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A b s t r a c t

Due to the practical advantages over traditional input-output testing, operational or 

output-only modal analysis is receiving increased attention when the modal parame­

ters of large civil engineering structures are of interest. However, as a consequence 

of the random nature of ambient loading and the unknown relationship between exci­

tation and response, the identified operational modal parameters are inevitably cor­

rupted by errors. Whether the estimated modal data is used to update a finite element 

model or different sets of modal parameters are used as a damage indicator, it is de­

sirable to know the extent of the error in the modal data for more accurate response 

predictions or to assess, if changes in the modal data are indicative of damage or just 

the result of the random error inherent in the identification process. In this thesis, two 

techniques are investigated to estimate the error in the modal parameters identified 

from response data only: a perturbation and a bootstrap based method.

The perturbation method, applicable exclusively to the correlation-driven stochas­

tic subspace identification algorithm (SSI/Cov), is a two stage procedure. It operates 

on correlation functions estimated from a single set of response measurements and, 

in a first step, the perturbations to these correlation function estimates need to be 

determined. A robust, data-driven method is developed for this purpose. The next 

step consists in propagating these perturbations through the algorithm resulting in an 

estimate of the sensitivities of the modal data to these perturbations. Combining the 

sensitivities with the perturbations, an estimate of both the random and bias errors 

in the SSI/Cov-identified modal parameters is found.

The bootstrap technique involves creating pseudo time-series by resampling from 

the only available set of response measurements. With this additional data at hand, 

a modal identification is performed for each set of data and the errors in the modal



parameters are determined by sample statistics. However, the bootstrap itself in­

troduces errors in the computed sample statistics. Three bootstrapping schemes are 

investigate in relation to operational modal analysis and an automated, optimal block 

length selection is implemented to minimise the error introduced by the bootstrap. As 

opposed to the perturbation method, the bootstrap technique is more versatile and 

it is not restricted to correlation-driven operational modal analysis. Its applicability 

to the data-driven stochastic subspace identification algorithm (SSI/Data) for error 

prediction of the SSI/data-identified modal data is explored.

The performance of the two techniques is assessed by simulation on simple systems. 

Monte-Carlo type error estimates are used as a benchmark against which the predicted 

errors in the modal parameters computed from a single response history from both 

techniques axe validated. Both techniques are assessed in terms of their accuracy 

and stability in predicting the uncertainty in the operational modal parameters and 

their computational efficiency is compared. Also, the performance of the bootstrap 

and the perturbation theoretic method is investigated in hostile ambient excitation 

conditions such as non-stationarity and the presence of deterministic components and 

the limitations of both methods are clearly exposed.
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C h a p t e r  1

O v e r v ie w  o f  O p e r a t io n a l  

M o d a l  A n a l y sis

1.1 Introduction

Since the early developments of the Finite Element (FE) method, engineers have been 

increasingly using this versatile numerical tool for the static and dynamic analysis 

of structural systems. However, with the desire to develop more complex structural 

systems, the necessity arose for experimental procedures that enable engineers to ver­

ify and validate the numerical models. In the early stages, this was simply achieved 

by measuring the response of the structure under consideration due to a certain pre­

scribed load and subsequently comparing it to the calculated behaviour. In the case of 

poor agreement, it was then attempted, mostly by trial-and-error, to carry out some 

modifications on the model so as to bring the theoretical results closer into line with 

the experimental outcome. However, a more erudite approach became necessary. In 

structural dynamics and the study of vibration phenomena, modal analysis provided 

a valuable technique for a more effective reconciliation of the numerical and experi­

mental results as it embraces both analytical/numerical and experimental methods.

Analytical modal analysis anchors on a physical model of the structure which, for 

complex systems, is usually formulated in terms of the mass, stiffness and damping 

matrices resulting from a spatial discretisation of the system as is done, for instance,
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in a finite element model. Modal analysis breaks this spatial model down into its 

elementary dynamic components called the natural modes of vibration. They are in­

herent to the system and completely describe its dynamic behaviour. Each mode is 

described in terms of its modal parameters: the natural frequency, the modal damp­

ing factor and characteristic displacement pattern called the mode shape. For linear 

time-independent systems, any set of displacements can be expressed as a linear com­

bination of the mode shapes weighted by time-dependent coefficients which contain 

the damping and frequency information and whose amplitudes determine the degree 

of participation of a particular mode to the general response. This concept is akin 

to Fourier series and the mode shapes serve the same purpose as the trigonometric 

functions; they are orthogonal and usually only a few of them are required to describe 

the response with sufficient accuracy. This modal model thus has a considerable ad­

vantage over its spatial counterpart in that it gives a simple physical picture of the 

dynamic characteristics of the system.

The rapid development over the last two decades of data acquisition and process­

ing capabilities has enabled major advances in the experimental realm of the analysis, 

known as experimental modal analysis (EMA), modal testing or modal identification. 

As is the case for analytical modal analysis, the aim is to derive a modal model of the 

system, albeit via a different route. The core of this experimental technique is system 

identification which was originally developed by engineers to study electrical circuits. 

The similarities between electric circuits and mechanical systems, however, made it 

possible to apply this theory to mechanical and structural engineering problems. Sys­

tem identification deals with the issue of building mathematical models of dynamical 

systems based on observed data from the system (Ljung, 1987). In other words, if a 

system is excited by a known input force and the resulting output is recorded, the 

objective is to construct a dynamic model of the system using solely the information 

provided by measured input and output. For linear time-invariant causal systems i.e. 

linear time-invariant systems whose output at a specific time depends on the input up
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to that time only, there is a well defined relationship between the input and output in 

the form of a time-dependent function known as the system’s impulse response func­

tion (IRF). Its knowledge allows one to compute the response of the system for any 

known input, for instance using the Duhammel integral (Clough and Penzien, 1993). 

The IRF is thus a complete characterisation of the system. An equivalent formulation, 

relating the output to the input, can be expressed in the Laplace domain. In this case, 

the Laplace transform of the output is related to that of the input via the transfer 

function -the latter being the Laplace transform of the IRF. For a physically realis­

able and stable system, none of the dynamic characteristics are lost when the transfer 

function is evaluated only along the imaginary axis i.e in the frequency domain only. 

This gives rise to the frequency response function (FRF) which is now easily seen 

to be the Fourier transform of the IRF. In general, a model relating the output to 

the input, such as the IRF, FRF or the transfer function, is called a response model 

of the system. Since the response models completely describe the dynamic behav­

iour of the system, they admit an expression in terms of its modal parameters. The 

objective of modal identification is thus to obtain a response model of the test piece 

from measured input and output data and subsequently to derive a modal model from 

the response model by ways of curve fitting. Typically, analytical forms of frequency 

response functions or impulse response functions are matched to measured FRFs or 

IRFs to determine the modal parameters. There are many techniques available both 

in the time domain and in the frequency domain to extract the modal model from 

the response model. An extensive description of these modal parameter identification 

methods is given in Maia et al. (1997) and Ewins (2000). Although most of the prin­

ciples of modal testing were laid by the end of the first half of the century, renewed 

practical interest in the subject grew with the invention of the fast Fourier trans­

form (FFT) (Cooley and Tuckey, 1965) and novel instrumentation such as the FFT 

spectrum analyser, transfer function analysers (TFA) and discrete data acquisition 

systems together with the increasingly smaller and more powerful digital computers 

to process the data. In a nutshell, the modal testing procedure consists of three con­
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stituent phases: setting up the test specimen which involves the selection of support 

conditions, the type and the location(s) of the input excitation(s) and the positioning 

of the response transducer(s) on the structure to measure the output (s). The second 

step is concerned with determining the response model, either as FRFs or IRFs and fi­

nally, in the third phase, the modal parameters are extracted from the response model.

The basic description of the system’s dynamics in terms of its natural vibration 

modes clearly provides a compelling means to verify or validate numerical models us­

ing experimental data. Indeed, the past few years have seen increased research efforts 

directed toward correlating or updating numerical models with the experimentally 

derived modal data. However, model updating is but one of the broad range of ap­

plications covered by experimental modal analysis today. Other applications include 

troubleshooting which aims to gain a physical understanding of the dynamics of a 

structure in terms of its modes; identification and evaluation of vibration phenom­

ena; development of experimentally based dynamic models; active vibration control; 

structural integrity assessment, structural modification and damage detection; estab­

lishment of criteria and specifications for design. In short, modal analysis aims to 

develop reliable dynamic models that may be used with confidence for further analy­

sis. Both the theoretical and analytical aspects of modal analysis are well documented 

in the technical literature by Maia et al. (1997) and Ewins (2000).

The diversity of the applications for modal testing has prompted it to become 

more strongly interdisciplinary. In particular, modal testing has found increasing 

acceptance in civil engineering. The need to understand the dynamic behaviour of 

civil structures under seismic, wind and traffic loading, the verification and updating 

of finite element models of complex structures such as suspension bridges as well as 

the continuous ageing and subsequent structural deterioration of a large number of 

existing structures sparked the interest for using modal testing to address these issues.
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1.2 Operational M odal Analysis for Civil Engineering 

Structures

The application of modal identification to civil engineering structures presents some 

challenges due to the large scale of these structures compared to those in mechanical 

and aeronautical engineering for which the techniques were initially developed. More 

precisely, the difficulty resides in the fact that it is a rather intricate matter to excite 

large civil structures in a controlled manner and with sufficient energy to stimulate the 

most significant modes, typically < lOJEfz. For small to medium sized structures, the 

excitation can be induced by instrumented sledge hammers. Although such a device 

is able to provide wide-band input, the resulting spectral estimates generally have low 

resolution and further, it may lack the energy to excite some relevant modes (Cunha 

and Caetano, 2005). In bridge structures, for instance, excitation by impulse is in 

general not practical to excite lateral modes. An alternative, is the use of large electro­

dynamic or servo-hydraulic shakers, which can apply a large variety of of input signals 

controlled in frequency and amplitude by a signal generator. The shakers have the 

capacity to excite the structure in a lower frequency range and higher low-frequency 

resolution can be attained. They have been used successfully for modal tests on large 

infrastructure such as dams (Cantieni, 2001), or bridges (Pietrzko et al, 1996). Other 

ways for exciting structures, in particular bridges, are the step-relaxation and weight 

drop methods which can excite a wide range of frequencies. Farrar et al. (1999) and 

Cantieni (2005) present a review of excitation methods for civil engineering structures.

Nevertheless, exciting large structures artificially is often impractical, expensive 

and can be dangerous when the structure is damaged. The costly equipment needed 

is seldom available and the disruption caused by the need to close down the structure 

to be tested is often inconvenient and in many instances not feasible. However, the 

technological development in the field of transducers over the last years has made it 

possible to obtain accurate measurements of low levels of structural response in a low 

frequency range such as that induced by ambient excitations such as wind, traffic or
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micro-tremor. Sensitive piezoelectric sensors (10V/g) are well suited for structures 

with a fundamental frequency > 1 H z  (Cantieni, 2005). Accelerometers of the force 

balance type are particularly appropriate to measure the ambient response of civil 

engineering structures. Additionally, due to the delays in the feedback loop, these 

servo-controlled devices have only a limited bandwidth typically in the range form 

0 — 50H z  and are virtually insensitive to high frequencies; however in the frequency 

range in which they are effective, they are optimized for sensitivity without giving up 

precision and are capable of sensing frequencies below 1 Hz. Thus, rather than treat­

ing the natural excitation as a source of unwanted noise or disturbances - because the 

processing procedures in traditional modal testing are based on the assumption that 

the measured, artificially applied load is the only source of excitation during the test - 

structured engineers resorted to using the latter as the sole source of excitation. Prom 

a practical point of view, this certainly offers a considerable advantage since ambient 

loading is freely available and the structure can be tested under its usual operating 

conditions. Ambient forcing, however, cannot be measured so that the traditional 

input-output modal testing techniques had to be adapted to deal with response mear 

surements only without exact knowledge of the input. This is known as output-only, 

natural input or operational modal analysis (OMA).

Operational modal testing typically consists of three stages; the first is to acquire 

data from the operating structure. This involves deciding on the type and sensitivity 

of the transducers to be used as well as the number of measurement points and their 

location along the test piece. The latter choice is conditioned by the spatial resolution 

required needed to characterise the most relevant modes of vibration. An a priori 

FE model or symmetry considerations of the structure can assist in this choice. The 

second step is to convert the recorded data into a response model that lends itself 

to extract the modal parameters of the structure. As for traditional modal analysis, 

the response model may be formulated in the time or frequency domain but, since 

the input forces are unknown, it differs from the FRFs or IRFs described previously.

6



Traffic, Wind, Micro-tremor

Ambient Excitation

Data Acquisition

Frequency Domain Time Domain

r
Operational 
Response Model

CSD ( Cross-Spectral Densities) Cross-Correlation Functions

Fig. 1.1: Illustration of the operational modal testing process.

In the final step, the modal parameters are identified from the computed response 

model. An overview of the various identification techniques, depending on the form 

of the response model, is presented below.

1.2.1 Frequency D om ain M ethods

One of the earliest applications of ambient vibration testing was carried out by Craw­

ford (1964). Vibrations measured at various locations in a high-rise building were 

recorded on a magnetic tape recorder and subsequently transformed to power spectral 

densities (PSDs). The peaks in the PSD of each recorded motion provided estimates 

of the damped natural frequencies of the building, while a comparison of the PSDs 

computed from measurements made at different locations and in different directions 

enabled torsional and lateral modes to be distinguished. This technique was enhanced 

by McLamore et al. (1971) to obtain the modal damping ratios and estim ates of the 

mode shapes in addition to the resonant frequencies. By selecting one of the mea­

surement points as a reference, the amplitude and phase information at a peak in

Accelerometer

Reference
Channel
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the cross-spectral densities (CSDs) computed between the simultaneously measured 

reference signal and the remaining outputs provided estimates of the mode shapes. 

Damping ratios were calculated from the half-power bandwidth associated with each 

peak. Brownjohn et (d. (1987), for instance, have used a “transfer” function defined, 

not as the ratio of the output to the input, but rather as the ratio of the roving out­

put to the reference output, known as the transmissibility FRF, to estimate the mode 

shapes. Frequencies and damping ratios were obtained by least squares curve fitting 

a single-degree-of-freedom (SDOF) response to the PSD peaks or simply by graphi­

cal inspection of the PSD graphs and using the half-power bandwidth associated with 

each peak to estimate the modal damping. Because these methods basically rely upon 

the inspection of peaks in the PSDs, they are commonly referred to as Peak-Picking 

(PP) or sometimes as Basic Frequency Domain (BFD) techniques. Felber (1993) in­

troduced Averaged Normalized Power Spectral Densities (ANPSD) and Modal Ratio 

Functions (MRF) which enabled a more efficient and convenient implementation of 

the PP method. The ANPSD -simply the average of a chosen set of normalized PSDs- 

serve as a practical tool to capture the peaks of all modes in a single PSD with the 

byproduct of enhancing the peaks of the power spectra that were computed form time 

history records taken at or near a node of a particular mode. The Modal Ratio Func­

tion, which conveniently incorporates the phase, amplitude and coherence information 

that can be gained from the transmissibility FRFs in a single function, was devised 

to facilitate the estimation of mode shapes. Although Peak-Picking has been success­

fully used for ambient vibration testing of civil engineering structures (Abdel-Ghaffar, 

1978; Brownjohn et al, 1989; DeSmet et al., 1996; Felber and Ventura, 1996; Felber 

et al, 1996; Paultre et al, 1995), it has some notable drawbacks. More precisely, the 

Peak-Picking method treats each peak in the spectral estimates as that of a SDOF 

system. Ambient excitation, however, has a multiple-input nature and a wide band 

frequency content stimulating a large number of modes causing spectral overlap of ad­

jacent modes in the spectral estimates which cannot be accounted for by peak-picking. 

Thus, unless the peaks are well separated, it is very difficult, if not impossible, to

8
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can be obtained. Although frequency estimates can be obtained from the two closely spaced 
modes, the ODS would yield a poor approximation of the mode shapes and the damping ratios 
cannot be estimated

In p u t P SD S q u a re  A m p li tu d e  FRF Output PSD
2

1.5

w h ite  In p u t

0.5 1

SJ 0

w h ite  in p u t  +  
h a rm o n ica

1
SJ0

0.06

0.05

0.04

0.03

0.02

0.01

0.5 1.5 21

6

5

4

3

2

1

□
1.5 20.5 1

H (V ’ \ 5 ( 0

Fig. 1.3: Illustration of the relationship between the input PSD (Sxx( f )) and the output PSD 
(Syy if  ))• For a white noise input, the output PSD is proportional to the square amplitude
of the FRF (^\H(f)\2>j  and can be used as a response model for the system. When the input 
contains harmonics, the output PSD does not only represent system properties but also those 
of the excitation.
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identify closely spaced modes. This is illustrated in figure 1.2. Moreover, operational 

deflection shapes (ODS) are obtained rather than mode shapes and damping estimates 

are unreliable or cannot be found. These shortcomings are significantly amplified in 

case of poor frequency resolution.

Despite its downsides, the Peak-Picking method forms the basis for many OMA 

techniques as it incorporates the key feature that the cross- and power spectral densi­

ties may serve as the fundamental frequency domain response model for output-only 

modal analysis. Indeed, when the input spectrum is flat over the frequency band of 

interest, or in other words, when the excitation behaves as band-limited white noise, 

the power- and cross spectral densities characterize the structure in terms of its modal 

parameters. However this response model in terms of the output spectra is incomplete. 

Since the ambient forces are not measured, the modal participation factors cannot be 

determined. As a consequence, the estimated mode shapes are not correctly scaled 

since their scaling factor will depend on the unknown excitation. This incompleteness, 

typical for operational modal analysis, somewhat restricts its use in certain applicar 

tions such as response simulation or structural modification. Also in damage detection 

procedures, correct scaling may be of importance. Some numerical (Doebling and Far­

rar, 1996) and experimental (see for example Parloo et al. (2005)) techniques to obtain 

scaled mode shapes have been proposed. A recent review can be found in Aenelle et al. 

(2005). If the input is not white, for instance if it contains some dominant frequency 

components in addition to white noise, these frequency components blend with those 

of the system and may not be distinguishable from the structural ones. This will be 

discussed in more detail in subsequent chapters but the main idea is illustrated for 

a SDOF system in figure 1.3. It can be seen that the three harmonics appear in the 

output PSD which serves as a the operational response model. Although the influence 

of the harmonics at around 1 and 1.8H z  may be small in this particular case, the 

influence of the harmonic at around 1.3Hz would certainly be picked up so that a 

2-DOF system would be identified instead of the correct SDOF system.
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The natural extension of the PP method was to take into account the multiple- 

input multiple-output (MIMO) nature of the problem. This was achieved by assem­

bling the power and cross spectra into a power spectral density matrix which is then 

decomposed at each frequency line into the individual modes of the system by means 

of a singular value decomposition (SVD). The singular values thus obtained as a func­

tion of frequency signify the power spectrum of the modal coordinates associated with 

each mode. The natural frequencies appear as local maxima of these power spectra 

and are then simply obtained by peak-picking. The decomposition of the PSD matrix 

via the SVD -sometimes referred to as Principal Component Analysis (PCA)- was 

already employed by Prevosto (1982) to obtain the vibration modes of systems under 

ambient excitation. Later, the method was applied to decompose the FRF matrix 

and became known as the Complex Mode Indication Function (CMIF) (Shih et al., 

1988). In the context of operational modal analysis for civil engineering structures, 

this method was adopted by Brincker et al. (2000) and called the Frequency Domain 

Decomposition (FDD). It has subsequently been extended to the Enhanced Frequency 

Domain Decomposition (EFDD) to yield modal damping ratios in addition to frequen­

cies and mode shapes in Brincker et al. (2001). Within the classical in input-output 

framework, an application of the CMIF to multiple reference FRF measurements to 

identify natural frequencies, mode shapes and the corresponding damping ratios ap­

pears in Leurs et al. (1993). The FDD technique has been widely applied to many 

civil engineering structures, for example (Brincker and Andersen, 2005; Brincker et 

al., 2005a; Cunha et al., 2004; Reynolds et al., 2005) owing to its generally good per­

formance and its user friendliness.

The aforementioned modal identification methods are non-parametric in nature 

which means that they do not explicitly make use of a mathematical model to extract 

the modal parameters from the response model but rather rely on a more direct 

interpretation of the response model itself. Recently, a parametric frequency domain
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identification scheme, known as Poly MAX, was introduced by Peeters (2004). This 

method operates on half-spectra (see section 2.2) and its implementation is based 

upon a  frequency-domain version of the maximum likelihood method (Guillaume et al., 

1998; Hermans et al., 1998) complemented by a polyreference least-squares complex 

frequency-domain (LSCF) estimation method (Guillaume et al., 2003). The most 

important advantage of PolyMAX lies in the very stable identification of the system 

poles as a function of the model order which essentially means that it is well suited 

to distinguish between system modes and so called spurious or computational modes.

1.3 Tim e Domain M ethods

Knowing that the output-only frequency response model consists of the spectra of 

the time history records of a system excited by white noise, the corresponding time- 

domain response model is easily seen to be given by the correlation functions between 

the responses since the spectral densities and correlation functions are Fourier trans­

form pairs (Bendat and Piersol, 2000). Thus, just as the spectral densities admit an 

expression in terms of the modal parameters of the system, the correlation function be­

tween any two response measurements can be written as the sum of decaying sinusoids 

having the same natural frequencies, damping ratios and mode shape coefficients as 

the modes of the system (see section 2.2). This implies that the correlation functions 

have the same form as the system’s IRF so that time domain algorithms originally 

developed in traditional modal testing to analyze IRFs can be applied to correlation 

functions. The conceptual framework for this result was essentially laid by Clark­

son and Mercer (1965) but was later applied to ambient data from wind turbines by 

James et al. (1995) and termed the Natural Excitation Technique (NExT). The three 

time domain classical modal parameter estimation methods that have been widely 

used in OMA within the NExT framework are the Polyreference Complex Exponen­

tial (PRCE) method, the Ibrahim Time Domain (ITD) method and the Eigensystem 

Realisation Algorithm (ERA).
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The PRCE method (Void et al., 1982) essentially identifies the modal parame­

ters by curve-fitting the “measured” IRFs (or correlation functions) to a parametric 

model based on the modal decomposition of the IRFs (or correlation functions). The 

method was developed as an extension of the single-input multiple-output (SIMO) 

Least-Squares Complex Exponential (LSCE) method (Brown, 1979) to cope with mul­

tiple inputs.

The Ibrahim Time Domain was originally developed by Ibrahim and Mikulcik 

(1977) as a SIMO method that operates on free decay response measurements and 

was therefore initially used in conjunction with the random decrement technique (RD). 

The latter was developed to obtain free responses of a structure from its random re­

sponses (Ibrahim, 1977) but was later shown to yield correlation functions (see section 

2.2). A MIMO version of the ITD, called the Multiple-Reference Ibrahim Time Do­

main (MRITD) is due to Fukuzono (1986).

The Eigensystem Realization Algorithm (Juang and Pappa, 1984) is a MIMO 

method whose roots go back to classical deterministic minimal system realization 

theory developed by (Ho and Kalman, 1966). In brief, the ERA is based on a state- 

space formulation whose constituent system matrices are recovered using the measured 

IRFs. In operational modal analysis, it is a stochastic realization problem that is 

solved (Akaike, 1974). As a consequence of the natural excitation technique (NExT), 

the ERA can be be employed for this purpose by replacing the IRFs by the correla­

tion functions between the measured outputs. In the context of output-only modal 

analysis, this procedure is sometimes referred as the NExT/ERA method but a for­

mal treatment of the ERA with data correlations (ERA/DC) is due to Juang et al. 

(1988). An application of this method to ambient response data appears in Desforges 

and Cooper (1997) and a comparison with the classical ERA operating on impulse 

data can be found in Cooper and Wright (1992). These NExT-type identification

techniques axe often called covariance-drivent or two-stage methods referring to the 

* Covariance functions are equal to correlation functions for a zero-mean random process
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two steps involved in the process i.e. estimation of the correlation in a first instance 

and the modal parameter extraction by curve fitting in a second step. The various 

ways for computing correlation functions (see figure 1.4 and section 2.2) and the dif­

ferent ways of curve fitting thus offer a choice of combinations for implementing the 

NExT, see for instance (Caicedo et al., 2001; Desforges et al., 1995; Farrar and James, 

1997; James et al., 1996; Qin and Qian, 2001). The NExT is sometimes mentioned 

in conjunction with frequency domain methods due to the Fourier transform relation 

between correlations and spectral densities (Juang and Suzuki, 1998).

Another method that has been used for operational modal analysis relies on 

the classical system identification tools based on Auto-Regressive Moving-Average 

(ARMA) models of the vibrating structure. In the case of multiple outputs, the 

term Vector-ARMA (ARMAV) is often used to emphasize their multivariate charac­

ter. One way to identify the parameters of an ARMAV model is via the Prediction 

error method (PEM) (Ljung, 1987). This technique does not require the computation 

of a response model (i.e correlation functions) but operates directly on the recorded 

time histories and is therefore often referred to as a one-stage or data-driven method. 

Nevertheless, the application of the PEM method requires the solution of a highly 

nonlinear least-squares problem which entails a heavy computational load, sensitivity 

to initial conditions and convergence is not guaranteed. Despite these drawbacks, the 

ARMAV-PEM  method has been employed for operational modal analysis of civil en­

gineering structures by Andersen (1997). The identification of the modal parameters 

of system represented by ARMAV models only requires the coefficients of the Auto- 

Regressive (AR) part of the model. Nevertheless, a vibrating structure cannot be 

adequately described by an AR model (see for instance Andersen et al (1996)). It is 

shown in Peeters and DeRoeck (2001), however, that using an Instrumental Variable 

(IV) method -another classical system identification tool (Ljung, 1987)- enables only 

the AR coefficients to be identified while the underlying model structure still is an AR­

MAV model. Moreover, this is achieved by linear least-squares as the Moving-Average
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(MA) coefficients cause the nonlinearity encountered in the PEM method. Although 

derived in a different way, the final equations of the ARM AV-IV  are exactly the same 

as those of the NExT-type Polyreference (PRCE) method and is thus equivalent to 

the covariance-driven approach described previously (Peeters and DeRoeck, 2001).

The Stochastic Subspace Identification (SSI) method, first introduced by (VanOver- 

schee and DeMoor, 1993), provided another way to avoid the solution of the highly 

nonlinear least-squares problem encountered in the ARMAV-PEM method. A uni­

fied description of different subspace algorithms, both deterministic and stochastic, 

can be found in VanOverschee and DeMoor (1996). Similar to system realizations, 

subspace methods identify state-space models -which are in fact transformed ARMAV 

models- from which the modal parameters are subsequently extracted. The SSI can be 

implemented as a data-driven or covariance-driven method. In the former, the compu­

tation of the correlation functions is essentially replaced by a geometric projection of 

the row space spanned by the future outputs onto the row space of the past outputs. 

The covariance-driven version (SSI-Cov) is in fact equivalent to the NExT/ERA pro­

cedure Peeters and DeRoeck (2001). A detailed description of the SSI and SSI-Cov in 

relation to output-only modal identification is given by Peeters and DeRoeck (1999). 

Due to the their robust and fast implementation, these methods have been widely 

applied for operational modal analysis of civil engineering structures (see for example 

Hermans and der Auweraer (1999); Ren and Zong (2004)).

The ambient vibration identification methods described above together with the 

required signal processing techniques to obtain the response models are summarized 

in figure 1.4, which is a variation of the diagram given in (Cunha and Caetano, 2005). 

Recently, Cunha and Caetano (2005); Zhang et al. (2005a) have presented a review of 

the state of operational modal identification.
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Fig. 1.4: Schematic representation of the various operational identification algorithms and their 
connections. Legend: (FFT) = Fast Fourier Transform, (RD) =  Random Decrement, (LS) =  
Least Squares, (EVD) =  Eigenvalue Decomposition, (SVD) = Singular Value Decomposition, 
(QR) = Orthogonal Decomposition

The applications of OMA are naturally similar to those described earlier for tra­

ditional experimental modal analysis. Two applications, however, are of particular 

interest in conjunction with OMA: FE Model Updating and damage detection or 

Structural Health Monitoring (SHM). Ambient testing has the advantage over tra­

ditional modal testing that the measured properties describe the dynamics of the 

structure in its real operating conditions, so that updated models, in principle, reflect 

better the in situ  conditions of the system and the as-built structural connectivity. 

Although classical experimental modal analysis has been used for damage detection  

of structural system s, this area of research has gained new impetus with the advances 

made in OMA. The reason is that the non-intrusive testing procedure, for instance 

using GPS sensors (Brownjohn, 2005), offers the possibility to monitor structures over 

long time periods so that sudden or progressive damage can be diagnosed in near real 

time. Therefore, there is a tendency to develop wireless sensing architectures and
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so called “smart” sensing systems (Ruiz-Sandoval, 2004; Straser et al., 1998), which 

coupled with damage detection techniques based on OMA show great potential for 

near-real time structural health monitoring.

1.4 Scope of Thesis

As documented in the literature, it is difficult in practice to obtain an accurate estimate 

of the response model from output measurements only, and hence an accurate modal 

model of the structure. The reason is that the practitioner is only allowed a “glimpse” 

at the infinite random process that characterises the true stochastic input/output 

relationship in the form of a limited amount of response data on the basis of which 

the systems’ dynamic properties must be, literally, estimated. Consequently, large 

amounts of response data are needed for these estimates to converge to the true modal 

model. Although operational modal analysis is a non-invasive procedure, practical 

issues often impose limits on the data that can be measured, stored and processed. 

Not only does the engineer have to estimate the modal parameters from a limited 

response measurement, but in almost any practical application, the available data 

is contaminated by unwanted perturbations. In operational modal analysis, these 

perturbations typically are (also see section 6.1)

• Non-white, non-stationary ambient excitation with the consequence that the 

estimated response model (even if an infinite amount of data were available) 

will not be representative of the structure’s response only but is mixed with the 

dynamics of the loading itself

• Non-linear behaviour of structure may arise in some cases and -since ambient 

forcing is typically low- is generally to be attributed to non-linear damping 

mechanisms. The “classical” techniques used in OMA are applicable to linear 

behaviour only in both the formulation of the response model and the modal 

parameter identification therefrom. As a result, using the available linear tech­

niques on non-linear time series will generally introduce significant systematic
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errors in the identified modal parameters.

• Data acquisition errors refer collectively to disturbances of the data introduced 

during the measuring process and includes sources such instrumentation noise, 

discretization/quantization errors or inadequate sensor setup to mention but a 

few.

With the few exceptions discussed earlier in this introductory chapter, operational 

modal analysis is a 2-stage procedure. In a first step, the operational response model 

is estimated -which may be in the time domain (correlation functions) or in the fre­

quency domain (spectral densities)- and from the latter, the modal model is estimated 

by application of some curve fit algorithm depending on the previously estimated re­

sponse model (see diagram 1.4). Consequently, the error introduced al each stage 

during the operational modal analysis will be processed, then propagated to the next 

stage until it cumulatively affects the final outcome, the modal parameters.

The goal of this thesis is to give a quantitative description of the error -both random 

and systematic (bias)- in the response model and how it propagates through the curve 

fitting algorithm to affect the identified modal model. The algorithms to extract the 

modal information out of the response model listed in the diagram 1.4 nearly all give 

perfect results when the operational response model is exact but distinguish themselves 

in how they cope with the error present in the response model. Therefore, exactly 

how the error propagates from the response model to the modal model is specific to 

the identification algorithm used. In this thesis, the focus is on correlation-driven (or 

covariance-driven) curve fitting algorithms. Thus, the response model considered con­

sists of a set of auto-and cross-correlation functions computed between simultaneously 

measured responses histories at different locations on the structural system. As seen 

from the diagram 1.4, the relevant curve fitting process is the Eigensystem Realisation 

Algorithm (ERA) or, equivalently, the covariance-driven Stochastic Subspace Identi­

fication (SSI/Cov) algorithm. After exposing the necessary theoretical background 

in Chapter 2, the formulation of the random and bias errors in the correlation-based
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response model will be the subject of Chapter 3. In a first instance, an approxi­

mate analytic formulation of these errors will be given with the aim to understand 

in general quantitative terms, the relationship between the estimation errors in the 

correlation response model and the modal parameters of the system. This will pro­

vide the practitioner with a quick tool to assess record length requirements to keep 

these errors below a desired level, provided a rough estimate of the modal frequencies 

and damping ratios -for instance from a simple finite element model typically used in 

pre-test planing- is available. However, this analytical formulation is only able to deal 

with estimation errors due to finite record lengths and does not incorporate effects 

due to other error sources such as instrumentation noise for instance. To consider 

the influence of additional errors in the measured data on the estimated response 

model, a data-driven method is given. Data-driven in the sense that the errors in the 

correlation functions are estimated based on the measured response data rather than 

relying on an analytical model. Such a method will be necessary since the nature of 

the error introduced into the data during a particular modal test is not known and 

hence cannot be modeled.

W ith a description of the errors in the response model at hand, the remainder of 

the thesis is concerned with the propagation of these errors through the identifica­

tion algorithm. Two methods are considered: a) a bootstrap approach which is more 

general and is also applicable to other curve fitting schemes and b) a perturbation 

theoretic approach which is specific to the the SSI/Cov. A rigorous basis for these 

two techniques is the subject of Chapters 4 and 5.

In the remaining two chapters, 6 and 7, each of these methods is applied to opera­

tional modal identification problems with the intention of studying to what extent the 

resulting error bounds on the identified modal parameters can be determined. The ap­

proach taken uses simulated data where allowing control over the error introduced in 

the computed time histories and to explore the limits for which the proposed scheme is
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applicable. The disturbances considered are estimation errors, external noise sources 

as well as the effects of nonstationarity and the presence of deterministic components 

in the ambient loading conditions. The study is restricted to “mild” nonstationary 

influences and to situations where deterministic components in the ambient loading 

act as unwanted disturbances rather than the dominant part of the excitation driving 

the system. This situation is more common in practice than those where the deter­

ministic load is dominant. The effect of nonlinear response characteristics are not 

considered in this thesis and a linear behaviour of the structural system is assumed. 

The proposed method will therefore provide the practicing engineer with a tool to 

obtain approximate error bounds on the identified operational modal parameters and 

assess the quality of his results. The method is relevant for applications typically 

associated with operational modal analysis such as damage detection or FE updating 

and response analysis.

All the algorithms used in thesis were implemented by the author in MATLAB with 

a few exceptions: 1) Simulated time-response histories and Finite Element models were 

computed using the freely available Calfem Toolbox by Ristinmaa et al. (1999). 2) The 

implementation of the SSI/Data relies heavily on the implementation in VanOverschee 

and DeMoor (1996) and some of the files accompanying this book were used t. 3) The 

code for the stationary bootstrap was taken from Kevin Sheppard’s GARCH Toolbox 

for Matlab*.

thttp: / / www.mathworks.com/matlabcentral/fileexchange
* http: / / www.kevinsheppard.com/research/

http://www.mathworks.com/matlabcentral/fileexchange
http://www.kevinsheppard.com/research/


C h a p t e r  2

T h e o r e t ic a l  B a sis

2.1 Introduction

This chapter aims to provide the necessary background theory for operational modal 

analysis. A formulation of the operational response models used in operational modal 

analysis is given and various aspects concerning their estimation are presented. The 

theory behind three identification methods, one in the frequency domain (EFDD), a 

covariance- and a data-driven time domain algorithm (SSI/Cov and SSI/Data respec­

tively) is briefly presented.

2.2 Operational Response Models

Real structures are continuous non-homogeneous systems which have and infinite 

number of degrees-of-freedom. Therefore, their analysis usually entails an approxi­

mation which consists of describing their motion through a finite number of degrees- 

of-freedom, as many as necessary to ensure enough accuracy. Within this idealization, 

which includes the lumped mass and the FE type of discretization, the equations of 

motion of a linear, time-independent N  degree-of-freedom structural system are given 

in terms of a set of N  second order differential equations of the form

Mx (t) +  Cx (t) + Kx (t) = f (t) (2.1)

where M, K, C E R NxN denote the spatial mass, stiffness and dissipation or damp­

ing matrix respectively. x(t)  € RNxl describes the time dependent vector of displace­
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ments at each of the degrees-of-freedom and f (t) € RNxl  is the vector consisting of the 

external time-varying excitation forces applied at each degrees-of-freedom. The mod­

eling of the damping deserves a few comments. The damping model used in equation 

2.1 is the familiar linear viscous damping model but this model does not necessar­

ily imply the actual physical description of the damping mechanism. A combination 

of different phenomena can be expected to contribute to the damping in structures 

such as material damping (micro-structure effects), boundary damping (e.g. frictional 

slipping at joints) and dissipation due to contact between the structure and fluid. 

For civil engineering structures, boundary damping will generally be responsible for 

the most significant part of the energy dissipation. The dissipation matrix model 

used in equation 2.1 does not necessarily offer a physical description of the latter 

damping mechanism as it cannot be asserted that the dissipation mechanism will only 

depend on the velocity of the system. However, as far a experimental modal analysis 

is concerned, it will be possible to obtain equivalent modal damping ratios and the 

correct associated complex modes as long as the underlying damping mechanism is 

linear (Woodhouse, 1998). However, the nature of the underlying damping model 

can, in general, not be determined and if a good physical description of the damping 

mechanism is needed, a suitable damping model must be chosen and fitted (Adhikari 

and Woodhouse, 2001 a, b). Dissipation mechanisms such as boundary damping often 

exhibit non-linear behaviour and clearly, the form of the non-linear character of the 

damping will be lost in a linear modal analysis. Nonetheless, if the damping is not 

too severe, the linearised modal damping ratios obtained via a modal identification 

procedure may still be good enough to yield reasonably accurate response predictions. 

More recently, time-frequency identification methods have been employed to deter­

mine non-linear damping characteristics (see for instance Staszewski (1998)).

To derive the desired operational response model, consider the case where the 

excitation f(t) consists of a set of transient or impulsive forces i.e. forces that act 

only for a short time period. Taking the Fourier transform of f (£), denoted by T , on
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both sides of equation of motion 2.1 yields

X(w) = (K-a»aM + iwC) 1F(w) = H(w)F(w) (2.2)

where F(u)) =  .F(f(t)) € Clfxl, X (u) =  ^ (x ( t ) )  € CNxl and H(w) 6 CNxN , 

which relates the input to toe output is the receptance FRF matrix. The (jk)th entry 

Hjk (w) of the receptance FRF matrix corresponds to the individual FRF describing 

the relation between the response of the system at the j th coordinate excited by a single 

force (i.e. all other forces are zero) applied at coordinate k. In practice, however, if 

one is interested in the modal parameters only, it is not necessary to obtain the full 

FRF matrix as given above. Indeed, in classical modal testing the dimension of the 

FRF matrix is determined by the number of excitations applied to the system, say m, 

and the number of outputs measured, say I. With the interpretation of the entries of 

the FRF matrix given above, it is easily seen that in this case x (t) and X (cj)€ Rix l, 

f (t) and F(u>)€ Rmxl and H(u;) 6 Clxm with the frequency-domain input-output 

relation given by

X(w) = H(w)E(o;). (2.3)

Henceforth, the latter dimensions will be assumed unless stated otherwise. It is well 

known that, for general viscous damping, H  (a;) can be expressed as (Ewins, 2000)

H { u ) m £ ( A £ .  + J S e L )  (2.4)

where the poles Ar are the eigenvalues of the system which occur in complex conjugate 

pairs. They contain the frequency and modal damping information and are given by 

Ar , A* =  — u r£r ±  iujr — where ur and £r denote the natural frequency and modal 

damping ratio respectively. The imaginary part of the pole yields the damped natural 

frequency u>£>r . The residues <kr<£r consist of the product of the scaled mode shapes 

<£r e Clxl  and the vectors <£r € Cmxl, known as the modal participation vectors. 

(•)* denotes the complex conjugate and (-)H Hermitian transposition. Equation 2.3 

admits a time-domain formulation which can be obtained directly by inverse Fourier
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transform leading to the following matrix convolution integral

2 ( t )=  f h ( r ) f ( t - r ) d r  (2.5)
Jo

where h  (t) = T ~ l (H (cu)) € Rlxm is the impulse response function (IRF) matrix. 

This relation is often referred to as DvhammeVs integral. The (jk)th entry of the IRF 

matrix, hjk (£) establishes the relation between the output at the j th coordinate due to 

a single input at the kth coordinate. Physically, hjk (t) is the response of the system 

at the j th coordinate due to a unit impulse applied at coordinate k as may be easily be 

seen from equation 2.5 by taking the kth component of f (t) to be Dirac delta function 

6 (t — r) applied at t =  0, and all the other inputs are zero. Note that h  (t) = 0  for 

t < 0. Like the FRF matrix, the IRF matrix completely characterizes, the system 

in terms of its modal parameters as can be seen by taking the Fourier transform of 

equation 2.4
N

h («) =  ^  e ^ ‘ (<t>r!£r e<̂ Drt + (2.6)
r = 1

i.e. each entry is weighted sum of decaying sinusoids which oscillate with the damped 

natural frequency of the system and the decay is governed by the modal damping ratio.

Ambient excitation, however, is stochastic in nature and since the structural sys­

tem acts as a linear transformation of the input, the response too will be stochastic. 

While the time-domain relation (equation 2.5) is still valid for random signals, the 

frequency-domain input-output relation given above for a transient excitation and re­

sponse (equation 2.3) is no longer valid. The reason is that the Fourier transforms of 

the random signals Xj (t) and /* (t) may not be defined at all frequencies u>. A suffi­

cient condition for the Fourier integral to exist is that Xj (t) and fk  (t) are absolutely 

integrable over the infinite interval (—00, 00) i.e. that

/oo roc
\fk\dt and / \ocj\dt < 0 0  (2.7)

-00 J—00

This requirement for the existence of the Fourier integral is often referred to as the
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(weak) Diricblet condition. Loosely speaking, it requires that Xj (t) and fk (t) will 

decay as t  —+ oo and t  —► —oo. While this criterion is clearly satisfied for transient 

inputs, this is not the case when the excitation is stationary so that an alternative 

approach must be sought.

2.2.1 Stochastic Processes, Stationarity and Ergodicity

Suppose that x( t )  is a single record of the response measured from an experiment 

where a structural system is excited by a stochastic input. If the experiment is re­

peated under identical conditions, a different response history will be measured due 

to the random nature of the process. Each observed time history record e.g. the pth 

record, denoted by x  (t,p), is merely one record of the whole collection or ensemble of 

all possible records that might have occurred and is therefore referred to as a sample 

function or realization of the complete stochastic (or random) process denoted by 

{x (£,p)}. This is illustrated in figure 2.1. For each value of t G (—00, oc), x (t,p) 

represents a random variable over the index p which admits a range of possible val­

ues with an associated probability distribution describing the relative likeliness of each 

possible value.

p)

Fig. 2.1: Ensemble of time-history records defining a random process. x(t\,p) and x{t\ + r ,p) 
are two different random variables. (Bendat and Piersol, 2000)
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When a physical phenomenon is represented by a stochastic process, it must be 

characterized by statistical parameters. For most engineering problems involving ran­

dom data, including operational modal analysis, the most important quantities are 

often the statistical moments up to second order given below (Bendat and Piersol, 

2000)

px (t) =  E[x(t ,p)\ (2.8)

msvx (t) =  E [ x 2 (t,p)] (2.9)

Cxx (t, t-\-t ) -  E  [(x (t , p) - px (t)) (x (t  +  r ,p) -  px (t +  r))] (2.10)

Cxy (t, t  +  r)  =  E  [(x (t , p) - Mx (*)) (y (t +  r,p) -  py (t +  r))] (2.11)

Here, E  [•] denotes the expectation operator and represents the average of the random 

variable across the ensemble (Bendat and Piersol, 2000). The abbreviations (acv.f.) 

and (xcv.f.) will be used to denote the auto-covariance Cxx t +  r)  of the random 

process {x(t ,p)}  and cross-covariance functions Cxy (t, t + r) between the pair of 

random processes {x (£,p)} and {y (t,p)} respectively. px (t) and msvx (t) denote the 

mean and mean square value at time t respectively. From the covariance functions, the 

definition of the variance and auto-and cross-correlation functions follow immediately 

as

Var [x (f)] =  a1 (t) =  Cxx (t, t) =  E  [(a; (t,p) -  px (t))2j (2.12)

RxX(t,t + T) =  E[x(t ,p)x(t - \ -r ,p)]  (2.13)

Rxy {t, t +  t )  =  E [x ( t , p ) y ( t  + T,p)\ (2.14)

where Rxx denotes the autocorrelation function (ac.f.) and Rxy the cross-correlation 

function between the pair of stochastic processes {x(t ,p)}  and {y(t,p)}.  It can be 

seen that correlation and covariance functions agree for a zero-mean processes and 

that the variance reduces to the mean square value. It might be worth pointing out
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that some authors define the correlations as covariance functions normalized to unity 

at the origin i.e. as a correlation coefficient function (see Priestley (2004)) but the 

definition given in equations 2.13 and 2.14 will be used here.

The statistical parameters described in equations 2.8-2.14 are in general time- 

dependent. However, for some stochastic processes endowed with a property known 

as stationarity, the statistical moments are constant over time. Such processes arise 

generally from stable physical systems which have settled to a state of statistical 

equilibrium. More formally, a random process is said to be stationary or completely 

stationary if its probabilistic structure is invariant under a shift of the time origin 

(Priestley, 2004). This means that, for example, the joint probability distribution 

of the set of random variables {x (t,p) , x(t  +  r,p)} for all t is the same so that the 

covariance and correlation functions do no longer depend on t but only on the time 

separation r  (often referred to as the lag) between the time points and not on their

individual location. Thus, for a stationary stochastic process, equations 2.8-2.14 be­

come

px =  E[x(t,p)]  (2.15)

msvx =  E [ x 2 (t,p)] (2-16)

a2 =  E  [(x (t,p) -  /Z*)2] (2.17)

and

Cxy(r) = E[(x(t ,p)- f jLx) (y ( t  + T , p ) - H y ) \  (2.18)

Rxy (t)  =  E[x(t ,p)y(t - \ -r ,p)]  (2.19)

The auto-covariance and auto-correlation functions immediately follow from equations 

2.18 and 2.19 by letting y(t ,p) =  x(t,p).  Complete stationarity is, however, a severe 

requirement and this concept can be relaxed by introducing the notion of weak station­

arity. Under this weaker condition, it is not necessary that the complete probability
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structure of the process is invariant under time translations but only that its m ain  

features are the same i.e. that the statistical moments up to a certain order do not 

change over time. Typically, weak stationarity is used to describe a process whose 

moments up to second order are invariant under time translations (Bendat and Pier­

sol, 2000) and this convention will be used henceforth. It is worth noting that for a 

process with a Gaussian probability distribution, weak stationarity implies complete 

stationarity since a Gaussian process is completely described by its moments up to 

second order.

In many practical situations it may not be possible to obtain a large ensemble of 

different realizations of the particular stochastic process so that one is often forced 

to get the necessary statistical information of the process from a single time history. 

This is certainly the case in ambient testing. Although it may be possible to increase 

the length of the observed time series, there will only be a single outcome of the 

process and a single observation on the random variable at a given time t. A par­

ticular sample function, however, is in general not enough to represent the particular 

stochastic process to which it belongs. Nonetheless, for a certain class of random 

processes, called ergodic processes, it is possible to obtain statistical information of 

the entire process from a single realization. More precisely, a process is ergodic if 

the statistical properties can be computed from time averages over individual sample 

functions of the ensemble and will be the same from one record to the next and will 

equal the corresponding properties computed from ensemble averages over the records 

at any time t. Since the averages are taken over absolute time t, this implies that the 

corresponding ensemble averages cannot depend on time so that an ergodic process 

must be stationary. The converse, however, does not hold. The hierarchy of random 

processes is illustrated in figure 2.2.1. A sufficient condition for a random process to be 

ergodic is that it is (a) stationary and that (b) the statistical moments computed from 

time averages be the same for all sample functions. Additionally, when the process is
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Fig. 2.2: Hierarchy of random processes

Gaussian, condition (b) is equivalent to (Bendat and Piersol, 2000)

1 f T
j ;  J  \CXx(t )\<It  —► 0 a s T  —► oo (2.20)

When stationarity is replaced by weak stationarity, the above still holds albeit in this 

case, only the moments up to second order computed from time averages are guaran­

teed to converge to the corresponding ensemble averages. This is often referred to as 

weak ergodicity.

Much like equation 2.7, the condition in 2.20 requires the auto-covariance function 

of the process to “decay” to zero as t  —► oo. For the response of a linear, time- 

invariant system  such as that described in equation (i.e. a damped system) 2.1, this 

holds almost certainly (Priestley, 2004). Violations are usually associated with the 

presence of periodic components in the data. Thus, if the response of a linear, time- 

invariant system  is stationary and Gaussian, this almost certainly implies that the 

process is ergodic and hence that the statistical properties can be obtained from a 

single realization of the process.

2.2.2 Frequency-D om ain  O perational R esponse m odel and  N ExT

Having introduced the basic concepts relating to stochastic processes, the frequency- 

domain input-output relationship can now be derived and be used to formulate the 

operational response model. Let {x j  (£,p)} and { x q ( t , p) }  be the stationary  random
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processes consisting of the response at the j th and qth coordinate of the system given 

by equation 2.1, respectively, due to a single stationary input at coordinate k defined 

by {fk  p)}* The fact that we have chosen the input -and hence the output- to be 

stationary does still not guarantee that the Fourier integral of a realization of the 

processes exists since the very nature of the notion of stationarity suggests that the 

sample functions will almost certainly not decay at infinity. To overcome this difficulty, 

a truncated sample function for the response is defined by

xj(t iP)i  0 < t < T

0, otherwise
(2.21)

and a similar definition applies to the truncated sample functions fk (t, p, T) and 

xq (t, p , T).  Since these truncated realizations die away at ±oo, they satisfy the Dirich- 

let condition and hence their (finite) Fourier transform exists. For the response sample 

function, it is given by

/oo rT
xj (t,p ,T )e~ iu*dt = /  Xj(t,p, T)  (2.22)

■oo JO

Again, a similar definition applies to the excitation Fk (w,p, T)  and the response at the 

qth coordinate X q (w , p , T ). These quantities can now be used to compute the auto- 

spectral or power spectral densities (PSD) of the response and excitation. Similarly, 

the cross-spectral densties (CSD) between the response and excitation time histories 

can be computed in this fashion. They are defined as (Bendat and Piersol, 2000)

SXjXj (m) —

s fkfk M  =

SXqXj (<*>) ==

lim E
T—•■oo

lim E
T —*oo

lim E
T—oo

X ; ( a . ,p ,r ) X i ( a > ,p ,T )

(w, p, T) Fk (u, p, T)

■XUw,p,T)X} (u,p,T)-

(2.23)

(2.24)

(2.25)

where E  [•] denotes the expectation operator over the ensemble and (•)* the com­

plex conjugate. SXjXj (<̂ ) and Sfkfk (co) are the auto-spectral densities between input
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and output time-histories respectively and SXqXj ( u j )  denotes the cross-spectral den­

sity between two outputs measured at different location along the structure. The 

cross-spectrum between the input and the output can be defined similarly (Bendat 

and Piersol, 2000). Although the Fourier transform of the truncated time histories 

Xj (t,p, T), xq (£,p, T)  and fk (t ,p , T)  is not bounded as T  —► oo, the power- and cross- 

spectral densities defined in equations 2.24-2.25 may, in fact, converge to a finite limit 

as T  —♦ oo. Indeed, it is a well known result, often called the Wiener-Khinchine 

relation (see for example Bendat and Piersol (2000) or Priestley (2004)), that the 

PSD of a stationary random process and CSD between any two stationary processes 

are in fact the Fourier transform of the auto-and cross-correlation functions of these 

processes i.e.

SxjZj 0*0 ^  F  {RxjXj (r )) > (2.26)

S f k h b >) =  (2-27)

SxqXj 0*0 =  F  {RxqXj 0*0) (2.28)

It can now be seen by comparing equations 2.24-2.25 with 2.28 that a sufficient con­

dition for the limiting operation in equations 2.24-2.25 to converge, or in other words, 

for the spectral densities to exists for all uj is that the auto- and cross-correlation

functions in 2.28 possess a Fourier transform. That is, the ac.f. and xc.f. must be

absolutely integrable. For the response of a linear, time-invariant damped system, the 

ac.f. and xc.f. will decorrelate with r  as long as the process is zero-mean, (Clough and 

Penzien, 1993; Pandit and Wu, 1983; Priestley, 2004) so that the Fourier transform 

will exist. It is interesting to note that for a zero-mean process, the sufficient condi­

tion for the existence of spectral densities is the same as equation 2.20. It thus follows 

that a zero-mean, (weakly) stationary Gaussian process whose PSD exists at all uj is 

(weakly) ergodic. Since these properties are conserved under a linear, time-invariant 

transformation (see figure 2.3), it is very often assumed in operational modal analysis
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that the ambient excitation is zero-mean stationary and Gaussian, t

OUTPUTINPUT

Stationary, Ergodic 
Gaussian, zero-mean

Stationary, Ergodic 
Gaussian, zero-mean.

Linear, Time-invariant

Fig. 2.3: Stationarity, ergodicity, zero-mean and Gaussian distribution is conserved under a 
linear, time-invariant transformation

The frequency-domain relationship for an m-input /-output (MIMO) system in equa­

tion 2.1 can now be established for stochastic data, and as a result the operational 

response model. Making use of equation 2.5 to formulate the product x (t, p) x  (t +  r, p) 

and taking ensemble averages one obtains

% X t o  = jT ° /J h  (a) R ff (t +  0 -  a) hT (0) da d/3 (2.29)

where R ^ x  (r) € Clxl and R f f  (r) 6 Cmxl given by E  [x (t,p) x (/ -I- r ,p)\ and E  [f (t,p) 

f (t + T,p)] respectively, denote the input and output auto-correlation matrices. The 

main diagonal of R x x  (r ) contains the auto-correlation functions of the outputs and 

the off-diagonal terms gives the cross-correlations between different outputs. More 

specifically, the (jq)th entry R XjXq (t ) is given by E  [xj (t,p) xq (t,p)]. The same de­

scription applies to R f f ( r ) . Taking the Fourier transform on both sides of equation 

2.29 then yields the following important relation

S xX M  = H* M  Sf f M  H t  (w) (2.30)

where S xx  (^) € and Sf f (a;) € Cmxm denote the input and output power spec­

tral density matrices given by E  [X* (u>, p , T) XT (a;, p, T)] and E  [F* (uj, p, T) FT (u>, p, T)] 

respectively with T  —► oo. The main diagonal of S x x (^ ) contains the power spec­

tral densities of the individual outputs and the off-diagonal terms the cross spectral

^Note that the Gaussian distribution is not a necessary condition for ergodicity and nor for the 
existence of the Fourier integral. Also,the assumption for the input to be a zero-mean process is used 
for convenience as a non-zero mean value can generally be removed from the signals by detrending 
operations (Bendat and Piersol, 2000).
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densities between different outputs. Again, the same description applies to the input 

spectral density matrix. Following the same procedure as above, another input-output 

relation can be obtained, namely S f  x  ( u j )  =  S f  f  (u;) H T (w) (see (Bendat and Piersol,

2000)), where S f  ̂  ( u j )  is the cross-spectral density matrix between the input and the 

output, but for operational modal analysis, this is less useful than equation 2.30. 

Indeed, under the assumption of a white noise excitation, the output power spectral 

density matrix yields the desired operational response model in the frequency domain. 

With the assumption of white noise, the input power spectral density is independent of 

frequency, and assuming further that the input is cross-uncorrelated, all off-diagonal 

terms become zero so that S f  f  ( u j )  becomes a constant diagonal matrix denoted by S. 

Indeed, by substituting equation 2.4 into 2.30, multiplying out the factors and writing 

each in partial fraction form, the output PSD matrix can be written as (Hermans and 

der Auweraer, 1999)

H  =  f  ( t J L  + K M  +  J J Z .. +  . )  (2.3i)
"  — Ar iuj — X* —iuj — Ar —iuj — A*/

with
Lr = ^ _ . f j ^ + ^ f S f r  e c M  ^

q — l  *q 'V Aq

It can be seen from this equation that the PSD matrix is given in terms of the poles 

of the system and hence may serve as the operational response model. The residues, 

however, do not admit the simple form as those of the modally decomposed FRF 

matrix (equation 2.4). As can be seen from equation 2.32, often referred to as the 

operational reference factor (Peeters, 2004), they contain the contribution of all the 

other system modes as well as the unknown input spectrum. The fact that the un­

known input forms an integral part of the residue inhibits the estimated mode shapes 

to properly scaled. Although some “tricks” have been devised for the scaling (Aenelle 

et a l , 2005; Doebling and Farrar, 1996; Parloo et al, 2005), this remains a major is­

sue in operational modal analysis. Comparing equation 2.32 with equation 2.4 shows 

that the operational reference factors replace the modal participation factors in the

33



input-output frequency domain response model.

The corresponding time-domain operational response model can now easily be 

obtained from equation 2.31 by inverse Fourier transform i.e.

N

B-XX (r )  =  e“ArT  ( l r  ( t )  +  U  ^ e - “ D^ u ( r ) +
r=l (2.33)

^  l ^ e 'UDrTu(—r) +  ^  lJjfe~'UDrTu(—r))

where u(t) is the Heaviside step function. The first two terms, which are the Fourier 

transform of the first two terms in equation 2.31, yield the part of the correlation 

matrix for positive lag times. The PSD matrix defined only by the first two terms 

of equation 2.31 is often referred to as the half-spectrum. The last two terms give 

the correlations for negative lag times. It can be seen that the positive part of the 

correlation matrix is of the same form as the IRF matrix in equation 2.6 i.e. a sum 

of decaying sinusoids governed by the resonant frequencies and damping ratios of the 

system and thus can be used as the operational response model in the time-domain. 

In fact, they can serve as the input to classical modal identification algorithms that 

work on impulse response function. This is generally known as the Natural Excitation 

Technique (NExT). The original derivation of this result can be found in James et al 

(1995). In practice, these response model have to be estimated from a single realization 

of finite sample size from the stochastic process which invariably leads to estimation 

errors. This will be dealt with in the next chapter.

2.3 Identification Methods

2.3.1 The Enhanced Frequency Dom ain D ecom position (EFDD)

The Frequency Domain Decomposition method aims to decouple the individual modes 

of the system by performing a singular value decomposition (SVD) of the PSD matrix 

at each discrete frequency line uj =  ujj (Brincker et al., 2000). Let S x x (^ j) he the
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PSD matrix evaluated at frequency Uj consisting of the auto- and cross-spectra taken 

between the response time-histories measured at all transducer locations*. Then, its 

SVD can be written as (Brineker et al., 2000; Herlu&en et al., 2005)

% 3£(u,i ) =  Ui S ,U f  (2.34)

where S j is the diagonal matrix of singular values, U j the unitary matrix of associated 

singular vectors, (•)** denotes the Hermitian transpose and the index j  refers to the 

frequency u/j. The fact that U j is unitary means that U j* U j =  I, i.e. its colum ns are 

orthonormal vectors. In the vicinity of a peak, that is, near a modal frequency, say 

u)T, there is typically a single mode that dominates the response which translates into 

the fact that the rank of the PSD matrix around this peak approximate? to 1. Thus, 

in the vicinity of a modal frequency, equation 2.34 can be written as

SS X ( U j )  «  8 h  uh u«  (2.35)

for ujj —* u r. s\j denotes the first singular value at the j th frequency line and uij the 

associated first singular vector. Since the rank of the PSD matrix is close to 1, only 

the first singular value contains modal information and will reach a maximum. This 

manifests itself by a peak in the singular value spectrum. In the case, where modes are 

repeated, the rank of the PSD matrix will equal the multiplicity of the repeated mode.

It is shown in (Brineker et al., 2000) that for a lightly damped structure, in the 

vicinity of a system mode, say the rth mode, the modal reference factor Lr (c.f. 

equation 2.32) is dominated by this mode so that it can be approximated by Lr ~  dr<£* 

with dr a real scalar given by dr — S ^ ,.  Also, equation 2.31 then reduces to

s x x  (wj) «  ±r diag 2 3? /  d r  V (2.36)

*In practice, the the cross-spectra are often computed only with respect to a few selected reference
stations. The principle of the FDD method remains the same (c.f.Gade et al. (2005) for instance).
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Fig. 2.4: Illustration of the Frequency Domain Decomposition method.

for u)j —> ay, where 5ft (•) denotes the real part of a complex number and >̂r 6 C lxl  the 

mode shape of the r ih mode. Comparing equation 2.35 to equation 2.36 it can be seen 

that at a modal frequency, i.e. at a peak in the singular value spectrum, the singular 

value decomposed spectrum at the vicinity of this frequency yields the desired modal 

information: the frequency of the mode is found by the peak in the singular value 

spectrum and the corresponding singular vector approximates the mode shape.

The FDD is illustrated in figure 2.4 for the same 3DOF, proportionally damped 

system  as used in figure 1.2. The black line represents the first singular value as a 

function of frequency and the resonant frequencies of the 3 modes of the system are 

found from its peaks. The second and third singular value are shown in red and blue 

respectively. At the vicinity of each peak, the SVD decouples the PSD matrix into the 

equivalent SDOF system  auto-spectra as can be seen from the SDOF system  auto-
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spectra (shown by the dashed curves) and the first singular value of the singular value 

spectrum. At frequency lines where more modes contribute significantly to the PSD, 

the singular value spectrum shows a departure from the actual physical system. This 

is particularly visible for the first and third mode for frequencies around 0.5 Hz. In 

fact, modes shapes are in general not unitary or orthogonal (Ewins, 2000; Ma and Ng, 

2004) but since the FDD also decouples the PSD matrix into unitary mode shapes at 

frequencies where more than one mode contributes significantly to the response, they 

no longer reflect the uncoupled SDOF behavior of the individual modes. The inset 

figure in 2.4 shows a typical region where the dominance of the modes switches.

The enhancement of the FDD method then consists of tracking the SDOF auto­

spectra among the singular values using the Modal Assurance Criterion (MAC) (Alle- 

mang, 2003; Allemang and Brown, 1982) to compare the mode shape at the resonance 

peak with those obtained at neighbouring frequencies. The singular value spectrum 

may therefore be taken to correspond to the physical SDOF auto-spectrum up to those 

frequencies where the MAC coefficient is higher than a certain user specified value. 

The identified SDOF auto-spectra are then back-transformed to the time-domain via 

inverse FFT resulting in auto-correlation functions of the individual modes of the 

system. A SDOF time-domain curve-fitting procedure may then be used to analyse 

the identified auto-correlation functions. For instance, enhanced estimates of the fre­

quencies of the system can be obtained from the zero-crossing times of the correlation 

functions as this eliminates the dependence of the frequency bin size of the discrete 

Fourier transform and the damping ratios can be estimated by logarithmic decrement. 

It should be noted that in some cases (e.g. noisy spectra due to limited data) only 

a small portion around the peak of the singular spectrum can be identified as the 

true SDOF behaviour. The sharp discontinuities at the “cut off” introduce bias into 

the auto-correlation functions obtained via inverse Fourier transform which affects 

the quality of the estimated damping ratios (Brineker et al., 2000). An average of 

the singular vectors weighted by the corresponding singular values computed in the
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frequency band defining the SDOF auto-spectra will yield enhanced mode shape esti­

mates (Brineker et al., 2001).

Two recent developments, both based on a better estimation of the PSD matrix, 

have recently been suggested for use with the EFDD. To reduce noise and avoid 

leakage in the PSD estimates, Rodrigues et al. (2004) have computed the PSD matrix 

from random decrement signatures via FFT. Using a method very similar to that 

used in (Shih et al., 1988) for FRFs, Zhang et al. (20056) obtain an enhanced PSD 

matrix around a peak making use of the singular vector estimated at the resonance. 

This attenuates the effect of the truncation of the identified SDOF system mentioned 

previously and hence results in improved damping ratio estimates.

2.3.2 Covariance-Driven Stochastic Subspace Identification (SSI/C ov)

As pointed out in the introduction, the covariance-driven stochastic identification 

algorithm (SSI/Cov) aims to identify the modal model of a particular test structure 

from output-only measurements and has its roots in the stochastic realization problem 

originally pioneered by (Akaike, 1974). This algorithm is closely related to the deter­

ministic realisation problem (Ho and Kalman, 1966). Juang and Pappa (1984) applied 

this concept, in conjunction with the singular value decomposition to deal with noisy 

data, to classical input-output modal testing and developed the Eigensystem Reali­

sation Algorithm (ERA). The equivalence between impulse response functions (IRF) 

and correlation functions, shown in the framework of the Natural Excitation Tech­

nique (NExT) (James et al., 1993), makes it possible to apply the ERA to output-only 

modal testing (Juang et al., 1988) by replacing the IRFs by the correlation functions 

between measured outputs. The latter method is essentially equivalent to the SSI/Cov 

(Peeters and DeRoeck, 2001). Below, we briefly outline the the SSI/Cov algorithm 

and introduce the notation and concepts that feature in chapters 5 and 6.

