SVZ

RADIAL MIGRATION

c  TANGENTIAL MIGRATION

Figure.3. Radial and Tangential migration in mammalian neocortex.

Diagram of the mouse cortex. Neural progenitors, bom in the telencephalic ventricular zone, move 
radially towards the mantle area initially using their own cellular process to grip on the pial surface 
and translocate their soma (a) and at later stages using radial glial process as scaffold (b). 
Tangential migration occurs parallel to the ventricular zone, neurons that migrate tangentially may 
use different substrates to guide their migration (c). GABAergic neurons arise from the medial 
ganglionc eminence (MGE) and from the lateral ganglionic eminence (LGE). Sub ventricular zone 
(SVZ). Modified from Rao et al., 2002.

Somal translocation occurs during  early stages of corticogenesis 

(M orest 1970; N adaraiah  & Pam avelas 2002) for neurons tha t m igrate from  

the ventricular zone (VZ), w here they are produced, to  the m arginal zone

23



Chapter 1 General Introduction

(Fig. 3a). A t this time, the distance from  the VZ to the pial surface is short, so 

cells undergo ing  som al translocation can extend a leading process to attach 

to the pial surface (N adarajah et a l , 2001; M yata et al, 2001; Brittis et al., 

1995; M orest, 1970). Then, the leading  process contracts to m ove the cell 

body tow ard  the p ial surface. This som al translocation resem bles nuclear 

translocation during  nucleokinesis, b u t differs in that the entire cell body 

translocates, and  the apical process detaches from  the ventricular surface. 

The som a m oves rapidly, changing shape to squeeze itself betw een the other 

cellular structures.

The second type of radial m igration takes place in late corticogenesis, 

du ring  the form ation of the six-layered cortex, w hen  new born  neurons reach 

their destination layer by craw ling along the radial glia (fig.3b). The neurons 

that adop t glia-guided locom otion have short leading  processes that are no t 

attached to the pial surface and  show  a "saltatory" pattern  of m ovem ent, i.e. 

short and  rap id  fo rw ard  m ovem ents followed by stationary phases attached 

to the  glial processes (N adarajah et al, 2001).

1.3.2. Multipolar migration

M ultipolar m igration is a k ind  of radial m igration discovered th rough  

tim e-lapsed observations perform ed in the developing cortex (Tabata & 

Nakajima, 2003). N eurons m igrating in  m ultipolar m ode do  not acquire any 

fixed cell polarity, b u t extend m ultip le processes very dynam ically while

24



Chapter 1 General Introduction

progressing very slowly tow ards their destination. The freedom  of 

m ovem ent allows the m ultipolar neurons to avoid obstacles, such as afferent 

and efferent fibers and other previously  m igrated cells. It has also been 

observed th a t occasionally m ultipolar neurons can jum p laterally 

(tangentially) and  so change their final destination, instead of rem aining in 

the sam e colum n of neurons as their original neighbours. C ontrasting w ith 

w hat happens in the others m odes of radial m igration, m ultipolar m igrating 

neurons have only been observed in  the sub ventricular zone (SVZ) and 

in term ediate zone (IZ). Cell tracing suggests that m ultipolar cells are likely 

to change their m ode of m igration from  m ultipolar to radial locom otion 

w hen they enter the cortical plate (G odem ent et al., 1990; H alloran & Kalil, 

1994; Tabata & Nakajim a 2003).

In sum m ary, the radial m igration of neuroblasts from the ventricular 

zone to the developing cortex occurs in  three ways, som al translocation, glial 

guidance and  m ultipolar m igration, depending  on the time of developm ent 

and on the specific guidance cues.

1.3.2. Tangential migration

Tangential m igration refers to neuroblast m igration that is not 

oriented vertically tow ards the developing cortical surface. The neuroblast 

extends a leading process in the direction of m igration and then  m oves the
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nucleus (nuclear translocation) th rough  its long process (fig.3c). The 

elongation of the leading edge and  the nuclear translocation m ovem ent is 

repeated un till the m igrating  neuron  reaches its destination (Noctor, 2001; 

M oya & Valdeolmillos, 2004).

The guidance cues u sed  by tangentially m igrating neuroblasts are not 

clear. Tagentially m igrating neurons m ove perpendicularly  to the radial glia, 

gliding from  one glial process to another, b u t this process is not radial glial 

dependent. Some tangentially  m igrating neurons appear to be associated 

w ith corticofugal axons in the  in term ediate zone (Denaxa et al., 2001), bu t 

no t all tangentially m igrating neurons follow axons. From  the sub-pallial, 

m edial ganglionc em inence (MGE; fig.3) early and  from  the lateral 

ganglionic em inence (LGE; fig.3) at later stages, GABA-ergic in tem eurons 

m igrate a ro u n d  the developing striatum  and  enter in  the developing cortex 

via the in term ediate  zone. MGE in tem eurons and  LGE in tem eurons m ove 

th rough  the subventricular zone (A nderson et al., 2001) and only later enter 

the deeper layers of the cortex (Lavdas et al, 1999; DeDiego et al, 1994, 

Denaxa et al., 2001, Lavdas et al, 1999). The neurons m igrating from  the 

subpallium  to the pallium  avoid the axon-rich zone, so they m ay use a 

neuronophilic m igration by grow th cone extension (A nderson et al, 1997).

An additional tangential m igration described outside the 

telencephalon is that of the cerebellar granule cells, pontine nuclei and 

inferior olive (IO) neurons along the rhom bic lip that uses grow th cone of 

o ther neurons as substrate to  m igrate (Gilthorpe et ah, 2002; Causeret et al.,

2002).
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1.3.3. Chain migration

A specialized kind  of tangential m igration is chain m igration. Chain 

m igration does no t involve either glial cells or an  axonal scaffold, b u t does 

involve neuronophilic interactions. This m eans tha t the substrates are other 

neurons m igrated  previously. A n exam ple of this is the stream  of neurons of 

the sub ventricular zone (SVZ) that at the pallial/subpallial border form  the 

rostral m igratory stream  (RMS), and  m igrate attached to each other, form ing 

a tight chain to populate  the olfactory bulb (Altman, 1969; Lois & A lvarez- 

Buylla, 1994; Luskin et al., 1988). It w as show n that the polysialated form  of 

neura l cell adhesion m olecule (N-CAM) provides a positive guidance cue on 

the cell surface of the rostral m igratory  stream  neurons (M arin & 

Rubenstein, 2001; Sawam oto et al, 2006).

In general, cells m oving tangentially do  no t seem  to respect regional 

boundaries bu t m ove across different subdivisions of the forebrain (Heffron 

& G olden 2000; Letinic & Rakic 2001) or traverse long axonal pathw ays 

(Wray, 2001; Spassky et al, 2002) to position them selves in the correct final 

destinations.
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1.3. Radial and tangential migrations generate complexity of 

connections and circuitry in the developing brain

Radial and  tangential m igrations are im portant processes of neural 

developm ent, w hich have added  com plexity to the structures of the brain  

du ring  the evolution of vertebrates. Radial m igration m aintains the 

positional inform ation acquired at early developm ental stages and 

contributes to vertical lam inar organization of the forebrain, particularly  in  

m am m als. In contrast, tangential m igration enriches brain  areas w ith  

d istinct neuronal populations com ing from  different places and  expressing 

different com binations of genes.

C om parison of the structure of the brain  am ong vertebrates show s 

that glial scaffolding is im portant for b rain  architecture, w here neuroblasts 

m igrate  vertically from  the SVZ. H ow ever, the ratio of neurons m igrating 

rad ially  to those m igrating tangentially differs from  species to species. For 

exam ple, in rodents m ost of the cortical in tem eurons m igrate tangentially 

from  the ganglionic em inence and represent 25% of the all-cortical neurons 

as opposed  to 10% of the non-radially  m igrated neuron  in the hum an  cortex 

(Letinice et al., 2002). In hum an  and non-hum an prim ates vertical m igration 

gives 90% glutam atergic pyram idal ou tpu t neurons, w hile tangential 

account for the 10% of total cells that are GABA stellate intem eurons. 

Therefore, the neu ron  populations that determ ine the size of the brain  in  

m am m als are m ainly those m igrated radially.
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According to Rakic, the increased size of the m am m alian brain  (and in  

particular of prim ate neocortex) is due to an  increase in  progenitors in the 

ventricular zone happened  du ring  evolution (Rakic, 1995). In fact, the 

increm ent of progenitors determ ines an  increm ent of neurons m igrating 

along the radial glia, w hich horizontally  form  the 6 layers of the cortex 

(earliest b o m  neurons in the deepest layers, w hile later b o m  neurons in  

m ore superficial layers) and  vertically form  colum ns called "radial units" 

(Rakic, 1988; Rakic 1995; N octor et a l , 2001). Thereby, the increm ent of the 

radial units gave rise to the enlargem ent of the surface and determ ined the 

form ation of the convoluted structures of the cortex that are particularly 

developed in  prim ates.

O n the other hand , tangential m igration adds complexity to the brain  

circuits, because it increases the variety  of neurons that populate different 

regions of the brain. Examples are the GABAergic neurons that m igrate 

from  the ganglionic em inance to the layers of the cortex. O r outside the 

forebrain, the m otoneuron precursors of the facial nucleus originate in  

rhom bom ere 4 and m igrate tangentially to rhom bom ere 5-7 in  both 

m am m als and  teleosts (but no t in chicks; Studer, 2001).

Together radial and  tangential m igrations generate a level of 

complexity in certain brain  areas, like the m am m alian cortex, that facilitates 

the establishm ent of new  connections and  circuitries that could no t 

otherw ise be form ed in  a m ore hom ogeneous structure.

29



Chapter 1 General Introduction

1.4. The Reelin signalling pathway and neuronal 

migration.

The Reelin pathw ay is one of the m ost studied  pathw ays involved in 

neuronal m igration and  in particu lar rad ial m igration. Reeler w as one of the 

first neurological m utants isolated in  the m ouse (Falconer, 1951). It show s 

inversion of the 6 layers of the cortex, d isorganization of the architecture of 

the h ippocam pus, cerebellulm  and  several others non-cortical structures 

such as the inferior olive, the facial nerve nucleus and other b rain  stem  

nuclei (Goffinet, 1992). M oreover, Reelin is involved in dendrite  form ation 

and  synapse m aintenance and consequently has a role in learning and 

m em ory (Chen et al, 2005; W eeber et al., 2002; Borrell et al., 1999). A lthough 

several com ponents of the Reelin pathw ay  are know n, the effect of Reelin 

signaling on m igrating neurons is n o t well understood.

1.4.1. Reelin

Reelin is a secreted glycoprotein found only in vertebrates. The 

protein  com prises about 3461 am ino acids (aa) in  size and is approxim ately 

385-kDa. A cleavable peptide (for secretion) is located at its N -term inus. An 

F-spondin-like dom ain and a series of eight internal repeats com prising of 

aa 350-390 follow the signal peptide. These Reelin repeats contain tw o
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subdom ains, nam ely A and B, separated by a short sequence of 30 aa 

resem bling an epiderm al grow th factor-like m otif (fig.4A). This repeat 

structure is highly conserved th rough  the evolution of vertebrates. Recent 

studies reveal that the repeats 3-6 are particularly  im portant for receptor 

b inding  (Jossin et al., 2003). In essence, Reelin can be cleaved at the level of 

repeats 2 and  3 as well as 6 and  7 (Lambert de Rouvroit et al, 1999; Jossin et 

al, 2003), to prov ide the functionally active segm ents, nam ely the central 

segment.

In the cortex of m am m als, Cajal-Retzius cells, the superficial neurons 

of the m arginal zone, express Reelin. In contrast, m igrating neurons 

responding  to the Reelin signal express high levels of D ab l (Howell et al., 

1997). The new born  neurons leaving the ventricular zone use the radial glia 

as a guidance substrate to reach their final position in  the cortex. This final 

position is though t to be determ ined by receiving the Reelin signal 

p roduced  by  Cajal-Retzius cells in the m arginal zone. Thus, w hen a layer is 

form ed, the neurons that have a later b irthday pass through the previous 

layer to reach the zone w here Reelin concentration is higher. They then 

leave the radial glia to form  a new  layer just below  the m arginal zone, above 

the previously generated layer (fig.4C). This m odel of cortex developm ent 

suggests Reelin could be both  an attractive signal and  repulsive m olecule 

that stops the m igration of neurons, w hen they have arrived at the right 

place (D 'A rcangelo & Curran, 1998). M ore recently, the reeler phenotype has 

been in terpreted  as being due to incorrect detachm ent of the m igrating
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Figure.4. Mutations of Reelin or Dab l give rise to a reeler and reeler-like phenotyphe in the 
neurocortex.

A) Scheme of Reelin, a glycoprotein o f 385 kDa and composed by a cleavable F-spondin-like 
domain at N-terminus, eight internal repeat of 350-390 aa each. The internal repeats contain two 
subdomains, namely A and B, separated by a short sequence of 30 aa, resembling an epidermal 
growth factor-like motif. B) Dabl is a cytoplasmatic protein o f about 555 amino acids. It presents at 
its N-terminus a motif called PI/PTB (Protein Interaction/PhosphoTytosine Binding domain), here 
depicted in blue that can bind to an Asn-Pro-X-Tyr (NpxY) tetra-amino acid motif. Downstream of  
the PI/PTB domain a cluster of 5 tyrosines (in red) that can be phosphorylated by non-receptors 
tyrosines kinases in particular Fyn and Src (Kuo et al., 2005) and a serine phosphorylation domain 
(Spsk) in green. (C) Comparison between a normal 6-layerd cortex and reeler-like cortex. In reeler 
at E 12.5-El3.5 the preplate does not split in subplate and marginal zone and neurons that are rising 
from the ventricular zone accumulate in an inverted fashion compared to normal. Modified from 
Tissir & Goffinet, 2003.
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neurons from  the radial glial processes that guide those (D ulabon et al., 

2000). In addition  in reeler, the rad ial glia scaffold has been found to be 

disorganized and no t p roperly  attached to the pial surface (Tissir & Goffinet, 

2003; Forster et al., 2002).

By contrast a particu lar population  of spinal cord m otoneuron has 

been found displaced in reeler spinal cord as consequence of defective radial 

m igration b u t in the absence of rad ia l glia abnorm alities (Phelps et al., 2002; 

Yip et al, 2003). Interestingly, in the olfactory bulb  and  the hindbrain , Reelin 

appears to control the sw itch from  tangential m igration to radial m igration 

of the olfactory in tem euron  precursors and  m otor neuron  precursors of the 

facial nucleus (Hack et al., 2002; Rossel et ah, 2005).

The interaction betw een m igrating neurons and  radial glia is no t the 

only possible explanation of the reeler phenotype and the possibility of 

context specific functions for Reelin, dependent on the m olecular 

environm ent, rem ains possible.

Reelin can b ind  to several different receptors (Cadherin-related 

N euronal Receptors, VLDLr, ApoER2 and  Integrins) and  a link w ith  the 

cytoskeletal m achinery involved in  neuronal m igration w as found through 

the discovery of a dow nstream  adap to r molecule, D abl. The relation 

betw een reelin and dabl w as inferred from  the sim ilarities of reeler w ith  two 

other na tu ra l m utants, scrambler and  yotari (Sheldon et al., 1997). Genetic 

studies that phenocopied the  m utations w ith  knockout experim ents, further 

confirm ed that dabl w as the  gene m utated  in these tw o reeler-like m ouse 

lines.
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1.4.2. Reelin receptors

Reelin is a huge m olecule that can aggregate and  complex w ith  itself 

w ith in  the extracellular m atrix. It can be cleaved and  internalised by the 

receptors VLDL and ApoERII (D 'Arcangelo et al., 1999; H eisberger et al,

1999). These receptors transduce the Reelin signal, starting a cascade of 

phosphorylation  events th rough  the adap to r D ab l. In addition, Reelin can 

b ind  Integrins, and C adherin-related N euronal Receptors (CNRs). W hile 

Integrins are clearly involved together w ith  Reelin in  neuron-glial 

interaction, the function of the CNRs/Reelin interaction is no t yet known. 

H ow ever, all the receptors that b ind  Reelin, including VLDL, ApoER2, 

CNRs and  Integrins, are expressed by m igrating neurons.

1.4.2.1 VLDLR and ApoER2

VLDLR (Very Low-densisty L ipoprotein Receptors) and  ApoER2 

(A polipoprotein E Receptor 2) are m em bers of the LDL (Low-density 

Lipoprotein) receptors family. L ipoproteins receptors are transm em brane 

glycoproteins involved in  the m etabolism  of cholesterol and  triglycerides. 

They consist of an extracellular dom ain, a single transm em brane dom ain 

and  a cytoplasm ic tail transducing signals im portan t during  em bryonic 

developm ent (Howell & Herz, 2001).
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The extracellular dom ain of LDL receptors, form ed by EGF precursor 

hom ology repeat motifs, is involved in ligand b ind ing  and in  the 

dissociation of ligands from  the receptor in  endocytic vesicles. The 

transm em brane dom ain is im portan t for anchoring to the m em brane and  the 

cytoplasm ic dom ain, containing the NPXY (Asn-Pro-X-Tyr) motif, is 

required  for directing the coated pits internalization.

The intracellular dom ains of LDL show s binding to  a variety of 

proteins that takes part in  cell adhesion, kinase signalling, cytoskeletal 

organization, vesicle transport and  synaptic transm ission in vitro (G otthardt 

et al., 2000; H ussain, 2001). L ipoprotein receptors can internalize their 

ligands th rough  a m echanism  involving the cytoplasm ic NPxY motifs (Chen 

et al., 1990; H erz & Bock, 2002). It w as show n that Reelin, after b inding  to 

VLDLR, is internalized by vescicular endocytosis. This is though t to be part 

of the  m echanism  for Reelin's turnover (D' Arcangelo et al, 1999).

A lthough Reelin can b ind  several kinds of receptors, only the double 

knockout of VLDLR and ApoER2 results in a phenotype alm ost identical to 

reeler. The only difference it is at level of the m otor nuclei of the hindbrain, 

w hich are displaced in reeler bu t no t in  the VLDLR and ApoER2 double 

knock out m ouse (Rossel et al, 2005). The single knock ou t of VLDLR or 

ApoER2 does no t cause a reeler-like phenotype, suggesting a redundancy  of 

these L ipoprotein receptors (Hiesberger et al, 1999).
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I.4.2.2. Integrins receptors

Integrins are cell-surface glycoproteins involved in cell m igration. 

These adhesion proteins m ediate cell-cell interactions via the extracellular 

m atrix  (ECM) and  the internal cytoskeleton. The nam e Integrin comes from  

the function of these m olecules to integrate the extracellular and  

intracellular scaffold, allowing coordinated cellular m ovem ents.

The Integrins are form ed by  tw o distinct subunits a  and  (3 and  the 

com binations of different a  and  (3 subunits enable the Integrins to b ind  

differentially to extracellular m olecules including Fibronectin and  Laminin. 

W hile both  a  and  p subunits b ind  extracellular molecules, only the p 

subunits connect to the cytoskeleton, via adaptor proteins such as Paxillin, 

Vinculin, or Talin, as w ell as cytosolic tyrosine kinases such as focal 

adhesion kinase (FAK). Integrins can prom ote (throughout Rho GTPases) 

Racl activation allow ing Actin polym erization and pro trusion  of 

lam ellipodia that p u sh  forw ard the leading edge to regulate cell m igration 

(Barberis et a l , 2004).

Integrins are im plicated in  the association betw een m igrating neurons

and  radial glia. A ntibodies against integrins reduce the rate of m igration

and  cause detachm ent from  radial glial fibres in vitro (Anton et al., 1999;

D ulabon et al, 2000). Reelin can b ind  only a3 p l integrin receptors expressed

in  radially m igrating neurons (D ulabon et al, 2000). It has been observed

that neurons lacking the a 3 p l Integrins are less sensitive to radial

detachm ent induced  by Reelin (D ulabon et al, 2000), suggesting a role of
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Reelin pathw ay in  the separation of m igrating neurons from  the radial glia 

fibers in cortical layers form ation. H ow ever, loss of a3 or p i Integrins is not 

sufficient to give rise to reeler phenotype (Anton et a l, 1999; G raus-Porta et 

al., 2001), suggesting that the full story is far from  clear.

1.4.3. Dabl

D abl is a cytoplasm atic pro tein  tha t show s a m otif called PI/PTB 

(Protein Interaction/PhosphoTytosine Binding dom ain) at its N -term inus. 

The PI/PTB dom ain can binds to an  Asn-Pro-X-Tyr (NpxY) tetra-am ino acid 

m otif present in  several proteins including those of the LDL receptor family 

and am yloid precursor fam ily (see fig.4B). M ouse Dabl encodes a p ro tein  of 

555 am ino acids. The sequence show s a cluster of 5 tyrosines dow nstream  of 

the PI/PTB dom ain, w ith  w hich D ab l can b ind  the SH2 dom ains of non

receptor tyrosine kinases, in particu lar Fyn and Src (A m aud, et al, 2003; Kuo 

et al, 2005). D ab l is present in  the developing CNS and, w hen tyrosine 

phosphorylated, can initiate a phosphorylation cascade w ith  m ultiple 

targets (Howell et al, 1997). These targets finally determ ine the 

phosphorylation of proteins associated w ith  m icrotubules tha t can lead to 

cytoskeletal m odifications.

In the m ouse tw o m utants for dabl, scrambler and  yotari (Sheldon et al, 

1997) show a phenotype very close to  the m utan t reeler (Sweet et al, 1996; 

Yoneshima et al, 1997), the only differences currently  described being in  the
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distribution of callosal com m issural neurons and pa ttern  of layer V neurons 

(but not layer VI neurons) of the cortex (Aoki et al., 2001; Yam am oto et a l ,

2003).

D uring the developm ent of the cortex, the expression of reelin and 

dabl are contem poraneous and com plem entary. The superficial layer of 

neurons expresses reelin and the m igrating neurons express h igh  levels of 

dabl (Howell et al, 1997b). If dabl is m utated  or n o t functional, the neurons 

(that usually  produce it) cannot respond to Reelin signal, cannot m igrate 

properly  and  cannot form  the layers of the cortex in  the norm al inside- 

outside pattern.

The dabl gene is highly complex. It has 14 exons that give rise to at 

least five alternative tissue-specific splice variants in  the m ouse and several 

5 '-untranslated  regions (UTRs) w ith  different prom oters (Bar et al, 2003). 

M oreover, tw o isoform s ChD abl-L  and ChD abl-E are involved in circuitry 

form ation in chick retina (Katyal & Godbout, 2004).

The complexity and  different isoform s of the dabl gene m ay have 

im peded the identification of m utations in hum an DAB1, while in  m ouse the 

natural occurring m utations scrambler and  yotari are no t nu ll m utations and 

m ight retain  som e vital functions (Sheldon et al, 1997).
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I.4.3.I. Molecules targets of Dabl

The b ind ing  of Reelin to its receptors initiates a phosphorylation 

cascade starting w ith  the triggering of D ab l by the Fyn and  Src kinases 

(A m aud et al, 2003; Kuo et al, 2005). The m olecular targets of 

phosphorylated  D ab l are no t well know n, b u t new  findings are show ing 

new  relationships betw een the Reelin pathw ay and  molecules involved in 

cytoskeletal dynam ics and  neuron  m igration (fig.5). Molecules recently 

found as dow nstream  to Reelin phosphorylation signaling are CrKL, C3G, 

R apl sm all GTPase and  PI3K.

Figure. 5. Reelin pathway.

The pathway is composed of the signal, Reelin, a large glycoprotein secreted by specific groups of 
cells. Reelin can bind at least three different receptors, namely the Integrins, the Lipoprotein 
receptors VLDL and APOER2, which functions as heterodimers in this pathway, and the CNRs 
receptors and an intracytoplasmic adaptor, Disabled 1 that appears to mediate all Reelin migratory 
functions. Unphosphorylated Disabled 1 binds to the NPXY motif in the cytoplasmic tail of the 
Lipoprotein receptors and upon Reelin binding becomes phosphorylated, primarily by Fyn. Reelin 
regulate the phosphatidylinositol 3-kinase (PI3K). The phosphorilated Dabl binds the PI3K that 
phosphorilates the phosphatidylinositol 4,5-bisphosphospate to phosphatidylinositol 3,4,5- 
trisphosphospate. The phosphatidylinositol 4,5-bisphosphate is involved in the regulation of 
cytoskeletal reorganization. Moreover, the activation of PI3K leads to the activation of the 
serine/threonine kinase (Akt or protein kinase B) and the inhibition of the glycogen synthase kinase 
3p (GSK3(3). The GSK3P activated by Reelin signaling is involved in the phosphorylation of  
proteins, such as Tau, implicated in axonal transport. The Cdk5 pathway is parallel to the Reelin 
pathway. Cdk5 can phosphorylate Dabl on a serine at the C-terminus. Cdk5 is involved in 
cytoskeletal changes and in neuron migration. Modified from Gupta et al, 2002.

39



Actin

Heolin f
s Vv ■

VIOIr ’ ApoER2
Rasnna
m e m b r a n e

Dabl

HRnlir

WUt M»xt

//IWIW
Y—Y -V —Y—

PI/PTB

CDK5

GSK3[i

y tubulin 
complex

Nudol• Filamin

Dynactirv

Microtubulcs _ _C cntrosom c

Modified from: Gupta, Tsai and Wyshaw-Boris (2002) N ature Reviews | G enetics



Chapter 1 General Introduction

1.4.3.2. Dabl/CrkL/C3G/Rapl pathway coordinates neuron migration

Reelin via D ab l stim ulates tyrosine phosphorylation of C3G (guanine 

nucleotide exchange factor) activating the sm all GTPase R apl. R apl 

(Repression and  activation protein) regulates cell-cell adhesion and  cell 

m igration (Caron, 2003). W hen D ab l is phosphorylated on tyrosine, Y220 

and Y232 interact also w ith  the adap to r Crk-Like (Crk-L) proteins and  these 

tw o particular sites of phosphorylation are involved in  the m igration of 

cortical plate neurons. As Crk-Like also binds C3G, the 

D abl/C rkL /C 3G /R apl pathw ay is believed to be involved, in  response to 

Reelin signaling, in the coordination of the m igrating neurons during  

developm ent (Ballif et al, 2004).

1.4.3.3. Reelin regulates PI3K

Phosphatidylinositol 3-kinase (PI3K), a m em brane-associate m olecule 

involved in  several intracellular processes, is regulated by Reelin du ring  the 

form ation of the cortical plate in  in vitro assays (Bock et al, 2003). W hen 

Reelin b inds the complex of its receptors the phosphorilated  D ab l b inds the 

PI3K regulatory  subunit p85a. The activation of the PI3K results in  the 

phosphorilation of the precursor phosphatidylinositol 4,5-bisphosphate for 

PI 3,4,5-trisphosphosphate (Bock et al, 2003). Phosphatidylinositol 4,5- 

b isphosphate is involved in the regulation of cytoskeletal reorganization 

(Yin & Janmey, 2003).
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M oreover, the activation of PI3K leads to the activation of the 

serine/threonine kinase (Akt or kinase B) and  the inhibition of glycogen 

synthase kinases 3(3 (GSK3(3), a molecule dow nstream  of W nt signalling 

involved in the m etabolism  of the (3-catenins, hence in neural induction and 

pattern ing  (Niehrs, 1999; H eisenberg et al, 2001). In addition, 

GSK3(3 activated by Reelin signaling is involved in  the phosphorylation of 

Tau proteins involved in axonal transport and  axon grow th (Gordon-W eeks, 

2004; B a il if f  al, 2004).

The discovery of new  pathw ays dow nstream  of Reelin are suggestive 

of new  functions that the Reelin pathw ay m ight regulate, for exam ple a 

possible role of there m ay be a role for the Reelin pathw ay in axon growth, 

in add ition  to the w ell-know n functions of Reelin in neuron m igration, in 

dendrite  form ation and m aintenance (Niu et a l, 2004).

1.4.4. CDK5, Lisl and DCX are in pathways parallel to the 

Reelin pathway

I.4.4.I. CDK5 pathway

A nother pathw ay know n to be involved in  m igration of cortical 

neurons is the Cyclin-dependent kinase-5 (Cdk5) pathw ay (fig.5). Cdk5 is a 

m em ber of the family of cell cycle-related kinases that can activate two 

subunits: p35 and p39 that are expressed only in the brain  (Lew et a l, 1994;
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Tsai et a l, 1994; Tang et al, 1995). The m ouse m uta ted  in Cdk5, p35 or both 

p35 and  p39 show defects of cortical lam ination sim ilar to that in reeler.

W hen Cdk5 is m utated, the splitting of the preplate into a m arginal 

zone and  subplate is norm al as in w ild type situation (fig.4C), bu t the 

cortical layers show  an  interval pattern  sim ilar to that in  reeler, w here the 

splitting of the preplate never happens (Chae et al, 1997, Gilmore et al, 1998, 

Ko et al, 2001, Kwon & Tsai 1998, O shim a et a l, 1996). Also the cerebellum  

of m ouse Cdk5-/~ show s lam inar disorganization as in reeler, bu t the 

Purkinjie cells are displaced due  to a cell-autonom ous effect and reelin and 

dabl m RNA w ere found norm al (Ohshim a et a l, 1999). Inside the cell, Cdk5 

phosphorylates D ab l and it w orks as linker w ith  L isl, allow ing interaction 

betw een D ab l and D ynein (associated w ith  L isl). In this w ay Cdk5 m ay 

regulate nucleokinesis during the form ation of cortical layers, w hich is 

dependent on L isl functions (N ietham m er et a l, 2000).

