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ABSTRACT

The completion of a substantial number of complete genome sequencing 

initiatives has produced more than a million protein sequences. Analysis of these 

protein sequences is possible using recent advances in computing and bioinformatics 

techniques.

This thesis describes a novel automated protein classification protocol which 

groups proteins into families and identifies protein domain architectures via domain 

assignment. This data is presented in the Gene3D database which is used for 

subsequent analysis.

The analysis of the distribution of protein family and protein domain data shows 

a power-law like distribution that is typically seen in many biological data distributions 

and is indicative of the small world networks that underlie biological systems biology. 

Kingdom distribution of superfamilies and protein families in Gene3D has been used to 

describe the evolutionary mechanisms that determine genome diversity through protein 

diversity. Domain occurrence profiles have been used to identify protein domain 

superfamilies that are correlated with genome size in bacteria. These superfamilies are 

shown to exhibit a balance between metabolic and regulatory roles along 

microeconomic principles that may determine bacterial genome size.

Domain families identified in Gene3D enable a determination of the total 

number of protein folds in nature. Sub-clustering of domain families permits domain 

family sub-cluster occurrence profiles to be determined. These profiles are shown to be 

capable of detecting correlations and anti-correlations between domain families that are 

undetectable using superfamily occurrence profiles alone. Clusters of correlated 

domain subclusters are shown to identify functionally linked clusters of proteins. 

Finally, the data in Gene3D is used to functionally annotate the CATH database and 

provide functional predictions for un-annotated proteins, providing more comprehensive 

functional repertoire and greater accuracy than other functional prediction methods.
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CHAPTER ONE

Introduction 

1.1 Introduction

Biology has entered a genomic age. The development of high-throughput 

automated experimental techniques has uncovered biological data at a faster rate than 

ever before and this looks likely to continue for the foreseeable future. The huge 

amount of data generated daily necessitates the use of computational methods for 

organisation, classification and analysis. Biology is exploring complex biological 

networks by genome level investigation. Functional and comparative genomics aim to 

understand how species have evolved and determine the function of proteins and non­

coding genomic regions, primarily through identifying and comparing homologues. 

Structural genomics aims to use the results from genome sequencing projects and 

advances in structural determination to define fold space through organisation and 

analysis of protein structures. Resources which classify protein structures and family 

relationships across multiple genomes can provide useful information for functional, 

comparative and structural genomics. This chapter introduces the biological molecules 

which are core to evolution and function in organisms, and methods that have been 

developed to compare and describe their different physical characteristics, genomic 

context and biological functions.

1.1.1 Deoxyribonucleic Acid

In 1944, Avery, MacLeod and McCarty (Avery et al., 1944) showed that the 

molecule deoxyribonucleic acid (DNA) carried inheritable information by building on 

the work of Frederick Griffith who had showed in 1928 that heat-killed virulent bacteria 

could transfer their virulence to non-virulent bacteria.

The observation of the relative levels of nucleotide bases in DNA, made by 

Erwin Chargaff in 1950, showing that the amount of adenine was equal to the amount of 

thymine, and that the amount of guanine was equal to the amount of cytosine, combined
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with the insight by Rosalind Franklin (Franklin and Gosling, 1953) and Maurice 

Wilkins (Wilkins et al., 1953) that the DNA molecule was shaped like a helix, 

containing two ‘strands’ joined by ‘rungs’, led to the discovery of the molecular 

structure of DNA in 1953 by Francis Crick and James Watson (Watson and Crick, 

1953).

The DNA molecule consists of two polymeric strands in a right-handed helix, 

joined together by hydrogen bonds between complementary nucleotide base pairs. Each 

polymer strand consists of nucleotides, which are made of a phosphate group bound to a 

deoxyribose sugar, which is bound to a nitrogenous base. There are four different kinds 

of nitrogenous base in DNA; these are the pyrimidines, cytosine (C) and thymine (T), 

and the larger purines, adenine (A) and guanine (G). Polymerisation of nucleotide 

subunits occurs with covalent phosphodiester bonds formed between the 5' and 3’ 

hydroxyl groups on the deoxyribose sugar and phosphate groups, forming an alternating 

sugar-phosphate backbone. Base pairs are formed between a complementary purine and 

a complementary pyrimidine, where adenine always binds to thymine and cytosine 

always binds to guanine.

Two anti-parallel polynucleotide chains form a DNA molecule with hydrophilic 

sugar-phosphate backbones on the outside of the helix and the hydrophobic hydrogen 

bonded base pairs stacked perpendicular to the helix axis, on the inside of the helix 

(shown in figure 1.0). The DNA helix can adopt three different conformations in 

nature, depending on base pair composition and hydration/ion levels. The common 

form is the B-helix, with ten nucleotides per helix turn and both a major and minor 

groove present on the helix surface. G-C rich DNA forms Z-helices, where the helix 

becomes left-handed, longer, and thinner, with twelve nucleotide bases per helix turn 

and only a single groove on the helix surface. Lastly the A-helix conformation is seen 

at low hydration levels or high cation concentrations. This conformation has eleven 

nucleotides per helix turn and two grooves present on the helix surface.
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BASE PAIRS
*  •  V

DNA HELIX
*»•)*

Figure 1.0 Structure of DNA. Ball-and-stick and space-filled models showing the 

structure o f nucleotide base pairs cytosine-guanine (G-C, top left), adenine-thymine (A- 

T, top right) and the double-helical structure o f the deoxyribonucleic acid molecule 

(bottom). Figure shows structure ofPDB 1DK6 (Klewer et al., 2000).

The structure of DNA, consisting of complementary sequences of the four 

nucleotide base pairs led George Gamov (Gamov et al., 1956) to postulate that to 

encode the twenty essential amino acids would require at least nucleotide base triplets to 

encode each amino acid. Experiments by Nirenberg and Matthaei in 1961 (Nirenberg 

and Matthaei, 1961), and later by Nirenberg and Leder in 1964 (Nirenberg and Leder, 

1964; Leder and Nirenberg, 1964), showed that the genetic code consists of sixty-one 

codons (nucleotide triplets), encoding specific amino acids and three codons encoding 

termination (of the process of translation). The genetic code has built in redundancy, in 

that multiple codons can encode some amino acids. Only two amino acids, methionine
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and tryptophan, are encoded by a single codon. In some organisms, one or two stop 

codons may also encode amino acids, for example in many genomes, including humans, 

one of the stop codons sometimes encodes selenocysteine.

1.1.2 Transcription and Translation

There are many differences in prokaryotic and eukaryotic nuclear material 

packaging and cellular structure, but both prokaryotes and eukaryotes employ the same 

genetic code and translation/transcription mechanisms, known as the Central Dogma 

(shown in figure 1.1), to express protein from DNA:

T ranscriptiorP^ > RNA
\  /

r

RNA
/

Translation Protein

Figure 1.1 Central Dogma. In cellular systems, genetic information transfers from 

DNA to RNA to Protein, and cannot be transferred from Protein to either Protein or 

DNA or RNA

The triplet codes in DNA are transcribed into RNA by RNA polymerase. This 

enzyme binds to transcription factors that bind to promoter regions 5’ terminal to coding 

DNA, which open the helix to allow the RNA polymerase to proceed in a 3’-5’ 

direction down one polynucleotide strand of the DNA molecule. In eukaryotes, where 

DNA is packaged into protein complexes, these complexes are unwound and then re­

wound once the RNA polymerase has passed. As the RNA polymerase proceeds down 

the DNA strand it matches complimentary ribonucleotides to the sequence of 

nucleotides in the DNA strand. Polymerisation of these ribonucleotides forms a 5’-3’

15



ribonucleic acid polymer (RNA) strand, complimentary to the 3*-5* DNA strand. There 

are several types of ribonucleic acid: mRNA functions as a coding template for 

translation; rRNA functions as part of the ribosome, an rRNA/protein complex required 

for translation; and tRNA which bind amino acids to form aminoacyl-tRNA, used for 

translation, which possess specific ribonucleotide triplet codes linked to a specific 

amino acid.

In prokaryotes and about 10-15% of translation in eukaryotes, translation occurs 

simultaneously with transcription. The remaining translation in eukaryotes occurs 

outside the nucleus, and so mRNA is first transported to the cytoplasm. Translation 

begins when the ribosome binds 5' terminal to the coding region of the mRNA strand. 

The ribosome proceeds in a 5’-3’ direction down the mRNA strand, at the start codon 

(AUG, the first coding ribonucleotide triplet) the ribosome binds the aminoacyl-tRNA 

molecule containing a complementary ribonucleotide triplet (TAC) and a specific amino 

acid (methionine in eukaryotes, formylmethionine in bacteria). The aminoacyl-tRNA 

molecule complementary to the next ribonucleotide triplet on the mRNA strand then 

binds to the ribosome, and a peptide bond is formed between its amino acid and the 

initiator aminoacyl-tRNA amino acid (at which point the first bound tRNA molecule is 

released. As the ribosome proceeds down the mRNA strand, each aminoacyl-tRNA 

complementary to the next triplet in the coding region is bound, a new peptide bond is 

formed and the amino acid chain produced elongates. When the ribosome gets to a 

termination triplet, no aminoacyl-tRNA molecule is bound and both the ribosome and 

the newly translated peptide are released.

1.1.3 Gene Identification

The region of DNA encoding an RNA molecule is called a gene. The peptide 

sequence, the primary structure of a protein, can be identified by translating the genetic 

code from a DNA sequence encoding a gene (shown in figure 1.2). The coding region 

in prokaryotic and several eukaryotic genes is a continuous open reading frame of 

triplets, but the vast majority of eukaryotic genes have discontinuous coding regions, 

where coding exons are separated by non-coding introns.
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DNA - gene

Promoter 5’UTR Exon Intron Exon 3’ UTR

RNA - preprocessing

5’UTR Exon Intron Exon 3’ UTR

RNA - postprocessing

5’UTR Exon Exon 3’ UTR

Protein -  prim;ary structure

Peptide Sequence

Figure 1.2 Gene Structure. DNA sequence regions are transcribed into RNA, which is 

processed to remove non-coding intronic sequences. Translation o f the resulting RNA 

produces the protein's primary structure.

In prokaryotes the continuous coding regions make peptide sequence prediction 

from DNA sequences relatively straightforward. Identification of start codons and stop 

codons, and translation of the intervening coding region allows the vast majority of 

prokaryotic proteins to be predicted. To reduce erroneous protein predictions caused by 

DNA sequencing errors and shadow reading frames, additional evidence that the DNA 

sequence actually does encode a protein is desirable. Sequence similarity or similar 

sequence characteristics (codon bias, G-C content) to known expressed proteins or 

identification of a ribosomal binding site or promoter region increase the reliability of 

protein predictions.

The presence of exons and introns in eukaryotic genes, which often produces 

complex and diverse mRNA variations, makes accurate peptide sequence prediction 

more of a challenge. In some eukaryotes, for example the yeast Saccharomyces 

cerevisiae, only about 5% of genes contain introns (Patthy, 1999) whilst in other 

eukaryotes intronic genes are far more widespread. Up to 95% of coding DNA can be
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identified, but only around 40% of genes have all their exon/intron boundaries correctly 

predicted in eukaryotes (Reese et al., 2000).

A myriad of different gene prediction programs have been developed, using ab 

initio methods or homology based methods, or a combination. The first gene 

identification program was Grail (Uberbacher and Mural, 1991). The original release 

of Grail used ab initio methods to predict genes, the latest release, GrailEXP, improves 

predictions by the use of homology-based methods, where putative gene regions are 

aligned against a library of known gene regions. Programs such as Glimmer (Salzberg 

et al., 1998) and GeneMarks (Borodovsky and Mclninch, 1993) use Markov modelling 

of known gene regions to score putative gene regions. These programs require a 

training set of known genes, but are capable of correctly predicting more than 98% of 

prokaryotic genes. GenScan (Burge and Karlin, 1997) combines compositional 

parameters from exons, introns and intergenic regions with known signal sequences to 

predict genes.

1.1.4 DNA Sequencing

Two methods of DNA sequencing, Maxam-Gilbert (Maxam and Gilbert, 1977) 

and Sanger-Coulson (Sanger et al., 1977) were independently developed in 1977. Both 

methods used four independent reactions to identify the four different types of 

nucleotide bases in DNA. Maxam-Gilbert sequencing labels DNA with 32-P; 

nucleotide base-specific chemical degradation then produces DNA fragments of varying 

length. Sanger-Coulson sequencing labels DNA with 35-S; enzymatic synthesis using 

nucleotide base-specific didesoxylribonucleotide terminators produces DNA fragments 

of varying length.

These DNA fragments are gel-electrophoresised in four lanes, each lane 

corresponding to chemical degradation or termination reaction for each nucleotide base 

in DNA. A radiographic film of the gel can then be used to determine the sequence of 

nucleotide bases in the DNA. In 1987, Prober et al. (Prober et al., 1987) modified the 

Sanger-Coulson sequencing method using fluorescent dideoxyribonucleotide 

terminators. This enabled a single reaction to identify all four nucleotide bases, since 

each could be labelled a different colour, and permitted single lane gel-electrophoresis.
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In addition this development eliminated the need to work with radioactivity. The 

development of pulsed field gel-electrophoresis (Schwartz and Cantor, 1984), PCR 

(Mullis et al., 1986) and the first automated DNA sequencing machine (Smith et al., 

1986) paved the way for DNA sequencing at the genomic level.

1.1.5 Genome Sequencing

The first genome to be completely sequenced was the genome of bacteriophage 

MS2 RNA, only 3,569 bases in length and containing just four genes (Fiers et al., 

1976). Just six years later, the comparatively much larger DNA genome of 

bacteriophage lambda, containing 48,502 bases and almost 100 genes was sequenced 

(Sanger et al., 1982). The first free living organism to be completely sequenced was the 

bacteria Haemophilus influenzae, containing 1,830,137 bases and over 1,700 genes 

(Fleischmann et a l, 1995). The invention of shotgun sequencing (Venter et al., 1996) 

accelerated the sequencing of the larger genomes of cellular organisms, and as of June 

2005, 21 archaea, 207 bacteria, 33 eukaryota and over 1500 virus genomes have been 

sequenced, including higher eukaryotes such as human, mouse and rat (GOLD database, 

Bernal et al., 2001). There are also numerous sequencing projects that sequence 

eukaryotic expressed RNA, these projects are fundamental to the development of more 

accurate gene prediction programs that can be trained with these expressed sequences in 

order to predict eukaryotic genes in genomic sequencing projects more accurately.

1.1.6 Sequence Databases

The International Nucleotide Sequence Database Collaboration consists of three 

sequence databases -  GenBank (Benson et al., 2005), EMBL (Kanz et al., 2005) and 

DDBJ (www.ddbj.nig.ac.jp). All three databases exchange their sequence data on a 

daily basis, and as such contain virtually the same sequence data, but have different data 

formats. As of June 2005, GenBank release 148.0 contained 49,398,852,122 nucleotide 

bases from 45,236,251 sequences. Protein translations of these nucleotide sequences 

are also deposited in these databases. GenPept release 148.0 (translations from 

nucleotide files in GenBank) as of June 2005 contains 748,555,190 amino acids from 

2,440,496 protein sequences. However, these sequence collections often contain
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redundant entries, where entries may be truncated, identical, or contain small 

sequencing errors. In order to increase the quality and remove redundancy from protein 

sequence collections, several human curated databases have been developed. For 

example, release 11 (May 2005) of the RefSeq database (Pruitt et al., 2005) at the NCBI 

contains 1,425,971 protein sequences. SWISSPROT (Bairoch and Apweiler, 2000; 

Boeckmann et al., 2003) and PIR (Wu et al., 2004) are also human curated databases. 

Redundant translations are removed and protein annotations are carefully verified. 

