2809644927

REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

Degree \/IearZ . 0 Name of Author

COPYRIGHT

This is a thesis accepted for a Higher Degree of the University of London. It is an
unpublished typescript and the copyright is held by the author. All persons
consulting this thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION

| recognise that the copyright of the above-described thesis rests with the author
and that no quotation from it or information derived from it may be published without
the prior written consent of the author.

LOANS

Theses may not be lent to individuals, but the Senate House Library may lend a
copy to approved libraries within the United Kingdom, for consultation solely on the
premises of those libraries. Application should be made to: Inter-Library Loans,
Senate House Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION

University of London theses may not be reproduced without explicit written
permission from the Senate House Library. Enquiries should be addressed to the
Theses Section of the Library. Regulations concerning reproduction vary according
to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the
author. (The Senate House Library will provide addresses where possible).

B. 1962-1974. In many cases the author has agreed to permit copying upon
completion of a Copyright Declaration.

C. 1975-1988. Most theses may be copied upon completion of a Copyright
Declaration.

D. 1989 onwards. Most theses may be copied.
T '" sls comes within category D.
\y This copy has been deposited in the Library of u C u

This copy has been deposited in the Senate House Library,
Senate House, Malet Street, London WC1E 7HU.






Department of Civil & Environmental Engineering

University College London

Uncertainty in
Correlation-Driven Operational

Modal Parameter Estimation

by
Laurent Giampellegrini
Supervisors

Paul.D. Greening, Steven. R. Bishop

Thesis submitted to University of London for Doctorate in Philosophy



UMI Number: U592836

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U592836
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



ABSTRACT

Due to the practical advantages over traditional input-output testing, operational or
output-only modal analysis is receiving increased attention when the modal parame-
ters of large civil engineering structures are of interest. However, as a consequence
of the random nature of ambient loading and the unknown relationship between exci-
tation and response, the identified operational modal parameters are inevitably cor-
rupted by errors. Whether the estimated modal data is used to update a finite element
model or different sets of modal parameters are used as a damage indicator, it is de-
sirable to know the extent of the error in the modal data for more accurate response
predictions or to assess, if changes in the modal data are indicative of damage or just
the result of the random error inherent in the identification process. In this thesis, two
techniques are investigated to estimate the error in the modal parameters identified
from response data only: a perturbation and a bootstrap based method.

The perturbation method, applicable exclusively to the correlation-driven stochas-
tic subspace identification algorithm (SSI/Cov), is a two stage procedure. It operates
on correlation functions estimated from a single set of response measurements and,
in a first step, the perturbations to these correlation function estimates need to be
determined. A robust, data-driven method is developed for this purpose. The next
step consists in propagating these perturbations through the algorithm resulting in an
estimate of the sensitivities of the modal data to these perturbations. Combining the
sensitivities with the perturbations, an estimate of both the random and bias errors
in the SSI/Cov-identified modal parameters is found.

The bootstrap technique involves creating pseudo time-series by resampling from
the only available set of response measurements. With this additional data at hand,

a modal identification is performed for each set of data and the errors in the modal



parameters are determined by sample statistics. However, the bootstrap itself in-
troduces errors in the computed sample statistics. Three bootstrapping schemes are
investigate in relation to operational modal analysis and an automated, optimal block
length selection is implemented to minimise the error introduced by the bootstrap. As
opposed to the perturbation method, the bootstrap technique is more versatile and
it is not restricted to correlation-driven operational modal analysis. Its applicability
to the data-driven stochastic subspace identification algorithm (SSI/Data) for error
prediction of the SSI/data-identified modal data is explored.

The performance of the two techniques is assessed by simulation on simple systems.
Monte-Carlo type error estimates are used as a benchmark against which the predicted
errors in the modal parameters computed from a single response history from both
techniques are validated. Both techniques are assessed in terms of their accuracy
and stability in predicting the uncertainty in the operational modal parameters and
their computational efficiency is compared. Also, the performance of the bootstrap
and the perturbation theoretic method is investigated in hostile ambient excitation
conditions such as non-stationarity and the presence of deterministic components and

the limitations of both methods are clearly exposed.
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CHAPTER 1

OVERVIEW OF OPERATIONAL

MODAL ANALYSIS

1.1 Introduction

Since the early developments of the Finite Element (FE) method, engineers have been
iﬁcreasingly using this versatile numerical tool for the static and dynamic analysis
of -structural systems. However, with the desire to develop more complex structural
systems, the necessity arose for experimental procedures that enable engineers to ver-
ify and validate the numerical models. In the early stages, this was simply achieved
by measuring the response of the structure under consideration due to a certain pre-
scribed load and subsequently comparing it to the calculated behaviour. In the case of
poor agreement, it was then attempted, mostly by trial-and-error, to carry out some
modifications on the model so as to bring the theoretical results closer into line with
the experimental outcome. However, a more erudite approach became necessary. In
structural dynamics and the study of vibration phenomena, modal analysis provided
a valuable technique for a more effective reconciliation of the numerical and experi-

mental results as it embraces both analytical/numerical and experimental methods.

Analytical modal analysis anchors on a physical model of the structure which, for
complex systems, is usually formulated in terms of the mass, stiffness and damping

matrices resulting from a spatial discretisation of the system as is done, for instance,



in a finite element model. Modal analysis breaks this spatial model down into its
elementary dynamic components called the natural modes of vibration. They are in-
herent to the system and completely describe its dynamic behaviour. Each mode is
described in terms of its modal parameters: the natural frequency, the modal damp-
ing factor and characteristic displacement pattern called the mode shape. For linear
time-independent systems, any set of displacements can be expressed as a linear com-
bination of the mode shapes weighted by time-dependent coefficients which contain
the damping and frequency information and whose amplitudes determine the degree
of participation of a particular mode to the general response. This concept is akin
to Fourier series and the mode shapes serve the same purpose as the trigonometric
functions; they are orthogonal and usually only a few of them are required to describe
the response with sufficient accuracy. This modal model thus has a mn;iderable ad-
vantage over its spatial counterpart in that it gives a simple physical picture of the

dynamic characteristics of the system.

The rapid development over the last two decades of data acquisition and process-
ing capabilities has enabled major advances in the experimental realm of the analysis,
known as ezperimental modal analysis (EMA), modal testing or modal identification.
As is the case for analytical modal analysis, the aim is to derive a modal model of the
system, albeit via a different route. The core of this experimental technique is system
identification which was originally developed by engineers to study electrical circuits.
The similarities between electric circuits and mechanical systems, however, made it
possible to apply this theory to mechanical and structural engineering problems. Sys-
tem identification deals with the issue of building mathematical models of dynamical
systems based on observed data from the system (Ljung, 1987). In other words, if a
system is excited by a known input force and the resulting output is recorded, the
objective is to construct a dynamic model of the system using solely the information
provided by measured input and output. For linear time-invariant causal systems i.e.

linear time-invariant systems whose output at a specific time depends on the input up



to that time only, there is a well defined relationship between the input and output in
the form of a time-dependent function known as the system’s impulse response func-
tion (IRF). Its knowledge allows one to compute the response of the system for any
known input, for instance using the Duhammel integral (Clough and Penzien, 1993).
The IRF is thus a complete characterisation of the system. An equivalent formulation,
relating the output to the input, can be expressed in the Laplace domain. In this case,
the Laplace transform of the output is related to that of the input via the transfer
function -the latter being the Laplace transform of the IRF. For a physically realis-
able and stable system, none of the dynamic characteristics are lost when the transfer
function is evaluated only along the imaginary axis i.e in the frequency domain only.
This gives rise to the frequency response function (FRF) which is now easily seen
to be the Fourier transform of the IRF. In general, a model relating tﬁe output to
the input, such as the IRF, FRF or the transfer function, is called a response model
of /the system. Since the response models completely describe the dynamic behav-
jour of the system, they admit an expression in terms of its modal parameters. The
objective of modal identification is thus to obtain a response model of the test piece
from measured input and output data and subsequently to derive a modal model from
the response model by ways of curve fitting. Typically, analytical forms of frequency
response functions or impulse response functions are matched to measured FRFs or
IRFs to determine the modal parameters. There are many techniques available both
in the time domain and in the frequency domain to extract the modal model from
the response model. An extensive description of these modal parameter identification
methods is given in Maia et al. (1997) and Ewins (2000). Although most of the prin-
ciples of modal testing were laid by the end of the first half of the century, renewed
practical interest in the subject grew with the invention of the fast Fourier trans-
form (FFT) (Cooley and Tuckey, 1965) and novel instrumentation such as the FFT
spectrum analyser, transfer function analysers (TFA) and discrete data acquisition
systems together with theAincreasingly smaller and more powerful digital computers

to process the data. In a nutshell, the modal testing procedure consists of three con-



stituent phases: setting up the test specimen which involves the selection of support
conditions, the type and the location(s) of the input excitation(s) and the positioning
of the response transducer(s) on the structure to measure the output(s). The second
step is concerned with determining the response model, either as FRF's or IRFs and fi-

nally, in the third phase, the modal parameters are extracted from the response model.

The basic description of the system’s dynamics in terms of its natural vibration
modes clearly provides a compelling means to verify or validate numerical models us-
ing experimental data. Indeed, the past few years have seen increased research efforts
directed toward correlating or updating numerical models with the experimentally
derived modal data. However, model updating is but one of the broad range of ap-
plications covered by experimental modal analysis today. Other applicail:ions include
troubleshooting which aims to gain a physical understanding of the dynamics of a
stfucture in terms of its modes; identification and evaluation of vibration phenom-
ena; development of experimentally based dynamic models; active vibration control;
structural integrity assessment, structural modification and damage detection; estab-
lishment of criteria and specifications for design. In short, modal analysis aims to
develop reliable dynamic models that may be used with confidence for further analy-
sis. Both the theoretical and analytical aspects of modal analysis are well documented

in the technical literature by Maia et al. (1997) and Ewins (2000).

The diversity of the applications for modal testing has prompted it to become
more strongly interdisciplinary. In particular, modal testing has found increasing
acceptance in civil engineering. The need to understand the dynamic behaviour of
civil structures under seismic, wind and traffic loading, the verification and updating
of finite element models of complex structures such as suspension bridges as well as
the continuous ageing and subsequent structural deterioration of a large number of

existing structures sparked the interest for using modal testing to address these issues.



1.2 Operational Modal Analysis for Civil Engineering

Structures

The application of modal identification to civil engineering structures presents some
challenges due to the large scale of these structures compared to those in mechanical
and aeronautical engineering for which the techniques were initially developed. More
precisely, the difficulty resides in the fact that it is a rather intricate matter to excite
large civil structures in a controlled manner and with sufficient energy to stimulate the
most significant modes, typically < 10Hz. For small to medium sized structures, the
excitation can be induced by instrumented sledge hammers. Although such a device
is able to provide wide-band input, the resulting spectral estimates generally have low
resolution and further, it may lack the energy to excite some relevant modes (Cunha
and Caetano, 2005). In bridge structures, for instance, excitation by impulse is in
. general not practical to excite lateral modes. An alternative, is the use of large electro-
dynamic or servo-hydraulic shakers, which can apply a large variety of of input signals
controlled in frequency and amplitude by a signal generator. The shakers have the
capacity to excite the structure in a lower frequency range and higher low-frequency
resolution can be attained. They have been used successfully for modal tests on large
infrastructure such as dams (Cantieni, 2001), or bridges (Pietrzko et al., 1996). Other
ways for exciting structures, in particular bridges, are the step-relaxation and weight
drop methods which can excite a wide range of frequencies. Farrar et al. (1999) and

Cantieni (2005) present a review of excitation methods for civil engineering structures.

Nevertheless, exciting large structures artificially is often impractical, expensive
and can be dangerous when the structure is damaged. The costly equipment needed
is seldom available and the disruption caused by the need to close down the structure
to be tested is often inconvenient and in many instances not feasible. However, the
technological development in the field of transducers over the last years has made it
possible to obtain accurate measurements of low levels of structural response in a low

frequency range such as that induced by ambient excitations such as wind, traffic or



micro-tremor. Sensitive piezoelectric sensors (10V/g) are well suited for structures
with a fundamental frequency > 1Hz (Cantieni, 2005). Accelerometers of the force
balance type are particularly appropriate to measure the ambient response of civil
engineering structures. Additionally, due to the delays in the feedback loop, these
servo-controlled devices have only a limited bandwidth typically in the range form
0 — 50H z and are virtually insensitive to high frequencies; however in the frequency
range in which they are effective, they are optimized for sensitivity without giving up
precision and are capable of sensing frequencies below 1Hz. Thus, rather than treat-
ing the natural excitation as a source of unwanted noise or disturbances - because the
processing procedures in traditional modal testing are based on the assumption that
the measured, artificially applied load is the only source of excitation during the test -
structural engineers resorted to using the latter as the sole source of excitation. From
a practical point of view, this certainly offers a considerable advantage since ambient
ldading is freely available and the structure can be tested under its usual operating
conditions. Ambient forcing, however, cannot be measured so that the traditional
input-output modal testing techniques had to be adapted to deal with response mea-
surements only without exact knowledge of the input. This is known as output-only,

natural input or operational modal analysis (OMA).

Operational modal testing typically consists of three stages; the first is to acquire
data from the operating structure. This involves deciding on the type and sensitivity
of the transducers to be used as well as the number of measurement points and their
location along the test piece. The latter choice is conditioned by the spatial resolution
required needed to characterise the most relevant modes of vibration. An a priori
FE model or symmetry considerations of the structure can assist in this choice. The
second step is to convert the recorded data into a response model that lends itself
to extract the modal parameters of the structure. As for traditional modal analysis,
the response model may be formulated in the time or frequency domain but, since

the input forces are unknown, it differs from the FRFs or IRF's described previously.
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Traffic, Wind, Micro-tremor
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Fig. 1.1: Illustration of the operational modal testing process.

In the final step, the modal parameters are identified from the computed response
model. An overview of the various identification techniques, depending on the form

of the response model, is presented below.

1.2.1 Frequency Domain Methods

One of the earliest applications of ambient vibration testing was carried out by Craw-
ford (1964). Vibrations measured at various locations in a high-rise building were
recorded on a magnetic tape recorder and subsequently transformed to power spectral
densities (PSDs). The peaks in the PSD of each recorded motion provided estimates
of the damped natural frequencies of the building, while a comparison of the PSDs
computed from measurements made at different locations and in different directions
enabled torsional and lateral modes to be distinguished. This technique was enhanced
by McLamore et al. (1971) to obtain the modal damping ratios and estimates of the
mode shapes in addition to the resonant frequencies. By selecting one of the mea-

surement points as a reference, the amplitude and phase information at a peak in



the cross-spectral densities (CSDs) computed between the simultaneously measured
reference signal and the remaining outputs provided estimates of the mode shapes.
Damping ratios were calculated from the half-power bandwidth associated with each
peak. Brownjohn et al. (1987), for instance, have used a “transfer” function defined,
not as the ratio of the output to the input, but rather as the ratio of the roving out-
put to the reference output, known as the transmissibility FRF, to estimate the mode
shapes. Frequencies and damping ratios were obtained by least squares curve fitting
a single-degree-of-freedom (SDOF) response to the PSD peaks or simply by graphi-
cal inspection of the PSD graphs and using the half-power bandwidth associated with
each peak to estimate the modal damping. Because these methods basically rely upon
the inspection of peaks in the PSDs, they are commonly referred to as Peak-Picking
(PP) or sometimes as Basic Frequency Domain (BFD) techniques. Felber (1993) in-
troduced Averaged Normalized Power Spectral Densities (ANPSD) and Modal Ratio
Functions (MRF) which enabled a more efficient and convenient implementation of
the PP method. The ANPSD -simply the average of a chosen set of normalized PSDs-
serve as a practical tool to capture the peaks of all modes in a single PSD with the
byproduct of enhancing the peaks of the power spectra that were computed form time
history records taken at or near a node of a particular mode. The Modal Ratio Func-
tion, which conveniently incorporates the phase, amplitude and coherence information
that can be gained from the transmissibility FRFs in a single function, was devised
to facilitate the estimation of mode shapes. Although Peak-Picking has been success-
fully used for ambient vibration testing of civil engineering structures (Abdel-Ghaffar,
1978; Brownjohn et al., 1989; DeSmet et al., 1996; Felber and Ventura, 1996; Felber
et al., 1996; Paultre et al., 1995), it has some notable drawbacks. More precisely, the
Peak-Picking method treats each peak in the spectral estimates as that of a SDOF
system. Ambient excitation, however, has a multiple-input nature and a wide band
frequency content stimulating a large number of modes causing spectral overlap of ad-
jacent modes in the spectral estimates which cannot be accounted for by peak-picking.

Thus, unless the peaks are well separated, it is very difficult, if not impossible, to
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identify closely spaced modes. This is illustrated in figure 1.2. Moreover, operational
deflection shapes (ODS) are obtained rather than mode shapes and damping estimates
are unreliable or cannot be found. These shortcomings are significantly amplified in

case of poor frequency resolution.

Despite its downsides, the Peak-Picking method forms the basis for many OMA
techniques as it incorporates the key feature that the cross- and power spectral densi-
ties may serve as the fundamental frequency domain response model for output-only
modal analysis. Indeed, when the input spectrum is flat over the frequency band of
interest, or in other words, when the excitation behaves as band-limited white noise,
the power- and cross spectral densities characterize the structure in terms of its modal
parameters. However this response model in terms of the output spectra ié incomplete.
Since the ambient forces are not measured, the modal participation factors cannot be
determined. As a consequence, the estimated mode shapes are not correctly scaled
since their scaling factor will depend on the unknown excitation. This incompleteness,
typical for operational modal analysis, somewhat restricts its use in certain applica-
tions such as response simulation or structural modification. Also in damage detection
procedures, correct scaling may be of importance. Some numerical (Doebling and Far-
rar, 1996) and experimental (see for example Parloo et al. (2005)) techniques to obtain
scaled mode shapes have been proposed. A recent review can be found in Aenelle et al.
(2005). If the input is not white, for instance if it contains some dominant frequency
components in addition to white noise, these frequency components blend with those
of the system and may not be distinguishable from the structural ones. This will be
discussed in more detail in subsequent chapters but the main idea is illustrated for
a SDOF system in figure 1.3. It can be seen that the three harmonics appear in the
output PSD which serves as a the operational response model. Although the influence
of the harmonics at around 1 and 1.8 H2 may be small in this particular case, the
influence of the harmonic at around 1.3H2z would certainly be picked up so that a

2-DOF system would be identified instead of the correct SDOF system.
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The natural extension of the PP method was to take into account the multiple-
input multiple-output (MIMO) nature of the problem. This was achieved by assem-
bling the power and cross spectra into a power spectral density matriz which is then
decomposed at each frequency line into the individual modes of the system by means
of a singular value decomposition (SVD). The singular values thus obtained as a func-
tion of frequency signify the power spectrum of the modal coordinates associated with
each mode. The natural frequencies appear as local maxima of these power spectra
and are then simply obtained by peak-picking. The decomposition of the PSD matrix
via the SVD -sometimes referred to as Principal Component Analysis (PCA)- was
already employed by Prevosto (1982) to obtain the vibration modes of systems under
ambient excitation. Later, the method was applied to decompose the FRF matrix
and became known as the Complex Mode Indication Function (CMIF) (Shih et al.,
1988). In the context of operational modal analysis for civil engineering structures,
this method was adopted by Brincker et al. (2000) and called the Frequency Domain
Decomposition (FDD). It has subsequently been extended to the Enhanced Frequency
Domain Decomposition (EFDD) to yield modal damping ratios in addition to frequen-
cies and mode shapes in Brincker et al. (2001). Within the classical in input-output
framework, an application of the CMIF to multiple reference FRF measurements to
identify natural frequencies, mode shapes and the corresponding damping ratios ap-
pears in Leurs et al. (1993). The FDD technique has been widely applied to many
civil engineering structures, for example (Brincker and Andersen, 2005; Brincker et
al., 2005a; Cunha et al., 2004; Reynolds et al., 2005) owing to its generally good per-

formance and its user friendliness.

The aforementioned modal identification methods are non-parametric in nature
which means that they do not explicitly make use of a mathematical model to extract
the modal parameters from the response model but rather rely on a more direct

interpretation of the response model itself. Recently, a parametric frequency domain
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identification scheme, known as PolyMAX, was introduced by Peeters (2004). This
method operates on half-spectra (see section 2.2) and its implementation is based
upon a frequency-domain version of the mazimum likelihood method (Guillaume et al.,
1998; Hermans et al., 1998) complemented by a polyreference least-squares complex
Jrequency-domain (LSCF) estimation method (Guillaume et al., 2003). The most
important advantage of PolyMAX lies in the very stable identification of the system
poles as a function of the model order which essentially means that it is well suited

to distinguish between system modes and so called spurious or computational modes.

1.3 Time Domain Methods

Knowing that the output-only frequency response model consists of the spectra of
the time history records of a system excited by white noise, the corresponding time-
domain response model is easily seen to be given by the correlation functions between
the responses since the spectral densities and correlation functions are Fourier trans-
form pairs (Bendat and Piersol, 2000). Thus, just as the spectral densities admit an
expression in terms of the modal parameters of the system, the correlation function be-
tween any two response measufements can be written as the sum of decaying sinusoids
having the same natural frequencies, damping ratios and mode shape coefficients as
the modes of the system (see section 2.2). This implies that the correlation functions
have the same form as the system’s IRF so that time domain algorithms originally
developed in traditional modal testing to analyze IRF's can be applied to correlation
functions. The conceptual framework for this result was essentially laid by Clark-
son and Mercer (1965) but was later applied to ambient data from wind turbines by
James et al. (1995) and termed the Natural Ezcitation Technique (NEzT). The three
time domain classical modal parameter estimation methods that have been widely
used in OMA within the NExT framework are the Polyreference Complex Exponen-
tial (PRCE) method, the Ibrahim Time Domain (ITD) method and the Eigensystem

Realisation Algorithm (ERA).
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The PRCE method (Vold et al., 1982) essentially identifies the modal parame-
ters by curve-fitting the “measured” IRFs (or correlation functions) to a parametric
model based on the modal decomposition of the IRFs (or correlation functions). The
method was developed as an extension of the single-input multiple-output (SIMO)
Least-Squares Complex Exponential (LSCE) method (Brown, 1979) to cope with mul-

tiple inputs.

The Ibrahim Time Domain was originally developed by Ibrahim and Mikulcik
(1977) as a SIMO method that operates on free decay response measurements and
was therefore initially used in conjunction with the random decrement technique (RD).
The latter was developed to obtain free responses of a structure from its random re-
sponses (Ibrahim, 1977) but was later shown to yield correlation functions'(see section
2.2). A MIMO version of the ITD, called the Multiple-Reference Ibrahim Time Do-
main (MRITD) is due to Fukuzono (1986).

The Eigensystem Realization Algorithm (Juang and Pappa, 1984) is a MIMO
method whose roots go back to classical deterministic minimal system realization
theory developed by (Ho and Kalman, 1966). In brief, the ERA is based on a state-
space formulation whose constituent system matrices are recovered using the measured
IRFs. In operational modal analysis, it is a stochastic realization problem that is
solved (Akaike, 1974). As a consequence of the natural excitation technique (NExT),
the ERA can be be employed for this purpose by replacing the IRFs by the correla-
tion functions between the measured outputs. In the context of output-only modal
analysis, this procedure is sometimes referred as the NExT/ERA method but a for-
mal treatment of the ERA with data correlations (ERA/DC) is due to Juang et al.
(1988). An application of this method to ambient response data appears in Desforges
and Cooper (1997) and a comparison with the classical ERA operating on impulse
data can be found in Cooper and Wright (1992). These NExT-type identification

techniques are often called covariance-driven' or two-stage methods referring to the

tCovariance functions are equal to correlation functions for a zero-mean random process
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two steps involved in the process i.e. estimation of the correlation in a first instance
and the modal parameter extraction by curve fitting in a second step. The various
ways for computing correlation functions (see figure 1.4 and section 2.2) and the dif-
ferent ways of curve fitting thus offer a choice of combinations for implementing the
NEXT, see for instance (Caicedo et al., 2001; Desforges et al., 1995; Farrar and James,
1997; James et al., 1996; Qin and Qian, 2001). The NExT is sometimes mentioned
in conjunction with frequency domain methods due to the Fourier transform relation

between correlations and spectral densities (Juang and Suzuki, 1998).

Another method that has been used for operational modal ana.lysis relies on
the classical system identification tools based on Auto-Regressive Moving-Average
- (ARMA) models of the vibrating structure. In the case of multiple ‘outputs, the
term Vector-ARMA (ARMAV) is often used to emphasize their multivariate charac-
ter. One way to identify the parameters of an ARMAV model is via the Prediction
error method (PEM) (Ljung, 1987). This technique does not require the computation
of a response model (i.e correlation functions) but operates directly on the recorded
time histories and is therefore often referred to as a one-stage or data-driven method.
Nevertheless, the application of the PEM method requires the solution of a highly
nonlinear least-squares problem which entails a heavy computational load, sensitivity
to initial conditions and convergence is not guaranteed. Despite these drawbacks, the
ARMAV-PEM method has been employed for operational modal analysis of civil en-
gineering structures by Andersen (1997). The identification of the modal parameters
of system represented by ARMAV models only requires the coefficients of the Auto-
Regressive (AR) part of the model. Nevertheless, a vibrating structure cannot be
adequately described by an AR model (see>for instance Andersen et al. (1996)). It is
shown in Peeters and DeRoeck (2001), however, that using an Instrumental Variable
(IV) method -another classical system identification tool (Ljung, 1987)- enables only
the AR coefficients to be identified while the underlying model structure still is an AR-

MAYV model. Moreover, this is achieved by linear least-squares as the Moving-Average

14



(MA) coefficients cause the nonlinearity encountered in the PEM method. Although
derived in a different way, the final equations of the ARMAV-IV are exactly the same
as those of the NExT-type Polyreference (PRCE) method and is thus equivalent to
the covariance-driven approach described previously (Peeters and DeRoeck, 2001).

The Stochastic Subspace Identification (SSI) method, first introduced by (VanOver-
schee and DeMoor, 1993), provided another way to avoid the solution of the highly
nonlinear least-squares problem encountered in the ARMAV-PEM method. A uni-
fied description of different subspace algorithms, both deterministic and stochastic,
can be found in VanOverschee and DeMoor (1996). Similar to system realizations,
subspace methods identify state-space models -which are in fact transformed ARMAV
models- from which the modal parameters are subsequently extracted. Tﬂe SSI can be
implemented as a data-driven or covariance-driven method. In the former, the compu-
tation of the correlation functions is essentially replaced by a geometric projection of
the row space spanned by the future outputs onto the row space of the past outputs.
The covariance-driven version (SSI-Cov) is in fact equivalent to the NExT/ERA pro-
cedure Peeters and DeRoeck (2001). A detailed description of the SSI and SSI-Cov in
relation to output-only modal identification is given by Peeters and DeRoeck (1999).
Due to the their robust and fast implementation, these methods have been widely
applied for operational modal analysis of civil engineering structures (see for example

Hermans and der Auweraer (1999); Ren and Zong (2004)).

The ambient vibration identification methods described above together with the
required signal processing techniques to obtain the response models are summarized
in figure 1.4, which is a variation of the diagram given in (Cunha and Caetano, 2005).
Recently, Cunha and Caetano (2005); Zhang et al. (2005a) have presented a review of

the state of operational modal identification.
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Fig. 1.4: Schematic representation of the various operational identification algorithms and their
connections. Legend: (FFT) = Fast Fourier Transform, (RD) = Random Decrement, (LS) =
Least Squares, (EVD) = Eigenvalue Decomposition, (SVD) = Singular Value Decomposition,
(QR) = Orthogonal Decomposition

The applications of OMA are naturally similar to those described earlier for tra-
ditional experimental modal analysis. Two applications, however, are of particular
interest in conjunction with OMA: FE Model Updating and damage detection or
Structural Health Monitoring (SHM). Ambient testing has the advantage over tra-
ditional modal testing that the measured properties describe the dynamics of the
structure in its real operating conditions, so that updated models, in principle, reflect
better the in situ conditions of the system and the as-built structural connectivity.
Although classical experimental modal analysis has been used for damage detection
of structural systems, this area of research has gained new impetus with the advances
made in OMA. The reason is that the non-intrusive testing procedure, for instance
using GPS sensors (Brownjohn, 2005), offers the possibility to monitor structures over
long time periods so that sudden or progressive damage can be diagnosed in near real

time. Therefore, there is a tendency to develop wireless sensing architectures and
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so called “smart” sensing systems (Ruiz-Sandoval, 2004; Straser et al., 1998), which
coupled with damage detection techniques based on OMA show great potential for

near-real time structural health monitoring.

1.4 Scope of Thesis

As documented in the literature, it is difficult in practice to obtain an accurate estimate
of the response model from output measurements only, and hence an accurate modal
model of the structure. The reason is that the practitioner is only allowed a “glimpse”
at the infinite random process that characterises the true stochastic input/output
relationship in the form of a limited amount of response data on the basis of which
the systems’ dynamic properties must be, literally, estimated. Consequently, large
amounts of response data are needed for these estimates to converge to the true modal
model. Although operational modal analysis is a non-invasive procedure, practical
1ssues often impose limits on the data that can be measured, stored and processed.
Nét only does the engineer have to estimate the modal parameters from a limited
response measurement, but in almost any practical application, the available data
is contaminated by unwanted perturbations. In operational modal analysis, these

perturbations typically are (also see section 6.1)

o Non-white, non-stationary ambient ezcitation with the consequence that the
estimated response model (even if an infinite amount of data were available)
will not be representative of the structure’s response only but is mixed with the

dynamics of the loading itself

e Non-linear behaviour of structure may arise in some cases and -since ambient
forcing is typically low- is generally to be attributed to non-linear damping
mechanisms. The “classical” techniques used in OMA are applicable to linear
behaviour only in both the formulation of the response model and the modal
parameter identification therefrom. As a result, using the available linear tech-

niques on non-linear time series will generally introduce significant systematic

17



errors in the identified modal parameters.

e Data acguisition errors refer collectively to disturbances of the data introduced
during the measuring process and includes sources such instrumentation noise,
discretization/quantization errors or inadequate sensor setup to mention but a

few.

With the few exceptions discussed earlier in this introductory chapter, operational
modal analysis is a 2-stage procedure. In a first step, the operational response model
is estimated -which may be in the time domain (correlation functions) or in the fre-
quency domain (spectral densities)- and from the latter, the modal model is estimated
by application of some curve fit algorithm depending on the previously estimated re-
sponse model (see diagram 1.4). Consequently, the error introduced at each stage
during the operational modal analysis will be processed, then propagated to the next

stage until it cumulatively affects the final outcome, the modal parameters.

The goal of this thesis is to give a quantitative description of the error -both random
and systematic (bias)- in the response model and how it propagates through the curve
fitting algorithm to affect the identified modal model. The algorithms to extract the
modal information out of the response model listed in the diagram 1.4 nearly all give
perfect results when the operational response model is exact but distinguish themselves
in how they cope with the error present in the response model. Therefore, exactly
how the error propagates from the response model to the modal model is specific to
the identification algorithm used. In this thesis, the focus is on correlation-driven (or
covariance-driven) curve fitting algorithms. Thus, the response model considered con-
sists of a set of auto-and cross-correlation functions computed between simultaneously
measured responses histories at different locations on the structural system. As seen
from the diagram 1.4, the relevant curve fitting process is the Eigensystem Realisation
Algorithm (ERA) or, equivalently, the covariance-driven Stochastic Subspace Identi-
fication (SSI/Cov) algorithm. After exposing the necessary theoretical background

in Chapter 2, the formulation of the random and bias errors in the correlation-based
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response model will be the subject of Chapter 3. In a first instance, an approxi-
mate analytic formulation of these errors will be given with the aim to understand
in general quantitative terms, the relationship between the estimation errors in the
correlation response model and the modal parameters of the system. This will pro-
vide the practitioner with a quick tool to assess record length requirements to keep
these errors below a desired level, provided a rough estimate of the modal frequencies
and damping ratios -for instance from a simple finite element model typically used in
pre-test planing- is available. However, this analytical formulation is only able to deal
with estimation errors due to finite record lengths and does not incorporate effects
due to other error sources such as instrumentation noise for instance. To consider
the influence of additional errors in the measured data on the estimated response
model, a data-driven method is given. Data-driven in the sense that the ;3rrors in the
correlation functions are estimated based on the measured response data rather than
reiying on an analytical model. Such a method will be necessary since the nature of
the error introduced into the data during a particular modal test is not known and

hence cannot be modeled.

With a description of the errors in the response model at hand, the remainder of
the thesis is concerned with the propagation of these errors through the identifica-
tion algorithm. Two methods are considered: a) a bootstrap approach which is more
general and is also applicable to other curve fitting schemes and b) a perturbation
theoretic approach which is specific to the the SSI/Cov. A rigorous basis for these

two techniques is the subject of Chapters 4 and 5.

In the remaining two chapters, 6 and 7, each of these methods is applied to opera-
tional modal identification problems with the intention of studying to what extent the
resulting error bounds on the identified modal parameters can be determined. The ap-
proach taken uses simulated data where allowing control over the error introduced in

the computed time histories and to explore the limits for which the proposed scheme is
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applicable. The disturbances considered are estimation errors, external noise sources
as well as the effects of nonstationarity and the presence of deterministic components
in the ambient loading conditions. The study is restricted to “mild” nonstationary
influences and to situations where deterministic components in the ambient loading
act as unwanted disturbances rather than the dominant part of the excitation driving
the system. This situation is more common in practice than those where the deter-
ministic load is dominant. The effect of nonlinear response characteristics are not
considered in this thesis and a linear behaviour of the structural system is assumed.
The proposed method will therefore provide the practicing engineer with a tool to
obtain approximate error bounds on the identified operational modal parameters and
assess the quality of his results. The method is relevant for applications typically
associated with operational modal analysis such as damage detection or FE updating

and response analysis.

- All the algorithms used in thesis were implemented by the author in MATLAB with
a few exceptions: 1) Simulated time-response histories and Finite Element models were
computed using the freely available Calfem Toolbox by Ristinmaa et al. (1999). 2) The
implementation of the SSI/Data relies heavily on the implementation in VanOverschee
and DeMoor (1996) and some of the files accompanying this book were used !. 3) The
code for the stationary bootstrap was taken from Kevin Sheppard’s GARCH Toolbox

for Matlab*.

thttp://www.mathworks.com/matlabcentral /fileexchange
*http:/ /www.kevinsheppard.com/research/
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CHAPTER 2

THEORETICAL BASIS

2.1 Introduction

This chapter aims to provide the necessary background theory for operational modal
analysis. A formulation of the operational response models used in operational modal
analysis is given and various aspects concerning their estimation are presented. The
theory behind three identification methods, one in the frequency domain (EFDD), a
covariance- and a data-driven time domain algorithm (SSI/Cov aﬁd SSI/Data respec-

tively) is briefly presented.

2.2 Operational Response Models

Real structures are continuous non-homogeneous systems which have and infinite
number of degrees-of-freedom. Therefore, their analysis usually entails an approxi-
mation which consists of describing their motion through a finite number of degrees-
of-freedom, as many as necessary to ensure enough accuracy. Within this idealization,
which includes the lumped mass and the FE type of discretization, the equations of
motion of a linear, time-independent N degree-of-freedom structural system are given

in terms of a set of N second order differential equations of the form
Mx (t) + Cx (t) + Kx(t) = £(t) (2.1)

where M, K, C € RV*V denote the spatial mass, stiffness and dissipation or damp-

ing matrix respectively. x (t) € RN*1 describes the time dependent vector of displace-
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ments at each of the degrees-of-freedom and f (t) € RV*1 is the vector consisting of the
external time-varying excitation forces applied at each degrees-of-freedom. The mod-
eling of the damping deserves a few comments. The damping model used in equation
2.1 is the familiar linear viscous damping model but this model does not necessar-
ily imply the actual physical description of the damping mechanism. A combination
of different phenomena can be expected to contribute to the damping in structures
such as material damping (micro-structure effects), boundary damping (e.g. frictional
slipping at joints) and dissipation due to contact between the structure and fluid.
For civil engineering structures, boundary damping will generally be responsible for
the most significant part of the energy dissipation. The dissipation matrix model
used in equation 2.1 does not necessarily offer a physical description of ’the latter
damping mechanism as it cannot be asserted that the dissipation mechanism will only
depend on the velocity of the system. However, as far a experimental modal analysis
isAconcerned, it will be possible to obtain equivalent modal damping ratios and the
correct associated complex modes as long as the underlying damping mechanism is
linear (Woodhouse, 1998). However, the nature of the underlying damping model
can, in general, not be determined and if a good physical description of the damping
mechanism is needed, a suitable damping model must be chosen and fitted (Adhikari
and Woodhouse, 2001a,b). Dissipation mechanisms such as boundary damping often
exhibit non-linear behaviour and clearly, the form of the non-linear character of the
damping will be lost in a linear modal analysis. Nonetheless, if the damping is not
too severe, the linearised modal damping ratios obtained via a modal identification
procedure may still be good enough to yield reasonably accurate response predictions.
More recently, time-frequency identification methods have been employed to deter-

mine non-linear damping characteristics (see for instance Staszewski (1998)).
To derive the desired operational response model, consider the case where the

excitation f(t) consists of a set of transient or impulsive forces i.e. forces that act

only for a short time period. Taking the Fourier transform of f(t), denoted by F, on
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both sides of equation of metion 2.1 yields
X(w)=(K-w’M+iwC) 'F(w) =H(w)F ) (2.2)

where F (w) = F(£(t)) € CV*), X(w) = F(x(t)) € CV*! and H(w) € CVXN |
which relates the input to the output is the receptance FRF matrix. The (j k)th entry
Hj (w) of the receptance FRF matrix corresponds to the individual FRF describing
the relation between the response of the system at the j** coordinate excited by a single
force (i.e. all other forces are zero) applied at coordinate k. In practice, however, if
one is interested in the modal parameters only, it is not necessary to obtain the full
FRF matrix as given above. Indeed, in classical modal testing the dimension of the
FRF matrix is determined by the number of excitations applied to the system, say m,
and the number of outputs measured, say . With the interpretation of the entries of
the FRF matrix given above, it is easily seen that in this case x (t) and X (w)€ R¥*1,
f(t) and F (w)€ R™! and H(w) € C*™ with the frequency-domain input-output
reiation given by

X(w)=H(WE(w). (2.3)

Henceforth, the latter dimensions will be assumed unless stated otherwise. It is well

known that, for general viscous damping, H (w) can be expressed as (Ewins, 2000)

Hw) =§:( ol | olel ) (2.4)

W — w— A}
= \w Ar A;

where the poles )\, are the eigenvalues of the system which occur in complex conjugate
pairs. They contain the frequency and modal damping information and are given by
Ary AF = —wré, tiwr /1 — €2 where w, and &, denote the natural frequency and modal
damping ratio respectively. The imaginary part of the pole yields the damped natural
frequency wp,. The residues ¢,p, consist of the product of the scaled mode shapes
¢, € C! and the vectors g, € C™¥!| known as the modal participation vectors.
(-)* denotes the complex conjugate and (-)¥ Hermitian transposition. Equation 2.3

admits a time-domain formulation which can be obtained directly by inverse Fourier
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transform leading to the following matrix convolution integral

K x(t) =./:°h(‘r)£(t—'r)d'r (2.5)

where h(t) = F~! (H(w)) € R*™ is the impulse response function (IRF) matriz.
This relation is often referred to as Duhammel’s integral. The (jk)th entry of the IRF
matrix, hjx (t) establishes the relation between the output at the j®* coordinate due to
a single input at the k** coordinate. Physically, hjk (t) is the response of the system
at the j** coordinate due to a unit impulse applied at coordinate k as may be easily be
seen from equation 2.5 by taking the k** component of f(t) to be Dirac delta function
d(t — 7) applied at t = 0, and all the other inputs are zero. Note that h(t) = 0 for
t < 0. Like the FRF matrix, the IRF matrix completely characterizes the system
in terms of its modal parameters as can be seen by taking the Fourier transform of

equation 2.4

N
h(t) = 3 et (g0l e ort + grgflemivnrt) (26)
r=]

i.e. each entry is weighted sum of decaying sinusoids which oscillate with the damped

natural frequency of the system and the decay is governed by the modal damping ratio.

Ambient excitation, however, is stochastic in nature and since the structural sys-
tem acts as a linear transformation of the input, the response too will be stochastic.
While the time-domain relation (equation 2.5) is still valid for random signals, the
frequency-domain input-output relation given above for a transient excitation and re-
sponse (equation 2.3) is no longer valid. The reason is that the Fourier transforms of
the random signals z; (¢) and fi (t) may not be defined at all frequencies w. A suffi-
cient condition for the Fourier integral to exist is that x; (t) and fi (t) are absolutely

integrable over the infinite interval (—oo, 00) i.e. that

/ |feldt and / le;ldt < oo 2.7)

—00 —00

This requirement for the existence of the Fourier integral is often referred to as the
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(weak) Dirichlet condition. Loosely speaking, it requires that z; (t) and f (t) will
decay as t — oo and ¢ — —oo. While this criterion is clearly satisfied for transient
inputs, this is not the case when the excitation is stationary so that an alternative

approach must be sought.

2.2.1 Stochastic Processes, Stationarity and Ergodicity

Suppose that z (t) is a single record of the response measured from an experiment
where a structural system is excited by a stochastic input. If the experiment is re-
peated under identical conditions, a different response history will be measured due
to the random nature of the process. Each observed time history record e.g. the pt
record, denoted by z (¢, p), is merely one record of the whole collection or ensemble of
all possible records that might have occurred and is therefore referred to as a sample
function or realization of the complete stochastic (or random) process denoted by
{z(t,p)}. This is illustrated in figure 2.1. For each value of t € (—o00, ), z (t,p)
represents a random variable over the index p which admits a range of possible val-
ues with an associated probability distribution describing the relative likeliness of each

possible value.

x(, p)

NV

x(t,2)

x(z,1)

t 1, +7 t

Fig. 2.1: Ensemble of time-history records defining a random process. z(t1,p) and z(t; +7,p)
are two different random variables. (Bendat and Piersol, 2000)
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When a physical phenomenon is represented by a stochastic process, it must be
characterized by statistical parameters. For most engineering problems involving ran-
dom data, including operational modal analysis, the most important quantities are
often the statistical moments up to second order given below (Bendat and Piersol,

2000)

Bz (t) = E[z(t,p)] (2.8)
msv; (t) = E [z%(t,p)] (2.9)
Coz (it +7) = E[(z(t,p)— pz(t)) (z(E+7,p) — pz (t+ 7)) (2.10)

Coy(tit+7) = Elz(t,p)—pz() (y(t+7,0)—py(t+7)]  (211)

Here, E [-] denotes the ezpectation operator and represents the average of the random
variable across the ensemble (Bendat and Piersol, 2000). The abbreviations (acv.f.)
and (xcv.f.) will be used to denote the auto-covariance Cpz (t,t + 7) of the random
process {z (t,p)} and cross-covariance functions Cyy (t,t+ 7) between the pair of
random processes {z (t,p)} and {y (¢,p)} respectively. u, (t) and msv, (t) denote the
mean and mean square value at time ¢ respectively. From the covariance functions, the
definition of the variance and auto-and cross-correlation functions follow immediately

as

Varlo(t)] = o’(t)=Cr(t) = B [2(t,p) —a 1))?]  (212)
Rez(t,t+7) = Elz(t,p)a(t+7,p)] (2.13)
Ry (t,it+7) = Elz(t,p)y(t+7,p)] (2.14)

where R;; denotes the autocorrelation function (ac.f.) and R;y the cross-correlation

function between the pair of stochastic processes {z (¢,p)} and {y(¢t,p)}. It can be
seen that correlation and covariance functions agree for a zero-mean processes and

that the variance reduces to the mean square value. It might be worth pointing out
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that some authors define the correlations as covariance functions normalized to unity
at the origin i.e. as a correlation coefficient function (see Priestley (2004)) but the
definition given in equations 2.13 and 2.14 will be used here.

The statistical parameters described in equations 2.8-2.14 are in general time-
dependent. However, for some stochastic processes endowed with a property known
as stationarity, the statistical moments are constant over time. Such processes arise
generally from stable physical systems which have settled to a state of statistical
equilibrium. More formally, a random process is said to be stationary or completely
stationary if its probabilistic structure is invariant under a shift of the time origin
(Priestley, 2004). This means that, for example, the joint probability distribution
of the set of random variables {z (¢,p),z(t + 7,p)} for all ¢ is the same so that the
covariance and correlation functions do no longer depend on ¢ but only on the time
separation T (often referred to as the lag) between the time points and not on their

individual location. Thus, for a stationary stochastic process, equations 2.8-2.14 be-

come
pe = E[z(tp) (2.15)
msv, = E [2%(¢,p)] (2.16)
o? = E|((tp) - k) (2.17)

and
Cry (1) = E[(z(t,p)— pz) (y(t+7,0) — py)] (2.18)
Ry (r) = Efz(t,p)y(t+7,p) (2.19)

The auto-covariance and auto-correlation functions immediately follow from equations
2.18 and 2.19 by letting y(¢,p) = z(t,p). Complete stationarity is, however, a severe
requirement and this concept can be relaxed by introducing the notion of weak station-

arity. Under this weaker condition, it is not necessary that the complete probability
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structure of the process is invariant under time translations but only that its main
features are the same i.e. that the statistical moments up to a certain order do not
change over time. Typically, weak stationarity is used to describe a process whose
moments up to second order are invariant under time translations (Bendat and Pier-
sol, 2000) and this convention will be used henceforth. It is worth noting that for a
process with a Gaussian probability distribution, weak stationarity implies complete
stationarity since a Gaussian process is completely described by its moments up to

second order.

In many practical situations it may not be possible to obtain a large ensemble of
different realizations of the particular stochastic process so that one is often forced
to get the necessary statistical information of the process from a single time history.
This is certainly the case in ambient testing. Although it may be possible to increase
the length of the observed time series, there will only be a single outcome of the
process and a single observation on the random variable at a given time ¢t. A par-
ticular sample function, however, is in general not enough to represent the particular
stochastic process to which it belongs. Nonetheless, for a certain class of random
processes, called ergodic processes, it is possible to obtain statistical information of
the entire process from a single realization. More precisely, a process is ergodic if
the statistical properties can be computed from time averages over individual sample
functions of the ensemble and will be the same from one record to the next and Will
equal the corresponding properties computed from ensemble averages over the records
at any time t. Since the averages are taken over absolute time ¢, this implies that the
corresponding ensemble averages cannot depend on time so that an ergodic process
must be stationary. The converse, however, does not hold. The hierarchy of random
processes is illustrated in figure 2.2.1. A sufficient condition for a random process to be
ergodic is that it is (a) stationary and that (b) the statistical moments computed from

time averages be the same for all sample functions. Additionally, when the process is
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Gaussian, condition (b) is equivalent to (Bendat and Piersol, 2000)
1 /T
Js \CXx(T)\<IT —P»O asT —»oo (2.20)

When stationarity is replaced by weak stationarity, the above still holds albeit in this
case, only the moments up to second order computed from time averages are guaran-
teed to converge to the corresponding ensemble averages. This is often referred to as

weak ergodicity.

Much like equation 2.7, the condition in 2.20 requires the auto-covariance function
of the process to “decay” to zero as ¢+ —»o00. For the response of a linear, time-
invariant system such as that described in equation (i.e. a damped system) 2.1, this
holds almost certainly (Priestley, 2004). Violations are usually associated with the
presence of periodic components in the data. Thus, if the response of a linear, time-
invariant system is stationary and Gaussian, this almost certainly implies that the
process is ergodic and hence that the statistical properties can be obtained from a

single realization of the process.

2.2.2 Frequency-Domain Operational Response model and NExT

Having introduced the basic concepts relating to stochastic processes, the frequency-
domain input-output relationship can now be derived and be used to formulate the

operational response model. Let {xj (£,p)} and {xq (t,p)} be the stationary random
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processes consisting of the response at the j** and ¢** coordinate of the system given
by equation 2.1, respectively, due to a single stationary input at coordinate k defined
by {fi (t,p)}. The fact that we have chosen the input -and hence the output- to be
stationary does still not guarantee that the Fourier integral of a realization of the
processes exists since the very nature of the notion of stationarity suggests that the
sample functions will almost certainly not decay at infinity. To overcome this difficulty,
a truncated sample function for the response is defined by

zj(t,p), 0<t<T
o) =4 2P (2.21)

0, otherwise
and a similar definition applies to the truncated sample functions fj (¢,p,T) and
zq (t,p, T). Since these truncated realizations die away at +o00, they satisfy the Dirich-
let condition and hence their (finite) Fourier transform exists. For the response sample
function, it is given by

00 T
X; (w,p,T) = / zj (t,p,T) e “tdt = / z; (t,p, T) e~ “'dt (2.22)
0

—00

Again, a similar definition applies to the excitation F}, (w, p, T) and the response at the
¢** coordinate X, (w,p,T). These quantities can now be used to compute the auto-
spectral or power spectral densities (PSD) of the response and excitation. Similarly,
the cross-spectral densties (CSD) between the response and excitation time histories

can be computed in this fashion. They are defined as (Bendat and Piersol, 2000)

: [ X7 (w,p,T) Xj (w,p,T)

Szyz; (W) = Th_r'r;oE - z T ] (2.23)
_ : F]:(w’p,T)Fk(w7pJT)

Spis W) = Th_{lgoE { T (2.24)
: (X7 (w,p,T) X; (w,p, T)

Szqz; (W) = [lim E _ Z T (2.25)

where E[] denotes the expectation operator over the ensemble and (-)* the com-

plex conjugate. Sz,z; (w) and Sy, 5, (w) are the auto-spectral densities between input
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and output time-histories respectively and Sz,z; (w) denotes the cross-spectral den-
sity between two outputs measured at different location along the structure. The
cross-spectrum between the input and the output can be defined similarly (Bendat
and Piersol, 2000). Although the Fourier transform of the truncated time histories
zj (t,p,T), 4 (t,p,T) and fi (¢,p, T) is not bounded as T — oo, the power- and cross-
spectral densities defined in equations 2.24-2.25 may, in fact, converge to a finite limit
as T — oo. Indeed, it is a well known result, often called the Wiener-Khinchine
relation (see for example Bendat and Piersol (2000) or Priestley (2004)), that the
PSD of a stationary random process and CSD between any two stationary processes
are in fact the Fourier transform of the auto-and cross-correlation functions of these

processes i.e.

Szjz; (W) = f(Rx,-zj (T)), (2.26)
Stp W) = F(Rpp (1), (2.27)
Szez; (W) = F(Rzga, (7)) (2.28)

It can now be seen by comparing equations 2.24-2.25 with 2.28 that a sufficient con-
dition for the limiting operation in equations 2.24-2.25 to converge, or in other words,
for the spectral densities to exists for all w is that the auto- and cross-correlation
functions in 2.28 possess a Fourier transform. That is, the ac.f. and xc.f. must be
absolutely integrable. For the response of a linear, time-invariant damped system, the
ac.f. and xc.f. will decorrelate with 7 as long as the process is zero-mean, (Clough and
Penzien, 1993; Pandit and Wu, 1983; Priestley, 2004) so that the Fourier transform
will exist. It is interesting to note that for a zero-mean process, the sufficient condi-
tion for the existence of spectral densities is the same as equation 2.20. It thus follows
that a zero-mean, (weakly) stationary Gaussian process whose PSD exists at all w is
(weakly) ergodic. Since these properties are conserved under a linear, time-invariant

transformation (see figure 2.3), it is very often assumed in operational modal analysis
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that the ambient excitation is zero-mean stationary and Gaussian.

INPUT OUTPUT
Stationary, Ergodic Linear, Time-Invariant
Gaussian, zero-mean System

Fig. 2.3: Stationarity, ergodicity, zero-mean and Gaussian distribution is conserved under a
linear, time-invariant transformation

The frequency-domain relationship for an m-input l-output (MIMO) system in equa-
tion 2.1 can now be established for stochastic data, and as a result the operational
response model. Making use of equation 2.5 to formulate the product x (¢,p) x (¢t + 7, p)

and taking ensemble averages one obtains
Rxx(r)= [ [ B(@Rgg(r+p- o) (5)dadp (2.29)

where Rx x (1) € C"*! and Reg(r) € C™*! given by E [x (t,p) x (t + 7,p)] and E [ (¢, p)
f (t + 7,p)] respectively, denote the input and output auto-correlation matrices. The
main diagonal of Rx x (7) contains the auto-correlation functions of the outputs and
the off-diagonal terms gives the cross-correlations between different outputs. More
specifically, the (jq)!* entry Rz,z, (1) is given by E [z; (t,p) x4 (t,p)]. The same de-
scription applies to Rﬁ(f). Taking the Fourier transform on both sides of equation

2.29 then yields the following important relation
Sxx (w) = H* () S¢¢ (w) H (w) (2.30)

where Sy x (w) € C™*! and S¢¢(w) € C™*™ denote the input and output power spec-
tral density matrices given by E [X" (w,p,T) XT (w, p, T)] and F [_F_“ (w,p, T)ET (w, p, T)]
respectively with T — oo. The main diagonal of Sx x (w) contains the power spec-

tral densities of the individual outputs and the off-diagonal terms the cross spectral

tNote that the Gaussian distribution is not a necessary condition for ergodicity and nor for the
existence of the Fourier integral. Also,the assumption for the input to be a zero-mean process is used
for convenience as a non-zero mean value can generally be removed from the signals by detrending
operations (Bendat and Piersol, 2000).
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densities between different outputs. Again, the same description applies to the input
spectral density matrix. Following the same procedure as above, another input-output
relation can be obtained, namely S (w) = 8¢ (w) HT (w) (see (Bendat and Piersol,
2000)), where S (w) is the cross-spectral density matrix between the input and the
output, but for operational modal analysis, this is less useful than equation 2.30.
Indeed, under the assumption of a white noise ezcitation, the output power spectral
density matrix yields the desired operational response model in the frequency domain.
With the assumption of white noise, the input power spectral density is independent of
frequency, and assuming further that the input is cross-uncorrelated, all off-diagonal
terms become zero so that S¢¢(w) becomes a constant diagonal matrix denoted by S.
Indeed, by substituting equation 2.4 into 2.30, multiplying out the factors and writing
each in partial fraction form, the output PSD matrix can be written as (Hermans and

der Auweraer, 1999)

N T « H T «TH
_ L ér | Lidy ¢, Ly ¢y Ly
sﬂ(“’)“g (iw-,\,+iw—,\;+—z'w—,\,+—iw—,\; (2:31)
with
N « H T
_N%g Se ¢S Ix1
L=> = my Fl e v L (2.32)

It can be seen from this equation that the PSD matrix is given in terms of the poles
of the system and hence may serve as the operational response model. The residues,
however, do not admit the simple form as those of the modally decomposed FRF
matrix (equation 2.4). As can be seen from equation 2.32, often referred to as the
operational reference factor(Peeters, 2004), they contain the contribution of all the
other system modes as well as the unknown input spectrum. The fact that the un-
known input forms an integral part of the residue inhibits the estimated mode shapes
to properly scaled. Although some “tricks” have been devised for the scaling (Aenelle
et al., 2005; Doebling and Farrar, 1996; Parloo et al., 2005), this remains a major is-
sue in operational modal analysis. Comparing equation 2.32 with equation 2.4 shows

that the operational reference factors replace the modal participation factors in the
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input-output frequency domain response model.

The corresponding time-domain operational response model can now easily be

obtained from equation 2.31 by inverse Fourier transform i.e.

N
Ryx(r) =Y e (L, ¢f e“Pru(r) + L} gFe “Prmu(r)+
=1 (2.33)

&, LTe“Prmu(~7) + 8} Lie™0r ()

where u(t) is the Heaviside step function. The first two terms, which are the Fourier
transform of the first two terms in equation 2.31, yield the part of the correlation
matrix for positive lag times. The PSD matrix defined only by the first two terms
of equation 2.31 is often referred to as the half-spectrum. The last two terms give
the correlations for negative lag times. It can be seen that the positive part of the
qorrelation matrix is of the same form as the IRF matrix in equation 2.6 i.e. a sum
of decaying sinusoids governed by the resonant frequencies and damping ratios of the
system and thus can be used as the operational response model in the time-domain.
In fact, they can serve as the input to classical modal identification algorithms that
work on impulse response function. This is generally known as the Natural Excitation
Technique (NExT). The original derivation of this result can be found in James et al.
(1995). In practice, these response model have to be estimated from a single realization
of finite sample size from the stochastic process which invariably leads to estimation

errors. This will be dealt with in the next chapter.

2.3 Identification Methods

2.3.1 The Enhanced Frequency Domain Decomposition (EFDD)

The Frequency Domain Decomposition method aims to decouple the individual modes
of the system by performing a singular value decomposition (SVD) of the PSD matrix

at each discrete frequency line w = w; (Brincker et al., 2000). Let Sx x (w;) be the
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PSD matrix evaluated at frequency w; consisting of the auto- and cross-spectra taken
between the response time-histories measured at all transducer locations*. Then, its
SVD can be written as (Brincker et al., 2000; Herlufsen et al., 2005)

Sx x (wj) = U;8;Uf (2.34)

where S; is the diagonal matrix of singular values, U; the unitary matrix of associated
singular vectors, (-)¥ denotes the Hermitian transpose and the index j refers to the
frequency w;. The fact that U; is unitary means that Uf U; =1, i.e. its columns are
orthonormal vectors. In the vicinity of a peak, that is, near a modal frequency, say
wy, there is typically a single mode that dominates the response which translates into
the fact that the rank of the PSD matrix around this peak approximates to 1. Thus,

in the vicinity of a modal frequency, equation 2.34 can be written as
Sx x (w5) = 81, uy, uf! (2.35)

for wj — wy. 81 ; denotes the first singular value at the j"' frequency line and Uy, the
associated first singular vector. Since the rank of the PSD matrix is close to 1, only
the first singular value contains modal information and will reach a maximum. This
manifests itself by a peak in the singular value spectrum. In the case, where modes are

repeated, the rank of the PSD matrix will equal the multiplicity of the repeated mode.

It is shown in (Brincker et al., 2000) that for a lightly damped structure, in the
vicinity of a system mode, say the r** mode, the modal reference factor L, (c.f.
equation 2.32) is dominated by this mode so that it can be approximated by L, ~ dr¢;
with d, a real scalar given by d, = o S ¢.. Also, equation 2.31 then reduces to

Sx x (wj) ~ ¢, diag [2 R (L)] o (2.36)

Wwj — Ar

*In practice, the the cross-spectra are often computed only with respect to a few selected reference
stations. The principle of the FDD method remains the same (c.f.Gade et al. (2005) for instance).
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Fig. 2.4: Illustration of the Frequency Domain Decomposition method.

for wj —ay, where St (®) denotes the real part of a complex number and >r 6 Clx/ the
mode shape of the rih mode. Comparing equation 2.35 to equation 2.36 it can be seen
that at a modal frequency, i.e. at a peak in the singular value spectrum, the singular
value decomposed spectrum at the vicinity of this frequency yields the desired modal
information: the frequency of the mode is found by the peak in the singular value

spectrum and the corresponding singular vector approximates the mode shape.