A nother link betw een the Reelin pathw ay and cytoskeletal re

organization is the phosphorylation of Tau proteins and the control of 

axonal transport (see above paragraph  3.3.1.2). Cdk5 m ay activate Tau 

phosphorylating directly GSK3P and cooperating w ith  it at the level of the 

cytoskeleton (Beffert et al, 2004). Both Reelin and Cdk5 are involved in 

neuron m igration and axonal transport, bu t in  a parallel and  cooperative 

m anner, because inhibition or activation of one pathw ay does not affect the 

other at the cellular level (N ietham m er et a l, 2000; Beffert et al, 2004).
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I.4.4.2. Doublecortin (DCX)

DCX is a m icrotubule-associated protein  (MAP) that interacts w ith 

and controls the m icrotubule cytoskeleton. Female patients w ith  one copy of 

DCX m utated  have a neuropathology of incorrect neuronal m igration, called 

subventricular band  heterotopia or doublecortex syndrom e. A norm al- 

looking layered extra cortex is form ed in the w hite m atter. For this reason 

the gene has been called "doublecortin" (Gleeson et al, 1998; des Portes et 

al, 1998). Male patients show  a severe lissencephaly, due  to the X- 

chrom osom al location of the DCX gene.

In vitro DCX stabilizes m icrotubules in transfected cells (Yoshiura et al

2000). The protein  contains tw o repeats nam ed DCX dom ains that m ediate 

the b ind ing  to m icrotubules. Recent evidence show s that the N -term inal of 

this dom ain  b inds to m icrotubule polym ers, w hereas the C-term inal dom ain 

b inds T ubulin  dim ers (Kim et al., 2003). In this w ay the C-dom ain m ay 

catalyze m icrotubule grow th  by stim ulating form ation of new  dim ers of 

Tubulin, and together w ith its N -term inal can stabilize the m icrotubule 

polym er (Schaar et al., 2004).

DCX is thought to be involved in nuclear translocation and axon

growth. DCX is no t localized along the whole m icrotubule netw ork  in the

cell, b u t is associated w ith m icrotubules of grow th cones and  leading

process of m igrating neurons. A balanced level of phosphatase and kinase

activities m aintains this subcellular localization of DCX. In vitro studies

show tha t a serine residue of DCX is required for the b ind ing  to
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m icrotubules under the control of MARK, PKA kinases (Schaar et al., 2004) 

and Cdk5 regulates the binding affinity of DCX for m icrotubules (Fig.3C; 

Tanaka et al., 2004).

DCX is coexpressed w ith  L isl. They can interact and  function in the 

sam e protein  complex in  cells of the developing brain  (Caspi et al., 2000). 

This m eans that bo th  LIS1 and DCX m ay coordinate sim ilar process in 

neuronal m igration, for exam ple som al or nuclear translocation during cell 

m ovem ent. Interestingly, DCX appears to be necessary for the transition 

from  m ultipolar to bipolar shape in radially m igrating neurons of the 

em bryonic cortex (Bai et a l, 2003).

I.4.4.3. Lisl

L isl is the noncatalytic subunit of the platelet-activating factor 

acetylhydrolase Pafahlbl. However, a tw o cell-hybrid screen in  hum an  brain 

resulted in the identification of NUDEL (a substrate of Cdk5; M. 

N ietham m er et a l, 2002) as a L isl partner and  of o ther cytoskeletal 

com ponents indicating that L isl is involved in  m ultiple protein-protein 

interactions (Feng & W alsh, 2001).

The im portance of Lisl in neuron m igration em erged th rough  the 

finding of a hum an  neuropathological condition that show s a severe 

lissencephaly called Miller-Dieker syndrom e (H attori et a l, 1994; Reiner et
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al., 1993). L isl haplo-insufficient m utations result in  a reduction in  num ber 

of neurons m igrating correctly to their lam ination position.

In hum ans, Reelin m utations are associated w ith a form  of 

lissencephaly that is sim iliar to that due  to Lis m utation (Hong et al., 2000). 

The relation betw een Reelin and  L isl is not well understood, b u t it was 

show n that L isl and the Reelin adap to r D abl bound  in response to Reelin 

signaling (Assadi et al., 2003).

In mice, the expression of a truncated  form  of L isl gives rise to a 

delayed m igration of neurons (Cahana et al., 2001) in a m anner sim ilar to 

that of hum an  lissencephaly. Mice, tha t com pletely lack Lisl function, die 

very early because of defects in cell division (H irotsune et al., 1998).

L isl can b ind  proteins such as cytoplasm ic Dynein, w hich interact 

w ith  the m icrotubule netw ork and  b ind  directly to tubulin. This is seen in  all 

organism s stud ied  (Sapir et al., 1997). D ynein is a m icrotubule-based m otor 

protein  that is involved in transport of organelles and retrograde axonal 

transport. L isl interacts w ith D ynein and D ynactin and is involved in 

m itosis of the cortical progenitors and  in general in  axon grow th and cell 

m igration (fig.lA , C; N ietham m er et al., 2000; Tsai et al, 2005).

Reelin, CDK5, DCX and L isl are com ponents of a large and intricate 

series of signaling system s that regulate neuronal m igration, nuclear 

d istribution and  cortical layering of the m am m alian brain.
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1.5. Zebrafish as an animal model system for 

studying neuronal migration

The zebrafish (Danio rerio) is a sm all tropical freshw ater fish (fig.6). It has a 

short generation tim e of 2-3 m onths and produces large num ber of em bryos 

(the average is 100 per m ating). The rapid  developm ent and external 

fertilization m ake the study  of developm ental processes easier to study  than  

in  other vertebrate m odels. M oreover, the transparency of the em bryo 

(prolonged for m ore than  24 hours by  inhibiting p igm ent developm ent w ith  

l-phenyl-2-thiourea (PTU) in the m edium  w ater) facilitates im aging of 

developm ental processes in w ild type and m utan t embryos. M utagenesis of 

the zebrafish genom e obtained using  ENU (ethylnitrourea-m ediated) and 

TILLING (targeting induced  local lesions in  genomes) techniques gives the 

opportun ity  to analyse the function of target genes. M utagenesis screens are 

pow erful m ethods to understand  gene function du ring  developm ent. In 

addition, the cloning of genes affected at the m utan t loci is now  easier due to 

the near com pletion of the zebrafish genome sequence (Talbot & Hopkins, 

2000).

M olecular approaches, including injections of m RNA or m orpholino 

oligonucleotides (see Chapter 4 and  5) at blastom eres stages (Heasman, 

2002), are also possible, while embryological m anipulations, such as cell 

transplantions, are becom ing m ore and  m ore refined techniques (fig.7).
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Figure.6. Zebrafish development from one cell stage to 48 hours post fertilization (hpf).
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Zebrafish are also am enable to the creation of transgenic lines 

expressing the reporter green fluorescent protein  (GFP) under the control of 

specific prom oters (Jessen et al, 1998). Zebrafish transgenic lines are now  

used  especially for in vivo im aging. The fluorescence of the reporter protein 

is obtained by iUuminating the live em bryos w ith  a UV lam p under the 

dissecting m icroscope or using confocal m icroscopy (w ith or w ithout time- 

lapse photography).

1.5.1. The ancient duplication of the teleost genome is 

sometimes an advantage for functional analysis of the genes

Zebrafish, like several o ther species, possess duplicate copies of some 

genes. This is believed to be due to ancient whole-genom e duplication about 

350 m illion of years ago, probably just before the teleosts radiation 

(Postlethw ait et al., 1998). Zebrafish often presents two (or m ore) orthologs 

of hum an  genes, i.e. gene descending from  a single gene in  the last comm on 

ancestor (Postlethw ait et ah, 2004). This complexity in zebrafish is am azingly

Figure.7. Transplant at early stages in the zebrafish.

A) The first step is the injection at one cell stage o f the GFP mRNA as reporter, alone for lineage 
studies or together with a construct or morpholino of interest. B) At blastula stage the cells from the 
injected donor can be transplanted (C) in the host embryo at 50% epiboly or shield stage. In D, 
chimaeras of 30 hours post fertilization stage. This approach can be used for fate mapping, random 
labelling for tracking cell movements, for local or restricted expression of genes, whose product 
would be toxic or destructive if expressed in the whole embryo, and analysis of cell autonomy.
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becom ing seen as a poin t of strength in the study of genes conserved am ong 

vertebrates, because of the "sub-function partitioning" com m on in zebrafish 

genes. The sub-function partitioning is the segregation of a function betw een 

tw o genes that originate from  a comm on ancestral gene.

For exam ple N odal, a gene that in m ouse is present as a single copy, 

in  zebrafish is triplicated so that there are tw o N odal genes functioning at 

early stages and a th ird  at later stages: cyclops, squint and southpaw. M utation 

of one or both  the early expressed genes (cyclops and  squint) show ed that one 

is involved in m esoderm  induction and the o ther in the later event of the 

neural p late form ation (Feldman et al, 1998; Sam path et al., 1998). Unlike in 

zebrafish, the null m utation of N odal in the m ouse blocks the developing 

em bryos at an early stage m aking it difficult to investigate N odal function in 

later events (Varlet et al., 1997). Abrogation of function of both  N odal genes 

in  fish gives a m ore severe phenotype m ore sim ilar to the single m ouse 

knockout.

A nother advantage is the functional analysis of genes that in 

m am m als are haplo-insufficent. For instance, the m am m alian heterozygote 

m utan t for SOX9 dies because of defects in  cartilages form ation, as one allele 

of the SOX9 is not sufficient to support the norm al developm ent of the 

em bryos (Bi et al., 2001). In zebrafish there are tw o sox9 and  their m utations 

give rise to a recessive em bryonic lethal phenotypes rather than  dom inant- 

lethal phenotypes as seen in m ouse (Yan, et a l, 2002). The phenotypic 

analysis of the zebrafish m utants revealed that Sox9 is involved first in 

chondrocyte stacking and in cartilage formation.
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Both cases of zebrafish sub-functional partitioning gave the 

opportun ity  to study the functions of genes that som ew hat intractable in 

mice.

1.5.2. Neuronal migration in Zebrafish

The zebrafish CNS presents a subdivision of the m ain forebrain areas 

that is sim ilar to the "m ore evolved" brains of other vertebrates (fig.8A, B). 

W hat is no t well know n is the pattern  of neuronal m igration during 

zebrafish brain  developm ent and  w hether this pattern  is similar o r different 

from  that in other vertebrates.

The first difference to poin t ou t is the developm ent of the zebrafish 

telencephalon that, as all the teleosts, is everted and not evaginated as in 

other vertebrates (fig.8 C; H odos & Butler, 1996; Butler, 2000). The 

m orphogenetic m ovem ents that give rise to an everted brain  are completely 

different from  that of an evaginated brain  and  do not result in a layered 

structure as in  reptiles and m am m als. H ow ever dlx, a vertebrate subpallial 

m arker (A nderson et al., 1997), is expressed in zebrafish telencephalon and 

olfactory bulb  suggesting that a m igration from  the subpallial region to the 

pallial region m ay occur (as in  the case of MGE tangential m igration: see 

paragraph  1.1.3 and  fig2).
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W  /

Neural tube

E version Evagination

T e leo sts A m n iotes

Figure.8. The zebrafish brain.

In A, schematic draw of 24hpf embryos. All the main subdivisions of the brain are already visible. 
In B, brain of adult zebrafish. C shows the comparison between the processes of evagination and 
eversion, adapted from Butler, 2000. The everted telencephalon is covered by a thin choroid tela, a 
structure that originates in the dorsal neural tube (in gray).
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At the m om ent we do not have a clear understand ing  of the 

neuroanatom y of the zebrafish brain  that is com parable to that of the 

m am m als, b u t there are several tools for the studying in vivo neuron 

m igration in  zebrafish. For example the dlx4/6:GFP line p roduced by  M ark 

Ekker (Park et al., 2004) allows the observation in vivo of the m igration of 

neurons in  forebrain and  m idbrain/hindbrain. In fact, an enhancer of dlx4 

and  dlx6, fused w ith  coding sequence of GFP, m arks cells of the ventral 

telencephalon, ventral thalam us to the hypothalam us and rhom bic lip.

A clear exam ple of tangential m igration of zebrafish has been 

described for the first time in vivo (Higashjim a et al., 1998). They created a 

fluorescent transgenic line under the prom oter of isletl gene (a m arker of 

branchiom otor nuclei of the hindbrain) and w ere able to record the 

m igration of the VII branchiom otor neurons from  rhom bom ere 4 to their 

final location in  rhom bom eres 6-7.

In m y w ork I have used both  dlx4/6:GFP and tg(islet-l-GFP) lines to 

better characterize the involvem ent of Reelin pathw ay in neuron  m igration.

1.6. Aims of the work

In the first part of the introduction I have described the principal 

m echanism s and the principal molecules involved in neuron  m igration 

during developm ent of the vertebrates CNS. In the last part, I in troduced
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zebrafish as a good m odel to study, in vivo, these im portan t m echanism s and 

molecules.

A lthough the Reelin pathw ay has been extensively studied in m ouse 

brain  cortex form ation, recent discoveries have suggested a m ore general 

b u t not less im portan t roles for this pathw ay in  vertebrate developm ent 

(Hack et al., 2002, Yip et al., 2004).

In this present w ork I focused on three m ain points:

1. The description of the expression pattern  of reelin and dabl in  the

zebrafish brain  and other non-neuronal structures.

2. The genomic structure of Danio rerio dabl to obtain m ore insight into

the role the Reelin/D abl pathw ay in  vertebrate evolution.

3. The study of possible functions of d ab l isoforms using  several in vivo

techniques as m orpholino injection, m RNA overexpression and 

visualization by confocal m icroscopy of neuronal m igration using GFP 

constructs as specific reporter gene.
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CHAPTER 2

2. Materials and Methods1

2.1. Isolation of the D a n i o  r e r i o  r e e l i n  and d i s a b l e d 1  

cDNA clones

2.1.1. reelin cDNA clone

A cDNA-arrayed library m ade from  zebrafish adu lt brain constructed 

by J. N gai (Berkeley) and distributed  by the Resource Center Prim ary 

Database (RZPD http ://w w w .rzpd .de) w as screened w ith  a 1.3 Kb probe 

corresponding to nt. 4630-5956 of m ouse Reelin. The probe w as obtained 

through PCR (using the following prim ers:

S'GAGATGTTCGACAGGTTTGAGJ and

5'GTGACTCCTCCACTGACAGAG3'). Two positive clones were identified, 

obtained from  RZPD and sequenced by a commercial sequencing service 

(MWG, DE). The EST corresponding to Xenopus reelin (acc.no. AW158822) 

was obtained from  Cold Spring H arbor laboratories, and  sequenced entirely 

by MWG.

1 For standard techniques see Appendix
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2.1.2. disabledl cDNA clone

To identify zebrafish disabledl cDNA clones a m icroarrayed adult 

brain  zebrafish library (distributed by RZPD; library no. 611) w as screened a 

w ith a cDNA fragm ent corresponding to nucleotide (nt) 450-1311 of m ouse 

Dabl-555 (genebank acc. no. NM_010014). This fragm ent w as obtained 

through PCR using an E13.5 m ouse brain  cDNA as tem plate. H ybridization 

yielded a num ber of positive clones, w hich were analyzed for their sequence 

and expression pattern. C onceptual translation yielded an open reading 

fram e of 538 am ino acids, sim ilar to that of m ouse and hum an D abl. 

Screening the available zebrafish EST databases for possible d ab l isoforms 

revealed only one entry w ith  this feature (acc. No. gi: 38652136) 

corresponding to the first 184 n t in  the 5'UTR region of our clone and  then 

changing abruptly. No ORF w as present in this clone. O ther EST clones 

corresponded to parts of dabl_tvl (see below). H ow ever it w as predicted 

and confirm ed w ith RT-PCR the presence of different isoforms of zebrafish 

dabl on the basis of the analysis of the genomic sequence (see below).

2.1. 3. RT-PCR

Total RNA was extracted at various stages from  pools of 

approxim ately 50 zebrafish em bryos and  larvae at the following stages: 1-32 

cells, 8 somites, 30 hpf, 48 hpf, 3 dpf and 5 dpf and  from  3 adult brains,
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using Trizol (Invitrogen). The synthesis of cDNA from  500 ng total RNA was 

prim ed by oligodT or random  prim ers and perform ed w ith  Superscript IIRT 

(Invitrogen) for 1 h  at 42°C following the m anufacturer instructions.

The following prim ers w ere used:

Forw ard exon 3: CGTTTTAAGGGAGATGGCGTTC

Forw ard exon 5: CTACATCGCGAAGGATATCAC

Reverse exon 6: ATCTCCTCCCTCGTTAATCTC

Reverse exon 8: TG AT AT AT GCT CT CCT CTG ATGG

Reverse exon 9 (probe): TCACTGGATGTCGCTTTGGGA 

Forw ard exon 8 (probe): CATTGTATTTGAGGCGGGACAC 

Reverse exon 10: GGACATGTCTCCAAAAAGCTC

Forw ard exon 10: GACTTTTTGGAGACATGTCC

Reverse exon 11: CAAGGGGTCCAGAGTGTTAGCC

Forw ard exon 12: CAGAGACAGGCAAAGATGAGCAAG

Reverse exon 12: CCAAACGCTAATGGAGCCTGAG

Reverse exon 15: GATCTGGGCATAAAGAGGGTCCTTCC

2.1.4. Sequence and genome alignments

For the identification of the genomic clones containing the dabl_tvl 

sequences and  the localization of the exons the Blast tool from  NCBI 

(http://w w w .ncbi.nlm .nih.gov/blast) was used. The database used  consisted 

of BAC clones fully sequenced by the Sanger Institute and deposited in
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Genebank w ithout annotations. The zebrafish sequences used for exon 

searching w ere selected on the basis of com parisons w ith the reported  

m ouse exon/intron boundaries (Bar et al., 2003). For the identification of the 

sequences encoding for exon 8 and 9 w as used m ouse sequences to blast the 

clone BX248232. The sam e was done for the m issing exons: 555*, 217*, and  

271*.

For the  com parative genomic analysis, it w as used the Blat tool (Kent, 

2002) at UCSC (h ttp ://genom e.ucsc.edu/) and the Zv4 release at the 

W ellcome Trust Sanger Institute (http://w w w .sanger.ac.uk/) for the 

zebrafish genome, the NCBI Build 35 release for the hum an genome, the 

NCBI Build 34 release for the m ouse genom e and the WUSTL Feb 2004 

release for the chick genome.

2.2. Embryological Techniques

2.2.1. Experimental animals and tissue preparation

Danio Rerio em bryos and adult fish from UCL fish facility w ere used  

in all experim ents. Fish w ere raised in 20 liter tanks at 28°C w ith a 14 hours 

light/10 hours dark  cycle. Eggs w ere collected daily and incubated in 

purified w ater containing 0.001% m ethylene blue at 28°C. The anim als w ere 

handled  in  accordance w ith  European Union regulations on laboratory 

animals.
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Embryos to be processed for brom odeoxyuridine (BrdU) up take  were 

dechorionated and exposed to BrdU, 1 m g/m l in  purified fish w ater for 2 

hours before fixation.

Paraform aldehyde fixed em bryos (stage 32 and  50) of Xenopus laevis 

were a gift of Les Dale, UCL. Anim als w ere term inally anaesthetized w ith 

0.3% tricaine m ethane sulphonate (MS222, Sigma) and those of 1 m onth  or 

older w ere decapitated. All embryos, larvae and  adu lt anim als w ere fixed 

overnight in  4% paraform aldehyde in 0.1 M phosphate buffer (PB) pH  7.4. 

Those to be processed for cryosectioning w ere rinsed in  PBS and 

equilibrated in 10% and 20% sucrose in PBS at 4°C over 48 hrs. Tissue was 

em bedded in OCT com pound (Agar, UK), frozen on dry  ice and cut serially 

at 20 um  in  coronal and  saggital planes. Sections were collected on 

Superfrost slides (BDH, UK) and stored at -70°C in sealed boxes until ready 

to use.

Embryos to be processed for w hole m ount in situ hybridization were 

rinsed in PB after fixation, dehydrated  in 50%, 70%, 90% and  100% 

m ethanol, and  stored at -20°C in m ethanol.

2.2.2. Whole mount in situ hybridization

Embryos to be processed for w hole m ount in situ hybridization were 

rehydrated  through m ethanol series and treated w ith  10 ug/m l proteinase K 

(Sigma) in  0.1 M phosphate  buffer containing 0.1% Tween 20 for various
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lengths of times (from 1 m in to 1 hr) according to age. Embryos older then 

30hpf w ere treated w ith  proteinase K.

Embryos were pre-hybridised at 65-68°C for a m inim um  of 2 hour in 

pre-hybridisation solution (50% form am ide, 5xSSC (pH6), 50ug/ml heparin, 

200ug/ml yeast RNA, 5mM EDTA, lxD enharts and  0.1% Tween-20). This 

solution w as replaced by hybridisation solution containing the anti-sense 

riboprobe in the best w orking concentration and the em bryos incubated at 

65-68°C overnight.

Post-hybridisation w ashes w ere carried out at 65-68°C. Embryos were 

w ashed first in hybridisation solution, and  then 10 m in washes w ith 

decreasing concentrations of hybridisation solution: 2x SSC (75%, 50%, 25%) 

follow ed by 2 x30 m in washes in 2x SSC and by 2 x30 m in washes in 0.2x 

SSC.

After re-hydratation, embryos w ere rinsed in  antibody block at room  

tem perature in MABT (0.1M maleic acicd, 0.15M NaCl, pH7.5 and 0.1% 

Triton) and then blocked in 2% Boehringer blocking reagent (Roche) in 

MABT plus 10% of lam b serum  for at least 2 h. The em bryos were incubated 

in the appropriate antibody, either anti-digoxigenin-alkaline phosphatase 

conjugated Fab fragm ents (Roche) (1 in 5000) or anti-fluorescein-alkaline 

phosphatase conjugated Fab fragm ents (Roche) (1 in 2000) overnight 4°C.

The antibody w as w ashed six times for 30 m in in MABT at room  

tem perature. The em bryos were equilibrated w ith  staining NTMT buffer 

(100 m M  Tris-Hcl, pH  9.5, lOOmM NaCl, 5mM M gCk, 0.1 % Tween-20) for
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30 min. Then they w ere developed using NBT-BCIP (Gibco) in NTMT 

buffer.

For tw o color in situ hybridization following the developm ent of the 

alkaline phosphatase activity w ith  NBT-BCIP, em bryos w ere dehydrated  

and  rehydrated  through ethanol series, treated w ith  0.1 M glycine, 0.1 % 

tw een 20, pH  2.2 for 4 times, 10 m inutes each, to inactivate the alkaline 

phosphatase activity, rinsed in phosphate buffer tween-20 and incubated 

w ith  an anti-fluorescein Fab-fragm ent alkaline phosphatase conjugated 

antibody (Roche). The substrate for the second alkaline phosphatase reaction 

w as INT-BCIP (Roche), w hich gives a red  (instead of a blue) precipitate.

The reaction w as stopped by  rising w ith PBS and  re-fixing w ith  

4%PFA. Embryos w ere then gradually  w ashed into glycerol 75% for storage 

and  photographed.

2.2.3. Whole-mount antibody staining

The em bryos fixed w ith  4% PFA w ere w ashed three times in  PBS for 5 

m in  each time. Embryos older then 24hpf were w ith  trypsin  treated in  PBS 

as perm eabilization treatm ent. After perm eabilization the em bryos were 

w ashed 3 times for 15 m in in PBST (a solution of 0.1%Tween 20 in  PBS) and 

blocked at least one hour in  10% goat serum , 1% DMSO 

(Dimethylsulfoxide), 0.5% Triton X-100, in PBS (IB). The embryos were 

incubated in  the prim ary antibody in  IB overnight a t 4°C.
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The embryos were w ashed out of the antibody by rising several times 

w ith  PBST and w ashed five times for 30 m in in PBST on a shaker and block 

again at least one hour in IB. Then the embryos w ere incubated overnight at 

4°C w ith the secondary antibody Alexa 488 (green) or 555 (red) anti-rabbit 

d ilu ted  1 in 200 (1:200) of solution of IB (IB stands for im m unobloting: 10% 

goat serum , 1% DMSO, 0.8 Triton, in  PBS) for fluorescent staining. The 

em bryos were then rinsed several tim es in PBST to w ash out the secondary 

antibody. Following the washes, the stained em bryos were detected by 

fluorescence w ith a confocal microscope.

For revealing non-fluorescent staining a biotinylates secondary 

antibody and the ABC kit from Vector w ere used. To stop the reaction 

em bryos w ere rinsed w ith  PBS, refixed w ith  4%PFA and stored in 75% 

glycerol.

2.2.4. Plastic section (see Appendix).

2.2.5. Agarose mounting of live embryos

For all m ounting, dechorionated embryos w ere anaesthetised 

according to the Zebrafish Book using  tricaine (3-amino benzoic acid 

ethylester, Sigma) in em bryo m edium . Embryos w ere m ounted in  1.5% low 

m elting-point agarose (Sigma) dissolved in in em bryo m edium . Embryos 

for m ounting  w ere p ipetted  singly into a glass bijou bottle containing m olten
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agarose at approxim ately 40°C. They w ere then  draw n u p  into a fire- 

polished glass pipette w ith  excess agarose and expelled onto a slide or 

coverslip. Precise orientation of the em bryos w as perform ed w ith in  30 

seconds using a b lun t tungsten  needle.

For im aging procedures, live em bryos w ere usually  m ounted  in 

agarose on a coverslip and  surrounded by a glass ring (Fisher). The well 

w as then  filled w ith em bryo m edium /tricaine into w hich w ater im m ersion 

lenses w ere directly d ipped.

2.2.6. Injection of mRNA or morpholino into early stage embryos

Embryos at the 1 cell stage were aligned in  a plastic through, still w ith  

their chorions, and  microinjection targeted to the cytoplasm  or to yolk 

syncytial layer or to the interface betw een them. Needles w ere pulled from  

glass capillary tubes by Clark Electromedical Instrum ents needle puller and  

injections were perform ed using a Picospritzer micro-injector.

Embryos from  na tu ra l spaw ning w ere collected and injected from  at 1 

cell stage according to guidelines in the Zebrafish Book. Briefly, 

m icropipettes were pulled  from  borosilicate glass capillaries (w ith filament) 

on a horizontal Flaming/Brown m icropipette puller (m odel P-87, Sutter 

Instrum ent Co.), producing  m icropipettes w ith a long, fine, sealed tip. 

M icropipettes were backfilled w ith l-2jil DNA or RNA or m orpholino 

solution, m ade up  in D anieau buffer, and  the very tip of the m icropipette
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was broken off such that a short (< 0.5 second) puff from  the Picospritzer 

(General Valve Corporation) w ould  dispense a d rop  approxim ately 100pm 

in diam eter.

Embryos w ere laid, in  their chorions, along the edge of a glass slide 

glued to the inside of a petri dish lid. Excess liquid w as rem oved so that the 

m eniscus held the embryos along the slide. Embryos were then injected 

th rough  the chorion, directly into a single blastom ere w ith  m inim um  

disrup tion  to the underlying yolk. The concentration of all mRNA injected 

was around  200pg and of m orpholino w as 2-6ng. Following injection, 

em bryos w ere transferred to em bryo m edium  and  grow n at 28.5°C.

2.2.6.I. Morpholino Preparation

Gene Tools provided M orpholino antisense oligonucleotides 

(h ttp ://w w w .gene-tools.com/) against d a b l. The supplied 300nmol (approx. 

2.5mg) of lyophilised pow der w as d ilu ted  as a stock of 4mM in D anieau 

buffer (5mM HEPES pH  7.5 and 200mM KC1).

2.2.7. Image acquisition and elaboration

A variety of microscope system s w ere used  during  the course of this 

project. DIC im ages of non-fluorescent in situ hybrid ised  and 

im m unolabelled specim ens were taken on  an up righ t N ikon microscope,
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w ith  a M icropublisher digital camera (Q imaging) run  by  O penlab 3.1.4 

software (Improvision, UK). Epifluorescence and  DIC im aging of live 

specim ens was carried ou t on a Zeiss Axioplan 2 microscope, w ith  w ater 

im m ersion lenses. Images w ere captured w ith a H am m am atsu Orca-ER 

digital cam era run  by  O penlab 3.1.4 software (Im provision, UK). Confocal 

im aging of fluorescent specim ens w as carried ou t on Leica m icroscopes 

running  Leica software.

2.2.7.I. Im age processing

Fluorescence im ages from confocal microscopy w ere processed using 

the freely available N IH  image vl.63 software (http://rsb.info.nih.gov/nih- 

im age/Default.htm l) to assemble and project stacks of images. ImageJ vl.32 

softw are (http://rsb.info.nih.gov/ij/) was used to create red/green overlays. 