However, this process is time consuming, release 47.3 (June 2005) contains only 

185,639 protein sequences. The TrEMBL (Boeckmann et al., 2003) database 

complements SWISSPROT, and contains automatically generated translations of EMBL 

nucleotide sequences not yet included in SWISSPROT. Release 30.3 (June 2005) 

contains 1,782,502 protein sequences. The PIR database is descended from the first 

protein sequence database, the Atlas of Protein Sequence and Structure, created in 1965 

(Dayhoff, 1965) and has been largely superseded by iProClass (Wu et al., 2004) which 

consists of PIR, SWISSPROT and TrEMBL. Release 2.71 (June 2005) contains 

1,891,813 protein sequences hierarchically classified into 36,000 PIR superfamilies and 

145,300 families. In 2002, SWISSPROT, TrEMBL and PIR were merged into a single 

resource, the Universal Protein Resource (UniProt, Bairoch et al., 2005).

1.1.7 Protein Structure Determination

Compared to the number of nucleotide and protein sequences, relatively few 

protein structures have been solved. All published protein structures are deposited into 

the Protein Data Bank (PDB, Bernstein et al., 1977; Deshpande et al., 2005). As of 

June 2005, the PDB contains 30,041 protein structures. 3,945 of these structures were 

determined by Nuclear Magnetic Resonance (NMR), the vast majority of the remainder 

were determined by x-ray crystallography.

X-ray crystallography determines the structure of a molecule from its diffraction 

pattern. X-rays are passed through a crystal containing a regular array of the molecule 

of interest producing a characteristic x-ray diffraction pattern, indicating the 

arrangement of molecules in the crystal. NMR can be performed on proteins in 

solution, and so avoids the crystallisation problems of x-ray crystallography. NMR 

exploits the phenomenon whereby some atoms will resonate when placed in a magnetic
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field. In an NMR spectrometer this resonance is detected and amplified, the exact 

frequency of the resonance can be used to identify the type of atom. NMR analysis 

identifies distance constraints on residues that allow reconstruction of the underlying 

structure. NMR is restricted to smaller proteins, but can study protein conformational 

changes during protein folding or substrate binding.

Solving a protein structure is a time consuming and costly enterprise. The 

average cost for solving a single protein structure is about $250,000-$300,000. In an 

effort to affect a rapid increase in the number of solved protein structures, the National 

Institute of General Medical Sciences initiated a program in 2000 to solve 10,000 

protein structures over ten years. This Protein Structure Initiative program, a 

collaboration between several structural genomic centres, has been running for five 

years. Around 1000 protein structures have been solved. The cost per protein structure 

was initially as much as $670,000, due mostly to high initial start-up costs. As these 

high-throughput centres progressed, the cost has dropped to around $180,000 and is 

expected to drop further to around $100,000 per protein structure as high-throughput 

pipelines are streamlined and become more efficient (Service, 2005).

1.1.8 Protein Structure

Proteins have a huge variety of functions and forms. Proteins can be 

characterised and compared in terms of protein structure. A protein’s primary structure 

is the translated sequence of amino acids that form the peptide chain. The secondary 

structure of a protein is the local conformation of the peptide chain. The main units of 

secondary structure are the alpha helix and the beta strand. A typical helix ranges from 

as few as 5 to as many as 30 amino acid residues. The close packing of the helix 

minimises contact between hydrophobic carbon atoms and the surrounding water, and 

facilitates hydrogen bonding between amino acid amine group hydrogen atoms and 

carbonyl group oxygen atoms that stabilise the helical structure. 3.6 amino acid 

residues form a full turn of the alpha helix. A beta strand is also stabilised by hydrogen 

bonds, often several beta strands form a beta sheet. The beta strands hydrogen bond to 

each other to stabilise the beta sheet. As in the alpha helix, hydrophobic amino acid 

groups are packed on the internal face of a beta sheet, to minimise contact with water in 

the surrounding medium. Secondary structure elements interact with each other using
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stabilising hydrophobic interactions. The tertiary structure of a protein describes the 

orientations of the secondary structures and their connectivity in three-dimensional 

space. Secondary structure elements can be closely packed in the tertiary structure. 

Helices can pack closely together to shield hydrophobic amino acid side chains, beta 

strands can pack together to form beta sheets, which in turn can pack against helices 

(shown in figure 1.3). In general the tertiary structure of a protein tends to pack 

hydrophobic amino acid residues internally, leaving hydrophilic amino acid residues 

accessible. Some proteins consist of more than a single peptide chain. Quaternary 

protein structure describes the relationship between different peptide chains of the same 

protein.

Figure 1.3 Protein Structure. Tertiary structure (left) showing arrangement o f alpha 

helices (green) and beta sheets (yellow) in a Ribonuclease Inhibitor domain. 

Quaternary structure (right) showing all four domains (blue, pink, brown, green) o f 

Ribonuclease Inhibitor-Angiogenin Complex (PDB: 1A4Y, Papageorgiou et al., 1997).

Many proteins form compact globular structures, some proteins appear to consist 

of distinct compact globular units linked together. These distinct protein subunits are 

termed domains. The exact definition of a domain ranges from ‘a distinct globular 

protein subunit’ to ‘an evolutionary independent protein subunit’. These definitions can 

reflect both the physical properties of protein domains, as well as the evolutionary 

mechanisms by which proteins are thought to evolve. A protein domain may consist of 

a continuous region of a peptide chain, or may be formed by a discontinuous region of a 

peptide chain. A protein domain may even consist of more than one peptide chain.
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1.1.9 Structure is more Conserved than Sequence

Chothia and Lesk (1986) first demonstrated the degree to which protein structure 

appears more conserved than sequence during evolution. This observation is reaffirmed 

by recent analyses of larger structural classifications (Orengo and Thornton, 2005), see 

figure 1.4 below.

0 10 20 30 40 50 60 70 80 90 100
sequence identity <%)

Figure 1.4 Sequence Identity versus Structure Similarity. Sequence identity plotted 

against SSAP structural comparison score (from 0-100) for all pairs o f homologous 

domain structures in the CATH domain structure database (red circles represent 

proteins with identical functions, blue squares represent proteins with different 

functions).

Since structures are more highly conserved than sequences, structural similarity 

is more able to detect distant protein relatives than sequence similarity. Even with 

advances in sequence comparison methods, some remote homologues in the ‘midnight 

zone’ with less than 15% sequence identity can only be detected through protein 

structure comparison (Todd et al., 2001; Orengo et al., 2001). Structure based 

classifications that are able to incorporate these distant homologues provide protein
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family datasets that permit further-reaching analyses of protein family evolution than 

sequence based resources alone.

The Protein Data Bank (PDB), based in the Research Collaboratory of Structural 

Biology (RCSB) Rutgers University, contains structures of over 30,000 proteins. These 

proteins are decomposed into over 60,000 protein domains of known structure. These 

structures can be clustered into protein families and superfamilies, producing 

hierarchical databases of protein structures, such as CATH and SCOP, which rely on a 

combination of manual expert classification and structural comparison methods.

Many of the very distant relatives below 20% sequence identity are paralogues, 

arising from duplication of a domain within the genome. Paralogous genes frequently 

evolve a new function. This is illustrated in figures 1.4 above and figure 1.5 below 

which illustrates the extent to which function changes in more distantly related relatives. 

By recognising such relationships, the structural based protein family classifications 

provide important insights into the evolution of protein function within protein families.
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Figure 1.5 Structure is more Conserved than Sequence. Functional diversity in 

distant homologous relatives in CATH. Whilst orthologues and paralogues are in the 

same Homologous Superfamily in the CATH database, the analogues have the same 

fold but are in different Homologous Superfamilies. Orthologues, paralogues and 

analogues can have very different sequence identities (green arrows) and functions 

(had -  G1 subunit, Bos taurus; lcip -  G1 subunit, Rattus norvegicus; lhe8 -  PI-3 

kinase, Homo sapiens; ln6h -  Rab-5a kinase, Homo sapiens; le98 -  Thymidylate 

kinase, Homo sapiens; lsrr -  Sporulation response protein, Bacillus subtilis). Adapted 

from Orengo & Thornton, 2005.

Function may be inherited at different levels of sequence identity with different 

degrees of confidence. For example Todd et al. (2001) analysed the relationship 

between EC number conservation and sequence identity and concluded that for single 

domain proteins, enzyme function as defined by the first three EC numbers is almost 

completely conserved between protein relatives which have a sequence identity of 40% 

or more, whereas in multi-domain proteins, the same level of conservation is seen 

between protein relatives which have a sequence identity of 60% or more (shown in

25

IsrrAO



figure 1.6 below). Todd et al. conclude that this conservation of function allows 

functional prediction between protein relatives with at least 30% sequence identity with 

95% accuracy in single domain proteins; whereas in multi-domain proteins below 40% 

sequence identity there is a significant reduction in conservation of function. This is in 

agreement with the analysis of Devos and Valencia (2000) who conclude that below 

50% sequence identity, completely correct functional annotations cannot be inferred. 

However, Rost (2002) concludes that even at 50% sequence identity between proteins; 

complete EC number conservation only occurs in 30% of pairwise relationships.

^  100%

#  90%
g 80%
|  70%
\  60%
1 50%
V  40%
|  30%
I  20%
i  10%

0%

Figure 1.6 Functional Conservation versus Sequence Identity in CATH.

Conservation o f functional annotation with sequence identity between pairs o f related 

enzyme structures in CATH homologous superfamilies with at least two members. 

Percentage o f total pairs conserved to four (green), three (blue), two (mauve), one 

(light grey) or no (dark grey) levels in the EC classification scheme. Pairs containing 

an un-annotated member are shown in black. Taken from Todd et al., 2001.

1.1.10 Protein Structure Classification

Protein structures in the PDB are classified by several different resources (e.g. 

SCOP (Murzin et al., 1995; Andreeva et al., 2004); CATH (Orengo et al., 1997; Pearl et 

al., 2005); and the Dali domain dictionary (Holm and Sander, 1996; Dietmann et al.,

2001)). Most protein structure classifications initially deconstruct whole proteins into
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protein domains. Some classification systems, such as the SCOP database, define 

protein domains as evolutionary conserved protein units. It has been estimated that 

around 65% of prokaryotic and up to 80% of eukaryotic proteins contain multiple 

domains (Apic et al., 2001). Several algorithms have been written for recognising 

domains in protein structures (Jones et al., 1998), often exploiting the fact that there are 

more contacts between amino acids within a domain than between different domains, or 

searching for hydrophobic clusters that could represent domain cores (DETECTIVE, 

Swindells, 1995). However, most classifications rely on manual intervention to some 

extent to determine domain boundaries.

Most protein structure classifications first classify according to the overall 

secondary structural component of protein domains, dividing proteins into alpha, beta, 

alpha/beta, alpha+beta (segregated alpha and beta regions), and low secondary structure 

classes, as shown in figure 1.7. Structural domains are then further classified into fold, 

architecture, topology, and homologous groups, where the domains are thought to be 

descended from a common ancestor. Individual classification systems are discussed in 

detail in later chapters.
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Figure 1.7 Protein Structure Classification. Secondary structure denomination of 

proteins into Alpha (top left, PDBAppr, Hofmann et al, 1996), Beta (top right 

PDB:4bcl, Tronrud and Matthews, 1993), Alpha/Beta (bottom left PDB:lg61, Groft et 

al., 2000) and Low secondary structures (bottom right PDB: ljfw, Peloponese et al, 

2000) classes.
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1.2 Homology

Homology means a common origin can be inferred between two entities. In 

protein terms, homologous proteins are proteins thought to have a common evolutionary 

ancestor. Organising sequences and structures into homologous groups not only helps 

to classify the ever increasing amounts of biological data presently being generated, but 

has practical implications for the study of biological relationships within and between 

families of homologous proteins. Statistically high levels of similarity between proteins 

can be used to infer homology between them. Methods of detecting homology between 

proteins inferred from protein sequence similarity and protein structure similarity are 

described below. Context based methods that use genomic information to infer 

functional relationships between proteins that may indicate a linked evolutionary 

history, but not necessarily a common evolutionary ancestry, are also described.

1.2.1 Sequence Based Hom ology Detection Methods

Pairwise sequence similarity methods can be divided into local similarity 

methods and global similarity methods. Local similarity algorithms (for example Smith 

and Waterman, 1981) identify conserved regions between two sequences and ignore 

regions with little or no similarity, whereas global similarity algorithms (for example 

Needleman and Wunsch, 1970) optimise the overall alignment of two sequences and 

include regions with little or no similarity. Sequences are aligned and scored according 

to sequence identities (identical residue pairs), acceptable substitutions, and gaps in the 

alignment. However, there may be very many different possible alignments between 

long sequences and scoring each alignment could be computationally intensive. This 

problem is solved using dynamic programming. Dynamic programming is a technique 

that divides the alignment problem into stages. The initial stage creates a matrix grid 

where the residues in one sequence run along the x-axis, and the residues in the other 

sequence run along the y-axis. A scoring matrix is generated, whereby each square in 

the matrix is sequentially filled, by calculating a running score of the similarity between 

the residues leading to that square. The last stage traces a path back through the scoring 

matrix to find the optimum scoring path. This path through the matrix can be converted 

into an alignment between the two sequences. For global alignments, the entire path
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through the matrix is calculated, for local alignments, only a subsequence region 

corresponding to the highest partial score need be reported.

1.2.1.1 BLAST1

For searching large sequence databases for sequence relatives, aligning all the 

sequences in the database to the query sequence using dynamic programming is still too 

time consuming. Heuristic approaches that approximate the scoring matrix and optimal 

path can speed this process. The BLAST1 algorithm (Altschul et al., 1990) shortens the 

search time for an optimal path by looking for non-gapped alignments. The query 

sequence is broken into word fragments (default word size is four), each word is scored 

against a substitution matrix (PAM 120, Dayhoff et al., 1978) and all substitutions for 

each word that score above a threshold are then used to scan against each sequence in 

the sequence database. Every time a word matches a database sequence, the word 

alignment, or maximal segment pair (MSP), is extended at either end and scored. The 

highest scoring MSP (known as the HSP) is then returned. The FASTA algorithm 

(Lipman and Pearson, 1985) is similar to BLAST1 in that it also sacrifices precision for 

speed. FASTA looks for exact matches between short sequence regions. If enough 

short regions of identity are found, FASTA uses dynamic programming to find the 

optimal path through the matrix. The size of the exact matches determines the speed 

and accuracy of the method. The longer the size requirement, the faster an optimal path 

can be calculated, but the less likely the optimal path is to contain such a long exactly 

matching region.

1.2.1.2 BLAST2

Both FASTA and BLAST 1 look for non-gapped alignments. BLAST2 (Altschul 

et a l, 1997) is a modification to BLAST1 that permits gapped alignments (Gapped- 

BLAST) and iterative searches (PSI-BLAST). BLAST2 uses a two-hit method, 

whereby two words need to be found within a threshold distance of each other before 

word extension is permitted. This dramatically reduces computational time as fewer 

word extensions need to be performed. Permitting gapped alignments reduces the 

number of word searches of database sequences, since a word alignment is more likely
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to be extended further since gaps in the alignment are permitted. Successive iterations 

of sequence searching and alignment produce position specific scoring matrices 

(PSSM’s) that reflect conserved sequence regions, whilst allowing sequence variation in 

non-conserved sequence regions. This can be used to score successive iterations of 

sequence searches. This iterative searching method makes BLAST2 more sensitive in 

detecting sequence relatives with low sequence similarity than a single iteration search. 

The position specific scoring matrix (PSSM) generated by BLAST2 describes the 

proteins that align with significant scores to the query sequence during the iterative 

process. In sequence databases containing families of related sequences, a PSSM can 

be generated to profile each family. A library of PSSMs can then be quickly searched 

to identify query matches to each family without having to search the entire sequence 

database (IMPALA, Schaffer et al., 1999).