The FDD is illustrated in figure 2.4 for the same 3DOF, proportionally damped
system as used in figure 1.2. The black line represents the first singular value as a
function of frequency and the resonant frequencies of the 3 modes of the system are
found from its peaks. The second and third singular value are shown in red and blue
respectively. At the vicinity of each peak, the SVD decouples the PSD matrix into the

equivalent SDOF system auto-spectra as can be seen from the SDOF system auto-
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spectra (shown by the dashed curves) and the first singular value of the singular value
spectrum. At frequency lines where more modes contribute significantly to the PSD,
the singular value spectrum shows a departure from the actual physical system. This
is particularly visible for the first and third mode for frequencies around 0.5 Hz. In
fact, modes shapes are in general not unitary or orthogonal (Ewins, 2000; Ma and Ng,
2004) but since the FDD also decouples the PSD matrix into unitary mode shapes at
frequencies where more than one mode contributes significantly to the response, they
no longer reflect the uncoupled SDOF behavior of the individual modes. The inset

figure in 2.4 shows a typical region where the dominance of the modes switches.

The enhancement of the FDD method then consists of tracking the SDOF auto-
spectra among the singular values using the Modal Assurance Criterion (MAC) (Alle-
mang, 2003; Allemang and Brown, 1982) to compare the mode shape at the resonance
peak with those obtained at neighbouring frequencies. The singular value spectrum
may therefore be taken to correspond to the physical SDOF auto-spectrum up to those
frequencies where the MAC coefficient is higher than a certain user specified value.
The identified SDOF auto-spectra are then back-transformed to the time-domain via
inverse FFT resulting in auto-correlation functions of the individual modes of the
system. A SDOF time-domain curve-fitting procedure may then be used to analyse
the identified auto-correlation functions. For instance, enhanced estimates of the fre-
quencies of the system can be obtained from the zero-crossing times of the correlation
functions as this eliminates the dependence of the frequency bin size of the discrete
Fourier transform and the damping ratios can be estimated by logarithmic decrement.
It should be noted that in some cases (e.g. noisy spectra due to limited data) only
a small portion around the peak of the singular spectrum can be identified as the
true SDOF behaviour. The sharp discontinuities at the “cut off” introduce bias into
the auto-correlation functions obtained via inverse Fourier transform which affects
the quality of the estimated damping ratios (Brincker et al., 2000). An average of

the singular vectors weighted by the corresponding singular values computed in the
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frequency band defining the SDOF auto-spectra will yield enhanced mode shape esti-

mates (Brincker et al., 2001).

Two recent developments, both based on a better estimation of the PSD matrix,
have recently been suggested for use with the EFDD. To reduce noise and avoid
leakage in the PSD estimates, Rodrigues et al. (2004) have computed the PSD matrix
from random decrement signatures via FFT. Using a method very similar to that
used in (Shih et al., 1988) for FRFs, Zhang et al. (2005b) obtain an enhanced PSD
matrix around a peak making use of the singular vector estimated at the resonance.
This attenuates the effect of the truncation of the identified SDOF system mentioned

previously and hence results in improved damping ratio estimates.

2.3.2 Covariance-Driven Stochastic Subspace Identification (SSI/Cov)

As pointed out in the introduction, the covariance-driven stochastic identification
algorithm (SSI/Cov) aims to identify the modal model of a particular test structure
from output-only measurements and has its roots in the stochastic realization problem
originally pioneered by (Akaike, 1974). This algorithm is closely related to the deter-
ministic realisation problem (Ho and Kalman, 1966). Juang and Pappa (1984) applied
this concept, in conjunction with the singular value decomposition to deal with noisy
data, to classical input-output modal testing and developed the Eigensystem Reali-
sation Algorithm (ERA). The equivalence between impulse response functions (IRF)
and correlation functions, shown in the framework of the Natural Excitation Tech-
nique (NExT) (James et al., 1993), makes it possible to apply the ERA to output-only
modal testing (Juang et al., 1988) by replacing the IRFs by the correlation functions
between measured outputs. The latter method is essentially equivalent to the SSI/Cov
(Peeters and DeRoeck, 2001). Below, we briefly outline the the SSI/Cov algorithm

and introduce the notation and concepts that feature in chapters 5 and 6.

The spatial model of an N degree of freedom system represented in equation 2.1
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can be reformulated as an equivalent 2N dimensional first order system known as the
conlinuous-time state-space model. This reformulation of the set of continuous equa-
tions of motions in equation 2.1 into the continuous-time state-space model is standard
and the reader is referred to Juang (1994), for instance, for its derivation. In practice,
the output measurements are typically discretised before the data is processed and
consequently a discrete set of equations describing the input-output relations is re-
quired. When the excitation of the system, denoted by f; = [fi, fZ, ..., f2¥] € R¥Vx1,
is a stochastic process, generally assumed to be zero-mean, stationary white noise, the

discrete-time state-space model of the system admits the form (Akaike, 1974)

Xip1 = Axg + £, (2.37)
Yr = Cx; + 1y : (2.38)
where x,,, = [z, z%,...,22"] € R®N*! is an unobserved state vector and A €

‘RZN X2N i the discrete-time state matriz or system matric whose 2N eigenvalues
which occur in complex conjugate pairs completely characterize the dynamics of the
discretised system. y, = [y}, y2,...,yt] € R*! is the vector of measured, discretised
responses at time step k € N measured at [ locations along the structure. Clearly, the
continuous-time responses y, are related to y; by y; = y.At, whereAt is the sampling
interval. The second of the above equations is known as the discrete-time observa-
tion equation. The output influence matriz C € R*2N relates the unobserved state
vector x;, € R2VX1 at time step k to the observed outputs y;, € R'*! measured at
the [ locations at time step k. u, € R**1, independent of f;, is a zero -mean random
disturbance representing measurement noise. It is noted the latter term is sometimes

omitted from the discrete-space state model (Basseville et al., 2001).
The crucial point of the covariance-driven identification is as follows. It can be

shown directly from equations 2.37, see for instance Peeters and DeRoeck (1999), that

the theoretical [ x I correlation, or covariance, matrix at lag 7 = kAt can be written
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as!

( Byl Bl - Bl
[ i) = [y"y""‘] E[fy""‘] o E[yfzy‘l""] = CAF-1G (2.39)
\E[%!%lﬂ] Elyjytl - E[y£y£+k] }
with
Ryiyi (k) = Elyiyl, ] (2.40)

being the theoretical cross-correlation function between the measured outputs y* and
¥, i,j=1,2,...,1 at lag k (Bendat and Piersol, 2000). The matrices A and C are
recognised as the state-matrix and output-influence matrix of the discrete-time state-
space model of the system. The matrix G = E [x, y;_,] € R?¥X!, for k > 0 is the next
state output correlation matriz. In practice, the exact correlation matrix is not known
and needs to be estimated from the measured data. This is dealt with in detail in the
néxt chapter, and is not needed to continue the exposition of the underlying theory of
the SSI/Cov. The stochastic realization problem now consists of recovering the matrix
triplet {A, C, G}, up to a similarity transformation, using only the knowledge of the
output measurements. To achieve this, the procedure is as follows. Define the al x 1

vector of “past” outputs and the 31 x 1 vector of “future” outputs by

T
Yhs = [¥A¥is1--Yhepoa] and (2.41)
_ T
Yha = [¥FY¥i-1--Yi-at] (2.42)

respectively. Consider the matrix

Ht is noted that the definition of ‘correlation function’ and ‘covariance function’ as employed by
some authors denotes the same quantity. In this thesis, we adopt the terminology of Bendat and
Piersol (2000), where the correlation matrix at lag 7 = kAt is defined as in equation 2.39.
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M, = E [I—kla ¥ kroty B] (2.43)

( E[y;¥ito41) EVi¥iissal - Ela¥fi,ql )
E &k—lxz;a-f-l] E [xk—1¥£+a+2] cee E [!k—lxz+a+ﬂ]

\ Elk-at1¥irsrt] EMb-oat1¥ipers - Ele-as1¥iersl /

Recognising that each entry of this block matrix is the correlation matrix evaluated

at a specific lag (see equation 2.39), equation 2.43 can be rewritten for as (Juang et

al., 1988)
( Rs+1 Ra+2 se Ra+ﬂ \
R R ... R
H, - 5+2 843 s+0+1 (2.44)
\ Rs+a R'a+¢:t+1 cee R'a+oz+ﬁ—1 )

It is seen that this block matrix has its entries, which are the correlation matrices Ry
arranged in a specific order according to the lag k. More specifically, the anti-diagonal
blocks are constant. Matrices, having this specific structure are known as Hankel ma-

trices.

The realisation of the triplet {A, C, G} starts by forming the al x 8l block Hankel

matrix Mo, that is

(R: Rs ... Ry \ [ c )
Ho = 1?2 #3 Rovt | _ C‘A (G, AG,...,Aﬂ-lc)(2.45)
\ Ra Rau - Raypn ) | CAT')

where the last equality in this equation follows directly from equation 2.39. The prod-
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uct of the last two block matrices in equation 2.45 is often written as P, Q3 where
Pa € R*¥*2N i3 known as the observability matrix and Qg € R®2NXA! g5 the con-
trollability matrix. Since the inner dimensions of the observability and controllability
matrices are 2N, choosing both a and # > 2N ensures that the rank of the Hankel
matrix cannot exceed 2N, since the rank of any matrix is at most the smallest of
its dimensions. If all modes of the system are excited and if the measurement setup
is such that they are all captured, the observability and controllability matrices will
have rank 2N. In control engineering terminology, this means that the system is both
controllable and observable (Juang, 1994). It is well known result in matrix algebra
that if the rank of two matrices is equal to their inner dimensions, then this also gives
the rank of their product (Golub and Van Loan, 1996). Thus, from the last equality in
equation 2.45, the rank of the Hankel matrix is 2N and reveals the model order of the
system. In practice, the rank is found by using a singular value decomposition (SVD)
- of the Hankel matrix and the number of the non-zeros singular values will yield the
model order of the system. The Hankel matrix Ho can then be expressed in truncated
form as

Ho = UanZanVay (2.46)

where Xon € R2VNX2N denotes the diagonal matrix containing only the non-zero sin-
gular values. The matrices Uy and Von contain the corresponding left and right
singular vectors respectively. In practice, where the singular values are never exactly
zero, the determination of the correct model order is often difficult. A practical solu-
tion to this problem is to look for the largest gap occurring between successive singular
values (Hermans and der Auweraer, 1999; Peeters and DeRoeck, 1999) indicating the
separation between system modes and noise modes and hence the model order of the
system. The matrices obtained via SVD of the Hankel matrix may then be truncated
below this gap. Equation 2.46 will only be an approximation to the computed Han-
kel matrix once the truncation of the noise space (spanned by the truncated singular
vectors) has been performed. Nonetheless, this reduced model is desirable since, we

do not wish to identify a model that fits the noise in the data as well. Thus, the ben-
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eficial consequence of this truncation is that a significant noise reduction is achieved
(Juang and Pappa, 1986). On the other hand, however, if the truncated singular val-
ues contain system dynamics such as residual modes for instance, the singular value
truncation contributes to significant bias error in the identified modal parameters.
This issue is dealt with in Chapter 6 in this thesis. Nonetheless, in many practical
situations (Hermans and der Auweraer, 1999; Peeters and DeRoeck, 1999), such a gap
in the singular values indicating the true model order is not clear and the model order
needs to be chosen, based on the singular value diagram at hand and the engineers ex-
perience. It often occurs, or it is even desirable (see for instance Peeters and DeRoeck
(1999)), to overspecify the model order and as a result, the set of identified modes does
not only consist of system modes but also noise or spurious modes. Fortuna;tely, the
noise modes tend to vary from model order to model order while system modes tend to
be stable. This fact is exploited to distinguish between these two types of modes and
- this is commonly done by means of a so-called stabilisation diagram (Hermans and

der Auweraer, 1999; Peeters and DeRoeck, 1999; Van der Auweraer and Peeters, 2004).

For the next step in the identification of the system matrix A, note from equations

2.45 and 2.46 that the observability and controllability matrices may be expressed as
Py =UsnSY? and Qs =XY2V], (2.47)

This choice, although not unique, will yield a balanced or unweighted realization due
to fact that equal weight is attributed to the observability and controllability matrices
so that the realized system will be as controllable as it is observable. Other weight-
ings include the Canonical Variate Analysis (CVA) or the Principal Component (PC)
method (Arun and Kung, 1990; Hermans and der Auweraer, 1999). However, sim-
ulations and practical applications have shown that there is no significant accuracy
difference for the different weightings (Herlufsen et al., 2005; Peeters and DeRoeck,
2001). The realization of the system matriées is now straightforward. The output

influence matrix C and the next state output-covariance matrix G can be found from
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the first block of P, and Qg respectively. The discrete-time state matrix is then found
by computing the shifted Hankel matriz defined by H; = P, A Qg and solving for A
making use of equations 2.47:

A =3"12ul, My Vo B2 (2.48)

The dynamics of the discretised system is completely characterized by the eigenvalues
of A
A=TAT! (2.49)

where ¥ € C2V¥*2N g the matrix containing the eigenvectors of A and A € C2Nx2N
is a diagonal matrix containing its discrete-time complex eigenvalues )\;, for i =
1,2,...,2N. However, in order to describe the continuous-time dynanﬂcs of the
* equations of motion in equation 2.1, the discrete-time eigenvalues in A need to be
‘transformed to the corresponding continuous-time eigenvalues. The continuous-time
eigenvalues are related to the discrete-time eigenvalues by the transformation (Juang,
1994; Peeters and DeRoeck, 1999)

_In(A)
At

A (2.50)

where In (-) denotes the natural logarithm. The continuous-time eigenvalues occur in

complex conjugate pairs and can be written as

)‘Cﬂ A:‘ = —w,-f,' + iwi\/ 1~ 62 (2.51)

form which the i*» modal damping ratio &; and the i*» modal frequency w; (7ad/sec)

can be found as
In (/\i)
At

and & = —32(1(’:;—2?) (2.52)

wi

where R () denotes the real part. Using the fact that the continuous-time mode shape
matrix W, is identical to ¥ (Juang, 1994), the mode shapes at the sensor locations ¢

are obtained using the output influence matrix C as (Juang, 1994)
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$p=CW (2.53)

Typically, when operational modal analysis is applied to large civil engineering
structures, it is not possible to measure all the response at all the desired locations
along the test structure simultaneously and therefore, the modal test needs to be done
in several setups. This is done by choosing a set of sensors, whose position remains
fixed throughout the different setups. This set of sensors serve as a reference against
which all other responses, measured with a set of roving sensors from one setup to the
next, are correlated and are therefore commonly referred to as reference sensors. The
latter should be chosen at “optimal” locations (Cherng, 2003; Liu, 1995) along the
structure which in practice means at locations where the response is strong and has
contributions from all the system modes (Peeters and DeRoeck, 1999). When the load-
ing conditions are stationary throughout all the setups, working with multiple setups
causes no problems since the factorisation of the correlation matrix in equation 2.39
holds albeit in a slightly different from (Basseville et al., 2001; Peeters and DeRoeck,
1999). From a practical point of view, all that changes is that the correlation matrix in
equation 2.39 contains only those correlation functions evaluated between roving and
reference sensors. More specifically, assume that the modal test has been performed in

q different setups and denote the measured responses from the designated, say r, ref-

erence sensors in each of the ¢ setups by x,(cref - {y,:ef L), y,:ef 2@ ,...,y,:ef r’(i)}
fori=1,2,...,q, where y;ef L) denotes the measured response at reference sensor 1

at setup 4. Similarly, let the corresponding set of, say m roving sensors for each setup

be given by x,(:w’i) = {y,:mJ 1’(i),y£‘”’2’(i), ,...,y;wm’(i)}, for i = 1,2,...,q, where
y;w L) denotes the measured response at the roving sensor 1 at setup ¢. Then, the
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reference based correlation matrix at lag s can be formed as

( Elx’fcref,i) (ref,i')T] \ ( R:ef,ref \
E[!;,rw 1) (ref,l)T Rgref,l),(rov,l)

Rgrcf)2) ,(TW,2) (2.54)

R:e-f = E[xs'ovvz)xg::{vz)rl

\ EMTW’Q)Xin'Q)T] ) \Rgref,q),(rov,q) )

The notation Rﬁ’ef :(rovd) qenotes the correlation matrix at lag r between the refer-
ence and roving sensors at setup i. Note that no setup is specified for the correlation
matrix between the any two set of measured references. This is due to the fact that
they are the same for all setups whenever the loading conditions and hence the re-
sponse data is stationary (Basseville et al., 2001). This block-vector R/ ;dmits the
same factorisation as R, in equation 2.39 so that the system identification is done
‘ exactly in the same way as described above, except that the Hankel matrices Hgy and
H; are formed by the reference correlation matrices Rsef rather than R;. When the
loading is non-stationary, the merging the data from different setups as above cannot
be done, the reason being that the next state output correlation matrix G changes
from setup to setup which entails that the decomposition, as in 2.39, with constant
matrices G and C is not possible. Mevel et al. (2002a,b) circumvented this problem
by proposing a normalization correlation matrices from different setups make them
appear as if they originate from the same excitation. Simulations in Basseville et al.
(2001) also seem to indicate that this method smoothes the non-stationary properties
in the response data. This method is, however, not considered in thesis but will be

further discussed in section 6.3.3, Chapter 6.

2.3.3 Data-Driven Stochastic Subspace Identification (SSI/Data)

To conclude this chapter, we present the data-driven version of the stochastic subspace
identification algorithm (SSI/Data). However, since this algorithm will be applied in

chapter 7 without delving into its technical detail, this presentation will be brief and it
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is merely aimed at outlining the main steps involved and pointing out the differences

and similarities with its oovananoe—dnven relative.

As for the stochastic realization problem described previously, the aim of the data-
driven stochastic subspace method is to identify the discrete-time system matrices of
the model described in equaﬁon 2.37 using the measured output time histories y; €
R'*1, agsuming the responses are measured at ! different locations along the structure.
However, rather than forming a block-Hankel matrix of correlation matrices, the data-
driven SSI start by forming large data Hankel matrix comprising the vectors of “past”
and “future” outputs as described in the previous section. In a next step, the row
space of the of the “future” outputs is projected into the row space of tﬁe “past”
outputs. This projection effectively takes the role of correlating the measured outputs
as in the SSI/Cov (Peeters and DeRoeck, 2001). The rank of this projection yields the
* model order of the system and is, as in the SSI/Cov, determined by a singular value
decomposition and the same practical issue involved in determined the model order
described for the SSI/Cov apply to this identification process. At this stage, several
different implementations are possible, depending on how the data is weighted before
the SVD is applied. These variants include the Canonical Variate Analysis (CVA)
or the Principal Components (PC) or, in the simplest form, Unweighted Principal
Components (UPC) (Arun and Kung, 1990; VanOverschee and DeMoor, 1996). The
latter is equivalent to the balanced realisation used for the SSI/Cov and, since CVA,
PC and UPC perform equally well in practice (Herlufsen et al., 2005; Peeters and
DeRoeck, 2001), the latter was chosen for simplicity in this thesis. The crucial result
enabling the system to be identified via the the SSI/Data, states that this projection
can be factorised into the observability matrix of the system (thus containing the
information about the output influence matrix C and the state matrix A, see previous
section) and the Kalman filter state sequence which is effectively an optimal prediction
of the state vectors xy (VanOverschee and DeMoor, 1996). For detail on Kalman

filter states, the reader is redirected to Juang (1994); Ljung (1987). The relations
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obtained from the latter factorisation and the SVD decomposition of the projection
of future onto past outputs, the system matrices can then be identified in a similar
manner as for the SSI/Cov; in the latter algorithm, the necessary relation for the
identification stemmed from the SVD decomposition of the block Hankel matrix Hg
and the factorisation of Hp into a product of observability and controllability matrices.
Once the state matrix A and the output influence matrix C are at hand, the modal
parameters of the system are found in exactly the same way as described in the
previous section for the SSI/Cov. The SS1/Data can also be used when the modal
test is done in multiple setups and the reference-based version of the algorithm was
developed by Peeters and DeRoeck (1999). An efficient implementation of the data
driven algorithm is not easy, and the implementation used in this thesis follows closely
the one suggested by VanOverschee and DeMoor (1996), but was modified following
Peeters and DeRoeck (1999) to account for a reference-based implementation. It is
* documented by Peeters and DeRoeck (2001), that both the SSI/Data and SSI/Cov

perform equally well in practice but a faster execution for the SSI/Cov is reported.

2.4 Summary

In this chapter, the basic theory needed in the remainder of this thesis was presented.
The concept of stationarity, white noise loading conditions was explained and its
important relation to operational modal analysis shown. The operational response
model was derived and the use of correlation functions, instead of the classical IRF,
was justified. Finally, three operational identification algorithm were given. The
exposition of the Enhanced Frequency Domain Decomposition Method (EFDD) and
the data-driven Stochastic Subspace (SSI/Data) algorithm was kept a minimum since
a more technical description of these algorithms is not needed in this thesis. The
SSI/Cov was presented in more detail since in Chapter 5, it will be investigated
how errors in the response model propagate through this algorithm to influence the

identified modal parameters.

48



CHAPTER 3

ESTIMATION ERRORS IN

CORRELATION FUNCTIONS

3.1 Introduction

Correlation-driven operational modal analysis is a 2-stage identification procedure.
- The measured information about the system consists of simulta.nqously recorded re-
sponse histories, most commonly acceleration, recorded at various locations along the
structure. In a first stage, this information is processed into a different form, namely
correlation functions. The identification algorithm then operates on the latter data
to extract the modal parameters of the system. In other words, the measured infor-
mation about the system is transformed into a different format that is better suited
to extract the system’s modal parameters. These correlation functions can only be
estimated and are therefore corrupted by estimation errors, both bias and random,
and are further contaminated by measurement noise. Since these correlation func-
tions are the basic quantities from which the SSI/Cov algorithm identifies the modal
parameters, these errors will propagate through the identification algorithm used and
affect the identified modal parameters. In order to estimate the error in the identified
modal parameters, requires knowledge of the error in the estimated correlation func-

tions, which is the subject of this chapter.

Different techniques to estimate the sample auto- and cross correlation functions
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-or equivalent quantities that can be used as input to the SSI/Cov such as the Ran-
dom Decrement (RD) signatures- are presented and the errors in these estimates are

investigated. The techniques considered are

e Direct and indirect estimation of auto-correlation functions (ac.f.) and cross-

correlation functions (xc.f.)
e Auto- and cross-correlation coefficient functions
e Random Decrement (RD) signatures

Both bias (systematic) and random errors are considered. It is not aimed at comparing
the different estimators as such because, in terms of accuracy, there is no significant
advantage of a particular estimator over another. While the _ra.ndom decrement es-
timator can be computationally more efficient (depending on the record length of
“ the time series, the lag up to which the RD signature is computed and the trigger-
ing condition used), a simulation study in Asmussen (1997) for instance, comparing
the‘.;wcuracy of RD signatures with FFT-based correlation function estimates, shows
that the two estimators are comparable. Desforges et al. (1995) report a favourable
performance using correlation functions. In a first instance, it is aimed to give a de-
scription of the errors in terms of the the record length of the time-series and the
modes of the system to guide the practitioner. The latter analytical formulation is,
however, not very practical. Therefore a robust and efficient numerical method, based
on the formulation originally given by (Bartlett, 1946), is developed to obtain esti-
mates of these errors in the sample correlation and correlation coefficient functions.
The accuracy of the proposed method is assessed, in particular at low lag times, since
correlation-driven identification typically operates on this portion of the estimated
data (Juang and Pappa, 1984). The various aspects of computation of the random
decrement signatures are only briefly discussed for completeness, since this subject is

treated extensively by Asmussen (1997).

50



3.2 Correlation Function Estimators

To clarify the terminology, the definition used in this thesis for the auto- and cross-
correlation functions is restated (see Chapter 2). For a stationary signal, they are

respectively given by Bendat and Piersol (2000)

Rop (1) =Ez(t)z (t +7)] (3-1)
Ry (1) = Elz (8)y (t + 7)] (3-2)

where z(t) and y(t) denote two stationary time series. As described in Chapter 2,
the above definition of the auto- and cross-correlation function are similar to the
definition of the auto- and cross covariance function defined in equation 2.18 except
that the time-independent mean is not removed. Some authors ('Peeters and DeRoeck,
2001) prefer to work with covariance functions but since it is customary to remove
“the ﬁean from the measured time series by using a detrending operation (Bendat
and"i"iemol, 2000), both quantities are, in general, the same. Various quantities exist
that have the same correlation structure as equations 3.1 and 3.2, for instance the
RD signatures or correlation coefficient functions described below, and may therefore
serve as input to the SSI/Cov algorithm. Zhang et al. (2005a) use the generic term
Time Response Functions (TRF's) to refer to any of these functions but in this thesis,
the term correlation function will be used to refer to these quantities in a general

context and it will be clarified when a specific function is meant.

3.2.1 Sample Auto- and Cross-Correlation Functions

There exist two common techniques to estimate the ac.f. and xc.f. of simultaneously
measured times series: the direct method is a direct application of equations 3.1 and
3.2 in which the expectation operator E[] is replaced by an integral or a summation
for discrete data (Bendat and Piersol, 2000; Priestley, 2004). An alternative estimate
can be obtained by making use of the properties of the FFT. This procedure is often

referred to as the indirect method. Since both methods are explained at length in many
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texts, only a brief description is given here and appropriate references are given.

Direct Method

The biased wa(r) and unbiased ﬁ,v(r) sample cross-correlation function between
any two stationary, zero-mean continuous time histories z(t) and y(t) of length T can

be estimated as (Bendat and Piersol, 2000)

. 1 T—7
Bay(r) =7 /0 s@Qyt+7)dt 0<r<T (3.3)
B (r) = % /0 T Wyt 0<7<T (3.4)

where 7 denotes the time lag at which the the cross-correlation function is evaluated.

For the discrete case, the above formulae can be rewritten as (Priestley, 2004)

N-r-1
Ry (rirt) =‘NITT 3 zGAy(+r)AaY) i=0,12,...  (35)
=0 )
N-r-1
B (rat) =% Y siAty(+n)AL) i=0,1,2,... (3.6)
=0

N denotes the number of sample points in each record such that = NAt and At is
the sampling interval. The estimates are only given for positive time lags as the latter
yield the decaying part used in the identification. The sample auto-correlation func-
tions are merely special cases of the above equations when the two records coincide
(Bendat and Piersol, 2000). For notational convenience, the sampling interval At will

be dropped so that for instance Ry (r) is understood to stand for Ry (rAt).

Indirect Method

The key to obtaining correlation functions via FFT is to realise that the summand
in equations 3.5 and 3.6 is the discrete convolution z(r) with y(—7) (Oppenheim and
Schafer, 1988). Computing X (k) and Y (k), which are the discrete Fourier transform

(DFT) of z(r) and y(r) respectively, it is possible to form the raw cross-spectral es-
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timate &'—%ﬁ’—’l (Bendat and Piersol, 2000). The raw spectrum estimate ﬂ’—“%ﬂﬂ
is often referred to as the cx:ose-periodogram between X (k) and Y (k) . Taking the
inverse DFT (or FFT) of the raw cross-spectral estimate yields a convolution in the
time domain, resulting in equation 3.6. It will be noted, however, that because of the
underlying assumption of the periodicity of the DFT and its inverse, one will actu-
ally obtain the circular correlation between the two signals which appears as though
it were calculated from a periodic function. As a consequence, the resulting cross-
correlation function at any lag r (r < N) will have components from the periodic
extension of the signal. This “wrap-around effect” can easily be avoided by augment-
ing the signal with zeros (Bendat and Piersol, 2000; Oppenheim and Schafer, 1988).
When the signal is padded with N zeros, exactly the same linear correlation fuhction,
given in equation 3.6, for both +ve and —ve lags is obtained by inverse FFT of the
" raw spectrum estimate. The above clearly applies to auto-correlation functions when

z(r) and y(r) coincide.

The advantage of using the indirect method lies in its computational efficiency
when the maximum lag value up to which the correlation function is to be com-
puted is sufficiently large (Oppenheim and Schafer, 1988). In particular, since the
the maximum lag of interest, say m, is usually much less than N, it is computa-
tionally advantageous to chop the data into n4 contiguous blocks of length M > m
ie. N = ngM. Augmenting each block by M data points, the cross-spectral es-
timate can be computed using Bartlett’s averaged periodogram method. That is
Say(k) = 7247 T04) Xi(k)Y;*(k), where X;(k) and Y;(k) denote the DFT of the i**
block z;(r) and ;(r) of the time records z(r) and y(r). The inverse FFT of Sy (k)
then yields the desired cross-correlation function up to lag m. This procedure is ef-
fectively an application of the Wiener-Khinchine relation (Bendat and Piersol, 2000).
For the exact computational effort required by each method, the reader is referred to

(Bendat and Piersol, 2000; Oppenheim and Schafer, 1988).
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The FFT procedure described above is statistically equivalent to the direct method
(Bendat and Piersol, 2000).( In some applications, for instance Farrar and James
(1997), the correlation functions have been estimated by inverse FFT of the spectral
estimates obtained via Welch’s modified periodogram method (Welch, 1967), which
is a slight modification of the Bartlett procedure described above. The modification
consist of applying a window function u(r) directly to the individual data blocks z;(r)
and y;(r) before computation of the periodogram. Also, the blocks are often chosen to
be overlapping. The motivation for applying Welch’s modified periodogram method
is to get better spectral estimates, that is reduced leakage due to the windowing
operation and reduced variance due to the increased number of blocks made possible
by the overlap. The correlation functions obtained via inverse FFT from these épectra
have different statistical properties than those obtained from the direct method. These

" differences will be discussed in subsequent sections.

3.2.2 Sample Auto- and Cross-Correlation Coefficient Functions

It may be convenient in some cases to deal with correlation coefficient functions rather

than with the correlation functions themselves. The latter is defined as (Bendat and

Piersol, 2000)
Pus(r) = R‘;g(’") = g::g; (3.7)
pey(r) = Zal) __ Fal) (38)

Oz0y R:z(0)Ryy (0)

where o(,) denotes the standard deviation of the respective time series’. Since, the
ac.f. at zero lag is given by R,(0) = E[z?(r)] = Var[z(r)] = a2, it follows that
the corresponding auto-correlation coefficient function pz.(r) is unity at 7 = 0. The

cross-correlation coefficient function satisfies

—1< pzy(r) <1 (3.9)

tSome authors, (Priestley, 2004) for instance, use this as the definition for auto- and cross-
correlation functions.
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for all r. The sample estimates for the correlation coefficient functions can be obtained
from equations 3.7 using the plug-in principle. In other words, the exact quantities in

equations 3.7 are replaced by their estimates i.e.

Reo(r) _ Res(r)

Pzz(T) 2 R.0) (3.10)
ﬁzy(r) - Rzy(r)= REV(T) ) (311)

920y Rea(0) Ry (0)

It is clear from its definition, that the correlation coefficient functions are simply cor-
relation functions normalized with respect to the variances of the respective outputs.
Therefore, the decay and oscillatory properties are the same as those of the corre-
lation functions and hence the same modal parameters are identified. However, the
sample variance of the correlation functions differ from those of the correiation co-
" efficient functions. For instance, it is clear that since the auto-correlation coefficient
‘funct.ion computed from each of the p measured time histories is normalised to unity,

the variance of Pzz(0) would be zero whereas the variance of R;.(0) is not.

3.2.3 Auto- and Cross Random Decrement (RD) signatures

Random decrement signatures were initially developed by Cole (1973) to estimate
damping ratios and natural frequencies and were later extended to cross-RD function
by Ibrahim (1977); Ibrahim and Mikulcik (1977). The description given here will be
brief and the reader is referred to Asmussen (1997) for a complete and comprehensive

treatment of the subject.

The concept of the random decrement signature is based on the fact that the
random response of structure at time t+tg is composed of two parts: (a) a deterministic
part composed of the step response due to the displacement at t; and/or the impulse
response due to initial velocity at ¢; and (b) a random part due to the random load
applied to the system betweén to and tg + ¢ (Ibrahim, 1977). Let z(t) and y(t) be

two stationary response histories from a linear system. The RD technique starts by
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breaking the time series up into blocks of equal size, say M. The basic idea behind
the RD technique is that, by averaging enough of these blocks, the random part
of the response will amage: out, leaving only the deterministic part. However, to
avoid averaging out the deterministic part of the response, the blocks into which the
time series are broken need to be chosen under certain conditions. These conditions
are commonly referred to as triggering conditions. There are a several triggering
conditions under which this requirement is fulfilled but they can all be described from

the applied general triggering condition (Asmussen, 1997)

z

T%) = {a1 <z(t)<ay, b < z(t) < be} (3.12)

where Z(t) denotes the time derivative of z(t). Equation 3.12 means that, in order
. to avoid averaging out the deterministic part of the response, the blocks of z(t) need
| to be chosen starting always at a point of z(t) lying between the designated levels a;
and a2 and having a slope in the interval [b; bg). The various triggering conditions
that ca.n be derived from this general trigger and their consequences are described
in great detail in Asmussen (1997). In this thesis, only the level crossing triggering
condition, denoted Tzlfty is discussed. The latter is obtained from equation 3.12 by

letting b = —00,b9 = 00 and a; = a and a; = a + Aa i.e.
Thy = {z(t) =a, o0 < i(t) < oo} (3.13)

Denoting the discrete signal obtained from z(t) by z(r), equation 3.13 states that the
blocks into which the time series is broken can be chosen to start at any point at
time r for which z(r) = a irrespective of the slope of z(t) at that point. Clearly, for
discrete signals, it might not happen that z(r) = a exactly and the triggering condi-
tion is never fulfilled. Therefore, in practice, the triggering points are chosen at r and
r + 1 such that z(r) > z(r + 1) for a negative slope and z(r) < z(r + 1) when the
slope is positive. It was shovs}n by Brincker et al. (1991) that if either the left-hand

point r or the right-hand point r +1 is chosen, the estimated RD signatures are biased
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Fig. 3.1: Tllustration of the level triggering condition.

and to avoid this bias, both points should be taken to act as triggers. The choice of
the level a determines the number of blocks into which the response is broken. It is
evident from the description of the concept of the RD technique that the more blocks
we have, the better will be the cancellation of the random part of the response. It is
shown in (Asmussen, 1997) that levels between o, and 20, yield best results, where
o, denotes the standard deviation of the stationary time-history x(f). This process
is illustrated in fignre 3.1. Suppose that N, blocks are obtained from «(t) and N,
blocks from y(t). The auto- random decrement signatures RD,(7) and RD,(7) are
then found by taking the average of the N, and N, blocks respectively. Formally, the

sample auto-random decrement signatures are expressed as



Nz ’
: 1.
RD,(7) = EE?(t.-w) TZ,) (3.14)
=
1 &
RD,(1) = Ez;y(t,-w) Ty, (3.15)
=

The cross random decrement signatures are found by forming the same blocks of y(t)
than was done for z(t), i.e. the trigger for y(t) is taken to be the one for z(t) (Ibrahim,

1977). Formally,

RDny(r) = — Y z(ti+7)|TH, _(3.16)

RDy (1) = ——Zy(ti+r) Tﬁt.-) _ . (3.17)

For the level triggering condition, it was first shown by Vandiver et al. (1982) that
the auto-RD functions are proportional to auto-correlation functions. This was later

extended by (Brincker et al., 1991)* to include the case for cross-RD functions and it

the relation yields
RDpo(r) = 1:’;’ (3.18)
T
RDgy(1) = %a (3.19)
]

When different triggering conditions are used, the relation between correlation and
RD functions changes and the general relation between correlation and RD functions,
that is for the general triggering condition in equation 3.12, is given by Asmussen

(1997).

*The author could not get hold of the original paper mentioned in this reference but the theory is
also given in the appendix of Asmussen (1997).
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3.3 Bias in Sample Correlation Functions

3.3.1 Auto- and Cross-Correlation Functions
Direct Method

It is easily found from equation 3.6 that the bias in the cross-correlation function
between z(t) and y(t) is (Bendat and Piersol, 2000)

b [, )] = B[R, )] - Rey(r) = - TRy () (320)
where R,y () is the exact cross-correlation function between z(t) and y(t), E[] denotes
the expectation operator and b[-] the bias error. The magnitude of the bias thus
depends on two factors; the ratio of the time lag to the total record length and the
. value of fiﬂ, (r) itself. When |r| is small compared to N, the bias will be small but as
|r| approaches N the bias will effectively be Ry (r). There will thus be little difference
betwge,n the biased and unbiased estimates in the region where |r| is small compared
to N .' " On the other hand, however, since the cross-correlation functions between any
two response measurements of a damped structural system are decaying functions such
that Ryy (r) — 0 as |r| — oo, it will be small by the time |r| approaches N for large
values of N so that we may expect the bias to remain small. The decay rate of the
correlation functions is governed by the product w;¢;, where i denotes the i** mode, as
shown in equation (2.33) so that we can expect smaller bias in correlation functions of
more heavily damped, higher frequency systems. This behaviour of the bias is shown
in figure 3.2(a). A set of SDOF systems were computed using the analytical equations
for the ac.f. of a SDOF system excited by white noise given by (3.30),(3.31) and
(3.32), for displacement, velocity and acceleration output records respectively. The
variance of the noise was assumed to be unity. For presentational convenience, only
the envelope of the bias is shown. The dependence of the latter quantity on the modal
parameters fp and £ can be expressed by a single variable fo€, so that the results are

identical for any combination of natural frequency/damping ratio yielding the same

Jo€.
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Indirect Method

The correlation functions computed by application of the inverse FFT to the raw spec-
tral estimates (or periodogram) are identical to the biased estimates obtained from the
direct method. However, when the periodogram is modified using Bartlett’s or Welch’s
method, the bias in the resulting correlation is different. For the Bartlett procedure,
this is easily understood by realising that the spectral estimate is just an average of
periodograms and that the FFT is linear. More precisely, if the time records z(r) and
y(r) of length N are divided into ng blocks of length M such that N = ngM, then
computing the correlation estimate by inverse FFT from the averaged periodogram

S'w(k) = ;l;l'ﬂ 3ot Xi(k)Y;*(k), is the same as averaging the correlation functions

i=1

obtained by inverse FFT from each periodogram .’fjﬁ‘%ﬂl From the discussion of

the direct method and the previous paragraph it follows that bias error in t‘he latter
* correlation functions is B[R, (r)] = —J;&R,y(r). Since M < N, the bias in the thus
éti@@ correlation functions will be greater than or equal to that in the correlation
functxons estimated via the direct method, although the random error decreases with
with ng (Bendat and Piersol, 2000). The origin of this bias error can be attributed
to the fact that time-history records have finite length; finite length data records, of
length N say, may be regarded as the product of an infinite record with a finite Bozcar
or rectangular time window defined by

1 for r=12,...,N
ug(r) = (3.21)

0 else
This behaviour of the bias error in the estimated correlation functions is closely re-
lated to the bias error in the corresponding estimated spectral densities, often referred
to as resolution bias. The reason is that the product of the time history records with
a window function in the time domain translates into a convolution of their Fourier
transforms in the frequency domain. The Fourier transform of the rectangular window
is the well known sinc function and the width of its main lobe, determined by the

length of the window, serves as a measure of the resolution bandwidth of the spectral
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Fig. 3.2: (a) Envelope of the bias error in the auto-correlation coefficient function px(r) for a
set of SDOF systems for both the direct method (rectangular window) [—| and the indirect
method using a Hanning window [mem]. It is assumed that the total available record length
form which the ac.f were computed is 7 = 100s. (b) Exact auto-correlation function compared
to the envelope of the biased auto-correlation function for the rectangular an Hanning window.
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densities (Oppenheim and Schafer, 1988). A detailed analysis of the resolution bias

in relation to windowing operations was given by Schmidt (1985a).

The discussion above is readily generalized to arbitrary window functions, used
for instance when the spectral densities are estimated using Welch’s method. It is
shown in (Schmidt, 1985a,b) that the factor (1 — Irl/~) multiplying in equation 3.20 is
the auto-correlation coefficient function pr(r) of the the rectangular window function
given in equation 3.21 and the result is generalized to an arbitrary window function
u(r) as

E [R,(r)] = pul(t)Ray (7) (3.22)

where p,(r) denotes the (biased) auto-correlation coefficient function of the window
function u(r). This relation is illustrated below in figure 3.2(b) for‘the auto-correlation
l" of a SDOF system for the rectangular and Hanning window. For clarity, only the
énvelopes of the respective ac.f. are shown. The dependence of the bias on the window
functién used is clearly seen. The reason for applying different window functions is
to reduce the leakage in the estimated power spectral densities despite an associated
decrease in resolution (Bendat and Piersol, 2000). While there have been many window
function designed for this purpose, each with different properties, only the Hanning
window is considered herein. In the authors experience, the Hanning window appears
to be the most commonly used in operational modal analysis applications as it is
known to offer a good compromise between frequency resolution and leakage (Jenkins
and Watts, 1968). The shape of the Hanning window is

1 22r) ] ug(r r r=
wgr) = | ? [1+ cos (3F)] ur(r) fo 1,2,...,N (3.23)

0 else
and its auto-correlation coefficient function pg(r) is given by (Schmidt, 1985a,b)

[2 + cos(?]%’i)] oR(T) + :217; sin(%—’:,f) (3.24)

L=

pu(r) =
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As for the direct estimation method -or equivalently for the rectangular window- the
dependence on the system’s modal parameters of the actual bias error in the correla-
tion functions estimated via the Hanning windowed spectra is shown in figure 3.2(a).
While the general behaviour is similar to that for the direct case, it is seen that for
(fo€) = 0.02, 0.04 and 0.08, the increase in bias with the lag in the ac.f. is smaller for
the Hanning than for the direct method. Also, the maximum bias is smaller for the
Hanning window when fo€ is large but tends to increase as fp€ increase. Considering
the envelope only, it can be found from equation 3.20 that for the rectangular window,
the maximum value of the bias in the envelope occurs at rAt = wle For the Hanning
window, using equation 3.22 with p, = py and expanding the sin and cos functions
as the first two terms of their McLaurin series, the maximum value of the bias can be
found to occur approximately at rAt = ;:‘% Equating the envelopes in both cases for
" a fixed value of w§ reveals that the bias error intersects at approximately rAt = %
with the bias being smaller for the Hanning window than for the rectangular window
for lags < %— This is illustrated in figure 3.2(a). It is noted that the biased correlation
functions can easily be unbiased applying equation (3.22) i.e. by multiplying I?gy (r)
by p;! (Giampellegrini and Greening, 2005). The biased estimates offers two advan-
tages, (a) it has been asserted that, in general, it has a smaller mean square error than
the unbiased estimate and (b) it is a positive semi-definite function implying that its
finite Fourier transform or periodogram is a non-negative function at all frequencies.
The unbiased correlation estimate, on the other hand, does not have this property

(Priestley, 2004).

To conclude this section, a brief discussion of the bias in the correlation coefficient
functions and the RD signatures is given. Strictly speaking, the plug-in expressions for
the correlation coefficient functions in (3.10) have slightly different bias properties from
those of sample correlation functions since the effect of estimating &2, (0) and ng(O)
has to be taken into account as well. However, it is shown in Priestley (2004) that

when the error between the estimate R%,(r) and its expectation is small, E [pze(r)]
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can be approximated as

E|R: (r
Ebon(r)1=z[’*3'(”] B[R] _ (1——)pu(r) (3.25)

20| BlR.0]

Extending this to cross-correlation coefficients as

E[pze(r)] = E [ =0 ] - [ﬁb’"(’")] =1~ ,rl)sz(T)
\; R, (0) RS, (0) \/E [fzbm(())] E [ng(())] N

(3.26)
it is seen that under this approximation, the bias properties of correlation coefficient
functions are the same as those of the ordinary sample correlation functions. Since the

error is generally small at low lag times, this approximation is valid for all practical

purposes.

The bias arising in RD signatures is generally due to implementation problems such
as the discretization issue for level triggering discussed in section 3.2.3. By careful
implementation, it is generally possible to obtain unbiased estimates. A detailed

account of sources of bias in RD signatures can again be found in Asmussen (1997).

3.4 Variance in Sample Correlation Functions

While the variance of sample correlation functions for band-limited white noise is
described in (Bendat and Piersol, 2000), little work seems to have been devoted to
study the random error in sample correlation functions between outputs of linear
MDOF systems. A reason might be that the random error can be kept low when the
available record length is very large. Long records are, however, not always available
and the effect on the sample correlation estimates and hence the effect on the identified
modal parameters are severe as is shown in Pridham and Wilson (2003). In this
section, it is aimed to expose the behaviour of the variance, and hence the random
error, in the estimated sample correlation functions in terms of the system modes

and the available record length T. In a first instance, an analytical formulation of
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the variance for SDOF systems are considered and then an approximation for MDOF
systems is given. Finally, a numerical plug-in method applicable to MDOF systems

is developed to estimate the variance and covariance in practice.

3.4.1 Single-Degree-of-Freedom Systems

For a zero-mean, Gaussian time series z(t), the variance for the sample correlation

Ryz(7) and R®,(7) can calculated as

Var [B(r)] = % / : ( ks T) (R2,(t) (3.27)
+ Rzz(t + 7)Ree(t — 7)) dt
Var [I:Zu(‘r)] = = }_ - _:;: (1 - —T;—I?_-I—"-_-) (R2,(t) | ' (3.28)

+ Rzz(t + T)Rez(t — 7)) dt

This result was first given in discrete form for the biased estimate by Bartlett (1946),
i.e. a summation rather than an integration. It is seen from the above equations
that the variance for the unbiased estimate is of the order of O (1/7-r) thus leading
to erratic behavior in the tail region of R,,,(T) while it remains of order O (Y1) for
ng('r) for all 7 (Priestley, 2004). As for the bias, the two estimates differ little at low
lags, and since high lags are of no practical interest, only the unbiased estimate will

be considered henceforth.

To find the variance of R, we can insert the expressions for the auto-correlation
function into equations 3.29 and perform the integration. The auto-correlation func-
tion of the displacement response of a continuous linear SDOF system with natural
frequency wo and damping ratio £ excited by stationary white noise with constant
spectrum Sp by z(t) is given by in Penzien and Clough (1993). Using the relations
R;(1) = —d*Rz(7)/d:? and R;(7) = —4*R:(7)/ds?> (Penzien and Clough, 1993), where

#(t) and Z(t) denote the corresponding velocity and acceleration output respectively,
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the velocity auto-correlation can easily be computed. They yield

Re(r) = ‘g2 [cos(wpt)+ \/l_f_?sm(wp |t|)] el (3.99)
Rr) = R [oos(wot)—\/—l—f—_—gsin(wp ltl)] et (3:30)
w4
Re(r) = 230 L))+ 22 (1 - 46) o wp) (3.31)
£(3-42)

- —~——“~sin(wp |t|)] e“"“ﬂ‘l}

Vi

where wp denotes the damped natural frequency of the system and —o00 < 7 < 00.
The Dirac-6 function enters the acceleration auto-correlation because of discontinuity
of the absolute value at 7 = 0. This has a physical meaning, however, and is efféctively
due to the the fact that the impulse response function for the velocity is discontinuous
* at t = 0 (Schmidt, 1985a).

Performing the integration in equation (3.29) is tricky and for a sufficiently large
record length T, equation (3.29) can be approximated as (Bendat and Piersol, 2000)

+00

Var [Re(r)] ~ % / (R2(t) + Ro(t + T)Ra(t—7))dt, 720  (3.32)

—00

In fact, the requirement on the record length T for this approximation to be valid is
not stringent at all as will be illustrated in the next section. The analytical variance of
the ac.f. of the displacement, velocity and acceleration output may now be obtained by
substituting equation (3.30), (3.31) and (3.32) into (3.32), respectively, and performing
the integration. The exact results are lengthy and hence only an approximation will be
given here. More precisely, time-independent terms in the nominator involving powers
of £ > 2 and time-dependent terms involving powers of £ > 2 have been omitted so
that the results will hold for lightly damped systems (roughly ¢ < 5%) of critical

damping and for T large compared with the time lag of interest. For displacements
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z(7), velocities &(7) and acceleration records Z(7) one obtains for positive lags 7

Var [IL,(T)] N - Cas {1 + e~ 29087 [cos(2wpT) (1 + 26woT) (3.33)

(2Twoé)
+ (wor€?/,/1-83) sin(2wpT)]}
Var [RE(T)] ~ @%‘gﬂ {1 + e~ 2067 [cos?(2wpT) (1 + 26wor)  (3.34)
— (1207¢’/\/1-¢7) sin(2wpT)]}

where the expression with C, = a“;—g,g%% and the ‘4’ sign holds for displacements, and
the one with C; = ﬁé{g}% and the ‘-’ gives the variance for velocities. The above
equations are verified below by comparing them to the variance of the auto-correlation
function computed form an ensemble of 480 realisations of systems 1 and 2 described in
table 3.1. The SDOF systems were excited by white Gaussian noise and the response
- was recorded for a total length of T' = 100s. A time step At = 0.01s and At = 0.005s
was chosen for system 1 and 2 respectively. This is shown for displacement records
in figures 3.3. It is seen that equations (3.30) and (3.32) offer a good description of
the variance of the auto-correlation function of SDOF systems. Since the integration
in (3.32) is from —oo to oo, these expressions hold for the unbiased estimate. This
is illustrated in figure 3.3 by comparison with the envelope of the biased estimate.
Since the variance oscillates at twice the frequency of the system’s auto-correlation
function, the minima (lower envelope of the variance function) gives the variance at
zero-crossings while the upper envelope gives the variance of the envelope (upper and
lower) of the auto-correlation function. Up to the lag shown, the variance of the max-
ima (upper envelope) of the variance function decrease with 7 and the minima (lower
envelope) increase. This is illustrated in figure 3.4 and may provide an explanation
for why frequencies are generally much better identified than damping ratios. As il-
SDOF systems Natural Frequency fo Damping ratio &

System 1 25 Hz 1%
System 2 8 Hz 2.5 %

Tab. 3.1: The two SDOF systems used for simulation. Their modal parameters were cho-
sen such as to have a representative case for a low frequency/lightly damped and “high”
frequency/heavily damped system.
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Fig. 3.3: Comparison of the analytical approximation of the variance of the displacement
ac.f. of SDOF systems with the simulated variance from an ensemble of 480 realizations of
systems 1 and 2 in table 3.1. For clarity, only the envelopes of the variances are shown. [- -/
shows the variance of the unbiased ac.f. computed by simulation, [/, represents the analytical
approximation and [ - - / the simulated variance of the biased ac.f. The inset figures are a zoom
at low lags showing the agreement of the oscillatory behaviour. The simulated (unbiased )
results are represented by [-e-/ and analytical results by /o]
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Fig. 3.4: (a) envelope of the sample ac.f of a 1Hz, 1% damped SDOF system incuding high
lag times 7. (b) The minima of the Var|[R,.(7)] give the variance at zero crossings of R,.(7)
while its maxima give the variance of the the envelope of R;;(7).

lustrated for a 1Hz, 1% damped SDOF system in figure 3.4, the variance of the ac.f
at zero-crossings and that of its envelope will eventually converge and increase with
T It is noted, however, that the initial decrease in variance of the enevelope does not
| imply. that the correlation function is better estimated at these lags. Converting the
envelqpe of the variance function, i.e. at 7 = n%, to the corresponding normalized
randé;xl error of the ac.f. defined as €, (R (7)) = o(R=(7))/R,(r), where o(-) denotes the

standard deviation, yields

ér(Rz(T = n™jwp)) = \/% (Dg:—z-zfﬂ + 7') (3.35)

and at 7 = 0 one obtains
1

& (Re(r =0)) = JiBaT (3.36)

where By = 2£fo is the common approximdtion to the half-power bandwidth of the
system’s resonance peak (Bendat and Piersol, 2000). It should be noted that, for
convenience, equation (3.35) was normalized with respect to the absolute value of the
ac.f. so that the normalized random error is always positive. Equation 3.36 may be
compared to the expression describing the normalized random error in a white noise
signal of bandwidth B given by 1/VBT in (Bendat and Piersol, 2000). It is noted that
within this approximation made in equations (3.30), (3.31) and (3.32), the normalised

random error at 7 = n7/wp is the same for displacement, velocity and acceleration
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Fig. 3.5: Iustration of the normalized random error at positive and negative peaks of the

estimated sample ac.f. o = wodT and [ = %.

records and will henceforth be denoted by €, (R, (t = 277/wp)). The behaviour of
er(nm/wp) is illustrated in figure 3.5 below. To plot figure 3.5, equation (3.35) was
reformulated in terms of two auxiliary parameters a = wolT and 3 = % thereby
allowing to represent many cases on the same graph. The normalized random error
on the ordinate is plotted as a function of « represented on the abscissa. The var-
ious curves are for different values of F. The lowest curve is for 3 = 0 i.e. at zero
lag. Moving upwards, successive curves are obtained by incrementing the parameter
3 by a value of 0.01 up to 7 = 0.14. Thus, for example, the point at o = 25 may
represent the normalized random error in ac.f. of a SDOF system with modal para-
meters fo = 2.3Hz, & = 1.5% estimated from a total record length of 7'~ 115s. The

/

different values of 3 then give the corresponding lag. for example, 3 = 0.04 gives ¢,
at 7 = 115 % 0.04 & 4.65 where the normalized random error can then be read from
the graph as approximately 45%. For fixed T, a clear increase in random error can be

seen as the 7 increases and tends towards the 100% error limit relatively quickly, the

more so for high frequency and more heavily damped systems. For low frequency and
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lighly damped systems the error propagates more slowly along the auto-correlation
function. At low lag times, however, the level of the error is considerably smaller for
high frequency, more heavily damped systems than for low frequency, lightly damped
systems. It will be seen in Chapters 6 and 7 that this behaviour is clearly reflected
in the random error of the identified modal parameters. Clearly, the random error
is seen to decrease with T. It is remarked that, although equation (3.35) is defined
only for 7 = n% for n =0,1,2, -, the results in figure 3.5 are interpolated between
these points. Consequently, the normalized random error shown in figure 3.5 should

be interpreted as that of the envelope of auto-correlation function.

3.4.2 Auto-covariance function

It will be shown in Chapter 5 and 6 that the determination of the random error in the
" identified modal parameters heavily relies on the covariance structure of the estimated
correlation function. 'An approximate expression for large T for the covariance of

R._(7) can be found to be (Priestley, 2004)

cov [R;(T),ﬁz('r +v)] ~ % [ :o (Ra(t)Ra(t + v) (3.37)
+Ry(t+ 7+ v)Ry(t — 7)) dt,

720, 7+v2>20

and it is noted that equation 3.32 follows from the latter expression for v = 0. An
expression for the covariance may then be found as before by carrying out the in-
tegration. For convenience, the constant multiplier in the correlation functions was

omitted and the covariance function can be found to be
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Fig. 3.6: The envelope of the covariance function of the estimated sample ac.f. as a function
of v. Figure (a) shows the covariance of the 2.5Hz SDOF system evaluated at 7 = 20s and
figure (b) depicts the same for the 8Hz at 7 = 7s. [-] denotes the theoretical covariance and
[/ the simulated covariance computed from 480 realizations of the system excited by white
Gaussian noise. The inset figure shows the oscillatory behaviour of the covariance at lags v
around 7. The simulated results are represented by [-e-/ and analytical results by [o/.
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cov [R(T), R(r + v)] ~ e {cos(wpv) [1 + |v] wot] (3.38)
v 2

3“%‘—% sin(wp |vn}

+e~ 208749 Lo0g(wp (21 + v)) (1 + Ewo (2 + v))

T + v)€2
(2—‘0.12\/1_;__—-—{—2)-&—-) sin(wp (27 + v))} ,

+

720, 7+v20

It is can be seen that the above equation reduces to the expression for the variance for
displacement outputs at v = 0, (see eq. 3.34), with the constant multiplier set to unity.
Figure 3.6 validates equation 3.38 by comparisson with the covariance computed from
480 realizations of each of the two systems in table 3.1. For clarity, only the eﬁvelope
is shown over 10s of the auto-covariance function and the oscillatory part is depicted

: only at low lags v in the inset figure.

3.4.3 Multi-Degree-of-Freedom Systems

The equations given above are restricted to a description of the variance and covariance
of auto-correlation functiéns of SDOF systems. In principle, an analytical expression
for cross-correlation functions between simultaneously measuréd responses of MDOF
systems could be obtained by integrating the general expression for cross-correlation
functions given in the formulation of the natural excitation technique i.e. equation 2.33
(James et al., 1995) according to equation 3.32. As will be argued in the next section
and in Chapter 6, such an expression would not be useful in practice and unnecessary
for the purpose of giving a general description of the error in xc.f. of MDOF systems.
Instead, an approximation is given in this section that uses the known results for
SDOF systems. The derivation of the result is rather lengthly and is therefore given
in appendix A. It states that under the condition that a) the damping is light and
and b) that modes of the system are sufficiently separated, the variance of the cross-

correlation functions can be approximated as a weighted sum of the ac.f. functions of
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equivalent SDOF systems. More precisely,

Var (Rags, (7)) 3 8292 Vi (Ry o, (1) (3.30)

This expression was verified by simulating a proportionally damped 2-DOF system
with modal parameters f; = 1.2Hz, fa = 2Hz and & = 1.04(%), & = 1.03(%). The
system was excited by Gaussian white noise at each degree-of-freedom and 300 real-
izations -each consisting of 250s(At = 0.1s) of displacement response- were recorded.
The variance of the cross-and auto-correlation functions of the response was then
computed as an ensemble average over the 300 realizations. The square root of the
variance thus calculated, normalized by its value at 7 = 0 is shown by the (blue) dot-
ted line in figures 3.7. The solid line is the result obatined by numerically evaluating
equation A.23. It can be seen that the results are in good agreement. It appears from
this simulation that the requirement of the modal separation for equation 3.39 to yield
the variance of auto- and -cross co;‘relation functions of the MDOF systems excited
by wl;ite noise is < 1 Hz. The limit for the proximity of modes at which equation 3.39
fails was, however, not since the method described in the next section is much more

useful in practice and does not suffer from this issue.

3.5 Plug-in Estimates

The formulae given in the previous section may be used in practice to calculate the
random error in the estimated sample correlation functions, but its transpires that
this is not practical and suffers from a few drawbacks: a) a normalization procedure
would have to be applied because some of the parameters, for instance Sy are not
known b) the formula for MDOF is not applicable for close modes and b) we require
knowledge of the modal parameters of the system in order to implement the formulae.
The last point cannot be a,voided since the estimation of the variance involves the exact

correlation functions which are unknown and an estimate, in this case in terms of the
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Fig. 3.7: Normalized standard deviation of the correlation functions of a 2-DOF system excited
by white Gaussian noise. Figure (a) and (c) depict the auto-correlation functions at measure-
ment station 1 and 2 respectively; figure (b) depicts the cross-correlation function between
the time histories at station 1 and 2. [--- ] simulated and /-/ numerical approximation
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modal parameters, needs to be taken instead. However, since the modal identification
usually involves model order reduction and spurious modes, a more direct plug-in -
approach is preferred that involves the estimated correlation functions directly.