A dobe Photoshop 7 was used to create fluorescence/DIC overlays, and  for 

general im age adjustm ent. Figures w ere prepared in  A dobe Illustrator 10.

2.3. I n  s i t u  hybridization and immounhystochemistry 
procedures on cryostat sections

The cryostat sections w ere air-dried at room  tem perature  for 20 

m inutes to 3 hrs and postfixed w ith  4% paraform aldehyde in phosphate
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buffer containing 0.1 M NaCl (PBS) for 20 m inutes. Following 3 w ashes in 

PBS, sections w ere acetylated (Triethanolam ina +hydroxide anhydride) and  

incubated in  50% form am ide, 3X SSC until ready to be exposed to the 

riboprobe. Riboprobes w ere d ilu ted to 100 ng/m l in w arm  (60°C) 

hybridization solution, containing 50% form am ide, 5X SSC, 10 m M  beta- 

m ercaptoethanol, 10% dextran sulphate, 2X denhard t's  solution, 250 ug /m l 

yeast tRNA, 500 ug /m l heat inactivated salm on sperm  DNA. H ybridization 

was carried out in  a hum id  cham ber at 58°C for 16 hrs. Slides were rinsed in  

50% form am ide, 2X SSC at 58° C, treated w ith RNAse A and RNAse T1 at 

room  tem perature, rinsed twice w ith 50% form am ide, 2X SSC at 58°C and  

incubated w ith  an ti digoxigenin antibody as above. Following developm ent 

of the color reaction slides were dehydrated and m ounted in DPX (BDH) or 

processed for im m unohistochem istry using one of the following antisera: 

anti Islet-1 (clone 39.4D5, developed by T. Jessel, obtained from  the 

Developm ental Studies H ybridom a Bank, University of Iowa), Distalless (a 

gift of G. Panganigan, University of Wisconsin), Zebrin (a gift of Steve 

Davies, UCL) d ilu ted  1:400 in PBS containing 5% norm al goat serum  and  

0.1% triton X, or anti TH or Calretinin (Chemicon, UK), or GAB A (Sigma, 

UK) diluted 1:2,000 (1:2000). The im m unoreactivity w as revealed using  a 

biotinylated secondary antibody and  the ABC kit from  Vector. 

D iam inobenzydine was used as a substrate for the peroxidase. For BrdU 

im m unohistochem istry sections were treaded  w ith  2N HC1 for 20' at room  

tem perature before being incubated w ith  BrdU antiserum  (Sigma) d ilu ted  

1:500 and processed as above. Sections w ere then m ounted  in glycerol.
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Images were captured w ith a Polaroid digital cam era connected to a 

N ikon Optiphot-2 microscope, using  x4, xlO and x20 Planapo lenses. Digital 

images were stored as 1,600 pixels x 1,200 pixels at a resolution of 300 dp i 

and m anually  arranged to form  com posite pictures using Adobe Photoshop 

5.5. Labeling w as added  as separate layers.

2.4. Transgenic lines used

Danio rerio transgenic lines w ere from  the UCL Zebrafish Facility. The 

tg(islet-l-GFP) line w as donated by  Higashijima Okam oto (Higashijima et 

al., 2000). The construct is under the prom oter of islet-1 gene that m arkes the 

neurons of branchiom otor nuclei of the hindbrain.

M ark Ekker donated the dlx4/6:GFP line. The generation of a GFP line is 

under the control of the dlx4/6 intergenic region (equivalent to Dlx5/6 in the 

mouse). For exam ple the dlx4/6:GFP line allows the observation in vivo of the 

m igration of neurons in forebrain and  m idbrain/hindbrain regions.
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CHAPTER 3

3. Results 1. Conserved and Divergent 

Patterns of reelin Expression in the 

Zebrafish Central Nervous System

3.1. Introduction

D uring the developm ent of the nervous system  an elaborate program  

of neuronal m igration and axonal grow th ensures the correct positioning of 

neuronal cells and  the establishm ent of synaptic connections. The large 

extracellular molecule Reelin plays a key role in  these processes in  the 

vertebrate brain.

M utations in the gene encoding Reelin in  mice (Caviness, 1976; 

D 'Arcangelo et a l, 1995) and hum ans (Hong, 2000) have helped to elucidate 

the m echanism s underlying neuronal m igration and  axonal targeting in  the 

CNS (D'Arcangelo & Curran, 1998; Bar & Goffinet, 1999; Gilmore & H errup, 

2000). Reelin receptors and intracellular effectors are highly conserved and 

are thought to play key roles in  neuronal m igration. M em bers of at least 

three families of receptors, Lipoprotein receptors (VLDL and ApoER2),
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integrins (a3 p i Integrin) and C adherin neural receptor (CNR) families can 

bind Reelin in vitro and in vivo (Hiesberger et al., 1999; Senzaki et al., 1999; 

Trom m sdorff et al, 1999). These receptors trigger the phosphorylation of the 

cytoplasmic adaptor protein  Disabled-1 (D abl; How ell et ah, 1999b). 

Interactions of the Reelin pathw ay w ith  other pathw ays regulating neuronal 

m igration, nam ely the CDK5/p35 pathw ay (Ohshima et al., 1996; Chae et al., 

1997; Kw on & Tsai, 1998) and the Lisl/Dcx pathw ay (Hattori et al., 1994; des 

Portes et al., 1998; Gleeson et a l, 1998), have also been reported (W alsh & 

Goffinet, 2000).

Interestingly, Lipoprotein receptors, Integrins and D ab l are found 

even in Drosophila melanogaster (Rice & Curran, 2001), w hile L isl has a 

hom ologue in  Aspergillus nidulans (Xiang et a l, 1995). By contrast, no reelin- 

related sequences have been identified in  the fully sequenced invertebrate 

genomes. This suggests Reelin m ay be a chordate-specific molecule 

involved in  regulating the m igratory behavior of neuronal groups and the 

synaptic organization of complex brains. In vertebrate species, reelin has 

been isolated and studied by in situ hybridization in the developing brains 

of chicks, turtles, lizards and m am m als. In addition, Reelin im m unoreactive 

cells have been detected in  the brain  of adu lt lam preys and teleosts (Perez- 

Costas et a l, 2000; Perez-Garcia et a l, 2001).

In tetrapods that have lam inar/layered brain  areas such as the dorsal, 

m edial pallium  or the cerebellum, differences in the pattern  of expression of 

reelin have been correlated w ith  different degrees of lam inar organization. In 

the case of the telencephalon (Bar & Goffinet, 2000), the picture that is
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em erging from  these studies implicates the Reelin pathw ay in controlling 

the ordered radial m igration of cortical neurons.

In this first chapter of Results is described the expression pattern  of 

reelin in  the developing and  adult zebrafish CNS, w ith  particular em phasis 

on the evolution of telencephalic developm ent, in w hich the Reelin pathw ay 

is know n to play an im portant role (D 'Arcangelo & Curran, 1998). Reelin 

expression in the telencephalon of zebrafish is com pared w ith  that of the 

same gene in the developing am phibian Xenopus laevis, w hich has a non- 

lam inar evaginated telencephalon w here cells hard ly  m igrate from  the 

ventricular zone (Northcutt, 1981).

However, unlike teleosts and  like amniotes, the anuran  telencephalon 

does undergo  evagination, allowing a com parison of reelin expression in  the 

telencephalic vesicles of all major vertebrate classes.

3.2. Results

3.2.1. Isolation of zebrafish and Xenopus reelin cDNA clones

Two clones w ere isolated through screening of an adu lt zebrafish 

brain  cDNA library. Sequence analysis show ed that they corresponded to 

the same sequence. The longest clone (3272 bp) encodes for 1090 am ino acids 

show ing around 65% sequence identity  w ith  other Reelin proteins (fig. 1A) 

and corresponding to the m id 1/3 of m ouse Reelin (acc. no. NP035391; aa 

1550-2640).
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. Alignment of Reelin sequences.

A) Optimal alignment of amino acid sequences of human {Homo), mouse {Mus), chick {Gallus), 
lizard {Lacerta), turtle {Emys), frog {Xenopus), and zebrafish {Danio) reelin clones was obtained 
with the Clustal-X program and checked manually. The corresponding amino acid sequences are 
numbered. The accession numbers o f the sequences used here are as follows: human, NP005036; 
mouse, NP0035391; chick, AAC35559; turtle, AAC35993; lizard, AAC36362; zebrafish, 
AF427524; Xenopus, AF427525. B) A distance tree of the Reelin proteins isolated from different 
vertebrate species. The sequences isolated from zebrafish and Xenopus were compared with the 
corresponding amino acids 148-2983 of human, mouse, and chick Reelin and with zebrafish 
Tenascin-W protein. The distance tree was drawn with the Neighbor-joining program from the 
Phylip package and rooted on the zebrafish Tenascin-W. Numbers correspond to the bootstrap 
values (occurrence of presented branching after 1000 iterations). As the tree indicates, both 
zebrafish and Xenopus sequences belong to the Reelin family.
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A Xenopus reelin clone w as identified through a BLAST search. It 

corresponds to 1299 nucleotides (nt) sequence show ing h igh  sim ilarity (79%) 

w ith  n t 6884-8183 of a chick cDNA reelin clone (acc. no. AF090441).

Conceptual translation show ed that it corresponded to am ino acids 

2550-2983 of the hum an/m ouse Reelin (fig. 1A) w ith  84% identity to the 

corresponding fragm ents of other Reelin proteins. A phylogenetic analysis 

of the zebrafish and Xenopus Reelin protein sequences encoded by  these 

clones show ed that zebrafish Reelin is the m ost divergent of all Reelin clones 

isolated so far (fig. IB). The accession num bers for the tw o clones described 

here are AF427524 for zebrafish and AF427525 for Xenopus.

3.2.2. reelin mRNA expression during embryonic and larval 

development of zebrafish brain

24hpf. At 24 hours post fertilization (hpf) reelin w as expressed in 

distinct dom ains corresponding to neurons arising in different regions of the 

CNS (fig. 2A). Com parison w ith the expression of eom and  nkl.la  (M arina 

M ione personal comunication) confirmed that both  pallial and  subpallial 

telencephalon (fig.2B, C; w ith  the exception of the region that presum ably 

later forms the olfactory bulbs) caudal hypothalam us, and ventral m idbrain  

express reelin.

In the hindbrain, reelin w as expressed in rhom bom eres 2-7 and  w as 

excluded from  the boundary  zones (fig. 2D, E). In the spinal cord, reelin
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transcripts prim arily  m arked cells positioned betw een the ventral isletl- 

expressing m otor neurons and the dorsal isletl-expressing Rohon-Beard cells 

(compare fig. 2F w ith  G). This finding suggests that various spinal cord 

intem eurons express reelin, a conclusion supported  by analysis at later 

stages (see below).

40hpf. By 40 hp f the expression of reelin in  the telencephalon becam e 

m ainly restricted to the dorsal region (pallium, fig. 3A), and rem ains 

excluded from  the prospective olfactory bulb. In the diencephalon, reelin 

w as expressed m ainly in the early differentiating neurons located along the 

tract of the postoptic com m issure (fig.3A) and in the pitu itary  g land (not 

shown). Strong reelin expression was found in the presum ptive pretectum  

and mesencephalic tegm entum  (fig. 3A). Overall, this pattern  resem bles the  

distribution of the neurons that establish the early scaffold of axon tracts 

(fig. 3B). The postm itotic nature of the reelin expressing cells at this stage (as

Figure. 2. Reelin is expressed in several locations along the brain of 24 hours postfertilization 
zebrafish.

A-C: Lateral (A, B) and dorsal (C) views of reelin {rein) expression in whole embryos/brains 
showing labeling in the telencephalon (T), ventral areas in the diencephalons (Di), including the 
hypothalamus (Hy), mesencephalon (M), hindbrain (H), and in cell populations along the spinal 
cord. TeO, optic tectum. D, E) Dorsal views of hindbrains, comparing reelin and krox-20 
expression, reelin expression is present in the central domains of rhombomeres 2-7 (numbered) and 
excluded from rhombomeric boundaries(arrows in D). Krox-20 expression marks rhombomeres 3 
and 5 throughout their dorsoventral extension. F, G) Lateral views of spinal cords, comparing reelin 
and isletl expression. Reelin (F) is expressed in cells located in the intermediate columns of the 
spinal cord (in) and motomeuron (mn, marked by isletl expression) layers o f the developing spinal 
cord and is not expressed by zs/e/7-positive dorsal (presumably Rohon-Beard [RB] neurons) cells 
(G). Scale bars 200 pm in A-G.
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well as 5 dpf) w as assessed by the absence of BrdU labeling in  zebrafish 

em bryos incubated w ith  BrdU for 2 hours (figs. 3C, D).

To assess w hether the segm ental d istribution of reelin in  the h indbrain  

was indicative of an  expression in  the developing cranial nerve nuclei, reelin 

and isletl expression w ere com pared in  w hole m oun t p reparations at 40 hpf. 

At this stage, m any of the cranial nerve nuclei an d  ganglia w ere clearly 

m arked by  isletl expression (fig. 3D). By contrast, reelin transcrip ts w ere 

found in six transverse stripes spanning the m idline and appeared  to be 

excluded from  cranial nerve nuclei (fig. 3C). M ore detailed com parative 

analysis at 5 dpf show ed that the segm ental expression of reelin is confined 

to cells located m edial and  dorsal to the sensory an d  m otor cranial nerve 

colum n (fig. 3E, F). The postm itotic nature of the reelin-expressing  cells w as 

show n by the absence of BrdU labeling after 2 hours incubation w ith  BrdU 

at 40 hpf (fig.3G-H) or 6 hours incubation at 4 days (fig.3I-J).

Figure. 3. A-B: reelin (rein) is expressed in differentiating neurons.

A) Lateral views of reelin expression in a 40 hours postfertilization (hpf) brain. B) Schematic 
showing the position of early neurons and major axon pathways they establish (see, for instance, 
Chitnis & Kuwada, 1990; Wilson et al., 1990). This pattern is very reminiscent of the expression of 
reelin in A. C-F) reelin is not expressed in cranial nerve nuclei. C, D) Dorsal views of 40 hpf 
hindbrains showing reelin (C) and isletl (D) expression, reelin expression is in bands o f cells that 
span the midline, whereas isletl is expressed in cranial nerve nuclei. E,F) isletl and reelin 
expression in the hindbrain at 5 days postfertilization (dpf). F) Lateral view showing expression of 
isletl and level of section. G) Frozen section at 5 dpf showing that reelin expression (blue) and 
Isletl immunoreactivity (brown) do not colocalize. G-J) reelin is expressed in postmitotic neurons. 
G, H) Frozen transverse section through the telencephalon (G) and mesencephalon (H) o f a 40 hpf 
zebrafish stained for bromodeoxyuridine (BrdU; brown) and reelin (blue). There are no double
labeled cells. I, J) Frozen transverse section through the telencephalon (I) and mesencephalon (J) of 
a 4 dpf zebrafish stained for BrdU (brown) and reelin (blue). Dividing cells are dark brown. The 
longer exposure to BrdU (6 hours) resulted in a higher background. For abbreviations, see list page 
9. Scale bars 200 pm in A, C-J.
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3.2.3. Post-hatching development

A detailed analysis of the distribution and phenotype of the cells expressing 

reelin during  brain developm ent of the zebrafish was carried out at 5 days 

and 1-m onth post fertilization and in the adu lt brain  (6 m onths to 1 year). At 

5 days post fertilization, prom inent reelin expression was detected in  the 

dorsal telencephalon, ventral hypothalam us, optic tectum , tegm ental nuclei, 

developing cerebellum, h indbrain  and spinal cord (fig. 4A). The distribution 

of reelin at this stage (as assessed both in coronal and  sagittal sections) was 

very sim ilar to that found in 1-3 m onths old zebrafish (fig. 4B).

A t 1 m onth, the expression of reelin w as strong and well defined. The 

anatom y of the brain  at 1 m onth w as very sim ilar to the adult brain, 

allowing the identification of individual structures and nuclei. However, 

reelin expression in the adu lt brain  (6 month-1 year old) was m uch lower, to 

the extent that it w as undetectable in several structures that had  expressed 

reelin du ring  developm ent. Therefore, in order to in terpret the specific 

anatom ical structures those w ere expressing reelin at earlier stages, the adult 

brain (table I, see below) was com pared w ith expression in the 1-3 m onth

Figure. 4. reelin (rein) is expressed in similar patterns at 5 days (dpf) and 1 month postfertilization.

A, B) Sagittal sections close to the midline through the brain of 5 dpf (A) and 1-month-old (B) 
zebrafish processed to reveal the distribution of reelin transcripts. The pattern of reelin expression 
at the two stages is highly similar. Note the absence of reelin transcripts in the olfactory bulb (OB) 
and the rostrocaudal gradient of reelin expression in the dorsal telencephalon (D). At 5 dpf (A), the 
identities of thalamic (Th), preglomerular (PG) and hypothalamic (Hy) nuclei are ill-defined, 
whereas they can be identified at 1 month (B). For other abbreviation, see list. Scale bars 100 pm in 
A, B.
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old fish brain. The distribution of reelin transcripts at 1 m onth  is illustrated 

in a series of draw ings (fig. 5). To help to determ ine the identity  of neuronal 

groups expressing reelin, preparations w ere co-labeled by 

im m unohistochem istry w ith  region or cell type specific antibodies. The 

antibodies w ere against: Distalless, Isletl, Tyrosine hydroxylase, GABA and 

Zebrin. Distalless (Dll) and  Isletl antibodies identify ventral telencephalic 

and diencephalic cell populations. Isletl is additionally expressed in 

hindbrain  nuclei and spinal cord m otoneurons (Higashijima et ah, 2000). 

Tyrosine hydroxylase (TH) antibody was used  to m ark various 

catecholaminergic neural populations, the location of w hich is well 

docum ented (Rink & W ullim ann, 1998; W ullim ann & Rink, 2001). GABA 

antibody identifies several reasonably well-characterized neuronal 

populations and Zebrin (Aldolase Cantiserum) labels cerebellar Purkinje 

cells (Brochu et al., 1990).

Figure. 5. Distribution of reelin mRNA transcripts.

Drawings of a series of transverse sections through the zebrafish brain, depicting the distribution of 
reelin transcripts. A) Schematic drawing of a lateral view of a zebrafish brain, to show the levels 
and orientation of the sections in B-N. reelin transcripts are represented by black dots on the right 
side o f the sections. For abbreviations, see list page 9.
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Table I. reelin expression in adult zebrafish brain
Area 1m 6m Area 1m 6m Area 1m 6m Area 1m 6m

Telencephalon
VM + + TPp ++ +/- Isthmus

Dd ++ - Preoptic area Pretectum ni + +

Did + + PPa - - PPd - - nin + -

Dlv - - PPp - PPv - - Cerebellum

Dm ++ -H- SC + +/- PSm + + CbSg ++ ++
Vc + + Hypothalamus PSp + + CbSm - -

Epithalamus ATN ++ + Optic

Tectum

Val ++ ++

Had +/- +/- DIL ++ + TL ++ ++ Cranial n. 

nuclei

Hav +/- +/- Hd ++ + sfgs ++ -H- AON + -

Dorsal

thalamus

Hv + +/- sgp + + CON +

A + +/- LH ++ - Tegmentum DON + -

CP ++

Posterior
tuberculum

TLa ++ + LVII +

DP ++ - PGI ++ + TSc + - IRF + +/-
Ventral thalamus PGm ++ + TSvl + + Spinal cord

VL +/- + PTN + +/- RT + + VH + +/-

Comparison of reelin mRNA expression in brains of 1 month and 6 month-old zebrafish.
Expression levels range from -  (no expression) to ++ (high expression).

3.2.4. reelin mRNA expression at 5dpf and 1 month old 

zebrafish brain

3.2.4.I. Telencephalon

O lfactory bulb. N either putative in tem eurons (as m arked by TH 

im m unoreactivity, fig. 6E) nor putative m itral cells (as m arked by tbrl

83



Chapter 3 Results 1

expression, fig. 6D) expressed detectable levels of reelin (Figs. 4A,B, 5B, 6C) 

at all stages studied. The lack of reelin expression in the olfactory bulb is in 

contrast to the consistently reported expression of reelin in the m itral cell 

layer of m ouse and chick olfactory bulb.

Telencephalon. Strong expression of reelin w as detected in  areas of the 

dorsal telencephalon (D in  figures) m ainly rostral to the anterior com m issure 

(ac, figs. 4A, B; 5B-E; 6F, G, Iii, J). The subdivisions of dorsal telencephalon 

w ere no t clearly defined at 5 dpf. Com parison of reelin expression at 5dpf 

and  1 m onth show ed that reelin w as expressed in all subdivisions 

throughout this developm ental period, w ith the exception of the lateral- 

ventral and  posterior area (Dlv and Dp respectively, figs. 4A, B; 5 C, D). A t 1 

m onth  reelin mRNA w as found in num erous cells of the m edial and  dorsal 

region of the dorsal telencephalic area (Dm and Dd, respectively). Large 

scattered cells contained reelin mRNA in the central area of the dorsal 

telencephalon (Dc, figs. 5C, D, 61). Of the lateral areas of the dorsal 

telencephalon, only the dorsal one (Did) had  reelin expressing cells (figs. 5D, 

61).

reelin was also expressed at low  levels in the ventral telencephalon (V), 

by  a group of m idline cells located at the level of the ventral nucleus (Vv; 

figs. 5C, 6F, 6Iii) at 5dpf and  1 m onth. In addition, weak expression of reelin 

a t the level of the dorsal nucleus of the ventral telencephalon w as present at 

5 dpf b u t not at 1 m onth (fig.4B, 6Iii). The m idline ventral telencephalic cells 

expressing reelin w ere no t labeled w ith  Dll or TH antisera at 5 dp f or 1 

m onth post fertilization (fig. 6F and fig.6Iii). H ow ever, the ree/m-positive
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cells of the m igrated nucleus are interm ingled w ith  TH-positive cells 

(arrow heads in fig. 6Iii). Both groups of reelin-expressin cells are included in 

a larger territory expressing tbrl (fig.6Ii). Based on these observations and  

the precom m issural position of these reelin-ex pressing cells, the m ost 

convincing in terpretation was that the m idline groups are part of the central 

nucleus of V (W ullim an et al, 1996). In all telencephalic regions the cells 

bordering the ventricle do not express reelin mRNA (see also BrdU labeled 

cells in Fig. 3G-I). In sum m ary, reelin transcripts are enriched in the dorsal 

telencephalon b u t are excluded from  the olfactory bulb region. Low 

expression of reelin is found in the ventral telencephalon m ainly associated 

w ith m idline cells of the ventral nucleus and w ith  the central nucleus.

Figure. 6. Reelin expression in the forebrain.

A, B) Schematics illustrating the position o f sections in C-N. A) At 5 days postfertilization (dpf), 
B) At 1 month postfertilization. C-N) Frozen transverse sections showing gene and/or protein 
expression (indicated bottom right) at 5 dpf or 1 month post fertilization. Dorsal is to the top. C-E) 
Olfactory bulb, 1 month. Neither mitral cells expressing tbrl (D) nor intemeurons marked by 
Tyrosine Hydroxylase (TH) immunoreactivity (E) express detectable levels of reelin (C). F,G,I,J) 
Telencephalon. The highest expression of reelin in dorsal telencephalon (D) is observed in the 
medial (Dm) and dorsal (Dd) areas. In the ventral telencephalic areas, reelin transcripts are detected 
in a few cells at the level of the central nucleus (arrowheads in F, Iii) or near the midline o f the 
ventral nucleus (Vv, arrows in Iii). These cells are located in a rZ>r/-positive area (6Ii). H,K) 
Diencephalon, rostral to the optic chiasm (oc). Both dll-positive (ventral) and dll-negative (dorsal) 
thalamic nuclei express low levels of reelin. Cells of the suprachiasmatic nucleus (SC) coexpress 
reelin and dll proteins. L) Diencephalon, section through the optic chiasm (oc) showing the 
distribution of reelin transcripts in relation to TH-immunoreactive cells and fibers. M) 
Diencephalon, section caudal to the optic chiasm, showing the ventral zone of the periventricular 
hypothalamus (Hv) and many of the TH-positive cells of the periventricular nucleus o f posterior 
tuberculum (TPp) coexpressing reelin transcripts. N: At 1 month, the same nuclei as in L, M 
express reelin. For other abbreviations, see list page 9. Scale bars 100 p.m in C-H, I (applies to Ii, 
Iii), J-N.
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expressed reelin (figs. 5G; 7C,D). Strongly labeled cells were also observed in 

the m edial (called PVO by W ullim ann et al 1996) and lateral parts  of the 

dorsal periventricular nucleus (Hd, figs. 7D, E). In addition, strongly labeled 

cells were present in  the lateral hypothalam us (LH), the anterior tuberal 

nucleus (ATN) and the diffuse nucleus of the inferior hypothalam ic lobe 

(DIL; 5G-I, 7D-H). A t m ore caudal levels, reelin expressing cells w ere present 

m ainly in the lateral DIL and H d (figs. 5H, I, 7F-H). reelin w as also strongly 

expressed by  a sm all num ber of cells in the dorsal part of the  caudal 

hypothalam ic periventricular nucleus (He, fig. 7D). These cells d id  not co

express Dll or TH (figs. 7G, H). A lthough reelin seem ed to be expressed by 

m ost if no t all hypothalam ic cells, double labeling w ith TH and Dll 

antibodies clearly defines the ventral part of the caudal zone of the

Figure. 7. Reelin (rein) expression in the hypothalamus, mesencephalon, and cerebellum.

A,B) Schematics illustrating the position of sections in C-P. A) At 5 days postfertilization (dpf). B) 
At 1 month postfertilization. C-P) Frozen transverse sections showing gene and/or protein 
expression (indicated bottom right) at 5 dpf or 1 month postfertilization. Dorsal is to the top. C-E) 
Hypothalamus and posterior tuberculum. None of the hypothalamic reelin-positivQ nuclei express 
distalless or tyrosine hydroxylase (TH) at 5 dpf or later. The positive nerve fibers surround the 
preglomerular nuclei (PG), which express high levels o f reelin transcripts throughout development. 
In the mesencephalon, cells of the lateral torus (Tla) and optic tectum (TeO) express high levels of 
reelin. (F-H) Posterior hypothalamus. Dll- (F, G) and TH- (H) positive cells in the ventral part of 
the caudal hypothalamic nucleus (He) do not express reelin. I) Pretectal nuclei and optic tectum. In 
the optic tectum, expression of reelin is also detected in the granule-like cells o f the periventricular 
gray (sgp) and in large cells in the superficial layers (arrows). The latter cells are a subpopulation of 
the y-aminobutyric acid (GABA)-immunoreactive intemeurons, as shown by double labeling with a 
GABA antiserum in M (arrows point to double labeled cells). J-L) Isthmus, reelin expression in the 
torus semicircularis (Ts) and in the nucleus isthmi (ni), clearly visible at 1 month in J (for Ts) and L 
(for ni), can be traced back to 5 dpf (K). M) A subpopulation of GABA immunoreactive neurons in 
the optic tectum expresses reelin (arrows). N-P) Cerebellum, reelin expression is confined to the 
granule cell layer of the valvula (Vam in J), corpus cerebelli (CbSg in L), eminentia granularis (EG 
in L), and is excluded from Purkinje cells and molecular layers, labeled by zebrin immunoreactive 
Purkinje cell somata and dendrites (N-P). Zebrin is not expressed by Purkinje cells o f the Valvula 
(Vam, O). Arrows in L and N point to reelin position external granular layer. For other 
abbreviations, see list. Scale bars 100 pm in C (applies to C-P).
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periventricular hypothalam us (He, fig.7F-H) as the only hypothalam ic 

region that d id  not express reelin, from  5 dp f onw ard.

Pituitary. The pituitary did  not express detectable levels of reelin 

transcripts in 1-month-old zebrafish.

Posterior tuberculum. The posterior nucleus of the periventricular 

tuberculum  (TPp) w as strongly labeled w ith  the reelin probe (figs. 4B, 5F, G, 

6L-N). Few reelin labeled cells, not im m unoreactive for TH antibody, w ere 

also present in the posterior tuberal nucleus (PTN, figs. 5G, 7D,E). 

M oreover, strong reelin expression w as found in the m igrated nuclei of the 

posterior tuberculum , nam ely the preglom erular nuclear complex (PG, figs. 

4A, 5G, 7C,D). Double labeling w ith  a reelin probe and TH antiserum  

show ed an alm ost complete reciprocal exclusion of the two m arkers at all 

levels, w ith the sole exception of a subgroup of TPp neurons, w hich express 

both.

Pretectum. Reelin transcripts w ere detected in the pretectal area at 5 

dpf (Pr; fig. 7C) b u t at this stage it w as not possible to d istinguish  the 

different nuclei that m ake the pretectal complex. A t 1 m onth it w as clear that 

all the pretectal nuclei, including the parvo- and m agno-cellular superficial 

pretectal nuclei and the central pretectal nucleus, w hich are know n to 

contain tectorecipient cells, were m oderately labeled w ith  the reelin probe 

(CPN, PSm, Psp; figs. 5F, 71).

