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Abstract

Since the mid 1970s and increasingly over the last decade, causal inference 

has generated interest and controversy in statistics. Mathematical frame­

works have been developed to make causal inference in fields ranging from 

epidemiology to social science. However, most frameworks rely on the exis­

tence of counterfactuals. and the assumptions that underpin them are not 

always made explicit. This thesis analyses such assumptions and proposes 

an alternative model. This is then used to tackle problems that have been 

formulated in counterfactual terms.

The proposed framework is based on decision theory. Causes are seen in 

terms of interventions which in turn are seen as decisions. Decisions are thus 

explicitly included as intervention variables, in both algebraic expressions for 

causal effects and the in DAGs which represent the probabilistic structure 

between the variables.

The non-counterfactual framework introduces a novel way of determining 

whether causal quantities are identifiable. Two such quantities are consid­

ered and conditions for their identification are presented. These are the direct 

effect of treatment on response in the presence of a mediating variable, and 

the effect of treatment on the treated. To determine whether these are iden­

tifiable, intervention nodes are introduced on the variables that are thought 

to be causal in the problem. By manipulating the conditional independences 

between the observed variables and the intervention nodes it is possible to 

determine whether the quantities of interest can be expressed in terms of the
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a) specific settings and/or b) the idle setting of the intervention nodes, corre­

sponding to experimental regimes and the observational regimes of the causal 

variables.

This method can be easily tailored to any specific context, as it relies only 

on the understanding of conditional independences.
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Chapter 1 

Introduction

The original work in this thesis is based on the decision theoretic framework 

described in Lindley (1985) and Raiffa (1970) and introduced as a method 

for causal inference in Dawid (2000).

The objectives are to formally develop the decision theoretic framework for 

causal inference, to assess the validity of assumptions underlying the frame­

works in the literature, and finally, to develop some aspects of causal inference 

using the decision theoretic framework.

Before launching into the thesis, a few points worth noting. The first is 

that there is no data analysis in this thesis. It deals purely with building 

the methodology and applying it to specific problems at a pre-data analytic 

stage.

The second point is a brief comment on why I am interested in causal 

inference; It is the fundamental aim of scientific research and thus worthy 

of pursuit. Also, causal inference is a grey area between what is considered 

“hard science” and metaphysics.
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After reading the basic literature in the field, I realised that this aspect 

of causal inference is played down if it is mentioned at all. This seemed to 

be somewhat of a paradox. Causal inference had been neglected in statistics 

for a very long time, precisely because of its elusive qualities, why, now that 

it had been resurrected, was no one referring to them? Perhaps this was in 

order to give causal inference the hard science reputation it had lacked so far. 

However, all inference is based on assumptions that cannot be tested, maybe 

what we consider hard science is just what is based on the most accepted 

assumptions. Whatever the reasons, in this thesis I have space and time to 

dedicate to the grey area in causal inference.

Finally, the arguments covered in this work explore different facets of 

causal inference, and are connected by the following four themes: (a) the 

assumptions underlying causal models and their applications, (b) translating 

methods initially formulated in counterfactual frameworks in terms of the 

decision theoretic framework developed in Chapter 2, (c) the relationship 

between data collected under passive observational regimes and under exper­

iment, and finally, (d) identifiability issues. Clearly these themes are linked 

to one another and in particular the last two go hand in hand.

Chapter 2 has two parts. The first part is an informal metaphysical discus­

sion that motivates the choice of the decision theoretic framework for causal 

inference. We discuss what we believe cause to be and the role of intervention 

in our understanding of causality. The second part is a formal description of 

the decision theoretic framework, and notation, algebra and graphical con­
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cepts are introduced.

In Chapter 3, the competing causal inference frameworks are briefly de­

scribed and discussed. We start with Rubin’s potential outcomes framework, 

then cover functional model-graphical frameworks, focusing in particular on 

Pearl’s causal model and Heckerman and Shachter’s decision theoretic causal 

model, not to be confused with the framework developed in Chapter 1, as it 

is not truly decision theoretic. Finally, the frameworks are compared and the 

assumptions they are based on are questioned.

Chapter 4 looks at the assumptions on which causal discovery algorithms 

are based. These algorithms mine large databases of observational (passively 

gathered) data for causal relationships. In particular, we focus on the im­

plicitly made assumption that it is possible discover causal relationships from 

data gathered in observational studies, which we term the fundamental as­

sumption.

When the response to a particular treatment is thought to be partially 

mediated by another factor, it is often of interest to determine how much is 

mediated, that is the indirect effect and how much is instead purely due to 

the treatment, that is the direct effect In Chapter 5 we develop the problem 

of identifying direct and indirect effects of treatments in non-counterfactual 

terms. Of particular interest is the development of the manipulation variable 

which is a fictional variable (it need not be feasible in reality) that enables the 

identification of direct and indirect effects from purely observational data.

In Chapter 6 the problem of the effect of treatment on the treated (ETT)

18



is tackled in the decision theoretic framework. This problem arises when the 

data are (i) observational studies where only the response and covariates of 

the treated are available or (%%) experimental data without a control group, 

and it is thus not possible to estimate the average treatment effect which is 

normally the causal quantity of interest. The ETT depends on an unobserv­

able selection criterion. We look in detail at whether the ETT is well-defined 

for different values of the unobservable criterion, and also at how to identify 

the ETT.

Finally, in Chapter 7, we summarise the results and discuss further re­

search.

The first part of Chapter 2, up to section 2.3, as well as Chapters 4,5 and 

6 are original work developed by me with the aid of my supervisor. Chapter 

3 is principally a description of competing causal frameworks. Translations 

into the Decision theoretic framework however, are again my work.
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Chapter 2

The Decision Theoretic Causal 
M odel

2.1 Causal Concepts

In order to give an informal basis to the framework of causal inference pro­

posed in this thesis, I will begin by considering in simple terms how people 

express causal concepts and what they believe them to be. These discussions 

are of a philosophical nature and can be treated as separate from the later 

formal development of the causal inference methodology, which starts from 

section 2.2 onwards. However, I believe that this is a necessary exercise when 

studying this subject, as divergences in this area lead to different specifica­

tions of methodology. How my beliefs about the nature of causality are in 

part responsible for my choice of methodology is discussed in section 2.1.3.
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2 .1 .1  H o w  w e  ex p ress  cau se

Causal concepts are expressed in many different ways both in colloquial lan­

guage and in more formal contexts. Below is a list of different expressions, 

some involving the word cause directly and others implying causal relation­

ships. Most are based on Dawid (2000) and ensuing comments.

2.1.1 Causal expressions

1) My headache is gone because I took an aspirin.

2) If I had taken an aspirin my headache would have gone away.

3) Will my headache go away if I take an aspirin?

4) The central question in any employment discrimination case 

is whether the employer would have taken the same action 

had the employee been of a different race (age, sex, religion, 

national origin etc.) and everything else had been the same. 

(Carson versus Bethlehem Steeo Corp., 70 EEP Cases 921,7th 

Cir.(1996), Quoted in Gaswirth 1997. (Pearl 2001b)

5) She did not get the promotion because she is a woman.

6) The pavement is wet because it rained.

It is worth noting a few points. Expression (2) is a counterfactual i.e., it asks 

what would have happened if counter to fact, the person had taken aspirin. 

It is impossible to verify what the consequences of taking aspirin would have
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been and hence to verify the truth of such an expression. Expression (1) 

although not explicitly counterfactual, operates on a similar principle. It im­

plies that if the person had not taken an aspirin then the headache would not 

have gone away. That is, it compares what did happen to (the unknowable) 

what would have happened had a different action been taken. This concept 

applies to expressions (5) and (6) as well, however, these are fundamentally 

different in that they attribute cause to natural phenomena, the sex of the 

person who did not get promoted and the rain, not the voluntary action of 

taking or not an aspirin. Expression (4) focuses on comparing what would 

have happened if a person had been of a different sex, race etc, given that 

all else is the same. However, it does not go so far as to attributing cause 

directly to the sex, race etc. It is in fact the defendant who is potentially 

responsible for the discrimination and has to ultimately pay the fine if found 

guilty. Finally consider expression (3). It is different from the rest in that it 

is not a statement, but a question. It seeks to verify whether the action of 

taking aspirin performed now is a cause of change in headache status in the 

future.

Prospective vs Retrospective causality

Another important distinction to be made in causal expressions it that be­

tween retrospective and predictive questions. We can either ask whether 

the aspirin been taken already, that is, Sara has taken an aspirin, and her 

headache is gone, is it because she took the aspirin? Or the aspirin has not
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been taken and the question is Sara has a headache, will taking the aspirin 

make the headache go away? Although they are similar, these questions ad­

dress different issues. The first question is retrospective, it asks if it can 

attribute a present non-intentional change in status (that is Sara’s headache) 

to a decision made sometime in the past. The second is predictive, it asks 

whether, with respect to other possible decisions (in this case not taking the 

aspirin), the decision to take an aspirin will result in the desired effect, that 

is, the headache going away.

2 .1 .2  H o w  w e p erce iv e  cau se

Given how we express causal concepts, what qualifies a relationship as causal? 

This question has two types of answers. The first concerns the mental pro­

cess that takes place when human beings elaborate what they perceive or 

sense (see, feel, hear etc) in the world around them. This process results in 

some relationships being judged causal. The second involves what we believe 

causal relationships to be, i.e. the process of assigning characteristics to rela­

tionships that identify them as causal (as opposed to spurious or something 

else altogether). The two processes are intertwined. However, the first is a 

matter for psychologists and philosophers and is touched on only briefly in 

this discussion, in the subsections Changes in status and Time below. The 

second lies at the heart of the development of any causal framework and is 

discussed in more detail in the subsection Invariance.
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Changes in status

The relationship of cause and effect is perceived as a series of changes in status. 

For example, consider the statement My headache is gone because I  took an 

aspirin. Both taking the aspirin and the headache going away, are changes 

in status. The first describes a change brought about by an intentional act, 

a decision or intervention. The second is instead a change, perceived as a 

consequence of the intervention, of a physiological characteristic, headache 

status.

Now consider the statement the pavement is wet because it rained. The 

“cause” here is the change in status of the weather from not-raining to rain­

ing, and the “effect” the change in status of the pavement from dry to wet. 

In this case, both the cause and the effect are changes in status of natural 

characteristics of the weather on the one hand and the pavement on the other. 

Neither is brought about by human intervention.

Two points worth noting, the first is that causes are understood in con­

trastive terms. We contrast an initial state with a changed state. How I felt 

before I took the aspirin is compared to how I felt after I took it.

The second point is that as seen in the previous section on the expression 

of causal concepts, there are two distinct types of changes that can be seen 

as causes. The first example links cause to human intervention, the second 

attributes cause to natural events.
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Tim e

The importance of time ordering in our understanding of causal relationships 

is fundamental. In the methodology proposed in this thesis, time ordering is 

not mentioned explicitly. However the causal structures used incorporate a 

natural ordering, and it is assumed that an effect cannot precede its cause in 

time. This is reflected in the conditional independence constraints and in the 

graphs that encode them.

Invariance

Although we perceive causal relationships in terms of changes in status, these 

differ from other types of changes in that we believe them to be invariant or 

stable (Pearl 2000 and 2001a). The concept of invariance is best explained 

through examples;

Exam ple 2.1.1

If all the rats in a laboratory that have been administered a certain drug 

have overcome a disease, whilst all the rats that have been administered a 

placebo have not, we might say that it is the treatment that caused the rats 

to overcome the disease.

Given this premise, we expect that if we let the rats loose in the wild and 

somehow they are administered the drug, they will overcome the disease or 

at least have a higher chance of overcoming the disease than rats that are 

not administered the drug, if all the important factors have been taken into
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consideration. Also we expect the relationship to persist if we change the 

dosage by small amounts, or administer the drug as an injection or orally. 

Further, we believe that the relationship will persist if we intervene on it by 

changing the environment in which it takes place, again given all important 

factors are taken into consideration.

Thus we believe that the drug will work in the same way in the UK as it 

does in Mexico.

Exam ple 2.1.2

Another example of invariant relationships are the laws of Physics. For ex­

ample, consider Ohm’s law relating voltage, V  to current I  and resistance

R,

V = I  x R

We believe that it is invariant with respect to interventions on the voltage 

or resistance of a circuit. So if we changed the battery on a circuit with 

resistance r  from v\ to t>2 , we would expect the current going through the 

circuit to go from i\ =  V \ / r  to =  v2/r ,  in accordance with the formula 

above.

As we believe that causal relationships are invariant to interventions, we 

conversely tend to assume that relationships that are invariant to interven­

tions are causal. In fact in this work we characterise causal relationships in 

this way.
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A relationship we do not believe to be causal, and thus not invariant to 

interventions is the relationship between the water level in Venice and the 

price of bread in the UK (Sober 1988) even though both have been rising 

steadily since records began. The reason is that we believe that if the price 

of bread in the UK were halved, the water level in Venice would not decrease. 

However, until we have done this, we will not know for sure.

Example 2.1.1 and 2.1.2 are very different and demonstrate one of the 

schisms in the field of causal inference. Ohm’s law is a law of Physics, and is 

generally considered to be one of many stable mechanisms that rule the world. 

The laws of Physics work very well and make predictions that are subject to 

very little uncertainty. W hat will happen in the far future can be predicted, 

and what happened in the remote past can be deduced and explained. These 

laws seem to be self consistent so far, meaning they do not contradict one 

another and form a harmonious world view, although there are different fields 

that deal with the macroscopic and the microscopic. These laws reflect the 

way the universe works and are generally expressed in terms of deterministic 

functions.

The subject of example 2.1.1, whether rats are cured by a particular drug, 

is not so clearly deterministic. In fact, most problems statisticians deal with 

are of this type, where no precise formula that makes accurate predictions 

and fits available data well can be easily found. However, most literature 

in causal inference (with the notable exceptions of Spirtes et al. (2 0 0 0 ) who 

adopt a purely graphical approach) , Pearl (2000), Robins (1986), Heckerman
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and Shachter (1995) and Rubin (1974) amongst others, follow the economics 

and social sciences Structural Equations Model (SEM) method, and describe 

causal relationships in terms of deterministic functions.

Following a SEM approach to analyse example 2.1.1, we say that Y  is 

the response, representing whether the rat has overcome the disease or not, 

T  represents whether the rat has been administered the drug or not and 

finally some additional covariate information about the rat such as age and 

sex is given in X .  We model the relationship between the response and the 

explanatory variables in a function as follows:

Y  = f ( T , X )  + e,

where e is an error term with an appropriate probability distribution. 

D e term in ism

In my opinion (as well as Dawid (2000),Shafer (1996), Didelez (2003) ) it is 

inappropriate to model every causal relationship as a deterministic function. 

It is more appropriate to express them as probability distributions, so in 

the above case I am interested in p(F|T , X), the probability of a particular 

response given the treatment and covariate information.

Saying that all causal relationships can be expressed as deterministic func­

tions is an assumption that cannot be verified, and hence I am not willing to 

make this assumption unless, as in the case of the laws of Physics, the validity 

of such an assumption has been confirmed beyond reasonable doubt.
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Further, I am not sure, and am not willing to assume that the universe is a 

complicated deterministic machine, where someone with enough information 

would be able to predict everything.

The concept of invariance to interventions corresponds to how I identify 

causal relationships. This is as much as I am willing to assume about the 

nature and existence of causal relationships.

2.1.3 From metaphysics to methodology

There follows a purely metaphysical discussion that relates the aspects of 

causality described thus far to my choice of methodology. The methodology 

itself is indifferent to these considerations, and can be used independently of 

or despite them.

H um ans as (potential) agents

When we say the pavement is wet because it rained, I believe we mean the 

pavement is wet because noone covered it and it happened to rain. Indeed, if I 

had parked my car over a patch of pavement, I would have prevented it from 

being wet even if it had rained.

Contrast this with the statement John is not pregnant because he is a 

man. Do we really consider the fact that John is a man a cause of his not 

being pregnant? I think not, in fact, John is not pregnant because he is a man 

is a nonsensical statement. Yet the elements of this statement are the same 

as those in the statement about the pavement, with the exception that we are 

able to act in the case of the pavement. It is this that makes the statement

29



about the pavement make sense.

This leads me to believe that causal relationships can be understood only 

in terms of the human being as the (potential) agent

Cause as a product of the human mind

The above and the belief that what human beings perceive is not necessarily 

what happens in the real world beyond our senses further leads me to believe 

that causal relationships are the product of the human mind.

An important consequence of my belief that causal relationships are at­

tributes of our perception of the world, and not necessarily of the real world 

outside our minds, is that I must be very careful about the assumptions I 

make relating these two worlds. I must try and make assumptions that relate 

well and as much as possible to what I can perceive, as this is within my 

realm of experience, and say as little as possible about what I cannot.

This argument leads me to forgo a deterministic approach to causality, 

as I am unwilling to make assumptions about how the real world works, and 

adopt a purely probabilistic approach.

It also leads me to discard the counterfactual approach, as this is based on 

comparing what happened to what might have happened. A counterfactual 

is a quantity I will never see, and I am unwilling to make assumptions about 

a) its existence and b) its behaviour.

In my opinion, probability itself as a concept is also a product of the 

human mind. It is our attempt to quantify uncertainty in our perception of
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the world around us. As it is my aim to remain as much as possible in the 

realm of what we can perceive, the use of probabilistic concepts is also very 

important.

2.2 Framework Development

This section covers the basic building blocks of the decision theoretic causal 

inference methodology. First I state what requirements a causal inference 

methodology should fulfil, then go on to explain why statistics is used as the 

basis of causal inference. Thus, the decision theoretic framework is adopted 

as a basis for causal inference and augmented by a new semantic suitable for 

causal inference. This semantic is introduced after the basic notation is laid 

out. The approach proposed follows Dawid (2000) and (2002).

2.2.1 Requirements

Requirements 2 .2 .1  A causal inference methodology must:

(%) be meaningful with respect to what we believe cause to be,

(a) be targeted at how I intend to use the knowledge that I gain from causal 

relationships and

(Hi) make as few untestable assumptions as possible and base inference as 

much as possible on what can be observed. By untestable I mean as­

sumptions that cannot be verified by observation or experiment.
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For a methodology of causality to fulfil these requirements, it must in­

corporate the concepts of invariance to intervention, it must answer causal 

queries that are useful and relevant and it must be based on sound assump­

tions. These three points cannot be treated separately and a compromise 

must be found that fulfils each as much as possible. Different approaches put 

emphasis on some points more than others. The methodology proposed in 

this thesis is driven initially by the second requirement. In my opinion it am­

ply fulfils the other two requirements, however these axe the more contested 

aspects.

2.2.2 Causality and Statistics

Most scientific investigation uses statistical analysis to back up causal hy­

potheses. It is not rare to read that statistical analysis of the data proved 

that phenomenon A caused phenomenon B. Although such studies cannot be 

discredited off hand as human intuition usually makes the correct connections 

and identifies causal relationships, statistical analysis alone is not sufficient 

to establish causal links.

As a consequence causal inference was largely ignored until the late 70’s 

(Rubin 1974). However, the fact that correlation does not imply causation has 

not stopped statisticians from making indirect references to causality. Many 

commonly used terms in statistics are in fact causal in nature. Spurious 

correlation, confounding and even randomisation are concepts that do not 

make sense without invoking causation. A thorough discussion of this overlap
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is given in Pearl (2000) and (2001a).

Although probability theory and statistics alone cannot express causal 

concepts, they can serve as the basis for a causal inference framework. This 

is because the information we get from the world is subject to many distor­

tions; measurement error, exceptional events, and when dealing with human 

beings, their natural unpredictability. Our data is warped and imprecise. The 

language of probability enables us to quantify this uncertainty, even when we 

are investigating what we believe to be invariant relationships. The funda­

mental problem is that in order to make causal inference it is necessary to 

augment the standard probabilistic vocabulary to include notation for causal 

concepts. This has been done in the literature, each approach differing to a 

greater or lesser degree from the standard probabilistic vocabulary.

Exchangeability

An important aspect of statistics that enters in the discussion of causality is 

that of exchangeability. In order to make causal inference based on statistics, 

we are faced with the problems that emerge from sampling and data gather­

ing. In particular, we must be willing to assume that the units treated in the 

past are representative of the units we wish to treat in the future.

Consider a simple example. A pharmaceutical company is interested in 

the causal effect of taking aspirin on headaches. They run a clinical trial and 

gather data from which they estimate p(headache\decision =  take aspirin) 

and p(headache\dedsion =  not take aspirin). The question they ask them­
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selves is Given the information we have gathered from the clinical trial, can 

we say that taking an aspirin will make a potential aspirin buyer’s headache 

go away? 1

In order for the data gathered in the trial to be relevant for inference 

on a potential buyer, the assumption of exchangeability of participants and 

potential buyers must be made.

Formally the data points X \ , . . . ,  X n are exchangeable in their joint distri­

bution given some parameter 9 if p (X  i , .. . , X n\ 6) is invariant to permutations 

of the indices (1 , . . .  ,n).

As in a clinical trial it is generally assumed that the treatment and control 

groups are exchangeable, the new unit is generally assumed to be exchange­

able with all units in the trial before treatment has been administered.

2.2.3 Decision Theoretic Framework

Given that probability is used as the basis for this causal inference framework, 

what additional assumptions need to be made in order to make the leap into 

causality?

Here, the assumption is made that causes are types of interventions for 

reasons explained in section 1 .2 . Interventions are types of decisions, so

A ssum ption  1  : Causes are decisions.

It is possible to relax the assumption if the concept of causation is relaxed

1We do not consider problems resulting from not blinding , non-compliers or missing 
data.
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and events other than decisions axe considered causes. I reiterate that the 

mathematics is indifferent to how causes are defined.

Is this a reasonable assumption to make? In order to determine this, it 

is necessary to assess the assumption in the light of the requirements made 

in list 2.2.1. However, it is difficult to do this without looking in more detail 

at the basic mathematical framework this assumption leads to. I therefore 

postpone this discussion to sections 2.2.4 and 2.2.5.

The natural consequence of considering the decision as the basic concept in 

causality is adopting a decision theoretic approach, such as that developed by 

Lindley (1985) and Raiffa (1970). Using this set-up, causes can be expressed 

as decisions, and causal effects as aspects (differences in expectations or utility 

functions) of probability distributions conditional on decisions.

W hat type of interventions are there? Which do we consider here?

Interventions

In broad terms there are three ways in which a variable or a system of variables 

can be intervened upon. The first and most simple is the point intervention. 

This intervention consists of forcing a variable to take on a specific value with 

no uncertainty.

Another type of intervention is a strategy, where a point intervention takes 

place on a variable depending on the value taken by other variables. For 

example, a doctor may decide that if his patients are over 60 he will always 

prescribe cod-liver oil, and if they are below 60 he will prescribe cod-liver oil
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only if they complain about joint ache. A strategy can be either static or 

dynamic. In the first case, a predetermined intervention is applied at given 

points in time, in the second, the intervention depends on the status of the 

variables at each time point.

We can also consider randomised interventions, that is interventions where 

the value assigned to a variable is not predetermined, but is drawn from an 

appropriate probability distribution.

Another type of intervention is changing the environment or location of a 

causal relationship. For example, if we run a clinical trial in the UK and then 

another in the US, the location will be a factor that is within our control. 

Although this has not been explicitly covered in this thesis, it is possible to 

formulate a change in location as a type of intervention variable.

Finally, there are black box interventions where we kick a closed system. 

A typical example of such an intervention is the introduction of a policy, such 

as the congestion charge in London, where cars are allowed into the city centre 

only if they pay a 5 pound congestion charge. The traffic system changes due 

to this policy intervention and settles into a new equilibrium. However, black 

box interventions are very complex and I suspect that extra structure would 

have to be added in order to tackle the expression and estimation of causal 

effects.

This thesis will principally consider point interventions, although random 

interventions are developed in Chapter 5. The theory could easily be extended 

to include strategies, but these will not be discussed. See Dawid (2 0 0 2 ) for
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some extensions.

T rea tm en t defin ition

Treatments must be well defined. Even in the case where the treatments 

are not physically possible (Heckerman and Shachter’s framework described 

in section 3.4 does allow causes to be variables that cannot physically be 

intervened upon, such as sex) it is important to define these clearly and the 

specific context in which they are being considered.

Also, when considering an experimental situation, a change in design 

might have an effect on the quantities we are trying to estimate. An ex­

treme example is using observational studies to make causal inference. The 

fact that in an experiment a variable is a decision, and in an observational 

study it is not, changes the nature of the estimates. See Chapter 4 for an 

in-depth discussion of this issue.

C ausal V ariables

In this section I define causal variables in the decision theoretic conception. 

Note that causes are defined contrastively, that is, whenever we say a decision 

causes something, it is relative to another decision.

D efin ition  2.2.1 (C ausal V ariable) Let I d =  d for variable D be short­

hand notation for intervening on D such that D = d. The variable D is 

a causal variable urith respect to X  (or just a cause of X )  if  the probability 

distribution of X  conditional on I d =  d is not the same as the distribution of
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X  conditional on I d =  d! for some d, d' 6 T) the domain of D, where d ^  d' . 

That is

p(X\ ID = d ) ^ p ( X \ I D = d').

Id can be any type of intervention or manipulation of D. In particular, this 

means that a variable that cannot be intervened upon, such as the sex of a 

person or their age is not a cause in this conception.

Causal Effect

To estimate the effect of an intervention on a specific individual we adopt a 

Bayesian approach and use the predictive probability of response given the 

intervention. Consider again the example where a pharmaceutical company 

has run a clinical trial to determine the causal effect of aspirin on headache 

status. The patients were assigned at random to take aspirin or not when 

they had a headache. The aim now is to estimate the causal effect of an 

aspirin will have on a new individual, given the exchangeability assumption. 

To do this we use the data gathered in the clinical trial and assign appropriate 

prior distributions and calculate the predictive probabilities in the standard 

Bayesian way. From the predictive distributions we calculate the difference 

of the expectations or other functions of interest.

In this thesis we will be using the expectations recovered directly from 

the data, and not full predictive distributions for the sake of simplicity. The 

difference in expectations of the response given two different treatments, is

38



the average causal effect (ACE) and is generally the causal quantity we seek 

to estimate.

For example, we might be interested in the effect of treatment I d =  1 on 

response X  relative to the effect of treatment Id  = 0 on response; the causal 

quantity would then be the average causal effect of I d =  1 with respect to 

Id  =  0  given by

E ( X \ I d =  1) -  E(X \ I d =  0 ). (2 .1 )

This is not to be confused with E(X\D  — 1) — E(X\D  =  0) which is the 

difference of expectations given that the values of D  arise naturally, i.e that 

we happen to observe X  given both D — 1 and D =  0.

We saw in the last section that it is important to make the assumption 

of exchangeability in order to make causal inference. In terms of the decision 

theoretic framework this means:

A ssum ption  2  : The new unit for whom we want to infer the causal effect 

of one decision with respect to another is exchangeable with the units used 

to estimate the probability of response given the two decisions before any 

decision has been made. In particular, the new unit must be exchangeable with 

the units who were administered the same treatment as it will be administered.
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2.2.4 Asking a sensible question

Of the three requirements in list 2 .2 .1 , it is item (ii), that drives the adop­

tion of the decision theoretic framework as the basis for causal inference. 

The idea behind this requirement is that we do not ask causal questions 

that are not useful. A useful question is a question whose answer can pro­

vide us with relevant information for future decisions, whilst making as few 

untestable assumptions as possible. It is my opinion amongst others (see 

Dawid (2000),Shafer (1996), Didelez (2003)) that causal questions that lead 

to counterfactual formulations in particular are not useful questions, in fact 

they can be positively misleading.

Questions that are not useful are of the type would my headache have gone 

away if  I  had taken an aspirin? or would he have a higher paid job if  he had 

gone to university?. In order to answer the former, it would be necessary to 

know what would have happened to me had I taken the aspirin, a state of the 

world that did not come to be, and which I have no empirical information 

about. Thus these questions are not useful because they cannot be answered 

without making strong assumptions about events that did not happen, and 

further, provide us with no more information (even if they could be simply 

answered) than the decision theoretic formulation: given clinical trial data 

on the effect of aspirin on others like me will my headache go away if I  take 

an aspirin? which can be answered relatively simply given appropriate data.

Further, the aim of the inference in both cases is to inform future decision 

making processes: in the first case, whether I should take aspirin the next
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time I have a headache, and in the second whether a young person should be 

encouraged to go to university with the prospect of attaining a better paid 

job. Both can be reformulated in terms that makes them easy to deal with in 

terms of the decision theoretic framework. The first question becomes: given 

clinical trial data on the effect of aspirin on others like me will my headache go 

away if  I  take an aspirin? and the second becomes, given data on the general 

population will he get a higher paid job if he goes to university? In terms 

of the decision theoretic formulation, the answers to these questions depend 

only on the marginal distributions of responses conditional on decisions, both 

of which can in principle be estimated from data. No comparisons with events 

that did not happen need to be made.

In fact, the only questions that are useful are those that are of the form 

given clinical trial data on the effect of aspirin on others like me will my 

headache go away if  I  take an aspirin?.

This statement is bold. In particular if we consider expression 4) in list

2 .1 .1 , we see that the question being addressed here is useful, and apparently 

has to be formulated in a counterfactual way.

In a court of Law, if the claimant says he was discriminated on the grounds 

of his race, the question of interest is whether the defendant would have acted 

differently had th is  particu la r  c la im an t not been black. However, it would 

suffice to determine whether the hirer is racist to win the case for the claimant. 

Hence formulating the question as given past hiring practice of this and other 

companies, will this company hire someone if they are black? would be just as
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good, given the relevant covariate information about whether they are indeed 

suitable for the job.

This is a slightly different formulation and begs the question why should 

this particular claimant be compensated?. The answer is that this claimant 

brought up the problem and if the company discriminates, has probably suf­

fered from it and should thus be compensated.

A further consequence of this type of trial is the introduction of anti- 

discrimination laws in the future, thus ultimately, the trial aids future decision 

making processes.

Retrospective questions

Shafer, in his comment to Dawid (2000) claims that retrospective questions, 

like counterfactual questions, are “silly” . For example, say I know for certain 

that if I take a glass of water and two aspirins the headache goes away, and 

if I take less water or less aspirin the headache stays. Then if I take the glass 

of water and the two aspirins and ask question My headache is gone, is it 

because she took the aspirin? I cannot answered this with a simple yes or 

no although the question itself is perfectly understood. This is because the 

aspirin is just one of many possible causes for my headache having gone.

Retrospective attribution of causality cannot be dealt with in the decision 

theoretic framework as it stands. No attempt is made at tackling this problem 

in this thesis, and all inference is limited to prospective causality. This is in 

accordance to the idea that we use causal inference to inform future decision
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making processes.

2.2.5 Requirements revisited

Given that the choice of methodology is driven by requirement (ii) in list

2 .2 .1 , does the decision theoretic approach fulfill the other two requirements?

The first requirement states that the framework must reflect what we 

believe cause to be. As I believe that cause is determined by human actions, 

I have introduced this by assuming causes are decisions.

The idea that causal relationships are invariant to interventions is reflected 

in the methodology as follows. Consider the ACE (2.1). As it is a causal 

quantity, and thus invariant to interventions, we assume that it can be used 

to make inference about other units in the future given these are similar 

enough even if the intervention is slightly different.

The third requirement is fulfilled in my opinion by only making assump­

tions 1 (page 34) and 2 (page 39). The first assumption is a very strong 

one. However, it does reflect what we believe causes to be, and there is 

a general consensus in the literature that causes should be seen in terms 

of interventions, although this is not always made explicit. Also, no addi­

tional untestable assumptions about the existence of counterfactual variables 

or about causal relationships being deterministic functions are made.

The assumption of exchangeability is usually made in statistical analyses 

and is thus made in the causal inference literature. It is worth noting how­

ever, that whether a set of units is considered exchangeable with another is a

43



somewhat subjective judgement. It will depend on the information available 

and on the particular question at hand. It is up to the analyst to determine 

whether the assumption is plausible. It might also be possible in specific 

circumstances to relax the exchangeability assumption to one of partial ex­

changeability. However this is not discussed in this thesis.

Also, the probabilities at the basis of this framework are estimated from 

available data when possible. In fact I try to adhere to de Finetti’s observ­

ability criterion which states that it is legitimate to assess a probability dis­

tribution for a quantity Y  only if  Y  is observable at least in principle Dawid 

(2 0 0 0 ) G.Shafer comment.

Finding causal relationships

Although in Chapter 4, we discuss the assumptions underlying a process that 

purports to find causal relationships from observational data, it is not the 

aim of this thesis, nor the purpose of developing this methodology, to find 

causal relationships. The methodology is to be applied when a particular 

causal relationship is assumed or known to exist between variables.

2.3 Causal Semantics

In the second part of this chapter, the causal semantics that form the basis 

of the proposed causal inference framework are developed. The graphical 

models associated to them will be developed in section 2.4.