3.5.1 Plug-in Estimates for the Covariance of Correlation functions

The discrete version of equation 3.28 for cross-correlation functions is given by Priest-

ley (2004) forr >0, r+v2>0

. N—-r—v-1
Cou [BL,(r), By (r +v)] = % ) (1—"("’)#’3% (3.40)
m=(—N+r)+1

X (Razz(m) Ry (m + v) + Roy(m + 1 + v) Ryz(m — 1))

with
m, m>0
n(m) ={ o, ~v<m<0

-m—-v, —(N=-r)+1<m<v

and gives the eract estimate for the covariance of R’;x (r). The expression for auto-
correlation function follows by letting y = z. As in the previous section, we may again
simplify this expression for large N by letting (1 - gjﬂ)ﬁr_—#v) — 0 and replacing the

summation by —oo and oc so that

Cov [R2, (1), By (r 4+9)] %+ 3 (Raa(m)Ryy(m +0) (3.41)

m=—00

+Ryy(m + 7+ v)Ryz(m — 1))

In practice, the summation is of course bounded by the number of available data.
Strictly, equations 3.40 and 3.41 hold for the biased estimate R%,(r). However, the
approximation 3.41 may be used to estimate the covariance of the unbiased estimate
Ry (r) because a) the dependence on the lag r in the limits of the summation is relaxed
i.e. the summation ranges over more data points than 2(N — r) and b) comparison
of the continuous equations for the variance given by 3.28 and 3.29 for the biased

and unbiased estimate respectively, reveals that the two expressions converge with
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increasing T'. In particular, under the assumption of large T, or equivalently large
N, the two estimates are very close at low lags. The estimate 3.41 is validated by
simulation of a 2DOF system whose modal parameters are given in table 3.2. Only
the variapce will be displayed here for convenience as it is clear that the effect of this
approximation will be the same for the covariance. The system was excited at both
degrees of freedom (dofs) with a white noise input and the response was recorded for
a total duration of 5min(At = 0.04s) at both dofs. An ensemble of 500 responses
were simulated at each degree-of-freedom. From each one, the ac.f. and xc.f. Ryi(r)
and R;3(r) respectively, were computed and used to approximate their variance. The
subscripts refer to the dofs at which the response was recorded so that, for instance,
Rj1(r) is the ac.f of the response at dof 1 and Rjz(r) the xc.f. between the response
at dof 1 and 2. This simulated variance is represented in figure 3.8 by [: X o]
* The evaluation of equation 3.41 requires knowledge of the true correlation functions
Ru("'), Ra3(r), Ri2(r) and R (r). The latter were approximated by taking the mean
over the ensemble of the 500 estimates of R;;(r) and R;3(r) and were used as input
to equation 3.41. The results are shown up to a lag of 3s in figure 3.8. It is seen that
there is good agreement between simulated data and the estimate from equation 3.41.
The discrepancies that arise between the simulated data and the estimate 3.41 are
due to various sources. Firstly, the sample estimates form the 500 realisations will not
have fully converged: i.e. the simulated variance as well as the mean of the correlation
functions that was used as input to 3.41 are not exact. Secondly, the estimate 3.41
is an approximation to 3.40. The convergence of equation 3.41 to its exact estimate
given by equation 3.40 is illustrated in figures 3.9. These figures depict the variance of
Rgz(O) = R:(0) and is therefore independent of whether the variance of the biased or
unbiased correlation is estimated. It is seen that both estimates converge rapidly as
T increases and for record length > 5min the difference is certainly negligible. Also,
Modes Natural Frequency fo Damping ratio &

Mode 1 1.5 Hz 0.97%
Mode 2 291 Hz 1.85%

Tab. 3.2: Modal Parameters of the 2DOF system used for simulation.
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and [--- x - -] the simulated variance. For convenience, only the variance is shown.

figures 3.8 reveal that estimates for T > 5min will also yield a good approximation

to the unbiased estimate at low lags.

In practice, the plug-in method presented above has two drawbacks: Firstly, an

ensemble of responses that enable to compute the mean of their correlation functions

may not be available. Therefore, the covariance needs to be computed using the only
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estimate available, that is R, (r), by plugging the latter into equation 3.41 as

(e ]

Cov [R,y(r), }A?o,y(r + v)] ~ —11\7 Z (Rgz(m)ﬁ;ﬂ(m +v) (3.42)

m=-00

+BE,(m+ 4 )R (m — 1))

Due to the estimation errors in R”W (r), the estimate Cov [}}gx (r), RE (r + v)] itself
will be in error and its accuracy will depend on how well we can estimate R2,(r). The
problem of having to deal with correlation function estimates is even more pronounced
in this situation than when they are used as a response model from which the system’s
modal parameters are extracted. The reason is that in the latter case, a modal iden-
tification is possible using only the low lag portion of the correlation functionslwhich
has significantly less error than the tail regions. In the present situation, however,
* the sum needs be computed over the entire two-sided, full length correlation functions
and the poorly defined high lag ends must be included. The second difficulty is the
computational efficiency. Having to use two-sided, full length correlation functions
significantly inereases the computational burden. An ideal remedy for both of these
drawbacks would be to somehow do without the tail regions, thereby reducing the
number of data points used in the computation and, at the same time avoiding the
inclusion of the high random errors in high lag estimates. This can indeed be achieved

using a suitable taper. Ideally, such a taper would be smooth at low lags to minimize
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Fig. 3.9: (a)[---] shows the asymptotic approximation in equation 3.41 and [——] the exact
value obtained from 3.40 as a function of T at zero lag. (b) The relative error between 3.41
and 3.40 as a function of T using a time step At = 0.04s
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bias but then cut off the tail region rather sharply at the point where, in theory, the
correlation function has decayed to almost zero. Politis (2003a) used a “flat-top” win-
dow to evaluate infinite sums of the type 330 _ __ |k|? e R? (k), where i = v/—1 and
p > 0 and provided an empirical method to choose the optimal length or bandwidth
of this window adaptive to the auto-correlation function RZ,(k) of the problem under

consideration. The “flat-top” window, in scaled parameter form, is defined by

1 It| € [0, 1/2]
wpr(t) = wrr(¥/M) § 21— |t)) |t) € [1/2, 1] (3.43)
0 otherwise

where M is the length of the window and its bandwidth is defined by b = M~1. To
briefly describe the idea behind their method, we shall start by cdnsidering tile biased
" auto-correlation functions, denoted R%_ (k). It will be seen shortly, that in order for
the méthod to work, a biased estimate of the auto-correlation function must be taken.
Firstl}zy,'note that for p = 0 and using the flat-top window wgr, the sum abdve reads
T oo € wpr(kb) RS, (k) = 278, (w) with w = [—m, 7] (Priestley, 2004). Thus, the
choice of the window length M amounts to selecting the “optimal” bandwidth of the
window to estimate the spectral density S;(w); optimal in the sense that bandwidth
is chosen such that the mean-square-error (mse) of the spectral density is minimised.
In fact, this idea will feature prominently in the selection of the block length for the
dependent bootstrap which is treated in the next chapter and, for more clarity, the
reader is referred to section 4.4, Chapter 4. Politis (2003a) derived the following em-

pirical rule to select M = b~L.

Construct the the auto-correlation coefficient function pb, (k) = Ri.(k)/Rb (0) and let
IAccut denote the smallest lag such that ﬂgx (IEcut + k)l < cy/logi0 (W)/n, for
k=1,2,...,K wherec > 0 is a fized constant and K and integer of order

O(logo (n)). Choose M = 2kcy;.

The form of this rule essentially arises from an implied hypothesis test (see for
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instance (Bendat and Piersol, 2000)). Since an estimate of the correlation coefficient
function p,,(k) is crude, one ccan use a hypothesis test to check whether the estimate
is consistent with the behaviour of real value p2, (k). For instance, we may compare
the estimate of the correlation coefficient function at a specific lag k to what we
would expect to see in the true correlation coefficient at that same lag. In this case,
let this lag be ke, i.e. the lag where we p2, (kcut) is not significantly different from
zero the reason being that this is where it is desired to cut off the correlation
function with the flat-top window. Assume that 5%, (ke:) has a normal distribution
with mean p, (kcyt) ~ 0 and variance Var[p®, (kcut)]. The biased estimate of the the
ac.f. has a variance of order O(n~!) which means that it will typically have
+2v/n-195% confidence bands around zero at lags > keyt (Politis, 2003a; Prieétley,
2004). Therefore, an acceptable estimate of 52, (k) will fall within these bands where
* the true correlation coefficient function is approximately zero. Rather than using the
+2v/n-1 bands, (Politis, 2003a) derives threshold c\/long)n, For a rigourous
treatment, the reader is referred to the original text but it is seen that both of these
values are close. This provides an intuitive explanation for the selection threshold
c\/m for key:. We emphasise that, for the cutoff selection described above to
be applicable, it is important to take the biased estimate of the correlation
coefficient for the unbiased estimate will have order O((n — k)~!) at lag k which

means that the 95% confidence bands at around zero given above are not applicable.

The two parameters ¢ and K need to be specified by the user. In practice, Politis
and White (2004) suggest the empirical values ¢ = 2 and K = maz(5, logio(n)). While
the choice of ¢ = 2 is followed in this thesis, a slightly different lower bound for K is
imposed. The motivation for this is to avoid selecting a too high bandwidth b in a
situation where the sampling interval At is small and the frequencies of the the ac.f
are low so that a succession of K occurs within a period around the zero crossings
much before the ac.f. has actually decayed to a level not significantly different from
zero. Therefore, it is suggested that K has to cover at least half a period of the lowest

frequency mode in the response so that points near the extrema of the ac.f. are consid-
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ered in the selection process. Formally, this means choosing K > [(2foAt)~!], where
[-] denotes the smallest inmga > z and fo denotes the lowest frequency component
in the response. Only a crude estimate of the latter is necessary and may be obtained
by inspection of the correlation functions, an finite element model of the structure or

initial modal test data.

Two more issues need to be discussed. Firstly, the problem at hand is not exactly
the same as evaluating a sum of the form 300 |k[P e R®, (k), or alternatively,
for p = 0, selecting the bandwidth that minimises the mse of spectral estimates. For
instance, consider the computation of the variance of the correlation estimate at zero
lag. It is easily seen from equation 3.42 that this computation differs from the‘evalu-
ation of the spectral density at w = 0 only in the fact that the correlation estimate is
“squared. We may therefore think as this estimate as that of computing the spectral
density at zero of a process whose ac.f. is I%biz(k). Clearly the latter has an associated
correlation coefficient function that decays much faster than that of Rbyy (k) so that
the optimal choice of the window bandwidth to compute 35° __ R? (k) is not the
same as that to compute Y po_ Iizzz (k). Since the method in Politis (2003a) does
not specify a form for the ac.f.,(although different convergence rates apply depending
on whether the decay is exponential or polynomial (Carlstein, 1986)) one may apply
it directly to the square of the correlation function. This approach was, however, not
adopted. Rather, we apply the flat-top window with a bandwidth determined directly
from the biased ac.f. according to the empirical rule above to each of the correlation
estimates entering equation 3.42 to evaluate its variance and covariances. This implies
that the latter estimates may be suboptimal but simulations show that the results thus
obtained are satisfactory for all practical purposes (c.f. figure 3.10). It is important
to note at this stage, that even to achieve optimality of the bandwidth of the flat-top
window for spectral estimates as intended in Politis (2003a), a certain number of con-
ditions on the ac.f. need to hold. Due to the highly technical formulation of these

conditions, it was not possible to check them in detail, but the simulations in figures
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3.10 strongly support the applicability of this method for the problem at hand.

Secondly, Politis (2003a) considered only auto-correlation functions. However, the
empirical rule for selecting the bandwidth of the flat-top window can be applied to
cross-correlation functions as well. As explained above, the bandwidth is selected on
the basis of an hypothesis test which essentially determines when the estimated auto-
correlation coefficient functions are not significantly different from zero by looking
at the lag k., after which K subsequent values lie within the bands :i:c\/logx_o(fﬂ_n.
The cross-correlation functions computed between simultaneously measured response
histories on a given structure are, according to the Natural Excitation Technique
(NExT) sums of decaying sinusoids with frequencies and damping ratios detefmined
by the modes of the system which also applies to the ac.f. computed from these re-
" sponse measurements, although the phase information is lost in the latter. This means
that, in general, whenever the auto-correlation coefficient functions have decayed to
nearly. zero, then the same holds for the cross-correlation functions so that key: is
more or less the same in bqth cases. Therefore, since the variance of the estimates of
the cross-correlation coefficient functions is also of order O(n~1) the empirical rule for
bandwidth selection is applicable to cross-correlation functions. Also, if one is confi-
dent that a particular response measurement contains the mode with the slowest decay
rate -most commonly the fundamental mode- for all practical purposes, the bandwidth
only needs to be computed once and can be applied to all other correlation functions.
Finally, to summafise, Cov [RW (r), qu (r+ v)] is computed as follows: a) determine
the bandwidth of the flat-top window wpr(k) according to the selection rule above,
b) apply this window to compute weighted correlation estimates wpr(m)RE,(m),
pr(m)ng(m), pr(m)}?gy(m) and pr(m)Rgx(m) and c) use the latter as input

to equation 3.42) to obtain an improved estimate of Cov [Rmy(r), Ryy(r + v)] .

To illustrate the advantagé gained by weighting the correlation estimates by the

flat-top window as described above, a 2DOF system with modal frequency and modal
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damping ratios shown in table 3.3 was simulated. This system was chosen instead of
the one in table 3.2 to allow & comparison with results obtained in the next chapter
4, where this system is also employed. A white Gaussian load was applied to each
dof of the system. The response was computed using a Newmark-3 scheme with
parameters v = 1/2 and 8 = 1/4. This choice, often referred to as the constant
average acceleration method, makes the time integration unconditionally stable and
introduces no numerical damping in the solution (Bathe and Wilson, 1976). The
response was recorded at both dofs for a total length of 820s with a sampling interval
of At = 0.05s. The approximations inherent in the Newmark-3 method, are known
to produce period elongations. The magnitude of these frequency shifts depends both
on the sampling interval and the system’s frequencies. The shifted frequency can be

expressed as (James et al., 1993)
We = 1 tan~! [ 1—%] (3.44)

wheré”w is the true natural circular frequency of the system and w, is the circular
natural frequency after the integration. In fact, the modes of the original system had
natural frequencies of 2.34 Hz and 4.52H z respectively so that the values given in table
3.3 are corrected for the frequency shift introduced due to the time integration. Also,
~ we cut out the non-stationary transients that occur initially in the response when the
system is excited from rest. The decay of these transients is governed by the damp-
ing ratios and frequencies of the modes of the system; the higher the frequency and
damping, the faster steady-state will be reached (Caughey and Stumpf, 1961; Clough,
1960). Following the approach of the latter authors, it was roughly estimated that
the mean square response will reach its stationary mean square value after ~ 40s.
Consequently, the first 40s were left out of the response leaving a total of 13min of
response. In the remainder of the thesis, unless stated otherwise, this same approach
will be adopted to simulate the response of system due to ambient white loading. 500

different realisations of the response were simulated this way.
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Modes Natural Frequency fo Damping ratio
Mode 1 224 Hz 1.49%
Mode 2 393 Hz 2.85%

Tab. 3.3: Modal Parameters of the 2DOF system used for simulation.

Lagr=0 Lagr=1
Var[Rz,z,(r)] 1.65-107° 9.61.107"
Var[Rz,z,(r)] 2.40-1077 1.40-1077

Tab. 3.4: True values of Var|R;,,,(r =0,1)] and Var[Rg,.,(r = 0,1)]

To validate the method described above, 100 estimates of Var [}lez (r)] and
Var [R,zx, (r)] were computed from the first 100 simulated response histories. Here,
z1 and z3 denote the responses at degrees-&f-ﬁ‘eedom 1 and 2 respectively. To sim-
plify the display of the results, only the variance at zero and lag r = 1 were computed
without loss of generality. For comparison, Var [Rxlxz (r)] and Var [Rxm(r)] at
. lags 7 = 0 and r = 1 were also computed without weighting the biased correlation
estimates by the adaptive flat-top window. The true values of Var [Rzlz, (r)] and
Var [f?@,, (0)] for r = 1,2 were approximated by computing the sa;mple variance of
the 500 estimates of Ry,z,(r = 0,1) and Rz, z,(r = 0,1) and are tabulated in 3.4. The
results are shown in the histogra.ms in figures 3.10. It is seen from figures 3.10 (b)
that the distribution resulting from 100 computations of Var[Rg,,(r = 0,1)] centres
closely around the true values (c.f. table 3.4). The bias in the estimates is considerably
low bearing in mind that smoothing generally involves a trade off between variance
and bias. The spread of the values described by the standard deviation of 4.40 - 1077
is also acceptable®. A comparison with 3.10 (a) clearly shows the improvement gained
by tapering the correlation functions with the flat-top window. The large bias and
random error that occur in the latter case can be attributed to the summation over
the ill-defined tail regions of the correlation estimates. The same observations hold for
the cross-correlation functions in figures 3.10 (c) and (d). It is noted that to compute
the variances for the cross-correlation functions, the same bandwidth for wrr was

used as for the auto-correlation functions. Although not explicitly shown here, the

*Note that the statistics displayed in figure 3.10 are based on 100 samples only. It was not the
aim to get accurate estimates of the mean and standard deviation but only to show the scatter of the
variance estimates from different simulated responses.
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Fig. 3.10: Histogram of Var/RXIX2(r = 0,1)] ((a),(b)) and Var[RX2X2(r = 0,1)] ((c),(d)) from
100 computed simulated responses from the 2DOF system in table 3.3. The narrow (grey)
bins represent the results for lag r = 1 and the wider bins (red) for lag r = 0. Figures (a) and
(c) show the results without weighting the biased correlation estimates by the flat-top window
and figures (b) and (d) with applied smoothing.

results for the covariances of correlation functions are similar. Therefore, plugging
the flat-top tapered auto-and cross correlation functions into equation 3.42 gives good
results for estimating the covariances of the sample ac.f and xc.f. from structural
response histories. Of course, in practice the covariances have to be estimated from a
single measurement only, and it is seen from figures 3.10 (b) and (d) that, although
the distributions peak around the true value, an over - or under estimate of the exact
covariances is to be expected. Given the estimator, a reduction in variance in is only
possible by increasing the number of observed data points, i.e. the record length. Also
noticeable from figures 3.10 is the similarity of the distribution at the two lags imply-
ing that whenever the the variance at zero lag is under- or overestimated, then so is
the case at lag 1. This appears to hold for all lags so that the relative relation between

data points in the estimated variance is preserved but are under- or overestimated in
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an absolute sense. This is illustrated in figure 3.11 for the auto-correlation function
at the second degree of freec}om. The bold solid line represents the exact variance
of the ac.f. and the thin dotted and solid lines show the estimated variance from
four different computed response histories. It is seen that the estimated variances are
more or less proportional to the exact variance. Although not shown here, a similar
relationship between exact and estimated quantities holds for cross-correlation and
covariance functions.

It would be useful in practice to have even a crude estimate of the variance of the

T (s)

Fig. 3.11: Illustration of how the random error in the variance estimates manifests itself at
higher lags.
variance to get a rough idea of the error in the covariance estimate calculated from

the available recorded response.

Finally, we note that the cut-off imposed by the flat-top window reduces the num-
ber of data points used in the computation significantly. In addition, we used Hankel-
type matrices to express the shifted copies’ of the correlation functions so that the
implementation will only depend on r rather than on v and r which makes the imple-

mentation of equation 3.42 vefy efficient.
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3.5.2 Plug-in Estimates for the Covariance of Correlation Coefficient

functions

The variance properties of the the correlation coefficient functions differ from those of
the ordinary correlation functions. For instance, it is easily seen that the variance of
the auto-correlation coefficient is zero at zero lag because each estimate is normalised
to unity at this lag. An asymptotic approximation for the auto-correlation coeﬁicient,

equivalent to 3.41, function is given in Bartlett (1946); Priestley (2004) and reads

Cov [pzz(r), pza(T +v)] = (3.45)
% 3 {Pea(M)pealm+0) + pam £ 7+ V)pug(m )

+2022(7) pez (T + ’U)pgz(m) = 2024(7) Pz (M) Pzz (m )

~2022(T + V) pzz (M) pzz(m — 1)}

and is related to the covariance of the ordinary correlation function by

1

7.0y 1 00 [Real0) Baa(r + 0] = (7 +9) Cov [Ree(0) Bua()] - (3.00
~pz(r) Cov [Ruz(0), Ras(r +v)] + pus(r)pua(r +v) VarlRux(0)]} 1))

~paz(r) Cov [Rus(0), Raa(r +v)] + pax(r)pae(r +v) Var[Rez(0)]}

In those texts, this equation is given only for the auto-correlation coefficient 58, (r) =

R’éz(")/fiu(o). To estimate the covariance of the cross-correlation coefficients, the ap-
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proach in Priestley (2004)is followed. The desired expressions are

Cov [ﬁ,,,,(r), Ry (r + v)]

Rz (0)Ryy (0)
Cov [Ras(0), Rey(r)|  Cov [ R (0), Rey(r)
TRPOR,0 | RPORRO)
] Cov [Baa(0), Bay(r +v)|  Cov [y (0), By +0)] |
i ! RPORPO | REOERO) ]

Cov [pay(r), oy (r +v)] (3.47)

1
'ipzy(r +v)

VarlBea(0)] | VarlRy(0)] VGT[RW(O)]]

1
+ZPW(T)PW(T +v) [ f?%z 0) R%y (0) sz(o) I'A?,W(O)

It is easily verified by letting = y that the above equation reduces to 3.46. As before,
setting v = 0 gives the variance of the correlation coefficient estimate. It is certainly
possible to transform equation 3.47 into an expression consisting of correlation coeffi-
* cient functions only as in equation 3.45 but this is not done here. The reason is that
the above expression and 3.46 are easy to compute using the same implementation
as for.:v»t'he‘ covariance of the ordinary correlation functions without compromising the
computational requirement. The covariance of the ordinary correlation functions can
be recognised as the nominator of the first terms on the right hand side of equation
3.47. The additional terms are either independent of r and v or they can easily be
computed as a by-product of the steps used to compute the first term without ad-
ditional storage requirements or additional “flops” so that the extra computational
effort, compared to 3.41 is negligible. Equation 3.47 is verified below by comparison
with the the simulated 2DOF system in table 3.2. The exact same parameters were
used here as in the previous section for the simulated results shown in figure 3.8. Only
the variance is shown here, but it was checked that the expression also predicts the
covariances correctly. It can be seen that at low lags the variance estimate of the
correlation coefficient function is more accurate than the estimate for the ordinary
correlation functions. However, this slight increase in accuracy is negligible in prac-
tice when the we must estimate the covariances of the correlation coefficient functions

from a single realisation. It is clear that the same practical considerations as discussed
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Fig. 3.12: Validating equation 3.47 for unbiased estimates by comparison with simulated data
from the 2DOF in table 3.2. An ensemble of 500 realisations was simulated. [— o —] denotes
the estimate from 3.47 and [- - - x - - -] the simulated variance.

above for the ordinary correlation functions are applicable in this case and smoothing

with a flat-top window is to be used to get improved estimates.

The estimation of the covariances for random decrement functions will not be con-
sidered in detail. The reason being that a complete treatment of this topic is given
by Asmussen (1997). An improvement on the original variance estimates given by
Vandiver et al. (1982) was developed by taking into account the correlation between
different time segments. The results in Asmussen (1997) indicate excellent agree-

ment with simulated data. It would be interesting to investigate whether Asmussen’s
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method couples the RD functions with a more robust variance estimator than the
method proposed in thié ~the§is for correlation functions. Since Asmussen’s method
requires the computation of the correlation functions between different time segments,
one may hypothesise that the standard deviation of the variance of the RD functions
is likely to be of similar order than that for the plug-in method described above for

correlation functions.

3.6 Summary

In this chapter, various methbds to estimate a correlation based response model were
presented, whether this is via ordinary correlation functions, correlation coefficient
functions or random decrement signatures. In a first instance, the errors inherent in
 the estimation of this response model were outlined and for the ordinary correlation
” functions and a simple analytical formulation was given providing some insight into
ilOW t:hjs error relates to the modes of the system and the available record length.
Becaﬁée this analytical formulation has only limited applicability, an entirely data-
driven estimator for the covariances of the correlation functions was presented. The
latter simply consists of the application of the “classical” covariance estimator for
correlation functions available in the literature but, to make it robust with respect
to estimated correlation functions, the latter are smoothed by an adaptive flat-top
window. Moreover, the associated data reduction makes this method computationally
efficient for practical application. In the chapters to follow, the errors in the response
model, obtained via the techniques in this chapter, will be propagated through the
identification algorithm to obtain an error estimate on the identified modal parame-

ters.
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CHAPTER 4

THE DEPENDENT BOOTSTRAP

4.1 Introduction

The bootstrap method, invented by Efron (1979), has been widely applied across var-
ious disciplines, such as economics or biology for instance, where an assessment of
.. the estimated statistics is sought on the basis of a limited amount of information.
The bootstrap appears to have been applied for the first time to applications related
to mqfi.al analysis by Paez and Hunter (1998) and Hunter and Paez (1998). Their
techniquelwa.s picked up later by Doebling and Farrar (20015) and applied to classi-
cal frequency domain modal testing to estimate confidence intervals on the identified
modal parameters. Kijewski and Kareem (2000, 2002) applied a bootstrap scheme to
estimate the error on identified damping ratios of SDOF systems from output-only

measurements using random decrement signatures.

The bootstrap developed by Efron (1979) relies on the assumption that the ob-
served data is independent. It transpires that, in order to apply the technique to
modal testing, Where the observed data consists of highly correlated time series, a
slight modification of E_fron’s original bootstrap is necessary. In a nutshell, this mod-
ification consists in splitting the time series into independent blocks of data, which
then play the same role as the independent individual observations in Efron’s orig-
inal formulation. This is generally referred to as the dependent bootstrap, the idea
of which first appeared in Hall (1985) but a rigorous treatment can be attributed to

Carlstein (1986); Kiinsch (1989) and Liu and Singh (1992). It turns out, that the
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bootstrapped statistics depend significantly on exactly how the time series is split up
into blocks. A poor choice can result in significant bias apd/or variance in the desired
statistics, and as a result, if applied to determine the error in output-only modal pa-
rameters, will yield incorrect bounds. These issues were not considered in Hunter and
Paez (1998) or Kijewski and Kareem (2000, 2002) and are the focus of this chapter. It
is noted that this does not apply to Doebling and Farrar (2001b) as they used a set of
independently measured FRF's as their starting point. The aim is to establish a firm
basis for the application of the bootstrap to the estimation of errors in output-only

identified modal parameters.

The rigorous theory behind the dependent bootstrap requires a great deal of math-
ematical sophistication but it is desired to avoid this in the exposition given below.
" Rather, the aim is to give a presentation that is geared toward practical application.
It is assumed that the reader is not familiar with the bootstrap and therefore, this

chapter begins with an outline of Efron’s original bootstrap.

4.2 Efron’s Bootstrap

Suppose the random variable z is the outcome of some stochastic process with un-
known probability distribution F' and that only n independent measurements, col-
lected in the sample X = (z1, z3,...,%,), are available to estimate a parameter of
interest, say x. Denote the sample estimate of this parameter on the basis of X by
X = 8(X). For example, this parameter might be the mean of z, denoted u;, and its

sample estimate may be computed from the available data in X according to
1 n
X =8(X)=jie = ;2% (4.1)
=

The notation (A) is used to denote estimated quantities. Similarly, an unbiased esti-

mate of the the random error of ji; can be computed from the sample X as (Bendat
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and Piersol, 2000)!

6p, = 6(fc) = % (4.2)
| o 1/2
A a2
with &, = [(—n—_—ﬁ;(xt Fa)] (4.3)

The same terminology as in Bendat and Piersol (2000) is used here, where the random
error or standard error denotes the square root of the variance of the estimate i.e
- &p, = (Var[jiz])/2. Thus, without knowledge of the probability distribution F, these
two formulae can be used to estimate the mean of the random variable = as well as
the random error of this estimate using the limited information in X. Howeve;r, this

is not always feasible:

1. In order for these estimates to converge, n must be sufficiently large but in many

situations, the available data is limited.

2. For most estimators ¥ = s(X), no formulae like equations 4.2 and 4.3 for the
mean, are available and it is therefore generally difficult to obtain such an esti-

mate and

3. Expressions such as 4.2 are usually derived on the basis of a certain probability

distribution, which may not be known

This is precisely the situation one is faced with when estimating the statistics of iden-
tified modal parameters: usually, only a single time-series is available to estimate the
modal parameters and no formulae are available to estimate their variance for instance.
Moreover, any such formula would have to be specific to the particular identification

algorithm used.

The bootstrap technique is well suited to deal with the issues listed above. It was

developed by Efron (1979) as a computer-based method to assess the random error on

The more commonly used formula for 65 is &, = [ S0, (zi — fiz)] 172 but this estimate is biased
(Bendat and Piersol, 2000).
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parameter estimates ¥ for random variables on the basis of a sample of measured data
X from an unknown probabi}ity distribution. It requires no theoretical calculations
and is available no matter how complicated the estimator 8(X) = x may be. This
implies for instance that it is applicable to SSI/Cov estimated modal parameters as
will be done in Chapter 7.

To illustrate the bootstrap technique, suppose that the situation is the same as
above; that is, a collection X of n independent measurements z; of the random vari-
able z is available and it is desired to compute the mean fi,, and additionally, to find
the random error on this estimate. If it were possible to take more independent mea-

&"’, mg’) . xs,b)) for

surements of z and form additional collections, say X(® = (:z
b=1,2,..., B, then one could use equation 4.1 to compute B independent estimates

" of the mean

a® =1 Z‘”(b) for b=1,2,...,B (4.4)
1—1 '

For B is sufficiently large, the B estimates of the mean u(b) could be inserted into

equation 4.3 to find the standard error of the mean as

1/2
( ® _ ) ] (4.5)

B

6(foz) = [

b=

where

Zu"’) (46)

In many situations, however, it might not be possible to collect further data to form
the additional samples X©® = (ng), wgb), e ,:cslb)). Such is, for instance, often the
case in operational modal analysis when applied to civil engineering structures. Once
the measurements have been taken, this will be only data available to the engineer to

conduct the modal analysis.
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The idea behind the bootstrap method is to create additional collections of data,
denoted X*®) = (x’;(b), w;(b) ons ,a::,(b)), as a randomized or resampled version of the
original sample X = (zi, Z3,...,%n). The additional samples X*(® are called the
bootstrap samples. Once these additional samples are formed, the usual sample sta-

tistics can be applied.

The basic assumptions are that

1. the measured outcomes z;, for i = 1,2,...,n of the random variable z collected

in X = {z1,z9,...,zn} must be independent
2. the measured outcomes z; must be representative of the random source

A probability of 1/n is then assigned to each member of the collection X and this rule
“ defines the empirical probability distribution E' of the the source. The ensemble X
is the empirical source for the bootstrap samples. A bootstrap sample X *(1) is then
generézfed_by drawing n values with replacement from X, where the chance of drawing
a particular sample is 1/n. Sampling with replacement means that one draws z; from
the collection X and places a copy of it, labelled :v:(l), into X(V* forming the first
member of the first bootstrap sample X ()*. Then, replace ;. Another member z;
of X is then drawn at random from X, relabelled x;(l), and placed in second position
in X*), z; is then replaced in the original collection X. This process is repeated n
times to complete the first bootstrap sample X*(1) = (mIm, :c;(l), e a:;(l)). Because
X*() is sampled from X with replacement, some elements of X may appear more than
once or not at all in X*(), Any number B of bootstrap samples X*®, b=1,2,..., B,
can be sampled from the original data set X in this manner. Thus, the situation
is the same as above, where it was assumed that additional collections X? could
be measured, except that these additional collections, the bootstrap samples X *(b)
could be obtained by sampling with replacement from the original measurement set

®

X. Therefore, it is possible to compute B bootstrap estimates of the mean fiy ~ -one
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estimate from each bootstrap sample- in the same fashion as in equation 4.4 as

pre = 1 Zz*“”, for b=1,2,...,B (4.7)
i-1

and the bootstrap estimate of the random error of the mean e2°% (i) can be computed

as in equation 4.5

1/2
o* (fi) = [ 10 - i) ] (4.8)

where
- Z i ® (49)

Because the bootstrap is a sampling technique, it is readily applicable to any estimator
= 8(X) and any of its statistics. The steps of the bootstrap, for an arbitrary
estimator X = s(X) are shown schematically in figure 4.1. Like every estimator, the
bootstrap is not exact and has an inherent error. The performance of the bootstrap is
case depeﬁdent in the sense that it will depend on the statistic of interest. To illustrate
the general qualitative behaviour of the bootstrap, the variance of the standard error
of the bootstrap estimate s(x) is considered i.e. 6*(s(x)) = *. It is shown in Efron
and Tibshirani (1993) that the variance of the bootstrap standard error takes the
- general form
01 Cs

Var[a ] == + ﬁ (410)

where C; and C; are constants depending on the underlying distribution F' and on the
statistic of interest (6* in this case) but not on B and n. It is seen from this equation
that the variance of the estimated bootstrap standard error depends on two factors:
%} represents the sample variation and introduces error in the estimate 6* due to the
fact that only a sample of size n is available. The second factor % represents the vari-
ation introduced into 6* due to the resampling used to create the bootstrap samples.
It is seen that the this estimator is asymptotically consistent since Var[6*] — 0. The

bootstrap estimate when B — oo is often called the ideal bootstrap. The important
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esfimates corresponding
@ to each bootstrap sample
Desired sample statistics e.g. Step 4. Compute the
| B 172 desired
Bool(: y _ o) e}t sample statistics using the B
i) = {w 1 ; ("f i) } Bootstrap estimates

Fig. 4.1: Diagramatic representation of the bootstrap

message emanating from equation 4.10 is that the generation of additional data does
not alleviate the dependence on the sample size n and introduces extra variability
due to resampling. This means, for example in the case of the mean, that for B large
enough, the bootstrap estimate ¢*(j1) approximates the sample estimate o(f,) from
equation 4.2. Thus, the bootstrap is effectively a tool to estimate a particular statistic
of the parameter of interest that is otherwise not available from standard sample sta-
tistics rather than a tool to obtain statistics with improved accuracy. The advantages
of the bootstrap over parametric, non-sampling techniques are that the underlying
data need not be Gaussian and the method allows for an easy computation of the

statistics of any estimator, no matter how complicated (Efron and Tibshirani, 1993).
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4.3 The Dependent Bootstrap

Application of the bootstrap to time series is different from the situation in the pre-
vious section in that the available data, the time series X = {z;,z3,...,Zn}, is
a collection of serially dependent measurements. In other words, the elements in
X = {z1,%3,...,Zn} are dependent and the order in which they occur is crucial.
Therefore, one cannot simply apply the bootstrap method presented in the pi'evious
section as it violates the independence requirement. On a more intuitive note, it is
clear that the direct apblication of the rma.mf)ling process of the bootstrap will break
up the covariance structure of the time series so that any bootstrap time series gener-
ated in this fashion is not representative of the source. However, a slight modification
will make it possible to extend the bootstrap to time series. In a nutshell, the idea is

to resample blocks of data rather than individual observations.

4.3.1 The Moving Block Bootstrap

Let X = {z1,z2,...,2,} be a measured time series, which, in our situation, typically
consists of the acceleration response measured at some location on a structure. Also,
assume that X is stationary and short-range or weakly dependent. The latter condition

means that the spectral densities are finite at frequency w = 0, that is

Sx(w=0)= i Rx(s) cos((w = 0)s) = i Rx(s) < o0

8=—00 8§=—00

so that a time series is short range dependent if its ac.f. is summable (Biihlmann,
2002; Heyde and Yang, 1997). Due to the exponential decay of the correlation func-
tions of structural responses, this condition holds. (Politis, 2003b) defines weak de-
pendence as follows: X is weakly dependent if the subsets of X of random variables
Xi = {zi1, Ti2,..., iy} and Xiyx = {@itk,1, Titk2,--+» Titk,} are approximately
independent for k sufficiently large (Politis, 2003b). Letting s(-) denote and estima-

tor, for example the mean, this implies that s(X;) and s(X;y;) will be independent.
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Fig. 4.2: [llustration of the Moving Blocks (MB) Bootstrap.

The idea behind the moving block bootstrap, which shall be abbreviated as the MB
bootstrap, follows now easily: by dividing the original time series into more or less
independent subsets of blocks X, and applying the estimator s(-) to each, one ends up
with a collection s(X;) of independent variables and hence, the bootstrap described in
the previous section applies. Further, the blocking preserves the correlation structure
of the original time series. The time series bootstrapping recipe given by Kiinsch

(1989) can be summarized as follows:

1. Break the time series X = {x1,79,...,2,} into n — [ + 1 overlapping blocks

B, = {xi,xis1,... 241} of length [ for i = 1,2,...,n — [ + 1. Form the

collection B = {By,Ba, ... By_1+1}.

2. Resample k = n/l blocks B; with replacement from B to form B bootstrap time

series replica by collecting the k resampled B;. For example, the b bootstrapped
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time series may be

x® _ j:Bz,B4, corsBpig1, .- ,B4l
kblocks

3. Compute the bootstrap replica of the statistic of interest, s®)°(X) = s(X®*).
The estimator s()*(X) could for instance represent the sample correlation es-
timate of the bootstrapped time series X®)* j.e. Rx(pye(r) = Rg?)*(r) where r

denotes the lag.

4. Compute the sample statistic of interest over the ensemble of the B generated
bootstrap replica s*(X). For example, the latter estimate could be the covari-

ance Cov*[Rx(r), Rx (v)].

.. This procedure is illustrated in figure 4.2 and a simple example is given below. Let
X = {z1,x2,3,74,%5,26} so that n = 6 and let the block length be | = 3. Next,

form the collection of n — [ + 1 = 4 overlapping blocks
B = {B1 = {1, 22,73}, B2 = {2, 23,74}, B3 = {23, 74,25}, By = {24, 75,26} }

Resample k£ = n/l = 2 blocks from this collection to form the bootstrap replicates
X ®* of the original time series X. For instance, the first bootstrap replicate may be
XW* = {By, By} = {24, x5, z6, T2, T3, z4}. Note that it was assumed that ! divides n
exactly but if this is not the case, simply resample k = |n/l] + 1 blocks but use only a
portion of the k*» block so that out bootstrap time series has a total of n data points.
The notation |z| denotes largest integer less than or equal to z. A similar procedure
was proposed by Carlstein (1986). The latter differs from the one described above
(Kiinsch, 1989) in that the times series is broken into contiguous blocks. It was shown
by Lahiri (1999) that Kiinsch’s method gives estimates with lower variance than those

obtained by Carlstein (1986) using non-overlapping blocks.
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The theory for the block bootstrap in Kiinsch (1989) and Carlstein (1986) are
given for univariate time seriﬁs only. However, the extension to the multivariate case
is straightforward. Since the blocking of the time series preserves the auto-correlation
structure in a block, the cross-correlation structure between any two time series can
be preserved by using the same resampling in all the measured responses. To illus-
trate this, consider the example given above and assume that an additional time series
Y = {y1,y2,¥3, ¥4, Y5, Y6 } is available, which may be the response measured simulta-
neously with X but at a different location on the structure. In order to preserve the
cross—correlation structure between the measured output Y = {y1,y2,¥3,v4,¥5,¥6}
and X between pairs of bootstrap replicas of each time series, say X(U* and Y(U*,
one needs to apply the same resampling to each of the two time series; tha;c is, if
XM= = {Bx4,Bx2} = {z4, x5, T6, T2, 3, T4}, then it is required that Y(* is of the

“form YU* = {By,, Byy} = {y4, s, Y6, 2, ¥3, Y4}

The MB bootstrap presented above has two drawbacks that are effectively due to
the fact of joining conditionally independent blocks together to form the bootstrap
replicas of the time series: (a) the resampled time series may not be stationary and
(b) bias can occur in the estimates. Due to joining conditionally independent blocks,
a discontinuity occurs each at every [* data point, where [ is the block length. As
~ a result, the the observations near the this discontinuity will have a different joint
distribution from the ones near the centre of a different block. To see how the bias
arises, consider again the example given above, in particular the bootstrap replica
XW* = {z4, x5, T6, Z2, 3, z4}. The discontinuity occurs at the joint between zg and
x2. Suppose that the statistic of interest is the auto-correlation function at lag 1,
i.e. Rx(1). For simplicity, the raw (unweighted) correlation function is considered.
The bootstrap replica of Rx (1) from X®* is then given by Rg})*(l) = T4T5 + T5Te +
Texy + T2x3 + x324. Clearly the term zgxrs accounts for the correlation of two points
much further apart so that the introduction of this term results in an underestimate

of the correlation function. As the lag increases, the situation becomes even more
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severe, consider for instance Rg?‘(Z) = x4%¢ + T5T2 + TZ3 + Tox4. Thus only 2 out
of the 4 terms are computed Qat the correct lag while the terms z5z2, zez3 belong to
the lag 3 estimate resulting therefore again in an underestimate. As the lag increases,
the bias introduced due to the discontinuity of contiguous blocks increases. On the
other hand, it is seen that the correlation at zero lag does not suffer from this bias.
For these reasons, the moving blocks (MB) bootstrap is sometimes referred to as the

“naive” bootstrap.

4.3.2 The “Blocks of Blocks” Bootstrap

A remedy for this bias has been suggested by Kiinsch (1989). The method was later
picked up by Politis (1992); Politis and Romano (1992) and Liu and Singh (1992) and
called the “blocks of blocks” (BB) bootstrap. They mainly considered its application
“in the context of spectral estimation using Welch’s averaged periodogram method
(Welch, 1967). A more general treatment is given by Biihlmann a,nd Kiinsch (1995).
The basic idea relies on the observation made in the example in the previous section,
namely that the auto-correlation estimate at zero lag is unbiased but correlation esti-
mates for higher lags are not. The reason for this is that the auto-correlation estimate
at zero lag is a symmetric function of the observed data. In other words, the sequential
order of the observations does not matter. Loosely speaking, the “blocks of blocks”
" bootstrap therefore involves a block resampling scheme such that the estimator s(x)
is symmetric with respect to blocks of data. In general, the BB bootstrap works as

follows. Consider the blocks of m consecutive observations
X = (ZTi+1, Tit2y - - -y Tigm—-1), fori=1,2... . n—m+1 (4.11)

The block resampling on the basis of these m-tuples of observations is then achieved

by building overlapping blocks of consecutive vectors

(Xl, ceey Xl), (X2, ceey Xl+1), ey (Xn_m_l+2, vy Xn_m+1) (4.12)
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where [ is the block length parameter. Now, form a resampled time series using these
blocks as

X*'=Xg,..., X5141-1, X835 » Xgp1-15 -+ XSp» - s XS 11 (4.13)

where now k = n-m+1/; and the S; are the block starting points resampled with re-
placement from {1,2,...,n — m — [ + 2}. As for the MB bootstrap, when [ does not
divide n — m + 1 exactly, choose k = |»—m+1/i| + 1 but use only a portion of the kt*
block to get n—m+1 resampled m-~tuples in total. This resampled time series could be
referred to as the “blocks of blocks” bootstrap sample but as mentioned in Biihlmann
(2002), the notion of bootstrap sample is not so clear in this case, the reason being
that the direct application of the ac.f to the block-resampled time series does not give
. the desired unbiased estimate. To see this, consider the same example used to illus-
trate the moving blocks bootstrap for the auto-correlation estimate at lag 2 and take -
m = 3 and |l = 2. The possible n — m + 1 = 4 m~tuples are X; = (wj, Z9, x3), Xa2 =
(z2, z;:,, z4), X3 = (z3, T4, z5), X4 = (x4, 5, T6) and the n —m — [ + 2 = 3 suc-
cessions of | = 2 overlapping m-tuples are {X1, X2}, {X2, X3}, {X3, X4}. Thus,
resampling k = n—m+1/i = 2 out of the 3 possible “blocks of blocks” results, for in-
stance in a bootstrap time series X* = {{X1, Xz}, {X3, X4}} = {X1, X2, X3, X4} =
(z1, z2, x3, T2, T3, T4, T3, T4, T5, T4, T5, Zg). Clearly, computing the ac.f at lag
2 directly from the block resampled time series will lead to bias in the same way
as for the MB bootstrap. Rather, the BB bootstrapped estimator has to be de-
fined on the level of the vectorized observations X;. The definition given by Kiinsch
(1989) (also c.f. Bithlmann (2002)) applicable for R%(r) is to be interpreted as
follows. If s(X) = g(X1,...,Xn—m+1) is a symmetric function of n — m + 1 vec-
torised observations (or blocks) Xj;, then s*(X) = g(Xsl,~--,Xsl+z—1,Xsk+,_1)-
For instance, in the case of auto-and cross-correlation functions, the function g =
gr may be defined as the auto-correlation function between blocks of observations
X; at lag r by the composite function g.(X*) = (n — m + 1)1y, Rx,(r), where

}AZX,. (r) is the ordinary auto-correlation estimate at lag r of the observations z; in
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the block X;. This is again illustrated using the previous example for the boot-
strap of the ac.f. from fhe resampled series X* = {X1,X2,X3,X4} and lag r = 2.
Then g,(X*) = (n = m + )7 T {&x, (1), Bxy(r), Bxa(r), Bx,(n)} = (n—m +
)71 Y {z173, Ta%4, T375, T4T6} = Y4(T173 + ToT4 + 325 + T476). This is the de-
sired result. It is seen that the BB bootstrap does not suffer from the bias problem
that occurs in the MB bootstrap due to joining conditionally independent blocks. The
reason is that the resampling process does not occur between conditionally indepen-
dent blocks. In general, if the statistic of interest depends on some m-dimensional
marginal distribution, then this statistic will be a symmetric function of blocks of m
consecutive observations. Therefore, the design parameter m has to be chosen accord-
ing to the lag r at which the the auto- and cross-correlation functions are coxﬁputed

and their relation is r = (m — 1).

The computation of the BB bootstrap as described above is, hoyvever, inefficient
when: the data is large and the correlation functions need to be specified up to high
lags r. (Politis and Romano, 1992) recongnised that when the statistic of interest,
say s(-), can be expressed as an average of some function say ¢(X;) of the vector-
ized observations X;, then the “blocks of blocks” bootstrap is essentially equivalent
to resampling blocks of ! consecutive estimates ¢(X;). It should be clear from the
* example above that this applies to the correlation functions, where the function ¢(X;)
is simply the correlation function at lag r of the m-tuples X;. Along the lines of the
BB bootstrap applied to spectral estimates in Politis (1992), the following procedure

is suggested for correlation functions:

Let X = {z1,%2,...,2n} and Y = {y1,¥2,...,Yn} be two simultaneously mea-

sured response time histories

1. Determine the maximum lag rpq; of interest up to which the bootstrapped

correlation functions are computed. This value will determine the length of the
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m-tuples X; and Y; and is m = rype, + 1.

2. Form the possible n — m + 1 overlapping, consecutive m-tuples X; and Y; for

the measured responses

3. Computé the unbiased ac.f and xc.f. between the n —m+ 1 consecutive m-tuples

X; and Y; up to lag rmaz, denoted by fix'., Ryi. and iny,. respectively.

4. Determine the block length ! and take the arithmetic mean over the n—m—1+2
possible overlapping sequences of [ consecutive IA%X,., fiyi and iny;. Collect the
resulting mean quantities B; x = [~} E::Jrl_l IA%X,., fori=1,2,...,n—-m—-1+2,

into the collection

Bx = {Byx, Bax,--) Ba-m-1+2,x} .

Bxy {Bixy, B2, xy,-- - Ba-m-i+2,xY}

where the second of the above equations applies to the cross-correlation functions

with B xy = -1 E::'H_l RX.Y.--

5. Resample k = |n—m+1/1|+1 values S; with replacement from {1,2,...,n —m -1+ 2}
to determine a sequence of k functions B; x, i.e. {Bs;,x, Bs;,x,---,Bs,,x}. The

process is the same for the ac.f. of Y and xc.f. between Y and X.

6. Compute the b*® bootstrap estimate Rgg)*(r) as k™1 Z?___l Bs; x. Similarly,
Rf,?—)y*(r) is given by k™1 2;9:1 Bs; xy. As for the MB bootstrap, the same re-
sampling must be used between different time series in order to preserve their

cross-correlation structure.
7. Repeat the process to obtain the desired B bootstrap replica

This process is illustrated in figure 4.3. In a nutshell, the bootstrapped corre-
lation functions computed as described above are effectively the average correlation
functions over a resampled set consisting of the arithmetic means of [ consecutive
correlation functions. This method is very efficient since (a), the bootstrapped corre-

lation functions can directly be used as input to the SSI/Cov as opposed to computing
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Fig. 4.3: Hlustration of the “Blocks of Blocks” (BB) Bootstrap.

a resampled time series and then computing its correlation function and (b) the boot-

strapped correlation functions are computed at every desired lag r in one step.

4.3.3 The Stationary Bootstrap

Another bootstrap method was suggested by Politis (1994) to alleviate the effects of
joining independent blocks. Joining different blocks of data results in a discontinu-
ities in the pseudo data and introduces a spurious periodicity. Consequently, the data
points near the discontinuity will have a different distribution than those at the centre
of the block and hence, the resulting pseudo time-series are effectively non-stationary.
Politis (1994) introduced the stationary bootstrap to get mitigate these non-stationary

effects.

The stationary (SB) bootstrap works in much the same way as the MB block boot-
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strap, the difference being that (a) the time series are wrapped around in a circle so
that z; = z; when j > n with i = j(mod n) and (b) the length [ of the blocks is not
fixed but is chosen randomly. It is precisely this randomization of the block length
that mitigates the undesired effects at the edges of contiguous blocks occurring in the
MB bootstrap: one may think of the stationary bootstrap as a weighted average of
the MB block bootstrap distributions so that the difference between the distributions
of points in the vicinity of the edges and near the center of the block is smoothed
averaged out and eliminates the non-stationarity. The weights are determined by the
distribution used to generate the stochastic block lengths. Politis (1994) use a geo-
metric distribution for the block length I; so that the probability that [; has length
dis (1—p)¥1p, ford = 1,2,... and p is a fixed number in the interval [0, 1]. The
average length of the blocks, I; = 1/p plays the same role as the fixed block length [
“ in the MB bootstrap. A drawback associated with the SB bootstrap is that it has a
higher standard error than the MB bootstrap due to the additional’random element

introduiced by the stochastic block length (Lahiri, 1999).

4.4 Performance of the Bootstrap

To illustrate the performance of each of these three bootstrap estimators (MB, BB
and SB), we use the ezact same simulation on the 2DOF system with modal frequency
and modal damping ratios shown in table 4.1 in the previous chapter, section 3.5.1.
For convenience, the table is repeated here as table 4.1. 500 different response time
histories were simulated for a duration of 780s (At = 0.05s) at each degree-of-freedom.
The three bootstrap methods described above, MB, BB and SB, were applied to a
single response measurement to estimate the variance of the ac.f. between of the re-
sponse at the second degree-of-freedom, Var*[R;,.,(7)] and the variance of the xc.f.
Var*[Ry, z,(7)] up to 7 = 3s (At = 0.05s). A block length | = 10s (At = 0.05s) was
chosen in all cases and B = 300 bootstrap correlation replicas were used to compute

the bootstrap variances. These estimates are gauged against the “true” variances
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Var[Ry,z,(7)] and Var[Ry,,,(7)] calculated from the 500 simulated responses. The
results are depicted in ﬁgurec4.4 and 4.5. The behaviour of the different bootstrap
estimates described in the previous section is readily recognisable. Bearing in mind
that the variability due to having only B = 300 bootstrap replicas, it can be seen
from figures 4.4 that at zero lag, the three estimates, MB, BB and SB are compa-
rable. As T increases, however, it is clearly seen that the variance estimated by the
MB bootstrap becomes increasingly smaller with 7 and this is due to the bias that
~ arises due to resampling form different conditionally independent blocks. A similar
behaviour, although less pronounced, is seen to occur for the SB bootstrap. It ap-
pears, that this bias in the MB and SB bootstrap is less pronounced for the covariance
estimate (figure 4.5(a)). This bias is a direct consequence of the bias that oc;:urs in
each of the B = 300 bootstrapped correlation functions R,S;bl)iz (r) and Rg,?;z (7). This
“ is shown for the cross-correlation function only in figure 4.5(b); the mean of the 300
bootstrapped xc.f. estimated from the BB bootstrap matches the sjmulated results
very éldsgly at each lag. When the MB and SB schemes were used, it is seen again
that the agreement betwegn the exact xc.f. and bootstrapped mean estimates dete-
riorates with increasing lag. We can therefore conclude from figure 4.5(b) that the
moving blocks and stationary bootstrap add artificial damping to the system with a
slight improvement offered by the SB. The “blocks of blocks” bootstrap, on the other,
hand gives unbiased estimates as expected. This is important for the applications in
Chapter 7 where the bootstrapped correlation functions serve as additional response

models for modal identification.

Keeping the block length | = 10s (At = 0.05s) fixed, no significant increase in
accuracy was observed for choices of B > 300 . As mentioned previously, the required

number of bootstrap estimates B to approximate the ideal bootstrap is case dependent.

Modes Natural Frequency fo Damping ratio
Mode 1 224 Hz 1.49%
Mode 2 393 Hz 2.85%

Tab. 4.1: Modal Parameters of the 2DOF system used for simulation.

109



x 10’

—e -

—e -
—&
16 >
14
12
1} 0.5 1 1.5 2
lag x (s)
(a)
x 107
2.5
a
X.
0.5
1] 0.5 1 1.5 2
lag x (s)
(b)

Exact (simulated)
(MB) Bootstrap
(SB) Bootstrap
(BB) Bootstrap
<
2.5 3
Exact (simulated)
(MB) Bootstrap
(SB) Bootstrap
(BB) Bootstrap
2.5 3

Fig. 44: Comparison of the moving blocks (MB) bootstrap, stationary (SB) and ‘blocks

of blocks” (BB) bootstrap as variance estimators of the sample ac.f and xc.f..

B — 300

bootstrapped correlation functions were used in each case with a block length 7= 10s (47 =
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Efron and Tibshirani (1993) indicate that, as a rule of thumb for variance estimates,
it is rarely required to compute B > 200 bootstrap replicas which is confirmed here
for the variance estimates of auto- and cross correlation functions. Finally, the good
agreement between simulated and bootstrapped data in figures 4.4(b) and 4.5(b),
where the cross-correlation between two time-series is bootstrapped, validates this
procedure for the computation of cross-correlation functions for multivariate times

series.

4.4.1 Block Length Selection

The graphs in figures 4.4 and 4.5, however, only paint part of the picture ‘of the
performance of the dependent bootstrap. In section 4.2, it was pointed out that the
" accuracy with which the variance of the bootstrapped statistic can be determined
depends of the sample size n as well as on the number of bootstraps B. The influence
of B.on the bootstrap correlation functions has been discussed above and it was
argued that it is be negligible for B sufficiently large (B > 300). The sample size n,
determined by the record length of the time series in this case, will determine how
accurately we can estimate the variance of the bootstrapped correlation ﬁnctiom.
In other words, this parameter determines the variability of our variance estimates
~ as we use different realisations of the time series to compute the variance of the
bootstrap correlation functions; that is, Var[Var[Rx(7)]]. For instance, figures 4.4
and 4.5 show the computed bootstrap calculated from only one of the 500 simulated
response time histories. Computing the same quantity from a different response will
yield either a poorer of improved bootstrap estimate of Var[Rx(7)]. While for Efron’s
bootstrap (section 4.2), this variance depends only on n and B, the situation is further
complicated for the dependent bootstrap due to the additional parameter !/ that is
the block length. It is well know that the choice of block length greatly influences
Var[Var[s(x)]] and also controls the bias in Var[s(x)], denoted by bias[Var[s(x)]],

so that [ must be chosen carefully to get an accurate -although limited by n and B-
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estimate of Var[s(x)]. This is illustrated in figure 4.6. Using the same response history
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"Fig. 4.6: Influence of block length [ (in steps of 0.5s) on the (MB) bootstrap estimate of
the variance of the ac.f of the response x; of the system in table 4.1 at lag r 0 and
r = 1. The two vertical bars indicate the standard error of the results at fixed block length of
| = 83 (At = 0.05s) due to having a finite number of B = 300 bootstrap samples. [——] are the
true values of Var|[R;,,,(0)] and Var|R;,,,(1)] computed from the 500 simulated responses.

as in figures 4.4 and 4.5, the variance of the ac.f at the second degree-of-freedom is
shown at lags 0 and 1 as a function of the block length I. The vertical lines represent the
standard deviation computed at fixed block length of 8s (At = 0.053) computed from
- 200 different bootstrap estimates of Var[Rz,z,(0)] and Var[Ry,.,(1)] using the same
time series. Thus, this variance is solely due to the resampling and therefore represents
the error due to the limited number B = 200 bootstrap replicates in our computations.
This does not cause any problems in practice as B can be increased arbitrarily and is
only limited by the computational requirement. It is clearly seen from figure 4.6 that
the block length acts as a tuning parameter for the dependent bootstrap and suggests
the existence of an optimal block length, which in this case, accounting for the error
due to finite B, would roughly lie somewhere between 7s < | < 13s (At = 0.05s). In
practice, where the true value is not know, it is not possible to select the optimal block
length from a graph like 4.6 and different approach is need to assist this selection. The

optimal block length depends, in general, on the following factors (Biithlmann, 2002;

113



Lahiri, 1999):
e The data generating process
o The statistic to be bootstrapped
¢ The purpose for which the the bootstrap is used

e The bootstrap method that is employed i.e. the stationary, “blocks of blocks”

or moving blocks bootstrap.

Due to these different influences on the block length, the treatment given here is tai-
lored toward the application for operational modal analysis. This means that the
statistics to be bootstrapped are the auto-and cross-correlation functions between
simultaneously measured structural responses and, for now, their variance and covari-
.. ances are estimated. Later, the bootstrapped correlation functions will be employed

to identify the system’s modal parameters but this is postponed to Chapter 7.

Consicier the time series X = {z1,..., a:n}; let Rx denote the ac.f estimate of X
and 0% its variance. Let a}? be the corresponding bootstrap estimate. Assume for the
moment that latter is obtained using the moving blocks (MB) bootstrap with block
length [. It is shown in Hall et al. (1995) that in this case, the asymptotic or ideal (B —
~ 00) mean-square-error (mse) of o'} defined as mse(0}Z) = Var[o}2]+ (bias(o}2))? has

the form

mse(o}?) = -7%5 (% + %'2) (4.14)

with (4.15)
biasjo}?] = —g (4.16)
Varlo}] = ln% (4.17)

where C; and C; are constants independent of n and [ (Hall et al., 1995; Lahiri,
1999). The first term in equation 4.14 involving the constant C; is the square of

the bias and the second term is the variance of 03‘22. This equation clearly shows the
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dependence of the MB bootstrap estimate of 0}22 on the design parameter [. The
situation is analogous to over - or undersmoothing spectral estimates using Welch’s
method (Welch, 1967) when periodograms are estimated from short or large blocks of
the data and the block length may be thought of as a smoothing parameter. Choosing
a large block length ! will reduce the bias in the bootstrap estimate but will increase
its variance and vice versa. The optimal choice for the block length is therefore the
one that offers the best compromise between these two errors, that is the one that

minimises the mse(o}Z) over . Thus, from equation 4.14, the ideal block length I,y

is given by

20\ /3 |
=nl3 (L .

The general form of the equation for [y is in fact applicable to all three bootstrap
_ estimators (MB, BB and SB) presented above (Biihlmann and Kiinsch, 1999; Lahiri,
I' 1999) and holds when the bootstrapped variance and bias are desired for any statistic.
When: qua.ntities other than the variance and/or the bias are bootstrapped, equation
4.18 1s not valid anymore. For instance, when the one-sided or two-sided distribu-
tions of the statistic of interest are desired, rather than only their variance or bias,
it is shown in Hall et al. (1995) that the optimal length is of the order O(n!/4) and

O(n1/5) respectively.