1.2.1.3 Expectation Values

The significance of any pairwise alignment between two sequences can be 

quantified using an expectation value (E-value), which gives an indication of the 

likelihood of an alignment score (S) occurring by chance. An E-value is determined by 

multiplying the size of the database being searched by the p-value. In an alignment of 

two proteins of length m and n (where length is determined by the number of amino 

acid residues in each protein sequence), the p-value is calculated from the equation: p- 

value = Kmne"larabdaS. Where the parameter Ke'lambdaS represents the probability of an 

HSP with score S occurring by chance. This value is pre-calculated by fitting the tail of 

the distribution of scores returned by random, unrelated sequences (which produces an 

extreme value distribution in which the tail decays more slowly than for a normal 

distribution). K and lambda are empirically derived parameters, the values of which are 

functions of the alignment scoring matrix used, and can be thought of as natural scales 

for the search space size and the scoring system respectively. When searching 

databases using BLAST, the size of the database being searched is represented in the 

parameter n, calculated as the total length of all sequences in the database, effectively 

considering the database sequences being searched against as one long single sequence. 

Thus the the database size parameter n is multiplied by the pairwise p-value to produce 

a BLAST E-value in the equation above. This generates an E-value that decreases 

exponentially with score. BLAST E-values do not refer to the whole query sequences,
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but rather to the fragment of the query sequence that is given in the match (i.e. the 

HSP). A useful guide to E-values can be found at the NCBI 

(http://www.ncbi.nlm.nih.gov).

1.2.1.4 Hidden Markov Models

Profiles generated from multiple sequences better describe conserved and 

variant sequence regions. PSI-BLAST and IMPALA profile libraries are capable of 

detecting distant, yet significant sequence similarity proteins that pairwise methods like 

BLAST1 are unable to distinguish. More recent developments of profile methods 

include Hidden Markov models (HMMs, Eddy 1998). A Markov model describes a set 

of 'states’, each state being defined by a probability distribution. Markov models are 

subject to three assumptions: the next state is dependent only on the previous state(s); 

state transition probabilities are independent of time; and observed state outputs are 

statistically independent of previous outputs. State transition probabilities can be 

described in a matrix describing all possible transition probabilities between each state 

in the model.

An HMM describes two sets of states that are closely linked, one set of known 

states and another set of unknown, or hidden states. In protein sequence terms, each 

observed state represents an amino acid in a protein family. Known states are the 

observed amino acid frequencies at a given position in the model, and unknown states 

are the mechanisms and processes responsible for the observed sequence variation. 

Unlike other profile methods, HMMs can be built from unaligned protein families. In 

addition to a state transition matrix, an HMM is enhanced by a confusion matrix, 

describing the probability of observing a particular known state given that the hidden 

model is in a particular hidden state.

A linear HMM for a protein family is a model describing observed states 

corresponding to columns in a multiple alignment (shown in figure 1.8). The transition 

and confusion matrices are generated from the observed amino acid residues of protein 

family members. Each observed state has three hidden states that model matches, 

insertions, and deletions. This allows an HMM to model position dependent amino acid 

distributions and position dependent insertion and deletions (Krogh et al.t 1994).
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Observed States

m Confusion Matrix

Hidden States

Transition Matrix

Figure 1.8 Linear HMM. Amino acid residues in family members are represented by 

observed states (diamonds). The transition matrix (full lines) describe the probability of 

traversing between each hidden state (octagons) based on the previous state. The 

relationship between observed and hidden states M (match), D (deletion) and I 

(insertion) is described by the confusion matrix (dashed lines).

Query sequences are searched against libraries of HMMs representing protein 

families, or protein domains. Query sequences are scored against each HMM by 

calculating the probability of the observed amino acid at each model state. The 

optimum path through an HMM can be identified in a similar way to finding the 

optimum path through a scoring matrix, by using the Viterbi algorithm (Viterbi, 1967). 

The Viterbi algorithm can be used to calculate both local and global optimum paths.

1.2.1.5 Comparison of BLAST 1. BLAST2 and HMMs

There are two main software packages available for building and scanning 

HMMs. SAMT (Karplus et al., 1998) and HMMER (Eddy, 1998) both use linear 

HMMs. These packages have been compared to each other and BLAST 1/BLAST2 by 

Madera and Gough (Madera and Gough, 2002) using an all against all search of 2873 

domains of known structure and less than 40% sequence identity, where the 

evolutionary relationships between the domains are known (a total of 36 612 possible

33



true homologous pairwise relationships). Comparisons between each method were 

made by comparing the number of remote homologues detected at an error rate of 1%. 

The authors conclude that SAMT consistently produces better models than HMMER 

and detected 24% of possible remote homologues, 10% more remote homologues than 

HMMER and BLAST2. The remote homology detection rate reported by Madera and 

Gough is slightly lower than the 34% reported by Park and colleagues (Park et a l,

1998) in a similar detection test. Four years later, more recent benchmarking studies for 

HMM libraries used in this thesis detect 76% of remote homologues (Sillitoe et a l, 

2005; described in section 2.4.2.2). This increase in remote homology detection rates is 

due to the increase in the size of sequence databases used to produce HMMs and more 

sensitive HMM building methods.

1.2.2 Structure Based Homology Detection Methods

Proteins sharing extremely low levels of sequence similarity can still possess a 

high level of structural similarity, from which homology can be inferred, see example in 

figure 1.9. Studies of protein structural families have shown that homologues share on 

average only 15% sequence identity (Todd et al., 2001).

Figure 1.9 Structural Similarity in the Absence of Sequence Similarity. The

structure o f human haemoglobin (left, PDB: lhho, chain A, Shaanan, 1983) and insect 

haemoglobin (right, PDB: leco, Steigemann and Weber, 1979) show similar 97 amino 

acid core structure (cRMS=2.08A), with a sequence identity o f 12.4%.
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1.2.2.1 Structural Alignment

Structure comparison and alignment algorithms were first introduced in the early 

1970s. The rigid body superposition methods (Rossmann and Argos, 1976) allow 

structures to be superposed and a similarity measure calculated. Structures are 

compared by superposition of equivalent peptide chain carbon-alpha atoms, or whole 

secondary structures. Structures are translated and rotated relative to one other until the 

difference between putative equivalent residues or secondary structure elements is 

minimised. Similarity can be scored by calculating the root mean square distance 

(RMSD) between equivalent peptide chain carbon-alpha atoms (cRMS), residues or 

secondary structure elements. Superposition methods are limited when aligning distant 

homologues that may contain large insertions and deletions or changes in the 

orientations of equivalent secondary structures. More sensitive alignment algorithms 

based on dynamic programming, secondary structure alignment and fragment 

comparison have been developed. Many protein structure classifications use secondary 

structure based comparison (GRATH, Harrison et al. 2003; SEA, Rufino and Blundell 

1994) to identify putative structural relatives and then apply slower, more accurate 

residue based methods. More computationally intensive residue based comparisons 

(COMPARER, Sali and Blundell 1990; SSAP, Taylor and Orengo 1989; STAMP, 

Russell and Barton, 1992; DALI, Holm and Sander, 1993; CE, Shindyalov and Bourne

1998) result in accurate structural alignments. Rather than attempting to superpose 

equivalent residues between protein structures, many of these methods compare the 

internal distances between residues within the same structure to align residues with 

similar sets of internal distances.

1.2.2.2 Threading

Threading techniques (for example, Jones et al., 1992; Bryant and Lawrence, 

1993) attempt to position a protein sequence onto a structural template by identifying 

the most energetically stable fit to the template. Threading techniques require a 

database of known structural templates to scan against, an energy function for 

measurement of the energy of the protein sequence-structural template alignment, an
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algorithm for identifying the optimal alignment and finally a scoring system to measure 

the reliability of the structural prediction. Threading assumes that since many different 

protein sequences are known to fold into a limited number of protein folds, by 

attempting to thread a protein sequence into each member of a known structural 

template library, protein sequences can be assigned a structural fold. Threading scores 

the likelihood of two residues occurring at a certain distance relative to each other in 

space for each residue pair in the query-template alignment. Because threading 

techniques also incorporate some structural data, they are used for predictions at very 

low sequence identities (<25%) where sequence-based homology methods may not 

function. The performance of different threading approaches is assessed every two 

years in CASP fold recognition predictions (Kinch et a l , 2003). Threading is 

computationally expensive and most threading-based methods are too slow for large- 

scale genomic annotation projects (Cherkasov and Jones, 2004). However, some 

annotation protocols incorporate threading potentials. For example, GenThreader 

(McGuffin and Jones, 2003) consists of a neural network trained to combine BLAST2 

alignment profiles (seeded with structural alignments), secondary structure predictions 

and energy potentials derived from threading.

1.2.3 Context Based Functional Prediction Methods

Implication of a functional linkage between proteins can be evidenced by 

methods other than sequence or structure similarity. A variety of different methods 

have been developed to describe contextual relationships between proteins. Most of 

these methods rely on genomic information to infer a functional linkage between 

proteins.

1.2.3.1 Rosetta Stone

The Rosetta Stone method identifies homology between proteins when 

homologues are found fused together in another organism. If two proteins are located 

apart in one genome, but can be identified fused together in another genome, homology 

between them can be implied. Eisenberg et a l (Eisenberg et al> 2000) cite the example 

of yeast proteins involved in tryptophan biosynthesis, TrpG and TrpF, the Escherichia
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coli homologues of which are found fused together in a tryptophan biosynthesis single 

protein, TrpC. Other examples include Caenorhabditis elegans protein Ade5,7,8 

involved in the biosynthesis of purines, which is homologous to two separate protein 

sequences, Pur2 and Pur3 in the yeast genome that perform the same function.

12.3.2 Protein-Protein Interaction

Proteins that interact physically are functionally linked in that both proteins are 

likely to be involved in similar functions. Homologous sequences are likely to share 

similar interactions. Evidence of physical interactions between proteins can be obtained 

from high-throughput technologies such as large-scale two-hybrid screens, protein 

microarrays, and mass spectrometry of protein complexes. However, the interactions 

identified from these multiple experiments can be contradictory (Mrowka et al., 2001), 

requiring development of methods to assess the reliability of protein-protein interaction 

data (von Mering et al., 2002, Saito et al., 2003).

1.2.3.3 Svntenv

Especially in prokaryote genomes, genes that are in close proximity to one 

another in several genomes are likely to be functionally linked (Dandekar et al., 1998). 

Such linkage has been demonstrated by genes in the purine biosynthetic pathway, 

tryptophan biosynthesis, glycolysis and signal transduction pathways (Overbeek et al.,

1999). Studies indicate that a minimum of 10 genomes are required in order to detect 

even small functional clusters by conservation of gene proximity alone (Overbeek et al.,

1999), since gene proximity is not often conserved above proximal gene pairs of 

proteins (Bansal, 1999). Gene proximity correlations have been found to a lesser extent 

in eukaryotes (Barbazuk et al., 2000). Gene proximity can be combined with other 

techniques to detect more diffuse but significant clusters of genes showing functional 

linkage (Kolesov et al., 2001).

37



1.2.3.4 Phylogenetic Profiles

The presence or absence of a protein homologue in multiple genomes is called a 

phylogenetic profile. Eisenberg et al. (Eisenberg et al., 2000) note that when 

considering presence or absence profiles, there are far more possible phylogenetic 

profiles than protein families, so that the phylogenetic profile of a protein is an almost 

unique pattern of its genomic distribution, and any proteins with similar profiles are 

likely to be functionally linked. Phylogenetic profile comparison has been used to 

identify proteins functionally related to ribosomal proteins (Pellegrini et al., 1999), 

relationships that are not detectable by sequence comparison. Phylogenetic profiles 

consisting of a range of values, rather than the simpler presence/absence profiles are 

able to discern more subtle profile relationships (Date and Marcotte, 2003).

1.2.3.5 Expression Profiles

High-throughput microarray protein expression experiments allow proteins to be 

associated by co-expression profile analysis. Proteins that are found to have correlated 

expression profiles are likely to be functionally related. For example, Baldessari et a l 

(Baldessari et al., 2005), describe the identification of thirteen groups of functionally 

related synergistically expressed proteins involved in diverse molecular processes 

including RNA processing, cell cycle, respiratory chain and protein biosynthesis, in a 

large scale microarray analysis of gene expression in Xenopus laevis. Analysis and 

comparison of expression profiles across multiple microarray experiments is often 

complicated by the range of different statistical normalisation and clustering techniques, 

experimental conditions and different microarray platforms (Cope et al., 2004; 

McShane et al., 2002; Pavlidis and Noble, 2001).
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1.3 Functional Annotation

The different functional roles performed by different proteins can be 

characterised experimentally. However, only a small number of proteins have had their 

function determined experimentally, the vast majority of proteins are functionally 

annotated by inheriting annotations from functionally characterised homologues. 

Functional annotation has been shown to be reliably inherited between proteins with as 

little as 30-40% sequence identity (Hegyi and Gerstein, 2001). However, Todd et al. 

(Todd et al.t 2001) document examples of proteins with very low sequence identity 

sharing similar functions (for example chymotrypsin and subtilisin) and similar proteins 

with different functions (for example lactalbumen and lysozyme). However, exhaustive 

analysis over a large dataset showed that typically one needs 40% sequence identity in 

single domain proteins (60% sequence identity in multidomain proteins) to reliably 

inherit function at 95% confidence.

1.3.1 Defining Function

Different experimental approaches to determine protein function identify 

different kinds of functional associations between proteins. Protein expression 

experiments determine cellular process functions whereas protein-protein interaction 

experiments define a molecular association between proteins. Whilst cell biologists 

might use cellular processes to define protein function, molecular biologists may use 

molecular chemistry to define a protein’s function. Functional databases try to 

formalise and standardise functional terminology. Many functional ontologies employ a 

hierarchical classification of function, for example the Enzyme Commission (Webb, 

1992). Some protein functions are difficult to classify in a linear hierarchy: 

multifunctional proteins require linkages between hierarchical elements of the ontology, 

and different functional descriptors cannot be integrated into a single hierarchy. The 

Genome Ontology (GO, Ashbumer et a/., 2000) tries to overcome these problems in 

two ways. Firstly, protein functions are defined by three separate ontologies. Each 

defines a different kind of functional descriptor: molecular function, biological process 

and cellular component. These three ontologies allow different kinds of functional 

terms to be assigned to the same protein. And secondly, instead of a linear hierarchical 

classification scheme, GO functions are organised into directed acyclic graphs, allowing
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multiple linkages between hierarchical terms. This data structure allows classification 

and comparison of proteins with multiple functional terms or capable of multiple 

functions. Some functional resources are described below.

1.3.2 Enzyme Commission

The Enzyme Commission (Webb, 1992), was initiated in 1955 by the 

International Union of Biochemistry (IUB) in consultation with the International Union 

of Pure and Applied Chemistry (IUPAC) with the intent ‘to consider the classification 

and nomenclature of enzymes and coenzymes, their units of activity and standard 

methods of assay, together with the symbols used in the description of enzyme kinetics’. 

The resulting classification scheme, EC Numbers, is a hierarchical classification of 

enzyme catalysed reactions, consisting of four numbers for each hierarchical level. The 

highest level consists of six groups: oxidoreductases, transferases, hydrolases, lyases, 

isomerases, and ligases. The next two numbers indicate the actor and acceptor 

molecular groups involved in the reaction. The last number specifies the substrate.

1.3.3 Kyoto Encyclopaedia o f Genes and Genomes

The Kyoto Encyclopaedia of Genes and Genomes (KEGG, Kanehisa et al.,

2004) is a collection of databases including descriptions of biological processes 

(PATHWAY database), chemical reactions (LIGAND databases) and gene/protein 

sequence data (GENES database).