We start by translating the metaphysical and heuristic arguments dis­
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cussed in the first part into formal mathematics.

Before developing the causal semantics formally, we define the concept of 

conditional independence in section 2.3.1, as it is a key concept in this thesis. 

Then intervention variables are defined with the help of two simple exam­

ples. These will also aid in the understanding of causal notation introduced 

in this section. Interventions are the key to transforming the purely proba­

bilistic into the causal. The algebra is then developed and some important 

issues, conditioning on interventions or observation and the idea of regimes 

are discussed. Finally causal effects are defined.

Following Assumption 1 , which states that causes are interventions, we 

make the jump from the purely probabilistic to the causal by introducing a 

variable that indicates whether we are interested in a probability distribution 

subject to natural conditioning or a probability distribution conditioning on 

an intervention. The approach taken in this thesis follows Dawid (2002).

Som e Basic N o ta tio n

We denote by upper case letters X , Y  A, etc. random variables and/or nodes 

in a DAG. Sets or collections of random variables are denoted by bold face 

upper case letters. Thus V  denotes a set of random variables. Realisations or 

instances of a random variables are denoted by lower case letters, thus if X  is 

a random variable, then x  is a possible realisation of X .  Further the domain 

of X  is given by the upper case cursive letter X , so that x  € X . Finally, the 

realisation of a set or collection of random variables is denoted by lower case
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bold face letters. So if U  C V  is a subset of a set of random variables V, 

then a realisation of every member of U  is denoted by u.

2.3.1 Conditional Independence

Let A  and B  be two random variables. Denote by p(A , B) the joint probability 

distribution of A  and B , p(A) the marginal distribution of A  and, p(B\A),  

the conditional probability distribution of B  given A.

Consider a set of random variables V. Let A, B  and C  be variables in V.

D efin ition  2.3.1 We say that A and B are m arg ina lly  in d ep en d en t if

p(A , B) = p(A)p(B) and write A1LB (Dawid 1979). We say that A is con­

d itio n a lly  independen t o f  B  given C i fp(A,B\C)  =  p(A\C)p(B\C) or 

equivalently, p(A\B,C) =p(A\C).  We write AALB\C.

The conditional independence statement A1LB\C  and its properties are ex­

plored in detail in Dawid (1979).

2.3.2 Intervention variables

To facilitate the understanding of intervention variables, there follow two 

examples.

E xam ple 2.3.1 Aspirin clinical trial

An pharmaceutical company is running a clinical trial on the effectiveness 

of aspirin. The participants are believed to be representative of the general 

population.
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When a participant suffers from headache, he or she is randomly admin­

istered an aspirin or not. 2

Let the variable that indicates whether treatment was received be T. T  

is 1 if an aspirin is received and 0  otherwise.

The response to treatment is denoted by Y . The response is also binary, 

taking on value 0  if the headache does not go away within two hours of 

receiving treatment and 1 if it does.

Further, let X  be a known covariate. These are generally patient charac­

teristics. Initially let X  = (5, A) be the vector containing the sex S  and age 

A.

We assume that each unit receives only one treatment during a given study 

unless otherwise specified.

E xam ple  2.3.2 Aspirin survey

Another pharmaceutical company is interested in what the natural intake of 

aspirin is in the general population. They commission a survey which asks 

each respondent whether they take aspirin T, whether their headaches go 

away after 2 hours Y  when they do and don’t and finally, what their age A  

and sex S  are. The domains of the variables are the same as in the previous 

example. The respondents are also assumed to be exchangeable with the 

same general population.

2For the sake of simplicity, we do not take into account any ethical concerns. Or the 
problem of the participant knowing whether he/she is receiving treatment.
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As discussed in section 2.2.3, interventions can take on many forms. This 

thesis mainly uses point interventions, and it is by defining these that we are 

able to easily express and distinguish between the concepts of conditioning 

by intervention and natural intervention.

Definition 2.3.2 For a variable T  define the intervention variable on T,

denoted by F t as follows; p{T — t\Fr — t) — 1, where t € T , the domain of 

T. That is T  is forced to take on the value t if  FT =  x. I f  F t  =  0 then T  

arises naturally, and we say that F t is idle.

The intervention variable is not a random variable. It is a type of decision 

variable (Dawid 2002) and there is no marginal distribution associated to it.

Definition 2.3.3 Define natural conditioning as conditioning on (T  = 

t , F t  =  0), and conditioning on intervention as conditioning on (T  =  

t, F t  =  t).

The two types of conditioning lead to different probability distributions 

generally. To see this, consider examples 2.3.2 and 2.3.1. The joint dis­

tribution of the variables in the problem is p(Y,T , X \F t ), where F t  is the 

intervention variable on T. In example 2.3.1, this joint distribution is given 

by p ( Y ,X , T  =  t\FT =  t), as we intervene on the system that relates as­

pirin intake and headaches by forcing participants to take or not aspirin. 

Hence F t 7  ̂ 0 . In example 2.3.2, there is no external intervention on the 

system, and hence F t — 0, and the joint probability distribution is given by 

p(y ,A ,T |F T =  0).
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When we consider the problem we see that in the survey, we cannot ex­

clude the possibility of T, aspirin intake, depending on X , the respondent’s 

age and sex. In the clinical trial however, as the treatment is randomised, 

there is no dependence between X  and the treatment T, thus XAL T\Ft  ^  0. 

Further, we assume that X  and Ft do not depend on each other marginally. 

This generally makes sense in randomised trial when F t 7̂  0. Given this 

consideration, we look in more detail at the joint probability distributions; 

Example 2.3.2 (Survey):

p{ Y , X ,T  = t\FT = V)

=  p(Y\x1T = t i FT = Q)p(x\T = t i FT = Q)

x p(T  =  t\FT =  0) (2.2)

Example 2.3.1 (Clinical Trial):

p{Y,X>T = t\FT = t) =  p{Y \X ,T  = t,F T = t ) p { X \ T = t yFT = t)

x p(T  =  t\FT =  t)

=  p(Y\X,  T  =  t, Ft  =  t)p(X\FT =  t) (2.3)

= p ( Y \ X ,T  = t,F T = t)p(X)  (2.4)

The case for example 2.3.2 is straightforward, we have chosen this factori­

sation of the joint probability distribution for the sake of comparison with

example 2.3.1. In the case of example 2.3.1, the same factorisation has a

different expression. First p ( X \ F t , T )  is equal to p( X)  by the conditional 

independence argument given above, and second, as there is no uncertainty
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about the value of T  when it is set p(T  =  t\Fr =  t) is 1, and disappears from 

the formula.

Consider p(Y\X,  T  =  0, Ft =  0), the distribution of the response given 

that no aspirin was taken (T =  0) by a respondent in the survey (FT — 0). 

This is not the same as p(Y\X,  T  =  0, FT =  0), the probability of the response 

given that no aspirin was administered (T  =  0) to the participant in the 

clinical trial (Ft  ^  0). This is because an individual who is participating in 

a clinical trial is not guaranteed to respond to not receiving any treatment in 

the same way as a survey respondent who chooses not to take aspirin if he or 

she has a headache.

We use the expression intervention variable and point intervention to mean 

the same thing for the remainder of this thesis, as we deal mainly in point 

interventions.

O bserva tion  vs In te rv en tio n

Two themes that run through this thesis are the relationship between observa­

tional and experimental data and the problem of identifying causal quantities, 

that is functions of probabilities conditional on interventions from observar 

tional data.

By observational data we mean data that has been gathered passively from 

studies where no interventions have taken place, such as for example surveys. 

We say that such data is subject to natural conditioning. By experimental 

data, we mean data gathered in an experimental setting where controlled
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interventions or manipulations have taken place. In very simple terms, the 

problem of identification of causal effects from observational data is that we 

wish to make inference about p(Y\T, Ft = t) from p (Y \T  =  t, FT =  0).

In terms of the above example this is analogous to saying that we wish 

to make inference about the response to aspirin in the clinical trial from the 

survey data. If certain conditional independence relationships hold, or equiv­

alently, we are willing to makes strong assumptions about how experimental 

and natural conditions are related to one another, then it is possible to make 

inference about the trial using the survey data.

The problem of identifiability is covered in more detail in subsection Iden- 

tifiability in section 2.3.3 , and aspects of it are covered in Chapters 5 and 

6 .

R egim es

We have seen how the intervention variable is defined. We also assume that 

when we seek to determine cause, we are interested in comparing the proba­

bility distribution of a response variable conditional on one intervention, i.e. 

p(Y\T  =  t, Ft  — t) with the probability distribution of a response variable 

conditional on another intervention p(Y \T  =  t ' , Ft =  if) say. Further, as has 

been touched on briefly in section 2.3.2 Observation vs intervention, we are 

sometimes interested in evaluating causal effects i.e, when Ft  7̂  0 , using data 

recorded under natural conditioning i.e, when F t — 0- These settings of F t 

are examples of regimes of T. The regimes of T  are thus all possible types of
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interventions on T, and the idle setting, denoted by the idle regime.

2.3.3 Causal Effects

We will consider various types of causal effects in this thesis. The simplest of 

these, and the basis for the others, is the average causal effect (ACE) already 

mentioned in the initial part of this chapter in (2.1).

As discussed in section 2.2.3, causal effects are always measured compar­

atively. That is by comparing the response of one intervention to that of 

another. Hence we formally define a causal effect of one intervention relative 

to another as follows:

D efin ition  2.3.4 Let X  and Y  be two variables, such that X  can be in­

tervened upon with intervention variable F x . Let Y  be a characteristic of 

interest of a set of units u G U. The average causal effect (ACE) of 

Fx =  x relative to Fx  =  x' o n Y  is given by

E(Y\Fx  = x ) - E ( Y \ F x = x ' ) .  (2.5)

If we want to use the ACE for inference on a unit unew, which is usually 

the case, we must assume that unew is exchangeable with the units in U. 

Therefore inference made on them is valid for unew.

Iden tifiab ility

A typical problem in causal inference is to determine when it is possible to 

evaluate causal quantities, that is functions of probabilities conditional on

52



interventions, from data that are observational and hence involve no inter­

ventions. In order to be able to identify causal quantities from observational 

data, it is often necessary to make additional assumptions. Some of those 

adopted in counterfactual frameworks are discussed in section 6.6. In this 

section we look at identifiability without making additional parametric or 

modelling assumptions.

It is worth noting that the concept of exchangeability is very important 

to determine whether a quantity is identifiable. This is particularly clear 

when making causal inference from observational data. Are the subjects in 

the observational study exchangeable with the new units of inference who 

will be intervened upon? This assumption is generally made, whether it is 

appropriate tends to be context specific.

We define identifiability of causal quantities in principle and in practice. 

A causal quantity is identifiable in principle if it is physically possible to 

perform an experiment that will allow us to compute it.

For example, the effect of aspirin on headache is identifiable in principle 

as it is physically possible to perform a clinical trial that assigns aspirin to 

one group and a placebo to another, and records the persistence of headache 

in the two groups. Also, the effect of smoking on lung cancer is identifiable 

in principle as it is physically possible to perform a trial where half the par­

ticipants were forced to smoke and the other half were forced not to, and the 

incidence of lung cancer recorded in both groups. Clearly, such an experiment 

is not performed on humans (although animals have been experimented on)
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because it is un ethical, however, it is possible. The individual causal effect 

in counterfactual terms, that is the difference in response to treatment and 

placebo for a specific unit at a specific time, is not identifiable in principle, 

as we cannot imagine an experiment that involves a patient receiving both 

treatments and responding to them simultaneously as though each were the 

only treatment received.

A causal quantity is identifiable in practice in two distinct situations. 

The first is if the causal quantity is identifiable in principle and the trial 

has been performed. The second situation in which a causal quantity is 

identifiable in practice is when it is possible to manipulate the assumed set 

of conditional independences to reformulate an unobserved causal quantity 

(generally a function probabilities conditional on interventions) in terms of 

observed quantities. These can be probabilities estimated from observational 

data, probabilities estimated from experiment or even a combination of the 

two. It is interesting that in the latter type of identifiability in practice, it 

is not necessary for the quantity to be identifiable in principle. An example 

of this is a component of the effect of the treatment on the treated discussed 

in Chapter 6. No experiment can be imagined that will make it possible to 

estimate this quantity, however, it can be derived from formulae in which all 

other parts are identifiable in principle.
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2.4 Graphical Concepts and Notation

In this section the graphical model notation that will be used for the remain­

der of this thesis is defined. We start by defining graphs, and then go on to 

define directed acyclic graphs (DAGs). We describe how these can be used 

to model probabilistic structure. Then we see that DAGs lend themselves to 

causal interpretations, but that additional structure must be introduced in 

order to do this unambiguously. Thus we introduce augmented DAGs.

2.4.1 Conditional Independence Graphs

The graphical notation is based on Lauritzen (2001).

Definition 2.4.1 (Graph) A G raph is a pair Q — (N,E) ,  where N  is a 

set of nodes and E  is a subset of N  x N  of ordered pairs of nodes called edges. 

We require that there are no multiple edges, which is fulfilled as E  is a set, 

and further, that the elements of E  consist of distinct nodes, so that there are 

no edges going from a node to itself in a loop.

If A  and B  are two nodes in N  we say that there is a directed edge from A  to 

B if (A, B) € E  A —> B. When all the edges in a graph are directed, the graph 

is called a directed graph. The ordering of the nodes indicates the direction 

of the arrow, thus (A , B) =  A  —> B, however, (B , A) =  B  —► A  ^  (A, B).

A path of length n (where n > 0), from A  to B  in the directed graph Q, 

is a sequence of distinct nodes A 0, A \ , . . . ,  An_i, An such that (Aj_i, A{) € E  

for all i =  0 , . . . ,  n, where A  =  A 0 and An =  B. As the nodes are distinct, the
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path never crosses itself and as the graph is directed, the path always follows 

the direction of the arrows.

A cycle in a directed graph is a path with the difference that the first and 

the last nodes are the same.

D efin ition  2.4.2 (D irec ted  Acyclic G raph) A DAG is a graphV  =  (N ,E ) 

such that

1 . V  is a directed graph and

2 . V  contains no cycles.

This thesis will only use DAGs.

A node Pa(A) € V  is a parent of a node A  if (Pa(A), A) G E. A  node 

C h(A ) is a child of node A  if (A , Ch(A)) € E. In a DAG, a variable B  is said 

to be an ancestor of A  if there is a path from B  to A. The set of ancestors 

of A  is denoted by an(A). Similarly, A is a descendant of B, and the set of 

descendants of B  is denoted by de(B).

D efinition 2.4.3 (M oral graph) The moral graph Gm for the graph G is 

the undirected graph made from G by first joining with an undirected edge, all 

parents of a common child that are not already joined, and then creating the 

undirected version of this graph. Transforming a graph into its moral version 

is termed moralisation

56



Figure 2.1: The undirected graph on the right is the moralised version of the 
DAG.

DA G s and Conditional Independence

Consider the DAG in figure 2.1. It encodes the following set of conditional 

independences:

(A,C) JL (D,E) \B  

A  _LL C\B  

E  JL (A, B).

The conditional independences can be read off the graph using the moral- 

isation criterion (Lauritzen 1996). The moralisation is described in definition 

2.4.3 above. The procedure to read conditional independences from graphs 

will be used often throughout the thesis, thus it will be described in detail 

for DAG 2.1.

We want to know what conditional independences, if any, exist between 

A, B  and C  as well as those between B  and E , and B,C  and D by reading 

them off the graph. The method is as follows;

1. First build the ancestral graph by excluding all variables that are not
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ancestors of the variables of interest or the variables themselves.

A B C  Ancestral graph o £ A U B u C i s A —> B —>C.

B E  Ancestral graph of B  U E  are the disjoint A  —> B  and E.

B C D  Ancestral graph of B UCU D  is the whole DAG on the left of figure

2 . 1 .

2. Then moralise as described in definition 2.4.3.

A B C  Moralised and undirected ancestral graph is A — B  — C.

B E  Moralised and undirected ancestral graph is A — B  and E

B C D  Moralised and undirected ancestral graph is the undirected graph

on the right of figure 2.1. B  and E  are joined as they are both 

parents of D.

3. Now we investigate the paths between the variables in the moralised 

and undirected ancestral graph.

A B C  All paths from A  to C go through B, so we can say that AALC\B.

B E  There are no paths from B  to E , so we can say that BALE, that 

is B  is marginally independent of E.

B C D  All paths from C  to D go through B , so CALD\B.

D efin ition  2.4.4 (M arkov Equivalence) When two or more DAGs en­

code the same set of conditional independence relationships, we say that they 

are M a rko v  E quivalent.
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Markov equivalent DAGs are characterised as having the same skeleton, and 

the same v-structures (see A). The skeleton is the undirected version of the 

DAG, the v-structures are sets of three nodes, say A , B  and C  such that 

A —► B  <— C  and further, there is no edge between A  and C.

The DAG on the left in figure 2.1 encodes the same conditional indepen­

dence relationships as the DAGs in figure 2.2. It is easy to see that they 

have the same moralised graph as they have the same skeleton and the same 

v-structures, in fact there is only one v-structure, B —+ D <— E.

Figure 2.2: These DAGs are Markov equivalent to DAG in figure 2.1.

We have seen how DAGs can embody conditional independence structures.

the variables they represent. For example, the DAG on the left hand side of 

figure 2.1 corresponds to the following factorisation of the variables A, B , C,

The DAGs in figure 2.2, correspond to a different but equivalent factori­

sation of the joint probability distribution of the variables. For example, the

They can also induce factorisations of the joint probability distributions of

D and E.

p(A, B, C, D, E)  =  p{A)p{B\A)p{C\B)p(D\B, E)p(E).
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DAG on the left hand side of figure 2.2 represents the following factorisation:

p{A, B, C, D, E) =  p(A\B)p(B\C)p{C)p(D\B, E)p(E),

while the DAG on the right hand side of figure 2.2 corresponds to

p(A, B, C , D, E)  =  p(B)p(A\B)p(C\B)p(D\B, E)p(E).

Note that the part of the factorisation that corresponds to the relationship 

between D ,E  and B  remains unaltered, as it does in the DAGs, this is because 

of the v-structure between the three variables.

2.4.2 Graphs to represent causal relationships

DAGs lend themselves to being interpreted causally as they permit no cycles 

or loops, which corresponds to the idea that cause flows in one direction from 

causes to effects.

Two variables A  and B  joined by a directed edge going from A  to B  can 

intuitively be interpreted as A is a cause of B. However, using DAGs to 

formally represent causal relationships is not as simple as it may appear.

Initially, we look at the problem without formality in the following exam­

ple.

E xam ple 2.4.1 Fake Tan

Consider the two DAGs in figure 2.3. L  is the variable lam p, taking on value 

1 if an individual went to the tanning salon and tanned under the UV lamp 

and 0 otherwise. T  is the variable tan , taking on value 1 if the individual is 

tanned and 0 otherwise.

60



} © — ■ ©  ' © * — - ©

Figure 2.3: DAG 1) makes sense when interpreted causally, whereas DAG 2) 
does not.

If we interpret DAG 1) causally, it says lamp (partly) causes tan, which is in 

fact the case. DAG 2) however makes no sense when interpreted causally, as 

it says tan (partly) causes lamp.

However, the two DAGs are Markov equivalent, that is, they embody the 

same set of conditional independences (in this case none as T  )LL)

This is because L is a decision variable (whether to go to the tanning 

salon or not), and this is not made explicit in the graph. The solution to this 

problem is the introduction of the intervention node as described in the next 

section.

2.4.3 Augmented DAGs

We have seen how to express cause by augmenting probabilities by introducing 

the intervention variable in section 2.3. We have also seen how DAGs can be 

used to express probabilistic structure. As the intervention variable can be 

treated like a variable in the algebraic part of the framework, it follows that 

it can be expressed as a node in the graphical representation. It is a decision 

node, that is a non-random node and as such is in a box, and not a circle like 

the random variables in the problem.

Consider the fake tan example 2.4.1. We change the notation to reflect the
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introduction of an intervention and hence a causal element to the problem. 

We replace variable L  with variables UV and Fuv as follows. We denote by 

UV  the random variable representing exposure to more than a critical amount 

of ultra-violet radiation. Exposure is given UV =  1 and lack of exposure is 

given by UV  =  0. Denote by Fuv the intervention variable on UV. When 

Fuv = 1> the exposure is forced by going under the lamp in the tanning salon. 

When Fuv =  0 the lack of exposure is forced, say by choosing not to go under 

the lamp or staying indoors all year round. When Fuv is idle, the exposure 

is not forced, and UV arises naturally.

We can now reconsider the DAGs in figure 2.3, as augmented DAGs in 

figure 2.4. DAG 1) now makes causal sense. We can interpret it as meaning

1) 2)

uv

lUVJ

uv

Figure 2.4: DAG 1) represents the causal relationship between exposure to 
UV radiation and tanning. DAG 2) Still makes no causal sense, however it 
is no longer Markov equivalent to DAG 1).

that an intervention at UV, say going to the tanning salon and lying under 

a lamp causes tanning. It is also no longer Markov equivalent to DAG 2), as 

DAG 1) embodies the conditional independence TJLFuv\UV where DAG 2) 

embodies TJLFuv-

Thus we say that an augm ented DAG is a DAG that contains interven­
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tion nodes.

Given an augmented DAG G, we say that the core DAG of G to be the DAG 

left over when all intervention nodes are removed.

2.4.4 Algebra and DAGs

It is clear from section 2.3 that the algebraic part of the methodology does 

not depend on the graphical part described here, although the opposite is 

not true. However, the graphical component complements and enhances the 

methodology, as it makes both visualising the problems and manipulating the 

conditional independences very easy as we shall see later on in the thesis.

2.5 Conclusion

The setup described thus far is flexible and simple to understand. Any prob­

lem of predictive causal inference can be formulated in this model and it can 

thus be used to make inference for different types of interventions. In partic­

ular, the introduction of the intervention node opens the door to nodes which 

encode more complex manipulations, such as the randomised manipulation 

node defined in Chapter 5.

As mentioned in the introduction, there are four recurring themes in this 

thesis. We have seen the assumptions underlying the decision theoretic frame­

work and in the next chapter we will see the assumptions underlying compet­

ing frameworks. Also, we have seen that probabilities estimated from data 

gathered from passive observation or experiment are expressed differently
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in terms of the intervention variable. This difference is further discussed 

in Chapter 4. Chapters 5 and 6 are examples of converting counter factual 

arguments into decision theoretic ones, and focus heavily on problems of iden­

tification.
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Chapter 3 

Com peting Causal Frameworks

3.1 Introduction

This chapter looks briefly at the competing causal inference frameworks in 

the literature. In particular, it focuses on the Rubin causal model in section

3.2, Pearl’s functional/graphical model in section 3.3 as well as a brief look at 

Robins’ approach to time varying treatments in section 3.3.6. Heckerman and 

Shachter’s model, which extends Pearl’s model, is also covered. Finally some 

comments on the assumptions underlying the models is made and contrasted 

to the decision-theoretic model proposed in chapter 2.

If the reader is familiar with the causal models in the literature, then he 

or she can skip the first 3 sections in this chapter and just read section 3.5 

where underlying assumptions in the different frameworks are discussed
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3.2 Rubin potential outcome framework

This section describes the Rubin Causal Model. Although it was first pro­

posed by Neyman (1923), it was fully developed by Rubin starting in Rubin 

(1974). The basis for his model is the idea that ..the causal effect of one 

treatment relative to another for a particular unit is the difference between 

the result if  the unit had been exposed to the first treatment and the result if, 

instead, the unit had been exposed to the second treatment (Rubin 1974).

Rubin was the first statistician to explicitly look at the problem of causal 

inference since Neyman. His approach, based on his field of expertise, Bayesian 

analysis in the presence of missing data, sparked interest in causal inference 

which has increased since his 1974 paper.

In the following review of his work, based on Rubin (1978), focus is on 

how potential responses are defined and used as the basis for estimating causal 

effects where the unrealised response is regarded as missing data. Further, 

the concept of ignorability, fundamental for the identification of causal effects 

from both experimental and observational data in this framework is consid­

ered in some detail.

Section 3.2.1 covers the potential outcomes notation with the aid of an 

example, section 3.2.2 looks at causal effects in Rubin’s model. Section 3.2.3 

tackles some of the most important assumptions underlying the model and 

finally, sections 3.2.4 and 3.2.5 review Rubin’s missing data methods applied 

to causal inference.
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3.2.1 Potential outcome notation

In order to explain this framework it is necessary to introduce some basic 

notation. Following on frpm the aspirin example 2.3.1, we define treatment 

assignment, the potential outcome response variables and the covariate vari­

able.

Treatm ent, R esponses and Covariates

First, we need to extend example 2.3.1 as follows: The covariate X  =  (5, A) 

is such that S  — 0 if the unit is a male and 1 otherwise, and A  an ordinal 

variable with three settings indicating age ranges, 0 is < 20, 1 is 20 to 40 and 

2 is over 40.

Say there are n  participants i =  1, . . .  ,n, drawn from a homogeneous 

population. The treatment received by patient it, for i — 1 , . . . ,  n is denoted 

by Tj. Similarly, the response and the covariate are denoted by Y{ and X{.

Consider the case of a generic unit. T  is the treatment assignment variable. 

It takes on values t — 0,1. In the example, this corresponds to being assigned 

a placebo or an aspirin respectively.

In this framework, each unit has two potential responses, one correspond­

ing to each treatment. These are given by Y°  and Y 1 for treatments 0 and 1 

respectively.

The covariates in the example are given by S  and A. For the sake of 

simplicity, say that if one the covariates is observed, then both are. Let X  

denote the pair of covariate random variables (S, A). For the i th unit in a
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sample of n, add the subscript i to the unit so that it* for i =  1 , . . . ,  n.

E xam ple  3.2.1 There are 5 patients with headaches in a clinical trial trying 

to determine the effectiveness of aspirin. Their age and sex are recorded, 

i f  possible, (as in example 2.3.1) before they are administered a treatment. 

Below is a table showing the covariate data, the treatment assignments and 

the observed responses. Thus patient 5, 115 is a woman over 40 years of age.

Covariate Treatment Res]ponse
A S T r1 r°

Ui 0 0 0 1
u2 1 0 1 0

U3 0 0
U4 2 1 1 1
U5 1 1 1 1

Table 3.1: Example: 5 patients in a trial to determine the effectiveness of 
aspirin.

She was administered an aspirin and after one hour, her headache was gone. 

Patient 3, u3 did not have its covariate values recorded.

3.2.2 Causal Effects

Given the above setup, the individual causal effect of taking aspirin relative 

to not taking aspirin for unit i is given by

(3.1)

In terms of the running example, this means that the individual causal 

effect for patient 3 is Y l — 0.
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The average causal effect is given by

E{Y? -  y°) =  E(Y^) -  E(Y°).  (3.2)

This quantity can be estimated from the experimental data like the one in the 

example, without recurring to untestable assumptions such as assumption 3 

below.

3.2.3 Assumptions needed to estimate causal effects

In order to estimate the individual causal effect given by (3.1) it is necessary to 

be able to estimate the values of Y 1 and Y°. This gives rise to two problems.

E x istence  of p o ten tia l responses

The first problem is whether it makes sense to consider the joint distribution 

or a function of two variables that cannot physically exist simultaneously such 

as Y 1 and Y°.  Rubin assumes that this is indeed plausible.

A ssum ption  3 Simultaneous existence of potential responses 

The values of the potential responses to all the possible treatments exist for 

every unit, irrespective of which treatment is administered. The treatment 

assignment only determines which of the potential responses is observed.

In terms of example 2.3.1, this assumption means that the value of the 

outcome to both receiving aspirin and receiving a placebo exists for each unit 

regardless of which treatment the unit actually receives. That is, the values 

that are not filled in in table 3.1 are assumed to exist even though they have 

not been observed.
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As a consequence of making assumption 3, it is necessary to make an 

additional assumption, namely, that the value of the potential response given 

treatment T  =  t, Y l — y is in fact the value of the response given T  =  t is 

the treatment actually administered, Y  =  y\T  =  t. This is the consistency 

assumption.

Such untestable assumptions are not necessary in the framework proposed 

in this thesis. It is in fact the desire to avoid making such assumptions that 

is partly responsible for the development of the framework. It is difficult to 

understand whether assumption 3 is plausible or indeed what it means. Is 

there a potential response to each possible treatment floating around waiting 

to be revealed, or are there just a limited number specific to the context we 

axe interested in? It is hard to imagine and impossible to verify.

In the counterfactual framework reviewed in section 3.3, a more intuitive 

argument is made for the existence of potential responses by presenting them 

as solutions to sets of structural equations that represent causal relationships.

Joint distributions of potential responses

The second problem is of a more practical nature and is termed the funda­

mental problem of causal inference by Holland (1986). Prom observed data in 

an experiment, it is only possible at best to estimate the marginal distribu­

tions of the potential responses. The observed data can tell us nothing about 

the correlation structure between them. In order to make inference about the 

joint distribution, it is necessary to make assumptions about the correlation
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structure, or impose some constraints that will do this.

Such assumptions include unit homogeneity and treatment unit additivity 

amongst others. These assumptions are all discussed in section 3.5.1, as they 

are not unique to Rubin’s model.

Another type of assumption is that of Stable unit-treatment-value assump­

tion (SUTVA). This is made in order to exclude situations where there is 

interference between units. Again, this assumption is not unique to Rubin’s 

model, and is discussed in section 3.5.1.

These assumptions are necessary given the initial assumption of the ex­

istence of potential responses and the definition of causal effects in terms of 

potential responses. Without making at least one such assumption, it would 

be impossible to evaluate causal effects and related parameters of interest such 

as variance of the effects etc. However, the assumptions are not testable, and 

making different assumptions can lead to different conclusions. (See Dawid 

2000 for examples of the consequences of different correlation constraints on 

estimation, and The problem with counterfactuals in section 3.5.1.)

The relationship between decisions and causes

Rubin implicitly relates cause to decisions. He does this by stating that when 

relating the potential outcomes framework to the real world, it is important 

to only consider a series of actions that could be applied to each experimental 

unit (Rubin 1978). Hence he does not consider cases where for example the 

sex of a person is a cause of discrimination, because it is not possible to apply
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a change of sex.

Notwithstanding Rubin’s description of causes in terms of decisions, he 

never explicitly includes decisions as variables or conditions in his framework. 

In fact, he goes so far as to implicitly assume that a potential response is the 

same regardless of how the treatment was administered, in an experiment or 

under uncontrolled circumstances. That is, the difference between examples 

2.3.1 and 2.3.2 is not taken into consideration. (If we further assume ignor- 

ability holds, which is generally the case. See assumption 2 in Identification 

from observational data in section 3.5.1.).

A ssum ption  4 Invariance of outcomes to treatment assignment mechanism 

The potential response Y t(u) is the same regardless of the mechanism that 

assigns treatment to u.

Prom the point of view of the decision theoretic framework proposed here, 

this is a gross oversight. It is only when it is possible to derive expressions for 

probabilities conditional on interventions in terms of probabilities conditional 

on observation that we can make causal inference from observational data. 

Simply assuming that the outcomes are invariant to the administration is not 

sufficient and leads to false inference. Clearly, Rubin’s inference is not to 

be dismissed, however, such assumptions can be avoided as we have seen in 

Chapter 2, and valid inference can be made.
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3.2.4 Causal Inference as a Missing data problem

Rubin defines the causal effect of a treatment with respect to another in 

equation (3.1). Furthermore, he assumes that although only one potential 

response can become a realised outcome and be observed, both exist. Given 

these premises and Rubin’s background in Bayesian analysis with missing 

data (Rubin and Little 2002), he tackles the problem of estimating causal 

effects as a missing data problem.

P o te n tia l responses, m issing responses, observed responses

In order to give a brief overview of the Bayesian model used by Rubin, and 

discussed in section 3.2.5, some additional notation needs to be introduced. 

In particular the missing data notation.

Let Y  denote all the responses that would have been observed if no data 

had been missing, that is, if it were possible to observe the response for both 

treatments T  =  1 and T  =  0. Let Y  =  (Yob3,Ymia), where one of the two 

potential responses will be equal to Y0ba and the other to YmiS as only one 

can be observed for every unit. The observed value of the observed response 

is denoted by y.

Similarly, let X  represent the covariate data if all of it had been observed, 

then X  =  (X 0ba, X mia). The observed value of the observed covariates is 

denoted by x.

We denote the probability density function of the observed and missing
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variables1 as follows;

f  {YobsiYmis-) X 0bs) X-mis) (3*3)

In the example, Yobs =  (y°(ux), 2/1(^2) , 2/°(^3), y1(^4), 2/1(^5)),

Ymis =  (3/1(^ i) ,2 /° (^ 2 ) ,2 /1(w3), 2/°(^4), y 0(t^5)) ,

Xobs =  {x(ui),x{u2) ,x(u4)}x(u5)) and X mis =  x(u3).