The spatial model of an AT degree of freedom system represented in equation 2.1
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can be reformulated as an equivalent 2N  dimensional first order system known as the 

continuous-time state-space model This reformulation of the set of continuous equa­

tions of motions in equation 2.1 into the continuous-time state-space model is standard 

and the reader is referred to Juang (1994), for instance, for its derivation. In practice, 

the output measurements are typically discretised before the data is processed and 

consequently a discrete set of equations describing the input-output relations is re­

quired. When the excitation of the system, denoted by f* =  f%N] G R2JVxl,

is a stochastic process, generally assumed to be zero-mean, stationary white noise, the 

discrete-time state-space model of the system admits the form (Akaike, 1974)

x*+1 =  Ax* +  £*, (2.37)

&  =  Cx* +  u* (2.38)

where x*+1 =  [z*, x \ , . . . , x \ N] e  R2,vx 1 is an unobserved state vector and A 6

jj2ATx2JV jg jjjg discrete-time state matrix or system matrix whose 2N  eigenvalues

which occur in complex conjugate pairs completely characterize the dynamics of the 

discretised system, yk =  Ivh 2/fc» • • • ? 2/fc] G Rixl is the vector of measured, discretised 

responses at time step k € N measured at I locations along the structure. Clearly, the 

continuous-time responses yt are related to y*. by Xk — %-k^t, whereAt is the sampling 

interval. The second of the above equations is known as the discrete-time observa­

tion equation. The output influence matrix C € R*x2JV relates the unobserved state 

vector Xfc G at time step k to the observed outputs yk 6 Rixl measured at

the I locations at time step k. u*. € R/x l, independent of f*., is a zero -mean random 

disturbance representing measurement noise. It is noted the latter term is sometimes 

omitted from the discrete-space state model (Basseville et al., 2001).

The crucial point of the covariance-driven identification is as follows. It can be 

shown directly from equations 2.37, see for instance Peeters and DeRoeck (1999), that 

the theoretical I x I correlation, or covariance, matrix at lag r  =  kA t can be written
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as'

t
E lViVi+k\ E [vlyi+k\ 

EbiVi+k] EfoiVi+kl

Eb/M+k1 

E[vH+k\

\

=  CA*-1 G (2.39)

with

 ̂ E U.Vi+k] E UVi+k\ . . .  E [ ^ i+k] y

Ryiyiik) =  E[yiyi+k] (2.40)

being the theoretical cross-correlation function between the measured outputs yl and 

yi, i , j  =  1 ,2 , . . . , /  at lag k (Bendat and Piersol, 2000). The matrices A and C axe 

recognised as the state-matrix and output-influence matrix of the discrete-time state- 

space model of the system. The matrix G =  E  [x* y*_i] € R2Nxl, for k > 0 is the next 

state output correlation matrix. In practice, the exact correlation matrix is not known 

and needs to be estimated from the measured data. This is dealt with in detail in the 

next chapter, and is not needed to continue the exposition of the underlying theory of 

the SSI/Cov. The stochastic realization problem now consists of recovering the matrix 

triplet {A, C, G}, up to a similarity transformation, using only the knowledge of the 

output measurements. To achieve this, the procedure is as follows. Define the a I x 1 

vector of “past” outputs and the (31 x  1 vector of “future” outputs by

=  [s.kXk+1 ■■•Xk+ft-i] and

T¥■ fc—a+lj

(2.41)

(2.42)

respectively. Consider the matrix

*It is noted that the definition of ‘correlation function’ and ‘covariance function’ as employed by 
some authors denotes the same quantity. In this thesis, we adopt the terminology of Bendat and 
Piersol (2000), where the correlation matrix at lag r  =  k A t  is defined as in equation 2.39.
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n, = E  [ I  fc| a 2+V .+ l |^ ]

'  Et&yZ+.+i] £[xt2*+, +2]

Sfo-iSt+.+il ElXk-iXk+.+i)

(2.43)

E\X k£+»+p] 

£ [& - iXk+,+0]

 ̂ E b o c - a + i y £ + s + i }  E t e k - a + i £ + . + 2 }  ■ ■ ■ ® [& -a + ii * + > + / 3 ] )

Recognising that each entry of this block matrix is the correlation matrix evaluated 

at a specific lag (see equation 2.39), equation 2.43 can be rewritten for as (Juang et 

a/., 1988)

Ut

( Rs+1 R-s+2

Rs+2 R s+3

R«+/J

R«+/3+l

 ̂ Rs+a R«+a+l • • • Rfl+a+/?— 1 y

(2.44)

It is seen that this block matrix has its entries, which are the correlation matrices R* 

arranged in a specific order according to the lag k. More specifically, the anti-diagonal 

blocks are constant. Matrices, having this specific structure are known as Hankel ma­

trices.

The realisation of the triplet {A, C, G} starts by forming the al x (31 block Hankel 

matrix Ho, that is

/

H0 =

Ri R 2 

R 2 R 3

R p

R/h-i

 ̂ Rq, R«+l • • • Ra+/3—1 J  y

/ c
CA

\

CA a —1

( g , A G ,...,A * 3" 1 G ) (2.45)

where the last equality in this equation follows directly from equation 2.39. The prod-
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uct of the last two block matrices in equation 2.45 is often written as Va Qp where 

Va € W*lx2N is known as the observability matrix and Qp € Ra2Nx^1 as the con­

trollability matrix. Since the inner dimensions of the observability and controllability 

matrices are 2 N , choosing both a  and /3 > 2 N  ensures that the rank of the Hankel 

matrix cannot exceed 2 N, since the rank of any matrix is at most the smallest of 

its dimensions. If all modes of the system are excited and if the measurement setup 

is such that they are all captured, the observability and controllability matrices will 

have rank 2N . In control engineering terminology, this means that the system is both 

controllable and observable (Juang, 1994). It is well known result in matrix algebra 

that if the rank of two matrices is equal to their inner dimensions, then this also gives 

the rank of their product (Golub and Van Loan, 1996). Thus, from the last equality in 

equation 2.45, the rank of the Hankel matrix is 2N  and reveals the model order of the 

system. In practice, the rank is found by using a singular value decomposition (SVD) 

of the Hankel matrix and the number of the non-zeros singular values will yield the 

model order of the system. The Hankel matrix Ho can then be expressed in truncated 

form as

Ho =  UaArEjwV&r (2.46)

where E 2N  €  R 2N x2N  denotes the diagonal matrix containing only the non-zero sin­

gular values. The matrices U 2n  and V2n  contain the corresponding left and right 

singular vectors respectively. In practice, where the singular values are never exactly 

zero, the determination of the correct model order is often difficult. A practical solu­

tion to this problem is to look for the largest gap occurring between successive singular 

values (Hermans and der Auweraer, 1999; Peeters and DeRoeck, 1999) indicating the 

separation between system modes and noise modes and hence the model order of the 

system. The matrices obtained via SVD of the Hankel matrix may then be truncated 

below this gap. Equation 2.46 will only be an approximation to the computed Han­

kel matrix once the truncation of the noise space (spanned by the truncated singular 

vectors) has been performed. Nonetheless, this reduced model is desirable since, we 

do not wish to identify a model that fits the noise in the data as well. Thus, the ben­
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eficial consequence of this truncation is that a significant noise reduction is achieved 

(Juang and Pappa, 1986). On the other hand, however, if the truncated singular val­

ues contain system dynamics such as residual modes for instance, the singular value 

truncation contributes to significant bias error in the identified modal parameters. 

This issue is dealt with in Chapter 6 in this thesis. Nonetheless, in many practical 

situations (Hermans and der Auweraer, 1999; Peeters and DeRoeck, 1999), such a gap 

in the singular values indicating the true model order is not clear and the model order 

needs to be chosen, based on the singular value diagram at hand and the engineers ex­

perience. It often occurs, or it is even desirable (see for instance Peeters and DeRoeck 

(1999)), to overspecify the model order and as a result, the set of identified modes does 

not only consist of system modes but also noise or spurious modes. Fortunately, the 

noise modes tend to vary from model order to model order while system modes tend to 

be stable. This fact is exploited to distinguish between these two types of modes and 

this is commonly done by means of a so-called stabilisation diagram (Hermans and 

der Auweraer, 1999; Peeters and DeRoeck, 1999; Van der Auweraer and Peeters, 2004).

For the next step in the identification of the system matrix A, note from equations 

2.45 and 2.46 that the observability and controllability matrices may be expressed as

P a =  U 2WE 1/2 and Qp =  E ^ V ^  (2.47)

This choice, although not unique, will yield a balanced or unweighted realization due 

to fact that equal weight is attributed to the observability and controllability matrices 

so that the realized system will be as controllable as it is observable. Other weight­

ings include the Canonical Variate Analysis (CVA) or the Principal Component (PC) 

method (Arun and Kung, 1990; Hermans and der Auweraer, 1999). However, sim­

ulations and practical applications have shown that there is no significant accuracy 

difference for the different weightings (Herlufeen et al., 2005; Peeters and DeRoeck,

2001). The realization of the system matrices is now straightforward. The output 

influence matrix C and the next state output-covariance matrix G can be found from
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the first block of Va and Qp respectively. The discrete-time state matrix is then found 

by computing the shifted Hankel matrix defined by H i = Va A Qp and solving for A 

making use of equations 2.47:

A =  E -1/J Hi Vjjv E 1/2 (2.48)

The dynamics of the discretised system is completely characterized by the eigenvalues 

of A

A =  * A * _1 (2.49)

where € C2f,x2!f is the matrix containing the eigenvectors of A rind A € q 2. \x2\  

is a diagonal matrix containing its discrete-time complex eigenvalues A;, for i = 

1,2, . . . , 2  N.  However, in order to describe the continuous-time dynamics of the 

equations of motion in equation 2.1, the discrete-time eigenvalues in A need to be 

transformed to the corresponding continuous-time eigenvalues. The continuous-time 

eigenvalues are related to the discrete-time eigenvalues by the transformation (Juang, 

1994; Peeters and DeRoeck, 1999)

Ac =  ^  (2.50)

where In (•) denotes the natural logarithm. The continuous-time eigenvalues occur in 

complex conjugate pairs and can be written as

Ac,,A* = (2.51)

form which the ith modal damping ratio & and the ith modal frequency cjj (rad/sec) 

can be found as
In (Ai)

A t “ d 6  -  ) <2-52>

where 5? (•) denotes the real part. Using the fact that the continuous-time mode shape 

matrix \PC is identical to ^  (Juang, 1994), the mode shapes at the sensor locations (f> 

axe obtained using the output influence matrix C as (Juang, 1994)
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<£ =  C ¥ (2.53)

Typically, when operational modal analysis is applied to large civil engineering 

structures, it is not possible to measure all the response at all the desired locations 

along the test structure simultaneously and therefore, the modal test needs to be done 

in several setups. This is done by choosing a set of sensors, whose position remains 

fixed throughout the different setups. This set of sensors serve as a reference against 

which all other responses, measured with a set of roving sensors from one setup to the 

next, are correlated and are therefore commonly referred to as reference sensors. The 

latter should be chosen at “optimal” locations (Chemg, 2003; Liu, 1995) along the 

structure which in practice means at locations where the response is strong and has 

contributions from all the system modes (Peeters and DeRoeck, 1999). When the load­

ing conditions are stationary throughout all the setups, working with multiple setups 

causes no problems since the factorisation of the correlation matrix in equation 2.39 

holds albeit in a slightly different from (Basseville et al., 2001; Peeters and DeRoeck, 

1999). Prom a practical point of view, all that changes is that the correlation matrix in 

equation 2.39 contains only those correlation functions evaluated between roving and 

reference sensors. More specifically, assume that the modal test has been performed in 

q different setups and denote the measured responses from the designated, say r, ref­

erence sensors in each of the q setups by ^ 2,̂ *\ , . . . ,  y ^  r’̂  j

for i — 1, 2, . . . ,  q, where y™ * d e n o t e s  the measured response at reference sensor 1 

at setup i. Similarly, let the corresponding set of, say m  roving sensors for each setup

be given by ^  . ^ r ^ } ,  for i = 1,2  q, where

rov i,(») denotes the measured response at the roving sensor 1 at setup i .  Then, the
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reference based correlation matrix at lag s can be formed as

The notation R(rc^,t)’(rov’t) denotes the correlation matrix at lag r  between the refer­

ence and roving sensors at setup i .  Note that no setup is specified for the correlation 

matrix between the any two set of measured references. This is due to the fact that 

they are the same for all setups whenever the loading conditions and hence the re­

sponse data is stationary (Basseville et al, 2001). This block-vector R jĉ  admits the 

same factorisation as R s in equation 2.39 so that the system identification is done 

exactly in the same way as described above, except that the Hankel matrices Ho and 

Hi are formed by the reference correlation matrices R je  ̂ rather than R s. When the 

loading is non-stationary, the merging the data from different setups as above cannot 

be done, the reason being that the next state output correlation matrix G changes 

from setup to setup which entails that the decomposition, as in 2.39, with constant 

matrices G and C is not possible. Mevel et al (2002a, b) circumvented this problem 

by proposing a normalization correlation matrices from different setups make them 

appear as if they originate from the same excitation. Simulations in Basseville et al 

(2001) also seem to indicate that this method smoothes the non-stationary properties 

in the response data. This method is, however, not considered in thesis but will be 

further discussed in section 6.3.3, Chapter 6.

2 .3 .3  D a ta -D r iv en  S to ch a stic  S u b sp ace Id en tifica tion  (S S I /D a ta )

To conclude this chapter, we present the data-driven version of the stochastic subspace 

identification algorithm (SSI/Data). However, since this algorithm will be applied in 

chapter 7 without delving into its technical detail, this presentation will be brief and it

R£ r

R(re/,1), (rav, 1) 
8

R  (re/,2),(row,2) a (2.54)

■o(ref,q),(rov,q)
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is merely aimed at outlining the main steps involved and pointing out the differences 

and similarities with its covariance-driven relative.

As for the stochastic realization problem described previously, the aim of the datar 

driven stochastic subspace method is to identify the discrete-time system matrices of 

the model described in equation 2.37 using the measured output time histories Xk € 

Rixl, assuming the responses are measured at I different locations along the structure. 

However, rather than forming a block-Hankel matrix of correlation matrices, the data- 

driven SSI start by forming large data Hankel matrix comprising the vectors of “past” 

and “future” outputs as described in the previous section. In a next step, the row 

space of the of the “future” outputs is projected into the row space of the “past” 

outputs. This projection effectively takes the role of correlating the measured outputs 

as in the SSI/Cov (Peeters and DeRoeck, 2001). The rank of this projection yields the 

model order of the system and is, as in the SSI/Cov, determined by a singular value 

decomposition and the same practical issue involved in determined the model order 

described for the SSI/Cov apply to this identification process. At this stage, several 

different implementations are possible, depending on how the data is weighted before 

the SVD is applied. These variants include the Canonical Variate Analysis (CVA) 

or the Principal Components (PC) or, in the simplest form, Unweighted Principal 

Components (UPC) (Arun and Kung, 1990; VanOverschee and DeMoor, 1996). The 

latter is equivalent to the balanced realisation used for the SSI/Cov and, since CVA, 

PC and UPC perform equally well in practice (Herlufsen et a l , 2005; Peeters and 

DeRoeck, 2001), the latter was chosen for simplicity in this thesis. The crucial result 

enabling the system to be identified via the the SSI/Data, states that this projection 

can be factorised into the observability matrix of the system (thus containing the 

information about the output influence matrix C and the state matrix A, see previous 

section) and the Kalman filter state sequence which is effectively an optimal prediction 

of the state vectors x* (VanOverschee and DeMoor, 1996). For detail on Kalman 

filter states, the reader is redirected to Juang (1994); Ljung (1987). The relations
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obtained from the latter factorisation and the SVD decomposition of the projection 

of future onto past outputs, the system matrices can then be identified in a similar 

manner as for the SSI/Cov; in the latter algorithm, the necessary relation for the 

identification stemmed from the SVD decomposition of the block Hankel matrix Ho 

and the factorisation of Ho into a product of observability and controllability matrices. 

Once the state matrix A and the output influence matrix C are at hand, the modal 

parameters of the system are found in exactly the same way as described in the 

previous section for the SSI/Cov. The SSI/Data can also be used when the modal 

test is done in multiple setups and the reference-based version of the algorithm was 

developed by Peeters and DeRoeck (1999). An efficient implementation of the data 

driven algorithm is not easy, and the implementation used in this thesis follows closely 

the one suggested by VanOverschee and DeMoor (1996), but was modified following 

Peeters and DeRoeck (1999) to account for a reference-based implementation. It is 

documented by Peeters and DeRoeck (2001), that both the SSI/Data and SSI/Cov 

perform equally well in practice but a faster execution for the SSI/Cov is reported.

2.4 Summary

In this chapter, the basic theory needed in the remainder of this thesis was presented. 

The concept of stationarity, white noise loading conditions was explained and its 

important relation to operational modal analysis shown. The operational response 

model was derived and the use of correlation functions, instead of the classical IRF, 

was justified. Finally, three operational identification algorithm were given. The 

exposition of the Enhanced Frequency Domain Decomposition Method (EFDD) and 

the data-driven Stochastic Subspace (SSI/Data) algorithm was kept a minimum since 

a more technical description of these algorithms is not needed in this thesis. The 

SSI/Cov was presented in more detail since in Chapter 5, it will be investigated 

how errors in the response model propagate through this algorithm to influence the 

identified modal parameters.
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C h a p t e r  3

E st im a t io n  E r r o r s  in  

C o r r e l a t io n  f u n c t io n s

3.1 Introduction

Correlation-driven operational modal analysis is a 2-stage identification procedure. 

The measured information about the system consists of simultaneously recorded re­

sponse histories, most commonly acceleration, recorded at various locations along the 

structure. In a first stage, this information is processed into a different form, namely 

correlation functions. The identification algorithm then operates on the latter data 

to extract the modal parameters of the system. In other words, the measured infor­

mation about the system is transformed into a different format that is better suited 

to extract the system’s modal parameters. These correlation functions can only be 

estimated and are therefore corrupted by estimation errors, both bias and random, 

and are further contaminated by measurement noise. Since these correlation func­

tions are the basic quantities from which the SSI/Cov algorithm identifies the modal 

parameters, these errors will propagate through the identification algorithm used and 

affect the identified modal parameters. In order to estimate the error in the identified 

modal parameters, requires knowledge of the error in the estimated correlation func­

tions, which is the subject of this chapter.

Different techniques to estimate the sample auto- and cross correlation functions
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-or equivalent quantities that can be used as input to the SSI/Cov such as the Ran­

dom Decrement (RD) signatures- are presented and the errors in these estimates are 

investigated. The techniques considered are

•  Direct and indirect estimation of auto-correlation functions (ac.f.) and cross- 

correlation functions (xc.f.)

•  Auto- and cross-correlation coefficient functions

•  Random Decrement (RD) signatures

Both bias (systematic) and random errors are considered. It is not aimed at comparing 

the different estimators as such because, in terms of accuracy, there is no significant 

advantage of a particular estimator over another. While the random decrement es­

timator can be computationally more efficient (depending on the record length of 

the time series, the lag up to which the RD signature is computed and the trigger­

ing condition used), a simulation study in Asmussen (1997) for instance, comparing 

the accuracy of RD signatures with FFT-based correlation function estimates, shows 

that the two estimators are comparable. Desforges et al. (1995) report a favourable 

performance using correlation functions. In a first instance, it is aimed to give a de­

scription of the errors in terms of the the record length of the time-series and the 

modes of the system to guide the practitioner. The latter analytical formulation is, 

however, not very practical. Therefore a robust and efficient numerical method, based 

on the formulation originally given by (Bartlett, 1946), is developed to obtain esti­

mates of these errors in the sample correlation and correlation coefficient functions. 

The accuracy of the proposed method is assessed, in particular at low lag times, since 

correlation-driven identification typically operates on this portion of the estimated 

data (Juang and Pappa, 1984). The various aspects of computation of the random 

decrement signatures are only briefly discussed for completeness, since this subject is 

treated extensively by Asmussen (1997).
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3.2 Correlation Function Estimators

To clarify the terminology, the definition used in this thesis for the auto- and cross­

correlation functions is restated (see Chapter 2). For a stationary signal, they are 

respectively given by Bendat and Piersol (2000)

Rxx (t)  =  E  [x (t) x (t +  r)] (3.1)

Rxy(T) = E  [x (t) y ( t  + r)] (3.2)

where x(t) and y(t) denote two stationary time series. As described in Chapter 2, 

the above definition of the auto- and cross-correlation function are similar to the 

definition of the auto- and cross covariance function defined in equation 2.18 except 

that the time-independent mean is not removed. Some authors (Peeters and DeRoeck, 

2001) prefer to work with covariance functions but since it is customary to remove 

the mean from the measured time series by using a detrending operation (Bendat

and Piersol, 2000), both quantities are, in general, the same. Various quantities exist

that have the same correlation structure as equations 3.1 and 3.2, for instance the 

RD signatures or correlation coefficient functions described below, and may therefore 

serve as input to the SSI/Cov algorithm. Zhang et al. (2005a) use the generic term 

Time Response Functions (TRFs) to refer to any of these functions but in this thesis, 

the term correlation function will be used to refer to these quantities in a general 

context and it will be clarified when a specific function is meant.

3 .2 .1  S am p le A u to - an d  C ross-C orrelation  F u n ction s

There exist two common techniques to estimate the ac.f. and xc.f. of simultaneously 

measured times series: the direct method is a direct application of equations 3.1 and 

3.2 in which the expectation operator E[-\ is replaced by an integral or a summation 

for discrete data (Bendat and Piersol, 2000; Priestley, 2004). An alternative estimate 

can be obtained by making use of the properties of the FFT. This procedure is often 

referred to as the indirect method. Since both methods are explained at length in many
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texts, only a brief description is given here and appropriate references are given.

Direct M ethod

The biased ^ y ( r )  and unbiased Rxy(r) sample cross-correlation function between 

any two stationary, zero-mean continuous time histories x(t) and y(t) of length T  can 

be estimated as (Bendat and Piersol, 2000)

1 f T - r
&xy(r ) ~  7F  /  + T) ^  0 < T < T  (3.3)

1  — T  J  o

f^xyir) =  J, x(t)y(t +  r)dt 0 < r  < T (3.4)

where r  denotes the time lag at which the the cross-correlation function is evaluated. 

For the discrete case, the above formulae can be rewritten as (Priestley, 2004)

- N —r —l
R x y ( r A t )  =  x(iAt)y((i +  r)At) i =  0 ,1, 2, . . .  (3.5)

r i=0 
- N —r —l

f&xy(rAt) = — ^ 2  x(i&t)y((i + r)At) i =  0,1,2,. . .  (3.6)
i=0

N denotes the number of sample points in each record such that T  =  N A t  and A t  is 

the sampling interval. The estimates are only given for positive time lags as the latter 

yield the decaying part used in the identification. The sample auto-correlation func­

tions are merely special cases of the above equations when the two records coincide 

(Bendat and Piersol, 2000). For notational convenience, the sampling interval A t  will 

be dropped so that for instance Rxy(r) is understood to stand for Rxy(rAt).

Indirect M ethod

The key to obtaining correlation functions via FFT is to realise that the summand 

in equations 3.5 and 3.6 is the discrete convolution x(r) with y(—r) (Oppenheim and 

Schafer, 1988). Computing X(k)  and Y(k), which are the discrete Fourier transform 

(DFT) of x{r) and y(r) respectively, it is possible to form the raw cross-spectral es-
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timate ^  (Bendat and Piersol, 2000). The raw spectrum estimate — ^

is often referred to as the cross-periodogram between X(k)  and Y(k)  . Taking the 

inverse DFT (or FFT) of the raw cross-spectral estimate yields a convolution in the 

time domain, resulting in equation 3.6. It will be noted, however, that because of the 

underlying assumption of the periodicity of the DFT and its inverse, one will actu­

ally obtain the circular correlation between the two signals which appears as though 

it were calculated from a periodic function. As a consequence, the resulting cross- 

correlation function at any lag r  (r < N)  will have components from the periodic 

extension of the signal. This “wrap-around effect” can easily be avoided by augment­

ing the signal with zeros (Bendat and Piersol, 2000; Oppenheim and Schafer, 1988). 

When the signal is padded with N  zeros, exactly the same linear correlation function, 

given in equation 3.6, for both +ve and —ve lags is obtained by inverse FFT of the 

raw spectrum estimate. The above clearly applies to auto-correlation functions when 

x(r) and y(r) coincide.

The advantage of using the indirect method lies in its computational efficiency 

when the maximum lag value up to which the correlation function is to be com­

puted is sufficiently large (Oppenheim and Schafer, 1988). In particular, since the 

the maximum lag of interest, say m, is usually much less than N, it is computa­

tionally advantageous to chop the data into rid contiguous blocks of length M  > m  

i.e. N  = rirfM. Augmenting each block by M  data points, the cross-spectral es­

timate can be computed using Bartlett’s averaged periodogram method. That is 

Sxy(k) =  YH=\ Xi(k)Y*(k), where Xi(k) and Yi(k) denote the DFT of the ith 

block Xi(r) and y%{r) of the time records x{r)  and y(r) .  The inverse FFT of Sxy(k) 

then yields the desired cross-correlation function up to lag m. This procedure is ef­

fectively an application of the Wiener-Khinchine relation (Bendat and Piersol, 2000). 

For the exact computational effort required by each method, the reader is referred to 

(Bendat and Piersol, 2000; Oppenheim and Schafer, 1988).
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The FFT procedure described above is statistically equivalent to the direct method 

(Bendat and Piersol, 2000). In some applications, for instance Farrar and James 

(1997), the correlation functions have been estimated by inverse FFT of the spectral 

estimates obtained via Welch’s modified periodogram method (Welch, 1967), which 

is a slight modification of the Bartlett procedure described above. The modification 

consist of applying a window function u(r) directly to the individual data blocks £j(r) 

and yi (r )  before computation of the periodogram. Also, the blocks are often chosen to 

be overlapping. The motivation for applying Welch’s modified periodogram method 

is to get better spectral estimates, that is reduced leakage due to the windowing 

operation and reduced variance due to the increased number of blocks made possible 

by the overlap. The correlation functions obtained via inverse FFT from these spectra 

have different statistical properties than those obtained from the direct method. These 

differences will be discussed in subsequent sections.

3 .2 .2 . S am ple A u to - an d  C ross-C orrelation  C oeffic ien t F u nctions

It may be convenient in some cases to deal with correlation coefficient functions rather 

than with the correlation functions themselves. The latter is defined as (Bendat and 

Piersol, 2000)

~  Rxxir) Rxx(f') ( 0  ^t e ( r )  =  - j - . —  (3.7)

Pxy(r)  =  ( 3 8 )
O’xCy yj -Rxx(0)J2j/y(0)

where <7(#) denotes the standard deviation of the respective time series*. Since, the 

ac.f. at zero lag is given by Bx(0) = E[x2(r)\ =  Var[x(r)] =  a2, it follows that 

the corresponding auto-correlation coefficient function pxx(r) is unity at r = 0. The 

cross-correlation coefficient function satisfies

-1  <  Pxy( r )  < 1 (3.9)

tSome authors, (Priestley, 2004) for instance, use this as the definition for auto- and cross­
correlation functions.
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for all r. The sample estimates for the correlation coefficient functions can be obtained 

from equations 3.7 using the plug-in principle. In other words, the exact quantities in 

equations 3.7 are replaced by their estimates i.e.

pxx(r) =  (3.i0)
P K Ax(0)

M r )  =  =  (3.11)

It is clear from its definition, that the correlation coefficient functions are simply cor­

relation functions normalized with respect to the variances of the respective outputs. 

Therefore, the decay and oscillatory properties are the same as those of the corre­

lation functions and hence the same modal parameters are identified. However, the 

sample variance of the correlation functions differ from those of the correlation co­

efficient functions. For instance, it is clear that since the auto-correlation coefficient 

function computed from each of the p measured time histories is normalised to unity, 

the variance of pxx(0) would be zero whereas the variance of Rxx(0) is not.

3 .2 .3  A u t o  an d  C ross R an d om  D ecrem en t (R D ) sign atu res

Random decrement signatures were initially developed by Cole (1973) to estimate 

damping ratios and natural frequencies and were later extended to cross-RD function 

by Ibrahim (1977); Ibrahim and Mikulcik (1977). The description given here will be 

brief and the reader is referred to Asmussen (1997) for a complete and comprehensive 

treatment of the subject.

The concept of the random decrement signature is based on the fact that the 

random response of structure at time t+to is composed of two parts: (a) a deterministic 

part composed of the step response due to the displacement at to and/or the impulse 

response due to initial velocity at to and (b) a random part due to the random load 

applied to the system between to and to + 1 (Ibrahim, 1977). Let x(t) and y(t) be 

two stationary response histories from a linear system. The RD technique starts by
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breaking the time series up into blocks of equal size, say Af. The basic idea behind 

the RD technique is that, by averaging enough of these blocks, the random part 

of the response will average out, leaving only the deterministic part. However, to 

avoid averaging out the deterministic part of the response, the blocks into which the 

time series are broken need to be chosen under certain conditions. These conditions 

are commonly referred to as triggering conditions. There are a several triggering 

conditions under which this requirement is fulfilled but they can all be described from 

the applied general triggering condition (Asmussen, 1997)

1%) =  {°i ^  x (*) ^  a2, h  < x(t) < 62} (3.12)

where x(t) denotes the time derivative of x(t). Equation 3.12 means that, in order 

to avoid averaging out the deterministic part of the response, the blocks of x(t) need 

to be chosen starting always at a point of x(t) lying between the designated levels ai 

and 0,2 and having a slope in the interval [61 62]- The various triggering conditions

that can be derived from this general trigger and their consequences are described 

in great detail in Asmussen (1997). In this thesis, only the level crossing triggering 

condition, denoted , is discussed. The latter is obtained from equation 3.12 by 

letting 61 = —00, 62 =  00 and a\ =  a and 02 =  a +  A a i.e.

Tx(t) — =  0 0  < x(t) < 00} (3.13)

Denoting the discrete signal obtained from x(t) by x(r), equation 3.13 states that the

blocks into which the time series is broken can be chosen to start at any point at 

time r  for which x(r) =  a irrespective of the slope of x(t) at that point. Clearly, for 

discrete signals, it might not happen that x(r) =  a exactly and the triggering condi­

tion is never fulfilled. Therefore, in practice, the triggering points are chosen at r and

r + 1 such that x(r) > x(r +  1) for a negative slope and x(r) < x(r -I-1) when the

slope is positive. It was shown by Brincker et al. (1991) that if either the left-hand 

point r or the right-hand point r  +1 is chosen, the estimated RD signatures are biased
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Level a- -  -

Block i of
fixed size M

Block 2 of
fixed size M

Fig, 3.1: Illustration of the level triggering condition.

and to avoid this bias, bo th  points should be taken to  act as triggers. The-' choice1 of 

the level a determ ines the number of blocks into which the response is broken. It is

evident, from the description of the concept of the ED technique that the  more blocks 

we have, the be tte r will be the cancellation of the random  part of the  response. It is 

shown in (Asmussen, 1997) that levels between ax and 2crx yield best results, where 

(jx denotes the standard  deviation of the sta tionary  tim e-history x(t).  This process 

is illustrated  in figure 3.1. Suppose th a t N x blocks are obtained from :r(f) and N y 

blocks from y{t).  The auto- random  decrement signatures R D x(r)  and R D y i j )  are 

then found by taking the average of the Nx and Ny blocks respectively. Formally, the 

sample auto-random  decrem ent signatures are expressed as
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N»
RDx(r) = +

i=l
N x

R D n

V i=l

r p E
x(U)

r p E
y(u)

(3.14)

(3.15)

The cross random decrement signatures are found by forming the same blocks of y(t) 

than was done for x(t), i.e. the trigger for y(t) is taken to be the one for x(t) (Ibrahim, 

1977). Formally,

R D « i=i
N .

R D y x { r )  = - i -  y(U + t )

N* £ l

r p E
y(u)

r p E  
X(ti)

(3.16) 

. (3.17)

For the level triggering condition, it was first shown by Vandiver et al (1982) that 

the auto-RD functions are proportional to auto-correlation functions. This was later 

extended by (Brincker et al, 1991)* to include the case for cross-RD functions and it 

the relation yields

R D X X  ( t  ) 

R D x y ( r )

R n

R x y a

(3.18)

(3.19)

When different triggering conditions are used, the relation between correlation and 

RD functions changes and the general relation between correlation and RD functions, 

that is for the general triggering condition in equation 3.12, is given by Asmussen 

(1997).

*The author could not get hold of the original paper mentioned in this reference but the theory is 
also given in the appendix of Asmussen (1997).
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3.3 Bias in Sample Correlation Functions

3 .3 .1  A u to - an d  Cross^-Correlation F u n ction s  

Direct M ethod

It is easily found from equation 3.6 that the bias in the cross-correlation function 

between x(t) and y(t) is (Bendat and Piersol, 2000)

b (r)] = E [ ^  (r)] -  ilxy(r) =  (r) (3.20)

where Rxy (r) is the exact cross-correlation function between x(t) and y(t), E[-] denotes 

the expectation operator and &[•] the bias error. The magnitude of the bias thus 

depends on two factors; the ratio of the time lag to the total record length and the 

value of Rxy (r) itself. When |r| is small compared to N, the bias will be small but as 

|r| approaches N  the bias will effectively be Rxy (r). There will thus be little difference 

between the biased and unbiased estimates in the region where |r| is small compared 

to N. On the other hand, however, since the cross-correlation functions between any 

two response measurements of a damped structural system are decaying functions such 

that Rxy (r) —*■ 0 as |r| —► oo, it will be small by the time |r| approaches N  for large 

values of N  so that we may expect the bias to remain small. The decay rate of the 

correlation functions is governed by the product co^i, where i denotes the ith mode, as 

shown in equation (2.33) so that we can expect smaller bias in correlation functions of 

more heavily damped, higher frequency systems. This behaviour of the bias is shown 

in figure 3.2(a). A set of SDOF systems were computed using the analytical equations 

for the ac.f. of a SDOF system excited by white noise given by (3.30),(3.31) and 

(3.32), for displacement, velocity and acceleration output records respectively. The 

variance of the noise was assumed to be unity. For presentational convenience, only 

the envelope of the bias is shown. The dependence of the latter quantity on the modal 

parameters /o and £ can be expressed by a single variable /o£, so that the results are 

identical for any combination of natural frequency/damping ratio yielding the same

t e -
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Indirect M ethod

The correlation functions computed by application of the inverse FFT to the raw spec­

tral estimates (or periodogram) are identical to the biased estimates obtained from the 

direct method. However, when the periodogram is modified using Bartlett’s or Welch’s 

method, the bias in the resulting correlation is different. For the Bartlett procedure, 

this is easily understood by realising that the spectral estimate is just an average of 

periodograms and that the FFT is linear. More precisely, if the time records x(r) and 

y(r) of length N  are divided into n«* blocks of length M  such that N  =  n^Af, then 

computing the correlation estimate by inverse FFT from the averaged periodogram 

Sxy(k) =  ]j££i Xi(k)Y*(k), is the same as averaging the correlation functions

obtained by inverse FFT from each periodogram From the discussion of

the direct method and the previous paragraph it follows that bias error in the latter 

correlation functions is b[R̂ .y(r)] =  —$ R x y(r). Since M  < N, the bias in the thus 

estimated correlation functions will be greater than or equal to that in the correlation 

functions estimated via the direct method, although the random error decreases with 

with rid (Bendat and Piersol, 2000). The origin of this bias error can be attributed 

to the fact that time-history records have finite length; finite length data records, of 

length N  say, may be regarded as the product of an infinite record with a finite Boxcar 

or rectangular time window defined by

uR(r) =  <
1 for r  =  1,2,. ..  ,1V

(3.21)
0 else

This behaviour of the bias error in the estimated correlation functions is closely re­

lated to the bias error in the corresponding estimated spectral densities, often referred 

to as resolution bias. The reason is that the product of the time history records with 

a window function in the time domain translates into a convolution of their Fourier 

transforms in the frequency domain. The Fourier transform of the rectangular window 

is the well known sine function and the width of its main lobe, determined by the 

length of the window, serves as a measure of the resolution bandwidth of the spectral
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Fig. 3.2: (a) Envelope of the bias error in the auto-correlation coefficient function px(r) for a 
set of SDOF systems for both the direct method (rectangular window) [— ] and the indirect 
method using a Hanning window [■ • ■]. It is assumed that the total available record length 
form which the ac.f were computed is T  =  100s. (b) Exact auto-correlation function compared 
to the envelope of the biased auto-correlation function for the rectangular an Hanning window.
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densities (Oppenheim and Schafer, 1988). A detailed analysis of the resolution bias 

in relation to windowing operations was given by Schmidt (1985a).

The discussion above is readily generalized to arbitrary window functions, used 

for instance when the spectral densities are estimated using Welch’s method. It is 

shown in (Schmidt, 1985a, 6) that the factor (1 — kl/iv) multiplying in equation 3.20 is 

the auto-correlation coefficient function pn(r) of the the rectangular window function 

given in equation 3.21 and the result is generalized to an arbitrary window function 

u(r) as

E  \^ x y  (r )j == P u { t ) R x y  (f) (3.22)

where pu(r) denotes the (biased) auto-correlation coefficient function of the window 

function u(r). This relation is illustrated below in figure 3.2(b) for the auto-correlation 

of a SDOF system for the rectangular and Hanning window. For clarity, only the 

envelopes of the respective ac.f. are shown. The dependence of the bias on the window 

function used is clearly seen. The reason for applying different window functions is 

to reduce the leakage in the estimated power spectral densities despite an associated 

decrease in resolution (Bendat and Piersol, 2000). While there have been many window 

function designed for this purpose, each with different properties, only the Hanning 

window is considered herein. In the authors experience, the Hanning window appears 

to be the most commonly used in operational modal analysis applications as it is 

known to offer a good compromise between frequency resolution and leakage (Jenkins 

and Watts, 1968). The shape of the Hanning window is

uH(r) = <
i  [l +  cos(2j5f)] ujt(r) for r  =  l ,2 , . . . , JV 

0 else

and its auto-correlation coefficient function pu{r) is given by (Schmidt, 1985a,b)

Ph (t ) =  i
27rr 

2 + cos(— )
1 9/rrr

pR(r) + ~ s m ( — ) (3.24)
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As for the direct estimation method -or equivalently for the rectangular window- the 

dependence on the system’s modal parameters of the actual bias error in the correlar 

tion functions estimated via the Hanning windowed spectra is shown in figure 3.2(a). 

While the general behaviour is similar to that for the direct case, it is seen that for 

( M )  =  0.02, 0.04 and 0.08, the increase in bias with the lag in the ac.f. is smaller for 

the Hanning than for the direct method. Also, the maximum bias is smaller for the 

Hanning window when /o£ is large but tends to increase as /o£ increase. Considering 

the envelope only, it can be found from equation 3.20 that for the rectangular window, 

the maximum value of the bias in the envelope occurs at rA t  =  For the Hanning 

window, using equation 3.22 with pu =  pH and expanding the sin and cos functions 

as the first two terms of their McLaurin series, the maximum value of the bias can be 

found to occur approximately at rA t  =  Equating the envelopes in both cases for 

a fixed value of uj£ reveals that the bias error intersects at approximately rA t  =  ^  

with the bias being smaller for the Hanning window than for the rectangular window 

for lags < j  This is illustrated in figure 3.2(a). It is noted that the biased correlation 

functions can easily be unbiased applying equation (3.22) i.e. by multiplying (r) 

by p^1 (Giampellegrini and Greening, 2005). The biased estimates offers two advan­

tages, (a) it has been asserted that, in general, it has a smaller mean square error than 

the unbiased estimate and (b) it is a positive semi-definite function implying that its 

finite Fourier transform or periodogram is a non-negative function at all frequencies. 

The unbiased correlation estimate, on the other hand, does not have this property 

(Priestley, 2004).

To conclude this section, a brief discussion of the bias in the correlation coefficient 

functions and the RD signatures is given. Strictly speaking, the plug-in expressions for 

the correlation coefficient functions in (3.10) have slightly different bias properties from 

those of sample correlation functions since the effect of estimating R^x (0) and Ryy (0) 

has to be taken into account as well. However, it is shown in Priestley (2004) that 

when the error between the estimate Rjx(r ) its expectation is small, E  [pXx{r)\
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can be approximated as

E \fixx(r)] = E E%szir)
^x(O)

E

E ^x(0)
— (1 — ^ybpxx(r ) (3.25)

Extending this to cross-correlation coefficients as

E \ p x x i x ) \ E
%y(r) E [*£»(»•)]

\Je  [*L(0)j E  [^(0)'
= (1 -  ^  W O

(3.26)

it is seen that imder this approximation, the bias properties of correlation coefficient 

functions are the same as those of the ordinary sample correlation functions. Since the 

error is generally small at low lag times, this approximation is valid for all practical 

purposes.

The bias arising in RD signatures is generally due to implementation problems such 

as the discretization issue for level triggering discussed in section 3.2.3. By careful 

implementation, it is generally possible to obtain unbiased estimates. A detailed 

account of sources of bias in RD signatures can again be found in Asmussen (1997).

3.4 Variance in Sample Correlation Functions

While the variance of sample correlation functions for band-limited white noise is 

described in (Bendat and Piersol, 2000), little work seems to have been devoted to 

study the random error in sample correlation functions between outputs of linear 

MDOF systems. A reason might be that the random error can be kept low when the 

available record length is very large. Long records are, however, not always available 

and the effect on the sample correlation estimates and hence the effect on the identified 

modal parameters are severe as is shown in Pridham and Wilson (2003). In this 

section, it is aimed to expose the behaviour of the variance, and hence the random 

error, in the estimated sample correlation functions in terms of the system modes 

and the available record length T. In a first instance, an analytical formulation of
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the variance for SDOF systems are considered and then an approximation for MDOF 

systems is given. Finally, a numerical plug-in method applicable to MDOF systems 

is developed to estimate the variance and covariance in practice.

3.4.1 Single-Degree-of-Freedom  System s

For a zero-mean, Gaussian time series x(£), the variance for the sample correlation 

Rxxij) and R^x(r) can calculated as

Var [A*,(t)] =  I j T ^ ( i _ l i ! ± l )  (**,(*) (3.27)

+ Rxx(t +  r)Rxx(t -  r)) dt

Var[iU r ) ]  =  ^  ( l  -  J {L ) « . ( * )  (3.28)

+ Rxx(t +  r)RxX(t -  r)) dt

This result was first given in discrete form for the biased estimate by Bartlett (1946), 

i.e. a summation rather than an integration. It is seen from the above equations 

that the variance for the unbiased estimate is of the order of O thus leading

to erratic behavior in the tail region of Rxy(r) while it remains of order O  {1/ t )  for 

Rbxy(r) for all r  (Priestley, 2004). As for the bias, the two estimates differ little at low 

lags, and since high lags are of no practical interest, only the unbiased estimate will 

be considered henceforth.

To find the variance of RxX, we can insert the expressions for the auto-correlation 

function into equations 3.29 and perform the integration. The auto-correlation func­

tion of the displacement response of a continuous linear SDOF system with natural 

frequency cjo and damping ratio £ excited by stationary white noise with constant 

spectrum So by x(t) is given by in Penzien and Clough (1993). Using the relations 

R±{t ) =  —d2Rx(T)/dT2 and Rx(r) =  —d2R±(r)/dT2 (Penzien and Clough, 1993), where 

x(t) and x(t) denote the corresponding velocity and acceleration output respectively,
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the velocity auto-correlation can easily be computed. They yield

Rx(t )

R * { t )

R * ( t )

ujoSo
W z

cjo3Sq

cos (wpt) + sin (wd |t|) 

sin (u)d |t|)

^  K1 “  ^ 2) 008 ("Dt)

(3.29)

(3.30)

(3.31)

€ ( 3 - ^ 2) • ,\ 1 _ ^ 2 sm (uo  |t|) }
where a>d denotes the damped natural frequency of the system and —oo < r  < oo. 

The Dirac-<5 function enters the acceleration auto-correlation because of discontinuity 

of the absolute value at r  =  0. This has a physical meaning, however, and is effectively 

due to the the fact that the impulse response function for the velocity is discontinuous 

at t =  0 (Schmidt, 1985a).

Performing the integration in equation (3.29) is tricky and for a sufficiently large 

record length T, equation (3.29) can be approximated as (Bendat and Piersol, 2000)

r A nj 1 f + O O

Var [fl*(r)J «  -  j  (R?(t) + R^it +  r)flI (t -  r)) dt, r  > 0 (3.32)

In fact, the requirement on the record length T  for this approximation to be valid is 

not stringent at all as will be illustrated in the next section. The analytical variance of 

the ac.f. of the displacement, velocity and acceleration output may now be obtained by 

substituting equation (3.30), (3.31) and (3.32) into (3.32), respectively, and performing 

the integration. The exact results are lengthy and hence only an approximation will be 

given here. More precisely, time-independent terms in the nominator involving powers 

of f  > 2 and time-dependent terms involving powers of £ > 2 have been omitted so 

that the results will hold for lightly damped systems (roughly £ < 5%) of critical 

damping and for T  large compared with the time lag of interest. For displacements



x(t), velocities x(r)  and acceleration records x(r) one obtains for positive lags r

Var [A r ,i(r )]  «  {X +  e [cos(2w>ot) (1 +'2£wor) (3.33)

±  (4jqTS2/y/i_£2) sin(2o;£)r)]} 

Vor[fl*(r)J »  { l +  e-2u,)£T [cosj (2u)Dt ) (1 +  2^wor) (3.34)

— (i2^orC2/V i-f2) sin(2u>£>T)]}

where the expression with Cx = and the ‘+ ’ sign holds for displacements, and

the one with C± =  ‘(ifaggy the ’ gives the variance for velocities. The above 

equations are verified below by comparing them to the variance of the auto-correlation 

function computed form an ensemble of 480 realisations of systems 1 and 2 described in 

table 3.1. The SDOF systems were excited by white Gaussian noise and the response 

was recorded for a total length of T =  100s. A time step A t  =  0.01s and A t  =  0.005s 

was chosen for system 1 and 2 respectively. This is shown for displacement records 

in figures 3.3. It is seen that equations (3.30) and (3.32) offer a good description of 

the variance of the auto-correlation function of SDOF systems. Since the integration 

in (3.32) is from —oo to oo, these expressions hold for the unbiased estimate. This 

is illustrated in figure 3.3 by comparison with the envelope of the biased estimate. 

Since the variance oscillates at twice the frequency of the system’s auto-correlation 

function, the minima (lower envelope of the variance function) gives the variance at 

zero-crossings while the upper envelope gives the variance of the envelope (upper and 

lower) of the auto-correlation function. Up to the lag shown, the variance of the max­

ima (upper envelope) of the variance function decrease with r  and the minima (lower 

envelope) increase. This is illustrated in figure 3.4 and may provide an explanation 

for why frequencies are generally much better identified than damping ratios. As il-

SDOF systems Natural Frequency/o Damping ratio £
System 1 2.5 Hz 1 %
System 2 8 Hz  2.5 %

Tab. 3.1: The two SDOF systems used for simulation. Their modal parameters were cho­
sen such as to have a representative case for a low frequency/lightly damped and “high” 
frequency/heavily damped system.
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Fig. 3.3: Comparison of the analytical approximation of the variance of the displacement 
ac.f. of SDOF systems with the simulated variance from an ensemble of 480 realizations of 
systems 1 and 2 in table 3.1. For clarity, only the envelopes of the variances are shown. /- -/ 
shows the variance of the unbiased ac.f. computed by simulation, [-], represents the analytical 
approximation and /•■•_/ the simulated variance of the biased ac.f. The inset figures are a zoom 
at low lags showing the agreement of the oscillatory behaviour. The simulated (unbiased ) 
results are represented by [-•-] and analytical results by [oj
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t(»)

(b)

Fig. 3.4: (a) envelope of the sample ac.f of a 1 Hz, 1% damped SDOF system incuding high 
lag times r. (b) The minima of the Vor[i?xx(r)] give the variance at zero crossings of i?zx(r) 
while its maxima give the variance of the the envelope of i2zx(r).

lustrated for a 1 Hz, 1% damped SDOF system in figure 3.4, the variance of the ac.f 

at zero-crossings and that of its envelope will eventually converge and increase with 

r . It is noted, however, that the initial decrease in variance of the enevelope does not 

imply that the correlation function is better estimated at these lags. Converting the 

envelope of the variance function, i.e. at r  =  n ^ ,  to the corresponding normalized 

random error of the ac.f. defined as er(Rx(r)) =  a(R*(T))/ R x{ t ) ,  where <r(*) denotes the 

standard deviation, yields

(r(Rx(r = m /wd)) « + T)  (3-35)

and at r  =  0 one obtains

where Bjj =  2£/o is the common approximation to the half-power bandwidth of the 

system’s resonance peak (Bendat and Piersol, 2000). It should be noted that, for 

convenience, equation (3.35) was normalized with respect to the absolute value of the 

ac.f. so that the normalized random error is always positive. Equation 3.36 may be 

compared to the expression describing the normalized random error in a white noise 

signal of bandwidth B  given by 1/ V b t  in (Bendat and Piersol, 2000). It is noted that 

within this approximation made in equations (3.30), (3.31) and (3.32), the normalised 

random error at r  =  n^fuo is the same for displacement, velocity and acceleration
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Fig. 3.5: Illustration of the normalized random error at positive and negative peaks of the 
estimated sample ac.f. a  = ujq^T and (3 =

records and will henceforth be denoted by €v{ Rx {t  = 2'7rT,/v £))). The1 behaviour of 

€r (nn/ujD) is illustrated  in figure 3.5 below. To plot, figure 3.5, equation (3.35) was 

reform ulated in term s of two auxiliary param eters a  =  ujq^T and 3  =  ^  thereby 

allowing to represent m any cases on the same graph. The normalized random  error 

on the ordinate1 is plo tted  as a function of a  represented on the abscissa. The var­

ious curves are for different values of [3 . The lowest curve is for (3 =  0 i.e. a t zero 

lag. Moving upwards, successive curves are obtained by increm enting the param eter 

3  by a value of 0.01 up to  3  =  0.14. Thus, for example, the point at a  =  25 may 

represent the normalized random  error in ac.f. of a SDOF system  with m odal para­

m eters /o =  2.3Hz,f; =  1.5% estim ated from a total record length of T  zz 115s. The 

different values of (3 then  give the corresponding lag, for example, 3  =  0-04 gives er 

at t  =  115 x 0.04 ss 4.6s where the normalized random  error can then be read from 

the  graph as approxim ately 45%'. For fixed T, a clear increase in random  error can be 

seen as the  r  increases and tends towards the 100%. error lim it relatively quickly, the 

more so for high frequency and more heavily dam ped system s. For low frequency and
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lighly damped systems the error propagates more slowly along the auto-correlation 

function. At low lag times, however, the level of the error is considerably smaller for 

high frequency, more heavily damped systems than for low frequency, lightly damped 

systems. It will be seen in Chapters 6 and 7 that this behaviour is clearly reflected 

in the random error of the identified modal parameters. Clearly, the random error 

is seen to decrease with T. It is remarked that, although equation (3.35) is defined 

only for r  =  for n =  0,1,2, • • •, the results in figure 3.5 are interpolated between 

these points. Consequently, the normalized random error shown in figure 3.5 should 

be interpreted as that of the envelope of auto-correlation function.

3 .4 .2  A uto -covarian ce  fu nction

It will be shown in Chapter 5 and 6 that the determination of the random error in the 

identified modal parameters heavily relies on the covariance structure of the estimated 

correlation function. An approximate expression for large T  for the covariance of 

RXr (r) can be found to be (Priestley, 2004)

r - - l 1 f+oc
cov \Rx(t), Rz(r + v)j »  — j  (Rx(t)Rx{t + v) (3.37)

+Rx(t + t  + v)Rx(t -  t))  dt,

T > 0, T +  V > 0

and it is noted that equation 3.32 follows from the latter expression for v = 0. An 

expression for the covariance may then be found as before by carrying out the in­

tegration. For convenience, the constant multiplier in the correlation functions was 

omitted and the covariance function can be found to be
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Fig. 3.6: The envelope of the covariance function of the estimated sample ac.f. as a function 
of v. Figure (a) shows the covariance of the 2.5H z  SDOF system evaluated at r =  20s and 
figure (b) depicts the same for the 8H z  at r  =  7s. [-] denotes the theoretical covariance and 
[-] the simulated covariance computed from 480 realizations of the system excited by white 
Gaussian noise. The inset figure shows the oscillatory behaviour of the covariance at lags v 
around r. The simulated results are represented by [-•-] and analytical results by foj.
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cov R(t  +  v)J «  c {cos(u>£>v) [1 +  M u>o£] (3.38)

2 uo\v \ £ 2 . , , ,xl
c + 0 = = f 8m( ^ M ) |

+e- 2uH>t(2T+v) { c o g ^ p p r  +  v)) (1 +  £u;o(2t  +  v)) 

^ u o @ r £ v ) i_ ^  8in(Wfl(2T +  „ ) ) |

r  > 0, t  + v > 0

It is can be seen that the above equation reduces to the expression for the variance for 

displacement outputs at v =  0, (see eq. 3.34), with the constant multiplier set to unity. 

Figure 3.6 validates equation 3.38 by comparisson with the covariance computed from 

480 realizations of each of the two systems in table 3.1. For clarity, only the envelope 

is shown over 10s of the auto-covariance function and the oscillatory part is depicted 

only at low lags v in the inset figure.

3.4.3 M ulti-Degree-of-Freedom  System s

The equations given above are restricted to a description of the variance and covariance 

of auto-correlation functions of SDOF systems. In principle, an analytical expression 

for cross-correlation functions between simultaneously measured responses of MDOF 

systems could be obtained by integrating the general expression for cross-correlation 

functions given in the formulation of the natural excitation technique i.e. equation 2.33 

(James et al, 1995) according to equation 3.32. As will be argued in the next section 

and in Chapter 6, such an expression would not be useful in practice and unnecessary 

for the purpose of giving a general description of the error in xc.f. of MDOF systems. 

Instead, an approximation is given in this section that uses the known results for 

SDOF systems. The derivation of the result is rather lengthly and is therefore given 

in appendix A. It states that under the condition that a) the damping is light and 

and b) that modes of the system are sufficiently separated, the variance of the cross­

correlation functions can be approximated as a weighted sum of the ac.f. functions of
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equivalent SDOF systems. More precisely,

Var(R*lZp (t)) m £  ¥ i r  Var W ) (3-39)n tPlntPln

This expression was verified by simulating a proportionally damped 2-DOF system 

with modal parameters fa =  1.2Hz, fa — 2H z and £1 — 1.04(%), £2 — 1.03(%). The 

system was excited by Gaussian white noise at each degree-of-freedom and 300 real­

izations -each consisting of 250s (At =  0.1s) of displacement response- were recorded. 

The variance of the cross-and auto-correlation functions of the response was then 

computed as an ensemble average over the 300 realizations. The square root of the 

variance thus calculated, normalized by its value at r  = 0 is shown by the (blue) dot­

ted line in figures 3.7. The solid line is the result obatined by numerically evaluating 

equation A.23. It can be seen that the results are in good agreement. It appears from 

this simulation that the requirement of the modal separation for equation 3.39 to yield 

the variance of auto- and -cross correlation functions of the MDOF systems excited 

by white noise is < 1 Hz. The limit for the proximity of modes at which equation 3.39 

fails was, however, not since the method described in the next section is much more 

useful in practice and does not suffer from this issue.

3.5 Plug-in Estimates

The formulae given in the previous section may be used in practice to calculate the 

random error in the estimated sample correlation functions, but its transpires that 

this is not practical and suffers from a few drawbacks: a) a normalization procedure 

would have to be applied because some of the parameters, for instance Sq are not 

known b) the formula for MDOF is not applicable for close modes and b) we require 

knowledge of the modal parameters of the system in order to implement the formulae. 

The last point cannot be avoided since the estimation of the variance involves the exact 

correlation functions which are unknown and an estimate, in this case in terms of the
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Fig. 3.7: Normalized standard deviation of the correlation functions of a 2-DOF system excited 
by white Gaussian noise. Figure (a) and (c) depict the auto-correlation functions at measure­
ment station 1 and 2 respectively; figure (b) depicts the cross-correlation function between 
the time histories at station 1 and 2. [- •• J simulated and [-] numerical approximation
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modal parameters, needs to be taken instead. However, since the modal identification 

usually involves model order reduction and spurious modes, a more direct plug-in 

approach is preferred that involves the estimated correlation functions directly.

3 .5 .1  P lu g -in  E stim ates for th e  C ovariance o f  C orrelation  functions

The discrete version of equation 3.28 for cross-correlation functions is given by Priest­

ley (2004) for r  > 0, r  +  v > 0

N —r —v—1 I - 77(771) +  r +  u \
x

\  N  /
m = (—N + r )+ l

x (Rxx(m)Ryy(m +  v) +  Rxy{m +  r + v)Ryx(ri

with /
771, 771 > 0

77(771) =  0 , - V  < m  <  0

—771 — v, —(N — r) + 1 < m  < v

and gives the exact estimate for the covariance of Rxx(r). The expression for auto­

correlation function follows by letting y =  x. As in the previous section, we may again 

simplify this expression for large N  by letting 1̂ — —► 0 and replacing the

summation by —0 0  and 0 0  so that

1 00
Cov \^Rbxy{ r ) , R hxy{r  + 1/)] «  —  ^  ( R x x ( m ) R y y ( m  +  v) (3.41)

m =—00

+ R x y ( m  +  r +  v ) R y X( m  -  r ) )

In practice, the summation is of course bounded by the number of available data. 

Strictly, equations 3.40 and 3.41 hold for the biased estimate Rxx(r). However, the 

approximation 3.41 may be used to estimate the covariance of the unbiased estimate 

Rx x( r)  because a) the dependence on the lag r in the limits of the summation is relaxed

i.e. the summation ranges over more data points than 2(N  — r) and b) comparison 

of the continuous equations for the variance given by 3.28 and 3.29 for the biased 

and unbiased estimate respectively, reveals that the two expressions converge with

(3.40) 

• — r))
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increasing T. In particular, under the assumption of large T, or equivalently large 

IV, the two estimates are very close at low lags. The estimate 3.41 is validated by 

simulation of a 2DOF system whose modal parameters are given in table 3.2. Only 

the variance will be displayed here for convenience as it is clear that the effect of this 

approximation will be the same for the covariance. The system was excited at both 

degrees of freedom (dofs) with a white noise input and the response was recorded for 

a total duration of bmin(At =  0.04s) at both dofs. An ensemble of 500 responses 

were simulated at each degree-of-freedom. From each one, the ac.f. and xc.f. # n (r)  

and R 12 (r) respectively, were computed and used to approximate their variance. The 

subscripts refer to the dofs at which the response was recorded so that, for instance, 

# n ( r )  is the ac.f of the response at dof 1 and #12 ( 0  the xc.f. between the response 

at dof 1 and 2. This simulated variance is represented in figure 3.8 by [• • • x • • •]. 

The evaluation of equation 3.41 requires knowledge of the true correlation functions 

# n (r) , #22 #12 M  and #21 (r). The latter were approximated by taking the mean

over the ensemble of the 500 estimates of #11 (r) and #12 M  and were used as input 

to equation 3.41. The results are shown up to a lag of 3s in figure 3.8. It is seen that 

there is good agreement between simulated data and the estimate from equation 3.41. 

The discrepancies that arise between the simulated data and the estimate 3.41 are 

due to various sources. Firstly, the sample estimates form the 500 realisations will not 

have fully converged: i.e. the simulated variance as well as the mean of the correlation 

functions that was used as input to 3.41 are not exact. Secondly, the estimate 3.41 

is an approximation to 3.40. The convergence of equation 3.41 to its exact estimate 

given by equation 3.40 is illustrated in figures 3.9. These figures depict the variance of 

Rxxi0) =  #xx(0) and is therefore independent of whether the variance of the biased or 

unbiased correlation is estimated. It is seen that both estimates converge rapidly as 

T  increases and for record length > 5mm the difference is certainly negligible. Also,

Modes Natural Frequency /o Damping ratio £
Mode 1 1.5 Hz 0.97%
Mode 2_______ 2.91 Hz____________ 1.85%

Tab. 3.2: Modal Parameters of the 2DOF system used for simulation.
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Fig. 3.8: Validating equation 3.41 for unbiased estimates by comparison with simulated data 
from the 2DOF in table 3.2. An ensemble of 500 realisations was simulated. [— o - ]  denotes 
the estimate from 3.41 using i2*y(r) as estimated from the ensemble of 500 response histories 
and [• • • x • • • ] the simulated variance. For convenience, only the variance is shown.

figures 3.8 reveal that estimates for T  > hmin will also yield a good approximation 

to the unbiased estimate at low lags.

In practice, the plug-in method presented above has two drawbacks: Firstly, an 

ensemble of responses that enable to compute the mean of their correlation functions 

may not be available. Therefore, the covariance needs to be computed using the only
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estimate available, that is RXx{f')i by plugging the latter into equation 3.41 as

i 00
Cov [Rxy(r), Rxy(r +  v)j »  — + v) (3.42)

m=—00

+ ^ y ( m  +  r  +  v ) ^ x(m -  r ) )

Due to the estimation errors in i?£y(r), the estimate Cov ĵ Rxa.(r), -Rxx(r +  v)j itself 

will be in error and its accuracy will depend on how well we can estimate Rbxx(r). The 

problem of having to deal with correlation function estimates is even more pronounced 

in this situation than when they are used as a response model from which the system’s 

modal parameters are extracted. The reason is that in the latter case, a modal iden­

tification is possible using only the low lag portion of the correlation functions which 

has significantly less error than the tail regions. In the present situation, however, 

the sum needs be computed over the entire two-sided, full length correlation functions 

and the poorly defined high lag ends must be included. The second difficulty is the 

computational efficiency. Having to use two-sided, full length correlation functions 

significantly increases the computational burden. An ideal remedy for both of these 

drawbacks would be to somehow do without the tail regions, thereby reducing the 

number of data points used in the computation and, at the same time avoiding the 

inclusion of the high random errors in high lag estimates. This can indeed be achieved 

using a suitable taper. Ideally, such a taper would be smooth at low lags to minimize

I
I

6 8 10 
Record Length (min)

12 142 4 6 8 10 
Record Length (min)

12 142 4

(a) (b)

Fig. 3.9: (a)[* • •] shows the asymptotic approximation in equation 3.41 and [— ] the exact 
value obtained from 3.40 as a function of T  at zero lag. (b) The relative error between 3.41 
and 3.40 as a function of T  using a time step A t  =  0.04s
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bias but then cut off the tail region rather sharply at the point where, in theory, the 

correlation function has decayed to almost zero. Politis (2003a) used a “flat-top” win­

dow to evaluate infinite sums of the type YskL-oc e*fcŵ a;(fc), where i =  \ /-T  and 

p > 0 and provided an empirical method to choose the optimal length or bandwidth 

of this window adaptive to the auto-correlation function R%.x(k) of the problem under 

consideration. The “flat-top” window, in scaled parameter form, is defined by

wprit) =  <

1 \t\ e  [0, 1/ 2]

2(1 -  |t|) |t| € [1/2, 1] (3.43)

0 otherwise

where M  is the length of the window and its bandwidth is defined by 6 =  M -1. To 

briefly describe the idea behind their method, we shall start by considering the biased 

auto-correlation functions, denoted Rxx(k). It will be seen shortly, that in order for 

the method to work, a biased estimate of the auto-correlation function must be taken. 

Firstly, note that for p =  0 and using the flat-top window w ft, the sum above reads 

YlkL-oo eikuJwFT{kb)Rxx(k) =  2ttSx(u)) with u  =  [—7r ,7r] (Priestley, 2004). Thus, the 

choice of the window length M  amounts to selecting the “optimal” bandwidth of the 

window to estimate the spectral density Sx(lj); optimal in the sense that bandwidth 

is chosen such that the mean-square-error (mse) of the spectral density is minimised. 

In fact, this idea will feature prominently in the selection of the block length for the 

dependent bootstrap which is treated in the next chapter and, for more clarity, the 

reader is referred to section 4.4, Chapter 4. Politis (2003a) derived the following em­

pirical rule to select M  = 6-1 .

Construct the the auto-correlation coefficient function pxx(k) =  Rlx(k)/Rbxx{0) and let 

kcut denote the smallest lag such that pbxx{kcut +  k) < c y / l°9io (n)/n, for 

k =  1 ,2 ,...,  I f  where c>  0 is a fixed constant and K  and integer of order 

O(logio(n)). Choose M  = 2kcut.

The form of this rule essentially arises from an implied hypothesis test (see for
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instance (Bendat and Piersol, 2000)). Since an estimate of the correlation coefficient 

function pxx(k) is crude, one can use a hypothesis test to check whether the estimate 

is consistent with the behaviour of real value pxx(k). For instance, we may compare 

the estimate of the correlation coefficient function at a specific lag k to what we 

would expect to see in the true correlation coefficient at that same lag. In this case, 

let this lag be kcut, i-e* the lag where we pxx(kcut) is not significantly different from 

zero the reason being that this is where it is desired to cut off the correlation 

function with the flat-top window. Assume that pbxx{kcut) has a normal distribution 

with mean p$.x(iheat) »  0 and variance Var\pbxx(kcut)\- The biased estimate of the the 

ac.f. has a variance of order 0 {n~l ) which means that it will typically have 

±2Vn-1  95% confidence bands around zero at lags > k ^ t  (Politis, 2003a; Priestley, 

2004). Therefore, an acceptable estimate of pxx(k) will fall within these bands where 

the true correlation coefficient function is approximately zero. Rather than using the 

±2Vn_1 bends, (Politis, 2003a) derives threshold cy/l°9io («)/n. For a rigourous 

treatment, the reader is referred to the original text but it is seen that both of these 

values are close. This provides an intuitive explanation for the selection threshold 

Cy/l°9 io (n)/n for We emphasise that, for the cutoff selection described above to 

be applicable, it is important to take the biased estimate of the correlation 

coefficient for the unbiased estimate will have order 0 ((n — fc)-1) at lag k which 

means that the 95% confidence bands at around zero given above are not applicable.