1.3.4 Clusters o f Orthologous Groups

The Clusters of Orthologous Groups (COG, Tatusov et al., 2003) database 

contains 4873 groups of protein orthologues from 66 completely sequenced prokaryotic 

and unicellular organisms. The database also contains 4852 clusters of orthologues 

from 7 eukaryotic genomes (KOG). Clusters are defined by identification of genome- 

specific best hits between proteins using all against all BLAST2 comparison. COGs 

and KOGs are divided into 23 broad functional process classes (the largest of which
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include: E - amino acid metabolism and transport, C -  energy production and 

conversion, J -  translation, G -  carbohydrate metabolism and transport, L -  replication 

and repair, and T -  signal transduction) obtained from GenBank and other public 

databases and by searching primary literature. Functional annotation of COGs and 

KOGs is undertaken on a case by case basis, using published data, protein domain 

analysis, phyletic patterns and gene order conservation.

1.3.5 Genome Ontology

The Genome Ontology (Ashbumer et al., 2000) was initiated by eukaryotic 

model organism databases (FlyBase, Saccharomyces Genome Database and the Mouse 

Genome Database) in 1988. It now includes many databases representing prokaryotes 

and eukaryotes. GO consists of three separate hierarchical ontologies describing 

molecular functions, biological processes and cellular component. GO ontologies are 

organised into directed acyclic graphs where a child term may have multiple parent 

terms.

1.3.6 Affvmetrix

Affymetrix is a manufacturer of microarrays. The company provides annotation 

for each gene represented on each microarray. This annotation is derived from public 

databases and includes gene identifiers and description from the NCBI, domain 

classifications from SCOP and Pfam, EC Numbers and KEGG annotations. Affymetrix 

microarrays are used by many different research groups. This permits expression data 

deposited in public databases (for example the NCBI Gene Expression Omnibus, 

Barrett et a l, 2005) to be collated between different microarray experiments from 

multiple sources.

1.3.7 STRING

STRING (von Mering et al., 2005) contains predicted and known protein- 

protein interaction data. These interactions may be physically interacting proteins or



functionally linked proteins via linkages inferred through genomic context, microarray 

co-expression experiments, and the COG and KEGG databases. STRING currently 

contains 730,000 proteins from 180 genomes.

1.3.8 Reliability o f Annotation

Experimentally determined data can produce remarkably little consistency 

between different experimental methods. For example, in two large-scale mass 

spectrometry protein-protein interaction studies in yeast, only 19.2% and 27.5% of the 

interactions identified using each method were identified by both methods (von Mering 

et al., 2002). Aside from errors caused by the inconsistency of experimental methods, 

assigning annotation to proteins by inheriting annotations from related proteins can 

cause annotation quality problems (Bork and Koonin, 1998). In smaller databases 

curated by experts, annotation is likely to be manually checked and verified, where 

possible, against the literature. However, since few annotations are directly 

experimentally characterised, the majority of databases contain large amounts of 

inherited annotation (Karp et al., 2001). The mechanism of annotation by inheritance, 

by its very nature leads to error propagation. The protection given to sequence 

annotations in primary databases (whereby only the submitter of the sequence can alter 

it’s annotation) means that it is difficult to correct errors once identified, and that errors 

persist. Even once corrections to the original entry are completed, erroneously 

annotated homologues may still persist. There are several annotation analysis programs 

that aim to identify erroneous annotations in database collections (Wieser et al., 2004; 

Kaplan and Linial, 2005), whilst other approaches focus on assigning reliability scores 

to annotations (Valencia, 2005).
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1.4 Objectives

The following five chapters divide this research into different sections; but all 

these chapters are primarily concerned with describing the distribution and relationships 

between protein families and domain families in completely sequenced genomes. 

Chapter two describes the construction of Gene3D, a resource containing completely 

sequenced genomes that are annotated with protein family, domain family and 

functional information. Chapter three describes the distribution of protein families and 

domain families across these completed genomes. Chapter four is concerned with how 

well the domain families identified in the genomes have been characterised, and how 

many more families would be required to be better characterised in order to more 

accurately describe the domain complement of these completed genomes. Chapter five 

is divided into two main sections. The first section describes the distinct distributions of 

domain families identified within bacterial genomes. The second section introduces a 

novel phylogenetic profile method that can be used to infer evolutionary and functional 

relationships between domain families. Finally, chapter six summarises the conclusions 

of this thesis, and suggests future work to improve and expand these analyses.
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CHAPTER TWO

Construction of the Gene3D Resource of Complete Genomes 

Annotated with Protein Family, Domain Family and 

Functional Information

2.1 Introduction

2.1.1 The Repertoire of Completed Genomes

The advent of completely sequenced genomes permits the complete protein 

component of certain organisms to be identified and opens new avenues of research in 

the biological sciences. Currently, the Genomes On-Line Database (GOLD, Bernal et 

al., 2001) reports 261 published completely sequenced genomes (plus an additional 

-1500 viral genomes) and over 1000 ongoing genome sequencing projects (as of June

2005). The number of completely sequenced genomes has risen steadily and is currently 

increasing at a rate of about one per week (shown in figure 2.0).

1200

■ Incomplete
■  C om plete

Figure 2.0 Increase in Genomic Data. Increase in the number o f completely 

sequenced genomes and the number o f ongoing sequencing projects. Taken from the 

Genomes On-Line Database.
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Completely sequenced genomes from all three kingdoms of life are available. 

There are currently 33 complete eukaryotic genomes (including chromosomes) ranging 

from single cellular yeasts to multicellular fungi, plants and animals; 207 complete 

bacterial genomes; and 21 complete archaeal genomes. The proteins encoded by these 

genomes may be clustered into families and decomposed into domains. Analysis of the 

distribution of these families and domains and of the combinations of domains that are 

found can tell us much about the evolution of genomes at the molecular level (Vogel et 

al., 2004).

2.1.2 Protein Annotation

The massive increase in protein sequence databases (for example, GenBank 

grows exponentially, currently doubling in size every 12 to 15 months, NCBI News, 

Summer/Fall 2004 edition) requires fast, automated methods of protein annotation. 

Protein clustering into families of related proteins permits inheritance of annotation 

from a consensus of multiple related proteins, which can be more reliable than from 

individual pairwise comparison (Devos and Valencia, 2000). These approaches and 

technologies are discussed below.

2.1.3 Protein Clustering Methods

Sequence clustering involves the measurement of all pairwise sequence 

similarities within the group of protein sequences to be clustered. Proteins are then 

assigned to clusters based upon sharing of significant sequence similarity with existing 

cluster members. There are several problems when clustering protein sequences into 

families, most notably multi-domain proteins, promiscuous protein domains and 

fragmented proteins (shown in figure 2.1).

Multi-domain proteins often cause unrelated proteins to be clustered together, if 

they share a significant proportion of similar domains (Doolitte, 1995; Smith and 

Zhang, 1997). Detection of shared protein domains does not necessarily indicate that 

the proteins have a biochemical function in common (Henikoff et al., 1997), unless the 

domain context of the proteins is shared (Hegyi and Gerstein, 2001). Promiscuous
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domains, for example SH2, WD40 and DnaJ domains that occur with high frequency in 

many proteins with different functions can produce significant sequence similarity 

between otherwise unrelated proteins. Fragmented proteins, incomplete protein 

sequences in protein databases, can render accurate protein domain determination by 

sequence comparison methods unreliable and incomplete. Some clustering methods 

attempt to overcome these problems by identifying protein domains within multi­

domain proteins, for example by using BLAST reports (Guan, 1997), domain libraries 

(Pfam -  Bateman et al., 2004; ProDom -  Servant et al., 2002) and iterative sequence 

comparisons (GeneRAGE -  Enright et al., 2000). However some of these methods still 

require manual intervention to cluster multi-domain proteins correctly or are too 

computationally intensive for use on large protein datasets. Of the more recent 

clustering methods, TribeMCL (Enright et al., 2002), ADDA (Heger and Holm, 2003) 

and CHOP (Liu and Rost, 2004), described below, are notably able to work efficiently 

and reasonably accurately with very large data sets (e.g. SWISSPROT/TrEMBL) and so 

make it feasible to cluster large collections of complete genomes.

Matching domains in 
multidomain proteins

Promiscuous domains

Fragments of 
multidomain proteins

Figure 2.1 Problems Associated with Clustering. Matching domains in multidomain 

proteins, promiscuous domains and fragments o f multidomain proteins can erroneously 

indicate protein relatedness between otherwise unrelated proteins via regions with 

sequence similarity (arrows).

2.1.3.1 Subclustering Families

Subclustering within families on the basis of sequence identity allows 

identification of more closely related relatives within a family. There are three main
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approaches: single linkage, multi-linkage and directed multi-linkage clustering, which 

can produce very different subclusters within a protein family.

Using the same sequence dataset, three different approaches yield different 

clusters. Single linkage clustering permits membership of a cluster when significant 

sequence similarity exists to any existing cluster member, giving more diffuse clusters 

since not all cluster members are required to have significant sequence similarity to 

each other. Multi-linkage clustering however, requires that all existing cluster members 

share significant sequence identity to each other, producing smaller, tighter clusters. 

Multilinkage clustering can be dependent on the order on which sequences are 

clustered; a change in the order can produce different clusters. Directed multi-linkage 

clustering is based upon the same principle as multi-linkage clustering but in addition, 

clusters are ordered by descending similarity; the most similar sequences are clustered 

together first. Directed clustering is thus not effected by the order in which sequences 

are added to clusters.

2.1.4 H om ology Detection

Early protein family classifications were principally based upon detection of 

homology via pairwise sequence comparison. Pairwise comparison becomes unreliable 

in the Twilight Zone* of less than 30% sequence similarity (Doolittle, 1990), however, 

more sensitive family-based sequence pattern matching profiles and motifs can be 

constructed ffom protein families identified via pairwise sequence comparisons (for 

example PRINTS, Attwood et a l , 2003). Sequence profiles and motifs often represent 

highly conserved residue signatures within a protein sequence that may be associated 

with a particular evolutionary family or biological function. Using these profile 

methods can often detect homologues at low levels of sequence identity where pairwise 

comparison becomes unreliable.

Profile methods representing whole protein sequences, for example PSI-BLAST, 

are able to describe position specific probabilities of protein residue insertions and 

deletions occurring within families. The most recent development in profile methods 

are hidden Markov models. These models are better at modelling insertions and
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deletions and are capable of detecting more remote homologues in large databases than 

previous methods (described previously, see section 1.2.1).

2.1.4.1 Building Hidden Markov Models using SAMT

There are two well established HMM program suites, HMMER and SAMT 

(described previously, see section 1.2.1.5). Both these program suites allow building of 

HMM libraries and searching databases with HMM libraries. At the time of starting 

this project, the SAMT program suite was used since it had been shown to be more 

powerful than HMMER in detection of remote homologues and at the time was slightly 

faster to search databases with HMM libraries (James Bray, PhD thesis). In the SAMT 

HMM software package (Karplus et al., 1998) model building process (shown in figure 

2.2), an initial BLAST is performed to identify a set of close relatives and a set of more 

distant relatives. The sequence set containing close sequence relatives is used to 

generate an initial sequence alignment for the seed sequence. An initial model is 

produced to represent the states in this alignment. This model is used to score all the 

sequences in the sequence set of distant relatives. In this first iteration of scoring, a 

very stringent E-value cut-off is used. Sequences in the distant relatives sequence set 

that score below this cut-off are pulled into the initial alignment to produce a first 

iteration alignment.

In the second iteration and in subsequent iterations of the model building 

process, the E-value cut-off for inclusion of new sequences into the alignment is 

successively increased. Increasing the E-value cut-off allows more distant sequence 

relatives to be gradually incorporated into the alignment and thus the model. New 

sequences are given less weighting in the alignment and model building process so that 

the sequence alignment signature of the close relatives from the initial iteration is 

preserved, and yet the sequence diversity of distant relatives is expanded in the model. 

After the sixth iteration the resulting model is the HMM representing the seed sequence 

family. The SAMT program suite allows the HMM model building process to be subtly 

altered by changing many different variables including the number of iterations, the cut­

off E-values at each iteration and the weight given to new sequences in the alignment at 

each iteration.
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Figure 2.2 Iterative Nature of the HMM Build Process. At each iteration an 

augmented alignment is produced that generates an improved model describing the 

sequence diversity o f more distant relatives whilst maintaining the core sequence 

diversity o f close relatives from the initial iteration.

2.1.5 Protein Family Resources

Protein sequence mutations such as point mutations or larger insertions and 

deletions during evolution have given rise to families of proteins within which relatives 

share a common evolutionary ancestor, but may have diverse protein sequence and 

structure, and subsequent modification of protein function, although some protein 

families, notably the globins retain a common biological function despite high sequence 

diversity.

The term protein family has been in use since the 1960s e.g. (Dayhoff (ed) 1965- 

1978, Atlas of Protein Sequence and Structure) and definitions vary. The term is used 

here simply to refer to groups of proteins related by common ancestry, including close 

and distant relatives. Close relatives in the same protein family often possess similar or
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identical biological functions. In more distant relatives functions may have changed 

(Todd et al., 2001; Rost, 2002; Devos and Valencia, 2000). Protein family 

bioinformatics resources may be used for inheriting functional information from 

experimentally characterised genes to their sequence and structural relatives. Grouping 

proteins into families also serves to integrate information on cellular and molecular 

function.

2.1.5.1 Sequence Based Protein Family Resources

Protein sequences often comprise several domains. Apic et a l (2001) predict 

that about four fifths of proteins in eukaryotes and two thirds of proteins in prokaryotes 

are multidomain proteins. Many resources cluster whole protein chains into protein 

families, for example ProtoNet and TRIBES. However some resources, for example 

Pfam and ADDA, identify separate domains within proteins and construct protein 

domain families. A single protein may consist of several protein domains that belong to 

different domain families. Hence protein domain family classifications are a useful tool 

in determining the evolutionary relationships between proteins, especially within a 

genomic context. Table 2.0 summarises some major sequence family databases.
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Table 2.0 Summary of Example Sequence Family Databases

Resource or 

Clustering 

Method

Reference Source(s)
Families

(00/04)
Method

ADDA Heger & Holm

SWISSPROT, 
TrEMBL, PIR, 

PDB, 
WORMPEP, 

ENSEMBL

34.000 

families (plus

60.000 

singleton)

BLAST

CHOP Liu & Rost
62 complete 

genomes

63,300 clusters 

(plus 118,108 

singletons)

PSI-BLAST

COG/KOG Tatusov et al.

66 unicelluar and 

7 eukaryotic 
complete 
genomes

4873 COG, 

4852 KOG

Bidirectional 

best hit by 

BLAST

DIVCLUS
Park and 

Teichmann
6 genomes, 12013 

sequences

13076 

duplication 

modules in 

1622 clusters

Multiple

sequence

comparison

methods

InterPro Mulder et al.

UniProt, 

PROSITE, 
PRINTS, Pfam, 

ProDom, 

SMART, 
TIGRFAMs, PIR 

SuperFamily, 
SUPERFAMILY, 

Gene3D

11,007 entries 

(2573 

domains, 8166 

families)

Multiple 

methods 

(HMM, PSI- 

BLAST, 

Regular 

Expression)

iProClass Huang et al.

PIR, 

SWISSPROT, 
TrEMBL, Pfam, 

BLOCKS, 

PRINTS, ProSite, 

PDB, COG

36,000 PIR 

superfamilies, 

100,000 

families

N/A

Pfam Bateman et al.
SWISSPROT,

TrEMBL
7459 families HMM

PRINTS Attwood et al.
SWISSPROT,

TrEMBL

1800 entries 

10,931 motifs

Iterative motif 

searches

51



ProDom Servant et al.
SWISSPROT,

TrEMBL

501,917 

families 

(186,303 non­

singleton)

PSI-BLAST

ProtoNet Kaplan et al.
SWISSPROT,

TrEMBL
User-defined BLAST

SMART Letunic et al. Selected proteins 667 domains HMM

SwissPROT
Boeckmann et 

al.
Primary database

153,871

proteins
N/A

SYSTERS Meinel et al.