M issing d a ta  ind icato rs

To make inference about the joint distributions of observed and missing vari­

ables, it is necessary to include the mechanisms that control the missingness 

in the model. The missingness can be expressed in terms of variables called 

missing data indicators.

Let M  be the missing data indicator for Y. In particular, let M  =  

( M ^ M 0), where M l =  0 if Y 1 is missing and 1 otherwise, for t =  0,1. 

As only one of the potential response variables is ever observed, at least one 

of the missing data indicators will be 1 and the other 0 for each unit. It is 

possible for both of them to be missing if the data are lost or the patient does 

not report his headache status for example.

For the covariate variable, let M x  be the missing data indicator. For 

each patient, this takes on value 0 if the data are missing and 1 if they are 

observed.

E xam ple 3.2.2 Table 3.2 shows the same problem given in example 3.2.1

*It should be conditional on a parameter w ,  but as it is not used for the purposes of 
this discussion, it is omitted for the sake of simplicity
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with the addition on missing data indicators. As there are only two treatments 

and T  takes on values 0,1, the column for the missing data indicator for 

treatment T  = 1 is identical to that of treatment. I f  we were considering 

multiple treatments, then these would be different For example, u3 did not

Covariate Treat Res]ponse Missing Data Ind.
A S T y 1 Y° M x M 1 M°

Ui 0 0 0 1 1 0 1
u2 1 0 1 0 1 1 0
U3 0 0 0 0 1
U4 2 1 1 1 1 1 0
U 5 1 1 1 1 1 1 0

Table 3.2: Table 3.1 with additional columns for missing data indicators. 

have its covariates recorded, hence M x  =  0.

Note that the values of the missing data indicators are assumed to be observed 

always.

3.2.5 Bayesian probabilistic model

There are two aspects of the Bayesian approach in the Rubin causal model 

worth noting. The first is that by using the full Bayesian method, it is 

(at least in theory) possible to derive a predictive distribution for each of 

the potential responses, based on the priors (which are assigned for all the 

variables in the model) and the observed data. The second aspect is that 

if certain assumptions about the way the data is missing (or observed) are
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made, then it becomes possible to estimate the predictive distributions from 

the observed data.

I will not describe the Bayesian methodology or discuss constraints on the 

prior distributions, as these are not relevant to the causal aspect of Rubin’s 

model. For details on these aspects, see Rubin (1978). However, the assump­

tions necessary to make estimation of the predictive distributions possible, 

are of importance. First of all the assumption of exchangeability of study 

and future units is made.

Ignorability

The random variables in the aspirin example are (X, Y, T, M ). Note that X  

Y  and M  represent the collection of potential reposes and potential missing 

data for every possible treatment under consideration in the domain of T. 

This is generally limited to two treatments, however, Rubin’s theory caters 

to larger groups of treatments.

A possible factorisation of the joint distribution of the random variables 

is given in (3.4) below.

f ( X , Y)k(T\X,  Y )g (M\X , Y, T), (3.4)

where f ( X ,  Y)  is the marginal distribution of the potentially observable vari­

ables. In the running example, this is the marginal distribution of the covari- 

ates sex and age, and the response to treatment, that is, taking aspirin or 

not. k(T\X,  Y)  is the probability of a treatment T  given the (AT, Y).  That is, 

the probability of aspirin having been administered given the covariates and

76



responses. This term is the assignment mechanism. Finally, g{M\X,  Y, T)  is 

the distribution of the recorded values in (X , Y)  given the treatment mecha­

nism. This term is the recording mechanism.

The aim of the above factorisation of the joint distribution, is to simplify 

the problem so that all inference can be based on what has been observed and 

not on the missing data. Data can be missing in two ways, either it is missing 

because it has been lost, or not recorded etc, or it is missing systematically, 

as in the case of potential responses.

Definition 3.2.1 (Ignorable Treatment M echanism) L e tT  be such that 

only two treatments are possible. A treatment mechanism is ignorable if

TALYmu, X mi8\ Yobs =  y , X oba =  x. (3.5)

for all patterns o fY miS and X mia.

Then, the treatment assignment mechanism can be expressed solely in 

terms of the observed data;

fc(T|X,Y) =  A:(T|Xo6s,Yo6s). (3.6)

Similarly,

Definition 3.2.2 (Ignorable Recording M echanism) A recording mech­

anism is ignorable if

MALYmis, X mis\Yobs =  y, X oba =  x, T. (3.7)

for all Yfjiia and Xf^is •
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As with the treatment mechanism, the recording mechanism becomes

g(M\X,  Y, T) =  g(M \X obs,Yobs,T). (3.8)

Consider example 2.3.1. Are the treatment and recording mechanisms 

ignorable? In order to establish this, we need to know more about the exper­

imental setup and make some additional assumptions.

Say that the treatments were randomised, that all the patients were given 

the same dose of aspirin or placebo and that they all took their assigned 

treatments and truthfully reported their responses to treatment.

Further, assume that the missing covariate information is missing at ran­

dom (see definition 3.2.3 below or (Rubin and Little 2002) section 1.3). We 

see that none of the realised outcome data is missing.

Given this information, we can divide the recording mechanism further 

into two parts g i ( M ° ,M 1\X>Y, T, M x ) and g2(Mx \X, Y, T). gi represents 

the missingness of the data, and <72 represents the missingness of the covariate 

information.

Now, as the treatment assignment mechanism is random, it is in fact ignor­

able. As the covariate information is missing at random, g<i is also ignorable. 

Finally g\ is fully known, as it depends entirely on the treatment assignment 

mechanism, and is therefore also ignorable. Hence, given the assumptions 

about the data recording and reporting, and the treatment assignment, the 

example has both ignorable treatment and recording mechanisms. For a de­

tailed discussion of the conditions necessary for ignorability see Rubin (1978).
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C om m ents on  m iss in g n ess

Prom the idea of missingness comes the idea of missing at random (Rubin 

and Little 2002 section 1.3).

D efin ition  3.2.3 Missing at Random

Missing data for a variable Y  is said to be m iss in g  at random  if the prob­

ability of missing data on Y  is unrelated to the value of Y , after controlling 

for the variables in the analysis.

Thus in the example used above it may be plausible to assume that the proba­

bility that the covariate information is missing is unrelated to the value of the 

covariates, having taken into consideration the other variables in the problem. 

Now this assumption is clearly not testable because we will never know the 

age and sex of those who do not report it. If however, we believed that the 

sample of patients participating in the clinical trial has a large component of 

ladies who prefer not to reveal their age, then this assumption would not be 

plausible.

There are some objections to using missing data methods for causal in­

ference. The first is that covariate information is in principle observable, 

whereas the unrealised outcome is never observable. Using methods devel­

oped to tackle the missingness of the former on the latter requires some strong 

untest able assumptions, which are not justifiable in my opinion. The second 

objection is that the missing data notation does not cater for the relationship 

between interventions and causes. Even though Rubin states that these are

79



related, he does not introduce this explicitly.

The concept of missingness is not to everyone’s liking. Consider the in­

dividual causal effect in (3.1). Say the individual has been treated, and we 

have observed y 1, and hence not observed Y°. Rubin only considers that 

Y°  is missing, however, y1 — Y° as well as any other function of Y°  is also 

missing. Further, Rubin constructs much of his theory considering properties 

of missingness. These properties are generally assumed as it is not possible 

to validate them, as the data is missing.

It is possible to reconsider the concept of missingness in terms of what is 

observable, as seen in Dawid and Dickey (1977).

3.3 Functional - Graphical frameworks

The following section covers causal frameworks that use counterfactuals and 

graphical models. I focus on the framework proposed by Pearl (2000) as I 

feel that it sufficiently represents equivalent frameworks such as those put for­

ward by Spirtes et al. (2000) (although these are purely graphical), Robins 

(1986), and in the Econometrics literature by Heckman in particular starting 

in Heckman and Robb (1985). Robins’ application of this type of frame­

work to time-varying treatment regimes and the G-computation formula are 

noteworthy and are discussed in some detail in section 3.3.6.

The fundamental concept in Pearl’s counterfactual framework are func­

tional causal models (FCMs), which in turn are based on the structural equa­

tion models (SEMs) popular in the social sciences. FCMs relate variables to
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each other through deterministic functions.

The motivation for this approach is that most scientific research (excluding 

Quantum theory) is expressed in terms deterministic functions and that these 

are how the human mind intuitively understands causality. An example of 

this is the equation relating voltage to resistance and current given in example

2.1.2. The assumption underlying the standard use of this formula is that if 

we measure these three variables in a circuit and find a deviation from the 

formula, then it is due to measurement error.

However, as it is impossible to avoid random error, Pearl introduces Prob­

abilistic causal models (PCMs) by adding a stochastic element to FCMs. This 

addition is necessary to account for the inherent uncertainty in measurement 

and the lack of complete knowledge, and is in stark contrast to the decision 

theoretic approach proposed in this thesis, where probabilities are considered 

the most appropriate description of our perception of the world.

It is interesting that Pearl initially (Pearl 1993) introduced the interven­

tion variable F x . However, he found that just using the intervention variable 

and standard probabilistic concepts did not answer all the causal questions 

he was interested in. In particular those of the type would my headache have 

gone away if I  had taken an aspirin? needed to compare what happened 

to what did not happen in the past, could not be tackled without counter­

fact uals. These questions are questions that are not considered useful in the 

causal framework proposed in this thesis as argued in section 2.2.4, and useful 

questions can be formulated in their stead. In this case, will my headache go
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away if  I  take an aspirin?

In this review of his contribution to causal inference, attention will be re­

stricted to the deterministic and counterfactual aspects of Pearl’s framework.

The basic building blocks of the functional model of causality are struc­

tural equation models, counterfactual notation and graphs. The graphical 

aspect is used to describe causal structures and to determine whether quan­

tities of interest are identifiable or not. The SEMs are used to describe the 

individual relationships between an effect and its causes, and they reflect the 

parent-child relationships in the corresponding graph. Finally, counterfactu- 

als are solutions to the structural equations for values of the causes that did 

not come to be. The graphical aspects will be covered in the section 3.3.1, the 

SEMS in section 3.3.2 counterfactuals will be tackled in section 3.3.4. The 

problem of identification is looked at in section 3.3.5. The section ends in an 

example of how to estimate a causal effect using counterfactual notation and 

finally some important assumptions underlying the counterfactual approach 

are discussed in section 3.3.5.

3.3.1 Graphs

The graphical notation used by Pearl is analogous to that defined in section 

2.4. Similarly, he adopts the Markov condition also defined in this section, 

and generally limits his attention to causal structures that can be described 

by DAGs.

One of the most important graphical concepts in this framework is the
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graphical equivalent of conditional independence. This concept is central as 

it determines questions of identification (section 3.3.5) and is thus essential 

to the estimation of causal effects.

D efin ition  3.3.1 (d-separation) A pathp is said to be d-separated by a set 

of nodes Z  if  and only if

1. p contains a chain i —► m —* j  or a fork i <— m  —> j  such that m  E Z, 

or

2. p contains an inverted fork i —> m  <— j  such that m  0  Z  and such that 

no descendant of m  is in Z.

A set Z  d-separates X  from Y  if and only if Z  d-separates every path from 

X  to V. We denote this by X  ±d Y\Z.

When a DAG corresponds to a probability distribution, the d-separation cri­

terion leads to the same results as the moralisation criterion, with the d- 

separation symbol ±d replacing the conditional independence symbol _LL. For 

example, if the DAG in figure 3.1 represents the conditional independence 

structure of the joint probability distribution of X ,  Y , Z  and W,  then we can 

use the moralisation criterion to determine that XJLWIZ.  Similarly, we can 

use the d-separation criterion to determine that Y  d-separates X  and Z. The 

two criteria are in fact equivalent when the DAG represents the conditional 

independence structure of the joint probability distribution of the variables. 

This is formalised in Theorem 1.2.4 in Pearl (2000).
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Figure 3.1: Y  d-separates W  and X, W  does not d-separate Y  and Z.

3.3.2 Structural Equation Models

Structural equation models were first used in economics and the social sci­

ences, where they are still popular in the literature now. Relationships be­

tween the observed variables are assumed to be causal and known. These are 

then be expressed by means of a set of functions, describing the quantitative 

aspect of the relationships. A graph that describes the relationships between 

effects and causes as parent child relationships can then be drawn. Consider 

the following example;

E xam ple 3.3.1 Congestion Charge

Almost three years ago the congestion charge was introduced in central Lon­

don. Any private vehicle entering a delimited central area is charged 5 pounds 

sterling. The Mayor of London commissioned a study to see how effect of the 

congestion charge on pollution via traffic to determine whether to extend the 

area. The assumed causal structure between the three variables and their 

errors is given in figure 3.2. C is an indicator representing the congestion 

charge, T  the traffic levels and Y  the pollution levels in the city. The errors 

are further assumed to be independent of one another.

There are occasions in which this assumption cannot be made. For in-
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stance if we believed that the traffic and the pollution were both affected by 

an unobserved variable, then we would replace C/3 with C .̂

The equations that correspond to this graph are given below:

If there is evidence to do so, a more specific functional form can be imposed. 

For example, we may have reason to believe that the pollution is related 

linearly to the traffic and we can then replace Y  =  / 3(T, C/3) with Y  = 

a + (3T +  C/3.

The SEMs can be used as a tool for inference (formalised in definition 

3.3.2) as follows: 1) If we set T  — to then we replace T  =  / 2(C7, t/i) with 

T  = to as there is no uncertainty remaining about the value of T, and also

2 ) we insert t0 into the equation for Y ',Y to — / 3(£o> U3), while the equation 

for C  remains unaffected. Thus if we assume the linear relationship Y  = 

a  +  PY  +  C/3 , after intervention on T, we have that Y  =  a  +  @t0 +  C/3.

c  =  MU,),

T  = h ( c , u 2), 

Y  = M T,U »).

Figure 3.2: The assumed relationships between C  congestion charge, T  traffic 
levels, Y  pollution levels.



3.3.3 The do operator

SEMs and their corresponding graphs can be used to predict the effects of 

interventions, which Pearl defines as causal effects by introducing the equiv­

alent to the intervention node Fx, the do() operator

The do operator essentially sets the value of a variable to a particular 

value. In fact if X  is a random variable, then do(X = x ) is identical to 

Fx =  x  where Fx is the intervention node on X  and a; is a realisation of X .

Look at the congestion charge example above. Saying do(C =  c) means 

that we are intervening on the congestion charge and setting it to c. If C =  1 

means that a city is introducing the congestion charge, then the causal effect 

of introducing the congestion charge on traffic is p(T  =  t\do(C =  1)) , which 

gives the probability of T =  t induced by deleting C  =  fi(u \)  and replacing 

T =  / 2(C,C/2) with *i =  / 2( l , t /2).

3.3.4 Counterfactuals and the Causal Model

In this section we look at Pearl’s functional causal model (see Definition 7.1.1 

in Pearl (2000)). This is made up of the observed variables in the problem, 

the error terms associated with these variables and the set of equations that 

relates the causes and their effects. The definition is given below as it is 

essential for the understanding of the functional model.

Definition 3.3.2 A Causal Model is a triple M = <  U, V, F > such that 

1 . U  is a set of background/error variables that are determined by factors
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outside the model;

2. V  is the set of variables {Vi,. . . ,  Vn}, functionally determined b y V  U U .  

The variables we are interested in including in the model;

3. F, the set of functions { / i , . . .  f n} such that each /, is a mapping from  

U  U ((V) \  Vi) to Vi and such that the entire set F  forms a mapping 

from  U to V. Thus, / ,  determines the value of Vi given the values of all 

other variables i n U u V .  There is a unique solution for each function 

for F  given by V(u);

A graph given by <j?(M) is associated to the causal model M  and is such that 

each variable corresponds to a node and the directed edges link the effects as 

children and the causes as parents.

Let X  be a variable in V  and xq a realisation of X . A submodel M Xo 

can be derived from M  by replacing the function x — fi(pai,Ui) with x  =  Xq 

and replacing instances of x  with xq in the remaining functions. This can be 

extended to a subset X  of V, inducing submodel Mx, where x is the vector 

of realisations of X  and where Fx =  {/* : Vi & X} U (X  =  x}} is the set of 

equations induced by setting X to x. The effect of an action do(X = x) is 

the submodel Mx.

Note that it is not necessary to set a variable do(X  =  x) in order to be able 

to estimate the causal effect of this setting, as we can solve Mx for a particular 

response of interest. Thus we see that the functional equation approach is 

conducive to the counterfactual approach. Looking at the congestion charge
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example, if pollution can be expressed as a function of traffic and an error, 

and the function can be estimated, then it is not necessary for the traffic to 

ever attain a value t to be able to calculate the resulting levels of pollution.

This leads to the following definitions for potential responses and coun- 

terfactuals:

D efin ition  3.3.3 Potential responses and counterfactuals 

Let X  and Y  be two subsets of variables in V . The potential response of 

Y  to action do(X = x) on a particular unit u is denoted Y x(u), and is the 

solution for Y  of the set of equations Fx . The counterfactual uthe value 

that Y  would have taken had X  been x ” is Y x(u).

There is no difference between a potential response and a counterfactual in 

terms of the mathematics, it is simply a matter of timing as a potential 

response refers to the solutions to all the possible actions, whereas the coun­

terfactual is the solution to a specific unrealised action. Note also that u, the 

unit (which can be an individual or a specific set of characteristics) is itself 

also unchanged by intervention.

Pearl introduces the stochastic element to account for incomplete knowl­

edge and measurement error:

D efinition  3.3.4 A Probabilistic causal model is a pair < M, P(u) > 

where M  is a causal model, and P(u) is the probability function defined over 

the domain of U.
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For any variable Y  in V, the probability p(Y  =  y) is defined as a function of 

the background variables as follows

p (Y  = y):=  P (“ )-
{u|y(it)=y}

This can be extended to counterfactual probabilities;

P(YX = y):=  Y ,  P (u)•
{u|y*(u)=y}

As mentioned in the introduction to the functional framework, probabilities 

are not the basic building block, rather, the functions are taken as basic, 

and the probabilistic element is added on to account for the randomness that 

ensues from our incomplete knowledge of the causal structures at work. As 

it is impossible to avoid the probabilistic element, the causal effect is defined 

as a probability;

D efin ition  3.3.5 Causal Effect

Given a causal model M , and two disjoint sets X  and Y  in V  , the causal 

effec t o /X  on Y  is given by p(Y  — y\Mx) for the realisation x  o /X .

Note that the causal effect is not defined comparatively here, however, it is 

generally a comparison of such causal effects that is of interest.

3.3.5 Identifiability

As discussed in section 2.3.3, the data that is available to the statistician 

is often observational. In order to make inference about causal effects it is 

therefore necessary to make additional assumptions or explore the conditional
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independence /  d-separation relationships between the observed variables. 

Pearl’s approach to identification is based on the manipulation of graphical 

models and counterfactual conditional independences.

The process of using graphs to identify a causal quantity from observa­

tional data is analogous to the non-counterfactual use of conditional indepen­

dences; the graph is used to determine the d-separations between the cause 

variable and the effect variable, if the set of observed variables that d-separate 

the cause and the effect variable obey a set of constraints then the causal effect 

is identifiable from observational data.

Back-door criterion

The simplest constraint is the back-door criterion (Pearl 2000 definition 3.3.1) 

given below. It determines whether a subset of observed variables that d- 

separates the causal variable from the effect variable are sufficient to allow 

the identification of the causal effect from observational data. In particular, 

it is useful when there are no unobserved confounders.

A set of variables Z  satisfies the back-door criterion relative to an ordered 

pair of variables X ,Y  in a DAG G if:

1. no node in Z  is a descendant of X ; and

2. Z  blocks every path between X  and Y  that contains an arrow into X . 

As a consequence, the causal effect of X  on Y  is given by

P{YX = l/) =  p (Y  =  y\do(X  =  x)) =
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Y ,v { Y  = y \Z  = z ,X  = x)p{Z = z). (3.9)
Z

A similar result can be derived in terms of the augmented DAG notation. If 

we take the above variables, then do(X = x) is equivalent to Fx  =  so we 

have that

p{Y = y\Fx  =  x) =  Y ,P (Y  = y\Z  = z ,X  = x ,F x = <H)p(Z = z\Fx  =  0)
Z

if

1. ZJLFx and

2. YJLFx \X ,Z . 

do calculus

The back-door criterion is an example of the use of do calculus, a set of 

graphical rules intended to enable identification of experimental quantities 

using observational data. To show the rules, it is first of all necessary to 

introduce some additional notation. Let X , Y  and Z  be disjoint nodes in 

G a DAG with associated probability distribution p(). Let G y  denote G 

excluding the edges pointing into X .  Also, let denote G excluding edges 

pointing out of X . Combining the notation we denote by G yz , G excluding 

edges pointing into X  and edges pointing out of Z.

3.3.5 Rules of do calculus

1. insertion/deletion of observations

p(Y\do(X  = x ) ,Z ,W )=  p(Y\do(X  =  x), W) 

if (Y  l d Z \X ,W )G Y
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2. action/observation exchange

p(Y\do(X  = x),do(Z  = Z) ,W )=  p(Y\do(X = x ),Z , W ) 

if (Y  U  Z \X , W )a

3. insertion/deletion of actions

p(Y\do{X  =  x), do(Z = z), W ) =  p(Y\do(X  = x ),W )  

if (Y  -Lrf Z \X , W )Gjr̂ (w)-

Where Z (W )  is the set of nodes in Z  that are not ancestors of any 

nodes in W  in Gy.

These rules can be used to infer an exhaustive list of constraints for graphical 

identification of causal quantities from observational data. These are given in 

Pearl (2000) 3.5, however, a detailed description of these is beyond the scope 

of this review.

As in the case of the back-door criterion, these graphical rules can be 

translated into the augmented notation. To do this, consider the following. 

Say we have a generic conditional independence A 1LB \X , C  where A, B, and 

C  are nodes or sets of nodes in the graph G of interest. Now, when Fx  =  x 

then X  is identical to Fx- Thus any conditional independence involving X  

extends to Fx- So A lLB \F x  =  x ,X  =  x, C. If Fx =  0 then it is trivially 

true that A lL B \F x — 0, X , C. Thus, if AJLB\X, C then AALB\Fx , X , C.

When we look at the rules of do calculus from the decision theoretic point 

of view, we see that the conditional independences can be rewritten using Fx -

3.3.5 Rules of do calculus in decision theoretic framework
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1. p(Y\Fx  =  x, Z, W ) =  p(Y\Fx  =  x, W) if YJlLZ\X , W.

Now p(Y\Fx  =  x,Z , W) =  p(Y\Fx = x ,X  = x ,Z ,W )  as Fx  and X  

are identical when Fx =  x. Also, the conditional independence extends 

to YJLZ\X ,  Fx , W . So p(Y\Fx  =  x, X  = x, Z, W) =  p (y  |F* =  x, X  =  

x ,W ). Finally, again by fact that Fx  and X  are identical when Fx  =  x, 

p(Y\Fx  = x ,X  = x ,W ) =  p(Y\Fx  = x ,W ).

2. p(Y\Fx  =  x, Fz  =  2 , W) =  p (y |F x =  x, Z, W) if YALFZ\X,  Z, W  by a 

similar argument as the one above, similarly

3. p(Y\Fx  = x ,F z  = z, W) =  p(Y\Fx  =  x, W ) if Y 1LZ\X , W.

Note that the first and last conditions are the same condition in the decision 

theoretic framework.

Note also that when a quantity is not identifiable from the graph, it is 

possible to make additional assumptions that make the quantity identifiable. 

These assumptions tend to involve imposing specific functional forms on the 

relationships between the variables. Alternatively separability assumptions 

can be imposed. An example of this is given in chapter 5 section 6.6.1.

Calculating a causal effect using counterfactuals

Say we have a causal model M  with the components given in definition 3.3.2 

with a non-parametric set of structural equations, and a corresponding graph 

G. To evaluate the causal effect of one variable on another, we first find the set 

of conditional independences that hold between the potential response (and
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hence counterfactual) variables. These are then used to evaluate the causal 

effect. Note that notwithstanding the name restriction given to following 

statements,, they are not additional restrictions but consequences of the rules 

of do calculus and graphical manipulation.

Exclusion restriction:

For every variable Y  in V  U U with parents P A y  and for every set

Z € V  such that Z fl PA y =  0 we have that

YpaY(u) =  ^payz(w)) (3.10)

where Vpayz(^) is the potential response to any setting of the parents 

of Y  and any setting of the set of variables Z.

Independence restriction:

If Z \ , . . . ,  Zk is a set of variables in V  not connected to Y  via paths 

containing only U  variables in the graph G} then

Vpay-U-{ZiPa Zi, • • • >^*paZfc}- (3-11)

The exclusion restriction condition essentially states that if Z are variables

disjoint from the parents of Y  then Y  is independent of whether Z  has been

set or what it has been set to conditional on its parents having been set. For

example, if the Zs are descendants of Y  in the graph, then it is easy to see

that Y  does not change if Z are set given that the parents of Y  have been 

set. That it y_ULFz|FpAY.
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The independence restriction condition says that if two variables are not 

connected by paths that only contain unobserved background/error variables

then they are marginally independent given their parents have been set. How

the two restrictions work is best shown in an example.

Consider example 3.3.1. The problem is very simple as we assume that 

the Us are all mutually independent of one another. The problem would be 

complicated if we assumed an unobserved common parent for Y  and T  for 

example, as this would violate an independence restriction.

First by exclusion restriction we have that

ER1 Tc(u) = Tcp(u) ,

ER2 Cy(u) = Cyt(u) =  Ct(u) =  C(u) ,

ER3 Yt (u) = Ytc(u) .

ER4 By construction we have that Yc(u) =  Ytc(u) if Tc(u) = t. By ER3 it 

follows that Yc(u) = YCtc(u) ~  when Tc(u) = tc.

Then, by independence restriction

IR1 TciL(C,Tt),

IR2 YtALC.

The process of calculating p(Yc) given the above rules is as follows;

p (Yc) = p(Ytc = y) by ER4,
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=  Y ,p (Y tc= y \T c = t)p(Tc = t)
t

=  J2p(Y t = y\Tc = t)p(Tc = t) by ER3
t

=  J 2 p (y t = y)p(TC = t ) by IRl. (3.12)
t

Next we evaluate

p(Tc = t) =  p(Tc =  t\C = c) by IRl

=  p(T = t\C = c),

and similarly

p(Yt = y) =  p(Yt = y\T  = t) 

=  p(Y  = y\T  = t).

These we can then substitute into (3.12) and calculate p{Yc) the causal effect 

of having a headache:

P(Yc) =  E p (Y  =  y\T  =  t)p(T  =  t\C  =  c)
t

In this simple example, the structural equations are not specified and are 

not necessary. They are used when the relationship between the variables is 

either known or needs to be assumed in order to make inference.

If the question we want to ask is, if  I  introduce the congestion charge, 

will pollution levels change ? then this is a problem that can be solved more 

simply in decision theoretic terms; The DAG associated to the problem is the 

DAG in figure 3.3 without the Us as we assume there are no dependences 

between the observed variables other than the ones depicted. C, represents
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the introduction of the congestion charge, and it is not easy to see how it 

could be a chance variable. Thus let us assume that Fc cannot be idle. The

— ► ©— < t)— ►©

Figure 3.3: Congestion Charge example in non-counterfactual terms

causal quantity of interest is expressed in the non-counterfactual framework 

as p(Y  = y\Fc =  c), the probability of pollution level y given the congestion 

charge is set at c.

p(Y  = y\Fc — c) =  Y ,P (y  = y\T  = t ,C  = c, Fc  =  c)p(T =  t\C  = c,Fc  = c)
t

as p(C  =  c\Fc — c) =  1 so no need to sum over C  

=  E p C T  =  y\T  = t,F c  = ID)p(T =  t\C = c,Fc = c)
t

as K ii (C ,Fc)\T.

= T ,P (Y  =  y\T  = t ’Fc = <b)p{T =  t \c  = c,Fc = 0)
t

as TJLFc \C.

If we have two settings of the congestion charge, 1 and 0 for introducing it 

and not introducing it respectively, then we can estimate p(Y  = y\Fc — c) 

for both these settings, and the causal effect would be the difference of the 

expectations.

If we want to answer the question would the pollution levels have changed 

i f  we had not introduced the congestion charge ? then it is necessary to use the 

counterfactual notation. Note that the quantity of interest remains the same, 

that is Yc(u). It is also the quantity of interest for of the type, the pollution
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levels have changed, is it because we introduced the congestion charge?. Yet 

these questions are of a completely different nature, should there not be a 

different method to tackle each one?

A ssum ptions underly ing  th e  use of counterfactuals

Pearl’s functional framework rests on the assumption that causal relationships 

can be adequately described by deterministic functions. Prom this fundamen­

tal assumption, the rest follows.

A ssum ption  5 Causal relationships are deterministic functions, and due to 

incomplete knowledge, it is appropriate to model causal relationships as de­

terministic functions with an error term.

This also begs the question, is there a limit to the number of possible actions ? 

Can we in theory determine the consequences of actions that cannot take place 

if we define a set of structural equations in a particular manner?

It follows from adopting the deterministic view point that the structural 

equations are invariant to intervention. Each equation is autonomous and 

describes the individual relationship between a variable and its causes of 

interest. Although they can be solved for a particular intervention, the in­

tervention only affects the variable that has been intervened upon and its 

descendants, leaving the remaining variables unaffected. Thus, we can solve 

for an intervention that did not take place, simply by setting an equation 

to a constant and solving the related functions. Thus, it is not necessary to 

intervene to be able to evaluate the consequences of such an intervention.
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Further assumptions are made which are common to Rubin’s potential 

outcomes framework. However, it is worth noting that where Rubin assumes 

the existence of potential responses, their existence follows from Pearl’s as­

sumption that a particular data situation can be described by deterministic 

functions.

It is also worth reiterating that the counterfactual (Yx) notation hides the 

do notation in subscripts, and as we see in the example in the section 3.3.5, 

the subscripts are used even when an intervention has not taken place. This 

also happens in the decision theoretic framework as p(Y\Fx  =  x ,X  = x) = 

p(Y \X  =  x ,F x  =  0) when YJLFx\X.  However, whilst the notation in the 

counterfact ual framework obscures the links between actions and effects, the 

notation in the decision theoretic framework shows the link explicitly.

3.3.6 Time varying treatments and G-computation

This review of Robin’s work in this section is based on Lok (2001), which in 

turn is based on Robins (1995) and (1998). The basic problem in discrete time 

is described and the relevant notation introduced. Finally the G-computation 

formula for estimation of causal effects from observational data under the no 

unmeasured confounders assumption is stated and interpreted.

Robins’ approach, has elements of both the functional model (he uses 

extensions of SEMs called structural nested failure time models amongst oth­

ers) and the potential outcome model (he makes assumptions such as consis­

tency). His interest lies in identifying causal effects of time varying treatments
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from observational data where only some treatment regimes have been ad­

ministered and the process is not controlled in the sense that it is not an 

experimental setting. This is due to the sources of data which are records 

of treatments on patients suffering from long-term, potentially fatal diseases 

such as HIV/AIDS or cancer. Thus treatments cannot be randomised, and 

the doctors must assess on the basis of past evidence what treatment to adi- 

minister next.

The quantity of interest is the causal effect of treatment on survival time. 

Due to the nature of the diseases, no clinical trials to determine their efficacy 

can be run, and so any causal inference must be made from the observational 

data by making the appropriate assumptions.

The basic set-up is as follows; a patient has a set of characteristics, some 

that do not vary over time, such as sex, and others that do, such as variables 

that indicate the status of the disease. In the case of HIV/AIDS, this may be 

viral count. The patient is visited by a doctor over time and at every visit, 

the doctor must decide, based on the status of the patient, what treatment to 

prescribe. The collection of treatments over time is called a treatment regime. 

The treatment will depend on the time-varying patient characteristics and 

previous treatments received. The quantities of interest are the effects of the 

treatment regime received on the survival time. As there is no control group 

for these patients, and the approach adopted by Robins is counterfactual in 

nature, the effect is estimated by comparing the treatment regime that was 

received to a counterfactual treatment regime.
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N otation

Consider the notation for a single patient. The time points at which a patient 

is visited are To,. . .  , r^ , such that r* =  t means the patient’s ith visit took 

place at time t after his first visit. The patient characteristics at time 

are denoted by Lk for k =  0 , . . . ,  K , with realisation lk and the treatment 

assigned by the doctor is denoted by Ak for k =  1, . . . ,  K. The outcome of 

interest is survival time and is denoted by Y  = L k - Finally the collection 

of characteristics up to visit k are denoted by Lk and treatments up to visit 

k are denoted by Ak. This notation is necessary as treatments at time t are 

likely to depend on past treatments and covariate information.

Robins adopts a deterministic viewpoint and assumes that the patient 

characteristics and the treatments are related by a collection of functions. 

These are in fact the regimes. They are denoted by gk with

(3.13)

where Ck and are the domains of L* and ~Ak for k = 0 , . . . ,  K . Thus the 

gs are the potential realisations of the As.