The two parameters c and K  need to be specified by the user. In practice, Politis 

and White (2004) suggest the empirical values c — 2 and K  — max(5, logio(n)). While 

the choice of c =  2 is followed in this thesis, a slightly different lower bound for K  is 

imposed. The motivation for this is to avoid selecting a too high bandwidth b in a 

situation where the sampling interval A t is small and the frequencies of the the ac.f 

are low so that a succession of K  occurs within a period around the zero crossings 

much before the ac.f. has actually decayed to a level not significantly different from 

zero. Therefore, it is suggested that K  has to cover at least half a period of the lowest 

frequency mode in the response so that points near the extrema of the ac.f. are consid­
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ered in the selection process. Formally, this means choosing K  > [(2/oAt)-1], where 

[•] denotes the smallest integer > x  and /o denotes the lowest frequency component 

in the response. Only a crude estimate of the latter is necessary and may be obtained 

by inspection of the correlation functions, an finite element model of the structure or 

initial modal test data.

Two more issues need to be discussed. Firstly, the problem at hand is not exactly 

the same as evaluating a sum of the form YlkL-oc \k\p elku}R%;x(k)i or alternatively, 

for p =  0, selecting the bandwidth that minimises the mse of spectral estimates. For 

instance, consider the computation of the variance of the correlation estimate at zero 

lag. It is easily seen from equation 3.42 that this computation differs from the evalu­

ation of the spectral density at uj =  0 only in the fact that the correlation estimate is

squared. We may therefore think as this estimate as that of computing the spectral
- 2

density at zero of a process whose ac.f. is R bxx(k). Clearly the latter has an associated 

correlation coefficient function that decays much faster than that of RbXx(k) so that 

the optimal choice of the window bandwidth to compute YlT=-oo ^xx(^) *s not the 

same as that to compute ]C£=-oo Since the method in Politis (2003a) does

not specify a form for the ac.f.,(although different convergence rates apply depending 

on whether the decay is exponential or polynomial (Carlstein, 1986)) one may apply 

it directly to the square of the correlation function. This approach was, however, not 

adopted. Rather, we apply the flat-top window with a bandwidth determined directly 

from the biased ac.f. according to the empirical rule above to each of the correlation 

estimates entering equation 3.42 to evaluate its variance and covariances. This implies 

that the latter estimates may be suboptimal but simulations show that the results thus 

obtained are satisfactory for all practical purposes (c.f. figure 3.10). It is important 

to note at this stage, that even to achieve optimality of the bandwidth of the flat-top 

window for spectral estimates as intended in Politis (2003a), a certain number of con­

ditions on the ac.f. need to hold. Due to the highly technical formulation of these 

conditions, it was not possible to check them in detail, but the simulations in figures

82



3.10 strongly support the applicability of this method for the problem at hand.

Secondly, Politis (2003a) considered only auto-correlation functions. However, the 

empirical rule for selecting the bandwidth of the flat-top window can be applied to 

cross-correlation functions as well. As explained above, the bandwidth is selected on 

the bads of an hypothesis test which essentially determines when the estimated auto­

correlation coefficient functions are not significantly different from zero by looking 

at the k g  fecut after which K  subsequent values lie within the bands ±cy/l°9io (n)/n. 

The cross-correlation functions computed between simultaneously measured response 

histories on a given structure are, according to the Natural Excitation Technique 

(NExT) sums of decaying sinusoids with frequencies and damping ratios determined 

by the modes of the system which also applies to the ac.f. computed from these re­

sponse measurements, although the phase information is lost in the latter. This means 

that, in general, whenever the auto-correlation coefficient functions have decayed to 

nearly zero, then the same holds for the cross-correlation functions so that is 

more or less the same in both cases. Therefore, since the variance of the estimates of 

the cross-correlation coefficient functions is also of order 0 (n-1) the empirical rule for 

bandwidth selection is applicable to cross-correlation functions. Also, if one is confi­

dent that a particular response measurement contains the mode with the slowest decay 

rate -most commonly the fundamental mode- for all practical purposes, the bandwidth 

only needs to be computed once and can be applied to all other correlation functions. 

Finally, to summarise, Cov Rxy{r +  v) is computed as follows: a) determine

the bandwidth of the flat-top window wprik) according to the selection rule above, 

b) apply this window to compute weighted correlation estimates WFT{™)Rxx(m )i 

WFr{m)I§y(™)'l WFT(m)&Xy(m ) and w p r i^ R y x i171) and c) use the latter as input 

to equation 3.42) to obtain an improved estimate of Cov Rxy{r), Rxy(r +  v)

To illustrate the advantage gained by weighting the correlation estimates by the 

flat-top window as described above, a 2DOF system with modal frequency and modal
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damping ratios shown in table 3.3 was simulated. This system was chosen instead of 

the one in table 3.2 to allow a comparison with results obtained in the next chapter 

4, where this system is also employed. A white Gaussian load was applied to each 

dof of the system. The response was computed using a Newmark-/? scheme with 

parameters 7  =  1/2 and /? =  1/4. This choice, often referred to as the constant 

average acceleration method, makes the time integration unconditionally stable and 

introduces no numerical damping in the solution (Bathe and Wilson, 1976). The 

response was recorded at both dofs for a total length of 820s with a sampling interval 

of A t — 0.05s. The approximations inherent in the Newmark-/? method, are known 

to produce period elongations. The magnitude of these frequency shifts depends both 

on the sampling interval and the system’s frequencies. The shifted frequency can be 

expressed as (James et al., 1993)

1 i.ti.’n, ^
d t

ujc =  —  ta n
u  d t

. 1 - ( “r ) 2.
(3.44)

where uj is the true natural circular frequency of the system and ljc is the circular 

natural frequency after the integration. In fact, the modes of the original system had 

natural frequencies of 2.34H z  and 4.52H z  respectively so that the values given in table 

3.3 are corrected for the frequency shift introduced due to the time integration. Also, 

we cut out the non-stationary transients that occur initially in the response when the 

system is excited from rest. The decay of these transients is governed by the damp­

ing ratios and frequencies of the modes of the system; the higher the frequency and 

damping, the faster steady-state will be reached (Caughey and Stumpf, 1961; Clough, 

1960). Following the approach of the latter authors, it was roughly estimated that 

the mean square response will reach its stationary mean square value after »  40s. 

Consequently, the first 40s were left out of the response leaving a total of 13mm of 

response. In the remainder of the thesis, unless stated otherwise, this same approach 

will be adopted to simulate the response of system due to ambient white loading. 500 

different realisations of the response were simulated this way.
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Modes Natural Frequency /o Damping ratio £
Mode 1 2.24 H z  L49%
Mode 2_______3.93 H z____________2.85%

Tab. 3.3: Modal Parameters of the 2DOF system used for simulation.

Lag r  =  0 Lag r  =  1
Vor[iJi2I3 (r)] 1.65 • 10"8 9.61 • 1(T 7
Vor[flx,x2(r)] 2.40 • 10~7 1.40 • 10~7

Tab. 3.4: True values of Var[RXlX2(r = 0,1)] and Var[RX2X2(r = 0,1)]

To validate the method described above, 100 estimates of Var (r)j and 

Var R̂a;2a;2(r)] were computed from the first 100 simulated response histories. Here, 

x\ and X2 denote the responses at degrees-of-freedom 1 and 2 respectively. To sim­

plify the display of the results, only the variance at zero and lag r  =  1 were computed 

without loss of generality. For comparison, Var R̂®!®2(r)j and Var R®2'®2(r)J a  ̂

lags r = 0 and r =  1 were also computed without weighting the biased correlation 

estimates by the adaptive flat-top window. The true values of Var RXlx2(r )] and 

Var ^R®2®2 (0)j for r  =  1,2 were approximated by computing the sample variance of 

the 500 estimates of RXl®2(r =  0,1) and R®lX2(r = 0,1) and are tabulated in 3.4. The 

results are shown in the histograms in figures 3.10. It is seen from figures 3.10 (b) 

that the distribution resulting from 100 computations of Var[RxlX2(r =  0,1)] centres 

closely around the true values (c.f. table 3.4). The bias in the estimates is considerably 

low bearing in mind that smoothing generally involves a trade off between variance 

and bias. The spread of the values described by the standard deviation of 4.40 • 10-7  

is also acceptable*. A comparison with 3.10 (a) clearly shows the improvement gained 

by tapering the correlation functions with the flat-top window. The large bias and 

random error that occur in the latter case can be attributed to the summation over 

the ill-defined tail regions of the correlation estimates. The same observations hold for 

the cross-correlation functions in figures 3.10 (c) and (d). It is noted that to compute 

the variances for the cross-correlation functions, the same bandwidth for w f t  was 

used as for the auto-correlation functions. Although not explicitly shown here, the

*Note that the statistics displayed in figure 3.10 are based on 100 samples only. It was not the 
aim to get accurate estimates of the mean and standard deviation but only to show the scatter of the 
variance estimates from different simulated responses.
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Fig. 3.10: Histogram of Var[RXlX2(r =  0,1)] ((a),(b)) and Var[RX2X2(r =  0,1)] ((c),(d)) from 
100 computed simulated responses from the 2DOF system in table 3.3. The narrow (grey) 
bins represent the results for lag r =  1 and the wider bins (red) for lag r = 0. Figures (a) and 
(c) show the results without weighting the biased correlation estimates by the flat-top window 
and figures (b) and (d) with applied smoothing.

results for the covariances of correlation functions are similar. Therefore, plugging 

the flat-top tapered auto-and cross correlation functions into equation 3.42 gives good  

results for estim ating the covariances of the sample ac.f and xc.f. from structural 

response histories. Of course, in practice the covariances have to be estim ated from a 

single measurement only, and it is seen from figures 3.10 (b) and (d) that, although  

the distributions peak around the true value, an over - or under estim ate of the exact 

covariances is to be expected. Given the estimator, a reduction in variance in is only 

possible by increasing the number of observed data points, i.e. the record length. Also 

noticeable from figures 3.10 is the similarity of the distribution at the two lags imply­

ing that whenever the the variance at zero lag is under- or overestimated, then so is 

the case at lag 1. This appears to hold for all lags so that the relative relation between 

data points in the estim ated variance is preserved but are under- or overestimated in
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an absolute sense. This is illustrated in figure 3.11 for the auto-correlation function 

at the second degree of freedom. The bold solid line represents the exact variance 

of the ac.f. and the thin dotted and solid lines show the estimated variance from 

four different computed response histories. It is seen that the estimated variances are 

more or less proportional to the exact variance. Although not shown here, a similar 

relationship between exact and estimated quantities holds for cross-correlation and 

covariance functions.

It would be useful in practice to have even a crude estimate of the variance of the

x 10*®

1.5

>

0.5

0 0.5 1 1.5 2
X (S )

Fig. 3.11: Illustration of how the random error in the variance estimates manifests itself at 
higher lags.

variance to get a rough idea of the error in the covariance estimate calculated from 

the available recorded response.

Finally, we note that the cut-off imposed by the flat-top window reduces the num­

ber of data points used in the computation significantly. In addition, we used Hankel- 

type matrices to express the shifted copies of the correlation functions so that the 

implementation will only depend on r rather than on v and r which makes the imple­

mentation of equation 3.42 very efficient.
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3 .5 .2  P lu g -in  E stim a tes  for th e  C ovariance o f  C orrela tion  C oefficient 

fu n ction s

The variance properties of the the correlation coefficient functions differ from those of 

the ordinary correlation functions. For instance, it is easily seen that the variance of 

the auto-correlation coefficient is zero at zero lag because each estimate is normalised 

to unity at this lag. An asymptotic approximation for the auto-correlation coefficient, 

equivalent to 3.41, function is given in Bartlett (1946); Priestley (2004) and reads

(3.45)

+2 Pxx{r)Pxx(r +  v)p2xx(m) -  2pxx(r)pxx(m)pxx(m - r - v )

- 2pxx(r +  v)pxx(m)pxx{m -  r)}

and is related to the covariance of the ordinary correlation function by

Cov [pxx(r), pxx(r +  v)] « (3.46)

— -  { Cov [.Rxxir), Rxxir + v)]-  pxx(r +  v) Cov Rxx{0), -Rxx(r)]
' X X  v'-v

pxx(r) Cov [^x(O), Rxx{r + u)] +  pxx{r)p X X  (r +  u) V'ar[^xz(0)]}

In those texts, this equation is given only for the auto-correlation coefficient pxx(r) — 

R%x(r)/Rxx(o). To estimate the covariance of the cross-correlation coefficients, the ap-



proach in Priestley (2004)is followed. The desired expressions are

Cov \pxy(r), pxy{r +  v)] »  

1
;Pxy(r  +  v )

Cov ^Rxy(r), Rxy(r +  u)J 
Rxx(fyRyy{0 )

CoV ^ z (O ), Rxy(r)^ Cov ĵ -Ryy(O), ■Rxy(?’)j

(3.47)

’(0)m/2w(0)
+

Cov ^Rxx (0), Rxy (r +  v)j Cov \kyy (0), Rxy (r +  v)J

Aix2( o ) ^ 2(o) +

+ ^ P x y ( r ) p x y ( r  +  v )
Var[RxX(0)] Var[Ryy(0)] 2 Var[Rxy(0)]

^L(O) ^ 2,(°) ^ ( 0) ^ ( 0)

It is easily verified by letting x — y that the above equation reduces to 3.46. As before, 

setting v =  0 gives the variance of the correlation coefficient estimate. It is certainly 

possible to transform equation 3.47 into an expression consisting of correlation coeffi­

cient functions only as in equation 3.45 but this is not done here. The reason is that 

the above expression and 3.46 are easy to compute using the same implementation 

as for the covariance of the ordinary correlation functions without compromising the 

computational requirement. The covariance of the ordinary correlation functions can 

be recognised as the nominator of the first terms on the right hand side of equation 

3.47. The additional terms are either independent of r  and v or they can easily be 

computed as a by-product of the steps used to compute the first term without ad­

ditional storage requirements or additional “flops” so that the extra computational 

effort, compared to 3.41 is negligible. Equation 3.47 is verified below by comparison 

with the the simulated 2DOF system in table 3.2. The exact same parameters were 

used here as in the previous section for the simulated results shown in figure 3.8. Only 

the variance is shown here, but it was checked that the expression also predicts the 

covariances correctly. It can be seen that at low lags the variance estimate of the 

correlation coefficient function is more accurate than the estimate for the ordinary 

correlation functions. However, this slight increase in accuracy is negligible in prac­

tice when the we must estimate the covariances of the correlation coefficient functions 

from a single realisation. It is clear that the same practical considerations as discussed
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Fig. 3.12: Validating equation 3.47 for unbiased estimates by comparison with simulated data 
from the 2DOF in table 3.2. An ensemble of 500 realisations was simulated. [— o  —] denotes 
the estimate from 3.47 and [• • • x • • • ] the simulated variance.

above for the ordinary correlation functions are applicable in this case and smoothing 

with a flat-top window is to be used to get improved estimates.

The estimation of the covariances for random decrement functions will not be con­

sidered in detail. The reason being that a complete treatment of this topic is given 

by Asmussen (1997). An improvement on the original variance estimates given by 

Vandiver et al. (1982) was developed by taMng into account the correlation between 

different time segments. The results in Asmussen (1997) indicate excellent agree­

ment with simulated data. It would be interesting to investigate whether Asmussen’s
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method couples the RD functions with a more robust variance estimator than the 

method proposed in this thesis for correlation functions. Since Asmussen’s method 

requires the computation of the correlation functions between different time segments, 

one may hypothesise that the standard deviation of the variance of the RD functions 

is likely to be of similar order than that for the plug-in method described above for 

correlation functions.

3.6 Summary

In this chapter, various methods to estimate a correlation based response model were 

presented, whether this is via ordinary correlation functions, correlation coefficient 

functions or random decrement signatures. In a first instance, the errors inherent in 

the estimation of this response model were outlined and for the ordinary correlation 

functions and a simple analytical formulation was given providing some insight into 

how this error relates to the modes of the system and the available record length. 

Because this analytical formulation has only limited applicability, an entirely datar 

driven estimator for the covariances of the correlation functions was presented. The 

latter simply consists of the application of the “classical” covariance estimator for 

correlation functions available in the literature but, to make it robust with respect 

to estimated correlation functions, the latter are smoothed by an adaptive flat-top 

window. Moreover, the associated data reduction makes this method computationally 

efficient for practical application. In the chapters to follow, the errors in the response 

model, obtained via the techniques in this chapter, will be propagated through the 

identification algorithm to obtain an error estimate on the identified modal parame­

ters.
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C h a p t e r  4

T h e  D e p e n d e n t  B o o t s t r a p

4.1 Introduction

The bootstrap method, invented by Efron (1979), has been widely applied across var­

ious disciplines, such as economics or biology for instance, where an assessment of 

the estimated statistics is sought on the basis of a limited amount of information. 

The bootstrap appears to have been applied for the first time to applications related 

to modal analysis by Paez and Hunter (1998) and Hunter and Paez (1998). Their 

technique was picked up later by Doebling and Farrar (20016) and applied to classi­

cal frequency domain modal testing to estimate confidence intervals on the identified 

modal parameters. Kijewski and Kareem (2000, 2002) applied a bootstrap scheme to 

estimate the error on identified damping ratios of SDOF systems from output-only 

measurements using random decrement signatures.

The bootstrap developed by Efron (1979) relies on the assumption that the ob­

served data is independent. It transpires that, in order to apply the technique to 

modal testing, where the observed data consists of highly correlated time series, a 

slight modification of Efron’s original bootstrap is necessary. In a nutshell, this mod­

ification consists in splitting the time series into independent blocks of data, which 

then play the same role as the independent individual observations in Efron’s orig­

inal formulation. This is generally referred to as the dependent bootstrap, the idea 

of which first appeared in Hall (1985) but a rigorous treatment can be attributed to 

Carlstein (1986); Kiinsch (1989) and Liu and Singh (1992). It turns out, that the
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bootstrapped statistics depend significantly on exactly how the time series is split up 

into blocks. A poor choice can result in significant bias and/or variance in the desired

statistics, and as a result, if applied to determine the error in output-only modal par 

rameters, will yield incorrect bounds. These issues were not considered in Hunter and 

Paez (1998) or Kijewski and Kareem (2000, 2002) and are the focus of this chapter. It 

is noted that this does not apply to Doebling and Farrar (20016) as they used a set of 

independently measured FRFs as their starting point. The aim is to establish a firm 

basis for the application of the bootstrap to the estimation of errors in output-only 

identified modal parameters.

The rigorous theory behind the dependent bootstrap requires a great deal of math­

ematical sophistication but it is desired to avoid this in the exposition given below. 

Rather, the aim is to give a presentation that is geared toward practical application. 

It is assumed that the reader is not familiar with the bootstrap and therefore, this 

chapter begins with an outline of Efron’s original bootstrap.

4.2 Efron’s Bootstrap

Suppose the random variable x is the outcome of some stochastic process with un­

known probability distribution F  and that only n independent measurements, col­

lected in the sample X  =  (a?i, a?2, • • • j^n)? are available to estimate a parameter of 

interest, say x- Denote the sample estimate of this parameter on the basis of X  by 

X =  s(X). For example, this parameter might be the mean of x, denoted fix, and its 

sample estimate may be computed from the available data in X  according to

(4.1)
1=1

The notation (•) is used to denote estimated quantities. Similarly, an unbiased esti­

mate of the the random error of jXx can be computed from the sample X  as (Bendat
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and Piersol, 2000)*

(7X
^  (4.2)

1/2

(4.3)with ax = r r r  (Xi ~
( " - 1) «

The same terminology as in Bendat and Piersol (2000) is used here, where the random 

error or standard error denotes the square root of the variance of the estimate i.e 

&p,x ss (yar[p,x))1/2. Thus, without knowledge of the probability distribution F, these 

two formulae can be used to estimate the mean of the random variable x  as well as 

the random error of this estimate using the limited information in X . However, this 

is not always feasible:

1. In order for these estimates to converge, n must be sufficiently large but in many 

situations, the available data is limited.

2. For most estimators x =  s(X), no formulae like equations 4.2 and 4.3 for the 

mean, are available and it is therefore generally difficult to obtain such an esti­

mate and

3. Expressions such as 4.2 are usually derived on the basis of a certain probability 

distribution, which may not be known

This is precisely the situation one is faced with when estimating the statistics of iden­

tified modal parameters: usually, only a single time-series is available to estimate the 

modal parameters and no formulae are available to estimate their variance for instance. 

Moreover, any such formula would have to be specific to the particular identification 

algorithm used.

The bootstrap technique is well suited to deal with the issues listed above. It was 

developed by Efron (1979) as a computer-based method to assess the random error on

+The more commonly used formula for a x is a x =  (%i — Ax)] but this estimate is biased
(Bendat and Piersol, 2000).
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parameter estimates x  for random variables on the basis of a sample of measured data

X  from an unknown probability distribution. It requires no theoretical calculations 

and is available no matter how complicated the estimator s(X) =  x  maY he. This 

implies for instance that it is applicable to SSI/Cov estimated modal parameters as 

will be done in Chapter 7.

To illustrate the bootstrap technique, suppose that the situation is the same as 

above; that is, a collection X  of n independent measurements x* of the random vari­

able x  is available and it is desired to compute the mean p,x, and additionally, to find 

the random error on this estimate. If it were possible to take more independent mea­

surements of x and form additional collections, say X ^  =

b =  1 ,2 ,. . . ,  2?, then one could use equation 4.1 to compute B  independent estimates 

of the mean

for 6 = 1, 2, . . . , £ (4.4)

For B  is sufficiently large, the B  estimates of the mean could be inserted into 

equation 4.3 to find the standard error of the mean as

B 1/2
1 2

(4.5)
6=1

where

(4.6)

In many situations, however, it might not be possible to collect further data to form 

the additional samples =  ( x f \  x ^ \  . • • Such is, for instance, often the

case in operational modal analysis when applied to civil engineering structures. Once 

the measurements have been taken, this will be only data available to the engineer to

conduct the modal analysis.



The idea behind the bootstrap method is to create additional collections of data, 

denoted X * ^  =  ^ x j^ , x ^ b\  • • • as a randomized or resampled version of the

original sample X  =  (xi, X2, . . . ,  xn). The additional samples X * ^  are called the 

bootstrap samples. Once these additional samples are formed, the usual sample sta­

tistics can be applied.

The basic assumptions are that

1. the measured outcomes #*, for i =  1, 2, . . . ,  n of the random variable x collected 

in X  =  {xi, X2, • •., xn} must be independent

2. the measured outcomes X{ must be representative of the random source

A probability of 1/ n  is then assigned to each member of the collection X  and this rule 

defines the empirical probability distribution F  of the the source. The ensemble X  

fa the empirical source for the bootstrap samples. A bootstrap sample X * ^  is then 

generated by drawing n values with replacement from X , where the chance of drawing 

a particular sample is l/n .  Sampling with replacement means that one draws Xj from 

the collection X  and places a copy of it, labelled x*^ , into X^1)* forming the first 

member of the first bootstrap sample X^1)*. Then, replace Xj. Another member Xj 

of X  is then drawn at random from X , relabelled x ^ \  and placed in second position 

in X*^1). Xj fa then replaced in the original collection X . This process is repeated n 

times to complete the first bootstrap sample X*^1) = ^x^1̂ , x ^ ,  • • •, X n ^ j . Because 

X*(J) is sampled from X  with replacement, some elements of X  may appear more than 

once or not at all in X*^1) . Any number B  of bootstrap samples X * ^ , b =  1,2,. . . ,  B, 

can be sampled from the original data set X  in this manner. Thus, the situation 

is the same as above, where it was assumed that additional collections X b could 

be measured, except that these additional collections, the bootstrap samples X*(b\

could be obtained by sampling with replacement from the original measurement set
 ̂r b"\X. Therefore, it is possible to compute B  bootstrap estimates of the mean £lx ’ -one
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estimate from each bootstrap sample- in the same fashion as in equation 4.4 as

Because the bootstrap is a sampling technique, it is readily applicable to any estimator 

X — SP 0  and any of its statistics. The steps of the bootstrap, for an arbitrary 

estimator x == 8 (X) are shown schematically in figure 4.1. Like every estimator, the 

bootstrap is not exact and has an inherent error. The performance of the bootstrap is 

case dependent in the sense that it will depend on the statistic of interest. To illustrate 

the general qualitative behaviour of the bootstrap, the variance of the standard error 

of the bootstrap estimate s(x) is considered i.e. <r*(s(x)) = &*• It is shown in Efron 

and Tibshirani (1993) that the variance of the bootstrap standard error takes the 

general form

that the variance of the estimated bootstrap standard error depends on two factors:

It is seen that the this estimator is asymptotically consistent since Var[a*] —> 0. The 

bootstrap estimate when B —> oo is often called the ideal bootstrap. The important

(4.7)

and the bootstrap estimate of the random error of the mean e^oot(p,x) can be computed 

as in equation 4.5

(4.8)

where

(4.9)

(4.10)

where C\ and Cq, are constants depending on the underlying distribution F  and on the 

statistic of interest (<j* in this case) but not on B  and n. It is seen from this equation

^  represents the sample variation and introduces error in the estimate a* due to the 

fact that only a sample of size n is available. The second factor ^  represents the vari­

ation introduced into a* due to the resampling used to create the bootstrap samples.
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Step 1. Tim bootstrap 
source
Collection of independent 
measurements

S tep2. Constructs 
independent 
bootstrap samples

each consisting of n values 
drawn with replacement 
fromX.

Step 3. Evaluate the bootstrap 
estimates corresponding 
to each bootstrap sample

Step 4. Compute fh© 
desired
sample statistics using the B 
Bootstrap estimates

Fig, 4.1: Diagramatic representation of the bootstrap

message em anating from equation 4.10 is that the generation of additional da ta  does 

not alleviate the dependence on the sample size n and introduces ex tra  variability 

due to  resampling. This means, for example in the case of the  mean, th a t for B  large 

enough, the  boo tstrap  estim ate approxim ates the sample estim ate cr(fix) from

equation 4.2. Thus, the boo tstrap  is effectively a tool to estim ate a particu lar statistic  

of the param eter of interest that is otherwise not available from standard  sample sta­

tistics ra ther th an  a tool to obtain statistics w ith improved accuracy. The advantages 

of the boo tstrap  over param etric, non-sampling techniques are that the underlying 

d a ta  need not be Gaussian and the m ethod allows for an easy com putation of the 

statistics of any estim ator, no m atter how complicated (Efron and Tibshirani, 1993).

Empirical Source
X  = (xl,x2,...x„)

• (B )B ■ ■

= i\

Desired sample statistics e.g.
1 / 2



4.3 The Dependent Bootstrap

Application of the bootstrap to  time series is different from the situation in the pre­

vious section in that the available data, the time series X  =  {xi,X2, . . .  ,xn}, is 

a collection of serially dependent measurements. In other words, the elements in 

X  =  {&i,X2, . . .  ,xn} are dependent and the order in which they occur is crucial. 

Therefore, one cannot simply apply the bootstrap method presented in the previous 

section as it violates the independence requirement. On a more intuitive note, it is 

clear that the direct application of the resampling process of the bootstrap will break 

up the covariance structure of the time series so that any bootstrap time series gener­

ated in this fashion is not representative of the source. However, a slight modification 

will make it possible to extend the bootstrap to time series. In a nutshell, the idea is 

to resample blocks of data rather than individual observations.

4 .3 .1  T h e  M ovin g  B lock  B o o tstra p

Let X  =  {xi, X2, .. •, xn} be a measured time series, which, in our situation, typically 

consists of the acceleration response measured at some location on a structure. Also, 

assume that X  is stationary and short-range or weakly dependent. The latter condition 

means that the spectral densities are finite at frequency uj — 0, that is

oo oo

S x(u  =  0) =  Rx{s) cos((<*/ =  0)s) =  Rx(s) < oo
s = —oo s = —oo

so that a time series is short range dependent if its ac.f. is summable (Biihlmann, 

2002; Heyde and Yang, 1997). Due to the exponential decay of the correlation func­

tions of structural responses, this condition holds. (Politis, 20036) defines weak de­

pendence as follows: X  is weakly dependent if the subsets of X  of random variables 

Xi =  {xi,i, xij2, . . . ,  xi)Z} and X i+k = {xi+fe)i, xi+kj2, • xi+kj}  are approximately 

independent for k sufficiently large (Politis, 20036). Letting s(-) denote and estima­

tor, for example the mean, this implies that s(Xi) and s(Xi+j) will be independent.
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Break the time series 
up into n - l  + l 
overlapping bkxks
B« ={«•+!,

Resample k**nfl 
blocks with replacement 
from the collection
B={B1,Bj I W
to form the bootstrapped 
time series X *

- i+ i

Fig. 4.2; Illustration of the Moving Blocks (MB' Bootstrap.

The idea behind the moving block bootstrap , which shall be abbreviated as the MB 

bootstrap , follows now easily: by dividing the original tim e series into more or less 

independent subsets of blocks X l; and applying the estim ator s(-) to  each, one ends up 

w ith a collection s(Xf)  of independent variables and hence, the boo tstrap  described in 

the previous section applies. Further, the blocking preserves the correlation structure 

of the original tim e series. The tim e series bootstrapping recipe given by Kiinsch 

(1989) can be summ arized as follows:

1. Break the tim e series X  =  { x \ , X2 , . . . ,  xn} into n — I +  I overlapping blocks 

Bi =  {xi,  . . .  Xj+i - i } of length I for i =  1, 2 , . . . ,  n — I +  1. Form the 

collection B =  { Z 3 i,# 2 ,...# n-z+i}-

2. Resample k =  n / l  blocks Bj with replacem ent from B to  form B  boo tstrap  tim e 

series replica by collecting the k resampled Bj. For example, the  bth bootstrapped
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time series may be

A-W* = { ft, B i , . . . ,  84}
kblocks

3. Compute the bootstrap replica of the statistic of interest, s^*(X ) =  s(X^*).  

The estimator s^* (X )  could for instance represent the sample correlation es­

timate of the bootstrapped time series X ^ *  i.e. Rx(b)m(r) =  R^x*(r) where r 

denotes the lag.

4. Compute the sample statistic of interest over the ensemble of the B  generated 

bootstrap replica s*(X). For example, the latter estimate could be the covari­

ance Cov*[Rx (r), -Rx(t/)].

This procedure is illustrated in figure 4.2 and a simple example is given below. Let 

X  =  {xi,x2,x3, x4, X5, xq}  s o  that n =  6 and let the block length be I =  3. Next, 

form the collection of n — I + 1 =  4 overlapping blocks

B -  {Bi = {xi,x2,x 3}, #2 =  {X2 ,X3 ,X4 }, B$ -  {x3,x4,x 5}, #4 = {x4,x 5,x6}}

Resample k = n/1 — 2 blocks from this collection to form the bootstrap replicates 

X ^ *  of the original time series X.  For instance, the first bootstrap replicate may be 

=  {Z34 , # 2 }  =  {x4, X5, X6, x2, x3, x4}. Note that it was assumed that I divides n  

exactly but if this is not the case, simply resample k — \n/l\ + 1  blocks but use only a 

portion of the kth block so that out bootstrap time series has a total of n data points. 

The notation [xj denotes largest integer less than or equal to x. A similar procedure 

was proposed by Carlstein (1986). The latter differs from the one described above 

(Kiinsch, 1989) in that the times series is broken into contiguous blocks. It was shown 

by Lahiri (1999) that Kiinsch’s method gives estimates with lower variance than those 

obtained by Carlstein (1986) using non-overlapping blocks.
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The theory for the block bootstrap in Kiinsch (1989) and Carlstein (1986) are 

given for univariate time series only. However, the extension to the multivariate case 

is straightforward. Since the blocking of the time series preserves the auto-correlation 

structure in a block, the cross-correlation structure between any two time series can 

be preserved by using the same resampling in all the measured responses. To illus­

trate this, consider the example given above and assume that an additional time series 

Y  =  {2/1,2/2? 2/3, 2/4, 2/5, 2/6} is available, which may be the response measured simulta­

neously with X  but at a different location on the structure. In order to preserve the 

cross-correlation structure between the measured output Y  =  {yi,  1/2,2/3,2/4? 2/5 ? 2/6} 

and X  between pairs of bootstrap replicas of each time series, say A^1)* and y^1)*, 

one needs to apply the same resampling to each of the two time series; that is, if 

X = { B x 4? B x 2} =  {®4? £?5) #6, 0C2, ®3, X4}, then it is required that y (J)* is of the 

form y W *  =  { B y 4, B y 2} =  { 2 /4 ,2/5 ,2 /6 ,2 /2 ,2/3 , 2/4 >-

The MB bootstrap presented above has two drawbacks that are effectively due to 

the fact of joining conditionally independent blocks together to form the bootstrap 

replicas of the time series: (a) the resampled time series may not be stationary and

(b) bias can occur in the estimates. Due to joining conditionally independent blocks, 

a discontinuity occurs each at every Ith data point, where I is the block length. As 

a result, the the observations near the this discontinuity will have a different joint 

distribution from the ones near the centre of a different block. To see how the bias 

arises, consider again the example given above, in particular the bootstrap replica 

=  {x4, X5, xq, X2 , X3, X4}. The discontinuity occurs at the joint between x§ and 

X2 - Suppose that the statistic of interest is the auto-correlation function at lag 1, 

i.e. Rx(l)-  For simplicity, the raw (unweighted) correlation function is considered. 

The bootstrap replica of R x(  1) from A^1)* is then given by R ^ * ( l)  =  X4X5 + x^xq + 

xqX2 4- X2X3 + X3X4. Clearly the term xqX2 accounts for the correlation of two points 

much further apart so that the introduction of this term results in an underestimate 

of the correlation function. As the lag increases, the situation becomes even more
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severe, consider for instance f?^*(2) =  2:4X6 +  £5^2 +  X6X3 +  X2X4. Thus only 2 out 

of the 4 terms are computed at the correct lag while the terms 2:5X2, X6X3 belong to 

the lag 3 estimate resulting therefore again in an underestimate. As the lag increases, 

the bias introduced due to the discontinuity of contiguous blocks increases. On the 

other hand, it is seen that the correlation at zero lag does not suffer from this bias. 

For these reasons, the moving blocks (MB) bootstrap is sometimes referred to as the 

“naive” bootstrap.

4 .3 .2  T h e “B lock s o f  B lock s” B o o tstra p

A remedy for this bias has been suggested by Kiinsch (1989). The method was later 

picked up by Politis (1992); Politis and Romano (1992) and Liu and Singh (1992) and 

called the “blocks of blocks” (BB) bootstrap. They mainly considered its application 

in the context of spectral estimation using Welch’s averaged periodogram method 

(Welch, 1967). A more general treatment is given by Buhlmann and Kiinsch (1995). 

The basic idea relies on the observation made in the example in the previous section, 

namely that the auto-correlation estimate at zero lag is unbiased but correlation esti­

mates for higher lags are not. The reason for this is that the auto-correlation estimate 

at zero lag is a symmetric function of the observed data. In other words, the sequential 

order of the observations does not matter. Loosely speaking, the “blocks of blocks” 

bootstrap therefore involves a block resampling scheme such that the estimator s(x) 

is symmetric with respect to blocks of data. In general, the BB bootstrap works as 

follows. Consider the blocks of m  consecutive observations

Xi =  (xi+i,xi+2 , . . . ,x i+ m-i), f o r i  = 1,2, . . . ,  n — m + 1 (4.11)

The block resampling on the basis of these ra-tuples of observations is then achieved 

by building overlapping blocks of consecutive vectors

(Xi , . . . ,  X{), (X2 , . . . ,  X i + i ) , ( X n- m-i+2, . . . ,  X n- m+i) (4.12)
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where I is the block length parameter. Now, form a resampled time series using these 

blocks as

X  =  X < j1? • • • j•^C s 'i+ i—1j X g %, • • • ,  X g 2 + l — 1) • • • j X s f c i  • • • j -^ S fc + t- i  ( ^ * ^ )

where now fc =  n-m+i/i and the Sj are the block starting points resampled with re­

placement from {1, 2, . . .  ,n — m — Z +  2}. As for the MB bootstrap, when I does not 

divide n - m  +  1 exactly, choose k — [n-m+i/ij +  1 but use only a portion of the kth 

block to get n —ra + 1 resampled m-tuples in total. This resampled time series could be 

referred to as the “blocks of blocks” bootstrap sample but as mentioned in Biihlmann 

(2002), the notion of bootstrap sample is not so clear in this case, the reason being 

that the direct application of the ac.f to the block-resampled time series does not give 

the desired unbiased estimate. To see this, consider the same example used to illus­

trate the moving blocks bootstrap for the auto-correlation estimate at lag 2 and take 

m = 3 and 1 = 2. The possible n — m  + 1 = 4 m-tuples are X \ = (xi, X2 , £3), X 2 = 

(x2 , X3 , X4 ), X 3 =  (X3 , £4, £ 5 ) ,  X 4 = (£4, £ 5 ,  £6) and the n — m — 1 + 2 = 3 suc­

cessions of I = 2 overlapping m-tuples are {Xi, X 2 } , {X2, X3} , {X3, X*}. Thus,

resampling k = n-m+1/1 = 2 out of the 3 possible “blocks of blocks” results, for in­

stance in a bootstrap time series X* = {{Xi, X2}, {X3, X4}} = {Xi, X2, X3, X4} = 

(£1, £2, X3 , £2, £3, £4, £3, £4, £5, £4, £5, £6)- Clearly, computing the ac.f at lag 

2 directly from the block resampled time series will lead to bias in the same way 

as for the MB bootstrap. Rather, the BB bootstrapped estimator has to be de­

fined on the level of the vectorized observations Xj. The definition given by Kiinsch 

(1989) (also c.f. Biihlmann (2002)) applicable for R x ir) is to be interpreted as 

follows. If s(X) =  g(X i , . . . ,  Xn_m+i) is a symmetric function of n — m  + 1 vec­

torised observations (or blocks) Xj, then s*(X) =  <7 ( X ^ , . . .  ,Xs1+/_i,Xsfc+{_1). 

For instance, in the case of auto-and cross-correlation functions, the function g = 

gr may be defined as the auto-correlation function between blocks of observations 

Xi at lag r by the composite function gr(X*) = (n — m  + l )-1 ^ Rxi(r), where 

Rxi (r) is the ordinary auto-correlation estimate at lag r of the observations Xi in
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the block X{.  This is again illustrated using the previous example for the boot­

strap of the ac.f. from the resampled series X *  — { X \ ,  X2,  X3, X 4 }  and lag r = 2. 

Then gr(X*) =  (n -  m +  l )-1 £  { ^ * i(r )» # x 2(r), R x 3 (r), # x 4(r )} =  (n -  m + 

I)-1 E  {®i®3» x 2^ 4 , X3 X5 , 3:4X6} =  ^/&{x\x§ +  X2X4 +  X3X5 +  X4X6). This is the de­

sired result. It is seen that the BB bootstrap does not suffer from the bias problem 

that occurs in the MB bootstrap due to joining conditionally independent blocks. The 

reason is that the resampling process does not occur between conditionally indepen­

dent blocks. In general, if the statistic of interest depends on some m-dimensional 

marginal distribution, then this statistic will be a symmetric function of blocks of m  

consecutive observations. Therefore, the design parameter m  has to be chosen accord­

ing to the lag r at which the the auto- and cross-correlation functions are computed 

and their relation is r = (m — 1).

The computation of the BB bootstrap as described above is, however, inefficient 

when the data is large and the correlation functions need to be specified up to high 

lags r. (Politis and Romano, 1992) recongnised that when the statistic of interest, 

say «(•), can be expressed as an average of some function say (j>{Xi) of the vector­

ized observations X i ,  then the “blocks of blocks” bootstrap is essentially equivalent 

to resampling blocks of I consecutive estimates <f>(Xi). It should be clear from the 

example above that this applies to the correlation functions, where the function <f>(Xi) 

is simply the correlation function at lag r of the m-tuples Xi. Along the lines of the 

BB bootstrap applied to spectral estimates in Politis (1992), the following procedure 

is suggested for correlation functions:

Let X  = {x\,X2 , . . . , x n} and Y  — {yi,y2 , ••• iVn} be two simultaneously mea­

sured response time histories

1. Determine the maximum lag rmax of interest up to which the bootstrapped 

correlation functions are computed. This value will determine the length of the
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m-tuples X{ and Y{ and is m =  rmax +  1.

2. Form the possible n — m  +  1 overlapping, consecutive m-tuples Xi and Y\ for 

the measured responses

3. Compute the unbiased ac.f and xc.f. between the n —m + 1  consecutive m-tuples 

Xi and Yi up to lag rmax, denoted by Rx,, RYi and RxiY, respectively.

4. Determine the block length I and take the arithmetic mean over the n —m — l + 2  

possible overlapping sequences of I consecutive Rxn RYt and RxiYi • Collect the 

resulting mean quantities B^x — l~l Y?i+l~X R x t» for t =  1, 2, . . . ,  n — m — I +  2, 

into the collection

Bx =  {Bi,x, B2,x, • • •, Bn-m-i+2,x}
B x Y  =  { B l , X Y ,  B2,XY,  • • •, # n -m -z + 2 ,x r }

where the second of the above equations applies to the cross-correlation functions 

With Bi,XY =  l - 1 E t ¥l~ 1^ X iYi-

5. Resample k — ln~m+l/i\+l values Sj with replacement from {1, 2, . . . , n  — m — 1 + 2 } 

to determine a sequence of k functions B^x, i-e- {Bsi,x, Bs2,x , • • •, Bsk,x}- The 

process is the same for the ac.f. of Y  and xc.f. between Y  and X.

6. Compute the bth bootstrap estimate Rjjr’ \ r )  as k 1 Similarly,

is given by k~l Ylj=i Bsj,x y - As for the MB bootstrap, the same re­

sampling must be used between different time series in order to preserve their 

cross-correlation structure.

7. Repeat the process to obtain the desired B  bootstrap replica

This process is illustrated in figure 4.3. In a nutshell, the bootstrapped corre­

lation functions computed as described above are effectively the average correlation

functions over a resampled set consisting of the arithmetic means of I consecutive 

correlation functions. This method is very efficient since (a), the bootstrapped corre­

lation functions can directly be used as input to the SSI/Cov as opposed to computing
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Fig. 4,3: Illustration of the “Blocks of Blocks” (BB) Bootstrap,

a resampled tim e series and then computing its correlation function and (b) the boot­

strapped correlation functions are computed at every desired lag r  in one step.

4.3.3 T h e  S ta tio n a ry  B o o ts tra p

A nother boo tstrap  m ethod was suggested by Politis (1994) to  alleviate the effects of 

joining independent blocks. Joining different blocks of d a ta  results in a discontinu­

ities in the pseudo da ta  and introduces a spurious periodicity. Consequently, the da ta  

points near the discontinuity will have a different distribution than  those a t the centre 

of the block and hence, the resulting pseudo time-series are effectively noil-stationary. 

Politis (1994) introduced the stationary  bootstrap  to get m itigate these non-stationary  

effects.

The sta tionary  (SB) boo tstrap  works in much the same way as the MB block boot­
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strap, the difference being that (a) the time series are wrapped around in a circle so 

that Xj =  Xi when j  > n  with i =  j (mod n) and (b) the length I of the blocks is not 

fixed but is chosen randomly. It is precisely this randomisation of the block length 

that mitigates the undesired effects at the edges of contiguous blocks occurring in the 

MB bootstrap: one may think of the stationary bootstrap as a weighted average of 

the MB block bootstrap distributions so that the difference between the distributions 

of points in the vicinity of the edges and near the center of the block is smoothed 

averaged out and eliminates the non-stationarity. The weights are determined by the 

distribution used to generate the stochastic block lengths. Politis (1994) use a geo­

metric distribution for the block length U so that the probability that k has length 

d is (1 — p)d~lp, for d — 1,2,. . .  and p is a fixed number in the interval [0, 1]. The 

average length of the blocks, k  =  1 /p  plays the same role as the fixed block length I 

in the MB bootstrap. A drawback associated with the SB bootstrap is that it has a 

higher standard error than the MB bootstrap due to the additional random element 

introduced by the stochastic block length (Lahiri, 1999).

4.4 Performance of the Bootstrap

To illustrate the performance of each of these three bootstrap estimators (MB, BB 

and SB), we use the exact same simulation on the 2DOF system with modal frequency 

and modal damping ratios shown in table 4.1 in the previous chapter, section 3.5.1. 

For convenience, the table is repeated here as table 4.1. 500 different response time 

histories were simulated for a duration of 780s (At = 0.05s) at each degree-of-freedom. 

The three bootstrap methods described above, MB, BB and SB, were applied to a 

single response measurement to estimate the variance of the ac.f. between of the re­

sponse at the second degree-of-freedom, Var*[Rx2X2 (r)] and the variance of the xc.f. 

Var*[RxlX2 (T)] up to r  = 3s (At — 0.05s). A block length I =  10s (At = 0.05s) was 

chosen in all cases and B  = 300 bootstrap correlation replicas were used to compute 

the bootstrap variances. These estimates are gauged against the “true” variances
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Var[Rx2X2 (r)] and Var[RxlX2 (r)] calculated from the 500 simulated responses. The 

results are depicted in figure 4.4 and 4.5. The behaviour of the different bootstrap 

estimates described in the previous section is readily recognisable. Bearing in mind 

that the variability due to having only B  =  300 bootstrap replicas, it can be seen 

from figures 4.4 that at zero lag, the three estimates, MB, BB and SB are compa­

rable. As r  increases, however, it is clearly seen that the variance estimated by the 

MB bootstrap becomes increasingly smaller with r  and this is due to the bias that 

arises due to resampling form different conditionally independent blocks. A similar 

behaviour, although less pronounced, is seen to occur for the SB bootstrap. It ap­

pears, that this bias in the MB and SB bootstrap is less pronounced for the covariance 

estimate (figure 4.5(a)). This bias is a direct consequence of the bias that occurs in 

each of the B = 300 bootstrapped correlation functions R $x 2 (T) Rx2x2 (T) • This 

is shown for the cross-correlation function only in figure 4.5(b); the mean of the 300 

bootstrapped xc.f. estimated from the BB bootstrap matches the simulated results 

very closely at each lag. When the MB and SB schemes were used, it is seen again 

that the agreement between the exact xc.f. and bootstrapped mean estimates dete­

riorates with increasing lag. We can therefore conclude from figure 4.5(b) that the 

moving blocks and stationary bootstrap add artificial damping to the system with a 

slight improvement offered by the SB. The “blocks of blocks” bootstrap, on the other, 

hand gives unbiased estimates as expected. This is important for the applications in 

Chapter 7 where the bootstrapped correlation functions serve as additional response 

models for modal identification.

Keeping the block length I =  10s (At =  0.05s) fixed, no significant increase in 

accuracy was observed for choices of B > 300 . As mentioned previously, the required 

number of bootstrap estimates B  to approximate the ideal bootstrap is case dependent.

Modes Natural Frequency /o Damping ratio £
Mode 1 2.24 Hz 1.49%
Mode 2 3.93 Hz 2.85%

Tab. 4.1: Modal Parameters of the 2DOF system used for simulation.
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Fig. 4.4: Comparison of the moving blocks (MB) bootstrap, stationary (SB) and “blocks 
of blocks” (BB) bootstrap as variance estimators of the sample ac.f and xc.f.. B — 300 
bootstrapped correlation functions were used in each case with a block length I =  10s (At  =  
0.05s).
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Fig. 4.5: Comparison of the moving blocks (MB) bootstrap, stationary (SB) and “blocks 
of blocks” (BB) bootstrap estimates of (a) the auto-covariance of the bootstrapped auto­
correlation function .R*2x2 (r ) and (b) the mean of the bootstrapped cross-correlation functions 
Rxix2(t ) computed from B  =  300 bootstrapped correlation functions. A block length I =  
10s (At =  0.05s) was used.

I l l



Efron and Tibshirani (1993) indicate that, as a rule of thumb for variance estimates, 

it is rarely required to compute B > 200 bootstrap replicas which is confirmed here 

for the variance estimates of auto- and cross correlation functions. Finally, the good 

agreement between simulated and bootstrapped data in figures 4.4(b) and 4.5(b), 

where the cross-correlation between two time-series is bootstrapped, validates this 

procedure for the computation of cross-correlation functions for multivariate times 

series.

4 .4 .1  B lock  L en gth  S e lectio n

The graphs in figures 4.4 and 4.5, however, only paint part of the picture of the 

performance of the dependent bootstrap. In section 4.2, it was pointed out that the 

accuracy with which the variance of the bootstrapped statistic can be determined 

depends of the sample size n as well as on the number of bootstraps B. The influence 

of B  bn the bootstrap correlation functions has been discussed above and it was 

argued that it is be negligible for B  sufficiently large (B > 300). The sample size n, 

determined by the record length of the time series in this case, will determine how 

accurately we can estimate the variance of the bootstrapped correlation functions. 

In other words, this parameter determines the variability of our variance estimates 

as we use different realisations of the time series to compute the variance of the 

bootstrap correlation functions; that is, Var[Var[RxM]]- For instance, figures 4.4 

and 4.5 show the computed bootstrap calculated from only one of the 500 simulated 

response time histories. Computing the same quantity from a different response will 

yield either a poorer of improved bootstrap estimate of Var[Rx{T)\. While for Efron’s 

bootstrap (section 4.2), this variance depends only on n and B, the situation is further 

complicated for the dependent bootstrap due to the additional parameter I that is 

the block length. It is well know that the choice of block length greatly influences 

Var[Var[s(x)]] and also controls the bias in Var[s(x)L denoted by bias[Var[s(x)]], 

so that I must be chosen carefully to get an accurate -although limited by n and B-
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estimate of Var[s(x)]* This is illustrated in figure 4.6. Using the same response history
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Fig. 4.6: Influence of block length I (in steps of 0.5s) on the (MB) bootstrap estimate of 
the variance of the ac.f of the response £2 of the system in table 4.1 at lag r = 0 and 
r — 1. The two vertical bars indicate the standard error of the results at fixed block length of 
I ss 8a (At = 0.05s) due to having a finite number of B = 300 bootstrap samples. [— ] are the 
true values of Var[RX2X2(0)] and Var[RX2X2( 1)] computed from the 500 simulated responses.

as in figures 4.4 and 4.5, the variance of the ac.f at the second degree-of-freedom is 

shown at lags 0 and 1 as a function of the block length I. The vertical lines represent the 

standard deviation computed at fixed block length of 8s (At =  0.05s) computed from 

200 different bootstrap estimates of Var[RX2X2 (0)] and Var[RX2X2 (l)\ using the same 

time series. Thus, this variance is solely due to the resampling and therefore represents 

the error due to the limited number B  = 200 bootstrap replicates in our computations. 

This does not cause any problems in practice as B  can be increased arbitrarily and is 

only limited by the computational requirement. It is clearly seen from figure 4.6 that 

the block length acts as a tuning parameter for the dependent bootstrap and suggests 

the existence of an optimal block length, which in this case, accounting for the error 

due to finite B , would roughly lie somewhere between 7s < I < 13s (At = 0.05s). In 

practice, where the true value is not know, it is not possible to select the optimal block 

length from a graph like 4.6 and different approach is need to assist this selection. The 

optimal block length depends, in general, on the following factors (Biihlmann, 2002;
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Lahiri, 1999):

•  The data generating process

•  The statistic to be bootstrapped

• The purpose for which the the bootstrap is used

• The bootstrap method that is employed i.e. the stationary, “blockB of blocks” 

or moving blocks bootstrap.

Due to these different influences on the block length, the treatment given here is tai­

lored toward the application for operational modal analysis. This means that the 

statistics to be bootstrapped are the auto-and cross-correlation functions between 

simultaneously measured structural responses and, for now, their variance and covari­

ances are estimated. Later, the bootstrapped correlation functions will be employed 

to identify the system’s modal parameters but this is postponed to Chapter 7.

Consider the time series X  =  { r i , . . . ,  r n}, let R x  denote the ac.f estimate of X  

and its variance. Let crjj2 be the corresponding bootstrap estimate. Assume for the 

moment that latter is obtained using the moving blocks (MB) bootstrap with block 

length I. It is shown in Hall et al. (1995) that in this case, the asymptotic or ideal (B —► 

oo) mean-square-error (mse) of crj2 defined as mse(a*£) =  Var[a^] + (bias(cr^ ) ) 2 has

the form

msefax) (4.14)

with (4.15)

bias[(T^]

Var[a%)

(4.16)
n I

IC 2 (4.17)

where C\  and C2 are constants independent of n and I (Hall et al., 1995; Lahiri, 

1999). The first term in equation 4.14 involving the constant C\  is the square of 

the bias and the second term is the variance of a^2. This equation clearly shows the



dependence of the MB bootstrap estimate of cr̂ 2 on the design parameter I. The 

situation is analogous to over - or undersmoothing spectral estimates using Welch’s 

method (Welch, 1967) when periodograms are estimated from short or large blocks of 

the data and the block length may be thought of as a smoothing parameter. Choosing 

a large block length I will reduce the bias in the bootstrap estimate but will increase 

its variance and vice versa. The optimal choice for the block length is therefore the 

one that offers the best compromise between these two errors, that is the one that 

minimises the mse(a^)  over I. Thus, from equation 4.14, the ideal block length I opt 

is given by

iopt =  n1/3 ( | r ) 1/3 (4-18)

The general form of the equation for lopt is in fact applicable to all three bootstrap 

estimators (MB, BB and SB) presented above (Biihlmann and Kiinsch, 1999; Lahiri, 

1999) and holds when the bootstrapped variance and bias are desired for any statistic. 

When quantities other than the variance and/or the bias are bootstrapped, equation 

4.18 is not valid anymore. For instance, when the one-sided or two-sided distribu­

tions of the statistic of interest are desired, rather than only their variance or bias, 

it is shown in Hall et al. (1995) that the optimal length is of the order 0 (n 1/4) and 

Ofn1/5) respectively.

To get an estimate for lopu the constant (2Ci/c2) must be calculated. This constant 

depends primarily on the correlation structure of the underlying process {X} but is 

not influenced, for instance, by strength of the dependence of the process (Hall et al., 

1995). Other factors that affect this constant are the bootstrap method used (Lahiri, 

1999) and the statistic to be bootstrapped (Biihlmann and Kiinsch, 1999). Therefore, 

for any chosen bootstrap method applied to a fixed statistic, this factor changes from 

system to system since the correlation structure of response changes so that it must be 

estimated empirically. Three methods feature in the literature for this purpose. Hall 

et al. (1995) employed a method which recursively finds the optimal block length by 

minimizing the mse computed from bootstrap estimates of subsamples of the original
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time series of length m «  n. This procedure is not considered in this thesis. Lahiri 

(1999) derive lop t from equation 4.18 and give an expression for the constants C \  and 

C2 when the statistic to be bootstrapped is the mean of the underlying process X.  

This method is also adopted by Politis and White (2004). Biihlmann and Kiinsch 

(1999) approach the problem from a different angle in the sense that they do not 

determine lopt by minimising the mse of the variance but rather exploit the reciprocal 

relationship between the block length and the bandwidth in spectral estimates.

The approach of Biihlmann and Kiinsch’s is followed and it will be shown that, 

when the statistic to be bootstrapped is the mean of X ,  it will yield the same the­

oretical expressions for /opt as given by Politis and White (2004) and Lahiri, (1999). 

The presentation of the theory is kept practical and technical details are omitted in 

places but the reader is directed to the original papers if more mathematical rigour 

is desired. Let the mean of the measured time series X  =  {xo, x i , . . . ,  xn_i} be 

fix  ^  n_1 x% and let fix  —► Hx as n —► oc. It is a well known result that 

(Bendat and Piersol, 2000)

Var\p,x ] =  n~l f l  -  Cx (k) (4.19)
fc=—n+l '  71 '

where Cx (k) =  Rx {k) — *s the auto-covariance function defined in equation 2.11. 

As argued in Chapter 2, it can generally be assumed that the measured response 

histories have zero mean. The reason we use the auto-covariance function rather the 

the ac.f. Rx (k), will become clear shortly. Recalling that the two sided spectrum of 

X  is given by (Bendat and Piersol, 2000)

1 00
Sx (u) = —  Y ,  Cx (k)cos{kuj), (4.20)

k = —oo

it is seen by comparing equation 4.20 to 4.19 that the variance of the mean can be 

approximated by an estimate of the spectral estimate Sx  at u  =  0 weighted by the
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triangular window w& of length n

t#A(k) =  l “ , (4-21)n

so that
2tt

Varlfix] »  — Sx (u =  0) (4.22)n

It was shown by Kiinsch (1989) (also e.f. Biihlmann and Kiinsch (1999)) that the 

variance of the bootstrapped mean fi'x  reads

Var\p.'x \ =  n' 1 £  f1 " (4 23)
k=-l+l '  '

where C'x(fc) denotes the estimated sample auto-covariance function and I is the block 

length. Like equation 4.19, equation 4.23 admits an interpretation in the frequency 

domain, namely that the variance of the bootstrapped mean is the empirical spectral 

density weighed by a triangular window of length I. As explained already in Chapter 

3 for the flat-top window, the “length” of the window is related to its bandwidth. 

The latter concept is in fact rather subtle and many definitions have been introduced, 

see Priestley (2004) for instance. Using a definition due to Brillinger (1975), the 

bandwidth of the triangular window is simply given by the inverse of its “length” in 

the time domain. Denoting the window length by M, the definition of its bandwidth 

br is given by

br =  1/M (4.24)

It is important to note that the definition of the bandwidth of a window as a function

of its “length” as in 4.24 applies only to a certain class of window functions, among

which is the the triangular window and the flat-top window employed in the previous 

chapter (Politis and White, 2004; Priestley, 2004). The relation between the decay 

of the auto-covariance function (or ac.f.) and the spectral bandwidth is well known: 

the faster the decay, the wider the spectral density, and vice versa. As explained 

in the previous chapter, applying a window to the ac.f. disturbs its natural decay:
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decreasing the bandwidth of the window forces an increased rate of decay resulting in 

a more poorly resolved spectral density function, thereby introducing resolution bias
P.

in spectral estimates (Schmidt, 1985 ft). Chi the other hand, however, the variance 

hi the spectral density decreases. In general,

as M  f, variance f , bias |  

as M  variance bias f  .

It is now easily seen that the dependence of the variance estimate on the block length 

I (c.f. eq.4.23), is equivalent to choosing the bandwidth of the spectral window, given 

by br = 1 / 1. The optimal bandwidth, and hence the block length I, is therefore the 

one that gives the best compromise between bias and variance of the spectral estimate 

Sx(<*>) at frequency u  =  0. Thus, using the well known formulae giving the bias and 

variance of the spectral density weighed by a triangular window at any frequency u  

(Priestley, 2004)

Vor[5x(w)] =  ^  0, ± 7r (4.25)

Var[Sx (u> = 0)] =  ^ S % (  u  = 0) (4.26)

Was[SxM] =  Vw> (4-27)
V

where S ^ \ uj) is the generalized derivative (Priestley, 2004) of the spectral density 

given by
1 00

'S'x)H  = 2^  1 2  \k\Cx (k)cos(ku;) (4.28)
k——oo

Thus, the mean-square-error of the spectral density at frequency uj is given by



Minimizing equation 4.29 over the bandwidth br then yields the optimal bandwidth 

at frequency u), bropt(uj). Thus, at =  0, we find

This is precisely the result derived by (Lahiri, 1999; Politis and White, 2004) for the 

optimal block length lopt for the M B  bootstrap, when the statistic to be bootstrapped

functions using the plug-in formulae in section 3.5.1. In fact, it is easily seen that the 

computation of <Ŝ -(0) and (<S^(0))2 are sums of the the type Y^kL-oc \k\p elkuJRxx(k) 

and thus correspond exactly to the situation for which Politis (2003a) developed their 

flat-top window (c.f. section 3.5, Chapter 3). For statistics other than the mean,

far is applicable only to the mean fix and an extension is necessary for the problem 

under consideration, namely where the statistics to be bootstrapped are correlation 

functions. We start by considering the latter problem first before dealing with the 

evaluation of <Sx(0) and (5 ^ (0 ))2.

To apply the block length selection to other statistics than the mean, we need 

to introduce the concept of the influence function (Hampel et a l , 1986). Loosely

(4.30)

The optimal block length lopt may then be taken as the the closest integer to bropt (0)-1. 

Comparing 4.30 to equation 4.18 clearly shows that determining lopt by minimising 

mse[<jft] is equivalent to determining lopt by minimising msepx(O)]. Thus, from 

equation 4.18 a choice for the constants C\ and C2 is

(4.31)

is the mean (ix* The methods in Biihlmann and Kiinsch (1999) and Politis and White 

(2004) differ only in the actual computation of these constants which boils down to 

getting an accurate estimate of S \ { 0) and (S'^(O))2. This situation is very similar 

to that discussed in Chapter 3 when estimating the covariances of the correlation

equations 4.19 and 4.23 do no longer hold which implies that the theory presented so
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speaking, the influence function, denoted here by IF (x ), describes an infinitesimal 

change in an estimator s(F) when the distribution F  of the underlying data X  is 

changed due to a perturbation € on observation x  in X .  Formally, the influence 

function at point x  is defined as

IF(x) = IF(x, F,s) = lim ^ — f££2 (4.32)

where Sx denotes the degenerate distribution putting mass 1 on x  i.e. it is unity when 

at x  and zero otherwise. The reason for introducing the influence function is that it 

allows the following linearisation of a general statistic (Efron and Tibshirani, 1993; 

Hampel et al, 1986)
n

%X) »  Sao +  n _1 Y ,  7F (xi) (4-33)
i= 1

where Sqq denotes the exact statistic we are trying to estimate. The variance of s(X) 

is then simply given by

n
Vor[»(Jf)] =  Varln- 1 ^  IF(x<)] (4.34)

i=l

Noting that the right hand side of equation 4.34 is the variance of the mean of the 

influence function, it follows directly from equations 4.19 and 4.23 that the theory 

given for the mean is applicable to the variance of the general bootstrapped statistic 

s* when the original time series X  is replaced by its influence function IF (X) = 

IF(X ,F ,s).  To clarify the notation, we note that the influence function defined in 

equation 4.32, IF (x ), applies to a single observation x of the time series X.  We 

write IF (X )  to denote the times series {IF(x i), IF (x2), . . . ,  IF{xn)}. Thus, the 

equivalent of equation 4.23 is

Var[s*x \ = n - 1 £  ( l  -  Jyl) CIF(x)(k) (4.35)
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and that of equation 4.30

where S if (X) (0) is the spectral density of the influence function IF(X).  It is impor­

tant to recognise that for the linearisation in equation 4.34 to hold, we require the 

influence function IF (X )  to have zero mean, so that asymptotically s(X) —> Sqo as 

n —> oo. Furthermore, for equation 4.35 to be applicable, we require IF(X)  to be 

stationary since the definition used for covariance function CjF(x)(k) applies to star 

tionary processes only. When these conditions are met, we can state in general that 

the selection of the optimal block length lopt of the MB bootstrap estimator is equiv­

alent to determining the optimal bandwidth of the spectral density weighted by the 

triangular window; the spectral density being the one corresponding to the influence 

function of the statistic to be bootstrapped.

Since the influence function relies upon the knowledge of the underlying distribu­

tion F, which is not known, the influence function needs to be determined empirically. 

Methods to compute IF (X )  from empirical data are given in Efron and Tibshirani 

(1993) for instance, but in this thesis, the procedure suggested by Biihlmann and 

Kiinsch (1999) (also see Campbell (1978)) will be employed. The empirical influence 

function can be computed as

IF(xi) = n [s(zi, , ®2, • • •, xn) -  s(xi, , x2, . . . ,  Xi-1, x i+i, . . . ,  xn)] (4.37)

where s(xi, , X2 , •. •, xn) denotes the estimator based on n observations and s(xi, , X2 , 

. . . ,  Xi-1, Xi+1, . . . ,  xn) is the same estimator but without the ith observation. This 

is the jackknife estimate of the influence function.^ Since the bandwidth selection 

for spectral density estimation, and hence the block length selection, is independent

^The jackknife is a method related to the bootstrap (Efron and Tibshirani, 1993) but rather than 
resampling with replacement, a jackknife estimate is formed from the original sample by leaving out 
one observation.
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of the scale of the data, it is sufficient to compute the influence function only up to 

a proportionality constant. It is noted that the empirical estimate of the influence 

function in equation 4.37 does not necessarily have zero mean. However, whenever 

the influence function is stationary, which is a prerequisite for its application to block 

length selection, the mean can simply be removed as it is time independent. Alter­

natively, since only the covariance of the IF {X ) appears in the block length selection 

procedure, the mean is implicitly removed in the evaluation of C x ( k ) .