SWISSPROT, 

TrEMBL, 
ENSEMBL 
(complete 

genomes), the 

Arabidopsis 
Information 

Resource, SGD 
and GeneDB

158,153

disjoint

clusters

BLAST

TIGRFAMs Haft et al.
SWISSPROT,

TrEMBL
1976 families HMM

TRIBES Enright et al.
83 Complete 

Genomes

60,934 or 

82,692 

depending on 

granularity

TribeMCL 

clustering 

using BLAST

2.1.5.2 Families of Whole Protein Sequences

The TRIBES database (Enright et al., 2003) clusters proteins from 83 complete 

genomes into between 60,934 and 82,692 families depending upon the level of 

granularity of clustering that is chosen. TRIBES uses the TribeMCL (Enright et al.,

2002) clustering program, developed from the Markov cluster (MCL) algorithm (van 

Dongen, 2000) to cluster protein sequences. TribeMCL simulates flow in a similarity 

graph consisting of pairwise sequence similarities (BLAST E-value cut-off of 0.0001) 

of all proteins in the dataset and then assigns complete protein sequences into families 

based on the density and strength of links between them. This novel approach does not 

suffer greatly from the problems caused by multi-domain proteins, promiscuous

52



domains and fragmented proteins as outlined previously. The method makes no attempt 

to decompose the sequences into their component domains but rather produces clusters 

that correlate well with the overall domain architecture of the sequences.

ProtoNet developed by Linial and co-workers (Kaplan et al., 2005), clusters 

SWISSPROT proteins in the UniProt database on the basis of sequence similarity. 

Proteins from the TrEMBL repository are later added into these initial protein clusters. 

The ProtoNet protocol can produce protein family clusters from three different 

clustering methods: harmonic, geometric and arithmetic. These different clustering 

methods vary by putting more emphasis on either strong sequence similarities between 

cluster members (harmonic > geometric > arithmetic), or conversely on weak similarity 

between cluster members (arithmetic > geometric > harmonic) when merging clusters 

(Sasson et al., 2003).

The PRINTS database (Attwood et al., 2003) is a collection of protein 

‘fingerprints’: regular expressions describing conserved sequence motifs used to 

characterise a protein family. These motifs are generated via multiple protein sequence 

alignments by identifying regions of local sequence conservation. They can 

subsequently be used to scan a larger sequence set (SWISSPROT and TrEMBL, 

Boeckmann et al., 2003) to recruit new family members. The majority of families are 

defined by multiple motifs and all must be present for a relative to be added to the 

group.

COG and KOG (Tatusov et al., 2004) are databases of clusters of orthologous 

groups of proteins, defined by bi-directional best hitting groups of three or more 

proteins in complete genomes (described previously in section 1.3.4).

The SYSTERS (Meinel et al., 2005) database uses graph-based methods to 

generate protein families of varying granularity.

The number of families identified by those resources performing automated 

clustering of large sequence repositories varies from 65,000 to 186,000 depending on 

the clustering philosophy. Kunin and co-workers recently revealed that each newly 

sequenced genome leads to an increase in the total number of protein families 

characterised (Kunin et al., 2003). A proportion of protein sequences (between 10 and
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25%), in every genome, are singletons or belong to families not present in any other 

sequenced genome. This may reflect limitations in the current sequence based 

homologue detection algorithms; or alternatively these may be genuinely novel families 

that have arisen following speciation. These organism-specific families may be 

important for expanding the functional repertoire and phenotype of the organism, 

perhaps by providing new biological processes or changes in gene/protein regulation.

2.1.5.3 Families of Protein Domain Sequences

A number of resources exist which automatically cluster protein sequences from 

the completed genomes or from the large sequence repositories (e.g. GenBank or 

SWISSPROT-TrEMBL) into putative domain families. The ProDom resource (Servant 

et a l 2002) contains protein sequence families derived from sequences in UniProt and 

TrEMBL. These protein sequences are chopped into protein domains using an iterative 

PSI-BLAST domain boundary prediction program.

DIVCLUS (Park and Teichmann, 1998) is part of the Genome Analysis and 

Protein Family Maker software package that identifies homologous domains in single 

and multi-domain proteins. DIVCLUS uses an iterative checking process that compares 

pairs of aligned sequences and separates single linkage clusters into duplication module 

families according to sequence similarity and overlap criteria to produce clusters 

containing homologous proteins.

Pfam (Bateman et a l 2004) is a highly comprehensive resource providing a high 

quality set of Hidden Markov Model profiles for protein domain families. Families are 

built from ProDom identified clusters. These families are defined in Pfam using 

multiple sequence alignments and HMMs, the largest domain families are built first. 

Pfam consists of two parts, the first is the curated part of Pfam (Pfam-A), the second is 

an automatically generated supplement called Pfam-B.

TIGRFAM (Haft et a l, 2003) protein families are built in a similar fashion to 

Pfam but also contain whole protein chains.
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Holm and co-workers recently developed the ADDA algorithm to cluster 

sequences into domain families by exploiting the principal of domain recurrence in 

different protein sequences (Heger and Holm, 2003). A related algorithm, CHOP (Liu 

and Rost, 2004), assigns domain boundaries by BLAST sequence comparison and then 

clusters the subsequent domain-like fragments into sequence families using the CLUP 

(Liu and Rost, 2004) clustering method (these methods are discussed in section 4.1).

SMART (Letunic et al., 2002) (Simple Modular Architecture Research Tool) 

describes over 600 domain families, which have been selected with a particular 

emphasis on mobile eukaryotic domains and as such are widely found among nuclear, 

signalling and extracellular proteins. SMART domain families are defined by hand 

curated multiple sequence alignments. An HMM library of these domain families 

allows fast sequence annotation with SMART domains. SMART domain families are 

annotated with function, sub-cellular localisation, phylogenetic distribution and tertiary 

structure.

The InterPro database (Mulder et a l , 2005) is an important recent development 

since it integrates major protein family classifications and provides regular mappings 

from these resources to primary sequences in the UniProt protein sequence database. 

Databases in the InterPro collaboration include UniProt, PROSITE, PRINTS, Pfam, 

ProDom, SMART, TIGRFAMs, PIR SuperFamily, SUPERFAMILY and more recently 

Gene3D.

2.1.5.4 Structure Based Protein Family Resources

There are two major protein structure classifications, both of which require a 

varying degree of manual intervention, CATH and SCOP, which classify protein 

domains of known structure into evolutionary superfamilies. Each superfamily is 

classified in a hierarchy corresponding to Class (proportion of alpha helices and beta 

strands in the structure) and Fold Group (structures sharing significant global secondary 

structural element composition and connectivity). Architecture, (overall shape of 

structures, i.e. orientation of the secondary structures, for example layered sandwich or 

barrel like), is an additional hierarchical level in the CATH classification. Domains 

adopting similar Class, Fold Group and Architecture can be further clustered into
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Homologous Superfamilies according to further evidence of an evolutionary 

relationship, for example shared functional characteristics and/or sequence motifs. 

Table 2.1 summarises both manual and automated structure based resources.

Table 2.1 Protein Structure Family Resources

Database Coverage (07/04)
Structural Comparison 

Method
Description

CAMPASS
7580 domains 

1409 superfamilies
COMPARER

SEA

Structure-based 
alignment of 
SCOP
superfamilies

CATH
67,054 domains 

1572 superfamilies, 
907 folds

SSAP
GRATH

Automatic structural 

and sequence 
comparison with 

manual validation of 

superfamily 

alignments and 
domain boundaries

CE All chains in PDB CE
Fully automatic, 
nearest neighbours

DALI Domain 
Dictionary

1,062 superfamilies DALI

Fully automatic 
classification using 
PUU, DALI 
algorithms

DHS 1459 superfamilies
SSAP
CORA

Fully automatic 
multiple structural 
alignments of close 
relatives in CATH

HOMSTRAD
7500 domains 

1032 superfamilies
COMPARER

Manual
classification of 
close protein 
homologues

MMDB
28,000 structures, 
87,000 domains

VAST
Fully automatic, 
nearest neighbours

SCOP
65,122 domains 

1325 superfamilies, 
805 folds

Manual
Manual
classification
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The SCOP database (Andreeva et al, 2004) uses almost entirely manual 

validation for recognising structural similarities between distantly related protein 

structures to generate evolutionary superfamilies, resulting in a very high quality 

resource. In the CATH database, (Pearl et al., 2005), a combination of manual and 

automated approaches is used. Whilst structure comparison methods (SSAP, Orengo 

and Taylor, 1996; CORA, Orengo, 1999; GRATH, Harrison et al., 2002) have been 

developed to recognise structural relatives, evolutionary relationships are only assigned 

following manual assessment of all available data. Table 2.1 above shows that SCOP 

and CATH recognise around 805 - 907 fold groups and around 1325 - 1572 

superfamilies in the current set of protein structures.

In contrast to the manually curated SCOP and CATH classifications, the DALI 

domain database (Dietmann et al., 2001) is produced by a completely automated 

classification protocol. Domain boundaries are recognised using the PUU algorithm 

(Holm and Sander, 1994) and domains are assigned to fold groups and superfamilies 

using the robust DALI structure comparison algorithm (Holm and Sander, 1994).

The NCBI Molecular Modelling DataBase (MMDB, Chen et al., 2003) classifies 

all non-theoretical PDB structures. Fully automatic classification in the MMDB is 

achieved using all against all structural comparison by secondary structure element 

superposition (VAST, Gibrat et al., 1996). MMDB structures are linked to other NCBI 

databases containing sequences, taxonomy, literature references and both sequence and 

structure relatives.

CE (Shindyalov and Bourne, 1998) classifies PDB structures by structural 

comparisons using the CE algorithm that compares alpha carbon atom positions in the 

peptide chain to identify aligned fragment pairs. The optimal alignment of aligned 

fragment pairs is calculated by minimising RMSD.

Functional annotation of structural domains in CATH is achieved in the 

Dictionary of Homologous Superfamilies (DHS, Bray et al., 2000). The DHS contains 

multiple structural alignments of all the known domain structures in each CATH 

homologous superfamily. Functional annotation is provided by BLASTing domain 

sequences against the UniProt database to identify 95% sequence identity relatives. 

Functional annotations from KEGG, COG, GO and EC numbers are then inherited from
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the annotated UniProt sequence relative to the CATH domain. The current release of 

the DHS contains 1459 CATH homologous superfamily domains which have been 

annotated with 495,611 UniProt sequence relatives.

The HOMSTRAD and CAMPASS databases, constructed by Blundell and co­

workers (Mizuguchi et al. 1998; Sowdhamini et al. 1998), are not hierarchical but focus 

on using SCOP, PFAM and other resources to cluster together families of evolutionary 

relatives. HOMSTRAD (HOMologous STRucture Alignment Database) groups 

proteins into families on the basis of sequence and structural similarity. HOMSTRAD 

combines SCOP, Pfam, PROSITE and SMART classifications with PSI-BLAST 

sequence similarities and sequence-structure profiles to define protein families. 

Currently the PDB is grouped into 1032 families representing 3454 structures. Each 

family is represented by manually curated structure-based alignments. The CAMPASS 

database groups more distant structural homologues than HOMSTRAD by using the 

structural comparison algorithms COMPARER and SEA to generate multiple 

alignments of SCOP superfamilies. Both these resources contain validated multiple 

structural alignments for families and superfamilies that can be used to identify further 

relatives using derived substitution matrices or conserved structural features.

2.1.6 Structural Annotation of Genomes

More than two thousand high throughput complete genome sequencing 

initiatives have produced over a million protein sequences. These protein sequences 

require annotation. Such annotation must be assigned using methods that are fast and 

reliable and the large amount of resulting data must be processed and stored efficiently. 

The assignment of structure to newly sequenced proteins using fast automated 

assignment methods, notably PSI-BLAST and the HMM’s described previously, has 

resulted in development of genome annotation databases that contain sequence-based 

and structure-based annotation of complete genomes. There are four main genome 

annotation databases that contain structurally annotated genomes. These are 

SUPERFAMILY, the Genomic Threading Database, 3D-GENOMICS database and 

Gene3D. The processes used for constructing each database are described below.
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The SUPERFAMILY database (Madera et al., 2004) uses SAMT generated 

profile hidden Markov models to predict SCOP structural domains in 220 complete 

genomes. The Genomic Threading Database (McGuffin et al., 2004) applies the 

GenThreader algorithm (described previously, see section 1.2.2.2) to assign structural 

domains to 218 complete genomes. The 3D-GENOMICS database (Fleming et al., 

2004), as of January 2005, contains 173 complete genomes. These genomes are 

annotated with SCOP structural domains (using PSI-BLAST derived IMPALA profiles) 

and Pfam sequence domains (using HMMER) as well as PROSITE and COG functional 

annotation. In addition, protein sequences are annotated with coiled-coil, low 

complexity, signal peptide, secondary structure, repeated regions and transmembrane 

regions.

Gene3D was originally set up by Buchan et al. in 2002 (Buchan et al., 2002;

2003) and contained 66 complete genomes (53 bacteria, 11 archaea and 2 eukaryota) 

and consisted of domain assignments from CATH (version 2.4) and Pfam (release 6.2) 

mapped onto protein sequences using PSI-BLAST derived IMPALA profiles.

The recent increase in the number of completed genomes, especially those of 

eukaryotes, necessitated further development of Gene3D to increase the number of 

genomes and to provide protein family information. This chapter describes 

development of a novel protocol (PFscape) for identification of both protein and domain 

families in complete genomes and the implementation of this protocol in building 

release 3 of Gene3D.
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2.2 Objectives

This chapter reviews methods for clustering sequences into families of relatives 

using sequence and structure-based methods and the use of these clusters to annotate 

complete genome sequences. The design and use of a novel protocol called PFscape, 

for assigning protein family, domain annotation and functional annotation to complete 

genomes is described in the construction of Gene3D, a resource containing protein 

sequences from 120 complete genomes, clustered into protein families and annotated 

with structural and sequence domain family information, together with metabolic 

pathway and functional data from GO, KEGG and COG. Finally, the user interface and 

web services are briefly outlined.
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2.3 Results

Gene3D was completely re-structured to include information on both protein 

families and domain families. Protein families are themselves sub-divided into 

sequence identity clusters of more closely related protein sequences. Within each 

protein family, sequence and structural domain assignments to each protein sequence 

reveal domain context and assign domain architectures to proteins. Gene3D differs 

from other structural genomics resources (described previously, see section 2.1.6) in 

that, in addition to domain assignments, proteins are clustered into protein families. 

The advantage of this clustering approach is that within a protein family, domain and 

functional assignments to annotated protein members can be inherited to un-annotated 

protein members. The use of subclusters within each protein family permits such 

inheritance to be restricted to protein relatives with varying degrees of sequence 

identity.

2.3.1 Genome Sources in Gene3D

Gene3D version 3.0 contains 120 complete genomes (90 bacteria, 14 archaea 

and 16 eukaryota) comprising 854,897 protein sequences. The majority of genomes 

were downloaded from the NCBI. However, seven eukaryotic genomes (Takifugu 

rub ripe s, Arabidopsis thaliana, Homo sapiens, Drosophila melanogaster, Anopholes 

gambiae, Mus musculus, and Rattus norvegicus) were downloaded from ENSEMBL, 

where the sequence collections were more recent. Subsequent version updates in 

Gene3D have added over 100 additional genomes.

2.3.2 Domain Sources in Gene3D

Each protein is annotated separately with CATH (release 2.5) and Pfam (release 

10) protein domains. These two domain annotation schema can be combined into a 

Domain Architecture for each protein, where gaps in the CATH domain assignment are 

filled with non-overlapping Pfam domain assignments. Remaining unassigned regions 

of 50 residues or more are denoted as NewFam regions. CATH and Pfam assignments
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are achieved using an HMM library containing 4036 models representing 1467 CATH 

structural domains and 6190 models representing 6190 Pfam sequence domains. 

Subsequent version updates in Gene3D have added CATH release 2.6 and Pfam release 

17 domain assignments.