Figure 3.4 shows the general structure of Robins problem.

Counterfactual assumptions

In order to be able to evaluate the effect of a realised and thus observed treat­

ment regime by comparing it to a counterfactual treatment regime, Robins 

must assume that for every possible treatment regime, there is a correspond­

ing counterfactual outcome.
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Figure 3.4: Robins problem of time-varying treatments in a graph. Each L 
variable has an arrow coming out of it going to every other L and every A  has 
arrows coming from L’s preceeding it. Only the first L shows this to avoid 
confusion.

A ssum ption  6 Existence of counterfactual random variables:

For every patient, there exists a random variable Y 9, the survival time had 

the patient received treatment regime g.

An additional counterfactual assumption is also made namely, that the 

solution to the regime that was applied to a patient must be the observed 

outcome. By Robin’s definition (see (3.13)) g , the regime is a function, and 

thus can be solved for a particular set of past covariates and actions.

A ssum ption  7 Consistency:

For any fixed identifiable treatment regime g} lk E Lk and t G (rk,Tk+i)

{Y 9 > t, Lk = lk, Ak =  g(lk),Y  > Tk}

= {Y  > t,Lk = h , Ak =  g (k ) ,Y  > Tk} (3-14)

This means that if the outcome of interest is survival time, then the patient 

would die under regime g if and only if he actually did die and received the 

same treatments as under regime g. Note that Y 9 is a potential response (like 

Rubin conceives of them) and is equal to the realised response if the regime
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g is the one actually performed. This type of assumption is also made by 

Rubin.

N o unm easu red  confounders

One problem with causal inference from non-experimental data, is that treat­

ments are not generally set according to a predetermined treatment strategy, 

but by a doctor who is himself a part of the study. Hence they can depend 

on the outcome of interest through an unobserved confounder, such as the 

Doctor’s treatment decision criteria. For example, if a doctor treats only pa­

tient who he thinks will react positively, and this is not taken into account 

when making inference, then the results will be incorrect. To overcome this 

problem, Robins assumes that there are no unmeasured confounders, that is, 

either the doctor clearly states his treatment selection criteria, or there are 

no unknown selection criteria, and the assignment is randomised given the 

past.

A ssum ption  8 No unmeasured confounders:

For any fixed treatment regime p, for any time Tk and for any lk € £* we 

have that

AkJLY°\Lk =  lk, ^ k- i  =  9 ( 7*-i). (3.15)

That is, given the past treatment regime and the patient characteristics up 

until time t* (which are common for both the counterfactual Y 9 and the actual 

response Y  i.e. A k-1 =  g(Jk-i)), the current treatment does not depend on
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what the outcome would be under regime g. It can also be interpreted as 

meaning that given past treatment and patient status, the current treatment 

is random. For a single treatment, this assumption is analogous to Rubin’s 

conditional ignorability assumption.

G -com putation

For discrete time points and for a single patient, under identifiable treatment 

regimes (that is, regimes that are actually possible, as every combination of 

characteristics and treatments is not necessarily possible) and the assump­

tions of consistency and no unmeasured confounders we have that

p ( Y ° > t )  =  '£ . . . ' £ \ p ( Y > t \ L j = lj ,Jii = g(ij ) , Y > T j
l o  l j

rim=0 {.Pi.Lm ~  ^m \Lm -l ~  ^m-lj-^m-1 =  9\J>m—1)> Y  Tm )

X P ( Y  -'> T m \ L m —l  =  l m —1? Am_1 == 9 { ^ m — l)j Y  V̂n—1)}]•

(3.16)

This formula is arrived at by recursive application of (3.15). It has analogues 

in most other frameworks. If we consider a single treatment, with the associ­

ated DAG similar to the one in figure 3.4, we arrive at the back-door formula 

given in Pearl, (3.9). Also, it can be reformulated in non-counterfactual 

terms as in Dawid (2002) for the single treatment case. An extension with 

time varying treatments is being developed by Dawid and Didelez (personal 

communication).
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3.4 Heckerman and Shachter’s cause in terms 
of unresponsiveness

Heckerman and Shachter’s (for-with HS) approach to causality is a generalisa­

tion of Pearl’s framework with decision theoretic elements. It is most notable 

for the use of unresponsiveness as the basic concept in terms of which cause is 

defined and for explicitly allowing variables that cannot be intervened upon 

to be causes.

This section is based on Heckerman and Shachter (1995) and covers the 

basic set-up of the framework in terms of the decision maker, and goes on 

to define unresponsiveness and cause. Then it looks briefly at graphs in 

canonical form , which enable counterfactual to be explicitly represented in 

graphs. These are reminiscent of twin networks in Pearl (2000) 7.1.4.

3 .4 .1  D ec is io n s

HS begin by defining a decision maker who can make one or more decisions. 

The decision maker exists in a world which has a number of possible states of 

nature. Every combination of an act (decision) with a state of nature, results 

in a deterministic mapping from these to a consequence. This set-up is based 

on Savage’s (Savage 1954) decision theoretic primitives.

There are two types of variables in every problem, chance variables and 

decision variables. Generally, decision variables are the causes, however, in 

this framework it is possible as we shall see later to interpret non-decision 

variables as causes.
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By defining a consequence as a deterministic mapping of the states of 

nature and acts, HS fall in line with Pearl and the counterfactual approach 

to causality. Through the deterministic mapping, it is possible to evaluate 

the effect of an action even when such an action did not take place, leading 

to a counterfactual.

Usually the states of nature are unknown, and thus are the source of 

uncertainty. They are then defined by the possible combinations of acts and 

consequences. To clarify this consider the two following examples, in the first, 

the possible states of nature are known and in the second they are defined by 

a combination of acts and consequences.

E xam ple 3.4.1 Sara would like to wear her favourite dress out tonight, but 

is concerned about the weather as it might rain. The possible states of nature 

are known, and are rain(R) or no rain (NR). The possible acts are wearing 

the dress (d) or not wearing the dress(nd). The consequences are wet dress 

(w) and dry  dress (d). The mappings are

(R,d) —> w

(R, nd) -+ d

(NR, d) -► d

(NR,nd) -► d

E xam ple 3.4.2 Sara has a headache, should she take an aspirin or not? The 

states of nature, in this case what led to the headache occurring and whether

106



the headache is the type of headache that will go away if an aspirin is taken, as 

well as other health related variables, are not known. Hence they are defined 

by a combination of acts and consequences.

S ta te  of n a tu re act
take don’t take

1 gone not gone
2 gone gone
3 not gone not gone
4 not gone gone

Table 3.3: Example: States of Nature, acts and consequences of taking and 
not taking aspirin. Gone refers to the headache being gone within 2 hours.

3 .4 .2  U n resp  on si v en ess

A central concept to HS’ decision theoretic approach is that of (un)responsiveness, 

and in particular limited unresponsiveness. It is in terms of this concept that 

HS define cause. The concept of unresponsiveness is similar to the concept of 

(ir)relevance in Pearl (2000) Chapter 7. The idea is expressed in the following 

way, i f  a variable Z  is fixed, will altering another, say X  change Y  ? If the 

answer is yes, then Y  is responsive to X  when Z  is fixed. If the answer is no, 

then Y  is unresponsive to X  when Z  is fixed, and Z  can be seen as shielding 

Y  from X  and thus being a cause.

Basic N o ta tio n

The decision problem as seen by HS is described entirely by three sets of 

variables, the chance variables, the decision variables, the possible states of
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the world and a function from the decisions and states of the world to the 

chance variables.

Let D be the collection of decision variables, and U the collection of the 

chance variables. Individual variables are given by upper-case letters, so for 

example Y, X  G U are chance variables, T, D G D decision variables. Let S  

be the set of possible states of nature. Individual elements of S  are given by 

s.

Realisations of decision variables are given by lower case variables. For 

example, t is a realisation of T  G D and t takes values in T. A realisation 

of a chance variable Y  G U when the decision taken is d G V  and the state 

of nature is s G S  is given by y[ds] G y  Further, if V  is a subset of U, 

where V  =  {X,Y)  then v[sd] =  (x[sd],i/[sd]) where x[sd] G X,y[sd] G y  is a 

particular realisation of V  and we say that v  G V.

Formally, unresponsiveness is defined as follows. Let Y  be a set of chance 

variables and T  a set of variables in U U D. We say that Y  is unresponsive 

to D in the states limited by T  if for all possible states of the world, if T  

assumes the same value for two acts, then so does Y.

D efinition 3.4.1 ((L im ited) U nresponsiveness) Given a decision prob­

lem described by chance variables U, decision variables D, and states of the 

world S , and variable sets Y C U  and T C U U D ,  Y  is said to be unrespon­
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sive to D in states limited by T, denoted by Y  D, if

Vs € 5, di, d2 € V  : £[seh] =  *[sd2] => j/[sdi] =  2/[sd2]. (3-17)

I f  Y  is not unresponsive to T  in states limited by D, then we say that Y  is 

responsive to D in states limited by T.

For properties of limited unresponsiveness see HS.

If Y  is a random variable and D  is a decision variable such that Y<-/> D, 

then Y  is probabilistically independent of D. However, the opposite is not 

true. This is because in equilibrium situations two variables that are respon­

sive to one another can be probabilistically independent. Limited unrespon­

siveness and conditional independence are not closely related.

To explain unresponsiveness consider a more complex version of example

3.4.2

E xam ple 3.4.3 Sometimes Sara has too much to drink and this brings on 

a very strong headache the day after. When this is the case, taking aspirin 

never helps. We consider only the states where Sara has a headache to begin 

with as they show the concept of unresponsiveness sufficiently well. So we say 

that headache status is unresponsive to aspirin intake in the states limited by 

Sara having had too much to drink the day before.

3 .4 .3  D efin itio n  o f  C ause

HS define cause in terms of unresponsiveness as follows:
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drink? headache? aspirin? gone?
yes yes yes no
yes yes no no
no yes yes no
no yes no no
no yes yes yes
no yes no yes

Table 3.4: Example: The headache going away is unresponsive to taking an 
aspirin in the states limited by drink.

D efin ition  3.4.2 (Causes w ith  respect to  decisions) Given a decision 

problem described by U and D and a variable Y  in U, the variables C in 

D UU \  {y} are said to be causes for Y  with respect to D if C is the minimal 

set of variables such that Y  is unresponsive to D in states limited by C.

Going back to example 3.4.3, let the answer to the question is Sara's 

headache gone ? be the variable gone? =  G and let aspirin? = A b e  the vari­

able take aspirin, also, let drink? = D be the variable representing whether 

Sara had too much to drink the night before. By looking at table (3.4) we 

see that whenever the values of D, for the two values of A, the values of G 

are also the same. For example, if drink? =  yes then for both values of A 

(aspirin? =  yes and aspirin =  no, G is the same gone? =  no for both) G 

is a chance variable, and {D,A}  =  D is the set of decision variables. We 

can say that G is unresponsive to D in the states limited by D as when 

d[sayes] = d[sano] then g[sayes\ =  g[sano\ for all s 6 5 , the states of nature. 

It is also the case that D fulfils the condition of being the minimal set such
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that G*/*d D, hence D  is a cause of G according to definition 3.4.2. 

C hance variables as C auses

By defining cause in terms of unresponsiveness, and allowing variables that 

limit unresponsiveness to come from the union of the chance and decision 

variable sets, HS allow for chance variables to be causes. For example, replace 

having too much to drink the night before, D, with having a migraine headache, 

M, in 3.4.3. Then the values of G do not change, and D. However M

is a chance variable and cannot be intervened upon.

3 .4 .4  U se  o f  grap h ica l m o d els

The graphical model proposed by HS is not a conventional Bayes net, and 

is called an influence diagram in canonical form. It explicitly represents 

counterfactual variables by means of mapping variables.

In this section we introduce atomic interventions, mapping variables and 

influence diagrams in canonical form.

An atomic intervention is an intervention variable. It is defined as a 

variable X  such that when X  = x this implies that X  is set to x. Refer to 

them with the intervention variable notation F x •

The reason that HS introduce the atomic intervention is similar to the 

reason that the intervention variable is introduced in the decision theoretic 

framework, namely to be able to be able to encode interventions on observed 

chance variables. Interventions are decisions, and thus, in HS framework, 

they are in the set of decision variables D.
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3 .4 .5  M a p p in g  V ariab les

Each chance variable can be expressed as the deterministic function of a 

decision variable and the states of the world. Thus, S can be interpreted as 

mapping U, the set of decisions to U(D), the set of mapping variables, the 

possible consequences, realised or not, for the set of decisions D. Formally:

D efinition 3.4.3 Mapping variables:

Given the domain U U D, and chance variables X  and Y  such that for every 

Y  6 U u D  there exists Fy £ D, the m apping  variable X ( Y )  is the chance 

variable that represents all possible mappings from Y  to X .

To clarify, Fy is introduced so that it is possible to talk about intervening on 

Y , and thus Y  can be a cause even if it is not a decision variable itself.

With this definition of mapping variables, we see that the chance variables 

U  can be then expressed as deterministic functions of the decision variable and 

the mapping variable. The decision simply selects the appropriate instance 

of the mapping variable, much in the same way that given a pair of potential 

responses (Yi, Yo)> assigning treatment T  = 1 will reveal Y\. By defining the 

mapping variable as above, HS are guaranteeing the existence of a response 

for every act.

Further, chance variables can also be causes as long as we define what the 

intervention variable consists of. For example we could say that sex causes 

breast cancer because we can imagine and express mathematically the idea 

that if we could change the sex of a person to male at conception then this
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would reduce their chance of having breast cancer.

The mapping variable has the additional property of being unresponsive 

to decisions (see Theorem 3 Heckerman and Shachter (1995)). This again is 

similar to ignorability assumptions.

Influence d iagram s in canonical form

Influence diagrams are DAGs that contain decision nodes. Consider first 

the influence diagram in figure 3.5. It represents at the relationship between 

treatment, viral load, health and response in an AIDs/HIV patient. From the

Figure 3.5: The relationship between treatment T, viral load V  and response 
to treatment R  and general health H.

influence diagram in figure 3.5 an influence diagram in canonical form can be 

constructed as shown in figure 3.6. The basic idea is to replace any chance 

variables with i) a mapping variable, which represents the chance element, 

and ii) a deterministic node. The mapping variable takes over the links to 

other chance variables and has a directed edge into the deterministic node. 

The edges from the decision nodes into the chance node in the influence 

diagram go into the deterministic node that replace the chance node. For
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details on how to construct such a diagram, refer to Heckerman and Shachter 

(1995). It is not clear how the mapping variables themselves are related to

(VCT)

Figure 3.6: The relationship between treatment T, viral load V  and response 
to treatment R  and general health H  in canonical form with mapping vari­
ables taking over the relationships between the variables and the chance vari­
ables are deterministic functions.

each other.

R ela tionsh ip  w ith  counterfactual m odel

This framework is in fact a different but equivalent approach to Pearl’s func­

tional counterfactual model. The main difference is that the decisions are the 

basic blocks in HS. It is not decision-theoretic in the sense of the framework 

proposed in this thesis.

The correspondence between the counterfactual and HS’ framework is 

easily seen. Given the chance variables U, we can assume that D contains 

only the set of intervention variables on U. Let G be the DAG that contains 

all variables in U such that P a G(X)U Fx are the causes for X  with respect to 

D, where P a G(X) are the parents of X  in G. Then the relationships between
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UUD can be expressed by the set of structural equations 

X  =  f ( P aG(X ),F x ,X ((P a a )(X ) ,F x )) 

for every X  G U. To clarify consider the following:

1. In Pearl, the observed variables V correspond to the domain variables 

U

2. Fx atomic interventions are do(X)

3. The graph G is Pearls causal graph

4. Pearls random error U is the causal mapping variable X ((P a ° )(X ) , F x )•

HS list some advantages of their framework over Pearls; the errors need 

not be independent as they have a concrete meaning in HS, also by using 

the canonical form of the influence diagram, it is easier to introduce hidden 

common causes and their influence on mapping variables. Further it is easier 

to ascertain the d-separation or independence relationships between different 

counterfactual variable from the canonical diagram than it is using Pearl’s 

causal DAGs and counterfactual rules.

However, HS’s approach is fundamentally deterministic like Pearl and 

Robin’s approaches. The only difference is that the uncertainty here is derived 

not from random error, but from the unknown underlying state of nature. 

HS call their framework decision theoretic, but it has no decision theoretic 

elements other than making the decision variable a building block of the 

framework.
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3.5 Discussion

In this section the differences and similarities between the causal inference 

frameworks covered in this chapter are discussed. We consider first the gen­

eral assumptions underlying the different frameworks. Then we look at the 

expressions for causal effects in each framework as a motivation for looking 

at the assumptions specific to each framework and discuss whether they are 

justified. Then we look at the similarities between the frameworks. Finally 

we look at the notation and how it conveys the concepts of interest such as 

the source of data and whether the problem is predictive or retrospective.

Most of these aspects have been covered in the individual descriptions 

of the causal models, hence this section aims to clarify and emphasise cer­

tain points and will be brief. For a more thorough discussion see the fierce 

arguments in Dawid (2000).

3.5.1 Assumptions made

There are broadly speaking two types of assumptions made in causal infer­

ence. Call them basic and technical The former refers to assumptions that 

determine the structure of the causal inference framework, the latter refers 

to assumptions made to facilitate evaluation of causal effects. Technical as­

sumptions can be further subdivided into those needed to estimate causal 

effects from experimental data, and those needed to identify causal effects 

from observational data.

In this section all three types of assumptions are covered. We will see that
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whereas the technical assumptions made in the three types of frameworks 

discussed so far are often similar, the basic assumptions diverge.

Basic assum ptions

The following two assumptions are made in all causal inference frameworks, 

although the former is made implicitly in the counterfactual and potential 

response frameworks and explicitly in the decision theoretic framework pro­

posed in this thesis.

A ssum ption  9 There can be no cause without manipulation

We have seen that Heckerman and Shachter (1995) consider the possibility 

of variables that cannot be intervened upon as being causes. However, it is 

necessary to define a potential intervention on them in order to make causal 

inference.

A ssum ption  10 Exchangeable treatment units

The units that causal inference will be applied to are exchangeable with the 

units used to gather the data. Although this is a standard assumption, it is 

not always clear whether it is appropriate.

A im  of inference and  re la ted  assum ptions

Before looking in more detail at the framework specific assumptions, a quick 

overview of the causal effects, that is the aim of inference of the different
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frameworks.

Aim of inference

Potential responses The individual causal effect for new unit unew, (IC E (unew)) of treatment 

T  = t relative to treatment T  = c.

I C E { l L n e w )  —  Y t i ' U ' n e w )  ^c(^new )  • (3.18)

Functional The causal effect of T  on Y  for the realisation t of T  given causal model

M

p{Y  =  y\Mt) =  p(Y  =  y\do(T =  t), M). (3.19)

Where M  represents the set of functions that model the variables in

cause-effect relationships including an error term.

Generally, the aim of inference is a comparison of a function, such as 

the expectation of the causal effect of treatment t and that of another 

treatment, say t*.

Another point is that although (3.18) is defined as the causal effect, 

it is often the ICE that is the aim of inference in the functional mod­

els framework, as this is just the solution to two different settings of 

M . Both Pearl and Robins employ counterfactual reasoning and make 

inference about the ICE.

HS (3.19) is taken as the causal effect by Heckerman and Shachter (1995).
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Decision Theoretic The average causal effect of treatment (ACE) T  — t relative to treat­

ment T =  c for new unit unew

AC E = E (Y\F t = t ) -  E (Y\F t  = c). (3.20)

Where the expectations are taken over the predictive distributions of 

unew given Ft  = t and Ft  =  c respectively.

Now a look at the specific assumptions made and how they reflect the aim of 

inference.

Framework specific basic assumptions

Potential responses The values of the potential responses exist for all possible treatments for 

each unit and is unaffected by actual treatment or how it is administered 

(see SUTVA assumption). The treatment administered reveals the value 

of the response to that treatment.

Functional The world around is best expressed in terms of deterministic functions 

relating effects to their causes and some random disturbance.

HS Each situation is completely determined by the possible states of nature, 

the possible actions and the possible consequences of the combinations 

of the states and the actions. In fact, consequences are deterministic 

functions of the states of nature, and the acts.

Decision Theoretic Causes are decisions.
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It is easy to see how the aim of inference drives the assumptions in the 

potential response framework. If I believe that the ICE is a meaningful quan­

tity and further that it is the way of expressing what a causal effect is, then I 

must make assumptions that turn it into a quantity I can estimate. Hence the 

existence of potential response assumption in the potential response frame­

work.

If on the other hand I believe that the world is a deterministic machine, 

then I will define causal effects in terms of functional models as Pearl, Robins 

and Heckerman and Shachter have done.

Finally, if I believe that the best way to tackle the estimation of causal 

effects is to treat it as a decision problem and make no additional assumptions 

about counterfactuals or determinism, then I make the last assumption above.

There are a few additional points worth discussing. Are these assumptions 

useful? Should the same method be used for predictive, counterfactual and 

retrospective causal inference alike?

Useful assumptions?

The assumptions made in the counterfactual and potential response frame­

works are not useful. In the case of the functional model frameworks the 

universe is squeezed into a set of deterministic functions, and in the case of 

the potential response framework, the existence of an infinite number of val­

ues that will never be realised is assumed. Neither of these assumptions are
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necessary to make inference about predictive problems.

There are three types of questions in colloquial language that involve the 

concept of cause. These are the predictive Will my headache go away if I  take 

an aspirin ?, the counterfactual Would my headache have gone if I  had taken 

aspirin? and finally the retrospective My headache is gone, is it because I 

took an aspirin?. These three are clearly different types of questions, and 

should, in my opinion be dealt with using different models.

Retrospective inference

In particular, retrospective questions should be dealt with differently as 

they have an additional data item in the form of the recorded response of the 

unit of interest. That is, where the predictive and counterfactual questions are 

answered using past data only, the retrospective question has the additional 

Yt{unew) =  y which has already been observed. This requires a different 

method, unless the treatment unit additivity (TUA) assumption (see item 

1 in list 3.5.1) is made. In this case, the new data point does not affect 

inference about the mean of the distribution of the ACE (given normality 

assumptions). Dawid (2000) suggests that the reason that this problem is 

not raised in the literature is because TUA is generally assumed.

Another problem with retrospective inference using or counterfactual or 

predictive methods is that whilst in the predictive or counterfactual case, we 

have a clear intervention and a clear effect, in the retrospective case we have 

a clear effect, but are forcing one past intervention amongst many others to
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be the cause.

The decision theoretic framework proposed in this thesis does not go into 

questions of retrospective causality as they require a new semantic, which 

might necessarily involve counterfactual variables. Further we pointedly ig­

nore counterfactual questions, considering them the wrong type of question 

for reasons given in section 2.2.4.

SUTVA and Consistency assumptions

The following assumptions are also made in the potential outcomes frame­

work. They are made to give added structure and avoid complications.

1. Stable unit-treatment value assumption(SUTVA) The values of poten­

tial outcomes for each unit are independent of the treatments assigned 

to other units, and there are no different versions of a treatment.

This assumption is made to avoid the complications that would ensue 

if the response to treatment for a unit depended on the treatments 

other units received, or if different treatments were administered. The 

SUTVA is violated for example when a member of a household is vac­

cinated as this has the effect of protecting both him and the other 

members of the household as there is one less person they can be in­

fected by. It would further be violated if in a clinical trial the group of 

people who received the drug as opposed to the placebo received two 

different versions of the drug.
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2. Consistency

The value of the potential response to treatment t for unit u is the same 

as the realised value if the treatment t is actually administered. T  =  

t =$> Yt — Y , where Y  denotes the realised outcome. This assumption is 

made to link the counterfactuals to the real world. If we did not believe 

it the whole potential outcomes/counterfactual framework would fall 

apart.

The SUTVA has a decision theoretic counterpart called compatibility (Dawid 

2000): For two different experimental layouts that both result in the unit u 

receiving treatment T  = t, the marginal modes for the response on the unit 

are identical However, it is not necessary, as the framework relates to the 

real world through the appropriate models. For example, if two treatments 

are given, then it is possible to code for it by introducing different values for 

the intervention nodes.

The problem w ith the ICE

Given a binary treatment and two potential responses for each unit, what 

can we infer from data about their joint distribution? The answer is not 

much. We can estimate the marginal distributions of the two responses, but 

nothing is ever revealed about their joint distribution or their correlation 

structure. As we are generally interested in making inference about a future 

unit, the quantity of interest is the individual causal effect (ICE) of unew. 

We can identify its mean, as this is simply the ACE, however, its variance
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will depend on assumptions made about the correlation structure of the two 

responses. To see this, consider the following simple example taken from 

Dawid (2000).

Say we have two treatments T  — 1 and T  =  0. We assume that the 

potential responses for these two treatments Y\{u) and Y0 (u) are jointly iid 

from a bivariate normal distributions with mean (01} 0O), same variance a 2 

and correlation p. Now, the variance of the ICE is a function of cr and p, and 

cannot be identified from data, unlike the means and the variance, if we do 

not make further assumptions about p. Thus, if two analysts impose different 

constraints on p, the variance of the ICE will be different.

The technical assumptions discussed in the next section are made to over­

come this problem.

Technical assumptions

Before discussing the technical assumptions made in the causal models, note 

that we adopt Pearl’s counterfactual notation as opposed to Rubin’s. Thus 

for a binary treatment T  where the possible treatments are t, c for treatment 

and control, the potential responses are Yt(u) and Yc(u) respectively for unit

u.

Estimation from experimental data

The assumptions covered below refer to situations where experimental data 

is available. That is, we have randomised treatments under controlled con­

ditions. There follow some simple but very strong assumptions that are not
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generally appropriate when dealing with units of people.

Simple Assumptions list 3.5.1.1

1. Temporal stability and causal transience 

(as named in Holland (1986))

The response to treatment remains the same regardless of when treat­

ment is administered. Also the treatment t does not change the unit u 

enough to affect the measurement of the response to treatment c later 

Thus we can identify the ICE by applying both treatments to a unit 

one after the other.

2. Unit homogeneity

All the units are identical, thus the responses are also the same for all 

units.

The above assumptions are generally not appropriate, and some weaker as­

sumptions must be made.

Weaker Assumptions list 3.5.1.2

1. Homogeneity of potential responses

The potential response pairs (Yt(u), Yc(u)) are iid given their joint dis­

tribution P. This is not the same as the unit homogeneity assumed 

above, as it is just the responses that must be homogeneous. This as­

sumption is valid if we believe that the units are homogeneous enough 

and the treatments act on these in a very similar way. For example, 

this may be a plausible assumption if we are administering a drug to a
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group of rats which are all related and identically bred and raised up to 

the point of the trial. If we have two groups of rats, one lab bred and 

the other sewer bred, we may not be happy to make this assumption.

2. Treatment unit additivity (TUA)

The ICE is the same for all units. Denote the ICE by r, then Yt(u) — 

Yc(u) = r  for all u. So we can infer the non-realised response simply by 

subtracting r  from the realised response. This assumptions is a weaker 

version of the unit homogeneity assumption and is implied by it. It 

corresponds to p =  1 in the above discussion of the ICE. This may be 

an appropriate assumption for the lab/sewer rat trial if we believe that 

the rats on average would react in the same way, except that the sewer 

rats are slightly less (or more) healthy than the lab rats, and thus the 

ICE would remain the same.

3. Monotonicity

The response to treatment is always larger (or smaller) than the re­

sponse to the control. This assumption makes sense for binary treat­

ments or multiple treatments that have a natural ordering such as es­

calating dosages. Formally: Yt(u) > Yc(u).

None of these assumptions need to be made in the decision theoretic frame­

work as the the target of inference is the ACE, which depends only on the 

marginal distributions of the observed responses.

Identification from observational data



The biggest problem in the area of identification of causal quantities from 

observational data is that the assumptions that allow this are not often made 

explicitly. There follow two which are.

1. Rubin - Invariance to treatment assignment

It says that the way the unit responds to treatment, i.e. the value 

it assumes does not depend on how the treatment was administered. 

This assumption basically says that we can make causal inference from 

observational data without further ado.

2. Robins - No unmeasured confounders The counterfactual Yt does not 

depend on the current treatment given past treatments and covariate 

information. It is equivalent to saying that a treatment is assigned at 

random given the past.

yi_LLT|past treatment and covariate history

This assumption is analogous to Rubin’s conditional ignorability as­

sumption, which holds if there is a set of variables Z  say, such that 

YtALT\Z.

The decision theoretic model again makes none of these assumptions. 

Without them it is still possible to make inference on matters of interest. 

For example Dawid (2002) covered the problem of partial compliance with­

out the use of counterfactuals. The problem of direct and indirect effects as 

well as the effect of treatment on the treated are tackled in non-counterfactual 

terms in this thesis in chapters 5 and 6 respectively.
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3.5.2 Translations

How the counterfactual frameworks translate into the decision theoretic frame­

work will be explored at length in the remainder of this thesis, here we focus 

briefly on how the potential outcomes framework translates into the func­

tional model framework.

The basic difference between the potential outcomes framework in section

3.2 and the functional model framework in 3.3 is that the former takes the 

potential outcomes Yt(u) as primitives and defines the rest accordingly (and 

thus must make assumptions such as the consistency assumption in list 3.5.1), 

whereas the latter takes the functional model and the do() as the primitives 

and defines the potential responses as solutions to the structural equations 

given an action given by a setting of the do() operator.

Thus if we take the potential response Y (t,u ) = Yt(u) this is equivalent 

to Yfyjt (u ), the unique solution to the set of equations given by the model M  

under the intervention do(T = t), denoted by M t .

Another interesting difference between the two is how the concept of ran­

domness is introduced. In the potential outcomes framework, the random 

element comes from the randomness of the units. So, the value of Yt(u), 

given by Yt is a random variable. In the functional model framework, the 

randomness comes from the set of unknown background or error variables U. 

These are essentially the same as the units in that these background vari­

ables represent all the unknown components any unit may have. In the case 

of units being people, U is everything up to the unique genetic make-up of
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each individual.

There is an interesting consequence of how the two frameworks are defined 

that shows that although most aspects can be translated from one to the 

other, one cannot.

In Rubin’s framework, the assumption of no confounders, translated into 

the decision theoretic notation, is given by

YXALFT and YqALFt . (3.21)

In Pearl and Robins’ frameworks it is given by

(yi,yo)JLFT. (3.22)

The former states that the potential responses are each marginally indepen­

dent of the intervention variable, and the latter states that the potential 

responses are jointly independent of the intervention variable. These are not 

the same from a probabilistic point of view although the latter implies the 

former. Further, if we believe (3.21) and also that (Yi,y0) JLFt, that is that 

the potential responses are each marginally independent of F t  but jointly 

dependent of F t, then this cannot be described graphically. Clearly this is a

strange circumstance to imagine2 , and it is usual to assume both (3.21) and

(3.22).

In section 3.4.5 we see how HS’ framework is an extension of the functional 

model. Although HS take the concepts of states of nature, actions and conse­

quences as primitives, the framework developed is essentially a deterministic
2 Although I have it from personal communication with A.P.Dawid, that this makes 

sense in dynamic situations.



functional model. In it, the source of uncertainty comes from the unknown 

states of nature, not from random error or unknown background variables as 

it does in Pearl’s version, or units as in Rubin’s version.

Which framework is a more appropriate description of causality is argued 

in sections 3.6.3 and 7.4.4 in Pearl (2000), Rubin (2004) and in Heckerman 

and Shachter (1995) and is beyond the scope of the current discussion.

3.5.3 Notation

It has struck me over the course of my research that notation is an essential 

element of our understanding of a problem. The same expression can be 

obscure in one notation and clear in another. Whether an expression is clear 

can depend on training; however, some notations are more prone to being 

misinterpreted than others.

Take the following two expressions, one is in counterfactual terms and the 

other is in decision theoretic terms: (%) p(Yt =  y) =  a and (%%) p(Y  = y\Fr =  

t) =  a\ The latter says that the probability of Y  = y given intervention has 

taken place at T, setting it to £, is a. The former says that given T  =  t, the 

probability of Y  =  y is a, that is p(Y  — y\T  = t, FT =  0) =  a. If we further 

assume that YALT\Ft, then (%) says the same as (ii) without difference in 

the expression itself.

Further, (i) can also refer to a hypothetical variable whose realisation 

we shall never be able to see, something that cannot be expressed in the 

decision theoretic framework. As the decision theoretic framework codes all
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interventions explicitly, it is harder to get confused by the notation and led 

astray.

3.6 Look ahead and Conclusion

We have covered the decision theoretic approach in Chapter 2 and looked at 

the competing causal models in this chapter. The remainder of the thesis 

looks at aspect of causal inference in the decision theoretic framework. In 

Chapter 4 we look at the assumptions underlying causal inference from ob­

servational data when using causal discovery algorithms. These assumptions 

turn out to be very strong and rarely justified. In Chapter 5 we tackle the 

problem of direct and indirect effects in non-counterfactual terms, and see 

that in the decision theoretic framework these effects are simpler to express 

and manipulate by introducing fictional variables. Finally, in Chapter 6 we 

look at how to estimate causal effects when randomised trials are not con­

ducted and the only data available to us is data on the treated. The quantity 

we try to estimate is the effect of treatment on the treated.