The estimation of the spectral densities necessary to compute the optimal block 

length is considered next. As mentioned already, the method used by Politis and 

White (2004) for an accurate estimation of »S2(0) and (^^(O))2 is to taper the covari­

ance functions by the “flat-top” window of length M  defined by equation 3.43 in the 

previous chapter, so that, for instance S x ( 0) =  (27r)—1 W F r {k /M )C x {k ) .  The

selection of the length of the window M  follows the same empirical picking method 

described in chapter 3, section 3.5.1. Biihlmann and Kiinsch (1999) improve on the 

direct estimate of equation 4.30 by considering the optimal global bandwidth, which, 

rather than minimising the bandwidth at u  = 0, only, minimises the integrated mean- 

square-error

=  n - i / 3  ( 1/3 (4 38)

This is achieved in an iterative manner and once the optimal global bandwidth is 

found, it is used to estimate the optimal local optimal bandwidth at u  =  0. Their 

algorithm is a follows:

• Start with the “pilot” bandwidth of &o = n~l

• Compute an optimized global bandwidth in 4 iterative steps as

hi= n - 1/3 ( —  c j F(k) — \  for . = 1 2 3 4
\ 6  Efc=-n+2 w s c { k b i - in 4/ 21)k2C]F ( k ) )

(4.39)
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• Compute the optimal local bandwidth at u> =  0 as

/
b o p t(0 ) =  n

I (^ kJ-n + 2wTH(kb4nÂ21)CiF(k)>j  \  

( s = i » + 2 WSC'(fc&4W4 /2 1 )  |fc| C / jK * ) )  y

(4.40)

•  Find Igpt =  closest integer to 6^ ( 0) 

where

w s c ( t )

1 1*1 €[0,0.8]

l+cos(5(t-0.8)ir)/2 |t| € [0.8, 1] (4-41)

0 otherwise

WTH(t)  =  <
l + c o s ( 7 r t ) / 2  |x| € [0,1]

0 otherwise
(4.42)

are the Split-Cosine (SC) and Tukey-Hanning (TH) windows respectively. It tran­

spires that the methods in Biihlmann and Kiinsch (1999)and Politis and White (2004) 

only differ in the way the constants C\ and C2 are estimated as it is easily seen that 

the nominator equation 4.40 corresponds to C2 and the denominator gives 2Ci in 

equation 4.14. The inflation factor n4/21 occurring in the window functions in 4.40 

are actually the optimal window widths for estimating the generalized derivatives S^.  

For improved stability, this factor was also employed in the evaluation of Sx,  see 

Biihlmann (1996). The latter author also shows that i = 4 is the minimum number of 

iterations required for the bandwidth hi to have the correct asymptotic order n-1/3. 

We note that the block size selection methods given so far are, strictly speaking, only 

applicable to the moving blocks (MB) bootstrap. Biihlmann and Kiinsch (1999) also 

give an extension for the “block of blocks” bootstrap but this was not applied in this 

thesis. The reason is that (as will be argued in a moment) it will be sufficient for 

all practical purposes to determine the optimal block length based on the correlation 

functions at zero lag only, for which the “blocks of blocks” and moving blocks boot­

strap estimates are equivalent.
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For completeness, the optimal block length for the stationary bootstrap is briefly 

discussed. Since the block lengths are chosen randomly, the mean of the distribution 

from the block lengths are sampled plays the role of the optimal block length. The 

latter is easily determined by applying the theory presented so far, namely by changing 

the constant C2 in equation 4.18 to (Lahiri, 1999; Politis and White, 2004)

C 2 —  4S/jp(x)(0) +  “  f  (1 + c°s(uj))SjF^(u )d u j  (4-43)
« J — TV

instead of the value given for the MB in 4.31. The constant C\  remains the same.

4.5 Simulations

This section is concluded by discussing a few practical issues and includes a few simu­

lations validating the theory above for its use in correlation functions from structural 

responses. Firstly, it is noted that the computation of the influence function, given in 

4.37, only allows the estimation of IF(X, R x ( k ) )  for a particular lag k  at a time i.e. 

the influence function at lag k, IF (X , R x ( k ) ) ,  differs from that at lag r, IF (X , R x ( r ) ) ,  

whenever k  ^  r. A more general estimate of the influence function, yielding all de­

sired lags of R x ( k )  in a single step is not obvious. Fortunately, it appears that the 

optimal block length /opt for bootstrapping the variance of the correlation function at 

any particular lag, will also be optimal or near-optimal for all other other lags. A 

rigorous proof to establish the veracity of this statement would involve showing that

Sl F( X, Rx (k))( t y  ~  a ^/F(X,i?x (r))(°) 811(1 (^JF(X,i?x (fc))(0 ) ) 2 W a  ^ I F { X , R x (r)) for

k  ^  r  and some constant a, so that equation 4.30 yields the same result irrespective of

the lag of the correlation function for which the influence function is computed. Such 

a proof was, however, not further pursued. To support this claim, it is argued that 

due to the strong correlation structure of Var[Rx(k)] ,  any influences on the estimate 

of Var[Rx{k) \  will be global rather than local in the sense that if Var[Rx(k )]  is over­

estimated (or underestimated), then Var[Rx{r) \ ,  k  ^  r, will also be overestimated (or
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underestimated). This is clearly seen, in figure 4.6 for example where Var*[Rx(0)] and 

Var*[Rx(l)\ follow exactly the same trend, and disregarding the random sampling 

error due to the finite number erf bootstrap replicas B, they seem almost proportional 

and indicate a very similar block length for both lags. Consequently, it is suggested 

that the optimal Mock length lopt for Var*[Rx(k)], Vfe, should be determined based 

cm IF(X , R x ( 0 )). IF (X ,R x (0)) has same number of data points n than X , while 

the number of data points in IF (X , Rx{r)), for r  > 0 will be n — r  so that an estimate 

CiF(x,Rx (r))(k)i forr > 0 would be less accurate than CiF(x,Rx (r))(fy-

To check the performance of the block length selection methods presented above 

applied to bootstrapped correlation functions, the same simulated data from the the 

2DOF system in table 3.3, section 3.5.1 is used. 100 different response time histo­

ries simultaneously measured at each of the two degrees-of-ffeedom, of length 780s 

with At =s 0.05s were used. Politis and White’s method as well as Biihlmann and 

Kunsch’s are employed to determine the optimal block length l^ t  for the bootstrapped 

Var*[Rx2x2 (0)]. Average values are shown in table 4.2 and are complemented by the 

scatter plot in figure 4.7(a). In cases Al and A2 in table 4.2, Politis and White’s 

method is employed with the moving blocks (MB) bootstrap for c = 2 and K  =  5 (c.f. 

section 3.5) as suggested by these authors. What distinguishes Al from A2 is that in 

the latter case, a lower limit on the bandwidth of the flat-top window is imposed. The 

bandwidth of the flat-top window is determined as the inverse of M  = 2kcut, where 

kcut is the lag of the estimated correlation function after which it is not significantly 

different from zero. Thus imposing a lower limit on the bandwidth of the flat-top 

window, implies imposing a maximum for M  =  2kCUf  Recall that kcut is determined 

in practice as the lag after which the subsequent K  values lie within in the bands 

±Cy/l°9io{n)/n. However, the values c =  2 and K  = max(5, y/logio(n) ), where n 

is the number of data points in the measured time-series, are just recommendations 

given in (Politis and White, 2004) and not absolute requirements. Consequently, a 

different choice of these values will result in a different choice for the bandwidth of
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the flat-top window and affect the estimated optimal block length. In section 3.5, a 

different choice K  was already suggested to avoid selecting a very low value of kcut, 

namely by imposing the condition K  > [(2/oAt)-1]. In this case, where n =  15600, 

the lowest frequency mode fo =  2.24H z  and the time step is A t  =  0.05, this amounts 

to choosing K  > 4. Similarly, it may occur for instance, due to the higher variance 

in the tail region of the correlation coefficient function, that the estimated lag kcut 

occurs much later than it needs to. It is noted, however, that choosing kcut according 

to the method suggested by Politis and White (2004) is adaptive in the sense that, 

if n is large and hence the variance smaller, the bands ±cy/l°9io(n)/n will be narrower 

as well so that a larger width M  will be estimated for the flat-top window, and vice 

versa. However, the choice of c and K  still come into play and the values suggested 

by Politis and White (2004) may not be the best choice in all cases as is pointed out 

by these authors. The latter authors also give the general guideline that the flat-top 

lag-window spectral estimators perform best for small values of M = 2kcut- For this 

reason, an upper limit for M  — 2kcut is imposed using the fact that the nature of 

the correlation functions between structural response measurements is known and the 

same in all cases. Let v — min(£i<jJi) be the product of the modal frequency and 

damping ratio of the system mode i with the slowest decay, where i runs of over the 

number modes of the system. When this mode has decayed to a value not significantly 

different from zero, the same statement then applies to all the other modes of that sys­

tem. Assuming this happens when the corresponding correlation coefficient function 

has decayed to a% say, it is easily found from the decay envelope of this mode with 

slowest decay, e~ukAt, that the this occurs at lag k  = A value for a  = 1%

is suggested and this value of k  is used as an upper limit for kcut• Clearly, this choice 

requires to have an initial estimate of the modal parameters of the system but, since 

the the bootstrap will in general be used as a post-processing tool to determine error 

bounds on the estimated modal parameters, such an estimate is sometimes available 

either from an initial modal test of an finite element model of the structure.
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Lag 0 mean(lopt)(s) cr(lopt){s) mean(Var*[RX2X2(0)]) -10 6 o,(V’ar*[AXa*a(0)]) -10 7 bia8(Var*[Rx2X2(0)]) *10 7 rmse(Var*[Rx2X2(0)]) -10 7

Al 18.1 9.2 1.43 6.70 (3.16) -2.24 (-2.78) 7.07 (4.21)

A2 17.9 7.7 1.43 6.30 (3.11) -2.13 (-2.53) 6.66 (4.01)

A3 12.4 5.7 1.31 5.57 (4.52) -3.36 (-3.76) 6.51 (5.88)

A4 12.3 0.6 1.27 4.46 (2.08) -3.73 (-3.04) 5.82 (3.69)

Lag 1 mean(iopt)(s) mean(Var* [-Rx2X2(l)]) • 10~7 a(Var*[Rx2X2 (1)]) • 10~7 bias(Var*[Rx2X2 (l)]) • 10~7 rmse(Var* [Rx2x2 (1)]) • 10-7

A2 / / 8.34 3.65 -1.27 3.86

A3 / / 7.59 3.22 -2.01 3.80

A4 / / 7.41 2.58 -2.19 3.39

Tab. 4.2: Comparison of block length selection methods for the MB, BB and SB bootstrapped auto-correlation functions at lag 0 and 1 from 100 simulated responses 
of the 2DOF system in table 3.3 for estimating Var*[RX2X2(0)] and Var*[RX2X2(0)}. The cases considered are: (Al) MB/BB bootstrap, method-(Politis and White, 
2004) with c =  2; (A2) MB/BB bootstrap, method-(Politis and White, 2004) with c =  2 and an upper limit of — Zn-1 (0.01)(i/At) imposed on fccut, with u =  minfouji); 
(A3) SB bootstrap, method-(Politis and White, 2004) with c =  2 with the same upper limit on kcut] (A4) MB/BB bootstrap, method-(Biihlmann and Kiinsch, 1999). 
At each block length, the bootstrap estimates of Var*[RX2X2(0,1)] are computed from 300 bootstrap replicas of Rx2X2{0,1). a denotes the standard deviation, rrase 
the root-mean-square-error. The values in the parenthesis denote the the predicted estimates from equation 4.14.
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Fig. 4.7: (a) Scatter diagram depicts the BB bootstrap estimates Var*[RX2X2(0)] as a function 
of the optimal block length lopt from 100 simulated responses. The block selection schemes 
used the ones described corresponding to cases A2 [x], A3 [o] and A4 [□] descibed above 
and whose average values are tabulated in 4.2. (b) Bootstrap estimates of Var*[RX2X2(0)] 
computed from 50 simulated responses as a function of the block length. The thick line is 
their mean and the errorbars indicate the standard deviation. The block length is increased 
in steps of 2s (At =  0.05s). At each block length, the bootstrap estimates of V ar*[RX2X2(0)] 
are computed from 300 bootstrap replicas of i?X2X2(0).

Case A3 is the same as A2 but for the stationary (SB) bootstrap. A4 uses 

Biihlmann and Kiinsch’s method for block length selection. The reader is reminded 

that the true values V ar[R X2X2(0)] and V a r [R X2X2( 1)], tabulated in table 3.4, section  

3.5.1, Chapter 3, are 1.65 • 10-6  and 9.61 • 10~7. Comparing the mean block lengths



estimates obtained from the various selection methods (A1-A4), it is seen that, on av­

erage, the optimal block lengths produced by any of the methods are reasonably close. 

In particular, the mean values, the standard deviation and the root-mean-square er­

ror of the variance estimates of Rx2X2 (0) at “optimal ” block length are similar. Also, 

the mean values of the variance estimates of RX2X2 (0) are dose to the true value of 

1.65 * 10“6. Assuming that the variance of the bootstrapped correlation function at 

zero lag is normally distributed, the standard error in the estimated sample mean 

is given by equation 4.2. The standard error in the estimated variance is known to 

be ^ ( x ) ]  =  <r2(x) V 2/ n  (R°se and Smith, 2002) which can be approximated as 

d’2( x )V 2/ N- Expressing the estimated variance as d2(x) ~  cr2(x) [1 ±  y/2/w], taking 

the square-root of this equation and approximating [1 ±  \ / 2/ n ] 1/ 2  as 1 ±  y / l / 2 N  by 

using the binomial expansion up to linear terms, the error in the estimated standard 

deviation can be approximated by &(x)

While the estimates from Politis and White’s method for the MB bootstrap (Al, 

A2) have less bias compared to Biilmann and Kuiisch’s method, they come with larger 

variances. This behaviour follows equation 4.14 since mean(lopt) is lower in Biihlmann 

and Kiinsch’s method. It is seen that imposing the lower limit on the flat-top win­

dow’s bandwidth (A2) has little effect on the results. Also, on average, Bulhmann 

and Kiinsch’s method has the lowest root-mean-square-error (rmse). Another strik­

ing feature of the latter approach is the high stability of the optimal block length 

selection as evidenced by cr(lopt) in the table. This increased stability, compared to 

the Al, A2, can be attributed to the much narrower widths of the window functions 

used in equations 4.39-4.40 due to the inclusion of the inflation factor n4/21. It seems 

plausible that a slightly higher choice of the constant c in Politis and White’s method 

would yield more stable results than for c = 2 but this was not investigated further. 

Quite interestingly, the results from the stationary bootstrap (case A4) seem to be 

have a little less scatter than those from the MB bootstrap. Theory predicts that the 

SB bootstrap will have a higher variance (but similar bias) than MB estimates due to

129



the additional term in the estimation of the constant C% (see eq. 4.43). This is indeed 

reflected in the predicted variance and rmse estimates from of equation 4.14 (these 

quantities are indicated in the parenthesis in table 4.2). However, the sample variance 

and rmse computed from the 100 estimates of Var*[Rx2X2 (0)] are lower than those 

for the MB bootstrap (case A1,A2), indicating a good practical performance of the 

SB bootstrapping scheme. The same observations hold for the equivalent estimates 

at lag 1.

Computing the “true” optimal block length is not easy because an analytic ex­

pression for S j ^ x  R^  is not readily available. A numerical estimate of Sj l̂ x  R^  = 

Y^=-oo M Cif(X) (&) by using the mean Cjf(x)  M  computed from a many dif­

ferent simulated responses to approximate CjF{X){k) can be unreliable too. The rea­

son being that a very large number of simulated responses are required for C i f (x ) (k)  —► 

Cip(x)(k) at high lag. This requirement is very stringent because of the multiplication 

by |fe{ which blows up any error that prevents the convergence toward zero. Thus, a 

good numerical estimate, even with an improved estimate of CiF(X){k) as described 

above, would also require a windowing operation which brings us back to the problem 

we are trying to solve. However, figure 4.7(b) gives us a very good idea of what the true 

optimal block length might be. The latter graph displays the bootstrapped variance of 

Rx2x2 (0) 818 a function of the block length used. This is shown for estimates computed 

from 50 different simulated responses. Additionally, the sample mean and the sample 

variance from these estimates is shown. It is seen that mean(Var[RX2X2 (0)]) does not 

increase significantly with increasing block length after it has reached a value of ap­

proximately 1.3-10-6 at a block length of about 13s. Thus, the same holds, on average, 

for the bias. The standard deviation, however, shown by the error bars still increases. 

Therefore, recalling that the optimal block length is the one that minimizes the rmse, 

it follows from this graph that the true value lopt lies somewhere between 10s and 20s. 

We may conclude that both methods -Politis/White and Buhlmann/Kunsch- yield, 

on average, a good estimate of the optimal block length. The negative bias responsi­
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ble for the underestimate of Var[Rx2x2 (0)] cannot be avoided as it is intrinsic to the 

dependent bootstrap estimate and is clearly represented in equation 4.14. Due to the 

smaller rmse in case A4, we may say that Biihlmann and Kiinsch’s method perform 

slightly better than Politis and White’s procedure.

In practice, only one response history is in general available from which the en­

semble of bootstrap replicas of the correlation function must be computed. Recall 

that it is desired to compute this ensemble such that the correlation function repli­

cas yield the true covariance properties. In this particular case, this means that the 

variance at zero kg  estimated from the ensemble of the 300 bootstrap replicas of the 

correlation function should be 1.65 • 10~6, which is the “true” variance of the original 

correlation function, which was computed by using additional response histories that 

are not available in practice. Although, on average, the ensemble of bootstrap replicas 

estimated at optimal block length yields a good representation of the statistics of the 

true correlation function as shown in table 4.2, it is seen from figures 4.7, that de­

pending on the particular response used, the corresponding ensemble of bootstrapped 

correlation functions may have a variance that is significantly lower or higher than 

that of the true correlation function. Unfortunately, there is not much one can do to 

eliminate this error apart from taking longer response records, since this variability 

is mainly due to the fact that we have to estimate the bootstrapped correlation func­

tions from only n observations of the stochastic process. It is important to recognise, 

however, that this is not due to an inadequate selection of the block length as is clear 

from figure 4.7(b). Since the record length parameter n features in equation 4.14, 

we can get an estimate of the bias, variance and hence root-mean-square error of the 

bootstrapped estimate Var*[RX2X2 (0)] at optimal block length from a single response. 

The average values of these statistics, over the 100 simulated responses, are shown in 

table 4.2 in parentheses. It is seen the bias is, on average, very well estimated while 

the variance is significantly underestimated in all cases which is of course reflected 

in the corresponding rms errors. No definite explanation for this consistent under­
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estim ate was found. Looking at the r m s  error of the bootstrapped Var*[RX2X2(0)\ 

estim ates for each of the 100 simulated responses at optimal block length, shown in 

figure 4.8(c), it is seen that the predictions from equation 4.14 are far from ideal to 

say the least. There seems to be a roughly linear correlation between Var*[RX2X2(0)] 

and rm se{V ar*[R X2X2{0)]). This implies that whenever the bootstrap estim ate of
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Fig. 4.8: Standard deviation (a), bias (b) and rmse  (c) of the bootstrapped variance of the 
correlation function at zero lag, Var*[RX2X2{0)], predicted by equation 4.14 at optimal block 
length for cases A2 [x], A3 [o] and A4 [□]. The average values of these quantities are shown 
in table 4.2 in the parenthesis. As before, the values of Var*[RX2X2(0)] are computed from 
300 bootstrap replicas of RX2X2(0 ,1).

Var*[RX2X2 (0)] is near or above the true value, the corresponding estim ate of the r m s  

error will be representative of the error in the actual estim ate but on the other hand, 

an underestimate of Var*[RX2X2{0)] will come with a r m s  error estim ate that bears 

little relation to the true error. The reason for this behaviour is to be attributed  

to the different estim ates of S ip ( x ) (0) and ^/ir(x)(^) as different response histories
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Fig. 4.9: Extrapolation of rmse(Var*[RX2X2(0)]) to higher lags. The thick line represents 
the exact value and the solid and doted line represent two different bootstrap estimates of 
Var*[RX2X2(T) with the extrapolated rmse  represented by the errorbars.

are used. If *Sj f (J£)(0) is under- or overestimated for a particular response, then so 

is This is clearly seen in figures 4.8(a) and 4.8(b) since the the former

determines the variance and the latter the bias (c.f. eq. 4.14). Therefore, this factor 

does not influence the optimal block length selection since the latter involves the ratio 

of S i f {X)(0) and anc  ̂ ls therefore a much more robust estim ate. The bias,

variance or r m s e  estim ated from 4.14 is, however, only applicable to  the lag of the 

correlation function at which the influence function is computed since, for instance 

R(k) ^  ^IF(X R(r)) W  ôr k r - Nonetheless, since this r m s e  is represen­

tative of the variability due to insufficient observations n  once l^ t  is determined, we 

may assume that this variability is the same for Var*[RX2X2(r) \, for r >  0 but relative 

to their respective amplitude of Var*[RX2X2(r)\. In other words, we may write

rm se(V ar*[R X2X2{k)]) «  rm se{Var *[R X2X2(0)]) \ ^X 2 X 2 j (4.44)
Var*[RX2x2{k)]

This is shown by the errorbars for two different bootstrap estim ates o f V a r[R X2X2{k)] 

in figure 4.9.

133



The treatment of optimal block length selection given was based entirely on auto­

correlation functions, but the extension to cross-correlation functions is similar since

much earlier, c.f. for instance Campbell (1978). The definition of the multivariate 

influence function bears similarity to partial derivatives and for this reason, Pires and 

Branco (2002) use the terminology “partial” influence function to denote the same 

quantity. Formally, for a statistic s depending on the distributions Fx  and Fy of X  

and Y  respectively, the influence functions are defined as

In other words, the theoretical multivariate influence function is then determined 

by perturbing only one of the distribution functions involved and the others remain 

unchanged. The definition above is given for the bivariate case since this is all that 

is needed and is readily generalised to the multivariate case. To evaluate IFx{X,Y)  

and IFy(X,Y)  in practice, we adopt again the method suggested in Biihlmann and 

Kiinsch (1999) (c.f. equation 4.37), which in the present situation means that an 

observation from only one of the two time series is eliminated in each case (also see 

Campbell (1978)). Along the lines of the linearisation in equation 4.33, we linearize 

the the statistic s(X,Y) as

an average over the two influence functions so that the theory developed above is

one may linearise the desired multivariate statistic in much the same way than in 

equation 4.33. The technical difficulty that arises lies in the definition of the influence 

function for multivariate series, and the definition of the latter is not obvious. It 

appears that an explicit definition was first formulated by Pires and Branco (2002) but 

the concept of multivariate influence functions had been used in practical applications

IFx (X,Y) = lim s((l -  e)Fx -I- € Sx, Fy) -  s(Fx , Fy) (4.45)
€

IFy(X,Y)  = lim
e—>0

s((l -  e)Fy -I- € 6y, Fx ) -  s(Fx , Fy) (4.46)e

/  V 11

i ( X ,y ) « Soo + -  n - ^ / i ^ n  +  n - ^ / F p C K )  (4.47)
n n

It is seen that the second term on the right-hand-side of equation 4.47 is again just
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Fig. 4.10: (a) Bootstrap estimates of Var*[RXlX2{0)] computed from 50 simulated responses 
as a function of the block length. The thick line is their mean and the errorbars indicate the 
standard deviation. The block length is increased in steps of 2s (At =  0.05s). At each block 
length, the bootstrap estimates of Kar*[.RXlZ2(0)] are computed from 300 bootstrap replicas 
of i2Xix2(0) (also c.f. figure 4.7(b)). (b) Scatter diagram depicts the BB bootstrap estimates 
Far*[i?XlX2(0)] as a function of the optimal block length lopt from 100 simulated responses. 
Only the Buhlmann/Kunsch block selection method is shown. The values in parenthesis are 
the estimated standard deviation, bias and rmse from equation 4.14.

again directly applicable to the bivariate case. As for auto-correlation functions, the 

influence functions is used for the selection of the block length and, if desired, to get 

an estim ate of the mean-square-error of the bootstrapped variance of the statistic of 

interest, i.e. the cross-correlation function in this case. Again, it is proposed to use
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the influence function of the cross-correlation function at zero lag jRxy(O). It is eas­

ily seen that the influence functions for this parameter are IF (x i ,  Y, -Rxy(O)) =  xiyi 

and, similarly IF(X,yi,  R x y (0)) =  xiyi since the elimination of either X{ or yi in 

the the time-series X  or Y  respectively, results in the elimination of the term in the 

cross-correlation estimate involving either of them. This is illustrated in figures 4.10 

on the same 2DOF system as used before except that in this case, the bootstrapped 

variance of the cross-correlation between the first and second degree-of-freedom of 

the system is considered with the block length selection method applied to the lat­

ter cross-correlation function. Figure 4.10(a) clearly shows that the dependence of 

the bootstrapped variance of the cross-correlation function at zero lag is much the 

same as for the auto-correlation function (c.f. figure 4.7(b)) and the mean identi­

fied optimal block length (figure 4.10(b)) is very close to the one estimated from the 

auto-correlation function. This is not surprising since -as mentioned earlier in this 

chapter- the constants C \ and C 2  depend primarily on the correlation structure of the 

considered time series. Thus, as long as one is confident that a particular response 

history of the structure contains the contributions from the main system modes, the 

optimal block length for bootstrapping the auto-and cross-correlation functions of all 

measured responses can be obtained from this single response. Since in practice, the 

reference time-histories against which the other response are cross-correlated are cho­

sen to those that have strong contributions of all the system modes, the latter lend 

themselves well for the selection of the optimal block length. However, if an estimate 

of the mean-square-error of the bootstrapped variance of the correlation function is 

desired too, the corresponding influence function must be chosen (c.f. 4.10(b)) because 

the response amplitudes measured at different locations on the structure vary. This 

does not affect the optimal block length due to the ratio involved in its computation.

To conclude this section, the problem of bootstrapping random decrement func­

tions is commented. Bootstrapped RD functions were employed for modal analysis 

of SDOF systems by Kijewski and Kareem (2000, 2002). These authors formed the
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bootstrap replica of the RD signatures by resampling the segm ents o f data corre­

sponding to  each identified triggering point. This resampling scheme is, however, not 

ideal. Firstly, the resampling of segments may introduce bias in the bootstrapped  

RD functions. The reason -different than for correlation functions- is that reordering 

of the RD  segm ents introduces artificial trigger conditions and therefore affects the 

estim ate. Asmussen (1997) shows that sorting the segm ents can lead to  bias in the 

form of apparent increased damping and frequency shifts. A lthough these effects may 

be less pronounced when the sorting of the trigger point follows a random resampling 

process rather than system atic sorting. Secondly, resampling segm ents of data as 

described above will not yield the correct covariance structure of the bootstrapped  

RD functions. To see this, consider the bootstrapped variance o f the RD functions 

at zero lag for instance, which is in fact just the mean of the trigger points. Thus, 

the bootstrapped RD functions at zero lag com puted according to Kijewski and Ka- 

reem (2002) effectively treat the trigger points as independent and their method is 

thus th e  same as Efron’s original bootstrap. Consequently the correlation between  

the trigger points is lost and the bootstrapped correlation functions will not have the 

correct covariance structures.* In fact, they will yield variance properties for instance 

that agree w ith the analytical approximate formulae derived by Vandiver et al. (1982) 

which were shown to be incorrect by Asmussen (1997), precisely because the depen­

dence between different observations was neglected. Consequently, resampling blocks 

of segm ents corresponding to  successive triggering points seems adequate to  solve this 

issue, which in turn raises the question of the optim al block size. Since the RD func­

tion at zero lag is just the mean of the trigger points, the block selection m ethods used  

above for correlation functions are in principle directly applicable, w ith the time-series 

replaced by the trigger points. This procedure was tested  by the author. Although  

the use of blocks of consecutive segm ents results in bootstrapped variances that reflect 

their dependence, the agreement w ith simulated variances was generally poor. Simu­

lations at many different block lengths (similar to  figure 4.10(a) and 4.7(b) indicated

*We note that Kijewski and Kareem (2002) resample from non-overlapping segments but that does 
not change the argument used above.
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that this disagreement is not to be attributed to an inadequate choice of block length 

only and the exact reason for this discrepancy could not be determined and further 

research is needed.

4.6 Summary and Discussion

In this chapter, the theory for bootstrapping time-series was presented with a fo­

cus on bootstrapped correlation functions. It was shown that the “blocks of blocks” 

bootstrap (BB) and the stationary bootstrap (SB) outperform the “naive” or moving 

blocks bootstrap (MB); more precisely, the MB scheme introduces bias in the boot­

strapped correlation functions in much the same way as tapering which introduces an 

apparent increased damping to the system. While this bias is completely eliminated 

by the BB method, the stationary bootstrap only offers a slight improvement.

Whichever method is used for bootstrapping time-series, the data is collected into 

blocks to preserve its correlation structure. It was shown that the size of the blocks 

chosen significantly influences the covariances of the statistic that is bootstrapped 

and two methods were presented and compared to select the optimal block size. The 

applicability of these methods -originally derived for ac.f.- was shown to be applicable 

to multivariate time-series of MDOF systems. Both methods yielded a reasonably ac­

curate estimate of the optimal block length but the Biihlmann and Kiinsch’s method 

was slightly more stable and is therefore preferred. Also, their method is slightly faster 

and does not require any tuning by user defined parameters as opposed to Politis and 

White’s method. For clarity, it is desired to put the choice of block length into the 

practical context initially set out to investigate, namely the uncertainty in operational 

modal parameters. Referring to figures 4.10(a) and 4.7(b), it transpires that if the re­

sponse histories are chopped into blocks that are significantly smaller than the optimal 

block length, the variance of the ensemble of the bootstrapped correlation functions 

will be much smaller than their true variance dictated by the available record length 

and the modal parameters of the system as shown in the previous chapter. This
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means that the ensemble of bootstrapped response models do not differ significantly 

from each other, or at least much less so than a set of response models that would 

be obtained if the modal test were repeated many times. As a result, the modal pa­

rameters identified from each of the bootstrapped response models would not differ 

significantly either and hence, any error bounds established on these grounds would 

be, in this particular example, grossly underestimated. While it is seen from figures 

4.10(a) and 4.7(b) that the variance is, on average, more stable with respect to overes­

timates of the optimal block length, the choice of a too high block length is associated 

with a large variance so that the possibility of outliers increases, a situation we wish 

to avoid in practice. Using the bootstrap to determine the uncertainty in operational 

modal parameters is the subject of Chapter 7, but this brief example illustrates the 

significance of adequate block length selection. As a byproduct, a mean-square-error 

estimate of the variance of the bootstrapped response model is obtained. As, discussed 

above, however, the information the engineer can obtain from the latter estimate is 

limited, in particular when the true variance is underestimated.

Finally, a few remarks concerning the theory presented above need to be made. 

The rigorous theory behind the bootstrap and block length selection requires a great 

deal of mathematical and statistical sophistication and it was not possible to present 

it in its full breadth. In particular, many of the theorems used here are stated in 

the original papers under precise conditions such as the degree of dependence and 

mixing conditions in the time-series. Again, due to the highly technical nature of these 

conditions, they could not be verified exactly. This does however not necessarily imply 

that the bootstrap and block selection schemes presented above are not applicable 

to the problem at hand -that is structural response histories- but rather that the 

results may not be optimal. From a practical point of view, this does not pose any 

serious drawbacks as the practicing engineer has to deal with situation he or she 

is confronted with, whether the theoretical conditions are verified exactly or not. 

Moreover, the simulations in this chapter strongly support the practical adequacy
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of both the bootstrap as well as the block selection algorithms for the operational 

response time-histories.



C h a p t e r  5

P e r t u r b a t io n  A nalysis  fo r  

C o r r e l a t io n - D r iv e n  

Id e n t if ic a t io n  ________________

5.1 Introduction

No m atter which m ethod is employed to  identify the modal parameters of a given 

structure from output-only measurements, the stochastic nature of the in-operation  

loading conditions and the noise in the dynamic sensors means that the identified 

modal parameters are random variables. Thus, even in ideal cases where the struc­

ture exhibits purely linear behaviour and the input is band-lim ited w hite noise, there 

will be a certain variability associated with the identified m odal parameters due the 

fact that one has to deal w ith a finite amount of data which prevents the convergence 

of the random variables to their true value. In addition to  the random error, system ­

atic (bias) errors can occur during the process. The user has to  decide upon certain  

input parameters to  “kick off” the estim ator used and it is well known that this choice 

can significantly affect both bias and random error in the identified m odal parameters.

The robustness w ith respect to noise of the classic identification techniques that 

lend them selves for in-operation m odal analysis (see chart 1.4) is well documented  

in the original papers detailing these algorithms. Several authors have compared the

141



performance of these algorithms for noisy data on numerical models (Abdelghani et 

al., 1998; Lew et al., 1993) from input/output measurements and (Desforges et al., 

1995; Peeters and DeRoeck, 2001) from output-only data. While these papers expose 

the qualitative behaviour of the identified modal data and provide user guidelines for 

improved accuracy, the uncertainty in the modal estimates is not quantified. In recent 

years, however, the importance of being able to quantify the uncertainty in the iden­

tified modal data has been highlighted. For classical input/output modal analysis, 

Doebling and Farrar (2001a); Paez and Hunter (1998) used a bootstrap techniques 

to determine confidence intervals for identified modal frequencies and damping ra­

tios from measured FRFs. Systematic errors were not considered.. For output-only 

identification from ARMA(V) models, much research has been done to estimate the 

associated variance of the modal parameters. Andersen and Brincker (1999) used 

the prediction error method (PEM) to obtain the covariance matrix of the identified 

modal parameters. Moreover, Andersen et al. (1995) developed a method to optimize 

the selection of the predictor and have shown that a proper selection of the initial 

conditions reduces the variability of the estimates. Also, the selection of the sampling 

interval has been treated by Ljung (1987), for instance. Other than that, the literature 

dealing with the uncertainties from other operational modal analysis techniques is, to 

the authors knowledge, scarce.

In this chapter, the perturbation analysis for covariance-driven stochastic realisa­

tions i.e. the SSI/Cov (Peeters and DeRoeck, 1999, 2001; VanOverschee and DeMoor, 

1996) or, equivalently, the ERA as applied to operational data (Desforges and Cooper, 

1997; Juang et al., 1988) will be presented. This theory was developed in Longman 

and Juang (1987) and its sequel (Longman et a/., 1987). The latter authors, have 

applied this method to simulated data for classical input/output identification in the 

case where exact impulse response functions are perturbed by additive white noise. 

The aim is to extend this method to operational modal analysis and also take the 

possible bias into consideration. The present chapter provides the theory behind the
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perturbation analysis and in the chapter to follow, it will be validated against Monte- 

Carlo type simulations to  determine the accuracy we can expect from this technique 

in a practical situation.T his study was m otivated by the generally large variability 

associated w ith the estim ated modal damping ratios, in particular when the identifi­

cation has to  be performed from short data sequences (Pridham and W ilson, 2003). 

Cauberghe et al. (2004) have presented a FRF-based technique to  deal w ith such cases. 

This m ethod enables the estim ation of the variability due to  noise disturbance and 

can account for using short data sets, using the statistics developed in the previous 

chapter. Moreover, the bias that arises from sources such as the algorithm itself or 

from filtering the data can be accurately estim ated. As a result, both random and 

system atic error that one can expect in the identified data can be determined from 

a single set o f in-operational measurements. In addition, this m ethod allows the user 

to  determine what choices of input parameters such as the dimension of the Hankel 

m atrix or the sampling interval minimize the error in the estim ated m odal data.

5.2 Overview of the Theory

Suppose the response is measured at p  sensors for a total tim e T  and r  sensors serve 

as reference. In order to  realise the system  using the SSI/C ov, the response time- 

histories are used to  form the one-sided cross-correlation functions between the p  

sensors and the r references resulting in p x r  cross-correlation functions which are 

then assembled into the Hankel matrices Ho and H i  as described in Chapter 2. For 

notational convenience, these Hankel matrices will henceforth be denoted by Ho (0) 

and H i  (0) respectively. T he meaning of this notation will becom e clear shortly. 

Suppose that only the first t c seconds of the one-sided cross-correlation functions are 

included in the analysis i.e. the first n c =  tc/At data points from each of the p  x r 

correlation function, where A t  denotes the sampling interval. Thus, there will be a 

total of N  = (p x r x n c) data points used in the m odal parameter extraction. Now  

suppose that a single data point of any of these sample cross-correlation functions is 

perturbed - for instance the n th data point in the cross-correlation function between
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the pth output and the r th reference sensor. Out of the N  = (p x r  x n c) available data 

points, let this point be indexed as the the j th data point and let the magnitude of its 

perturbation be expressed by the zero-mean random variable ej. Then, the perturbed

Hankel matrices, denoted by Ho (ej) and Hi (ej), may be approximated in terms of

the unperturbed Hankel matrices Ho (0) and Hi (0) according to the linearisation

Ho (ej) = Ho (0) + ejSj (Ho) (5.1)

Hi(ej) = Hi(0)+ej6j(Hi)  (5.2)

where the matrices 6j (Ho) and 8j (Hi) axe matrices consisting entirely of zeros except 

from being unity in each entry associated with the data point perturbed by ej. In 

practice, all N  data points in the sample correlation functions will be corrupted so 

that the Hankel matrices perturbed by e\, e<i... e/v are given by

N

Ho (e) = Ho (0) + £ ^ ( « o )  (5-3)
j = 1 
N

H i(i) = Hi (0) + ^  ej&j C^i) (5-4)
j = 1

where the vector e is defined as e = [e i, € 2 , . . . ,  e^v].

Remark: I t is important to note that Ho (0) and H i  (0) denote the Hankel matrices 

form ed by the sample correlation functions from  the original data. Although the 

notation may suggest that they are assembled fo rm  the true correlation functions.

The latter, however, are not known and the estimated cross-correlation functions  

need to be used instead and thus serve as the “basis” from  which the perturbation is 

applied.

Let the generic parameter x  denote any modal parameter of interest. The change 

in the SSI/Cov-identified result x  (Q) from the original data assembled in Ho (0) and 

7̂ 1 (0)5 due to the perturbation e can then be approximated by a Taylor expansion
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about the origin as

N  N  N

x U )* x (o )  + £ ^ ( x )  + £ £  e j t k S j k  (x) + • • * (5.5)
j - 1 k=1 j =1

where, for notational convenience, we have introduced the differential operators de­

fined by

dej

«<*(•)= 2 de7defc

(5-6)
e=0

(5.7)
e=0

Equation 5.5 provides the basis to calculate the variance and bias of the identified 

modal parameters.

5.2.1 V ariance o f x> V'ar [x]

Using expansion 5.5 through linear terms only, the variance of x (f) can be estimated 

as
N  N N

Var [x (e)] «  ^  Var [ej] 6)  (x) + 2 ^  ^  Cov [ej, ek] Sj (x) Sk (x) (5.8)
j=l j=l fc=i

This represents how much scatter one would expect to find in the estimated modal 

parameter due to the stochastic disturbance e if the identification were performed for 

many repetitions of the experiment. It is noted that in traditional modal analysis, 

where the disturbance is due to noise only the second term drops out since ej and ek 

are uncorrelated (Longman et a/., 1987). For operational modal analysis, it will be 

seen that this term plays a crucial role in determining the error in the identified modal 

parameters.



5.2 .2  Q uadratic B ias o f  x> [x]

Applying the expectation operator to eqn. 5.5 gives

N  N  N

Cov [ej, efc] S j k  (x) (5.9)
j = l j=i fc=i

j ^ k

It is seen in eqn. 5.9 that the expected value of x (i) does not result in x (0) but 

instead, a bias error arises due to the quadratic term in the expansion. This bias is 

therefore referred to as the quadratic bias (Longman et al., 1987), denoted by 6q, 

of the estimated parameter x ? and is given by

N  N  N

bQ [X ( i ) ]  =  E  [x (e)] -  x (0) «  Y !  V a r  N  6n  ( x ) +  C o v  f o ’ f 5 ' 1 0 )
j = 1 j=l /c=l

The quadratic bias bQ expresses how much systematic error we can expect on average 

due to fact that the random perturbation e is passed through a quadratic nonlinearity 

and does not average to zero. To the extent that quadratic terms dominate higher 

order terms, this yields the full bias due to the nonlinear nature of the algorithm.

5.2 .3  T runcation  B ias o f  x> [x ]

The actual situation, however, is further complicated by the fact that stochastic real­

izations involve truncation of near zero singular values after choosing an appropriate 

model order. While it is desirable to truncate near zero singular values that arise 

due to noise in the data , truncation can however cause significant bias in the esti­

mated modal parameters when the truncated singular values contain system dynamics 

(Cooper, 1989; Juang and Pappa, 1986). Again, a perturbation analysis can be em­

ployed to investigate the effect of truncated singular values on the system modes by 

formulating an additive perturbation to the eigenvalues of the identified system matrix 

A in terms of the truncated singular values and corresponding singular spaces.



Consider the singular value decom position (SVD) o f the n ' x g Hankel matrix Ho 

with n ' > g (cf. Chapter 2 section 2.3.2)

Ho =  U S V r  with £  =

S i 0

0 S 2

0 0

(5.11)

where S i  is an n  x n diagonal m atrix containing the first n  singular values of S  and 

the remaining (g — n) singular values form the diagonal o f S 2 This singular value 

decom position of Ho can be partitioned as

Ho U i  U 21 U 22

S.1 0 r

0 S 2

0 0 -

V 2T
(5.12)

Define U 2 =  [U 2 i U 22]- Suppose that, for the m odal parameters identification, only 

the first n  singular values in S  of the singular value decom position of Ho are retained. 

In other words, the singular values in S 2 are set to  zero. Thus, according to eqns. 

2.48 and 2.46 in Chapter 2, Ho and H i may be expressed as

Ho =  U j S i V ! 1"

H \  =  U 1£ 11/2A £ 11/2V 1r

(5.13)

(5.14)

where A  is the n  x n  identified system  or state m atrix. As described in Chapter 2, 

the eigenvalues A; and eigenvectors i =  1 ,2 , • • • , n, of A  yield the m odal damping 

ratios, frequencies and mode shapes. It should be noted that equations 5.13 and 5.14 

are only approximations o f Ho and H i  due to the truncation that has been performed. 

However, in order not to  introduce any confusion about approximations made in the

perturbation analysis, the equality sign will be retained because truncation of singu­

*The assumption that the number of rows exceeds the number of columns in Ho was dictated by 
the fact that, generally, the total number of sensors exceeds the number of reference sensors. This 
assumption does, however, not cause any loss of generality and the derivation for the case in which 
ri <  g is the same.
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lar values is common practice and it is understood that any set of identified modal 

parameters is just an approximation to the true system parameters. To investigate to 

what extent this truncation affects the SSI/Cov-identified modal parameters, we form 

a new n x n matrix, denoted A \  as

A' = HiHl = H{V
0

0 0
u (5.15)

where (•)* denotes the pseudo-inverse and it is seen that Ho has been truncated at 

the chosen model order n. The next step consists in establishing that the first n 

eigenvalues of A'  are identical to the eigenvalues of the n x n system matrix A. To 

do so, we diagonalize A'  as follows: consider the eigenvalue equation of A/

A p ' = A'p' for « = 1,2, • • • , n' (5.16)

where p- and A- denote the ith eigenvector and corresponding eigenvalue of A/ respec­

tively. Pre-multiplying equation 5.16 by

2 0
U

0 I

and using equation 5.14, this equation can be rewritten as

0

U JH jV j X V  0

with Pj =

Ui = KUi for * = 1,2,

s ;4 0
t t T _ /u  Ei II"

o
i

£

i

M M
i-

1

0

0 I 0 I

n

Ui

(5.17)

(5.18)

We conclude from the first n x n partition of the above equation that A' = A*, 

i = 1,2, • • • , n. In other words, the first n eigenvalues of of A ' are identical to the 

eigenvalues A* of the identified state matrix A. Furthermore, we can partition the 

vectors p f as [pf p f ]. As before, pi? for i — 1, 2 , . . . ,  n denotes the eigenvectors of A
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and the definition of p f follows from equation 5.18 as

Ei =  T - U j  W iV iS j  5Ei for t =  1 ,2 , (5.19)

Thus, the eigenvectors pj corresponding to  the first n  eigenvalues o f A ', can be estab­

lished using the partitioned vectors in equation 5.18 so that the first n  columns of 

the eigenvector matrix of A ' can be written as

P i :» =  U
E f  0 P

0 I P
(5.20)

where the n' x n  matrix contains the n ' x 1 vectors [jxf u f ] T in its 

columns, for i =  1 ,2 , • • • , n. Since the last (nf — n) columns of the n' x n' matrix on 

the left-hand-side o f equation 5.18 are zero, it follows that the last (n' — n) eigenvalues 

of A ' are identically zero and the corresponding (n' — n) eigenvectors can be chosen to  

be the n 'x  1 unit vectors ej  defined as the j th column of the n' x n' identity matrix. 

The matrix A ' can therefore be diagonalized as

P  0
-1

A  0 P  0 A  0

p  I U jW iV iE " *  0 p  I 0 0
=  A' (5.21)

where A  =  diag  { A i, A2 , • • • , An} is the eigenvalue m atrix of A . T he above equation  

thus establishes that A ' is a nondefective m atrix whose n  nonzero eigenvalues are 

identical to  the eigenvalues of A . The m! eigenvectors o f A!  are given by equation 5.18

as

P ' =  U
E f  0 P  0

1--
---

-
0 1—

1
1

P  I
(5.22)

This fact is now exploited to  determine the effect of the truncated singular values on 

the n  eigenvalues of A  as an additive perturbation by reinstating S 2- To do so, we 

use the full SVD of the Hankel matrices (eqn. 5.11), i.e. no truncation is performed,
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and form the m atrix A"  in the same fashion than A  , that is

a "  =  H iH\ = H i V i v 2
0 0

0 S j 1 0
u j i

H i V i S ^ ' U /  +  H iV 2X 2 1U t21

(5.23)

(5.24)

where the first term in equation 5.24 is recognised to  be A ' , that is

(5.25)

Pre- and post-m ultiplying equation 5.25 by P  and P  then yields

p ' 'A "p ' = p ' ' a 'p '  + P ' 1 (Hi V2S 2 1U 2i T) P- I t t  T \  t V (5.26)

Introducing the notation

. " . / - 1  . h i
A  =  P  A P

a ' =  p ' 'a 'p '

AA' = p ' 1 (HiV2S J 1U 21T) p '

(5.27)

(5.28)

(5.29)

equation 5.26 may then be expressed com pactly as

A = A + AA (5.30)

Bearing in mind that the first n eigenvalues of A ' are identical to  the eigenvalues 

of A, that is, the first n diagonal elements in A' are the eigenvalues of A, it is clear 

from the above equation that AA' additively affects the identified system  eigenvalues. 

However, since the matrix A A ' is not diagonal, equation 5.30 does not directly repre­

sent the effect on the system  eigenvalues. Thus, to  take into account the effect of the 

off-diagonal terms in A A 7 on A , (Longman et al., 1987) introduce the perturbation
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parameter p into equation 5.30 as follows

A =  A +  pAA (5.31)

The interpretation of the above equation requires a little care: A  is the system matrix 

identified by the SSI/Cov when small non-zero singular values have been truncated and 

its eigenvalues are the first n diagonal elements in A '. Thus, the first n eigenvalues 

in A' already contain the error introduced by the truncation and A A ' in fact cancels 

this error as the latter term arises due to reinstating  the truncated singular values in 

£ 2  (see eqns. 5.23). It follows that p = 0 describes the situation where the singular 

values in £ 2  ore set to zero, i.e. small non-zero singular values have been truncated 

while p =  1 yields the desired correction to cancel out any error introduced due to 

truncation of non-zero singular values. In Longman et al. (1987), the effect of this 

truncation on any modal parameter is formulated using a Taylor expansion in p

X fe  p) «  X (i, 0) +  p
&X (i, p)

dp p = 0 p = 0
(5.32)

which can be re-written as

X fe  1) «  X fe) +  $p [X (i)] +  <W [X (i)] (5.33)

where p is set to unity in order to give the desired change introduced by the truncation 

as described above and where we have used the differential operator

<5p (0 =
d(-)
dp

1 a 2 (•)

2 dp2

p=0

p=0

(5.34)

(5.35)

Setting the perturbation e = 0 in equation 5.33 then gives

X (o, 1 ) ~  X (0) +  Sp Ix (0)] + s pp [x (0)] (5.36)
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It follows from the interpretation of equation 5.31 that the first term on the right-hand 

side in eqn. 5.33, x  (0), represents the SSI/Cov-identified modal parameters when the 

chosen set of small singular values has been set to  zero. This is exactly the same 

quantity as the first term on the right-hand side in eqn. 5.5. The linear and quadratic 

terms in 5.36, Sp [x (0)] and Spp [ x  (0)] respectively, correct the error due to truncation  

in the SSI/Cov-identified modal parameters. As will be shown in the next section, the 

first oder term 5p [x (0)] accounts for the correction expressed by the diagonal terms 

of AA*  while the second order term takes into account the correction due to  the off- 

diagonal terms. The sum of the linear and quadratic terms is therefore the additive 

inverse of the bias error in x  (Q) so that we m ay define the truncation bias, br  in 

the SSI/Cov-identified modal parameters as

br  [x (0)] =  -  [&„ [x (0)] +  6PP [x (0)] ] (5.37)

It is noted that the expression for the truncation bias given in Longman et al. (1987) 

is of the opposite sign than the expression given above. However, the explanation  

provided above leading to  equation 5.37 as well as the numerical simulations to follow 

support the expression given here.

An remark deserves to be made about the above com putation. The introduction of 

the parameter p  to  linearise the truncation bias appears som ewhat artificial. Firstly, 

the parameter p  has only physical meaning when it is treated discretely: p =  0 de­

scribes the situation when small singular values are set to  zero and p =  1 the case 

when the identification is performed at full model order. This implies that at 0, the 

point at which the eigenvalue derivatives are evaluated, the equation is not continuous 

and therefore, in theory, the eigenvalue derivative should not exist. No concern was 

raised by Longman et al. (1987) and the extent of its effect on the truncation bias, its 

variance and quadratic bias needs to be established by simulation.



5.2 .4  V ariance o f  th e  T runcation B ias o f  x? Var [br (x)]

If the estimated modal parameters contain a random error, then so will the estimated 

truncation bias. This can be concluded from equation 5.33 so that the expression for 

the truncation bias must be rewritten as a function of the random perturbation e so 

that br [x  (s)] = -  [<5P [x (e)] + Spp [x (i)] ] • As a result, the truncation bias can only be 

estimated up to a random error. The latter can be evaluated in the same fashion as 

for the modal parameters themselves.

The variance of br [x (i)] is found by expanding this expression in a Taylor series

as

-  [Sp [x (c)] + Spp [x fe)] ] «  -  [<*p [X (0)] + Spp [x (0)] ] (5.38)
N

-  '51tj{S3p(x) + SjPP(x))
3=1 

N  N

~ i ĵkp (x) fijkpp (x ) )
j = 1 lc= 1

where the differential operators Sjp (•), Sjpp (•), 5jkp (•) and Sjkpp (•) are defined as

M O

Sjpp (0

Sjkp (0 

Sjkpp (0

d [d(0 1
dtj L dp p=0 e . = 0

1 d r^2 (*) 1
2  dej . dp2 p=oJ ej= 0
1 d2 d(-)

p=0

1 d2 [•d2 (•)
4 dejdek L dp2 P=oJ

e-i—O

e , = 0

(5.39)

(5.40)

(5.41)

(5.42)

Taking equation 5.38 up to linear terms only, we can find the variance of the truncation



bias as

N

Var [br (x)] «  X  Var N  M  +  S*pp (* ) ) (5-43)
3= 1

N  N

Cov [cj€fc] (<Jjp (x) + ?̂pp (x)) ( 4 P (x) + $kpp (x) ^
j = 1 fc=l

5.2 .5  Q uadratic B ias o f  T runcation B ias o f  x» bQT [x]

Taking the expected value of eqn. 5.38 it can be seen that the truncation bias is itself 

biased due to the quadratic term. Proceeding in the same way than for the quadratic 

bias o f x, the quadratic bias of the the  truncation  bias, brQ , can be found to  be

N  N  N

*>q t  [x] ~  -  X  Var M  ( Sn p  (x)+<W  (x) ) -  XI X  Cov fe ’ e*l (<W (x)+<W  (x))
j = l  j = l  fc=i

j ^ k
(5.44)

This finishes the overview of the perturbation analysis. It was shown that its ap­

plication yields the variance and bias of the SSI/Cov-identified modal parameters. 

For convenience, the main quantities that are computed are summarised in the dia­

gram shown in figure 5.1. It is seen from the equations summarised in figure 5.1 that 

the evaluation of the variance and bias of any identified modal parameter x requires 

knowledge o f its derivatives w ith respect to the perturbation €j and the truncation  

parameter p. The necessary expressions for the modal frequencies and damping ratios 

will be derived in the next section. The case for the mode shapes is treated separately 

thereafter.

5.3 Derivatives of the Modal Frequencies and Damping 

Ratios

The modal frequencies and damping ratios are identified from the discrete-t ime eigen­

values A*, for i =  1 , 2 , . . . ,  n, of the realised system  m atrix A  according to equations 

2.50 and 2.52 given in Chapter 2. Let the system  m atrix realised from the perturbed
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Variance
\  V ,v

*  ] T ] v « r l « 7 ) < f } U )  +  2  5 3  < \ )  H - H )

)  i ;  i * i

Bias

1. Truncation Bias M * < 0 ) ] s - [ r f p ( *  ( Q ) ] + * « . ( *  ( 0 ) 1 ]

Quadratic Bias of 
Truncation Bias

v \

>>Q7 ' \ !  = -  5 3  Var [ r ,] ( ^ , ^ ( \ )  +  ' V , w , ( \ l )  ~  Y ( m  >' ( V # d  \  ) + ( \  ) )

) -  1 i . i
! f t

Variance of 
Truncation Bias

.V

\'ar [ h  ( \  )] *  5 3  Var I '  >1 ( A>f> < x > )
/  i

, v \

*  2 J 3  5 3 C o v  i v * )  u  > )  t ^ ) + < w u > )

j - l  4 - 1

2. Quadratic Bias
V V

fcv[x(L)] \<1L) ~  X ) V ar-:'i] U ) ^ 5 3 C m ‘ ''f c f * ] b *  ( x)
/ -  1 j-k  

y * k

Fig. 5.1: Summary of the statistics computed from the perturbation analysis.

correlation functions be denoted by A  (e) and its eigenvalues by Xr (e) with A  (e) the 

corresponding diagonal eigenvalue matrix. In the same way as described in Chapter 

2 by eqns. 2.50 and 2.52, the perturbed modal frequencies uJi(e) and damping ratios 

£i(i) ° f  the system  can be obtained from the perturbed continuous-time eigenvalues 

\ Cl (e) as

*Ci (e) =  (5.45)

and w, ( e)  =  |ACj ( e) | , & (e) =  — (5 .4 6 )

where In (•) denotes the natural logarithm and 5? (•) the real part of a complex number. 

Assuming that the modal parameters lji (e), (e) as well as the the continuous- and

discrete-tim e eigenvalues are differentiable to second order with respect to ej and p, 

the derivatives of the i th modal frequency and damping ratio evaluated at e =  0 

(and/or p =  0) can then be obtained in the form of the differential operators defined
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Variance
S S ,Y

VWxff.! -  V  Var[c_ |<- * * 1 31 3 1 r "' ' ' • * - (\) (4.8)
J=l | r : |  h i  

,*k

Bias

1. Truncation Bias #*r CQJJ = -  j4p (x lf!)l + fipp It' (0)1 ]

Quadratic Bias of 
Truncation Bias

s
hqr . -- - X ]' 'r • 11 i • J " ■ “

i,t

.V
31 ' ' ’ : ’■ 1 * * ’ • ■ '
,n• / k

)

Variance of 
Truncation Bias

%■

Var[6r (v)J " 31 X ' ( * ' ' i )

A >
+ - 1  I 1 '<y' ' b ' ( \  • *' ,. r * ‘ 1 11 x ) +

j-i  *•_i 
Ifk

S V
2. Quadratic Bias '• > i  ] = f-'Ixf tJ] -  \ I*))s}j

r- i
» - 3 j  ' • 1 ■ * 1

fUt

Fig. 5.1: Summary of the statistics computed from the perturbation analysis.

correlation functions be denoted by A  (e) and its eigenvalues by Xt (e) with A  (e) the 

corresponding diagonal eigenvalue m atrix. In the  same way as described in Chapter 

2 by eqns. 2.50 and 2.52, the perturbed  modal frequencies uy(c) and dam ping ratios 

C (f) of the system  can be obtained from the pertu rbed  continuous-time eigenvalues

ACl (f) as

A , ( 0  =  ^ ) 1  (5 .45)

and ^ ( e )  =  |AC, (£)| , f , (i) =  - b / i M  (5.46)
(i)

where In (*) denotes the natural logarithm  and 5ft (•) the real part of a com plex number. 

Assuming that the  modal param eters ay (e), C (e) as well as the the continuous- and 

discrete-tim e eigenvalues are differentiable to  second order with respect to < t and p, 

the derivatives of the i th modal frequency and dam ping ratio evaluated at e =  0 

(and /o r p =  0) can then be obtained in the form of the differential operators defined

155



in equations 5.6,5.7, 5.34, 5.35 and 5.39 - 5.42 as

&j,  j k ,  p , p p ,  j p , (w») *  $ j ,  j k , p ,  p p ,  j p , ( I Ac* (i)| ) (5.47)
j p p ,  j k p ,  j k p p  j p p ,  j k p ,  j k p p  x

&j,  j k ,  p ,  PP, j p , (6) = & j, j k ,  p ,  p p ,  j p ,  (  - j r p )  (5.48)
j p p ,  j k p ,  j k p p  j p p ,  j k p ,  j k p p  x

where we have introduced the not&tion Sjtjk,p,pp,jp, Ô i) to denote any of the deriva-
j p p ,  j k p ,  j k p p

tives Sj (•), Sjk (•) 6p (•)> $pp (*)» $jp (’)> fijkp (*) etc.. Thus, to first order, the derivatives 

of u;* (e) and £* (e) in operator form read

* f r t ,  * [A* (0)] S  f t , ,  (A *)] +  3  [A* (0)] 3  [Sj t„ (A^)]
° j , P \ UJi )  — jAcT(0)i
r r t  \ _  ^  [Ac, (0)] Sj, p (a;*) [dj, p (A^)]

“  ufW)  ' «H(0) (5,50}

where, again, the notation SjtP (•) implies that the expressionis valid for Sj (•) and 

8p (•). The expressions for second order partial derivatives are found in a similar 

fashion are given by

r / \ _  ^  [Ac* m & pp (Ac*)] +  [Aa  (0 )] S  [Sjk, pp (A ^)] / -
° jk ,p p \V i )  — |A (0 )| W-oJ-J

_l_ 2. ^  [̂ J» p (Ac*)] ^  [̂ fc, p (Ac*)] +  ^  [&j, p (Ac*)] [<̂fc, p (Ac*)]
2 |A« (o;
1 fij, P (^i) p i ^ i )
2 |Ac (o;

s ( \ _  ^  [Ac* (0)] ^  [Sjp (A^)] +  9? [Xa (0)] G [Sjp (A^)] , .
djp[Ui) ~  pCTCffll ( }

» [Sj (Ac, ) ] » [Sp (Ac,)] +  3  f e  (Ac,)] 3  [Sp (Ac,)] 

|Ae, (0)|
1 Sj  (u)i) Sp (a>i)

2 |Ac, (0)|
(5 .53)

The expressions for Sjkp (a;*) and Sjkpp {^i) are obtained in a similar manner but they 

are lengthy. The expression for Sjkp (u>i) is given in Appendix B in equation B.l but 

the one for Sjkpp (cJi) is omitted. For the modal damping ratios, the second order



expressions are

(5.54)

(5.55)

Again, the expression for Sjkp (£») is given in equation B.2 in Appendix B but the one 

for Sjkpp (&) is omitted. To evaluate the above derivatives of a ( e )  and & (e), it is 

seen that the corresponding derivatives of the continuous-time eigenvalues A«̂  (e) are 

required.

As is seen from figure 5.1, the computation of V a r  [x (e)], [x (l)] and br [x (i)] 

involves only the derivatives

c ^  \  _ ^  (2)3 p p  (w*) ^  p p  (̂ c* )1

1 9ft p (Ac,)] fij, p (<**i) +  9ft [^j, p (Ac,)] Sk, p {u)j)
2 (0)

_  ^  (fl)] bj, p ( u j )  Sk, p {ujj)
“i (Q)

,  f t ,  _  %[MQ)]M<*) St [Sjp (A*)]
3P^ t] <*>i (o) ^ (0 )

9ft [Sj (A )̂] Sp (u)j) +  9ft [Sp (AgJ] Sj (cjj)
(0)

-  2 9ft [̂ Cj (0)] Sj (u>j) Sp (ujj)
ui (0)

(■)> f i p ( ‘) an<i &PP (')

To obtain the latter, differentiate In (A* (e)] with respect to e to find

<5j ,p ( K)  ~  A t -%fffip (5-56)

s .  f \  \ _  1 r f i jk ,pp(^ i )  1 &j,p ( ^ i )  $k,p (At)n (Z K7 \S3k , p p {  AcJ -  A. (0) 2 A2 (0) J (5-57)

x r\ \ r^J'p(^») 7̂ (^») tip (^*)l (c co\

To compute the variance and quadratic bias of the truncation bias, i.e. Var [br (x)] 

and quadratic bias bqr [x]> it is seen from equations 5.43 and 5.44 that the required 

derivatives are

^jp (’)> fijpp (‘) > fijkp (') and Sjkpp (•)
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The latter are simply found by differentiating Sp (Ac) and Spp (Ac) given in equations 

5.56 and 5.57 respectively with respect to ej. In operator form, these read

S j p M  =  [Ai(Q)Sjp (A,) -  S3 (\i)Sp(\i (0))] (5.59)

SjkpiK)  =  {A?(0) (A<) -  A* (Q)<Sfe (AO(A<) (5.60)

+  ip (-Vi) (0) [i, (Ai) Sk (Ai) -  Ai (0) Sjk (Ai)] 

+  2^> (V?) [ifc (Ai) Sjp (Ai) — Sj (A*) Skp (Ai)] \

Sjpp (A^) =  Af A? (0) ^  ^ipp (̂ *̂  — ^  (-V*) Spp (A* (0))] (5.61)

— 8p (Af- (0)) Sjp (A^)

and

Sjkpp (Ac) =  ^  ^3 (q) (—) fijkpp (A») — Ai (0) Sk (A*) Sjpp (Ai) (5.62)

+  Spp (Ai) (0) [Sj (Ai) 4  (Ai) -  Ai (0) S jk (Ai)]

+  2  A* (fi) [̂ fc (Ai) Sjpp (Ai) — Sj (Ai) Skpp (Ai)] ^

— 2 ^ kf> ^  (Ac*) — Sp (A(- (0)) Sjkp (Ac) (5.63)

The next step then involves the calculation of the first and second order derivatives 

of the discrete-time eigenvalues Ai (e) of the identified state-space or system matrix

A  (i) .

5.3 .1  E igenvalue and E igenvector derivatives

The computation of the eigenvalue and eigenvector derivatives is in general not a 

trivial task. Many papers document the computation of eigenvalues and eigenvectors 

for matrices with distinct eigenvalues. Expressions for first order derivatives were 

given by Fox and Kapoor (1968) and second order derivatives are for instance given 

by Nelson (1976); Plaut and Huseyin (1973). A survey of methods for eigensystem 

derivatives with distinct eigenvalues can be found in Adelman and Haftka (1986). In 

Longman and Juang (1987); Longman et al (1987), these results were collected in the
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theorem below. For later purposes, the derivatives of the corresponding eigenvectors

are given as well.

THEOREM

Let A (e) be an n x n differentiable function of the parameters e = [ei, , €2, . . . ,  en] 

and assume that its eigenvalues for i =  1 ,2 ,...,  n are distinct when e — 0. Let 

P  =  [21, P21 •••>£«] &e the matrix of right eigenvectors of A (0) normalized such that 

f i f Si — 1 f or * = 1 ,2 , . . . ,n. Then Q = P -lT =  [a1} g2i •••?£«] ** the matrix of left 

eigenvectors of A (0). Then the first and second order derivatives of the eigenvalues A* 

and eigenvectors pi} su f or i = 1 ,2 ,..., n evaluated at e — 0 are given by:

Sj (Ai) =  a f Sj (A) Ei (5.64)
n

(5.65)
m =l

n
(5.66)

m=1

and /or the second order partial derivatives

' I  Sj (A) Em)  (gm 4  (A) &) (5.67)

n
(5.68)

n
(5.69)

m =l
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where

"£» =  and 4  =  (57°)
*  -  Am m=lm^i

Tim =  -°hn  v *,* =  l ,2 , . . . ,n (5.71)

Pit = 2(A. l .Am) <£ {^ik  (A) Ei + ft (A.) -  Sj (A;) i] 4  (&) (5.72)

+ [4(A)-<5fc(Aj)I]«j(ej)}, i ^ m  

Pit = - ^ , P i t £ , E i - \ 6j(uf) sk (&) (5.73)
m=lm^i

vit =  2(Ai^ Am) {2flf (A) +  4k ( a O  f t  (A) -  <5j (Ai) I] (5.74)

+  Si  ( f l f )  [ 4  ( A )  -  s k  (A j) I ] }  u m , i ^ m  

’fit =  - ’fa ~ \  isi (af) h  (a ) +  h  (af) ^  (a)] (5-75)

The proof can be found in the above mentioned references. The theorem requires

that all the eigenvalues of the state-matrix A (0) are distinct. This condition can be 

relaxed a little by the following corollary.

COROLLARY

Let A(e) be an n x n differentiable function of the parameters e = [ei, ,€2 , . . . ,  en] 

and assume that it is nondefective. Define P  and Q =  (P -1)T as above. Then the 

first and second order derivatives of Aj, pi and evaluated at e — 0 for each i associ­

ated with a non-repeated eigenvalue are given by equations 5.65-5.75 as in the theorem 

above.

In other words, when a matrix has repeated eigenvalues but has a full set of 

linearly independent eigenvectors (i.e. the repeated eigenvalues are non-defective), we 

can still use the theorem to find the derivatives of the non-repeated eigenvalues and 

their associated eigenvectors. In typical structures, the occurrence nearly repeated
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eigenvalues is relatively common due to slightly imperfect structural symmetry but 

repeated eigenvalues are rarely encountered.