To get an estimate for Iy, the constant (2C1/c;) must be calculated. This constant
depends primarily on the correlation structure of the underlying process {X} but is
not influenced, for instance, by strength of the dependence of the process (Hall et al.,
1995). Other factors that affect this constant are the bootstrap method used (Lahiri,
1999) and the statistic to be bootstrapped (Biihlmann and Kiinsch, 1999). Therefore,
for any chosen bootstrap method applied to a fixed statistic, this factor changes from
system to system since the correlation structure of response changes so that it must be
estimated empirically. Three methods feature in the literature for this purpose. Hall
et al. (1995) employed a method which recursively finds the optimal block length by

minimizing the mse computed from bootstrap estimates of subsamples of the original
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time series of length m << n. This procedure is not considered in this thesis. Lahiri
(1999) derive lop: from equation 4.18 and give an expression for the constants C; and
Cs when the statistic to be bootstrapped is the mean of the underlying process X.
This method is also adopted by Politis and White (2004). Biihlmann and Kiinsch
(1999) approach the problem from a different angle in the sense that they do not
determine lop: by minimising the mse of the variance but rather exploit the reciprocal

relationship between the block length and the bandwidth in spectral estimates.

The approach of Biihlmann and Kiinsch’s is followed and it will be shown that,
when the statistic to be bootstrapped is the mean of X, it will yield the same the-
oretical expressions for I, as given by Politis and White (2004) and Lahiri, (1999).
The presentation of the theory is kept practical and technical details are omitted in
" places but the reader is directed to the original papers if more mathematical rigour
is desired. Let the mean of the measured time series X = {zo, 1, .e3Zn-1} be
px = 'n.“.1 Stz and let fx — px as n — oo. It is a well known result that

(Bendat and Piersol, 2000)

n—1
Varlpx] =n"1 ) ( - %-') Cx (k) (4.19)

k=-n+1

where Cx (k) = Rx(k) — p% is the auto-covariance function defined in equation 2.11.
As argued in Chapter 2, it can generally be assumed that the measured response
histories have zero mean. The reason we use the auto-covariance function rather the
the ac.f. Rx(k), will become clear shortly. Recalling that the two sided spectrum of

X is given by (Bendat and Piersol, 2000)

Sx(w)=§1; > Cx(k)cos(kw), (4.20)

k=-o0

it is seen by comparing equation 4.20 to 4.19 that the variance of the mean can be

approximated by an estimate of the spectral estimate Sx at w = 0 weighted by the
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triangular window wa of length n
L | .
wal(k)=1- -If—z-', (4.21)

so that
N 27
Var[jix] ~ ?Sx(w =0) (4.22)

It was shown by Kiinsch (1989) (also cf. Biihlmann and Kiinsch (1999)) that the

variance of the bootstrapped mean (1} reads

-1
Var[ay] =n?! k;_l:ﬂ ( - '—’;-') Ox (k), | (4.23)

where Cx (k) denotes the estimated sample auto-covariance function and ! is the block
.. length. Like equation 4.19, equation 4.23 admits an interpretation in the frequency
-.domain, namely that the variance of the bootstrapped mean is the empirical spectral
densipy weighed by a triangular window of length [. As explained a.iready in Chapter
3 for thé flat-top window, the “length” of the window is related to its bandwidth.
The latter concept is in fa;ct rather subtle and many definitions have been introduced,
see Priestley (2004) for instance. Using a definition due to Brillinger (1975), the
bandwidth of the triangular window is simply given by the inverse of its “length” in
the time domain. Denoting the window length by M, the definition of its bandwidth
br is given by

br=1/M (4.24)

It is important to note that the definition of the bandwidth of a window as a function
of its “length” as in 4.24 appliés only to a certain class of window functions, among
which is the the triangular window and the flat-top window employed in the previous
chapter (Politis and White, 2004; Priestley, 2004). The relation between the decay
of the auto-covariance function (or ac.f.) and the spectral bandwidth is well known:
the faster the decay, the wider the spectral density, and vice versa. As explained

in the previous chapter, applying a window to the ac.f. disturbs its natural decay:
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Measingthebmdwidthofthawindawfommwmaeasedmteofdecayresmmgm
a m poorly resolved apactrd density function, thmby introducing resolution bias

&

A W(demdt, 1985%). On the other hand, hawever,thevariance
h&vnpmtmldemtydwmm In general, ;

as M1, veriancef, biss]

as M |, wvariance|, biasT.

It is now easily seen that the dependence of the variance estimate on the block length
I (£ ©q.4.23), is equivalent to choosing the bandwidth of the spectral window, given
by br = 1/l. The optimal bandwidth, and hence the block length [, is therefore the
one that gives the best compromise between bias and variance of the spectral estimate

i, Sx(w) at frequency w = 0. Thus, using the well knovs}n formulae giving the bias and
-variance of the spectral density weighed by a triangular window at any frequency w
(Priestley, 2004) |

2l

Var[Sx(w)] = 5—sx(w), w#0,+r (4.25)
Var[Sx(w=0)] = gﬁsx(w=o) (4.26)
bias[Sx(w)] = _%sgp(w), Y, (4.27)

where Sf,(l) (w) is the generalized derivative (Priestley, 2004) of the spectral density

given by

Sf,g)(w) = 51; f: k| Cx(k)cqs(kw) - (428)

k=—00

Thus, the mean-square-error of the spectral density at frequency w is given by

meelSx(w)] = ;"_igg((w) + l%(ﬁg’(w))’ -2

TSk @ +HEY @) (429)
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Minimizing equation 4.29 over the bandwidth br then yields the optimal bandwidth
at frequency w, br,, (w). Thus, at w =0, we find

& 1/3
bre (0) = nV/3 (-————3 ("'g&;’g gg)z) (430)

The optimal block length lop: may then be taken as the the closest integer to br,,, (0) 1.
Comparing 4.30 to equation 4.18 clearly shows that determining lop; by minimising
mse[o}?] is equivalent to determining lo,x by minimising mse[Sx(0)]. Thus, from

equation 4.18 a choice for the constants C; and C is
o ‘.
e =807 2 =35%0) - (431)

' This is precisely the result derived by (Lahiri, 1999; Politis a,nd.White, 2004) for the
optimal block length loy for the M B bootstrap, when the statistic to be bootstrapped
.is the mean /ix. The methods in Biihlmann and Kiinsch (1999) and Politis and White
(2004) differ only in the actual computation of these constants which boils down to
getting an accurate estimate of $%(0) and ($%(0))2. This situation is very similar
to that discussed in Chapter 3 when estimating the covariances of the correlation
functions using the plug-in formulae in section 3.5.1. In fact, it is easily seen that the
computation of $2 (0) and ($(0))? are sums of the the type 3°° ___ |k[? ¢+ RS, (k)
and thus correspond exactly to the situation for which Politis (2003a) developed their
flat-top window (c.f. section 3.5, Chapter 3). For statistics other than the mean,
equations 4.19 and 4.23 do no longer hold which implies that the theory presented so
far is applicable only to the mean fix and an extension is necessary for the problem
under consideration, namely where the statistics to be bootstrapped are correlation
functions. We start by considering the latter problem first before dealing with the

evaluation of 5§%(0) and (S’&l) (0))2.

To apply the block length selection to other statistics than the mean, we need

to introduce the concept of the influence function (Hampel et al., 1986). Loosely
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speaking, the influence function, denoted here by IF(z), describes an infinitesimal
change in an estimator s(F) when the distribution F' of the underlying data X is
changed due to a perturbation € on observation z in X. Formally, the influence

function at point z is defined as

IF(z) = IF(z, F,s) = lim s((L - OF *:5” — s(F) (4.32)

where 8, denotes the degenerate distribution putting mass 1 on z i.e. it is unity when
at z and zero otherwise. The reason for introducing the influence function is that it
allows the following linearisation of a general statistic (Efron and Tibshirani, 1993;
Hampel et al., 1986)

3(X) ~ 8o+ 171 zn: IF(x;) } (4.33)

i=1
“ where 8o denotes the exact statistic we are trying to estimate. The variance of 3(X)

is then simply given by

Var[(X)] = Var[n™1 zn: IF(z;)] (4.34)

i=1

Noting that the right hand side of equation 4.34 is the variance of the mean of the
influence function, it follows directly from equations 4.19 and 4.23 that the theory
. given for the mean is applicable to the variance of the general bootstrapped statistic
s* when the original time series X is replaced by its influence function IF(X) =
IF(X,F,s). To clarify the notation, we note that the influence function defined in
equation 4.32, IF(z), applies to a single observation = of the time series X. We
write IF(X) to denote the times series {/F(x;), IF(x3), ..., IF(z,)}. Thus, the

equivalent of equation 4.23 is
-1

ok _ kI A
VG,’I'[SX] =n 1 Z (1 - |T|) CIF(X)(k) (435)
k=-1l+1

120



and that of equation 4.30

. \ 1/3
252k () (0)

BTy (0) =713 | —
" 3(850x)(0))2

(4.36)
where S;r(x)(0) is the spectral density of the influence function IF(X). It is impor-
tant to recognise that for the linearisation in equation 4.34 to hold, we require the
influence function IF(X) to have zero mean, so that asymptotically §(X) — s as
n — oo. Furthermore, for equation 4.35 to be applicable, we require IF(X) to be
stationary since the definition used for covariance function C; F(x)(k) applies to sta-
tionary processes only. When these conditions are met, we can state in general that
the selection of the optimal block length Iy of the MB bootstrap estimator ié equiv-
alent to determining the optimal bandwidth of the spectral dersity weighted by the
“ triangular window; the spectral density being the one corresponding to the influence

function of the statistic to be bootstrapped.

Since the influence funption relies upon the knowledge of the underlying distribu-
tion F', which is not known, the influence function needs to be determined empirically.
Methods to compute IF(X) from empirical data are given in Efron and Tibshirani
(1993) for instance, but in this thesis, the procedure suggested by Biihlmann and
Kiinsch (1999) (also see Campbell (1978)) will be employed. The empirical influence

function can be computed as

IF(QI,,) =n [S(.’El, 1 L2y 0 ,.’Bn) - -5'(.’171, 1 L2y 000y Tim1y Titly.-- »xn)] (437)
where s(z1, ,z9,...,Zs) denotes the estimator based on n observations and s(z, , z2,
veeyTiz1, Tisl,...,Tn) is the same estimator but without the i** observation. This

is the jackknife estimate of the influence function.! Since the bandwidth selection

for spectral density estimation, and hence the block length selection, is independent

tThe jackknife is a method related to the bootstrap (Efron and Tibshirani, 1993) but rather than
resampling with replacement, a jackknife estimate is formed from the original sample by leaving out
one observation.
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of the scale of the data, it is sufficient to compute the influence function only up to
a proportionality wmt@t. cIt is noted that the empirical estimate of the influence
function in equation 4.37 does not necessarily have zero mean. However, whenever
the influence function is stationary, which is a prerequisite for its application to block
length selection, the mean can simply be removed as it is time independent. Alter-
natively, since only the covariance of the I F(X) appears in the block length selection

procedure, the mean is implicitly removed in the evaluation of Cx (k).

The estimation of the spectral densities necessary to compute the optimal block
length is considered next. As mentioned already, the method uéed by Politis and
White (2004) for an accurate estimation of $2(0) and ($(Y)(0))? is to taper the-cova.ri-
ance functions by the “flat-top” window of length M defined by equation 3.43 in the
" previous chapter, so that, for instance Sx(0) = (2m)~1 "% __ wrr(k/M)Cx (k). The
selection of the length of the window M follows the same empirica; picking method
described in chapter 3, section 3.5.1. Biihlmann and Kiinsch (1999) improve on the
direct estimate of equatiop 4.30 by considering the optimal global bandwidth, which,

rather than minimising the bandwidth at w = 0, only, minimises the integrated mean-

1/3
br . =n-1/3 S Strg (W)dw (4.38)
o 37 (8P (w))2dw ’

square-error

This is achieved in an iterative manner and once the optimal global bandwidth is
found, it is used to estimate the optimal local optimal bandwidth at w = 0. Their

algorithm is a follows:
e Start with the “pilot” bandwidth of by = n~!

e Compute an optimized global bandwidth in 4 iterative steps as

- k)
b =n"13 k= _"’+2 ir - , for i=1,2,3,4
' (6 Zk——n+2 wsc (kbz—1”4/ 21)’“20%1?("7)

(4.39)
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e Compute the optimal local bandwidth at w = 0 as

a 2
$ (Tact nia wrn (R0n)Crr (k)

bogt(0) = n~1/3 - 5 (4.40)
2 (Z'i;fwz wsc(kbant/21) [k| C'IF(k))
e Find l:,,,t = closest integer to Eopt(())
where
(
1 t| € [0,0.8]
wsc(t) =  l+cos(5(t-08)m)f2 [t € [0.8,1] (4.41)
0 otherwise
\
( .
ltcos(nt)/2 |z| € [0,1]
wrg(t) = S - (442)
\ 0 otherwise

are the Split-Cosine (SC) and Tukey-Hanning (TH) windows respectively. It tran-
spireg that the methods in Biihlmann and Kiinsch (1999)and Politis é.nd White (2004)
only diffef in the way the constants C; and C; are estimated as it is easily seen that
the nominator equation 4.40 corresponds to Cy and the denominator gives 2C; in
equation 4.14. The inflation factor n%/2! occurring in the window functions in 4.40
are actually the optimal window widths for estimating the generalized derivatives S%.
For improved stability, this factor was also employed in the evaluation of Sx, see
Biihlmann (1996). The latter author also shows that ¢ = 4 is the minimum number of
iterations required for the bandwidth b; to have the correct asymptotic order n=1/3.
We note that the block size selection methods given so far are, strictly speaking, only
applicable to the moving blocks (MB) bootstrap. Biihimann and Kiinsch (1999) also
give an extension for the “block of blocks” bootstrap but this was not applied in this
thesis. The reason is that (as will be argued in a moment) it will be sufficient for
all practical purposes to determine the optimal block length based on the correlation

functions at zero lag only, for which the “blocks of blocks” and moving blocks boot-

strap estimates are equivalent.
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For completeness, the optimal block length for the stationary bootstrap is briefly
discussed. Since the block lex;gths are chosen randomly, the mean of the distribution
from the block lengths are sampled plays the role of the optimal block length. The
latter is easily determined by applying the theory presented so far, namely by changing
the constant Cy in equation 4.18 to (Lahiri, 1999; Politis and White, 2004)

2 ™
Ce = 45%5-( x)(0) + - / 1+ cos(w))S?F( x)(w)dw (4.43)
-7

instead of the value given for the MB in 4.31. The constant C; remains the same.

4.5 Simulations

* This section is concluded by discussing a few practical issues and includes a few simu-
lations validating the theory above for its use in correlation functions from structural
respoiases'. Firstly, it is noted that the computation of the influence function, given in
4.37, only allows the estimation of IF(X, Rx(k)) for a particular lag k at a time i.e.
the influence function at lag k, IF(X, Rx(k)), differs from that at lag r, IF(X, Rx(r)),
whenever k # r. A more general estimate of the influence function, yielding all de-
sired lags of Rx(k) in a singlé step is not obvious. Fortunately, it appears that the
optimal block length I, for bootstrapping the variance of the correlation function at
any particular lag, will also be optimal or near-optimal for all other other lags. A
rigorous proof to establish the veracity of this statement would involve showing that
82, ~x () ©) = A8 p(x, (1) (©) 80 (812x, Ry () (O)? & @ (S1P(x, Ry (07 for
k # r and some constant a, so that equation 4.30 yields the same result irrespective of
the lag of the correlation function for which the influence function is computed. Such
a proof was, however, not further pursued. To support this claim, it is argued that
due to the strong correlation structure of Var[Rx(k)], any influences on the estimate
of Var[Rx (k)] will be global rather than local in the sense that if Var [Rx (k)] is over-

estimated (or underestimated), then Var[Rx(r)], k # r, will also be overestimated (or
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underestimated). This is clearly seen, in figure 4.6 for example where Var*[Rx (0)] and
Var*[Rx(1)] follow exactly the same trend, and disregarding the random sampling
error due to the finite number of bootstrap replicas B, they seem ﬂmwt proportional
and indicate a very similar block length for both lags. Consequently, it is suggested
that the optimal block length lop: for Var*[Rx(k)], Vk, should be determined based
on IF(X, Rx(0)). IF(X, Rx(0)) has same number of data points n than X, while
the number of data points in IF(X, Rx(r)), forr > 0 will be n —r so that an estimate

, CIF(X,Rx(r)) (k), for r > 0 would be less accurate than CIF(X,Rx(r)) (0).

To check the performance of the block length selection methodé presented above
applied to bootstrapped correlation functions, the same simulated data from fhe the
2DOF system in table 3.3, section 3.5.1 is used. 100 different response time histo-
“ ries simultaneously measured at each of the two degrees-of-freedom, of length 780s
with At = 0.05s were used. Politis and White’s method as well as Biihlmann and
Kuiisch’s are employed to determine the optimal block length I, for the bootstrapped
Var*[Re,z,(0)]. Average values are shown in table 4.2 and are complemented by the
scatter plot in figure 4.7(a). In cases Al and A2 in table 4.2, Politis and White’s
method is employed with the moving blocks (MB) bootstrap for ¢ = 2 and K = 5 (c.f.
section 3.5) as suggested by these authors. What distinguishes Al from A2 is that in
the latter case, a lower limit on the bandwidth of the flat-top window is imposed. The
bandwidth of the flat-top window is determined as the inverse of M = 2k.,:, where
kcut is the lag of the estimated correlation function after which it is not significantly
different from zero. Thus imposing a lower limit on the bandwidth of the flat-top
window, implies imposing a maximum for M = 2k.,;. Recall that k.,; is determined
in practice as the lag after which the subsequent K values lie within in the bands
:tc\/logloT)n. However, the values ¢ = 2 and K = maxz(5, \/W ), where n
is the number of data points in the measured time-series, are just recommendations
given in (Politis and White, 2004) and not absolute requirements. Consequently, a

different choice of these values will result in a different choice for the bandwidth of
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the flat-top window and affect the estimated optimal block length. In section 3.5, a
different choice K was My suggested to avoid selecting a very low value of kcyt,
namely by imposing the condition X > [(2foAt)~1]. In this case, where n = 15600,
the lowest frequency mode fy = 2.24Hz and the time step is At = 0.05, this amdunts
to choosing K > 4. Similarly, it may occur for instance, due to the higher variance
in the tail region of the correlation coefficient function, that the estimated lag kcy:
occurs much later than it needs to. It is noted, however, that choosing k.,;: according
~ to the method suggested by Politis and White (2004) is adaptive in the sense that,
if n is large and hence the variance smaller, the bands :I:c\/lOmoT)/n will be narrower
as well so that a larger width M will be estimated for the flat-top window, and vice
versa. However, the choice of ¢ and K still come into play and the values suggested
by Politis and White (2004) may not be the best choice in all cases as is pointed out
" by these authors. The latter authors also give the general guideline that the flat-top
lag-window spectral estimators perform best for small values of M = 2key;. For this
reason, an upper limit for M = 2k, is imposed using the fact that the nature of
the correlation functions between structural response measurements is known and the
same in all cases. Let v = min(&w;) be the product of the modal frequency and
damping ratio of the system mode ¢ with the slowest decay, where i runs of over the
number modes of the system. When this mode has decayed to a value not significantly
different from zero, the same statement then applies to all the other modes of that sys-
tem. Assuming this happens when the corresponding correlation coefficient function
has decayed to a% say, it is easily found from the decay envelope of this mode with
slowest decay, e*4?, that the this occurs at lag k = —In(a)/Atv. A value for a = 1%
is suggested and this value of k is used as an upper limit for k. Clearly, this choice
requires to have an initial estimate of the modal parameters of the system but, since
the the bdotstrap will in general be used as a post-processing tool to determine error
bounds on the estimated modal parameters, such an estimate is sometimes available

either from an initial modal test of an finite element model of the structure.
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.21

Lag 0 mean(lopt)(s)

4 (iopt)(s)

mean(Var*[Re,z,(0)]) - 1078

o(Var*[Ru,z,(0)))

1077 bias(Var*[Re,e, (0)]) - 10°7  rmse(Var*[Rz,z,(0)]) - 1077

Al 18.1 9.2 1.43 6.70 (3.16) -2.24 (-2.78) 7.07 (4.21)
A2 17.9 7.7 1.43 6.30 (3.11) -2.13 (-2.53) 6.66 (4.01)
A3 124 5.7 1.31 5.57 (4.52) -3.36 (-3.76) 6.51 (5.88)
A4 12.3 0.6 1.27 4.46 (2.08) -3.73 (-3.04) 5.82 (3.69)
Lag 1 mean(lop)(s) a(iopt)(s) mean(Var*[Reyz,(1)]) 1077 o(Var*[Re,z,(1)]) <1077 bias(Var*[Re,z,(1)]) -10™7  rmse(Var*[Re,z,(1)]) - 107
A2 / / 8.34 3.65 -1.27 3.86
A3 / / 7.59 3.22 -2.01 3.80
Ad / / 7.41 2.58 -2.19 3.39

Tab. 4.2: Comparison of block length selection methods for the MB, BB and SB bootstrapped auto-correlation functions at lag 0 and 1 from 100 simulated responses
of the 2DOF system in table 3.3 for estimating Var*[Rg,z,(0)] and Var*[Rz,2,(0)]. The cases considered are: (A1) MB/BB bootstrap, method-(Politis and White,
2004) with ¢ = 2; (A2) MB/BB bootstrap, method-(Politis and White, 2004) with ¢ = 2 and an upper limit of —In~1(0.01)(vAt) imposed on keye, With v = min(&w;);
(A3) SB bootstrap, method-(Politis and White, 2004) with ¢ = 2 with the same upper limit on kcut; (A4) MB/BB bootstrap, method-(Biihlmann and Kiinsch, 1999).
At each block length, the bootstrap estimates of Var*[Raz,z,(0,1)] are computed from 300 bootstrap replicas of R:,2,(0,1). o denotes the standard deviation, rmse
the root-mean-square-error. The values in the parenthesis denote the the predicted estimates from equation 4.14.
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Fig. 4.7: (a) Scatter diagram depicts the BB bootstrap estimates Var*/RX2X2(0)] as a function
of the optimal block length lgpt from 100 simulated responses. The block selection schemes
used the ones described corresponding to cases A2 [x], A3 [o] and A4 [o] descibed above
and whose average values are tabulated in 4.2. (b) Bootstrap estimates of Var*/RX2X2(0)]
computed from 50 simulated responses as a function of the block length. The thick line is
their mean and the errorbars indicate the standard deviation. The block length is increased
in steps of 2s (47 = 0.05s). At each block length, the bootstrap estimates of Var*/RX2X2(0)]
are computed from 300 bootstrap replicas of i?X2X2(0).

Case A3 is the same as A2 but for the stationary (SB) bootstrap. A4 uses
Biihlmann and Kiinsch’s method for block length selection. The reader is reminded
that the true values Var/RX2X2(0)] and Var[RX2X2(1)], tabulated in table 3.4, section

3.5.1, Chapter 3, are 1.65 *10-6 and 9.61 *10~7. Comparing the mean block lengths



estimates obtained from the various selection methods (A1-A4), it is seen that, on av-
erage, the optimal block lengths produced by any of the methods are reasonably close.
In particular, the mean values, the standard deviation and the root-mean-square er-
ror of the variance estimates of R,,,(0) at “optimal ” block length are similar. Also,
the mean values of the variance estimates of Rg,q,(0) are close to the true value of
1.65 - 107%. Assuming that the variance of the bootstrapped correlation function at
zero lag is normally distributed, the standard error in the estimated sample mean
is given by equation 4.2. The standard error in the estimated variance is known to
be a[62(x)] = 0%(x)v/2/N (Rose and Smith, 2002) which can be approximated as
6%(x)+/2/N. Expressing the estimated variance as 6%(x) ~ o?(x)[1 £ 1/2/N], taking
the square-root of this equation and approximating [1 £ 1/2/N]/2 as 1+ \/i/2_1v by
using the binomial expansion up to linear terms, the error in the estimated standard

* deviation can be approximated by &(x) V -

While the estimates from Politis and White’s method for the MB bootstrap (A1,
A2) have less bias compargd to Biillmann and Kuiisch’s method, they come with larger
variances. This behaviour follows equation 4.14 since mean(iopt) is lower in Biihlmann
and Kiinsch’s method. It is seen that imposing the lower limit on the flat-top win-
dow’s bandwidth (A2) has little effect on the results. Also, on average, Biillhmann
and Kiinsch’s method has the lowest root-mean-square-error (rmse). Another strik-
ing feature of the latter approach is the high stability of the optimal block length
selection as evidenced by a(iopt) in the table. This increased stability, compared to
the Al, A2, can be attributed to the much narrower widths of the window functions

4/21 1t seems

used in equations 4.39-4.40 due to the inclusion of the inflation factor n
plausible that a slightly higher choice of the constant c in Politis and White’s method
would yield more stable results than for ¢ = 2 but this was not investigated further.
Quite interestingly, the results from the stationary bootstrap (case A4) seem to be

have a little less scatter than those from the MB bootstrap. Theory predicts that the

SB bootstrap will have a higher variance (but similar bias) than MB estimates due to
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the additional term in the estimation of the constant Cy (see eq. 4.43). This is indeed
reflected in the predacted variance and rmse estimates from of equation 4.14 (these
quantities are indicated in the parenthesis in table 4.2). However, the sample variance
and rmase computed from the 100 estimates of Var*[R.,:,(0)] are lower than those
for the MB bootstrap (case A1,A2), indicating a good practical performance of the
SB bootstrapping scheme. The same observations hold for the equivalent estimates

at lag 1.

Computing the “true” optimal block length is not easy because an analytic ex-
pression for Sﬁ.}( X,R(0) is not readily available. A numerical estimate of 5}2( X,R0) =
(2m) 1 Y32 oo Ikl Crrx)(K) by using the mean éIF( x) (k) computed from a many dif-
ferent simulated responses to approximate Cr(x)(k) can be unreliable too. The rea-
* son being that a very large number of simulated responses are required for ¢ 1r(x) (k) —
Ct F(k) (k) at high lag. This requirement is very stringent because of the multiplication
by |k| 'Which blows up any error that prevents the convergence toward zero. Thus, a
good numerical estimate, even with an improved estimate of OIF( x)(k) as described
above, would also require a windowing operation which brings us back to the problem
we are trying to solve. However, figure 4.7(b) gives us a very good idea of what the true
optimal block length might be. The latter graph displays the bootstrapped variance of
R'zz:vz (0) as a function of the block length used. This is shown for estimates computed
from 50 different simulated responses. Additionally, the sample mean and the sample
variance from these estimates is shown. It is seen that mean(V ar[Rz,z,(0)]) does not
increase significantly with increasing block length after it has reached a value of ap-
proximately 1.3-1076 at a block length of about 13s. Thus, the same holds, on average,
for the bias. The standard deviation, however, shown by the error bars still increases.
Therefore, recalling that the optimal block length is the one that minimizes the rmse,
it follows from this graph that the true value /,,; lies somewhere between 10s and 20s.
We may conclude that both methods -Politis/White and Biihlmann/Kiinsch- yield,

on average, a good estimate of the optimal block length. The negative bias responsi-
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ble for the underestimate of Var[R,,z,(0)] cannot be avoided as it is intrinsic to the
dependent bootstrap estimate and is clearly represented in equation 4.14. Due to the
smaller rmse in case A4, we may say that Bithimann and Kiinsch’s method perform
slightly better than Politis and White’s procedure.

In practice, only one response history is in general available from which the en-
semble of bootstrap replicas of the correlation function must be computed. Recall
that it is desired to compute this ensemble such that the correlation function repli-
cas yield the true covariance properties. In this particular case, this means that the
variance at zero lag estimated from the ensemble of the 300 bootstrap replicas of the
correlation function should be 1.65 - 10~6, which is the “true” variance of the original
correlation function, which was computed by using additional response histories that
“ are not available in practice. Although, on average, the ensemble of bootstrap replicas
‘estimated at optimal block length yields a good representation of the statistics of the
true :éérrglation function as shown in table 4.2, it is seen from figures 4.7, that de-
pending on the particular response used, the corresponding ensemble of bootstrapped
correlation functions may have a variance that is significantly lower or higher than
that of the true correlation function. Unfortunately, there is not much one can do to
eliminate this error apart from taking longer response records, since this variability
is mainly due to the fact that we have to estimate the bootstrapped correlation func-
tions from only n observations of the stochastic process. It is important to recognise,
however, that this is not due to an inadequate selection of the block length as is clear
from figure 4.7(b). Since the record length parameter n features in equation 4.14,
we can get an estimate of the bias, variance and hence root-mean-square error of the
bootstrapped estimate Var*[R,z,(0)] at optimal block length from a single response.
The average values of these statistics, over the 100 simulated responses, are shown in
table 4.2 in parentheses. It is seen the bias is, on average, very well estimated while
the variance is significantly ﬁnderestima,ted in all cases which is of course reflected

in the corresponding rms errors. No definite explanation for this consistent under-
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estimate was found. Looking at the rms error of the bootstrapped Var*[RX2X2(0)\
estimates for each of the 100 simulated responses at optimal block length, shown in
figure 4.8(c), it is seen that the predictions from equation 4.14 are far from ideal to
say the least. There seems to be a roughly linear correlation between Var*[RX2X2(0)]

and rmse{Var*[RX2X2{0)]). This implies that whenever the bootstrap estimate of
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Fig. 4.8: Standard deviation (a), bias (b) and rmse (c) of the bootstrapped variance of the
correlation function at zero lag, Var*/RX2X2{0)|, predicted by equation 4.14 at optimal block
length for cases A2 [x], A3 [o] and A4 [0]. The average values of these quantities are shown
in table 4.2 in the parenthesis. As before, the values of Var*/RX2X2(0)] are computed from
300 bootstrap replicas of RX2X2(0,1).

Var*[RX2X2(0)] is near or above the true value, the corresponding estimate of the rms
error will be representative of the error in the actual estimate but on the other hand,
an underestimate of Var*[RX2X2{0)] will come with a rms error estimate that bears

little relation to the true error. The reason for this behaviour is to be attributed

to the different estimates of Sip(x)(0) and ~/ir(x)(*) as different response histories
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Fig. 4.9: Extrapolation of rmse(Var*[RX2X2(0)]) to higher lags. The thick line represents

the exact value and the solid and doted line represent two different bootstrap estimates of
Var*[RX2X2(T) with the extrapolated rmse represented by the errorbars.

are used. If *SIF(J£)(0) is under- or overestimated for a particular response, then so
is This is clearly seen in figures 4.8(a) and 4.8(b) since the the former
determines the variance and the latter the bias (c.f. eq. 4.14). Therefore, this factor
does not influence the optimal block length selection since the latter involves the ratio
of SIF{X)(0) and anc” /s therefore a much more robust estimate. The bias,
variance or rmse estimated from 4.14 is, however, only applicable to the lag of the
correlation function at which the influence function is computed since, for instance

R(k) AN MNF(XRT)W ‘or k r- Nonetheless, since this rmse is represen-
tative of the variability due to insufficient observations n once /"¢ is determined, we
may assume that this variability is the same for Var*/RX2X2(r)\, for r > 0 but relative

to their respective amplitude of Var*/RX2X2(r)\. In other words, we may write

rmse(Var*[RX2X2{k)]) « rmse{Var*[RX2X2(0)]) \AX2X12j (4.44)
Var*[RX2x2{k)]

This is shown by the errorbars for two different bootstrap estimates of Var/RX2X2{k)]

in figure 4.9.
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The treatment of optimal block length selection given was based entirely on auto-
correlation functions, but the extension to cross-correlation functions is similar since
one may linearise the desired multivariate statistic in much the same way than in
equation 4.33. The technical difficulty that arises lies in the definition of the influence
function for multivariate series, and the definition of the latter is not obvious. It
appears that an explicit definition was first formulated by Pires and Branco (2002) but
the concept of multivariate influence functions had been used in practical applications
much earlier, c.f. for instance Campbell (1978). The definition of the multivariate
influence function bears similarity to partial derivatives and for this reason, Pires and
Branco (2002) use the terminology “partial” influence function to denote the same
quantity. Formally, for a statistic s depending on the distributions Fx and Fy of X

and Y respectively, the influence functions are defined as

s((1 —e)Fx + €6z, Fy) — s(Fx, Fy)

IFx(X)Y) = lin(l] . (4.45)
[Fy(X,Y) = lim s((l—€)Fy +¢ (Sy,Fx) — s(Fx, Fy) (4.46)

e—0 €

In other words, the theoretical multivariate influence function is then determined
by perturbing only one of the distribution functions involved and the others remain
unchanged. The definition above is given for the bivariate case since this is all that
is needed and is readily generalised to the multivariate case. To evaluate I Fx(X,Y)
and IFy(X,Y) in practice, we adopt again the method suggested in Biihlmann and
Kiinsch (1999) (c.f. equation 4.37), which in the present situation means that an
observation from only one of the two time series is eliminated in each case (also see
Campbell (1978)). Along the lines of the linearisation in equation 4.33, we linearize

the the statistic §(X,Y) as

X 1 _ n B n
s(X,Y)msoo+—2- n 1§IF(m,-,Y)+n 1ZIF(X,y,‘) (4.47)

i=1

It is seen that the second term on the right-hand-side of equation 4.47 is again just

an average over the two influence functions so that the theory developed above is
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Fig. 4.10: (a) Bootstrap estimates of Var*[RXIX2{0)] computed from 50 simulated responses
as a function of the block length. The thick line is their mean and the errorbars indicate the
standard deviation. The block length is increased in steps of 2s (At = 0.05s). At each block
length, the bootstrap estimates of Kar*[.RX1Z2(0)] are computed from 300 bootstrap replicas
of i2Xix2(0) (also c.f. figure 4.7(b)). (b) Scatter diagram depicts the BB bootstrap estimates
Far*[i?XIX2(0)] as a function of the optimal block length /gpt from 100 simulated responses.
Only the Buhlmann/Kunsch block selection method is shown. The values in parenthesis are
the estimated standard deviation, bias and rmse from equation 4.14.

again directly applicable to the bivariate case. As for auto-correlation functions, the
influence functions is used for the selection of the block length and, if desired, to get
an estimate of the mean-square-error of the bootstrapped variance of the statistic of

interest, i.e. the cross-correlation function in this case. Again, it is proposed to use
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the influence function of the cross-correlation function at zero lag Rxy(0). It is eas-
ily seen that the influence functions for this parameter are IF(z;,Y, Rxy(0)) = iy
and, similarly IF(X,y;, Rxy(0)) = z;y; since the elimination of either z; or y; in
the the time-series X or Y respectively, results in the elimination of the term in the
cross-correlation estimate involving either of them. This is illustrated in figures 4.10
on the same 2DOF system as used before except that in this case, the bootstrapped
variance of the cross-correlation between the first and second degree-of-freedom of
the system is considered with the block length selection method applied to the lat-
ter cross-correlation function. Figure 4.10(a) clearly shows that the dependence of
the bootstrapped variance of the cross-correlation function at zero lag is much the
same as for the auto-correlation function (c.f. . figure 4.7(b)) and the mean identi-
fied optimal block length (figure 4.10(b)) is very close to the one estimated from the
auto-correlation function. This is not surprising since -as mentioned earlier in this
" chapter- the constants C; and C3 depend primarily on the correlation structure of the
considered time series. Thus, as long as one is confident that a particular response
history of the structure contains the contributions from the main system modes, the
optimal block length for bootstrapping the auto-and cross-correlation functions of all
measured responses can be obtained from this single response. Since in practice, the
reference time-histories against which the other response are cross-correlated are cho-
sen to those that have strong contributions of all the system modes, the latter lend
themselves well for the selection of the optimal block length. However, if an estimate
of the mean-square-error of the bootstrapped variance of the correlation function is
desired too, the corresponding influence function must be chosen (c.f. 4.10(b)) because
the response amplitudes measured at different locations on the structure vary. This

does not affect the optimal block length due to the ratio involved in its computation.
To conclude this section, the problem of bootstrapping random decrement func-

tions is commented. Bootstrapped RD functions were employed for modal analysis

of SDOF systems by Kijewski and Kareem (2000, 2002). These authors formed the
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bootstrap replica of the RD signatures by resampling the segments of data corre-
sponding to each identified triggering point. This resampling scheme is, however, not
ideal. Firstly, the resampling of segments may introduce bias in the bootstrapped
RD functions. The reason -different than for correlation functions- is that reordering
of the RD segments introduces artificial trigger conditions and therefore affects the
estimate. Asmussen (1997) shows that sorting the segments can lead to bias in the
form of apparent increased damping and frequency shifts. Although these effects may
' be less pronounced when the sorting of the trigger point follows a random resampling
process rather than systematic sorting. Secondly, resampling segments of data as
described above will not yield the correct covariance structure of the bootstrapped
RD functions. To see this, consider the bootstrapped variance of the RD functions
at zero lag for instance, which is in fact just the mean of the trigger points. Thus,
“ the bootstrapped RD functions at zero lag computed according to Kijewski and Ka-
‘reem (2002) effectively treat the trigger points as independent and their method is
thus the same as Efron’s original bootstrap. Consequently the correlation between
the trigger points is lost and the bootstrapped correlation functions will not have the
correct covariance structures.* In fact, they will yield variance properties for instance
that agree with the analytical approximate formulae derived by Vandiver et al. (1982)
which were shown to be incorrect by Asmussen (1997), precisely because the depen-
dence between different observations was neglected. Consequently, resampling blocks
of segments corresponding to successive triggering points seems adequate to solve this
issue, which in turn raises the question of the optimal block size. Since the RD func-
tion at zero lag is just the mean of the trigger points, the block selection methods used
above for correlation functions are in principle directly applicable, with the time-series
replaced by the trigger points. This procedure was tested by the author. Although
the use of blocks of consecutive segments results in bootstrapped variances that reflect
their dependence, the agreement with simulated variances was generally poor. Simu-

lations at many different block lengths (similar to figure 4.10(a) and 4.7(b) indicated

*We note that Kijewski and Kareem (2002) resample from non-overlapping segments but that does
not change the argument used above.
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that this disagreement is not to be attributed to an inadequate choice of block length
only and the exact reason for this discrepancy could not be determined and further

research is needed.

4.6 Summary and Discussion

In this chapter, the theory for bootstrapping time-series was presented with a fo-
cus on bootstrapped correlation functions. It was shown that the “blocks of blocks”
bootstrap (BB) and the stationary bootstrap (SB) outperform the “naive” or moving
blocks bootstrap (MB); more precisely, the MB scheme introduces bias in the boot-
strapped correlation functions in much the same way as tapering which introduces an
apparent increased damping to the system. While this bias is completely eliminated

- by the BB method, the stationary bootstrap only offers a slight improvement.

Whichever method is used for bootstrapping time-series, the data is collected into
blocké to preserve its correlation structure. It was shown that the size of the blocks
chosen significantly influences the covariances of the statistic that is bootstrapped
and two methods were presented and compared to select the optimal block size. The
applicability of these methods -originally derived for ac.f.- was shown to be applicable
to multivariate time-series of MDOF systems. Both methods yielded a reasonably ac-
curate estimate of the optimal block length but the Biihlmann and Kiinsch’s method
was slightly more stable and is therefore preferred. Also, their method is slightly faster
and does not require any tuning by user defined parameters as opposed to Politis and
White’s method. For clarity, it is desired to put the choice of block length into the
practical context initially set out to investigate, namely the uncertainty in operational
modal parameters. Referring to figures 4.10(a) and 4.7(b), it transpires that if the re-
sponse histories are chopped into blocks that are significantly smaller than the optimal
block length, the variance of the ensemble of the bootstrapped correlation functions
will be much smaller than their true variance dictated by the available record length

and the modal parameters of the system as shown in the previous chapter. This
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means that the ensemble of bootstrapped response models do not differ significantly
from each other, or at least much less so than a set of response models that would
be obtained if the modal test were repeated many times. As a result, the modal pa-
rameters identified from each of the bootstrapped response models would not differ
significantly either and hence, any error bounds established on these grounds would
be, in this particular example, grossly underestimated. While it is seen from figures
4.10(a) and 4.7(b) that the variance is, on average, more stable with respect to overes-
timates of the optimal block length, the choice of a too high block length is associated
with a large variance so that the possibility of outliers increases, a situation we wish
to avoid in practice. Using the bootstrap to determine the uncertainty in operational
modal parameters is the subject of Chapter 7, but this brief example illustrates the
significance of adequate block length selection. As a byproduct, a mean-square-error
estimate of the variance of the bootstrapped response model is obtained. As, discussed
abové, however, the information the engineer can obtain from the latter estimate is

limited, in particular when the true variance is underestimated.

Finally, a few remarks concerning the theory presented above need to be made.
The rigorous theory behind the bootstrap and block length selection requires a great
deal of mathematical and statistical sophistication and it was not possible to present
it in its full breadth. In particular, many of the theorems used here are stated in
the original papers under precise conditions such as the degree of dependence and
mixing conditions in the time-series. Again, due to the highly technical nature of these
conditions, they could not be verified exactly. This does however not necessarily imply
that the bootstrap and block selection schemes presented above are not applicable
to the problem at hand -that is structural response histories- but rather that the
results may not be optimal. From a practical point of view, this does not pose any
serious drawbacks as the practicing engineer has to deal with situation he or she
is confronted with, whether the theoretical conditions are verified exactly or not.

Moreover, the simulations in this chapter strongly support the practical adequacy
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of both the bootstrap as well as the block selection algorithms for the operational

response time-histories.
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CHAPTER 5

PERTURBATION ANALYSIS FOR
CORRELATION-DRIVEN

IDENTIFICATION

5.1 Introduction

No matter which method is employed to identify the modal parameters of a given
structure from output-only measurements, the stochastic nature of the in-operation
loading conditions and the noise in the dynamic sensors means that the identified
modal parameters are random variables. Thus, even in ideal cases where the struc-
ture exhibits purely linear behaviour and the input is band-limited white noise, there
will be a certain variability associated with the identified modal parameters due the
fact that one has to deal with a finite amount of data which prevents the convergence
of the random variables to their true value. In addition to the random error, system-
atic (bias) errors can occur during the process. The user has to decide upon certain
input parameters to “kick off” the estimator used and it is well known that this choice

can significantly affect both bias and random error in the identified modal parameters.
The robustness with respect to noise of the classic identification techniques that

lend themselves for in-operation modal analysis (see chart 1.4) is well documented

in the original papers detailing these algorithms. Several authors have compared the
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performance of these algorithms for noisy data on numerical models (Abdelghani et
al., 1998; Lew et al., 1993) from input/output measurements and (Desforges et al.,
1995; Peeters and DeRoeck, 2001) from output-only data. While these papers expose
the qualitative behaviour of the identified modal data and provide user guidelines for
improved accuracy, the uncertainty in the modal estimates is not quantified. In recent
years, however, the importance of being able to quantify the uncertainty in the iden-
tified modal data has been highlighted. For classical input/output modal analysis,
Doebling and Farrar (2001a); Paez and Hunter (1998) used a bootstrap techniques
to determine confidence intervals for identified modal frequencies and damping ra-
tios from measured FRFs. Systematic errors were not considered.. For output-only
identification from ARMA(V) models, much research has been done to estimate the
associated variance of the modal parameters. Andersen and Brincker (1999) used
" the prediction error method (PEM) to obtain the covariance matrix of the identified
‘modal parameters. Moreover, Andersen et al. (1995) developed a method to optimize
the selection of the predictor and have shown that a proper selection of the initial
conditions reduces the variability of the estimates. Also, the selection of the sampling
interval has been treated by Ljung (1987), for instance. Other than that, the literature
dealing with the uncertainties from other operational modal analysis techniques is, to

the authors knowledge, scarce.

In this chapter, the perturbation analysis for covariance-driven stochastic realisa~
tions i.e. the SSI/Cov (Peeters and DeRoeck, 1999, 2001; VanOverschee and DeMoor,
1996) or, equivalently, the ERA as applied to operational data (Desforges and Cooper,
1997; Juang et al., 1988) will be presented. This theory was developed in Longman
and Juang (1987) and its sequel (Longman et al., 1987). The latter authors, have
applied this method to simulated data for classical input/output identification in the
case where exact impulse response functions are perturbed by additive white noise.
The aim is to extend this method to operational modal analysis and also take the

possible bias into consideration. The present chapter provides the theory behind the
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perturbation analysis and in the chapter to follow, it will be validated against Monte-
Carlo type simulations to determine the accuracy we can expect from this technique
in a practical situation.This study was motivated by the generally large variability
associated with the estimated modal damping ratios, in particular when the identifi-
cation has to be performed from short data sequences (Pridham and Wilson, 2003).
Cauberghe et al. (2004) have presented a FRF-based technique to deal with such cases.
This method enables the estimation of the variability due to noise disturbance and
can account for using short data sets, using the statistics developed in the previous
chapter. Moreover, the bias that arises from sources such as the algorithm itself or
from filtering the data can be accurately estimated. As a result, both random and
systematic error that one can expect in the identified data can be determined from
a single set of in-operational measurements. In addition, this method allows the user
" to determine what choices of input parameters such as the dimension of the Hankel

matrix or the sampling interval minimize the error in the estimated modal data.

5.2 Overview of the Theory

Suppose the response is measured at p sensors for a total time 7' and r sensors serve
as reference. In order to realise the system using the SSI/Cov, the response time-
histories are used to form the one-sided cross-correlation functions between the p
sensors and the r references resulting in p X r cross-correlation functions which are
then assembled into the Hankel matrices Hy and H; as described in Chapter 2. For
notational convenience, these Hankel matrices will henceforth be denoted by Hy (0)
and H; (0) respectively. The meaning of this notation will become clear shortly.
Suppose that only the first ¢, seconds of the one-sided cross-correlation functions are
included in the analysis i.e. the first n. = /At data points from each of the p x r
correlation function, where At denotes the sampling interval. Thus, there will be a
total of N = (p X r X n.) data points used in the modal parameter extraction. Now
suppose that a single data point of any of these sample cross-correlation functions is

perturbed - for instance the n® data point in the cross-correlation function between
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the p™* output and the r* reference sensor. Out of the N = (p x r x n,) available data
points, let this point be indexed as the the j** data point and let the magnitude of its
perturbation be expressed by the zero-mean random variable €;. Then, the perturbed
Hankel matrices, denoted by Hg (¢;) and H; (¢;), may be approximated in terms of

the unperturbed Hankel matrices Ho (Q) and H; (0) according to the linearisation

Ho (¢5)

Ho (0) + €65 (Ho) (5.1)

Hi(ej) = HM1(0)+€;d; (Ha) (5.2)

where the matrices 6; (Hp) and d; (H;) are matrices consisting entirely of zeros except
from being unity in each entry associated with the data point perturbed by €;. In
practice, all N data points in the sample correlation functions will be corrupted so

. that the Hankel matrices perturbed by €1, €2 ... €x are given by

N
Ho(e) = Ho(Q)+ D _ €65 (Ho) (5.3)
i=1
N
Hi(e) = M1 (0)+ ijéj (H1) (5.4)
j=1
where the vector ¢ is defined as € = [e1, €2,...,€en].

Remark: It is important to note that Ho (Q) and Hi (0) denote the Hankel matrices
formed by the sample correlation functions from the original data. Although the
notation may suggest that they are assembled form the true correlation functions.
The latter, however, are not known and the estimated cross-correlation functions
need to be used instead and thus serve as the “basis” from which the perturbation is

applied.

Let the generic parameter x denote any modal parameter of interest. The change
in the SSI/Cov-identified result x (0) from the original data assembled in Hg (0) and

‘H1 (0), due to the perturbation € can then be approximated by a Taylor expansion
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about the origin as

N N N
X©~xO)+D 6600+ ejerdin () + (5.5)

j=1 k=1 j=1

where, for notational convenience, we have introduced the differential operators de-

fined by
50=532] 55)
2 /(. i
0= 350oe| (5.7

Equation 5.5 provides the basis to calculate the variance and bias of the identified

modal parameters.

5.2.1 Variance of x> Var[x]

Using expansion 5.5 through linear terms only, the variance of x (€) can be estimated

as

N N N
Var[x (¢)] = Y Var[e;] 67 (x) +2 Y Y _Covlej, el 8 ()6 (x)  (5.8)

j=1 j=1 k=1

itk

This represents how much scatter one would expect to find in the estimated modal
parameter due to the stochastic disturbance ¢ if the identification were performed for
many repetitions of the experiment. It is noted that in traditional modal analysis,
where the disturbance is due to noise only the second term drops out since €; and ¢
are uncorrelated (Longman et al., 1987). For operational modal analysis, it will be

seen that this term plays a crucial role in determining the error in the identified modal

parameters.
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5.2.2 Quadratic Bias of x, bg [x]

Applying the expectation operator to eqn. 5.5 gives

N N N
Elx(©l~x(0) +> Varle]d;; )+ Y. Y Covle,eldi(x) (5.9
i#k

It is seen in eqn. 5.9 that the expected value of x (¢) does not result in x (0) but
instead, a bias error arises due to the quadratic term in the expansion. This bias is
therefore referred to as the quadratic bias (Longman et al., 1987), denoted by bg,

of the estimated parameter x, and is given by

N N N
box (O = Elx(©]-x(@Q) ~ ) Var[e]dj; (x)+ Y > Covlej,e] &k (x) (5.10)
j=1 j=1 k=1
itk

The quadratic bias by expresses how much systematic error we can expect on average
due to fact that the random perturbation ¢ is passed through a quadratic nonlinearity
and does not average to zero. To the extent that quadratic terms dominate higher

order terms, this yields the full bias due to the nonlinear nature of the algorithm.

5.2.3 Truncation Bias of x, br [x]

The actual situation, however, is further complicated by the fact that stochastic real-
izations involve truncation of near zero singular values after choosing an appropriate
model order. While it is desirable to truncate near zero singular values that arise
due to noise in the data , truncation can however cause significant bias in the esti-
mated modal parameters when the truncated singular values contain system dynamics
(Cooper, 1989; Juang and Pappa, 1986). Again, a perturbation analysis can be em-
ployed to investigate the effect of truncated singular values on the system modes by
formulating an additive perturbation to the eigenvalues of the identified system matrix

A in terms of the truncated singular values and corresponding singular spaces.
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Consider the singular value decomposition (SVD) of the n’ x g Hankel matrix Ho

with n’ > g (cf. Chapter 2 section 2.3.2)

2 0
Ho=UZVT with T=| o ¥, (5.11)
0 0

where ¥ is an n X n diagonal matrix containing the first n singular values of ¥ and
the remaining (g — n) singular values form the diagonal of X, t. This singular value

decomposition of Hy can be partitioned as

31 O
v, T
Ho = U; Ug U22] 0 X (5'12)
\'75
0 O

Define Uy = [U2;Uyy]. Suppose that, for the modal parameters identification, only
the first n singular values in X of the singular value decomposition of H are retained.
In other words, the singular values in X2 are set to zero. Thus, according to eqns.

2.48 and 2.46 in Chapter 2, Hp and H; may be expressed as

Ho = Uy VT (5.13)

H = UyB72A%,*v,T (5.14)

where A is the n x n identified system or state matrix. As described in Chapter 2,
the eigenvalues A; and eigenvectors p;, i = 1,2,--- ,n, of A yield the modal damping
ratios, frequencies and mode shapes. It should be noted that equations 5.13 and 5.14
are only approximations of Hy and H; due to the truncation that has been performed.
However, in order not to introduce any confusion about approximations made in the

perturbation analysis, the equality sign will be retained because truncation of singu-

$The assumption that the number of rows exceeds the number of columns in Ho was dictated by
the fact that, generally, the total number of sensors exceeds the number of reference sensors. This
assumption does, however, not cause any loss of generality and the derivation for the case in which
n' < g is the same.
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lar values is common practice and it is understood that any set of identified modal
parameters is just an approximation to the true system parameters. To investigate to
what extent this truncation affects the SSI/Cov-identified modal parameters, we form
anew n X n matrix, denoted A’, as

=t o

A =HH =NV uT (5.15)

0 O

where (-)! denotes the pseudo-inverse and it is seen that Ho has been truncated at
the chosen model order n. The next step consists in establishing that the first n
eigenvalues of A’ are identical to the eigenvalues of the n x n system matrix A. To

do so, we diagonalize A" as follows: consider the eigenvalue equation of A’
Apl=Xp, for i=1,2---,n (5.16)

where p} and X, denote the i** eigenvector and corresponding eigenvalue of A’ respec-

tively. Pre-multiplying equation 5.16 by

A 0
. o, =XNp;, for i=1,2---,n (5.17)
UTH,1ViZ,2 0
_1 1
¥, 0 T 2 0
with p; = U'p; & pi=U B; (5.18)
0 I 0 1I
We conclude from the first n x n partition of the above equation that A, = ),
¢t =1,2,--- ,n. In other words, the first n eigenvalues of of A’ are identical to the

eigenvalues \; of the identified state matrix A. Furthermore, we can partition the

vectors ﬁ;p as [plT ﬁ,T] As before, p;, for i = 1,2,...,n denotes the eigenvectors of A
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and the definition of 5] follows from equation 5.18 as
. " -3 .
D= —)‘fU2H1V121 ’p; for i=1,2,---,n (5.19)
1

Thus, the eigenvectors p] corresponding to the first n eigenvalues of A’, can be estab-
lished using the partitioned vectors p; in equation 5.18 so that the first n columns of

the eigenvector matrix of A’ can be written as

1
, s o||P
n=U A (5.20)
0 I P
. 5 T . T AT T . .
where the n’ x n matrix [PT PT] contains the n’ x 1 vectors [p 5| in its
columns, for i = 1,2,--- ,n. Since the last (n’ — n) columns of the n’ x n’ matrix on

" the left-hand-side of equation 5.18 are zero, it follows that the last (n’ —n) eigenvalues
of A’ are identically zero and the corresponding (n’ —n) eigenvectors can be chosen to
be the n’ x 1 unit vectors e; defined as the 5®* column of the n’ x n' identity matrix.

The matrix A’ can therefore be diagonalized as

-1

P O A 0 P O A O
. = = A (5.21)
P I UTH, V122 0 P I 0 0
where A = diag {\1, A2, -+, An} is the eigenvalue matrix of A. The above equation

thus establishes that A’ is a nondefective matrix whose n nonzero eigenvalues are

identical to the eigenvalues of A. The n’ eigenvectors of A’ are given by equation 5.18

P 0
P=U (5.22)

0 I P1I

™
=1l
(=]

This fact is now exploited to determine the effect of the truncated singular values on
the n eigenvalues of A as an additive perturbation by reinstating 3. To do so, we

use the full SVD of the Hankel matrices (eqn. 5.11), i.e. no truncation is performed,
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and form the matrix A” in the same fashion than A’, that is

U, T
" ; 5t 0 0
A = HiHy=HM [ Vi Vo ] Ul (5.23)
o ' o
U,
= HV1ZTULT + H VL2 UT (5.24)

where the first term in equation 5.24 is recognised to be A’, that is

A" = A"+ H, V3, 1UL (5.25)

Pre- and post-multiplying equation 5.25 by P' and P’ then yields

PTAP = PTAP +P7 (HiV2Z;'UnT) P (5.26)
Introducing the notation
" = PTA"P (5.27)
A = PTAP (5.28)
AN = P (V35 tUnT) P (5.29)
equation 5.26 may then be expressed compactly as
A=A +AA (5.30)

Bearing in mind that the first n eigenvalues of A’ are identical to the eigenvalues
of A, that is, the first n diagonal elements in A’ are the eigenvalues of A, it is clear
from the above equation that AA" additively affects the identified system eigenvalues.
However, since the matrix AA’ is not diagonal, equation 5.30 does not directly repre-
sent the effect on the system eigenvalues. Thus, to take into account the effect of the

off-diagonal terms in AA" on A’, (Longman et al., 1987) introduce the perturbation
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parameter p into equation 5.30 as follows
A=A +pAAN (5.31)

The interpretation of the above equation requires a little care: A is the system matrix
identified by the SSI/Cov when small non-zero singular values have been truncated and
its eigenvalues are the first n diagonal elements in A". Thus, the first n eigenvalues
in. A’ already contain the error introduced by the truncation and AA' in fact cancels
this error as the latter term arises due to reinstating the truncated singular values in
Yo (see eqns. 5.23). It follows that p = 0 describes the situation where the singular
values in Xy are set to zero, i.e. small non-zero singular values have been truncated
while p = 1 yields the desired correction to cancel out any error introduced due to
. truncation of non-zero singular values. In Longman et al. (1987), the effect of this

truncation on any modal parameter is formulated using a Taylor expansion in p

BX (§> P) 2 1 32X (§a p)
€, p)~x(e0)+p ———— + pis L= 5.32
x(€p) ~ x(€0) +p % oo P2 02 |0 (5.32)
which can be re-written as
x (& 1) ~ x (€) + p [x (€)] + dpp [x (€)] (5.33)

where p is set to unity in order to give the desired change introduced by the truncation

as described above and where we have used the differential operator

o(
0,(:)= == 5.34
P ( ) ap p=0 ( )
1 8%()
bpp () = 3 0 . (5.35)
Setting the perturbation € = 0 in equation 5.33 then gives
x (0,1) = x (0) + 6, [x (Q)] + 6 [x (0] (5.36)
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It follows from the interpretation of equation 5.31 that the first term on the right-hand
side in eqn. 5.33, x (0), represents the SSI/Cov-identified modal parameters when the
chosen set of small singular values has been set to zero. This is exactly the same
quantity as the first term on the right-hand side in eqn. 5.5. The linear and quadratic
terms in 5.36, 8, [x (0)] and 8, [x (0)] respectively, correct the error due to truncation
in the SSI/Cov-identified modal parameters. As will be shown in the next section, the
first oder term d, [x (0)] accounts for the correction expressed by the diagonal terms
of AA" while the second order term takes into account the correction due to the off-
diagonal terms. The sum of the linear and quadratic terms is therefore the additive
inverse of the bias error in x (0) so that we may define the truncation bias, br in

the SSI/Cov-identified modal parameters as

br [x (Q)] = = [0, [x ()] + 85 [x (V)] (5.37)

It is noted that the expression for the truncation bias given in Longman et al. (1987)
is of the opposite sign than the expression given above. However, the explanation
provided above leading to equation 5.37 as well as the numerical simulations to follow

support the expression given here.

An remark deserves to be made about the above computation. The introduction of
the parameter p to linearise the truncation bias appears somewhat artificial. Firstly,
the parameter p has only physical meaning when it is treated discretely: p = 0 de-
scribes the situation when small singular values are set to zero and p = 1 the case
when the identification is performed at full model order. This implies that at 0, the
point at which the eigenvalue derivatives are evaluated, the equation is not continuous
and therefore, in theory, the eigenvalue derivative should not exist. No concern was
raised by Longman et al. (1987) and the extent of its effect on the truncation bias, its

variance and quadratic bias needs to be established by simulation.
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5.2.4 Variance of the Truncation Bias of x, Var [bt (x)]

If the estimated modal parameters contain a random error, then so will the estimated
truncation bias. This can be concluded from equation 5.33 so that the expression for
the truncation bias must be rewritten as a function of the random perturbation € so
that br [x (€)] = — [0, [x (€)] + 6pp [x (€)]]. As a result, the truncation bias can only be
estimated up to a random error. The latter can be evaluated in the same fashion as

for the modal parameters themselves.