Finally a quote from Lauritzen (2004).

...I see the different formalisms as different languages...and I have 

no difficulty accepting that potential responses, structural equa­

tions, and graphical models coexist as languages expressing causal 

concepts each with their virtues and vices.

Lauritzen’s open minded view is in stark contrast with the attitudes in the
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causal inference literature. Although I believe that the decision theoretic 

approach is the most appropriate for predictive questions, it may be the 

case that questions of attribution need a new semantic that includes the 

use of counter fact uals. It will be up to the reader to conclude which of the 

frameworks he or she favours.
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Chapter 4 

Causal Discovery Algorithms

4.1 Introduction

A contended issue in causal inference is that of causal discovery. Large 

databases and increasingly efficient computers have prompted the develop­

ment of algorithms that aim to extract causal relationships from observational 

data. Such causal discovery algorithms have been put forward by Pearl and 

Verma (1991), Cooper (1997), Silverstein et al. (2000), Heckerman et al. 

(1999) and Spirtes et al. (2000) (see also the web based Tetrad Project at 

www.phil.cmu.edu/projects/tetrad) amongst others.

Very strong assumptions underpin the process of causal discovery from 

observational data. The aim of this chapter is to clarify these assumptions. 

In particular, the assumption referred to as the fundamental assumption is 

the focus of this discussion, as it allows the transition from association to 

causation, and is not often addressed explicitly in the causal discovery liter­

ature.
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A slightly different but equally sceptical view of the validity of causal dis­

covery algorithms is given in Freedman and Humphreys (1999). The paper 

also focuses on the problem of inferring causation from association. It argues 

that it is not reasonable to expect an automated process to be able to distin­

guish between a causal relationship and an association, as it is complicated 

process that takes a lot of thought on the part of human researchers. Further 

the software developed by Spirtes et al. (2000) is tested and revealed to be 

flawed. The discussion in this chapter makes a formal mathematical distinc­

tion between causation and association by introducing the intervention node, 

thus making the difference more immediately visible.

Section 4.2 motivates the discussion of causal discovery from observational 

data by giving a simple example of the process. Section 4.3 describes the 

basic structure of a constraint-based algorithm. Sections 4.4 and 4.5 state 

the fundamental assumption in terms of simple causal DAGs and then in 

terms of augmented DAGs. Section 4.6 details other assumptions underlying 

the causal discovery process. Section 4.7 gives an example of what inference 

could be drawn if the assumptions are deemed to hold. Concluding remarks 

are made in section 4.8.

4.2 Motivating Example

Consider the following example based on Silverstein et al. (2000). It is a 

simplified case of the market basket problem. A basket is a boolean vector 

assigned to each customer with an entry for every item in the market. The

134



entries can be either 0 or 1 depending on whether the customer bought the 

item or not respectively.

For example, a basket representing the contents of a particular customer’s 

shopping trolley in a supermarket is a vector that indicates the absence or 

presence of every item in the supermarket. If the supermarket sells only 

cereal, burgers, ketchup and milk, the contents of one particular shopping 

trolley are represented by the vector b =  (1c ,0£,0/(,1m ) j  meaning that the 

customer bought cereal and milk but not burgers or ketchup.

Consider a company that sells CDs online. It assigns a basket to each new 

customer. The sales director is interested in finding patterns in the shopping 

tendencies of customers. To do this, he runs market basket data through 

a causal discovery algorithm. As he interprets the results as causal, these 

tell him that buying CDs by established morbid metal band Blame the living 

causes customers to buy CDs by new morbid metal band Kings of the dead.

As a consequence, the sales director decides to double the price of Kings 

of the dead CDs and simultaneously discount the Blame the living CDs by 25 

%, thinking that company will make a profit. Unfortunately, the Blame the 

living CDs sell out and the Kings of the dead CDs stay on the shelves.

The picture so far is the following. Observational data on a set of variables 

was analysed and the trends found were interpreted as causal. These were 

then used to intervene on the observed variables to obtain a desired result 

which however, did not materialise. In other words, a system in its natural 

state was assumed to behave in the same way as it would under intervention.
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This does not necessarily have to be the case as seen in the above example.

4.3 Causal Discovery Algorithms

There are principally two approaches to causal discovery, one is that of 

constraint-based discovery algorithms and the other is that of Bayesian dis­

covery algorithms. This section describes the simplest type of constraint- 

based algorithm and goes briefly into how it differs from the Bayesian ap­

proach.

4.3.1 Simple constraint-based algorithm

Consider a set of observed variables V  for which there is a large amount of 

observational data. The causal discovery algorithms aim to find the causal 

relationships among the observed variables V.

The steps of the simple constraint-based algorithm are the following; first 

the data is tested to find a set of conditional independence relationships 

using standard statistical tests such as the x 2 test. Next, these conditional 

independence constraints are used to generate a set of Markov Equivalent 

DAGs, that is, DAGs that are indistinguishable with respect to the set of 

conditional independence relationships (see definition 2.4.4). If there is prior 

knowledge about some relationships, such as precedence, these can be used 

to rule out some of the Markov Equivalent DAGs.

If the set of Markov Equivalent DAGs (minus those ruled out by external 

constraints) have directed edges in common, these are interpreted as causal.
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It is worth emphasizing again, that although the common directed edges are 

used for causal inference, the procedure that generated the graphs used only 

observational data.

The more complex algorithms take into account the possibility of unob­

served common causes leading to what may appear to be causal links between 

two or more variables. These are not discussed in this paper for the sake of 

simplicity and as they do not change the main argument.

For a full description of different types of discovery algorithms see Silver- 

stein et al. (2000), Pearl and Verma (1991), Spirtes et al. (2000) Chapter 5, 

Cooper (1997) , Pearl (2000) Chapter 2 for constraint-based algorithms and 

Heckerman et al. (1999) for Bayesian algorithms amongst others.

Constraint-based vs Bayesian

The most important difference between the constraint-based approach and the 

Bayesian approach for the purposes of the current discussion is that whereas 

the constraint-based method assumes the conditional independences found 

from the data using the x 2 tests are “true” and uses these directly to deter­

mine the set of Markov Equivalent DAGs, the Bayesian approach attaches 

uncertainty to them. See appendix B for a more detailed explanation of both 

constraint based and Bayesian causal discovery algorithms.
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4.4 Fundamental Assumption

The fundamental assumption needs to be made before the algorithms are 

initiated or even programmed. Making this assumption allows the transition 

from statistical inference using observational data to inference about inter­

ventions.

It can be expressed as follows:

We assume that there exists a unique causal DAG that describes all possible 

regimes involving the observed variables (this may include their connection to 

possible unobserved common causes as detailed in section 4-6 ). This means 

that any experiment we chose to consider, involving the observed variables, 

where some or all of these are intervened upon, is described by the same 

causal DAG. Further, the observational case is also described by the same 

causal DAG.

We are therefore assuming two things. The first is that there is an under­

lying causal structure between the observed variables. That is, the relation­

ships between the variables are a) not the product of an exceptional and rare 

combination of information, and b) not the result of a dependence that is not 

causal in nature. The second is that the causal and the natural structures can 

be summed up in a single DAG. Both are very strong assumptions. They can 

be tested only if every possible experiment on the set of observed variables 

is carried out. This may be either impossible or unethical even when dealing 

with a small set of variables.
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Given that we accept the fundamental assumption, and the causal dis­

covery algorithm works, it follows that exactly one of the Markov equivalent 

DAGs found by the algorithm does not just graphically code the conditional 

independence relationships between the observed variables, but is the unique 

causal DAG and can therefore be given a causal interpretation.

4.4.1 Examples

The following examples are based on constraint-based algorithms as these 

are simpler to understand and do not differ from Bayesian algorithms with 

respect to the fundamental assumption.

Say we have some observational data over a finite set of variables V. 

Let the set of conditional independence relationships between the elements 

of V  (or alternatively the joint distribution of the elements of V) in the 

observational situation, be known. The following simple example explains 

how the casual discovery works and what it assumes. Note that we do not 

take into consideration the possibility that the results of the x 2 tests are 

wrong and that we have extracted a false conditional independence from the 

data.

E xam ple 4.4.1 L e tV  = {X  , Y , Z} be a set of observed variables. Obser­

vational data involving these three variables is analysed using x 2 tests and the 

following conditional independence relationship is found,

X J L Z I Y .
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This is consistent with the three DAGs in Figure 4-1-

a) —. b) c)

© ©

©

©

Figure 4.1: These three DAGs are Markov equivalent, each encoding the 
conditional independence X  J l  Z  \ Y

The causal interpretation of DAG a) states, for example, that intervening to 

change the value of Z  would not affect the probability distributions of X  or 

y , nor the conditional distribution of Y  given X\  further, the distribution of 

Z , given the value of y , would be unaffected by an intervention to change 

the value of X.

In general, let V y  be the set of Markov equivalent DAGs over the vertex 

set V found using the discovery algorithms on the observational data. By 

the fundamental assumption, we assume that there exists a unique causal 

DAG, D y , on the same vertex set V, that underlies all experimental and 

observational situations. It follows again from the fundamental assumption, 

that there exists a graph G E V y  such that G is identical to Dy.  That is, 

one of the DAGs in V y  represents the causal structure between the observed
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variables.

In example 4.4.1, the assumption allows us to state that one of the three 

DAGs in Figure 4.1 represents the underlying causal structure of the three 

variables. As it stands, this only tells us that there is no causal relation 

between X  and Z  that is not mediated by Y. In particular it is not possible 

to estimate any causal effects without making further assumptions or using 

prior knowledge, such as temporal ordering, to impose additional constraints.

To clarify the above, consider the example given in section 4.2 in more 

detail.

E xam ple 4.4.2 The CD company collects data on sales and prices on a 

weekly basis over the course of a year. The prices are standardised according 

to economic factors such as inflation, so although the price in US dollars of 

a CD remains $14-99, the standardised price varies naturally over the course 

of the year1.

The customer baskets and the sales data are run through a causal discovery 

algorithm and result in the DAG in Figure 4-2. Ck is the cost of the CD by

Figure 4.2: Discovered DAG relating cost and two music CDs.

new morbid metal band Kings of the Dead. Pk is the number of customers
1The standardisation is necessary in order to introduce variation into the price of the 

CDs
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visiting the website who buy the CD. Cb is the cost of the CD by established 

morbid metal band Blame the living, and Pb is the number of customers 

visiting the website that buy the CD.

For the sake of simplicity we do not take into account economic forces such 

as demand affecting supply and cost etc. This means that we can exclude the 

only other DAG that is Markov Equivalent to the DAG in Figure 4-2, which 

has an arrow pointing from Pb to Cb ■

The sales director of the company interprets this DAG as causal and in­

tervenes on the price of the CDs. This results in a loss as explained in section 

4 .2 . This is because the DAG does not encode causal relationships but asso­

ciations, which are not necessarily invariant under intervention.

An explanation for why this graph was generated (instead of another) 

might be that there were unobserved common causes. For example, both the 

cost of the CDs and the number of people buying it may have been influenced 

by temporary fashion trend. Alternatively, the graph was generated because 

there was a non-causal dependence between the variables or simply by chance.

4.5 Fundamental Assumption in terms of the 
Augmented DAG notation

The assumption can be expressed in the following way by using the aug­

mented DAG notation.

There exists a unique augmented DAG A y that describes all possible situa­

tions arising from experiment as well as the observational case on the set of

142



observed variables. Hence one of the Markov equivalent DAGs discovered by 

the algorithm is the core DAG of Ay and therefore codes causal relationships.

The augmented DAG notation clarifies the assumption, as it explicitly 

codes interventions as nodes in the graph. The DAGs the algorithms discover 

represent the core of augmented DAGs with the intervention nodes taking 

on 0 values. Under the fundamental assumption, exactly one of them also 

represents situations in which intervention takes place.

4.5.1 Examples

Consider as before the finite vertex set V. Further, let A y  be the unique 

augmented DAG that underlies all possible experiments as well as the obser­

vational case and let Fy = {Fx : X  6 V} be the set of intervention nodes 

in Ay.  Also let Dy  be the core DAG of Ay.  The assumption is now that 

there exists a DAG G € D y , the set of Markov equivalent DAGs of Dy  such 

that G is identical to Dy.

E xam ple 4.5.1 Let the set up be the same as in Example 4 - 4 - L  that is, let 

V  =  { X , Y , Z ) be a set of observed variables. As in the previous case, 

analysis of observational data has resulted in the following conditional inde­

pendence

X  A L Z \Y .

The augmented DAGs corresponding to the above circumstance are given in 

Figure 4-3.
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Figure 4.3: These graphs represent the interventions at each node

It is important to point out that although the augmented DAGs in figure

4.3 have intervention nodes at every observational node, this need not be 

possible in practice. Some nodes such as those representing sex or age cannot 

generally be intervened upon in real situations.

As the conditional independence DAGs found by causal discovery algo­

rithms are interpreted as causal, they can be extended to augmented DAGs 

by adding intervention nodes. These augmented DAGs can then be used to 

describe the causal relationships between observed variables.

Compare for example DAGs a) in figures 4.1 and 4.3. If we accept that 

figure 4.1, aj contains causal information, and that therefore figure 4.3 a) 

represents the causal relationships explicitly via the intervention nodes we 

can read the following off figure 4.3 a) using the moralisation criterion (2.4.3):

(i) a change in the value of Y  will not affect the distribution of X.
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(ii) Z  is not independent of intervention on Y  (given that the graph is 

faithful, see assumption 4.6.3) as it is a descendant of F y . Finally,

(Hi) given the value of Y , Z  is independent of whether Y  arose naturally or 

by intervention. That is, ZALFy\Y.

Although item (i) can be read off DAG a) in figure 4.1, items (ii) and (Hi) 

can only be read off DAG a) in figure 4.3 as they refer to the relationships 

interventions have with the variables in the problem. Thus they are valid 

only if the fundamental assumption is made.

E xam ple 4.5.2 Recall example 4-4-% the previous section. The DAG in 

Figure 4-2 is the core of the augmented DAG in Figure 4-4 omitting interven­

tion nodes on the number of customers buying the CDs as we assume that it is 

not possible to force a customer to buy a product. The DA G can now be inter-

Figure 4.4: Figure 4.2 as an augmented DAG.

preted as follows. Intervening to change the cost of the CDs (within certain 

limits), will not change the relationships between the 4 observed variables,
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as the DAG represents causal relationships which are invariant to external 

manipulation.

This clarifies the concept of intervention as an additional aspect of the 

problem that is not inherently obvious in the causal DAG in the previous 

version of the example.

A further point is that the augmented DAG 4.4 is no longer Markov 

equivalent to any other DAG as we exclude the possibility of reversing the 

arrows from the intervention nodes to the chance nodes.

4.6 Further Assumptions and Conditions

The following section lists some of the principal assumptions made either 

explicitly or implicitly in the literature, in particular for constraint-based al­

gorithms. Not every assumption is clearly specified in all papers, although 

most are mentioned. These assumptions are important in their own right. 

However, they do not have the same importance as the fundamental assump­

tion as they are either conventions, or of a more technical nature.

4.6.1 Markov Condition

A node must be independent of its non-descendants given its parents.

This condition is a semantic requirement of graphical modelling, without it, 

using graphs to represent causal structure makes no sense.
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4.6.2 How can 2 associated variables be causally related

This assumption states that there are only three ways in which observed

variables that are found to be associated in the data can be related: either

one is the cause of the other, or both have at least one common cause in the

form of a third unobserved variable (Pearl 2000 Chapter 2). The relationship

is shown in Figure 4.5. The arrows in the DAGs in Figure 4.5 represent causal

relationships. This assumption is made to limit the number of ways in which

i) ii)
® -® ®- ®

«»
\ U  i >■ ^
/  \

/  \/ \
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Figure 4.5: The three ways two observed variables can be causally related if 
they are statistically dependent.

the observational data can be related to the underlying causal structure. It 

is an important assumption and is very closely related to the fundamental 

assumption. However, it is not assumed in simple constraint based algorithms 

or Bayesian algorithms that do not consider the possibility of latent variables. 

This makes such simple algorithms even more restricted, as this means that 

whenever two variables are related it is assumed that one causes the other.

It is a necessary assumption when the algorithms include latent variables 

as these must be related to the observed variables in some way. However, it
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need not be true. If we take the stance that causation can only be inferred 

from intervention, there is no reason to believe that variables found to be as­

sociated in observational data are causally related, either directly or through 

a common parent. The association may be spurious or have a non-causal 

source.

It is possible to test this assumption if we run experiments to determine 

whether the postulated causal relationships exist. However in the current 

context where we are using observational data, precisely because there is no 

available experimental data, the assumption cannot be tested.

4.6.3 Faithfulness

An independence relationship is implied by the Markov Condition applied to 

a DAG if and only if it also holds in the associated probability distribution. 

This condition is imposed to exclude the possibility of negative and positive 

correlations cancelling. (Spirtes et al. 2000).

4.6.4 N o selection bias

The data is a sample drawn at random from the population.

4.6.5 A sym ptotic properties of statistical tests

The statistical tests performed to find the conditional independence relation­

ships must be valid, that is, the limiting behaviour of the tests, as the sample 

size tends to infinity is to find the “true” conditional independence relation­

ships.
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Assumptions 4.6.3 and 4.6.4 are made to exclude exceptional data sets, al­

though it is worth noting that while assumptions 4.6.4 is in principle testable, 

assumption 4.6.5 is not. Also assumptions 4.6.4 and 4.6.5 have no specific 

relation to the study of causality.

4.6.6 D atabase  com pleteness and discreteness of V ariables

Some of the simpler algorithms, such as Cooper (1997), require the databases 

to have no missing values and for the variables to be discrete.

4.6.7 E xistence of R oot variable

Some algorithms Cooper (1997), require that there exist a known variable IV, 

chosen according to background knowledge in the set of observed variables 

V, that has no causal parents in V. This variable must exist and must be 

specified before the algorithm is run. Typical examples of such a root variable 

are age or race as these are generally variables that cannot be intervened upon.

Conditions 4.6.6 and 4.6.7 are not necessary and are made to facilitate 

the algorithms. They can be excluded in more complex algorithms.

Finally, a technical point. From the point of view of the algorithm all 

nodes can at least potentially be intervened upon as the algorithm makes 

no distinction between pure chance nodes and nodes that could be decision 

nodes. However, there are nodes that can in practice not be intervened upon 

in the context of the experiment. For example, in Examples 4.4.2 and 4.5.2, 

the variables Pb and Pk could not be intervened upon as it is impossible
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(bar advertisement which I did not take into account for this simple example, 

or bodily damage) to force a customer to buy CDs. It should be up to the 

analyst to determine when it is sensible to consider a node as a potential 

decision node. This will also depend on how they chose to interpret causality. 

Some will consider gender a node that can be intervened upon at least in a 

hypothetical sense (Heckerman and Shachter 1995), others, in particular the 

author, will exclude such a possibility entirely.

4.7 What can be inferred from the discovered 
DAGs?

Given that we axe prepared to accept the fundamental assumption and con­

sider the discovered DAGs as representing causal relationships, what type of 

inference can we make?

In general, if we have a set of Markov equivalent DAGs V y  over a set of 

variables V, these can sometimes also be represented by a partially directed 

graph D* in the following way: if X  , Y  € W  then there is an arrow from X  

to Y  in D* if and only if there is an arrow from X  to Y  in every DAG in V y . 

The links between nodes which have different directions in different elements 

of V y  are left as undirected edges in D*. The arrows indicate direct (with 

respect to V) causal relationships between the variables they connect.

E xam ple 4.7.1 In example 4-4-f  assume that Y  precedes Z  in time. Then 

figure 4-1 b) can be excluded as a possible causal interpretation of the data. 

In augmented DAG terms, we are left with the two graphs on the left of figure
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4.6. These can be reinterpreted as the partially directed graph on the right side 

of figure 4-6, where the dashed line means that the direction of that arrow is 

not known.

<x) 0 - H x )

- ©

Figure 4.6: In this case, we can say that changing Z  will not affect X  or Y , 
that whether Y  is set or arises naturally will not affect the distribution of Z  
given Y , but nothing can be said about the relationship between X  and Y

Looking at the augmented DAGs in Figure 4.6, there are two types of 

inference we can make. The first type is structural. For example, we can see 

that changing the value of Z  will not affect the distributions of Y  or X ,  as 

X_LLZ|y and further Y  is a parent of Z.  We can also read off that how the 

value of Y  arises (via intervention F y  = y or naturally F y  =  0) does not 

affect the conditional distribution of Z  given Y ,  as Z J L F y \ Y .  Note that we 

can read such relationships from the graph because we attach intervention 

nodes in a very specific way, that is, each chance node is assigned its own 

intervention node, which is not linked to any other chance node.
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The second type of inference is the estimation of the causal effect of an 

intervention. The causal effect of setting Y  =  y (F y  = y) on Z  can be easily 

estimated from the data in the following way: First consider what is meant 

by the causal effect of Y  on Z:

p(Z\FY = y) =  X > ( £ | F y  =  1h Y )p (Y  \Fy = y)
Y

= p(Z  | Fy  = y, Y  = y) (4.1)

that is, the distribution of Z  given Y  is set by intervention to some value y.

Note that p(Y  | F y  = y) =  1 when Y  =  y and 0 otherwise by the definition

of F y . Now, from Figure 4.6 we can see that

ZALFy \Y\

hence Equation 4.1 can be written as

p (Z \F y =  y ,Y  =  y) =  p (Z \Y  = y). (4.2)

This conditional distribution is estimated from the observational data given 

that Y  — y has been observed.

4.8 Conclusions

If the fundamental assumption and additional assumptions are considered to 

hold, the discovery algorithms can be used to determine causal relationships 

from large databases in medicine, economics and the social sciences where
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these are not evident. They have already been applied to medical and social 

science data (Spirtes et al. 2000 and Cooper 1997) with varying degrees of 

success.

However, the fundamental assumption itself, cannot be verified unless 

experiments are run, and therefore, inference based on causal discovery algo­

rithms must be used very carefully.

The discovery algorithms could be used as exploratory studies in cases in 

which manipulation of a particular variable is difficult or costly. Although a 

relationship between two variables in a discovered DAG would not guarantee 

a relationship under experimental conditions, it might indicate the possibility 

of such a relationship.

It would be of interest to explore whether these causal discovery algo­

rithms would find causal relationships in complex experimental situations. 

For example in the case of black box interventions, where a system with 

many variables in equilibrium is disrupted by an intervention, such an algo­

rithm could perhaps be useful. An example would be policy interventions 

such as introducing the congestion charge in central London.

Another avenue of research that has recently emerged is that of multiple- 

bias models (Greenland 2005), which models the discrepancy between ex­

periments and observational studies as bias parameters using fully Bayesian 

methods or empirical approximations to it.
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Chapter 5 

Direct and Indirect Effects

5.1 Introduction

Direct and indirect effects are a common concept in the social sciences, where 

SEMs are used to illustrate and evaluate causal relationships. The problem 

has also been tackled in the causal inference literature, starting with Robins 

and Greenland (1992), and more recently, Pearl (2001b), Robins (2003) and 

Rubin (2004). Although the problem is tackled using counterfactual or poten­

tial response methods by all of the above, their approaches vary, as different 

initial assumptions are made.

It is the aim of this chapter to look at the problem in non-counterfactual 

terms. This approach requires fewer assumptions than the counterfactual 

counterparts in order to identify similar quantities and is more versatile. We 

take the paper by Pearl Direct and Indirect Effects (2001) as a starting point.

Note that there are many different concepts referred to as direct and 

indirect effects. This chapter explores a specific subset of problems that fall
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under this heading which can be described informally as follows. A treatment 

is administered and a response is recorded. However, there exists a variable 

that is thought to mediate the effect of the treatment on the response, in some 

way channelling a part of the treatment effect on the response. Sometimes we 

are interested in the effect of the treatment that is not mediated, the direct 

effect, and at other times we are interested in the mediated indirect effect.

Section 5.2 illustrates the problem and why it is of interest using ex­

amples from different sources. Section 5.3 looks in detail at the paper by 

Pearl (2001b), how direct and indirect effects are defined and what criteria 

are necessary for identification of these quantities under experimental condi­

tions. Section 5.4 describes in detail the decision theoretic framework for the 

expression of direct and indirect effects. Manipulation variables that code 

randomised interventions, are introduced. Section 5.5 tackles the problems of 

identifying said effects. Section 5.6 extends the framework by adding a new 

variable that changes the definition of the manipulation variable. Finally, 

section 5.7 suggests some further extensions.

5.2 Examples of Direct and Indirect Effects

There follow examples of direct and indirect effect problems drawn from di­

verse sources. Some are taken from Pearl (2001b), others are taken from 

marketing and medical literature. The final example considers the problem 

of surrogate markers, a subject dealt with in non-graphical terms in Rubin 

(2004).
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The examples that follow will allow the reader to form an idea of what 

we mean by direct and indirect effects before we proceed to formalise the 

framework. Each example will be accompanied by a DAG to provide a visual 

point of reference.

E xam ple 5.2.1 Treatment with headache side-effect

A drug treatment has headaches as a side effect. Patients who suffer from 

these headaches tend to take aspirin to alleviate it, and it is thought that 

the aspirin may have an effect on the response to the drug treatment. The 

drug company is interested in both the direct effect of the treatment on 

the disease as well as the indirect effect the aspirin may be having on the 

treatment response. Both effects are considered stable physiological effects. 

A graphical representation is given in figure 5.1.

Figure 5.1: Graph representing relationships between treatment T, response 
R  and aspirin A. T  is in a box as it is a decision variable.

E xam ple 5.2.2 Birth-control Pill

A birth-control pill is suspected of causing thrombosis. However, as pregnancy 

also gives rise to thrombosis, and the birth-control pill reduces the likelihood
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of pregnancy, it has an additional negative indirect effect on the occurrence 

of thrombosis.

The pharmaceutical company that produces the birth-control pill is in­

terested in the direct physiological effect of the pill on the occurrence of 

thrombosis. This is considered a stable relationship which can be measured. 

The indirect effect on the other hand, involves pregnancy and will therefore 

depend on socio-economic factors such as religion and marital status amongst 

others, which cannot be controlled for.

The DAG in figure 5.2 is a graphical description of the problem.

BC Pill

’re)

Figure 5.2: The relationship between treatment BC Pill, response Th and 
intermediate confounder Pre, which may itself be influenced by unobserved 
factors U.

The next example comes from MacDonald and Smith (2004) in the man­

agement literature.

E xam ple 5.2.3 Technology Mediated Communication 

A suppliers’ association commission is interested in whether the introduction 

of technology mediated communication (TMC) such as video conferencing 

and interactive websites is benefitting their buyers’ future intentions (FI).
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They believe that introducing TMC has a positive direct effect on FI, as well 

as an additional indirect effect via trust (T), commitment (C) or both.

TMC

Figure 5.3: The relationships between TM C, T and C, and F I. The edge 
between T  and C is dashed and undirected because the nature of the rela­
tionship between these two variables is not known.

This example is slightly different as it has two mediating variables. These 

can be taken as one and the framework applied.

The following example comes from Solanki et al. (2000) in the health 

services literature.

E xam ple 5.2.4 Effect of cost-sharing on utilisation of preventive 

medical services

Many Health insurance companies implement cost-sharing schemes. These 

are provisions of health insurance companies that require the insured to cover 

some of the costs incurred by the medical service. It is feared that these 

schemes have a negative effect on the reception of preventive services. The use 

of preventive medical services occurs in two ways. Either the patient actively 

seeks out the preventive service (such as a Pap smear or a mammogram) or 

they are referred to a preventive service as a consequence of a visit to the
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GP for a general check-up. Hence cost-sharing has a direct effect on receiving 

preventive services by discouraging patients to actively seek out the service 

and an indirect effect by discouraging patients to go for check-ups, as neither 

service is free. See figure 5.4

cs

.GR

Figure 5.4: Cost sharing schemes have a direct effect on the number of people 
receiving preventive services (PS) and and indirect effect by reducing the 
number of visits to the GP (GP).

It is important to be able to identify the two effects and determine their 

magnitude so as to be able to implement policy changes. For example, by 

encouraging patients through incentives to visit their GP it would be possible 

to eliminate or at least control part of the indirect effect.

The final example expresses the concept of surrogate markers in terms of 

direct and indirect effects. The basic setup is as follows. If T  is a treatment 

variable, and R  a response that is either difficult to observe or needs to be 

avoided, then a surrogate marker S' is a variable that can predict R  well for 

any interesting value of T  and that “shields” R  from T  as much as possible.

Initially, S, a statistical surrogate was defined such that /LLLT’|S' (Prentice 

1989). However, this conditional independence does not generally hold in the 

presence of confounders, (Lauritzen 2003). This has prompted alternative
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definitions of surrogates. Consider the following example:

E xam ple 5.2.5 Viral Load as surrogate for disease status 

The viral load of an HIV sufferer can tell a doctor at what stage the disease is, 

and hence is a surrogate marker for the disease status. Together with other 

variables that describe the disease status, the viral load can help a doctor 

decide whether to initiate the next phase in treatment. DAG 5.5 represents 

the relationships between the initial treatment, the viral load as a surrogate 

marker, and the disease status D as a vector of disease status. The viral 

load variable V  is then the basis for the decision to initiate the next phase of 

treatment.

Figure 5.5: T\ is the initial treatment, the viral load V  is a surrogate for the 
status of the disease D and basis for the next stage of treatment T2

If it is possible to estimate the magnitude of the relationships between T \ , 

V  and D, from past patients, then it is possible for a doctor to have an idea 

of the disease status for a new patient based only on T\ and V . Thus he or 

she will decide what treatment T2 to assign next depending on what V  is for 

the new patient.
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5.3 Pearl’s Controlled and Natural direct Ef­
fects

In his paper on direct and indirect effects, Pearl (2001b) tackles the problem of 

identifying the direct effect of a treatment using the counterfactual framework 

described in section 3.3.

Pearl describes two situations. First, he assumes that it is possible to 

intervene on C, the mediating variable, and he describes the conditions for 

experimental identification. This will be the focus of this chapter. In the sec­

ond, he relaxes this assumption and describes conditions for non experimental 

identification.

In Pearl’s framework, experimental identification refers to the circum­

stance where both the treatment and mediating variable are intervened upon. 

Non-experimental identification refers to the circumstance where neither the 

treatment nor the mediating variable are intervened upon.

Given that it is possible to intervene on the value of C, there are two 

ways in which, under certain circumstances, the direct effect of T  on R  can 

be identified.

The first is to block C at some value c and then change the treatment and 

record the response. Pearl calls this the controlled direct effect. The second 

way is as follows; Say the treatment is binary, with T  = 0 or 1. Let T  be set 

at 1; then the direct effect is calculated by keeping C at the value it would 

have had if T  had been 0 and recording the value of R. This is called the
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natural direct effect

In order to clarify the concepts and definitions, we follow example 5.2.1.

E xam ple 5.3.1 Treatment with side effect continued 

Let the administration of the new drug treatment be a binary variable T. T  

takes on value t when the treatment is administered, and t* when no treatment 

is administered. Let R  be the response, also, let C be the mediating variable 

taking aspirin. For the sake of simplicity, C  is binary, with values c if an 

aspirin is taken and c* if it is not.

In Pearl’s notation, R tc is the response given T  =  t and C  =  c. This 

variable would be counterfactual if the administered treatment was t*. Finally 

Ct is the value of the mediating variable if T  = t\ as with the response this 

will also be a counterfactual variable if T  is t*. When referring to a specific 

unit it, (u) is added to the above variables. Thus the response for unit u is 

R(u).

5 .3 .1  C on tro lled  D irect E ffect

In accordance with the counter factual framework, the direct effects are de­

fined at the unit level first and then at the population level.

The unit-level controlled d irect effect when C is blocked at c is defined 

for unit u as

CD Ec(t, t*\ R, u) =  Rtc(u) -  R f C(u). (5.1)

In terms of the above example this is the difference between the unit’s re­
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sponse to treatment T  = t and no treatment T  = t* when in both cases an 

aspirin was not taken, that is C = c. One of the two variables is counterfac­

tual.

The average controlled d irec t effect when C is blocked at c is the

expectation over all u of (5.1);

CDEc{t, f*; R) =  E (R tc -  Rt*c). (5.2)

Although (5.2) is in terms of counterfactual variables, it can be rewritten in 

non counterfactual terms in the augmented semantics covered in Chapter 2, 

with the additional conditional independence (implicit in the counterfactual 

framework) R1LFc \Ft , T, C. Thus:

E{R\Ft  = t, Fc  =  c) -  E(R\Ft = t \ F c = c) (5.3)

Both the effect of setting T  = t and of setting T  — t* while holding the value 

of C  fixed at c on R  can in principle be calculated from experimental data 

where both T  and C  are intervened upon.