5.3.2 D erivatives for the Variance and Quadratic Bias

To find the variance and the quadratic bias of w» and &, for i =  1 ,2 ,..., n, it is 

necessary to evaluate S j i j k  ( A i) ,  the amputations for which are detailed in the previous 

section. As mentioned, the latter in turn require <5̂ jk (A) which can be obtained by 

differentiating eqn. 5.14

h i*  (A) =  h i*  ( s r 1/2 U f Hi V i E}/2)  (5.76)

For first order derivatives, we thus obtain in operator form

Sj (A) =  E f  1/2U !T [hiVi<5j ( s r 1/2) +  HiSj (Vi) E ^ l/2 +  Sj (Hi) V iE “1/2] (5.77) 

+  [E f1/253- (U ir ) +  S j  ( £ 7 1/2)  U iT] HxViE71/2

The expressions for the second order mixed derivatives Sjk (A) are obtained similarly

but are lengthy and are therefore given in Appendix B in equation B.3. <5̂ jk (A)

are functions of Sjjk (E -1/2) , Sjjk (V i), Sjjk (U iT) and Sj (Hi). Sj (Hi) has been

defined in equation 5.1 and since its entries are constant, Sjk (Hi) =  0. To find the
 1/2derivatives of the singular value matrix E x ' and the singular vectors in V i, we can 

again make use of the above theorem. Indeed, the singular value decomposition of Ho

(eqn. 5.13) can be obtained from the eigendecomposition of H q H o since

Ho Ho =  (U iE iV 1T)r  (U1S 1V iT) = V 1E*V1r  (5.78)

Thus, the right singular subspace of Ho, spanned by the columns ofV i = [v1? v2, . . . ,  vn], 

where Vj axe column vectors, yields both the right and left eigenvectors of H q H o, and 

the square of the retained singular values of Ho that form E i are the eigenvalues 

of HqHo• The derivatives of the left eigenvectors Sjjk (Vi) as well as Sjjk  (E2) =
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diag [Sj7jk (s?) , Sjjk  ( s | ) , • • •, 8j, jh (s n )] can thus be computed using the results 

in section 5.3.1 with A (e) replaced by H q H o (i), A* (e) by s f  (e) and p* (e) and p* (e) 

replaced by v* (e). Application of the eigenvalue/eigenvector results in section 5.3.1 to 

H q H q (e) to find the derivatives s f  (e) and V4 (e) requires the derivatives of H q H o U)

itself. The latter can be found by using the definition of H q (e) (eqn. 5.1) in H q H q

and applying the differential operators Sjtjk (')• One finds

(H0) + 5} (H%) H0 (5.79)

Sjk (HlHo) =  i  [Sj (Mq) 5* (Ho) + Sk (h£) S, (Wo)] (5.80)

The derivatives of U i are easily obtained by rearranging eqn. 5.13 as U i =  TfoViE -̂1 

and differentiating with respect to ej. The first order derivatives in operator form then 

read

Sj  (Uj) =  Sj  (Ho) V xS^ 1 +  HoSj  (Vi) E f 1 +  H a V 16j  ( S f 1) (5.81)

Evaluation of the second order derivative of A (e), that is Sjk (A), requires Sjk (Ui). 

This expression can be found analogously and is given in Appendix A in equation B.4.

Finally, it remains to calculate Sj7 jk ^E-1/2̂  = diag ^Sj,jk , Sj7jk ,

• •' i $j,jk and Sj7 jk (E 1) = diag [Sj7jk (®i ) > $j,jk (s2 )» • • • > ^j,jk (^n1)]

to finish the computations of Sjjk (A) and Sjjk (Ui) respectively. To establish the 

latter quantities note that sf (e) can be written as [s2(e)]a/2 for an arbitrary power a. 

A Taylor expansion about the origin of this expression yields the Sj (sf) and Sjk (sf) in 

terms of Sj (sf) as the coefficients of ej and respectively. For a =  — 1 and a =  — \



the desired derivatives in operator form read

(5.83)

(5.82)

(5.84)

(5.85)

Since Sjjk (s2) are known from application of the theorem to Hq Ho (e), the above 

expressions can be evaluated and conclude the necessary computations needed to 

evaluate the derivatives of the modal frequencies and damping ratios with respect

to €j given in equations 5.47 and 5.48. Thus, with Sjjk (^t) and $j,jk (&) at hand, 

the variance (eqn. 5.8) and quadratic bias (eqn. 5.10) can now be computed. The 

final step is to compute the necessary derivatives to establish the truncation bias, its 

associated variance and quadratic bias.

5.3 .3  D erivatives for th e  T runcation  B ias, its  V ariance and Q uadratic

The eigenvalue/eigenvector sensitivities given in section 5.3.1 can again be used to find 

the necessary derivatives to compute the truncation bias, its variance and quadratic 

bias. However, this time we need to find the derivatives with respect to p, the rea-

lation functions by e, (cf. eqn. 5.3). Instead, the perturbation due to truncation was 

modelled as an additive perturbation that directly affects the eigenvalues A of A (0) 

according to equation 5.31. In other words, the perturbed matrix whose eigenvalue

B ias

son being that the perturbation of the modal parameters due to truncation of small

non-zero singular values is not a direct result of the additive disturbance of the corre-

derivatives we wish to find is A' + pAA ' .

Assume for the moment that the n first eigenvalues of A' are distinct and recall that
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they are equal to the n eigenvalues of A (0), A' =  diag [Ai, Aa, . . . ,  An]. Bearing in 

mind that, by construction, the n xnf matrix A' =  diag [Ai, A2, . . . ,  An, 0, 0 , . . . ,  0 n'_n] 

has n —n  repeated, identically zero, eigenvalues, the required eigenvalue and corre­

sponding eigenvector sensitivities of the first n non-zero eigenvalues can be computed 

by applying the theorem and its corollary from section 5.3.1, with A' +  pAA' taking 

the role of A (e) and A' (i.e. at p =  0) then corresponds to the unperturbed case 

and takes the role of A (0). Since the columns of the n x n' identity matrix are the 

eigenvectors of A#, the first and second order eigenvalue derivatives with respect to p 

follow from the corollary and are found to be

(^*) =  AAi* for i =  1,2,. . . ,  n (5.86)
/

W A i) =  E  A ^ imA.Ami for i =  1 ,2 , . . . ,n  (5.87)
A f A m771=1mjki

where AA'im denotes the (im)th component of the matrix AA ' . Since AA' is known 

(eqh. 5.29), it transpires from equation 5.37 that the truncation bias &r[x] the 

identified modal parameters Ui (0) and & (0), for i =  1, 2, . . . ,  n, can be computed.

It remains to compute the sensitivities required to evaluate the expressions for 

the variance and the quadratic bias of the truncation bias. Assuming again that the 

eigenvalues are distinct, the derivatives of 6Pt pp (A*) with respect to the perturbation 

e are easily evaluated by differentiating equations 5.86 and 5.87 to yield

= <5, ( a a ; ,)  

fijkp (Ai) =  fijk (^ ^ ii)

and

/

«**(*) =  E r w n i  \  -m, 2 {[Ai(O)-Am (0)],5jAA;mA A j  (5.90)
m- 1 V * VhJ 777 (jijj 
m^i

— [Sj (Ai) — Sj (Am)] |

(5.88)

(5.89)
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fijkpp (A») — . - ——-3 (Q) — Am (0)] 6jk |AAimAAmil (5.91)
m=1 vA< vUJ “  vw 1

+  [<5j (Ai) — Sj (Am)] [Sje (At) — 6k (Am)] AAimAAmi

-  (Ai ffi) -  Am (©) [ (4  (Ai) -  6 „  (Am) ) 6 j  (AA;mAAmi)

+  $jk (At ~ Am) AAim A iC ]

+  2 ^  — Am (Q)) |̂ (Ajc (A*) — 5* (Am) )Sj ^AAimAAmi)

-  (Ai) -  (Am) )S„ (A A im A A ^ i) ]}

with (cf. eqns. 5.30)

S, (AA') =  Sj [P " ‘ (WiV2E 2 1U 2iT) P '] (5.92)

Sjt ( a a  )  =  Sjk [p '“‘ (H1V 2E 2- 1U21t ) p ']  (5.93)

for all i =  1, 2, . . . ,  n and where AÂ ni denotes the (mi)th component of the matrix 

AA . To evaluate equations 5.92 and 5.93, the first and second order derivatives with 

respect to tj of Hi, V j, E j 1, U 2i T and P  are required. In principle, h i*  ( v 2), 

Sjjk (X^1) $j,jk (U21) can be computed from the theorem in section 5.3.1 by 

reformulating the SVD of Ho as the eigenvalue decomposition of HqHo as was done 

before to compute the derivatives of Sjjk (Vi), Sjjk (S ^ 1) and Sjjk (Ui). This time

though, near-zero singular values in the SVD of Ho are retained i.e. X2 is not set to

zero. Estimating the sensitivities of singular vectors corresponding to near-zero small 

singular values can, however, cause some problems (Stewart, 2006). This proved to 

be indeed the case, in particular for the quadratic bias of the truncation as will be 

discussed shortly.

The computation of 6j tjk ( p #) is problematic. In (Longman et al., 1987), it is 

merely indicated that Sjjk (p*) are to be computed by applying the theorem and 

its corollary to A'(e). A direct application of the theorem to A'(e), however, does 

not yield the n' derivatives of the n! eigenvectors as required by equations 5.92 

since , by construction of A' (e) (c.f. section 5.3.1), the last (n — n) eigenvalues of
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this matrix are identically zero. Thus, the theorem and its corollary will only yield 

the eigenvector derivatives of the first n eigenvectors of A' (e) but the derivatives of 

the eigenvectors corresponding to the repeated, identically zero eigenvalues cannot 

be obtained. Various authors have investigated the problem of finding the deriva­

tives of eigenvectors associated with repeated eigenvalues. A SVD-based approach 

to this problem, originally developed by Lim and Juang (1989), is presented in the 

next section to find the derivatives of the repeated eigenvalues and eigenvectors of 

the system matrix A to circumvent the theorem presented earlier, should the system 

have repeated modes. However, this method does not solve the problem of finding the 

(n — n) eigenvector sensitivities corresponding to the identically zero eigenvalues of 

A' (e) because these eigenvalues are zero by construction, and hence their derivatives, 

for all orders, will be identically zero as well. Similarly, the techniques by Friswell 

(1996); Juang et al. (1989), developed to cope with repeated eigenvalue derivatives, 

will, also fail to give these eigenvector derivatives. These methods rely on generating 

additional constraints using higher order derivatives and the eigenvalue derivatives, 

corresponding to this order, must be distinct to find a unique solution. Since, as 

explained above, the eigenvalue derivatives of the (n — n) zero eigenvalues will be 

identically zero for all orders, a unique solution cannot be found and therefore, these 

methods are not applicable.

An approximate solution may nonetheless be found as follows. Let the dimensions 

of the the Hankel matrix Ho be dim(Ho) = (n' x g) with n ' > g, so that its singular 

value decomposition is given according to equation 5.12. Let the n' x n' matrix of 

left singular vectors U = [Ui U21 U22] be re-written as U  = [Ui U 2] with U 2 = 

[U21 U 22] € R»'x(»'-»), U 21 € and U 22 6 R"'x(n'-»>. Substituting this

expression for U in equation 5.22, the eigenvector matrix of A' can be reformulated 

as

[Ui U 2]

1
M •-‘M

l*-1
o

1

P  0

0 I p  i
U i E f P  + UsP U 2 (5.94)

166



where the first partition U iS f  P  4- U2P  € R” xn. The derivatives, in operator form, 

of the eigenvector matrix P ' of A' are then reduced to

hi*  (p ')  =  ( u i s f p  + u 2p )  sjJk ( u 2) (5.95)

The expressions for Sjjk ^ U iS ^P  +  U21?^, which consists of the derivatives of the 

first n eigenvectors of A ' corresponding to the n non-zero eigenvalues of A', or equiv­

alently of A, can then be found from the theorem applied to A' and it remains to find 

Sjjk  (U2) which is obtained by application of the theorem and its corollary to HqHo 

with no singular value truncation performed. So far, no approximation has been made 

but we can actually only obtain the derivatives of the full n' x n' matrix P ' in the 

case when n' < g, the reason being that the number of singular values resulting from 

the SVD of Wo is equal to its smallest dimension so that when n' > g, the eigenvalue 

matrix of HqHo has dimensions g x g. Therefore, only the derivatives of the g first 

left singular vectors can be found by application of the theorem to HqHo. Moreover, 

since this matrix is not square, Qf.g =  P'Zg does not exist but the derivatives of the 

first g rows of Qf:g = P 'i:g may be estimated by approximating P 'i :ff as

S3, j k  ^ U i E J P  +  U 2iP i: ( 5_ n)^ S j J k  ( U 21) (5.96)

where P i :(5_n) denotes the first (g — n) rows of P. The matrix Q£5 such that 

Q itfP 'i* =  ^9 * 9  can be found to be

< & 9 =
p - 1 0

►—l p —1

E , 2 0

0P l:(g -n )P

P - 'E ^ U f  

- P ^ j P ^ E ^ U f  +  U ^

U f

UTi
(5.97)

P  is given by equation 5.19. The derivatives of all the entries in the matrix Qj). are



known so that

h *  ( q L )

can be evaluated using the standard rules of differentiation. These two matrices can 

then be used to approximate equations 5.88 to 5.92. Some time was devoted to cir­

cumvent this problem, since the variance of the truncation bias informs the user of how 

much confidence he or she can place on these estimates and provides vital information 

if a bias correction of the identified modal parameters is considered. However, a more 

adequate solution could not be found an further research is needed. It will be shown 

in the next chapter, that the approximation above can be considered satisfactory to 

obtain an indication of the extent of random error in the truncation bias but, clearly, 

high accuracy cannot be expected. When the same approximation was used on for the 

quadratic bias of the truncation bias, simulations showed that the results were very 

unstable. The reason may be attributed to the fact that the singular vectors used in 

these computations are associated with small singular values and it is known that the 

singular spaces associated with small singular values are extremely sensitive(Stewart, 

1990, 2006) to small perturbations.

5.4 Extension to Repeated Eigenvalues

The problem of finding the derivatives of repeated eigenvalues and associated eigen­

vectors has been studied extensively, in particular in relation to changes in the modal 

frequencies as a function of the structural design parameters. For instance, Dailey 

(1989) presents a extension of Nelson’s method (Nelson, 1976) to calculate the first 

order derivatives of eigenvectors associated with repeated eigenvalues but distinct 

eigenvalues derivatives. Friswell (1996) has extended this approach to account for 

the situation where both the eigenvalues and their derivatives are repeated. Juang et 

al. (1989) developed a modal expansion approach able to deal with both degenerate
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eigenvalues and eigenvalue derivatives. The implementation of any of these methods, 

that account for repeated eigenvalues, require knowledge of the multiplicity of the 

degenerate eigenvalue. This is usually clear when one deals with analytical models. 

In this case, however, in which the model consists of the identified state-matrix A  

from experimentally obtained data, the multiplicity of a particular eigenvalue is not 

necessarily dear. Using the fact that the singular value decomposition (SVD) is a 

generally reliable way to calculate the rank, and hence the multiplicity of an eigen­

value, Lim and Juang (1989) have developed an SVD-based method to calculate the 

first order sensitivities of repeated eigenvalues and corresponding eigenvectors. This 

method, outlined below and extended to compute second order (mixed) derivatives, is 

employed in this thesis to assess the degeneracy of repeated eigenvalues and to com­

pute the corresponding eigenvalue and eigenvector sensitivities in a fully automated 

manner. Assume that the n x n  identified state-matrix A (0) = A is non-defective so 

that eigenvalue problem for the ith eigenvalue A* of A can be written as

(A -A iI ) a s A 4Bi =  0 (5.99)

where, as before, p* is the ith right eigenvector of A and we have defined (A — A;I) = 

A,. It follows from equation 5.99 that the ith eigenvector p̂  belongs to the kernel of 

Ai. If the multiplicity of Ai is 1, i.e. if it is non-repeated or simple, then the kernel of 

Ai, denoted by fcer(Ai), is 1-dimensional and Pj may be chosen as its basis. However, 

if the multiplicity of Ai > 1, the dimension of the ker(Ai) > 1 and -assuming Ai 

to be non-defective- the dimension of the ker(Ai) is equal to the multiplicity of the 

repeated eigenvalue Ai. As a result, any vector in ker(Ai) is an eigenvector of this 

repeated eigenvalue and hence non-unique. Thus, the rank 7*i =  rank{Ai) of Ai , and 

the dimension of ker(Ai), Ui =  n — rj, will indicate whether Ai is degenerate or not. 

The singular value decomposition of Ai then yields

A  i = Ti Til
Di 0 WT
0 0 W f

(5.100)
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with T i 6 RnxrS Ti G Rnxu\  D* G RriXr<, W* G Rnxr< and W* G Rnx*. Therefore, 

the multipHdty of the ith eigenvalue is determined by y% and a basis for the right eigen­

vector corresponding to the ith repeated eigenvalue is given by W*. For v% *  her (A*) 

to yield the multiplicity of A*, the matrix Ai must be non-defective 1. When the 

eigenvalue problem is formulated with analytical stiffness and mass matrices as in 

Dailey (1989); Friswell (1996); Nelson (1976), non-defectiveness is guaranteed since 

these matrices are real symmetric (Strang, 1998). In the present case, however, where 

the state-matrix is identified from measured data, which may exhibit non-proportional 

damping properties, the non-defective property of A* is in general not guaranteed (Lu- 

ongo, 2006). The eigenvalue and eigenvector sensitivities for defective matrices have 

been studied, for instance in Luongo (1993); Zhang and Zhang (2001), but this case 

will not be covered in this thesis because we can generally expect matrices representing 

physical systems to be non-defective (Pang, 1997) and we shall use this assumption 

henceforth. Assume that the algebraic multiplicity of the i th eigenvalue A* is Thus, 

A* *= A ^ = A ^ =  • • • =  A ^  and let . . . ,  j  be some choice of right

eigenvectors corresponding to A*. Since W, forms a basis for the right eigenvectors of 

A*, the Ith eigenvector corresponding to Ai can be written as

eS° =  w< al° (5.101)

where a i  G R"*xl is the vector of coordinates for in the basis Wi. Similarly, the left 

singular vectors in T* form a basis for the corresponding left eigenvectors where 

(•)* denotes the complex conjugate. The matrix of left eigenvectors corresponding 

to the Ai may then be written as Qj = T*bj with bi = b$2\  • • • , being

the matrix containing the vectors of coefficients b ^  in the basis T*. Imposing the 

same normalisation as in the theorem above, namely QfPi  = I^x^,  the matrix 

of left eigenvector coefficients bi satisfying this condition is b f  = â -1 (T^W *)-1,

*To clarify the terminology used here, it is noted that by the multiplicity of A,, we refer to the 
multiplicity of the root A, to the polynomial det (Ai) =  0. This is also known as the algebraic 
multiplicity of Ai. The dimension of ker(A i),  Ui — n — n  is known as the geometric multiplicity of Ai. 
For defective matrices the geometric multiplicity is strictly smaller than the algebraic multiplicity.
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with a* as j^a^, a|2\  • • • , a ^ j  and Pj the matrix of the right eigenvectors. Unlike 

the expressions for the non-repeated eigenvalue/eigenvector derivatives given in the 

theorem, no closed-form solutions for the sensitivities of repeated eigenvalues and 

corresponding eigenvectors are found using this approach. Differentiating equation 

5.99 with respect to ej, premultiplying by the result by the Hermitian of the left 

singular vectors T ,J, it can be shown that (Lim and Juang, 1989) the first order 

derivative of the repeated eigenvalue A* with corresponding eigenvector p f  ̂ 

satisfies the generalized eigenvalue problem of order V{

[t ? a f  (A) W j] 4 3  =  4 °  (Ai) T f  W i 4 3  (5.102)

It is seen the the solution to this eigenvalue equation has eigenvalues yielding the 

eigenvalue derivative of the Ith repeated eigenvalue with respect to ej, 6 ® (A*), and 

eigenvectors giving the coefficient vector a ^ , and hence the corresponding eigenvector 

4 ° = W i 4 3 -  Note that we have introduced the notation instead of simply a* as 

in equation 5.101 above to signify that a ^  is the eigenvector corresponding to 6 ® (A*), 

i.e. when derivative is taken with respect to ej. It is important to note that, in order 

to determine ay  uniquely, it is required that the eigenvalue derivatives 5 ^  (Ai), for 

I = 1,2,. . . ,  Vi are distinct. It is also noted that if \  is simple, the above equation 

reduces to the exact same equation as in the theorem. To find the corresponding 

first order eigenvector derivative, we expand tfp (p j in the basis formed by the right 

singular vectors as

4i)(Ej)= w i4 3 + w <43 (5.io3)

where 4 3  ^ Rr‘xl and 4 3  e  R1'4*1 are the coefficients of the eigenvector derivative 

in the range and kernel of A* respectively that need .to be determined. This is similar

to the expansion in the theorem above except that it is done in the orthonormal basis

found through the SVD of A* since the eigenvectors are not linearly independent in 

this case and hence do not form a basis. The computation of 3^  is straightforward



and can be found from the first order derivative of the eigenvalue equation 5.99 to be

2® = - D ^ l f «® (Aj)W ifl® (5.104)

with (Aj) = (A) -  if* (A*) I. The first order derivative of the eigenvalue equa­

tion 5JS, that is 6^  (Ai)E-0 =  —A{6 ® (p*), does not contain any information about 

since, by definition, it expresses the coefficients of 6 ® (p*) that lie in the kernel 

of A» and therefore vanishes from <5̂  (A»)p[^ =  —AiSfp (p j. On the other hand, 

however, W* is not in the kernel of s f  (Ai) so that an equation for can be 

found from the second order derivative of the eigenvalue equation 5.99 and reads (Lim 

and Juang, 1989)

[t ? s f  (Ai) Wj] a® = - T f  [<S® (Ai) -  s f  (Ai) W iD -lT?<5f (Aj)] Wj (0

(5.105)

This yields V{ equations to solve for the i/* coefficients in However, these equations 

are not linearly independent. Assuming that 6^  (Aj), for I =  1,2,. . . ,  I/*, are distinct, it 

follows from the eigenvalue equation 5.102 that the pencil (A) W * — T ^ W ^

has rank i/* — 1 and so does the matrix (Aj) Wjj so that the system of equar

tions in 5.105 is underdetermined. The remaining constraint may be found from the 

consistent normalisation of the eigenvectors, namely that p-^ p?  ̂ =  1. Differentiat­

ing the latter expression with respect to ej and using equations 5.101 and 5.103 then 

yields the additional condition as

p f)T (p j =  $  = 0 (5.106)

Inspection of equation 5.105 reveals that the second order derivative of A* is needed 

to evaluate 8 ®  (A*) = Sj j  (A) — 5®. (A*) I. Differentiating the first order derivative 

of the eigenvalue equation with respect to e* and premultiplying the result with the 

transpose of left eigenvector g l̂\  the expression for the mixed second order eigenvector



derivative reads

42 M  -  a?T&jk (A) + i  a<1)T [4'> (Ai) Wi 5® + 4° (Ai) w ( 3®] (5.107)

and the expression for <5̂  (A*) follows by replacing k with j .  In equation 5.107,

we made use of the feet that 6^  (A*) W» = 0 (Lim and Juang, 1989). It now

remains to find the second order derivatives of the eigenvectors As for the first 

order derivative, we start by expanding 42 (a ) 88

42 (a) = Wi ig* + Wi j®, (5.108)

4 ?(a) = W iflg ,+ W ,fi® . (5.109)

Since the expressions for the second order derivatives of are not given in Lim and 

Juang (1989), the derivations to follow are a little more detailed. The second order 

mixed derivative of the eigenvalue equation 5.99 yields

42 (Ai) a,® + \ [4° (Ai) 4 °  (a) + i f  (Ai) 4° (a)] = - T iD,Wi42 (Ei) (5.110)

Premultiplying 5.110 by ĵ T\ T*j , and using 5.108, the first partition reads

T f 42 (Ai) a® + \ T? [4° (Ai) s f  (a) + 4° (Ai) s f  (a)] = - d ,  gg» (5.111)

so that

2g* = - D r ' T f 42 (Ai) e|° + i  f f  [4° (Ai) s f  (a) + 4° (Ai) 4° (a)] (6-112)

The expression for 6̂  follows directly from 5.112 by replacing k with j. In the 

same fashion as the second order derivative was needed to compute 3^ ,  the third 

order derivatives are needed to find Define Sjkk (•) =  [$jk (•)]• Differentiating 

equation 5.110 with respect to e*;, premultiplying by pT* Tjl , the equation for ^p-k



then follows from the second partition as

[ i f  * f  (A,) W,] fif* = - i l f  (A,)fif + 2 $  (A<) s f  (a) (5.113)

+ S f  (A0 4® (a) + s f  (Ai) i f  (a) ] -  T f  i f  (Ai) Wifif *

and the expression for fl® foUows from the above equation by replacing k by j. It is 

noted that 4ek (&) features in the expression of 6 ® (p j. Thus equation 5.113 needs to 

be evaluated first for S^l (p j and which can then be used to evaluate <5̂2 (Pi). Also, 

tijkk (^i) “  required in equation 5.113. Differentiating equation 5.110 with respect to
n \ T  n \ T  m

€*;, premultiplying this derivative by gj ’ and using g j ' 6j J (A*) W* = 0, gives the 

desired result

t fk  M  = <£)T&% (At) ef + 2 afT [if (Ai) s f  (a) + s f  (Ai) w* jg»] (5.114) 
+afT [ s f  (Ai) i f  (a) + i f  (Ai) Wiif*]

Following the same argument as for the first order case, this system of Vi equations is 

rank deficient by 1. Again, the extra constraint can be found from the consistent nor-
n \ T  n \

malisation of eigenvectors. Taking the mixed second order derivative of pj ’ pj — 1, 

and using equations 5.101 and 5.108, gives the expression for the remaining constraint 

can be found to be

flS 'fiS* = \  sk feD 4 °  (a )  (5-115)

To solve the the underdetermined systems in equations 5.105 and 5.113, a partic­

ular solution is first computed by taking the pseudo-inverse of jT ^ J ^  (Ai) W iJ . of 

For equation 5.105, the particular solution then yields

£,Part.) = _ Jt h 5(0 (Aj) W .J t |j(0 (Aj) _  ^0 (A .) W iD .r i f  f  s f  (A*)] W .a f

(5.116)

is the unique solution to 5.105 in the (v{ — l)-dimensional subspace in or­

thogonal to the kernel of |t ^<^  (Ai) W i and has minimal Euclidean norm (Penrose, 

1956). The general solution of 3^  in R"* therefore requires the additional compo-
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nent in the kernel of (Ai) W i j . Since this kernel is 1-dimensional (by the

assumption of non-repeated eigenvalue derivatives) and g g , by equation 5.102, is in 

the kernel, the general solution can be written as

The scalar gfj can then be determined from the additional constraint imposed by the 

consistent normalisation 5.106, i.e.

(l)T (l,Part.)

K j  fii,3

Exactly the same process applies to solve for of^k from equation 5.113 except that 

the constraint imposed by the consistent normalisation is given by equation 5.115. 

This finishes the exposition of the computation of the first and (mixed) second or­

der eigenvalue/eigenvector derivatives. This method was not extended to allow the 

computation of the truncation bias and its associated variance and quadratic bias.

5.5 Derivatives for Mode shapes

To establish the error in the complete identified modal model, it remains to find 

the random and bias error in the SSI/Cov-identified mode shapes <f). The latter are 

computed in the SSI/Cov according to equation 2.53

<t> = C P  (5.119)

where P, in the notation used in this chapter, denotes the matrix of left eigenvectors of 

the identified state-matrix A and C is the identified output-influence matrix described 

in Chapter 2, section 2.3.2. Like the state-matrix, the identified output-influence 

matrix C can be factorized into the factors obtained through the SVD of the Hankel 

matrix Hq, i.e. Ui ,Ei  and Vi. More precisely, the factorization is (Juang and Pappa,



1984)

C s=Er  U iE j (5.120)

where E is a (n' x p) matrix consisting of zeros (p being the number of sensors) and 

the first p rows replaced by the p x p identity matrix. This matrix is constant so that
i

its derivative is zero. Since the sensitivities of U i and E f are known (see section

5.3.2), the derivatives of C can be computed. In operator form, they yield

Sj(C)  =  ET6j ( U i )  S f  +  ( s f )  (5.121)

Sjk (C ) =  E r Sj k  ( U j )  E f +  E7’U 1̂ )c ( e *  )  (5.122)

Sj  ( U i )  Sk ( ? f  )  +  Sk ( U i )  Sj ( e *)+ 2E

Since the derivatives of the eigenvectors are known from section 5.3.1, the derivatives 

of the mode shapes at the sensor locations yield

5} (<t>) =  Sj  (C ) P  + C S j  (P) (5.123)

Sjk (<t>) =  Sj k  (C ) P  +  C S jk  (P) (5.124)

with Sjjk (C) as given by equations 5.121 and 5.123 respectively.

With Sĵ  jk ((f)) at hand, the variance and the quadratic bias of the mode shapes

at the sensor locations can be computed. For the computation of the truncation bias,

together with its variance and quadratic bias, similar to the approach given here for 

modal damping ratios and frequencies can be found in Longman et al (1987).

5.6 Summmary and Discussion

In this chapter, a perturbation theoretic method to compute the variance and the bias, 

and hence the random and systematic error of the SSI/Cov-identified natural frequen-

176



ties, modal damping ratios and mode shapes was presented. Although not obvious at 

this stage, the inclusion of the covariances of the sample correlation functions in the 

general error formulation, m a te  it possible to apply this theory -initially developed 

by Longman and Juang (1987); Longman et oL (1987) for the same purpose in clas­

sical input/output modal analysis- to output-only modal analysis. Additionally, the 

method was extended to estimate the random error of repeated modes. Not only does 

this perturbation method allow to estimate the random and bias error in practical 

applications, but also provides us with a causal representation (up to second order) of 

how the errors in the response model are propagated through the correlation-driven 

identification algorithm and results in random and bias errors in the estimated system 

modal parameter. This was summarised in diagram 5.1. To use the perturbation the­

ory in practice, it is seen from the latter diagram that an estimate of the covariances 

of the perturbations ej at each data point j  of the sample correlation functions is 

required. As will be shown formally in the next chapter, the latter are in fact the 

same as the covariances of the sample correlation functions themselves expressions for 

which were given in chapter 3. In particular, the robust plug-in method developed in 

section 3.5, chapter 3 will allow to get a good estimate of the perturbations ej directly 

from the measured responses. This allows to take into account many different per­

turbations -such as instrumentation noise and correlation estimation errors- into the 

statistics of ej without having to make any assumptions about the errors that might 

be present in the estimated response model so that the method is fully automated.

This chapter has been entirely theoretical and, with the exception of the approxi­

mation made in equations 5.96-5.98 involved in the computation of the variance and 

quadratic bias of the truncation bias, it should in principle be possible to get an ac­

curate estimate of both bias and random error in the identified modal model. Due to 

the fact that the covariances of ej are only estimates and , as already pointed out, the 

algorithm can be ill-conditioned when eigenvalue/eigenvector sensitivities of near zero 

singular values are involved in the computations, the accuracy and reliability of the
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predicted errors needs to be assessed by simulation which is the subject of the next 

chapter.
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C h a p t e r  6

U n c e r t a in t y  in  

S S I /C o v -I d e n t if ie d  M o d a l  

P a r a m e t e r s : A  P e r t u r b a t io n  

A ppr o a c h ___________________________

6.1 Introduction

In this chapter, the perturbation analysis presented in chapter 5 is applied to esti­

mate the errors, random and bias, in the SSI/Cov-identified modal parameters. The 

aim is to establish the performance of the perturbation theoretic method in chapter 

6. In Longman and Juang (1987); Longman et al. (1987), where the perturbation 

method was first developed for application to input/output modal analysis, the ef­

fect of white noise perturbations on exact impulse response functions was considered. 

These authors did not compare the estimated error with the “true”, error, which 

can, for instance, be computed from Monte-Carlo type simulations. Effectively, in 

the latter work, the perturbation approach was employed to assist the choice of the 

parameters the user has to specify in order to implement the ERA (or SSI/Cov). In 

(Bergman et al, 1989), the same authors use the information obtained from the cal­

culated errors in a relative manner to determine which set of parameters resulted in 

the lowest error in the modal estimates. In this chapter, it is investigated how well
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the errors are predicted in an absolute sense by direct comparison with the error from 

Monte-Carlo type simulations. The theory developed by Longman and Juang (1987) 

was employed by Peterson et al (1996) to assess the variance of the modal damping 

ratios and frequencies of a pyramidal truss from input/output measurements. In the 

latter paper, the only stochastic component considered was noise. Bias errors as well 

as the accuracy of the estimated random error were not investigated.

Tb assess the perturbation analysis presented in Chapter 5, SDOF systems are em­

ployed although the theory presented in the previous chapter covers the MDOF case. 

If the perturbation analysis fails to give consistent results for such simple systems, 

then this will almost certainly be the case for more complex systems.

6.2 Perturbations of the Sample Correlation Functions

6.2 .1  Error Sources

The variance and bias in the estimated modal damping ratios and frequencies obtained 

from the perturbation analysis presented in the previous chapter are functions of the 

statistics of e, the perturbation of the sample correlation functions computed between 

the measured time-histories of a chosen set of reference and roving sensors along the 

structural system. Consequently, the degree of accuracy with which the uncertainty 

in the identified results can be predicted will depend on the exactness with which 

the perturbation e can be modelled. This is not a trivial task since there are, in 

general, many sources that contribute to the random and bias error in the estimated 

sample correlation functions and hence to the error in the identified modal parameters. 

The various sources that may introduce error into the estimated sample correlation 

functions will be briefly discussed below and are shown schematically in figure 6.1.
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Fig. 6.1: Error sources affecting the SSI/Cov-identified modal parameters.

N o n -s ta t io n a r y ,  C o lo u r e d  a n d  D e t e r m in is t ic  lo a d s

As described in detail in section 2.2.1 in Chapter 2, operational modal analysis relies 

on the assumption that the excitation of the structural system can be approximated 

by stationary white noise. When this condition is violated, for instance, if the spec­

trum of the ambient loading is coloured and/or of a non-stationary nature, the “free 

response” behaviour of the sample correlation functions can be significantly corrupted. 

Coloured inputs occur when the random excitation of the structural system is corre­

lated in some fashion, and this correlation will ultimately be reflected in the estimated 

sample correlation functions causing a systematic deviation from the free response 

characteristics and thereby introducing bias in the identified modal parameters. The 

methods described in Chapter 3 to compute the sample correlation functions are not 

suited to deal with non-stationary data. Neither is the random decrement method in 

theory although Jeary (1992, 1996) presents this method as particularly useful under
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“h ostile” loading regim es. W hen applied to  non-stationary  data , th e  com putation  o f  

th e  correlation function  su ited  to  stationary data , averages through th e  tim e-varying  

structure o f th e  d a ta  resulting again in b iased correlation estim ates (B endat and Pier- 

sol, 2000).

System Non-linearities

A nother source o f bias can arise if  th e response o f  th e  structure exh ib its nonlinear 

behaviour because, as before, th e natural ex c ita tio n  technique (N E xT ) described in 

C hapter 2 is su ited  to  linear system s only. T h is ty p e  o f disturbance, due to  th e in­

adequacy o f using linear tim e-invariant m odels w hen sm all non-linearities are present 

a n d /o r  th e  loading conditions are non-stationary, is som etim es co llectively  referred to  

as process noise (A ndersen, 1997).

Instrum entation Noise

D uring th e  d a ta  acquisition  process, th e  response d ata  is p ollu ted  by th e  noise floor 

from th e  instrum entation  due prim arily to  th e  electronic noise o f analogue instru­

m ents a n d /o r  th e  quantization  noise (round-off error) o f d ig ita l equipm ent occurring  

in th e  an alogue-to-d igital conversion (A D C ). T h e A D C  error is nevertheless usually  

unim portant com pared to  th e  other in strum entation  noise w hen a sufficiently hight 

bit-rate is used for th e conversion.

Sample Estim ation Errors

Since th e  sam ple correlation functions are estim ated  from  fin ite random  tim e-h istories, 

th ese estim ates do not converge and hence contain  a certain  am ount o f random  error 

controlled by length  T  o f th e  d ata  th a t is available. T h e latter error has been dis­

cussed in detail in C hapter 3. A dditionally, depend ing on w hich m eth od  is used to  

com pute th e  sam ple correlation functions (cf. C hapter 3) th ese  estim ates are biased.
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A s described in  (G iam pellegrini and G reening, 2005), th is  situ ation  is analogous to  

leakage and resolution  bias w hen frequency dom ain m eth od s are used to  perform  the  

system  identification .

Errors induced by the  Identification Algorithm

For com pleteness, th e  last step  in th e diagram  6.1 show s th a t additional errors m ay  

be conveyed to  th e  m odal param eters as th e error in th e  sam ple correlation functions 

is passed through th e  algorithm . T h is was show n th eoretica lly  in C hapter 5 where, 

it can be seen how  quadratic bias m ay arise due to  th e perturbation  e being passed  

through th e  nonlinear algorithm  or how  bias is in troduced  due to  truncation  o f sm all 

non-zero singular values. It should  be clear, however, th a t th e  errors introduced by the  

algorithm  are not to  be m odeled  in e bu t are th e  result o f  th e perturbation equations  

form ulated in th e  previous chapter.

A s already m entioned, th e  confidence one can place on th e  variance and bias ob­

tained  from th e  perturbation  analysis in C hapter 5 w ill u ltim ately  depend on how  

well we can approxim ate th e  sta tistics  o f e and how  close th is  m odel is to  the true  

disturbance in th e  m easured data . D ue to  th e  m any error sources th a t can arise in  

operational m odal testin g , it is a difficult task  to  take in to  account all th ese sources. 

M oreover, since th e  loading conditions are not m easured, a rigorous analysis o f the  

response d ata  w ould be required to  detect w hether th e  d a ta  has been  perturbed due  

to  correlated a n d /o r  nonstationary  inputs B en d at and P iersol (2000) or w hether the  

response exh ib its a  certain degree o f nonlinearity  (K antz and Schreiber, 1997). T h is  

is further com plicated  by th e  fact th at, if  th e  presence o f nonlinear or nonstationary  

behaviour can be estab lished , th is is generally  a  negative sta tem en t in th e  sense th at  

it on ly  specifies a  lack o f linear or sta tion ary  properties rather th an  defining th e  pre­

cise nature o f nonlinearity or n on stationarity  involved. C onsequently  m odelling these  

disturbances in to  th e  perturbation param eter e is ex trem ely  challenging. W hile it w ill
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alw ays be assum ed in th is  thesis th a t the response is linear, th e  influence o f a nonsta­

tionary characteristics in th e response w ill be briefly considered. It is noted, however, 

th a t w ith in  th e  classical in p u t-output framework, th e  subspace identification  m ethods  

have been used to  identify  sim ple nonlinear system s, see for instance H orta and Juang  

(1986). It follow s from  th is  d iscussion, th a t, in order to  capture th e sta tistics o f the  

perturbation ej in  th e  response m odel from all th e  contributing sources, a  data-driven  

m ethod  is required. T h at is, a  m eth od  th a t does not rely on specific m odels for each  

o f th e  possib le sources but rather estim ates th e  sta tistics  ej num erically d irectly  from  

th e  m easured data.

6.2.2 Data-Driven Perturbation Model

T h is data-driven estim a te  o f th e  sta tistic s  o f ej can, w hen th e  sta tistics o f inter­

est is Cov [eT, es], b e  d irectly  obta ined  from  th e  data-driven or plug-in  estim ate of 

Cov Rx(t), R x ( s )  developed  in  section  3.5, C hapter 3. Let Rx( t ) =  Rx(r) +  eT 

where eT denotes th e  perturbation  o f th e  exact auto-correlation  function  E[Rx(r)\ =  

Rx{t)  at lag r  as in chapter 5. A lso, let th is  perturbation have zero m ean so that  

E[Rx(t)  +  eT] =  Rx(t)  as exp ected  for an unbiased estim ate  o f th e  auto-correlation  

function. T hen , by defin ition

Cov Rx (j"), Rx (s) =  E  

=  E

\ R x ( t ) -  £ [ A t ( t ) ] )  ( f l x ( s )  -  E & M ] ) ]  (6 -1 )

Rx{t )Rx{s) 1 -  E[Rx(t )]E[Rx(s)]

U sing Rx{t ) =  Rx(r) -I- eT and Rx(s) =  Rx(s) -I- es in equation  6.1, it  is th en  easily  

show n th at

Cov Rx(r ), Rx(s) =  E [eTes] -  E[eT\E[eJ  =  Cov  [eT, es] (6 .2)

T hus, th e  perturbations o f  th e  auto-correlation  function  are th e  sam e as th ose  o f the  

auto-correlation  function  itself. T h e result for th e  variance follow s im m ediately  by 

le ttin g  r  =  s.
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Fig. 6.2: Illustration of noise corrupted signal.

6.2.3 A Noise Model

A s m entioned in  th e  in troduction, to  assess th e  accuracy o f th e  errors predicted by the  

perturbation analysis, we start by considering sim ple system s and we w ish to  eradi­

cate  any sources o f uncertainty th a t can influence th e  error estim ate  other th an  those  

set out to  investigate. For th is  reason, and also to  have a theoretical description of 

how m easurem ent noise affects th e  estim ated  sam ple correlation functions, having a 

theoretical expression describing th e  perturbation  o f th e  auto-correlation  function  due  

to  noise in th e  m easurem ent records is useful. It is noted , however, th a t th is m odel is 

m ainly  o f theoretical interest.

A s docum ented in B en d at and P iersol (2000), instrum entation  noise has a near­

uniform  spectral d en sity  so th a t w e m ay sim ulate th e  noise floor as a broadband  

w h ite  noise signal n(t) w ith  a frequency bandw idth  B. L ettin g  s(t) be th e  uncor­

rupted response o f th e  SD O F  system  subject to  w hite noise excita tion , th e  corrupted  

response can th en  b e  w ritten  as

x(t) =  s(t) +  n(t) (6.3)

T h is is illu strated  schem atica lly  in figure 6.2. A ssum ing th a t n(t) is independent of 

s(t), th e  ac .f o f th e  system  can be w ritten  as (B en d at and P iersol, 2000)

Rxx(t) =  Rss(r) +  Rnn(r) (6.4)

where Rxx(t ) , Rss and Rnn denote th e  estim ated  sam ple auto-correlation  functions o f  

th e  x(t), s(t) and n(t) respectively. Since we w ish  to  avoid th e  influence o f  th e  sam ple
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estim ation  errors, w e sim ply  replace Rss by th e  exact ac .f o f  th e  system , denoted  by  

Rss, in equation  6.4

R x x { r )  =  R s s { r )  +  R n n { r )  (6.5)

or in d iscretized  form

Rxx(rAt) =  Rss(rAt)  +  Rnn(rAt)  (6 .6)

If Rxx(rA t), as described by equation 6.6, is fed in to  th e  S S I/C o v  algorithm , th e  error 

in th e  identified m odal param eters is so lely  due to  th e  add itive noise perturbation  

Rnn(rAt)  to  Rss(rAt).  T hus, Rnn{rAt)  is th e  desired  perturbation , or in term s o f the  

n otation  used in C hapter 5

ej =  Rnn(jAt), for j  =  1 ,2  . . . ,  N  (6.7)

where, as before, N  denotes th e  num ber d ata  p o in ts included  in th e  analysis. In order 

to  obtain  sta tistica l inform ation about th e  error in th e  identified  m odal param eters 

from th e  perturbation theory, we require a m odel for i2nn(r A t) so th a t its  variance 

and covariance can be estab lished  and hence th e  perturbation  equations 5.8, 5.10, 

5.37, 5.43 and 5.44 can be evaluated.

T he auto-correlation function o f a b and-lim ited  w h ite  noise signal n(t) o f band­

w idth  B , Rnn{r) is given th eoretica lly  by B en d at and P iersol (2000) as

n  / . X  _  _ 2 s i n ( 2 ’ r -B r )  , « on
R n n \T )  —  CTn 2 -jtB t

w here <j\  is th e  variance o f th e noise signal n (r ) .  It is com m on practice in opera­

tional m odal analysis to  low -pass filter th e m easured d a ta  in  order to  avoid aliasing. 

T ypically, one uses analogue infin ite im pulse response (H R ) or d ig ita l fin ite im pulse  

response (FIR ) filters for th is operation, th e  m ost com m on o f w hich are th e B utter- 

w orth and C hebyshev filters. T hese filters are linear (W illiam s and Taylor, 1995) and
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thus preserve th e  add itive form o f equation 6.3. H ence, if  th e  bandw idth  o f th e ap­

plied filter is B , th en  so w ill be th e  bandw idth  o f  th e  additive noise term  n(t). N oise  

levels in  signals are com m only expressed as a percentage, but it seem s, th a t there is 

no clear consensus on exactly  how th is percentage is defined. In th is  thesis, therefore, 

th e  noise level in th e  m easured signal x(t) w ill be defined by

noise level =
rms  n
rms  [s]

(6.9)

where rms  [•] denotes th e  root-mean-square value defined as rms  [•] =  y/E[(-)2]. N ote  

th at, w hen th e  tim e series has zero m ean, th en  th e  rms  value is th e  sam e as th e  

standard deviation  o f th e  process, i.e. rms[-] =  y /a 2 (•), where a 2 (•) denotes the  

variance. T h is definition, also used by D esforges et al. (1995), is analogous to  the  

th e signal-to-noise (SN R ) ratio trad itionally  used to  assess th e  dynam ic range o f the  

d ata  acquisition  system  (B endat and Piersol, 2000). E quation  6.8 is illustrated  in

j______ i______i______i______i______i_____ i______i____i _
1 2 3 4 5 6 7 8 9 10

0.1S

0.05

•0.05

Fig. 6.3: Illustration of equation 6.8 for a B =  20 H z  bandwidth-limited white signal with 
variance o 2 =  0.2. This represents the theoretical noise ac.f. that is added to the exact ac.f.
E  Rss(r)j =  R ss(t ) estimated from the uncorrupted signal s(t) with a 2 =  1. This represents
a noise level of approximately 45% in x(t) =  s(t) -I- n(t).

figure 6.3 for a w h ite  noise signal n(t) o f b andw idth  B =  20 H z  and w ith  variance

a 2 =  0.2. A lso  show n is th e  exact ac.f. E Rss(t ) o f th e  uncorrupted signal s(t) o f a

SD O F  system  w ith  natural frequency 1 H z  and 1% m odal dam ping and w ith  variance 

a 2 =  1. It is seen from  equation 6.8 and its  d isp lay in  figure 6.3 th a t th e resulting

187



additive perturbation  on th e  ac.f due to  th e  noise term  n(t) is su bstantia lly  m itigated  

at lags >  0 due to  th e  fast decorrelation o f th e  band-lim ited  w h ite  signal. Q in and  

Q ian (2001) have exp lo ited  th is fact to  reduce th e  noise in th e  random  decrem ent 

(R D ) signatures by correlating th e  R D  functions w ith  them selves. T h is technique is 

known as correlation filtering. However, a  certain degree o f  correlation ex its betw een  

th e  d a ta  sequence o f th e  bandw idth-lim ited  w h ite  signal n(£), w hich m anifests itse lf  

by th e  decaying oscillation  w ith  frequency 2Btt as can be seen from  equation 6.8 and  

figure 6.4. T h e latter w ill appear as a noise m od e in  th e  identification process and  

can, as w ill be show n later in th is  chapter, in troduce significant bias into th e identi­

fied m odal param eters. A sm ussen et al. (1998), for instance, has taken into account 

correlation effects due to  noise effects by assum ing th a t th ey  behave as th e  free decays 

o f th e  structure.

T he variance and covariance o f th e  noise ac.f. -Rn(r) can be estim ated  from equa­

tion s 3.32 and 3.38 respectively  in  C hapter 3. B en d at and P iersol (2000) com puted  

th e variance o f Rn{r) as

Var[Rnn(T)]
2 B T

_4 4 sin^(27rBT)
n  ( 2 txBr)2 J

(6 .10)

where th e  second term  in th e  square brackets is recognised as th e  square o f th e ac.f. 

o f n(t) as g iven in equation 6.8. However, adopting  ex a ctly  th e  sam e approach as 

B endat and P iersol (2000), th e variance is found to  be

Var[Rnn(T)]
2 BT

4 4 sin(47rB r) 

an n (4ttB t )
(6 .11)

E quations 6.10 and 6.11 are com pared w ith  th e  m ean o f th e  auto-correlation functions  

sim ulated  from 2000 realizations o f a 20 H z  b andw idth  lim ited  w h ite  noise signal n(t) 

o f length  T =  100s sam pled at 15 Hz.  T h is is show n in figure 6.4 where it can be  

seen th a t equation  6.11 is in better agreem ent w ith  th e  sim ulated  data. T he 20 Hz  

stopband was achieved using a d igital B utterw orth  filter. T h is choice o f filter was
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m otivated  by th e  fact th a t th e  frequency response o f th e  B utterw orth  filter is flat in  

th e  pass-band, and rolls off toward zero in th e stop-band. It m aintains th is  sam e shape  

for higher orders but w ith  a steeper decline in th e  stop-band  (W illiam s and Taylor, 

1995) so th a t a  high order filter gives a  relatively  sharp cutoff w ith ou t com prom ising  

th e  “w h itn ess” o f  th e  signal in pass-band to o  m uch. A  sm all part o f th e disagreem ent

x 10"7

<P?
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4

3
0.06 0.06 0.1 0.12 0.140 0.02 0.04

lag i  (s)

Fig. 6.4: Comparison of equations 6.10 (dotted line)  and 6.11 (dashed line) with the mean 
sample ac.f of a 1 Hz,  1% damped SDOF estimated from 2000 realizations of a 20 H z  ban- 
dlimited white noise signal of record length T  =  100s sampled at 15 H z  (thick, solid line). 
The 20 H z  band-pass was achieved with a 10t/l order Butterworth filter.

betw een  equation  6.11 and th e  sim ulated d a ta  m ay be attrib u ted  to  th e  fact th at  

th e sim ulated  d a ta  has not entirely  converged to  its  true value. However, we suspect 

th a t th e principal cause is th a t it is very difficult to  m odel th e  correlation function  

o f th e filtered response exactly  by, for instance, tak ing  in to  account th e  fact, th at  

th e  cutoff o f th e  filter is not as sharp as assum ed in th e  an a ly tica l equations so th at  

th e bandw idth  is s ligh tly  higher than  th e  desired 20 Hz.  Sim ilarly, we ob ta in  from  

equation 3.38

Cov[Rnn(r'), Rnni'T +  v)]
2 B T

sin(27rBv)  sin(27rB [2r  +  u])
(6.12)

(27tB v) ' (27tB  [2r  +  v])

Since Rnn(r A t) also y ields th e  desired perturbation  to  th e  exact auto-correlation  func-
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tion  Rss{t ) (cf. eqn. 6 .7), equations 6.11 and 6.12 provide th e  necessary sta tistics to  

evaluate th e  perturbation equations given in th e  previous chapter.

6.3 Random Error

T h e aim  o f th is  section  is to  assess how accurately  and reliably we can exp ect the  

perturbation theory  presented in chapter 5 to  predict th e  random  errors in operational 

m odal param eters. To do so, we proceed by sim ulation . T w o SD O F  system s, system  A  

and B  w hose m odal param eters are show n in tab le  6 .3 , are em ployed for th is purpose. 

To avoid am biguity in th e n otation  used in th is  chapter, recall th a t th e  random error 

in an estim ated  sta tistic , say x , is com m only defined (B endat and Piersol, 2000) as 

th e  square-root o f th e  variance o f th is sta tistic . T hus, th e  random  error in \  is the  

sam e as its  standard deviation  and th e term  standard error is often  used to  describe 

th e  sam e quantity  (B endat and Piersol, 2000). T h e standard  or random  error o f x  

w il be denoted by cr[x]. It is often  convenient to  work w ith  th e  normalised standard 

error w hich expresses th e  random  error as a  fractional portion  o f th e  quantity  being  

estim ated , th a t is

€r(*) =  a®/x  (6-13)

A  slight variation  if th is  defin ition  w ill be used in  th is section, nam ely, th a t th e error 

is norm alised w ith  respect to  sam ple m ean o f x  rather than  th e  true value x* T he  

reason for th is  w ill becom e clear shortly. T he norm alised random  error is also som e­

tim es referred to  as th e  coefficient o f variation o f x .

T he variance o f th e  SSI/C ov-identified  m odal param eter predicted  by th e  perturba­

tion  analysis is g iven by equation  5.8 in C hapter 5 and, for convenience, is displayed

N atural Frequency /o D am ping ratio £
SD O F  System  A 1 H z 1%
SD O F  System  B 4 H z 1.5%

Tab. 6.1: Modal parameters of the two SDOF systems used in the simulations.



again below

N  N  N

Var [x (e)] «  Var fe] S] (x) +  2 Cov [ t j tk] Sj (x) (x) • (6-14)
j = 1 j = l fc=i

Note that the notation used to  denote the estim ated parameter in the perturbation 

analysis, % (e), means the same as x* It is seen from this equation that Var [x (e)], and 

hence the random error in x , depends on the two parameters; (a) the sensitivities Sj(x)  

of the modal parameters due to a perturbation at the j th data point in the correlation 

function and (b) the variance and covariance between the perturbations €j. Any error 

in the estim ated sensitivities Sj(x)  and/or estim ated variance and covariances will 

therefore compromise the accuracy of the predicted random error. In practice, this is 

to be expected; the variances and covariances from the data driven or plug-in method  

described in section 3.5, Chapter 3 are only estim ates and are contam inated by random  

and possibly bias errors, although using a flat-top window with ‘optim al’ band-width  

considerably m itigates these errors as was shown in section 3.5. Similarly, the sen­

sitivities 6 j ( x ), which result from the eigenvalue sensitivities of the identified state  

matrix A , will be in error since the identified state matrix A  itself is an estim ate as it 

is identified from the only available measured response data. In Chapter 5, the sensi­

tivities were treated as deterministic quantities in the sense that the Hankel matrices 

7fo(0) and 7 fi(0 ), com puted from the only available response data, play the role of the 

exact Hankel matrices (c.f. the remark in section 5.2). Nonetheless, it is important to 

recognise that, if a different set of response data is used, 'Ho(O) and H i(0 ) will change 

and so will the com puted sensitivities Sj (x) • In other words, the estim ated variance, 

covariance and sensitivities are random variables and so is the predicted random error.

In a first step, it is desired to investigate the performance of the perturbation algo­

rithm when the variance, covariance and the system  sensitivities axe exact. After all, 

the equation yielding the variance of the identified m odal parameter is derived from 

a first order Taylor expansion in the perturbation e and there is no obvious argument
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to suggest that the random error in the identified modal data does indeed change 

linearly with this perturbation. As perturbations, we will consider the influence of 

measurement noise, which affect the sample correlation functions as described in sec­

tion 6.2.3, and the errors inherent in estim ating the sample correlation function from 

finite response data. For convenience, we shall refer to  the latter errors as estimation  

“noise” . It is seen from the figure 6.1 that, if the basic assumptions of the measured 

output time-histories for operational modal analysis hold, namely that the response is 

the result o f white, stationary loading conditions and the structure behaves linearly, 

then instrumentation and estim ation noise are the only two perturbations affecting the 

estim ated correlation-driven response model. The propagation o f these error to the 

identified modal data is captured by the com puted sensitivities Sj(x)-  It is instructive 

to  consider the influence of these two perturbations -that is measurement and estima­

tion noise- on the the identified modal parameters separately and we shall start by 

investigating the influence of instrumentation noise. We note that our treatment dif­

fers from the studies in Bergman et al. (1989); Longman et al. (1987) and Peterson et 

al. (1996) in that the correlation of the band-limited noise is taken into consideration, 

while the latter authors considered the effect of adding uncorrelated noise (which is 

the true definition of noise) to  measured or simulated impulse response functions.

6 .3 .1  I n f l u e n c e  o f  I n s t r u m e n t a t i o n  N o i s e

To consider the influence of instrumentation noise only on the SSI/Cov-identified  

modal parameters, we eradicate the perturbation caused by estim ation noise. To do 

so, the auto-correlation functions of the two SDOF system s tabulated in 6.3 were 

directly obtained from the exact expressions in equations 3.29 given in Chapter 3, sec­

tion 3.4.1. These auto-correlation functions were com puted with a sampling interval 

A t  =  0.05s and 0.08s for system  A, and A t  =  0.04s and 0.07s for system  B.  W ithout 

loss of generality, they were normalised to  unity at zero lag and we chose to  work with  

displacement responses. W hite noise signals, denoted collectively by n (r ), of total
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record length T  =  900s sampled at A t  =  0.05s, 0.04s, 0.07s and 0.08s respectively 

were then generated to  correspond to each of the four cases of auto-correlation func­

tions. Two sets of noise signals were generated, one with standard deviation a  =  0.15 

and one with a  =  0.30. Having normalised the exact auto-correlation functions of 

the two system s to  unity at zero lag is equivalent to  assuming that the hypothetical, 

infinite length responses of these system s have unit variance and hence unit standard 

deviation. Thus, the noise signals generated correspond, according to equation 6.9, 

to  noise levels of 15% and 30% respectively. Since it is common practice to apply 

an anti-aliasing filter to  the measured response histories, the computed noise signals 

were filtered with a low-pass Butterworth filter w ith a band-pass of 0 — 6H z .  500 such 

noise signals, were generated for each of the two noise levels and sampling intervals 

considered above and their auto-correlation functions R n n { t )  were estim ated. The 

perturbation due to noise was then added according to  equation 6.6 resulting in 500 

noise perturbed auto-correlation functions for each of the two SDOF system s in table 

6.3 with sampling intervals A t  =  0.05s, 0.08s for system  A  and A t  =  0.04s, 0.07s for 

system  B  and noise levels of 15% and 30%. This gives eight different cases w ith 500 

simulated responses each but only six of them , shown in table 6.2, were used.

For each of these six cases, the SSI/C ov was applied to each of the 500 sim­

ulated responses. Since it is known that the dimensions chosen to construct the 

Hankel matrices affect the identified parameters, 3 different sizes of Hankel matrices, 

dim(Ho)  =  (7 x 4), (13 x 8) and (22 x 14) were considered. Recall from Chapter 2 

that the shifted Hankel matrix d i m (H i )  has the same dimensions as d im (H o ) and 

that this dimension determines the portion of the auto-correlation function used in 

the identification. Proceeding in this fashion, 500 estim ated sets o f modal parameters 

are obtained for each of the six cases and for each o f the three Hankel matrix dimen­

sions chosen from which, the sample variance o f the identified damping ratios and 

frequencies, and hence their normalised random errors, are estim ated. The random  

error thus computed and shown in table 6.2 for the six cases described above, serve as
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a benchmark against which the random error predicted by the perturbation analysis 

is validated.

To get an idea of the accuracy of the random error in the modal damping ratios 

and frequencies, computed from a population of 500 samples, it was assumed that the 

identified modal parameters are normally distributed. In this case, it is known (see for 

instance Rose and Smith (2002)) that the expected value of the standard deviation  

of the estim ated variance is cr[d2(x)] =  <r2(x) y / 2/N  which can be approximated as 

^2(x ) V 2/ n  since the exact variance is unknown. To convert this into the error in the 

estim ated normalised random error er(x), one may express the estim ated variance as 

<t2(x) ~  cr2(x )[ l ±  y / 2/ N)' Taking the square-root o f this equation, approximating 

[1 ±  V ^ l 1/2 as 1 ±  x /1/ 2^  by using the binomial expansion up to linear terms and 

normalising with respect to x? the estim ated normalised random error can then be 

written as

eV(x) «  €r { x )  ±  (6.15)

It is noted that the assumption that the identified modal parameters are distributed  

normally is not guaranteed and the above equation is only used to  get an idea of the 

error er(x) com puted from a finite sample population. The errors in the estim ated  

er (-), com puted according to equation 6.15, are shown in brackets in table 6.2. W hen 

no error is indicated means that the error was not significant relative to  the accuracy 

of the random error shown.

The normalised error, estim ated by the perturbation theory is shown next to the 

simulated errors in table 6.2. As mentioned, these predicted errors are com puted by 

using the exact auto-correlation functions as input to  the perturbation analysis so 

that the sensitivites 8 j  (x) are exact too.



Influence of Instrumentation Noise

dim(Ho)  =  7 x 4  dim(Ho)  =  13 x  8 d im (H o ) =  22 x  14

True Perturbation | True Perturbation | True Perturbation

SODF System  A
Case 1 e r « )  (%) 5.37 (±0 .17) 5.01 1.42 (±0 .05) 1.42 0.74 0.74 (±0 .02)

30% noise,A t =  0.05s er (fo) (%) 0.10 0.10 0.016 0.016 0.0067 0.0067

Case 2 *■«) (%) 3.65 (±0 .12) 3.65 1.23 (±0 .04) 1.23 0.55(±0 .02) 0.55
30% noise, A t =  0.08s er (fo) (%) 0.030 0.030 0.013 0.013 0.0056 0.0056

Case 3 *■«)(% ) 1.23 (±0.04) 1.21 0.33 (±0 .02) 0.33 0.19 (±0 .01) 0.19
15% noise, A t =  0.05s er(/o)(% ) 0.026 0.026 0.042 0.042 0.0016 0.0016

SODF System  B
Case 4 *■«) (%) 1.09 (±0.04) 1.08 0.38 (±0 .02) 0.38 0.19 (±0 .01) 0.19

30% noise, A t =  0.04s Cr(/o) (%) 0.012 0.012 0.048 0.049 0.0023 0.0023

Case 5 erK ) (%) 0.60 (±0 .02) 0.60 0.28 (±0 .01) 0.28 0.14 0.14
30% noise, A t =  0.07s er(fo)  (%) 0.008 0.008 0.0038 0.0038 0.0021 0.0021

Case 6 e r tt)  (%) 0.27 (±0 .01) 0.27 0.09 0.09 0.042 0.042
15% noise, A t =  0.04s er(fo)  (%) 0.0027 0.0027 0.0012 0.0012

Tj«1oT—1«o 6 • 10~4

Tab. 6.2: Comparison of the normalized random error in the SSI/Cov-identified modal damping ratios (er(£)) an(I frequencies (er(/o)) due to measurement noise 
estimated from Monte-Carlo simulation (500 response histories) and perturbation analysis. The error in (er(-)) is indicated in brackets. When no error is given means 
that the error was not significant relative to the accuracy of (er(-)) shown.



Also, the exact variance and covariance o f the noise perturbations were used to  

com pute these random errors. Although, the exact variance and covariance could have 

been com puted from equation 6.11 and 6.12 respectively, it was opted to  compute these 

statistics by simulation from the 500 perturbed correlation functions available for each 

case. The reason for doing so is that this gives a more accurate representation than  

is offered by the approximate equations 6.11 and 6.12. T he discrepancies between the 

simulated and analytical auto-correlation function was illustrated in figure 6.4 and this 

disagreement was attributed to  the fact that it is very difficult to  account for all the 

influences of the filter in the modelled the auto-correlation function of the noise signal.

It is seen from table 6.2 that the random error predicted by the perturbation  

analysis agrees overall very well w ith the simulated error. One one hand, this near 

perfect agreement should not come as too much of a surprise since, after all, the two 

parameters entering equation 6.14, that is, the statistics of the perturbation and the 

sensitivities, were determined “exactly” . On the other hand, this result indicates that 

a linear approximation of the identified modal parameters in terms of the perturba­

tions €j (see equations 5.5-5.8, Chapter 5) is sufficient to describe the random error 

in the modal parameters accurately, at least when the correlation functions are per­

turbed by noise only. Up to  the accuracy shown, the perturbation theory predicts 

the random error exactly for all cases except for the damping ratio in case 1, where 

the random error is underestimated. This discrepancy may be attributed to the fact 

that the portion o f the auto-correlation function included in the analysis barely cov­

ers half a period. Recall from section 2.3.2 in chapter 2, that the maximum lag of 

the correlation function included in the analysis occurs in the shifted Hankel matrix 

H i  and is given by Tm a x  — ( 0  +  (3) A t ,  where A t  is the sampling interval and a  and 

/3 are the block row and column dimensions of Ho (and H \) .  For Case 1, system  

A, the maximum lag is rmax =  (a  +  (3)A t  =  11 x 0.05 =  0.55s and as mentioned, 

barely covers half an oscillation of the auto-correlation function. W hen A t  =  0.08s, 

he. rmax =  0.88, it is seen from Case 2 in the table that this discrepancy disappears.
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Fig. 6.5: Comparison of the normalised random error er(£) of modal damping ratios identified 
with small Hankel matrix dimensions. The abscissa gives the rows in Ho and H\.  The number 
of columns is one less in each case than the number of rows.

The convergence of the predicted random error to  the true value as the portion of the 

correlation function included in the analysis increases is illustrated in figure 6.5. As 

the noise level in the signal decreases, so will the discrepancy between predicted and 

true error even for low dimensional Hankel matrices since, in theory, the dimensions 

of the Hankel matrix need not be bigger than the model order of the system, for in­

stance 2 x 2 in this case. This is indicated by comparing Case 1 and Case 3 in the table.