2.3.3 Family Clusters in Gene3D

Protein sequences in Gene3D are clustered into protein families using 

TribeMCL, a clustering program written by Enright et al. (Enright et al., 2002). Each 

protein family is further clustered into sequence identity subclusters of 35, 60, 95 and 

100 percent sequence identity using Homolseqs, in-house single linkage clustering 

software (Orengo et al., 1997).

Domain assignments in Gene3D are clustered into domain families on the basis 

of their CATH or Pfam domain family classification. Each domain family is further 

clustered into sequence identity subclusters of 30, 35,40, 50, 60,70, 80, 90, 95 and 100 

percent sequence identity using TCluster, in-house directed multi-linkage clustering 

software written by Tony Lewis.

2.3.4 Database Tables in Gene3D

In order to facilitate complex queries a Gene3D relational database was designed 

to store both domain assignment data and protein family data. The core database 

consists of four MySQL (open source database, www.mysql.com) tables, illustrated in 

figure 2.3. The central PROTEIN table stores data for all the 854,897 protein sequences 

in the database. This table links to DOMAIN ASSIGNMENT and PROTEIN FAMILY 

tables to show domain assignments and protein family classifications respectively for 

each protein. Lastly, the ORGANISM table designates the genomic context of each 

protein in the PROTEINS table.
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PROTEIN FAMILY
PROTEIN

DOMAIN ASSIGNMENT

iquenci

Linked Value

ta Value

Linked Value

ta Value

ORGANISM

Taxor  ̂Number

Or janism

Ge nome

Submission

Full Taxonomy

Figure 2.3 Gene3D Database Table Structure. Note that red linked values allow data 

in different tables to be connected (arrows).

Table links occur between Cid and Taxon Number data fields. Organisms in 

Gene3D are designated using NCBI Taxonomy (Benson et al., 2000) taxon numbers. 

The taxon number field provides a unique identifier for each organism. Genomes 

downloaded from the NCBI (Wheeler et al., 2005) were directly assigned a taxon 

number from the NCBI Taxonomy resource. Where genomes were downloaded from 

ENSEMBL (Hubbard et al., 2005), the taxon number was added manually.

Proteins in Gene3D have many different formats of protein identifiers. To 

facilitate manipulation of the data an internal protein identifier was used. A Cid is an 

internal identifier that is kept within the Gene3D database. Each protein sequence in the 

database is assigned a unique 8-digit Cid (for example: 00000001). Identical proteins 

that occur in different organisms or in different locations within the same organism are 

distinguished by different Cids.
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2.4 Protein Family Landscape Protocol

A Protein Family Landscape (Lee et al., 2005) protocol was developed in 

collaboration with David Lee to assign protein family, domain annotation and 

functional annotation to complete genomes in a fast and efficient manner (shown in 

figure 2.4 below). Following protein family clustering, sequences within each family 

are annotated with protein domain information from CATH and Pfam to determine 

domain architectures. Validation of protein family clusters is undertaken by comparing 

consistency of domain architectures within protein families.

The efficiency of the PFscape protocol is achieved through the use of new 

technologies, most notably TribeMCL (Enright et al., 2002) clustering and hidden 

Markov model (HMM, Karplus et al., 1998) domain libraries for domain assignment to 

whole protein sequences.

PFscape protocol generation of Gene3D is only possible due to the recent 

acquisition of computers with very large amounts of memory and a 150 processor 

computer farm where tasks can be massively parallelised. The PFscape protocol has 

three stages: protein family clustering, protein domain assignment and functional 

annotation. These are described below.

Update ProtocolWeb Query Interface

120 Genomes Protein Seauences

Amalgamate Data into Relational Database

STAGE 2 -  Domain Assignment

STAGE 3 -  Functional Annotation

STAGE 1 -  Protein Family Clustering

Figure 2.4 PFscape Protocol Structure. Note that protein clustering and domain 

assignment are simultaneous independent processes.
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2.4.1 Stage 1: Protein Family Clustering

TribeMCL (Enright et a l , 2002) was chosen for protein family clustering as this 

method is fast, automated, and successfully overcomes the clustering problems of 

protein domains, fragmented peptides and sequence similarity errors (as discussed 

previously). TribeMCL is based upon the Markov clustering algorithm (van Dongen,

2000) and represents proteins as nodes in a graph; connections between these nodes 

represent sequence similarity between proteins. A matrix consisting of sequence 

similarities in the graph, transformed into probabilities associated with transitions from 

one protein to another within the graph, is passed through iterative cycles of matrix 

multiplication and matrix inflation to simulate random walks on the graph. Protein 

clusters in the graph can be identified since random walks on the graph are less likely to 

go between clusters than remain within a single cluster, since within protein clusters 

there is a higher probability of transitioning between cluster members than between 

members of different clusters. Matrix multiplication (i.e. matric squaring) computes 

longer random walks on the graph and associates new probabilities with all pairs of 

nodes in the graph, thus acting to dissipate clusters. Matrix inflation augments the 

probabilities of intra-cluster walks and diminishes the probabilities of inter-cluster 

walks, eliminating connections between clusters. Iterative rounds of expansion and 

inflation act to separate the graph into clusters. The granularity of these clusters can be 

altered by changing the matrix inflation parameter, to produce tighter or broader 

clusters.

TribeMCL has been tested previously by Enright et al., (Enright et a l , 2002) 

and shown to be robust and reliable, with at least 87% accuracy. The authors report that 

in TribeMCL clustering of SwissProt, of the 1,821 clusters containing four or more 

members with corresponding InterPro annotations, 1,583 (87%) of these clusters 

contain fully corresponding domain structures across all annotated members. In 

addition, Enright et a l  show that in TribeMCL clustering of the PDB, the total number 

of proteins in clusters with SCOP classifications that are consistent with the most 

common SCOP annotation in the cluster ranges from 79-87% depending on the inflation 

value used.

TribeMCL can cluster proteins at granularity levels between 1 (broadest 

clusters) to 3 (tightest clusters). Protein family clusters in Gene3D should contain
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members where all proteins have the same domain architecture. In order to further 

validate TribeMCL, structural data was used as remote homologues are more reliably 

detected using structural data. The optimal granularity level for TribeMCL clustering 

was determined by validating clusters made at all three granularity levels against a 

dataset of structurally characterised proteins that had been manually validated in the 

CATH database.

2.4.1.1 Benchmarking TribeMCL using Structural Data

Multi-domain protein structures from the PDB (having their individual domains 

previously classified in CATH) were clustered using TribeMCL at three levels of 

granularity. The resulting clusters were assessed by comparing the total percentage of 

proteins that contained the most common domain architecture (same CATH domain 

assignments in the same order) in each cluster. As can be seen in figure 2.5, a 

granularity level of 3 produces clusters where 94.8% of all proteins contain the most 

common domain architecture CATH classification in their cluster. Clustering at 

granularity level 3 is therefore the most appropriate to cluster proteins in Gene3D to 

obtain protein families with consistent domain architectures.
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Figure 2.5 TribeMCL Granularity Benchmarking. TribeMCL clustering o f 

multidomain proteins in the PDB performed at different granularity levels. At 

granularity level 3, the broadest clustering level, 94.8% o f all the proteins in the 

TribeMCL clusters contain the most common domain architecture in their cluster.

Ideally the protein families identified by the PFscape protocol should consist of 

unique domain architectures, indicating that all identifiable evolutionary relatives in the 

PDB are present in the protein family. Half of all domain architectures are found to 

occur in a single cluster, see figure 2.6 below. This demonstrates that half of all domain 

architectures identified in the PDB are unique to a single cluster and are not found to 

occur in any other cluster. This effect is seen at all three inflation values, indicating that 

these clusters are quite robust and are formed early in the TribeMCL clustering process 

by distinct, closely related groups of proteins.

Figure 2.6 shows that TribeMCL clustering is quite conservative, 50% of 

domain architectures occur in two or more clusters and that therefore half of protein 

family clusters may need to be merged subsequently. However, this was considered 

preferable to protein families containing inconsistent domain architectures. Information 

on domain architecture from CATH, Pfam and NewFam domain family assignments 

will be exploited to merge protein families at some stage in the future (see section

3.3.4.2 and 6.2).
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Figure 2.6 TribeMCL Granularity Benchmarking. TribeMCL clustering o f the 

Protein Data Bank performed at three different granularity levels. Note that half o f 

CATH domain architectures are found in a single cluster irrespective o f cluster 

granularity.

2.4.2 Stage 2: Domain Assignment

Mapping protein domains onto protein sequences allows the conservative 

protein families produced from Stage 1 to be validated and confirm that protein families 

are, as the benchmarking would indicate, families containing evolutionary related 

proteins sharing common domain architecture. Additionally, domain assignment 

permits related protein family clusters to be more safely merged, where appropriate.

Protein domain regions are often more reliably identified by using structural data 

as the structures of proteins are much more highly conserved during evolution than the 

sequences of proteins. Whilst a number of comprehensive domain structure 

classifications exist, the CATH protein structure classification was chosen as the 

primary protein domain assignment classification in Gene3D. In addition to structural
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domains classified in CATH, sequence domain families from Pfam were also used to 

annotate proteins.

2.4.2.1 Building HMM Libraries

In order to map CATH domains onto protein sequences in each protein family 

individual CATH structural domains were represented by sequence profiles called 

hidden Markov models. HMM libraries representing CATH and Pfam domains were 

generated using the SAMT program suite (Karplus et al., 1998) running default 

recommended settings searching the non-redundant GenBank database (nr, released 

February 2003).

Hidden Markov models were produced to model each homologous superfamily 

in CATH according to the schema shown in figure 2.7.

CATH Homologous Superfamily

s35 Familys35 Family s35 Family s35 Family

Build
HMM

Build
HMM

Build
HMM

Build
HMM

Figure 2.7 HMM Representation of a CATH Homologous Superfamily. A

representative domain sequence from each CATH s35 sequence family for every 

homologous superfamily in CATH is used to build an HMM. Multiple HMMs can 

therefore represent a single homologous superfamily.
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In order to capture all the protein sequence diversity present in a given CATH 

homologous superfamily, HMMs were built from representative sequences for each s35 

family within a homologous superfamily (see section 2.1.5.4). A single homologous 

superfamily can therefore be represented using several HMMs, one for each s35 family. 

In total 4036 HMMs were produced representing 1467 homologous superfamilies in 

CATH.

Previous analyses have shown that on average, 35-45% of proteins within a 

genome contain structural domain assignments (Buchan et al., 2003; Gough et al.,

2001). Therefore an additional source of protein domains for assignment is needed to 

increase genome coverage. Sequence/functional domains sometimes comprise just a 

fragment of a structural domain or in some cases correspond to multiple structural 

domains. There are several resources dedicated to sequence/functional domains in 

proteins which could be used for annotating genomes. Pfam provides a comprehensive 

and high quality set of profiles for protein domain families and now attempts, where 

structures are known, to ensure that sequence domain boundaries correspond with 

structural domain boundaries.

SAMT was used to build HMMs from Pfam alignments. The Pfam database 

supplies protein sequence alignment files for each Pfam sequence domain family, and 

these were used to produce an HMM that represents each Pfam domain. Whilst Pfam 

provides HMMER HMMs, these models were not used in order to preserve continuity 

in Gene3D, since SAMT is used in-house. Pfam version 10 was used, which contains 

6190 sequence families, producing an additional 6190 HMMs. The final HMM library 

used in Gene3D for domain assignment contains a total of 10,226 HMMs representing 

CATH and Pfam domains.

2.4.2.2 Benchmarking HMM Libraries

HMMs generated using the SAMT technology developed by Karplus et al.t are capable 

of identifying significantly more distant homologues than other profile methods, for 

example PSI-BLAST (Park et al.t 1998; Madera and Gough, 2002; see section 1.2.1.5). 

SAMT was benchmarked in-house by Sillitoe et a l (Sillitoe et al., 2005). Figure 2.8
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shows the accuracy of HMMs in detecting remote homologues in the CATH database at 

various error rates. This error rate was measured as the percentage of false positives.
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Figure 2.8 HMM Coverage of CATH Homologous Superfamilies. The percentage 

of targets identified using HMM profiles. The dataset consists o f CATH remote 

homologous superfamily members (<35% sequence identity). Taken from Sillitoe et al, 

2005.

Scanning a remote homologue benchmark dataset against the CATH SAMT 

HMM model library identified 76% of homologues with an error rate of 0.1%.

2.4.2.3 Domain Assignment by DomainFinderll

The 854,897 protein sequences from 120 genomes in Gene3D were scanned 

against the HMM library using the SAMT program suite. SAMT output was filtered 

according to several criteria by DomainFinderll, an updated version of DomainFinder 

(Pearl et al., 2002) in-house software written and updated by David Lee, and CATH and 

Pfam domain assignments were then made to protein sequences. DomainFinderll filters 

SAMT output using three criteria: (i) the percentage of the HMM model sequence that 

was identified in the protein sequence (Percent Model Matched (PMM)), (ii) the
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percentage of the domain assignment that overlaps with other domain assignments in 

the protein sequence (Acceptable overlap (AO)) and finally (iii) the SAMT E-value for 

the domain assignment (E-value). These selection criteria are described below.

2A.2.4 Percent Model Matched Domain Assignment Threshold

PMM measures the percentage of the HMM that was identified in the protein 

sequence. A high PPM cut-off would exclude valid HMM hits, since domain family 

members can vary in length by 2 fold or more in some domain families. A low cut-off 

would allow erroneous hits to motifs and sub-domain secondary structures. The number 

of CATH domain assignments at each E-value is plotted for a range of different PPM 

cut-offs in figure 2.9 below. As figure 2.9 shows, a PPM cut-off of 90% or more 

(black, pink lines) severely limits the number of domain assignments made, even at very 

low E-values. With a PPM cut-off below 90%, there is little difference in the number of 

domain assignments made at E-values lower than 1.0e-10. Above E-values of 1.0e-10, 

the PPM cut-off has a marked effect on the number of assignments (see figure 2.9 

(bottom)). Whilst a lower PPM cut-off allows many more domain assignments to be 

made (for example at an E-value of 1.0e-05, a PPM of 50% (orange line) allows 5000 

more domain assignments to be made than a PPM of 80% (yellow line)), a PPM cut-off 

of 50% was chosen to ensure that at least half the domain defined by the HMM is 

identified in the sequence. This cut-off avoids domain families with members of 

variable length being penalised.
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Figure 2.9 Percent Model Matched Cut-off. The number o f CATH domain 

assignments permitted by DomainFinderll at different percent model matched cut-offs 

is shown for all E-values (top) and expanded for E-values above 1.0e-14 (bottom).

2A2.5  Acceptable Overlap Domain Assignment Threshold

Domain structures in the same CATH fold group with no evidence of an 

evolutionary relationship at the time of classification are placed into different 

homologous superfamilies. HMMs from different CATH homologous superfamilies in
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the same fold group sometimes cross-hit related sequences, suggesting these 

superfamilies comprise distant homologues not yet recognised in CATH. Conflicting 

domain assignments in Gene3D therefore can sometimes occur between HMMs 

representing different homologous superfamilies in the same fold group. The degree of 

acceptable overlap between different HMM model assignments and what to do with 

significantly overlapping domain assignments must be considered.

As with other domain assignment protocols (DRange, Buchan et al., 2002; 

SCOP, Andreeva et a l , 2004), assignments overlapping less than 30% of the length of 

the shorter domain assignment are considered acceptable and both assignments are 

retained. This approach allows for variability in domain boundaries and domain linker 

regions. This is illustrated in figure 2.10. DomainFinderll permits the overlapping 

domain assignment with the lowest E-value to be retained, whilst noting conflicting 

rejected domain assignments. Conflicting domain assignments may provide useful 

insight into possible evolutionary relationships between different CATH homologous 

superfamilies.
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Figure 2.10 Acceptable Overlap in DomainFinderll Domain Assignment.