The variance of br [x (¢)] is found by expanding this expression in a Taylor series

- [5p X @]+ x()]] = — [5/' [x (O)] + 855 [x (0)]] (5.38)

€5 (850 (X) + 8ipp (X))

Mz

1

<.
1l

N
Zfafk iko (X) + Ojkop (X))
1k=1

Mz

.
l

where the differential operators d;, (-), 55 (+), djkp (-) and &k, (-) are defined as

50 = e[ p=o]e.=o (5.39)
) = 5 e 5 L (5.40
S () = %%;;[%%) ,,=o] B (5.41)
Siipp () = % ae?;ek [882[)(2') pzo] i (5.42)

Taking equation 5.38 up to linear terms only, we can find the variance of the truncation
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bias as

Var b ()] ~ ZVar 3] (850 (0 + 30 () ) (5.43)
N N
+ 23 > Covleser] (dip 00 + a0 () ) (J5 () + Sipp (X))
j=1 k=1
J#k

5.2.5 Quadratic Bias of Truncation Bias of x, bqr [X]

Taking the expected value of eqn. 5.38 it can be seen that the truncation bias is itself
biased due to the quadratic term. Proceeding in the same way than for the quadratic

bias of x, the quadratic bias of the the truncation bias, brg, can be found to be

N N
bor [x] ~ ZVar [¢5] (up () 405500 (X ) Z ZCOV [€) €x] (Jkp( )+05kpp (X))

J#k
(5.44)

‘This.ﬁnishes the overview of the perturbation analysis. It was shown that its ap-
plica'fi}onvyields the variance and bias of the SSI/Cov-identified modal parameters.
For convenience, the main quantities that are computed are summarised in the dia-
gram shown in figure 5.1. It is seen from the equations summarised in figure 5.1 that
the evaluation of the variance and bias of any identified modal parameter x requires
knowledge of its derivatives with respect to the perturbation €; and the truncation
parameter p. The necessary expressions for the modal frequencies and damping ratios
will be derived in the next section. The case for the mode shapes is treated separately

thereafter.

5.3 Derivatives of the Modal Frequencies and Damping

Ratios

The modal frequencies and damping ratios are identified from the discrete-time eigen-
values A;, for i = 1,2,...,n, of the realised system matrix A according to equations

2.50 and 2.52 given in Chapter 2. Let the system matrix realised from the perturbed
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Variance
N N N
Var iy {¢)] zZ\’m[r,Hih)-&»'l Z Z( ovlegee] 8, () A () (4.8)
1=1 =1 k=)
1k
Bias

1. Truncation Bias br [x (O] = — {8, [x (D] +8p0 [x (D] ]

N N
Quadratic Bias of bor Ixi = - Y _Varle )| (m,,,lu +6,‘,,.,,4\|) =Y il (6,.‘,(\)+6,‘,,,,(\J)
Truncation Bias 120 .

rad
N
Variance of Varlbr (1)) & 3 Var(o) (4, (x) = 4 (1))
Truncation Bias 1
N N
23 3 Covean] (B (0 + 8, 00) (310 (%) + 1 (0)
at!
.
2. Quadratic Bias hox ()] = Eix{c)] - x(0) = Z far ie ) “(\)—»Z(m feyee]dn (1)
)
)xk

Fig. 5.1: Summary of the statistics computed from the perturbation analysis.

correlation functions be denoted by A (¢) and its eigenvalues by A; (¢) with A (€) the
corresponding diagonal eigenvalue matrix. In the same way as described in Chapter
2 by egns. 2.50 and 2.52, the perturbed modal frequencies w;(¢) and damping ratios

&i(e) of the system can be obtained from the perturbed continuous-time eigenvalues

/\Ci (E)as
rg) = 2D (5.45)
wd wild = Dol 69— (5.46)

where In (-) denotes the natural logarithm and R (-) the real part of a complex number.
Assuming that the modal parameters w; (¢), & (€) as well as the the continuous- and
discrete-time eigenvalues are differentiable to second order with respect to €; and p,
the derivatives of the i** modal frequency and damping ratio evaluated at ¢ = 0

(and/or p = 0) can then be obtained in the form of the differential operators defined
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Variance

A A S
Var iy (el = ) Varle, |00 +2 30 Y Covlealdy(0f) (48)
3=1 y=1 k=1
Tk
Bias

1. Truncation Bias br (x (0)] = — {8, [x (0)] + 6, [x (D) ]

&
Quadratic Bias of bgr (] = - Z\"mvfl,i (5,,,;(\ ) Zim ot ( ;A,Jk?*w%;m,,ixé)
Truncation Bias sl “

?

N
variance of Var(br (V] = 3 Var(e) (8,00 = 4, (0 3)
Truncation Bias e
A N
w2 3 D Coviea] (8,000 + b, 00 ) (910 (60 + b1 (1))
);;k~M2
Y
2. Quadratic Bias byl (0] = Exto)] - x t0) ,«.Z\,w}, L)+ }f:vm e ek (3)
;#L

Fig. 5.1: Summary of the statistics computed from the perturbation analysis.

correlation functions be denoted by A (¢) and its eigenvalues by A; (¢) with A (¢) the
corresponding diagonal eigenvalue matrix. In the same way as described in Chapter
2 by eqns. 2.50 and 2.52, the perturbed modal frequencies w;(¢) and damping ratios

&i(e) of the system can be obtained from the perturbed continuous-time eigenvalues

Ag, (€) as
Ml = 20 (5.45)
ad w0 = Palol, &= —Lall (5.46)

where In () denotes the natural logarithm and R (-) the real part of a complex number.
Assuming that the modal parameters w; (€), & (¢) as well as the the continuous- and
discrete-time eigenvalues are differentiable to second order with respect to ¢; and p,

th

the derivatives of the ¢*" modal frequency and damping ratio evaluated at ¢ = 0

(and/or p = 0) can then be obtained in the form of the differential operators defined
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in equations 5.6,5.7, 5.34, 5.35 and 5.39 - 5.42 as

85, jk, p, oo, 10, (Wi) = 5j,jk,p,pp,jp,(|'\ca (.€.)|) (5.47)
Jpp, 3kp, jkpp Jpp, Jkp, jkpp

=R [ (€)]
85, ik, p, o0, o, &) = 65k, p, pp, jos | — 5.48
sanonin €)= Sikn e (—5E) (5.49)

- where we have introduced the notation 4;, jk, 5, pp, jp, (Wi) to denote any of the deriva-
' ipe, kp; jkop
tives 0; (+) , 0k (*) 85 (-), 8pp (), 8jp (), Bjkp () etc.. Thus, to first order, the derivatives

of w; (¢) and &; (€) in operator form read

5i p(wi) = R e Q)] R[5, 0 (M)l + S e ()] S [65, 0 (Aey)] (5.49)

e, @1 |
6]‘, ) (&) - R [Ac, ‘(32)](3‘;’ P (wi) - R [?J;P(é?cz)] (550)

where, again, the notation d; , (-) implies that the expressionis valid for 4; () and
. 8,(-). The expressions for second order partial derivatives are found in a similar

fashion are given by

Ojk, pp (wi) = R e; (0)] R (3%, pp (f\ci/)\]c‘f(gi‘;llf\q (@) [85k, pp (Aei)] (5.51)
1R, p (M) R [0k, p (Aei)] + S [05, p (Aci )] S [0k, p (Acy)]
2 |Ac; (0)]
1685, p (wi) Bk, p (wi)
2 A (0)]
R Q)R [5J'p (Aes )] + 3)‘ A (0)) S [5J'p (A)]
|Ac; (0)]
R[5 Ae)] R[6p (A;)] + S0 (Aei)] S [ (Acy)]
|Ac; (0)]

<+

bjp (wi) =

(5.52)

16 (wi) 8p (wi)

2 2 (0)
(5.53)

The expressions for d;x, (w;) and d;x,, (wi) are obtained in a similar manner but they
are lengthy. The expression for d;i, (w;) is given in Appendix B in equation B.1 but

the one for d;x,, (wi) is omitted. For the modal damping ratios, the second order
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expressions are

D @0k pp () _ Rl O] 6550
w? (0) wi (Q) '
1R [0, p (Aey)] 85, p (wi) + R [85, p (Aey)] Ok, p (wi)
2 w?(0)
R ['\ca (0)]4;, p (ws) O, p (wi)
w} (0)
R [05 (M) 8, (wi) + R [0, (Ac,)] 65 (wi)
w? (0)
o R Pk (18 () b (1)
w} (0)

Oik, o0 (&) =

Again, the expression for d;x, () is given in equation B.2 in Appendix B but the one
for djkpp (&) is omitted. To evaluate the above derivatives of w; (€) and &; (e), it is
seen that the corresponding derivatives of the continuous-time eigenvalues A, (¢) are

* required.

As is seen from figure 5.1, the computation of Var [x (¢)], bg [x (€)] and br [x (€)]

involves only the derivatives

6 (), 0k(:), () and 6,()

To obtain the latter, differentiate In (); (€)] with respect to ¢ to find

8,0 (Aei) = &%\;—) (5.56)
‘sjk, pp ()‘cz) = &[6j’;:?(§)/\i) - %53',;) (é\:z) fgip (Ai)] (5.57)
R

To compute the variance and quadratic bias of the truncation bias, i.e. Var [br (x)]
and quadratic bias bgr [x], it is seen from equations 5.43 and 5.44 that the required

derivatives are

8o (), 0jpp (") s Ojkp (") and  Bjip, (*)

157



The latter are simply found by differentiating §, (\;;) and §,, (A;) given in equations
5.56 and 5.57 respectively ‘with respect to €;. In operator form, these read

s 0e) = a4 Q8 () =8 () 4 )] (5:59)
o) = Frp @600 - M@K E0) (6
+ () @18 (W) 8 ) = 0 5 ()]
+ PO )80~ 5 00 5 ()]
o) = ZrpgMOQIm M) -5 MG O] 68y

= 5 (0 (9)) 3jp (Aa1)

and

djkpp (M) = Xt_,\li?(_o){)\? (0) 8ikpp (M) = Xi (Q) 0k (i) Gjpp (Ni)  (5.62)

+ pp (M) (Q) [65 (M) B (M) — Xi (0) 8k (M)]
+ PO B 00 50 (4 = 65 (4 i (V)]

- %6”" (Aes) 0jp (Aes) = 8p (Ae; (Q)) djkp (Acs) (5.63)

The next step then involves the calculation of the first and second order derivatives
of the discrete-time eigenvalues \; (€) of the identified state-space or system matrix

A(e).

5.3.1 Eigenvalue and Eigenvector derivatives

The computation of the eigenvalue and eigenvector derivatives is in general not a
trivial task. Many papers document the computation of eigenvalues and eigenvectors
for matrices with distinct eigenvalues. Expressions for first order derivatives were
given by Fox and Kapoor (1968) and. second order derivatives are for instance given
by Nelson (1976); Plaut and Huseyin (1973). A survey of methods for eigensystem
derivatives with distinct eigenvalues can be' found in Adelman and Haftka (1986). In

Longman and Juang (1987); Longman et al. (1987), these results were collected in the
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theorem below. For later purposes, the derivatives of the corresponding eigenvectors

are given as well.

THEOREM

- Let A (€) be an n x n differentiable function of the parameters € = [e1, , €2, ..., €]
and assume that its eigenvalues \;, for i = 1,2,...,n are distinct when € = 0. Let
P = [p, Do, -..,D,] be the matriz of right eigenvectors of A (0) normalized such that
oFp=1fri=12,...,n. Then Q=P =g, gy, ...,8,] is the matriz of left

eigenvectors of A (0). Then the first and second order derivatives of the eigenvalues \;

and eigenvectors p;, g; fori =1,2,...,n evaluated at e = Q are given by:
GN) = ¢ 6(A)m (5.64)
n
§i@) = ) onbm | (5.65)
m=1
n -
85(@) = D Vimm (5.66)
“m=1

and for the second order partial derivatives

n T T .
) = oAty Y {(gi 5(8) o) (an 6 (B)2) 5
m=1, 1 m
m#i
o (d'5(A) ) (65,6 (A) 21-)}
X — M
k@) = D Bl bm (5.68)
m=1
5k (@) = D Tmdm (5.69)
m=1

159



where

. T (A) e
o, = %’ i#m and aﬁ,-=—mz=:1crzmg£,2,- (5.70)
Moo= -a., V i,k=12..,n (5.71)
= oy G 2 (A) et () - 500 Th @) (57
+ [0k (A) =8 (M) T]5; ()}, i#m
gt = =Y B ok 50 (2]) b (@) (573)
oo
& 1

im0 — Am) {247 ok (A) +6 () [6;(A) -6 (M)T]  (5.74)

+ 6 (a) [0k (A) - & ()‘i)l]} Dy 1#M

nf o= -nif - % [6; (aT) 8 (m:) + & (af) &5 (m3)] - (5.75)

The proof can be found in the above mentioned references. The theorem requires
that all the eigenvalues of the state-matrix A (0) are distinct. This condition can be

relaxed a little by the following corollary.

COROLLARY

Let A (€) be an n x n differentiable function of the parameters € = [e1, €2, ..., €]
and assume that it is nondefective. Define P and Q = (P~1)T as above. Then the
first and second order derivatives of A;, p; and g; evaluated at € = Q for each i associ-
ated with a non-repeated eigenvalue are given by equations 5.65-5.75 as in the theorem

above.

In other words, when a matrix has repeated eigenvalues but has a full set of
linearly independent eigenvectors (i.e. the repeated eigenvalues are non-defective), we
can still use the theorem to find the derivatives of the non-repeated eigenvalues and

their associated eigenvectors. In typical structures, the occurrence nearly repeated
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eigenvalues is relatively common due to slightly imperfect structural symmetry but

repeated eigenvalues are rg.rely encountered.

5.3.2 Derivatives for the Variance and Quadratic Bias

To find the variance and the quadratic bias of w; and &;, for i = 1,2,...,n, it is
- necessary to evaluate d;, jx (M), the computations for which are detailed in the previous
section. As mentioned, the latter in turn require §;, jx (A) which can be obtained by

differentiating eqn. 5.14
5,3 (A) = 8.3 (S72 UT Ha vy B1%) (5.76)
For first order derivatives, we thus obtain in operator form

5; (A) = = ?U,T [Hlvlaj (z;l/ 2) +H18; (V1) 72 + 65 (M) vlz;l/z] (5.77)

+ [21_1/253‘ (U;T) + 6 (21—1/2) UIT] H1V12f1/2

The expressions for the second order mixed derivatives d;k (A) are obtained similarly
but are lengthy and are therefore given in Appendix B in equation B.3. §; jx(A)
are functions of §;, jk (2'1/2) , 8, ik (V1), &, jx (U1T) and 6; (H1). ; (H1) has been
defined in equation 5.1 and since its entries are constant, d;x (H1) = 0. To find the

/2 and the singular vectors in Vy, we can

derivatives of the singular value matrix 3,
again make use of the above theorem. Indeed, the singular value decomposition of Hyp

(eqn. 5.13) can be obtained from the eigendecomposition of Hj Ho since
T
HIHo = (U1Z1V1T)” (Ui Z Vi T) = viZ3v, 7 (5.78)

Thus, the right singular subspace of Hy, spanned by the columns of V4 = [vy, ¥y, ...,¥,],
where v; are column vectors, yields both the right and left eigenvectors of Hj Ho, and
the square of the retained singular values of Hy that form X; are the eigenvalues

of H3"Ho. The derivatives of the left eigenvectors d;, jx (V1) as well as §;, jx (£2) =
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diag [6; jx (s3), 6j jx (s3), ..., 6j jk (53)] can thus be computed using the results
in section 5.3.1 with A (¢) replaced by HE Ho (€), i (€) by 52 (¢) and p; (¢) and g; ()
- replaced by v; (¢). Application of the eigenvalue/eigenvector results in section 5.3.1 to
M3 Ho (€) to find the derivatives s? (¢) and v (€) requires the derivatives of H3 Mo (¢)
itself. The latter can be found by using the definition of Mo (€) (eqn. 5.1) in H3 Ho

- and applying the differential operators §; jx (-). One finds

& (H3Ho) = H3o;(Ho)+ 05 (HG) Ho (5.79)

8k (Hg Ho)

I

';' [6; (Hg) 8k (Ho) + bi (M5) & (Ho)] (5.80)

The derivatives of Uy are easily obtained by rearranging eqn. 5.13 as Uy = HoV4 27 1
and differentiating with respect to ¢;. The first order derivatives in operator form then

read
8 (Us) = & (Ho) ViST™ + Hod; (V1) B + HoVas; (577 (5.81)

Evaluation of the second order derivative of A (¢), that is ;% (A), requires &5 (Uj).

This expression can be found analogously and is given in Appendix A in equation B.4.

Finally, it remains to calculate d; ;i (2’1/ 2) =diag [63-, jk (31_1/ 2) y 0 ik (s; Y 2) ,
ooy G0 (577)| and &, (Z77) = diag [8,56 (s77) » & (57) s 85,50 (577)]
to finish the computations of d; jx (A) and §;, jx (U1) respectively. To establish the
latter quantities note that s?(¢) can be written as [s?(€)]%/2 for an arbitrary power a.
A Taylor expansion about the origin of this expression yields the §; (s¢) and d;; (sf) in

terms of &; (s?) as the coefficients of ¢; and €;e), respectively. For a = —1 and a = —3
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the desired derivatives in operator form read

o 16; (s? ' o
5(57Y) = —5 5" i_‘) (5.82)

- 14; (82
- d; (si 1/2) = —-Z-——‘:g/;) , (5.83)
1

165 ()  3[6 (D))
o g (5.84)

S (s71) =

8
Ojk ("i_ 1/2) - _iéj:_s(/zg) * 3_52 2 s(s_f/?z)]2 (5.85)
i i
Since 6, jx (s?) are known from application of the theorem to HHp (€), the above
expressions can be evaluated and conclude the necessary computations needed to
evaluate the derivatives of the modal frequencies and damping ratios with respect
to €; given in equations 5.47 and 5.48. Thus, with J; jx (w;) and d; jx (&) at hand,
the variance (eqn. 5.8) and quadratic bias (eqn. 5.10) can now be computed. The
final step is to compute the necessary derivatives to establish the truncation bias, its

associated variance and quadratic bias.

5.3.3 Derivatives for the Truncation Bias, its Variance and Quadratic
Bias
The eigenvalue/eigenvector sensitivities given in section 5.3.1 can again be used to find
the necessary derivatives to corhpute the truncation bias, its variance and quadratic
bias. However, this time we need to find the derivatives with respect to p, the rea-
son being that the perturbation of the modal parameters due to truncation of small
non-zero singular values is not a direct result of the additive disturbance of the corre-
lation functions by ¢, (cf. eqn. 5.3). Instead, the perturbation due to truncation was
modelled as an additive perturbation that directly affects the eigenvalues A of A (0)
according to equation 5.31. In other words, the perturbed matrix whose eigenvalue

derivatives we wish to find is A" + pAA’.

Assume for the moment that the n first eigenvalues of A’ are distinct and recall that
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they are equal to the n eigenvalues of A (0), A’ = diag[\;, Ag, ..., A,]. Bearing in
mind that, by constr,@tioq, then'xn' matrix A" = diag [\, A2, -+, My 0, 0,...,0,_ ]
has n' — n repeated, identically zero, eigenvalues, the required eigenvalue and corre-
sponding eigenvector sensitivities of the first n non—zém eigenvalues can be computed
by applying the theorem and its corollary from section 5.3.1, with A’ + pAA’ taking
- the role of A (¢) and A’ (i.e. at p = 0) then corresponds to the unperturbed case
and takes the role of A (Q). Since the columns of the n’ x n’ identity matrix are the
eigenvectors of A’ the first and second order eigenvalue derivatives with respect to p

follow from the corollary and are found to be

§,(M) = AA; for i=12,...,n . (5.86)
" AN AN 4

0o (X)) = —m_m for 1=12,...,n 5.87

oo (M) 2::1 ™ — (5.87)
m#i

where AA;,, denotes the (im)** component of the matrix AA". Since AA’ is known
(eqn. 5.29), it transpires from equation 5.37 that the truncation bias br[x] in the

identified modal parameters w; (0) and &; (0), for : = 1,2,...,n, can be computed.

It remains to compute the sensitivities required to evaluate the expressions for
the variance and the quadratic bias of the truncation bias. Assuming again that the
eigenvalues are distinct, the derivatives of d,, ,, (A;) with respect to the perturbation

€ are easily evaluated by differentiating equations 5.86 and 5.87 to yield

B () = & (An%) (5.88)

Ojkp (M) = bjk (AA;i) (5.89)

and

’
n

i) = 3 e (MO~ 2n 01 [AAKL] (590
m#i

— 16, (M) = 8 (Am)] [AA«IimAA;'"'] }
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bikpp () = ,,,%m T (M Q ~m OF 6 [ANAN] 1)
b 606 0ml () = 6 ()] A A
= O = M @) [(E ) = 8 (Am) )8 (AN AAL)
8 (= dm) AN AL |
5 (0 = dm @) [ (5 ) = 6 Om) )85 (AN AN)
= (8 () — & Om) )b (AR AL |}

with (cf. eqns. 5.30)

5 (AN) = & [P (HaVaZ;'UnT) P] (5.92)
6 (A8) = 5 [P (HaVaZ;'Un") P] (5.93)
for all i =1,2,...,n and where AA;m- denotes the (mi)t* component of the matrix

AA', To evaluate equations 5.92 and 5.93, the first and second order derivatives with
respect to €; of H;, Va, 33 1 U7 and P’ are required. In principle, 4; jx (V2),
9;, jk (25 1) and 0; jk (Usa1) can be computed from the theorem in section 5.3.1 by
reformulating the SVD of Hp as the eigenvalue decomposition of H3 Ho as was done
before to compute the derivatives of d;, jx (V1), 0;, jk (21—1) and d; jx (U1). This time
though, near-zero singular values in the SVD of Hy are retained i.e. X5 is not set to
zero. Estimating the sensitivities of singular vectors corresponding to near-zero small
singular values can, however, cause some problems (Stewart, 2006). This proved to
be indeed the case, in particular for the quadratic bias of the truncation as will be

discussed shortly.

The computation of d;, jx (P') is problematic. In (Longman et al., 1987), it is
merely indicated that §; ;i (P') are‘ to be computed by applying the theorem and
its corollary to A’ (¢). A direct application of the theorem to A’(e), however, does
not yield the n’ derivatives of the n’ eigeﬁvectors p’; as required by equations 5.92

since , by construction of A’ (¢) (c.f. section 5.3.1), the last (n' — n) eigenvalues of
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this matrix are identically zero. Thus, the theorem and its corollary will only yield
the eigenvector denvatxves of the first n eigenvectors of A’ (¢) but the derivatives of
the eigenvectors corresponding to the repeated, identically zero eigenvalues cannot
be obtained. Various authors have investigated the problem of finding the deriva-
“ tives of eigenvectors associated with repeated eigenvalues. A SVD-based approach
- to this problem, originally developed by Lim and Juang (1989), is presented in the
next section to find the derivatives of the repeated eigenvalues and eigenvectors of
the system matrix A fo circumvent the theorem presented earlier, should the system
have repeated modes. However, this method does not solve the problem of finding the
(n' — n) eigenvector sensitivities corresponding to the identically zero eigenvalues of
A’ (¢) because these eigenvalues are zero by construction, and hence their derivatives,
for all orders, will be identically zero as well. Similarly, the techniques by Friswell
(1996); Juang et al. (1989), developed to cope with repeated eigenvalue derivatives,
will, also fail to give these eigenvector derivatives. These methods rely on generating
addi‘tio_na.l constraints using higher order derivatives and the eigenvalue derivatives,
corresponding to this Qrder, must be distinct to find a unique solution. Since, as
explained above, the eigenvalue derivatives of the (n' — n) zero eigenvalues will be
identically zero for all orders, a unique solution cannot be found and therefore, these

methods are not applicable.

An approximate solution may nonetheless be found as follows. Let the dimensions
of the the Hankel matrix Hp be dim(Hp) = (n’ x g) with n’ > g, so that its singular
value decomposition is given according to equation 5.12. Let the n’ x n/ matrix of
left. singular vectors U = [U; Ug; Ug] be re-written as U = [U; U] with Uy =
[U21 Ugg] € RY*(0'-n) U, € RV*(@") and Uy € RVX(W'-9), Substituting this
expression for U in equation 5.22, the eigenvector matrix of A’ can be reformulated

as

L V10

20 PO 1 o
P = [Ul U2] = [Ulsz + UP UQ] (5.94)

0 P1I

L]
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1
where the first partition U, 215 P + UyP € R¥*", The derivatives, in operator form,

of the eigenvector matrix P’ of A’ are then reduced to
5,3 (P') = [Jj, ik (U@%P + sz‘) 8, ik (Ug)] (%)

 The expressions for J;, jx (Ulzf P+ Ugf’) , which consists of the derivatives of the
first n eigenvectors of A’ oorresponding to the n non-zero eigenvalues of A’, or equiv-
alently of A, can then be found from the theorem applied to A’ and it remains to find
d;, jk (Ug) which is obtained by application of the theorem and its corollary to H3 Ho
with no singular value truncation performed. So far, no approximation has been made
but we can actually only obtain the derivatives of the full n’ x n’ matrix P’ in the
case when n’ < g, the reason being that the number of singular values resulting from
the SVD of Hj is equal to its smallest dimension so that when n’ > g, the eigenvalue
matrix of ’Hg"Ho has dimensions g x g. Therefore, only the derivatives of the g first
left singular vectors can be found by application of the theorem t‘o HE Ho. Moreover,
siﬁce this matri:f is not square, Q{g =P ;; does not exist but the derivatives of the

first g rows of Q%:g =P 1—:!1, may be estimated by approximating P’';.4 as
’ 1 ~
8, jk (Plzg) ~ [51, ik (Ulsz + U21P1:(g—n)) %, jk (Uzl)] (5.96)

where f’lz(g_n) denotes the first (g — n) rows of P. The matrix Q{:g such that

Q’i':gP’lzg = Igx4 can be found to be

P-! 0 =20 uT
Ql, = | _ (5.97)
| Pyg-nP! P! o I|| U]
i -1
_ Pz 2uT
- " . -1
—Plz(g_n)P‘IEI 2U:1r + Ugl

Pis given by equation 5.19. The derivatives of all the entries in the matrix Q{ g are
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known so that

1
8, jk (P'lzl ’Uir)

(5.98)
—Jj,jk (ﬁP-IEI%U{ + Ug‘l)

8,1 (Qly) =
can be evaluated using the standard rules of differentiation. These two matrices can
then be used to approximate equations 5.88 to 5.92. Some time was devoted to cir-
cumvent this problem, since the variance of the truncation bias informs the user of how
much confidence he or she can place on these estimates and provides vital information
if a bias corre;:tion of the identified modal parameters is considered. However, a more
adequate solution could not be found an further research is needed. It will be shown
in the next chapter, that the approximation above can be considered satisfactory to
obtain an indication of the extent of random error in the truﬂcation bias but, clearly,
high accuracy cannot be expected. When the same approximation was used on for the
quadratic bias of the truncation bias, simulations showed that the results were very
uﬁgt‘able. The reason may be attributed to the fact that the singular vectors used in
these computations are associated with small singular values and it is known that the

singular spaces associated with small singular values are extremely sensitive(Stewart,

1990, 2006) to small perturbations.

5.4 Extension to Repeated Eigenvalues

The problem of finding the derivatives of repeated eigenvalues and associated eigen-
vectors has been studied extensively, in particular in relation to changes in the modal
frequencies as a function of the structural design parameters. For instance, Dailey
(1989) presents a extension of Nelson’s method (Nelson, 1976) to calculate the first
order derivatives of eigenvectors associated with repeated eigenvalues but distinct
eigenvalues derivatives. Friswell (1996) has extended this approach to account for
the situation where both the eigenvalues and their derivatives are repeated. Juang et

al. (1989) developed a modal expansion approach able to deal with both degenerate
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eigenvalues and eigenvalue derivatives. The implementation of any of these methods,
that account for repeated eigenvalues, require knowledge of the multiplicity of the
degenerate eigenvalue. This is usually clear when one deals vﬁt’.h analytical models.
In this case, however, in which the model consists of the identified state-matrix A
from experimentally obtained data, the multiplicity of a particuia.r eagenva.lue is not
- necessarily clear. Using the fact that the singular value decomposition (SVD) is a
generally reliable way to calculate the rank, and hence the multiplicity of an eigen-
value, Lim and Juang (1989) have developed an SVD-based method to calculate the
first order sensitivities of repeated eigenvalues and corresponding eigenvgctors. This
method, outlined below and extended to compute second order (mixed) deﬁvatives, is
employed in this thesis to assess the degeneracy of repeated eigenvalues and to com-
pute the corresponding eigenvalue and eigenvector sensitivities in a fully automated
manner. Assume that the n x n identified state-matrix A (0) = A is non-defective so

that eigenvalue problem for the i** eigenvalue ); of A can be written as
(A-XAI)p;=A;p;=0 (5.99)

where, as before, p; is the ith right eigenvector of A and we have defined (A — \I) =
A,;. It follows from equation 5.99 that the i** eigenvector p; belongs to the kernel of
A;. If the multiplicity of ); is 1, i.e. if it is non-repeated or simple, then the kernel of
A,;, denoted by ker(A;), is 1-dimensional and p; may be chosen as its basis. However,
if the multiplicity of A; > 1, the dimension of the ker(A;) > 1 and -assuming A;
to be non-defective- the dimension of the ker(A;) is equal to the multiplicity of the
repeated eigenvalue );. As a result, any vector in ker(A;) is an eigenvector of this
repeated eigenvalue and hence non-unique. Thus, the rank r; = rank(A;) of A; , and
the dimension of ker(A;), v; = n — r;, will indicate whether ); is degenerate or not.
The singular value decomposition of Ai then yields

- D; 0 w7l

A= [T,- Ti] (5.100)

0 0 w7
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with T; € R*™", T; € R™%, D; € R"*", W; € R™" and W; € R™*. Therefore,
the multiplicity of thé ith eigenvalue is determined by »; and a basis for the right eigen-
vector corresponding to the it repeated eigenvalue is given by 'w,-. For v; = ker (A;)
to yield the multiplicity of \;, the matrix A; must be non-defective . When the
eigenvalue problem is formulated with analytical stiffness and mass matrices as in
* Dailey (1989); Friswell (1996); Nelson (1976), non-defectiveness is guaranteed since
these matrices are real symmetric (Strang, 1998). In the present case, however, where
the state-matrix is identified from measured data, which may exhibit non-proportional
damping properties, the non-defective property of A; is in general not guaranteed (Lu-
ongo, 2006). The eigenvalue and eigenvector sensitivities for defective matrices have
been studied, for instance in Luongo (1993); Zhang and Zhang (2001), but this case
will not be covered in this thesis because we can generally expect matrices representing
physical systems to be non-defective (Pang, 1997) and we shall use this assumption
henceforth.Assume that the algebraic multiplicity of the it® eigenvalue J; is v;. Thus,
A= ,\gl) = )\1(2) =...= AE”") and let {p,gl), @ . ,pg"")} be some choice of right
eigenvectors corresponding to A;. Since W; forms a basis for the right eigenvectors of

i, the It? eigenvector corresponding to ); can be written as
o =w; s (5.101)

where a; € R%*! is the vector of coordinates for p; in the basis W;. Similarly, the left
singular vectors in T form a basis for the corresponding left eigenvectors gg) where
(-)* denotes the complex conjugate. The matrix of left eigenvectors corresponding
to the ); may then be written as Q; = Tjb; with b = [b{",b, - ,b{"| being
the matrix containing the vectors of coefficients _b,gl) in the basis T;. Imposing the
same normalisation as in the theorem above, namely QtTPi = I, xy;, the matrix

of left eigenvector coefficients b; satisfying this condition is b = a; ! (T# Wi)—l,

tTo clarify the terminology used here, it is noted that by the multiplicity of \;, we refer to the
multiplicity of the root A; to the polynomial det(A;) = 0. This is also known as the algebraic
multiplicity of A;. The dimension of ker(A;), v; = n—r; is known as the geometric multiplicity of X;.
For defective matrices the geometric multiplicity is strictly smaller than the algebraic multiplicity.
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with a; = [a(",a{?, -+ ,a{")] and P; the matrix of the right eigenvectors. Unlike
the expressions for the non-repeated eigenvalue/eigenvector derivatives given in the
theorem, no closed-form solutions for the sensitivities of repeated eigenvalues and
corresponding eigenvectors are found using this approach. Differentiating equation
5.99 with respect to ¢;, premultiplying by the result by the Hermitian of the left
- singular vectors [ i ] it can be shown that (Lim and Juang, 1989) the first order
derivative of the repeated eigenvalue \; with corresponding eigenvector pi =.W,-_a_§l)

satisfies the generalized eigenvalue problem of order v;
[TH &9 (A) W,] B = 60 () THEW; 8{) (5.102)

It is seen the the solution to this eigenvalue equation has eigenvalues yielding the
eigenvalue derivative of the I** repeated eigenvalue with respect to e;, 5?) (M), and

eigenvectors giving the coefficient vector a; ;, and hence the corresponding eigenvector

) .
0 = Wil

in equation 5.101 above to signify that a; ; is the eigenvector corresponding to 6}1) (M),

Note that we have introduced the notation a; ; instead of simply a; as

i.e. when derivative is taken with respect to €;. It is important to note that, in order
to determine a; ; uniquely, it is required that the eigenvalue derivatives 51(.1) (M), for
l=1,2,...,y; are distinct. It is also noted that if )\; is simple, the above equation
reduces to the exact same equation as in the theorem. To find the corresponding
first order eigenvector derivative, we expand 51(-1) (p;) in the basis formed by the right
singular vectors as

6 (2) = Wi ) + W, 2! (5.103)

where :zfl]) € R"*! and xfl) € R¥X! are the coefficients of the eigenvector derivative

in the range and kernel of A; respectively that need.to be determined. This is similar
to the expansion in the theorem above except that it is done in the orthonormal basis
found through the SVD of A; since the eigenvectors are not linearly independent in

this case and hence do not form a basis. The computation of :_y,f J) is straightforward

171



and can be found from the first order derivative of the eigenvalue equation 5.99 to be
5,‘ ) = -DITHS (As) w, 8o (5.104)

with &) (A;) = 60" (A) - 60 (\;) I The first order derivative of the cigenvalue equa-
 tion 5.99, that is 6(” (A p; O = -A¢5§-I) (p;), does not contain any information about
153 since, by definition, it expresses the coefficients of 61(-1) (p;) that lie in the kernel
of A; and therefore vanishes from 5(1) (As)p; - —Aiéj(-l) (p;)- On the other hand,
however, W; :zi ¥ ) is not in the kernel of 51(-1) (A;) so that an equation for 1,5‘3 can be
found from the second order derivative of the eigenvalue équation 5.99 and reads (Lim

and Juang, 1989)

[T{’&"’ (A) W,] @ _ _H [«s](.? (A) - 6 (A;) WDV EH 0 (A,)] W)

(5.105)
Thjs yields v; equations to solve for the v; coefficients in 15,1)) However, these equations
a.ré"‘not' linearly independent. Assuming that 6,(') (M), forl =1,2,. ..,y are distinct, it
follows from the eigenvalue equation 5.102 that the pencil (T,H 6}1) (A)W; - T#H W,-)
has rank v; — 1 and so does the matrix [Tf’ 61(.1) (A;) Wi] so that the system of equa-
tions in 5.105 is underdetermined. The remaining constraint may be found from the
consistent normalisation of the eigenvectors, namely that gfl) p_f” = 1. Differentiat-

ing the latter expression with respect to €; and using equations 5.101 and 5.103 then

yields the additional condition as
2" 60 @) =2l 2’ =0 (5.106)

Inspection of equation 5.105 reveals that the second order derivative of A; is needed
to evaluate 63(-? (Ag) = 055 (A) — 69(-? (M) 1. Differentiating the first order derivative
of the eigenvalue equation with respect to ¢, and premultiplying the result with the

transpose of left eigenvector g; ’, @ the expression for the mixed second order eigenvector
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derivative reads
B ) = o 50 (A W+ 5 97 [0 (M) W53 + 60 (M) Wi 5] (8.107)

and the expression for JJ(-? (M) follows by replacing k with j. In equation 5.107,
we made use of the fact that ) 6" (A;) Wi = 0 (Lim and Juang, 1989). It now
remains to find the second order derivatives of the eigenvectors p?). As for the first

order derivative, we start by expanding 63(2 (p;) as

5% (o) = Wi B + Wi 89, (5.108)
59 (2:) = W 8 + Wil -~ (5.109)

Since the expressions for the second order derivatives of pf ) are not given in Lim and

Juang (1989), the derivations to follow are a little more detailed. The second order

mxxed derivative of the eigenvalue equation 5.99 yields

55 (A)p + 5 [6“’ (480 () + 6 (A) 60 (2)] = ~EDWis{ (o) (5.110)
Premultiplying 5.110 by [’i‘i Ti] H, and using 5.108, the first partition reads

T () + ST 60 (a0 0 @)+ 60 (A6 (2)] = -Dili  (5.111)
so that

B0 = -D D (A0 B + 5 T 60 (A0 69 (2) + 60 (A) 60 (8)] (5.112)

a0

9; ;; follows directly from 5.112 by replacing k with j. In the

The expression for
same fashion as the second order derivative was needed to compute gif J), the third
order derivatives are needed to find 0(1) Define d;ix (<) = a%c [0;x (-)]. Differentiating

- H
equation 5.110 with respect to €, premultiplying by [Ti Ti] , the equation for _0,5 J) i
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then follows from the second partition as

[276 (As) w.] 69, =- TH [6‘ (A p{ + 25 (&) 5“’ (@) (5.113)

I

+ 8 (A58} (o) + 4} © (4060 ()] - TF8) (A) Wil
_and the expression for _0_5?1 follows from the above equation by replacing k by j. It is
noted that 6,(:,2 (p;) features in the expression of 51(2 (p;)- Thus equation 5.113 needs to
be evaluated first for 6,(:,2 (p;) and which can then be used to evaluate 4 (l) & (p;). Also,
53(2k (M) is required in equation 5.113. Differentiating equation 5.110 with respect to
e, premultiplying this derivative by o’ and using o’ 6{” (A;) Wi = 0, gives the

desired result ' '

T T l
0, (%) = 5076, (450 + 260 [ (8060 (o) + 60 (M) W 834] (5:114)

+g§" 62 (408 @) + 5 (A Wil 8]

Foﬁowihg the same argument as for the first order case, this system of ; equations is
rank deficient by 1. Again, the extra constraint can be found from the consistent nor-
malisation of eigenvectors. Taking the mixed second order derivative of p,f & pfl) =1,
and using equations 5.101 and 5.108, gives the expression for the remaining constraint
can be found to be

T
a) 6 = 5,(5) @) & (p:) (5.115)

To solve the the underdetermined systems in equations 5.105 and 5.113, a partic-
ular solution is first computed by taking the pseudo-inverse of [T{{ 5,(61) (A) W,-]. of

For equation 5.105, the particular solution g,fl JP o7t) then yields

-l.
A7) = — [TH? (A Wi] TH [ (A) - o) (A) WD TH6) (A0)| Wil

(5.116)
1,? JP o) is the unique solution to 5.105 in the (; — 1)-dimensional subspace in R or-

thogonal to the kernel of [T{{ 6](.1) (As) Wi] and has minimal Euclidean norm (Penrose,

1956). The general solution of 15)1 in R¥ therefore requires the additional compo-
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nent in the kernel of [T{f¢s§‘) (As) w.-]. Since this kernel is 1-dimensional (by the

0]

assumption of non-repeated eigenvalue derivatives) and a; j» by equation 5.102, is in

the ykernel, the general solution can be written as
o =5 + 04 1)

The scalar g,(g can then be determihed from the additional constraint imposed by the

consistent normalisation 5.106, i.e.

a’(l)T ﬂfl,Part.)
o ey
= | (5.118)

8 8 ;

Exactly the same process applies to solve f01: Gg)jk from equation 5.113 except that
the constraint imposed by the consistent normalisation is given by equation 5.115.
This finishes the exposition of the computation of the first and (mixed) second or-
der eigenvalue/eigenvector derivatives. This method was not extended to allow the

computation of the truncation bias and its associated variance and quadratic bias.

5.5 Derivatives for Mode shapes

To establish the error in the complete identified modal model, it remains to find
the random and bias error in the SSI/Cov-identified mode shapes ¢. The latter are

computed in the SSI/Cov according to equation 2.53
¢=CP (5.119)

where P, in the notation used in this chapter, denotes the matrix of left eigenvectors of
the identified state-matrix A and C is the identified output-influence matrix described
in Chapter 2, section 2.3.2. Like the state-matrix, the identified output-influence
matrix C can be factorized into the factors obtained through the SVD of the Hankel

matrix Hp, i.e. U1,X; and V;. More precisely, the factorization is (Juang and Pappa,
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1984)
C=E" Ulzf , : (5.120)

~ where E is a (n’ x p) matrix oonsxstmg of zeros (p being the number of sensors) and

the first p rows replaced by the p x p identity matrix. This matrix is constant so that
l N

its derivative is zero. Since the sensitivities of U; and X} are known (see section

5.3.2), the derivatives of C can be computed. In operator form, they yield

1 1
5;(C) = ET4;(Uy) 2} +ETU; (}Jf) (5.121)
’ 1 1
6k (C) = ET6;(Uy) X7 +ETU 6 (2{) (5.122)

+ 387 500, (2F) + 6.0 (23]

Since the derivatives of the eigenvectors are known from section 5.3.1, the derivatives

of the mode shapes at the sensor locations yield

5;(#) = 6;(C)P+C5;(P) (5.123)
ik () = 8k (C)P + Coj (P) (5.124)

+ % [6; (C) 6 (P) + 6 (C) 6; (P)]

with d; ;i (C) as given by equations 5.121 and 5.123 respectively.

With §; ;i (¢) at hand, the variance and the quadratic bias of the mode shapes
at the sensor locations can be computed. For the computation of the truncation bias,
together with its variance and quadratic bias, similar to the approach given here for

modal damping ratios and frequencies can be found in Longman et al. (1987).

5.6 Summmary and Discussion

In this chapter, a perturbatibn theoretic method to compute the variance and the bias,

and hence the random and systematic error of the SSI/Cov-identified natural frequen-
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cies, modal damping ratios and mode shapes was presented. Although not obvious at
this stage, the inclusion of the covariances of the sample correlation functions in the
general error formulation, makes it possible to apply this theory -initially developed
by Longman and Juang (1987); Longman et al. (1987) for the same purpose in clas-
sical input/output modal analysis- to output-only modal analysié. Additibnally, the
" method was extended to estimate the random error of repeated modes. Not only does
this perturbation method allow to estimate the random and bias error in practical
applications, but also provides us with a causal representation (up to second order) of
how the errors in the response model are propagated through the correlation-driven
identification algorithm and results in random and bias errors in the estimated system
modal parameter. This was summarised in diagram 5.1. To use the perturbation,the-
ory in practice, it is seen from the latter diagram that an estimate of the covariances
of the perturbations ¢; at each data point j of the sample correlation functions is
reqﬁired. As will be shown formally in the next chapter, the latter are in fact the
same as the covariances of the sample correlation functions themselves expressions for
which were given in chapter 3. In particular, the robust plug-in method developed in
section 3.5, chapter 3 will allow to get a good estimate of the perturbations ¢; directly
from the measured responses. This allows to take into account many different per-
turbations -such as instrumentation noise and correlation estimation errors- into the
statistics of €; without having to make any assumptions about the errors that might

be present in the estimated response model so that the method is fully automated.

This chapter has been entirely theoretical and, with the exception of the approxi-
mation made in equations 5.96-5.98 involved in the computation of the variance and
quadratic bias of the truncation bias, it should in principle be possible to get an ac-
curate estimate of both bias and random error in the identified modal model. Due to
the fact that the covariances of ¢; are only estimates and , as already pointed out, the
algorithm can be ill-conditioned when eigenvalue/eigenvector sensitivities of near zero

singular values are involved in the computations, the accuracy and reliability of the
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predicted errors needs to be assessed by simulation which is the subject of the next

chapter.
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CHAPTER 6

UNCERTAINTY IN
SSI/CoOV-IDENTIFIED MODAL
PARAMETERS: A PERTURBATION

APPROACH

6.1 .Introduction

In this chapter, the perturbation analysis presented in chapter 5 is applied to esti-
mate the errors, random and bias, in the SSI/Cov-identified modal parameters. The
aim is to establish the performance of the perturbation theoretic method in chapter
6. In Longman and Juang (1987); Longman et al. (1987), where the perturbation
method was first developed for application to input/output modal analysis, the ef-
fect of white noise perturbations on exact impulse response functions was considered.
These authors did not compare the estimated error with the “true”, error, which
can, for instance, be computed from Monte-Carlo type simulations. Effectively, in
the latter work, the perturbation approach was employed to assist the choice of the
parameters the user has to specify in order to implement the ERA (or SSI/Cov). In
(Bergman et al., 1989), the same authors use the information obtained from the cal-

culated errors in a relative manner to determine which set of parameters resulted in

the lowest error in the modal estimates. In this chapter, it is investigated how well
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the errors are predicted in an absolute sense by direct comparison with the error from
Monte-Carlo type smmlmns The theory developed by Longman and Juang (1987)
~ was employed by Peterson et al. (1996) to assess the variance of the modal damping
ratios and frequencies & & pyramidal truss from input/output measurements. In the
latter paper, the only stochastic component considered was nqise; Bias errors as well

" as the accuracy of the estimated random error were not investigated.

To assess the perturbation analysis presented in Chapter 5, SDOF systems are em-
ployed although the theory presented in the previous chapter covers the MDOF case.
If the perturbation analysis fails to give consistent results for such simple systems,

then this will almost certainly be the case for more complex systems.

6.2 Perturbations of the Sample Correlation Functions

6.2:“.1 " Error Sources

The variance and bias iﬂ the estimated modal damping ratios and frequencies obtained
from the perturbation analysis presented in the previous chapter are functions of the
statistics of ¢, the perturbation of the sample correlation functions computed between
the measured time-histories of a chosen set of reference and roving sensors along the
structural system. Consequently, the degree of accuracy with which the uncertainty
in the identified results can be predicted will depend on the exactness with which
the perturbation € can be modelled. This is not a trivial task since there are, in
general, many sources that contribute to the random and bias error in the estimated
sample correlation functions and hence to the error in the identified modal parameters.
The various sources that may introduce error into the estimated sample correlation

functions will be briefly discussed below and are shown schematically in figure 6.1.
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IDEAL CASE ERROR SOURCES

Broad-band, stationary,

white noise ambient .
excitation Non-stationary

Coloured and
Deterministic loads

Structural
System

System Nonlinearities
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and ADC Conversion Instrumentation
Noise
ADC \
Sample Conversion
Correlation Errors
Functions

Sample Estimation
Errors

SSI/Cov

Estimation
Error due to
Algorithm

Modal Parameters

Fig. 6.1: Error sources affecting the SSI/Cov-identified modal parameters.

Non-stationary, Coloured and Deterministic loads

As described in detail in section 2.2.1 in Chapter 2, operational modal analysis relies
on the assumption that the excitation of the structural system can be approximated
by stationary white noise. When this condition is violated, for instance, if the spec-
trum of the ambient loading is coloured and/or of a non-stationary nature, the “free
response” behaviour of the sample correlation functions can be significantly corrupted.
Coloured inputs occur when the random excitation of the structural system is corre-
lated in some fashion, and this correlation will ultimately be reflected in the estimated
sample correlation functions causing a systematic deviation from the free response
characteristics and thereby introducing bias in the identified modal parameters. The
methods described in Chapter 3 to compute the sample correlation functions are not
suited to deal with non-stationary data. Neither is the random decrement method in

theory although Jeary (1992, 1996) presents this method as particularly useful under
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“hostile” loading regimes. When applied to non-stationary data, the computation of
the correlation function suited to stationary data, averages through the time-varying
structure of the data resulting again in biased correlation estimates (Bendat and Pier-

sol, 2000).

System Non-linearities

Another source of bias can arise if the response of the structure exhibits nonlinear
behaviour because, as before, the natural exéitation technique (NExT) described in
Chapter 2 is suited to linear systems only. This type of disturbance, due to the in-
adequacy of using linear time-invariant models when small non-linearities are present
and/or the loading conditions are non-stationary, is sometimes collectively referred to

as j)rocess noise (Andersen, 1997).

Instrumentation Noise

During the data acquisition process, the response data is polluted by the noise floor
from the instrumentation due primarily to the electronic noise of analogue instru-
ments and/or the quantization noise (round-off error) of digital equipment occurring
in the analogue-to-digital conversion (ADC). The ADC error is nevertheless usually
unimportant compared to the other instrumentation noise when a sufficiently hight

bit-rate is used for the conversion.

Sample Estimation Errors

Since the sample correlation functions are estimated from finite random time-histories,
these estimates do not converge and hence contain a certain amount of random error
controlled by length T of the data that is available. The latter error has been dis-
cussed in detail in Chapter 3. Additionally, depending on which method is used to

compute the sample correlation functions (cf. Chapter 3) these estimates are biased.
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As described in (Giampellegrini and Greening, 2005), this situation is analogous to
leakage and resolution bias when frequency domain methods are used to perform the

system identification.

Errors induced by the Identification Algorithm

For completeness, the last step in the diagram 6.1 shows that additional errors may
be conveyed to the modal parameters as the error in the sample correlation functions
is passed through the algorithm. This was shown theoretically in Chapter 5 where,
it can be seen how quadratic bias may arise due to the perturbation € being passed
through the nonlinear algorithm or how bias is introduced due to truncation of small
non-zero singular values. It should be clear, however, that the errors introduced by the
algﬁﬁthm are not to be modeled in ¢ but are the result of the perturbation equations

formulated in the previous chapter.

As already mentioned, the confidence one can place on the variance and bias ob-
tained from the perturbation analysis in Chapter 5 will ultimately depend on how
well we can approximate the statistics of ¢ and how close this model is to the true
disturbance in the measured data. Due to the many error sources that can arise in
operational modal testing, it is a difficult task to take into account all these sources.
Moreover, since the loading conditions are not measured, a rigorous analysis of the
response data would be required to detect whether the data has been perturbed due
to correlated and/or nonstationary inputs Bendat and Piersol (2000) or whether the
response exhibits a certain degree of nonlinearity (Kantz and Schreiber, 1997). This
is further complicated by the fact that, if the presence of nonlinear or nonstationary
behaviour can be established, this is generally a negative statement in the sense that
it only specifies a lack of linear or stationary properties rather than defining the pre-
cise nature of nonlinearity or nonstationarity involved. Consequently modelling these

disturbances into the perturbation parameter ¢ is extremely challenging. While it will

183



always be assumed in this thesis that the response is linear, the influence of a nonsta-
tionary characteristics in the response will be briefly considered. It is noted, however,
that within the classical input-output framework, the subspace identification methods
have been used to identify simple nonlinear systems, see for instance Horta and Juang
(1986). It follows from this discussion, that, in order to capture the statistics of the
perturbation ¢; in the response model from all the contributing sources, a data-driven
method is required. That is, a method that does not rely on specific models for each
of the possible sources but rather estimates the statistics €; numerically directly from

the measured data.

6.2.2 Data-Driven Perturbation Model

This data-driven estimate of the statistics of €; can, when the statistics of inter-
est‘.ivs Cov [€r, €], be directly obtained from the data-driven or plug-in estimate of
Cov [}A%z('r),f?@(s)] developed in section 3.5, Chapter 3. Let R.(7) = Ry(7) + €,
where €, denotes the perturbation of the exact auto-correlation function E[R,(7)] =
R;(7) at lag 7 as in chapter 5. Also, let this perturbation have zero mean so that
E[R;(7) + €;] = Ry(7) as expected for an unbiased estimate of the auto-correlation

function. Then, by definition

Cov [RZ(T),R,(S)] = [(éx(T)—E[Rx(T)]) (Rz(s)—E[Rw(s)])] (6.1)

|Re(r) Ra(s)| - BlRa(1)|Elfa(s))

Using Ry (7) = Ry(7) + €, and Ry(s) = Ry(s) + €5 in equation 6.1, it is then easily

shown that
Cov [RZ(T), Rx(s)] = E [eres] — Eler]Eles] = Cov [y, €] (6.2)

Thus, the perturbations of the auto-correlation function are the same as those of the
auto-correlation function itself. The result for the variance follows immediately by

letting 7 = s.
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Fig. 6.2: Illustration of noise corrupted signal.

6.2.3 A Noise Model

As mentioned in the introduction, to assess the accuracy of the errors predicted by the
perturbation analysis, we start by considering simple systems and we wish to eradi-
cate any sources of uncertainty that can influence the error estimate other than those
set out to investigate. For this reason, and also to have a theoretical description of
how measurement noise affects the estimated sample correlation functions, having a
theoretical expression describing the perturbation of the auto-correlation function due
to noise in the measurement records is useful. It is noted, however, that this model is
mainly of theoretical interest.

As documented in Bendat and Piersol (2000), instrumentation noise has a near-
uniform spectral density so that we may simulate the noise floor as a broadband
white noise signal n(t) with a frequency bandwidth B. Letting s(¢) be the uncor-
rupted response of the SDOF system subject to white noise excitation, the corrupted

response can then be written as
z(t) = s(t) + n(t) (6.3)

This is illustrated schematically in figure 6.2. Assuming that n(¢) is independent of

s(t), the ac.f of the system can be written as (Bendat and Piersol, 2000)

Rmz(T) = Rss(T) + Rnn(T) (6'4)

where f%xx('r), R, and R, denote the estimated sample auto-correlation functions of

the z(t), s(t) and n(t) respectively. Since we wish to avoid the influence of the sample
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estimation errors, we simply replace R,, by the exact ac.f of the system, denoted by
R, in equation 6.4

ﬁmm(T) = Rss('r) + I:?/rm('r) (6'5)

or in discretized form
Rez(TAt) = Res(rAt) + R (rAt) (6.6)

If Rxx(rAt), as described by equation 6.6, is fed into the SSI/Cov algorithm, the error
in the identified modal parameters is solely due to the additive noise perturbation
Run(rAt) to Reg(rAt). Thus, Ry, (rAt) is the desired perturbation, or in terms of the

~ notation used in Chapter 5
¢j = Ron(jAt), for j=1,2...,N (6.7)

where, as before, N denotes the number data points included in the analysis. In order
to obtain statistical information about the error in the identified modal parameters
from the perturbation theory, we require a model for Rnn(rAt) so that its variance
and covariance can be established and hence the perturbation equations 5.8, 5.10,

5.37, 5.43 and 5.44 can be evaluated.

The auto-correlation function of a band-limited white noise signal n(t) of band-

width B, R,,(7) is given theoretically by Bendat and Piersol (2000) as

Ron(r) = 02 322757) (6.8)

where o2 is the variance of the noise signal n(7). It is common practice in opera-
tional modal analysis to low-pass filter the measured data in order to avoid aliasing.
Typically, one uses analogue infinite impulse response (IIR) or digital finite impulse
response (FIR) filters for this operation, the most common of which are the Butter-

worth and Chebyshev filters. These filters are linear (Williams and Taylor, 1995) and
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thus preserve the additive form of equation 6.3. Hence, if the bandwidth of the ap-
plied filter is B, then so will be the bandwidth of the additive noise term n(t). Noise
levels in signals are commonly expressed as a percentage, but it seems, that there is
no clear consensus on exactly how this percentage is defined. In this thesis, therefore,
the noise level in the measured signal z(t) will be defined by

rms [n]
rms [s]

(6.9)

noise level =

where rms [-] denotes the root-mean-square value defined as rms[-] = v/E[(-)?]. Note
that, when the time series has zero mean, then the rms value is the same as the
standard deviation of the process, i.e. rms[] = /02 (-), where o2 (-) denotes the
' varié,nce. This definition, also used by Desforges et al. (1995), is analogous to the
the'Signal—to—noise (SNR) ratio traditionally used to assess the dynamic range of the

data acquisition system (Bendat and Piersol, 2000). Equation 6.8 is illustrated in

08 ﬂ n n R fo : R0

06 ” n 1 01

04

02 01

° +

2 005}

u

08 U U of

arl | |

W2 3 4 5 6 7 8 3 u % ar 02 03 o4 05 05 07 08 09 1

Fig. 6.3: Illustration of equation 6.8 for a B = 20 Hz bandwidth-limited white signal with
variance o2 = 0.2. This represents the theoretical noise ac.f. that is added to the exact ac.f.

E [ffss(T)] = R,(7) estimated from the uncorrupted signal s(t) with 02 = 1. This represents
a noise level of approximately 45% in z(t) = s(t) + n(t).

figure 6.3 for a white noise signal n(t) of bandwidth B = 20 Hz and with variance
02 = 0.2. Also shown is the exact ac.f. E [RSS(T)] of the uncorrupted signal s(t) of a
SDOF system with natural frequency 1 Hz and 1% modal damping and with variance

02 = 1. It is seen from equation 6.8 and its display in figure 6.3 that the resulting
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additive perturbation on the ac.f due to the noise term n(t) is substantially mitigated
at lags > 0 due to the fast decorrelation of the band-limited white signal. Qin and
Qian (2001) have exploited this fact to reduce the noise in the random decrement
(RD) signatures by correlating the RD functions with themselves. This technique is
known as correlation filtering. However, a certain degree of correlation exits between
the data sequence of the bandwidth-limited white signal n(t), which manifests itself
by the decaying oscillation with frequency 2B7 as can be seen from equation 6.8 and
figure 6.4. The latter will appear as a noise mode in the identification process and
can, as will be shown later in this chapter, introduce significant bias into the identi-
fied modal parameters. Asmussen et al. (1998), for instance, has taken into account
correlation effects due to noise effects by assuming that they behave as the free decays

of the structure.

The variance and covariance of the noise ac.f. Ry(7) can be estimated from equa-
tions 3.32 and 3.38 respectively in Chapter 3. Bendat and Piersol (2000) computed
the variance of R,(7) as

Var[Rom(7)] 1 4, g sin2(27rB'r)]

~2BT | T " (2nBr)? (6.10)

where the second term in the square brackets is recognised as the square of the ac.f.
of n(t) as given in equation 6.8. However, adopting exactly the same approach as

Bendat and Piersol (2000), the variance is found to be

1

Var[Rnn('r) ~ [0_4 +0’4M

" anB7) (6.11)

2BT

Equations 6.10 and 6.11 are compared with the mean of the auto-correlation functions
simulated from 2000 realizations of a 20 H > bandwidth limited white noise signal n(¢)
of length T = 100s sampled at 15 Hz. This is shown in figure 6.4 where it can be
seen that equation 6.11 is in better agreement with the simulated data. The 20 Hz

stopband was achieved using a digital Butterworth filter. This choice of filter was
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motivated by the fact that the frequency response of the Butterworth filter is flat in
the pass-band, and rolls off toward zero in the stop-band. It maintains this same shape
for higher orders but with a steeper decline in the stop-band (Williams and Taylor,
1995) so that a high order filter gives a relatively sharp cutoff without compromising
the “whitness” of the signal in pass-band too much. A small part of the disagreement
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Fig. 6.4: Comparison of equations 6.10 (dotted line) and 6.11 (dashed line) with the mean
sample ac.f of a 1 Hz, 1% damped SDOF estimated from 2000 realizations of a 20 Hz ban-
dlimited white noise signal of record length T = 100s sampled at 15 Hz (thick, solid line).
The 20 Hz band-pass was achieved with a 10* order Butterworth filter.

between equation 6.11 and the simulated data may be attributed to the fact that
the simulated data has not entirely converged to its true value. However, we suspect
that the principal cause is that it is very difficult to model the correlation function
of the filtered response exactly by, for instance, taking into account the fact, that
the cutoff of the filter is not as sharp as assumed in the analytical equations so that

the bandwidth is slightly higher than the desired 20 Hz. Similarly, we obtain from

equation 3.38

. 0on [sin(2nBv)  sin(27B (27 + v])
Cov[Rnn(7), Run(7 +v)] ~ 2BT [ (27 Bv) * (2B [27 + v)) (6.12)

Since Ry, (rAt) also yields the desired perturbation to the exact auto-correlation func-

'

189



tion Rgs(7) (cf. eqn. 6.7), equations 6.11 and 6.12 provide the necessary statistics to

evaluate the perturbation equations given in the previous chapter.