5 .3 .2  N a tu ra l D irect E ffect

The unit-level n a tu ra l d irect effect is defined in terms of nested counter- 

factuals. The expression for a unit-level natural direct effect is:

N D E t* (t , t* ;R ,u) =  Rt,Ct* (u) ~ R f  {u). (5.4)

In words this is the difference between the effect of setting T  = t keeping

C  fixed at the value it would have had if, counter to fact, T  had been set to

t*\ and the effect on R  of setting T  to t*.
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Consider the patient John, who is receiving some treatment T. The nat­

ural direct effect for him is the difference between a) and b) below

a) John’s disease status given that John was administered whichever drug 

treatment (T  =  t ) and given that he was also administered the aspirin 

dose (c or c*) he would have taken if he had not been given the drug 

treatment.

b) John’s disease status if he had not been administered the drug treatment 

(T =  T).

This means that it would be necessary to somehow find the John’s natu­

ral aspirin intake outside the context of the disease and treatment scenario. 

Pearl assumes that this is a variable with a probability distribution. Further, 

for this to work, Pearl must assume that the disease itself is not related to 

headache occurrence. If it is, then it will confound the effect of the treatment 

and that of the aspirin.

As in the case of the controlled direct effect, the average natural direct 

effect is defined as follows:

E(Rt,ct.) — E(Rt*). (5-5)

If we look at this quantity, we see that the first part of (5.5) can be identified if 

we administer t to a group of patients and then administer the dose of aspirin 

they would each naturally have taken if they had not been administered the 

drug. In order to do this, we would also have to know what their natural

164



aspirin intake was, and also assume that the patient takes the same dose for 

every headache episode they experience. This is required because if we have 

a selection of different aspirin doses then we have more than one setting iof 

C, and different doses could result in different indirect effects. These details 

could have been asked in a survey.

The second part is always identifiable in principle as it is just the response 

to the baseline treatment.

Finally, Pearl defines the Total effect of T  on R  as the difference in 

expectations of R  given T  =  t and T  =  t*.

E{Rt) - E ( R t*). (5.6)

Both parts of this equation are identifiable from experiment.

5 .3 .3  E x p er im en ta l Id en tification

Given the quantities of interest as defined in the previous section, Pearl pro­

ceeds to determine formally, under what circumstances it is possible to iden­

tify them.

T heorem  5.3.1 (E xperim ental Identification) Suppose there exists a set 

W  of covariates such that WALT and such that

Rtc J1 C f\W  for all c, t and t*. (5.7)

This is represented in DAG 5.6. That is, the response R when T  is set to t

(i.e. Ft = t) and C is set to c is independent of C when C arises naturally
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from its relationship with T  when T  is set to t*, given the covariates W . 

When this is the case, then the average natural direct effect is experimentally 

identifiable, and is given by

N D E t*(t,t*\ R ,u) =  E (R t,Ct.) -  E (R t.)

= £  ( [ £ ( ^ »  -  E (R t.c\w)]
w,c

x P{Ct* — c\w)P(w)y  (5.8)

Before looking in more detail at the assumptions other than conditional in­

dependence (5.7) that Pearl makes in order to estimate (5.8), let us take a 

quick look at (5.8): By conditional independence (5.7), the expectations after 

the summation can be expressed entirely in terms of R, FT and W  (formally 

shown in (5.11) later) and hence, given that these are all observed, can be 

identified from experimental data.

5 .3 .4  A ssu m p tio n s u n d erly in g  T h eo rem  5.3 .1

We now look in some detail at the assumptions Pearl makes in order to ensure 

experimental identification. We reiterate that by experimental, Pearl means 

that intervention is possible both at T  and at C.

There follows a discussion of (%) the relationship between Rtc{u) and Ct* (u ) 

the variables on the left hand side of the conditional independence symbol in

(5.7), (ii) the role of W  and how it can be interpreted in a real sense and 

finally, (Hi) (5.8) is looked at in some detail.
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R t c ( u )  and  Ct*{u)

Pearl assumes that the values of Rtc(u) and Ct*(u) exist and are well-defined. 

This is in accordance to the counterfactual framework described in 3.3. In 

terms of John the patient, this means that at some level, both the variable 

that is his response to treatment T  = t and the variable that is his headache 

status when he does not receive treatment T  — t* are independent conditional 

on the value of W . This is a concept that is hard to define as these quantities 

cannot be observed simultaneously at the individual level.

Further, there is no way of testing this independence on the individual 

level. On the population level, it would be possible to test such an indepen­

dence, however, it is difficult to understand what the conditional indepen­

dence means on a population level.

For the remainder of this section, when using Rtc and Ct* we mean Rtc(u) 

and C f(u).

W h at is W?

The existence of a set of covariates W, that are non-descendants of T  or C 

and such that (5.7) holds is required for experimental identification in Pearl’s 

set-up.

The DAG in figure 5.6 describes the relationship between T, i?, C and W  

if W  is a non-descendant of T  or C or both, and further, if T  is a decision 

node (i.e. it is always intervened upon).

What is the role of W? Is it possible for W  = {0}? If so, what does this
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Figure 5.6: W  is a non-descendant of T  or C.

imply? What does it mean in terms of John and his treatment?

If W  is empty, then RtcALCt* marginally, that is, the response of R  to 

treatment T  =  t does not depend on the the value of C when T  =  t*. 

Consider what this means in terms of John’s treatments; Let us assume that 

John has a natural aspirin intake distribution. If we assume that R tc^-C t* 

marginally we are saying that

1. John’s disease status when John is administered the drug treatment 

and takes aspirin as a consequence of the headache side-effect, and

2. John’s natural aspirin intake

are independent. Making W  empty might be reasonable in some cases, but 

does not seem to be so in this case as it is possible that these two variables 

are both related to a further variable that represents John’s health status. 

It is therefore necessary to find a set of covariates that will make the two 

independent when conditioned upon. A set of general health status or life­

style variables that relate to headache occurrence could be W.
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However, it is not immediately clear how to choose W. Pearl chooses 

it according to whether it fulfils conditional independence (5.7) or not. This 

conditional independence does not have any meaning in the decision theoretic 

setting and it is thus unclear how it could be tested empirically. Further the 

choice of W  might affect the value of (5.8), meaning that the natural direct 

effect is potentially not well-defined.

It is my opinion that Pearl must introduce W  in order to make the causal 

effect (5.5) identifiable at least in principle.

Summary

By experimental Pearl means that both T  and C can be intervened upon and 

the response to these interventions can be observed. In particular, the right 

hand side of (5.5), can be rewritten as

E{Rt,ct.) ~ E[Rr) =  E(Rt}Cf) ~ E(Rt*,ct*)> (5-9)

as the value of C when T  =  t* would indeed be Ct*. This means that in this 

scenario, C  is held constant at the value (or set of values) it takes on when 

the treatment is t*.

Consider the first term in the first line of equation (5.8), this can be 

written as
__________ fa)__________

E(Rtc,.) = Y , 'E 'E (R tc\Ct. = c ,W  = w)
w c

P(Ct* = c\W  = w)P{W  = w) (5.10)

By conditional independence (5.7), (a) in (5.10) becomes E (R tc\W = w),
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which is identifiable in principle by setting T  = t and C — c. In fact, each 

term after the summation in (5.8) is identifiable from experimental data in 

which both T  and C are set to particular values.

It is therefore necessary to assume the following for identification of (5.8). 

from experiment in Pearl’s framework:

1. W  exists,

2. the conditional independence (5.7) holds 

E quation  (5.8) in non-counterfactual term s

Let us look at (5.8) under experimental conditions in terms of the decision 

theoretic notation developed so far. Let Fc denote the intervention variable 

on C. That is, Fc is such that when it is equal to a value c 6 C the domain of 

C, then C is also equal to c, and when Fc =  0 then C arises naturally from 

its relationship with T .

Further note that T  is a decision variable and hence has no parents. This 

is indicated by the bold face type.

The requirement that W  be a nondescendant of T  and C  turns into the 

conditional independence VFJLL(T,Fc). There is a further conditional inde­

pendence for R , which can be read off DAG 5.6, namely, RALFc\T,C,W.  

Then:

(5.8) =  '£ '£ ,{ { E (R \T  = t ’Fc = c ,W  = w ) - E ( R \ T  = f , F c ^ c ,W  = w)}
W  C

xp(C  = c\T = e , F c = ®,W = w)
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xp (W  =  w |T  =  t ',F c  =  c)]. (5.11)

This can be simplified to

(5.8) = £ £ [ { £ ( f l | T  = iIW’ = w,C = c,Fc = 0)
W  C

-£ (.R |T  = t*,C — c ,W  = w, Fc = %)}

xp(C  = c\T = t \  Fc  = @,W = w)

xp(W  =  ui\Fc  =  0)]. (5.12)

If we then take W  =  0, then this reduces to 

£ { £ ( f l |T  =  t, C = c, Fc = 0) -  .E(f?|T = t*,C = c,Fc = 0)}p(C =  c|T = t \ F c =
C

Essentially, in the non-counterfactual framework W  can be seen as a 

stratifying variable. This has some interesting consequences. First, differ­

ent choices of W  will result in different direct and indirect effects. Thus, the 

direct effect for W  representing a set of health-related variables minus sex 

will be different from W  representing the same set of health-related variables 

with sex.

This again begs the question What criteria are used to select it? We shall 

see that, W  is not fundamental for the development of the decision theoretic 

approach. In fact, it emerges that unless we have specific questions we want to 

ask where stratifying is important, or we suspect that there is a confounding 

variable, W  is not a necessary element of the direct indirect effects framework 

in the decision theoretic model.
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5.4 The non-counterfactual model for direct- 
indirect effects

As this thesis is based on a decision theoretic approach to causal inference, the 

concepts tackled by Pearl (2001b) must be re-expressed in non-counterfactual 

terms and defined formally. We have looked at (5.8) in non-counterfactual 

terms already. In this section, we construct the 3 variable direct indirect 

effects framework and define the effects in decision theoretic terms. It is a 3 

variable framework as it is uniquely defined by the three observed variables 

T, R  and C, and their relationship to one another. In section 5.6, this will be 

extended to include another variable, uniquely defining the 4 variable direct 

indirect effects framework.

The key to the direct indirect effects framework developed in this chapter, 

is the manipulation of the mediating variable C  via the point intervention 

node Fc and the more complex randomised manipulation variable M e •

In the decision theoretic approach to this problem, T  is always assumed to 

be intervened upon and thus there is no need to distinguish between FT and 

T, making it simpler to represent the treatment as a single decision variable 

T. Formally, F t =  T  and F t 7̂  0 for the remainder of the chapter.

Before defining the regimes on C and the subsequent 3 variable direct 

indirect effects framework, it is necessary to define the elements involved.
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5.4.1 Definition of Elements

The following are the elements that uniquely and completely define the deci­

sion theoretic direct indirect effects model for 3 variables.

List 5.4.1 Elements of 3 variable direct indirect effects model

1. A treatment variable T, which is completely controlled by the experi­

menter. T  takes on values in T  which is the set of available treatments. 

T  is in bold type to clarify that it is a decision variable, not a chance 

variable. For the sake of simplicity, T  is binary, taking on value 1 if 

treatment took place and 0 otherwise.

2. A response variable R. This variable is always allowed to arise naturally. 

It takes on values r  in TZ.

3. The mediating variable C. This variable takes on values c in C. It 

mediates part of the effect that T  has on R.

4. Fc, the point intervention variable on C. This enables us to set C to a 

specific value.

5. Me, the randomised intervention variable on C. In simple terms , it 

enables us to generate C from a specified distribution. It will be defined 

in detail in the next section. This variable is called Me for manipulation 

ofC .
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6. The following conditional independence relationships

R  JL Fc \CtT  (5.13)

R  JL Mc \C,Fc,T.  (5.14)

The conditional independences are separated (they could be expressed in one 

conditional independence RJL(Fc, Mc)\C,  T) because the nature of the two 

intervention variables is different. Fc can be seen as representing a point 

intervention in the real world, whereas M e is a tool that is used to clarify 

and represent potential randomised manipulations. This is defined in section 

5.4.3. Note that the intervention and decision variables are all marginally 

independent of one another. This is trivial in so far as there is never any un­

certainty associated with them. Also, the conditional independence (5.14) or 

(5.13), together with the constraint that T  is a decision node and finally, the 

premise that there are no unobserved variables that are of interest, uniquely 

define the direct indirect effects DAG in 5.7. If we did not introduce any inter­

vention variables on C  then there would be DAGs that are Markov equivalent 

to the DAG in 5.7.

5.4.2 Regimes described informally

Although it may not physically possible to intervene on C, let us imagine 

nonetheless that we can intervene on C. What types of interventions would 

it be necessary to perform with the aim of estimating direct and indirect 

effects of treatment on response?
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It is easiest to explain by referring directly to example 5.2.1. Setting ethi­

cal considerations aside, it is physically possible for an experimenter to control 

the administration of aspirin, which is the mediating variable in this example. 

Say that the experimenters are interested in 2 different dosages (none or 2 

tablets) of aspirin. Let C =  {0,1}, for no aspirins and 2 respectively. There 

follows an informal description of the regimes:

5.4.2 Regimes

1. The pharmaceutical company is interested in the effect the aspirin has 

on the response. One randomly chosen group of patients is assigned level 

0 of aspirin and randomly assigned the treatment, while a second group 

is assigned level 1, and randomly assigned the treatment. It is now 

possible to make inference about the direct effect of treatment for the 

two levels of aspirin intake by estimating P(R\T, C =  c) for c E  {0,1}. 

This is similar to what Pearl calls the controlled direct effect.

2. The pharmaceutical company has conducted a trial where one group of 

patients are not given the treatment and their natural aspirin intake 

when they do not receive treatment has been recorded and p(C |T  =  0) 

estimated. A second group (exchangeable with the first) is run and 

again, the natural aspirin intake under treatment T = 1 is observed. 

Hence p{C |T =  1) is also estimated. Then a new group of patients is 

recruited (exchangeable with the previous two groups), and the follow­

ing regime is applied: Given that a patient is administered treatment
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T  =  0, he is administered aspirin dosage according to the distribution 

of C  |T  =  1, and vice versa for a patient administered T  =  1. The 

data gathered allows us to calculate the direct effect of treatment by 

comparing the responses to the two different treatments while generat­

ing the mediating variable from the same conditional distribution. This 

approach is similar to Pearl’s natural direct effect. We need to assume 

that the three groups of patients are exchangeable before treatment is 

administered.

3. If it is not possible to observe the natural distribution of C\T, because 

running two trials is too expensive, but still possible to intervene on C , 

then the natural distribution can be replaced by a suitable distribution 

that generates values of C that are appropriate for the context. In the 

above example, the values of C  could be generated by tossing a coin. It 

would then be possible to calculate the direct effect by simply summing 

out over C. One trial would still have to be run.

The last two approaches are analogous to direct and indirect standardisation. 

This aspect will be discussed in more detail after the formal definition of the 

regimes. It will not usually be the case that the results of the last two will be 

the same. However, they will provide comparable estimates of the effects.

5.4.3 Formal definition of Regimes on C

We proceed now to a formal definition of the regimes on C. These are all 

in terms of C ’s conditional distribution given its parents T, Fc and M e as
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seen in Figure 5.7. Fc and Me are fundamentally different types of inter­

vention variables as will become clear in the definition of the regimes, and 

later discussion in section subsection Me and Fc in 5.4.3. This difference is 

reinforced in the DAGs where Fc has a standard decision node box and Me 

has a rounded box.

First consider F c ; it has two types of settings, it is either idle Fc — 0, or 

Fc = c where c € C. When it is idle, C  arises from its relationship with its 

other parents, when Fc — c, then C is set to the value c with no uncertainty.

Me is context specific, meaning that it is uniquely defined by how it is 

related to C, T  and R , that is in terms of the conditional independence 

relationship (5.14) and the regimes defined below. A change to any of these 

elements would require a redefinition of Me-

Figure 5.7: DAG describing the basic setup.

Regim es of C

The natural conditional distribution of C |T  =  t is denoted by Pt for t € {0,1}. 

The collection of conditional distributions Pt is denoted by V.
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Regime 5.4.1 The first regime represents the observational case where C is 

allowed to arise naturally from its relationship with T. This regime is obser­

vational with respect to C (not T ), and specifies the conditional probability 

distribution of C as Pt if and only if  T  =  t. This regime is indicated by

Fc  =  M e  =  0 .

Thus the distribution of C |T  = t,F c = Mc  =  0 is Pt.

Regime 5.4.2 We say C is se t if C has been forced to take on the value c*. 

We indicate this by

Fc = c*eC,

M e can be anything as C is independent of M e if it’s value is set. We can 

therefore simply assume that Me =  0- Thus, the conditional distribution of 

C |T  =  t,F c  =  c*,Mc — 0 is Sc*, where 8C* is such that P(C  = c) = 1 if 

c = c* and 0 otherwise.

The intervention results in an additional (if trivial) conditional indepen­

dence;

CM.(T,Mc)\Fc  0 ,

with the corresponding change in the DAG as seen in figure 5.8. Note that 

when C  is set to a fixed value c*, the links from T  to C and Me are severed.
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T

Figure 5.8: Setting C = c* via intervention node Fc- Me is suppressed as it 
is idle.

R egim e 5.4.3 We next consider the case where C is sampled from condi­

tional distribution Pt*, t* G T . This regime is indicated by

Fc =  0 ,

Mc  =  t* e  T .

Hence, the conditional probability distribution of C |T  =  t,F c  =  0, M e =  t* 

is Pt*. The associated graph is given in figure 5.9. As the value of T  does not

T

Figure 5.9: C  is generated from the conditional distribution of C |T  =  t* 

enter, we have the additional conditional independence:

C J1T | Me =  t*, Fc =  0. (5.15)

Finally, we introduce
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R egim e 5.4.4 In this, C is generated from a specified distribution Pp. We 

indicate this by

Fc = 0,

Me =  D e v .

So that the distribution of C |T  =  t , Me — D is just D , that is C is sampled 

from p(D = d), where the domain of C is the same as the domain of D , 

and Vx> is the set of suitable probability distributions. The associated graph 

and additional conditional independence are as with regime 5.4.3, where D 

replaces t* and Pp replaces Pt*, as the value of T  does not enter.

Me and  Fc

The difference between Fc and Me is made clear in the regime definition 

above. Fc can be defined independently of the regimes and any probability 

distribution whereas Me cannot. Me can no longer be used if an additional 

variable is added to the problem as discussed in section 5.6, Fc remains 

unchanged.

Fc is a point intervention and represents an intervention which is, in 

principle at least, possible, irrespective of any information we may have on 

the processes that govern the distribution of C. That is, we can in principle 

administer aspirin to a patient in a trial for T, irrespective of a) whether we 

know if he has been administered treatment T  =  1 or T  =  0; b) whether we 

believe there is any relationship between the treatment and the occurrence of

180



headache or the intake of aspirin and the response, and c) whether we know 

the distribution of C |T  or not.

M e  is fundamentally different as it represents a randomised intervention. 

Although physically possible, Me is fictional in a sense that Fc is not. First, 

interventions of the type Me represents are not normally preformed, it is sim­

ply a tool which allows us to express and identify the causal qualities we are 

interested in within the 3 variable framework. Second, whereas interventions 

represented by Fc can be performed with no knowledge (or assumptions) 

about how the underlying process works, Me = t* can only be used once the 

assumptions have been made, the system observed, and inference made about 

the conditional distribution of C given T.

M e =  D can be performed without any knowledge of the workings of the 

system, in fact it is used when no knowledge about how C depends on T  is 

available, and a generated direct effect is required. M e  in this incarnation 

has even less bearing on the real world than it has in M e  =  t*.

In light of the above discussion, it is clear why the conditional indepen­

dences (5.13) and (5.14) are separated. One is the real part, RALFc\T, C 

in so far as it is testable, and the other the fictional part RALMc\T, Fc, C, 

which is an assumption we make.

Regim es 5.4.3 and  5.4.4 as forms of standard isa tion

The last two regimes are similar to direct standardisation. The classic exam­

ple of direct standardisation is that of mortality rates. We are interested in
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comparing the mortality rates of two disjoint finite populations and A. The 

probability of death in the two populations given by pn(deatti) and p&(death), 

do not offer a good comparison, as they do not reflect the age composition 

of the population. For instance, let be the population of Eastbourne, a 

seaside town in England famous for its large population of pensioners, and 

A the population of the city of London. A straightforward comparison of 

pn(death) and p&(death) would not give the result we are really interested in 

as

pci(death) — ^  pn(death\age = k)pn(age — &),
1 <k<K

and the age composition pn(age =  k) for k =  1 , . . . , A  is not necessarily 

the same as p&(age — k). What we care about is a pairwise comparison 

of the age specific death rates, and we may not have the age distributions 

of the population. A solution is to introduce a standard age composition 

ps (age =  k) for each k = 1, . . . ,  K, and use this to find a standardised death 

rate for the two populations which are then comparable.

p^death) = ^  pn(death\age =  k)ps (age =  k)
1 <k<K

A similar argument for A gives a standardised rate of p^(death).

As the choice of ps (age =  k) for k = 1, . . . ,  K, is arbitrary, we can always 

standardise using the age composition of one of the populations, say pn(age = 

k). This is in fact analogous to what regime 5.4.3 is doing. It is standardising 

the effect of treatment on response using the conditional distribution of C |T  =
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t* the baseline value of T. Regime 5.4.4 is more akin to using a standard or 

historical age composition.

5.4.4 Definition of the 3 variable d-i effects model

Now define the 3 variable d-i effects model as A =  {T, R , C , J ,  V , Pv}-

This collection completely determines the model; the treatment T  , response 

R , the mediating variable C, the intervention variables Fc and M e of C , 

with their corresponding regimes and the conditional independence X  =  

{RAL(Fc, M c)|T, C} and the collections of probability distributions V  and

P v •

Definition of Direct effects in the 3 variable d-i effects model

We can now define decision theoretic versions of the average controlled direct 

effect (5.2), and of the natural direct effect (5.5) in terms of Fc and M e .

Definition 5.4.1 (Direct effect for C set at c) The direct effect of T  =  t 

with respect to baseline T  =  t* on response R  for C set at c is given by

E (R \T  =  t, Fc =  c, Mc  =  0) -  E (R \T  =  t \  Fc = c,M c = 0). (5.16)

Call this effect the SEC (the Set Effect).

Definition 5.4.2 (Direct effect for C  generated from Pt*) The direct ef­

fect o fT  = t with respect to the baseline T  =  t* on response for C generated 

from Pt* the distribution of C conditional on T  =  t* the baseline treatment is
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given by

E (R \T  = t,M c = t \ F c  =  0) -  E{R\T = t \  Mc = t \  Fc = 0)

=  E (R \T  = t,M c = t \  Fc = <b)- E{R\T  =  t*, Mc = 0, Fc = 0). (5.17)

Call this effect the GDEt (the Generated Direct Effect from Pt).

In this framework, it is possible to go one step further and define another 

direct effect, based on regime 5.4.4.

Definition 5.4.3 (Direct effect for C generated from D) The direct ef­

fect o fT  = t with respect to the baseline T = t* on response for C generated 

from a specified and appropriate distribution D.

E (R \T  =  t, Mc  =  D, Fc  = 0) -  E(J?|T = t*,Mc = D ,F c = 0)

(5.18)

Call this effect the GDEd (the Generated Direct Effect from D.)

Definition 5.4.4 (Total effect) The total effect of T =  t with respect to 

the baseline T = t* on response is given by

E (R \T  = t ) ~  E (R \T  =  t*). (5.19)

This effect is referred to as the TE.

Note that it is also possible to look at the GDEt*, that is

E (R \T  =  t \  Mc =  t, Fc = 0) -  E{R\T = t,M c = 0, Fc = %
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where we take the treatment T  =  t as the baseline.

Finally, the indirect effect can be defined as the difference between the 

total effect and the generated direct effect. As there are two types of generated 

direct effects, one resulting from GDE** and another from GDE#.

Definition 5.4.5 (Indirect effect) The indirect effect when C is sampled 

from C |T  =  t* is

IE t* = T E  -  GDEt*. (5.20)

The indirect effect when C is sampled from D is given by

IE d = T E - G D E d . (5.21)

Direct effects expressed without Me

Consider briefly equation (5.17), where we define the direct effect when C is 

sampled from Pt. It can be expressed without Me as follows:

Y ,{E (R \T  = t,C  = c,Fc = <b) x p(C = c lT  = t*,Fc = <t>)
c

+E{R\T = t,C  = c,Fc = Q) x p{C = c |,T  = t,F c  = 0)}. (5.22)

See the next section for the process of turning this equation into equation

(5.17). In this definition, as in that of the GDE#, Me serves to simplify 

and clarify what is otherwise an unwieldy mix of probabilities. The fictional 

nature of M e has already been discussed in section 5.4.3, and the above 

reinforces the fact that it is not an essential part of the definition of direct 

effects.
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D irect effects as standard isa tion

Expression (5.22) of the direct effect generated from Pt* also clearly shows 

the relationship between standardisation and direct effects formulation. In 

particular, equation (5.22) is a case of natural standardisation, that is, the C 

is sampled from its distribution given T, which is based on real data. If we 

replace p{C = c |,T  =  £*, Fc =  0) with p(D =  c), in (5.22) above, we get the 

equivalent expression for GDE#. We are now standardising arbitrarily, that 

is, we are sampling C from a distribution that does not necessarily have any 

bearing on what C is or how it is related to its ancestors.

5.5 Identification using the non-counterfactual 
model

Consider the above model, with C  discrete. When is it possible to identify 

the effects under either data that is experimental with respect to C\ that is 

where C is intervened upon directly, or observational data where C  arises 

naturally from its relationship with T? Recall that is it assumed that T  is a 

decision variable and hence always intervened upon.

Consider first the direct effect for C  set at c given by (5.16). It is clear 

that this effect can be estimated directly from experimental data where it is 

possible to set C = c. However, it can only be estimated from observational 

data if we can observe 

p(R \T  =  f , C =  c, M e =  0, Fc = 0)
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and

p(R \T  = t*,C  =  c, Mc  =  0, Fc =  0),

as E (R \T  =  t ,F c = c,M c = 0) =  E (R \T  =  *,FC =  c,C  =  c,M c =  0) =  

F(.R|T = t,C  = c, M e = 0, Fc = 0) by conditional independence (5.14).

Consider now the direct effect for C generated from Pt*, (5.17), for the 

sake of simplicity, as Fc =  0 for all of the effects below, it will be omitted. 

The second part can be estimated from data when T  = t*. The first part of

(5.17) is not so straightforward;

E (R \T  =  t, Mc  =  <*) =  Y , E (R \T  = t >Mc = t*>C = c)
c

xp(C  =  c|T = t,M c  = t") (5.23)

=  £  £ ( f l |T  =  «, C = c , Mc =  0)
C

xp(C =  c|,M c =  r )  (5.24)

= £ £ C R |T  = t,C = c,Mc = 0)
C

xp(C =  c|, T  =  **, Mc =  0). (5.25)

We go from (5.23) to (5.24) because RJLM c\T,C  and CJLTlMc 7̂  0. Prom

(5.24) to (5.25) because M e = t* is defined as drawing C  randomly from the

its conditional distribution given T  — t*.

The quantities in (5.25) are all identifiable from data where only T  has 

been intervened upon when this is available on all three variables. That is, if 

we can completely observe p{R\T = t,C  — c, Me — 0) and p(C\T — t*, M e =  

0)-

Finally, the total effect can be identified from data where only T  has been

187



intervened upon, which we are assuming is always the case.

Note that it is not necessary to introduce W  in order to be able to identify 

these quantities in the non-counterfactual framework.

5 .5 .1  Id en tifica tion  using th e  G D E d

Consider the generated direct effect from D given by (5.18). Again we drop 

the Fc for convenience. When would we be interested in using this effect? 

We may be unable to observe the true conditional distribution of C |T, and 

therefore have to sample C from another distribution. D either be a distri­

bution that is in some way related to the actual distribution of C |T, or a 

distribution of another random variable with the same domain as C.

For example, in the treatment side-effect example, if we cannot actually 

observe the distribution of aspirin intake of the patients that are being treated, 

we may nonetheless have data on a previous study from which we can estimate 

the occurrence of headache.

Alternatively, we may have no empirical evidence to go on. We can choose 

a distribution for C |T based on our beliefs or just arbitrarily. For example, 

we may toss a coin if there are two possible aspirin dosages.

What is important is that the effect we find can still be used for inference 

as this type of standardisation allows us to compare the expectations in the 

effects.

Consider the first part of (5.18) dropping the F c :

E (R \T  = t, Mc = D) =  J 2 E (R \T  = t>C = c,M c = D)p(C = c\Mc = D)
C
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=  £  E (R \T  = t ,C  = c, Mc = $)p(C = c\D),
C

where p(C = c\D) simply means that C is being sampled from the distribution 

of D.

So, if it is possible to observe the response as well as T and C , then it is 

possible to identify this quantity even if we cannot observe the distribution 

of C\T.

5 .5 .2  Id en tifica tion  w h en  C  is b inary

Consider the simple scenario when C is a binary variable taking on values 0 

and 1. In the running example, these could represent two aspirin dosages, no 

aspirin and one aspirin respectively.

Assume that it is possible to observe all the variables under natural con­

ditions, and hence estimate the conditional distributions of C given T and R  

given C and T.

That means that we can estimate

1. p(R\T, C = O,FC = 0, Mc =  0),

2. p(R\T, C = 1, Fc = 0, Me =  0),

3. p (C =  1|T,FC = 0,MC = 0),

4. p(C = 0|T, Fc = 0, Me = 0),

5. p(R\T, Fc = 0, Me =  0),
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for T  =  t and t*.

The SEo and SEi can then both be identified from the above data as 

p(J2|T =  t, Fc  =  1) =  p(R\T = t ,C = l ,F c = l ) =  p(R \T  = f, C =  1, Fc =

0). Similarly for T  =  t* and C = 0. We suppress Me as is it idle. The TE is 

also immediately identifiable from p(i?|T).

The GDEf can also be identified directly as E (R \T  = t*) can be estimated 

from the data and by (5.25),

E (R\T  = t ,M c = f )  = E(R\T = t tC = l ,M c  = Q ) p ( C = l l T  = t \ M c = Q) 

+ E(R\T = t, C =  0, Mc = V)p{C =  0 |,T  = t*,M c = 0).

Where we suppress Fc as it is idle.

If it is possible only to estimate items 1,2 and 5 from the above list, that 

is, it is not possible to estimate the conditional distribution of C given T  

directly from the data, we can still estimate it indirectly.

Let p — p(C = 1|T =  t*, Mc = 0), then 1 —p =  p(C = 0|T =  t*, M e — 0).

Also, let po =  p(R\T = t*,C  =  0, Me =  0) and pi = p(R \T  = t*,C —

1, Me =  0). Then

p(R\T = t*) =  pip + p0( l - p )  

= Po + p (p i-po )-

So

_  p(H|T =  t*) -  po 
P i -  Po

This formula can be plugged in as required in the effects equations.
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5.6 Extensions

There are contexts in which simply considering the 3 variables in the frame­

work developed so far is not sufficient. This happens when there is a variable 

that influences both the mediating variable and the response variable, such 

that the conditional independence (5.14) can no longer be assumed to hold 

or we are interested in the effects in different strata of the population.

We introduce one additional variable W, such that in addition to the 

existing conditional independences, WALT also holds. In graphical terms 

means this that it is a parent of both R  and C but not of T. As T  is a 

decision node and therefore has no parents, this implies that W  is not a child 

or a parent of T.

W  can be seen as a stratifying variable. This is demonstrated clearly 

in the example 5.6.1 below. It is often the case that if we do not stratify 

and estimate only population average quantities, we may base future decision 

making on inadequate results, as responses in different strata diverge. W  can 

also be a type of confounder as seen in example 5.6.2 below. Finally, W  can 

also be of interest if it can be intervened upon as shown in the example 5.6.3. 

As W  is assumed to influence both the mediating variable and the response, 

it can be used to change the value or nature of the indirect and therefore 

total effect of treatment on response.

The setting regime and the point intervention variable are not considered 

for the extended case. This is because the setting regime simply severs the
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links between the mediating variable and all other variables in the problem, 

and W  in particular.

5.6.1 Examples motivating the introduction of W  

E xam ple 5.6.1 W  as sex

Consider extending example 5.2.1. We may have reason to believe that the 

side-effect is worse for women than men, and that therefore they take more 

aspirin, resulting in a different mediated effect. This makes it necessary to 

separately evaluate the effects for men and women. We therefore add a vari­

able W  as exhibited in DAG 5.10 which represents sex, and evaluate the direct 

and indirect effects for each of the two settings of W  instead of an average 

effect for the general population as has been considered so far.