Normalised SAMT assignments (top box) are processed in order o f lowest to highest E- 

value to produce DomainFinderll domain assignments (lower box). The non­

overlapping red domain is permitted, whilst the blue domain is discarded due to 

unacceptable overlap with the green domain, leaving the purple domain acceptable.

2.4.2.6 E-value Domain Assignment Cut-Off

From benchmarking of the HMM library, (Sillitoe et al., 2005), it was 

determined that an E-value cut-off of 0.01 was appropriate for the HMM library, 

producing accurate domain assignments with a 0.1 % error rate.

2A.2.1 Resolving Multiple Overlapping Assignments

Normalised SAMT assignments comprise hits of HMMs representing Pfam 

domain families and CATH s35 sequence families. Some of the CATH s35 sequence 

families are members of the same CATH homologous superfamilies. These HMMs are 

likely to assign domains to the same protein region. The vast majority of significantly
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overlapping assignments are from HMMs representing different s35 sequence families 

but identical homologous superfamilies. This is illustrated in figure 2.11 below, where 

of the total assignments made (yellow line), the majority are overlapping domain 

assignments from different s35 sequence families but identical homologous 

superfamilies (pink line). Whilst the number of raw SAMT assignments increases 

dramatically (yellow line) with increasing E-value, a similar increase in the number of 

DomainFinderll assignments is not seen (red line), indicating that DomainFinderll can 

resolve multiple overlapping matches to give a single domain assignment. The number 

of domain assignments removed completely due to overlapping with another domain 

assignment from a different homologous superfamily (green) is rather small when 

compared to the number of domain assignments made (red). This is an encouraging 

indication of the effectiveness not only of the HMM technology itself, but also of the 

domain boundaries defined in the CATH database.
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Figure 2.11 DomainFinderll Effect. The number o f CATH domain assignments: 

From the total number o f SAMT assignments (yellow), assignments are discarded due 

to: overlapping hit to same homologous superfamily (pink), PPM cut-off (blue), 

overlapping hit to different homologous superfamily (green). The final assignment by 

DomainFinderll is shown in red.

76



The domain assignment process described above was undertaken independently 

for CATH and Pfam HMM scan results using DomainFinderll. Domain assignments 

were then stored in the Gene3D database. The CATH and Pfam domain assignment 

tables were then used to construct domain architectures for protein sequences.

2.4.2.8 Domain Architectures

Domain architecture indicates the order of domains in the protein sequence to 

which they have been assigned. Priority is given to CATH domain assignments, Pfam 

domain assignments were added where they do not overlap significantly (less than 30% 

of the length of the shorter domain assignment). Unassigned regions were labelled as 

Newfam (unassigned putative domain) regions (discussed in more detail in section 

3.3.2.1). Figure 2.12 illustrates the DomainFinderll domain assignment process and the 

identification of domain architectures.

DomainFinderll Domain Architecture

DomainFinderll CATH Assignm ents

DomainFinderll Pfam Assignm ents

Raw SAMT99 CATH Assignm ents

Raw SAMT99 Pfam Assignm ents

Figure 2.12 Domain Architecture Assignment Protocol. Raw SAMT CATH and 

Pfam domain assignments to a protein sequence (black line) are filtered by 

DomainFinderll. Hits are discarded due to higher E-value same homologous family hit 

(pink), higher E-value different homologous superfamily hit (orange), and hit below 

PPM cut-off (green). Note that the red domain is discontinuous. Domain architecture 

assigned with priority to CATH domains (red, pink) before Pfam domains (purple). 

Finally, unassigned regions are labelled as Newfam domains (yellow).
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2.4.3 Stage 3: Functional Annotation

Gene3D is primarily intended for the study of protein and proteome evolution, 

by analysis of protein domain and protein family distributions across complete 

genomes. Functional assignment to protein sequences in Gene3D is sourced from 

resources that describe whole protein function, not only in molecular terms but also in 

biological process functions. Functional resources (described previously, see section 

1.3) such as GO, KEGG and COG assign function via inheritance from sequence similar 

proteins whilst STRINGS and Affymetrix allow functional inheritance from proteins 

that may not be expected to have detectable sequence similarity. All five resources are 

used to assign functional information to protein sequences in Gene3D.

2.4.3.1 Functional Assignment in Gene3D

Functional assignment from annotated proteins in functional resources to 

proteins in Gene3D is achieved by sequence comparison and protein identifier 

comparison between protein sequences. As described previously (see section 1.1.9) the 

level of sequence identity between proteins where function is being inherited can 

determine the confidence of inheriting correct functional annotations between proteins. 

Following consideration of the analysis by Todd et al., (2001), and the observations by 

Devos and Valencia (2000), and Rost (2002) that even 50% sequence identity may not 

be reliable in inheriting functional annotation, a level of 60% sequence identity was 

chosen as the minimum sequence identity at which functional annotations could be 

assigned to Gene3D protein sequences, to ensure that functional annotations to proteins 

in Gene3D are confidently assigned.

2.4.3.2 Function Assignment to Gene3D Proteins

STRINGS protein identifiers were mapped to KEGG and NCBI protein 

identifiers associated directly with proteins in Gene3D. GO, KEGG, COG and 

Affymetrix protein sequences were BLASTed against Gene3D protein sequences and 

functional assignments made where significant sequence similarities were identified (at 

least 80% of the longer sequence overlapped and there was 60, 95 or 100% sequence
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identity). The level of sequence identity allows three different confidence levels to be 

assigned to the annotation.

A single Affymetrix microarray (RG_U34A, Rat Genome U34 Set) was used to 

give an indication of the percentage of microarray sequences that are represented in 

Gene3D. As figure 2.13 shows, almost three-quarters of the sequences represented on 

the microarray are found in Gene3D. This indicates that Gene3D is a resource that can 

be used to analyse microarray data, and also, that microarray data can be used to form 

functional associations between Gene3D proteins.

73%

23%

Figure 2.13 Gene3D Coverage of Affymetrix Microarray. Percentage o f genes 

represented on array that have a near identical sequence relative (BLAST E-value <1.0 

e-10, blue), a close sequence relative (BLAST E-value < 1.0 e-02, red) or no 

identifiable close sequence relative (BLAST E-value > 1.0 e-02, yellow) in Gene3D.

Functional coverage of Gene3D is shown in figure 2.14. As the sequence 

identity cut-off at which functional annotation is inherited decreases from 100 percent 

(identical protein sequences) to 60 percent, there is a 9.1% (GO), 1.2% (KEGG) and 

7.0% (Annotated) increase in the percentage of proteins in Gene3D that inherit 

functional annotation. These functional annotations were used to assign protein family 

names and functions and provide functional annotation for CATH domain families, 

described later.
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F u n c tio n a l A n n o ta tio n

A n n o ta te d

Figure 2.14 Functional Annotation of Proteins in Gene3D. Percentage o f proteins 

receiving functional annotation at sequence identities o f 100% (blue), 95% (red) and 

60% (yellow) for GO, KEGG, COG, EC and the total Annotated with any functional 

annotation. Note that COG and EC annotations are only inherited at 100% sequence 

identity since functional inheritance occurs through identical sequence identifiers (see 

section 2.4.3).

2.4.3.3 Functional Coverage of Genomes

Whilst only 53% of total proteins in Gene3D have functional annotation, 

genome coverage of some individual genomes is more comprehensive. The percentage 

of proteins within a genome which have an associated function is shown in figure 2.15. 

Prokaryotic genomes are much better annotated than eukaryotic genomes. In addition, 

there is a much smaller increase in the number of additional proteins inheriting 

functional annotation at less stringent sequence identities in prokaryotic genomes than 

in eukaryotic genomes. This is due to a high degree of common prokaryotic sequences 

in Gene3D, GO and KEGG. All three resources use prokaryotic genome sources which 

are relatively stable, well curated sequence collections with many related organisms and 

are generally much better functionally characterised than eukaryotic genomes.
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GO (860) 
EC (8100)

A nnotated (s60) 
COG (8100)

 A nnotated  (8100) G O (s100) KEGG (8100)

Archaea j Bacteria jEukaryota

Genomes (ordered by Kingdom)

Figure 2.15 Functional Annotation of Genomes in Gene3D. Percentage o f proteins 

receiving functional annotation at sequence identities o f 100% (line) and 60% (dotted 

line) for GO (green), KEGG (pink), COG (blue), EC (brown) and the total Annotated 

(red) with any functional annotation. Note that COG and EC annotations are only 

inherited at 100% sequence identity.

Functional coverage of individual Kingdoms of life is shown in table 2.2. 

Higher eukaryotes are generally poorly annotated with the exception of GO annotations. 

Table 2.2 highlights the importance of functional annotation inheritance and shows that 

this has a marked effect on genome functional coverage in poorly annotated eukaryotic 

genomes where genome functional coverage increases by nearly 10% as functional 

annotations are inherited from 60% sequence identity relatives.

Table 2.2 Functional Annotation by Kingdom in Gene3D. Functional annotation 

coverage at si 00 and s60 inheritance.

Kingdom %GO %KEGG %COG %EC % Annotated

Archaea (si00) 50.9 20.9 59.8 13.7 73.8

Bacteria (si00) 54.5 24.7 40.5 16.6 70.7

Eukaryota (si 00) 28.7 5.7 10.8 2.8 32.0

Archaea (s60) 53.6 21.4 - - 73.9

Bacteria (s60) 59.7 25.1 - - 71.8

Eukaryota (s60) 39.1 7.8 - - 41.8
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2.5 User Interface

The interface is designed to allow a user to query the database in real time via 

the internet. Specific database tables were created to permit fast data queries by users. 

The interface is designed to run from web browsers such as Internet Explorer and 

Netscape.

OGcm?3D: version 3.0 Mozillo f irefox
EJe £d* View Qo Bookmarks lo o ts  Help

lb HBpr/A^Jtet .̂ac.rî cath/GeneX/ * O So „

iiG°n
©  PDB Code 
O CATH Code 
O General Text

S 8 A P  Server 
6RATH Server 
DHS 
Gene3D

N avigation

Home
Top of hierarchy

Query GeneoD

j rcon
® NCBI taxon 
O Protein Family 
O Gene3D cid 
O Affymetrix ID 
O Other

Home > Top > Gene3D 

G en e3 D : v e r s io n  3.0

G ene30 is supplem entary to the CATH database . This protein sequence  d a ta b ase  con 
clustered into protein families and annotated with CATH dom ains, Pfam dom ains and funr 
STRINGS (more details).

QUERY G«n«3D

You can look within a genom e (option 1), or look within a protein family (option 2), or searc 
CATH or Pfam domain (option 4) Finally you can  u se  Gene3D to ass ign  predicted fund
browsing Gene3D.

E ach query type (1 -4) can be se lec ted  at the sam e  time (you can  query a genom e and a pn 
selec t multiple item s at the sam e  tim e (you can  se lec t several genom es to query at once) 
remove them  from your query To d e - se le d  all your item s p re ss  the R eset button To en ter yi

The left hand box m enu (Query Gene3D) allows additional sea rch e s  Here you can  look 
Gene3D cid or Affymetrix identifier. You can  also sea rch  for any other identifier type (gene sy

1. View gcnom e(s) from list below.

(hold Ctrl to select multiple genomes)

Aeropyrum pemix
Agrobacterium tum efaciens str. C58 (Cereon) 
Agrobacterium tum efaciens str. C58 (U.W ash) 
A nopheles gam biae 
Amiifox aonlicus

Figure 2.16 Gene3D Website. Screenshot o f user interface start page for Gene3D 

(www.biochem.ucl.ac.uk/bsm/cath/Gene3D_v3.0/gene3d.html). The interface for  

release 3 has since been further improved with the latest release 4 o f Gene3D 

(bsmmacl. biochem. ucl. ac. uk:8080/Gene3D/).

The user interface web pages run live database queries, the results of which are 

returned to the user as web page displays. The Gene3D website (shown in figure 2.16) 

has had over 11,000 web accesses, up to 868 visitors per month, the majority of which 

enter via the CATH or InterPro websites. The user interface consists of seven main 

queries, summarised in table 2.3.
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Table 23  User Interface Queries in Gene3D. For each user query the data returned 

is shown.

Query Type Data

1 Genome Genome coverage, residue coverage

2 Protein Family Number, kingdom distribution, domain architectures of family members

3 Protein
Protein sequence, description, family and subcluster, domain assignments, 

domain architecture, functional annotation

4 Domain
Domain family size, family subclusters, kingdom distribution, number of 
discontinuous domain assignments, number of domain partners, domain 

architectures, functional annotation

5 BLAST BLAST search with protein query sequence to find Gene3D relatives

6

Specific
Term

(Database
Identifier)

Search for Gene3D protein with 23 different types of protein identifiers 
(NCBI gi number, NCBI protein accession, ENSEMBL gene identifier, 

ENDEMBL protein identifier, Affymetrix identifier, KEGG entry, 

LocusLink id, FlyBase, Gadfly, RatMap, KEGG name, KEGG definition, 

KEGG position, COG id, SWISSPROT-TrEMBL id, NCBI description, 

OMIM, Genome DataBase id, Rat Genome Database id, Mouse Genome 
Database id, EC number, GenScan id, ENSEMBL description)

7
Functional
Prediction

BLAST search with protein query sequence to find nearest relative with a 

domain architecture in Gene3D

Where possible, all returned pages allow the user to browse related data. For 

example, genome queries return genome coverage and residue coverage statistics in 

Gene3D, and also provide links to lists of all protein families and proteins occurring in 

the genome. These in turn provide links to domain assignment and domain architecture 

assignments, which are displayed as diagrams (shown in figure 2.17). Domain 

architecture diagrams are clickable, allowing the user to link to individual CATH and 

Pfam domain pages by clicking on each domain box.
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Domain A rch i tec tu re :

( m o u s e  o v e r  t o  s e e  a s s i g n m e n t  d e t a i l s )

D o m a i n  A r c h i t e c t u r e k t  100 150 200 250

C A T H  A s s i g n m e n t s
50 100 150 200 250

P f a m  A s s i g n m e n t s

PF 00126 I— I PF 03466 j-

50 100 150 200 250

Follow links to view domain family data

Figure 2.17 Gene3D Domain Assignment Diagram. Screenshot of domain 

assignments (for Gene3 protein cid 00772590). Clickable domains (coloured boxes) 

link to source database websites.

In addition to searching for specific identifiers from 23 different databases 

whose identifiers have been mapped to Gene3D proteins (for list of identifiers see table 

2.3), the search facility and the functional prediction facility run a live BLAST 

comparison between the users input query protein sequence and all proteins in Gene3D 

to identify protein relatives in Gene3D. Users run -150 BLAST searches per month.
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2.6 Summary

In this chapter, a novel protocol was described and benchmarked for clustering 

proteins into families and assigning domain annotations and functional annotations to 

proteins. This protocol was used in the construction of a completely new design and 

build of the Gene3D database, containing 120 complete genomes. The functional 

coverage of protein sequences, genomes and Kingdoms in Gene3D was described. The 

user interface for Gene3D was briefly outlined. The number and populations of protein 

and domain families in Gene3D will be described in the next chapter.

85



CHAPTER THREE

Analysis of Protein Families and Domain Families in 120 

Complete Genomes 

3.1 Introduction

3.1.1 Power Laws in Protein Family Data

There are a number of resources that cluster large numbers of protein sequences 

into families. Recent analyses reveal that TRIBES clusters 83 complete genomes 

(311,257 protein sequences) into between 60,934 and 82,692 protein families, 

depending on the clustering granularity used. SYSTERS clusters 1,168,542 proteins 

from SWISSPROT, TrEMBL and 11 complete genomes into 158,153 protein families 

of which 110,322 are singleton families containing only a single protein sequence.