However, it is very clear from the results presented that, in practice, it is of ad­

vantage to work with large Hankel matrices: the sharp drop in random error with 

increasing dimension of the Hankel matrices is clearly visible from table 6.2. This is 

very similar to behaviour of the random error as a function of the size of the Han­

kel matrix described in Bergman et al. (1989). In the latter work, white noise was 

added directly to simulated impulse response functions so that the covariances of the 

perturbations €j is zero and Var[ej] is the same at each data point of the IRF. These 

observations suggest that the influence of the covariance of the band-limited noise on 

the random error of the modal parameters is small. As was already shown in Bergman
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et al. (1 9 8 9 ), th e  decreasing random error w ith  increasing dim(Ho) is  th e  consequence  

o f  increased robustness o f  th e  S S I/C o v  algorithm  w ith  respect to  noise as dim(Ho) 

increases i.e . sen sitiv ities  Sj(-)  decrease. A  sim ilar conclusion regarding th e  sen sitiv ity  

o f  th e  identified p o les w ith  respect to  noise, from  w hich th e  m odal frequencies and  

dam ping ratios are ex tracted  (c.f. section  2 .3 .2 , chapter 2) w as obta ined  b y  B azan

(2004).

Table 6.2 also show s a  decrease in  th e  random  error as th e  sam pling interval A t 

is  increased, for b o th  system s A  and B. Prom  th e  d a ta  show n in  th is  table, it  cannot 

b e concluded th a t th is  trend holds in general. In  fact, th e  exp lan ation  for th e  drop in  

random  error w ith  increased sam pling interval is  as follows; recalling th a t th e  noise  

w as low -pass filtered w ith  a band-w idth  o f  B  =  6 i f z ,  it  is seen  from  equation 6.6, 

th a t th e  perturbation  o f  th e  auto-correlation  function  oscilla tes w ith  a  frequency o f  

6 H z  and thus has a  period o f approxim ately  0 .166s. T hus, a  d iscretisation  in steps  

o f  A t  =  0 .08s and 0 .07s picks ou t th ose  perturbations th a t are, on  average, nearer to  

th e  zero crossings and hence sm aller in  m agn itu d e th an  w hen a  sam pling interval o f  

A t =  0 .05s and 0 .04s is considered. Since th e  sam e holds for th e  variances and covari­

ances o f th e  perturbations (c.f. equations 6.11 and 6 .12), it  is clear th a t th e  choice o f  

A t  =  0 .08s and 0 .0 7 s in  th is  particular case resu lts in a sm aller random  error. G eneral 

guidelines on  how  to  choose th e  sam pling interval to  m in im ise th e  random  error were 

not further investigated . A s can b e  seen from  th e  ta b le  6 .2 , th e  perturbation  analysis  

accounts for different sam pling intervals, so  th a t in  practice, th e  “b est” choice for 

A t  can  b e  ob ta in ed  by com paring th e  random  errors o f th e  m odal param eters from  

different runs using th e  sam e d a ta  but w ith  a  different At.  T h e  b est choice o f sam ple  

interval am ong th e  different runs considered b ein g  th e  one y ield in g  th e  low est error in  

th e  m odal param eters. W e finally n ote th a t, as exp ected , th e  random  error drops as 

th e  level o f  th e  perturbation is decreased.
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6.3.2 Infkieiice of E s tiis ilk m  Noise

In th e  previous section , th e  behaviour o f  th e  random  error in  th e  estim ated  m odal 

param eters d u e to  noise in  th e  m easured d ata  w as described. In th is  section , th e  sam e  

is  done for perturbations o f  th e  correlation functions due to  th e  sam ple estim ation  

errors described in  C hapter 3. For th is purpose, th e  sam e tw o SD O F  system s -system  

A  and B  in  tab le  6 .3- were em ployed and th e  sam e six  cases as in  th e  previous sec­

tion s w ere considered. In each case, th e  particular system  w as excited  b y  a norm ally  

distributed , w h ite  noise input and th e  response w as com puted  for a  to ta l duration  

o f  T  =  900s using a  Newmark-/? tim e in tegration  schem e. A s  for th e  sim ulations  

in  C hapter 3, section  3.5, th e  900s o f  response d a ta  con sists on ly  o f  th e  stationary  

part o f  th e  response; th a t is, care w as taken to  rem ove th e  in itia l, non-stationary  por­

tion  o f  th e  response th a t occurs w hen th e  sy stem  is exc ited  from  rest. 500 response  

histories w ere generated  in th is  fashion in  each case and th e  sam ple auto-correlation  

function  w as com puted  from  each ou tp u t and th e  m odal frequency and dam ping ratio  

estim ated . From  th e  500 se ts  o f m odal param eters th u s ob ta in ed  for each case, th e  

“true” norm alised error w as approxim ated according to  equation  6.13 and th e  error 

in  th is  approxim ation is g iven  by equation  6.15. W e n ote  th a t th e  random  error w as  

norm alised w ith  respect to  th e  m ean o f th e  identified  m odal param eters, rather th an  

w ith  respect to  th e  true value. T h is was done to  enable a  m ore direct com parison w ith  

th e  errors predicted  by th e  perturbation  analysis, b ecause in  th e  la tter, th e  errors were 

norm alised w ith  respect to  th e  identified m odal param eters for each realisation . T hese  

values are tab u la ted  in tab le  6.3.

To com pute th e  errors predicted  by th e  perturbation  m eth od , th e  sam e approach  

was adopted  as in  th e  previous section: th e  sen sitiv ities  w ere com puted  from  th e  

exact auto-correlation  functions w hich were approxim ated  as th e  m ean o f  th e  500 

auto-correlation functions available for each case. T h e  exact perturbations were ap­

proxim ated sim ilarly from  th e  variance and covariances from  th e  500 response h isto­

ries. T h e resu lting norm alised random  error is show n in  ta b le  6 .3 .
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Influence of Estimation Noise

dim(7io) =  7 x 4 dim(7io)

(

=  1 3 x 8 dim( Hq) =  22  x  14

True Perturbation True Perturbation TVue P erturbation

SO D F  S ystem  A
C ase 1 € r « )  (%) 13.59 (± 0 .4 3 ) 13.62 13.71 (± 0 .4 3 ) 13.76 14.11 (± 0 .4 5 ) 14.15

T  — 15 min, A t  =  0 .05s *r(/o ) (%) 0.14 0.14 0 .14 0 .14 0.14 0 .14

C ase 2 er tt) (%) 13.27 (± 0 .4 2 ) 13.61 13.67 (± 0 .4 3 ) 14.00 14.07 (± 0 .4 4 ) 14.45
T  =  15 m in, A t  =  0 .08s €r(/0 ) (%) 0.22 0 .14 0.22 0 .14 0.22 0 .14

C ase 3 <*(©(% ) 17.17 (± 0 .5 4 ) 17.24 17.32 (± 0 .5 5 ) 17.50 17.74 (± 0 .5 6 ) 17.93
T  — 10 m in , A t  =  0 .05s er(/o)(% ) 0.17 0 .17 0 .17 0 .17 0 .17 0 .17

S O D F  S ystem  B
C ase 4 ®r(© (%) 6.43 (± 0 .2 0 ) 6.42 6.65 (± 0 .2 1 ) 6.64 7.12 (± 0 .2 2 ) 7.71

T  =  15 m in, A t  =  0 .04s Cr(/o) (%) 0.08 0.08 0.09 0.09 0 .10 0 .10

C ase 5 Cr(© (%) 8.42 (± 0 .2 6 ) 8.38 8.68 (± 0 .2 7 ) 8.66 9 .17  (± 0 .2 9 ) 9 .16
T  =  15 m in , A t  =  0 .0 7 s e r (A ) (%) 0.08 0.08 0.08 0.08 0.09 0 .09

C ase 6 €r(©  (%) 7.79 (± 0 .2 5 ) 8 .03 6.96 (± 0 .2 5 ) 8 .00 8 .57  (± 0 .2 7 ) 8 .52
T  =  10 m in , A t  =  0 .04s «r(/6 ) (%) 0.10 0.10 0.11 0.11 0.12 0.11

Tab. 6.3: Comparison of the normalized random error in the SSI/Cov-identified modal damping ratios (er(£)) mid frequencies (e r ( / o ) )  due to estimation noise estimated 
from Monte-Carlo simulation (500 response histories) and perturbation analysis. The round brackets give the error in er(-) as computed by equation 6.15



T h e an aly tica l expressions g iven  in  C hapter 3 for th e  auto-correlation functions and  

corresponding covariances could  also have been  em ployed b u t for a  direct com parison  

w ith  th e  sim ulated  errors, th e  frequency sh ift due to  th e  N ew m ark tim e integrations  

needs to  b e  accounted for. It is seen  in  tab le  6 .3  th a t, apart from  a  few  negligible  

discrepancies, th e  norm alised random  errors predicted  b y  th e  perturbation  m ethod  

agree w ell w ith  th e  true errors. It can therefore b e  concluded th a t, like for perturba­

tio n  by noise only, a  linear approxim ation in  term  o f  th e  perturbations due to  sam ple  

estim ation  errors is sufficient to  describe th e  errors in  th e  S SI/C ov-identified  m odal 

param eters and th a t th e  perturbation analysis presented  is su itab le  for ou tp ut-on ly  

m odal analysis problem s.

It is  w orth poin ting  out som e o f  th e  differences in  th e  random  error in  th e  identi­

fied m odal param eters w hen th e  perturbation  is due to  noise and sam ple estim ation  

errors. C om paring tab les 6 .3  and 6.2, it  is seen  th a t a  su b stan tia lly  higher error is 

caused by estim ation  noise, even  com pared to  th e  conservative case in  w hich a 30% 

noise level w as chosen. Since th e  auto-correlation function  o f  th e  m easurem ent noise, 

w hich yields th e  effective perturbation  o f  th e  H ankel m atrix, w as com puted  w ith  th e  

sam e record lengths as in  each o f th e  cases in  ta b le  6 .3 , th e  influence o f  m easurem ent 

and estim ation  noise is d irectly  com parable. A lso  different, is th e  behaviour o f  th e  

error as a  function  o f  th e  d im ension o f  th e  H ankel m atrix: w hile th e  error due to  m ea­

surem ent noise drops sharply as th e  d im ensions o f  Ho increases, th e  error due to  th e  

perturbation  by estim ation  errors in  th e  sam ple correlation functions increases slow ly  

w ith  dim(Ho). T h is is to  b e  attrib u ted  to  th e  strong covariances in  th e  perturbations  

causes by th e  sam ple estim ation  errors and is illu strated  in  figures 6.6. For conve­

nience, on ly  system  B  is used for illustration . W hen  th e  perturbation  is due to  noise  

on ly  (figure 6 .6 (a )), th e  effect o f  th e  covariances on  th e  random  error is slight due to  

th e  fast decorrelation o f  th e  noise w ith  increasing lag. O n th e  other hand, w hen th e  

perturbation is due to  sam ple estim ation  errors, th e  behaviour o f  th e  random  error is 

largely governed by th e  covariance term  in  equation  6.14. W hen  th is  term  is ignored,

201



1.8 •X
“ I--------T-------- 1-------- 1-------- 1-------- 1—  --- 1-  T -

\ S ystem  B
120 \

1.6 \ \  System  B

\  '
30% noise, A t= 0.04s

100 \  T=15min, A t= 0.04s
1.4 \ - *  Covariances considered \  - *  Covariances considered

\
\ \  ~>  Covariances ignored \  -i> Covariances ignored

1.2 ■ \ \ 80 \
\

E \ V E \
1

\  \ 

\ k3 \ 60 \u
0.8 \ \ a \

0.6
V\ 40 V \\
V  'V0.4 20

— -X
0.2 ' x-----------------x_---------------..........................x......................x_....................x

4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
Number of Rows in Hankel Matrix Nunber of rows in Hankel Matrix

(a) (b)

Fig. 6.6: Comparison of the influence of the covariance of the perturbation due to (a) noise 
and (b) sample estimation errors. The number of columns in the Hankel matrices used is one 
less than the number of rows.

the behaviour of the random error is similar to that caused by noise perturbations. It 

may be concluded that as a rule of thumb, “larger” Hankel matrices are favourable 

since the error due to noise will be significantly mitigated compared to the slight in­

crease in error due to estimation noise.

Also interesting to note from table 6.3 is the rate of increase in the error of the 

modal damping ratios with increasing record length T. More precisely, as T  is in­

creased from 600 s to 900 s, that is by a factor of 1.5, the normalised error in the 

damping ratios decreases roughly by the square root of the inverse of this factor. This 

is observed for both systems A  and B.  Precisely the same behaviour as a function 

of the record length T  was shown in Chapter 3 to hold for the normalised random 

error at zero lag in the estimated auto-correlation functions, see equation 3.35 and 

figure 3.5. In fact, it is observed that the normalised random error at zero lag in 

the auto-correlation function closely matches the normalised random error in the 

SSI/Cov-identifed modal damping ratios. For system A  and B , equation 3.35 pre­

dicts a normalised random error in their correlation functions of 13.3% and 5.43% 

respectively, which is indeed very close to the errors in the modal damping ratios tab­
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u lated  m  ta b le 6 .3 ,  for low  dim ensional H ankel m atrices. A lternatively, th ese  values  

m ay b e  read from  figure 3.5. A n  interpretation  for th is  observation  is  th a t, i f  on ly  

th e  low  lag  part o f  th e  au to co rre la tio n  function  is  used  in  th e  S S I/C o v , w here th e  

error changes litt le  from  th a t a t zero lag, n o  add itional random  error is introduced in  

th e  identified m odal dam ping ratios as th e  perturbed  correlation function  is passed  

through th e  algorithm . In a  nutshell, th e  error th a t goes in to  th e  algorithm  is the  

sam e as th a t in  th e  com puted  m odal dam ping ratios. A  m ore precise form luation of 

th is  relationship  appears difficult to  estab lish  due to  th e  m any param eters th a t enter  

th e  S S I/C o v  and w as n ot further pursued. H owever, th is  observation  m ay b e used  as 

a  rule o f  thum b to  get an in itia l idea o f  th e  order o f  m agnitude o f  th e  relative error 

in  th e  identified m odal dam ping ratios, or, in  th e  pre-test stage, b e  used to  determ ine  

th e  record length  necessary to  identify  th e  m od al dam ping w ith  a  particular accuracy. 

For exam ple, i f  it  is  asum ed, based on  experience w ith  sim ilar structures, th a t th e  

m odal param eters are o f  th e  order o f 1 Hz,  1% dam ping, and it  is desired to  estim ate  

th e  m odal dam ping ratios w ith  an accuracy o f  less th an  10%, equation  3.35 y ields  

a required record length  o f  26.5min.  T h e  record len gth  T  ob atin ed  in  th is  fashion  

should  be considered as a  m inim um  requirem ent to  encom pass th e  influence o f other  

error sources on th e  identified  m odal dam ping ratios and also to  cover th e  case when  

larger H ankel m atrices are used. A  rough estim a te  o f th e  order o f  th e  error o f th e  

frequency can  also  b e  ob ta in ed  since, as show n in  P eterson  et al. (1996), th e  absolute  

error in th e  m odal dam ping ratio, th a t is f  — £, approxim ately  y ield s th e  norm alised  

error in  th e  m odal frequency. For instance, if  th e  m odal param eters o f  th e  structure  

are assum ed to  b e  o f  th e  order o f  1Hz,  1% dam ping as above, and T  is chosen such  

as to  estim ate  th e  dam ping ratio w ith in  10%, th en  th e  frequency is identified  w ith  an  

accuracy o f  roughly 0.1%.

It w as show n, th a t th e  perturbation analysis y ield s very  accurate predictions o f  

th e  random  error in  th e  S SI/C ov-identified  m odal param eters w hen th e  perturbations  

are caused by noisy  d a ta  and sam ple estim ation  errors. H owever, so  far, th e  sen sitiv i­



t ie s  and perturbations w ere m odelled  exactly, w hich is  n o t p ossib le  in  practice, where 

b o th  th ese  quantities can  o n ly  b e  approxim ated. I t  needs to  b e  estab lished  w hether  

th e  predicted  random  errors are robust w ith  respect to  d eviations in  th e  sen sitiv ities  

and estim ated  perturbations.

6.3.3 Robustness of Perturbation Algorithm

W hen th e  perturbation  m eth od  is applied  in  practice, th e  system  sen sitiv ities and  

th e  perturbations o f  th e  correlation functions are on ly  estim ates: th e  sen sitiv ities are 

obtained  d irectly  from  th e  estim ated  (as opposed  to  exact) sam ple correlation func­

tion s and th e  perturbations follow  from  th e  estim ated  sam ple variance and covariance 

from  th e  single set o f available response d ata . D u e to  th e  random  errors in  b o th  th e  

sam ple correlation functions and its  variance and covariance estim ates, th e  random  

error predicted b y  th e  perturbation  m eth od  is a  random  variable itself.

I n f lu e n c e  o f  E r r o r s  in  t h e  E s t im a t e d  P e r t u r b a t io n s

Four situ ation s are considered:

•  (a) Perturbation is due to measurement noise only. T h e  effect on  th e  predicted  

random  errors in  th e  m odal dam ping ratios is considered w hen th e  noise level in  

th e  d a ta  is under- or overestim ated  up to  15%. T h e sen sitiv ities were com puted  

exactly.

•  (b) Perturbation is due to estimation noise only. T h e effect on  predicted  random  

errors in  th e  m odal dam ping ratios is considered w hen  th e  variances and covari­

ances o f th e  auto-correlation  functions are under- or overestim ated  up  to  15%. 

M ore precisely, if  Var[R(r)\ and C ov[R(t ), i? (r  +  ^)] d en ote  th e  exact variances 

and covariances o f  th e  sam ple auto-correlation  function  R(r)  at all lags r  in­

cluded in  th e  S S I/C o v  algorithm  (and hence th e  pertu rb ation  an a lysis), th en  th e  

estim ated  quantities were m odelled  as a(Var[R(r)])  and  a(Cov[R(r), R(r+v)]),
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w ith  th e  factor as covering th e  range o f  values such th a t a (  V ar[B (0 )]) repre- 

sen ts a  ±15%  error in  Vor[&(0)]< T h is  situ a tion  arises w hen th e  datardriven  

or plug-in  m eth od  is em ployed to  estim ate  th e  variance an d  covariances o f  th e  

sam ple correlation functions. A s argued in  section  3 .5 .1 , th e  estim ated  vari­

ance and covariances m anifest them selves as stretched  or com pressed versions 

o f  th e  th e  exact quantities (also c.f. figure 3 .11) and th e  idealisation  to  m odel 

th ese estim ates as proportional to  th e  exact variance and covariance functions 

is appropriate. T h e  sen sitiv ities were com p u ted  exactly.

•  (c) Over and -underestimated frequency content. T h e  effect on th e  predicted  

random  errors in  th e  m odal dam ping ratios is considered w hen th e  frequency  

content o f  th e  system  is under- or overestim ated  up  to  15%. In other words, 

if  th e  natural frequency o f th e  system  is 1 H z  for instance, it  is  assum ed th at 

th e  system  is identified w ith  frequencies ranging from  0.85 — 1.15t i z .  T h e auto­

correlation functions and th e  corresponding covariances are com puted  at the  

identified frequencies. Such frequency sh ifts can  occur in practice w hen th e  

response d a ta  has a non-stationary  frequency content. It is  w ell known th at  

(B endat and P iersol, 2000) th e  sta tion ary  correlation estim ates obta ined  by ap­

p ly ing  th e  usual estim ators to  non-stationary  d a ta  are effectively  tim e-averaged  

n on -stationary  correlation functions. T h is tim e-averaging process can cause de­

v ia tion s from  th e  true system  frequency and, if  th e  p lug-in  m eth od  is used, th is  

sh ift is clearly tran sm itted  to  th e  estim ated  perturbations.

•  (d) Mismatch between the frequency content of the data and estimated perturba­

tions. In  th is  case, th e  auto-correlation  functions used  to  estim a te  th e  perturba­

tion s are sh ifted  in  frequency by 15% either side o f  th e  correct system  frequency. 

T h e sen sitiv ities, on th e  other hand, are com p u ted  at th e  correct natural fre­

quency.

To illu strate th e  4 situ ation s above, sy stem  A  is  em ployed , b u t th e  norm alisation  to

b e used m akes th e  results valid for arbitrary system s. U sin g  th e  perturbation  m ethod
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Fig, 6.7: Illustration of the robustness of the perturbation method with respect to errors in 
the computed perturbations.

w ith  th e  exact auto-correlation  function  and covariances, th e  norm alised random  error 

in th e  identified dam ping ratio w as com puted  for th e  sam e param eters as in  case 1 in  

tab les 6 .2  and 6.3, depend ing on  w hether th e  influence o f  noise or estim ation  errors is 

considered. T h e  th u s com puted  norm alised random  error w as th en  norm alised w ith  

respect to  th e  true norm alised  error. A s m entioned , th is  im plies th a t th e  resu lts show n  

are n o t on ly  valid  for sy stem  A  bu t also, proceeding in  th is  fashion show s th e  devi­

ation  from  th e  true error due so le ly  to  inaccuracies in  th e  m odelled  perturbations as 

described in  cases (a), (b ), (c) and (d) above. Since th e  error in  th e  natural frequency  

is sm all, on ly  th e  dam ping ratios are considered and th e  resu lts are show n in figure

6.7.

It is seen  from  figure 6 .7  th a t th e  random  error is well behaved  in  cases (a), (b) 

and (c) in th e  sense th a t th e  over- or underestim ation  in th e  perturbation  causes a  

d eviation  from  th e  true norm alised random  error th a t is lower th a n  th e  error in th e  

perturbation itself. It is also seen from  cases (a) and (b) th a t th e  effect o f under- or 

over estim atin g  th e  perturbations results in th e  sam e relative d ev ia tion  from  th e  true  

error. For case (d ), however, th e  perturbation m eth od  is n ot w ell behaved and it is
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seen  th a t even  for sm all discrepancies betw een  th e  frequency in  th e  correlation func­

tion  and th e  estim ated  variance and covariances, th e  norm alised random  error is very  

poorly  predicted  b y  th e  perturbation  m ethod . However, such a  situ a tion  is unlikely to  

occur in  practice provided th e  plug-in  m eth od  is used  to  com pute th e  perturbations  

since, as illustrated  in  chapter 3, section  3 .5 .1 , th e  variance and covariance estim a ­

tors o f  th e  sam ple correlation functions described in  equation  3.42 com bined w ith  th e  

fia t-top  w indow  d oes n ot affect th e  oscilla tory  character o f  th e  true covariances but 

on ly  over-or underestim ates th e  am plitudes. C ase (d) w as chosen w ith  th e  aim  to  

em phasize th e  im portance o f  estim atin g  th e  perturbations using th e  plug-in  m ethod, 

rather th an  relying on  a  m odel com puted  ind ep en d en tly  from  th e  sam ple correlations.

D u e to  th e  idealised  m odelling assum ptions m ade above, it  is w orth checking th e  

results d ep icted  in  figure 6 .7  by sim ulation . To do th is, 500 response histories w ith  

th e  sam e param eters as in cases 1 and 4, for system s A  and B  respectively, are com ­

pu ted  and th e  variance and covariances, and hence th e  perturbations, are obtained  

using th e  plug-in  m eth od  described in  chapter 3 and th e  sy stem  identification  was 

perform ed using a  13 x  8 H ankel m atrix. In  th is  fashion, 500 error estim ates were 

obtained  for each o f  th e  m odal param eters for each o f  th e  tw o system s. A  scatter p lot 

o f  th e  la tter are show n in  figures 6.8. T h e m ean norm alised  error, /i[er (-)], o f  b oth  

m odal param eters as w ell as their standard error cr[er (-)] are g iven  and represented on  

th e  figures. T h e  w id th  and height o f th e  rectangles represent th e  standard  error o f th e  

m odal dam ping ratios and frequencies respectively. In a first in stance, it is seen from  

th e  standard error th a t th e  perturbation  algorithm  is very stab le  in  th e  sense th a t, on  

average, w e can exp ect a  3.17% and 0.65%  dev ia tion  from  th e  m ean dam ping ratios for 

system  A  and B  respectively  as a  result o f  th e  estim ation  errors in  th e  perturbations. 

It rem ains to  illu strate th e  linear behaviour o f  th is  d ev ia tion  w ith  respect to  under­

and overestim ation o f th e  perturbations as show n in  figure 6.7: since th e  variance 

and covariances were com puted  from  each o f  th e  500 responses for each system , it is 

possib le to  estim ate  th e  norm alised random  error o f  th e  th u s com p u ted  variances and  

covariances. A s before, th e  random  error at zero lag  is chosen  as representative. A
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norm alised random  error o f 45.39%  and 18.97% o f  th e  variance at zero lag w as found  

for system  A  and B  respectively. T h is m eans th a t, on  average, th e  variance is an over- 

and underestim ation  by th is  am ount and represents th e  error in  th e  abscissa  in  figure

6.7. Since th e  behaviour o f  th e  norm alised random  error in  th e  m odal param eters as 

a function  o f  th e  th e  norm alised error in  th e  estim ated  perturbations is linear, w e can  

extrap ola te  th is  error for th e  estim ated  dam ping ratios from  th e  figure. For a  15% 

error in th e  perturbation estim ates, it is seen  from  figure 6 .7  th a t, roughly  a  7.2% er­

ror in  th e  predicted  norm alised error for th e  m od al dam ping ratios is  to  b e  expected .
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T hus, fbi 46 39%, th e  extrapolated error y ields 21 79% in  case o f  system  A. Sim ilarly  

for sy stem  B, an extrapolated value of 9.11% can  b e  found. From  the scatter p lots 6.8  

and th e  com puted  standard deviation o f  th e  norm alised random  error, w e can  com pute  

th e  norm alised error (w ith  respect to  th e  com puted  m ean, taken to  b e  th e  true error) 

in  th is  normalised error to  find 317/i4.6i =  21.70%  and 0-65/6.80 =  9.56% . T hese values 

are very close to  th e  extrapolated  values above thereby supporting th e  idealised  sim u­

la tion  in  figure 6.7, and th e  robustness o f th e  perturbation  algorithm  w ith  respect to  

errors in  th e  com puted  perturbations ob ta in ed  v ia  th e  plug-in  m eth od  from  chapter 3.

Influence of Errors in the Computed Sensitivities

To illustrate th e  effect on  th e  predicted random  error due to  inaccuracies in th e  com ­

pu ted  sen sitiv ities, again  system  A  is considered and th e  param eters used in  the  

perturbations analysis are th e  sam e as in tab les 6 .2  and 6.3, depend ing on w hether  

th e  influence o f  noise or estim ation  errors is considered. A  13 x  8 H ankel m atrix  

was used. However, in stead  o f  using th e  true auto-correlation  functions as input to  

th e  perturbation algorithm , th e  estim ated  sam ple correlation functions from  each o f  

th e  500 sim ulated  response h istories were used and th e  perturbation  analysis w as run  

for each o f th e  500 sim ulations. T h is resu lts in  an ensem ble o f  500 estim ates o f  th e  

norm alised random  error in  th e  m odal param eters. S ince th e  perturbations w ere m od­

elled  ex a ctly  as in  tab les 6 .2  and 6.3, th e  scatter  o f  th e  norm alised random  error is 

entirely  due to  th e  inaccuracies in  th e  com puted  sen sitiv ities. T h e  resu lts are depicted  

in figures 6.9. It is seen  from  figures 6 .9(a) and 6 .9 (b ), show ing th e  resu lts where the  

sam ple correlation functions w ere corrupted by 15 and 30% noise respectively, th a t th e  

system  sen sitiv ities axe robust w ith  respect to  noise  d isturbance since th e  scatter in  

th e  predicted norm alised random  errors is sm all and clusters c losely  around th e  true  

error as can be seen by com parison w ith  case 1 in  ta b le  6 .2 . T h e  standard  d eviation  of 

th e  norm alised random  error in th e  natural frequency and dam ping ratio is indicated  

in  th ese  figures and represented by w id th  and height o f  th e  rectangle respectively.
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Fig. 6.9: Illustration of robustness of perturbation method with respect to errors in the esti­
mated system sensitivities. The simulations are performed on system A. Figures(a) and (b) 
show the scatter due to 15% and 30% measurement and figures (c) and (d) due to estimation 
noise due to record length of duration T  =  900 and 600s respectively.

Although a slight bias is observed in the 30% noise case, the scatter in the modal 

damping ratios is roughly within 1% of the true error as can be seen from the 0.015% 

standard deviation. The scatter in the frequencies is negligible.

Figures 6.9(c) and 6.9(d) depict the scatter of the normalised errors predicted by 

the perturbation method when the computation of the sensitivities are corrupted by 

the estimation errors in the sample auto-correlation function. It is seen that, as for
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th e  norm alised error itself, th e  scatter is m ore significant in th is  case. T h e linear cor­

relation  betw een  th e  norm alised error in  th e  natural frequencies am i dam ping ratios  

is  due to  th e  fact th a t  th e  error in  th e  identified  sy stem  p o le  affects b o th  m odal p a ­

ram eters, a lthough  th e  m odal dam ping ratios suffer sign ificantly  m ore. N onetheless, 

th e  standard d eviation  o f  1.02 m id 1.60 percentage p o in ts w hen th e  record length  is 

T  =* 15 and 10 min  respectively, show s th a t, on  average, th e  perturbation m ethod  

yields stab le  estim ates o f  th e  random  error. A s for th e  noise case, a  downward bias 

is noted  in  b o th  figures. A  possib le cause for th e  la tter  m ay b e  attrib u ted  to  th e  fact 

th a t th e  variance is n ot corrected for bias. N on eth eless, figures 6 .9 (a )-6 .9 (d ) show  

th a t th e  perturbation m eth od  is robust. C learly as th e  record len gth  is increased, 

th e  sam ple correlation are b etter estim ated  and th e  perturbation  results becom e m ore 

stab le  as evidenced by com paring figures (c) and (d ).

It m ay b e w orth  at th is  stage briefly com m enting  on  th e  record length . D ue to  

th e  noninvasive nature o f  operational m odal testin g , it  is generally  possib le to  acquire 

significant am ounts o f response data. T h e to ta l tim e  over w hich th e  response can be  

m easured is influenced by a  few  factors. In  a  first in stance, it depends on  th e  bit-rate  

and storage capab ility  o f  th e  d a ta  acquisition  equipm ent at hand. H owever, since  

th e  m odal frequencies o f  c iv il engineering structures are typ ica lly  low , and hence a 

low  sam pling rate can be chosen, long response records are possib le. R ecord lengths  

ranging from  30 — 60 mins  can b e  considered typ ica l, see for instance C antieni (2005); 

D eS m et et al. (1996); Farrar and Jam es (1997); Felber et al. (1996), but longer re­

sponse h istories are becom ing com m onplace (Q in and Q ian, 2001). B u t th e  size o f  

th e  structure, th e  num ber o f  channels available and th e  coarseness o f  th e  desired mear 

surem ent grid also p lay a role. W hen th e  m easurem ent grid is sm ooth  and th e  size of  

th e  structure large, m any setu p s m ay b e required if  th e  num ber o f available channels 

is low. Perform ing such a test takes tim e and th e  len gth  o f  th e  response h istories is 

often  com prom ised. Such a situ ation  is, for instance, described  for a  dam  in C antieni

(2005), w here th e  response histories were lim ited  to  6 mins. I f  on ly  frequencies are
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desired, short record lengths axe often sufficient to obtain a reasonably accurate es­

timate Cunha et M, (2001) m  in other cases, for instance, when the response due to 

earthquake loading is sought, which have a duration of about 60 -120  s short records 

must be used. In most ambient testing applications to civil engineering structures, 

one can expect to collect data for > 15 min  which means that our choice of using 

10 — 15 min can be considered conservative.

Influence o f Combined Instrum entation and E stim ation N oise

Having investigated the influence of measurement noise and estimation errors in the 

sample correlation functions on the identified modal parameters, as well as the robust­

ness of the perturbation method with respect to errors in the estimated perturbations, 

the behaviour of the predicted normalised random error is investigated when both er­

ror sources contribute to the perturbation. Again, we proceed by simulation on the 

two systems A  and B. For each system, 500 response histories were simulated by 

adding a 30% broad-band white noise signal to the computed response time-histories. 

The response and noise signal were computed using the same parameters as in cases 

1 and 4, for the two systems respectively, given in tables 6.3 and 6.2. The variance 

and covariances, and hence the perturbations, were obtained using the plug-in method 

described in Chapter 3. The system identification was performed using a 7 x 4 Han­

kel matrix for system A and a 22 x 14 Hankel matrix for system B. In this fashion, 

500 error estimates were obtained for each of the modal parameters for each of the 

two systems. A scatter plot of the latter are shown in figures 6.10. As before, the 

mean normalised error, ^[er (-)], of both modal parameters as well as their standard 

error cr[er (-)] are given and represented on the figures. The width and height of the 

rectangles represent the standard error of the modal damping ratios and frequencies 

respectively. For comparison, the true normalised errors are given in table 6.4. As 

expected, it is seen by comparing table 6.4 to tables 6.2 and 6.3 that most of the 

error stems from the estimation noise. However, the contribution from the measure-
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meat noise Is clearly visible for system A (compare with tables 6.2 and 6.3) and it 

appears that the contribution of both sources add up to yield the total error. Quite 

surprisingly, however, this does not appear to be the case for the random error in the 

frequencies, for which a much higher error is observed. It is not clear why this is the 

case but, importantly, the perturbation method predicts the correct error.

Due to the fact that noise is so significantly mitigated when a higher dimensional 

Hankel matrix is employed, the addition of both errors is less obvious for the simula­

tion on system B, although a slight increase in random error is picked up. Since the 

random error in the estimated modal parameters due to noise decreases sharply as 

more correlation lag values are used (c.f. table 6.2 and figures 6.6) but, on the other 

hand, increases gently due to estimation errors (c.f. table 6.3), one can expect the 

random error to reach a minimum when the influence of the noise starts to fade and 

starts to be dominated by the estimation errors only. Such a behaviour of the scat­

ter of the modal damping ratios identified via the correlation fit method was already 

reported by Cooper (1989). Comparing the true errors in table 6.4 with the mean 

predicted error in figures 6.10 it transpires that the latter are slightly overestimated. 

The precise reason for this discrepancy is not known but the slight errors that ensue 

due to the windowing and approximations in the plug-in method are plausible candi­

dates. These simulations show that the plug-in method is capable of accounting for 

both disturbances in the data with good accuracy and in fact, due to the nature of 

the method, any random disturbance will be picked up in this fashion as long as it is 

stationary.

It is seen from figure 6.10 that the standard deviation is both cases is small so that

___________ «r(A)(*) «r(fl(%)
System A  0.82 16.01
System B  0.10 7.36

Tab. 6.4: True normalised error of the estimated natural frequencies and damping ratios due 
to the combined influence of measurement noise and sample estimation errors.
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Fig. 6.10: Illustration of the perturbation method in the presence of combined measurement 
noise (30%) and sample estimation errors.

the true error is on average predicted with good accuracy. It appears from figures 6.10 

that the linear correlation between the error in the identified modal damping ratios 

and frequencies is negative i.e. as the accuracy in the frequencies increases, its drops 

for the damping ratios and vice versa. However, the frequencies are identified accu­

rately and the outliers do not deviate excessively from the mean with a maximum 

absolute error of 6% occurring for system A. When only a single response record 

is available from which the error in the SSI/Cov-identified modal parameters is pre­

dicted, it is very difficult to tell how accurately the error prediction approximates the
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true error. It fallows from figures 6.7, 6.8 and the relateddiecus8ion,that an estimate 

of how well the tree error is approximated could be obtained if the random error in the 

sample variance of the auto-correlation function at zero lag were available. However, 

due to tie  gentle slope erf the line in figure 6.7 relating the normalised error in the 

perturbations to the deviation from the true error in the identified modal parameters, 

a rough estimate of the the random error in the sample variance of the auto-correlation 

function at zero lag may be sufficient to get a good idea of the accuracy of the single 

error predicted by the perturbation method. Although this knoweldge would be desir­

able to place confidence in the predicted error, this issue was not pursued further and 

should be the subject of further research. Due to the stable nature of the perturbation 

method as well as the plug-in method to estimate the perturbations, the simulations 

so for have shown that, on average, one can expect to predict the random error in the 

mocfol parameters with good accuracy for all practical purposes. It is worth point­

ing out that, as shown in Chapter 4, the variance and covariances, and hence the 

perturbations may alternatively be computed using the bootstrap method. In this 

case, an estimate of the root-mean-square error of the resulting estimates is obtained 

as a by-product, although the latter has the undesirable porperty that it is accurate 

only if the estimate of the variance and/or covariance is accurate too. Nonetheless, 

this may be used to get a crude idea of the accuracy of the actual error prediction. 

The performance of the bootstrap in conjunction with the perturbation method is not 

investigated in this thesis and the use of the bootstrap as a separate tool to determine 

the errors in identified modal parameters is investigated in the next chapter.

For completeness, it is shown that the perturbation method also takes into account 

the random error introduced due to model order selection. As described in Chapter 

2, the SSI/Cov requires the model order to be specified by the user with the aim 

to separate the noise modes from system modes. For a more detailed explanation, 

the reader is referred to Chapter 5. In practice, the model order is determined by 

inspection of the singular value diagram, and the largest gap in the singular values



indicates the model order. Bfewever, this gap is not always obvious and consequently, 

the model order is often under- or over specified. In the latter situation, part of the 

noise space is retained in the curve fit and clearly, this affects the random error of the 

identified modal parameters. This Is shown in table 6.5. The simulation is performed 

using system A and B and the record length and sample interval are the same as in 

the previous section. The identification is performed with a 22 x 14 Henkel matrix. 

The first case shown (that is for the true model order 2) is the same as in the previous 

motion, but is repeated here for a better comparison. It is seen that when the system 

is identified with a higher model order, the random error in the modal parameters 

increases and this behaviour is correctly predicted by the perturbation method. The 

increasing random error with model order reflects the fact that part of the noise space 

is retained in the identification of the system matrices. It is noted that not only does 

the random error in the modal parameters increase but also the scatter in the pre­

dicted errors. This can be seen from the standard deviations shown in the table. In 

practice, the distinction between the identified system modes and noise modes is made 

using stabilisation diagrams. However, as pointed out by Bergman et al. (1989), the 

random errors of the spurious modes predicted by the perturbation analysis tends to 

be significantly larger compared to those of the system modes and this information 

may be used to separate noise from system modes. It is shown in Peterson et al 

(1996), however, that it is possible for spurious modes to be identified with a random

System A System B
Model Order 2 4 6 2 4 6

True Error (%)
er(/o) 14.42 14.64 14.91 7.36 7.50 7.78
Cr(£) 0.15 0.15 0.15 0.10 0.10 0.10

Predicted Error (%)
mM /o)] 15.37 15.58 15.88 7.49 7.62 7.98
<?[er(fo)] 0.016 0.016 0.016 0.006 0.007 0.011
/*M£)1 0.16 0.16 0.16 0.10 0.10 0.11

1.50 1.50 1.51 0.35 0.38 0.92

Tab. 6.5: Influence of model order selection on the predicted random errors.



error comparable to that of tfa® system modes go that amode selection, based solely cm 

the associated predicted random errors is not always reliable and therefore should be 

used only as a tool to assist the stabilisation diagram interpretation. In the simulation 

above, due to the cumbersome task of analysing a stabilisation diagram for each 500 

realisations, the system modes were picked based on their significantly lower predicted 

random errors. This is acceptable in this case, because the true modal parameters as 

well as the true system order is known which allows checking whether the true system 

mode has been picked in each case.

Influence o f N on-w hite, N on-stationarity Loading

It has been shown so far that the perturbation method yields accurate and robust 

estimates of the random error in the SSI/Cov-identified modal parameters when the 

excitation of the system is broad-band white noise and the response is corrupted by 

measurement noise. The datardriven method developed in chapter 3 to estimate the 

perturbations to the sample correlation functions takes into account the combined in­

fluence of the estimation and measurement noise and in fact, since this plug-in method 

is designed to estimate the variance and covariance of sample correlation functions 

computed from random stationary data, any disturbance of the response other than 

estimation and measurement noise is accounted for by this method, as long as it is 

stationary. Although it is common practice in operational modal analysis to assume 

that ambient loading conditions and hence the response of the structure is stationary, 

examination of full-scale real response data has shown that this is not always the case. 

In this section, it is investigated whether the perturbation method also yields accept­

able random error predictions in the SSI/Cov-identified modal parameters when the 

loading conditions exhibit non-stationary characteristics. Also, the departure from 

white loading conditions is considered.

- For the vast majority of applications of operational modal analysis to civil en-



gineering structured, the assumption of white and stationary loading conditions is 

applicable, at toast in a relaxed form: for instance, Turner and Pretlove (1988) have 

shown by simulation -which is validated against measured data- that traffic, with its 

random weight of vehicles, their random arrival times and the randomly distributed 

road irregularities has a broad enough spectrum to excite the fundamental modes of 

bridge structures. Although the spectrum of traffic induced excitation may not be 

“flat”, their findings suggest that the spectrum is slowly varying and that a white 

noise approximation may be appropriate, at least over the low frequency range cover­

ing the fundamental modes of bridges. Also, as reported by Holmes (1998); Kareem 

(1987), the spectra of wind loads on structures falls within a lOifz frequency band 

and are relatively slowly varying so that the above argument applies and a white 

noise excitation can generally be taken as a valid assumption. However, exceptions 

occur for instance in structures where periodic forces mix with random ambient loads. 

Such situations occur commonly in structures associated with harmonically moving 

components arising most commonly from unbalanced rotating parts such as blades in 

wind turbines (James et a l , 1993) or floor slabs supporting plant for instance. Mo- 

hanty (2005) has developed an extension to the SSI/Cov (or the ERA) to deal with 

such cases and Brincker et al (20056) developed and indicator to distinguish between 

structural modes and modes caused by harmonic excitation.

Deviations from stationary loading regimes are much more common in practice. 

For instance, in traffic induced bridge vibration, the passing of vehicles over bridge 

deck causes transients in the response, and also, as shown by Calcada et al (2005a, 6) 

that the interaction force between vehicle and bridge deck has harmonic components. 

A typical repose of the vibration of bridge deck induced by traffic is shown in figure 

6.11, clearly showing the transients due to a vehicles crossing the deck. This measure­

ment was taken by the author in collaboration with the University of Luxembourg 

on a four-span bridge over the river Alzette in Luxembourg in 2004. Non-stationary 

responses of bridge decks to aerodynamic loading, resulting in clear frequency changes
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Fig. 6.11: A typical response acceleration record of traffic induced bridge deck vibration.

in the response with time, have also been reported, see for instance Zhang et al. (2006).

Studying the influence of non-stationary, non-white ambient loading conditions 

on modal param eters in a general framework is very challenging. The reason is tha t 

non-stationarity as well as non-whiteness are negative statem ents in the sense tha t 

they describe a lack of properties rather than  specifying the exact nature of the non- 

stationarity  or the precise spectrum  of the frequency content of the da ta  respectively. 

The situation is further complicated by the fact th a t the specific nature of the non- 

stationary characteristics and non-white ambient loading conditions will inevitably 

vary from case to case and to the authors knowledge, there is no clear consensus on 

the form of non-stationary, coloured loading typically occurring in operational modal 

testing of civil engineering structures. Even in particular cases, where the sources of 

ambient excitation forces are known, realistic simulations of the resulting loading is 

extremely challenging on its own, in particular for wind excitation which generally 

depends on the geometric properties of the structure  as well as on its urban or sub­

urban condition. Therefore, to achieve our aim, we content ourselves by modelling a 

generally hostile loading regime departing from the common assum ptions of station­

ary, broad-band white noise excitation.

t--------------- 1--------------- 1--------------- ]--------------- r

_j_____________i_____________i_____________i_____________i____________
20 40 60 80 100 120

time (s)
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Load case Description Illustration

• Normally distributed, white noise signal with 
unit mean-square value (m sv=  1) is modulated 
by a stepped modulation function. The latter
is shown in the figure on the right (red) 
superposed on the modulated signal.

• This yields an excitation that is non-stationary
in the mean. The maximum and minimum m s v of 

The modulated signal are 1.3 and 0 .7  respectively.

• Additionally, a 2Hz harmonic is superposed with 
a peak amplitude of 0.6.

• The modulation function remains the sam e for all 
simulated load c a se s  so  that the only random 
factor stem s from the underlying white noise 
signal.

_g i_ --------------- 1-----------------1-----------------1-----------------1----------------- 1-----------------1-----------------1----------------- 1----------------j

0 100 200 300 400 500 600 700 800 900
Time (s)

• Normally distributed, white noise signal with 
unit mean-square value (m sv = 1 )  is modulated 
by a stepped modulation function.

• Unlike load c a se  1 above, the stepped  
modulation function changes for each simulated 
load case . Two such modulation functions are 
depicted on the right. These changes are random 
and the plateaus have duration drawn uniformly 
on the interval 40-120s. The respective amplitudes 
are sampled from a uniform distribution with a m sv  
of 1.3.

• The mean square value over an ensem ble of 
500 simulated load c a se s  is shown in grey.

1

T im  e  ( s )

Fig. 6.12: Description of load cases 1 and 2.



Load case D escription Illustration

to
to

• The loading is modelled by concatenating 
“pockets” of coloured noise with different band- 
widths resulting in a time-varying , non-stationary 
frequency structure.

• The excitation has unit m sv  and the band-widths 
of the coloured noise pockets vary randomly 
between 0 and 2.5 Hz. They all contain the 1Hz 
natural frequency of the system. A typical 
response, together with its spectrogram is 
illustrated on the right.

•The duration of each pocket and its band-width 
are kept fixed in all simulated load cases.

• The excitation is modelled in the sam e way than 
in load c a se  3 except that the occurrence and 
duration of different frequency pockets is chosen  
randomly from a Gaussian distribution yielding a 
mean duration of 225 s  and a standard deviation 
of 20 s.

•Again, all frequency bands contain the 1Hz 
natural frequency of the system. A typical 
response, together with its spectrogram is 
illustrated on the right.

Fig. 6.13: Description of load cases 3 and 4.



Load case Description

• Normally disfributed, white noise signal with 
unit mean-square value (msv = 1) is modulated 
by a the same stepped modulation function as in 
toad case 1.

• In addition, a narrow-band coloured noise signal 
is superposed onto the modulated signal.
The coloured noise signal has a band-width lying 
between 1.2-1.5 Hz. The power spectrum of a 
typical response to this load is illustrated on the 
Right

• Normally distributed, white noise signal with 
unit mean-square value (msv= 1) is superposed 
with another white noise signal modulated by a 
function consisting of randomly occurring 
Gaussian impulses.

• It is assumed that, on average, an impulsive 
force occurs 3 times per minute. These events 
are drawn randomly from a uniform distribution. 

The duration of each impulse is drawn 
uniformly from the interval 10-20s.

• The amplitudes of the impulses are random 
samples from a uniform distribution ranging from 
0-25. Since the arrival times of the impulses are 
Random, it may occur that two impulses occur 
more or less at the same time and their 
amplitudes add up.

4 0 0  5 0 0
T im •  ' ( •  )

5 0 0
T im •  ( •  )

Fig. 6.14: Description of load cases 5 and 6.



• (a) a stationary, stochastic signal w(t) to which a deterministic function M(t) 

is added, resulting in non-stationary mean value,

• (b) modulation of a stationary, stochastic signal w(t) by a deterministic envelope 

function M(t) and

•  (c) signal in which the instantaneous frequency changes with time.

Combinations of such elementary non-stationary models have been used, for instance, 

by Gasparini (1979); Sun and Kareem (1989) to describe excitation due to ground 

vibration and by Giuffre and Pinto (1974) to simulate the response of bridges to 

non-stationary excitation loading. In this section, these models are used to build 6 

different load cases described in figures 6.12, 6.13 and 6.14. Simulations are performed 

on system A  and the results are shown in table 6.6. 900s (At — 0.05s) of data are 

used and a 22 x 14 Hankel matrix is used in the identification process. 500 records 

are simulated for each load case.

The first load case (c.f. figure 6.12 ) consists of a combination of the elemen­

tary models (a) and (b). Both the 2Hz harmonic and the deterministic modulation 

function are repeated exactly for each record which results in a time-varying mean 

and mean-square value, the latter being equal to the modulation function since the 

stationary white noise signal has unit mean-square value. The different amplitudes 

imparted by the modulation function on the load time-history may, for instance, repre­

sent varying wind pressures acting on a structure during the test time. The harmonic, 

on the other hand, may be representative of a driving force caused, for instance, by 

rotating components in/on the structure (e.g. wind turbines, plant excitation on floor 

slabs). While it is reasonable to assume that the harmonic driving force does not 

change for a particular test case, it is in general unlikely that the modulation remains 

the same for repeated tests on the same structure. Exceptions occur, for example, in



earthquake induced ground motion where the build up and decay follows a similar 

trend for different load cases* Load tsetse 2, therefore, is a variation on load case 1 

where the modulation profile changes randomly from record to record. It is important 

to note, however, that the thus modelled excitation is not necessarily non-stationary. 

To see this, consider the instantaneous mean-square value at a specific time t* of the 

load computed over the ensemble of all load cases generated by this stochastic process. 

Since the amplitudes of modulation function are random, the mean-square value over 

the ensemble of excitations at any time t* will tend to the mean-square value of the 

uniform stochastic process used to generate the random amplitudes of the modulation 

function. This is clearly seen in figure . Nonetheless, this case is still of interest since 

the mean-square value is clearly time-dependent in a single record as would easily 

be established numerically using short-time averaging procedure (Bendat and Piersol, 

2000) and the SSI/Cov cannot account for this time dependence. Before discussing the 

results of the simulations in table 6.6, it is worth reviewing briefly how the SSI/Cov 

deals with non-stationary data. The SSI/Cov identifies the system modal parameters 

from correlation functions of stationary data i.e. the correlation functions depend on 

a single time variable describing the separation of two points in the response record. 

Non-stationary correlation functions depend additionally on the time at which this lag 

is measured, and hence are functions of two time variables. The SSI/Cov, however, 

is unable to deal deal with non-stationary correlation functions and hence ordinary 

stationary correlation functions need to be used. Clearly, when stationary correlation 

functions are estimated from non-stationary response records, the non-stationary char­

acteristics of the data is lost. Effectively, the time-varying statistics are averaged out 

(Bendat and Piersol, 2000). When the non-stationarity follows model (b) described 

above, a more precise description is available. Essentially, modulating a stationary 

noise signal by a deterministic function is the same than applying a window, and the 

effects of the latter on sample correlation functions was briefly described in Chapter 

3. In a nutshell, the modulation (or the window) function applied to the response 

record appears in the sample correlation function estimate as its own correlation func­



tion and affects the unmodulated correlation function multiplicatively (see. eqn. 3.22 

in chapter 3, page 62 or Schmidt (1985a) for more detail). For convenience, this is 

illustrated on a simple example below. Figure 6.15(a) shows the time-history -chosen
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Fig. 6.15: Illustration of the effect of a modulating function on the sample auto-correlation 
functions. The unmodulated time history and its correlation function are represented by the 
dotted back line, the modulation function and its correlation function by the solid red line 
and the modulated signal with its correlation function by the solid black line.

here to be a 3H z  harmonic in order not to include any random errors in the sample 

correlation function- modulated by the stepped function and the resulting modulated 

signal. Figure 6.15(a) shows the corresponding correlation functions and it is clearly 

seen that auto-correlation function of the modulated signal takes on the profile of the 

correlation function of the modulation function. It is precisely this additional distur­

bance we wish to account for.

The results of the simulations involving load cases 1 and 2 are shown in table 6.6. 

For a better appreciation of the influence of the non-stationarity that was introduced, 

the random error due to the underlying white noise signal only is also given in table 

6.6. As in the previous section, the «  1% discrepancy between the true and predicted 

random error may again be attributed to small bias errors in the sample estimates of 

the perturbations via the plug-in method. It is seen that for load case 1, the random 

error in both the true and perturbation estim ate is practically identical to the one 

due to white noise only. The explanation for this is simply that the harmonic and the
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rravinlatirm hmtrtmm are aa/fr signal and addit&cfflal random-

ness is introduced. On the other hand, however, it can be seen from the iflustration 

of the probelm in figures 6.15 that a bias error is introduced. This issue isdealt with 

in the next section.

For load case 2, where the modulation function varies randomly from record to 

record, it is seen that the random error increases. This is to be expected: referring 

again to figures 6.15, the perturbation of the correlation function due to the modula­

tion function changes for each response time-history and, this is naturally picked up in 

the sample random error computed from the ensemble of all the simulated responses. 

On the other hand, however, it appears that this additional random disturbance is 

not accounted for by the perturbation method. It was anticipated by the author that, 

at least to some degree, the extra disturbance caused by the modulation would be 

reflected in the random error as predicted by the perturbation analysis. The reason 

being that the plug-in method estimates the perturbations from the full length, flat-top 

windowed, sample correlation functions and since the latter are affected by the pertur­

bation of the non-stationarity as illustrated in figures 6.15, it was expected that the 

estimated perturbations, and hence the random error predicted by the perturbation 

analysis would be affected likewise. However, this does seem to be the case. Compar­

ing the variance of the true correlation function at zero lag in table 6.6, the influence 

of the additional disturbance due to the modulation function is clearly noticeable. 

When the plug-in method is used to estimate the perturbations, the influence of the 

random, slowly varying modulation functions is almost entirely eradicated, evidenced 

by the almost identical random errors in both the modal parameters and the correla­

tion function at zero lag. A plausible reason for this is that the variations due to the 

modulation function are too slow compared to the system frequency to be picked up. 

To support this, one can imagine the scenario of what would happen if the duration 

in the changes of the modulation function were increasingly reduced until the changes 

occur on average at intervals of the same order than the sampling interval. In this
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case, we would have a very good approximation of white noise signal, theinftuenee of 

wUett would clearly be picked up the plug-in method as previously shown, lb  mate 

sure that the cause of this discrepancy is due mainly to the estimated perturbations, it 

was checked that, i f  the the true perturbations, estimated from th e s a m p le  population 

of the 500 simulated response histories, are used in the perturbation analysis, then 

the predicted random error in the modal parameters agrees with the true values. This 

does nob mean, however, that the system sensitivities are unaffected, but rather that 

they incorporate the influence of the modulation function adequately.

Next, the influence of a non-stationary, non-white frequency content is investi­

gated. Load case 3, described and illustrated in figures 6.13, is composed of piecewise 

stationary coloured noise signals with a narrow band-width encompassing the 1Hz 

natural frequency of the system. The mean-square value of each noise ’’pocket” is 

unity and the duration of each is kept fixed for each simulated load record. This 

means that the only time-varying quantity is the instantaneous frequency content. 

The disturbance introduced to each stationary sample correlation function due to 

the averaging over the time-varying frequency content inherent in the computational 

process (Bendat and Piersol, 2000) results again is an increased random error as can 

be seen from the true error in table 6.6. As for load case 2, the perturbation method 

seems unable to account for the additional random error due to the non-stationarity 

and, as before, the reason can again be attributed to the inability of the plug-in method 

to account for the extra perturbation as evidenced by the comparing the random error 

of the correlation function at zero with the corresponding true quantity. Much the 

same observation holds for load case 4, where in addition to the random frequency 

bands, the occurrence and duration of the different coloured noise pockets of which 

the excitation signal is composed changes randomly from record to record.

Load case 5 examines the case when a narrow-band, frequency disturbance is added 

to the excitation. This load is modelled in exactly the same way as load case 1 except



that the 2H z  harmonic is ^  (0.3 Hz) coloured no®* dastar-

btwjy new  thp> rm±«r«il fewpeiifî y faf the ■: , Tiie spectrum ©fthe response is

shown in figure 6.14* It is seen in table 6.6 that this disturbance caw s a net increase 

in error in the identified natural frequency of the system and the latter is accurately 

captured by the perturbation method* Also the slight decrease in random error in the 

identified damping ratios is correctly predicted. Load case 6 consists of a superposi­

tion of two signals. The first one is a white noise signal with unit mean-square value 

and the second one a white noise signal modulated by randomly occurring Gaussian 

impulses with randomly varying duration ami amplitude. This load case was chosen 

to simulate, in a very elementary fashion, the excitation of fundamental mode of a 

bridge deck by traffic. The Gaussian impulses represent the passing of a vehicle of the 

deck* It is well known that the arrival times generally follows a Poisson distribution 

(see Chen and Feng (2006), for instance), but for the present purpose, drawing the ar­

rival times from a uniform distribution is sufficient. A typical excitation time-history 

together with the response of the system are shown in figure 6.14. The transients 

caused by the impulses are clearly visible in the response. Again, the situation is 

similar to the previous load cases involving non-stationary mean-square values; the 

random error induced to the modal parameters due to the random varying modulation

Simulated Error (%) Perturbation Method (%)

Case er(/o) €r(0 €r [-Rx(O)] mM /o)] M[€r(0] fjL[er [Rx( 0)]]

Stationary 
White Signal

0.15 14.42 14.05 % 0.16 (0.02) 15.37 (1.50) 15.27 %

1 0.15 14.76 14.00 % 0.16 (0.02) 15.23 (2.00) 15.11 %
2 0.18 17.72 31.45 % 0.16 (0.02) 15.22 (2.12) 15.77 %
3 0.18 16.21 34.60 % 0.15 (0.02) 14.90 (1.57) 15.54 %
4 0.18 19.48 33.64 % 0.15 (0.02) 14.90 (1.92) 15.87 %
5 0.76 13.40 10.46 % 0.77 (0.20) 13.83 (1.81) 10.83 %
6 0.26 24.25 29.80% 0.16 (0.02) 15.13 (2.09) 15.64 %

Tab. 6.6: Comparison of the simulated random error and the mean of the predicted random 
error using the perturbation method from 500 response measurements of System A in table 
6.3. The values in brackets yield the sample standard deviation of the estimated errors.



was checked again that tf the t e e  perturbations (i.e. as estimated from the ensemble 

of simulated response histories) areused in the perturbation algorithm, the true and 

predicted random errors in the modal parameters agree.

From 1dm above simulations, it is to be concluded that the perturbation method 

does not consistently yield accurate predictions of the random error in the SSI/Cov- 

identified modal parameters when the response data has non-stationary characteris­

tics. In particular, problems occur when the modulation function changes record to 

record, which induced an increase in random error in the modal parameters which 

was not reflected in the estimates predicted by the perturbation analysis. The cause 

of this was tracked down to the fact that the additional disturbance due to the non- 

stationarity was not picked up in the perturbations to the correlation function when 

estimated from the plug-in method. This is, however, not necessarily to be interpreted 

as a drawback of the combined plug-in/perturbation method: it was explained above 

that, when the modulation function remains the same for each record, most of the er­

ror in the correlation functions and the resulting SSI/Cov-identified modal parameters 

is systematic and has little effect on random error as is the case for load case 1, and 

in such a case the predicted and true error will be in good agreement. Therefore, to 

say that the perturbation method does not yield consistent estimates of the random 

error in the SSI/Cov-identified modal parameters from non-stationary data does not 

do justice to the method. However, as far as operational modal analysis is concerned, 

one is in general not in a situation, where the modal test can be repeated under iden­

tical non-stationary conditions and it is more likely to be in a situation as modelled in 

load cases 2,3,4 and 6, where non-stationary characteristics in a single time-history 

can be recorded using a short-time averaging procedure as described in Bendat and 

Piersol (2000). In these cases, unfortunately, as evidenced in particular by load case 

6, the predicted random errors is not accurate. On a more positive note, however,
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to the robustness of the SSI/Cov with respect to non-stationary data 

(see BasseviUe et al. (2001); Beneviste and Fuchs (1985)) and slowly varying distur­

bances, it is seen from table 6.6, that, considering the standard deviations from the 

ensemble erf predicted errors for each record, the random error predictions are sensi­

ble and useful information, such as the influence of narrow-banded noise near system 

frequencies (load case 5) is to be gained. Nonetheless, in practice, if the data contains 

slowly varying trends, the estimated random errors should be treated conservatively. 

A remedy to the problem at hand does not seem obvious and is the subject of further 

research.

6.4 Bias Error

As explained in detail in Chapter 5, bias is introduced to the modal parameters by 

the SSI/Cov identification algorithm primarily due to two sources:

•  truncation of singular values representing system dynamics, the truncation bias

Mx)

• the effect of passing noise through the nonlinear algorithm, the quadratic bias

Mx)

where as before, the parameter x  is used to denote any particular modal parameter. 

The bias is a systematic error and therefore if known, the estimates can be bias cor­

rected. However, determining the bias with certainty is not a trivial task since (a) by 

definition, the bias involves knowledge of the parameter one is trying to estimate and

(b) bias estimates are generally contaminated by random errors, taken into account in 

this case by the variance of the truncation bias. Therefore, in practice, bias-correcting 

the estimated parameters can be dangerous since the bias corrected estimates may 

have a larger random error than the original estimate. In this section, simulated data 

is used to assess the accuracy of the bias errors estimated by the perturbation method 

and it is investigated how to use these estimates, together with the random error stud­

ied in the previous section, to assess the uncertainty in the SSI/Cov-identified modal
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parameters.

The simulations are performed on the same two SDOF systems given in table 6.3. 

The bias and RMS errors are investigated using the same simulated 900s (At =  0.05s) 

response time-histories embedded in a 30% noise floor as for the random error for 

both systems.The estimation of the perturbations of the correlation functions via the 

plug-in method in relation to the perturbation analysis was validated in the previous 

section dealing with the random errors. Clearly, the latter aspect remains the same 

in this case. The true errors are computed from 500 simulated response time-histories 

and the perturbation analysis results shown are based on the first 200 response time- 

series of this set. The results are presented in tables 6.7 and 6.8 for system A  and B  

respectively. It is noted that, as opposed to the previous sections, Where the identified 

random error was normalised with respect to the mean of the identified modal para­

meters (i.e. a biased estimate), the results shown here are normalised with respect to 

the true modal parameters.

It is seen from the true errors in table 6.7 that the identified modal damping ratios 

are significantly biased, but this error appears to decrease as the dimension of the 

Hankel matrices used in the analysis is increased. A similar effect on the bias in the 

identified modal damping ratios as the number of correlation lags used is increased is 

reported by Cooper (1989). A particularly large bias is seen to occur when for the 

lowest dimensional (7x4) Hankel matrix. In the latter case, and for the case in which

a 13 x 8 Hankel matrix was used in the analysis, the RMS error defined as (Bendat 

and Piersol, 2000)

is seen to be predominantly due to bias, whereas for the 22 x 14 dimensional Hankel 

matrix, the bias and random error carry equal weight. The identified natural fre-

RMS(x) = VE{ ( x - x ) 2} = VVar(x) + l?(x) 

with b(x) =  -EK1-X (6.17)

(6.16)

231



? SPOE System h, At m 0.05s

MrnOt*) =  7 x  4 dm(Ho) es 1 1 x 8 Sm (H o) == 22 x 14

t̂ m  Error

b
fo

-0.044
(-4.4%)

£
0.049

(489.3%)

fo
—4.4 * IQr4 

(-0.04%)

1
0.0058
(57.7%)

fo
-2,4 10"4 
(-0.02%)

£
0.0017
(17.4%)

&
{%)

0.0075
(0.75%)

0.0092
(92.0%)

0.0016
(0.16%)

0.0023
(22.7%)

0 0015 
(0.15%)

0.0017
(17.1%)

RM S
(%)

0 0045 
(4 5%)

0.050
(497.9%)

0.0017
(0.17%)

0.0062
(62.1%)

0.0015
(0.15%)

0.0024
(24.3%)

Predicted by Perturbation Analysis

<%)
-0 023 
(-2 3%)

0.0315
(315.0%)

-2.1 • 10~4 
(-0.02%)

0.0058 - 
(57.9%)

-1.9 • 10"4 
(0.02%)

0.0018
(18.0%)

> ftj]
(%)

-0.007
(-0.7%)

0.0016
(16.3%)

-7.1 • 10~5 
(0.0%)

3.4 • 10~4 - 
(3.3%)

-3.9 • 10"5 
(0.0%)

2.4 • 10~4 
(2.4%)

p H M ]
(%)

0.008
(37.1%)

0.0068
(21.6%)

4.8 • 10"4 
(2.2%)

0.0010
(17.3%)

1.9-10"4 
(1.0%)

3.5 • 10"4 
(19.4%)

(%)
0.0081
(0.81%)

0.0099
(98.6%)

0.0017
(0.17%)

0.0024
(23.9%)

0.0015
(0.15%)

0.0018
(17.7%)

f i [ R M S ]

(%)
0.025
(2.5%)

0.0352
(352.3%)

0.0017
(0.17%)

0.0066
(65.8%)

0.0015
(0.15%)

0.0027
(26.8%)

Tab. 6.7: Comparison of the true and identified bias, random and RMS error in the SSI/Cov- 
identified modal damping ratio and frequency of SDOF system A. The identified errors are 
given as the mean of the errors computed via the perturbation analysis from 200 simulated 
response time histories. The corresponding true errors were computed from Monte-Carlo 
simulations over 500 response histories. The quantities in brackets give the corresponding 
normalised errors. The latter are normalised with respect to the true modal parameters (i.e. 
fo  =  1 H z  and £ =  1% of critical) with exception of the standard deviation of the truncation 
bias which is normalised with respect to the mean truncation bias.

quencies are much less affected by bias, with just above 5% error for the smallest 

dimensional Hankel matrix and less than 1% in the other two cases. As already ex­

plained, the Newmark-/? time integration method employed to compute the simulated 

response time histories, introduces a frequency shift whose magnitide depends on the 

natural frequencies of the system and the time step used in the integration. For this 

system, where a time step of At = 0.05s was used, it is easily calculated from equation
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- SPOT System B, At — 0.05s

13 x 8 dim(^fa) * 2 2 x  14

True Error

b
h

0.0022
(0.55%)

£ : - 
0 0071 
(470%)

Jb £
0.0046 7.8 10~4 
(0.11%) (5.2%)

h
0.0026

£
-9.3  lO"4 

(-6.2%)

(%)
0.0040
(0.10%)

0.0014
(9.3%)

0.0037
(0.09%)

0.0010
(6.7%)

0.0038
(0.10%)

0.0010
(6.7%)

RM S
(%)

0.022
(0.56%)

0.0072
(48.1%)

0.0059
(0.15%)

0.0013
(8.9%)

0.0046
(0.12%)

0.0014
(9,2%)

Predicted by Perturbation
w M
(%)

0.031
(0.78%)

0.0063
(41.9%)

0.0081
(0.20%)

0.0022
(14.6%)

0.0037
(0.09%) OS

 
H-

1 I

WM
(%)

6.6 • 10"4 
(0.00%)

9.3 • 10"5 
(0.6%)

1.7 • 10"4 
(0.00%)

6.3 • 10"5 
(0.4%)

1.2 • 10"4 
(0.00%)

5.2 • 10"5 
(0.3%)

ti[<T(br)]
(%)

0.0030
(9.5%)

5.9 • 10"4 
(9.3%)

9.3 • 1 0 '4 
(11.5%)

2.2 • 10"4 
(10.0%)

4.7 • 10"4 
(12.9%)

1.0 • 10‘ 4 
(14.0%)

mH
(%)

0.025
(0.1%)

0.0015
(10.5%)

0.022
(0.09%)

0.0011
(7.5%)

0.0023
(0.090%)

0.0010
(6.9%)

p[RMS\
(%)

0.0031
(0.78%)

0.0066
(43.3%)

0.0088
(0.22%)

0.0025
(16.7%)

0.0052
(0.13%)

0.0013
(8.3%)

Tab. 6.8: Comparison of the true and identified bias, random and RMS error in the SSI/Cov- 
identified modal damping ratio and frequency of SDOF system B. The identified errors are 
given as the mean of the errors computed via the perturbation analysis from 200 simulated 
response time histories. The corresponding true errors were computed from Monte-Carlo 
simulations over 500 response histories. The quantities in brackets give the corresponding 
normalised errors. The latter are normalised with respect to  the true modal parameters (i.e. 
fo = 4Hz and £ =  1.5% of critical) with exception of the standard deviation of the truncation 
bias which is normalised with respect to the mean truncation bias.