In sum m ary, in the diencephalic region m oderate levels of reelin 

transcripts were found in dorsal and  ventral thalam ic nuclei. M oreover,
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reelin was enriched in basal plate derivatives, including the hypothalam ic 

nuclei and the nuclei of the posterior tuberculum .

Eyes. Reelin was expressed in various neurons in the ganglion and 

inner nuclear layers of the retina (fig. 6F-J).

3.2 .4 .3 .M esencephalon

O ptic tectum, reelin w as expressed in a row  of cells in the stra tum  

fibrosum  et griseum  superficiale (sfgs) of the optic tectum  (figs. 5G-J, 

7C,D,I). These reelin expressing cells had  round soma and  large size and  

som e of them  were GABA positive (fig. 7M) and/or cahetin in  

im m unoreactive (not shown). Sparse large cells in  the central zone (cz) at 

5dpf also expressed reelin (cz; 7C, I). Small cells throughout the stra tum  

griseum  periventriculare (sgp) expressed low to m oderate am ounts of reelin 

(figs. 5G-I, 7C, D, I).

The highest am ounts of reelin transcripts were found in the torus 

longitudinalis, which is a granular paired eminence specific to 

actinopterigian fishes (figs. 4A, B, 5G-H, 7C, D).

Tegmentum. In the torus semicircularis, two groups of cells contained 

reelin transcripts (TS; fig. 5H, I, 7J, K). One group w as com posed of m edium  

size cells found in the anterior-m edial torus semicircularis, close to the tectal 

ventricle. The other m ore caudal group consisted of large cells in layer 4 and
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smaller cells in the ventral part (layer 1) of the lateral nucleus (layers as 

defined by Ito, 1974; arrow  in fig. 7J).

In addition, the ventral part of the rostral tegm ental nucleus (RT; fig 

5H) express reelin and  finally, the torus lateralis (TLa) was one of the m ost 

intensely labeled areas (figs. 5H, 7D, E).

In sum m ary, m any layered structures in the zebrafish m esencephalon, 

including the optic tectum  and the torus semicircularis, expressed reelin in a 

lam inar fashion.

Isthmus. In the mesencephalic subdivision of the reticular form ation 

few labeled cells w ere observed. The in terpeduncular nucleus, (Nin) w hich 

receives projections from  the habenular nuclei, expressed reelin (fig. 51, 7K). 

Dorsal to the interpeduncular nucleus, the raphe nuclei d id  not express 

reelin. Finally, the large catecholaminergic cells of the locus coeruleus d id  no t 

express reelin, bu t a group of cells located just above them  (corresponding to 

cells of the nucleus isthmi) had  large am ounts of reelin transcripts (figs. 51, 

7L). The group of reelin positive cells located just above the TH positive 

neurons of the locus coeruleus could be traced back in sections of 5 dpf 

zebrafish brains (fig. 4A, 7K).

3.2.4.4.H indbrain

Cerebellum. All three parts of the fish cerebellum, nam ely, the 

valvula, the corpus cerebelli and the caudal lobe (vestibulo-lateralis) w ith
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the lateral eminentia granularis, show ed strong reelin expression confined to 

the granule cells (figs. 4A,B, 5I-K, 7J-L). In addition, reelin is expressed by 

cells of the external granular zone of the corpus cerebelli (arrow  in fig 7L,N) 

both at 5 dpf and 1 m onth. Reelin expression was not found in  Purkinje cells 

(labeled w ith a zebrin antiserum  at 5 dpf, 7N, and 1 m, figs. O, P) and  in the 

m olecular layers of the corpus cerebelli. No gradients in reelin levels could 

be detected in  the granule cells of the three-cerebellar parts. The crista 

cerebelli w as devoid of reelin expression (CC; fig. 5K,L, 8C,D).

Cranial nerve nuclei. The m otor nucleus of the trigem inal nerve, the 

facial m otor nucleus and the abducens nucleus did  not express reelin 

transcripts at detectable levels. In contrast reelin expressing cells w ere found 

in the octaval nuclei. Am ong them , the m edial part of the dorsal octaval 

nucleus (DON) expressed m oderate am ounts of reelin mRNA throughou t its 

rostrocaudal extension (figs. 5K, L; 8C,D). reelin expression in  the dorsal 

octaval nucleus (DON) was stronger at 5 dpf (fig. 8C). In addition, few 

labeled cells were found in the anterior (AON) and posterior (CON) octaval

Figure. 8. Reelin expression in the hindbrain and spinal cord.

A,B)Schematics illustrating the position of sections in C-H. A) At 5 days postfertilization (dpf). B) 
At 1 month postfertilization. C-H: Frozen transverse sections showing gene and/or protein 
expression (indicated bottom right) at 5 dpf or 1 month postfertilization. Dorsal is to the top. C, D) 
Rostral hindbrain. Frozen transverse sections through the brainstem at the level o f the lobus VII 
(LVII). Reelin {rein) expression is localized to cells of the reticular formation (RF), to the 
descending octaval nucleus (DON) and to midline cells in lobus VII. TH, Tyrosine Hydroxylase; cc, 
crista cerebellaris. (E, F) Caudal hindbrain. Frozen transverse sections through the area postrema 
(ap). reelin transcripts are excluded from the TH-positive cells of the ap but are detected in the 
region of the medial funicular nucleus (MFn) and in the RF. (G,H) Spinal cord. At 5 dpf (G), reelin 
transcripts are expressed by cells of the dorsal horn (DH), and absent in Islet 1-positive cells in the 
ventral horn (VH); at 1 month (H) a population of ventral intemeurons dorsal to motorneurons (mn) 
and ventral to preganglionic sympathetic neurons of the intermediolateral column (IL) express 
reelin. Scale bars 100 pm.
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nuclei. The vagal lobe was devoid of reelin mRNA, w hereas the facial lobe 

(LVII; fig.8C, D) had  a few reelin positive cells.

Reticular form ation. Reelin positive cells w ere present in the central 

and lateral colum ns of the reticular formation, throughout its extension in 

the h indbrain  (fig.4A, B, 5K-M, 8C-F). The inferior olive was reelin negative 

(IO, fig. 4L 5L).

In conclusion, reelin was strongly expressed in the granule cells of all 

three cerebellar divisions and in the reticular form ation of the hindbrain , 

w hich presum ably corresponds to the hindbrain segments expressing reelin 

at early stages.

Spinal cord. One of the rem arkable differences in the distribution of 

reelin transcripts betw een 5 days and 1-month post fertilization w as found in  

the spinal cord. At 5-dpf, cryostat sections of the developing spinal cord, 

double stained for reelin transcripts and Isletl im m unohistochem istry, 

show ed reelin expression in cells of the dorsal horn and  Isletl 

im m unoreactivity in cells of the ventral horn (fig. 8G). By contrast, in  1- 

m onth-old zebrafish reelin expression w as confined to a subpopulation  of 

ventral intem eurons located dorsally to m otom eurons and ventrally to the 

preganglionic autonom ic neurons of the interm edio-lateral colum ns (IL; fig. 

8F).
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3.2.5. Reelin expression in the adult zebrafish brain

The expression of reelin w as greatly reduced in adult zebrafish brains, 

bu t low levels of reelin transcripts continued to be detected in the same 

locations as described for 1-3 m onth old zebrafish. These locations included 

the telencephalic area dorsalis (D), the thalam ic and hypothalam ic nuclei 

and the nuclei of the posterior tuberculum , the optic tectum  and the meso- 

rhom bencephalic reticular formation. Strong expression persisted in the 

torus longitudinalis and in the granule cell layer of the corpus cerebelli.

3.2.6. Reelin expression in the brain of Xenopus laevis

The lack of reelin expression in  the olfactory bulb and the diffuse expression 

in the dorsal telencephalon of fish were in contrast w ith the patterns 

reported  for land vertebrates. These differences m ay be the consequence of 

the process of eversion or the absence of lam ination or both. These are the 

major differences in  m orphogenesis of the dorsal telencephalon betw een 

teleosts and the other vertebrates. To investigate this issue further, the 

expression of reelin w as studied in the developing brain  of Xenopus laevis.

Figure. 9. Reelin expression in the brain o f developing Xenopus laevis.

A, B) reelin {rein) expression (A) and schematic drawing (B) of stage 35 Xenopus embryo. C) 
Schematic drawing of a stage 50 Xenopus brain, illustrating the position of sections in D-F. D-F) 
Frozen transverse sections showing gene and/or protein expression (indicated bottom right). Dorsal 
is to the top. D) Accessory olfactory bulb. E) Rostral telencephalon. (F) Caudal telencephalon. For 
abbreviations, see list. Scale bars 100 pm in A, D-F.
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A m phibia have an evaginated telencephalon (similar to amniotes) largely 

devoid of lam ination (similar to teleosts) due to the absence of radial 

m igration and accum ulation of telencephalic neurons near the ventricle. 

Expression of reelin in whole m ount stage 35 Xenopus em bryos (fig. 9A) 

show ed a pattern  sim ilar to that of 48-72 hpf zebrafish. Strong expression 

was visualized in the dorsal telencephalon, dorsal m idbrain (optic tectum), 

cerebellar anlage, h indbrain  and spinal cord (fig. 9A, B).

Patches of reelin expression were present in the hypothalam us, dorsal 

and ventral thalam us. By stage 50, reelin expression was strong in the 

olfactory bulb and accessory olfactory bulb of the tadpoles (fig. 9D), w here 

reelin positive cells border w ith Distalless expressing cells. Reelin expressing 

cells were also abundant in the olfactory recipient (lateral) pallium  (LP, fig. 

9D 9E). Prom inent reelin expression was present in large cells of the m edial 

pallium  aligned in a row or layer and in patches of reelin positive cells in the 

dorso-lateral region (fig. 9D 9E). Low levels of reelin expression w ere 

associated w ith  basal ganglia nuclei, including striatum , nucleus accumbens, 

ventral and dorsal pallidum  and lateral septum  (nom enclature according to 

(M arin et ah, 1998; N ieuw enhuys & Nicholson, 1998). Ventrally to the reelin 

negative lateral olfactory tract (lot, fig. 9D 9E), cells of the lateral am ygdala 

(LA) expressed high levels of reelin, as d id  the m edially located cells of the 

nucleus of the diagonal band (DB). A t more caudal levels (fig. 9E 9F), 

prom inent reelin expression was associated w ith cells of the caudal 

am ygdala (CeA), w hich also expressed Distalless proteins. Co-expression of 

reelin and Dll was also observed in the bed nucleus of the stria term inalis
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(BST), whereas the Dll-positive cells of the ventral and dorsal pallidum  did  

not express reelin transcripts.

In sum m ary, the expression of reelin in the telencephalon of stage 50 

Xenopus embryos is highly rem iniscent of the pattern  described in 

sauropsids (Bernier et al., 1999; Bernier et al., 2000).

3.3. Discussion

This chapter describes the identification of reelin sequences from  

zebrafish and Xenopus cDNA libraries, thus adding tw o new  vertebrate reelin 

genes to the list of reelin-related sequences already identified in  other 

vertebrates. The study  of reelin expression in the developing zebrafish and 

Xenopus brain has revealed major species-specific differences in 

telencephalic expression (Bar & Goffinet, 2000). First, no reelin transcripts 

were found in  the olfactory bulb. This difference could be due to the 

presence of an additional paralog reelin gene in zebrafish not isolated in this 

screen and expressed in the olfactory bulb. Second, in developing zebrafish, 

reelin transcripts w ere distributed to the majority of pallial cells w ith  no 

indication of lam inar localization, unlike in m am m als and sauropsidian 

embryos. The only telencephalic region not expressing reelin in the early 

larval zebrafish are the ventrolateral and posterior regions (Dlv, Dp), w hich 

have been related w ith  olfaction (Meek et ah, 1998).

D uring the exam ination of reelin expression in zebrafish it w as 

observed: a) the pattern  of reelin expression was highly dynam ic during  the
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first 48-72 hours, reflecting the onset of reelin expression in new ly b o m  

postm itotic neurons; b) by 5 dpf the pattern  of reelin expression becam e 

restricted to specific CNS regions and  cell populations where expression 

persisted unvaried to 1-3 m onths of age; c) the expression patterns that w ere 

conserved among vertebrate species include those related to lam inated CNS 

structures and those where com plem entary expression of reelin and  Reelin 

receptors/effectors m ay be responsible for the correct positioning of nuclei 

and cell groups. This suggests that the function attributed to the Reelin 

pathw ay during developm ent in positioning cell groups and nuclei is 

conserved in anamniotes; d) reelin expression in the brain of 1-3 m onth  old  

zebrafish was prom inent in regions of h igh  synaptic rem odeling. This 

suggests that Reelin m ay play different/additional roles w hen  

developm ent/m igration of CNS structures is completed.

3.3.1. The dynamic expression of reelin during the early 

phases of CNS development reflects the pattern of 

neurogenesis.

Domains of reelin expression appear in  quick succession th ro u g h o u t 

the CNS, in  areas w here differentiation of neuronal groups is know n to take 

place (W ullimann & Puelles, 1999; W ullim ann & Knipp, 2000). These include 

the telencephalon, the early differentiating neurons of the ventral 

diencephalon, the area of the posterior comm issure and  the nucleus of the
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m edial longitudinal fascicle. The absence of reelin expression in  d ividing 

(BrdU labeled) cells is a further indication of the association betw een reelin 

and differentiating neurons. This finding suggests that reelin m ay be 

im portant for the m igration of newly bom  neurons, for the form ation of the 

nuclei, and/or for the grow th of their axons, which form  the early scaffold of 

the future descending/ascending axon tracts (Chitnis & Kuw anda, 1990; 

W ilson et a l, 1990; Ross et al, 1992).

M am m alian Cajal-Retzius (C-R) cells of the pallial m arginal zone are 

am ong the first generated neurons in the cortical plate and are characterized 

by strong Reelin expression (Ogawa et a l, 1995). Expression of Reelin in  C-R 

cells and in the early generated zebrafish nuclei peaks after their m igration 

is completed, suggesting a role for reelin in axonal grow th or signalling to 

adjacent cells, rather than  in their m igration. M igrating cells, w hich use the 

Reelin pathw ay, usually express one or more Reelin receptor(s) and  the 

Reelin effector D abl (Howell et a l, 1997b), bu t not Reelin itself. This 

com plem entary association of cells expressing reelin on one side and  cells 

expressing Reelin receptors/D abl on the other has been observed in  the 

m am m alian cerebral cortex, retina, cerebellum, hindbrain  and spinal cord 

(Goffinet et a l, 1999; Carroll et a l, 2001).
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3.3.2. Restricted expression of reelin from 5 dpf to adulthood 

suggests specific roles for the reelin pathway in neuronal 

positioning

By 5 dpf, the pattern  of reelin expression has acquired its perm anent 

distribution. There are specific cell populations that, in zebrafish as in  all the 

other species, express reelin throughout developm ent. These m ay be 

grouped in tw o categories: those belonging to lam inated structures and 

those that are responsible for the positioning of other cell groups or nuclei 

(based on observations carried ou t in  reeler mice: Fujimoto et al., 1998; 

Gallagher et al, 1998; Lam bert de Rouvroit & Goffinet, 1998; Deller et al, 1999; 

Yip et a l, 2000; Rice & Currant, 2001). There are several lam inated structures 

in the fish brain, including the optic tectum, the torus sem icircularis, the 

cerebellum, and  the retina. In all these structures, reelin is expressed in a 

layer-specific m anner from  5 dpf to 3 m onths or later. In the optic tectum , 

two of the seven layers have reelin-expressing cells. Most of the large type I 

intem eurons of stratum fibrosum et griseum superficiale (sfgs) express high 

levels of reelin, whereas all of the granule cells of the periventricular stra tum  

express varying levels of reelin, depending on the developm ental stage 

(higher at earlier stages), reelin is not expressed by any of the other 10 or 

more cell types of the optic tectum, including the projection neurons. At 

present, it is no t know n w hether the reelin-ex pressing cells of the stratum  

fibrosum et griseum superficiale play any function in  provid ing  positional 

inform ation to other m igratory cell populations. In reeler mice, the layering
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of the superior colliculus is d isrupted, suggesting a role for the  Reelin 

pathw ay in  the structural organization of m esencephalic tectal derivatives 

across species (Frost et al., 1986). It is interesting to note that another fish 

mesencephalic structure, the torus semicircularis, which is organized in 

layers (Ito, 1974), also expresses reelin in a layer-specific p a tte rn  and 

specifically in  the periventricular layer 1 and  in the m ost peripheral layer 4.

In the m ouse cerebellum, the role of Reelin and  its signaling pathw ay 

in positioning Purkinje cells and in the architectural organization of 

cerebellar layers has been extensively studied (Goffinet, 1983; M iyata et al., 

1997). In m am m als, Purkinje cells express high levels of D a b l and a 

com plem ent of Reelin receptors (CNR, VLDL/ApoER2; Rice & C urran , 2001) 

and respond, possibly by halting their m igration, to the high levels of Reelin 

expressed/secreted by granule cells precursors in the overlying external 

germ inal layer (Herrup, 2000). One of the first observed defects in  the reeler 

m ouse w as the disruption of the Purkinje cell layer and the d isorganization 

of cerebellar structure (Mariani et al., 1977). The distribution of reelin 

transcripts in  the zebrafish cerebellum (i.e., in the granule cell layers of all 

major cerebellar divisions, including the external granular cell layer, w hich 

persists throughout fish life, described by Pouwels (1978) suggests th a t reelin 

m ay play a similar role in  fish. The role of Reelin signaling in positioning 

nuclei and cell groups is further docum ented by  the cytoarchitectural defects 

found in the h indbrain  and  spinal cord of reeler mice (Goffinet, 1984; Yip et 

al., 2000). Investigations carried out in mice have clarified the m utually  

exclusive dom ains of expression of reelin and  CN Rs/D abl in  the developing
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m ouse hindbrain and spinal cord (Carroll et al., 2001). reelin expression is 

excluded from cranial nerve nuclei and CNRs and/or D ab l are expressed by 

the trigem inal motor, facial, and hypoglossal nerve nuclei. In the m ouse 

spinal cord, CNRs and D abl are expressed in subpopulations of m otor 

neurons, whereas reelin is expressed by ventral in tem eurons located just 

dorsal to the m otom eurons (Yip et al, 2000; Carroll et al, 2001).

In the developing zebrafish hindbrain, reelin transcripts w as no t found 

in the cranial nerve nuclei, w ith the sole exception of the octaval nerve 

complex. However, reelin w as expressed by at least tw o (interm ediate and 

lateral) columns in the rhom bencephalic reticular form ation. This pa ttern  of 

expression is suggestive that reelin secreted by the cells of the reticular 

form ation has a role in creating an "avoidance" zone for m ost cells/axons of 

the branchiom otor, som atom otor, and sensory nerve nuclei. It is likely that 

the segm ental expression of reelin in the h indbrain  during  developm ent 

represents an early m arker of these neurons, which are know n to have a 

segm ental distribution (Trevarrow et al, 1990).

The pattern  of reelin expression in the spinal cord of zebrafish is 

extremely dynamic. At 24 hpf, cells throughout the spinal cord expressed 

reelin. By 5 dpf, reelin was m ainly expressed by neurons of the dorsal horn  

and is excluded from  the Isletl-positive ventral horn  cells. Conversely, in 1- 

m onth-old zebrafish, it is a population of in tem eurons, located in the 

interm ediate gray m atter that expressed reelin. This latter d istribution 

corresponds to the localization of reelin transcrip ts in  the developing m ouse 

spinal cord, where reelin expressing in tem eurons guide the positioning of
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the preganglionic autonom ic neurons of the interm ediolateral colum n (Yip et 

al, 2000).

3.3.3. Reelin expression in the developing telencephalon of 

anamniotes

The expression of reelin in the telencephalon of developing zebrafish 

differed greatly from that found in other species. Firstly, it w as absent from  

the olfactory bulb throughout its developm ent. Secondly, reelin w as not 

expressed in a layer or lam inar pattern seen in the telencephalon of m ost 

vertebrates.

The pattern  of reelin expression in zebrafish contrasts w ith  tha t found 

in developing mam m als, where reelin is prim arily  expressed in a layer of 

early bom  cells in the m arginal zone of the cortical plate (Ogawa et a l, 1995), 

and w ith  the various telencephalic reelin expression patterns described in the 

developing reptile and  avian brain (Bar & Goffinet, 2000). In zebrafish, 

strong expression of reelin is found in the majority of cells of the dorsal 

telencephalon (pallium) from 24 hpf. These cells are densely packed at early 

stages (see D in Fig. 6F, for example) and subsequently m igrate to reach their 

final position in  the m ature telencephalon, a t the periphery  of the centrally 

located white m atter tracts (compare D of Fig. 6F w ith  D d and  D m  of Fig. 61; 

W ullim ann et al., 1996).
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In mammals, Reelin has been associated w ith  the rad ial m igration of 

cortical cells (Aboitiz, 1999). O n the contrary, little is know n about the m ode 

of m igration in the everted telencephalon of teleosts and a possible role of 

Reelin in this process rem ains to be elucidated. A lthough the pa ttern  of reelin 

expression w ithin the telencephali differs, the presence of reelin transcripts 

in the dorsal dom ain (pallium) is highly conserved in  all vertebrates. 

According to recent interpretations of gene expression patterns, the 

developing vertebrate pallium  is com posed of four divisions: the m edial, 

dorsal, lateral, and ventral pallium  (Puelles et al., 2000). O n the basis of this 

m odel, reelin shows rem arkable conservation of expression pa ttern  in 

tetrapods (Bernier et ah, 1999, 2000; Goffinet et al., 1999; Bar et al., 2000). The 

gradient of increasing larger areas of reelin expression from m edial to ventral 

pallium  suggests a sim ilar gradient of the signal(s) that regulates and  

m aintains reelin expression in the developing dorsal telencephalon.

A candidate regulator of reelin expression, tbrl, is expressed in the 

same territory, both in  mice (Bulfone et al., 1995) and zebrafish (Mione et al., 

2001). In a study in the mouse, T brl w as show n to activate the  expression of 

a luciferase reporter driven by t-box binding sites from  the reelin prom oter 

(Hsueh et al., 2000). In the zebrafish dorsal telencephalon, the expression 

dom ains of tbrl and reelin overlap alm ost completely from  early stages to 

adulthood (Mione et al., 2001). Furtherm ore, additional dom ains of reelin and 

tbrl expression are present in the ventral telencephalon (this chapter). Here 

reelin is expressed in a few cells close to the m idline in  the ventral nucleus of 

the ventral telencephalic area (Vv), a nucleus tha t m ay correspond for

106



Chapter 3 Results 1

location and gene expression (Mione and W ilson, unpublished  observations) 

to the septal area of amniotes.

In m am m als and birds, strong tbrl expression is associated w ith  the 

superficial septal area and  w ith the vertical and horizontal lim bs of the 

diagonal band (Puelles et a l, 2000). In addition, tbrl and  reelin are expressed 

in a m igrated group of cells located at the level of the central nucleus of V 

(Vc). The functions, connections, and origin of Vc are largely unknow n. 

W ullim ann et al. (1996) describe it as a m igrated nucleus of the area 

ventralis, perhaps suggesting an origin from  the subpallial ventricular zone.

In the plainfin m idshipm an (Porichtys notatus), a ventral telencephalic 

small nucleus located in the same position as Vc is know n to receive 

auditory afferents (Bass et a l, 2000). In bird, auditory inputs to the ventral 

telencephalon term inate in the paleostriatum  and in an area of the dorsal 

ventricular ridge, called "field L," w hich is strongly positive for reelin 

(Bernier et al, 2000). According to recent com parative analysis of gene 

expression in the forebrain (Fernandez et a l, 1998; Puelles et a l, 2000), the 

dorsal ventricular ridge of birds, including the auditory recipient "field L," 

is part of the ventral pallium .

The reelin expression in zebrafish Vc raises the question of the 

hom ology of this nucleus w ith  other acoustic recipient, ventral pallial nuclei 

of vertebrates. Two scenarios are possible: Vc could be a m igrated p art of the 

dorsal nucleus (Vd), and, therefore, be subpallial in  nature. A lternatively, it 

could have a pallial origin and share hom ologies w ith  other ventral pallial 

derivatives, such as "field L" of birds or am ygdaloid areas of m am m als. The
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expression of tbrl in  Vc supports the hypothesis of a pallial origin of this 

area.

As in other vertebrates, the tbr 1-positive territory in fish is larger than  

the ree/m-positive dom ain. In chicks the entire dorsal ventricular ridge is 

m arked by  tbrl expression, w hereas strong reelin expression is only detected 

in "field L" (Bernier et al, 2000). In the m ouse both centrom edial and  

basolateral divisions of the am ygdala express reelin (Alcantara et al., 1998), 

whereas ventral telencephalic tbrl expression extends to other cell g roups 

beyond the am ygdala (Bulfone et al, 1995). In Xenopus (see above), the 

lateral, m edial, and caudal am ygdalar populations express reelin, b u t no 

detailed data are available on T-box gene expression in  the telencephalon. 

A ltogether these observations suggest that the conservation of spatial 

dom ains of reelin expression in the forebrain m ay be due to conserved 

expression and activity of upstream  T-box genes.

The differences in reelin expression in the telencephalon of the 

zebrafish com pared to the other vertebrates are not easy to explain and 

could be related to the m orphogenesis of this structure. To gain insights into 

these issues, it is im portant to clarify several points: (1) if the distribution  of 

reelin transcripts in the dorsal telencephalon is related to the eversion 

process. (2) If the expression of reelin in  the ventral telencephalon is due to 

the presence of ventrally positioned pallial cell groups w ithin the subpallial 

territory. The expression of reelin w as analyzed in  another anam niote, 

Xenopus laevis, in w hich the telencephalon evaginates b u t no m ajor 

m igration or lam inar organization of dorsal telencephalic cells have been

108



Chapter 3 Results 1

reported to occur. As expected, reelin expression is found in  the dorsal 

telencephalon in Xenopus. Transcripts are present in  the olfactory bulb  and 

accessory olfactory bulb. Therefore, unless a paralogous reelin gene is found 

in zebrafish, the absence of reelin expression in the zebrafish  olfactory bulb 

m ight be a peculiarity of teleosts.

In the Xenopus telencephalon, a single layer of large neu rons in the 

m edial pallium  expresses reelin, as blocks of cells do in  the dorsal and  lateral 

pallium . This pattern  is highly reminiscent the expression of reelin in  the 

sauropsid brain (Bar et al., 2000) and suggests that the  distribution of reelin 

transcripts in the developing telencephalon of vertebrates is sim ilar for all 

evaginated telencephali. The pattern  of reelin expression, thus, m ay be 

related w ith  the m orphogenetic process (eversion vs. evagination) 

underlying telencephalic formation, rather than w ith  the degree of radial 

m igration of telencephalic cells.

Indeed, no radial m igration of telencephalic neurons occurs in 

Xenopus (Northcutt, 1981). However, the pattern  of reelin expression hard ly  

differs from  that found in the telencephalon of b irds and reptiles, w here 

radial m igration does occur (Bar & Goffinet, 2000). Cells that express reelin in  

the ventral telencephalon of Xenopus are found in  the nucleus of the 

diagonal band and  in  the lateral and caudal am ygdala, w hereas the 

subpallial striatum  and pallidum  are m ainly devoid of reelin transcripts. This 

suggests that the dom ains of reelin expression identified  in  the  ventral 

telencephalon of zebrafish and other vertebrates, w hich  also express tbrl,
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m ay be associated w ith the territory corresponding to the nuclei of the 

ventral pallium  of Puelles et al. (2000) rather than  w ith  subpallial nuclei.

3.3.2. Why there is so much reelin in the young/adult brain 

of vertebrates?

The presence of large am ounts of reelin mRNA in the adult b rain  is 

constantly reported in  all vertebrates (Ikeda & Terashima, 1997; A lcantara et 

al, 1998) including the adu lt zebrafish. In the postnatal telencephalon of 

mam m als, Reelin is associated w ith GABAergic inhibitory in tem eurons of 

various classes (Pesold et al, 1998) and w ith  developing axon tracts, 

including hippocam pal entorhinal afferents, w hich are severely d isrup ted  

upon  rem oval of local Cajal-Retzius cells or application of Reelin blocking 

antiserum  (Del Rio et a l, 1997; Nakajima et al, 1997; Borrell et a l, 1999).

Reelin localization and function in the adult brain are related  w ith 

m odulatory or inhibitory synapse stabilization and dendritic re-m odeling. 