6.3 Random Error

The aim of this section is to assess how accurately and reliably we can expect the
perturbation theory presented in chapter 5 to predict the random errors in operational
modal parameters. To do so, we proceed by simulation. Two SDOF systems, system A
and B whose modal parameters are shown in table 6.3, are employed for this purpose.
To avoid ambiguity in the notation used in this chapter, recall that the random error
in an estimated statistic, say X, is commonly defined (Bendat and Piersol, 2000) as
the square-root of the variance of this statistic. Thus, the random error in x is the
same as its standard deviation and the term standard error is often used to describe
the same quantity (Bendat and Piersol, 2000). The standard or random error of x
wil be denoted by o[x]. It is often convenient to work with the normalised standard
error which expresses the random error as a fractional portion of the quantity being

estimated, that is

er (%) = ol%/x (6.13)

A slight variation if this definition will be used in this section, namely, that the error
is normalised with respect to sample mean of x rather than the true value x. The
reason for this will become clear shortly. The normalised random error is also some-
times referred to as the coefficient of variation of x.

The variance of the SSI/Cov-identified modal parameter predicted by the perturba-

tion analysis is given by equation 5.8 in Chapter 5 and, for convenience, is displayed

Natural Frequency fy Damping ratio &
SDOF System A 1Hz 1%
SDOF System B 4H:z 1.5%

Tab. 6.1: Modal parameters of the two SDOF systems used in the simulations.
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again below

N N N
Var[x (€)] ~ > Var[e]62 (x) +2 Y, Y Covlejer] & (x) 6k (x) - (6.14)
j=1 j=1 k=1
J#k

Note that the notation used to denote the estimated parameter in the perturbation
analysis, x (€), means the same as x. It is seen from this equation that Var [x (¢)], and
hence the random error in X, depends on the two parameters; (a) the sensitivities d;(x)
of the modal parameters due to a perturbation at the j** data point in the correlation
function and (b) the variance and covariance between the perturbations €;. Any error
in the estimated sensitivities ;(x) and/or estimated variance and covariances will
therefore compromise the accuracy of the predicted random error. In practice, this is
to be expected; the variances and covariances from the data driven or plug-in method
deééribed in section 3.5, Chapter 3 are only estimates and are contaminated by random
and possibly bias errors, although using a flat-top window with ‘optimal’ band-width
considerably mitigates these errors as was shown in section 3.5. Similarly, the sen-
sitivities 0,(x), which result from the eigenvalue sensitivities of the identified state
matrix A, will be in error since the identified state matrix A itself is an estimate as it
is identified from the only available measured response data. In Chapter 5, the sensi-
tivities were treated as deterministic quantities in the sense that the Hankel matrices
Ho(0) and H1(0), computed from the only available response data, play the role of the
exact Hankel matrices (c.f. the remark in section 5.2). Nonetheless, it is important to
recognise that, if a different set of response data is used, H(0) and H;(0) will change
and so will the computed sensitivities d;(x). In other words, the estimated variance,

covariance and sensitivities are random variables and so is the predicted random error.

In a first step, it is desired to investigate the performance of the perturbation algo-
rithm when the variance, covariance and the system sensitivities are exact. After all,
the equation yielding the variance of the identified modal parameter is derived from

a first order Taylor expansion in the perturbation € and there is no obvious argument
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to suggest that the random error in the identified modal data does indeed change
linearly with this perturbation. As perturbations, we will consider the influence of
measurement noise, which affect the sample correlation functions as described in sec-
tion 6.2.3, and the errors inherent in estimating the sample correlation function from
finite response data. For convenience, we shall refer to the latter errors as estimation
“noise”. It is seen from the figure 6.1 that, if the basic assumptions of the measured
output time-histories for operational modal analysis hold, namely that the response is
the result of white, stationary loading conditions and the structure behaves linearly,
then instrumentation and estimation noise are the only two perturbations affecting the
estimated correlation-driven response model. The propagation of these error to the
identified modal data is captured by the computed sensitivities §;(x). It is instructive
to consider the influence of these two perturbations -that is measurement and estima-
tion noise- on the the identified modal parameters separately and we shall start by
investigating thé influence of instrumentation noise. We note that our treatment dif-
fers from the studies in Bergman et al. (1989); Longman et al. (1987) and Peterson et
al. (1996) in that the correlation of the band-limited noise is taken into consideration,
while the latter authors considered the effect of adding uncorrelated noise (which is

the true definition of noise) to measured or simulated impulse response functions.

6.3.1 Influence of Instrumentation Noise

To consider the influence of instrumentation noise only on the SSI/Cov-identified
modal parameters, we eradicate the perturbation caused by estimation noise. To do
so, the auto-correlation functions of the two SDOF systems tabulated in 6.3 were
directly obtained from the exact expressions in equations 3.29 given in Chapter 3, sec-
tion 3.4.1. These auto-correlation functions were computed with a sampling interval
At = 0.05s and 0.08s for system A, and At = 0.04s and 0.07s for system B. Without
loss of generality, they were normalised to unity at zero lag and we chose to work with

displacement responses. White noise signals, denoted collectively by n(r), of total
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record length T' = 900s sampled at At = 0.05s, 0.04s, 0.07s and 0.08s respectively
were then generated to correspond to each of the four cases of auto-correlation func-
tions. Two sets of noise signals were generated, one with standard deviation o = 0.15
and one with ¢ = 0.30. Having normalised the exact auto-correlation functions of
the two systems to unity at zero lag is equivalent to assuming that the hypothetical,
infinite length responses of these systems have unit variance and hence unit standard
deviation. Thus, the noise signals generated correspond, according to equation 6.9,
to noise levels of 15% and 30% respectively. Since it is common practice to apply
an anti-aliasing filter to the measured response histories, the computed noise signals
were filtered with a low-pass Butterworth filter with a band-pass of 0—6Hz. 500 such
noise signals, were generated for each of the two noise levels and sampling intervals
considered above and their auto-correlation functions Ry, (7) were estimated. The
pefﬁurbation due to noise was then added according to equation 6.6 resulting in 500
noise perturbed auto-correlation functions for each of the two SDOF systems in table
6.3 with sampling intervals At = 0.05s, 0.08s for system A and At = 0.04s, 0.07s for
system B and noise levels of 15% and 30%. This gives eight different cases with 500

simulated responses each but only six of them, shown in table 6.2, were used.

For each of these six cases, the SSI/Cov was applied to each of the 500 sim-
ulated responses. Since it is known that the dimensions chosen to construct the
Hankel matrices affect the identified parameters, 3 different sizes of Hankel matrices,
dim(Hp) = (7 x 4),(13 x 8) and (22 x 14) were considered. Recall from Chapter 2
that the shifted Hankel matrix dim(H;) has the same dimensions as dim(Hp) and
that this dimension determines the portion of the auto-correlation function used in
the identification. Proceeding in this fashion, 500 estimated sets of modal parameters
are obtained for each of the six cases and for each of the three Hankel matrix dimen-
sions chosen from which, the sample variance of the identified damping ratios and
frequencies, and hence their normalised random errors, are estimated. The random

error thus computed and shown in table 6.2 for the six cases described above, serve as
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a benchmark against which the random error predicted by the perturbation analysis

is validated.

To get an idea of the accuracy of the random error in the modal damping ratios
and frequencies, computed from a population of 500 samples, it was assumed that the
identified modal parameters are normally distributed. In this case, it is known (see for
instance Rose and Smith (2002)) that the expected value of the standard deviation
of the estimated variance is [6%(%)] = 0%(x)1/2/N which can be approximated as
6%(x)+/2/N since the exact variance is unknown. To convert this into the error in the
estimated normalised random error é.(x), one may express the estimated variance as
&2(_)() ~ 0%(x)[l + 1/2/N). Taking the square-root of this equation, approximating
1+ \/2_/1_\!_]1/ Zasl+ \/W by using the binomial expansion up to linear terms and
noﬁnalising with respect to x, the estimated normalised random error can then be

written as

(D) ~ () + & (01 37 (6.15)

It is noted that the assumption that the identified modal parameters are distributed
normally is not guaranteed and the above equation is only used to get an idea of the
error ¢,(x) computed from a finite sample population. The errors in the estimated
€r(-), computed according to equation 6.15, are shown in brackets in table 6.2. When
no error is indicated means that the error was not significant relative to the accuracy

of the random error shown.

The normalised error, estimated by the perturbation theory is shown next to the
simulated errors in table 6.2. As mentioned, these predicted errors are computed by
using the exact auto-correlation functions as input to the perturbation analysis so

that the sensitivites d;(x) are exact too.
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Influence of Instrumentation Noise

dim(Hp) =7 x4

dim(Hp) = 13 x 8

dim(Hp) = 22 x 14

True Perturbation | True Perturbation I True Perturbation
SODF System A
Case 1 e (&) (%) | 5.37 (£0.17) 5.01 1.42 (£0.05) 1.42 0.74 0.74 (£0.02)
30% noise,At = 0.055  €.(fo) (%) 0.10 0.10 0.016 0.016 0.0067 0.0067
Case 2 e (&) (%) | 3.65 (£0.12) 3.65 1.23 (+0.04) 1.23 0.55(%0.02) 0.55
30% noise, At = 0.08s €.(fo) (%) 0.030 0.030 0.013 0.013 0.0056 0.0056
Case 3 e (&)(%) | 1.23 (£0.04) 1.21 0.33 (+0.02) 0.33 0.19 (£0.01) 0.19
15% noise, At = 0.055  €-(fo)(%) 0.026 0.026 0.042 0.042 0.0016 0.0016
SODF System B
Case 4 e (&) (%) | 1.09 (£0.04) 1.08 0.38 (+£0.02) 0.38 0.19 (£0.01) 0.19
30% noise, At = 0.04s €.(fo) (%) 0.012 0.012 0.048 0.049 0.0023 0.0023
Case 5 e-(€) (%) | 0.60 (£0.02) 0.60 0.28 (£0.01) 0.28 0.14 0.14
30% noise, At = 0.07s  e(fo) (%) 0.008 0.008 0.0038 0.0038 0.0021 0.0021
Case 6 e (&) (%) | 0.27 (£0.01) 0.27 0.09 0.09 0.042 0.042
15% noise, At = 0.04s  &-(fo) (%) 0.0027 0.0027 0.0012 0.0012 6-10"4 6-10"4

Tab. 6.2: Comparison of the normalized random error in the SSI/Cov-identified modal damping ratios (e-(£)) and frequencies (¢-(fo)) due to measurement noise
estimated from Monte-Carlo simulation (500 response histories) and perturbation analysis. The error in (e.(-)) is indicated in brackets. When no error is given means
that the error was not significant relative to the accuracy of (e.(-)) shown.



Also, the exact variance and covariance of the noise perturbations were used to
compute these random errors. Although, the exact variance and covariance could have
been computed from equation 6.11 and 6.12 respectively, it was opted to compute these
statistics by simulation from the 500 perturbed correlation functions available for each
case. The reason for doing so is that this gives a more accurate representation than
is offered by the approximate equations 6.11 and 6.12. The discrepancies between the
simulated and analytical auto-correlation function was illustrated in figure 6.4 and this
disagreement was attributed to the fact that it is very difficult to account for all the

influences of the filter in the modelled the auto-correlation function of the noise signal.

It is seen from table 6.2 that the random error predicted by the perturbation
analysis agrees overall very well with the simulated error. One one hand, this near
peffect agreement should not come as too much of a surprise since, after all, the two
parameters entering equation 6.14, that is, the statistics of the perturbation and the
sensitivities, were determined “exactly”. On the other hand, this result indicates that
a linear approximation of the identified modal parameters in terms of the perturba-
tions €; (see equations 5.5-5.8, Chapter 5) is sufficient to describe the random error
in the modal parameters accurately, at least when the correlation functions are per-
turbed by noise only. Up to the accuracy shown, the perturbation theory predicts
the random error exactly for all cases except for the damping ratio in case 1, where
the random error is underestimated. This discrepancy may be attributed to the fact
that the portion of the auto-correlation function included in the analysis barely cov-
ers half a period. Recall from section 2.3.2 in chapter 2, that the maximum lag of
the correlation function included in the analysis occurs in the shifted Hankel matrix
H, and is given by Tmes = (o + B)At, where At is the sampling interval and a and
B are the block row and column dimensions of Hy (and H;). For Case 1, system
A, the maximum lag is Tz = (o + B)At = 11 x 0.05 = 0.55s and as mentioned,
barely covers half an oscillation of the auto-correlation function. When At = 0.08s,

i.e. Tmaz = 0.88, it is seen from Case 2 in the table that this discrepancy disappears.
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Fig. 6.5: Comparison of the normalised random error er(£) of modal damping ratios identified
with small Hankel matrix dimensions. The abscissa gives the rows in Ho and H\. The number
of columns is one less in each case than the number of rows.

The convergence of the predicted random error to the true value as the portion of the
correlation function included in the analysis increases is illustrated in figure 6.5. As
the noise level in the signal decreases, so will the discrepancy between predicted and
true error even for low dimensional Hankel matrices since, in theory, the dimensions
of the Hankel matrix need not be bigger than the model order of the system, for in-

stance 2 x 2 in this case. This is indicated by comparing Case 1 and Case 3 in the table.

However, it is very clear from the results presented that, in practice, it is of ad-
vantage to work with large Hankel matrices: the sharp drop in random error with
increasing dimension of the Hankel matrices is clearly visible from table 6.2. This is
very similar to behaviour of the random error as a function of the size of the Han-
kel matrix described in Bergman et al. (1989). In the latter work, white noise was
added directly to simulated impulse response functions so that the covariances of the
perturbations € is zero and Var/[ej] is the same at each data point of the IRF. These
observations suggest that the influence of the covariance of the band-limited noise on

the random error of the modal parameters is small. As was already shown in Bergman
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et al. {1988), the decreasing random error with increasing dim(Hp) is the consequence
of increased robustness of the SSI/Cov algorithm with respect to noise as dim(Ho)
incre@s i.e. sensitivities ;(-) decrease. A similar conclusion régarding the sensitivity
of the identified poles with respect to noise, from which the modal frequencies and
damping ratios are extracted (cf. section 2.3.2, chapter 2) was obtained by Bazan

(2004).

Table 6.2 also shows a decrease in the random error as the sampling interval At
is increased, for both systems A and B. From the data shown in this table, it cannot
be concluded that this trend holds in general. In fact, the explanation for the drop in
random error with increased sampling interval is as follows; recalling that the noise
| was lpw—pa.ss filtered with a band-width of B = 6 Hz, it is seen from equation 6.6,
that the perturbation of the auto-correlation function oscillates with a frequency of
6 Hz and thus has a period of approximately 0.166s. Thus, a discretisation in steps
of At = 0.08s and 0.07s picks out those perturbations that are, on average, nearer to
the zero crossings and hence smaller in magnitude than when a sampling interval of
At = 0.05s and 0.04s is considered. Since the same holds for the variances and covari-
ances of the perturbations (c.f. equations 6.11 and 6.12), it is clear that the choice of
At = 0.08s and 0.07s in this particular case results in a smaller random error. General
guidelines on how to choose the sampling interval to miniﬁﬁse the random error were
not further investigated. As can be seen from the table 6.2, the perturbation analysis
accounts for different sampling intervals, so that in practice, the “best” choice for
At can be obtained by comparing the random errors of the modal parameters from
different runs using the same data but with a different At. The best choice of sample
interval among the different runs considered being the one yielding the lowest error in
the modal parameters. We finally note that, as expected, the random error drops as

the level of the perturbation is decreased.
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6.3.2 Influence of Estimation Noise

In the previous section, the behaviour of the random error in the estimated. modal
parameters due to noise in the measured data was described. In this section, the same
is done for perturbations of the correlation functions due to the sample estimation
€ITOrs descnbed in Chapter 3. For this purpose, the same two SDOF systems -system
A and B in table 6.3- were employed and the same six cases as in the previous sec-
tions were considered. In each case, the particular system was excited by a normally
distributed, white noise input and the response was computed for a total duration
of T = 900s using a Newmark-3 time integration scheme. As for the simulations
in Chapter 3, section 3.5, the 900s of response data consists only of the stationary
~ part of the response; that is, care was taken to remove the initial, non-stationary por-
'tiog of the response that occurs when the system is excited froxﬂ rest. 500 response
hisféries were generated in this fashion in each case and the sample auto-correlation
function was computed from each output and the modal frequency and damping ratio
estimated. From the 500 sets of modal parameters thus obtained for each case, the
“¢rue” normalised error was approximated according to equation 6.13 and the error
in this approximation is given by equation 6.15. We note that the random error was
normalised with respect to the mean of the'identiﬁed modal parameters, rather than
with respect to the true value. This was done to enable a more direct comparison with
the errors predicted by the perturbation analysis, because in the latter, thé €ITors were
normalised with respect to the identified modal parameters for each realisation. These

values are tabulated in table 6.3.

To compute the errors predicted by the perturbation method, the same approach
was adopted as in the previous section: the sensitivities were computed from the
exact auto-correlation functions which were approximated as the mean of the 500
auto-correlé,tion functions available for each case. The exact perturbations were ap-
proximated similarly from the variance and covariances from the 500 response histo-

ries. The resulting normalised random error is shown in table 6.3.
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002

Influence of Estimation Noise

dim(Hp) =7 x 4

dim(Ho) =13 x 8

dim(Ho) = 22 x 14

True Perturbation | True Perturbation | True Perturbation
SODF System A ,
Case 1 e (€) (%) | 13.59 (+0.43) 13.62 13.71 (+£0.43) 13.76 14.11 (+0.45) 14.15
T = 15min, At = 0.058 €.(fo) (%) 0.14 0.14 0.14 0.14 0.14 0.14
Case 2 (&) (%) | 13.27 (+£0.42) 13.61 13.67 (+£0.43) 14.00 14.07 (+0.44) 14.45
T = 15min, At = 0.085 €.(fo) (%) 0.22 0.14 0.22 0.14 0.22 0.14
Case 3 e-(€)(%) | 17.17 (£0.54) 17.24 17.32 (£0.55) 17.50 17.74 (£0.56) 17.93
T = 10 min, At = 0.05s  €.(fo)(%) 0.17 0.17 0.17 0.17 0.17 017
SODF System B
Case 4 er(€) (%) | 6.43 (£0.20) 6.42 6.65 (+0.21) 6.64 7.12 (+£0.22) 7.71
T = 15min, At = 0.04s  €.(fo) (%) 0.08 0.08 0.09 0.09 0.10 0.10
Case 5 er(€) (%) | 8.42 (+0.26) 8.38 8.68 (+0.27) 8.66 9.17 (+0.29) 9.16
T = 15min, At =0.07s  €-(fo) (%) 0.08 0.08 0.08 0.08 0.09 0.09
Case 6 e (&) (%) | 7.79 (£0.25) 8.03 6.96 (+£0.25) 8.00 8.57 (£0.27) 8.52
T =10 min, At = 0.04s € (fo) (%) 0.10 0.10 0.11 0.11 0.12 0.11

* Tab. 6.3: Comparison of the normalized random error in the SSI/Cov-identified modal damping ratios (e.(£)) and frequencies (¢-(fo)) due to estimation noise estimated

from Monte-Carlo simulation (500 response histories) and perturbation analysis. The round brackets give the error in €(-) as computed by equation 6.15



ons given in Chapter 3 for the auto-correlation functions and

The analytical express
corrrespondmg covariances could also have been employed but for a direct comparison
with the simulated errois, the frequency shift due to the Newmark time integrations
needs to be accounted for. It is seen in table 6.3 that, apart from a few negligible
discrepancies, the normalised random errors predicted by the perturbation method

_ agree well with the true errors. It can therefore be concluded that, like for perturba-
tion by noise only, a linearrapprmdmation in term of the perturbations due to sample
estimation errors is sufficient to describe the errors in the SSI/Cov-identified modal
pa.rametersuand that the perturbation analysis presented is suitable for output-only
modal analysis problems.

It is worth pointing out some of the differences in the random error in the identi-
fied modal parameters when the perturbation is due to noise and sample estimation
errors. Comparing tables 6.3 and 6.2, it is seen that a substantially higher error is
caused by estimation noise, even 'compared to the conservative case in which a 30%
noise level was chosen. Since the auto-correlation function of the measurement noise,
which yields the effective perturbation of the Hankel matrix, was computed with the
same record lengths as in each of the cases in table 6.3, the influence of measurement
and estimation noise is directly comparable. Also different, is the behaviour of the
error as a function of the dimension of the Hankel matrix: while the error due to mea-
surement noise drops sharply as the dimensions of Hg increases, the error due to the
perturbation by estimation errors in the sample correlation functions increases slowly
with dim(Hp). This is ta be attributed to the strong covariances in the perturbations
causes by the sample estimation errors and is illustrated in figures 6.6. For conve-
nience, only system B is used for illustration. When the perturbation is due to noise
only (figure 6.6(a)), the effect of the covariances on the random error is slight due to
the fast decorrelation of the noise with increasing lag. On the other hand, when the
perturbation is due to sample estimation errors, the behaviour of the random error is

lé,rgely governed by the covariance term in equation 6.14. When this term is ignored,
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Fig. 6.6: Comparison of the influence of the covariance of the perturbation due to (a) noise
and (b) sample estimation errors. The number of columns in the Hankel matrices used is one
less than the number of rows.

the behaviour of the random error is similar to that caused by noise perturbations. It
may be concluded that as a rule of thumb, “larger” Hankel matrices are favourable
since the error due to noise will be significantly mitigated compared to the slight in-

crease in error due to estimation noise.

Also interesting to note from table 6.3 is the rate of increase in the error of the
modal damping ratios with increasing record length T. More precisely, as T is in-
creased from 600 s to 900 s, that is by a factor of 1.5, the normalised error in the
damping ratios decreases roughly by the square root of the inverse of this factor. This
is observed for both systems 4 and B. Precisely the same behaviour as a function
of the record length 7 was shown in Chapter 3 to hold for the normalised random
error at zero lag in the estimated auto-correlation functions, see equation 3.35 and
figure 3.5. In fact, it is observed that the normalised random error at zero lag in
the auto-correlation function closely matches the normalised random error in the
SSI/Cov-identifed modal damping ratios. For system 4 and B, equation 3.35 pre-
dicts a normalised random error in their correlation functions of 13.3% and 5.43%

respectively, which is indeed very close to the errors in the modal damping ratios tab-
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ulated in table 6.3, for low dimensional Hankel matrices. Alternatively, these values
may be read from figure 3.5. An interpretation for this observation is that, if only
the low lag part of the auto-correlation function is used in the SSI/Cov, where the

error changes little from that at zero lag, no additional random error is introduced in
the identified modal dainping ratios as the perturbed correlation function is passed
throﬁgh the algorithm. In a nutshell, the error that goes into the algorithm is the
same as that in the compﬁted modal damping ratios. A more precise formluation of
this relationship appears difficult to establish due to the many parameters that enter
the SSI/CG; and was not further pursued. However, this obsemtion may be used a.s
a rule of thumb to get an initial idea of the order of magnitude of the relative error
in the identifed modal damping ratios, or, in the pre-test stage, be used to determine
| the‘record length necessary to identify the modal damping with a particular accuracy.
Fo;l':”'example, if it is asumed, based on experience with similar structures, that the
modal parameters are of the order of 1Hz,1% damping, and it is desired to estimate
the modal damping ratios with an accuracy of less than 10%, equation 3.35 yields
a required record length of 26.5min. The record length T obatined in this fashion
should be considered as a minimum requirement to encompass the influence of other
error sources on the identified modal damping ratios and also to cover the case when
larger Hankel matrices are used. A rough estimate of the order of the error of the
frequency can also be obtained since, as shown in Peterson et al. (1996), the absolute
error in the modal damping ratio, that is £ — é , approximately yields the normalised
error in the modal frequency. For instance, if the modal parameters of the structure
are assumed to be of the order of 1Hz,1% damping as above, and T is chosen such
as to estimate the damping ratio within 10%, then the frequency is identified with an

accuracy of roughly 0.1%.
It was shown, that the perturbation analysis yields very accurate predictions of

the random error in the SSI/Cov-identified modal parameters when the perturbations

are caused by noisy data and sample estimation errors. However, so far, the sensitivi-
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ties and perturbations were modelled exactly, which is not possible in practice, where
both these quantities can only be approximated. It needs to be established whether
the predicted random errors are robust with respect to deviations in the sensitivities
and estimated perturbations.

6.3.3 Robustness of Perturbation Algorithm

When the perturbation method is applied in practice, the system sensitivities and
the perturb;.tions of the correlation functions are only estimates: the sensitivities are
obtained directly from the estimated (as opposed to exact) sémple correlation func-
tions and the perturbations follow from the estimated sample variance and covariance
ﬁ'om the single set of available response data. Due to the random errors in both the
saxi;;;le correlation functions and its variance and covariance estimates, the random

error predicted by the perturbation method is a random variable itself.

Influence of Errors in the Estimated Perturbations

Four situations are considered:

e (a) Perturbation is due to measurement noise only. The effect on the predicted
random errors in the modal damping ratios is considered when the noise level in
the data is under- or overestimated up to 15%. The sensitivities were computed

exactly.

o (b) Perturbation is due to estimation noise only. The effect on predicted random
errors in the modal damping ratios is considered when the variances and covari-
ances of the auto-correlation functions are under- or overestimated up to 15%.
More precisely, if Var[R(r)] and Cov[R(r), R(T +v)] denote the exact variances
and covariances of the sample auto-correlation function R(T) at all lags 7 in-
cluded in the SSI/Cov algorithm (and hence the perturbation analysis), then the

estimated quantities were modelled as a(Var[R(7)]) and a(Cov[R(7), R(T+v)]),
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with the factor a covering the range of values such that a( Var{R(0)]) repre-
sents a +15% error in Var[R(0)]. This situation arises when the data-driven
or plug-in method is employed to estimate the variance and covariances of the
sample correlation functions. As argued in section 3.5.1, the estimated vari-
ance and covariances manifest themselves as stretched or compressed versions
rof the the exact quantities (also c.f. figure 3.11) and the idealisation to model
these estimates as pfuportional to the exact variance and covariance functions

is appropriate. The sensitivities were computed exactly.

e (c) Owver and -underestimated frequency content. The effect on the predicted
random errors in the modal damping ratios is considered when the frequency
content of the system is under- or overestimated up to 15%. In other words,

.if the natural frequency of the system is 1Hz for insta.nce,‘ it is assumed that

| the system is identified with frequencies ranging from 0.85 — 1.15H 2. The auto-
correlation functions and the corresponding covariances are computed at the
identified frequencies. Such frequency shifts can occur in practice when the
response data has a non-stationary frequency content. It is well known that
(Bendat and Piersol, 2000) the stationary correlation estimates obtained by ap-
plying the usual estimators to non-stationary data are effectively time-averaged
non-stationary correlation functions. This time-averaging process can cause de-
viations from the true system frequency and, if the plug-in method is used, this

shift is clearly transmitted to the estimated perturbations.

e (d) Mismatch between the frequency content of the data and estimated perturba-
tions. In thié case, the auto-correlation functions used to estimate the perturba-
tions are shifted in frequency by 15% either side of the correct system frequency.
The sensitivities, on the other hand, are computed at the correct natural fre-

quency.

To illustrate the 4 situations above, system A is employed, but the normalisation to

be used makes the results valid for arbitrary systems. Using the perturbation method
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Fig, 6.7: Illustration of the robustness of the perturbation method with respect to errors in
- the computed perturbations.

with the exact auto-correlation function and covariances, the normalised random error
in the identified damping ratio was computed for the same parameters as in case 1 in
tables 6.2 and 6.3, depending on whether the influence of noise or estimation errors is
considered. The thus computed normalised random error was then normalised with
respect to the true normalised error. As mentioned, this implies that the results shown
are not only valid for system A but also, proceeding in this fashion shows the devi-
ation from the true error due solely to inaccuracies in the modelled perturbations as
described in cases (a), (b), (c) and (d) above. Since the error in the natural frequency
is small, only the damping ratios are considered and the results are shown in figure
6.7.

It is seen from figure 6.7 that the random error is well behaved in cases (a), (b)
and (c) in the sense that the over- or underestimation in the perturbation causes a
deviation from the true normalised random error that is lower than the error in the
perturbation itself. It is also seen from cases (a) and (b) that the effect of under- or
over estimating the perturbations results in the same relative deviation from the true

error. For case (d), however, the perturbation method is not well behaved and it is

206



seen that even for small discrepancies between the frequency in the correlation func-
tion and the estimated variance and covariances, the normalised random error is very
poorly predicted by the perturbation method. However, such a situation is unlikely to
occur in practice provided the plug-in method is used to compute the perturbations
since, as illustrated in chapter 3, section 3.5.1, the variance and covariance estima-
tors 6f the sample correlation functions described in equatioﬁ 3.42 combined with the
flat-top window does not aﬂ'ect the oscillatory character of the true covariances but
only over-or underestimates the amplitudes. Case (d) was chosen with the aim to
emphasize the importance of estimating the perturbations using the plug-in method,
rather than relying on a model computed independently from the sample correlations.
'Due to the idealised modelling assumptions made above, it is worth checking the
| results depicted in figure 6.7 by simulation. To do this, 500 response histories with
the"“'same parameters as in cases 1 and 4, for systems A and B respectively, are com-
puted and the variance and covariances, and hence the perturbations, are obtained
using the plug-in method described in chapter 3 and the system identification was
performed using a 13 x 8 Hankel matrix. In this fashion, 500 error estimates were
obtained for each of the modal parameters for each of the two systems. A scatter plot
of the latter are shown in figures 6.8. The mean normalised error, ule.(-)], of both
modal parameters as well as their standard error o[e,(-)] are given and represented on
the figures. The width and height of the rectangles represent the standard error of the
modal damping ratios and frequencies respectively. In a first instance, it is seen from
the standard error that the perturbation algorithm is very stable in the sense that, on
average, we can expect a 3.17% and 0.65% deviation from the mean damping ratios for
system A and B respectively as a result of the estimation errors in the perturbations.
It remains to illustrate the linear behaviour of this deviation with respect to under-
and overestimation of the perturbations as shown in figure 6.7: since the variance
and covariances were computed from each of the 500 responses for each system, it is
possible to estimate the normalised random error of the thus computed variances and

covariances. As before, the random error at zero lag is chosen as representative. A
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Fig. 6.8: Illusration of robustness of perturbation method with respect to errors in the esti-
mated perturbation due to sample estimation errors.

normalised random error of 45.39% and 18.97% of the variance at zero lag was found
for system A and B respectively. This means that, on average, the variance is an over-
and underestimation by this amount and represents the error in the abscissa in figure
6.7. Since the behaviour of the normalised random error in the modal parameters as
a function of the the normalised error in the estimated perturbations is linear, we can
extrapolate this error for the estimated damping ratios from the figure. For a 15%
error in the perturbation estimates, it is seen from figure 6.7 that, roughly a 7.2% er-

ror in the predicted normalised error for the modal damping ratios is to be expected.
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Thus, for 45.30%, the extrapolated error yields 21.79% in case of system A. Similarly
for system B, an extrapolated value of 9.11% can be found. From the scatter plots 6.8
and the eompufed standwddwmtwn of the normalised random error, we can compute
the normalised error (with respect to the computed mean, taken to be the true error)
in this normalised error to find 3.17/14.61 = 21.70% and 0-65/6.80 = 9.56%. These values
are very close to the extrapolated values above thereby supporting the idealised simu-
lation in figure 6.7, and thé‘robustness of the perturbation algorithm with respect to

errors in the computed perturbations obtained via the plug-in method from chapter 3.

~

Influence of Errors in the Computed Sensitivities

To illustrate the effect on the predicted random error due to inaccuracies in the com-
puted sensitivities, again system A is considered and the parameters used in the
perturbations analysis are the same as in tables 6.2 and 6.3, depending on whether
the influence of noise or estimation errors is considered. A 13 x 8 Hankel matrix
was used. However, instead of using the true auto-correlation functions as input to
the perturbation algorithm, the estimated sample correlation functions from each of
the 500 simulated response histories were used and the perturbation analysis was run
for each of the 500 simulations. This results in an ensemble of 500 estimates of the
normalised random error in the modal parameters. Since the perturbations were mod-
elled exactly as in tables 6.2 and 6.3, the scatter of the normalised random error is
entirely due to the inaccuracies in the computed sensitivities. The results are depicted
in figures 6.9. It is seen from figures 6.9(a) and 6.9(b), showing the results where the
sé.mple correlation functions were corrupted by 15 and 30% noise respectively, that the
system sensitivities are robust with respect to noise disturbance since the scatter in
. the predicted normalised random errors is small and clusters closely around the true
error as can be seen by comparison with case 1 in table 6.2. The standard deviation of
the normalised random error in the natural frequency and damping ratio is indicated

in these figures and represented by width and height of the rectangle respectively.
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Fig. 6.9: Illustration of robustness of perturbation method with respect to errors in the esti-
mated system sensitivities. The simulations are performed on system A. Figures(a) and (b)
show the scatter due to 15% and 30% measurement and figures (c) and (d) due to estimation
noise due to record length of duration 7 = 900 and 600s respectively.

Although a slight bias is observed in the 30% noise case, the scatter in the modal
damping ratios is roughly within 1% of the true error as can be seen from the 0.015%

standard deviation. The scatter in the frequencies is negligible.

Figures 6.9(c) and 6.9(d) depict the scatter of the normalised errors predicted by

the perturbation method when the computation of the sensitivities are corrupted by

the estimation errors in the sample auto-correlation function. It is seen that, as for
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ificant in this case. The linear cor-

relation between the nmmakimd error in the natural frequencies and damping ratios
is due to the fact that the error in the identified system pole affects both modal pa-
rameters, although the modal damping ratios suffer significantly more. Nonetheless,
the standard deviation of 1.02 and 1.60 percentage points when the record length is
T = 15 and 10 min @p&tively, shows that, on average, the perturbation method
yields stable estimates of the random error. As for the noise case, a downward bias
is noted in both figures. A possible cause for the latter may be attributed to the fact
that the varibnce is not corrected for bias. Nonetheless, figures 6.9(a)-6.9(d) show
that the perturbation method is robust. Clearly as the reco‘rd length is increased,
the sample correlation are better estimated and the perturbation results become more

stable as evidenced by comparing figures (c) and (d).

It may be worth at this stage briefly commenting on the record length. Due to
the noninvasive nature of operational modal testing, it is generally possible to acquire
significant amounts of response data. The total time over which the response can be
measured is influenced by a few factors. In a first instance, it depends on the bit-rate
and storage capability of the data acquisition equipment at hand. However, since
the modal frequencies of civil engineering structures are typically low, and hence a
low sampling rate can be chosen, long response records afe possible. Record lengths
ranging from 30 — 60 mins can be considered typical, see for instance Cantieni (2005);
DeSmet et al. (1996); Farrar and James (1997); Felber et al. (1996), but longer re-
sponse histories are becoming commonplace (Qin and Qian, 2001). But the size of
the structure, the number of channels available and the coarseness of the desired mea-
surement grid also play a role. When the measurement grid is smooth and the size of
the structure large, many setups may be required if the number of available channels
is low. Performing such a test takes time and the length of the response histories is
often compromised. Such a situation is, for instance, described for a dam in Cantieni

(2005), where the response histories were limited to 6 mins. If only frequencies are
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desired, short record lengths are often sufficient to obtain a reasonably accurate es-
timate Cunha et al. (2001) or in other cases, for instance, when the response due to
earthquake loading is sough$, which have a duration of about 60 — 120 s short records
must be used. In most ambient testmg applications to civil engineering structures,
one can expect to collect data for > 15 min which means that our choice of using

10 — 15 min can be considered conservative.

Influence of Combined Instrumentation and Estimation Noise

Having investigated the influence of measurement noise and eétimation errors in the
sample correlation functions on the identified modal parameters, as well as the robust-
| ness of the perturbation method with respect to errors in the estimated perturbations,
the"i);ehaviom of the predicted normalised random error is investigated when both er-
ror sources contribute to the perturbation. Again, we proceed by simulation on the
two systems A and B. For each system, 500 response histories were simulated by
adding a 30% broad-band white noise signal to the computed response time-histories.
The response and noise signal were computed using the same parameters as in cases
1 and 4, for the two systems respectively, given in tables 6.3 and 6.2. The variance
and covariances, and hence the perturbations, were obtained using the plug-in method
described in Chapter 3. The system identification was performed using a 7 x 4 Han-
kel matrix for system A and a 22 x 14 Hankel matrix for system B. In this fashion,
500 error estimates were obtained for each of the modal parameters for each of the
two systems. A scatter plot of the latter are shown in figures 6.10. As before, the
mean normalised error, ule,(-)], of both modal parameters as well as their standard
error ole-(-)] are given and represented on the figures. The width and height of the
rectangles represent the standard error of the modal damping ratios and frequencies
respectively. For comparison, the true normalised errors are given in table 6.4. As
expected, it is seen by comparing table 6.4 to tables 6.2 and 6.3 that most of the

error stems from the estimation noise. However, the contribution from the measure-
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ment noise is clearly visible for system A (compare with tables 6.2 and 6.3) and it
appears that the contribution of both sources add up to yield the total error. Quite
surpﬁsingly, however, this does not appear to be the case for the random error in the
frequencies, for which a much higher error is observed. It is not clear why this is the

case but, importantly, the perturbation method predicts the correct error.

Due to the fact that noise is so significantly mitigated when a higher dimensional
Hankel matrix is employed, the addition of both errors is less obvious for the simula-
tion on system B, although a slight increase in random error is picked up. Since the
random error in the estimated modal parameters due to noise decreases sharply as
more correlation lag values are used (c.f. table 6.2 and figures 6.6) but, on the other
| hand, increases gently due to estimation errors (c.f. table 6.3), one can expect the
raﬂaom error to reach a minimum when the influence of the noise starts to fade and
starts to be dominated by the estimation errors only. Such a behaviour of the scat-
ter of the modal damping ratios identified via the correlation fit method was already
reported by Cooper (1989). Comparing the true errors in table 6.4 with the mean
predicted error in figures 6.10 it transpires that the latter are slightly overestimated.
The precise reason for this discrepancy is not known but the slight errors that ensue
due to the windowing and approximations in the plug-in method are plausible candi-
dates. These simulations show that the plug-in method is capable of accounting for
both disturbances in the data with good accuracy and in fact, due to the nature of
the method, any random disturbance will be picked up in this fashion as long as it is

stationary.

It is seen from figure 6.10 that the standard deviation is both cases is small so that

er(f0)(%) e (§)(%)
System A 0.82 16.01
System B 0.10 7.36

Tab. 6.4: True normalised error of the estimated natural frequencies and damping ratios due
to the combined influence of measurement noise and sample estimation errors.
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Fig. 6.10: Illustration of the perturbation method in the presence of combined measurement
noise (30%) and sample estimation errors.

the true error is on average predicted with good accuracy. It appears from figures 6.10
that the linear correlation between the error in the identified modal damping ratios
and frequencies is negative i.e. as the accuracy in the frequencies increases, its drops
for the damping ratios and vice versa. However, the frequencies are identified accu-
rately and the outliers do not deviate excessively from the mean with a maximum
absolute error of 6% occurring for system A. When only a single response record
is available from which the error in the SSI/Cov-identified modal parameters is pre-

dicted, it is very difficult to tell how accurately the error prediction approximates the
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true error. It follows from figures 6.7, 6.8 and the related di
of how well the true error is approximated could be obtained if the random error in the

ion, that an estimate

sample variance of the auto-correlation function at zero lag were available. However,
due to the gentle slope of the line in figure 6.7 relating the normalised error in the
perturbatiens to the deviation from the true error in the identified modal parameters,
a mgh estimate of the the random error in the sample va.rianée of the auto-correlation
function at zero lag may be sufficient to get a good idea of the accuracy of the single
error predicted by the perturbation method. Although this knoweldge would be desir-
able to place confidence in the predicted error, this issue was not pursued further and
should be the subject of further research. Due to the stable nafure of the perturbation
method as well as the plug-in method to estimate the perturbations, the simulations
80 fa:r have shown that, on average, one can expect to predict the random error in the
moda.l parameters with good accuracy for all practical purposes. It is worth point- .
ing out that, as shown in Chapter 4, the variance and covariances, and hence the
perturbations may alternatively be computed using the bootstrap method. In this
case, an estimate of the root-mean-square error of the resulting estimates is obtained
as a by-product, although the latter has the undesirable porperty that it is accurate
only if the estimate of the variance and/or covariance is accurate too. Nonetheless,
this may be used to get a crude idea of the accuracy of the actual error prediction.
The performance of the bootstrap in conjunction with the perturbation method is not
investigated in this thesis and the use of the bootstrap as a separate tool to determine

the errors in identified modal parameters is investigated in the next chapter.

For completeness, it is shown that the perturbation method also takes into account
the random error introduced due to model order selection. As described in Chapter
2, the SSI/Cov requires the model order to be specified by the user with the aim
to separate the noise modes from system modes. For a more detailed explanation,
the reader is referred to Chapter 5. In practice, the model order is determined by

inspection of the singular value diagram, and the largest gap in the singular values
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indicates the model order. However, this gap is not always obvious and conseq
the model order is often under- or over s
noise space is retained in the curve fit and clearly, this affects the random error of the
| modal parameters. This is shown in table 6.5. The simulation is performed

en Iy,

using system A and B and the record length and sample interval are the same as in
the previous section. The identification is performed with a 22 x 14 Hankel matrix.
The first case shown (that is for the true model order 2) is the same as in the previous
section, but is repeated here for a better comparison. It is seen that when the system
is identified with a higher model order, the random error in the modal parameters
increases and this behaviour is correctly predicted by the perfmbation method. The
mcre&smg random error with model order reflects the fact that part of the noise space
is retained in the identification of the system matrices. It is noted that not only does
the random error in the modal parameters increase but also the scatter in the pre-
dicted errors. This can be seen from the standard deviations shown in the table. In
practice, the distinction between the identified system modes and noise modes is made
using stabilisation diagrams. However, as pointed out by Bergman et al. (1989), the
random errors of the spurious modes predicted by the perturbation analysis tends to
be significantly larger compared to those of the system modes and this information
may be used to separate noise from system modes. It is shown in Peterson et al.

(1996), however, that it is possible for spurious modes to be identified with a random

System A Systeﬁl B
Model Order 2 4 6 2 4 6

True Error (%)
er(fo) 1442 1464 1491 736 750 7.78
e (&) 015 015 015 010 010 0.10

Predicted Error (%)
pler(fo] 1537 1558 1588 749 762 7.98
ole-(fo)] 0016 0.016 0.016 0.006 0.007 0.011
ule-(€)] 016 016 016 010 010 0.11
ole-(€)]) 150 150 151 035 038 0.92

Tab. 6.5: Influence of model order selection on the predicted random errors.
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iated predicted random errors is not always reliable and therefore should be
-used only as a tool to assist the stabilisation diagram interpretation. In the simulation

e task of analysing a stabilisation diagram for each 500
predicted
ra.ndnm errors. This is acceptable in this case, because the tfue modal parameters as

realisations, the system modes were picked based on their significantly lowe:

well as the true system order is known which allows checking whether the true system
mode has been picked in each case.

Influence of Non-white, Non-stationarity Loading

| It has been shown so far that the perturbation method yields accurate and robust
estlmates of the random error in the SSI/Cov-identified modal parameters when the
excitation of the system is broad-band white noise and the response is corrupted by
measurement noise. The data-driven method developed in chapter 3 to estimate the
perturbations to the sample correlation functions takes into accbunt the combined in-
fluence of the estimation and measurement noise and in fact, since this plug-in method
is designed to estimate the variance and covariance of sample correlation functions
computed from random stationary data, any disturbance of the response other than
estimation and measurement noise is accounted for by this method, as long as it is
stationary. Although it is common practice in operational modal analysis to assume
that ambient loading conditions and hence the response of the structure is stationary,
examination of full-scale real response data has shown that this is not always the case.
In this section, it is investigated whether the perturbation method also yields accept-
able random error predictions in the SSI/Cov-identified modal parameters when the
loading conditions exhibit non-stationary characteristics. Also, the departure from

white loading conditions is considered.

- For the vast majority of applications of operational modal analysis to civil en-
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gzmmgmme;, the sesumption of white and stationary loading conditions is
- applicable, atleasﬁinamimifwm farimta.ace, Turper and Pretkrwe (1988) have
shown by swmlaﬁm whlch is vahzlated aggmsﬁ mmured datar that mﬁc, vnth its
ranéamwmghtoff: aes ang ‘ " dist
road xrregulant:es kas a broad enough spectrum to excite the ﬁlndaxnwtal modes of

bndge structures. Although the spectrum of traffic induced excitation may not be
“flat”, their findings suggést that the spectrum is slowly varying and that a white
noise approximation may be appropriate, at least over the low frequency range cover-
ing the fundamental modes of bridges. Also, as reported by Holmes (1998); Kareem
(1987), the spectra of wind loads on structures falls within a' 10Hz frequency band
and are relatively slowly varying so that the above argument applies and a white
nome excitation can generally be taken as a valid assumption. However, exceptions
occtir for instance in structures where periodic forces mix with random ambient loads.
Such situations occur commonly in structures associated with harmonically moving
components arising most commonly from unbalanced rotating parts such as blades in
wind turbines (James et al., 1993) or floor slabs supporting plant for instance. Mo-
hanty (2005) has developed an extension to the SSI/Cov (or the ERA) to deal with
such cases and Brincker et al. (2005b) developed and indicator to distinguish between

structural modes and modes caused by harmonic excitation.

Deviations from stationary loading regimes are much more common in practice.
For insta.ﬁce, in traffic induced bridge vibration, the passing of vehicles over bridge
deck causes transients in the response, and also, as shown by Calcada et al. (2005a,b)
that the interaction force between vehicle and bridge deck has harmonic components.
A typical repose of the vibration of bridge deck induced by traffic is shown in figure
6.11, clearly showing the transients due to a vehicles crossing the deck. This measure-
ment was taken by the author in collaboration with the University of Luxembourg
on a four-span bridge over the river Alzette in Luxembourg in 2004. Non-stationary

responses of bridge decks to aerodynamic loading, resulting in clear frequency changes

218



.

R

[P AR R

O A

cmmmrnapn
A ———

PR,
'
i
|
'
v
1
i
|

[

ER I .- — A— - R 2 S— .
018 S SRS 1 R D R N .
02 i i i i i

a 20 40 60 a8a 100 120

Fig. 6.11: A typical response acceleration record of traffic induced bridge deck vibration.

in the response with time, have also been reported, see for instance Zhang et al. (2006).

Studying the influence of non-stationary, non-white ambient loading conditions
on modal parameters in a general framework is very challenging. The reason is that
non-stationarity as well as non-whiteness are negative statements in the sense that
they describe a lack of properties rather than specifying the exact nature of the non-
stationarity or the precise spectrum of the frequency content of the data respectively.
The situation is further complicated by the fact that the specific nature of the non-
stationary characteristics and non-white ambient loading conditions will inevitably
vary from case to case and to the authors knowledge, there is no clear consensus on
the form of non-stationary, coloured loading typically occurring in operational modal
testing of civil engineering structures. Even in particular cases, where the sources of
ambient excitation forces are known, realistic simulations of the resulting loading is
extremely challenging on its own, in particular for wind excitation which generally
depends on the geometric properties of the structure as well as on its urban or sub-
urban condition. Therefore, to achieve our aim, we content ourselves by modelling a
generally hostile loading regime departing from the common assumptions of station-

ary, broad-band white noise excitation.
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Load case Description Ilustration

¢ Normally distributed, white noise signal with
unit mean-square value (msv= 1) is modulated
by a stepped modulation function. The latter

is shown in the figure on the right (red)
superposed on the modulated signal.

* This yields an excitation that is non-stationary
in the mean. The maximum and minimum m sv of
The modulated signal are 1.3 and 0.7 respectively.

* Additionally, a 2Hz harmonic is superposed with
a peak amplitude of 0.6.

* The modulation function remains the same for all
simulated load cases so that the only random

factor stems from the underlying white noise 0 100 200 300 400 500

signal. Time (s)

¢ Normally distributed, white noise signal with
unit mean-square value (msv =1) is modulated
by a stepped modulation function.

¢ Unlike load case 1 above, the stepped
modulation function changes for each simulated
load case. Two such modulation functions are
depicted on the right. These changes are random
and the plateaus have duration drawn uniformly

on the interval 40-120s. The respective amplitudes
are sampled from a uniform distribution with a msv
of 1.3

* The mean square value over an ensemble of
500 simulated load cases is shown in grey.

Tim ¢ (s)

Fig. 6.12: Description of load cases 1 and 2.
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Load case Description [Mustration

* The loading is modelled by concatenating
“pockets” of coloured noise with different band-
widths resulting in a time-varying , non-stationary
frequency structure.

* The excitation has unit m sv and the band-widths
of the coloured noise pockets vary randomly
between 0 and 2.5 Hz. They all contain the /Hz
natural frequency of the system. A typical
response, together with its spectrogram is
illustrated on the right.

*The duration of each pocket and its band-width
are kept fixed in all simulated load cases.

* The excitation is modelled in the same way than
in load case 3 except that the occurrence and
duration of different frequency pockets is chosen
randomly from a Gaussian distribution yielding a
mean duration of 225 s and a standard deviation
of 20 s.

*Again, all frequency bands contain the 1Hz
natural frequency of the system. A typical
response, together with its spectrogram is
illustrated on the right.

Fig. 6.13: Description of load cases 3 and 4.
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Load case Description , Ilustration
* Normally distributed, white noise signal with
unit mean-square value (msv = 1) is modulated
by a the same stepped modulation function as in
load case 1.

5 ¢ In addition, a narrow-band coloured noise signal
is superposed onto the modulated signal.

The coloured noise signal has a band-width lying
between 1.2-1.5 Hz. The power spectrum of a
typical response to this load is illustrated on the

Cross Spectium Magnitude (dB)

Right.
. Frequency
100
« Normally distributed, white noise signal with "
unit mean-square value (msv = 1) is superposed 40
with another white noise signal modulated by a 20
function consisting of randomly occurring i
Gaussian impulses. o
¢ |tis assumed that, on average, an impulsive -0
6 force occurs 3 times per minute. These events 100

are drawn fandom‘y from a uniform distribution. 705 700 300 YY) 500 ) 705 500 %00
The duration of each impulse is drawn
uniformly from the interval 10-20s.

¢ The amplitudes of the impulses are random

samples from a uniform distribution ranging from i
0-25. Since the arrival times of the impulses are
Random, it may occur that two impulses occur 3
more or less at the same time and their
amplitudes add up.

O I Y R S

" " " . N
o 100 200 s00 480 500 [XX) 700 XX 900
Tim e (s)

Fig. 6.14: Description of load cases 5 and 6.



- - ‘As described in Bendst and Piersol {2000), non-stationary time-series can be build

. (a) a stationary, stochastic signal w(t) to which a deterministic function M (®)

is added, resulting in non-sta.tiona.ry mean value,

¢ (b) modulation of a stationary, stochastic signal w(t) by a deterministic envelope
function M(t) and

e (c) signal in which the instantaneous frequency changes with time.

Combinations of such elementary non-stationary models have been used, for instance,
by Gasparini (1979); Sun and Kareem (1989) to describe excitation due to ground
. vibration and by Giuffre and Pinto (1974) to simulate the response of bridges to
non};stationary excitation loading. In this section, these models are used to build 6
different load cases described in figures 6.12, 6.13 and 6.14. Simulations -a.re performed
on system A and the re‘sults are shown in table 6.6. 900s (At = 0.05s) of data are
used and a 22 x 14 Hankel matrix is used in the identification process. 500 records

are simulated for each load case.

The first load case (c.f. figure 6.12 ) consists of a combination of the elemen-
tary models (a) and (b). Both the 2Hz harmonic and the deterministic modulation
function are repeated exactly for each record which results in a time-varying mean
and mean-square value, the latter being equal to the modulation function since the
stationary white noise signal has unit mean-square value. The different amplitudes
imparted by the modulation function on the load time-history may, for instance, repre-
sent varying wind pressures acting on a structure during the test time. The harmonic,
on the other hand, may be representative of a driving force caused, for instance, by
rotating components in/on the structure (e.g. wind turbines, plant excitation on floor
slabs). While it is reasonable to assume that the harmonic driving force does not
change for a particular test case, it is in general unlikely that the modulation remains

the same for repeated tests on the same structure. Exceptions occur, for example, in
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trend for different load cases. Lioad case 2, therefore, is a variation on load case 1
to note, however, that the thus modﬂﬂed’excitation is not necessarily non-stationary.

ecord. It is important

To see this, consider the .Mtaneous mean-square value at a specific time t; of the
load computed over the ensemble of all load cases generated by this stochastic process.
Since the amplitudes of modulation function are random, the mean-square value over
‘the ensemble of excitations at any time t; will tend to the mean-square value of the
uniform stochastic process used to generate the random amplitudes of the modulation
function. This is clearly seen in figure . Nonetheless, this casé is still of interest since
the mean-square value is clearly time-dependent in a single record as would easily
| be gsta.blished numerically using short-time averaging procedure (Bendat and Piersol,
2000) and the SSI/Cov cannot account for this time dependence. Before discussing the
results of the simulations in table 6.6, it is worth reviewing briefly how the SSI/Cov
deals with non-stationary data. The SSI/Cov identifies the system modal parameters
from correlation functions of stationary data i.e. the correlation functions depend on
a single time variable describing the separation of two points in the response record.
Non-stationary correlation functions depend additionally on the time at which this lag
is measured, and hence are functions of two time variables. The SSI/Cov, however,
is unable to deal deal with non-stationary correlation functions and hence ordinary
stationary correlation functions need to be used. Clearly, when stationary correlation
functions é,re estimated from non-stationary response records, the non-stationary char-
acteristics of the data is lost. Effectively, the time-varying statistics are averaged out
(Bendat and Piersol, 2000). When the non-stationarity follows model (b) described
above, a more precise description is available. Essentially, modulating a stationary
noise signal by a deterministic function is the same than applying a window, and the
effects of the latter on sample correlation functions was briefly described in Chapter
3. In a nutshell, the modulation (or the window) function applied to the response

record appears in the sample correlation function estimate as its own correlation func-
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tion and affects the unmodulated correlation function multiplicatively (see. eqn. 3.22
in chapter 3, page 62 or Schmidt (1985a) for more detail). For convenience, this is

illustrated on a simple example below. Figure 6.15(a) shows the time-history -chosen

>
L
® 5
g
! <
O
Time (s) 35
@ (b)

Fig. 6.15: Illustration of the effect of a modulating function on the sample auto-correlation
functions. The unmodulated time history and its correlation function are represented by the
dotted back line, the modulation function and its correlation function by the solid red line
and the modulated signal with its correlation function by the solid black line.

here to be a 3Hz harmonic in order not to include any random errors in the sample
correlation function- modulated by the stepped function and the resulting modulated
signal. Figure 6.15(a) shows the corresponding correlation functions and it is clearly
seen that auto-correlation function of the modulated signal takes on the profile of the

correlation function of the modulation function. It is precisely this additional distur-

bance we wish to account for.

The results of the simulations involving load cases 1 and 2 are shown in table 6.6.
For a better appreciation of the influence of the non-stationarity that was introduced,
the random error due to the underlying white noise signal only is also given in table
6.6. As in the previous section, the « 1% discrepancy between the true and predicted
random error may again be attributed to small bias errors in the sample estimates of
the perturbations via the plug-in method. It is seen that for load case 1, the random
error in both the true and perturbation estimate is practically identical to the one

due to white noise only. The explanation for this is simply that the harmonic and the
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ness is intreduced. On the other hand, however, it can be seen from the illustration
of the probelm in figures 6.15 that a bias error is introduced. This issue is dealt with

in the next section.

For load case 2, where the modulation function varies ré,ndomly from record to
record, it is seen that the random error increases. This is to be expected: referring
again to figures 6.15, the perturbation of the correlation function due to the modula-
tion function changes for each response time-history and, this is naturally picked up in
the sample random error computed from the ensemble of all tﬁe simulated responses.
On‘ the other hand, however, it appears that this additional random disturbance is

| not‘aocounted for by the perturbation method. It was anticipated by the author that,
at least to some degree, the extra disturbance caused by the modulation would be
reflected in. the random ‘error as predicted by the perturbation analysis. The reason
being that the plug-in method estimates the perturbations from the full length, flat-top
windowed, sample correlation functions and since the latter are affected by the pertixr—
bation of the non-stationarity as illustrated in figures 6.15, it was expected that the
estimated perturbations, and hence the random error predicted by the perturbation
analysis would be affected likewise. However, this does seem to be the case. Compar-
ing the variance of the true correlation function at zero 1an in table 6.6, the influence
of the additional disturbance due to the modulation function is clearly noticeable.
When the plug-in method is used to estimate the perturbations, the influence of the
random, slowly varying modulation functions is almost entirely eradicated, evidenced
by the almost identical random errors in both the modal parameters and the correla-
tion function at zero lag. A plausible reason for this is that the variations due to the
modulation function are too slow compared to the system frequency to be picked up.
To support this, one can imagine the scenario of what would happen if the duration
in the changes of the modulation function were increasingly reduced until the changes

occur on average at intervals of the same order than the sampling interval. In this
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' which would clearly be picked up the phug-in method ss previously shown. To make
sare that the cause of this discrepancy is due mainly to the estimated perturbations, it
was checked that, if the the true -perhﬁbations, estimated from the sample population
of the 500 simulated response histories, are used in the perturbation analysis, then
thsepmdmted random error in the modal parameters agrees with the true values. This
does not mean, however, that the system sensitivities are unaffected, but rather that

they incorporate the influence of the modulation function adequately.

Next, the influence of a non-stationary, non-white frequc;ncy content is investi-
gated. Load case 3, described and illustrated in figures 6.13, is composed of piecewise
| statmnm-y coloured noise signals with a narrow band-width encompassing the 1Hz
Imtm'al frequency of the system. The mean-square value of each noise ”pocket” is
unity and the duration of each is kept fixed for each simulated load record. This
means that the only time-varying quantity is the instantaneous frequency content.
The disturbance introduced to each stationary sample correlation function due to
the averaging over the time-varying frequency content inherent in the computational
process (Bendat and Piersol, 2000) results again is an increased random error as can
be seen from the true error in table 6.6. As for load case 2, the perturbation method
seems unable to account for the additional random error due to the non-stationarity
and, as before, the reason can again be attributed to the inability of the plug-in method
to account for the extra perturbation as evidenced by the comparing the random error
of the correlation function at zero with the corresponding true quantity. Much the
same observation holds for load case 4, where in addition to the random frequency
bands, the occurrence and duration of the different coloured noise pockets of which

the excitation signal is composed changes randomly from record to record.