E xam ple 5.6.2 W  as Doctor indicator

Another extension of the above example, where the confounding property of 

W  is more apparent is as follows. The patients are administered a treatment 

by one of two doctors. One doctor is aware of the headache side-effect, and 

tells his patients not to take any pain killers. The other doctor is not aware 

of the problem, and tells his patients nothing. W  indicates which of the two 

doctors treats a particular patient. If we do not know which patients are 

treated by which doctor, then our effects will be confounded.

E xam ple 5.6.3 W  as education

Consider example 5.2.4, where the introduction of costsharing is thought to
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have a negative direct and indirect effect on the use of preventive services via 

GP check-ups. A sub-study is conducted which looks at the effect of intro­

ducing cost-sharing on women between 30 and 60. It emerges that women 

with cases of cancer in the family, tend to be more informed and regularly 

check themselves. These tend to go to both the GP and/or seek out preven­

tive services more often that women without cases of cancer in the family, 

regardless of the cost. A variable W  that represents the level of breast-cancer 

specific knowledge is introduced to the problem.

Although in an observational context, this knowledge occurs at random 

and is the consequence of family cancer history, it is of interest to the insur­

ance company as levels of cancer specific knowledge can be intervened upon, 

say by sending health insurance policy holders information leaflets. This may 

counteract the negative trend costsharing has on the use of preventive ser­

vices. In fact an intervention such as the sending of leaflets, represented as 

an intervention node, say FV, is independent of the response given W , and 

hence the effect of a point intervention can be identified from the observa­

tional study on cancer in the family.

5.6.2 Definition of

In order to include a new variable VP, we define a new direct indirect effects 

framework in the presence of W. First, the elements are defined. The first 

three are the same as those defined in list 5.4.1. The following are appended 

after 3.
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4. W , a chance variable that is a parent of both R  and C.

5 . M™ a manipulation variable on C.

6 . The following conditional independences:

W  JL (T,M<Jf) (5.26)

R  _U_ Mq \T, C, W. (5.27)

It is worth looking at the graph that represents these conditional inde­

pendences uniquely. This is given in figure 5.10

Figure 5.10: The extended framework

5.6.3 Regimes of M

The regimes on C in the presence of W, are only interesting to us when the 

relationship between C and W  is preserved. If the relationship is severed, as 

in the setting regime or in the case where we sample C from Pt* as in regime

4.3 in the 3 variable framework, then W  is no longer important as it does 

not add anything to our knowledge of the direct and indirect effects. For
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this reason, we do not consider the setting regime or the regime where C is 

generated from its conditional distribution given only T.

Denote the conditional distribution of C |T  =  t ,W  =  w by Ptw for 

t G {0,1} and w G W, where W is the domain of W. Further, denote 

the collection of Ptws by Q. As before V  is the collection of conditional 

distributions of C\T  = t, Pt.

Regim e 5.6.1 The idle regime of corresponds to the observational case 

on C, where it is allowed to arise naturally from its relationship with T  and 

W . We indicate this regime by

=  0 ,

so the distribution of C |T  = t ,W  = w, M™ = 0 is Ptw

Regim e 5.6.2 Now consider another generating regime where C is sampled 

from the conditional distribution Pt*w, that is from p(C |T  =  t* ,W  = w), 

where W  — w is the actual value of W . This is indicated by

M% = t*.

(Not to be confused with Me = t*, in the 3 variable framework.) This regime 

induces the conditional independence CALT\M ^ = t*, that is we are severing 

the link between T  and C but not the link between C and W . Note that we 

see W  and then sample from the appropriate Pt*w.

This regime is represented by the DAG in 5.11.
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M ^= t*W

Figure 5.11: Regime 5.6.2

5.6.4 Definition of Effects using M™

Now that the regimes have been defined, we can define the 4 variable d-i 

effect as follows; A4 =  (T , R, C, WM™, J ,  Q}. This collection completely 

determines the model, the treatment T , response R, the mediating vari­

able C, the confounding variable W, the regimes M^fof C, and the con­

ditional independences assumed on the introduction of in this case

J  =  {i?_LLM^|T, C, W }, {VF_LLT, M™} and finally the collection of prob­

ability distributions Ptw, Q.

5.6.5 Using M™

There are three general scenarios in which we will be interested in using 

Mq instead of Me- These correspond to the three examples in section 5.6.1. 

In the first case we estimate effects conditional on specific values of W, in 

the second, we want to somehow eliminate W  as it is a nuisance variable, 

and estimate overall direct effect. In the last example we are interested in 

manipulating W  and need to determine whether it is possible to make causal
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inference about the manipulation of W  from data where W  arises naturally. 

I f  as a  stra tify ing  variable

In example 5.6.1, we are interested in estimating the direct and indirect effect 

for each sex. Let W  =  0 when the patient is a man and W  =  1 when the 

patient is a woman. The woman-specific direct effect of response on treatment 

is given by:

E (R \T  = t ,M g  = f ,  W  =  1) -  E (R \T  = t \  M% = t*,W  = 1) (5.28)

=  £ [ £ 0 R |t  = t, M g  =  t*, W  =  1, C = c) '
c

x p(C =  c|T =  t, = t \  W  = 1)

-  E (R \T  =  f ,  M g' =  t \  W  = 1, C = c) 

x p(C =  c|T =  t ,M g  =  f ,  VF =  1)]

=  £ [ £ ( .R |T  =  *, W =  1, C  =  c ,M g  =  0)
C

x p(C =  c|T =  f ,  W  =  1, AT#' =  0)

-  E (R \T  =  i*, W  =  1, C =  c, M% =  0) 

x p(C =  c|T =  t*, W  =  l,M cf = 0)]

=  £ [ £ ( f l |T  =  t, W  =  1, C =  c, Mg' =  0)p(C =  c|T =  t \  W  =  1, =  0)]
C

-  £ (# |T  = t*, W =  1, =  0)

Call (5.28) the generated direct effect conditional o n W  as we sample C from 

the distribution Pt*w, and then restrict our attention to the case where W  =  1. 

The above is essentially equivalent to the 3 variable set-up conditional on the
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value W  = 1. In order to estimate (5.28), it is necessary to have fully observed 

the natural distributions of all the variables (M g  = 0).

Again, it is clear that M g  is only a tool that permits us to express in 

more simple terms concepts and probabilities that are otherwise as seen above 

inelegant. Further, the role of the sampled probability of C as a standardising 

element is reinforced.

In a more general scenario, we are interested in estimating the direct and 

indirect effect within specific strata of W, and the quantity we are looking 

for is the direct effect conditional on W  = w,

£(i? |T  = f, M g  = t*, W  =  w) -  E (R \T  = t* ,M g  = f t W  = w). (5.29) 

W  as a  confounder

In example 5.6.2, W  is a nuisance variable in so far as it confounds the

relationship between the mediating variable and the response variable. We

are not interested in W  for its own sake, but are interested in eliminating it. 

The quantity of interest is the direct effect of T  on R  via C\

E (R \T  = t ,M g  = f )  -  E{R\T  =  t \  M g  =  t*) (5.30)

Consider the first part:

E (R \T  = t,M g ' =  <*) = =  = t"W ,W  = w ,C  = c){b.Zl)
w c

xp(C = c\T = t,M c  = t* ,W  = w) (5.32)

xp(W  = w\T = t,M g ' = f )  (5 .33)
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= Y U l E (R \T  = t ’W  = w >C = c>M c =®) (5.34)
w c

xp(C  = c\T = t*,W  = w , M g  = 0) (5.35)

xp(W  = w \M g = 0) (5.36)

We go from (5.31) to (5.34) by conditional independence (5.27). Prom (5.32) 

to (5.35) as CALT\M g = t* but it still depends on the actual value of W  = 

w , and is therefore sampled from Pt*w. Finally from (5.33) to (5.36) by 

conditional independence (5.26).

The second part of (5.30) is simply

where we sum out the values of W  or ignore them. It is fundamentally the 

idle regime of M g  for T  =  t*. Again, it is necessary to have observed all the 

variables under natural conditions before we can make this type of inference. 

This might not be sensible in example 5.6.2 as we might not know what the 

doctor is saying to his patients. However, the quantity of interest, which is 

p(C = c|T, W) can be observed.

In tro d u cin g  Fw

As in example 5.6.3, we may be interested in a variable like W  because it 

permits us to intervene on the indirect effect, and hence the total effect. If it 

is possible to intervene directly, then W  can come to mirror T.

The insurance company wants to know what effect intervening will have, 

before they actually try to do so. In other words, they want to be able to

E (R \T  = t* ,M g  = V) (5.37)
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estimate

E (R \T  = t,M}Y = <*, Fw = w )~  E (R \T  =  f ,  M g' =  «*, Fw = w), (5.38)

where Fw is the point intervention node on W  in the augmented notation. 

So, when Fw — w where w € W, then W  = w, and when Fyy =  0 then 

VF arises naturally. Consider the graphical representation of the problem 

including Fw in figure 5.12. From it, we can see that Fw is independent of

Figure 5.12: Introducing Fw

all other variables given W . Hence, (5.38) can be rewritten as

E (R \T  = t , M g  =  t \  Fw = w ,W  = w)

-  E (R \T  = t \  M g  =  £*, FW = w, VF =  w)

=  F (F |T  = t , M g  = t \  W  = w, Fw =  0)

-  F (F |T  =  £*, = t \ W  = w, Fw = 0) (5.39)

It is hence possible to estimate the direct effect of intervening on W  from 

data where W  arises naturally.

This is very useful for the insurance company, as it is possible to find out 

whether educating more women about cancer might encourage more of them
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to seek preventive services and/or visit the GP, given that it is education that 

makes women with cancer more likely to check themselves.

Notice that we find ourselves in the same mathematical scenario as in 

the first example, where W  is a stratifying variable. However, although the 

mathematical expression we want to estimate is the same, as (5.29) is equal 

to (5.39), the contexts out of which the two arise are very different. In the 

first example W  is sex, a variable that cannot be intervened upon, in this 

example, W  is the level of education about cancer, which is a variable that 

can at least in principle be intervened upon.

Iden tification

As in the case of the 3 variable framework, provided that each variable is 

observable, then the direct effect is in fact identifiable from observational 

data, that is when M = 0.

5.7 Conclusions

It is easy to see how the framework can be extended if we believe that the 3 

variables in the 3-variable framework are embedded in a larger network. It is 

possible to consider more than one mediating variable, either by making C 

a vector, or by creating manipulation variables for each mediator of interest. 

In this case, extra care will have to be taken if the mediators are related to 

one another.

We do not look at non-experimental identification in the way Pearl sees
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it as we assume that the treatment variable is always intervened upon. Thus 

the problem is always experimental with respect to the treatment. This is 

because generally, when dealing with this problem, as seen in the examples 

(5.2), the data is experimental with respect to the treatment variable.

Also, by introducing the manipulation variable, we see that experimental 

and non-experimental identification with respect to the mediating variable 

are the same in the decision theoretic framework, given that we assume that 

the treatment is always intervened upon. And further, that identification is 

possible from purely observational data.

Again we see that if we make sensible assumptions, that is, the treatment 

variable is always intervened upon, it is possible to make casual inference on 

direct and indirect effects in the decision theoretic framework . That is, we 

do not need to make assumptions that are hard to understand or test such as 

conditional independence (5.7), or introduce additional variables the choice 

of which is not clear and changes the effects we are interested in such as W.
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Chapter 6 

Effect of Treatment on the 
Treated

6.1 Introduction

Consider the following story; Doctor A, working at hospital One is given a 

new drug treatment to administer to his patients. He chooses who to treat 

on the basis of a set of characteristics that are known only to him. The 

responses of those who were treated are recorded. The data is later given to 

a statistician to analyse. The information at her disposal are the treatment 

responses of those who were treated and whatever covariate information is in 

their medical records. The criteria used by the doctor to decide who to treat 

remain unknown.

The quantity of interest is the causal effect of treatment on the outcome, 

say disease status. However, there are problems with determining what this 

is. The selection criteria for treatment are unknown and act as confounders 

on the treatment effect.
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An alternative solution to this problem was first proposed by Heckman 

and Robb (1985) . The idea is to estimate not the causal effect of treatment 

directly as we would like, but to estimate the effect of treatment on the treated 

(ETT). In a counterfactual/potential outcomes framework this is given by

E(Yl - Y 0 \ X , T = l ) .  (6.1)

T  is the treatment variable, Y\ and Y0 are the potential responses to treatment 

T  =  1 and T  =  0 respectively, and X  is a set of known covariates.

A problem emerges when we look more closely at the ETT. Say that two 

doctors were given the new drug treatment to administer to the same patients. 

One doctor decides to treat her patients at random, while the other chooses 

to treat those who in his opinion would most benefit from the drug. Would 

the two doctors’ data result in different values for the ETT? What quantities 

would have to be the same in order for the two doctors to have the same value 

for the ETT?

Another problem is that of identification (see Chapter 2 section 2.3.3). 

What type of data, observational, experimental or a combination of both is 

necessary in order to identify the ETT?

The first part of this chapter looks at the ETT from both the counter- 

factual as well as the decision theoretic point of view and we prove that it 

is a well-defined quantity. In the second part, we show that the ETT is 

identifiable from a combination of experimental and observational data, but 

that in order to identify it in practice from observational data, it is neces-
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sary to make some strong assumptions. Some of the possible assumptions 

made in the counterfactual framework are discussed and reconsidered in a 

non-counterfactual framework.

6.2 Decision-theoretic setup

The doctor’s story can be formalised as follows in non-counterfactual terms. 

Let T  be the treatment, Ft its intervention variable and U the doctor’s un­

known selection criteria. We first assume the following;

U -11 Ft . (6.2)

This conditional independence is interpreted as follows; the criteria U, that 

the doctor uses to decide what treatment he would administer do not depend 

on how the treatment is administered under intervention. Denote by Y  be 

response to treatment. We further assume that

Y  i l  Ft \(U,T). (6.3)

In words, we believe that the response to the treatment does not depend

on how the treatment was administered (in an experimental context or not),

given the treatment was administered and the selection criteria known.

For conditional independence (6.3) to be reasonably assumed to hold it 

should generally include more than just the unknown selection criterion. This 

is because it is not generally the case that Y  will be independent of FT given 

T  and unknown selection criteria. Usually, U will have to contain additional
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information such as personal details, age and sex or general health status 

variables. For the sake of simplicity these will not be considered. If U is 

observable (which in the context we are discussing it typically is not), then 

the conditional independences (6.2) and (6.3) define it as a sufficient covariate 

(Lauritzen 2001)

The setup described by conditional independences (6.2) and (6.3) is ex­

pressed graphically in Figure 6.1.

Figure 6.1: U is a potential confounder in the problem.

Let treatment T  be a binary variable taking on values 1 for treatment, 

0 for control. The effect of the treatment on the treated is defined in (6.4) 

below.

E[ACE(U)\T =  1, Ft =  0] (6.4)

where

ACE(U) =: E{Y\Ft  =  1, U) -  E(Y\FT =  0, U). (6.5)

Equation (6.4) is the expectation of the average causal effect given selection 

criteria U and treatment T  =  1 having taken place. That is, the effect of 

treatment on the treated (ETT). This definition of it emphasises the fact 

that the ETT depends on the choice of U.
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If we expand (6.4) we get (6.6) below:

E[ E(Y\U , Ft  =  1) -  E(Y\U, FT =  0) |T =  1, FT = 0]. (6.6)

This is the fully expanded form of the ETT. The inner expectations are over

Y  and the outer expectation is over U. This is because U is unobservable but

Y  is conditioned on it.

Note that if U and T  were independent given FT =  0, for example if T  were 

randomised, then (6.6) would simply reduce to E (Y \F t  =  1) — E {Y \F t  =  0),

the average causal effect. However, we cannot replace the conditioning on

T  — 1 in the outer brackets with conditioning on Ft  =  1 as U /L F t|T , 

although this can be done in the inner bracket.

Note that (6.6) can be rewritten as follows:

E (Y \T  = l, FT =  0) -  E[E(Y\U,T  =  0, FT = 0)|T =  1, FT =  0]. (6.7)

This is because E(Y\U, F t  = 0) =  E(Y\U, T  =  0, F t  =  0) can be rewritten as 

E(Y \U ,T  = 0 ,Ft  =  0) by (6.3). Further E[E(Y\U,FT =  1)|T =  1,FT =  0] 

can be rewritten as E (Y \T  = 1, FT =  0) by (6.3).

Briefly, this relates to the ETT given in (6.1) in potential response terms 

as follows. The first part of (6.7) can be written as E{Y\\T = l ,F r  =  0) as 

T  — 1 implies that the potential response is Y\ by definition (see section 3.2). 

The inner expectation of the second part is just Y0 as T  = 0, this the whole 

of the second part becomes E(Yo\T =  1, Fj* =  0). So (6.7) is

F ( y i |T = l ,F r =  0) -  F (yo|T = l , F T =  0)

= F(y i |T = l)  -  F(y0|T = l )  (6.8)
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if we drop the intervention node notation. Now (6.1) is conditioned on an 

extra variable, X ,  and it would suffice to add this conditioning in (6.8) for the 

two to be the same (assuming that the conditional independences relating X  

to the other variables allow this).

The role of U

We have seen that the definition of the ETT depends on the choice of U. This 

has various consequences. Firstly, if U is observable, then the conditional 

independences (6.2) and (6.3) identify it as a sufficient covariate (Lauritzen 

2001) for the effect of T on However, as U is generally unknown, it acts 

as a confounder of the effect.

Further, if U is observable, then we can evaluate the average treatment 

effect from observational data. This is simply done by summing out over U .

E (Y \F t  =  1) -  E (Y\F t =  0) 

=  £  E(Y\U  =  u, Ft  = 1 )p(U = u\FT =  1) -  E{Y\U  =  u, FT =  0)p(U = u\FT =
u

= J 2 { E ( y \v  = u, T  = 1 , F t  = 0) -  E(Y\U = u ,T  =  0, F T  = $)}p{U = u\Fr  =
u

As UALFt and T — Ft when Ft 7  ̂ 0, and Y ALFt \T, U. All these quantities 

are observable and hence we would be able to identify and estimate the aver­

age treatment effect. We could also proceed to estimate the ETT, however, 

there would be no point to this exercise as we seek to estimate the ETT pre­

cisely because we are unable to estimate the ACE.
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The choice of U appears to be somewhat arbitrary. If we are to try and 

evaluate the ETT, we must be certain that it is a well defined quantity, and 

that it does not depend on the choice of U.

To see this problem recall Doctor A in hospital One. He treated his 

patients according to some unknown criteria U. Consider now another doctor, 

Doctor B. Like his colleague Doctor A, he is given the drug to administer to 

the same patients. He bases his decisions on whether to treat a patient or not 

on his own set of criteria V, unknown to anyone else. Consider yet another 

doctor, Doctor C practising at the same hospital. He chooses to randomise 

treatment. In this case, his selection criterion corresponds to the empty set 

(still a possible choice) and the ETT is equivalent to the ACE.

The problem is whether the choice of U changes the E T T  given that the 

observable distributions for different choices of U are the same. To clarify: 

Typically, different hospitals with different regimes will have different Us and 

thus different ETTs. This does not mean that U is not well-defined. The 

question we are asking is if in the same (or exchangeable) hospital, under 

the same observable regime and thus with the same observable distributions 

different choices of U will lead to different ETTs.

In order for the ETT to be well-defined, it cannot depend on the choice 

of U. It is constrained by the observable distributions which must be the 

same for different choices of £/, thus we must determine whether, given the 

observed distributions are the same, the ETT remains the same irrespective 

of different choices of U.
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If the ETT is the same for different Us then, we can choose U to be any 

variable that obeys conditional independences (6.2) and (6.3) and estimate 

the ETT.

6.2.1 Constraints

Let U and V  be two different variables such that we can assume that condi­

tional independences (6.2) and (6.3) hold for both. Generally, U and V  are 

unobserved. In order for the ETT to be well defined, the joint distributions of 

the observed variables (Y , T\Ft ), which are the observable distributions, must 

be the same for both U and V  for all regimes of Ft . This imposes certain 

constraints on these distributions. Note that the ETT depends explicitly on 

U but the observable distributions do not.

Consider the conditional independence structures described by the DAG 

in Figure 6.1 in section 6.2. If we imagine the same DAG with V  replacing [/, 

then denote the joint distributions for the four variables in the two situations 

(one with U and the other identical but with V  replacing U) are

M Y ,  T, U\Ft )

and

h (Y ,T ,V \F T)

respectively.

The following must hold for the observable distribution.

Cl M Y ,  T\Ft  = 0) =  M Y ,  T\Ft  = 0)
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C2 M Y,T\F t = 1) = f2(Y,T\FT =  1)

C3 MY,T\F t =  0) = h(Y,T\FT = 0)

Consider the scenario with U under the idle regime Ft = 0. The joint 

distribution of (Y, T\Ft =  0) is as follows.

MY,T\Ft = 0) =  £ / , ( [ /  =  «)A(t  =  t\u  =  u,Ft =  0 ) / i ( K | T  = t ,U  = «)(6.9)
uGlA

For U with FT — 1 say (as we assume that T  can take on values 0 and 1) the

joint distribution of Y  and T  reduces to just the distribution of Y  as T  is no

longer uncertain.

h(Y\FT = 1) = £  M U  = u)M Y\T  = 1,U = u). (6.10)
u6W

For U with Ft  =  0 a similar expression is obtained.

M Y\Ft =  0) =  Y ,  M U  = u)M Y\T  = 0, U = u). (6.11)
u£U

Similar expressions for the second scenario are obtained by replacing sub­

scripts 1 with 2 and U with V.

It follows from the constraints listed above that we must require:

E  M U  = u)M T  = t\u = u,Ft =  0)/i(y|T =  t ,U = u)
u€U

= T , M V  = v )M T  = t\V = v,FT = <b)MY\T =  t ,V  = v) (6.12)
v e v

and

A (y |F r  =  l) =  ^ 1 ^  =  1) and (6.13)

M Y \F t =  0) =  fo(Y\FT =  0). (6.14)
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Given these constraints, what can we say about the question at hand?

6 .2 .2  In itia l C on jectu re

In order to determine whether the ETT is well defined for arbitrary choices 

of [/, we consider V , another variable obeying the same set of conditional in­

dependences w.r.t T, Ft and Y,  and try and prove that under the constraints 

imposed by the observed distributions discussed in the previous section,

E[ACE(U)\T =  1, Ft = 0] =  E[ACE(V)\T  =  1, FT =  0]. (6.15)

Again we are interested in the results of the same hospitals with the same 

regime and the same observable distributions. We would not expect the ETT 

to be the same from one hospital to another.

In the next section we show that when U is a pair of potential responses 

and V  is another pair of potential responses, then the constraints above force 

the ETT to be the same. In section 6.4 we show that any U can be replaced 

by a pair of potential responses. It follows therefore that the constraints 

imposed by the equivalence of the observed distributions lead to the same 

ETT and hence, the ETT is well defined.

6.3 Potential responses Setup

Potential responses are used here as a mathematical tool to prove that the 

ETT is well defined.

Consider variables FT, T, Yi, Y0, Y  and V, where Y  is a deterministic
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function of T,Yi and Yq as follows:

Y, if r  =  1 
Yn if T =  0 (6.16)

First we assume that

(Yl i Y0) JL Ft . (6.17)

Further define U = (Yi, Y0) and note that

U JL Ft by (6.17), and (6.18)

Y  -1L Ft \(U,T) by (6.16). ■ (6.19)

Y\ and Y0 can be considered potential responses as defined by Rubin in 3.2.

Conditional independence (6.18) tells us that the existence and the joint 

distribution of Y\ and Y0 does not depend on whether an intervention takes 

place.

Conditional independence (6.19) says that the distribution of Y  does not 

depend on whether an intervention took place or T  arose naturally given U 

and the realized value of T.

Let V  denote another variable that respects the same set of conditional 

independences w.r.t T, Ft and Y  as U, (6.18) and (6.19).

6 .3 .1  C on jectu re  in term s o f  P o ten tia l resp on ses

The initial conjecture given in (6.15) is equivalent to

E (Y \T  = 1, Ft  = 0) -  E[E(Y\U, FT =  0)|T =  1, FT = 0] =

E{Y\T  = 1, Ft  = 0) -  E[E(Y\V, FT =  0)|T =  1, FT = 0] (6.20)
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which in turn is equivalent to

E (Y \T  = 1, Ft  = 0) -  E[E(Y\U, T  = 0, FT = 0)|T =  1, FT = 0]. (6.21) 

In terms of potential responses, this is

E{YX\T =  1, Ft  =  0) -  F (y0|T =  1, Fr  =  0). (6.22)

6 .3 .2  C on stra in ts in p o ten tia l resp on se  se tu p

Consider the following; Let U =  (y0j^i)» a pair of potential responses, as 

defined in the section 4, with some (as yet undefined) and unobservable cor­

relation structure. For Ft idle and T  = 1, (6.9) becomes;

f i ( y , t  =  i |F t  =  0) =  =  y)
y o , y i

= '52Myi = y,yo)fi(t = l\yi = y ,y0,@)
y o

= /i(yo|yi =  y)f i(t  =  % i = y,yo,Q)fi(yi = y)
y o

= fiivi = y ) f i ( t  = l\yi =s/,0). (6.23)

For FT =  1 the above becomes

f i ( y i  = y)-  (6-24)

Similary;

f i ( y , t  = 0| Ft  = 0) = /i(j/0 = y)f i( t  =  0|?/o =  y, 0). (6.25)

For Ft =  0 this becomes;

f i ( y o  =  y)-  (6.26)

214



Now, let V  =  (Wo, Wi) be another set of potential responses obeying the 

set of conditional independences (6.17), (6.18), (6.19) and such that U ^  V, 

that is Wo and W\ have a different correlation structure than Y\ and Yo. It is 

possible to derive expressions like (6.23), (6.24), (6.25) and (6.26) by replacing 

f i  with / 2 and yo with wq and y\ with w\ .

Now the constraints are on the distributions that are observable in prin­

ciple, this both idle and interventional regimes of Ft . Thus the constraints 

in the potential response setup are:

P I / 1(T|Ft =  0) = / 2(T|Ft = 0),

P2 / 1(yo|T, =  O,FT = 0) =  / 2(Wo|T = O,FT =  0),

P3 /1(ri|T = l,Fr = 0) = /2(W1|T=l,Fr = 0),

6 .3 .3  P r o o f  o f  con jectu re  in term s o f  p o te n tia l resp o n ses

Consider (6.22), this expression depends on the distribution of Y0 given treat­

ment is T  = 1, and on the marginal distribution of Y\

Consider the first part of (6.22). Now, p(Yi\T = 1, F t  = 0) is an observ­

able distribution and must be the same for W\ by constraint P3. It remains

to be seen if the constraints ensure that fi(Yo\T =  1,Ft — 0) =  / 2(Wo|T =

1, Fp =  0) •

Denote by pt = p(T =  t\FT =  0), the probability of T  =  t given FT =  0. 

Assume that pt ^  0 for t € {0,1}. The probability pt is the same for f i  and
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/ 2 by constraint PI above. Consider the following;

f i ( Y  = y\FT = 0) =  /i(Vo =  y\Fr =  0)

=  fi(Xo = v\Ft =  0) as (Yo,YJALFt

= S / iO 'o  =  v \Ft  =  0,7’ =  t)pt
teT

= /i(y 0 = 2/|^r = 0> T  — l ) p i  -f f i { Y o  — 2/|-̂ r =  0, T1 =  0)po 

= /i(Fo = y|Fr = 0,r= l)Pl +/i(y = y|FT = 0,T = 0)po,

as when T =  0, Y  =  2/. So

(a)
( c )

f i ( Y  = y\FT = Q) =  A(Po =  v \Ft =  0»T =  1) Pi
(b)

W
+ / i ( y  = 2/|Ft> = 0, T = 0)/poN

(d)

The above argument is valid for / 2 and Wo, Wi. Now (a), (c), (d) and (e) 

are observable quantities whose distributions given Ft  must be the same for 

both U and V  by constraints P1-P3. In particular, (a) is observable from 

experiment where we set Ft =  0, and (c),(d) and (e) from observation. Thus 

these are the same for the two sets of potential responses.

We can therefore solve for (b), and it also must be the same for both 

U and V. So we have that the constraints guarantee that / i( lo |T  =  1) = 

/ 2(Wo|T  = 1 ) .  Thus we have shown that for any pair of potential responses, 

the constraints on the observable distributions guarantee that the ETT is the 

same.
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6.4 Proof of conjecture for arbitrary U

To complete the proof that the ETT is well defined for arbitrary choice of U 

we show first that Y  can be transformed into a variable that has the same 

probability distribution as Y  and that is a deterministic function of U,T and 

a uniform random variable E  that is independent of U and T  given Ft - We 

do this using the conditional probability transform (Rosenblatt 1952). This 

function is then further shown to be an expression for a pair of potential 

responses W  =  (Vi, ^o), such that (U, E)ALY\(W,T), WALFT and further, 

TALW\U. As the observable probability distributions given these transfor­

mations remain the same, the ETT remains the same.

The process is easily described as a sequence of graphs as shown in figure

6 . 2 .

1) 2)

Figure 6.2: The transformation of Y  into X. X  is in a double box because it 
is a deterministic function of its parents.
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Denote by

Gtu(y) = p(Y < y \T  = t,U  =  u, Ft = 0), (6.27)

the cumulative distribution of Y  given T  and U. Assume that Gtu is well 

behaved, that is, Y  is a continuous one dimensional variable. We must further 

require that G be non-zero inside its support. G can be extended to include 

discrete distributions as well. Then define

X  := Gtu(E) (6.28)

where EJL(T, £7, Ft ) and E  ~  U [0,1]. Then for t € {0,1} and u E 77,

p(X  < x\T  =  £, U =  u } F t  =  0) = p(G ^(E )  < x\T = t,U = u,FT = 0)

= P(G;u' ( E ) < x ) 3s E M T , u , f t )

= p(E < Gtu{x)) =  Gtu(x) 

= p(Y < x \ T  = t ,U  = u,FT = Hl).

Thus Y  and X  have the same conditional probability distributions, and X  is 

a function of T, U and E. This implies further, that the joint distribution of 

X , T  and U given FT =  0 is the same as the joint distribution of Y, T  and U 

given Ft  — 0, which is what we require. As Y  and X  are both independent 

of F t  conditional on T  and U, the conditional distributions of Y  and X  given 

F t  7̂  0 are also equal to each other, and so the transformation is valid for all

regimes of Ft - This step of the proof corresponds to DAG 2) in figure 6.2.

Now write (6.28) as

X  = g(T,U,E).
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Further define W  =  (Yi ,Yq) where

Yi := g(l ,U,E)  (6.29)

Yo := g frU ,  E). (6.30)

Now Y is distributed like X  which is such that

X  = Yl if T  = 1

X  = Y0 if T  =  0

Hence W  is a pair of potential responses as either one- or the other will be 

observed given a treatment is administered.

We have shown that Y can be expressed in terms of a pair of potential

responses that have the same conditional distributions as Y given T  and U.

The last part of the proof is to show that

1. XAL(U,E)\(W,T),

2. TAL(E,W)\U and

3. WALFt ,

as this would imply that we can replace U and E  with T  and W  in order 

to make inference about X  and thus Y. The first conditional independence 

follows from the fact that X  can now be expressed as a function of T  and W : 

X  =  g'(T, W) such that X  =  Yt for T  = t. Hence it is independent of U and 

E  given T  and W.  For 2. we see that as EALT, U, we have that EALT\U. 

Further, as W  is a function of E  and U it follows that TALW\U by Dawid
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(1979) Lemma 4.2. The last conditional independence follows from the fact 

that W  depends only on U and E , both of which are marginally independent 

of Ft and hence W  is also marginally independent of FT. The last two steps 

correspond to DAG 3) in figure 6.2 and can be read off that graph using the 

moralisation criteria.

Hence we have shown that an arbitrary U can be expressed in terms of a 

pair of potential responses such that the probability distribution of Y  given 

T  and U remains the same throughout. Thus if we consider (6.7) which is 

one way of expressing the ETT in non-counterfactual terms;

E{Y\T  =  1, Ft  =  0) -  E[E(Y\U, T  = 0, FT = V)\T =  1, FT =  0]. 

and (6.22)

E(Y i \Ft =  0) -  E(Y0\T =  1,Ft =  0).

we see that the first parts of the two equations is the same as Y  ~  Y\ when 

T =  1 and so E(Y \T  =  l ,F r  =  0) =  £(Yi|FT =  0) . Now p(Y\U,T  = 

0, Ft’ =  0) =  p(X\U, T  = 0,Ft  = $) by construction of X  in (6.28), and 

p(X\U, T  =  0,Ft  = 0) =  p(T0) by construction of Y0 in (6.30). Hence the 

expectations also remain the same and there is equivalence between (6.7) and 

(6 .22).