Reelin molecules, possibly secreted by GABAergic intem eurons, assem ble 

multimeric complexes through their F-spondin dom ains at the level of the 

dendritic spines of cortical pyram idal neurons, w here they are held together 

by m em brane bound alpha3betal Integrins and CNR molecules (Rodriguez 

et a l, 2000; Utsunom iya-Tate et a l, 2000). These complexes, in addition  to 

stabilizing the organization of the synaptic cleft, are thought to signal 

through the receptor molecules and  prom ote the stabilization of dendritic  

spine m icrotubules through D abl phosphorylation and interactions w ith
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various cytoskeletal com ponents (Stockinger et al., 2000; Feng & Walsh, 

2001). It is interesting to note that in zebrafish, h igh  levels of reelin are again 

associated w ith  regions of dendritic spine re-m odeling, such as the well 

developed spiny dendritic trees of type I neurons in the optic tectum . Most 

of the regions expressing reelin in  1- to 3-m onth old zebrafish are 

m ultisensory integration centers, suggesting an involvem ent of the Reelin 

pathw ay in synaptic organization or plasticity in these centers. A relation 

betw een reelin and m ultisensory integration centers is also suggested by the 

expression of this molecule in the zebrafish telencephalon. Clearly, in 

teleosts reelin expression cannot be associated w ith  the developm ent of 

lam ination; a process that itself has been proposed to lead to m ore efficient 

integration of m ultisensorial inform ation (Reiner, 2000). For example, the 

dorsal pallium  exhibits lam inar organization (cortex) in  am niotes b u t is 

organized into a rather sim ple and compact group of small cells in zebrafish. 

However, in this structure too, it is likely that reelin expression plays a role 

in the integration of sensory afferent inform ation received by  dorsal 

telencephalic areas from tectal or diencephalic sources.

Indeed, reelin transcripts are also found in the dorsolateral (Did) and 

m edial (Dm) part of the dorsal telencephalic area, regions suggested sharing 

hom ologies (in functions, connectivity, cell types, or origin) w ith  the m edial 

pallium  and lateral am ygdala of other species (Bradford, 1995; Kapsim ali et 

al., 2000). A lthough it is no t clear to w hat extent the organization and 

function of actinopterygian D id and Dm  resem ble those of the m edial and 

ventral pallium  of other vertebrates, their pattern  of connections suggest that
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they are centers of integration of m ultisensory inform ation. They receive and 

integrate acoustic, m echanosensory, som atosensory, and viscerosensory 

stimuli from  preglom erular, thalamic, and  hypothalam ic sources 

(N ieuw enhuys et al., 1998). As w ith other integrative areas of the zebrafish 

brain, they express reelin, reinforcing the hypothesis of a link betw een 

Reelin, sensory inform ation processing and complex synaptic organization. 

As suggested by Perez-G arda et al. (2001), the different d istributions of 

reelin-ex pressing cells in the developing telencephalon of vertebrates m ay 

correlate w ith differences in the orientation and distribution of the dendritic  

trees of the p rin d p a l neurons, which differ greatly betw een spedes. This 

interpretation also establishes a link betw een the pattern  of reelin expression 

during developm ent and in the adult, and  suggests that m anipulations of 

reelin expression m ay lead to abnorm alities in the distribution of dendrites. 

This hypothesis is testable in zebrafish and required further investigation in 

reeler mice. In fact, it is clear that defects in synaptic organization m ay have 

not been evident in reeler and scramblerlyotari m utants, w hich die before the 

vast majority of synaptic circuitries are refined, additional focused studies 

m ay be required.

W ith the establishm ent of the zebrafish as a m odel for behavioural 

studies and w ith the developm ent of specific tests, it w ill be possible to 

address the role of the Reelin pathw ay in sensory processing, exploiting the 

w ealth of molecular and genetic techniques available in  this species. 

Moreover, the study of molecules dow nstream  the Reelin signaling will help
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to elucidate the functions of this molecule that is highly expressed 

throughout the developm ent of the vertebrates.

In the next chapters I will present results concerning zebrafish 

disabledl (dabl) that is the m ain intracellular effector of Reelin. I will focus on 

the genetic organization of the coding region and I will describe prelim inary 

studies about the functions of this molecule during zebrafish developm ent.
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CHAPTER 4

4. Result 2. Danio rerio dabl is 

alternatively spliced and gives rise to 

tissues-specific isoforms

4.1. Introduction

D isabledl is the m ain intracellular effector of Reelin. The m utan t mice 

scrambler and  yotari display phenotypes similar to those found  in the m ouse 

m utant reeler at the level of neuron migration. Recent analysis of h u m an  and 

m ouse Dabl genomic sequence has revealed a very complex gene structure. 

M am m alian dabl is composed of 14 exons, spanning over 1.1 Mb and  giving 

rise to at least five alternative tissue-specific splicing events in mice plus 

several 5 '-untraslated regions (UTRs) w ith  different prom oters (Bar et al., 

2003).

In this chapter I present a study of zebrafish dabl gene tha t show s a 

high  degree of complexity in its genomic structure, w hile its different 

isoforms show tem poral and tissue specific expression sim ilar to M am m als 

(Bar et al., 2003).
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4.2. Results

4.2.1. Cloning of zebrafish Dabl

A zebrafish disabledl (dabl) cDNA done  w as identified through library 

screening. This d o n e  encoded for a protein of 538 am ino acids show ing h igh  

similarity to other D isabledl proteins (fig.l, 2 and3A) and  w as nam ed danio 

rerio disabledl, transcriptional variant 1 (dabl_tvl, genebank, acc. No. 

DQ166810). RT-PCR analysis (see below) revealed the existence of a second 

transcriptional variant (dabl_tv2, genebank acc. No. DQ166811). C om parison 

of the longest isoforms of D abl from  several spedes yielded the 

phylogenetic tree show n in  fig.2.

The genomic structure of the zebrafish dabl gene w as analyzed using  

the genomic sequence provided by the Sanger Institute and the pred icted  

exon/intron structure was validated w ith RT-PCR and in situ hybridization.

Figure. 1. Sequence analysis of zebrafish dabl.

A) Alignment of amino acid sequences of human, primate, mouse, rat, chick, worm, fly (truncated 
at aa 693) and zebrafish clones was obtained with the Clustal-X program and checked manually. 
The accession numbers o f the sequences used here are as follows: Homo NP 066566; Mus P97318; 
Rattus NP_705885; Gallns NP_989569; Macaca Q9BGX5; C. elegans NP 495732; Drosophila 
NP_066566 and zebrafish. aa identical in all species are shown in red in a grey background, aa 
identical in all vertebrate sequences are shown in blue. Conserved aa are shown in black on a grey 
background, Consensus sequence is at the bottom. Note that aa belonging to exon 8 in zebrafish 
Dabl are in green, whereas aa belonging to exon 9 are in orange. B) UCSC Zebrafish Genome 
Browser Blat alignment, representative view (http://genome.ucsc.edu). Genome mapping and 
alignment of Dabl-tv 1 and Dabl-tv2 on the contig BX248232.il. The red bars underline the two 
exons skipped in Dabl-tvl. The sequence XM_681536.1 is predicted by the automated 
computational analysis program GNOMON at NCBI (http://www.ncbi.nlm.nih.gov/) and supports 
the structure o f Dabl-tvl and Dabl-tv2 for the last 2 exons, together with the Zebrafish EST 
CN838961. The last three rows represent a 'chained alignment' of human DAB1 ESTs with D.rerio 
Dabl tvl and Dabl tv2.
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--------MSTETELQVAVKTSTKXDSKKKGQDRSIATLIKRFXGDGVRYKAKLIGIDEVSAARGDKLCQDSMHKLKGIVAAARSKGEHKQKIFLTVSF
--------MSTETELQVAVXTSAKKDSRKKGQDRSIATLIKRFKGBGVRYKAKLIGIDBVSAARGDKLCQDSMHKLKGWAGARSKGEHKQKIFLTISF
--------MSTETELQVAVXTSAKKDSRKKGQDRSBATLIKRFKGBGVRYKAKLIGI DEVSAARGDKLCQDSNMKLKGWAGARSKGEHKQKIFLTISF
--------MSTETELQVAVKTSAKKDSRKKGQDRSRATLIKRFKGEGVRYKAKIIGIDEVSAARGDKLCQDSKMKLKGWAGARSKGEHKQXIFLTISF
--------MSTETELQVAVKTSAKXDSRKKGQDRSKATLIKRFKGBGVRYKAJaiGIDBVSAARGDKLCQDSMMKLKGWAGARSKGEHKQK IFLTISF
--------MSTEAELQPAARPSV*KDSIK*GQDRSEAALIKRPXGD6VRYKAKLIGIDEWAARGDKLCQDS(MKLKGIAASARSXGEHKQKVFLTVSF
----------------------- mkktqlgrsfsksfkqkkarasnassdpfrfqnngisykgxligbqbvdkargdamcabamrtaksiixaa-- GAHKTRITLQINI
hvkslvaklstassnlslastfgggsgaaeetwyakhrndpgrffgdgvqfkafligilewarpevigcarrrckiskwhpggwr AQAAITIHVTI

mstetelqvavktsakxdsrkkgqdrseatlikrfkgegvrykakligipevsaargdklcqdsmmklxgwagarskgehkqxifltisf 
101 200
GaiKIFDKKTGLLQHRHAVHEISYIAXDTTCRRAFGYVCGKEGN-HRFVAIKTAQAAEPVILDLRDLFQLIYELRQR----------EENEKKAQKDKQ
GGIKIFDBKTGALQBHHAVHEISYIAXDITCBRAFGYVCGKEGN-HRFVAIKTAQAABPVILDLRDLFQLIYBLKQR----------EELEKKAQKDKQ
GGIKIPDBKTGALQHHHAVBEISYIAKDITDHRAFGYVCGKEGN-HRFVAIKTAQAABPVILDLRDLFQLIYELKQR----------EELEKKAQKDKQ
GGIKIFDEKTGALQHHHAVHEISYIAKDTTDHRAFGYACGKEGN-HRFVAIKTAQAAEPVILDLRDLFQLIYELRQR----------EELEKKAQKDKQ
GGIKIFDEKTGALQBBHAVBEISYIAKDITDHRAFGYVCGKBGN-BRFVAIKTAQAAEPVILDLRDLFQLIYELKQR----------EELEKKAQKDKQ
GGIRIFDHK8GVLQBBHAVBBISY1AKDITCHRAFGYVCGKEGN-BRFVAIKTAQSAERVILDLRDLFQLIYUKQR----------EEJEKKAQKDKQ
D6UWLDEK8GAVLHNFPVSRISF ' R“ SSCARAFGLVYGE PGGKYKFYGIKTAQ AADQAVLAII- H W F  IKK-------------------- KQ
DGIHLRI::r.TGDSLIHHPVHKISF. YDHTCSRAFGYIFGSPDSGHRFFGIKTDKAASQWLA1I! DLf WFELKKKEIEMARQQIQGKSLHDH8SQLAS 
GGIKIFDEKTGALQBHHAVHEISYIAKDITDHRAFGYVCGKEGN HRFVAIKTAQAAEPVILDLRDLFQLIYELKQR EELEKKAQKDKQ
201 300
CEQAVYQTILEEDVlDPVYQYIVFBAfiHEPIRBFETKENIYQVFTSQKKEGVYDVPKSQP------------------------------ VSAVTQL
CEQAVYQTILEEDVEDPVYQYIVFBAfiHEPIRDPETEENIYQVPTSQKKEGVYDVPKSQP------------------------------ VSAVTQL
CEQAVYQTILEEDVEDPVYQYIVFEAGHEPIRDPETEENIYQVPTSQKKEGVYDVPKSQPNSQPLEDFESRFAAATPHRNLSMDFDKLLEATKVSAVTQL
CEQAVYQTILEEDVEDPVYQYIVFEAGHEPIRDPETESNIYQVPTSQKKEGVYDVPKSQP------------------------------ VSAVTQL
CEQAVYQTILEEDVEDPVYQYIVFEAGHEPIRDPETEENIYQVPTSQKKEGVYDVPKSQP------------------------------ VSAVTQL
CEHAVYQTILEEDVEDPVYQYIVFEASBEPIRDP-SEESIYQ   NINQL
IE QVKQQQIQDGG AEISSKK EGGVAVADLLDLESELQQIERG---------------------------------------------- VQQL
LSSLKSSGLGGM3LGHSDLASGGISSGHALTLLGSSL3TTNGTSRLGVSLDVAKASGSAAKBVSPBSVADLVDLEQELTSLQRGISQMBRITPNFPTT3S 
CEQAVYQTILEEDVEDPVYQYIVFEAGHEPIRDPETEENIYQVPTSQKKEGVYDVPKSQP VSAVTQL
301 400
ELFGDMSTPPDFTSPPTPATPGDAFIPSSSQSLPASTD8FGSVPFSTAAVPSGYVAMGAVLPSIWGQQPLVQQQVAMGAQPP— VAQVMQGGQPIAVfGQP 
ELFGDHSTPPDITSPPTPATPGDAFLPAPSQTLPCSADVFGSiSFGTAAVPSGYVAKGAVLPSFWGQQPLVQQQiAMGAQPP— VAQVIPGAQPIAMGQP 
ELFGDHSTPPDITSPPTPATPGDAFLPSSSQTLPGSADVFGSIISFGTAAVPSGYVAMGAVLPSFWGQQPLVQQQIAMGAQPP--VAQVIPGAQPIAWGQP 
ELFGDMSTPPDITSPPTPATPGDAFXPSSSQTLPASADVFGSTPFSTAAVPSGYVAMGAVLPSFWGQQPLVQQQK'/MGAQPP— VAQVMPGAQPIAWGQP 
ELFGDMSTPPDITSPPTPATPGDAFlPSSSQTLPiSADVFSSTOFGTAAVPSGYVAMGAVLPSFWGQQPLVQQQMVMGAQPP— VAQViPGAQPIAHGQP
ELFGDMSTPPDITSPSTPASPANTLDP LLAHQTPSELFTPFNPASVPSGYVTMGAVPPABAQQQFAAQAPLAFGVQSPVQVAQVLPGTQPIiIWGQA
S----- TVPTHCDAFGASPFGDPFVDS-------FNS-------TATSNGTAHHSGTQVPFGGLQLPQVQQHQMPHVQIP----------------
TGGAGHPSLAKSASEDDPFGDSFIJVPSYSILPPPPD3GRNRBKPPNKTPDAVTSLDAHLSPPPGT3SSBG3ASAGLQAADNDDDNWLQELDQQNDVFDT 
ELFGDMSTPPDITSPPTPATPGDAFIPSSSQTLPASADVFGSVPF TAAVPSGYVAMGAVLPSFWGQQPLVQQQIAHGAQPP VAQVKPGAQPIAWGQP 
401 500
GJFLPAQQPWPgVAG-QFQPTAFKPTQTVlPLQAAMFQGTXAPIAT------------ VPPTSDSNRSSP---- QTDRPRQKMGKEBFKDFQMAQPP
GLFPATQQPWPTVAG-QFPPAAFHPTQTVHPLPAAKFQGPLTPLAT------------ VPGTNDSARSSP---- QSDKPRQKMGKEBFKDFQMAQPP
GLFPATQQAWPTVAG-QFPPAAFHPTQTVMPLAAAHPQGPLTPLAT------------ VPGTNDSARSSP---- QSDKPRQKMGKESFKDFQMVQPP
GLFPATQQPWPTVAG-QFPPAAFKPTQTVKPLPAAHFQGPLTPLAT------------ VPGTSDSTRPSP---- QTDKPRQKMGKETFKDFQMAQPF
GLFPATQQPWPTVAG-QFPPAAFKPTQTVKPLPAAKFQGPLTPLAT------------ VPGTSDSTRSSP---- QTDKPRQKMGKETFKDFQMAQPP
NLFPATQQQWAAIAGAHFSPAAFMPAQTVGPLPAAHFQ-TLAPNAVPASCETPTAAIIGGAVAGTSASTASSPQ-BGERTLQRQAKNSKENFKSFQKAKPP
 QQSHQNWPTSSAGSFDAWSQQQQQ----- QQMBHAHSTPAFG--------------- TNGFSDTNPF-ASAFNTQARHHBFQLIiLQHNWI RSL
SKWSSSGLGSVLAMAPLASSESTATPTQQLTEVAAGSGPLADLDIGLSTALGNBEQTSTILSLDAFTDLDPLGTGRTRPYVDKKYFFQELKNPFKKLLK 
GLFPATQQPWPTVAG QFPPAAFKPTQTVHPLPAAHFQGPLTPLAT VPGTSDSTRSSP QTDKPRQKMGKEMFKDFQMAQPP
501 600
PVPSRKPDQPSLSCTSEAFSSYFNKV(3IAQ«ADDCDDFDISQLNLTPVTSTTPSTNSPPTPAPRQSSPSKSSASBTSDPAADDLFE1GFESPSKS-EEQE
PVPSRKPDQPSLTCTSEAFSSYFNKVGVAQDTDDCDDFDISQLHLTPVTSTTPSTNSPPTPAPRQSSPSKSSASHVSDPTADDIFEEGFESPSKS-EEQE
PVPSRKPDQPSLTCTSEAFSSYFNKVGVAQDTDDCDOFDISQLNLTPVTSTTPSTNSPPTPAPRQSSPSKSSASHVSDPTADDIFEEGFESPSKS-EEQE
PVPSRKPDQPSLTCTSEAFSSYFNKVGVAQDTDDCDDFDISQLNLTPVTSTTPSTNSPPTPAPRQSSPSKSSASHASDPTTDDIFEEGFEEPSKS-EEQE
PVPSRKPDQPSLTCTSEAFSSYFNKVGVAQDTDDCDDFDISQLNLTPVTSTTPSTNSPPTPAPRQSSPSKSSASHASDPTTDDIFEEGFESPSKS-EEQE
AKI«RKG»QPSLfiCTTDAFSSYFSHV(3!AQDTDDCDDFDISQIINSHRHFTTPPQLTPP RPSAESPSSLIHASDPPTDDSFGEAEGSPSUSGEEDA
YIPLLFQIQILIGLELGLRKRIWHKLLISNNS-------S RHCITPALLPTLEIIRPKPGVKRR--------------------------------
ELSSGSQAGLGLGLSLGQLDGLFPE DSTTI STTTTTATNITAVLTN'RYSNTI IAQRKXSLTTEMHILYYDFRWHHFWRNFFSVQLEIALSKQLSKVCTC 
PVPSRKPDQPSLTCTSEAFSSYFNKVGVAQDTDDCDDFDISQLNLTPVTSTTPSTNSPPTPAPRQSSPSKSSASH SDPT DDIFEEGFESPSKS EEQE 
601 700
APDKSQASSNSDPFG----------------- EPTGDTISPQVGS-------------------------------------------------
APDGSQASSTSDPFGEPSG------------- EPSGDNISPQDGS-------------------------------------------------
APDGSQASSTSDPFGEPSG------------- EPSGDNISPQDGS-------------------------------------------------
APDGSQASSHSDPFGEPSG------------- EPSGDNISPQAGS-------------------------------------------------
APDGSQASSNSDPFGEPSG------------- EPSGDNISPQAGS-------------------------------------------------
AGDCFQSPGASBPQAEPESSETDSPQGKDPLYAQINKGKNIiKHHGNSAQT----------------------------------------------

TAGNPQQNSANTLTSTASTAASLGQLLSTVALNPDPLPAPISIPTSISHSITPSAELKLLLGHVTNPPNPTGHYYTTEPPTLTSLENPHPPADPVLLPRD 
APDGSQASS SDPFGEPSG EPSGDNISPQ GS
701 800

B
Base Position 04270000 I 94280000 I 04200000 I 04300000 I 04310000 I 
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7 n « 5 - N u x n b

Gallus D ab l

Rattus D ab l

■Mas D a b l

■Macaca D ab l

Homo DA B1

■Danio Rerio D ab l

C. elegans Dab

■Drosophila Dab

Figure.2. A distance tree of the dabl proteins as in fig. 1.

For the Drosophila protein it was used the full-length clone. The distance tree was drawn with the 
Neighbor-joining program from the Phylip package and rooted on mouse Numb (accession number: 
Q9QZS3).
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4.2.2. Identification of three genomic clones encoding dabl

It was possible to screen electronically the zebrafish genomic database 

at NCBI using stretches of sequences of about 30 nucleotides of zebrafish 

d a b l jv l  and three clones covering m ost of the genomic sequence of dabl 

w ere identified. The size, coding sequences and contig assembly of these 

three BAC clones are show n in fig. 3.

Analysis of the sequences of the 3 BAC clones revealed that d a b ljtv l  

w as encoded by 13 exons, m ainly corresponding to those present in  m D abl- 

555 (fig. 3A). However some exons differed or were m issing suggesting that 

d a b l jv l  was one of several possible combinations of exons transcribed from  

the zebrafish dabl gene. M ost of all, the region containing the stretch of 

tyrosyl residues, know n to be im portant for signaling, differed notably from  

that of m ouse Dabl-555. This w as suggestive of the presence of genom ic 

sequences for additional exons encoding the missing tyrosine residues (see 

below).

The dabl-coding region starts in  exon 2, w hich harbors the start codon, 

and  ends in exon 15 (fig. 3 A). The position of the exons in the three BAC 

clones is show n in fig.3A. A lthough partially conserved, exon 14 does no t 

contain a stop codon as in the hum an and in the m ouse. The organization 

exon-intron and the splice junctions followed m ostly the GT/AG rules. 

H ow ever intron 9 has a GG/AG junction (table I). The length  of the exons is 

sim ilar to that of the same exons in  the other species studied, w hile introns 

have variable length (table I).
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The Protein Interaction/Phosphotyrosine Binding Dom ain (PI/PTB) of 

D abl, which binds the Reelin receptors is encoded by exons 3, 4, 5 and  6, 

while the phosphorylation dom ain containing five tyrosine residues is 

encoded by exons 6 (Tyr185), 7 (Tyr198), 8 (Tyr200 and Tyr220) and 9 (Tyr232) 

similar to m ouse and hum an Dabl. The carboxyl-terminal sequence 

containing a consensus sequence for the serine/threonine kinase Cdk5 w as 

found in exon 13, as in m ouse Dabl-555 (fig. 3B).

4.2.3. Comparison of alternative splicing event of mouse and 

zebrafish dabl genes

Although the genomic structure of dabl is highly conserved am ong 

vertebrates, there are differences in  the alternative splicing events repo rted  

to occur in the various species studied. The zebrafish clone d a b l jv l  encodes 

for a protein containing the PTB dom ain and the serine residue  

phosphorylated in vitro by  Cdk5 (Keshvara et al.f 2002) bu t lacks exons 8 an d  

9. These tw o exons encode for tyrosine residues Tyr200, Tyr220 and Tyr232 th a t 

m ay be im portant in  Reelin singalling. Indeed, mice expressing a m uta ted

Figure.3. Organization of the dabl gene

A) Comparison of human, mouse, chick and zebrafish dabl genes with exons (grey blocks) and 
introns (broken lines). Exons are numbered. The exons encoding for the PTB domain are 
underlined; the positions of the 5 tyrosines are shown (Y). Start and stop codons are indicated. 
Below, the genomic clones (zebrafish Bacs), used for reconstruction of the organization o f the 
zebrafish dabl gene: Clone CH211-132C16 (violet), clone Dkey 242M13 (blue) and clone CH211- 
23215 (green). Orientation and length are shown. B) Position of the primers on dabl_tv2. C) 
Analysis of the RT-PCR products amplified from the sages indicated. Control: no RT. On the right, 
predicted size of the amplicons. Size of the exons can be found in Table I.
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4.2.4. D evelop m en ta l p ro file  o f alternative sp lice  form s expressed  in  

zeb rafish

To identify expressed dabl isoforms in  zebrafish and  determ ine their 

developm ental profile w ere used RT-PCR and in situ hybridization analysis 

w ith oligos or probes designed to identify specific exons. Firstly it w as 

found that dabl is expressed m aternally and continues to be expressed 

before and after gastrulation (fig. 2 C and fig.4 A and B). Interestingly, also 

m ouse Dabl-555 is expressed in pre-gastrulating em bryos (expression profile 

of cDNA libraries at NCBI Unigene and Howell et al.r 1997a). Second, at 

least three alternative splice forms of dabl were expressed at different stages 

during zebrafish developm ent (fig. 2 C).

Using primers for exons 5 and 10 (fig. 2 B) that am plify th rough  the 

zone rich in tyrosines, a single band was am plified un til 8 som ite (s) stage, 

whereas from  24-30 hours post fertilization (hpf) a second larger band  was 

also amplified w ith the sam e prim er pair. Both bands persist un til at least 1- 

m onth stage (fig. 2 C). Sequence analysis of the tw o PCR bands show ed that 

the sm aller band, expressed throughout developm ent, corresponds to 

dab ljtv l. The larger band  contains sequence of tw o additional exons (exon 8 

and 9). Thus a second isoform, dabl-tv2, sim ilar to m ouse Dabl-555, was 

identified. To better investigate w hich isoform s w ere expressed and when, 

different combinations of reverse prim ers specific for exon 8 or exon 9 w ith
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the forw ard prim er specific for exon 5 w ere used. One, tw o or three bands 

were obtained w hen using reverse prim ers for exon 8, 9 or 10.

Finally, the presence of both  exon 8 and  9 or solely of exon 9 

sequences in the RT-PCR bands w as confirm ed by sequence analysis. Thus, 

a th ird  variant, containing exon 9, b u t no t exon 8, w as also identified 

through RT-PCR.

4.2.5. Occurrence o f alternatively sp liced  D a b l iso form s in  

Vertebrates

In order to better characterize dabl_tvl and  dabl_tv2 isoform s, their 

sequences (containing exons 8 and 9) w ere aligned w ith  the Zebrafish 

Genome (Zv4, Sanger Institute) using the BLAT tool at UCSC and  it w as 

found that both transcripts aligned w ith  the genomic sequence starting from  

exon 4. Moreover, dab_tvl aligned w ith dabl_tv2 in  exon 5, 6 and  7, skips 

exon 8 and 9, and then aligned w ith the last 4 exons of dabl_tv2. The last tw o 

exons (14 and 15) were supported by an EST belonging to a cDNA library 

prepared from adult brain.

Furthermore, a reference (RefSeq XM_681536) predicted by  NCBI 

using GNOMON, an autom ated com putational gene prediction m ethod w as 

found throughout BLAST search it and th is sequence aligned perfectly w ith 

dabl_tv2 and dabl_tvl (fig.3B). The lack of genomic sequences supporting  

the first 4 exons suggested that the Zv4 assem bly d id  not place them  in the 

right contig. However, 2 of the 3 clones (BX085194 and  BX248232) will
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appear arranged as described in this Chapter in  the next Vega release 

(http://vega.sanger.ac.uk/Danio rerio/ personal com m unication, Dr. M ario 

Caccamo, Sanger Institute).

The alignm ent w ith  non-zebrafish mRNAs revealed that mRNAs 

belonging to different species (Homo, M us M usculus, Gallus) all coding for 

different transcripts of disabledl w ere m apped to this zebrafish genom ic 

region.

An investigation into the conservation of the sequences of the 

zebrafish dabl_tv2 exons 8 and 9 w as carried ou t in different species, 

nam ely, m ouse, hum an, chick and zebrafish to find ESTs tha t lack these tw o 

exons. Using BLAT at UCSC it was found that these tw o exons are very 

conserved in all species, w ith  only a few ESTs lacking exon 8 (3 hum an, 1 

m ouse and  1 chick). Exon 9 was less conserved at the nucleotide level and  

aligned perfectly only w ith  the hum an sequence. H ow ever ESTs lacking this 

exon were not found in any species.

4.2.6. Expression pattern of dabl during zebrafish 

development

RT-PCR assays at several stages show ed the presence of dabl isoform s 

from  m aternal stage to 1-month. Subsequently, in situ hybridization assay
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perm itted to determ ine the spatial localization of dabl transcripts in  tissues 

of the zebrafish embryo.

A digoxigenin probe for dab ljtv l show ed ubiquitous expression from  

m aternal stages to tail bud  and then the signal becam e restricted to CNS 

regions as developm ent progresses (fig.4 A-D). O n the contrary, reelin is not 

expressed m aternally bu t starts to be detected at tail b u d  stage in  the head  

and the tail (fig.4 E-H). reelin and dabl signals increased at 24 hp f and  

reached a peak at 48 hpf, and  continue to be expressed un til adulthood as in 

all other vertebrates.

4.2.6.I. reelin  and d a b l  are expressed  in  several areas o f the C N S

At around 10-15 somites dabl_tvl is expressed in the forebrain, 

hindbrain and in the tail at the level of the spinal cord, while reelin is w idely 

express in almost all CNS regions (fig.4 C, D and G, H).

Figure. 4. Expression patterns of dab_tvl (A-D, I, K, K’and L), reelin (E-H and O) and cdk5 (J) in 
zebrafish embryos at several stages of development.

In A lateral view of an embryo of 16 cells stage; d a b l jv l  is expressed in all the cells. B) At tailbud 
(tb) stage d a b l jv l  is expressed all over the embryo (lateral view). At 13-16s d a b l jv l  is localized 
in the head at level of the forebrain and hindbrain (lateral view), reelin starts to be expressed at tb 
stages (E dorsal view and F lateral view) in the presuntive head and in the tail (arrow). At 10s reelin 
expression in the tail disappears (G lateral view) and at 16s (F lateral view) is at level o f all CNS. In 
K and K’ (trasversal section of K) double in situ hybridization for d a b l j v l  and immuno against 
construct fused with GFP that stains germs cells (Koprunner et al., 2001)) at 24hpf stage. Germ 
cells (brown arrows) are surrounded and co localizes with d a b l jv l  (blue arrows) .At 24 and 40hpf 
(I and L dorsal views) d a b l jv l  is at level of the lateral columns of the hindbrain, where cdk5 (J; 
24hpf stages) and pcp4 (M; 40hpf) are expressed as well. At 48hpf d a b l j v l  (N) and reelin (O) are 
coexpressed in retina (arrows). Di: diencephalons; Hy: hypothalamus; M: mesencephalon; MHB: 
mid-hindbrain boundary; T: telencephalon.
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At 20-30 hpf zebrafish embryos show ed d a b ljtv l signal in the whole 

telencephalon, preoptic area and hypothalam us, epiphysis, mesencephalic 

tegm ental area, m idbrain/hindbrain boundary  and  again in the h indbrain  

and spinal cord (fig.4D and fig.5). Com parison w ith  reelin expression at the 

same stage shows that the two genes are expressed in  com plem entary 

dom ains in the diencephalon, whereas they are co-expressed in  the sam e 

regions of the telencephalon (fig. 4 B, C, D dab_tvl and  E, F, G, H  reelin).