Load case 5 examines the case when a narrow-band, frequency disturbance is added

to the excitation. This load is modelled in exactly the same way as load case 1 except
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 that the 2Hz harmonic is replaced: by & karrow-band (8.3 Hz) coloured noise distur-
bance near the natural frequency of the system. The spectrum of the response is
shown in figure 6.14. It is seen in table 6.6 that this disturbance causes a net increase

in error in the identified natural frequency of the system and the latter is accurately
captured by the perturbation method. Also the slight decrease in random error in the
ident;lﬁed damping ratios is correctly predicted. Load case 6‘ consists of a superposi-
tion of two signals. The first one is a white noise signal with unit mean-square value
and the second one a white noise signal modulated by randomly occurring Gaussian
impulses with randomly varying duration and amplitude. This load case was chosen
to simulate, in a very elementary fashion, the excitation of éunda.m,ent&l mode of a
bridge deck by traffic. The Gaussian impulses represent the passing of a vehicle of the
 deck. It is well known that the arrival times generally follows a Poisson distribution
(seé{Chen and Feng (2006), for instance), but for the present purpose, drawing the ar-
rival times from a uniform distribution is sufficient. A typical excitation time-history
together with the response of the system are shown in figure 6.14. The transients
caused by the impulses’» are clearly visible in the response. Again, the situation is
similar to the previous load cases involving non-stationary mean-square values; the

random error induced to the modal parameters due to the random varying modulation

Simulated Error (%)

Perturbation Method (%)

Case &r(fo) &() fr[&(o)] N[fr(fO)] N[fr(f)] N[fr[Rﬂc(O)]]
Stationary 0.15 14.42 14.05% 0.16 (0.02) 15.37 (1.50) 15.27 %
White Signal
1 0.15 14.76 14.00% 0.16 (0.02) 15.23 (2.00) 15.11 %
2 0.18 17.72 31.45% 0.16 (0.02) 15.22 (2.12) 15.77 %
3 0.18 16.21 34.60% 0.15 (0.02) 14.90 (1.57) 15.54 %
4 0.18 19.48 33.64% 0.15(0.02) 14.90 (1.92) 15.87 %
5 0.76 1340 10.46 % 0.77 (0.20) 13.83 (1.81) 10.83 %
6 026 2425 29.80% 0.16 (0.02) 15.13 (2.09) 15.64 %

* Tab. 6.6: Comparison of the simulated random error and the mean of the predicted random
error using the perturbation method from 500 response measurements of System A in table
6.3. The values in brackets yield the sample standard deviation of the estimated errors.
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forictions from record 40 recond is'nc piélid ‘wp by the perturbation saalysis and the

 method: bresks down at the estimation of the perturbetions by the plug-in method. It
was checked again that if the trie perturbetions (i.c. as estimated from the ensemble
of simulated responee histories) are used in the perturbation algorithm, the true and
predicted random errors in the modal parameters agree.

From the above simulations, it is to be concluded that the perturbation method
does not consistently yield accurate predictions of the random error in the SSI/Cov-
identified modal parameters when the response data has non-stationary characteris-
tics. In particular, problems occur when the modulation function changes record to
teoqrd, which induced an increase in random error in the modal parameters which
. was not reflected in the estimates predicted by the perturbation analysis. The cause
of thxs was tracked down to the fact that the additional disturbance due to the non-
stationarity was not picked up in the perturbations to the correlation function when
estimated from the plug-in method. This is, however, not necessarily to be interpreted
as a drawback of the combined plug-in/perturbation method: it was explained above
that, when the modulation function remains the same for each record, most of the er-
ror in the correlation functions and the resulting SSI/Cov-identified modal parameters
is systematic and has little effect on random error as is the case for load case 1, and
in such a case the predicted and true error will be in good agreement. Therefore, to
say that the perturbation method does not yield consistent estimates of the random
error in the SSI/Cov-identified modal parameters from non-stationary data does not
do justice to the method. However, as far as operational modal analysis is concerned,
one is in general not in a situation, where the modal test can be repeated under iden-
tical non-stationary conditions and it is more likely to be in a situation as modelled in
load cases 2,3,4 and 6, where non-stationary characteristics in a single time-history
can be recorded using a short-time averaging procedure as described in Bendat and
Piersol (2000). In these cases, unfortunately, as evidenced in particular by load case

6, the predicted random errors is not accurate. On a more positive note, however,
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owing partly to the robustness of the 881/Cov with respect to non-stationary data
' (see Basseville et al. (2001); Beneviste and Fuchs (1985)) and slowly varying distur-
bances, it is seen from table 6.6, that, considering the standard deviations from the
membb of predicted errors for each record, the random error predictions are sensi-
ble and useful information, such as the influence of narrow-banded noise near system

frequencies (load case 5) is to be gained. Nonetheless, in pracﬁoe, if the data contains
slowly varying trends, the estimated random errors should be treated conservatively.
A remedy to the problem at hand does not seem obvious and is the subject of further
research.

' 6.4 Bias Error

As explained in detail in Chapter 5, bias is introduced to the modal parameters by

the SSI/Cov identification algorithm primarily due to two sources:

e truncation of singular values representing system dynamics, the truncation bias

br(x)

o the effect of passing noise through the nonlinear algorithm, the quadratic bias

bo(x)

where as before, the vpa.ra.meter X is used to denote any particular modal parameter.
The bias is a systematic error and therefore if known, the estimates can be bias cor-
rected. However, determining the bias with certainty is not a trivial task since (a) by
definition, the bias involves knowledge of the parameter one is trying to estimate and
(b) bias estimates are generally contaminated by random errors, taken into account in
this case by the variance of the truncation bias. Therefore, in practice, bias-correcting
the estimated parameters can be dangerous since the bias corrected estimates may
have a larger random error than the original estimate. In this section, simulated data
is used to assess the accuracy of the bias errors estimated by the perturbation method
and it is investigated how to use these estimates, together with the random error stud-

ied in the previous section, to assess the uncertainty in the SSI/Cov-identified modal
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' The simulations &te per&:rmed on the same two SDOF systems given in table 6.3.
The bias and R.MS errors are investigated using thé same simulated 9003 (At = 0.05s)
response time-histories embedded in a 30% noise floor as for the random error for
both sttems.l‘he_ estimation of the perturbations of the corrélation functions via the
plug-in method in relation to the perturbation analysis was validated in the previous
gection dealing with the random errors. Clearly, the latter aspect remains the same
in this case. The true errors are computed from 500 simulated response time-histories
and the perturbation analysis results shown are based on the first 200 response time-
senes of this set. The results are presented in tables 6.7 and 6.8 for system A and B
| »respoctively. It is noted that, as opposed to the previous sections, where the identified
raﬁ&om error was normalised with respect to the mean of the identified modal para~
meters (i.e. a biased estimate), the results shown here are normalised with respect to

the true modal parameters.

It is seen from the true errors in table 6.7 that the identified modal damping ratios
are significantly biased, but this error appears to decrease as the dimension of the
Hankel matrices used in the analysis is increased. A similar effect on the bias in the
identified modal damping ratios as the number of correlation lags used is increased is
reported by Cooper (1989). A particularly large bias is seen to occur when for the
lowest dimensional (7 x 4) Hankel matrix. In the latter case, and for the case in which
a 13 x 8 Hankel matrix was used in the analysis, the RMS error defined as (Bendat

and Piersol, 2000)

RMS(R) = VE[X-x)?=vVar(x)+b(X) (6.16)

with  b(x) = E[X]l-x (6.17)

is seen to be predominantly due to bias, whereas for the 22 x 14 dimensional Hankel

matrix, the bias and random error carry equal weight. The identified natural fre-
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. SDOF System &, At = 0.055

dm(ﬂa) =Tx4 Mﬂ&)m 13x 8 dim(Ho) = 22 x 14

o fo £ o 3 o 13
b 0044 0040 —44-1600* 00058 —24-107¢ 0.0017
(%) (-4.4%) (489.8%) (-0.04%)  (57.7%)  (-0.02%)  (17.4%)

a 0.0075 0.0092 00016 00023  0.0015 0.0017
(%)  (0.75%) (920%)  (0.16%)  (22.7%)  (0.15%)  (17.1%)

RMS 0.0045 0.0650 0.0017 0.0062 0.0015 0.0024
%) (45%) (497.9%) (0.17%)  (621%)  (0.15%)  (24.3%)

Predicted by Perturbation Analysis
ulbr] -0.023 0.0315 —2.1-10~* 0.0058 —1.9-10~* 0.0018
(%) (-2.3%) (315.0%) (-0.02%) (57.9%) (0.02%) (18.0%)

ubgl  -0007  0.0016 ~7.1-107° 3.4-10* -39-10°5 24.10~%
(%) (07%) (163%)  (0.0%)  (33%)  (0.0%)  (24%)

;;{&(by)] 0.008  0.0068 4.8-107* 0.0010 19-107% 3.5.10°*
(%) (37.1%) (21.6%)  (2.2%) (17.3%) (1.0%) (19.4%)

ulo] 0.0081  0.0099 0.0017 0.0024 0.0015 0.0018
(%) (0.81%) (98.6%)  (0.17%) (23.9%) (0.15%) (17.7%)

u[RMS] - 0.025 0.0352 0.0017 0.0066 0.0015 0.0027
(%)  (25%) (352.3%) (0.17%)  (65.8%)  (0.15%)  (26.8%)

Tab. 6.7: Comparison of the true and identified bias, random and RMS error in the SSI/Cov-
identified modal damping ratio and frequency of SDOF system A. The identified errors are
given as the mean of the errors computed via the perturbation analysis from 200 simulated
response time histories. The corresponding true errors were computed from Monte-Carlo
simulations over 500 response histories. The quantities in brackets give the corresponding
normalised errors. The latter are normalised with respect to the true modal parameters (i.e.
fo =1Hz and € = 1% of critical) with exception of the standard deviation of the truncation
bias which is normalised with respect to the mean truncation bias.

quencies are much less affected by bias, with just above 5% error for the smallest
dimensional Hankel matrix and less than 1% in the other two cases. As already ex-
plained, the Newmark-£ time integration method employed to compute the simulated
response time histories, introduces a frequency shift whose magnitide depends on the
natural frequencies of the system and the time step used in the integration. For this

systeﬂl, where a time step of At = 0.05s was used, it is easily calculated from equation
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- SDOF System B, At = 0.05s

dim(Me) =T A (o) =18 X8 dim(Mp) =22x 14

_— e € .. D ) 3
b 0.0022 0.0071 00046 7.8-10"* 00026 —9.3-10*
(%) (0.85%) (47.0%) < (01%) - (53%) (0.06%)  (-6.2%)

ue] 00040 00014 00037 00010 00038  0.0010
%)  (010%) (93%) (009%) (67%)  (0.10%)  (6.7%)

RMS 0022 00072 00059  0.0013  0.0046  0.0014
(%)  (0.56%) (48.1%) (0.15%)  (8.9%)  (0.12%)  (9.2%)

v Predicted by Perturbation Analysis ‘
plbr) 0.031 0.0063 0.0081 0.0022 0.0037 7.1-107%
(%) (0.78%)  (41.9%) (0.20%) (14.6%) (0.09%)  (4.76%)

plbg] 6.6-107% 93.1075 1.7-107* 6.3-10° 1.2.-107%¢ 5.2.1075
(%) (0.00%) (06%) (0.00%) (0.4%) (0.00%)  (0.3%)

plo(br)] 00030 59-107% 93.107% 2.2-107% 4.7-107* 1.0-10¢
(%) (95%) - (9.3%) (11.5%) (10.0%) (12.9%)  (14.0%)

u[a] 0.025 0.0015 0.022 0.0011 0.0023 0.0010
(%) (01%) (105%) (0.09%) (7.5%) (0.090%)  (6.9%)

u[RMS] - 0.0031 0.0066 0.0088 0.0025 0.0052 0.0013
(%)  (0.78%) (43.3%) (0.22%) (16.7%) (0.13%)  (8.3%)

Tab. 6.8: Comparison of the true and identified bias, random and RMS error in the SSI/Cov-
identified modal damping ratio and frequency of SDOF system B. The identified errors are
given as the mean of the errors computed via the perturbation analysis from 200 simulated
response time histories. The corresponding true errors were computed from Monte-Carlo
simulations over 500 response histories. The quantities in brackets give the corresponding
normalised errors. The latter are normalised with respect to the true modal parameters (i.e.
fo = 4Hz and € = 1.5% of critical) with exception of the standard deviation of the truncation
bias which is normalised with respect to the mean truncation bias.

3.44 that the Newmark-3 scheme introduces a frequency shift resulting in a negative
bias of —0.81 in the natural frequency. The true bias shown in table 6.7 was corrected

for the Newmark frequency shift.

For system B, the true bias errors in the identified modal damping ratios given in

table 6.8 show a similar behaviour to those of system A: the bias is largest when a low
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with an mﬁ%meﬁmm matrix. However, as the dimension of Hp
is further increased, the bias is seen te-change sign. The bias in the identified natural
frequency is small and falls below 1% error for each cese shown, and decrases steadily
as dim(Ho) is increased. No change in sign of the biss is observed in this case. It
is noted that, as for system A, the bias shown in table 6.8 has been corrected for
the frequency shift introduced by the Newmark time integration. For the case where
dim(Hop) = 7 x 4, the RMS error is strongly dominated by the bias, whereas in the

two remaining cases, the contribution of the random error is significant.

- It is now investigated how well the perturbation analysis predicts the bias in the
| 881/Cov-identified modal parameters, and together with the random error, the RMS
errer The bias in the identified modal parameters predicted by the. perturbation
analysis is given as the truncation bias, br, and the quadratic bias, bg. These two
bias terms add linearly to yield the total bias which is to be compared with the true
bias giveh in the tables. As described in Chapter 5, section 5.2.4, the truncation bias is
affected by random errors, whose extent is expressed by the variance of the truncation
bias. Tables 6.7 and 6.8 show the mean of the truncation bias identified from each
of the 200 computed response time-histories, thereby obliterating the random error
in the computation. However, as discussed in Chapter 5, the truncation bias itself is
biased as result of the quadratic terms in equation 5.38. As discussed in the latter
chapter, due to technical difficulties in determining the quadratic bias of the trunca-
tion bias, it was chosen to disregard the latter quantity. This means that the average
truncation bias over 200 shown in tables 6.7 and 6.8 for both modal parameters is

affected by quadratic bias of the truncation bias.
For both systems, it is seen from tables 6.7 and 6.8 that the estimated quadratic

bias is small and appears to decrease as more data points are used in the identifica-

tion. Also, it transpires that the bias is largely dominated by the truncation bias. The
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| mm%mwwwmmmmm cases studied above, the two
terms which yield: the quadratic biss (£ ‘equation 5:10) tend to cancel each other
ocut, & behaviour similar te thet cbeerved in the computstion of the random error
(see figures 6.6). However, is noted that for shorter response histories, where the ran-
dom error is more significant, we can expect a higher contribution from the quadratic
bias. iFm: system A, the bias is, on average, accurately predicted by the perturbation
analysis for the two cases where the identification has been performed with the two
larger dimensional Hankel matrices. In particular, the error in the damping ratios is
accurately predicted. It is also noted that the sign of the bias is correctly predicted,
and shows that the truncation bias is responsible for an underestimation, albeit small,
éf the natural frequency and an overestimation of the modal damping ratios. This
| supports the interpretation of the truncation bias as estimated by the perturbation
analysm explained in section 5.2.3 of Chapter 5. For the case in which the identifica-
tion was performed with the 7 x 4 Hankel matrix, the bias in the modal damping ratio
is predicted with less accuracy. However, the severity of the bias is nonetheless re-
flected by the perturbation analysis results and gives the user a good idea of the extent
of the systematic error in the identified modal parameters. Moreover, if the modal
results were to be bias corrected in this particular case, a significant improvement in
the identified modal damping ratios would be gained. For system B, the agreement
between the true and predicted bias is good for the case where the identification is
performed using a 7 x 4 Hankel matrix, but a significant discrepancy is observed for
the remaining two cases; significant in the sense that if the bias computed from the
perturbation analysis were used to correct the identified modal damping ratios, the

bias would effectively be increased.

The random error in the estimated truncation bias is captured by the variance, or
equivalently the standard deviation o, of the truncation bias. The standard deviation
of the truncation bias is shown in tables 6.7 and 6.8 and expressed as a percentage

of the truncation bias itself. As mentioned in the introduction to this chapter, the
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variance of the truncation biss shimid sseiét the uses to determsine whether the iden-
tified modal parameters should be liise corvected, provided that one is confident that
the hias has been determined with sufficient aocaracy. Firstly, it needs to be checked
whether the random error in the trincstion biss predicted |

sis provides a good estimate of actual random error in this quantity. To do so, the
“tmé” random error in the truncation bias is given in t&bh.ﬁ.Q below. The latter is
simply computed from the sample standard deviation of the truncation bias identified
from each of the 200 simulated response time-histories and can be compared with the
mean random error estimated for each simulated response reeqrd via the perturbation
analysis shown in tables 6.7 and 6.8. A comparison between the values in table 6.9
and the truncation bias estimated via the perturbation analysis in tables 6.7 and 6.8
| revea.ls good agreement. This also shows that the approximation made in Chapter 5
to estlmate the variance of the truncation bias in oi'der to circumvent the computation
of the sensitivities of the full eigenvector matrix P’ is acceptable and appears not to

affect the outcome significantly.

Having investigated the accuracy of the bias terms and the related random error,
it needs to be determined how to make the best use of this information to assess
the uncertainty in the identified modal parameters and possibly, correct the modal
estimates for bias. An obvious estimate of the accuracy in the SSI/Cov-identified
modal parameters, involving the bias, can be expressed by the RMS error. The latter
can simply be computed from equation 6.16 by summing the squares of the standard

deviation of the biased estimate, i.e. x(€), and the total bias. It is noted that, since

dim(Hp) =7x4  dim(Hp) =13x8  dim(Ho) =22 x 14

Jfo £ Jfo 3 Jo £
SysA o[by] 0005  0.0060 3.5-107% 9.8-107* 1.6-107* 2.8-.107*
(%) (21.2%) (190%) (1.6%) (16.9%) (0.84%)  (15.5%)

SysB o(br) 00032 55-10% 88.107% 1.9.10~¢ 4.8.10~% 1.0.10*
(%) (10.3%) (8.7%) (10.8%) (8.6%) (12.9%) (13.6%)

Tab. 6.9: True random error of the truncation bias for system A and B.
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the variance of the biased estimate is used, the variance of the truncation bias does ‘
not enter this RMS computation. The resulting RMS values are shown in tables 6.7

and 6.8. However, sincs the RMS error is dominated by the biss, or in other words,

the biss error in the SSI/Cov-identified modal parameters is large compared to the

random error, it would be desirable to bias correct the modal estimates rather than

just hwing a measure of how much we can expect the estimates to differ on average

from the true modal parameters. Particularly so, for applications where the identified

modal damping ratios are used to fine tune a numerical or analytical model to predict

the response amplitude of a structure to a certain excitation a.nd a good estimate of the
dynamic amplification factor is required. As previously mentioned, to.bias correct the
:demﬁed modal data, it is ideally required that (a) the bias estimate itself is unbiased
j ,amig (b) has a low random error in order to avoid that the standard error of the bias
corrected modal estimate becomes larger than the RMS error of the biased estimate.
Denoting the bias corrected geneﬁc modal estimate by the xpc(€), the perturbation
equations in Chapter 5 can easily be combined to express Xp.(€) as (Longman et al.,
1987)

N N N '
Xbe (€) & x (0) — brlx(e)] + 3 €i8; (x — br(x)) + 3_ 3 ejexdse (x — br(x)) + - -
(6.18)

Taking the above equation up to linear terms, the variance of the bias corrected modal

estimate can be found to be

N
Var [xse ()] =~ Y Var[e;]87 (x — br(x)) (6.19)

1
N N
+ 2 ) ) Covlej,ex] 8 (x — br(x)) & (x — br(x))

k=1

-1
J#
= Var[x(e)] + Var [br (x (¢))] (6-20)
N N
+ 2 z Z Cov [ej, €x] 35 (x — br(x)) 0k (x — br(x))
e
N
— 2) Varle] 65 (x) & (br(x))

i=1

237



s

The above equation shows the influence of both the variance of the truncation bias and
~ biased modal estimate and the cross term is the consequence of taking the variance
of the linear combination of the these two random variables. Provided the initial bias
estimate is accurate, it can then be assumedtha,t the hias corrected modal data is
unblued (or at least has hegligible bias) so that the square root of Var [xs. (€)], i.e. the
standﬁtd deviation o [xs. (€)], yields ther RMS error of Xpc. It is now obvious that if the
RMS error of xp. is larger than the RMS error of X, the modal parameters should not
be bias corrected. The mean standard deviations of the bias corrected damping ratios
over the 200 simulated response histories for system A and B are given below in table
6.10 and it can be seen that they are signiﬁcantly smaller than the RMS values of the
bi&sed estimates which is again to be attributed to the fact that the bi‘as. errors are
~ significantly large compared to the random error and the variance of the truncatibn
bla.s Provided the bias is estimated correctly, the benefit of a bias correction of the
modal data is obvious. This is illustrated in figure 6.16 which shows the bias corrected
SSI/Cov-identified modal damping ratios of system A with estimated random error
via equa.fion 6.19 for the first 100 simulated response time histories used in table 6.7.
On the other hand, however, it is seen from the two cases for system B, in which
the two larger Hankel matrices were used in the identification process, that the bias
correction does more harm than good in the sense that the bias correction results in
a slight increase in random error and a larger bias than m the original estimate. In
practice, when the true modal parameters are not known, the engineer will not be

able to assess the accuracy of the estimated bias and the two aforementioned cases for

dim(Ho) =7 x4 dim(Ho) = 13 x 8 dim(Ho) = 22 x 14

Sys A pulo(br(&)] 0.0152 0.0032 0.0020
; (%) (152.4%) (32.5%) (20.4%)
Sys B ulo(br(éu))] 0.0020 0.0013 0.0011
(%) (13.6%) (8.6%) (7.3%)

Tab. 6.10: Standard deviation of the bias corrected modal damping ratios &, for system A
and B. :
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Fig. 6.16: Bias corrected modal damping ratios for system A identified with a 13 x 8 Hankel
matrix with error bars giving the standard deviation computed by equation 6.19. The dia-
monds show the actual identified modal damping ratios for each case and dashed horizontal
lines the average standard deviation of the bias corrected estimates given in table 6.10.

system B, are sufficient to show that the bias estimates via the perturbation analysis
cannot be taken for granted. As a result, bias corrections based on the perturbation

estimated bias can be treacherous.

The question arises as to what lies at the bottom of the discrepancies observed
in the estimated bias and the true bias and whether it can be rectified. Since the
estimated perturbations of the correlation function (i.e. its variance and covariance)
are not used in the determination of the truncation bias, it is therefore not affected
by any errors in the former quantities, and the possible causes are investigated in the

subsequent section.

Errors in Bias Estimates

As explained in Chapter 5, the truncation bias arises due to truncation of small sin-
gular values that contain dynamic system information such as residual modes for
instance. Truncating non-zero singular values due to noise only will have result in

negligible bias. In the SDOF systems considered, the “residual mode” stems from the
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fact that thie signal was low-pass filtered at 65 which, as described in section 6.2.3,

:*H funetion of the system. To
check that the this disturbance mtrodm:ad by the filtering opératim is indeed respon-

results in the addition of a sine function to the correl

sible for the truncation bias in‘;he“;de;mﬁe;i modal parameters, the tnmcatmn bias of
' the same two systems is computed and using the same, but unﬁltered response time
hmtones The results are shown below in table 6.11 for the da;mping ratio of system A
and B, corrupted by 30% noise. It is seen from table 6.11 that, for system A, the bias
in the SSI/Cov-identified modal damping is negligible suggesting that the correlation
of the filtered noise was indeed responsible for the large biag observed earlier. The
perturbation analysis confirms the marginal truncation bias. A 1.9% quadratic bias is
also results from the perturbation analysis so that the total bias prediceted by the al-

j gorithm overestimates the true bias. Although the latter bias estimate lacks accuracy,
it ﬁi;netheless correctly predicts that the bias in the identified modal damping ratio is
neglgible for practical purposes. For system B, however, the bias estimates do not tie
up with the true error. A total bias just below —13% was calculated in each case while
the perturbation analysis predicts an unsignificant bias error. Theoretically speaking,

it is reasonable to expect the truncation bias to drop to a negeligible level in this

Sys A dim(Ho) =Tx4 dim(Ho) =13x8 dim(Hp) =22 x 14

True Bias

b(¢) —0.5% -0.3% —-0.2%
Perturbation Analysis
wulbr(8)] -0.2% —0.04% —0.06%
plbg(é)] -1.9% ~-1.9% -1.9%

SysB  dim(Hp) =7x4 dim(Hp) =13x8 dim(Ho) =22x 14

True Bias

b(¢) -12.8% -12.9% -12.9%
Perturbation Analysis
ulbr(€)] —0.05% -0.13% —0.23%
ulbo(8)] 0.30% 0.29% 0.28%

Tab. 6.11: Bias in the SSI/Cov-identified damping ratios from the unfiltered responses of
system A and B. The values are expressed as a percentage of the true damping ratios. »
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Fig. 6.17: Comparison of the singular values for system B for unfiltered and filtered response
time histories. The gap separating the first two singular values from the remaining ones
indicates a SODF system.

case since the noise will be uncorreleated and the only information in the data, albeit
corrupted by estimation errors, is that of the system. This appears to be confirmed
by the simulations for system A and the comparsion of the singular values, shown in
figure 6.17, indicate that this is also the case for system B. The gap separating the
first two singular values from the remaining ones indicates a SODF system. What
causes the bias observed for system B is unclear. In theory, the possible causes are
reduced to three sources: (a) omission of the quadratic bias of the truncation bias, (b)
a poor estimate of the truncation bias itself and (¢) a poor estimate of the quadratic
bias.

As argued above, it can be assumed that the data given in table 6.11 is not affected
much by truncation bias. Since the truncated singular values are actually not identi-
cally zero, the truncation bias will affect the modal parameters to some extent. The
question arises whether this could be of the order of about —13% as in system B and
is poorly predicted by the perturbation analysis. After all, the estimated quadratic
bias is negligible and table 6.8 shows a trend of the true bias towards the —3% bias

as the dimension of the Hankel matrix is increased.

To assess the accuracy of the truncation bias as given by equation 5.37, we resort to
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the idealised situation, whsre the wtmhtm ﬁmtmm are determined mthm:t random
disturbances. Oonsequenﬂy, the truncation bias will not be affected by random errors
either and equation 5.37 should therefore, in principle, yield the exact truncation
bias. Also, the quadratic bias as well the quadratic bias of the truncatmn Eias will
~ be zero (since these two terms are dﬁe[tp the random error propagating though the
algorithm) so that truncation bias given by equation 5.37 Wlll be equal to the total
bias. On the other hand, the true bias in the identified modal parameters is easily
determined since the exact modal parameters are known and can be used to gauge the
accuracy of the truncation bias determined by the perturbatjon analysis. To do so,
the auto-correlation function of a 2-DOF system is modelled according to section 3.4.3
“ and Appendix A, that is, by superposing the auto-correlation functions of 2 SDOF
| system. In other words, denoting the ac.f. of the first and second SDOF system
by Rl('r) and Ry(r) respectively, the ac.f. between two simultaneously measured
responses of the 2-DOF system is modelled as R(7) = R1(7) + Ra(7). The first mode
with ac.f Ri(7), vibrating at 1 Hz and with a decay rate of 1% of critical damping,
is chosen. to dominate the response by restricting the amplitude of Ry(7) at 7 =0 to
be smaller than the amplitude of R;(7) at 7 = 0. Keeping the ac.f of the first mode

fixed, 16 2-DOF system are simulated as
R®(7) = Ri(r) + BP(r), for k=1,2,---,16  (6.21)

where the amplitude of ng) (1) at 7 = 0 is increased with the index i in steps of
1% from 5% to 20% of the amplitude of R;(7) at 7 = 0. This can be thought of as
an increasing modal participation factor of the second mode of the 2-DOF system.
Similarly, the frequency of ng) (7) is increased in steps of 0.5 Hz from 0.5 Hz up to
8 Hz for each system and the corresaponding modal damping ratios from 0.0025%
to 0.04% of critical damping in steps of 0.0025%. Thus, the second mode of the kth
2-DOF system modelled according to equation 6.21 has an ac.f with an amplitude at
zero lag of 4% + k% the amplitude of the ac.f of the dominant mode, a frequency of

k x 0.5 Hz and a damping ratio of k x 0.0025% of crtitcal damping. The identification
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Fig. 6.18: Verification of truncation bias estimates for modal damping ratios, [x] denotes the
true truncation bias of the modal damping ratio and [o] the truncation bias estimated using
the perturbation method, eq. 5.37. The abscissa indexes the 2-DOF system used according
to the description above of equation 6.21.

is performed with a (22 x 14) Hankel matrix. The bias introduced in the identified
damping ratios due to truncation of the residual second mode is shown in figure 6.18.
While the overall behaviour of the estimated truncation bias follows that of the true
truncation bias as the frequency, damping ratio and the weight of the residual mode
is varied, clear discrepancies are seen to occur. On the other hand, for some cases,
notably the 2nd, 8t and 9th 2-DOF system, good agreement is observed. In particu-
lar, it transpires from figure 6.18, that the bias estimates via the perturbation method

appear to be more accurate when the true truncation bias itself is small.

This behaviour of the estimated truncation bias fits the discrepancies observed for
system A in table 6.7, in which case the truncation bias was accurate when the true
bias (consisting mainly of truncation bias) was low but a divergence was observed for
the low dimensional Hankel matrix case where the bias was large. This is however
not the case for system B, where the most significant disagreement was observed for
the case where the bias was lowest. As shown in figures 6.19, the discrepancy of the
perturbation estimate of the truncation bias also depends significantly on the size of
the Hankel matrix used: the two highlighted cases shown in figure 6.19 (top), where

the identification was performed using a 24 x 21 and 28 x 25, indicate that the true
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Fig. 6.19: Truncation bias of £ as a function of the size of the Hankel matrix used for the 5t
(top figure) and 101 (bottom figure) 2-DOF system described by equation 6.21. The abscissa
denotes the number of rows in the Hankel matrix used, and in each case,the Hankel matrix
has 3 less columns than rows, [o] denotes the perturbation estimate of the truncation bias and
[x] the true truncation bias. Encircled are the cases where the identification was performed
using a 24 x 21 and 28 x 25 dimensional Hankel matrix respectively.

truncation bias is approximately the same but the accuracy of the estimates differs
significantly. Moreover, the true truncation bias in these two cases is below 10%, so
that the discrepancy observed in table 6.8 may be attributed, at least partly, to this
inherent fault in the truncation bias estimate. Similarly, if the true truncation bias
were of the order of —13% as the response records are not subjected to filtering (c.f.
table 6.11), then the possibility exists, as can be seen from top figure in 6.19, that the
low truncation bias predicted by the perturbation analysis may again be attributed
to the failing of the estimate as given by equation 5.37. On the other hand, however,
if the true truncation bias is near zero in the data shown in table 6.11 for system B,
then the possibility must be considered that the observed bias is due to quadratic bias
and that the latter is poorly predicted by the perturbation algorithm. However, as-
sessing the accuracy of the estimated quadratic bias is more difficult since it is due to

a random perturbation of the correlation function and adding this perturbation to an
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values to be non-pero and thenefore smoants to a similar simulation as i table 6.11.

unity at zero lag) of the system B was computed and perturbed by & zefo mesn white

 noise disturbance of standard deviation 0.1. This eliminates the random perturbation
due to estimation of the correlation function and thereby lﬁeéping the singular values
to be truncated a mlmmum The true bias and the estimated quadratic bias in the
modal damping ratio, using Hankel matrices of the same dimensions as in table 6.11
. are shown below in table 6.12. This suggests that the quadratic bias is estimated
well. It is true that the second term in equation 5.10 involving the covariances drops
? | éut in this case as the perturbation is uncorrelated, but the latter term is unlikely to

_' cause discrepancies in the estimates in the situation when the covariance needs to be
oongidered. The results shown for the random error in section 6.3, support the fact
that the covariance of the perturbation is adequately estimated and the expressions
giving the the sensitivities involving d;x(-) are exactly the same than those involv-
ing deriv&tives with respect to €; only except that the indexes change. Also, unlike

the truncation bias, there is no inherent fault in the computation of the quadratic bias.

To get an idea of the magnitude of the quadratic bias of the truncation bias one

may approximate the truncation bias
br(x] ~ X — Xr (6.22)

where ¥ denotes the modal parameters identified with small singular values set to zero

dim(Hy) (13x8) (18x13) (23 x18) (28x 23)
True Bias 7.0% 1.7% 2.1% 1.4%

bg(é) 7.1% 3.1% 2.1% 1.5%

Tab. 6.12: The quadratic bias in the modal damping ratios using the exact auto-correlation
coefficient function for system B perturbed by white noise with a standard deviation 0.1. The
results are expressed as a percentage of the true damping ratio.
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and ;- the identified modsl parameter at full model order. The approximation arises
due to the fact that bmhmoddmmmngmﬁmﬁ;zzmmbythe
quadratic bias and the quadratic bias of the truncation bias so that in theory, equation
6.22 does not give an exact estimate unless the system is noise free. Equation 5.44

gives the truncation bias as

barbd =~ —Y_ Varle] 80 () + 8sipo (X)) (6.23)
=1
N .
-~ Z Cov [e;, ex] [0k (X) + djkpp (X))
H
N N
= - E Var [e;] §;; (br[x]) — Z Cov [€j, ex] 0;x (br[X]))  (6.24)
i=1 gk
J#k

Replacmg br[€] by equation 6.22, the quadratic bias of the truncation bias bgr [x] can

be expressed as
N
borbd ~ -3 Verle] (6,,- (x) — 955 (XF)) (6.25)
j=1
N
- E Cov [¢j, k] (5jk (x) — djk (xr) ) | (6.26)
Fk
= bg [xr] —bg[x]

where the last equality is obtained using equation 5.10. The above equation thus shows
that the quadratic bias of the truncation bias can be estimated as the difference be-
tween the quadratic bias in the modal parameters identified at full and truncated
model order. For instance, the quadratic bias in the truncation bias of the modal
damping ratio of system B for a 22 x 14 Hankel matrix (c.f. table 6.8) was found to be
(bq [xF] = 5.5-107%) — (bg [x] = 5.2-1075) = 0.3 - 10~®. This suggests that influence
of the quadratic bias on the truncation is marginal and does not affect the discrepancy
observed in table 6.8. It follows from this subsection that the only source of error in
the estimated bias stems from the inherent fault in the truncation bias estimaf,e and

the latter is therefore the most likely culprit for the divergence of the bias observed

246



Best Practice

Despite the lack of accuracy in estimting the bias by the perturbation

transpires from figures 6.18 and 6.19 that the truncation bias is better estimated when
the true truncation bias is small. But on the downside, the converse does not hold i.e.

a small truncation bias determined via the perturbation analysis does not necessaril;

imply that the true truncation bias is small as well. Since in practice, the only infor-
mation available will be the one predicted by the perturbation algorithm, it follows
that the bias determination can be deceitful. Nonetheless, tables 6.7 and 6.8 show
j that, when the true bias is large, this will be reflected in the perturbation estimates.
Théfefore, it seems sensible to employ the perturbation method to find the parameters
(dimension of Hankel matrix and model order) that yield negligible bias, rather than
performing a single identification with a chosen set of parameters and bias correcting
the modal parameters. Since the RMS error appears to be dominated largely by the
truncation bias, this choice will generally amount to the same as choosing the run for
which the RMS error is small. Bias correction may then be omitted or if performed,

is unlikely to exacerbate the error in the identified modal parameters further.

The way in which different model orders and the dimension of the Hankel matrix
affect the identified modal parameters is complex and an optimisation, resulting in
the most favourable parameters to use identification algorithm is not obvious and the
most favourable parameters need to be found by trial and error. In other words, the
identification is repeated for various sizes of Hankel matrices and model orders (and,
if desired sample intervals) and the best estimate of the modal parameters are taken
from the run yielding the lowest error. This is demonstrated below using, as would be
the case in practice, a single response measurement from systems A and B aboveand

the results are shown in figures 6.20 and 6.21. The labels on the abscissa of each of
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the Iatter figures refer to the dimmisisst of the Hankel matrix used i that particalar
run and are explained below in table 6.13. -In each of the laster ﬁgm,tke‘zandam
error, the truncation bias and msrmdmm a8 well ns themm are shown.
For convenience, the quadratic bias was not included in tbese guren.. Based o this

. information, the most favourable parameters to be used in the idemtification process
can be determined. |

For system A, it is seen from figure 6.20 that the truncation bias is minimal (among
the cases considered) when the identification is performed at mpdel order 4 for ceses 6
and 10 i.e with Hankel matrices of dimension 24 x 13 and 30 x 19 respectively.  Also, the
assaciated random error is small in each of these cases indicating that the truncation

_’ can be expected to vary on average less than, say roughly 2%, if the identification
were to be repeated with the same parameters for statistically equivalent response
time histories. Case 2 for model order 4 marginally yields the lowest RMS error.
However, the latter case has a rather large variance of the truncation bias and is
therefore not considered to be represent the a good choice of parameters. It is noted
again that the variance of the truncation bias does not enter the RMS computation
since the variance of the biased modal damping ratios is used. The estimated bias
for both of the cases is very similar, and the perturbation algorithm predicts that the
bias is negligible in both cases, and being significantly sm#ller than the random error
in the identified modal damping ratio will yield a negligible contribution to the RMS
error. In fact, using equation 6.17, the RMS error can be rewritten as (Efron and

Tibshirani, 1993)

RMS(R) = vo2(X)+b(X) (6.27)
~ oy l .@ ’
~ o*(%) [1 +3 (a()*()) ] (6.28)

which shows, for instance, that if the ratio of the bias to the random error is < 25%,
the bias contributes < 3.1% to the RMS error, and as suggested in Efron and Tib-

shirani (1993), this can be used as a rule fo thumb to asses whether the bias can be
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considered negligible. This rule is useful in the event where, for instance, two sets
of modal parameters need to be compared with one set having a smaller RMS error
but a higher bias than the second. Since a small identified bias does not necessarily
guarantee that the true bias is equally small as discussed above, the user may decide
to chose the set of parameters yielding the smaller RMS but higher bias and if the
bias is still < 25% of the random error, the bias can still be considered negligible.
To check whether the identification, when performed using these parameters, truly
results in more or less unbiased modal damping ratios, the SSI/Cov is applied to 200
computed response measurements and the sample random and bias error were com-
puted. Indeed, the mean damping ratio over the 200 runs was found to be 1.0% in
both cases confirming that, with these input parameters, the identification algorithm
indeed yileds an unbiased estimate of the modal dampig ratios. Also, the standard de-
viation of the SSI/Cov estimated damping ratio was in both case close to 15%. It can
therefore be concluded that for system A, the perturbation analysis reliably predicted
the best choice of parameters for the modal identification together with an accurate
error estimates. The modal parametes identified from the single respose record, i.e.
affected by random errors, were found to be £ = 1.10% and 1.13% of critical damping
respectively for dim(Hg) = 30 x 19 and dim(Hp) = 24 x 13, both of which fall within

the standard deviation predicted by the perturbation analysis.

Label 1 2 3 4 5
dim(Hp) 14x11 18 x7 17x14 21 x10 20 x17

Label 6 7 8 9 10
dim(Hp) 24x13 23x20 27x16 26x23 30x19

Tab. 6.13: Dimension of Hankel matrix dim(Hy) used with reference to figures 6.20 and 6.21

The same study is performed for system B, the results of which are represented
in figure 6.21. The smallest bias is seen to occur for case 4 when the singular values
were truncated to yield a system of order 6, but on the downside, it is affected by a
large random error and this case is therefore discarded. Two sets of parameters among

the cases considered that indicate a low bias error and variance thereof are cases 7
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Fig. 6,20: Estimated random error er(f), RMS(£), truncation bias &r(£) and the random
error in the truncation bias er(&T(£)) from a single response record for different model orders
and dimensions of the Hankel matrix. The labels on the abscissa reference the dimension of
Hankel matrix used as indicated in table 6.13.
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Fig. 6.21: Estimated random error er(£), RMS(£), truncation bias &r(f) and the random
error in the truncation bias er(6j’(0) from a single response record for different model orders
and dimensions of the Hankel matrix. The labels on the abscissa reference the dimension of
Hankel matrix used as indicated in table 6.13.
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for model orders 4 and 6. As for system A, it is checked whether the identification,
when performed using these parameters, truly results in more or less unbiased modal
damping ratios. To this end, the SSI/Cov was applied to 200 computed response mea-
surements and the sample random and bias error were computed. The mean damping
ratio over the 200 runs was found to be 1.30% and 1.32 for model orders 4 and 6
respectively, with dim(Hp) = 23 x 20 i.e. yielding a true bias of —12.6% and —11.8%
respectively. For case 7 identified at model order 6 a quadratic bias of 0.4% was iden-
tified. These results are in fact much the same as those already obtained in table 6.11.
In order to get the data in table 6.11 as well as for the two ‘best’ case considered in
this case, two operations were performed that, theoretically alleviate, the truncation
bias: getting rid of the “residual mode” in the former case and overspecifying the
model order in the latter case. Although the perturbation algorithm does yield a near
zero truncation bias, this is not observed in the true bias. What is responsible for
this bias is not clear to the author. Certainly, a good explanation for the observed
discrepancies in system B would be a numerical error in the computed time histo-
ries causing the observed —13% bias, as is the case for the natural frequencies for
instance. However, it is known that the Newmark-3 scheme, with parameters v = 1/2
and 7 = 1/4, makes the time integration unconditionally stable and introduces no
numerical damping in the solution (Bathe and Wilson, 1976) and this possibility must
be excluded. Although the perturbation analysis yields a much improved damping es-
timate for system A, the poorer prediction for system B is sufficient to conclude that
the bias predicted by the perturbation can be deceitful. Nonetheless, the methods still
reliably indicates excessive bias corruption of the modal data and should be used to
choose identification parameters that minimise this error. However, the uncertainty

in the final modal data cannot be predicted with the desired accuracy.
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6.4.1 Influence of Non-Stationarity on Bias

In section 6.3.3, it was investigated how non-stationary characteristics in the response
records affect the random error estimate in the modal damping ratios via perturba-
tion analysis. It was shown that when the non-stationary statistics are identical for
all measured response records, the random error is hardly affected. On the other
hand, when the non-stationary characteristics vary from record to record, the random
error estimates via the perturbation method do not tie up with the sample errors.
This was explained by the fact that the correlation functions, when computed from
non-stationary data do not exactly reflect the system dynamics as is the case when
the data is stationary. In particular, non-stationary mean square values tend to dis-
tort the true decay of the correlation functions which biases the damping information.
Thekerror estimates via the perturbation analysis depend strongly on the estimated
statistics of perturbations ¢; and the study undertaken for the random error showed
that the variance/ covariance as well as the system sensitivities are hardly affected by
the non-stationarity in the data and as a result, the additional random error observed
in the sample estimates was not picked up. This will clearly be the same for the bias
estimates and only the bias introduced by the SSI/Cov itself will be reflected in the

estimates.

To determine the actual bias introduced by the non-stationarity, the perturbation
equations in Chapter 5 would have to be reformulated to account for this bias in
the perturbations €;, so that for instance Ele;] # 0 but tends to the biased corre-
lation function. Although the response to non-stationary loading has been studied
(Barnoski and Maurer, 1969; Gasparini, 1979; Sun and Kareem, 1989) and the er-
ror introduced into correlation functions from non-stationary data, by treating it as
stationary, is understood (Bendat and Piersol, 2000), the difficulty is to determine
the actual bias at each data point j and may be an interesting research avenue. On
the other hand there is a growing tendency to employ time-frequency system identi-

fication methods which can account for the time varying statistics of the data. Such
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techniques include wavelets (see for instance (Mallat, 1999)) or the Hilbert Transform
(HT) combined with Empirical Mode Decomposition (EMD) methods (Huang et al.,
1998). Both method enable to analyse time-series locally and are able to describe
changes of the frequency content or in the statistics of data at a particular time of
the response history, rather than vielding a global description where the statistics and
frequency content are time-independent and apply to the whole of the response data.
As a result non-stationary as well as non-linear behaviour can be described. The
(EMD) method essentially empirically decomposes the measured data into its modal
components through a process called shifting (Huang et al., 1998), while maintaining
the non-stationary and/or non-linear properties of the data. The resulting modal re-
sponses may then be treated as SODF responses and instantaneous frequencies can
be ob}tained via the Hilbert transform from these decomposed signals. Applications
for modal identification of civil engineering structures can be found for instance in
(Chen et al., 2004; Zhang et al., 2006). A combination of the EMD method with the
SSI/Data, rather than the Hilbert transform, was proposed by Yu and Ren (2005).
It is noted that the latter method, like the SSI/Data on its own, cannot describe
the time changing modal parameters. Similarly to the short-time Fourier transform
(Bendat and Piersol, 2000), the wavelet transform localises the information of the
time-histories in the time-frequency plane by using short windows at high frequencies
and long windows at low frequencies thereby offering a description of non-stationary
signals. Like the EMD method, it also decouples the modal components. Application
to operational modal analysis have surfaced abundantly in recent years (Basu and
Gupta, 1997; Bonato et al., 2000; Ghanem and Romeo, 2000; Han et al., 2005; Lardies
and Gouttebroze, 2002; Ruzzene et al., 1997). Two reviews on using this technique for
structural vibration problems in civil engineering are given by Kijewski and Kareem

(2003): Neild et al. (2003).

253



6.4.2 Efficiency of Perturbation Algorithm

The application of the perturbation analysis requires two steps: (1) the estimation
of the statistics of the perturbations €; to the computed correlation function and (2)
passing the estimated correlation functions, together with the statistics of €; through

the algorithm to yield the desired error estimates.

The estimation of the statistics of via the plug-in method has been described in
Chapter 3.4.3, section 3.5. In a nutshell, the efficiency of this step depends in principle
on the duration of the measured time histories, which is further exacerbated by the
fact that the double-sided correlation functions are required to compute variance and
covariance of ¢;. However, as explained in section 3.5, the use of the flat-top window
dramatically improves the computational expense as it effectively picks out the portion
of the double sided correlation function estimate to make the variance/covariance
estimate robust.

Due to the fact that the perturbation algorithm computes the system sensitivities
(a) for each data point used in the portion of the correlation function used in the
analysis and (b) for each modal parameter extracted. Moreover, this involves the
same steps for each of the intermediary equations (the sensitivities of the singular
values and singular vectors for instance) and as a result, the computational burden
is substantial. However, to compute the random error it was possible, with some
effort, to implement the procedure by avoiding any loops other than iterating over
the number of data points along the diagonal of the Hankel matrix which sped up the
execution of the algorithm significantly. Also, the summation in the final perturbation
equation 5.8 yielding the random error estimates can be executed within the loop
which alleviates the storage requirement for the variables. To get the quadratic bias,
however, a double loop was needed over all the mixed derivatives pairs, and also the
variables needed to be stored to compute the mixed derivatives. Consequently, the
computation requirement involved is significant, particularly when the response is

recorded at many test points resulting in large Hankel matrices.
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6.5 Summary and Discussion

It is shown in this chapter that the random error in the SSI/Cov-identified modal
parameters is estimated very well by the perturbation method. The robustness of
the method with respect to errors in the estimated statistics of the perturbations was
established. Owing to the good performance of the plug-in method to estimate the
variance/covariance it is seen that the addition of noise into the system is reflected
in the error estimates. In fact, the virtue of the theory behind the plug-in method
to estimate the statistics of the perturbations, any stationary disturbance to the data
will be accounted for in the random error estimates. In all the cases used in the
simulation, the perturbation method correctly accounted for the influence of the size
- of the Hankel matrix, of the sampling interval, the record length used and the model
order selected. Non-stationarity was introduced into the response records by sub-
jecting them to various non-stationary load cases. It was shown that in general, the
perturbation method could not account for the additional random error introduced by
the non-stationarity and that it tends to estimate the random error of the underlying
stationary signal. However, in situations where a non-stationary frequency content is
more or less repeated identically from record to record, a good estimate of the random

error can still be expected.

The excellent accuracy of the random error estimates could not be reproduced for
the bias. For the two systems investigated, the results were excellent for the lower fre-
quency system but considerably less accurate for the higher frequency system. Partly
responsible for the observed divergence is the artificial linearisation involved in the
equations yielding the truncation bias. However even in the case, where the truncation
bias is theoretically expected to be negligible, i.e. no singular values containing sys-
tem information were truncated, the discrepancy between the estimated and true bias
was still present, although the perturbation algorithm “correctly” predicted negligible
bias. Neither the quadratic bias nor the quadratic bias of the truncation bias could

account for this divergence and its cause could not be explained. However, it appears
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from the simulations that when the true truncation bias is small, it is estimated more
accurately by the perturbation method. Although the converse does not hold, it could
nonetheless be concluded from the simulations that when the estimated bias is small,
it is unlikely that the true bias is excessive. It was argued that therefore, the best
practice is to apply the perturbation algorithm with different sets of identification
parameters (dimension of the Hankel matrix, model order, and possibly the sampling
interval) to find a set that yields a negligible truncation bias. As shown, this possible
by increasing the size of the Hankel matrix or by overspecifying the model order. This
approach does not guarantee the best possible bias estimate, but severe bias appears

to be reflected in the perturbation estimates so that the latter situation can be avoided.



CHAPTER 7

UNCERTAINTY IN IDENTIFIED
MoDAL PARAMETERS: A

BoOTSTRAP APPROACH

7.1 Introduction

In this chapter, the dependent bootstrap method developed in Chapter 4 is employed
to determine the error in operational modal parameters from a single set of mea-
surements. Unlike the perturbation method in the previous chapter, which is only
applicable to the correlation-driven stochastic realisations such as the SSI/Cov, the
bootstrap method can, in principle, be used in conjunction with any curve-fitting al-
gorithm. As mentioned previously, the bootstrap has been used for this purpose by
Doebling and Farrar (2001b) to determine the error in the modal parameters from
classic input/output testing. However, their bootstrapping scheme, following Hunter
and Paez (1998), is different from the dependent bootstrap used in this thesis. The ba-
sis ensemble of observations in Doebling and Farrar (2001b); Hunter and Paez (1998)
consists of a set of independently measured FRFs which are then bootstrapped so that
Efron’s original bootstrap is applicable. Applications of the bootstrap to time series in
relation to modal analysis has been pioneered by Kijewski and Kareem (2000, 2002),
but with the drawbacks already discussed at length in Chapter 4. The various block

resampling schemes presented in Chapter 4 offer the possibility to eliminate these
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drawbacks and thereby yield improved error bounds of the modal estimates. Also,
the fact that it is possible to generate an ensemble of stationary time series using
the stationary bootstrap, makes the method applicable for virtually any output-only

identification algorithm.

7.2 Applicability of the Bootstrap for Operational Modal

Parameters

With the dependent bootstrap of chapter 4 at hand, using it to determine the error
in operational modal estimates is simple and the procedure is illustrated in figure
7.1. In a typical medal test performed on a large scale civil engineering structure,
the engineer has, in general, only a single set of simultaneous responses measured at
different locations along a structure at his or her disposal to determine the modal
parameters of the system. If it were possible to repeat the modal test B times for B
sufficiently large, a collection of B sets of estimated modal parameters can be found,
from which their statistics such as the mean, standard deviation and possibly bias can
be determined. This is illustrated on the right-hand-side of the diagram 7.1. However,
since time constraints make it impractical to repeat a modal test a large number of
times, bearing in mind that the time records need to be sufficiently long as well for a
acceptable convergence of the modal estimates, the bootstrap approach can be applied
to the only available set of measurements to simulate “pseudo-modal tests” and hence
obtain additional response data. Once the latter is available, it is then possible to get
a collection of B* sets of bootstrapped modal parameters by application of a curve-fit
algorithm to the bootstrapped time-series of correlation functions (depending on the
algorithm used), from which the statistics of the system’s model can be determined.

This is represented on the left-hand-side in figure 7.1.

While the process is straightforward, it is not necessarily obvious why the sample

statistics of the ensemble of bootstrapped modal parameters yield a good approxima-
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Only available Response HistoryX

Bootstrap Additional Measurements
B* Bootstrapped Response Histories B Additional Response Histories
B* Bootstrapped Correlation Functions B Additional Correlation Functions
R I R,

Rix R

B* Bootstrapped Sets of
Modal Parameters

B Sets of Modal Parameters

Fig. 7.1: Diagramatic representation of bootstrap applied to operational modal analysis.

tion to the true error in the modal estimates. Suppose that the response is recorded
for a total time T = nAr. If the conditions of the modal test setup remain un-
changed so that additionally measured responses originate from a stochastic source
whose underlying distribution remains the same, then the correct error estimates on
the system’s modal parameters identified from response records of length 7 can be
defined as those calculated from the B sets of identified modal parameters, when the
number of repeated tests B —> 00, and approximation to the true error is obtained
with B finite. Let {" } denote the set of B measured response histories, {xi} the set
of identifed modal parameters identified from each response history x|\ and s(-) the
estimator such that s(x{) = Xie In other words, s(-) describes the modal parameters

extraction using the SSI/Cov algorithm in this case. The true, normalised random
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error of the modal x can tslmnhe

R (1)
- where the expectation E[-]‘ is replaced by the arithmetic mean. N&rmﬂising with
respect to the mean rather than the true modal parameter (not known in practice)
prevents the contribution of bias in (). This is precisely how the true random
error was computed in the previous chapter and the same definition will be used here.
The true bias error is found in similar fashion, provided the true error is knuwn In
the bootstrap method, the B* bootstrap replicas of the only available response time-
history replaces the B measured records and the normalised error, say the standard
* (random) error €*(x), in the modal data is calculated as in equation 7.1 but with the

set {¥:} replaced by {x}}.

The question arises, provided the number of bootstrap replicas B* is chosen suf-
ficiently large, whether we can expect € (%) to be a good approximation to €.(%).
It was shown in that chapter 4 that the bootstrapped covariances of the auto- émd
cross-correlation functions give a good approximation to the true covariances, but
under the condition that the block length ! is chosen appropriately. Since the opti-
mal block length is the one that mmums&s the mean-square-error of the bootstrapped
covariances, it follows that this gives the best possible approximation to the true
quantity. Does this imply that the optimal block length to estimate the covariances
is also optimal to estimate the errors in the bootstrapped modal parameters? An
answer is readily obtained from the theory developed in chapter 5 where it was shown
that the error in the modal parameters depends up to second order, on the covari-
ances of the correlation functions. Therefore, if the covariances of the bootstrapped
correlation functions optimally approximate the covariances of the true correlation
functions, then the error in the bootstrapped modal parameters will give an optimal
approximation to the true their true error. Taking into consideration the trade-off in

random and bias error inherent in the bootstrapping of the time series, this justifies
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the application of the bootstrap to deteriine

7.3 Random Error

\.

The study of the random errors in the SSI/Cov-identified modal parameters reqmres
slightly less effort than was the case for the perturbation method. While the success of |
the latter method is dependént at the same time on (a) the perturbation algorithm it- "‘
self on (b) the estimated perturbations of the correlation functions, where inétabiﬁtim

- in either the system sensitivities or erroneous estimates of the variance and covariance
(i.e. the perturbations) could result in poor error predictions, the error estimates via

. the bootstrap method depend entirely on the quality of the bootstrapped time se-

 ries.or, equivalently, correlation functions and fully benefit from t1,1e robustness of the
particular identification algorithm used. The quality of the dependent i)ootstrap‘was
studied in chapter 4, Wﬁere it was shown that the method reliably yields reasonably
accurate estimates of the variance and covariance of the correlation functions and it
was argued in the previous section that this implies that we can expect the same from
the error prediction in the identified modal parameters. Rather than repeating the
lengthy investigation of the previous chapter, it will be sufficient to check the method
on a few cases. Also, the bootstrap method will be applied in conjunction with the

SSI/Data algorithm to illustrate the flexibility of the method.

7.3.1 Random Errors in SSI/Cov-identified modal parameters

To allow a comparison between the performance of the bootstrap method with the
perturbation analysis in predicting the random error in correlation-driven operational
modal pararﬁeters, the simulations in this chapter will be performed on the same
SDOF systems A and B (c.f. table 6.3) as in chapter 6. Clearly, the same input

parameters to the SSI/Cov will be used for the comparison to be meaningful.
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29¢

Random Error in SSI/Cov-identified Modal Parameters Predicted by the Bootstrap Method

SYSTEM A Estimation Error Estimation Error Estimation Error
Only + 30% Noise + 30% Noise
T = 600s, dt =0.05 T = 900s, dt = 0.05 T = 900s, dt = 0.05
dim(Hgp) =13 x 8 dim(Hp) =7 x4 dim(Hp) = 22 x 14
True Bootstrap [ True Bootstrap l True Bootstrap
ple- ()] (%) | 13.71 11.92 (£1.90) [ 16.01  12.07 (£1.74) { 14.42 11.08 (£1.49)
pler(fo)l (%) | 014 0.16 (£0.03) | 0.82  0.66 (£0.12) | 0.15 0.14 (+0.02)
SYSTEM B Estimation Error Estimation Error Estimation Error + 30% Noise
Only + 30% Noise + 30% Noise
T =600s, dt =0.04 T = 900s, dt = 0.04 T = 900s, dt = 0.04
dim(Hp) =13 x 8 dim(Ho) =7 x4 dim(Hp) = 22 x 14
True Bootstrap | True Bootstrap i True Bootstrap
ple(€)] (%) | 8.68  7.32 (£0.86) | 6.96  6.51 (£0.69) | 7.36 6.76 (£0.70)
pler(fo)] (%) | 0.08  0.08 (£0.01) [ 0.11  0.11 (£0.01) I 0.10 0.9 (£0.01)

Tab. 7.1: Comparison of the normalised random error in the SSI/Cov-identified modal damping ratios (e-(§)) and frequencies (e (fo)) estimated via the bootstrap
method and the true error estimated from 200 simulated response histories. Note that the error shown for the bootstrap is the mean of t.he errors estimated from 200
simulated response records and the values in parenthesis are the corresponding standard deviations. 300 boostrapped correlation functions were computed for each
response history and the optimal block length was computed using Biithlmann and Kiinsch’s method.



As argued in the introduction to this section, not all cases investigated in chapter

6 need to be considered but a few will suffice to validate the bootstrap method.

More specifically, the cases considered are shown in table 7.1 for systems A and
B together with the random errors predicted by the bootstrap method. For each case
in table 7.1, 200 response histories were simulated and from each, 300 boostrapped
correlation functions were computed using the blocks of blocks method. The optimal
block length was determined using Biithlmann and Kiinsch’s method (c.f. Chapter 4).
From each set of the 300 bootstrap correlation function replicas for each simulated
response time history, the modal parameters were identified using the SSI/Cov algo-
rithm and the random error estimated. Table 7.1 shows the mean of the normalised

random errors computed from the 200 sets of bootstrapped normalised errors.

It is seen that the mean normalised random error predicted by the bootstrap
method underestimates the true error, the more so for the lower frequency system A.
Although a bias in the random error estimated via the perturbation method was ob-
served in the previous chapter, which was attributed to bias in the estimated variances
and covariances by the plug-in method, this discrepancy was small. In this case, in
particular for the two cases for system A involving the 30% noise level, the difference
between the true and predicted error is more pronounced. The question arises as
to what lies at the bottom of this discrepancy and whether it can be rectified. The
source must lie in the bootstrapped correlation functions since the error propagation
through the identification algorithm is naturally accounted for since the algorithm is
used on each bootstrapped correlation function. Therefore, the only points that need
checking are (a) whether 300 bootstrap samples are sufficient and (b) the error in the

bootstrapped correlation functions.