3.44 that the Newmark-/? scheme introduces a frequency shift resulting in a negative 

bias of —0.81 in the natural frequency. The true bias shown in table 6.7 was corrected 

for the Newmark frequency shift.

For system B, the true bias errors in the identified modal damping ratios given in 

table 6.8 show a similar behaviour to those of system A: the bias is largest when a low
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with an increase of the size of theHaakeil matrix. However, as the dimension of H@ 

is further increased, the bias is seen to change sign. The bias in the identified natural 

frequency is small and falls below 1% error for each case shown, and decrases steadily 

as dam(Ho) is increased. No change in sign of tbs bias is observed in this case. It 

is noted that, as for system A, the Mas shown In  table 6.8 has been corrected for 

the frequency shift introduced by the Newmark time integration. For the case where 

dim(Ho) =  7 x 4 ,  the RMS error is strongly dominated by the bias, whereas in the 

two remaining cases, the contribution of the random error is significant.

It is now investigated how well the perturbation analysis predicts the bias in the 

SSI/Cov-identified modal parameters, and together with the random error, the RMS 

error. The Mas in the identified modal parameters predicted by the perturbation 

analysis is given as the truncation bias, br, and the quadratic bias, bq. These two 

Mas terms add linearly to yield the total bias which is to be compared with the true 

Mas given in the tables. As described in Chapter 5, section 5.2.4, the truncation bias is 

affected by random errors, whose extent is expressed by the variance of the truncation 

bias. Tables 6.7 and 6.8 show the mean of the truncation bias identified from each 

of the 200 computed response time-histories, thereby obliterating the random error 

in the computation. However, as discussed in Chapter 5, the truncation bias itself is 

biased as result of the quadratic terms in equation 5.38. As discussed in the latter 

chapter, due to technical difficulties in determining the quadratic bias of the trunca­

tion bias, it was chosen to disregard the latter quantity. This means that the average 

truncation bias over 200 shown in tables 6.7 and 6.8 for both modal parameters is 

affected by quadratic bias of the truncation bias.

For both systems, it is seen from tables 6.7 and 6.8 that the estimated quadratic 

bias is small and appears to decrease as more data points are used in the identifica­

tion. Also, it transpires that the bias is largely dominated by the truncation bias. The



»TV«lyglia naift jasnclii&ap• jfetorf*{ $p -tlm *»»*»« gb0^$8d':8l®W,' the two

terms which yi*4d frh» ĉns^rm^ir bfrw («f- -ei|#eti0E':S»lS). tend to cancel each other 

oat, m behaviour similar to that observed in the computation of the random error 

(see figures 6.6). However, is noted that lor shorter response histories, where the ran­

dom error is more significant, we can expect a higher contribution from the quadratic 

Idas. For system A, the bias is, on average, accurately predicted by the perturbation 

analysis for the two cases where the identification has been performed with the two 

larger dimensional Hankel matrices. In particular, the error in the damping ratios is 

accurately predicted. It is also noted that the sign of the Has is correctly predicted, 

and shows that the truncation bias is responsible for an underestimation, albeit small, 

of the natural frequency and an overestimation of the modal damping ratios. This 

supports the interpretation of the truncation bias as estimated by the perturbation 

analysis explained in section 5.2.3 of Chapter 5. For the case in which the identifica­

tion was performed with the 7x4  Hankel matrix, the bias in the modal damping ratio 

is predicted with less accuracy. However, the severity of the bias is nonetheless re­

flected by the perturbation analysis results and gives the user a good idea of the extent 

of the systematic error in the identified modal parameters. Moreover, if the modal 

results were to be bias corrected in this particular case, a significant improvement in 

the identified modal damping ratios would be gained. For system B, the agreement 

between the true and predicted bias is good for the case where the identification is 

performed using a 7 x 4 Hankel matrix, but a significant discrepancy is observed for 

the remaining two cases; significant in the sense that if the bias computed from the 

perturbation analysis were used to correct the identified modal damping ratios, the 

bias would effectively be increased.

The random error in the estimated truncation bias is captured by the variance, or 

equivalently the standard deviation cr, of the truncation bias. The standard deviation 

of the truncation bias is shown in tables 6.7 and 6.8 and expressed as a percentage 

of the truncation bias itself. As mentioned in the introduction to this chapter, the
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variance of the truncation Mas should nmirit tike w m  te  determine whether the vteaar 

tiffed modal parameters shouM be 1 ^  ccarrected, provided that one is confident that 

tike bias has been determined with sufficient accuracy. F irstly itneeds to be checked 

whether the random error in the truncation bias predicted by the perturbation analy- 

sis provides a good estimate of actual random error in this quantity. To do so, the 

“true” random error in the truncation bias is given in table 6.9 below. The latter is 

simply computed from the sample standard deviation of the truncation Mas identified 

horn each of the 200 simulated response time-histories and can be compared with the 

mean random error estimated for each simulated response record via the perturbation 

analysis shown in tables 6.7 and 6.8. A comparison between the values in table 6.9 

and the truncation bias estimated via the perturbation analysis in tables 6.7 ami 6.8 

reveals good agreement. This also shows that the approximation made in Chapter 5 

to estimate the variance of the truncation bias in order to circumvent the computation 

of the sensitivities of the full eigenvector matrix P ' is acceptable and appears not to 

affect the outcome significantly.

Having investigated the accuracy of the bias terms and the related random error, 

it needs to be determined how to make the best use of this information to assess 

the uncertainty in the identified modal parameters and possibly, correct the modal 

estimates for bias. An obvious estimate of the accuracy in the SSI/Cov-identified 

modal parameters, involving the bias, can be expressed by the RMS error. The latter 

can simply be computed from equation 6.16 by summing the squares of the standard 

deviation of the biased estimate, i.e. x(e), and the total bias. It is noted that, since

dim(7io) = 7 x 4 dim{Ho) = 13 x 8 dim(?to) = 22 x 14
fo £ fo £ fo £

Sys A a[br\ 0.005 0.0060 3.5 • 10"4 9.8 • 10”4 1.6-10~4 2.8 • 10~4
(%) (21.2%) (19.0%) (1.6%) (16.9%) (0.84%) (15.5%)

Sys B a(br) 0.0032 5.5 • 10-4 8.8 • 10-4 1.9 • 10"4 4.8 • 10-4 1.0 -10“4
(%) (10.3%) (8.7%) (10.8%) (8.6%) (12.9%) (13.6%)

Tab. 6.9: True random error of the truncation bias for system A and B.



tl© variance of the biasecI estimate is used, the variance of the truncation Mas does 

not enter this RMS computation. The resulting RMS values are shown in tables 6.7 

and §.&. However, since the RMS error is dominated by the bias, or in other wards, 

the bias error in the SSI/Cov-identified modal parameters is large compared to the 

random error, it would be desirable to bias correct the modal estimates rather than 

jnst having a measure of how much we can expect the estimates to differ on average 

from the true modal parameters. Particularly so, for applications where the identified 

modal damping ratios are used to fine tune a numerical or analytical model to predict 

the response amplitude of a structure to a certain excitation and a good estimate of the 

dynamic amplification factor is required. As previously mentioned, to bias correct the 

identified modal data, it is ideally required that (a) the bias estimate itself is unbiased 

and (b) has a low random error in order to avoid that the standard error of the bias 

corrected modal estimate becomes larger than the RMS error of the biased estimate. 

Denoting the bias corrected generic modal estimate by the X bc i l ) ,  the perturbation 

equations in Chapter 5 can easily be combined to express x&cU) as (Longman et cd., 

1987)

N  N  N

Xbc  (e) » X  (0) -  br[x(e)\ + ^2  ~ Mx)) + EE ejekSjk (X  ~  Mx)) + • • •
j —l  k = i j —l

(6.18)

Taking the above equation up to linear terms, the variance of the bias corrected modal 

estimate can be found to be

N

Var [xbc (i)] «  ^ V a r f o ] $ ( x - M x ) )  (6-19)
j = i

N  N

+ 2 2̂ ^ C o v f e , € fc] ^ ( x - M x ) ) ^ f c ( x - M x ) )
j = 1 f c = l  j^ k

=  Var [x (e)] +  Var [6r (x (e))] (6.20)
N  N

+ 2 ^2 ^ 2 Covlej^k]Sj (x-bT(x))h(x-bT(x))
j = l  f c = i  j^ k
N

-  2 Y 2  Vax M  Sj (x) (Mx))



biased modal estimate and the cross term is the consequence of taking the variance 

of the hnear combination of the these two random variables* Provided the initial bias 

estimate is accurate, it can then be assumed that the bias corrected modal data is 

unbiased (or at least has negligible Has) so that the square root of Var [x&c (i)]> i.e. the 

standard deviation a [xbc (i)L yields the RMS error of Xbc- It is now obvious that if the 

RMS error of Xbc is larger than the RMS error of x, the modal parameters should not 

be bias corrected. The mean standard deviations of the bias corrected damping ratios 

over the 200 simulated response histories for system A and B are given below in table 

6.10 and it can be seen that they are significantly smaller than the RMS values of the 

biased estimates which is again to be attributed to the fact that the bias errors are 

significantly large compared to the random error and the variance of the truncation 

bias. Provided the bias is estimated correctly, the benefit of a bias correction of the 

modal data is obvious. This is illustrated in figure 6.16 which shows the bias corrected 

SSI/Gov-identified modal damping ratios of system A  with estimated random error 

via equation 6.19 for the first 100 simulated response time histories used in table 6.7. 

On the other hand, however, it is seen from the two cases for system B, in which 

the two larger Hankel matrices were used in the identification process, that the bias 

correction does more harm than good in the sense that the bias correction results in 

a slight increase in random error and a larger bias than in the original estimate. In 

practice, when the true modal parameters are not known, the engineer will not be 

able to assess the accuracy of the estimated bias and the two aforementioned cases for

dim(Ho) = 7 x 4 dim(Ho) =  13 x 8 dim(7lo) = 22 x 14

Sys A V[<r(br (6c))] 0.0152 0.0032 0.0020
(%) (152.4%) (32.5%) (20.4%)

Sys B 0.0020 0.0013 0.0011
(%) (13.6%) (8.6%) (7.3%)

Tab. 6.10: Standard deviation of the bias corrected modal damping ratios £&c for system A 
and B.
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Fig. 6.16: Bias corrected modal damping ratios for system A identified with a 13 x 8 Hankel 
matrix with error bars giving the standard deviation computed by equation 6.19. The dia­
monds show the actual identified modal damping ratios for each case and dashed horizontal 
lines the average standard deviation of the bias corrected estimates given in table 6.10.

system B, are sufficient to show that the bias estim ates via the perturbation analysis 

cannot be taken for granted. As a result, bias corrections based on the perturbation 

estimated bias can be treacherous.

The question arises as to what lies at the bottom  of the discrepancies observed 

in the estimated bias and the true bias and whether it can be rectified. Since the 

estimated perturbations of the correlation function (i.e. its variance and covariance) 

are not used in the determination of the truncation bias, it is therefore not affected 

by any errors in the former quantities, and the possible causes are investigated in the 

subsequent section.

Errors in Bias Estim ates

As explained in Chapter 5, the truncation bias arises due to truncation of small sin­

gular values that contain dynamic system information such as residual modes for 

instance. Truncating non-zero singular values due to noise only will have result in 

negligible bias. In the SDOF systems considered, the “residual mode” stems from the

239



fact that the signal was low-pass filtered at 612* which, as described in section 6.2.3, 

results in the addition of a sine  function to the correlation function of the system . To 

check that the this disturbance introduced by the filtering operation is indeed respon­

sible for the truncation bias in the identified modal parameters, the truncation bias of 

the same two system s is computed and using the same, but unfiltered response time 

histories. The results are shown below in table 6.11 for the damping ratio of system  A 

and B , corrupted by 30% noise. It is seen from table 6.11 that, for system  A, the bias 

in the SSI/Cov-identified modal damping is negligible suggesting that the correlation 

of the filtered noise was indeed responsible for the large bias observed earlier. The 

perturbation analysis confirms the marginal truncation bias. A 1.9% quadratic bias is 

alsq results from the perturbation analysis so that the total bias prediceted by the al­

gorithm overestim ates the true bias. Although the latter bias estim ate lades accuracy, 

it nonetheless correctly predicts that the bias in the identified modal damping ratio is 

neglgible for practical purposes. For system  B, however, the bias estim ates do not tie 

up with the true error. A total bias just below —13% was calculated in each case while 

the perturbation analysis predicts an unsignificant bias error. Theoretically speaking, 

it is reasonable to expect the truncation bias to drop to  a negeligible level in this

Sys A d im (H o ) =  7 x 4  dim (H o ) =  13 x 8 dim(Ho)  =  22 x 14
True Bias

6 (0  -0.5%  -0.3% -0.2%

Perturbation Analysis
mM O ] "0-2% -0.04% -0.06%
mM O ] “ 1-9% -1-9% -1.9%

Sys B dim(Ho)  =  7 x 4  dim(7io) =  13 x 8 dim(Ho)  =  22 x 14
True Bias

6 (0  -12.8%  -12.9% -12.9%

Perturbation Analysis
mM O I -0.05%  -0.13% -0.23%
mM O ] ° '30% 0-29% 0.28%

Tab. 6.11: Bias in the SSI/Cov-identified damping ratios from the unfiltered responses of 
system A and B. The values are expressed as a percentage of the true damping ratios.
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Fig. 6.17: Comparison of the singular values for system B for unfiltered and filtered response 
time histories. The gap separating the first two singular values from the remaining ones 
indicates a SODF system.

case since the noise will be uncorreleated and the only information in the data, albeit 

corrupted by estimation errors, is that of the system. This appears to be confirmed 

by the simulations for system A and the comparsion of the singular values, shown in 

figure 6.17, indicate that this is also the case for system B. The gap separating the 

first two singular values from the remaining ones indicates a SODF system. What 

causes the bias observed for system B is unclear. In theory, the possible causes are 

reduced to three sources: (a) omission of the quadratic bias of the truncation bias, (b) 

a poor estimate of the truncation bias itself and (c) a poor estimate of the quadratic 

bias.

As argued above, it can be assumed that the data given in table 6.11 is not affected 

much by truncation bias. Since the truncated singular values are actually not identi­

cally zero, the truncation bias will affect the modal parameters to some extent. The 

question arises whether this could be of the order of about —13% as in system B and 

is poorly predicted by the perturbation analysis. After all, the estimated quadratic 

bias is negligible and table 6.8 shows a trend of the true bias towards the —13% bias 

as the dimension of the Hankel matrix is increased.

To assess the accuracy of the truncation bias as given by equation 5.37, we resort to
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the idealised situation, where the correlation functions are determined without random 

disturbances. Consequently, the truncation bias will not be affected by random errors 

either and equation 5.37 should therefore, in principle, yield the exact truncation 

bias. Also, the quadratic bias as well the quadratic bias of the truncation bias will 

be zero (since these two terms are due to  the random error propagating though the 

algorithm) so that truncation bias given by equation 5.37 will be equal to the total 

bias. On the other hand, the true bias in the identified modal parameters is easily 

determined since the exact modal parameters are known and can be used to gauge the 

accuracy of the truncation bias determined by the perturbation analysis. To do so, 

the auto-correlation function of a 2-DOF system  is modelled according to section 3.4.3 

and Appendix A, that is, by superposing the auto-correlation functions of 2 SDOF 

system . In other words, denoting the ac.f. of the first and second SDOF system  

by i? i(r) and R afr)  respectively, the ac.f. between two sim ultaneously measured 

responses of the 2-DOF system  is modelled as R (r )  — R \  (r) +  ^ ( r ) .  The first mode 

with ac.f -Ri(t), vibrating at 1 H z  and with a decay rate of 1% of critical damping, 

is chosen to dom inate the response by restricting the am plitude of ^ ( t )  at t  =  0 to  

be smaller than the am plitude of -Ri(t) at r  =  0. Keeping the ac.f of the first mode 

fixed, 16 2-DOF system  are sim ulated as

R ^ \ t ) =  R i ( r )  +  for k  =  1 ,2 , • • • , 16 (6-21)

where the amplitude of J ^ \ t ) at r  =  0 is increased w ith the index i  in steps of 

1% from 5% to 20% of the amplitude of R i ( r )  at r  =  0. This can be thought of as 

an increasing modal participation factor of the second mode of the 2-DOF system . 

Similarly, the frequency of R ^ \ r )  is increased in steps of 0.5 H z  from 0.5 H z  up to 

8 H z  for each system  and the corresaponding modal damping ratios from 0.0025%  

to 0.04% of critical damping in steps of 0.0025%. Thus, the second mode of the k th 

2-DOF system  modelled according to equation 6.21 has an ac.f w ith an am plitude at 

zero lag of 4% +  k% the amplitude of the ac.f of the dominant mode, a frequency of 

k  x 0.5 H z  and a damping ratio of k  x 0.0025% of crtitcal damping. The identification
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Fig. 6.18: Verification of truncation bias estimates for modal damping ratios, [x] denotes the 
true truncation bias of the modal damping ratio and [o] the truncation bias estimated using 
the perturbation method, eq. 5.37. The abscissa indexes the 2-DOF system used according 
to the description above of equation 6.21.

is performed with a (22 x 14) Hankel matrix. The bias introduced in the identified 

damping ratios due to truncation of the residual second mode is shown in figure 6.18. 

While the overall behaviour of the estimated truncation bias follows that of the true 

truncation bias as the frequency, damping ratio and the weight of the residual mode 

is varied, clear discrepancies are seen to occur. On the other hand, for some cases, 

notably the 2nd, 8th and 9 th 2-DOF system, good agreement is observed. In particu­

lar, it transpires from figure 6.18, that the bias estimates via the perturbation method 

appear to be more accurate when the true truncation bias itself is small.

This behaviour of the estimated truncation bias fits the discrepancies observed for 

system A in table 6.7, in which case the truncation bias was accurate when the true 

bias (consisting mainly of truncation bias) was low but a divergence was observed for 

the low dimensional Hankel matrix case where the bias was large. This is however 

not the case for system B, where the most significant disagreement was observed for 

the case where the bias was lowest. As shown in figures 6.19, the discrepancy of the 

perturbation estimate of the truncation bias also depends significantly on the size of 

the Hankel matrix used: the two highlighted cases shown in figure 6.19 (top), where 

the identification was performed using a 24 x 21 and 28 x 25, indicate that the true
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truncation bias is approximately the same but the accuracy of the estimates differs 

significantly. Moreover, the true truncation bias in these two cases is below 10%, so 

that the discrepancy observed in table 6.8 may be attributed, at least partly, to this 

inherent fault in the truncation bias estimate. Similarly, if the true truncation bias 

were of the order of —13% as the response records are not subjected to filtering (c.f. 

table 6.11), then the possibility exists, as can be seen from top figure in 6.19, that the 

low truncation bias predicted by the perturbation analysis may again be attributed 

to the failing of the estimate as given by equation 5.37. On the other hand, however, 

if the true truncation bias is near zero in the data shown in table 6.11 for system B, 

then the possibility must be considered that the observed bias is due to quadratic bias 

and that the latter is poorly predicted by the perturbation algorithm. However, as­

sessing the accuracy of the estimated quadratic bias is more difficult since it is due to 

a random perturbation of the correlation function and adding this perturbation to an
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values to  be non-aero and therefore amounts to  asim ilar d m u lation asin  table 6.11. 

ISfoasetheless, as an additional test, the exact auto^xirrelatios coefficient function (i.e. 

unity at zero lag) of the system  B was computed and perturbed by a zero mean white 

noise disturbance o f standard deviation 0.1. This elim inates the random perturbation 

due to estim ation of the correlation function and thereby keeping the singular values 

to be truncated a minimum. The true bias and the estim ated quadratic bias m the 

modal damping ratio, using Hankel matrices of the same dimensions as in table 6.11 

are shown below in table 6.12. This suggests that the quadratic bias is estim ated 

well. It is true that the second term in equation 5.10 involving the covariances drops 

out in this case as the perturbation is uncorrelated, but the latter term is unlikely to  

cause discrepancies in the estim ates in the situation when the covariance needs to  be 

considered. The results shown for the random error in section 6.3, support the fact 

that the covariance of the perturbation is adequately estim ated and the expressions 

giving the the sensitivities involving Sjk(-) are exactly the same than those involv­

ing derivatives with respect to €j only except that the indexes change. Also, unlike 

the truncation bias, there is no inherent fault in the com putation of the quadratic bias.

To get an idea of the magnitude of the quadratic bias of the truncation bias one 

may approximate the truncation bias

b r \ x ] * X - X F  (6.22)

where x  denotes the modal parameters identified with small singular values set to zero

d im (H  o) (13 x 8) (18 x 13) (23 x 18) (28 x 23)
True Bias 7.0% 1.7% 2.1% 1.4%

M O 7.1% 3.1% 2.1% 1.5%

Tab. 6.12: The quadratic bias in the modal damping ratios using the exact auto-correlation 
coefficient function for system B perturbed by white noise with a standard deviation 0.1. The 
results are expressed as a percentage of the true damping ratio.



tb s identified m odalparam eter at foil model order. The approximation arises 

due to  the fact that both modal estim ates entering equation 6.22 are affected by the 

quadratic Mas and the quadratic bias of the truncation Mas so that in theory, equation 

6.22 does not give an exact estim ate unless the system  is noise free. Equation 5.44 

gives the truncation bias as

N

f>Qr [xl »  +  %«.(*)] (S-23)
j = 1 

N

-  5 3  ek] [Sjkp (x )  +  Sjkpp (x ) )
i,fc

N  N
=  ~ £ V a x  [€j.] Sjj (brlx]) -  ^  Cov [ei? ek] Sjk  (&r[x])) (6.24)

i= i
j ^ k

Replacing b r [ i]  by equation 6.22, the quadratic bias of the truncation bias b q r  [x] caQ 

be expressed as

N
bQT \x] «  -  £  Var fo] (x) -  Sjj (XF) ) (6.25)

j= i 
JV

-  Cov [ej, efc] (x) -  Sjk ( x f )  )  (6-26)
j,k

=  Sq  [x f ] -  bq  [x]

where the last equality is obtained using equation 5.10. The above equation thus shows 

that the quadratic bias of the truncation bias can be estim ated as the difference be­

tween the quadratic bias in the modal parameters identified at full and truncated 

model order. For instance, the quadratic bias in the truncation bias of the modal 

damping ratio of system  B for a 22 x 14 Hankel m atrix (c.f. table 6.8) was found to be 

(bq  [x f ] =  5.5 • 10-5 ) — (bq  [x] =  5.2 • 10-5 ) =  0.3 • 10-6 . This suggests that influence 

of the quadratic bias on the truncation is marginal and does not afreet the discrepancy 

observed in table 6.8. It follows from this subsection that the only source of error in 

the estim ated bias stem s from the inherent fault in the truncation bias estim ate and 

the latter is therefore the most likely culprit for the divergence of the bias observed
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in the modal damping ratios.

Best Practice

Despite the lack o f accuracy in  estim ating the b ia sb y  the perturbation method, it 

transpires from figures 6.18 and 6.19 that the truncation bias is better estim ated when 

the true truncation bias is small. But on the downside, the converse does not hold i.e. 

a small truncation bias determined via the perturbation analysis does not necessarily 

imply that the true truncation bias is sm all as well. Since in practice, the only infor­

mation available will be the one predicted by the perturbation algorithm, it follows 

that the bias determ ination can be deceitful. Nonetheless, tables 6.7 and 6.8 show 

that, when the true bias is large, this will be reflected in the perturbation estim ates. 

Therefore, it seems sensible to employ the perturbation m ethod to  find the parameters 

(dimension of Hankel m atrix and model order) that yield negligible bias, rather than 

performing a single identification with a chosen set of parameters and bias correcting 

the modal parameters. Since the RMS error appears to be dominated largely by the 

truncation bias, this choice will generally amount to the same as choosing the run for 

which the RMS error is small. Bias correction may then be om itted or if performed, 

is unlikely to exacerbate the error in the identified modal parameters further.

The way in which different model orders and the dimension of the Hankel m atrix 

affect the identified modal parameters is complex and an optim isation, resulting in 

the most favourable parameters to use identification algorithm is not obvious and the 

most favourable parameters need to be found by trial and error. In other words, the 

identification is repeated for various sizes of Hankel m atrices and model orders (and, 

if desired sample intervals) and the best estim ate of the m odal parameters are taken 

from the run yielding the lowest error. This is dem onstrated below using, as would be 

the case in practice, a single response measurement from system s A and B aboveand 

the results are shown in figures 6.20 and 6.21. The labels on the abscissa of each of



the latter figuj res refer to  4h*» 'fclw m atrix used to  pai^cuiar

ran and are explained below to table 3. Id. b reach  of the latter figure, tfcetandom  

error, the truncation bias and its raadom error as well as the RM Serror areshown. 

For convenience, the quadratic b ia sw asn ot included in these figures. Based on this 

information, the m ost favourable parameters to  be used in the identification process 

can be determined.

For system  A, it is seen from figure 6.20 that the truncation bias is minimal (among 

the cases considered) when the identification is performed at model order 4 for cases 6 

and 10 i.e with Hankel matrices of dimension 24 x 13 and 30 x 19 respectively. Also, the 

associated random error is small in each of these cases indicating that the truncation 

can be expected to  vary on average less than, say roughly 2%, if the identification 

were to be repeated w ith the same parameters for statistically equivalent response 

tim e histories. Case 2 for model order 4 m arginally yields the lowest RMS error. 

However, the latter case has a rather large variance of the truncation bias and is 

therefore not considered to  be represent the a good choice of parameters. It is noted 

again that the variance of the truncation bias does not enter the RMS computation 

since the variance of the biased modal damping ratios is used. The estim ated bias 

for both of the cases is very similar, and the perturbation algorithm predicts that the 

bias is negligible in both cases, and being significantly smaller than the random error 

in the identified modal damping ratio will yield a negligible contribution to the RMS

error. In fact, using equation 6.17, the RMS error can be rewritten as (Efron and 

Tibshirani, 1993)

the bias contributes <  3.1% to the RMS error, and as suggested in Efron and Tib-

RMS(x) = V ^ 2(x) +  &2(x) (6.27)

(6.28)

which shows, for instance, that if the ratio of the bias to the random error is <  25%,

shirani (1993), this can be used as a rule fo thumb to  asses whether the bias can be
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considered negligible. This rule is useful in the event where, for instance, two sets 

of modal param eters need to  be compared with one set having a smaller RMS error 

but a higher bias than the second. Since a small identified bias does not necessarily 

guarantee th a t the true bias is equally small as discussed above, the user may decide 

to chose the set of param eters yielding the smaller RMS but higher bias and if the 

bias is still <  25% of the random  error, the bias can still be considered negligible. 

To check whether the identification, when performed using these param eters, truly 

results in more or less unbiased modal damping ratios, the SSI/Cov is applied to 200 

computed response measurements and the sample random  and bias error were com­

puted. Indeed, the mean damping ratio over the  200 runs was found to  be 1.0% in 

both cases confirming that, with these input param eters, the identification algorithm 

indeed yileds an unbiased estim ate of the modal dampig ratios. Also, the standard de­

viation of the SSI/Cov estimated damping ratio was in both case close to 15%. It can 

therefore be concluded that for system A, the perturbation  analysis reliably predicted 

the best choice of param eters for the modal identification together with an accurate 

error estimates. The modal parametes identified from the single respose record, i.e. 

affected by random errors, were found to be £ =  1.10% and 1.13% of critical damping 

respectively for dim(Ho)  =  30 x 19 and d i m ( H o )  =  24 x 13, both of which fall within 

the standard deviation predicted by the perturbation analysis.

Label 1 ~~2 3 4 5
d im ( H 0) 14 x 11 18 x 7 17 x 14 21 x 10 20 x 17

Label 6 7 8 9 10
dim(Ho)  24 x 13 23 x 20 27 x 16 26 x 23 30 x 19

Tab. 6.13: Dimension of Hankel matrix dim(7io)  used with reference to figures 6.20 and 6.21

The same study is performed for system B, the results of which are represented 

in figure 6.21. The smallest bias is seen to occur for case 4 when the singular values 

were truncated to yield a system of order 6, but on the downside, it is affected by a 

large random error and this case is therefore discarded. Two sets of parameters among 

the cases considered that indicate a low bias error and variance thereof are cases 7
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for model orders 4 and 6. As for system A, it is cheeked whether the identification, 

when performed using these parameters, tru ly  results in more or less unbiased modal 

damping ratios. To this end, the SSI/Cov was applied to 200 computed response mea­

surem ents and the sample random and bias error were computed. The mean damping 

ratio over the 200 runs was found to be 1.30% and 1.32 for model orders 4 and 6 

respectively, with d im{TLo) =  23 x 20 i.e. yielding a true bias of —12.6% and —11.8% 

respectively. For case 7 identified at model order 6 a quadratic bias of 0.4% was iden­

tified. These results are in fact much the same as those already obtained in table 6.11. 

In order to get the data in table 6.11 as well as for the two ‘best5 case considered in 

this case, two operations were performed that, theoretically alleviate, the truncation 

bias: getting rid of the “residual mode5’ in the former case and overspecifying the 

model order in the la tte r case. Although the perturbation  algorithm does yield a near 

zero truncation bias, this is not observed in the true bias. What is responsible for 

this bias is not clear to the author. Certainly, a good explanation for the observed 

discrepancies in system B would be a numerical error in the computed time histo­

ries causing the observed —13% bias, as is the case for the natural frequencies for 

instance. However, it is known th a t the Newmark-/? scheme, with parameters 7 = 1 / 2  

and (3 =  1/4, makes the time integration unconditionally stable and introduces no 

numerical damping in the solution (Bathe and Wilson, 1976) and this possibility must 

be excluded. Although the perturbation analysis yields a much improved damping es­

timate for system A, the poorer prediction for system B is sufficient to  conclude that 

the bias predicted by the perturbation can be deceitful. Nonetheless, the methods still 

reliably indicates excessive bias corruption of the modal da ta  and should be used to 

choose identification parameters that minimise this error. However, the uncertainty 

in the final modal data cannot be predicted with the desired accuracy.



6.4.1 Influence of Non-Stationarity on Bias

In section 6.3.3, it was investigated how non-stationary characteristics in the response 

records affect the random  error estim ate in the modal damping ratios via perturba­

tion analysis. It was shown th a t when the non-stationary statistics are identical for 

all measured response records, the random  error is hardly affected. On the other 

hand, when the non-stationary characteristics vary from record to record, the random 

error estim ates via the perturbation m ethod do not tie up with the sample errors. 

This was explained by the fact th a t the correlation functions, when computed from 

non-stationary da ta  do not exactly reflect the system dynamics as is the case when 

the data is stationary. In particular, non-stationary mean square values tend to dis­

tort the true decay of the correlation functions which biases the dam ping information. 

The error estim ates via the perturbation analysis depend strongly on the estimated 

statistics of perturbations e?- and the study undertaken for the random error showed 

th a t the variance/ covariance as well as the system sensitivities are hardly affected by 

the non-stationarity in the data and as a result, the additional random  error observed 

in the sample estim ates was not picked up. This will clearly be the  same for the bias 

estimates and only the bias introduced by the SSI/Cov itself will be reflected in the 

estimates.

To determine the actual bias introduced by the non-stationarity, the perturbation 

equations in C hapter 5 would have to be reformulated to  account for this bias in 

the perturbations so that for instance E[ej] ^  0 but tends to the biased corre­

lation function. Although the response to non-stationary loading has been studied 

(Barnoski and Maurer, 1969; Gasparini, 1979; Sun and Kareem, 1989) and the er­

ror introduced into correlation functions from non-stationary data, by treating it as 

stationary, is understood (Bendat and Piersol, 2000), the  difficulty is to  determine 

the actual bias at each da ta  point j  and may be an interesting research avenue. On 

the other hand there is a growing tendency to  employ time-frequency system identi­

fication m ethods which can account for the tim e varying sta tistics of the data. Such



techniques include wavelets (see for instance (Mallat, 1999)) or the Hilbert Transform 

(HT) combined with Empirical Mode Decomposition (EMD) methods (Huang et a l ,  

1998). Both m ethod enable to analyse time-series locally and are able to describe 

changes of the frequency content or in the statistics of da ta  at a particular time of 

the response history, rather than  yielding a global description where the statistics and 

frequency content are tim e-independent and apply to the whole of the response data. 

As a result non-stationary as well as non-linear behaviour can be described. The 

(EMD) m ethod essentially empirically decomposes the measured da ta  into its modal 

components through a process called shifting (Huang et  a l ,  1998), while maintaining 

the non-stationary and /o r non-linear properties of the data. The resulting modal re­

sponses may then be treated  as SODF responses and instantaneous frequencies can 

be obtained via the Hilbert transform  from these decomposed signals. Applications 

for modal identification of civil engineering structures can be found for instance in 

(Chen et  al., 2004; Zhang et ah, 2006). A combination of the EMD m ethod with the 

SSI/D ata, rather than  the Hilbert transform , was proposed by Yu and Ren (2005). 

It is noted th a t the la tte r m ethod, like the SSI/Data on its own, cannot describe 

the time changing modal parameters. Similarly to the short-time Fourier transform 

(Bendat and Piersol, 2000), the wavelet transform localises the information of the 

time-histories in the time-frequency plane by using short windows at high frequencies 

and long windows at low frequencies thereby offering a description of non-stationary 

signals. Like the EMD m ethod, it also decouples the modal components. Application 

to operational modal analysis have surfaced abundantly in recent years (Basu and 

Gupta, 1997; Bonato e t  al., 2000; Ghanern and Romeo, 2000; Han et  a I.. 2005; Lardies 

and Gouttebroze, 2002; Ruzzene et  al., 1997). Two reviews on using this technique for 

structural vibration problems in civil engineering are given by Kijewski and Kareem 

(2003); Neild et  al  (2003).



6.4.2 Efficiency of Perturbation Algorithm

The application of the perturbation analysis requires two steps: (1) the estimation 

of the statistics of the perturbations €j to the computed correlation function and (2) 

passing the estim ated correlation functions, together with the statistics of €j through 

the algorithm to yield the desired error estimates.

The estim ation of the statistics of via the  plug-in m ethod has been described in 

Chapter 3.4.3, section 3.5. In a nutshell, the efficiency of this step depends in principle 

on the duration of the m easured tim e histories, which is further exacerbated by the 

fact that the double-sided correlation functions are required to compute variance and 

covariance of £j. However, as explained in section 3.5, the use of the fiat-top window 

dram atically improves the com putational expense as it effectively picks out the portion 

of the double sided correlation function estim ate to make the variance/covariance 

estimate robust.

Due to the fact that the perturbation algorithm computes the system sensitivities 

(a) for each data point used in the portion of the correlation function used in the 

analysis and (b) for each modal param eter extracted. Moreover, this involves the 

same steps for each of the intermediary equations (the sensitivities of the singular 

values and singular vectors for instance) and as a result, the computational burden 

is substantial. However, to compute the random error it was possible, with some 

effort, to implement the procedure by avoiding any loops other than  iterating over 

the number of da ta  points along the diagonal of the Hankel matrix which sped up the 

execution of the algorithm  significantly. Also, the sum m ation in the final perturbation 

equation 5.8 yielding the random  error estim ates can be executed within the loop 

which alleviates the storage requirement for the variables. To get the quadratic bias, 

however, a double loop was needed over all the mixed derivatives pairs, and also the 

variables needed to be stored to  compute the mixed derivatives. Consequently, the 

com putation requirem ent involved is significant, particularly  when the response is 

recorded at many test points resulting in large Hankel matrices.



6.5 Sum m ary and D iscussion

It is shown in this chapter th a t the random error in the SSI/Cov-identified modal 

param eters is estim ated very well by the perturbation method. The robustness of 

the m ethod with respect to errors in the estim ated statistics of the perturbations was 

established. Owing to  the good performance of the plug-in method to  estim ate the 

variance/covariance it is seen th a t the addition of noise into the system is reflected 

in the error estim ates. In fact, the virtue of the theory behind the plug-in method 

to estim ate the statistics of the perturbations, any stationary disturbance to the data 

will be accounted for in the random  error estimates. In all the cases used in the 

simulation, the perturbation  m ethod correctly accounted for the influence of the size 

of the Hankel m atrix, of the sampling interval, the record length used and the model 

order' selected. N on-stationarity was introduced into the response records by sub­

jecting them  to various non-stationary load cases. It was shown th a t in general, the 

perturbation m ethod could not account for the additional random  error introduced by 

the non-stationarity and th a t it tends to estim ate the random  error of the underlying 

stationary signal. However, in situations where a non-stationary frequency content is 

more or less repeated identically from record to record, a good estim ate of the random  

error can still be expected.

The excellent accuracy of the random  error estim ates could not be reproduced for 

the bias. For the two systems investigated, the results were excellent for the lower fre­

quency system but considerably less accurate for the higher frequency system. Partly  

responsible for the observed divergence is the artificial linearisation involved in the 

equations yielding the truncation bias. However even in the case, where the truncation 

bias is theoretically expected to be negligible, i.e. no singular values containing sys­

tem  information were truncated, the discrepancy between the estim ated and true bias 

was still present, although the perturbation algorithm  “correctly” predicted negligible 

bias. Neither the quadratic bias nor the quadratic bias of the  truncation bias could 

account for this divergence and its cause could not be explained. However, it appears
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from, the simulations that when the true truncation bias is small, it is estimated more 

accurately by the perturbation  method. Although the converse does not hold, it could 

nonetheless be concluded from the simulations th a t when the estim ated bias is small, 

it is unlikely th a t the true bias is excessive. It was argued th a t therefore, the best 

practice is to  apply the perturbation algorithm with different sets of identification 

param eters (dimension of the Hankel matrix, model order, and possibly the sampling 

interval) to  find a set that yields a negligible truncation bias. As shown, this possible 

by increasing the size of the Hankel m atrix  or by overspecifying the model order. This 

approach does not guarantee the best possible bias estim ate, but severe bias appears 

to be reflected in the perturbation  estim ates so that the latter situation can be avoided.



C h a p t e r  7

U n c e r t a i n t y  i n  I d e n t i f i e d  

M o d a l  P a r a m e t e r s : A  

B o o t s t r a p  A p p r o a c h ______________

7.1 In trod u ction

In this chapter, the dependent bootstrap  m ethod developed in C hapter 4 is employed 

to determine the error in operational modal param eters from a single set of mea­

surements. Unlike the perturbation  m ethod in the  previous chapter, which is only 

applicable to the correlation-driven stochastic realisations such as the SSI/Cov, the 

bootstrap  m ethod can, in principle, be used in conjunction with any curve-fitting al­

gorithm. As m entioned previously, the bootstrap  has been used for this purpose by 

Doebling and Farrar (20016) to determ ine the error in the modal param eters from 

classic in p u t/o u tp u t testing. However, their bootstrapping scheme, following Hunter 

and Paez (1998), is different from the dependent bootstrap  used in this thesis. The ba­

sis ensemble of observations in Doebling and Farrar (20016); Hunter and Paez (1998) 

consists of a set of independently measured FRFs which are then bootstrapped so th a t 

Efron’s original bootstrap  is applicable. Applications of the bootstrap  to  time series in 

relation to  m odal analysis has been pioneered by Kijewski and Kareem (2000, 2002), 

but with the drawbacks already discussed at length in Chapter 4. The various block 

resampling schemes presented in Chapter 4 offer the possibility to  eliminate these



drawbacks and thereby yield improved error bounds of the modal estimates. Also, 

the fact that it is possible to  generate an ensemble of stationary time series using 

the stationary  bootstrap , makes the m ethod applicable for virtually any output-only 

identification algorithm.

7.2 A p p licab ility  o f  th e  B o o tstra p  for O perational M odal 

P aram eters

With the dependent bootstrap  of chapter 4 at hand, using it to determine the error 

in operational m odal estim ates is simple and the  procedure is illustrated in figure

7.1. In a typical modal test performed on a large scale civil engineering structure, 

the engineer has, in general, only a single set of simultaneous responses measured at 

different locations along a structure a t his or her disposal to determine the modal 

param eters of the system. If it were possible to repeat the modal test B  times for B  

sufficiently large, a collection of B  sets of estim ated modal param eters can be found, 

from which their statistics such as the mean, standard  deviation and possibly bias can 

be determined. This is illustrated on the right-hand-side of the diagram  7.1. However, 

since tim e constraints make it im practical to repeat a modal test a large number of 

times, bearing in mind that the time records need to  be sufficiently long as well for a 

acceptable convergence of the modal estim ates, the bootstrap approach can be applied 

to the only available set of measurem ents to sim ulate “pseudo-rnodal tests” and hence 

obtain additional response data. Once the la tte r is available, it is then possible to get 

a collection of B *  sets of bootstrapped modal param eters by application of a curve-fit 

algorithm  to the bootstrapped time-series of correlation functions (depending on the 

algorithm  used), from, which the statistics of the system ’s model can be determined. 

This is represented on the left-hand-side in figure 7.1.

W hile the process is straightforward, it is not necessarily obvious why the sample 

statistics of the ensemble of bootstrapped modal param eters yield a good approxima-
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Fig. 7.1: Diagramatic representation of bootstrap applied to operational modal analysis.

tion to the true error in the modal estimates. Suppose that the response is recorded 

for a total time T  =  n A t .  If the conditions of the modal test setup remain un­

changed so that additionally measured responses originate from a stochastic source 

whose underlying distribution remains the same, then the correct error estimates on 

the system’s modal parameters identified from response records of length T  can be 

defined as those calculated from the B  sets of identified modal parameters, when the 

number of repeated tests B  —> oo, and approximation to the true error is obtained 

with B  finite. Let { ^ } denote the set of B  measured response histories, {x i} the set 

of identifed modal parameters identified from each response history x \  and s(-) the 

estimator such that s ( x { )  =  X i • In other words, s(-) describes the modal parameters 

extraction using the SSI/Cov algorithm in this case. The true, normalised random
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error o f the modal % can then beapproxim ated m

*■ f 7  1 V
(X) -  E[{xi}\ { ]

where the expectation E[]  is replaced by the arithm etic mean. Normalising with 

respect to the mean rather than the true modal parameter (not known in practice) 

prevents the contribution o f bias in eV(x)* This is precisely how the true random 

error was computed in the previous chapter and the same definition will be used here. 

The true bias error is found in similar fashion, provided the true error is known. In 

the bootstrap m ethod, the B* bootstrap replicas o f the only available response time- 

history replaces the B  measured records and the normalised error, say the standard 

(random) error e*(x), in the modal data is calculated as in equation 7.1 but with the 

set m  replaced by {x*}.

The question arises, provided the number of bootstrap replicas B* is chosen suf­

ficiently large, whether we can expect e*(x) to  be a good approximation to e'r(x)- 

It was shown in that chapter 4 that the bootstrapped covariances of the auto- and 

cross-correlation functions give a good approximation to the true covariances, but 

under the condition that the block length I is chosen appropriately. Since the opti­

mal block length is the one that minimises the mean-square-error of the bootstrapped 

covariances, it follows that this gives the best possible approximation to the true 

quantity. Does this im ply that the optim al block length to estim ate the covariances 

is also optim al to estim ate the errors in the bootstrapped modal parameters? An 

answer is readily obtained from the theory developed in chapter 5 where it was shown 

that the error in the modal parameters depends up to second order, on the covari­

ances of the correlation functions. Therefore, if  the covariances of the bootstrapped 

correlation functions optim ally approximate the covariances o f the true correlation 

functions, then the error in the bootstrapped modal parameters will give an optimal 

approximation to the true their true error. Taking into consideration the trade-off in 

random and bias error inherent in the bootstrapping of the tim e series, this justifies



t ie  application of t ie  bootstrap to determine the error in operational modal estim ates.

7.3 Random Error

The study of the random errors in the SSI/Cov-identified modal parameters requires 

slightly less effort than was the case for the perturbation method. W hile the success of 

the latter m ethod is dependent at the same tim e on (a) the perturbation algorithm it­

self on (b) the estim ated perturbations of the correlation functions, where instabilities 

in either the system  sensitivities or erroneous estim ates of the variance and covariance 

(i.e. the perturbations) could result in poor error predictions, the error estim ates via 

the bootstrap m ethod depend entirely on the quality of the bootstrapped tim e se­

riesbr, equivalently, correlation functions and fully benefit from the robustness of the 

particular identification algorithm used. The quality of the dependent bootstrap was 

studied in chapter 4, where it was shown that the m ethod reliably yields reasonably 

accurate estim ates of the variance and covariance o f the correlation functions and it 

was argued in the previous section that this implies that we can expect the same from 

the error prediction in the identified modal parameters. Rather than repeating the 

lengthy investigation of the previous chapter, it w ill be sufficient to  check the method 

on a few cases. Also, the bootstrap m ethod will be applied in conjunction with the 

SSI/D ata algorithm to illustrate the flexibility of the m ethod.

7.3.1 Random Errors in SSI/Cov-identified modal parameters

To allow a comparison between the performance of the bootstrap m ethod with the 

perturbation analysis in predicting the random error in correlation-driven operational 

modal parameters, the sim ulations in this chapter will be performed on the same 

SDOF system s A and B (c.f. table 6.3) as in chapter 6. Clearly, the same input 

parameters to  the SSI/C ov will be used for the comparison to be meaningful.
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Random Error in SSI/Cov-identified Modal Parameters Predicted by the Bootstrap Method

SYSTEM A Estim ation Error Estim ation Error Estim ation Error 
Only +  30% Noise +  30% Noise 

T  =  600s, d t  =  0.05 T  =  900s, d t  = 0.05 T  =  900s, d t  = 0.05 
d i m ( H o )  = 13 x 8 d i r n ( H o ) =  7 x 4  d i m ( H o )  =  22 x 14

True' B ootstrap True B ootstrap True B ootstrap

m M O ] (%) 

m M /o)] (%)

13.71 11.92 (±1.90) | 16.01 12.07 (±1.74) | 14.42 11.08 (±1.49) 

0.14 0.16 (±0.03) | 0.82 0.66 (±0.12) | 0.15 0.14 (±0.02)

SYSTEM B Estimation Error Estimation Error Estimation Error ±  30% Noise
Only ±  30% Noise ±  30% Noise 

T  = 600s, d t  =  0.04 T  = 900s. d t  = 0.04 T  =  900s, d t  =  0.04 
dim(TCo)  =  13 x 8 d im, (Ho)  =  7 x 4  d i m ( H o )  =  22 x 14

True Bootstrap True Bootstrap True' Bootstrap

/i[er (<%] (%)

h M /o ) ]  (%)

8.68 7.32 (±0.86) | 6.96 6.51 (±0.69) | 7.36 6.76 (±0.70) 

0.08 0.08 (±0.01) 0.11 0.11 (±0.01) 0.10 0.9 (±0.01)

Tab. 7.1: Com parison of the  normalised random  error in the SSI/Cov-identified m odal dam ping ratios (er(£)) and frequencies (er (/o)) estim ated via the boo tstrap  
method and the true error estim ated from 200 sim ulated response histories. Note that the error shown for the bootstrap is the mean of the errors estimated from 200
sim ulated response records and the values in parenthesis are the  corresponding standard  deviations. 300 boostrapped correlation functions were com puted for each 
response history and the optim al block length was com puted using Buhlmarm and Kiinsch’s m ethod.



As argued in the  introduction to this section, not all cases investigated in chapter 

6 need to be considered but a few will suffice to validate the bootstrap method.

More specifically, the cases considered are shown in table 7.1 for systems A and 

B together with the random errors predicted by the bootstrap method. For each case 

in table 7.1, 200 response histories were simulated and from each, 300 boostrapped 

correlation functions were computed using the blocks of blocks method. The optimal 

block length was determined using Biihlmann and Kiinsch’s method (c.f. Chapter 4). 

From each set of the 300 bootstrap correlation function replicas for each simulated 

response time history, the modal parameters were identified using the SSI/Cov algo­

rithm and the random error estimated. Table 7.1 shows the mean of the normalised 

random errors com puted from the 200 sets of bootstrapped normalised errors.

It is seen that the mean normalised random error predicted by the bootstrap 

m ethod underestim ates the true error, the more so for the lower frequency system A.  

Although a bias in the random error estimated via the perturbation method was ob­

served in the previous chapter, which was a ttribu ted  to bias in the estim ated variances 

and covariances by the plug-in m ethod, this discrepancy was small. In this case, in 

particular for the two cases for system A  involving the 30% noise level, the difference 

between the true and predicted error is more pronounced. The question arises as 

to what lies at the bottom of this discrepancy and whether it can be rectified. The 

source m ust lie in the bootstrapped  correlation functions since the error propagation 

through the identification algorithm is naturally accounted for since the algorithm is 

used on each bootstrapped correlation function. Therefore, the only points that need 

checking are (a) whether 300 bootstrap samples are sufficient and (b) the error in the 

bootstrapped correlation functions.

Invoking the equivalence between the variance and covariance of the bootstrapped 

correlation functions and the bootstrapped modal parameters established in section
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Fig. 7.2: Normalised random error in the SSI/Cov identified modal parameters as a function of 
the number of bootstrap replicas. The results represent the case for system A  with T  = 900s, 
At = 0.05s, d i m ( H o )  = 7 x 4  and 30% measurement noise added, [x] represents the modal 
damping ratio (left hand axis) and [+] the natural frequency (right hand axis).

7.2, the answer to these questions can be found from the results in Chapter 4; it was 

mentioned in this chapter (c.f. page 4.4 ) that increasing the number of bootstrap 

samples beyond 300 did not yield any significant improvement in the bootstrapped 

variance of the correlation functions and hence, the same applies to the standard error 

in the bootstrapped modal parameters. As a final check, we use the case for system 

A with a 7 x 4 Hankel matrix and 30% measurement noise added to the simulated 

response (middle column, first row in table 7.1). It is sufficient to use a single re­

sponse measurement, since we know that on average, the normalised random error is 

12.07 ±  1.74% and the true error is 16.01%. Thus, if a number of bootstrap replicas 

>  300 produces a random error that falls within the 12.07 ±  1.74% interval, we can 

conclude that 300 replicas are sufficient. The same holds for the error in the natural 

frequency. The results are displayed in figure 7.2. Although an increasing trend is 

seen in the standard errors as the number of bootstrap samples is augmented, it ap­

pears that the errors have more or less fully converged for > 1000 bootstrap samples 

and that they fall within the 12.07 ±  1.74% and 0.66 ±  0.12 for damping ratios and 

frequencies respectively predicted in table 7.1. Therefore, we can conclude that the
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discrepancy observed in table 7.1 is not due to insufficient bootstrap samples to esti­

m ate the random  error.

As described in chapter 4, the dependent bootstrap is affected by random and bias 

errors. While these errors cannot be eradicated completely, they can nonetheless be 

minimised if the bootstrap is performed with optimal block length. It was shown by 

simulation in chapter 4, table 4.2, that for the block of blocks bootstrap, the mean 

square error in the variance of the correlation function was lowest when the the op­

tim al block length as computed by Biihlmann and Kiinsch’s method. However, it is 

also seen from the latter table that the variance in the correlation functions is un­

derestimated in all cases and that this negative bias is maximal when the Biihlmann 

and Kiinsch block length selection method is used. For clarity, it is noted that this 

bias is solely due to the fact that segments of finite duration of the response history 

are resampled and is not to be confused with the bias that occurs at high lags in the 

bootstrapped correlation functions due to the collating uncorrelated segments into a 

new pseudo-time series. It was clearly shown in chapter 4 that the formulation of the 

block of blocks bootstrap technique takes care of the latter. Due to the equivalence 

between the error in the  bootstrapped variances (and covariances) of the correlation 

functions and the error in the bootstrapped modal parameters established in section

7.2, this underestimation is reflected in the bootstrapped random errors in the modal 

param eters. This was verified by using the bootstrapped  variances and covariances (as 

opposed to those estim ated by the plug-in method) as estimates of the perturbations 

in the correlation function and using them in the perturbation  algorithm. Indeed, the 

resulting random error estim ates were much the same as those predicted by the direct 

application of the bootstrap  shown in table 7.1. As mentioned, this error is inherent 

to the dependent boo tstrap  and cannot be avoided but only minimised by using the 

optimal block length in the computations. However, an improved estimate can be 

obtained by using Politis and W hite’s method to select the block length as this (see 

table 4.2) yields the lowest bias but has the highest standard error. The simulations of



table 7,1 are repeated exactly for system A  but using the Politis/W hite block length 

selection m ethod and the results are tabulated in table 7.2, It is seen from table 7.2 

that when Politis and W hite’s block length selection method is employed, the mean 

identified random error does indeed increase toward the true error and this is to be 

attributed to the smaller downward bias compared to the Biihlmann/Kiinsch method 

in the bootstrapped correlation functions (c.f. table 4.2). On the other hand however, 

the improved mean values come with a larger scatter as is seen from the associated 

standard deviations in table 7.2 which is to attributed to the larger standard error 

inherent in Politis and W hite’s block length selection m ethod compared to  Biihlmann 

and Kiinsch’s method. Nonetheless, although the random error is almost twice as 

large as for Biihlmann and Kiinsch’s m ethod (and, indeed twice as large compared 

to the perturbation  method, see figure 6.10(a)), the range in which we can, on av­

erage, expect the predicted error to be in, that is 13.98(±2.92) and 0.72(±0.16) for 

damping ratios and frequencies respectively, is satisfactory in the sense that (a) it 

includes the true value and (b) deviations remain on average reasonably close to the 

true value. When Biihlmann and Kiinsch’s method is used, the predicted error cluster 

more tightly around the biased mean random error and , on average, the true  error 

will not be predicted but on the other hand, the occurence of “stronger” outliers is

System A E stim ation E rror E stim ation E rror E stim ation  Error
Only ±  30% Noise ±  30% Noise

T  =  600s, d t  =  0.05 T  =  900s, d t  =  0.05 T  =  900s, d t  =  0.05
dim(Tio) =  13 x 8 dirn(Ho) =  7 x 4  dim(Ho) = 22 x 14

True B ootstrap True B ootstrap True B ootstrap

13.71 13.72 (±3.79) 16.01 13.98 (±2.92) 14.42 12.50 (±2.32)

mM / o)] (%) 0.14 0.16 (±0.04) 0.82 0.72 (±0.16) 0.15 0.14 (±0.02)

Tab. 7.2: The same simulations for system A  as in table 7.1 but using the Politis/White block
length selection method. The values in brackets are the standard deviation of the random 
error computed from the 200 simulated response histories in each case.



reduced. This is illustrated in the scatter graphs in figure 7.3.
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Fig. 7.3: Illustration of the random error in the SSI/Cov-identified modal frequencies estimated 
via the blocks of blocks bootstrap method. Each cross represents the error estimated from 
one of the 200 simulated response histories. The two cases shown correspond to the cases in 
the middle column of table 7.1 for system A.  Figure(a) shows the case when the block length 
is selected using Buhlmann/Kiinsch’s method and figure (b) the case for Politis and White’s 
method. The finely dotted lines (red) shows the true error.

For the two systems considered here, it appears from figures 7.3 that the block 

length selection of Politis and White, which comes with less bias but increased random
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erro r in th e  b o o ts trap p ed  correlation functions, is b e tte r su ited  to  predict the  random  

erro r in th e  SSI/Cov-identified m odal param eters. Nonetheless, it cannot be asserted 

th a t  th is  is always th e  case. For instance, it is seen from tab le  7.1 for th e  two eases 

including th e  noise p e r tu rb a tio n  for system  B, th a t  B iihlm ann and Kiinsch’s block 

selection m eth o d  perform s well. These two cases were not repeated  with Politis and 

W h ite ’s m ethod , b u t it is reasonable to  expect, as for system  A, an  increase in bo th  

th e  m ean ran d o m  erro r tend ing  tow ard th e  tru e  erro r but also a larger sca tte r about 

th is  value. W hen  the  bias in the b o o ts trap p ed  correlation functions is small, as is the 

case for system  B, w here th e  identification was perform ed w ith  a 7 x 4 Hankel m atrix , 

th e  sm aller s tan d a rd  deviation associated  with B iihlm ann and  K iinsdTs block selec­

tion  m ethod  is preferred; th e  reason is th a t, on average, one is m ore likely to  predict a 

random  €irror th a t is closer to  th e  tru e  erro r and, recalling th a t  in practice, the  error 

has to  be estim ated  from  a  single response m easurem ent, it is clear th a t th is is the 

m ore desirable situa tion . However, b o th  block leng th  selection m ethods are seen to 

perform  well and  based on th e  d a ta  at hand, it m ay be argued from  a p ractical point 

of view, th a t e ith er m ethod  can be used as a reliable estim ato r of th e  random  error. 

Having tracked  down th e  reason for th e  discrepancies due th e  bias and  random  error 

in the b o o ts trap p ed  correlation  functions, a possible ind icato r m ay be found in the 

m ean-square-error th a t can be com puted  during  th e  block selection m ethod  as detailed  

in ch ap te r 4. However, the sim ulations in C h ap te r 4 also showed th a t this quantity 

was unreliable in the sense th a t it p roduced  a small m ean-square-error whenever the 

b o o ts trap  estim ate  was u n d erestim a ted  and large m ean-square-error in the case of an 

overestimation. For this reason, th is  option was not further pursued . Precisely why 

the bias in the b o o ts trap p ed  correlation functions seems to be smaller for th e  higher 

frequency, m ore heavily dam ped  system  is no t en tire ly  clear b u t a  plausible explana­

tion  is tha t, as mentioned in C h ap te r 4, the dependen t b o o ts tra p  works best for time 

series with short range dependence.

Like the p e r tu rb a tio n  m eth o d , the b o o ts trap  m eth o d  takes into account the effects
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Model Older 2 Model Order 4 Model Onto 6
— ------— ---------- ■  : r » ! " ...... "T~..... ............ — I'-'.'Vi H'jj. <h

System A er(f) 11.08 (±1.48) 11.44 (±1.48) 11.71. l±M*L.v ,, ..
«r(/o) 0.14 (±0.02) 0.14 (±0.02) 0.14 (±tiJ&)

• . -1 J - t l .1 1 t* J  f f * .

System B er(£) 6.76 (±0.70) 6.93 (±0.70) 7.48 (±0.94)
__________ 6r(/o) 0.9 (±0.01) 0.10 (±0.01) 8.12'(±QJ2)

Isb . 7.3: Influence of model order on bootstrap estim ated random errors
modal parameters.

on  th e  random  error due to  different param eters used  in  th e  S S I/C o v  algorithm , such  

as th e  size  o f  th e  H ankel m atrix  and th e  sam pling  interval chosen as It clea r ly seen  in  

; tab le  7.1 for sy stem  B  for instance. T h is is  to  b e  ex p ected  since th e  actu al algorithm  

is applied to  each b ootstrap p ed  tim e h istory  and  therefore an y  error introduced b y  

th e  algorithm  itse lf  w ill b e  reflected in  th e  m od al estim ates. Sim ilarly, th e  b ootstrap  

m eth od  also takes in to  account different choices o f  m od el order. T h is  is illustrated  

below  in  ta b le  7.3. T h e  corresponding tru e errors are th e  sam e as in  tab le  6.5.

7.3.2 Random Errors in SSI/Data-identified modal parameters

W hile th e  b ootstrap  m eth od  does n ot m atch  th e  accuracy o f  th e  perturbation  m ethod , 

it  has th e  advantage over th e  perturbation  m eth od  th a t it  is m ore flexible in  its  usage  

in  th e  sense th a t its  is  n o t restricted  to  a  particular identification  algorithm . Since th e  

essence o f th e  b ootstrap  is to  generate ad d itional p seu d o-tim e series, th e  m eth od  is  

applicable to  v irtu a lly  any curve-fitting algorithm , w hether th a t is in  th e  tim e-dom ain  

or frequency dom ain. In th is  section , th e  b ootstrap  m eth od  is applied  to  th e  S S I /D a ta  

algorithm , briefly described in  chapter 3 and its  ap p lication  to  th e  enhanced  frequency  

dom ain d ecom p osition  (E F F D ) m eth od  is d iscussed .

T h e S S I /D a ta  algorithm  operates d irectly  on  th e  m easured tim e h istories, w hich  

are fed to  th e  a lgorithm  in  th e  form  o f large d a ta  H ankel m atrices (c.f. 2 .3 .3). A s  

show n, in  C hapter 4, to  account for th e  efficacy o f  th e  b lock  o f  blocks bootstrap  

m ethod , th e  fu n ction  th a t operates on  th e  resam pled tim e  series m ust b e  sym m etric
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in the blocks in to  which the response is divided. This is, however, not the case for the 

SSI/C ov and nor for the SSI/D ata  algorithm. For the SSI/Cov, this was circumvented 

by reform ulating the block of blocks method directly in terms of bootstrapped correla­

tion functions (see section 4.3.2 pp. 103), where the correlation functions of individual 

blocks were em ployed  to provide the required symmetry. For the SSI/D ata, however, 

there is no ob viou s way around this problem and for this reason the stationary boot­

strap is em ployed. As described in section 4.3.3, the latter yields bootstrapped replicas 

of the original tim e series and the problem of edge effects of joining independent blocks 

together was m itigated  by choosing random block lengths from a geometric distribu­

tion, and the average length of this distribution plays the role of optimal block length. 

An illustration o f pseudo-response records generated by the stationary bootstrap is 

shown in figure 7.4 below.