The expression pattern  of d a b l jv l  is very dynam ic betw een 20 and  48 

hpf, as evidenced in the hindbrain (fig.4 and fig.5). Here expression of dabl 

at 24 hpf is confined to cells located along tw o lateral stripes w ith in  the CNS 

(fig.4 I and J) while reelin is expressed in com plem entary w ay in 

rhom bom eres 2-7 (fig. 2D, E, Chapter 3 paragraph  2.2.). From  48 hpf, 

d a b l jv l  mRNA is expressed in the retinal ganglion cell layer of the 

developing retina, similar to reelin (fig.4N and O).

4.2.6.2. In s itu  h yb rid ization  reveals that alternative sp lice  form s are 

tissu e-sp ecific

From the PCR analysis it was clear that several alternative spliced dabl 

mRNAs are expressed during developm ent. To localize w here these 

isoforms are expressed, I used probes against exons 8 and  9 only. Exons 8 

and 9 were amplified from  cDNA prepared  from  5-dpf zebrafish and  cloned 

in an appropriate vector. Probes against the PTB dom ain and  C-Term inus
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showed an expression pattern  identical to the probe against zebrafish 

d a b ljv l  described in the previous paragraphs (fig. 5A and C). By contrast, 

the probe specific for exons 8 and 9 revealed a pa ttern  of expression that 

differed substantially from the others in spatial and  tem poral m anner (fig. 

5D).

First of all the probe recognizing com m on regions of all dabl isoforms 

revealed a w idespread expression pattern  at the level of the w hole em bryos 

until tailbud stage and later w as restricted to the forebrain, m idbrain  and 

hindbrain (fig. 4A).

At 24 hpf d a b ljv l  was expressed in the region of the pronephric  

ducts (arrows, fig. 4K, K' and fig. 5 C), w hereas the dabl isoform  containing 

exons 8 and  9 is never expressed in that area (fig. 5 D). It is interesting to 

note that the pronephric region m arked by d a b l jv l  gives rise to the 

reproductive organ, but also cells of the blood are generated or m igrate here 

(Willett et ah, 1999; Serluca & Fishman, 2001). Im m unohistochem istry for 

GFP (expressed under regulative region of the germ  cell specific transcrip t 

nanos, GFP-nosl 3'UTR; K oprunner et ah, 2001), followed by in situ

Figure. 5. Differential expression of dabl transcripts.

In situ hybridization analysis of the expression of d a b l jv l  (A, C, E, G) and d a b ljv 2 ,  revealed 
with a cRNA probe for exon 8+9 (B, D, F, H) at the stages indicated (upper right comer). Arrows 
point to sites o f prominent dabl expression (see text). G and H are embryos of the tg(isletl-GFP) 
transgenic line, stained for GFP (brown) and Dabl transcriptional variants as indicated (blue). T: 
telencephalon; Hy: hypothalamus; MHB: mid-hindbrain boundary; DT: dorsal telencephalon; VT: 
ventral telencephalon; Di: diencephalons; OT: optic tectum; Teg: tegmentum; R: rhombencephalon; 
Va: anterior nucleus of trigeminal nerve; Vp: posterior nucleus of trigeminal nerve; VII: nucleus of 
facial nerve; OV: otic vescicles.
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hybridization for d ab l, showed that some of the germ  cells co-express 

dab l and GFP-nosl 3'UTR construct, b u t not of all the cells expressing dabl 

expressed GFP-rcosl 3'UTR construct (fig.4 K, K').

After 30hpf isoforms containing exons 8 and  9 w ere expressed 

exclusively in the mesencephalic tegm entum  and in som e of the h indbrain  

cranial nerve nuclei (fig. 5B).

At later stages (48 hpf) d a b l jv l  was still expressed in  the forebrain 

(arrows, fig. 5 E) and throughout the m idbrain and hindbrain, w hereas the 

dabl isoform containing exons 8 and 9 was faintly expressed in  the m idbrain  

and hindbrain (fig. 5 F). Interestingly, there are some differences in  the 

hindbrain in the localization of transcripts encoding for dabl isoform s w ith  

or w ithout exons 8 and 9. W hereas presum ptive pre-m igratory and  post- 

m igratory facial m otor neurons express predom inantly d a b l jv l  (i.e. the 

isoform lacking exons 8 and 9, fig. 5 G), m igrating facial m otor neurons, 

located in a param edian string of tangentially m igrating cells betw een 

rhom bom ere (r) 4 and r6 also express d a b l jv l  (i.e the dabl isoform  

containing exon 8 and 9; arrows, fig. 5 H). This differential localization of the 

two isoforms was assessed in transgenic tg(isletl-GFP) em bryos (Higashijima 

et al., 2000), using double staining for GFP (im m unostaining) and RNA (in 

situ hybridization).
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4.3. Discussion

4.3.1. Comparison of the genomic organization of the dabl 
gene between species

The genomic organization of the dabl gene show ed an unusual 

complexity at the level of the coding region, w hich is about 5.5 kb long and 

spans m ore then 1.1 M bp of DNA in the m ouse and  hum an  genomes. 

Similarly in zebrafish, the dabl gene spans more than  600 kb (based on the 

contig reconstructed from the 3 BAC clones) for a coding region of 1.8 kb 

(including exons 2-15).

The analysis of the sequences of the BAC clones show ed that the m ain 

functional dom ains, the location of the exon/intron boundaries and  the 

length of the exons were conserved betw een fish and  hum an/m ouse dabl 

genes. The m ost im portant differences betw een the zebrafish dabl gene and  

that of other species concern the length of the introns. In fact, introns in the 

Danio rerio dabl gene were shorter than in  hum ans and mice (see table I and  

Bar et al. 2003). It w as interesting to note that in Drosophila the disabled gene 

has even smaller introns and extends over 12 kb of genomic DNA (Gertler et 

al.f 1989), suggesting that the large size of Dabl in  vertebrates depends on 

intron extension and is an evolutionary acquisition.

Interestingly, exon 14 did not contain the stop codon as in  m ouse and 

hum an Dabl (Bar et al., 2003). The stop codon of zebrafish dabl could be 

found in  exon 15. M oreover exons corresponding to m ouse 217* and  271* 

were absent from the zebrafish genomic sequence. In addition  sequence 

coding for exon 555*, which is present in  all other vertebrates and  is
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duplicated in  the hum an and the m ouse, w as never found. It m ight be that 

these exons have been acquired th rough  m am m alian specific events 

(retroviral or retrotransposom e insertions) and subserved specific functions 

that became im portant during evolution.

4.3.2 Dabl isoforms might have dominant negative effects 
and influence positive feedback control

From the analysis of dabl expression through in situ hybridization it 

appears that D abl isoforms in Vertebrates are som etim es expressed in the 

same tissue at the same stage of developm ent or in different subpopulations 

of cells depending of the stage of developm ent (Bar et al., 2003; Katyal & 

Godbout, 2004).

Of particular interest is Danio rerio dabl_tv2 identified th rough  RT- 

PCR and containing exons 8 and 9. This dabl isoform  appears to be 

expressed in a spatial and tem poral specific m anner in subdivisions of the 

CNS w hen certain neurons are m igrating to reach their final destination.

The presence in dabl_tv2 of exons 8 and 9, adds three m ore tyrosines 

(corresponding to Tyr200, Tyr220 and Tyr232 in the m ouse) in  addition  to those 

present in the shorter isoform d a b l jv l .  d a b ljv 2  isoform  is expressed from  

24-30 hpf, at the time w hen facial m otor neurons m igrating from  

rhom bom ere (r) 4 are reaching r6-r7, i.e. their final destination 

(Chandrasekhar et al., 1997).
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Two alternative splice forms, chD abl-E and  chDabl-L are found  in  

the chick retina (Katyal & Godbout, 2004). ChDabl-E lacks two tyrosines 

(corresponding to Tyr198 and Tyr220), which are usually phosporylated u p o n  

activation of the Reelin pathw ay. This isoform is suggested to be able to 

block the transduction of the Reelin signal w hen expressed in some neuronal 

populations. ChDabl-L, which contains all the five tyrosine, provides a 

substrate for full phosphorylation upon  Reelin signaling. Those neurons 

expressing chDabl-L are able to grow  neurites in response to the Reelin 

signal (Katyal & Godbout, 2004).

All D abl isoforms reported so far have the same N -term inus, w hich 

contains the PTB/PI domain. These isoforms could be com peting for the 

same receptors (i.e. NPxY motives in the cytoplasmic tail of lipoprotein  

receptors) bu t only the isoform w ith  a full complem ent of tyrosines could 

transduce the Reelin signal, whereas the other isoforms could w ork as 

dom inant negative because lacking m ost of the tyrosine phosphorylation 

dom ain and block the receptor interacting dom ain w ithout signaling. The 

binding of these presum ptive dom inant negative isoform s could resu lt no t 

only in the inhibition of the Reelin signaling bu t also in  accum ulation of 

D abl, because unphosphorylated D abl isoforms do not becam e 

ubiquitinated and therefore are not degraded via the proteasom e pathw ay  

(A m aud et al., 2003a; M orim ura et al., 2005).

The unphosphorylated isoforms could accum ulate in  the cytosol and  

participate in other pathways. Indeed, it is possible that com binations of 

different phosphorylation sites can result in  the b inding  and  activation of
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different targets. In the mouse, alternative splicing also generates isoform s 

w ith reduced num ber of tyrosines. The isoform  Dab 1-217* has the sam e 

complem ent of tyrosines as D ab l_ tv l bu t its C-term inus differs substantially 

due to prem ature truncation (Howell et al., 1997a). Nevertheless this and  

other truncated forms (i.e. Dabl-271*) are likely to be able to com pete w ith  

Dabl-555 for the binding to the Reelin receptors w ithout relaying further the 

Reelin signals, and thus functioning as m odulators. The sam e function could 

be perform ed by the isoform D ab l_ tv l, since in  zebrafish exons 

corresponding to 217* and 271* have not been found.

In other words the complexity of the dabl gene m ay be an 

evolutionarily conserved strategy to achieve functional regulation of D ab l 

phosphorylation through alternative splicing. D abl m ay play other roles in  

addition to the regulation of neuronal m igration.

4.3.3. Alternatively spliced Dabl isoforms are expressed 
inside and outside the CNS

In this prelim inary study of dabl expression it w as show n tha t the 

isoform d a b l jv l  has a m aternal expression, w hereas at least three isoform s 

are expressed after 24hpf m ainly in the CNS and during  adulthood, reelin, 

whose expression pattern from 24hpf is well described in  Chapter 3, show ed 

a very early expression starting at tail bud  stage. Interestingly, it w as no t 

possible to detect any reelin expression at earlier stages.
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In general, the expression of both reelin and  dabl in zebrafish are 

comparable to that seen in the other vertebrates (diencephalon, m idbrain  

hindbrain and spinal cord) and their function m ay be com patible to ones 

norm ally attributed to the Reelin/Dabl pathw ay in  vertebrate CNS. A n 

exception is the expression in telencephalic structures a t early stages of 

development. From somite stages both reelin and dabl w ere co-expressed in 

the region of the neural tube that gives rise to the dorsal telencephalon, 

while in  m am m als only Cajal-Retzius cells express Reelin (Alcantara et al., 

1998).

In addition, m aternal reelin expression was not found suggesting a 

possible role of dabl in  at these stages not linked to the Reelin pathw ay at 

least in zebrafish. The isoform d a b l jv l  is also expressed in  the 

hematopoietic region, i.e. pronephric ducts and later in blood vessels. In 

m ouse isoforms Dabl-555*, 217* and 271*, containing the tyrosine residues 

and the PTB domain, are expressed in kidneys, liver and in  general in  non- 

neural tissue (Howell et al., 1997a; Bar et al, 2003). These data  suggest that in 

mouse D abl isoforms w ith a reduced com plem ent of phosphorylable 

tyrosines exert a role different from  the regulation of neuronal m igration.

Mouse m utants for D abl have a phenotype largely restricted to 

neuronal m igration, how ever interpretation of the m ouse m u tan t phenotype 

is complicated due to the fact that both the yotari and  scrambler m utants, 

(Howell et al., 1997b, Sheldon et al., 1997) produce truncated  proteins, 

leaving open the possibility that these truncated form s of D ab l m aintain  

some functions. Indeed knock in of P45, a m D abl truncated  just at the 3' of
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the tyrosine phosphorylation domain, is an hypom orph for som e D abl 

functions in  hippocam pal developm ent (Herrick & Cooper, 2002).

On the other hand, the occurrence of such a rich constellation of 

alternatively spliced isoforms of D abl, for which no gene duplication seems 

to have occurred in  fish (present w ork and Zebrafish Genom e Project at 

www.sanger.ac.uk) fits well w ith the hypothesis, recently reported  by 

Kopelman et al. (2005), that "alternative splicing and gene duplication are 

inversely correlated evolutionary m echanism s".

In the next chapter I will introduce a prelim inary study  of the  function 

of D abl in  some of the regions inside and outside the CNS, w here I found it 

was expressed.
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CHAPTER 5

5. Results 3. Dabl isoforms are involved 

in neuronal and non-neuronal 

development

5.1. Introduction

dabl is a very complex gene and is subject to several alternative- 

splicing events (Chapter 2 and Bar et al, 2003). A lternatively spliced 

isoforms are expressed in a tem poral and tissue specific m anner (Howell et 

al, 1997; Bar et al, 2003; Katyal & Godbout, 2004). Isoform s of D ab l are not 

only expressed in the CNS, b u t are also found in blood cells, kidney, uterus 

and in the developing heart (Ikeda & Terashima, 1997; How ell et a l, 1997, 

Smalheiser et al, 2000; Kam et al, 2004; Takahashi et al, 2004). These findings 

suggest potential roles for D abl in both neuronal and  non-neuronal tissues.

To investigate the functions of dabl in  zebrafish, I u sed  m orpholino 

(mo) injections together w ith over expression of dabl mRNAs as approaches 

for in vivo studies of gene functions.

A lthough m y project focused on the involvem ent of the Reelin/D abl 

pathw ay in neuronal m igration, I observed m orphological changes
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subsequent to mo injection also in non-neuronal structures. Here I will 

present the results concerning the effects of m o injections in  the VII nuclus 

and nerve and a prelim inary analysis of the defects induced by m o injections 

in the reticularspinal neurons, retina and in the jaw  developm ent.

5.1.1. Pleiotropic phenotypes in dabl morpholino (mo) 

injected embryos.

Based on dabl full-length sequence (see Chapter 2) it w as possible to 

design three different morpholinos: one against the ATG start codon (m ol; 

fig 1A), a second further upstream  and no t targeting the ATG (mo2; figlA ) 

and finally a th ird  mo against a splice donor site (spmo; fig .lA  and table I). 

The first two m orpholinos have as target the m aternal and  zygotic mRNAs 

(mo2 was designed to compare its effects w ith  those of m o l; Ekker, 2000), 

while the third m orpholino hybridises to a splice donor site in exon 6 of dabl 

precursor mRNA (fig.lB; Draper et al., 2001).

At high doses m ol and 2 caused the same neuronal phenotype (see 

below), bu t they also affected other processes, as the em bryos appeared  

shorter and deformed. Looking at tailbud stage injected embryos, they w ere 

found defective in gastrulation. Using a cocktail of probes, it w as possible to 

observe that the notochord was shorter and  the neural plate w as w ider in 

embryos injected w ith m ol and mo2 bu t no t w ith spm o (fig.lC, D, E). These 

defects could be due to the knock dow n of the dabl isoform s expressed at 

early stages including m aternal transcripts.
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At 24-30 hpf, w hen d ab l expression starts to increase in the CNS, the 

injected embryos displayed developm ental delays, a curved body, small 

head  and eyes, reduced blood circulation, pericardial oedem a and  reduced 

motility (fig l.G). The injection of m o l or mo2 at one cell stage gave rise to 

similar phenotypes bu t at different concentrations. For exam ple 2 ng  of mo2 

was sufficient to produce a phenotype sim ilar to that observed following 

injections of 6 ng of m ol. This suggests that mo2 w as m ore potent then m o l. 

This may be due to the three-dim ensional structures of mo2, resulting in  a 

m ore stable hybridisation to the target sequence com pared to m o l. 

Alternatively, mo2 may simply be more soluble, diffuse m ore easily and  so 

be m ore efficient (see www.gene-tools.com).

The spm o was designed to be effective only on zygotic, p rior to-splice, 

mRNA and to lack a possible effect on m aternal m RNA (D raper et al., 2001). 

The m orphants injected w ith  1-3 ng  of spm o were m orphologically norm al 

bu t a more detailed analysis revealed an interesting phenotype at the level

Figure. 1. Morhpolinos used to knock down dabl

A) Schematic drawing of dabl gene structure and morpholinos (mol and mo2). Mo2 is targeting a 
sequence of dabl that does not contain the ATG. The spmo is against the splice site between exon 6 
and intron 7. B) Schema of morpholino antisense activity. In a  and (3 the mos target 5’UTR and 
ATG and the translation of the mRNA is blocked. In % the result is an aberrant splicing that give 
rise to a truncated or not functional protein. Mol and mo2 injections (C and D) give rise to 
defective gastrulation, where the size of the neural plate is abnormal (dlx3 and krox-20) and the 
notocord is shorter {notail). E) Spmo morphants does not show phenotypes at tailbud stage. G) At 
24hpf mol and mo2 morphants are retarded with a curved body, small head and eyes, reduced 
blood circulation, pericardial oedema (arrow) and reduced motility, when compared to the wild type 
(F).
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of VII nerve nucleus (facial nerve nucleus) in the h indbrain  similar to the 

phenotype observed in em bryos injected w ith m o l and mo2. The study  of 

the effect of spm o focused only on the VII nerve nucleus.

Table I. List of dabl Morpholinos.

mol 5'- GCCTCTGTTGACATATTAAATCCTT -3'

mo2 5'- GGAACAGTCCACCGCTGCCTCTAGC -3'

spmo 5'- CTGCTTATCAG GTAAACATCACC -3' 
(exon 6/intron 7)

5.1.2. Controls for morpholino specificity

To test the specificity of the m orpholinos and  their capacity to block 

translation/splicing and thereby create a functional knockout, 4 strategies 

were used.

1. Injections of constructs fused to m orpholino consensus sequence

upstream  of GFP coding sequence (fig.2A-C) to see if m o l and  

mo2 were effective in blocking translation of d a b l sequences.

2. W estern blot to see if D abl was absent or dow n regulated in  the

m orphants (lane 6, fig.2D).

3. RT-PCR of total RNA extracted from  em bryos injected w ith  spm o.

4. Co-injection of m orpholinos and  d a b l mRNAs to rescue the

phenotypes.
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1) Both m orpholinos were able to block the expression of GFP from 

fusion constructs carrying the m orpholino consensus sequences upstream  of 

GFP coding sequence (fig.2 A, B and C).

2) W estern blot analysis show ed that m orpholino 1 w as able to block 

the translation of dabl (lane 6 fig. 2 D).

3) The splice blocking m orpholino (fig. 1 A, B and fig.2 E) was 

designed to be effective on the precursor mRNA of zygotic d ab l and  not on 

the m aternal transcripts already spliced. It was possible to test the ability of 

m orpholino to block the splicing of dabl mRNA by  perform ing RT-PCR on 

total RNA extracted from splice morpholino-injected embryos. The PCR 

products retain intron 7 that was not spliced out (fig 2 E). Analysis of the 

sequence of RT-PCR products suggests that the retention of in tron  7 causes a 

prem ature term ination of the protein due to a stop codon present in  fram e in 

the intron sequence (Marina Mione personal comm unication). It is

Figure.2. Efficacy of dabl morpholinos.

A) Schematic drawing of dabl mRNA and location of the sequences targeted by morpholinos (mol 
and mo2). Mo2 is against a sequence of dabl that does not contain the ATG. The lower schematic 
shows the mo consensus sequence fused to the GFP coding sequence. B) Injection of the construct 
coding for GFP downstream of the mo consensus site (refer to fig.lA) results in GFP expression 
which is blocked by co-injection of morpholino (mol, C). D) Western blot analysis o f dabl 
expression using antibodies directed against the C-terminus. Lane 1) Zebrafish injected with 
d a b l jv l  mRNA. Lane 2) Zebrafish injected with d a b l jv l  mRNA and morpholino 1. Lanes 3-5) 
Dabl bands in mouse brain extracts (embryonic, adult, scrambler +/- respectively) which have 
similar electrophoretic mobility to zebrafish Dabl. Lane 6) Disappearance of the 80 KDa band in 
embryos injected with morpholino 1. E) Schematic representation of the dabl gene. The black 
arrows show the region amplified using primer for exon 5 and exon 10 and containing the site of  
splicing blocked by spmo. In G, lanel) lkb ladder; lanes 2, 3, 4) cDNA from 3 pools of embryos 
injected with spmo; lane 5) not injected embryos; lane 6) negative control; 7) d a b l jv l  positive 
control. The lane 2, 3 and 4 show a band higher then the controls (lanes 5). The sequence analysis 
of the higher band reveals that it contains sequences belonging to intron 7, which was not spliced 
out.
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hypothesized that the new  m olecule p roduced  lacks m ost of C-term inus 

including the dom ain rich in  tyrosines. This region is phosphory lated  during  

activation of the R eelin/D abl pathw ay and  it w as described to be involved 

in neuron  m igration in  the m ouse (Howell et al, 1997a).

4) In an attem pt to rescue the phenotype induced  by  m orpholino 

injection, several com binations of m os and  m RNAs (about 200pg) w ere co

injected and  results are sum m arized in table II. The m RNAs injected w ith  

m o l or mo2 were (i) d a b l jv l ,  (ii) m ouse Dab555, (iii) d a b l jv l  w ithou t the 

region surrounding  serine (S464), (iiii) PTB only mRNA.

The D ab l_ tv l can rescue m ost of the phenotypes caused by the 

m orpholinos. For exam ple, M authner neurons (reticular spinal neurons) are 

norm al in  m any em bryos injected w ith  dabl m o l and  d a b l jv l  m RNA 

(fig8C.). It should  be no ted  tha t the rescue could be due to the fact tha t m o l 

m ay hybridize to d a b l jv l  m RNA and  so the tw o injected m olecules could

Table II. List mRNA injected in the control assay for morpholino

d a b ljv l isoform lacking of the exons 8 and 9

dablJvl-S isoform lacking the exons 8,9 and phosphorabe Ser domain

dabl PTB dom ain of receptors interaction

consensus+GFP consensus region for m os fuse to GFP see fig.2
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neutralize each other. H ow ever, mo2 is against the 5'UTR and cannot block 

the translation of injected dabl_tvl mRNA, w hich does not contain upstream  

sequences target of mo2. The injection of d a b ljtv l  m RNA enhanced the 

survival of the em bryos injected w ith mo2, b u t d id  n o t provide a com plete 

rescue and  for exam ple the m igration of V lln  w as only partially  rescued 

(fig.6 B).

Interestingly, m RNA from  m ouse Dabl (mDab555), containing all the 5 

phosphorylable tyrosines, can rescue phenotypes for bo th  m orpholinos 

(M arina personal comunication). The th ird  rescue construct has a C- 

term inus truncation tha t rem oves a region containing serine (S464) and  w hich 

is know n as "Cdk5 phosphorylation dom ain" (Keshvara et al., 2002).

Figure. 3. Rescues o f morpholino injections.

In A injection of a very high dose of mo2, the embryos do not gastrulate and die at early stages. B) 
Injection of d a b l j v l  mRNA, the embryos are morphologically normal. C) Co-injection of 6ng of 
mo2 and d a b l j v l  mRNA, the embryos can gastrulate normally. The pictures D, H and L are 
related to paragraph 5.1.3. D) Injection of 6ng mo2 in an embryo from islet-1 GFP line. The Vlln 
does not migrate. E) Injection of 2ng mo2, the phenotype is less severe then in A. F) Injection of 
d a b lJ v l-S  mRNA (terminally truncated). The embryos are normal. G) Co-injection mo2 and 
d ab lJvl-S . The embryos look normal. H) Co-injection o f mol + d a b lJ v l-S  in an embryo from 
isletl-GFP line see paragraph 5.1.3. The migration of Vlln is rescued by d ab lJvl-S . I) Injection of 
6 ng o f m ol. The embryos show several defects but the phenotype is less severe then in A. J) 
Injection of PTB mRNA. The embryo shows several defect and cyclopia in 30% of the case (higher 
magnification o f a cyclopic embiyo in J’. K) The co-injection of mol with PTB mRNA does not 
rescue morpholino phenotype. L) Injection of PTB mRNA in islet 1 GFP line. The embryos present 
cyclopia but the Vlln can still migrate see paragraph 5.1.3.
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The construct w ithout S464 is able to am eliorate the m igration and  nerve 

grow th (and all other defects) of the VII nerve induced by dabl mo2, exactly 

as d a b l jv l  does, suggesting tha t the S464 dom ain is no t required  for the 

functions of D ab l in nerve g row th  (fig. 10).

A construct encoding for dabl PTB alone lacking the tyrosine dom ain, 

w hich is necessary to  convey the reelin signal caused a phenotype due  to 

overexpression that precludes the analysis of any possible rescue effects (fig. 

10).

In conclusion, the m ost efficient rescue for bo th  m orpholinos w as 

th rough  using  the mDabl-555  construct, carrying all tyrosines, w hile m o l 

w as rescued by  d a b l jv l  that contains the consensus region for m o l binding.

Table III. Co-injections of morpholinos and dabl mRNAs

Co-injection d a b ljv l Dabl-555 dablJvl-S464 dabl PTB

mo 1 Rescue of all 

phenotypes

Rescue of all 

phenotypes

Rescue of all 

phenotypes

No rescue

mo 2 Partial rescue 

(nVH axon 

growth, 

Mauthner n)

Rescue of all 

phenotypes

Partial rescue 

(nVII axon 

growth, 

Mauthner n)

No rescue
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5.1.3. The VII nucleus and nerve show defects due to 

injection of morpholinos

5.I.3.I. The cranial neurons of the hindbrain are mis-positioned in 

embryos injected with morpholinos 1 or 2 or splice morpholino

In yotari and  scrambler mice, m utan t for dabl, certain h indbrain  

m otoneuron  nuclei do no t m igrate properly  (Martin, 1981; Goffinet, 1984; 

Sheldon et al, 1997; How ell et al, 1997; Fujimoto et ah, 1998; O hshim a et ah, 

2002; Rossel et al., 2005) indicating that D ab l is involved in  neuronal 

m igration in the hindbrain.

To study  the m igration of branchiom otor neurons in  zebrafish 

h indbrain , em bryos of the tg(isletl- GFP) line w ere injected at one cell w ith  

m orpholinos to induce a loss of function of D abl. The m igration of facial 

m otor neurons from  rhom bom eres (r) 4 to 7 is a stereotyped tangential 

m igration that has been described in  all vertebrates stud ied  (w ith the 

exception of the chick, Studer, 2001) and  recorded in  tg(isletl-GFP) zebrafish 

transgenic em bryos (Higashijim a et a l, 2000.)

N eurons of the facial nerve nucleus begin their rostro-caudal

m igration from  r4 just adjacent to the m idline at a round  18 hp f

(C handrasekhar et al, 1997). Three hou rs later, the first neurons reach r6 and

start to m ove laterally (fig.3 A '-A '"  and  m ovie 1). This process continues

th rough  the following hours and by  40 hp f each fluorescent nucleus is

com posed of 16-20 cells located param edially  in r5-r7. By 72 hours there are
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28-32 fluorescent cells in  each nucleus and  at 5 days there are 30-33 

fluorescent cells per nucleus, located in r6-r7 and  extending laterally to form  

a triangular shaped structure. In the tg(isletl-GFP) line it w as possible to 

visualize in vivo the severe defect of the nucleus in the m orphants (m ovie 2 

and 3).

The analysis of 48hpf tg(isletl-GFP) m orphan ts revealed abnorm al 

positioning of neurons of the facial nucleus (VII). In less severely affected 

m o l and  mo2 m orphants the facial m otor neurons successfully com pleted 

their tangential rostro-caudal m igration b u t the shape of the nucleus w as 

laterally truncated  (fig. 3.B and  E), suggesting tha t the neurons d id  n o t m ove 

laterally correctly even if they d id  reach their r6/7 destination. In the  m ore 

severe phenotypes the VII nerve nucleus does exist, b u t it does not m igrate 

to the proper location in rhom bom ere 6-7 (fig.4C).