Invoking the equivalence between the variance and covariance of the bootstrapped

correlation functions and the bootstrapped modal parameters established in section
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Fig. 7.2: Normalised random error in the SSI/Cov identified modal parameters as a function of
the number of bootstrap replicas. The results represent the case for system 4 with 7 = 900s,
At = 0.05s, ¢dim(Ho) = 7x4 and 30% measurement noise added, [x] represents the modal
damping ratio (left hand axis) and [+] the natural frequency (right hand axis).

7.2, the answer to these questions can be found from the results in Chapter 4; it was
mentioned in this chapter (c.f. page 4.4 ) that increasing the number of bootstrap
samples beyond 300 did not yield any significant improvement in the bootstrapped
variance of the correlation functions and hence, the same applies to the standard error
in the bootstrapped modal parameters. As a final check, we use the case for system
A with a 7 x 4 Hankel matrix and 30% measurement noise added to the simulated
response (middle column, first row in table 7.1). It is sufficient to use a single re-
sponse measurement, since we know that on average, the normalised random error is
12.07 =+ 1.74% and the true error is 16.01%. Thus, if a number of bootstrap replicas
> 300 produces a random error that falls within the 12.07 £ 1.74% interval, we can
conclude that 300 replicas are sufficient. The same holds for the error in the natural
frequency. The results are displayed in figure 7.2. Although an increasing trend is
seen in the standard errors as the number of bootstrap samples is augmented, it ap-
pears that the errors have more or less fully converged for > 1000 bootstrap samples
and that they fall within the 12.07 £ 1.74% and 0.66 + 0.12 for damping ratios and

frequencies respectively predicted in table 7.1. Therefore, we can conclude that the
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discrepancy observed in table 7.1 is not due to insufficient bootstrap samples to esti-

mate the random error.

As described in chapter 4, the dependent bootstrap is affected by random and bias
errors. While these errors cannot be eradicated completely, they can nonetheless be
minimised if the bootstrap is performed with optimal block length. It was shown by
simulation in chapter 4, table 4.2, that for the block of blocks bootstrap, the mean
square error in the variance of the correlation function was lowest when the the op-
timal block length as computed by Bithlmann and Kiinsch’s method. However, it is
also seen from the latter table that the variance in the correlation functions is un-
derestimated in all cases and that this negative bias is maximal when the Biihlmann
and Kiinsch block length selection method is used. For clarity, it is noted that this
bias is solely due to the fact that segments of finite duration of the response history
are resampled and is not to be confused with the bias that occurs at high lags in the
bootstrapped correlation functions due to the collating uncorrelated segments into a
new pseudo-time series. It was clearly shown in chapter 4 that the formulation of the
block of blocks bootstrap technique takes care of the latter. Due to the equivalence
between the error in the bootstrapped variances (and covariances) of the correlation
functions and the error in the bootstrapped modal parameters established in section
7.2, this underestimation is reflected in the bootstrapped random errors in the modal
parameters. This was verified by using the bootstrapped variances and covariances (as
opposed to those estimated by the plug-in method) as estimates of the perturbations
in the correlation function and using them in the perturbation algorithm. Indeed, the
resulting random error estimates were much the same as those predicted by the direct
application of the bootstrap shown in table 7.1. As mentioned, this error is inherent
to the dependent bootstrap and cannot be avoided but only minimised by using the
optimal block length in the computations. However, an improved estimate can be
obtained by using Politis and White's method to select the block length as this (see

table 4.2) yields the lowest bias but has the highest standard error. The simulations of
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table 7.1 are repeated exactly for system A but using the Politis/White block length
selection method and the results are tabulated in table 7.2. It is seen from table 7.2
that when Politis and White’s block length selection method is employed, the mean
identified random error does indeed increase toward the true error and this is to be
attributed to the smaller downward bias compared to the Bithlmann /Kiinsch method
in the bootstrapped correlation functions (c.f. table 4.2). On the other hand however,
the improved mean values come with a larger scatter as is seen from the associated
standard deviations in table 7.2 which is to attributed to the larger standard error
inherent in Politis and White’s block length selection method compared to Biithlmann
and Kiinsch’s method. Nonetheless, although the random error is almost twice as
large as for Biithlmann and Kiinsch’s method (and, indeed twice as large compared
to the perturbation method, see figure 6.10(a)), the range in which we can, on av-
erage, expect the predicted error to be in, that is 13.98(+2.92) and 0.72(£0.16) for
damping ratios and frequencies respectively, is satisfactory in the sense that (a) it
includes the true value and (b) deviations remain on average reasonably close to the
true value. When Bithlmann and Kiinsch’s method is used, the predicted error cluster
more tightly around the biased mean random error and , on average, the true error

will not be predicted but on the other hand, the occurence of “stronger” outliers is

System A Estimation Error Estimation Error Estimation Error
Only + 30% Noise + 30% Noise

T =600s, dt =005 T =900s, dt =0.05 T =900s, dt = 0.05
dim(Hp) = 13 x 8 dim(Hg) =7 x 4 dim(Hp) = 22 x 14

True Bootstrap True Bootstrap True Bootstrap
pler(E)] (%) 13.71  13.72 (£3.79) 16.01 13.98 (£2.92) 14.42 12.50 (£2.32)

ple(fo)] (%) 014 0.16 (£0.04)  0.82  0.72 (£0.16)  0.15  0.14 (£0.02)

Tab. 7.2; The same simulations for system A as in table 7.1 but using the Politis/White block
length selection method. The values in brackets are the standard deviation of the random
error computed from the 200 simulated response histories in each case.
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reduced. This is illustrated in the scatter graphs in figure 7.3.
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Fig. 7.3: Illustration of the random error in the SSI/Cov-identified modal frequencies estimated
via the blocks of blocks bootstrap method. Each cross represents the error estimated from
one of the 200 simulated response histories. The two cases shown correspond to the cases in
the middle column of table 7.1 for system 4. Figure(a) shows the case when the block length
is selected using Buhlmann/Kiinsch’s method and figure (b) the case for Politis and White’s
method. The finely dotted lines (red) shows the true error.

For the two systems considered here, it appears from figures 7.3 that the block

length selection of Politis and White, which comes with less bias but increased random
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error in the bootstrapped correlation functions, is better suited to predict the random
error in the SSI/Cov-identified modal parameters. Nonetheless, it cannot be asserted
that this is always the case. For instance, it is seen from table 7.1 for the two cases
including the noise perturbation for system B, that Biithlmann and Kiinsch’s block
selection method performs well. These two cases were not repeated with Politis and
White’s method, but it is reasonable to expect, as for system A, an increase in both
the mean random error tending toward the true error but also a larger scatter about
this value. When the bias in the bootstrapped correlation functions is small, as is the
case for system B, where the identification was performed with a 7 x 4 Hankel matrix,
the smaller standard deviation associated with Bithlmann and Kiinsch’s block selec-
tion method is preferred; the reason is that, on average, one is more likely to predict a
| random error that is closer to the true error and, recalling that in practice, the error
has tb be estimated from a single response measurement, it is clear that this is the
more desirable situation. However, both block length selection methods are seen to
perform well and based on the data at hand, it may be argued from a practical point
of view, that either method can be used as a reliable estimator of the random error.
Having tracked down the reason for the discrepancies due the bias and random error
in the bootstrapped correlation functions, a possible indicator may be found in the
mean-square-error that can be computed during the block selection method as detailed
in chapter 4. However, the simulations in Chapter 4 also showed that this quantity
was unreliable in the sense that it produced a small mean-square-error whenever the
bootstrap estimate was underestimated and large mean-square-error in the case of an
overestimation. For this reason, this option was not further pursued. Precisely why
the bias in the bootstrapped correlation functions seems to be smaller for the higher
frequency, more heavily damped system is not entirely clear but a plausible explana-
tion is that, as mentioned in Chapter 4, the dependent bootstrap works best for time

series with short range dependence.

Like the perturbation method, the bootstrap method takes into account the effects
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Tab. 7.3: Influence of model order on bootstrap estimated random errors &%{WME&
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on the random error due to different parameters used in the SSI/Cov algorithin,

as the size of the Hankel matrix and the sampling interval chosen as is clearly seen in
. table 7.1 for system B for instance. This is to be expected since the actual algorithm
_is applied to each bootstrapped time history and therefore any error introduced by
the algonthm itself will be reflected in the modal estimates. Similarly, the bootstrap
metﬁod also takes into account different choices of model order. This is illustrated

below in table 7.3. The corresponding true errors are the same as in table 6.5.

7.3.2 Random Errors in SSI/Data-identified modal parameters

While the bootstrap method does ﬁot match the accuracy of the perturbation method,
it has the advantage over the perturbation method that it is more flexible in its usage
in the sense that its is not restricted to a particular identiﬁcation algorithm. Since the
essence of the bootstrap is to generate additional pseudo-time series, the method is
applicable to virtually any curve-fitting algorithm, whether that is in the time-domain
or frequency domain. In this section, the bootstrap method is applied to the SSI/ Data,
algorithm, briefly described in chapter 3 and its application to the enhanced frequency
domain decomposition (EFFD) method is discussed.

The SSI/Data algorithm operates directly on the measured time histories, which
are fed to the algorithm in the form of large data Hankel matrices (c.f. 2.3.3). As
shown, in Chapter 4, to account for the efficacy of the block of blocks bootstrap

method, the function that operates on the resampled time series must be symmetric
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in the blocks into which the response is divided. This is, however, not the case for the
SSI/Cov and nor for the SSI/Data algorithm. For the SSI/Cov, this was circumvented
by reformulating the block of blocks method directly in terms of bootstrapped correla-
tion functions (see section 4.3.2 pp. 103), where the correlation functions of individual
blocks were employed to provide the required symmetry. For the SSI/Data, however,
there is no obvious way around this problem and for this reason the stationary boot-
strap is employed. As described in section 4.3.3, the latter yields bootstrapped replicas
of the original time series and the problem of edge effects of joining independent blocks
together was mitigated by choosing random block lengths from a geometric distribu-
tion, and the average length of this distribution plays the role of optimal block length.
An illustration of pseudo-response records generated by the stationary bootstrap is

shown in figure 7.4 below.

Having generated the bootstrap replicas of the originally measured response time-
history, a set of modal parameters can be identified by applying the SSI/Data to each
the bootstrapped time series and their random error can be estimated. Simulations

are again performed on 900s response records of the /Hz, /1% damped SODF system A
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Fig. 7.4: Illustration of the response replicas by the stationary bootstrap. The top figure is
the the originally measured time series. The average optimal block length is approximately
3Ss.
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Tab. 7.4: Normdmedrandommorﬁm&tmu&gthc%/ﬂm J hm with the stat
bootstrap. The bootstrap error estimates are the mean of only’ 25 Biook trappid [bponse
records. The true error was estimated from 300 simulated response bistorigs. .

due to a white noise excitation and 30% measurement noise was added. 300 bootst

replicas of the orignal time series were computed and each such record was Orglmefi
in 220 x 17783 data block Hankel matrix for modal parameters extmctimlusmgthe
SSI/Data. The results are shown in table 7.4. It is seen that, on average, the random
error predicted by the SSI/Data, combined with the stationary bootstrap, predicts the
. random error very well. It is important to note that the random errors shown in table
’7.4,_gre the mean of only 25 response histories and therefore, ha,\;'e not properly con-
verged. However, the generally small standard deviation associated with the random
errors (also shown in taﬁle 7.4) indicate that we are close to the fully converged mean
values. The reason for bootstrapping only 25 simulated response histories is that the
SSI/Data algorithm is much slower than its covariance-driven relative. This is due to
the fact that in the former all the measured data is reqixired leading to large Han-
kel matrices whose QR-decomposition is very time consuming compared to the direct
SVD decomposition of the smaller Hankel matrices consisting only of a portion of the
sample correlation functions. In the implementations of the SSI/Cov and SSI/Data
used in this thesis, the combined duration of computing of thé the auto-correlation
function of a single, 900s response measurement of a SDOF system sampled at 20H z
and the subsequent modal parameter identification by the the SSI/Cov for a 22 x 14
Hankel takes about 1s compared to roughly 20 seconds for the SSI/Data. Thus, if
for instance 300 bootstrap replicas are generated, it takes about 1hr and 40min to
obtain a set of 300 SSI/Data-identified modal parameters and estimate the random
error compared to only 5min if the SSI/Cov algorithm is used. It is clear that in
practice, when the response is measured at many locations along the structure, the

computational effort involved increases and it transpires that the error estimation in
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the modal SSI/Data-identified modal parameters becomes very time consuming. We
note that the computational requirement for the block of blocks bootstrap and the
stationary bootstrap are comparable. The author does not wish to claim that his
implementation of the SSI/Data algorithm is optimal but the significant differences
in computational efficiency are also reported in Peeters and DeRoeck (1999). Despite
the computational inefficiency of the data-driven SSI/stationary bootstrap method,
it is seen from table 7.4 that it is at least as accurate as for the covariance-driven
SSI/block of blocks bootstrap method. Clearly, the remarks concerning the random
error estimates made previously for the SSI/Cov algorithm also apply here, namely
that (a) an underestimate of the random error is to be expected due the inherent
bias in the stationary bootstrap and (b) all errors induced by the SSI/Data will be

reflected in the random error estimates.

In principle, the bootstrap can also be applied with frequency domain identification
techniques, such as the enhanced frequency domain decomposition algorithm (EFDD)
commonly employed in operational modal analysis and briefly described in section
2.3.1, chapter 2. Resampled versions of the original power spectral density (PSD)
matrix may be obtained either by applying Welch’s method to the time-series replicas
obtained via the stationary bootstrap or by direct Fourier transform of the block of
blocks bootstrap auto- and and cross correlation functions. However, since the modal
parameters of the system are found by manual peak picking of the SVD decomposed
power spectrum, the EFDD combined with the bootstrap is not practical unless the
manual peak-picking procedure is automated. This is but one possible way to use the
bootstrap in the frequency domain and for other methods, involving direct resampling

in the frequency domain, the reader is referred to Politis (1992) for instance.

7.4 Non-Stationary, Non-white excitation

To conclude this section on the bootstrap random error estimates in the correlation-

driven operational modal parameter estimates, the influence of non-stationary and
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non-white characteristics in the loading conditions is considered. To allow a compari-
son with the perturbation method, the same excitation models as described in figures
6.12, 6.13 and 6.14 are considered. The additional pseudo-time series are generated
using the block of blocks bootstrap method and, although Politis and White’s block
length selection method yielded better results than that of Biihlmann and Kiinsch,
the latter is employed. For each case described in figures 6.12, 6.13 and 6.14, 200
responses are simulated and 300 bootstrap replica generated in each case. The results
are shown below in table 7.5 and the corresponding true errors, already given in table
6.6, are repeated here for convenience.
Comparing the random error in the modal damping ratio and natural frequency
for the case where the excitation consists of a pure white noise signal, a downward
bias. of about 3 percentage points is seen in the error estimate for the damping ra-
tio. A small, but negligible downward bias also occurs in the estimated-random error
in the natural frequency. This bias was attributed earlier on in this section to the
inherent downward bias in the dependent bootstrap due to the segmentation of the
original time-series. While it was also shown that Politis and White’s block length
selection method slightly mitigated this bias error, it was nonetheless opted to use
Biihlmann and Kiinsch’s method in the simulations to follow: by keeping track of

the ~ 3% bias in the damping ratios that occurs for white noise excitation, the in-

Simulated Error (%) Perturbation Method (%)

Case & (fo) & (§) pler(fo)] pler (§)]
Stationary 0.15 14.42 0.14 (0.02) 11.12 (1.48)
White Signal
1 0.15 14.76 0.14 (0.02) 11.24 (1.78)
2 0.18 17.72 0.17 (0.03) 13.62 (2.89)
3 0.18 16.21 0.14 (0.03) 11.41 (2.70)
4 0.18 19.48 0.18 (0.48) 12.10 (7.12)
5 0.76 13.40 0.64 (0.16) 10.49 (2.14)
6 0.26 24.25 0.22 (0.06) 20.41 (5.73)

Tab. 7.5: Predicted random error by the block of blocks bootstrap method for system A in
table 6.3. The values in brackets yield the sample standard deviation of the estimate errors.
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fluence of the added non-stationary and/or non-white disturbance will be clearly seen.

For case 1, where the white noise signal is modulated by a slowly varying function
that is repeated exactly for each simulated response record as described in figure 6.12,
the random error in both the frequency and damping ratio changes only marginally
compared to the case where the excitation consist of a pure stationary white noise
signal. The same observation holds for the random errors predicted by the bootstrap
method and it can be concluded that the addition of the non-stationary disturbance
does not corrupt the bootstrap error estimate. It is noted that this was also the case
. for the perturbation method. For load case 2, where the modulation function changes
‘randomly from record to record (see figure 6.12), a small increase in the random error
of the modal parameters is observed and it was shown in section 6.3.3 that the per-
turbz;tion method did, on average, not account for the extra randomness introduced
by the varying modulation function. It appears from the table 7.5, however, that the
bootstrap method picks up the increase in random error. Indeed, the average rise of
roughly 3% error in the damping ratios as well as the slight increase in the modal
damping ratios is clearly seen to occur in the errors predicted by the bootstrap. Also,
the associated standard deviation of the estimated errors is reasonably low and com-

parable to those related to the perturbation method (c.f table 6.6) .

For load cases 3 and 4 (c.f. figure 6.13), where the influence in a non-white,
non-stationary frequency content in the excitation is considered, it is seen that the
bootstrap method dose not capture the increase in random error observed in both
cases. This was also the case for the perturbation method, where even a slight de-
crease in the predicted random errors was observed. However, when the perturbation
method was used, the related standard errors were small which implies that at least
on average, we can expect to predict a random error representative of the estimation
errors corresponding to the case where the excitation is solely due to white noise.

This also appears to be the situation for load case 3 when the bootstrap method is
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employed, but for load case 4, where the frequency content of the loading changes
from record to record, a large standard deviation compared to the actual meén ran-
dom error is observed. This means that, on average, the predicted random error will
not be close to the true error and even a significant departure from the pure white
noise excitation case is to be expected. This is clearly an undesirable feature and it
has to be concluded that the bootstrap method is unreliable in the presence of non-
stationary frequency characteristics in the ambient loading conditions. It appears as
if the additional randomness introduced by the variations in the frequency content
manifest themselves by a significantly higher scatter in the predicted errors, rather

than an increase in the mean random error.

Eor load case 5 (c.f. figure 6.14), where a narrow-band frequéncy signal close to
the ;1atural frequency of the system was added to the underlying white noise exci-
tation, the bootstrap method correctly predicts the slight decrease in random error
also observed in the true error estimates. This change was also correctly predicted by
the perturbation method. Finally, the case is considered when, in addition to a white
noise floor, randomly occurring Gaussian pulses are part of the ambient excitation.
This describes load case 6 (c.f. figure 6.14). Under the latter excitation, a signifi-
cant increase in random error was observed in the true error and it was shown in the
section 6.3.3 that the perturbation method failed to pick up this additional random
disturbance and yielded random error estimates representative of the excitation due
to underlying white noise floor only. The bootstrap method, on the other hand, picks
up the additional disturbance by random occurrence of the pulses as is seen in table
7.5. Taking into account the downward bias inherent in the bootstrap, it is seen that
the predicted error is very close to the true value. Also, relative to the actual random
error, the associated standard deviation is acceptable and it transpires that, on aver-

age, we can expect a reasonable error estimate by bootstrap.

Despite the loss of accuracy observed in the bootstrap estimated random errors
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due primarily to the inherent bias in the block length selection, it appears that the
bootstrap method performs better when the loading conditions yield stroﬁg non-
stationary/non-white characteristics, with the exception perhaps when the frequency
content is non-stationary. The fact that the bootstrap method is able to pick up
the the random disturbances caused by varying modulation functions such as in load
cases 2 and 6 may be explained as follows. Recall that the block of blocks bootstrap
consists effectively of resampling from a set whose individual members are the mean
correlation functions over a succession of ! overlapping segments of length r + 1 of
the original time series, where r is the maximum lag of interest and ! is the block
lengths. In other words, each member of the original set from which the bootstrapped
~ correlation functions are formed by resampling is correlation function computed from
the information of | + r successive points from the original time series. If the time
seriés is stationary, i.e. all the points in each such block have the same distribution,
then the correlation function of each block will be representative of the entire random
process. This is, however, not the case when the time series is non-stationary where,
for instance, some members of the set of mean correlation functions from which the
final bootstrapped correlation fuﬁction is resampled may be computed from a segment
having a different variance or, as illustrated in figure 6.15, may have bias particular to
the modulation of this particular segment. Due to resampling with replacement from
this set, the effects of different weights associated each with member is more signifi-
cant in the non-stationary case causing more significant changes in each bootstrapped
correlation function resulting in a change in random error. It should be noted that in
addition, the block length selection is also affected. For instance, when the excitation
is pure white noise, the average block length (determined from Biihlmann and Kiisch’s
method) was 17.10s compared to 18.75s for load case 6. This increase is slight but

may contribute to the larger scatter observed for non-stationary response records.

Although it was not explicitly checked, similar results are to expected when Politis

and White’s block selection method is used, but, as described in section 7.3.2, with
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a smaller bias but an increased scatter around the mean random error. One may
be tempted to think that the stationary bootstrap might slightly mitigate the non-
stationary characteristics due to the random block lengths involved but this is not the
case. Indeed, the random errors predicted by the stationary bootstrap from the re-
sponse records due to load case 6 were found to be 20.85%+5.26 for th modal damping
ratios and 0.26 £ 0.06 for the frequencies and hence its performance in the presence

of non-stationarities is much the same as that for the block of blocks bootstrap.

7.5 Bias Error

The bootstrap method estimates the desired statistic (e.g. variance) of an estimator
' (the}SSI/ Cov-identified modal parameter x) by computing the sample statistics from
the set of bootstrapped estimators x*. For example if a large number of response
records were available, each yielding an estimate of the modal pahrame;cer X, the bias
in the modal parameter could be computed as E[%] — X, provided the true modal

parameter x is known. Similarly, for the bootstrap, the bias can be computed as
b(x) = E[X"] — x (7.2)

However, since the true value of the modal parameter is not kndwn, application of the
above equation is not possible. It is argued in Doebling and Farrar (2001 b) that the
bootstrap method does account for bias in the identified modal parameters induced
by the curve fitting process. Also, Hunter and Paez (1998); Paez and Hunter (1998)
and Kijewski and Kareem (2002) did not consider the option of estimating the bias

via the bootstrap method.

The perturbation analysis in Chapter 5, provides insight into how the bias is intro-
duced into the modal parameters by the SSI/Cov algorithm and this can be exploited
to get at least an idea of the bias in the identified modal parameters. As shown,

bias arises in the SSI/Cov identified modal parameters due to (a) noise propagat-
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ing through the algorithm (quadratic bias and quadratic bias of the truncation bias)
and (b) due to truncation of small singular values when determining the model or-
der (truncation bias). Efron and Tibshirani (1993) provide a method to estimate the
bias of a bootstrapped statistic, which simply consists in replacing the true value x
by its estimate ) in equation 7.2.It is shown by Efron and Tibshirani (1993) that
the latter estimate yields the bias of a statistic as a result of being estimated from
a finite size sample. In the case considered here, the identified modal parameter is
the random variable and the randomness is introduced via the estimated correlation
functions, which are themselves random variables due the fact that they are estimated
from a time-series of finite length. As shown in Chapter 5, this random error partly
_ manifests itself as bias in the estimated modal parameters due to the fact that this
random disturbance does not average to zero in the quadratic terms. Thus, Efron’s
met};od could be employed to emulate the quadratic bias but, since the random error
in the modal estimate can be large, such a bias estimate can potentially be signifi-
cantly affected by the random error. When the random error is small, the analysis in
the previous chapter and section has shown that one can expect the quadratic bias to
be negligible. Moreover, the bias tends to be dominated by the truncation bias. For

these reasons, the bootstrap emulation of the quadratic bias is not further investigated.

Since the truncation bias tends to dominate the total bias, the latter needs to be
evaluated if a reasonably indicative estimate of the true bias is sought. To this end,
the approximation in equation 6.22 is used but with the modal estimates replaced by

the bootstrapped mean to emulate the truncation bias as
br«[X] = ulx’] — uixF] (7.3)

where u[x*] denotes mean of the bootstrapped modal parameters identified with small
singular values set to zero and p[x%] the identified modal parameter at full model or-
der. For consistency, it is noted that the approximation arises due to the fact that

the mean bootstrapped modal parameters entering equation 7.3 are affected by the
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quadratic bias and the quadratic bias of the truncation bias so that a residual error
due to the difference between these two quantities at the chosen and full model order
affects the latter estimate. The truncation bias, estimated via equation 7.3 is given in
table 7.6. It is seen that, as for the perturbation method, the bias is on average very
well predicted for system A. It is noted that the zero occurs due the fact that model
order 4 corresponds to the full model oder for the 7 x 4 Hankel matrix. Interestingly,
for system B, the bootstrap truncation bias shows again a behaviour similar to that
observed for the perturbation methodand the bootstrap estimates closely match the
perturbation estimates. Again a similar residual bias that could not be accounted
for by the perturbation method is observed. These factors allow to draw a similar
~ conclusion as for the perturbation method. Due to the lack of accuracy, but an ade-
quate indication of the order of magnitude of the bias, it is best practice to repeat the
iden;:iﬁcation with different identification parameters until a negligible bias is reached.
As evidenced from the simulation on system B, this does not necessarily yield the true

bias but it appears that severe bias can be avoided by proceeding in this fashion.

It needs to be noted that the tfuncation bias estimated via equation 7.3 is not easily
obtained. The reason being that it is not an easy task to correctly match up the same
modes identified at low model and full order. Theoretically, if the modes identified at
low model order are stable, they should be identified at each model order chosen. This
forms the basis of the popular stabilisation diagram to distinguish between spurious

and physical modes (Van der Auweraer and Peeters, 2004). However, in practice this

dim(Ho) (7 x 4) (7Tx4) (22x14) (22x14)
Model Order 2 4 2 4

System A
ulbr«(€)]  356.8 (%) 0 17.0 (%) 2.3 (%)

System B
plor(8)] 991 (%) 0 6.4 (%) -1.6(%)

Tab. 7.6: Bias in the identified modal damping ratios estimated via the bootstrap method.
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is not always the case (Van der Auweraer, 2001). However, to compute the truncation
bias by equation 7.3, it is not needed to actually compute xr at full model oder. In
much the same way as inspection of the singular value diagram can be used to assist
model order selection by inspection of the largest gap in the singular values (Peeters
and DeRoeck, 1999, 2001), it will reveal at which model order the singular values are
of the same order of magnitude than that at full model order. Choosing a model
within that range of singular values will result in only a marginal loss of accuracy but
offers more flexibility. In fact, for the results in table 7.6, & was identified at modal
order 8 based on figure 6.17. Moreover, to fully automate the matching process is
not straightforward. In this thesis, this was done according tb the succession of steps

given below:

1. “Obvious” computational modes i.e. those not occurring in complex conjugate
pairs or with damping ratios > 0.1 are eliminated from both sets (low and full

model order) of identified modal parameters.

2. The remaining modes are then paired up according to the proximity of their
natural frequencies. Matching modes based on the natural frequencies was mo-
tivated by the fact that they are very stable i.e. low bias and low standard error

as has been shown in many instances in this thesis.

3. Each such pair is then validated by computation of the Modal Assurance Cri-
terion (MAC)(Allemang, 2003; Allemang and Brown, 1982) between their asso-
ciated mode shapes. A good correlation between mode shapes is indicated by
a MAC > 0.9 (Ewins, 2000) indicating a matched pair whereas a MAC value
< 0.9 is taken to indicate different modes. In the case where the MAC < 0.9,
the mode having the second closest frequency is subjected to the test to account
for the fact that closely spaced modes may cross as a result of the random error.
If the MAC falls again below this threshold, the search is stopped and this mode

is removed from the bootstrap sample.

This method is nonetheless not fool proof and a graphical inspection of the data is
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recommended to check for outliers. As a result, a search for the best identification
parameters to use can be cumbersome. Finally it is noted that the variance of the

truncation bias as given by equation 7.3 cannot be estimated by the bootstrap.

7.6 Summary

In this chapter, the performance of the dependent bootstrap was assessed to predict
the errors in in-operation identified modal parameters. Although the emphasis was
on the block of blocks bootstrap in conjunction with the SSI/Cov identification algo-
rithm, the flexibility of the method was demonstrated when applied to the SSI/Data
together with the stationary bootstrap. It was shown that the bootstrap estimates the
. random errors reliably but that the estimates are afflicted by a downward bias error
Whi_g;h was attributed to the inherent root-mean-square associated with the dependent
bootstrap due to segmentation of the time-series. Also, it was observed that Politis
and White’s block length method slightly mitigates this downward bias but at the
expense of the an increased scatter in the estimate random errors. Also, it appears
from the simulations shown that the magnitude of this bias is smaller for short range
dependent time series i.e. for systems with a higher frequency content. Furthermore,
the simulations show that the bootstrap also yields very reasonable results when non-
stationary and non-white characteristics are present in the data. For time-series with a

non-stationary frequency content, however, the random error estimates were less good.

The bias in the SSI/Cov identified modal parameters could also be determined
by emulating the truncation and quadratic bias. Simulations showed that the boot-
strap bias estimates were indeed comparable to the bias estimates by the perturba-
tion method. Consequently, the same conclusions apply here. However, the process
of selecting the “best” choice of parameters to avoid the risk of excessive bias in the
identified modal parameters is more involved for the bootstrap. This is due to the
fact that matching up equal modes identified at different model orders will not always

be straightforward and some user interaction is required.
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The “blocks of blocks” bootstrap and the stationary bootstrap! are efficiently im-
plemented and therefore, if used in conjunction with a fast curve fitting algorithm,
such as the SSI/Cov, estimating the error in the parameter under consideration from
a large bootstrap sample is possible without too much computational burden. On the
other hand, when the identification algorithm used is slow, as is the case for the data-
driven Stochastic Subspace algorithm (SSI/data), the bootstrap method becomes very

inefficient.

tcode from Kevin Sheppard’s GARCH Toolbox for Matlab
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CHAPTER 8

CONCLUSION

In-operational or output-only modal testing is receiving increased attention in the
civil engineering industry. Its application ranges from more sophisticated analysis
procedures such as finite element updating or damage detection based on the change
of observed modal parameters to more straightforward, but often vital, purposes. For
exafﬁple, to get more realistic information on the modal damping ratios to use in
building codes to assess the floor vibration levels to satisfy serviceability concerns
or simply to validate an existing finite element model. It is clear that the improve-
ment gained by the use of experimentally determined modal parameters is entirely
dependent on the truthfulness of the identified modal damping ratios. It transpired
from the literature review, that, while this issue had been raised, comparatively little
work appeared to have been done on the subject. In particular, the uncertainty in
the identified modal parameters largely failed to be addressed in case studies dealing
with output-only modal analysis. This provided the motivation for this thesis. It is
aimed to develop a method to assess the uncertainty in the modal parameters of civil
engineering structures identified from a single set of measured response records during

an operational modal test.

8.1 Rationale

As described in the introduction to this thesis, a great variety of identification algo-

rithms have been developed over the years to extract modal parameters from measured
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data. Each of these curve-fit methods relies on different mathematical techniques and
therefore differs in how the modal parameters are estimated: some being more robust
to noise while others introduce less bias. As a result, determining the uncertainty in
identified modal parameters is particular to the estimator used and therefore, it is not
possible to treat this topic in general but it needs to be narrowed down to a particular
identification algorithm. In this thesis, the focus is on the Covariance-Driven Stochas-
tic Subspace Identification algorithm, abbreviated SSI/Cov. The latter was chosen on
the basis of its generally good performance as documented in the literature and due
the fact that it is widely employed in the civil engineering community and is standard

in most commercially available packages.

The rationale behind the approach taken to tackle the problem at hand was (a) to
devéibp a practical method to determine the error in the modal estimates and (b) to
assess whether the error estimates made available by the method are accurate and reli-
able. To this end, two techniques were developed: one relying on perturbation theory
and the other on the bootstrap method. To assess the performance of these methods,
it was opted to proceed by simulation on simple systems since this offers the required
controlled environment to validate the error estimates and, if discrepancies occur, to
investigate their origin. This provides an objective assessment of the performance of
the estimator and establishes a basis for practical applications. To account for adverse
conditions, the performance of both methods was investigated under non-stationary

and non-white loading conditions.

8.2 Summary of Work

Correlation-driven identification algorithms can be considered as a 2-stage procedure:
in a first step, the auto- and cross- correlation functions between simultaneously mea-
sured responses histories need to be computed which are then fed to the algorithm

extracting the modal parameters. Likewise, both methods developed in this thesis
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to estimate the error in the identified also work in two stages. For the perturbation
method, the first step consists of estimating the statistics of the perturbation to the
computed correlation function. In a second step, the system sensitivities are computed
and combined with the estimated statistics of the perturbations to yield the desired
error. The bootstrap method starts by creating pseudo correlation functions by re-
sampling from the available response record and in a second instance, a set of modal
parameters are identified from each bootstrapped correlation function from which the
desired error is obtained by simple sample statistics. It is clear that shortcomings
in either stage, will compromise the quality of the results. Below, the work under-
taken to apply the developed methods to the problem of operational modal analysis

is described, the results obtained are assessed and conclusions are drawn.

8.2.1 ° The Perturbation Method

This section summarises the work and results of chapters 3, 5 and 6. As discussed
above, the first step consists in estimating the statistics of the perturbations at each
data point of the computed correlations function. To be applicable in practice, this es-
timator needs to be robust, accurate and computationally efficient. It was shown that
the desired statistics of the perturbations are given by the variance and covariance
of the correlation functions, provided the latter are unbiased. Therefore, the estima-
tion of the auto- and cross-correlation functions was reviewed and the possible bias
that can arise in their computation, for instance due to windowing when computed
by inverse Fourier transform of spectral densities was investigated. The variance in
the estimated correlation functions was first studied analytically yielding expressions
for the variance and covariance of the auto-correlation functions of SDOF systems.
An approximation was undertaken. This resulted in an approximate formula giving a
rule of thumb to assess at a pre-test stage the minimum record duration necessary to
identify the modal parameters with a random error falling below a desired level. This
formula was validated in Chapter 6. The analytical results were extended to give an

approximate expression for the variance of the cross-correlation functions of MDOF
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systems as a weighted sum of auto-correlation functions of the uncoupled equivalent
SDOF systems, provided the system modes are sufficiently separated. Nonetheless,
these analytical expressions are impractical and another method to determine the sta-
tistics of the perturbations to the correlation functions was required. To this end,
the equations that yielded the analytical expressions discussed above were employed
but rather than proceeding analytically, their discrete version was implemented nu-
merically. This numerical routine has the vital attribute that it operates directly on
the estimated correlation functions from the measured data. However, this technique
requires the double sided, full length correlation functions as input which implies that
(a) it is computationally expensive and (b) the resulting variance and covariance es-
timates are highly inaccurate due to the inclusion of the poorly defined tail regions.
Both ‘problems could be solved by tapering the estimated correlation functions by a
ﬁat-tbﬁ window with optimal bandwidth determined by minimising the mean-square-
error of the corresponding spectral density. The cut-off imposed by the flat-top window
eliminates the troublesome tail regions and dramatically reduces the number of data
points used in the estimation. Thus, this method yields accurate variance and covari-
ance estimates, it is cdmputationally efficient and fully automated. The method was
validated against the theoretical values for both auto- and cross-correlation functions.
Excellent agreement was observed and a comparison for the same estimate without
tapering highlights the increased accuracy offered by the method. Moreover, since this
method operates directly on the correlation functions computed from the measured
time-histories, any stationary disturbance to the measured response records will be
reflected in the estimated variance as was shown by adding noise to the simulated

data. This feature is clearly very desirable in practice.

Chapter 5 presents the theory behind the computation of the system sensitivities:
the second stage of the error estimation process. Since the SSI/Cov is essentially the
same as the Eigensystem Realisation Algorithm (ERA) used for input-output modal

analysis, the changes required to adjust the computations to operational modal analy-

286



sis were minor. However, it was shown that the method proposed in the original paper
to calculate the variance of the truncation bias and its quadratic bias was not correct
due to repeated, identically zero eigenvalues of the matrix describing the effect of re-
instating the truncated non-zero singular values. As discussed in this latter chapter,
an exact solution to this problem is non trivial. For the variance of the truncation
bias, however, an approximation was employed and the simulations in Chapter 6 show
that the latter is satisfactory. This approximation could not be carried over to the
computation of the quadratic bias as simulations showed severe ill-conditioning. The
reason for this behaviour is that the singular subspaces used in these computations
are associated with small singular values. Such subspaces are kﬁown to be extremely
sensitive. As a result, the quadratic bias in the truncation bias was not computed.
The léss of accuracy due to this omission was investigated by simulation in Chapter
6, and fhe results obtained suggest that for practical purposes, this effect is marginal.
This issue is further discussed below. The perturbation algorithm fails to yield error
estimates for repeated modes. It was argued that, although it is not uncommon for
civil engineering structures to have almost repeated modes due to symmetries in the
geometry, it is however rare in practice to encounter the situation where system poles
are identical. However, the method was extended to cover the latter case but only
for the sensitivities required to estimated the random error. Importantly, however,
as explained in detail in Chapter 5, the investigation into repeated singular values
allowed to conclude that the original perturbation method (not accounting for degen-

erate eigenvalues) is able to cope with closely spaced modes.

In Chapter 6, the perturbation method is tested on simulated response data from a
set of SDOF systems and the accuracy with which the random and bias errors can be
estimated is investigated. In a first instance, the random error in the modal parame-
ters due to instrumentation noise and estimation errors was investigated separately.
The “exact” system sensitivities and statistics of the perturbations were used in these

computations. With the latter idealisation, excellent agreement was observed between
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the predicted and “true” errors and the conclusion could be drawn that a linear expan-
sion in terms of the perturbations is sufficient to the determine the random error in the
SSI/Cov-identified modal parameters from output-only data. It was also shown that
the random error estimate is robust with respect to errors in the estimated statistics
of the perturbation with one exception; namely when the statistics of the perturba-
tion are frequency shifted with respect to the frequencies in the computed correlation
functions. However, it is expected that this is unlikely to occur when the statistics are
estimated by the plug-in method. For the case where the correlation functions and
their variance/covariances are estimated from simulated response records subjected
to noise, it is again observed that the random error is well predicted and it is seen
that the addition of the noise is clearly picked up. In all the cases used in the sim-
ﬁlatioﬁ, the perturbation method correctly accounted for the influence of the size of
the Hankel matrix, of the sampling interval, the record length used and the model
order selected. Finally, it was investigated how non-stationary and non-white charac-
teristics affect the random error estimates. It can be concluded that the perturbation
method can, in general, not account for the additional random error introduced by the
non-stationarity and tends to estimate the random error of the underlying stationary
signal. However, in situations where a non-stationary frequency content is more or
less repeated identically from record to record, a good estimate of the random error

can still be expected.

To investigate the predictive qualities of the algorithm to determine the bias error
in the estimated modal parameters, a similar approach was taken as for the random
error. However, the good agreement between the true and estimated errors observed
for the random error, could not be reproduced for the bias. For the two system in-
vestigated, the results were excellent for the lower frequency system but considerably
less accurate for the higher frequency system. Partly responsible for the observed
divergence is the artificial linearisation involved in the equations yielding the trunca-

tion bias. This statement was verified by simulation. However, further simulations
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showed that even in the case, where the truncation bias is theoretically expected to
be negligible, i.e. no singular values containing system information were truncated,
the discrepancy between the estimated and true bias was still present, although the
perturbation algorithm “correctly” predicted negligible bias. It was shown that the
quadratic bias, whose contribution to the total bias was found to be marginal, could
not account for the observed discrepancy. While the magnitude of this divergence was
not dramatic, it was still significant in the sense that it was about twice as large as
the standard error. Moreover, a check devised to assess whether the omission of the
quadratic bias of the truncation bias could be responsible for the inaccurate estimate,
showed that the quadratic bias of the truncation bias was small and its omission could
not be the cause of the detected inconsistency. The question as to what lies at the
.botto_n.l of the observed discrepancy therefore remains open. The possibility exists
that "'cﬁhe quadratic expansion of the perturbation equations relating to the bias is not
sufficient and that the bias is dependent on higher order statistics. But on the other
hand, this quadratic expansion appeared sufficient for the lower frequency system.
Despite this “mysterious” discrepancy, it appears from the simulations in Chapter 6
that when the true truncation bias. is small, it is estimated more accurately by the
perturbation method. Although the converse does not hold, it does transpire from
the simulations that when the estimated bias is small, it is unlikely that the true
bias is excessive. Therefore, the best practice is to apply the perturbation algorithm
with different sets of parameters (dimension of the Hankel matrix, model order, and
possibly the sampling interval) to find a set that yields a negligible truncation bias.
As shown in Chapter 6, this is possible by increasing the size of the Hankel matrix
or by overspecifying the model order. This approach does not necessarily result in
best possible bias estimate, but severe bias appears to be reflected in the perturbation
estimates so that the latter situation can be avoided and a bias correction, if applied,
will not exacerbate the discrepancy. Since the computation of the truncation bias is
very efficient as it is independent of the statistics of the perturbation, this is readily

achieved in practice.

289



8.2.2 The Bootstrap Method

This section summarises the work and results of chapters 4 and 7. The bootstrap
method had previously been applied by several authors to assess the uncertainty in
modal data. However, the fact that the outcome of boofstrapping time series depends
on how the time-series are split up into blocks of data and then joined to yield the
bootstrapped pseudo-time series was ignored by these authors and is the subject of
Chapter 4. Three schemes for bootstrapping time series are investigated: the moving
blocks bootstrap, the “blocks of blocks” bootstrap and the stationary bootstrap. It is
shown that the moving blocks bootstrap introduces artificial damping into the system.
. This effect can be mitigated by the stationary bootstrap and avoided completely by
using the blocks of blocks scheme. For this reason, the latter method is preferred and
an efﬁcient algorithm resulting in a set of bootstrapped auto- and cross-correlation
functions was developed. Bootstrapping correlation functions rather time-series offers
a significant advantage in terms of computer memory when the recorded response
records are long. Not only does the resampling scheme used affect the bootstrapped
statistics, but so does the size of the blocks used. The block length effectively controls
the amount of bias and random error in the variance and covariance in bootstrapped
correlation functions. Should the bootstrap yield a set of pseudo correlation functions
thaf have a large bias, for example underestimate the variance and covariance, then
equally the random error in the modal parameters will be underestimated. There-
fore, the block length is crucial to the accuracy of the bootstrapped random errors
in the modal estimates. To avoid this, two optimal block length selection methods
are presented that minimise the root-mean-square error of the bootstrapped correla-
tion functions. This ensures that the set of bootstrapped correlation functions have
a variance and covariance as closely as possible within this framework to the true
statistics of the correlation function. The latter methods were originally derived for
univariate times-series but were extended to compute the optimal block length for
cross-correlation functions. The theory was validated by simulation. This establishes

the solid basis needed to assess the uncertainty in the identified modal parameters.
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Simulations investigating the quality of the bootstrap method are presented in
Chapter 7. The same approach was used as for the perturbation analysis as well
as the same SDOF systems to allow a fair comparison between both methods. The
simulations, using the blocks of blocks resampling scheme, showed that the bootstrap
method yields good estimates of the random error but that they are less accurate
than those obtained by the perturbation analysis. In fact, a small downward bias was
observed which was attributed to the inherent, albeit optimal, root-mean-square error
in the variance and covariance of the bootstrapped correlation_ functions. A slight
. improvement was observed with Politis and White’s block selection method but, as
argued in Chapter 7, it cannot be asserted whether this will always be the case. One
éf the advantages of the bootstrap method, is that it is not restricted to the SSI/Cov
algorifhm but can in principle be used in conjunction with any curve fitting algorithm
to estimate the random error. This was demonstrated by estimating the random error
in the identified modal parameters from the data-driven Stochastic Subspace Method
(SSI/Data) in conjunction with the stationary bootstrap. Again good agreement was
observed between the true and estimated random error. As for the perturbation
method, the influence of non-stationary characteristics was investigated. It appears
that the bootstrap method appears to pick up some of the additional randomness
introduced by the non-stationary characteristics in the data which makes this method
very attractive in practical applications. The reason for this was explained by the
fact that the resampling scheme also randomises the modulation function and thereby
accounting for the additional variability. In the two cases where the frequency content
of the response exhibits non-stationary characteristics, the true and estimated errors

agreed less well.
Finally, the problem of estimating the bias in the identified modal parameters

was addressed. Based on the theory of the perturbation analysis, an bias estimate

emulating the truncation bias was considered. Simulations showed that the bias thus
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estimated displayed a similar behaviour to the estimates obtained by the perturba-
tion analysis. As a result, the same conclusions apply, namely that the bootstrap bias
estimates lack the accuracy aimed for but indicate severe bias in the estimates. Also,
like the perturbation method, the bootstrap bias estimate does not account for the
residual bias error observed in the higher frequency system. As discussed in Chap-
ter 7, the computation of the bootstrap bias emulating the truncation bias has its
drawbacks. It is difficult to automate the process and to obtain a good estimate may
require some user interaction. However, the limitations cannot be adequately assessed
in this case without testing the mode pairing and the accuracy pf the estimate on a
- more complex system. Difficulties are to be expected and therefore, the perturbation

method is preferred to estimate the bias.

8.2.3 Future Work

Although both methods allow to avoid excessive bias in the modal parameters, an
improvement would be desirable, in particular for applications involving the compu-
tation of response levels which require truthful estimates of the modal damping ratios
for accurate predictions. Two problems were identified in determining the bias: (a)
the approximation used to estimate the truncation bias and (b) an unexplained resid-
ual bias observed in the case where the truncation bias is expected to be marginal
which could not be accounted for the quadratic bias nor the quadratic bias of the
truncation bias. A fair amount of effort was devoted the former problem in trying to
rewrite the perturbation equation yielding the truncation bias in terms of a physically
meaningful perturbation parameter but this is not trivial. To investigate the source of
the unexplained residual bias, simulating the bias on a large number of systems would
potentially hint into the right direction. However, if it turns out that higher order
statistics are required to pin down the bias accurately, the resulting computational
burden may become impractical. The above applies to the bootstrap bias estimates

as well. However, the problem regarding the pairing up of the equal modes at chosen
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and full model order in a robust and automated fashion is worth investigating. This
problem bears similarity to sorting stable from unstable modes in a stabilisation di-
agram. Some innovative techniques such as fuzzy clustering may provide a solution
to this problem. Another important factor that would benefit these methods in prac-
tice is the determination of the bias introduced due to non-stationarity. The problem
lies in the difficulty to capture the bias introduced to the correlation functions as a
result of time-averaging through the non-stationarity when the stationary correlation
functions are computed and include then into the statistics of the perturbations. A
possibility worth investigating is whether a comparison between the non-stationary
, correlation functions and the stationary correlation functions gives some clues about

this bias and offer the possibility to implement this in a data driven fashion.

For either of the two methods to be applicable in practice, they have to be tested
on MDOF systems. Although the theoretical basis presented in this thesis covers
the MDOF scenario for both methods, a few particularities need to be considered
in more detail. For the perturbation method, the critical issue is to investigate how
the algorithm copes with closely spaced modes and when to switch to the repeated
mode case. The bootstrap method is readily applicable to the MDOF case. However,
some additional work would be valuable on some of the practical and theoretical as-
pects involved. These are: (a) an improved method for pairing up identical modes
from different bootstrap estimates (b) guidance on which auto- or cross-correlation
function(s) should be used to determine the block length and (c) to investigate in
more detail, either by simulation or theoretically, that the determination of the op-
timal block length based on the correlation function at zero lag is also optimal or
near-optimal for higher lags. Finally, to enhance the confidence that can be placed
on the proposed error estimation methods, some MDOF simulations and laboratory

tests on a simple rig, whose modal properties are known, would be a valuable addition.

Both methods certainly contain a few other interesting features. A point that
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has captured the interest of the author is to see, whether the system sensitivities
reveal themselves as reliable indicators to distinguish between structural modes and
system poles introduced into the system due to the presence of harmonic forcing
components. The latter modes are non physical and therefore it is not unlikely that
the sensitivities associated with these poles differ significantly from those of system
modes. For the bootstrap, an interesting research avenue is its application to non-
stationary time series, which has received some attention in recent years. Since many
real-life processes are non-stationary, such a tool would lend itself as a basis for a
great variety of applications. Coupled with the attractive feature that the bootstrap
‘_ method is not limited to a particular curve fitting algorithm, such a method is not
likely to be superseded in the near future as the underlying data structure of response

records will not change, but the curve fitting algorithms almost certainly will.
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APPENDIX A

EXPRESSING THE
CROSS-CORRELATION FUNCTION OF
‘AN MDOF SYSTEM AS A SUM OF
AGI‘O-CORRELATION FUNCTIONS OF

EQUIVALENT SDOF SYSTEMS

It is well know that the displacement response of a viscously damped N-DOF sys-
tem system can be expressed as a linear combination of the undamped mode shapes

weighted by the modal or normal coordinates as
N
x(t) =Y ¢n¥a(t) = BY(2) (A.1)
i=n

where ¢,, are the undamped mode shapes of the system and it is assumed that free
response mode shapes diagonalize the dissipation matrix as is the case for proportional
damping (see Ewins (2000) for instance). The modal coordinates Y;(t) can be found

from the uncoupled equivalent SDOF systems corresponding to each mode using, for
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instance the Duhammel integral (Clough and Penzien, 1993) i.e.

Yu(t) + 26nwn Yo (t) + w2Yn(t) = P"W(t)with (A.2)
with Y, = /t Py(T)hp(t—T)dTr n=12,...,N (A.3)
0

Here, P,(t) denotes the modal or generalized force, h, the impulse response function
of the n* mode, m,, the n*® modal mass and w, the natural frequency of mode n.

Thus, at degree-of -freedom [, the displacement is

zi(t)

N .
Z ¢lnYn (t) and (A4)

xln(t) = ¢lnYn(t) (AS)

where chn(t) is the output at degree-of-freedom ! due to mode n only. The correlation

function between any two displacements at degrees-of-freedom ! and p is given by

Ry, (1) = Elzmi(t)p(t + 7)) (A.6)
N N 00 poo
= ZZ (/(; /(; ¢lm¢anPmPn (T — U9 + ’ul)X (A7)
X hm(ul)hn(ug)duld'uz) (A8)
N N
= > > Reypzyn(7) (A.9)

When the damping is light and the modal frequencies are well separated, then the
response process Zj,(t) produced by mode m is almost statistically independent of

the response zp,(t) produced by mode n so that the cross-terms in eq. A.9 of the form

R

eimem 10T T # m are small compared to those where n = m (Clough and Penzien,

1993). Thus, eq. A.9 can be approximated as

N
Rzlzp (T) ~ Z Rzlnzpn (T) (A]'O)
n
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Now, it follows from equations A.8 that

¢ln¢1m

Rxln»’”pn = ¢ ¢ Ra:q,.a:q,. any q (All)
qnPgn
Thus,
N
Ryyz, Dinpn Rz pnzgn (A.12)
n ¢qn¢qn

Assuming that the excitation consists of uncorrelated white noise inputs p; at degrees-

of-freedom i, we can write

N N N
Rppn(t) = D) inbrmPBop, (1) = Y $indim Rop (7) (A.13)
1 r l .

N
= Z¢ln¢lmS157' = SodT . (A.14)
l

with Sy = Efv OindimS; and Py, denotes the m** modal force. It follows therefore
from equations A.12 and A.13 that the correlation functions R;,;, between outputs
measured at different degrees-of-freedom ! and p along a structure excited by uncorre-
lated white noise can be approximated as a linear combination of the auto-correlation
functions of SDOF systems with modal frequencies and damping ratios of the struc-

ture excited by white noise.

Using equation 3.3, the variance of the unbiased correlation functions Ry, can

therefore be written as

T—1 T
Var(Ry,z,(T)) = T _1_ - / ( - 1-1—,—!) [Rxm (T)Rzpz, (T) + Rayz, (t + T) Ry, (t — 7’)] dr

-T+T
(A.15)

Substituting the approximation made in equation A.10 in the above equation, one
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obtains

T—-1 T
Var(Ramy () ~ i [ (1- 1) [(E Rayi (r)) (Z Ry (f))
+ (Z Rappzpn(t + 'r)) (Z Ryt (t — 7'))] dr

(A.16)
Expanding the sums then yields

N 1 T—-7 |7.|
Var(Rgz,(T)) =~ En: {T — /:T-}'T ( - —T-) [Reinzin (T)Ra:pnm,m (7)+(A.17)
+ Rz zpn (t + T)Rapzy,, (T — 7')] d’r} (A.18)

1 T—r1 ITI
+ T—T./_T_H(l_T);;x (A.19)
m#n

X [Rzlnzln (T)Rzpmzpm (T)+ . (A“20)
+ Ry zpn (t + T) Rapp iy (E — T)] dr (A.21)

Since it was assumed that the modal frequencies are well-separated, it follows that the
second term in equation A.17 is much smaller than the first term since the integral of
the product of two correlation functions almost cancels due to the oscillation about
the abscissa. This is much the same situation than before (eq. A.8) since the auto-
correlation functions are proportional to the impulse response functions for white noise
excitation. Proceeding as in equation A.12, we can write

TinTpn ~— ¢ln¢ln LinTin ) Lpnlin ~— ¢ln¢ln ZTinTin

(A.22)

a . _ $mom

Tonden ¢ln¢ln Rzlnwln’

Using the notation above and neglecting the second term in equation A.17 the variance

may be written

Var(Rage, (1) ~ 3 %ﬁ’:" Var (Ray z,, (7)) (A.23)

Thus, the variance of the correlation functions Ry,,, between outputs measured at dif-
ferent degrees-of-freedom [/ and p along a structure excited by uncorrelated white noise

can be approximated as a linear combination of the variance of the auto-correlation
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functions of SDOF systems with modal frequencies and damping ratios of the structure

excited by white noise.
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APPENDIX B

ADDITIONAL EXPRESSIONS FOR THE

DERIVATIVES OF THE MODAL

'FREQUENCIES AND DAMPING

RATIOS

This Appendix gives the remaining derivatives needed for the calculation of the deriv-

atives of the modal frequencies and damping ratios. Because these expressions are

lengthy, they were omitted in 5.3 in Chapter 5.

B.1 Expression for d;x, (w;)

Oikp (wi) =
+
+

+

R [Ae; (O] R [Fxp (Aei)] + S [Ae; (O] S [k (Acy)] B.1)
Ac; (0)] '

R[5 (Ae)] R [0p ()] + S [0k (Aei )] S [6p (Aey)]
Ae: (0)]

PR [5k (’\cz)] R [5jp ()‘q)] +S [5k ()\c,-)] N [‘sjp (’\c,)]

2 Ae; ()]

1R85 (Ae)] R [0k (Aes)] + S 05 (Aci)] S [0k (Acy)]

2 Ac; (0)] |

185 (wi) Okp (wi) + 2056 (wi) 8p (wi) + 8k (wi) 0jp (wi)

2 Ac; (0)]
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B.2 Expression for J;i, (&)

Oikp (&) =

R s (0] ko (wi) R[G50 (Ne)]
w? (0) w; (0)
1R[6; (Ac,)] Orp (wi) + R [0kp (Acy)] 65 (wi)

2 w? (0)
1R [0k (Me)] Gjp (wi) + R [65p (Mei)] Ok (wi)

2 w? (0)
R[5k ()] 85 (wi) + R[5, el e (wi)
w? (0)
R e, (0)] kp (wi) 65 (ws)
w3 (0)

(R [0 (Ae,)] 8p (wi) + R [6p (Ae,)] O (wi) ) 85 (wi)

w? (0)

R [6; (Ac,)] 6p (wi) 0k (wi) + R A, (0)] 85 (0k (wi)+ 8 (wy) )

w3 ()

3R De; (0195 (@i) Ok (wi) 6, (wi)
wi (0)
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B.3 Expression for d;; (A)

20, (A) =

N _

+

+

227 UiT [Hy Vs (2;1/ 2) + Hydjp (V1) =Y 2] (B.3)
2 [2;1/25,-k (UT) + 6 (2;1/ 2) U{] H V572

5; (2;1/2) [ak (U1 T) Hy Vi 7Y% + UT 8 (Hy) Vi =772

UTH1 8 (V1) ST Y2 + UTH V16, (2;1/ 2)]

6 (Z0%) [ (UiT) raviZr 2 + UTs; (ry) Vi 372

UTH,8; (V1) 72 + UTH V16, (2;1/2)] |

=725 (UT) [5k (H1) ViST Y2 + H16, (V1) 7Y% + Hy V16, (2;1/2)]
=76 (UT) [6; () ViST Y2 + 285 (V) S + 1 vas; (B77)]
2720755 (1) [8e (VO 572 + Vas (877

21'1/2U1T6k‘('H1) [aj (V1) 72 + V4 (2;1/ 2)]

=0T (Vi) b (B177) + 20T G (V) 6 (27)

B.4 Expression for §;; (U;)

6% (U) = Hod (V1) =7+ HoVad (E77) (B.4)

+ % [H05j (V1) 6k (21— 1) + Hod (V1) ¢ (21_1)
+ 6 (o) Vidy (21'1) + 0k (Ho) V145 (21_1)

+ 8 (Ho) & (V1) BT + 6 (Ho) 8 (V1) =1
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B.5 Expression for §; (AA') and 6;; (AA)

o (AN) = ¢ Am.lv Hy V2S5 U TP + P75, (H1) VoS5 U TP (B.5)

5; AEG

+ 0 (H1) <NMNIH%.~. AGNHHV + H1Vabi AMWHV %u. ACNHH: P

+ PTH16 (V2) 27 1Un TP + PTHIVaS; (251) U TP

+ PTHV2E6 (UnT) P + P 7 H V25 Uy, TS, ?\v

= PT'HV, ?%cse% ?\TMMH% (Un") P + 8 (837) cai (B6)

+ T.u AH.T_V Q.NH/\N + WTu:H%.q.a A<Mv_ MMIHG.NHHHU\

1

+ 5[5 (P7) 6 () Vaz5 + 65 (P7) Hadk (Va) B30 + 65 (P) Vi (377)

2

+ 8 (P7) 65 (M) VaZ5t + 6 (P Hab; (Va) B3

6 ?Ivi?.u& AMmi U 7P

Wmu. A”—...v‘lnv \Iul\uMwIH Ta A.C.uuﬂv “T\ + .C.NHH%& Aw\vﬁ
30 (P VaZs? [5, (Un") P+ a5 (P)]
1

5 [P0 (1) 8 (Va) 37 + P70 (1) Vadi (277) + BT M0 (Va) 6 (537)

+ PO (H1) 85 (Va) B3 + P 6 (M) Vad; (251)

+ Hv\l:w%w (Va2) %u. AMumI»L cwﬂﬂw\

1

+ P76 (M) V22310 (UntT) + M1 V2 (557) 8 (U2t 7)

2

!

w_ul ?. (H1) V235U 76, Aw\v + 165 (V3) 55 U 76, Aw\v (B.7)
H1Vad; (257) Uz T Av\v

8, (M2) VaZ5"Un"0; (P') + Hady (V2) 27 Un "5 (P')

HyVady (557) Uar 76 A_u\:

PTV,x;! F (Uz1") & A_J + 6 (Un") ¢ Aw\:
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