Having generated  the bootstrap replicas of the originally measured response time- 

history, a set o f  m odal parameters can be identified by applying the SSI/D ata to each 

the bootstrapped tim e series and their random error can be estim ated. Simulations 

are again perform ed on 900s response records of the 1Hz,  1% damped SODF system  A
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Fig. 7.4: Illustration of the response replicas by the stationary bootstrap. The top figure is 
the the originally measured time series. The average optimal block length is approximately 
35s.
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: €r(6w • :m* '̂-uim*9m‘- *•••-• -
«r (£)(%) 0.18 0.19 ±0.03
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Tab. 7.4: Normalised random em>restimates using the SSI/D ata algorithm with the stationary 
bootstrap. The bootstrap error estimates are the mean o f only 2f> beotoitragipSiS ifcSpease 
records. The true error was estim a ted  from 300 simulated response histories.

due to  a  w h ite  noise ex c ita tio n  and 30% m easurem ent noise w as added. 300 b ootstrap  

replicas o f  th e  orignal tim e  series w ere com p u ted  and each such record wb& organised  

in  220 x  17783 d a ta  b lock  H ankel m atrix  for m odal param eters extraction  using th e  

S S I/D a ta . T h e  resu lts are show n in  tab le  7.4. It is  seen  th a t, on  average, th e  random  

error predicted  b y  th e  S S I /D a ta , com bined w ith  th e  sta tion ary  b ootstrap , predicts th e  

random  error very w ell. I t  is  im portant to  n o te  th a t  th e  random  errors show n in  tab le  

7.4 are th e  m ean o f  on ly  25 response h istories and therefore, have n o t properly con­

verged. However, th e  generally  sm all standard  d ev ia tion  associa ted  w ith  th e  random  

errors (also show n in  ta b le  7 .4) in d icate  th a t w e are c lose to  th e  fu lly  converged m ean  

values. T h e reason for b ootstrap p in g  on ly  25 sim u lated  response h istories is th a t th e  

S S I/D a ta  algorithm  is m uch slower th an  its  covariance-driven relative. T h is is due to  

th e  fact th a t in  th e  form er all th e  m easured d a ta  is required lead ing to  large H an­

kel m atrices w h ose Q R -decom position  is very tim e  consum ing com pared to  th e  d irect 

SV D  d ecom p osition  o f  th e  sm aller H ankel m atrices con sistin g  on ly  o f  a  portion  o f  th e  

sam ple correlation  functions. In  th e  im p lem en tation s o f  th e  S S I/C o v  and S S I /D a ta  

used in th is  th esis , th e  com bined duration  o f  com p u tin g  o f  th e  th e  auto-correlation  

function  o f a  single, 900s response m easurem ent o f  a  S D O F  sy stem  sam pled  at 20H z  

and th e  subsequent m odal param eter identification  by th e  th e  S S I/C o v  for a  22 x  14 

H ankel takes ab ou t I s  com pared to  roughly  20 seconds for th e  S S I /D a ta . T hus, if  

for in stan ce 300 b oo tstra p  replicas are generated , it  takes ab ou t 1 hr and 4 0 m m  to  

ob tain  a  set o f  300 S S I/D ata -id en tified  m odal param eters and estim a te  th e  random  

error com pared to  on ly  5 m m  if  th e  S S I/C o v  algorithm  is used. It is clear th a t in  

practice, w hen  th e  response is m easured at m an y  location s along th e  structure, the  

com p u tation a l effort involved  increases and it transpires th a t th e  error estim ation  in
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th e  m odal SSI/D ata-identified m odal param eters becomes very tim e consuming. We 

no te  th a t th e  co m p u ta tio n al requirem ent for th e  block of blocks b o o ts trap  and the 

s ta tio n a ry  b o o ts tra p  are com parable. T he au th o r does not wish to  claim  th a t his 

im plem en tation  o f the  S S I/D a ta  algorithm  is op tim al but th e  significant differences 

in co m p u ta tio n al efficiency are also repo rted  in Peeters and  DeRoeck (1999). Despite 

th e  co m p u ta tio n al inefficiency of th e  data-d riven  S S I/s ta tio n ary  b o o ts trap  m ethod, 

it is seen from  tab le  7.4 th a t it is a t least as accu ra te  as for th e  covariance-driven 

SSI/b lock  of blocks b o o ts tra p  m ethod. Clearly, the rem arks concerning th e  random  

error estim ates m ade previously  for the S SI/C ov a lgorithm  also apply  here, nam ely 

th a t  (a) an  u n d erestim a te  of the random  erro r is to  be expected  due th e  inherent 

bias, in the s ta tio n a ry  b o o ts trap  and  (b) all errors induced by th e  S S I/D a ta  will be 

reflected in the random  erro r estim ates.

In  principle, the b o o ts tra p  can also be applied  with frequency dom ain  identification 

techniques, such as the enhanced  frequency dom ain  decom position  algorithm  (EFD D ) 

com m only em ployed in operational m odal analysis and  briefly described in section 

2.3.1, ch ap te r 2. R esam pled  versions of th e  original power spec tra l density  (PSD) 

m atrix  m ay be o b ta in ed  e ither by applying W elch’s m eth o d  to  th e  time-series replicas 

ob ta ined  v ia  th e  s ta tio n a ry  b o o ts trap  or by direct Fourier transfo rm  of the block of 

blocks b o o ts tra p  au to- an d  and  cross correlation  functions. However, since th e  m odal 

param eters  of th e  system  are found by m anual peak  picking of th e  SVD decom posed 

power spec trum , th e  E F D D  com bined w ith  th e  b o o ts tra p  is no t p ractical unless the 

m anual peak-picking p rocedure is au to m ated . T h is is b u t one possible way to  use the  

b o o ts trap  in th e  frequency dom ain and for o th er m ethods, involving d irect resam pling 

in th e  frequency dom ain, the  reader is referred to  Politis (1992) for instance.

7.4 N on -S ta tion ary , N o n -w h ite  ex c ita tio n

To conclude this section  on the b o o ts trap  random  error estim ates in the correlation-

driven o p era tio n al m odal p a ram ete r estim ates, th e  influence of non-stationary and
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non-w hite characteristics in  th e  loading conditions is considered. To allow  a  com pari­

son w ith  th e  perturbation  m ethod , th e  sam e excita tion  m odels as described in figures 

6.12, 6.13 and 6 .14  are considered. T h e  additional pseudo-tim e series are generated  

using th e  block o f  blocks b ootstrap  m eth od  and, although P o litis  and W h ite’s block  

length  selection  m eth od  y ielded  b etter  results th an  th a t o f  B iih lm ann and Kiinsch, 

th e  la tter  is em ployed. For each case described in  figures 6.12, 6.13 and 6.14, 200  

responses are sim ulated  and 300 b ootstrap  replica generated  in  each case. T he results 

axe show n below  in  tab le  7 .5  and th e  corresponding true errors, already given in table  

6.6, are repeated  here for convenience.

Com paring th e  random  error in  th e  m odal dam ping ratio and natural frequency  

for th e  case w here th e  ex c ita tio n  con sists o f a  pure w h ite  noise signal, a  downward  

bias o f  about 3 percentage p o in ts is seen  in th e  error estim ate  for th e  dam ping ra­

tio . A  sm all, but neglig ib le downward bias also occurs in  th e  estim ated  random  error 

in th e  natural frequency. T h is bias w as attr ib u ted  earlier on  in  th is  section  to  the  

inherent downward b ias in  th e  dependent b ootstrap  due to  th e  segm entation  o f th e  

original tim e-series. W hile  it w as also show n th a t P o litis  and W h ite ’s block length  

selection  m eth od  sligh tly  m itigated  th is  bias error, it w as n on eth eless op ted  to  use  

B iihlm ann and K iin sch ’s m eth od  in th e  sim ulations to  follow: by keeping track of  

th e  «  3% bias in th e  dam ping ratios th a t occurs for w h ite  noise  excita tion , th e  in-

S im ulated  Error (%) P erturbation  M ethod  (%)

C ase Cr(/o) C r(0 m M / o)] mM O ]

Stationary 0.15 14.42 0 .14  (0.02) 11.12 (1.48)
W hite Signal

1 0.15 14.76 0 .14  (0.02) 11.24 (1.78)
2 0.18 17.72 0 .17  (0.03) 13.62 (2.89)
3 0.18 16.21 0 .14  (0.03) 11.41 (2.70)
4 0.18 19.48 0.18  (0.48) 12.10 (7.12)
5 0.76 13.40 0.64  (0.16) 10.49 (2.14)
6 0.26 24.25 0 .22  (0.06) 20.41 (5.73)

Tab. 7.5: Predicted random error by the block of blocks bootstrap method for system A  in 
table 6.3. The values in brackets yield the sample standard deviation of the estimate errors.
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fluence of the added non-stationary and/or non-white disturbance will be clearly seen.

For case 1, w here th e  w h ite  noise signal is m odulated  b y  a slow ly varying function  

th a t is repeated  ex a ctly  for each sim ulated  response record as described in figure 6.12, 

th e  random  error in  b o th  th e  frequency and dam ping ratio changes only m arginally  

com pared to  th e  case w here th e  excita tion  con sist o f a  pure stationary  w hite noise 

signal. T h e sam e observation  holds for th e  random  errors predicted  by th e  bootstrap  

m ethod  and it can b e  concluded  th a t th e  ad d ition  o f th e  non-stationary  disturbance  

does not corrupt th e  b ootstrap  error estim ate . It is n o ted  th a t th is  was also th e case  

for th e perturbation  m eth od . For load case 2, w here th e  m odulation  function changes 

random ly from  record to  record (see figure 6 .12), a  sm all increase in th e  random  error 

o f th e m odal param eters is observed and it w as show n in  section  6 .3 .3  th a t th e  per­

turbation  m eth od  did, on average, n ot account for th e  ex tra  random ness introduced  

by th e  varying m od u lation  function . It appears from  th e  tab le  7.5, however, th a t the  

b ootstrap  m eth od  picks up  th e  increase in  random  error. Indeed, th e  average rise o f  

roughly 3% error in th e  dam ping ratios as w ell as th e  slight increase in th e  m odal 

dam ping ratios is clearly seen  to  occur in  th e  errors predicted  b y  th e  bootstrap . A lso, 

th e  associated  standard  d ev ia tion  o f th e  estim a ted  errors is reasonably low  and com ­

parable to  th ose  related  to  th e  perturbation  m eth od  (c .f  tab le  6 .6) .

For load cases 3 and 4 (c.f. figure 6 .13), w here th e  influence in a non-w hite, 

non-stationary  frequency content in th e  ex c ita tio n  is considered, it is seen th a t th e  

b ootstrap  m eth od  dose n ot capture th e  increase in  random  error observed in b oth  

cases. T h is w as a lso  th e  case for th e  perturbation  m eth od , w here even a slight de­

crease in  th e  pred icted  random  errors w as observed. H owever, w hen  th e  perturbation  

m eth od  w as used , th e  related  standard errors w ere sm all w hich im plies th a t at least 

on average, w e can  exp ect to  predict a  random  error representative o f th e  estim ation  

errors corresponding to  th e  case w here th e  ex c ita tio n  is so le ly  due to  w h ite  noise. 

T h is also appears to  b e  th e  situ a tion  for load case 3 w hen th e  b ootstrap  m ethod  is
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em ployed, b u t for load  case 4, where th e  frequency content o f th e  loading changes 

from  record to  record, a  large standard deviation  com pared to  th e  actual m ean ran­

dom  error is observed. T h is m eans th a t, on average, th e  predicted  random  error w ill 

not be close to  th e  true error and even a significant departure from  th e  pure w hite  

noise exc ita tion  case is to  b e  expected . T h is is clearly an undesirable feature and it 

has to  be concluded  th a t th e  b ootstrap  m eth od  is unreliable in th e  presence o f non- 

sta tion ary  frequency characteristics in th e  am bient loading conditions. It appears as 

if  th e  add itional random ness in troduced by th e  variations in th e  frequency content 

m anifest th em selves by a sign ificantly  higher scatter in th e  predicted  errors, rather 

th an  an increase in  th e  m ean  random  error.

For load case 5 (c.f. figure 6 .14 ), w here a narrow -band frequency signal close to  

th e  natural frequency o f th e  system  w as added to  th e  underlying w hite noise exci­

ta tion , th e  b ootstrap  m eth od  correctly  predicts th e  slight decrease in random  error 

also observed in th e  true error estim ates. T h is change w as also correctly  predicted by  

th e  perturbation m eth od . F inally, th e  case is considered w hen, in addition  to  a w hite  

noise floor, random ly occurring G aussian pulses are part o f  th e  am bient excitation . 

T h is describes load  case 6 (c.f. figure 6 .14). U nder th e  la tter excitation , a  signifi­

cant increase in  random  error w as observed in th e  true error and it w as show n in the  

section  6.3 .3  th a t th e  perturbation  m eth od  failed to  pick up  th is  additional random  

disturbance and y ielded  random  error estim ates representative o f th e excita tion  due  

to  underlying w h ite  noise floor only. T h e b ootstrap  m ethod , on the other hand, picks 

up th e  add itional d isturbance by random  occurrence o f  th e  pulses as is seen  in  tab le  

7.5. Taking in to  account th e  downward bias inherent in  th e  bootstrap , it is seen that 

th e  predicted  error is very close to  th e  true value. A lso, relative to  th e  actual random  

error, th e  associa ted  standard  d eviation  is acceptab le and it transpires th a t, on aver­

age, we can ex p ect a  reasonable error estim ate  by b ootstrap .

D esp ite  th e  loss o f  accuracy observed in th e  b ootstrap  estim ated  random  errors
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due prim arily  to  th e  inherent bias in th e  block length  selection , it appears th a t the  

b ootstrap  m eth o d  perform s b etter w hen th e  loading conditions y ield  strong non- 

sta tio n a ry /n o n -w h ite  characteristics, w ith  th e  excep tion  perhaps w hen th e frequency  

content is non-stationary . T h e  fact th a t th e  bootstrap  m ethod  is able to  pick up  

th e  th e  random  d isturbances caused by varying m odulation  functions such as in load  

cases 2 and  6 m ay  b e exp la in ed  as follow s. R ecall th a t th e  b lock o f blocks bootstrap  

con sists effectively  o f  resam pling from  a set w hose ind ividual m em bers are th e m ean  

correlation fu n ction s over a  succession  o f  I overlapping segm ents o f length  r +  1 of  

th e  original tim e series, w here r is th e  m axim um  lag o f  interest and I is th e block  

lengths. In other words, each m em ber o f  th e  original set from  w hich th e  bootstrapped  

correlation functions are form ed by resam pling is correlation function  com puted from  

th e  in form ation  o f  / +  r successive p o in ts from  th e  original tim e series. If th e tim e  

series is stationary, i.e. all th e  p o in ts in  each such block have th e  sam e distribution, 

th en  th e  correlation  fu n ction  o f  each block w ill b e  representative o f th e  entire random  

process. T h is is, how ever, n o t th e  case w hen  th e  tim e series is non-stationary  where, 

for instance, som e m em bers o f  th e  set o f m ean correlation  functions from  w hich the  

final b ootstrap p ed  correlation  function  is resam pled m ay be com puted  from  a segm ent 

having a different variance or, as illu strated  in  figure 6.15, m ay have bias particular to  

th e  m od u lation  o f  th is  particular segm ent. D u e to  resam pling w ith  replacem ent from  

th is  set, th e  effects o f  different w eights associa ted  each w ith  m em ber is m ore signifi­

cant in th e  n on -sta tion ary  case causing m ore significant changes in each bootstrapped  

correlation function  resu lting  in  a change in  random  error. It should  be n oted  th a t in  

addition , th e  block len gth  se lection  is also affected. For instance, w hen  th e  excita tion  

is pure w h ite  noise, th e  average block len gth  (determ ined  from  B iih lm ann and K iisch’s 

m eth od ) w as 17 .10s com pared to  18.75s for load  case 6. T h is increase is slight but 

m ay contribute to  th e  larger scatter  observed for non -sta tion ary  response records.

A lth ou gh  it w as n o t ex p lic itly  checked, sim ilar resu lts are to  exp ected  w hen P olitis  

and W h ite ’s b lock  se lectio n  m eth od  is used, but, as described in  section  7.3.2, w ith

276



a sm aller b ias but an increased sca tter  around th e  m ean random  error. One m ay  

b e tem p ted  to  th in k  th a t th e  s ta tio n a ry  b ootstrap  m ight slightly  m itigate th e non- 

sta tion ary  characteristics due to  th e  ran d om  block lengths involved but th is is not the  

case. Indeed, th e  random  errors p red ic ted  by th e  sta tion ary  bootstrap  from th e  re­

sponse records due to  load case 6 w ere fo u n d  to  b e  20.85%  ± 5 .2 6  for th  m odal dam ping  

ratios and 0 .26 ±  0 .06 for th e  frequencies and hence its  perform ance in th e presence 

o f n on -sta tion arities is m uch th e  sam e a s th a t  for th e  b lock o f blocks bootstrap.

7.5 Bias Error

T h e b ootstrap  m eth od  estim ates th e  d esired  sta tis t ic  (e.g. variance) o f  an estim ator  

(th e  S S I/C ov-id en tified  m odal p aram eter  x)  by  com p u tin g  th e  sam ple sta tistics  from  

th e  set o f b ootstrap p ed  estim ators x*. For exam p le if  a  large num ber o f response  

records were available, each y ie ld in g  a n  e s tim a te  o f th e  m odal param eter x, th e  bias 

in th e m odal param eter could  b e  c o m p u te d  as E\x\ — x, provided th e  true m odal 

param eter x  is know n. Sim ilarly, for th e  b o o tstra p , th e  bias can b e  com puted  as

Hx)  =  £ R * ]  -  X (7.2)

H owever, since th e  true value o f  th e  m o d a l param eter is n ot known, application  o f th e  

above equation  is n ot possib le. It is a rg u ed  in D oeb lin g  and Farrar (2001 b) th a t the  

b ootstrap  m eth od  does account for b ia s  in  th e  identified  m odal param eters induced  

by th e  curve fittin g  process. A lso, H u n ter  and P aez (1998); P aez and H unter (1998) 

and K ijew ski and K areem  (2002) d id  n o t  consider th e  op tion  o f estim atin g  th e  bias 

v ia  th e  b ootstrap  m ethod .

T h e p erturbation  analysis in C h a p ter  5, provides insight in to  how  th e  bias is intro­

duced  in to  th e  m odal param eters b y  t h e  S S I /C o v  algorithm  and th is  can be exploited  

to  get at least an id ea  o f  th e  b ias in  th e  identified  m odal param eters. A s shown, 

bias arises in  th e  S S I /C o v  identified  m o d a l param eters due to  (a) noise propagat­
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ing through th e  a lgorithm  (quadratic bias and quadratic bias o f th e  truncation  bias) 

and (b) due to  tru n cation  o f  sm all singular values w hen determ ining th e m odel or­

der (truncation  b ias). E fron and T ibshirani (1993) provide a m ethod  to  estim ate the  

bias o f a b ootstrap p ed  sta tistic , w hich sim ply  con sists in replacing th e  true value x  

by its  e stim a te  x  in  eq u ation  7 .2 .It is show n by Efron and T ibshirani (1993) that 

th e  la tter  estim a te  y ield s th e  bias o f  a  s ta tis tic  as a  result o f being estim ated  from  

a fin ite size sam ple. In th e  case considered here, th e  identified m odal param eter is 

th e  random  variable and th e  random ness is in troduced  v ia  th e estim ated  correlation  

functions, w hich are th em selves random  variables due th e  fact th a t th ey  are estim ated  

from a tim e-series o f  fin ite len gth . A s show n in C hapter 5, th is  random  error partly  

m anifests itse lf  as bias in th e  estim ated  m od al param eters due to  th e  fact th a t th is  

random  d isturbance d oes n o t average to  zero in  th e  quadratic term s. T hus, E fron’s 

m ethod  could be em ployed  to  em ulate th e  quadratic b ias but, since th e  random  error 

in th e m odal estim a te  can  b e  large, such a b ias e stim a te  can p oten tia lly  be signifi­

cantly  affected b y  th e  random  error. W h en  th e  random  error is sm all, th e  analysis in  

th e  previous chapter and section  has show n th a t one can exp ect th e  quadratic bias to  

be negligible. M oreover, th e  b ias ten d s to  b e  dom in ated  by th e  truncation  bias. For 

these reasons, th e  b ootstrap  em ulation  o f  th e  quadratic bias is n ot further investigated .

Since th e  tru n cation  b ias ten d s to  dom in ate th e  to ta l bias, th e  la tter  needs to  be  

evaluated  if  a  reasonably  in d icative estim ate  o f th e  true bias is sought. To th is end, 

th e  approxim ation  in  eq u ation  6.22 is used but w ith  th e  m odal estim ates replaced by  

th e b ootstrap p ed  m ean to  em ulate  th e  tru n cation  b ias as

&r*[x] ~ /4x*] -  p \X*f \ (7-3)

where /i[x*] d en otes m ean o f th e  b ootstrap p ed  m odal param eters identified w ith  sm all 

singular values set to  zero and h[Xf ] th e  identified  m od al param eter at full m odel or­

der. For consistency, it is n o ted  th a t th e  approxim ation  arises due to  th e  fact that  

th e  m ean b o o tstra p p ed  m odal param eters entering eq u ation  7.3 are affected by the
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quadratic b ias and th e  quadratic bias o f th e  truncation  bias so th a t a  residual error 

due to  th e  difference betw een  th ese  tw o quantities at th e  chosen and full m odel order 

affects th e  la tter  estim a te . T h e  truncation  bias, estim ated  v ia  equation 7.3 is given in 

tab le  7 .6 . It is seen  th a t, as for th e  perturbation  m ethod , th e bias is on average very  

w ell p red icted  for sy stem  A . It is n oted  th a t th e  zero occurs due th e fact that m odel 

order 4 corresponds to  th e  fu ll m odel oder for th e  7 x 4  Hankel m atrix. Interestingly, 

for sy stem  B , th e  b o o tstra p  tru n cation  b ias show s again a behaviour sim ilar to  that  

observed for th e  pertu rb ation  m eth od an d  th e  b ootstrap  estim ates closely m atch the  

perturbation  estim a tes . A gain  a sim ilar residual bias th a t could  not be accounted  

for by th e  p ertu rb ation  m eth od  is observed. T h ese  factors allow  to  draw a similar 

conclusion as for th e  p ertu rb ation  m ethod . D u e to  th e  lack o f  accuracy, but an ade­

quate in d ication  o f  th e  order o f m agnitude o f  th e  bias, it  is b est practice to  repeat the  

identification  w ith  different identification  param eters until a  negligib le bias is reached. 

A s ev idenced  from  th e  sim u lation  on system  B , th is  does n ot necessarily  y ield  th e true  

bias but it appears th a t severe bias can  b e  avoided by proceeding in th is  fashion.

It needs to  be n o ted  th a t th e  truncation  b ias estim ated  v ia  equation  7.3 is not easily  

obtained . T h e  reason b ein g  th a t it is not an easy  ta sk  to  correctly  m atch  up th e sam e  

m odes identified  at low  m od el and full order. T heoretically , if  th e  m odes identified at 

low  m odel order are stab le , th ey  should  be identified  at each m odel order chosen. T his 

form s th e  basis o f  th e  popular stab ilisa tion  diagram  to  d istingu ish  betw een  spurious 

and physica l m od es (V an der Auweraer and P eeters, 2004). However, in practice th is

dim(7io)
Model Order

( 7 x 4 )
2

( 7 x 4 )
4

(22 x  14)  
2

(22 x  14) 
4

S y stem  A
356.8  (%) 0 17.0 (%) 2.3 (%)

S y stem  B

/4& r*(01 99.1 (%) 0 6.4 (%) -1.6(% )

Tab. 7.6: Bias in the identified modal damping ratios estimated via the bootstrap method.
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is not alw ays th e  case (V an der Auweraer, 2001). H owever, to  com pute th e truncation  

bias by eq u ation  7.3, it is not needed to  actu ally  com pute xf  &t full m odel oder. In 

m uch th e  sam e w ay as in sp ection  o f th e  singular value diagram  can be used to  assist 

m odel order se lection  by in sp ection  o f th e  largest gap  in  th e  singular values (Peeters 

and D eR oeck , 1999, 2001), it  w ill reveal a t w hich m odel order th e  singular values axe 

o f th e  sam e order o f  m agn itu d e than  th a t at full m odel order. C hoosing a  m odel 

w ith in  th a t range o f  singular values w ill result in on ly  a m arginal loss o f accuracy but 

offers m ore flexibility. In  fact, for th e  resu lts in  ta b le  7.6,  w as identified at m odal 

order 8 based on  figure 6.17.  M oreover, to  fu lly  au tom ate  th e  m atching process is 

not straightforw ard. In th is  th esis, th is  w as done according to  th e  succession o f steps 

given below:

1. “O bvious” com p u ta tion a l m odes i.e. th o se  n ot occurring in com plex conjugate  

pairs or w ith  dam ping ratios > 0 . 1  are elim in ated  from  b oth  sets (low  and full 

m odel order) o f identified  m odal param eters.

2. T he rem aining m od es are th en  paired up  according to  th e  proxim ity o f  their  

natural frequencies. M atching m od es based  on  th e  natural frequencies w as m o­

tivated  by th e  fact th a t th ey  axe very stab le  i.e . low  bias and low  standard  error 

as has b een  show n in  m any in stan ces in  th is  th esis.

3. E ach such pair is th en  va lidated  by com p u ta tion  o f th e  M odal A ssurance Cri­

terion (M A C )(A llem an g , 2003; A llem ang and Brow n, 1982) betw een their asso­

cia ted  m od e shapes. A  good  correlation  betw een  m ode shapes is ind icated  by  

a M A C  > 0 . 9  (E w ins, 2000) in d icatin g  a m atched  pair w hereas a M AC value  

<  0 .9  is taken  to  in d icate  different m odes. In  th e  case w here th e  M AC <  0.9, 

th e  m ode having  th e  second  closest frequency is su b jected  to  th e te st to  account 

for th e  fact th a t c lose ly  spaced  m odes m ay cross as a  result o f th e  random  error. 

If th e  M A C  falls again  below  th is threshold , th e  search is stop p ed  and th is  m ode  

is rem oved from  th e  b ootstrap  sam ple.

T h is m eth od  is n o n eth eless n o t fool proof and a  graphical inspection  o f th e d ata  is
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recom m ended to  check for outliers. A s a result, a  search for th e  best identification  

param eters to  use can  b e  cum bersom e. F in ally  it is n oted  th a t th e variance o f the  

truncation  b ia s  as g iven  b y  equation  7.3 cannot be estim ated  by th e bootstrap.

7.6 Summary

In th is  chapter, th e  perform ance o f  th e  dependent b ootstrap  w as assessed to  predict 

th e  errors in  in -op eration  identified  m odal param eters. A lth ou gh  th e  em phasis was 

on th e  block o f  blocks b ootstrap  in  conjunction  w ith  th e  S S I/C o v  identification algo­

rithm , th e  flex ib ility  o f  th e  m eth od  w as dem onstrated  w hen applied to  th e S S I/D a ta  

together w ith  th e  sta tion ary  bootstrap . It w as show n th a t th e  b ootstrap  estim ates the  

random  errors reliab ly  but th a t th e  estim ates are afflicted by a downward bias error 

w hich w as a ttr ib u ted  to  th e  inherent root-m ean-square associa ted  w ith  th e  dependent 

bootstrap  due to  segm en tation  o f  th e  tim e-series. A lso , it w as observed th a t P olitis  

and W h ite ’s b lock  len gth  m eth od  sligh tly  m itiga tes th is  downward bias but at the  

expense o f th e  an increased scatter  in th e  estim a te  random  errors. A lso, it appears 

from  th e  sim u la tion s show n th a t th e m agnitude o f  th is  bias is sm aller for short range 

dependent t im e  series i.e. for system s w ith  a higher frequency content. Furtherm ore, 

th e  sim u lation s show  th a t th e  b ootstrap  also y ield s very reasonable results w hen non- 

sta tion ary  and  n on -w h ite  characteristics are present in th e  data . For tim e-series w ith  a  

n on -sta tion ary  frequency content, however, th e  random  error estim ates were less good.

T he bias in  th e  S S I/C o v  identified m odal param eters cou ld  also be determ ined  

by em ulating  th e  tru n cation  and quadratic bias. S im ulations show ed th a t th e  b oot­

strap  bias e stim a tes  w ere indeed  com parable to  th e  bias e stim ates by th e  perturba­

tio n  m eth od . C onsequently , th e  sam e conclusions apply here. H owever, th e  process 

o f se lectin g  th e  “b est” choice o f  param eters to  avoid th e  risk o f excessive bias in  the  

identified m od al param eters is m ore involved for th e  b ootstrap . T h is is due to  the  

fact th a t m atch in g  up  equal m od es identified  at different m odel orders w ill not always 

be straightforw ard and som e user interaction  is required.
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T h e “blocks o f  b locks” b ootstrap  and th e  sta tion ary  bootstrap^ are efficiently im ­

plem ented  and therefore, i f  used in  conjunction  w ith  a fast curve fitting algorithm , 

such as th e  S S I/C o v , estim a tin g  th e  error in th e  param eter under consideration from  

a large b ootstrap  sam ple is possib le  w ith ou t to o  m uch com putational burden. O n the  

other hand, w hen th e  identification  algorithm  used  is slow , as is th e  case for th e  data- 

driven S toch astic  Subspace algorithm  (S S I /d a ta ), th e  b ootstrap  m ethod  becom es very  

inefficient.

tcode from Kevin Sheppard’s GARCH Toolbox for Matlab
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C h a p t e r  8

C o n c l u s io n __________________________

In-operational or o u tp u t-o n ly  m odal te stin g  is receiving increased atten tion  in the  

civil engineering industry. Its  app lication  ranges from  m ore soph isticated  analysis 

procedures such as fin ite e lem en t u p d atin g  or dam age d etection  based on  th e change 

o f observed m odal param eters to  m ore straightforw ard, b u t often  v ita l, purposes. For 

exam ple, to  get m ore realistic  inform ation on  th e  m odal dam ping ratios to  use in  

build ing codes to  assess th e  floor v ib ration  levels to  sa tisfy  serviceability  concerns 

or sim ply  to  va lid ate  an ex istin g  fin ite e lem ent m odel. It is clear th a t th e  im prove­

m ent gained  by th e  use o f  exp erim en ta lly  determ ined  m odal param eters is entirely  

dependent on  th e  tru thfu lness o f th e identified  m odal dam ping ratios. It transpired  

from th e  literature review , th a t, w hile th is  issu e had  b een  raised, com paratively  little  

work appeared  to  have b een  done on  th e  su b ject. In  particular, th e  uncertainty  in  

th e  identified  m od al param eters largely failed to  be addressed in case stud ies dealing  

w ith  ou tp u t-o n ly  m odal analysis. T h is provided th e  m otivation  for th is  thesis. It is 

aim ed to  develop  a m eth od  to  assess th e  u n certa in ty  in  th e  m odal param eters o f civil 

engineering stru ctu res identified  from a single se t o f  m easured response records during  

an op eration al m odal te st.

8.1 Rationale

A s described  in th e  in trod u ction  to  th is  th esis, a  great variety  o f  identification  algo­

rithm s have b een  d evelop ed  over th e years to  ex tract m od al param eters from  m easured
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d ata . E ach o f th ese  curve-fit m ethods relies on  different m ath em atica l techniques and  

therefore differs in how  th e  m odal param eters are estim ated: som e being  m ore robust 

to  noise w hile others introduce less bias. A s a result, determ ining th e  uncertainty  in  

identified m odal param eters is particular to  th e  estim ator used and therefore, it is not 

possib le to  treat th is  top ic  in  general but it needs to  be narrowed dow n to  a particular  

identification  algorithm . In th is  thesis, th e  focus is on th e  C ovariance-D riven Stochas­

tic  Subspace Identification  algorithm , abbreviated  S S I/C ov . T h e latter w as chosen on  

th e  basis o f  its  generally  good  perform ance as docum ented  in  th e  literature and due  

th e  fact th a t it is w id ely  em ployed in th e  civil engineering com m unity  and is standard  

in m ost com m ercially  available packages.

T h e rationale beh ind  th e  approach taken to  tackle th e  problem  at hand was (a) to  

develop a practical m eth od  to  determ ine th e  error in th e m odal estim ates and (b) to  

assess w hether th e  error estim ates m ade available by th e  m eth od  are accurate and reli­

able. To th is  end, tw o techniques were developed: one relying on  perturbation  theory  

and th e  other on th e  b ootstrap  m ethod . To assess th e  perform ance o f th ese  m ethods, 

it w as opted  to  proceed by sim ulation  on sim ple system s since th is  offers th e  required  

controlled environm ent to  validate th e  error estim ates and, if  d iscrepancies occur, to  

in vestigate  their origin. T h is provides an ob jective  assessm ent o f th e  perform ance of  

th e  estim ator and estab lishes a basis for practical app lications. To account for adverse  

conditions, th e  perform ance o f b oth  m ethods w as in vestigated  under n on -stationary  

and non-w hite loading conditions.

8.2 Summary of Work

C orrelation-driven identification  algorithm s can be considered as a  2-stage procedure: 

in a first step , th e  auto- and cross- correlation functions betw een  sim u ltan eou sly  m ea­

sured responses h istories need to  be com puted  w hich are th en  fed to  th e  algorithm  

extractin g  th e  m odal param eters. Likewise, b o th  m eth od s developed  in th is thesis
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to  e stim a te  th e  error in  th e  identified also work in  tw o stages. For th e  perturbation  

m ethod , th e  first s tep  con sists o f estim ating  th e  sta tis tic s  o f th e  perturbation  to  th e  

com puted  correlation function. In a second step , th e  sy stem  sen sitiv ities  are com puted  

and com bined w ith  th e  estim ated  sta tistics  o f th e  perturbations to  y ield  th e  desired  

error. T h e b ootstrap  m eth od  starts by creating pseudo correlation functions by re­

sam pling from  th e  available response record and in a  second instance, a set o f m odal 

param eters are identified  from  each b ootstrap p ed  correlation  function from  w hich the  

desired error is ob ta in ed  by sim ple sam ple sta tistic s . It is clear th a t shortcom ings  

in either stage, w ill com prom ise th e quality  o f th e  resu lts. B elow , th e  work under­

taken to  app ly  th e  developed  m ethods to  th e  problem  o f  operational m odal analysis 

is described, th e  resu lts obta ined  are assessed  and conclusions are drawn.

8.2.1 The Perturbation M ethod

T his section  sum m arises th e  work and results o f chapters 3, 5 and 6. A s discussed  

above, th e  first step  con sists in estim atin g  th e  s ta tis tic s  o f th e  perturbations at each  

d ata  point o f  th e  com puted  correlations function . To b e  applicab le in practice, th is  es­

tim ator needs to  be robust, accurate and com p u tation a lly  efficient. It w as show n th at  

th e  desired sta tis tic s  o f th e  perturbations are g iven  by th e  variance and covariance  

of th e  correlation functions, provided th e latter  are unbiased. Therefore, th e  estim a­

tion  o f th e  auto- and cross-correlation functions w as review ed and th e  p ossib le  bias 

th a t can arise in their com putation , for instance due to  w indow ing w hen com puted  

by inverse Fourier transform  o f spectral d en sities w as in vestigated . T h e variance in  

th e  estim ated  correlation functions w as first stu d ied  an a ly tica lly  y ield in g  expressions  

for th e  variance and covariance o f  th e  auto-correlation  functions o f SD O F  system s. 

A n approxim ation w as undertaken. T h is resu lted  in  an approxim ate form ula g iv in g  a 

rule o f thum b to  assess at a  pre-test stage th e  m inim um  record duration  necessary to  

identify  th e  m odal param eters w ith  a random  error fa lling below  a desired level. T h is  

form ula w as validated  in C hapter 6. T he an aly tica l resu lts w ere exten d ed  to  give an  

approxim ate expression  for th e  variance o f th e cross-correlation  functions o f M D O F
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system s as a  w eigh ted  sum  o f auto-correlation functions o f  th e  uncoupled equivalent 

S D O F  system s, provided th e  system  m odes are sufficiently separated. N onetheless, 

th ese  an a ly tica l expressions are im practical and another m eth od  to  determ ine th e  sta­

tistic s  o f  th e  perturbations to  th e correlation functions w as required. To th is end, 

th e  eq u ation s th a t yielded  th e  analytical expressions d iscussed  above were em ployed  

but rather th a n  proceeding analytically, their d iscrete version w as im plem ented nu­

m erically. T h is num erical routine has th e v ita l a ttr ib u te  th a t it  operates d irectly  on  

th e  estim a ted  correlation functions from th e m easured d ata . However, th is technique  

requires th e  double sided, full length  correlation functions as input w hich im plies th a t  

(a) it is com p u tation a lly  expensive and (b) th e  resu lting  variance and covariance es­

tim a tes are h igh ly  inaccurate due to  th e  inclusion  o f  th e  p oorly  defined ta il regions. 

B o th  problem s could be solved by tapering th e  estim ated  correlation functions by a 

fla t-top  w indow  w ith  optim al bandw idth  determ ined  by m in im ising th e  m ean-square- 

error o f th e  corresponding spectra l density. T h e cut-off im posed  by th e  fla t-top  w indow  

elim inates th e  troublesom e ta il regions and d ram atically  reduces th e  num ber o f d ata  

poin ts used in th e  estim ation . T hus, th is  m eth od  y ields accurate variance and covari­

ance estim ates, it  is com p u tation a lly  efficient and fully  au tom ated . T h e m eth od  was 

validated  against th e  th eoretica l values for b oth  auto- and cross-correlation functions. 

E xcellent agreem ent w as observed and a com parison for th e  sam e estim a te  w ithout  

tapering  h igh lights th e  increased accuracy offered by th e  m ethod . M oreover, since th is  

m eth od  operates d irectly  on th e correlation functions com puted  from  th e  m easured  

tim e-h istories, any sta tion ary  d isturbance to  th e  m easured response records w ill be  

reflected in th e  estim ated  variance as was show n by adding noise to  th e  sim ulated  

data. T h is feature is clearly very desirable in practice.

C hapter 5 presents th e  theory behind th e  com p u tation  o f th e  system  sensitiv ities: 

th e  second stage  o f th e error estim ation  process. S ince th e  S S I/C o v  is essen tia lly  the  

sam e as th e  E igen system  R ealisation  A lgorithm  (E R A ) used for in p u t-ou tp u t m odal 

analysis, th e  changes required to  adjust th e  com p u tation s to  operational m odal analy­
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sis w ere m inor. H owever, it w as shown th at th e m eth od  proposed  in  th e  original paper 

to  ca lcu la te  th e  variance o f  th e  truncation bias and its  quadratic bias was not correct 

due to  repeated , id entica lly  zero eigenvalues o f th e  m atrix  describing th e effect o f re­

in sta tin g  th e  tru n cated  non-zero singular values. A s d iscussed  in th is  la tter chapter, 

an ex a ct so lu tion  to  th is  problem  is non trivial. For th e  variance o f th e  truncation  

bias, how ever, an approxim ation was em ployed and th e  sim ulations in C hapter 6 show  

th a t th e  la tter  is satisfactory. T h is approxim ation cou ld  not b e  carried over to  the  

com p u tation  o f  th e  quadratic bias as sim ulations show ed severe ill-conditioning. T he  

reason for th is  behaviour is th at th e singular su b sp aces used in th ese  com putations  

are associated  w ith  sm all singular values. Such subspaces are known to  be extrem ely  

sen sitive. A s a result, th e quadratic bias in th e  tru n cation  bias w as n ot com puted. 

T h e loss o f accuracy due to  th is  om ission  w as in vestiga ted  by sim ulation  in Chapter  

6, and th e  results obtained  suggest th a t for practical purposes, th is  effect is m arginal. 

T h is issue is further d iscussed  below . T h e  perturbation  algorithm  fails to  y ield  error 

estim ates for repeated  m odes. It w as argued th a t, a lthough  it is not uncom m on for 

civil engineering structures to  have alm ost repeated  m odes due to  sym m etries in th e  

geom etry, it is however rare in  practice to  encounter th e  situ ation  w here system  poles 

are identical. H owever, th e  m eth od  was exten d ed  to  cover th e  la tter  case but on ly  

for th e  sen sitiv ities required to  estim ated  th e  random  error. Im portantly, however, 

as exp la ined  in deta il in C hapter 5, th e in vestigation  in to  repeated  singular values 

allowed to  conclude th a t th e  original perturbation  m eth od  (not accounting for degen­

erate eigenvalues) is able to  cope w ith  closely  spaced  m odes.

In C hapter 6, th e  perturbation m ethod  is tested  on  sim ulated  response d ata  from a 

set o f  SD O F  system s and th e  accuracy w ith  w hich th e  random  and bias errors can be  

estim ated  is investigated . In a first instance, th e  random  error in th e  m odal param e­

ters due to  instrum entation  noise and estim ation  errors w as in vestigated  separately. 

T h e “ex a ct” system  sen sitiv ities and sta tistic s  o f th e  perturbations w ere used in these  

com putations. W ith  th e  la tter  idealisation , excellen t agreem ent w as observed betw een



th e  predicted  and “tru e” errors and the conclusion could b e  drawn th a t a  linear expan­

sion  in  term s o f  th e  perturbations is sufficient to  th e  determ ine th e  random  error in th e  

SS I/C ov-id en tified  m odal param eters from ou tp u t-on ly  data. It w as also show n th at  

th e  random  error estim a te  is robust w ith  respect to  errors in th e  estim ated  sta tistics  

o f th e  perturbation  w ith  one exception; n am ely w hen th e  sta tistics  o f th e  perturba­

tion  are frequency sh ifted  w ith  respect to  th e  frequencies in th e  com puted  correlation  

functions. H owever, it is exp ected  th a t th is  is unlikely to  occur w hen th e  sta tistics are 

estim ated  by th e  p lug-in  m ethod . For th e  case w here th e  correlation functions and  

their variance/covariances are estim ated  from  sim ulated  response records subjected  

to  noise, it is again  observed th a t th e  random  error is w ell predicted  and it is seen  

th a t th e  addition  o f th e  noise is clearly picked up. In all th e  cases used in th e  sim ­

ulation , th e  perturbation  m eth od  correctly accounted  for th e  influence o f th e size of  

th e  H ankel m atrix, o f  th e  sam pling interval, th e  record len gth  used and th e  m odel 

order selected . F inally, it  was investigated  how  n on -sta tion ary  and non-w hite charac­

teristics affect th e  random  error estim ates. It can b e  concluded  th a t th e  perturbation  

m eth od  can, in general, n ot account for th e  ad d itional random  error in troduced by th e  

non -station arity  and ten d s to  estim ate  th e  random  error o f th e  underlying stationary  

signal. However, in  situ ation s where a non -sta tion ary  frequency content is m ore or 

less repeated  identica lly  from record to  record, a  good  estim a te  o f th e  random  error 

can still be expected .

To investigate th e  predictive qualities o f th e  a lgorithm  to  determ ine th e  bias error 

in th e  estim ated  m odal param eters, a  sim ilar approach w as taken as for th e  random  

error. H owever, th e  good  agreem ent betw een  th e  true and estim ated  errors observed  

for th e  random  error, could n ot be reproduced for th e  bias. For th e tw o system  in­

vestigated , th e  resu lts were excellent for th e  lower frequency sy stem  but considerably  

less accurate for th e  higher frequency system . P artly  responsib le for th e  observed  

divergence is th e  artificial linearisation involved in th e  equations y ield in g  th e  trunca­

tion  bias. T h is sta tem en t w as verified by sim ulation . However, further sim ulations
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show ed th a t even  in  th e  case, where th e truncation  bias is th eoretica lly  exp ected  to  

be neglig ib le, i.e . no singular values containing sy stem  inform ation were truncated, 

th e  d iscrepancy b etw een  th e  estim ated  and true bias w as still present, a lthough th e  

p erturbation  algorithm  “correctly” predicted negligib le bias. It w as show n th at th e  

quadratic bias, w hose contribution to  th e  to ta l bias w as found to  be m arginal, could  

n ot account for th e  observed discrepancy. W hile th e  m agnitude o f th is  divergence was 

n ot dram atic, it  w as still significant in  th e  sense th a t it w as about tw ice as large as 

th e  standard  error. M oreover, a  check devised  to  assess w hether th e om ission  o f the  

quadratic bias o f th e  truncation  bias could be responsib le for th e  inaccurate estim ate, 

show ed th a t th e  quadratic bias o f  th e  truncation  b ias w as sm all and its  om ission  could  

n ot b e  th e  cause o f th e  detected  inconsistency. T h e  q u estion  as to  w hat lies at th e  

b o tto m  o f th e  observed discrepancy therefore rem ains open . T h e p ossib ility  ex ists  

th a t th e  quadratic expansion  o f th e perturbation  equations relating to  th e  bias is not 

sufficient and th a t th e  bias is dependent on higher order sta tistics . B u t on  th e  other  

hand, th is quadratic expansion  appeared sufficient for th e  lower frequency system . 

D esp ite  th is  “m ysterious” discrepancy, it appears from  th e  sim ulations in C hapter 6 

th a t w hen th e  true truncation  bias is sm all, it is estim ated  m ore accurately  by th e  

perturbation  m ethod . A lth ou gh  th e  converse d oes not hold, it d oes transpire from  

th e  sim ulations th a t w hen th e  estimated b ias is sm all, it is unlikely th a t th e  true  

bias is excessive. Therefore, th e  best practice is to  app ly  th e  perturbation  algorithm  

w ith  different se ts o f  param eters (d im ension o f th e  H ankel m atrix , m odel order, and  

p ossib ly  th e sam pling interval) to  find a set th a t y ie ld s a neglig ib le truncation  bias. 

A s show n in C hapter 6, th is  is possib le by increasing th e  size o f  th e  H ankel m atrix  

or by overspecifying th e  m odel order. T h is approach does n ot necessarily  result in  

b est possib le bias estim ate, but severe bias appears to  be reflected  in th e  perturbation  

estim ates so th a t th e la tter situ ation  can be avoided and a bias correction , if  applied, 

w ill not exacerbate th e  discrepancy. Since th e  com p u tation  o f th e  truncation  bias is 

very efficient as it is independent o f th e  sta tistics  o f  th e  perturbation , th is  is readily  

achieved in practice.



8.2.2 The Bootstrap Method

T his section  sum m arises th e  work and results o f chapters 4 and 7. T h e b ootstrap  

m eth od  had previously  been  applied by several authors to  assess th e  uncertainty in  

m odal d ata . However, th e  fact th a t th e  outcom e o f  b ootstrap p in g  tim e series depends  

on how  th e  tim e-series are sp lit up into blocks o f d a ta  and th en  jo ined  to  y ield  the  

b ootstrap p ed  pseudo-tim e series was ignored by th ese  authors and is th e subject of  

C hapter 4. T hree schem es for bootstrapp ing tim e series are investigated: th e  m oving  

blocks bootstrap , th e  “blocks o f blocks” b ootstrap  and th e  sta tion ary  bootstrap . It is 

show n th a t th e  m oving blocks b ootstrap  introduces artificial dam ping into  th e system . 

T h is effect can be m itigated  by th e  stationary  b ootstrap  and avoided com pletely  by  

using th e  b locks o f blocks schem e. For th is reason, th e  la tter m eth od  is preferred and  

an efficient a lgorithm  resu lting in  a set o f b ootstrap p ed  auto- and cross-correlation  

functions w as developed. B ootstrapp ing correlation functions rather tim e-series offers 

a significant advantage in term s o f com puter m em ory w hen th e  recorded response  

records are long. N ot on ly  does th e resam pling schem e used affect th e  bootstrapped  

sta tistics, but so does th e  size o f  th e blocks used. T h e  block length  effectively  controls 

th e  am ount o f bias and random  error in th e  variance and covariance in  bootstrapped  

correlation functions. Should th e  b ootstrap  yield  a set o f pseudo correlation functions 

th at have a large b ias, for exam ple underestim ate th e  variance and covariance, then  

equally th e  random  error in th e  m odal param eters w ill be underestim ated . There­

fore, th e  block length  is crucial to  the accuracy o f th e  b ootstrap p ed  random  errors 

in th e  m odal estim ates. To avoid th is, tw o op tim al b lock length  selection  m ethods  

are presented th a t m inim ise th e  root-m ean-square error o f  th e  b ootstrap p ed  correla­

tion  functions. T h is ensures th a t th e set o f  b ootstrap p ed  correlation functions have 

a variance and covariance as c losely  as possib le w ith in  th is  fram ework to  th e  true  

sta tistics  o f th e  correlation function. T he la tter  m eth od s were orig inally  derived for 

univariate tim es-series but were extended  to  com p u te th e  op tim al b lock length  for 

cross-correlation functions. T he theory was validated  by sim ulation . T h is estab lishes  

th e  solid  basis needed to  assess th e  uncertainty  in th e  identified  m odal param eters.

290



Sim ulations in vestigating  th e  quality  o f th e  b ootstrap  m eth od  are presented in  

C hapter 7. T h e  sam e approach w as used as for th e  perturbation analysis as well 

as th e  sam e S D O F  system s to  allow  a  fair com parison betw een  b oth  m ethods. T he  

sim ulations, using th e  blocks o f blocks resam pling schem e, show ed th a t th e  bootstrap  

m eth od  y ield s good  estim ates o f th e  random  error but th a t th ey  are less accurate  

th an  th ose  ob ta in ed  by th e  perturbation  analysis. In fact, a  sm all downward bias was 

observed w hich w as a ttr ib u ted  to  th e  inherent, a lbeit op tim al, root-m ean-square error 

in th e  variance and covariance o f  th e  b ootstrap p ed  correlation functions. A  slight 

im provem ent w as observed w ith  P o litis  and W h ite ’s b lock selection  m ethod  but, as 

argued in C hapter 7, it  cannot be asserted w hether th is  w ill alw ays be th e  case. One 

o f th e  advantages o f  th e  b ootstrap  m ethod , is th a t it is n ot restricted  to  th e  S S I/C ov  

algorithm  but can in principle be used in conjunction  w ith  any curve fittin g  algorithm  

to  estim ate  th e random  error. T h is w as d em onstrated  by estim atin g  th e  random  error 

in th e  identified m odal param eters from th e  data-driven  S toch astic  Subspace M ethod  

(S S I/D a ta ) in conjunction  w ith  th e  sta tion ary  b ootstrap . A gain  good  agreem ent was 

observed betw een  th e  true and estim ated  random  error. A s for th e  perturbation  

m ethod, th e influence o f n on -stationary  characteristics w as investigated . It appears 

th a t th e  b ootstrap  m eth od  appears to  pick up som e o f th e  ad d itional random ness 

introduced by th e  n on-stationary  characteristics in th e  d a ta  w hich m akes th is m ethod  

very a ttractive in practical applications. T h e reason for th is  w as exp lained  by the  

fact th a t th e  resam pling schem e also random ises th e  m od u lation  function  and thereby  

accounting for th e  additional variability. In th e  tw o cases w here th e  frequency content 

o f th e  response exh ib its  n on-stationary  characteristics, th e  true and estim ated  errors 

agreed less well.

F inally, th e  problem  o f estim atin g  th e  bias in th e  identified  m odal param eters 

w as addressed. B ased  on th e  theory o f th e  p erturbation  analysis, an bias estim ate  

em ulating th e  truncation  bias w as considered. S im ulations show ed th a t th e  bias thus
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estim ated  displayed a sim ilar behaviour to  th e  estim ates ob ta in ed  by th e  perturba­

tion  analysis. A s a result, th e  sam e conclusions apply, nam ely  th a t th e  b ootstrap  bias 

estim ates lack th e  accuracy aim ed for but ind icate severe bias in  th e  estim ates. A lso, 

like th e  perturbation  m ethod , th e bootstrap  b ias estim a te  does not account for the  

residual bias error observed in th e  higher frequency system . A s discussed in Chap­

ter 7, th e  com p u tation  o f  th e  bootstrap  bias em ulating th e  truncation  bias has its  

drawbacks. It is difficult to  autom ate th e  process and to  ob ta in  a good  estim ate  m ay  

require som e user in teraction . However, th e  lim ita tion s cannot be adequately  assessed  

in th is  case w ith ou t te stin g  th e  m ode pairing and th e  accuracy o f th e  estim ate  on a 

m ore com plex  system . D ifficulties are to  be exp ected  and therefore, th e  perturbation  

m eth od  is preferred to  estim a te  th e  bias.

8.2.3 Future Work

A lthough  b oth  m ethods allow  to  avoid excessive b ias in th e  m odal param eters, an 

im provem ent w ould be desirable, in particular for app lications involving th e  com pu­

ta tion  o f response levels w hich require truthfu l e stim ates o f  th e  m odal dam ping ratios 

for accurate predictions. T w o problem s were identified  in  determ ining th e  bias: (a) 

th e  approxim ation used to  estim ate  th e  truncation  b ias and (b) an unexplained  resid­

ual bias observed in th e case where th e  truncation  bias is ex p ected  to  be m arginal 

w hich could  n ot be accounted for th e  quadratic bias nor th e  quadratic bias o f the  

truncation  bias. A  fair am ount o f effort was devoted  th e  form er problem  in  try ing  to  

rew rite th e  perturbation  equation  y ield ing th e  truncation  b ias in  term s o f  a  physically  

m eaningful perturbation param eter but th is  is not triv ial. To in vestiga te  th e  source o f  

th e  unexplained residual bias, sim ulating th e  bias on a large num ber o f sy stem s would  

p oten tia lly  hint in to  th e  right direction. H owever, if  it turns out th a t higher order 

sta tistic s  are required to  pin  dow n th e bias accurately, th e  resu lting  com putational 

burden m ay becom e im practical. T he above applies to  th e  b ootstrap  bias estim ates  

as w ell. However, th e  problem  regarding th e  pairing up  o f th e  equal m odes at chosen



and full m od el order in a robust and autom ated  fashion is w orth investigating. T his  

problem  bears sim ilarity  to  sorting stab le from unstab le m odes in  a stab ilisation  di­

agram . Som e innovative techniques such as fuzzy clustering m ay provide a solution  

to  th is  problem . A nother im portant factor th a t w ould benefit th ese  m ethods in prac­

tice  is th e  determ ination  o f  th e  bias introduced due to  non-stationarity. T he problem  

lies in  th e  difficulty to  capture th e  bias introduced to  th e correlation functions as a 

result o f tim e-averaging through th e  n on-stationarity  w hen th e  stationary  correlation  

functions are com puted  and include then  into  th e  sta tis tic s  o f  th e  perturbations. A  

p ossib ility  w orth  in vestigatin g  is w hether a com parison betw een  th e non-stationary  

correlation functions and th e  sta tion ary  correlation functions g ives som e clues about 

th is  b ias and offer th e  p ossib ility  to  im plem ent th is  in  a d a ta  driven fashion.

For either o f th e  tw o m eth od s to  be applicable in  practice, th ey  have to  be tested  

on  M D O F system s. A lth ou gh  th e  th eoretica l basis presented in  th is  th esis covers 

th e  M D O F  scenario for b o th  m ethods, a  few  particu larities need to  b e  considered  

in m ore detail. For th e  perturbation  m ethod , th e  critical issue is to  in vestigate how  

th e  algorithm  copes w ith  closely  spaced m odes and w hen to  sw itch  to  th e  repeated  

m ode case. T h e b ootstrap  m eth od  is readily applicable to  th e  M D O F  case. However, 

som e additional work w ould  be valuable on som e o f  th e  practical and theoretica l as­

p ects involved. T hese are: (a) an im proved m eth od  for pairing up identical m odes  

from different b ootstrap  estim ates (b) gu idance on  w hich auto- or cross-correlation  

fu nction(s) should  be used to  determ ine th e  block len gth  and (c) to  investigate in 

m ore detail, either by sim ulation  or theoretically , th a t th e  determ ination  o f th e op­

tim al block length  based on th e  correlation function  at zero lag is also optim al or 

near-optim al for higher lags. F inally, to  enhance th e  confidence th a t can be placed  

on th e  proposed error estim ation  m ethods, som e M D O F  sim ulations and laboratory  

te sts  on  a sim ple rig, w hose m odal properties are know n, w ould  be a valuable addition .

B oth  m ethods certain ly  contain  a few  other in teresting  features. A  point th at



has captured  th e  interest o f th e  author is to  see, w hether th e  system  sen sitiv ities  

reveal th em selves as reliable indicators to  d istinguish  betw een  structural m odes and  

sy stem  p o les in troduced into  th e  system  due to  th e  presence o f harm onic forcing 

com ponents. T h e  la tter  m odes are non physical and therefore it is not unlikely th a t  

th e  sen sitiv ities  associated  w ith  these poles differ sign ificantly  from th ose o f system  

m odes. For th e  bootstrap , an interesting research avenue is its  application  to  non- 

sta tion ary  tim e series, w hich has received som e atten tion  in  recent years. Since m any  

real-life processes are non-stationary, such a to o l w ould lend itse lf  as a basis for a  

great variety  o f  applications. C oupled w ith  th e  a ttractive  feature th a t th e b ootstrap  

m eth od  is n ot lim ited  to  a particular curve fittin g  algorithm , such a m ethod  is not 

likely to  be superseded in th e  near future as th e  underlying d a ta  structure o f response 

records w ill not change, but th e  curve fittin g  algorithm s a lm ost certa in ly  w ill.





A p p e n d i x  A

E x p r e s s i n g  t h e  

C r o s s - c o r r e l a t io n  F u n c t io n  o f  

AN MDOF SYSTEM AS A SUM OF 

Auto-CORRELATION FUNCTIONS OF 

EQUIVALENT SDOF SYSTEMS

It is w ell know  th a t th e  d isplacem ent response o f a  v iscou sly  dam ped  N -D O F  sys­

tem  system  can be expressed as a  linear com bination  o f  th e  undam ped m ode shapes  

w eighted by th e  m odal or norm al coordinates as

N

x ( t )  =  £  <l>nYn(t) =  * Y ( i )  ( A . l )
i=n

where 4>n are th e  undam ped m ode shapes o f  th e  sy stem  and it  is assum ed th a t free 

response m ode shapes d iagonalize th e  d issipation  m atrix  as is th e  case for proportional 

dam ping (see E w ins (2000) for instance). T h e m odal coord inates Yn(t) can b e  found  

from th e uncoupled equivalent SD O F  system s corresponding to  each m ode using, for



in stan ce th e  D uham m el integral (C lough and P enzien , 1993) i.e.

Y„(t) +  2 tnVnYn(t) +  U%Yn(t) =  — w ith  (A .2)
7Yln

w ith  Yn =  f  Pn(r)hn(t — r)d ,T  n =  1 , 2 , . . . ,  N  (A .3)
Jo

Here, Pn(t) denotes th e  m odal or generalized force, hn th e im pulse response function

o f th e  nth m ode, mn th e  nth m odal m ass and ujn th e  natural frequency o f m ode n.

T hus, a t degree-of -freedom  /, th e  displacem ent is

N

**(*) = Y l ^ inYn^  and (A-4)
n

%ln{t) =  (A*5)

w here xin(t) is th e  ou tp u t at degree-of-freedom  I due to  m ode n  only. T h e correlation  

function betw een  any tw o disp lacem ents at degrees-of-freedom  I and p  is  given by

Rxixp{r) =  E [xi(t)xp(t +  T )\ (A .6)
N N / -oo f00

— 5 3 5 3 1  I I (f)lm4>pnRPmPn{T ~  “I" ul)*  (A-7)
m n ^ Jo Jo

x  hm(ui)hn(u2)duidu2 ) (A .8)

=  E E  RximXpn (r )  (A .9)
m n

W hen th e  dam ping is light and th e  m odal frequencies are w ell separated , th en  the  

response process xim(t) produced by m ode m  is a lm ost sta tistica lly  independent o f  

th e  response xpn(t) produced by m ode n so th a t th e  cross-term s in  eq. A .9 o f th e  form  

RximXpn for n ^  m  are sm all com pared to  th ose  w here n =  m  (C lough and Penzien , 

1993). T hus, eq. A .9 can be approxim ated as

N

RxiXp(t ) ~  53 RxinXpn(r )  (A . 10)
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Now, it follows from equations A.8 that

R x i n Xpn ~  T  ~ r~ ^ X q n X q n  fln2/ Q (A - l l)
Yqn 'P qn

T hus,

N

~  fyqnfyqnRx,*P «  (A-12)

A ssum ing th a t th e  exc ita tion  consists o f uncorrelated w hite  noise inputs pi at degrees- 

of-freedom  i , w e can  w rite

N  N  N

RPnPm (T) =  E E  fyn&rmRpipr iT) ~  )   ̂filn&lmRpiPi (r ) (A . 13)
I r  I

N

=  ^ f a n f a m S l S T  =  S q5 t  (A . 14)

w ith  S0 =  <j>in<l>lmSi and Pm denotes th e  mth m odal force. It follow s therefore  

from equations A . 12 and A . 13 th a t th e  correlation functions RXlXp betw een  ou tp u ts  

m easured at different degrees-of-freedom  I and p  a long a structure excited  by uncorre­

lated  w h ite  noise can be approxim ated as a linear com bination  o f th e  auto-correlation  

functions o f SD O F  system s w ith  m odal frequencies and dam ping ratios o f  th e  struc­

ture exc ited  by w h ite  noise.

U sin g  equation  3.3, th e variance o f  th e  unbiased correlation functions RXlXp can  

therefore be w ritten  as

Var(RXlXp(r)) =  _  r  J T ^  \Rx ix i ( r ) R x pxp (r ) +  Rxixp ( t  +  T ) R x px i ( t  — t)]  dr

(A .15)

S u b stitu tin g  th e  approxim ation m ade in equation  A . 10 in  th e  above equation, one



obtains

Y  InXln (T) I ( 53 RxpmXpm M

+ ( 53 ̂ InXpn (̂  + T) ) ( 53 ̂ XprnXlm 
\  n  /  \  m

- t ) dr

(A-16)

Expanding the sums then yields

Vq>7'(Rxixp w) “  E {t3 7 /t+Tt(1_Jt)  (r)+(A-17)

+#*tnzpn (* + (* -  r)] dr} (A. 18)

♦ r b C ( - ¥ ) ? ? «  <41,)
m ^ n

X [•̂ xjna:in(r )-̂ *pma:pm(r )-l" (A.20)

+^*in*pn (* + r)RXpmXlm {t -  t) \  dr  (A.21)

Since it was assumed that the modal frequencies are well-separated, it follows that the 

second term in equation A. 17 is much smaller than the first term since the integral of 

the product of two correlation functions almost cancels due to the oscillation about 

the abscissa. This is much the same situation than before (eq. A.8) since the auto­

correlation functions are proportional to the impulse response functions for white noise 

excitation. Proceeding as in equation A. 12, we can write

n _ _ _ _ _ _ _ _ _ _ __  0pn0pn  p  p  _  tfiln^pn p  p    fipn&n p
X p n X p n  / i X i n X i n ' i  X [ n X p n  # /   ̂ X p n X i n  ±  A.  ' ^ I n ' ^ l n

0Zn0in 0 /n 0 in  0Zn0Zn

(A.22)

Using the notation above and neglecting the second term in equation A. 17 the variance 

may be written

Var(RXlXp(r)) «  Z ^ V a r ^ ^ r ) )  (A.23)

Thus, the variance of the correlation functions RX[X between outputs measured at dif­

ferent degrees-of-freedom I and p along a structure excited by uncorrelated white noise 

can be approximated as a linear combination of the variance of the auto-correlation
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functions of SDOF systems with modal frequencies and damping ratios of the structure 

excited by white noise.



A p p e n d i x  B

A d d it io n a l  E x p r e s s io n s  f o r  t h e  

D e r iv a t iv e s  o f  t h e  M o d a l  

F r e q u e n c ie s  a n d  D a m p in g  

R a t io s  ______________________ _ _

This Appendix gives the remaining derivatives needed for the calculation of the deriv­

atives of the modal frequencies and damping ratios. Because these expressions are 

lengthy, they were omitted in 5.3 in Chapter 5.

B .l Expression for 6 j k f, (u;,)

d]icp =  ----------------------------- [a- (o)j------------------------------ ( ^

»  f e  (AJ] 'ft {6„ (A jfV  5  [Sik (Ac,)] a  [Sp (A^)]
I Ac, (0)1

1 a  [Sk (Ac,)]» [Sip (Ac,)] +  3  [4  (Ac,)] a  [Sjp (Ac,)]
2 |Ac, (0)|
1 3? [Sj (Ac,)] [Skp (Ac,)] +  A [Sj (ACl)] 1 [Skp (Ac,)] 
2 I Ac, (0)|
1 Sj (uJij Sftp (w,) + 2Sjk (uj,) Sp (w,) +  Sk (t î) Sjp (wj)
2  |Ac, ( o ;
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B.2 Expression for 8jkp (6)

jr ( t  \  ^  [^c*  ( —)1 ^jkp { ^ i )  ^ [ ^ j f c p ( ^ C i ) ]  / p  0 \

* '* (4,) =  — ^ ( o ) ---------------------------------------------------------- ( }
1 g? [Sj (A^)] 5kp (uj) +  9E [5kp (A^)] Sj (a,j)

2
_l_ !_ 3ft [5k (A^)] 5jp  ( u i )  +  3?  [5jp  (Ac-)] 5k  ( u , j )

+

2 u,? (0)
f t  V>jk (Aq)] Sp f a )  +  3? [<5P (Ac-)] (ui)

" 1  (Q)
f t  [Ac* (Q)] 5kp (u>i) 5j (ok)

(0)
( ft  [ 4  (Aci)] 5P (ui) +  5R [£p (Ac-)] 5k (ui) )5j (an)

wf (0)
ft  P j (Ac.)] <*p (wi) <5fc (a,i) +  3£ [Ac (0)] (5k (a;*) +  5j (04) )

©
o ft [Ac (0)] fo ) (afr) <*p (tJj)

(Q)
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B .3 Expression for 8jk (A)

+

+

2Sjk  (A) =  2 S r1/2U !r [WiV1(Jiife( s r 1/2)+«i<53'fc (V i)s r1/2] (B.3)

2 [ s r 1/2<5jfc (U f) +  Sjk ( s r ‘/2) U f] WiV1S r ‘/2

4  ( s r 1/2)  [ 4  ( U i T ) H1V 1S ("1/2 + U f  4  (W O V iE ^1/2

+ V f - H A  (Vi) E“1/2 + (S 7 1/2)]

+ 4  ( s r V2) [4 (U iT) H i V kS - 1/2 + U f  Sj (Hi) V jS -1/2 

+  U f W ir f ^ V O S ^  +  U f W iV K J ^ S ^ 2)]

+ E^1/24  (U f) [ 4  (Hi) \ { S i V2 + HiSk (Vi) s r l/2 + HiWiSk ( s 71/2)]

; . +  E r 1/24  ( u f ) [4 (Ml) V !S - 1/2 +  HiSj (Vi) s : 1/2 + HiViSj  ( s ^ 2)]

+ s r 1/2u f 4  ( H i )  [ 4  (Vi) s r i / 2 + ( s r 1/2) ]

+ s r 1/2u f 4  (Hi) [4 (VO s r 1/2 + V j4  ( s ^ 1/2) ]

+ s r 1/2u jH iS j  (Vi)  4  ( s r 1/2) +  s r 1/2u fW !4  (VO 4 ( s r 1/2)

B.4 Expression for 8 j k  (Ui)

Sj k ( V i )  =  H o S j k (V i) E f 1 +  H o V i S j i c  ( s f 1)  (B.4)

+ \  [wo4 (VO 4  (sr1) + Ho4 (VO 4  (sr1)
+ 4 (Wo) V i4  (sr1) + 4  ( H o )  V i S j  (sr1)
+ 4  (Wo) 4  (VO sr1 + 4  (Wo) 4  (VO sr1]
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