In m ol-injected em bryos, the num ber of neurons that forms the  facial 

nucleus at 5 dpf w as reduced: 20-22 cells for em bryos injected w ith 6 ng  of 

m o l. H ow ever, no reduction  of cell num ber w as presen t in em bryos injected

Figure.4. Dorsal view of cranial nerve nuclei (V, VII, X) in the hindbrain of embryos imaged using 
the confocal (A-A'", B-B'", C-C'") and compound (D, E) microscopes.

In A a control embryo of the tg(GFP-islet-l) where the trigeminal (V), the facial (VII) and the 
glossofaringeus (X) nuclei are fluorescent. In B, embryo injected with a low dose of mol or mo2 
(<6ng mol or <2ng mo2). The Vlln migration is only partially migrated. In C embryo injected with 
a high dose o f mol and mo2 (>6ng mol and >2ng mo2). The Vlln did not migrate at all. In D, 
immunohistochemistry for islet 1 on a control embryo from GFP-isletl line to show the anatomy of 
the hindbrain at 48hpf stage. In E embryo injected with 3 ng mol. The left panel shows a normal 
VII nucleus, while the right panel shows a Vlln truncated laterally as result o f a low dose of 
morpholino injection. A'-A'"stacked pictures at three different time points of movie 1: control 
embryos of the tg(islet-l GFP) line. B'-B"' stacked pictures from movie 2: embryos from tg(islet-l 
GFP) injected with <6 ng o f m ol. C'-C'" stacked pictures from movie 3: embryos from tg(islet-l 
GFP) injected with 6 ng of mol (or spm).
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w ith  about 3 ng  of m o l (fig. 2B). At h igh  dose of m orpholino the facial m otor 

neurons d id  no t m igrate from  r4-r5 (fig. 4C), w hile in  em bryos injected w ith  

low er doses of m o l or m o2 the facial m otor neurons w ere located 

th roughou t r4 to r6-7 and  clustered near the m idline instead of extending 

laterally (fig. 4B, E). This suggests tha t the delay in  m igration caused by 

m orpholino injection eventually  results in  m isplaced facial m otor neurons 

along their m igration pa th  and  that the  severity of the phenotype depends 

on  the dose of the m orpholino 1 o r 2 injected. O n the contrary, spm o 

injection gave rise to a cleaner phenotype, w here the V lln d id  no t m igrate at 

all and  a reduction of neuron  num ber w as never observed (fig. 4C).

These observations show ed that, in  zebrafish, the loss of function of 

dabl caused by  the three m orpholinos gave rise to a defective developm ent 

and  m igration of the facial (VII) nerve nucleus in the hindbrain.

Figure.5. Lateral view of 48 hpf tg(isletl-GFP) embryos imaged using the confocal microscope.

A) Lateral view of a control embryos o f the tg(isletl-GFP). The two arrows indicate the trigeminal 
and infraorbital lateral (ioL) nerves and the asterisk indicates the facial sensory ganglion. B) 
Scheme o f the principal nerves labelled by GFP in tg(isletl-GFP). Trigemino nuclei (nVa+b), facial 
nucleo (nVII), peripheral projection o f facial sensory gaglion cells otic capsule (ot), vagus (X), 
vagus sensory ganglion lateral line (vs), supraorbital lateral line (soL), postirior lateral laine (pL). 
Modified from Higashijima et al., 2000. C-E') Lateral view of embryos injected with morpholino 1. 
The facial nerves (arrow) in C, E and E' are thinner then the control (in green in the scheme in B). 
In D the facial is defasciculated at level o f the facial sensory gaglion. Scale bar, 100 pm.
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5.1.3.2 A bnorm al bran ch in g  o f axons in  em b ryos in jected  w ith  

m o rp h o lin o s 1 or 2, b u t n o t w ith  sp m o

T hrough the visualizion of the axonal projections of VII neurons, 

using bo th  confocal m icroscopy and  im m unohistochem istry for GFP in 48 

hp f and  5 dp f isletl-G FP transgenic zebrafish, it w as possible to identify  

defects in  nerve projections, branching and  fasciculation in  dabl m orphants 

(fig.5 and  6).

The m ost frequent abnorm ality  w as a m arked reduction in  length  and  

thickness of the facial nerve, often accom panied by defasciculation of the 

nerve a t level of the facial sensory ganglion (fig. 5). H ow ever, even for h igh  

doses of m orpholino the facial nerve alm ost alw ays exited correctly at r4 and  

then  defasdcu lated  into several axon fascicles at the level of the facial 

sensory ganglion (fig. 5). A t 48hpf the extension of the facial nerve in  m o l- 

injected em bryos w as still defective and  in som e cases the axons of the facial 

nerve w ere found  no t to have grow n properly  and not to innervate the  jaw

Figure.6. Dorsal (A, B, C) and ventral (E, F, G, H, H’) view of the head of 4hpf embryos o f the 
tg(islet-l-GFP) line stained for GFP (A, B, C E, F, G, H, H’).

A) Control. (B) Embryos c-injected with mo2 and d a b l j v l  mRNA showing a partial rescue. (C) 
Embryos injected with spmo showing the complete absence of Vlln migration. (D) Ventral view of 
a control embryo where arrows indicate the V and VII nerves. E) Ventral view of an embryo 
injected as shown. The co-injection of mo2 and d a b l j v l  rescues completely the facial nerve (but 
not the migration of the Vlln nucleus; B). (F) Ventral view of a morphant injected with spmo, the 
nerve is normal. G) Ventral view of an embryo injected or with mol or mo2, the VII nerve is 
absent. H and FF) injection of d a b l j v l  mRNA induces overgrowth of the VII nerve.
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even at 5 dpf, while the nearby trigem inal m otor nerves w ere perfectly 

norm al (fig.6G).

O n the contrary, the splice m orpholino d id  no t cause this severe 

phenotype: cells num ber, axons projection and  axon extension by the VII 

nerve w ere norm al, b u t the VII nerve nucleus failed to m igrate in  alm ost 

100% of the cases (fig. 6C and  F).

These findings are quite surprising and suggest a function for D ab l in 

VII nerve grow th that has no t been observed in  dabl m ouse m utants (Rossel 

et al., 2005).

5.1.2. Preliminary observation of additional 
phenotypes resulting from the injection of mol and 
mo2

5 .I.2 .I . R eticu lo sp in a l neu ron s sh o w  several d efects in  em b ryos  

in jected  w ith  m orp h o lin os 1 or 2

At 40hpf, w hen zebrafish h indbrain  is still organized in  rhom bom eres,

it is possible to visualize the developing reticular spinal neurons, using  the

m arker pcp4a (Mione et al, 2006). This population  of neurons is organized

bilaterally to the m idline and  conveys m otor stim uli to the spinal cord. At

this stage reelin expression is localized at level of rhom bom eres 2-7 (Chapter

3) w hile dabl expression is restricted to cell populations of tw o lateral

colum ns of the h indbrain  w here the m arker pcp4a is also expressed (fig. 4 C,
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D in C hapter 4). After 40hpf stage, the dabl expression becom es stronger and 

the pattern  changes as the neura l tube develops and by  48hpf is w idespread 

th roughou t the hindbrain.

Because of the peculiar expression pattern  of dabl in the h indbrain  I looked 

at the effects of injection of dabl m orpholino 1 or 2 on reticulospinal neurons, 

and  I found that they  w ere seriously affected, in particu lar M authner 

neurons (fig.7 and fig.8). M authner neurons are tw o large neurons present 

only in  fish and  tadpoles and  together w ith  all the reticular spinal neurons 

project their long axons into the spinal cord. R etrograde labelling w ith  

fluorescent dye (fig.7), im m unohistochem istry perform ed w ith  the 3A10 

antibody (specific for M authner neurons. See fig. 8 A, B) at 40 hp f and  in situ 

hybridisation for the calcium binding peptide pcp4a, all show ed that the 

segm ental array  of reticulospinal neurons w as affected in  dabl m o injected 

em bryos. Reticulospinal neurons w ere reduced in num ber and  m isplaced, 

M authner neurons w ere unhealthy  show ing a som as rounded  in  shape (fig.7 

E and  F) instead of elongated (see schem e fig. 7A and  control 7B) and  in 

general reticular spinal neurons axon bundles w ere thinner, m isguided or 

absent (fig. 7 and  fig. 8 B-F).

Figure. 7. Fluorescent retrograde labelling of the reticulospinal neurons at 5dpf.

A) Scheme of the reticular spinal neurons that project controlaterally in Zebrafish hindbrain 
modified from Metcalfe et al. 1986. (B) Wild type embryo. C-I) dabl mo2 injected embryos. The 
reticulospinal neurons appear round in shape and reduced in number and difficult to identify. In D 
reticular neurons are visible only in half o f the embiyos; in C, D, E and F cell bodies are clearly 
stained but the axons are very thin and misguided. In E) Mauthner neurons (arrows) are visible and 
show misguided axons. In H, only one Mauthem neuron is present (arrow).
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M oreover, the M authner neurons, w hich are norm ally  located one  on 

each side in ventral r4, w ere som etim es found  either on the sam e side o r 

near the m idline in  m orpholino injected em bryos (fig.8B). The axons of 

M authner neurons w ere found to  be dram atically  altered in m orphan ts. In 

w ild type em bryos these large axons cross the m idline at the level of r4 an d  

advance in  a straight pa th  along the  spinal cord w ithout branching. In  dabl 

m o injected em bryos, how ever, M authner axons d isplayed a range of defects 

from  com plete absence to pathfinding  defects and  abnorm al branch ing  (see 

below  table IV).

In o rder to ascertain that the  defects in  the localization an d  projections 

of reticulospinal neurons in  dabl m o injected em bryos are due  to abno rm al 

m igration/axon grow th and  no t to abnorm al h indbrain  pattern ing  resu ltin g  

in  m is-specification of cell types, I perform ed an  in situ hybrid ization  fo r a 

segm ental m arker (i.e. rhom bom ere identity  m arker), kroxlO. Krox20, w h ich  

is expressed in  r3 and  r5 at 24hpf, d id  not show  altered expression in  dabl 

m o injected em bryos (fig.8H). This confirm s the hypothesis th a t the defec t

Figure.8. Reticulospinal neurons phenotypes caused by dabl mos.

Immunohistochemistry performed with 3A10 antibody (A-C) to label Mauthner neurons at 36 hpf. 
In situ hybridization for the calcium binding peptide pcp4 (D-F) at 36 hpf and for the rhombomere 3 
and 5 using the marker krox-20 at 24hpf (G, H). Compare wild type embryos (A, D, G) with mol 
injected embryos (B, E, H) and mol plus dabl mRNA injected embryos (C, F). The Mauthner 
neurons are on the same side or near the midline in embryos injected with morpholino 1 (arrow; B), 
but the co-injection of morpholino plus dabl mRNA can partially rescue the phenotype (C). In 
general reticulospinal neurons are duplicated or miss-positioned (arrows) in injected embryos (B, 
E). (G, H) krox-20 expression appears normal in injected embryos.
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O ver 90% of the em bryos injected w ith  dabl m os d isp layed sm aller 

eyes, w hich show ed also an incom plete closure of the  optic fissure 

(coloboma; see arrow s fig.9bR and  S). This w as also revealed by  in situ 

hybrid ization  for pax2.1, a probe th a t labels the optic stalk (fig. 9b R, S). Then 

further investigations w ere carried o u t to verify w hether the  o rdered  

architecture of the zebrafish retina w as altered  as a resu lt of the loss of 

function of dabl. To identify  defects in  retinal m orphogenesis, sections of 

zebrafish retina w ere labelled w ith  several antibodies: Pax6 as a m arker of 

am acrine cells, TH as a m arker of dopam inergic in tem eurons and  Isle tl for 

the general architecture (fig. 9a A-E). D espite the size reduction, no  changes 

in  retinal architecture or significant losses of cell types w ere observed, 

except for the dopam inergic am acrine cells. A t 5 dpf, dopam inergic 

am acrine cells w ere reduced  to less than  one th ird  of the norm al 

com plem ent and  som etim es displaced (fig. 9a E). The size reduction  of the 

eye m ay be in  part due  to reduction of the plexiform  caused by  a substantial 

reduction  in  neurites (see arrow s poin ting  at each o ther in  fig. 9a F, G) a 

phenotype already described in scrambler m ice (Rice et a l , 2001). A range of 

defects in the  optic nerve of m orpholino-injected em bryos w as found  w hen  

Dil and  DiO anterograde tracing w as u sed  at 4dpf (table V; fig. 9b I-P).

Figure.9b. The effect of dabl knock down on the zebrafish optic nerve.

I-P) Dil and DiO anterograde tracing at 4dpf imaged using the confocal microscope. In the mo 
injected embryos the optic nerve is thinner (J-P) and in severe cases does not reach the tectum (L, 
N, O, P). Q-S) Dorsal view of the head of embryos o f 30hpf stained for pax2.1. In Q, the wild type 
embryo shows the optical nerves crossing the midline. In R and S embryos injected with 3 ng o f  
mol show disorganization of the optical nerves that do not reach the midline. Coloboma is also 
present (arrows).
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These defects are sum m arized in  table V and  consisted of th in  optic 

nerves, inability to reach the target and  defasciculation. The defects found  in 

the optic nerve could be related to transient expression of dabl in  retinal 

ganglion cells seen u p  to 5 dpf (see fig. 9aA) or possibly, to a strong 

expression of dabl in  the pre-optic area at 24-30 hp f (see Chapter4).

In conclusion, D ab l is involved in  retinal developm ent and  in  

zebrafish loss of function of dabl determ ine m iss positioning of 

dopam inergic am acrine cells, reduction of the size of the retina and  defective 

optic nerve grow th. These phenotypes could be rescued w ith  the injection of 

dabl m RNA suggesting that they are specific to the abrogation of D a b l 

function.

Table V. Abnormalities in morphants optic nerve.

Thin optic nerve Target innervation Defasciculation Total

17 11 2 24

5.I.2.3. N eu ra l crest m igration  and jaw  d ev e lo p m en t are a ffec ted  in  
m o s 1 or 2 m orphants

In dabl m ouse m utan ts there have been no  descrip tions of any  defects 

of the neura l crest and jaw. O n the contrary, zebrafish dabl m orphan ts 

displayed an  unusua l shape of the m outh  visible at 4-5 d p f (fig.lOF, I).

A ld an  blue staining (Fisher & H alpem  1999) of the cartilages of the  

jaw  show ed that som e of them  w ere m issing and  o thers w ere reduced  in  size
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p a tte rn  of dlx2 (a m arker of the neura l crest at stages w hen  the m igration  

starts) in  m orpholino-injected and  control em bryos. In w ild  type em bryos, at 

13 som ites dlx2 was expressed at the level of the  rhom bom eres 3-5 in  three 

bilateral g roups along the neural tube (fig. 10 A, B).

The m orphan ts show ed a reduction or absence of dlx2 expression  at 13 

s and  at 24hpf stage at the level of the fu ture  arches and  at the level of the 

hypo thalam us in the  forebrain (fig.lOD). Finally, experim ents, w here 

d a b l jv l  m R N A  w as co-injected w ith  m o l and  2, show ed th a t indeed  

m RNA of d a b l j v l  rescues m orpholino phenotype (fig.lOG, J). This suggests 

that the  m orpholino  acts during  early events w hen  the neura l crest m igrates 

from  the h in d b ra in  (i.e. a round  20-24 hpf). In zebrafish, the effect of 

antisense m orpho linos 1 and  2 is a reduced size of the jaw  and  the absence 

of the 5 b ranch ial arches, form ing the gills, in  m ost cases.

5.2. Discussion

The d a ta  presented in this chapter show  th a t loss of dabl function  

affects the developm ent of several regions of zebrafish  em bryos. In  the 

h indbrain , m igration and axon extension of the VII nerve nucleus are 

abrogated, reticulospinal neurons are m isplaced and  M authner neu rons 

d isp lay  defective axon positioning. The retina  show ed a reduced  size, its 

dopam inergic am acrine cells w ere reduced  in  num ber, m isplaced an d  the 

extension of the optic nerve w as affected. Surprisingly m orpholino
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phenotypes w ere also ev iden t in  non-neuronal tissues includ ing  jaw  

cartilages, heart and  b lood  circulation.

2.1. Dabl plays a key role in the migration of facial 

branchiomotor neurons

Loss of dabl function  affects the m igration of the VII nerve nucleus. 

The form ation  of th e  facial branchiom otor nucleus is a com plex event tha t 

can be d iv ided  in to  several steps tha t differ in mice and  in  chicks. In the 

m ouse, the  V lln  n eu ro n s leave the ventricular zone of r4 and  m igrate 

tangentially  to w ard s r6. Then, the m igrating cells follow the glial processes 

and  m igrate  rad ia lly  tow ards the p ia  w ith in  r6. In chicks the m igration  starts 

and  term inates w ith in  r4 (Studer, 2001). The specification of the  facial 

neurons requ ires an  in tact rhom bom ere 4, and  is affected in  the absence of 

h indb ra in  segm entation  (Cooper et al, 2003; Deflorian et a l, 2003; M iller et 

al, 2004).

A t the m olecular level, the V lln m igration  requ ires the  

dow nregu la tion  of kreisler/val in rhom bom ere 5 (Theil et a l, 2002) and  the  

sequential activation  of com binations of m em brane associated m olecules, 

includ ing  Tag-1, Ret and  Cadh-8 in  m ouse (Garel et a l, 2000), and  in  

zebrafish  it is im paired  in  trilobite (tri) m utants, lacking the transm em brane 

pro te in  S trabism us /V an G ogh (Jessen et al, 2002). Several repo rts  suggested  

an invo lvem ent of the  R eelin/D abl pa thw ay  in  th is m igra tion  an d  the tri 

pheno type po in ts to a contribution of the  non-canonical W nt pathw ay.
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Defects in  the  architecture of the facial nerve nucleus in  reeler w ere 

reported  (Goffinet, 1984; T erashim a et al., 1993) and  the m ain  Reelin effector, 

D ab l, is norm ally  expressed  in  the facial nerve nucleus (Carrol et al., 2001; 

C hapter 4). O hsh im a et a l, 2002, reported  th a t in  Cdk5 knockout mice the  

tangentia l m ig ra tion  of facial branchiom otor neurons from  r4 to r6 does no t 

take place an d  th a t in  yotary, and  even m ore dram atically  in  yotary/p35 (p35 

is an  activator of Cdk5) knockout, the final rad ia l m igration in  r6 is affected. 

Recently, it w as show n  tha t in  reeler and  scrambler the facial nucleus is 

d iso rgan ized  an d  does n o t m igrate properly  (Rossell et al., 2005).

In the  m ost severe m orphants phenotypes, the neurons do  no t m igrate  

from  r4 at all. This pheno type resam ple w hat it has been show n recenlty in  

the zebrafish  m u tan ts  for off-limits/frizzled3 a (olt/fz3a) and  off-road/celsr2 

(ord/celsrl), w here  the  VII neurons are no t able to start the tangential 

m igra tion  to  reach  rom bom ere 6-7 (W ada et al., 2006).

O n the  con trary  in  reeler and  scrambler!yotari m ice the nVII n eu ron  

p opu la tion  starts the  tangential m igration from  r4 and  reaches r6, b u t then  

they  are n o t able to m igrate  radially w ithin  r6 tow ard  the p ial surface. The 

au tho rs suggest that, as in  the case of the olfactory bu lb  (Hack et al., 2002), 

the sw itch from  tangentia l to radial m igration is affected, so nVII neu rons 

are sp read  in  r6 and  no t localized in  the righ t position  to  form  the VII 

nucleus (Rossel et al., 2005).

Since D ab l is phosphorylated  in  vivo and  in  v itro  b y  CDK5 on  S464 

(K eshw ara et al., 2002), I investigated w hether it is th rough  th is m echanism  

th a t dabl regu la tes the  m igration of facial m o to r neurons. The ability of a 

truncated  D ab l p ro te in  lacking a conserved dom ain  contain ing  S464 to rescue
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the m ig ra tion  of facial m otor neurons w as com parable to th a t of full length  

dabl_tvl suggesting  tha t cdk5 is unlikely to p lay  an im portan t role in  D ab l 

phosphory la tion  in  th is context.

A nother im portan t difference betw een the zebrafish an d  the m ouse is 

the localization of Reelin d u rin g  V lln m igration. In m ouse Reelin is absent 

from  the rou te  taken  by  the  m igrating neurons and  presen ts a strong 

expression in  r6-7, w here  the  neu rons term inate the m igration  (A shw ell & 

W atson, 1983; A uclair et al., 1996; S tuder et ah, 1996; Garel et al, 2000). In 

zebrafish, reelin is expressed  uniform ly  from  r2 to r7 before the VII has 

started  to m igrate  and  even  stronger a t 48hpf w hen  the m igration  has 

term inated  (see Chapter3).

These findings suggest th a t in  zebrafish, the m igration  of V lln  m ight 

be regu lated  in  a d ifferent m an n er com pared to m ouse and  the  possibility  

that o ther pathw ays are invo lved  cannot be excluded. M oreover the study  of 

the localization of Reelin recep tors in zebrafish is needed  to  get a m ore 

com plete picture.

5.2.2. A ltern ative  sp lice  fo rm s o f  d a b l  are in v o lv e d  in  m ig ra tio n  and  

in  axon  ex ten sio n  o f  th e  fa c ia l n erve n u c le u s

The ability to knockdow n dabl function by  splice m orpho lino  injection

perm itted  functional analysis of the  tyrosine dom ains of D ab l. In fact, the

spm o is designed against a site of splicing betw een  exon 6 and  in tron  7

(splice donor site) an d  it de te rm ined  the p roduction  of a new  dabl m RN A  (+
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in tron  7) th a t retains only  T yr185. This "artificial" isoform  w as lacking of 4 

tyrosines an d  is supposed  to take the place of the o ther D ab l isoform s in  

m orphants.

In  addition , u sin g  the splice blocking m orpholino  it w as possible to 

avoid  pheno types caused  a t early  stages by m o l and  mo2, w hich m ay affect 

the transla tion  of m aternal dabl transcripts. The resu lting  m orphan t is 

m orphologically  no rm al b u t exhibits a failure of nVII neu ron  m igration 

(100% of m orphants). O n the contrary m o l and  mo2, w hich  are against all 

D ab l isoform s, p roduced  phenotypes involving bo th  m igration  and axon 

pathfind ing . M oreover, the overexpression of D ab l_ tv l isoform  gave rise to 

axon defasciculation b u t the  nerves reach alw ays the final target. These 

findings suggest that isoform s containing the com plete set of tyrosines, for 

exam ple D abl_ tv2 , are  involved in  m igration, w hile the  isoform s as 

D a b l_ tv l are involved in  axon developm ent and  m ight have m aternal 

functions th a t are need  to investigate m ore further. A nyw ay, bo th  isoform s 

have as target the cytoskeleton of the cells, b u t the resu lt depends on the  set 

of tyrosines present.

The spm o gave rise to a m olecule w here m ost all the  C-term inus, 

including Tyr198, Tyr200, Tyr202and  Tyr232, is ablated. Yotary and  scrambler 

p resen t respectively a truncation  and  an insertion  in  D ab l ju st at level of the 

tyrosine dom ain  (Sheldon et al.r 1997; H ow ell et al., 1997). Interestingly, bo th  

m utan ts p resen t defects in nVII m igration, b u t a defective facial nerve w as 

never described. The reeler V lln  pheno type  is identical to scrambler and  

yotari, w ith  a norm al facial nerve.

172



Chapter 5 Results 3

A lthough  m ore stud ies are needed  to better u n d e rs tan d  the 

pheno type  found  in  zebrafish  m orphants, it is w ithou t doub t th a t the 

phospho ry la tion  dom ain  of D ab l is im portan t for the nVII m igration.

5.2.3. Development of reticulospinal neurons is affected in 

morpholino injected embryos

The reticulospinal neurons are b o m  betw een 7 and  28 h p f in  the 

ven tra l h in d b ra in  and  have a segm ental identity  (Metcalfe et ah, 1986; 

M endelson, 1986a). By 5 days M authner cells are found  in  the ventral 

h indb ra in  a t level of r4, either due  to passive displacem ent (M endelson, 

1986b) o r to  active rad ia l m igration. There are no t m am m alian  hom ologues 

of M au thner neu rons and  therefore no  previous data  on the effects of dabl or 

the loss of function  of reelin on their position.

In zebrafish, events tha t affect the segm ental iden tity  of rhom bom eres 

invariably  change the  num ber of reticulospinal neurons and  som etim es also 

their location. This indicates tha t rhom bom ere iden tity  dictates the  iden tity  

of reticulospinal neu rons (M aves et ah, 2002; M cClintock et al., 2002). D uring  

reticulospinal neu ron  developm ent, reelin is h igh ly  expressed  in  

rhom bom eres 2-7 and  dabl is localized in  the  lateral colum ns of neu rons of 

the h indb ra in  tha t also includes reticu lospinal neu rons (chapter2-3).

In dabl m orphan ts the segm ental iden tity  of rhom bom eres is no t 

altered, as show n by  the correct expression  of krox20 (fig 8G, H), how ever 

there are defects in  the location of re ticu lar sp inal neu rons (Fig 8 B, D-F),
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suggesting th a t these neurons m ight undergo  rad ial m igration  and  tha t this 

m igration  relies on  D ab l. A lternatively, it m ight be a cell non-au tonom ous 

effect of the  loss of function dabl, i.e. the neurons th a t su rro u n d  the reticular 

spinal n eu rons m ay be abnorm al and /or create an  abnorm al environm ent.

Finally, it is possible that the prim ary  defect of reticu lar spinal 

neurons (m issing dabl activity) is in their axons and  tha t in  the  absence of 

correct projections the som a of reticular spinal neurons is less stabilized in 

its position  a n d  m ay be passively displaced at different ventro-dorsal levels 

or even  controlaterally  displaced. M idline signals gu ide the g row th  cones in 

the sp inal cord  (C harron et ah, 2003; Bernhardt et ah, 1992; Serafini et al., 

1994) and  th is is generally believed to occur th rough  N etrins, Slits an d  other 

signals (G eneral Introduction).

The d a ta  p resented  in  this thesis are com patible w ith  the  suggestion  

that Reelin could  be a signal of positional inform ation  for the  descending 

axons of the  reticulospinal neurons, w hich occupy either the  m idd le  or the 

lateral long itud inal fascicles on the tw o sides of th e  Reelin positive cell 

colum ns of the  h indbrain  (see C hapter 3).

5.2.4. Loss of dabl  functions affects the development of 

retinal circuitries and the retinal neurons

In spite of the lam inar expression of bo th  dabl an d  reelin in  the 

developing retina, extensive studies have failed to  reveal a role of this
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pathw ay  in  the  o rg a n iz a t io n  of the ordered retinal cytoarchitecture (Katyal 

& G odbout 2004). H o w e v e r ,  the activity of the Reelin pathw ay  seem s to be 

necessary for th e  p a t te r n in g  of synaptic connectivity in the retina, since bo th  

reeler an d  scrambler m ic e  show  an attenuation of photoreceptor retinal 

responses (Rice et ah, 2 0 0 1 ). This defect is associated w ith  a decrease in  rod  

b ipo lar cell density  a n d  a n  abnormal distribution of processes in  the  inner 

plexiform  layer.

The in jections o f  dabl mos in zebrafish d id  no t affect retinal 

cytoarchitecture b u t c a u s e d  a significant decrease in  the num ber of am acrine 

dopam inergic cells a n d  a  reduction  of the thickness of the inner p lexiform  

layer. This p h e n o ty p e  i s  rem iniscent of the retinal phenotype in  scrambler 

and  reeler mice. Rice et al. demonstrated that the glycinergic am acrine cells 

are reduced (they d id  n o t  assess dopaminergic neurons) and  show ed that 

the rem aining am acrin e  c e l ls  have reduced dendrites. Together these resu lt 

in  a th inner p lex ifo rm  la y e r ,  a phenotype, w hich m ay also be p resen t in  

zebrafish (see a rrow s p o in t in g  at each other in fig. 9a F, G).

In conclusion, th e  fu n c t io n  of Dabl in the retina could be to a llow  the 

correct developm ent o f r e t in a l  circuitries, th rough  neurite  fo rm ation  and  

specification o r correct m i g r a t i o n  of intemeurons. This suggestion is fu rth er 

supported  by the  f in d in g  th a t  dabl is only transiently  expressed in  zebrafish  

retinal ganglion cells. K n o c k  dow n of dabl th ro u g h  m orpholino  does no t 

affect RGC (Retinal G a n g lio n a l  Cells) num ber or position, b u t severely 

affects the d ev e lopm en t o f  th e  optic nerve.

175



Chapter 5 Results 3

5.2.5. Retinal axons requires dabl  for extension and path 

finding

As show n in  figure 9b, the  abrogation of dabl functions w ith  m os 

affected the g row th  of retinal axons. Reelin is expressed in  the preoptic  area 

just above the chiasm atic p la te  a t the tim e w hen  retinal axons are p ioneering 

th is p a th  (Chapter3 and  C ostagli et ah, 2002). This region also expresses o ther 

regulators of optic nerve g ro w th  and  p a th  finding, including Slit2, Ephrin- 

A5 and  Eph receptors (W ong et ah, 2004; Knoll <SDrescher 2004; Frisen et ah, 

1998). It is in teresting tha t all these signalling pathw ays rely on tyrosine 

kinase activity w ith in  the g ro w th  cones of retinal axons. H ere in tegration  of 

m ultip le  signals results in  the  correct p a th  finding  for these axons (W ong et 

al., 2004; Knoll & Drescher, 2004).