By the proof in section 6.3.3 we know that any two pairs of potential 

responses lead to the same value for the ETT given the constraints imposed 

by the observed distributions. Hence, as any U can be shown to lead to 

the same ETT as a pair of potential responses it follows that the ETT is
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well defined for arbitrary choice of U given the constraints imposed by the 

observed distributions.

6.5 New Story

The first part of this chapter showed that given the constraints on the observ­

able distributions, choice of U is not important and the ETT is well defined. 

In this part, we discuss the problem of identifiability of the ETT from both 

experimental and observational data.

Look again at the original story: Doctor A in hospital One is given a 

new drug treatment to administer to his patients. He observes some patient 

characteristics and makes a decision as to whether or not to administer the 

drug or not. This time however, the doctor’s decision can be overruled and a 

different treatment to the one the doctor recommended can be administered. 

For example if the hospital runs a clinical trial. The doctor’s decision D, and 

the treatment administered T  as well as the responses Y  are all recorded.

The statistician analysing the data is still ignorant of the doctor’s decision 

criteria U. However, she knows what the doctor recommended, that is, D. 

We regard D as a chance variable arising naturally from its relationship with 

U. Ft is an intervention variable, and is equal to 0 if the doctor administers 

the drug as he sees fit. In this case T  = D. If however, the hospital is running 

clinical trial, then FT =  t , t 6 {0,1}, and T  =  FT, regardless of the value of 

D. We see that the treatment that is actually administered is a deterministic
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function of D and Ft as follows;

rp _  \ T  = d, iff =  0 and D — d 
=  { T  =  t iff Ft  =  t.

The variables above are related as shown in the DAG 6.3. In particular,

Figure 6.3: The story in a DAG.T is in a double square as it is in fact a 
deterministic function of D and FT.

the DAG exhibits the following set of conditional independence constraints;

([/,£>) JL Ft

Y  JL (D,Ft )\(U,T)

T  _LL U\(Ft ,D).

The last conditional independence is trivial, as T  is a deterministic function 

of Ft and D. From these we can derive (using moralisation criterion 2.4) that

D !  Ft (6.31)

Y  JL Ft \(T,D), (6.32)

In other words, we can replace U with D in the ETT as knowing U gives us 

no extra information about the situation if we already know D. Hence (7) 

can be re expressed in terms of an observable value.
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Going back to equation (6.4) and replacing U with D, what does the ETT 

turn into?

E[E(Y\D,Ft  = 1 ) \T= 1 ,F t  = 0] -  E[E(Y\D,Ft  = 0 ) \T = 1 ,F t  = Q] 

= E[E(Y\D, Ft  =  1)|T =  1, =  0] -  E[E(Y\D, FT = 0 )\D =  1, FT = 0]

= E(Y\D = 1, Ft =  1) -  E(Y\D = 1  ,FT = 0). (6.33)

This is because T  — 1 and Ft — 0 is equivalent to D =  1 and FT. As well as 

being a simpler version of (6.4), it also has a very simple interpretation. It 

is the difference of the expectation of the response between those that were 

treated and those that were not treated given that the doctor would have 

liked to treat them all. The reason for using this version is to simplify the 

problems of identification from observational data as we will see in section 

6 .6 .

Econometric Choice Model

The classic econometrics choice model (Heckman and Navarro-Lozano 2004) 

is analogous to the above story. In this model, a group of people decide 

whether they want to join a particular scheme. However, only a subset of them 

actually participate, and the reasons they made the decision to participate 

are unknown. Again we seek to estimate the ETT.

In the doctor example the population is that of the patients of the hos­

pital, and is hence a closed and easy to monitor population. In the choice 

model setting, the population of interest is in principle, the whole population,
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which is difficult to monitor. The solution to this problem is to consider a 

subset of people in the general population that has certain characteristics of 

interest. The probability that someone in this subpopulation would choose 

to participate, the propensity score (Rosenbaum and Rubin 1983), is found 

by means of surveys, and is generally considered known.

Where in the doctor example everything is conditional on the hospital 

(although this is not made explicit), in the choice model, we condition on the 

covariates that delimit the population of interest, say X .  Then, the effect of 

treatment on the treated is given by

E(Y\D  =  1, T  = 1, X) -  E(Y\D  =  1, T  =  0, X).  (6.34)

Consider the following example to clarify the interpretation of (6.34) above: 

Legal immigrants in the north of Italy can sign up to participate in a pro­

gramme that trains them to set up a business. A number of them are ran­

domly selected to participate in the training scheme. After the end of the 

course those who participated are monitored for an additional year and their 

success in setting up or participating in a business venture recorded. Y  is the 

response, the participant’s progress in the business, D  is the variable that 

tells us whether they signed up to participate. D is 1 if the individual wanted 

to participate and 0 if they did not. T  is 1 if the individual participated and 

otherwise. Now (6.34) is equal to E(Y\D  =  1 ,Ft = 1, X )  — E(Y\D  =  1, Ft =  

0, X )  provided YALFt \D, T, X  which is assumed to be the case. Thus we find 

that we are again in the situation we have been addressing so far.
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6.6 Identification

We now look at the problem of whether the ETT is identifiable from exper­

imental data where F t  ^  0 or from observational data, where Ft  =  0, or 

even a combination of the two. We return to the situation where we cannot 

observe D. It is easy to see that E(Y\D  =  I, F t  =  1) is identifiable from 

the observational data, as it is equivalent to E(Y\D  =  1, T  =  I, F t  = 0) by 

the independence constraint (6.32) and these are exactly the conditions for 

recording the data. E(Y\D = 1,FT =  0) however poses more of a problem. 

Consider p ( Y \ F t  = 1), the response given F t  = 1, under experimental condi­

tions, where we just consider the response of those who were treated, without 

considering the doctor’s recommendation.

p(Y\FT = l) = J 2 p ( Y \D = d’FT = VP(D = d\FT = l )
d e  D

=  p(Y\D =  0, F t  = l)p(D =  0|FT =  0) (6.35)

+ p{Y\D =  1, FT =  l)p{D  =  l |F r  =  0) (6.36)
Vi y  I ✓Vi, ... ■

(a) (6)

= p(Y\D = 0, FT =  1 )p(T =  0|FT =  0) (6.37)

+  p(Y\D =  1, T  = 1, Ft  = 0) p{T =  1\FT =  0) (6.38)
V« .........................  V ' . ' — — ................   ' y . ...................

(c) (d)

(6.35) to (6.37) follows from the fact that when F t  =  0, D =  T. (a) in (6.36) 

becomes (c) in (6.38) by conditional independence (6.32). (b) in (6.36) and 

(d) (6.38) are equivalent because when Ft = 0, D =  T.

Looking at the set of equations above, we see that whereas p(Y\FT = 1) 

can only be estimated directly by an experiment where all patients are admin­
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istered treatment T  =  1, the remaining probabilities except the problematic 

p(Y\D  =  0, F t  — 1), can in principle be estimated by letting the doctor ad­

minister the treatment as he chooses. In this case, D = T  and F t  = 0 and 

we are in the observational regime.

In order to identify p(Y\D = 0,FT =  1), we would therefore have to 

have two exchangeable groups of patients, one to whom administer treatment 

T  — 1 and one to observe a doctor’s behaviour.

So far, we have looked at Doctor A in hospital One. Let us assume that 

there is another hospital, hospital Two, whose patients are exchangeable with 

those in hospital One, where Doctor A is making the same decisions D as he 

did in hospital One, and administering treatments accordingly.

Now p(Y\Fr  =  1) can be found by running a clinical trial and randomising 

patients in hospital One. p(T  = Ol-Er =  0) can be found from an observational 

study, where the doctor B is left to his own devices in hospital Two, as 

p(T =  0|F:r =  0) =  p(D = 0|F t  =  0). Similarly p(T =  1|FT =  0) and 

p{Y\D =  1, T  =  1, =  0) can be found from leaving the doctor to administer

the drug.

It would appear that if we can run an experiment there would be no 

point in evaluating the ETT, as we could evaluate the ACE directly, however 

identification of p{Y\D — 0, FT =  1) requires only p(Y\FT — 1) not p(Y\FT = 

0), and hence, a complete randomised clinical trial is not necessary. It is only 

necessary that hospital One administer treatment T  = 1 to all or a random 

sample of its patients indiscriminately. Thus it is possible to identify the ETT
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if there is no control group. These are very specific circumstances and are not 

likely to occur in reality. It is usually the case that there is no experimental 

data and thus additional assumptions must be made.

In the econometrics choice model, we do not have experimental data as no 

one can be forced to do anything against their will, training programmes have 

a limited number of places etc. So the problem becomes how to identify the 

ETT from purely observational data. In order to do this, different techniques, 

involving different initial assumptions have been developed. These are in 

particular the assumptions of matching, see Rosenbaum and Rubin (1983) and 

(1985), control functions, Heckman and Robb (1985) and finally instrumental 

variables, Angrist et al. (1996). A review of these methods and extensive 

bibliography are given in Heckman and Navarro-Lozano (2004).

I will discuss matching and control functions and their non-counterfactual 

counterparts.

6.6.1 Identification assumptions in the potential response 
framework

This section discusses two of the assumptions made for identifying the ETT 

from observational data in potential response setups, Matching and Control 

functions (Heckman and Navarro-Lozano 2004). In order to do this their 

initial setup, which is slightly more complex than the one developed in the 

non-counterfactual framework so far must be described.

Heckman’s model of choice has the following storyline: a sub-population
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determined by some observable characteristics can decide whether they would 

like to participate in a scheme, for a number of reasons, they may not neces­

sarily be able to participate in the scheme. Hence the attention is restricted 

by necessity, to the sub-population of those who did participate, i.e. those 

who were treated. The quantity of interest is the effect of treatment on the 

treated. The model has the following elements;

List 6.6.1

11 T, the decision variable, not to be confused with D the decision variable 

used in the non-counterfactual setup.

12 Y  — (Yb) Yi), the potential outcome variables. Y  =  Yt iff T  =  t, t =  0,1.

13 Z, a set of observed variables known to (at least partially) influence the 

choice.

14 X, a set of observed covariates such as age, sex and some demographics.

15 Uo and U\, unobserved variables that influence Y0 and Yi respectively 

through the functions Yt — pt{X, Z, Ut), t = 0,1.

16 Uy , unobserved factors affecting choice, these are related to a utility 

function V  =  py{X,  Z, Uy). Further, each individual will choose T  =  1 

(given X  and Z) if and only if they believe that its utility V  is greater 

or equal to 0.

17 The probability p(T = 1 \X, Z), known as the propensity score, the 

probability that an individual in a particular subpopulation determined
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by the values of X  and Z  chooses to participate in the scheme. The 

propensity score is generally considered known (through surveys and 

census information) and is assumed to depend entirely on X  and Z. It 

will be denoted from here on as ps(X , Z).

The effect of treatment on the treated is given by

E T  = E(YX -  Y0\T = 1 , X )  = E(YX\T =  1,X) -  E(Y0\T = 1,X). (6.39)

The following quantities are assumed observable; E(YX\T =  1, X , Z) = E (Y \T  =  

1 , X , Z )  and E(Y0\T = 0,X, Z) = E(Y \T  — 0, X , Z) .  Also the expectations 

of Yt given T  =  t, that is p(T = 1|X, Z) ,  p(T = 0 , X , Z)  the propensity 

scores are assumed known. Finally, p(Z\X,  T),  the probabilities of T  given 

the observed covariates, and the distribution of Z\X,  T  are also assumed to be 

observable. As with the non-counterfactual setup the problem is identifying 

E{Y0 \ T = 1 , X ) .

M atching

In matching the assumption is made that (Yl, Yo)ALT\(X, Z). This then 

means that

E(Y0\T = 1, X, Z) = E(Y0\T = 0, X, Z) =  E(Y0 \X, Z). (6.40)

In fact, for the effect of treatment on the treatment, the assumption can be 

reduced to Y0HT\ ( X,  Z). This is in fact analogous to randomising the treat­

ment given (X,Z). If we consider Yq, we know this means that the treatment
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that has been administered is 0. In non-counterfactual terms, this can be 

seen as saying that F t = 0. The conditional independence (6.40) can be rein­

terpreted as YJLFt \X, Z , T. This assumption equates the effect of treatment 

on the treated to the average treatment effect, and is not often appropriate.

Control Functions

The control function approach relies on the assumption of separability of each 

potential response into two parts that can be treated independently of one 

another. Usually this assumption is strengthened to additive separability1 

which means that the functions in items (15) and (16) in list 6.6.1 above can 

be expressed as follows:

where we assume that (C/i, Uq, LV)iL(X, Z). This guarantees that the two 

parts the right hand sides of (6.41) and (6.42) are composed of can be treated 

separately. From (6.41) it follows that

Yt = to (X t Z) + Uu 

V  =  nv (X ,Z ) + Uv

(6.41)

(6.42)

E(Yt\T =  t ,X ,  Z ) =  tH{X) +  E{Ut\X, Z ,T  = t). (6.43)

So, for the case where T  = 1.

E(Y1\ T = l , X , Z ) = ft1(X) + E{U1\ X , Z , T = l ) .  (6.44) ̂ ^
(a)

Un Cameron and Heckman (1998) there are examples where it is possible to avoid the 
additive part of the assumption.
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Look at (a) in (6.44).

(&) = E(U1\X1Z ,T  = 1) =  E (U ! \V > 0 ,X ,Z )

= E M U v Z - M X t Z l X t Z ) ,  (6.45)

by 6.42. Now we know X  and Z  (as these are observed). Further, for sim­

plicity we say that w =  —/J,y(X, Z ). Then (6.45) is

E(Ui\Uv >w) = f ( w )  (6.46)

a function of w. Similarly, the propensity score itself is a function of w as

p ( T = l \X ,Z )  = p (V >  0)

= p(Uv>-nv(x,z))
= p(Uy > w) =  g(w) (6-47)

Assume that we know the probability distribution g of Uv, and it is smooth

and continuous. See figure 6.4. We have from (6.47) above that p(T =

P ( U V*  W )

w

Figure 6.4: If we know the mass of the tail area probability p{Uv > w) and 
the cumulative probability function we can infer w.
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1\X, Z ) =  g(w), so for a given X  and Z  we can invert g:

li, =  s - 1(p (r =  l|J!(',^)). (6.48)

Then if we know the joint probability of U\ and Uy, we can calculate (a) in

(6.44) above by plugging w found from (6.48) into (6.46), so

E i U x p v t w )  = } { g - \p { T = l \X ,Z ) ) .

= k m t = i \x , z ))

= K,{ps(X,Z)). (6.49)

Where K\ is just a function of the propensity score. As we do not know 

g or /  in actuality situation, K\ must be assigned a specific form and its 

components estimated as follows: E(Yt\T = t ,X ,Z )  for both t =  {0,1} can 

be estimated from the observed data for both settings of T  and any available 

setting of X  and Z. Further , the propensity score ps(X , Z) is considered 

known or estimable for all available settings of X  and Z. In order to estimate 

components of K\ (as well as the ps the expectation of Yt), E(Yt \T =  t , X , Z) 

is regressed against the propensity score.

A similar argument is made for T  — 0 and we get

E(U0\X, Z, T = 0) = E(U0\Uv < Z)) =  K 0(ps(X, Z)). (6.50)

The /is estimated in this way can be identified up to a constant term. 

However, this constant term is not important to estimate the ET as it is 

assumed to cancel out when the expectation of Yo is subtracted from the 

expectation of Y\ .

232



Due to the assumption of separability, we can then take the fj, we have 

estimated from treatment T  = 1 and add it to K q to deduce

E(Y0\T =  1 ,X , Z ) =  Ml(X) +  K0(ps(X, Z)).

The ET is more complex than the subtraction of the two expectations of 

y , as Z  needs to be summed out. The details are beyond the scope of this 

discussion. See Heckman and Vytlacil (2005) for such details.

6.7 Non-counterfactual assumptions for iden­
tification

It is not possible to identify E(Y\D  =  1, FT =  0) from observational data, or 

indeed data involving interventions without control groups without imposing 

some additional assumptions. These are of a parametric form and are inspired 

by the counterfactual approaches.

6.7.1 Matching

In the non-counterfactual framework, matching is expressed as YALD\(FT, T). 

Hence ETT becomes

E(Y\D  = 1, Ft  =  1) -  E(Y\D = 1, FT =  0) 

=  E(Y\D = 1, T  = 1, Ft = 1) -  E (Y\D  = 1, T = 0, FT = 0) 

=  E (Y \T  =  1, Ft =  1) -  E{Y\T  =  0, FT = 0) 

=  E{Y\Ft =  1) -  E(Y\Ft = 0),
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which is the average treatment effect. As in the counterfactual setup, this 

assumption is often not appropriate.

6 .7 .2  C ontrol F un ction s

The idea follows that of control functions in the counterfactual framework, 

but is slightly different. First, we (re)introduce the unobserved variable [/, 

and as we need to be able to condition on a set of observable covariates, we 

introduce a set of these denoted by Z. These are believed to influence choice, 

and if we adopt the utility argument put forward by Heckman, the decision 

to participate depends entirely on this set of variables. These variables are 

assumed to obey the following conditional independences:

Assumption 1

(U ,Z )M F t ,T)\D, (6.51)

and

Assumption 2

(£/, Z) JLL Ft  and (6.52)

U AL Z. (6.53)

A change in the conditional independence (6.3) involving Y  also has to be 

made to account for the introduction of Z. It is changed to

YALFt \(U,D,T, Z) (6.54)
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h \—-0 —

Figure 6.5: DAG represents the relationships between the variables. T  is in 
a double box as it is a deterministic function of FT and D.

These relationships are described in the DAG figure 6.5.

The first conditional independence says that both the unobserved variable 

U and the observed covariates are independent of the treatment assignment 

mechanism given the decision, i.e. the doctor’s preferred treatment. The 

second conditional independence just states that the observed and unobserved 

covariates are marginally independent of the intervention variable.

The third conditional independence tells us that the observed and un­

observed influences on the decision are independent of one another. This 

assumption may seem implausible, however, in the econometric context Z  is 

generally considered to contain characteristics such as age and sex as well as 

demographic details, whereas U is considered to be either an error term or to 

contain personal detail that might influence each individual in his/her own 

way. This can be considered marginally independent of the demographic de­

tails. In the doctor story, U may be the doctor’s personal feeling about who 

should be treated, and Z  the patient characteristics, age, sex and medical 

history. The two are not independent given D however.
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We further assume additive separability as follows; 

Assumption 3

Y  = Pt "t- U (6.55)

This implies

E{Y\FT = t ,D  = d,Z) = pt(Z) + E(U\FT = t ,D  = d ,Z )

= pt(Z) + E(U\D = d,Z)  (6.56)

as (U, Z)1LFt \D. fit(Z) is the part that depends on the value of FT (and 

hence T) as well as the observed covariates. E(U\D = d,Z)  depends on D 

and Z  through U.

Look at E(U\D = d, Z) in more detail; if we make the further assumption 

that

Assumption 4

E(U\D = d, Z) is a, function of the probability that D = d given the observed 

covariates and we denote p(D = d\Z = z) — Pd(z) and say

E(U\D = d ,Z  = z)) = f(p d(z)). (6.57)

We can then determine pt(Z) by regressing Y  (which we have) against f (p d{Z)) 

for the cases where Ft = D over the domain of Z.

We can justify assumption 4 using a utility based argument similar to 

Heckman’s.

Assumption 5
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An individual will choose D = 1 if and only if he thinks that it will have a 

higher utility than not making the choice.

We assume that we can estimate the probability of making the choice 

D =  1 from historical data or that it is known and depends only on the 

observed covariate. This is in fact the propensity score, called pd here. Hence 

we assume that we know f{pd(z)) for all available z E Z  where Z  is the 

domain of Z.

Having estimated pi and po we then need to sum out over Z  in order to 

be able to estimate E(Y\D  =  1 ,Ft — 0). Once this has been done, we can 

estimate E(Y\D  =  1, FT = 0) as follows;

E{Y\D = 1,Ft = 0) = po + E{U\FT = 0,D = l)

= Po +  E(U\D  =  1)

=  /̂ o + / i  Gpi ) • (6.58)

So we have identified the effect of treatment on the treated.

6.8 Conclusions

It is worth making some final comments on the discussion in this chapter. 

No assumption about the existence of potential responses were made or any 

constraints placed on their correlation structure in this chapter. They are 

used as a mathematical tool. As long as they have the same observable 

distributions, the unobservable joint distribution of the potential responses is 

irrelevant to the ETT. Of course the value of the ETT will depend heavily on
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the parametric assumptions made in order to identify it, thus overriding the 

fact that the ETT as a mathematical expression is well-defined irrespective 

of the joint distribution of the potential responses.

Another interesting point is that when tackling this problem initially, we 

had considered only the idle regime of FT- In so doing, it appeared immedi­

ately obvious that the ETT was not well defined, as a counterexample was 

produced that showed that different C/’s lead to different ETTs. It was only 

upon realising that the constraints had to include all distributions of the ob­

servable variables that were at least in principle observable, that is, including 

the interventional regimes, that it was possible to prove that the ETT was 

well-defined. This is interesting particularly in the context of potential re­

sponses and counterfactuals where the relationship between intervention and 

causality is not explicit in the notation or indeed in discussion of problems. 

Heckman himself makes the assumption that a potential response variable 

Yc(u) is the same irrespective of how c comes to be, by intervention or other­

wise.

A final point is the relative ease with which counterfactual arguments can 

be turned into plain probabilistic arguments. This is a theme that has been 

widely explored in this thesis, and this chapter is yet another example of it.
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Chapter 7 

Conclusions and further work

Causal inference is a fascinating and controversial subject and can be ap­

proached from many different angles depending both on the background of 

the researcher and his or her perception of causality itself. As it is relatively 

new as a field of research in statistics, a unified approach to it has not yet been 

established. In this thesis we have proposed an approach based on decision 

theory which we believe to be optimal for predictive causal inference. This re­

flect the idea that causality can be understood best in terms of decisions and 

interventions. We have also avoided making untestable assumptions about 

unknowable quantities such as potential responses and tried where possible 

to express causal quantities in terms of probabilities without deterministic 

relationships.

We have explored and assessed the validity of assumptions made in com­

peting causal models and argued that these are not useful or realistic and lead 

to errors both in how causal quantities are expressed and how the methods 

are applied.
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In Chapter 4 we showed that misuse of the counterfactual/graphical set­

up can lead to incorrect inference about the existence of causal relationships 

in the area of causal discovery from observational data, and clearly stated 

the implicitly made assumption that relationships derived from observational 

studies are the same as those derived from experiments.

In Chapter 5 we showed that the problem of direct and indirect effects 

could be expressed more simply in terms of the decision theoretic framework 

and introduced the fictional manipulation variable which codes random in­

terventions and thus enables us to identify direct and' indirect effects form 

observational data without making further assumptions.

In Chapter 6 we tackled the effect of treatment on the treated and showed 

that this effect is well-defined for any unobserved sufficient covariate. Further 

we showed that it is not possible to identify the ETT entirely from observa­

tional data without making further modelling assumptions.

We trust that the contents of this thesis has convinced the reader that 

this approach is superior to the competing causal frameworks for predictive 

causal inference.

Having set up the decision theoretic causal framework, further research is 

unlimited. One interesting avenue of research is that of blackbox interven­

tions, applied in particular to policy interventions.

Another is to extend the concept of manipulation variables to problems 

other than that of direct and indirect effects. An example of such a problem, 

also termed the problem of direct and indirect effects, refers to the situation
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where the treatment of one individual will have an effect directly on the 

individual itself as well as those who surround him or her.

An example of this type of problem is when a sample of a population are 

vaccinated. This vaccine has an effect on the vaccinated individual and on his 

community (family and collegues). This is a difficult problem as it involves 

looking at the effect of interventions on different levels, individuals on the 

one hand, and the community on another. It would therefore involve coding 

interventions on different levels too.

Remaining in the area of methodology, it would also be interesting to 

take a step back in the process and look at how to design experiments, or 

observational studies such as surveys to optimise the estimation of causal 

quantities.

Further, there is the possibility of modelling the difference between the 

data we observe and the data we need in order to make causal inference as a 

separate parameter (Greenland 2005).

There is also the problem when making causal inference using observa­

tional studies that there comes a point where additional information is no 

longer useful as the data is not experimental. It would therefore be interest­

ing to explore the problem by including a value of information argument in 

the methodology.

Finally, it would be interesting to see how the methodology developed 

here works in a real context with data.
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Appendix A 

Markov Equivalence

Markov Equivalence in DAGs is characterised in the following way. Two 

DAGs G\ and G2 are Markov Equivalent if they have the same skeleton and 

the same v-structures. The skeleton of the DAG is the set of nodes and edges 

between them. Hence the three DAGs in Figure A.l have the same skeleton. 

The v-structures of a DAG are the triples of variables, say (X, Y,Z)  such 

that X  —► Y  <— Z. Hence in Figure A.l DAGs 1) and 2) have the same 

v-structures, namely B  —> D *— C whereas DAG 3) has an additional v- 

structure B —* A +— C. In fact DAGs 1) and 2) are Markov equivalent and 

embody the same conditional independence relationships:

D 1L A \(B ,C )

B  _U_ C | A

whereas DAG 3) embodies the following conditional independence relation­

ships:

D JLL A \(B ,C )
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B M C

Figure A.l: Figures 1),2) and 3) have the same skeleton, but whereas 1) and 
2) have the same v-structure and are therefore Markov Equivalent, 3) does 
not.
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Appendix B 

Simple Causal Discovery 
Algorithms

T h e  IC  A lgorith m

The Inductive Causation algorithm can be found in (Pearl and Verma 1991) 

and (Pearl 2000) Chapter 2.5. A further algorithm called the Inductive Cau­

sation algorithm with Latent variables is aimed at discovering causal relation 

in cases where unobserved variables are believed to be parents of some of the 

observed variables. The IC algorithm works as follows:

We input P  a stable distribution on a set of variables V.

1. For each pair of variables A and B  in V , search for a set Sab such that 

AALB\Sab w.r.t the probability distribution P. We insert an undirected 

edge between A  and B  if no set Sab can be found.

2. For each pair of non-adjacent variables A  and B  with a common neigh­

bour C, check if C  € Sa b -

If it is then move on to step 3, otherwise add arrowheads pointing at
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3. In the partially directed graph resulting from the above two steps orient 

as many of the edges according to the following rules:

(i) the orientation should not create new v-structures and

(ii) the orientation should not create a directed cycle.

Exam ple

Imagine we have data generated by the DAG in Figure B.l. From the 

data we find the following set of conditional independences:

PALS, 

PALT\R , 

Q-LLS, 

QALT\R , 

RJLS.

We then use the IC algorthim to find the generating graph. For Steps 2 

and 3 below, I just show how the algorithm works for 2 sets of non-adjacent 

variables.

Figure B.l: Generating DAG
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Step  1: put an undirected edge between each every pair of nodes that 

do not have a set that separates them. In this case the variables with an 

undirected edge are those that do not appear with a _LL between them in the 

above list. The result is Figure B.2 a), which has the same skeleton as the 

generating graph.

S tep  2: the sets of non-adjacent variables are (P, T ), (P, S), (Q , T), (Q , S) 

and finally (R, S). Consider (P ,T ): they have a common neighbour R. Is 

R  in S pt? It is, hence we continue to the next step. Consider {R,S), these 

have a common neighbour T. Is T  in Sps? No it is hot, hence add arrows 

pointing at T  from R  and S. See Figure B.2 b).

S tep  3: orient the graph as we choose providing we do not create cycles 

or v-structures. See Figure B.2 c) for the set of Markov Equivalent graphs 

generated by this process.

Six ME DAGs are generated by the last step. Only one corresponds to 

the data generating graph. We may be able to eliminate some of the DAGs 

if we have further information such as for example P  precedes R. This would 

exclude 3 of the DAGs.

All the DAGs found using the IC algorithm share the v-structure. Hence, 

if we interpret the DAGs as causal, we can make inference about intervention 

on R  and S  and their effect on T  as detailed in section 4.7. This can be 

extended to the general case. The sets of Markov equivalent DAGs generated 

from a set of conditional independences (with no additional constraints), will 

only enable causal inference on the v-structures, as these are the only directed
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Figure B.2: The steps of the IC algorithm

elements that they have in common.

The IC algorithm would not be very useful in highly complex problems 

involving many variables that are related to each other. If we do not have 

sufficient v-structures, then this method would not result in very many rela­

tionships that can be used for inference. For example, if we had not had the 

conditional independence RALS, then there would have been an extra edge 

between R  and S  and hence no v-structure that can be used for inference. 

The process allows DAGs to be excluded when there is prior information 

about temporal ordering or the variables or when variables are considered to 

be root variables and can therefore not have any parents (such as for example 

gender). The situation would be further complicated when we allow for latent 

variables.
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Bayesian Causal Discovery

The Bayesian causal discovery method differs from the constraint based method 

in one main aspect. Whereas the constraint based methods take the condi­

tional independences recovered from the data as true, the Bayesian method 

associates a degree of uncertainty to the constraints, by allowing different 

graphical models (which encode different conditional independences) to rep­

resent the observational data set. (Heckerman, Meek, and Cooper 1999) state 

that the Bayesian approach is superior to the constraint based method for 

three reasons. It is not subject to errors due to incorrect conditional indepen­

dence constraints. Finer distinctions among model structures can be made , 

and finally, models can be combined to make better inference and take into 

account model uncertainty.

Outline of approach

1. Consider a set of variables X =  {X i , . . . ,  X n}.

2. We have complete data D — {a;i,. . .  ,£„}, which is a random sample 

from some unknown probability distribution for X .

3. We assume that this unknown probability distribution can be encoded 

by some causal model with structure m.

4. Let m be a realization of the discrete M, each m representing a possible 

true model.
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5. Each m  has associated uncertainty in the form of a probability distri­

bution p( m)

6. Every possible model structure m  has an associated set of parameters 

0 m, whose values 6m have associated uncertainty p(0m |m).

7. Given D, compute the posterior probability for each m  and 9m, p(m\D) 

and p(6m\D,m) respectively using Bayes’s rule.

8. Given a hypothesis h, determine probability that h is true given the 

data D by averaging over all possible models and their parameters

p{h\D) = ^2p(m\D)p(h\D,m)  where
m

p(h\D,m) = j  p(h\Om,m)p(Om\D,m)dem 

If we assume that the likelihood terms factorise into local groups, that is

n
p(x|0m,m) = Wp(xi\pai,du im)

i= 1

and that each local likelihood is in the exponential family, and further that 

the parameters are mutually independent then the above computations can 

be done efficiently and in closed form.

An artificial example of how the algorithm works is given in (Heckerman, 

Meek, and Cooper 1999). It starts off by generating data from the model 

X  —> Z  «— Y  and then uses this data to test the hypothesis that “X  causally 

influences Z ”. The model is just a graphical representation of the conditional 

independence XALY. The example goes on to find that the generating model
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is indeed the most likely model for the observational data. This shows that 

the algorithm successfully finds its generating model, but does not justify 

causal interpretation of the models. This can only be done by making the 

assumption that there is an underlying causal structure and it represents 

both the experimental situations as well as the natural one. That is, the 

fundamental assumption.

I imagine that the limitations of the Bayesian approach are similar to those 

of the IC algorithms when it comes to large numbers of inter-related variables. 

However, these algorithms are not bound to the conditional independences as 

the IC algorithm is, and hence will probably be less prone to errors associated 

to finding the incorrect conditional independences.

In (Heckerman and Shachter 1995), a decision-theoretic approach to causal­

ity is described, which is covered in Chapter 3 section 4. It allows for vari­

ables that cannot be intervened upon to be decision variables. For example, 

although gender cannot physically be intervened upon, it could in theory at 

least, have been intervened upon and changed at conception. It is therefore 

possible to make inference with gender as a cause. This allows for a more 

liberal interpretation of discovered DAGs as encoding causal relationships.
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Appendix C 

Humans vs Animals

A new drug is found to be very effective in animals. The drug is very strong 

and has some unpleasant side-effects and the pharmaceutical company pro­

ducing it would like to know how well its effect on animals predicts its effect 

on humans before it is tested on humans. Let T  be the treatment, A be the 

response in animals and H  the response in humans. See Figure C.l. The 

pharmaceutical company can test the low dosage on both humans and ani­

mals, however, the can only test the high dosage on animals. If the direct 

effect and indirect effect via animals can both be found for the low dosage, 

they expect the high dosage relationships to remain the same as they are 

considered stable.

Note that in this example, the relationship between A  and H  is purely 

associational, that is there is no reason or cause that links the two. Further­

more, although all examples so far deal with the direct and indirect effect of 

treatment on the same unit, this in no longer the case in this example as a 

human and an animal are different types of non-exchangeable units.
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Figure C.l: The animal response A  is a surrogate for the human response H. 
The edge between A  and H  is dashed because it is purely associational, and 
has no causal element.

Extending the direct indirect effects framework by making additional as­

sumptions about the similarity between animals and humans could be an 

interesting avenue for further research
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