The function of the R eelin /D abl pa thw ay  in the g row th  of the optic 

nerve and  of other nerves cou ld  be tha t of p rom oting  ind iv idua l axonal 

grow th  and  grow th  cone exploration and  allow ing for correct selection of 

pa ths and  exposure to guidance cues. For exam ple, in  the develop ing  reeler 

h ippocam pus, entorhinal axons form  abnorm ally  thick b und les and  und erg o  

bo th  targeting errors and  decrease in  collateral b ranch ing  (Del Rio et al, 

1997; Borrell et al., 1999). In the  presence of dabl m os retinal axons m ay 

reduce their g row th  rate, their exploratory  behav iou r and  finally undergo  

errors in p a th  finding in  reaching  their targets in  the optic tectum .
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All th ree  system s affected by  dabl abrogation described here, facial 

nerve, reticulospinal neurons axon and optic nerve, have in com m on defects 

in  axonal grow th, in  p a th  find ing  and  branching. These abnorm alities m ight 

be due  to a "w eakness" of the grow ing  axon. The cytoskeletal netw ork  m ay 

be im paired  by  the absence or severe reduction  of an im portan t m ediator of 

the extracellular signals to  the  cytoskeleton. A s a result of that the axons 

undergo  m ultip le  errors includ ing  abnorm al branching, p rem atu re  

term ination, abnorm al p a th  an d  target choice.

5.2.6. The roles of the functional domains of dabl  are still 

unknown

The complex structure  of dabl gene resu lts in  a fine regu la tion  of the  

transcrip ts du ring  developm ent. Since all dabl transcrip ts seem  to include 

the PTB dom ain, they should  re ta in  the ability to  b in d  the  NPxY m otif of the  

lipoprotein  receptors. H ow ever, the  in tracellur response depends on  the  

type of isoform s, i.e. if they  are or no t carrying the  tyrosines phosphory lab le  

by  the Reelin signal.

I have tested the hypothesis of a dom inant-negative effect of D ab l- 

PTB dom ain  in  live zebrafish em bryos by  injecting m RN A  encoding for th is 

dom ain  alone. A lthough these injections caused  a range of defects they  

never caused defects a ttributable to  a blockage of dabl function  in  neu ronal 

m igration, nam ely they d id  n o t phenocopy  the injections of dabl
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m orpholinos. H ow ever, the severity  of the phenotype due  to overexpression 

in  som e cases p rec luded  the analysis of facial nerve grow th.

O verexpression  of dabl_tvl m RNA show ed axon defasciculation 

su p p o rtin g  the evidence tha t differential expressions of dabl isoform s are 

involved  in  axon developm ent. In fact, the isoform  d a b ljtv l  is expressed in 

V lln n eu ro n s before  and  after the m igration (see C hapter 4) w hen  the 

neurons are  still ex tend ing  their axons.

A t the  m om en t a hom ologue of dabl_tvl has not been characterized in 

o ther verteb rates an d  so it could  be specific to zebrafish. By contrast the 

isoform  dabl_tv2  is identical in  exon organization to mDabl-555 and  the 

hom ology w ith  the  m ouse and  h u m an  protein  dom ains is high. For these 

reasons, D ab l_ tv2  m igh t be  subjected to ub iqu itination  after

phosphory la tion  sim ilar to D abl-555 (Suetsugu et a l, 2004; Park  et a l, 2003), 

w hile it is no t predictable  w h a t the targets of the phosphory la ted  dabjtv l 

isoform  are and  w hether undergoes ubiquitination.

Published in vitro da ta  (O hkubo et al, 2003; Beffert et al, 2002) and  

unpub lished  in vivo da ta  (personal com m unication M arina M ione) show  that 

D abl_ tv2  regulates phosphory lation  of AKT th ro u g h  PI3K. The 

Phosphatidylinosito l 3-Kinase can be activated by  D ab l and  is involved  in 

cytoskletal reorganization an d  in  particu lar in  the phosphory la tion  of 

several cytoskeletal proteins (Bock et al., 2003).

A lthough  the functions of the m ain  D ab l dom ains are know n, the  role 

of the C -term inus is no t u n d e rs to o d  an d  it is n o t k n o w n  w hether it 

influences the o thers dom ains. Further stud ies on  the  various isoform s of
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D ab l are needed  to clarify the activities perform ed by  dabl and  w hich are 

the pa thw ays w here these D abl isoform s are involved.

5.2.7. Jaw phenotypes resulting from injections of m ol and 2 

suggest alternative roles for dabl.

The injection of m o l and  2 gave rise to phenotypes a t level of the 

cartilages of the jaw. The prelim inary data concerning the function of dabl in  

non-neuronal tissues p resented  here are, to the best of m y know ledge, the 

first show n. In m ouse dabl m utan ts a connection of D ab l to neural crest 

m igration has no t been described.

As previously  m entioned, m o l and  2 affect the transla tion  of m aternal 

and  zygotic transcrip ts and  at h igh  concentration the em bryos die. In m ice 

the knockout of dabl results in  em bryonic lethality  as the endoderm  

m igration  is affected (Yang et a l, 2002). As show n in  C hapter 3, dabl is 

m aternally  expressed as dab2 and  the tw o genes share a h ig h  hom ology in  

their PTB dom ain  (Yun et al., 2003). Thus, they  m ay be red u n d a n t in  som e 

functions du ring  very early developm ent.

In the case of the jaw  phenotype it is relevant to say th a t the  cartilage 

derivatives in  zebrafish give rise to a structure  functionally  an d  structurally  

not found  in  m am m als. In mice the  arches (at stage of pharyngu la , w hen  the 

m orphologies of em bryos of d iverse vertebrates are com parable G ould, 

1977) m elt together to form  the larynx, a struc tu re  tha t com pletely differs
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from  branchial arches in  fish. A nyw ay defects at level of the larynx have 

never been  repo rted  in  Dabl m ouse m utants.

In general, the  phenotypes I have seen m ay be d ue  to a different 

function of dabl in  zebrafish com pared to m ouse. The loss of function 

obtained in  the  m orphan ts (at least at very  early stages) m ay be m ore severe 

than  in  m ouse w here  the  m uta tion  is n o t nu ll (D abl is truncated  in  yotari 

and  a low level of norm al dabl transcrip t p lus a longer form  of ~7kb are 

presen t in scrambler; Sheldon et al., 1997 and  H ow ell et al, 1997). In add ition  

to that, redundancy  betw een different dab genes m ay differ betw een species.

5.2.8. Conclusion

Based on the findings presented  in  th is chapter, I p ropose tha t D ab l is 

an adap to r pro tein  regulating neu ronal m ovem ents and  correct axonal 

extension.

In addition, m y w ork suggests tha t the  signals th a t regulate  the  

activation of D ab l during  axonal g row th  and  pa th find ing  rely on  

phosphorylation  of a group of tyrosines p roven  to be activated  by  Reelin 

signaling. G iven the expression pattern  of bo th  reelin and  dabl d u ring  axonal 

grow th  in zebrafish, I believe tha t Reelin m ay rep resen t one of the signals 

that activate D ab l phosphory lation  in  the  CNS of zebrafish  as in  the  o ther 

Vertebrates, w hereas outside the CNS, D ab l m ay  be activated  by  o ther 

pathw ays.
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Chapter 6 

6. General discussion

6.1. Summary of the work carried out

In th is w ork  I present a p relim inary  study  of R eelin /D abl pa thw ay  in  

zebrafish  m ainly focused u pon  analysis of neu ronal m igration. I started  by 

describ ing the expression pattern  of Danio rerio Reelin and  its m ain  

in tracellu lar effector D ab l in  the developing zebrafish an d  in  particu lar at 

level of the CNS.

The use of a sequence of 30 aa probe of m ouse Dabl perm itted  the 

screen of an  adu lt zebrafish b rain  cDNA library an d  the cloning of the full- 

leng th  of the isoform  d a b ljtv l, w hile of reelin only  a sho rt sequence w as 

cloned. Access to  an  online database of zebrafish genom ic sequences 

allow ed the study  at genom ic level of dabl and  the identification of at least 

th ree  isoforms. Then, m aking use  of the general techniques applicable in  

zebrafish m odel, it w as possible to start a study  of the functions of tw o D ab l 

isoform s functions at level of CNS and  jaw  developm ent.
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6.2. Zebrafish Reelin and Dabl show an expression 

pattern comparable but not identical to other 

vertebrates

Both reelin and  dabl d isp layed  a h igh ly  dynam ic expression pa tte rn s 

from  the early stages to 48hpf and continue to be expressed in  adu lt b ra in  of 

zebrafish (for D ab l M arina personal com m unication).

reelin and  disabledl expression from  5pdf has revealed th a t the  

distribution  of the transcrip t in various CNS structures, except the 

telencephalon, resem bles that described in  o ther species (Bar & Goffinet, 

2000). In zebrafish the telencephalon is no t lam inated  and  reelin signal is 

diffuse over its dorsal part, w hile dabl is expressed m anly  in the ven tra l 

part. This rem arkable difference in the expression of reelin in  the  

telencephalic region m ay be attributed  to the different m orphogenetic  

m echanism s tha t lead to the form ation of zebrafish-everted brain . This 

theory is supported  by the observation of the expression of reelin in  Xenopus 

laevis, w here reelin expression is less localized b u t still com parable to  the  

o ther land  vertebrates (Chapter3 parag raph  2.6). In fact, the  telencephalon  in  

am phibian  evaginates, b u t no  m igration or lam inar o rganization  of do rsa l 

telencephalic cells have been reported  to occur.

O n the contrary, m am m alian  cortex p resen ts a w ell-know n lam inate

structure and  neurons are o rganized  in  an  "inside to  outside" o rd er

reflecting the tim ing of their b irth  and  pa tte rn s of m igration. H ow  the

transition from  non-lam inar pallium  to lam inated  m am m alian  cortex
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occurred during  evolution is unknow n. H ow ever, it is in teresting to 

speculate tha t changes in  Reelin expression and  function m ay have 

contributed to this evolution. In  m am m alian  dorsal telencephalon and  

olfactory bulb, Reelin w as found  to  control rad ia l m igration  (D 'A rcangelo & 

C urran, 1998; Hack et al., 2002). In  particular, the  localization of Reelin solely 

in  the m arginal zone orchestrates the form ation  of the layers of the cortex. 

The m am m alian  cortex m ight derive from  a single-layer of ancestral am niote 

cortex com m on to reptiles, am phibians and  birds, w here  Reelin changed 

from  a m ore diffuse signal to a m ore localized at level of the m arginal zone 

(Bar et al., 2000; Aboitiz et al., 2001; Tissir et al., 2002). C ertainly the roles for 

Reelin in  the  fish and m am m alian  telencephalon are likely to be very  

different as the  radial m igration patterns that requ ire  Reelin activity sim ply 

do  no t occur in  the  fish telencephalon.

A nother peculiarity  of zebrafish telencephalon, and  in  general of all 

teleosts, is the  absence of reelin expression in the olfactory bulb , w hile dabl 

expression is p resen t as in all the o ther vertebrates.

Zebrafish m esencephalon is m ore developed  in  size (in p roportion) 

then  in  m am m als and presen ts a lam inated  structure. Both zebrafish  

m esencephalic structures, the optic tectum  and  the  to rus longitudinalis, 

show  the expression of reelin to be  localized in  tw o w ell d istinct layers. In 

reeler m ice the  hom ologue of the  optic tectum , the  superio r colliculus, is 

d isorganized (Frost et al, 1986). These find ings are suggestive of a function 

of zebrafish reelin in  the com plex o rgan ization  of the region  of the m idbra in  

and  the localized expression of reelin could  have  the sam e evolu tionary
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m eaning  of the w ell-described reelin signal in  the m arginal zone of 

m am m alian  neural cortex.

To the other hand, in  the eye, w here the  layered  structu re  of the retina 

is no t related to Reelin localization (Rice et al., 2001), zebrafish  Reelin and  

D ab l could reta in  the function of control of circuitry  form ation. Extrem ely 

im portan t is the evidence show n here in  D a b l m orphan ts, w here the 

reduction  of the plexiform  layer (layer of the nerve  fibers inside the retina) 

w as com parable to w hat has found in mice (Rice et ah, 2001). In addition , in  

chicks the form ation of the retina circuitry w as found  related  to the 

differential expression of tw o dabl isoforms, nam ely  C hdab l-E  and  C h d ab l- 

L. The C hdab lE  is expressed in undifferentiated  and  d iv id ing  neurons, 

w hile C hdabl-L  is expressed in differentiated neurons, i.e. neurons able to 

form  neurites and  synaptic connections. This find ing  an d  p resen t da ta  are 

the first show ing the  function of D abl isoform s potentially  expressed in  

tem poral and  tissue specific m anner.

6.3. Alternatively spliced d a b l  isoforms in zebrafish 

add a new level of complexity in Reelin/ D abl 

pathway

The study  of Danio rerio dabl gene confirm ed a com plex genom ic 

organization previously show n in  the m ouse a n d  h u m an s (Bar et al., 2002) 

and  now, w ith  the p resen t w ork, corroborated  in  teleosts.
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In addition, the phenotypes of the  m orphan ts at the  level of the brain, 

jaw , b lood circulation and heart are suggestive of dabl functions difficult to 

explain w ithou t taking alternative splicing and  m ultifunctional isoform s 

into consideration (Chapter 2 an d  Bar I et al., 2003). It has been show n that 

m odular exons are strongly associated w ith  tissue-specific regulation  of 

alternative splicing (Xu et al, 2002; Yeo et a l, 2004; Xing & Lee 2005).

A t 24-30 h p f the isoform s dabl_tvl and  dabl_tv2 are co-expressed in  

the forebrain, b u t they show  a differential expression in the h indbrain . The 

isoform  d a b ljtv l  is localized in tw o bilateral stripes of the h indbrain , w hile 

dabl_tv2 isoform  is expressed in reelin positive region a t level of the 

m igrating neu rons of the facial nucleus. The presence of tw o isoform s at 

level of the  non-m igrating  (isoform d a b ljtv l)  an d  m igrating  (dabl_tv2) 

neurons of the VII w as never described in the o ther vertebrates and  the 

dabl_tvl it-self w as cloned only in  zebrafish so far.

M oreover, at 24hpf stage of developm ent only dabl_tvl w as in  the 

region above the yolk extension, w here reproductive  organs, p ronephric  

ducts and  b lood vessels originate. Interestingly, Dab2 that re ta ins a PTB 

dom ain  alm ost identical to D ab l PTB dom ain  (Yun et a l, 2003) w as seen 

involved in  early stages of developm ent. As bo th  genes are m aternally  

expressed, their functions could be red u n d an t in  non-neuronal tissue.

In m ice several isoform s w ere cloned and  one in  pa rticu la r is no t 

expressed in  neuronal tissue. The isoform s Dabl-271* and  Dabl-217* are 

shorter then  the D abl-555 (D abl_tv2 is the zebrafish  hom ologue) and  the 

isoform  Dabl-555* is expressed in k idneys, liver and  in  general in  non- 

neural tissue (How ell et a l, 1997a).
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Taking all this evidence together, it is possible to speculate on roles 

for D ab l that m ay be not only in  neu ra l tissue b u t also participate  in  other 

tissues and  m ay not involve the Reelin pathw ay. O n the o ther hand, the  

discovery of alternative splicing of D ab l adds a new  level of com plexity to 

the Reelin pathw ay, so th a t the study  of the  several isoform s of D ab l is 

becom ing an  obligatory w ay  to the general com prehension  of this pathw ay.

6.4. Disabledl is part of the machinery that regulates 

neuronal migration and axonal growth

D isabled w as first identified as an enhancer of abl phenotype in  

drosophila, w here  the reduction  of Dab levels in  abl-/- background  caused 

severe defects in the organization of the nerve cord, the m ajor axon tracts in  

this species (Gertler et a l, 1989). I have investigated  the role of dabl in  

neuronal m igration and axonal grow th  in  zebrafish in  three different 

contexts, nam ely the M auther neurons and  their axons, facial nucleus and  

facial axons and  the retina and  optic nerve. A ll cases d isp layed  severe 

defects in bo th  cell localization and  axonal g row th  in  dabl m orphants, 

show ing dabl im plication in  bo th  m igration  an d  axonal grow th.

The role of D ab l in  vertebrates has been  stud ied  u sing  the m ouse 

m u tan t scrambler and  yotary that carry  m uta tions in  the  dabl gene (Sheldon et 

al., 1997 and  How ell et al., 1997b), and  in  m ouse Dabl knockout (How ell et 

al., 2000). W hile m igration  defects of neu rona l cell g roups have been
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extensively reported, connectivity or projection defects have  been  often 

ru led  out.

D ab l is a partner of non-receptor tyrosine kinases Fyn and  Src 

(A m aud, et al., 2003b; Kuo et al., 2005) an d  p robably  sits a t the  core of 

several pa thw ays involved in  converting extracellular signals in to  

cytoskeletal changes.

6.5. Reelin is not a localized signal in the zebrafish 

hindbrain and potentially controls migration of the 

VII nucleus through differential expression of d a b l  

isoforms

Reelin is a secreted protein  and  it is though t to act in  a g raded  w ay. In 

the m am m alian  cortex and  in the olfactory bulb, it Reelin is p ro d u ced  by  a 

single layer of peripheral cells (Ogawa et al., 1995; H ack et al 2002) tow ards 

w hich the neurons m igrate. In m ouse h in d b ra in  reelin d isp lays a localized 

and  strong expression in r6 to control the  m igration  of the  V lln  a t the  final 

position  (Ashwell & W atson, 1983; A uclair et al., 1996; S tuder et al., 1996; 

Garel et al, 2000; Rossel et al., 2005). O n  the  contrary , in  the zebrafish 

h indbra in  reelin is expressed th ro u g h o u t rhom bom eres 2-7 an d  in  the 

forebrain, it is expressed by  the  entire dorsa l te lencephalon  instead  of a 

single layer, as in  reptiles an d  m am m als (C hapter 3).
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The presence of reelin expressing cells below  and  above D ab l positive 

cells is a com m on event during  m igration, and  has been  observed in  the 

telencephalon  of reptiles, b irds (Goffinet et a l, 1999; Bernier et al, 2000; Tissir 

& Goffinet, 2003) and am phibia (C hapter 3). A lthough  it is still unknow n 

w hether Reelin represents a repulsive (or stop) o r attractive signal for 

m igra ting  cells, it is clear that in radial m igration the source of Reelin m ust 

be separa ted  from  the responsive cells expressing D ab l and  able to activate 

specific receptors (Bar et al, 2000). O n the contrary, in  the zebrafish 

h indbrain , reelin is expressed in 6 rom bom eres including  rom bom eres 4, 5 

and  6, w here  the neurons of the VII are m igrating. Therefore, it is n o t a 

localized source of Reelin that leads neuron m igration  b u t it is the 

expression of a t least tw o different isoform s of D ab l th a t determ ines the 

correct positioning  of the nucleus. In this case, Reelin is no t acting as a 

repulsive o r an  attractive signal bu t rather a perm issive signal.

A nyw ay it cannot be excluded the possibility tha t in  zebrafish Reelin 

is n o t involved in  nVII m igration. The dabl m orphants show ed a defect first 

of all in  the  tangential m igration ra ther then  in the rad ia l m igration. As 

Reelin w as seen involved m ainly in radial m igration, it can be take in  

consideration  the possibility of another signaling m olecule to  be involved in  

D ab l phosphorilation  in  zebrafish nVII.

To ascertain the function of Reelin in  th is m igration  m ore stud ies are 

need ed  and  for exam ple, it is necessary to  look at the  expressions p a tte rn  of 

the receptors involved in  the Reelin p a thw ay  b u t that, a t the  best of m y 

know ledge, have n o t been cloned in  zebrafish  yet.

188



Chapter 6 General Discussion

6.6. r e e l i n  and d a b l  function in the young/adult brain 

of all vertebrates

Both Reelin and  D ab l are still expressed in  the CNS of young  an d  

adu lt zebrafish. The absence of reelin in  d iv id ing  cells (BrdU lebeling; 

C hapter 3) indicates an association betw een reelin and  differentiating 

neurons. Reelin m ay be im portan t for the  m igration  of new ly  b o m  neurons, 

for the form ation of the nuclei, b u t also for the  g row th  of their dendrites a n d  

axons (Chitnis et al., 1990; W ilson et al., 1990; Ross et al., 1992).

The com plexes form ed by  Reelin and  its receptors are though t to  

prom ote the stabilization of dendritic  sp ine m icro tubules th rough  D a b l 

phosphorylation  and  its interactions w ith  various cytoskeletal com ponents 

(Feng et al., 2001; Stockinger et al., 2000). In addition , Reelin, (th rough  an  

A poer2/V ldlr-D abl-dependent pathw ay), can positively  regulate  the  long

term  potentation  (LTP) in m ouse h ippocam pal slices and  m odulate  synaptic  

plasticity and  learning in the adu lt m ouse b ra in  (W eeber et al., 2002). In fact, 

Reelin can enhance NM DA receptor activity  an d  alter the  gating of the  

channel (Chen et al., 2005).

In zebrafish, reelin (and dabl as well) is expressed  a t 5 dp f w hen  the  

neu ron  m igration and  m orphogentic  m ovem ents have reached to  

com pletion. A t the sam e stage bo th  reelin an d  dabl m ay be involved in  

form ation of the circuitry of the  retina  (C hapter 5 and  Rice et al., 2001). 

M oreover, reelin is h ighly expressed  in  the  regions of dendritic  sp ine 

rem odelling of type I neurons in  the  optic tec tum  (C hapter 3).
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Finally, the observed expression  of reelin an d  dabl a t 1-m onth stage 

and  later confirm s the hypotheses th a t the  R eelin /D abl pa thw ay  m ay be 

involved in zebrafish in  dendrite  m aintenance and  rem odeling  once the 

m igration of neurons in  CNS struc tu re  is com plete.
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Appendix

Molecular Biology Techniques and solutions 

preparation

M ainly all the solutions and  m olecular techniques follow the 

protocols of "M olecular cloning, a laboratory m anual" by  Sambrook, 

Fritsch and Maniatis.

Measurement of DNA/RNA concentration

DNA and RNA concentration w ere quantified  by optical 

densitom etry (OD) using  a spectrophotom eter. The OD w as m easured  at 

260nm for DNA (OD=l equates to 50jj.g/ml) or RNA (40fj.g/ml) follow ing 

calibration w ith distilled water. The concentration w as then  calculated 

based on dilution rates w ith  water.

Bacterial Plasmid DNA extraction

Plasm id DNA w as in troduced into D H 5a strains of E.coli using a 30 

second heat shock at 42°C. After overnight g row th  at 37°C on LB A gar 

plates w ith  100|j.g/ml am picillin (Sigma), single colonies w ere picked and
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innoculated into m ini cultures of 2-3ml of LB w ith  lOOjig/ml am picillin and 

grow n overnight. Plasm id DNA w as p repared  from  ind iv idual cultures 

using Qiagen m iniprep kits (Qiagen), an d  eluted from  the colum n w ith  

lOmM Tris-Cl, pH  8.5 according to m anufacturers ' instructions or by 

alkaline lysis as described in Sambrook et al. 1989. Larger scale m idi- and  

m axipreps of plasm id DNA w ere perform ed using Q iagen kits w ith  

standard  protocols.

DNA Manipulation

Restriction enzym e digestion w as perform ed using  enzym es from  

Prom ega in an appropriate buffer w ith  2-5 units of enzym e per lu g  DNA 

at the recom m ended tem perature. P rotein rem oval w as carried out by 

phenol/chloroform  extraction to purify DN A  preparations.

Concentration or purification of nucleic acids w as perform ed using 

0.1 volum e of 3M sodium  acetate and  2.5 volum es of ethanol, incubated at 

-80°C for at least 30 m inutes.

For plasm id transform ation, circular DNA or ligated  DN A  w as 

added  into com petent cells by incubation for 30 m inutes on ice, 30 second 

heat shock at 42°C and further 2 m inutes on  ice. The cells w ere then  

incubated in  LB m edia for 30 m inutes a t 37°C follow ed by  p lating  on the 

appropriate  antibiotic-containing LB agar plates.
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Ligation reactions

Interm olecular ligations w ere perform ed in  sm all volum es; usually  

2 0 j l i 1 for approxim ately 20ng of vector DNA w ith  50 n g  of insert DNA. 

Ligation reaction w as carried out overnight at 14°C w ith  T4 DN A  ligase 

(Invitrogen) and the ligation buffer provided. Sticky end  ligation w as 

perform ed w here possible either using  enzym es giving com patible ends or 

digesting prim er-engineered restriction enzym e sites on  the ends of PCR 

am plified DNA.

Transform ation of the ligated plasm ids w as perform ed as described 

above and colonies containing the ligation product w ere detected by PCR 

selection. The direction of insertion w as then  tested by  restriction digest 

m apping  or by PCR.

Polymerase Chain Reaction (PCR)

PCR reactions w ere carried ou t according to standard  protocols 

using  A pplied Biosystems 9700 (Gene Am p) therm ocycling m achine. Taq- 

D N A  polymerase, Prom ega w as used  for o rd inary  m olecular 

characterisations. Pfu DN A polym erase (Stratagene) w as u sed  for 

am plifying sequences to be cloned in to  expression vectors for RNA 

injection studies because it has a very low error rate. A nnealing
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tem perature specific to each prim er w as optim ised w ith test reactions p rio r 

to use.

M anufacturer's instructions w ere follow ed to vary  the length  of the 

various cycles w ith in  the PCR program m e according to the  enzym es used.

Agarose Gel Electrophoresis and DNA Extraction from Agarose

Separation of DNA (and RNA) fragm ents w as perform ed by  agarose 

gel electrophoresis in  TAE buffer (40mM Tris-acetate, Im M  EDTA). The 

agarose w as dissolved in  lxTAE and eth id ium  brom ide (10 m g/m l) w as 

added  for visualisation of DNA or RNA u n d er ultraviolet light. The 

concentration of agarose ranged betw een 0.8 and 2% depending  to the size 

of DNA fragm ent to be run. The DNA sam ples w ere loaded by  m ixing 

w ith  loading buffer. A DNA ladder (lkb  size standard) w as run  alongside 

the DNA. Extraction of DNA fragm ents from  the agarose gel w as 

perform ed using the QiaexII gel extraction kit (Qiagen) according to 

m anufacturer's instructions.

Preparation of digoxigenin and fluorescein RNA probes

Antisense probes for d a b ljtv l and  reelin w ere  generated by  

linearization w ith  Sail and  in  vitro transcrip tion  w ith  SP6 in  the presence
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of dig-labelled ribonucleotides (Roche), w hereas the Xenopus reelin 

p lasm id  was linearized w ith NOTI and  transcribed w ith  T3-RNA 

polym erase.

To generate the tem plate for exon 8+9 w e used  RT-PCR on total 

RNA extracted from  5 dp f zebrafish larvae. The prim ers u sed  w ere 

forw ard exon 8 and  reverse exon 9. The PCR p roduct w as cloned in  

PCR2.1 using Topo, TA cloning Kit (Invtrogen), sequenced and  linearized 

using BamHI.

Riboprobes were purified using  quick spin  colum ns (Roche) and  

stored in  50% form am ide at -70°C. Isletl (Inoue, 1994), eom (Mione et al., 

2001), nk2.1b (Rohr et al., 2001), Krox-20 (Oxtoby, 1993), RNA probes w ere 

synthetised using a fluorescein labelling k it (Roche, UK) for tw o colour in 

situ hybridization.

Plastic Sections protocol

Embryos should be fixed and  in 70% glycerol. After being w ashed 

3X10 m inutes in H 2O, the em bryos w ere w ashed into ethanol (30% 

ethanol/70% H 2O, 50% ethanol, 70% ethanol, 95% ethanol and  finally 100% 

ethanol 2 m inutes each step). A ctivation of solution A (BDH): 0.225g 

benzoyl peroxide to 25 m l of A solution un d er the fium  hood. Incubation 

in  1:1 mix of A:100% ethanol lh r  a t RT or O /N  at 4°C in an  eppendorf tube. 

The solution A:100% ethanol w as replaced by  fresh activated A solution 

and  then  w ith A+B solution. The solution A+B w as p repared  add ing  160|ul
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B into 4m l activation solution A in falcon tube. A bout 400 \x\ A+B solution 

w as used  for each eppendorf tube containing sam ples. The sam ples w ere 

placed into wells, 2 each wells. The A+B solution w as replaced w ith  fresh 

A+B, the embryos re-orientated under dissection m icroscope pu tting  at 

ends of wells facing out w ards. The wells w ere placed in  a box and  N 2 gas 

was added. After sealing the lid, the sam ples w ere left in  the box w ith  N 2 

O/N, RT. Sections w ere attached to a support and  cut at m icrotom e.
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