Comparison between different protein family resources that use different 

methodologies to cluster proteins can be difficult. However, some general 

characteristics of large scale protein family clustering can be observed, notably the 

observation of power law distributions in family cluster data. A power law describes 

the domination of a population by a selected few. Power law relationships were 

described in economic theory in the 19th century by Vilfredo Pareto illustrating the 

relationship whereby 20% of the total population earns 80% of the total income. A 

Pareto or power law distribution is a probability distribution where the density is 

proportional to a power function P(x) = 1/Zxalpha for any real value alpha and 

normalisation factor Z. In biological data there are many established examples of power 

law distributions (Luscombe et al., 2002). In terms of protein families, the frequency of 

protein families of a particular size (protein families containing a certain number of 

members) has been reported to follow a power law relationship where most families are 

very small containing few protein relatives, while a few families are very large having 

many protein relatives, in both clustering of completely sequenced genomes and in 

clustering SWISSPROT-TrEMBL protein sequences (Enright et a l 2003; Kunin et al., 

2005; Meinel et al., 2003). Whilst Luscombe et al., report that two other functions 

(triple-exponential and lognormal) also describe these distributions quite well, they
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conclude that the power law distribution is a better descriptor of genomic data, since 

power law functions fit many different biological distributions with a more simple 

function compared to triple-exponential and lognormal functions.

In a genomic context, the protein families within an individual genome also 

adopt power law behaviour whereby a small number of protein families are large and 

have many relatives throughout the genome, but the vast majority of protein families are 

small having few relatives within a genome (Harrison & Gerstein, 2002).

3.1.2 N ovel Protein Families

Kunin et a l, (Kunin et al., 2003) have investigated the rate of discovery of novel 

protein families as successive completed genome sequences are released. Interestingly 

they calculate that the number of novel protein families identified over time has 

remained constant, indicating that our coverage of protein family sequence space is not 

yet saturating.

Whilst the phylogenetic position of a newly completed genome determines the 

number of novel protein families identified (for example a closely related strain of a 

previously sequenced genome contains less novel protein families than a newly 

sequenced genome with no previously sequenced closely related genome), the recent 

addition of several eukaryotic genomes does not account for the observed trend. 

Excluding eukaryotes, Kunin et a l , find that protein family sequence space occupied by 

prokaryotic genomes is still being expanded at a constant rate, that is novel protein 

families are just as likely to be identified in the average newly sequenced prokaryotic 

genome today. Indeed, these novel families are not only genome specific but are likely 

to remain very small until closely related genomes are sequenced to identify close 

relatives. This contrasts with large protein families with relatives in many different 

genomes, where each newly sequenced genome adds more relatives to the protein 

family.
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3.1.3 Domain Assignment to Genomes

Genome coverage in genomic domain assignment resources can be defined as 

the average percentage of genes in a genome that have at least one domain assignment. 

There are two resources that assign domains to genomic sequences where genome 

coverage information is available, the SUPERFAMILY database and the Genomic 

Threading Database; both assign SCOP domains to complete genome sequences.

Amongst the 220 genomes in SUPERFAMILY (described previously, see 

section 2.1.6), as of February 2005, the genome coverage (residue coverage in 

parenthesis) ranges from 19% (15%) to 81% (71%), with an average coverage of 57.4% 

(49.5%).

In the Genomic Threading Database (described previously, see section 2.1.6), as 

of February 2005, the genome coverage (residue coverage in parenthesis) ranges from 

46.9% (37.7%) to 97.2% (79.1%), with an average coverage of 81.6% (61.6%) in the 

218 genomes within the database.

Both these databases are able to achieve impressive genome coverage with 

domain assignments in over half the proteins within an average genome.

3.1.3.1 Un-assienable Redons

When considering how much of a genome is described by domain assignments 

to proteins, and the limits of this characterisation, domain assignment coverage by 

percentage of total protein residues is found to be lower than coverage by percentage of 

total proteins with at least one domain assignment, since a significant proportion of 

residues cannot be assigned a domain. These un-assignable residues include signal 

peptides (SP), transmembrane helix (TM), disordered regions with no regular secondary 

structure (NORS), coiled-coil (CC) or low-complexity (LC) regions.

Liu and Rost (Liu and Rost, 2002) described the percentage of genes in 30 

genomes (6 archaea, 20 bacteria, 4 eukaryota) that have been identified as belonging to 

some of these groups, and therefore cannot be assigned a domain. Liu and Rost
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reported the percentage of total proteins containing transmembrane regions (22% of 

proteins had at least one TM region, and that half of these contained more than five TM 

regions), coiled-coils (8%) and NORS regions (16%). The distribution across 

individual genomes differed by Kingdom: twice as many eukaryotic proteins than 

prokaryotic contained coiled-coil regions and almost eight times as many eukaryotic 

proteins contained NORS regions than prokaryotic proteins, although the percentage of 

proteins with a transmembrane region was similar across all Kingdoms. The total 

percentage of proteins that contained regions that cannot be assigned a domain ranged 

from 30-40%. Recent analyses of 203 completely sequenced genomes has shown that, 

on average, the percentage of residues in a genome that are un-assignable is 7.5%, 

contrasting with the percentage of genes in a genome containing these un-assignable 

regions of 16.6% (Russell Marsden, personal communication).

3.1.4 Domain Architecture

Vogel et al. (Vogel et al., 2004) introduced the term domain architecture* to 

describe the complete domain makeup of a protein as the string of known SCOP 

domains and un-assigned regions assigned to a protein. In 261,344 multi-domain 

proteins from 131 genomes they identify 28,387 different domain architectures. They 

show that proteins sharing identical domain architectures tend to have similar functions 

and that this relationship is domain order dependent since this is not the case if domain 

order is swapped. Domain architectures found in different proteins are likely to come 

about by duplication from a common ancestor. Thus proteins with the same domain 

architecture can be regarded as belonging to a single protein family and sharing a 

common evolutionary ancestor.
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3.2 Objectives

In this chapter the distribution of protein and domain families in different 

Kingdoms is explored and the consistency and characterisation of domain architectures 

in Gene3D is examined. Domain family assignments and protein family information is 

used to investigate the Kingdom distribution of protein families and domain families in 

120 genomes. Finally, the sequence diversity of protein families is described, and 

functional annotation in Gene3D is used to characterise sequence diverse and sequence 

invariant protein families.
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3.3 Results

3.3.1 Analysis of Protein Family Populations in Gene3D

A total of 854,897 proteins from 120 completely sequenced genomes in Gene3D 

were clustered into protein families and subclusters according to the PFscape protocol. 

The number of protein families and subclusters can be seen in table 3.0 below.

Table 3.0 Number of Protein Families and Subclusters in Gene3D. Clustering 

levels o f protein family and subclusters of 35%, 60%, 95% and 100% sequence identity 

are shown for all clusters and for non-singleton clusters.

Cluster Level
Number of Clusters

Total Clusters Non-Singleton Clusters
Protein Family 112,464 50,219

S35 subcluster 228,253 166,008
S60 subcluster 356,392 294,147

S95 subcluster 459,675 397,430
slOO subcluster 501,135 438,890

Using a threshold BLAST E-value for matches below 0.0001 (the default 

threshold used in granularity benchmarking and TRIBES, described previously, see 

section 2.4.1) resulted in 417,160,739 significant similarities between all the proteins. 

A small fraction of proteins did not produce any significant BLAST E-values when 

compared to all other proteins. These protein sequences, mostly less than 25 residues in 

length, are highly unlikely to produce a significant BLAST E-value, even when 

compared to themselves since these sequence are not long enough to produce significant 

BLAST alignments. Such sequences were left as singleton clusters consisting only of 

themselves. This does not necessarily indicate that the protein has no relatives, but 

merely that a relative could not be identified by BLAST similarity.

3.3.1.1 Size Distribution of Protein Families

After the clustering process was completed 112,464 protein families had been 

identified. 62,245 of these gene families are singleton gene families containing only a
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single member, leaving 50,219 non-singleton gene families. The size of these non­

singleton protein families exhibits power law like behaviour whereby 20% of protein 

families contain 70% of protein sequences. This distribution appears as a linear 

relationship when plotted on double-logarithmic axes. This observation is in agreement 

with several previous analyses (Enright et al., 2002; Luscombe et al., 2003; Kunin et 

al., 2005). A small percentage (1%) of protein families (823 families) are very large, 

containing more than 100 relatives and accounting for a large percentage (25%) of 

protein sequences. Conversely, a large percentage of protein families (79%) are very 

small, containing less than ten relatives and accounting for only 27% of total proteins. 

As figure 3.0 shows no obvious deviation from a power law distribution, it can be 

concluded that the protein family clustering process employed by Gene3D does not 

artificially over-represent protein families of any particular size.
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Protein Family Size (number of members)

Figure 3.0 Power Law Distribution of Protein Families. Number o f protein families 

of a given size (plotted as a percentage) against protein family size on double log axes 

approaches power-low behaviour. A power-law is o f the form y = ax'b and appears as a 

straight line when plotted on double log axes.
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The largest protein families are shown in table 3.1 below. The largest protein 

family comprises zinc finger containing transcription regulators with 4,842 members. 

These large families have been identified by previous analyses (SYSTERS, Meinel et 

al., 2005; TRIBES, Enright et al.t 2003) and contain proteins that are performing 

important generic functions, such as regulation of transcription, signal transduction and 

DNA replication exploited by organisms in all kingdoms. When divided into 

prokaryotic and eukaryotic protein families, the largest protein families in prokaryotes 

are involved in metabolism and transcription regulation, whereas in eukaryotes the 

largest families are involved in regulation of transcription, G-protein coupled receptor 

signal transduction pathways and cell adhesion.

Table 3.1 Largest Protein Families in Gene3D. Top ten largest protein families with 

the number o f members shown for each family. Protein family names are derived from 

the most common GO term assigned to family members.
Protein Family Name Size (# Relatives)

Nucleic Acid Binding (Zinc Finger) 4,842

ATP Binding (ABC Transporter) 3,969

Rhodopsin-like Receptor Activity 2,638

Oxidoreductase Activity (NAD(P)-Binding) 1,741

Protein Serine/Threonine Kinase Activity 1,732

Trypsin Activity 1,309

DNA Binding 1,074

Protein-tyrosine Kinase Activity 1,030

Kinase Activity 1,029

ATP Binding 968

3.3.1.2 Diversity of Protein Families in Gene3D

The number of s35 subclusters within a protein family can be used as a measure 

of the sequence diversity within the protein family. Family diversity can be measured 

by dividing number of s35 subclusters by the protein family size (the number of 

relatives in the family). The distribution of protein family diversity can be plotted as 

shown in figure 3.1. This distribution shows that the average diversity for a protein 

family is 0.225. Protein families with a diversity less than 0.05 can be defined as 

sequence invariant, whilst those with a diversity greater than 0.5 can be defined as 

sequence diverse. Functional classification of diverse and invariant protein families was



determined by protein family GO, KEGG, COG functional assignments and Pfam 

domain assignments. These are discussed below.
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Figure 3.1 Frequency Distribution of Protein Family Diversity. Number of protein 

families with a given diversity for protein families with at least 20 members.

3.3.1.2.1 Function of Invariant Protein Families

The function of invariant protein families is shown in figure 3.2. The majority 

of sequence invariant protein families comprise proteins involved in two specific core 

processes: nucleic acid binding proteins involved in nucleotide excision/repair 

processes; and metabolism and biosynthesis enzymes involved in the tricarboxylic acid 

cycle, purine/pyrimidine biosynthesis and amino acid biosynthesis. Many of the largest 

invariant protein families are transposases, proteins necessary for efficient DNA 

transposition, many of which bind metal ions required for catalysis of DNA cleavage at 

specific sites. The next largest group of sequence invariant protein families are 

ribosomal proteins, large ribonucleoprotein particles required for translation of mRNA 

into protein in both prokaryotes and eukaryotes.
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□ Unknown ■ Ribosomal □ Transposase
□ Nucleic Acid Binding ■ Metabolism/Biosynthesis □ Other

Figure 3.2 Functions of Invariant Protein Families in Gene3D.

3.3.1.2.2 Function of Diverse Protein Families

The vast majority of diverse protein families are poorly functionally annotated, 

as shown in figure 3.3. Those protein families that have been assigned a function 

perform many different functional roles. Functional classification of these protein 

families reveals only a few large functional groups. The largest group of diverse protein 

families is the two component sensor histidine kinases. These bacterial proteins 

combine signal recognition, signal transduction and gene activation in a two protein 

system. The sensor histidine kinase interacts directly with a signal ligand, or a receptor 

that binds the signal ligand. Variability in signal ligand, or with specific response 

regulator proteins that bind DNA, thus activating transcription, provide a wide range of 

virulence factors and antimicrobial resistance responses in pathogenic bacteria and 

fungi, as well as regulation of essential cellular functions. Diversity in sensor histidine 

kinases is required to detect an immense diversity of possible signal ligands.

The next largest groups of diverse protein families comprise methyl-accepting 

chemotaxis proteins and glycosyltransferases. Bacterial chemotactic signal transducer 

proteins respond to changes in the environmental concentration of a wide range of 

attractants and repellents and transduce a signal from the outside to the inside of the cell
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in response, via deamidation and reversible methylation. Attractants increase the level 

of methylation, whilst repellents decrease it. Glycosyltransferases are proteins that 

catalyse the transfer of glycosyl groups from donor to acceptor molecules by forming 

glycosidic bonds. These proteins are involved in the degradation and biosynthesis of 

polysaccharides, glycoproteins and glycolipids and are usually very specific for both 

donor and acceptor substrates (Campbell et al., 1998). Other proteins involved in 

degradation are found in diverse protein families, notably cytochrome P450 enzymes. 

This large and diverse family of enzymes are principally responsible for the degradation 

of a practically unlimited variety of chemicals. The remaining diverse protein families 

have a wide variety of different functions and include known diverse protein families, 

for example the subtilisin serine protease family of endopeptidases that share a common 

catalytic triad but possess highly diverse N and C terminal extensions.

69%

3% 3% 2% 14%

Q Unknown ■ Two Component
□ Others □ Cytochrome P450
■ Glycosyltransferase □ Methyl-accepting Chemotaxis

Figure 3.3 Functions of Diverse Protein Families in Gene3D.

Both highly diverse and highly invariant protein families perform functions 

critical to an organism’s survival. The diversity of these protein families is dictated by 

their biological function. Highly invariant protein families perform very specific 

functions and interact with only a few ligands associated with core metabolic and 

nuclear processes. Highly diverse protein families perform a myriad of functions,
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interacting with a huge variety of ligands regulating complex cellular responses, often to 

environmental stresses.

3 3.2 Analysis of Domain Family Populations in Gene3D

Scanning all protein sequences in Gene3D against a library of HMMs 

representing CATH structural domains and Pfam sequence domains was undertaken 

according to the PFscape protocol. Using a threshold HMM E-value for matches of 

0.01, an HMM percentage model matched cut-off of 50% and a domain overlap cut-off 

of 30% resulted in 417,132 significant CATH domain assignments and 508,348 

significant Pfam domain assignments.

3.3.2.1 Size Distribution of Domain Families

The size of domain families in Gene3D follows a power law like behaviour, 

where a few large domain families have a large number of domain assignments whilst 

most domain families are small and have a small number of domain assignments. The 

size distribution of CATH domain families closely follows Pareto’s 80/20 Law, the 

largest 20% of domain families accounting for 80% of all domain assignments. The ten 

largest CATH domain families, representing only 0.8% of all CATH domain families) 

account for 104,689 CATH domain assignments (25% of total CATH domain 

assignments). The vast majority of domain families are small, only 11% of CATH 

domain assignments are found in the smallest 70% of CATH domain families.

The sizes of CATH and Pfam domain families are shown in figure 3.4 below. 

There are 91,216 more Pfam domain assignments than CATH domain assignments in 

total. These additional Pfam domain assignments are mainly from medium sized Pfam 

domain families containing between 10 and 200 domain family members, which are not 

related to domain families represented in CATH.
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Figure 3.4 Sizes of Domain Families. Domain family size (log scale) against domain 

families ranked by size (number of domains assigned to family) for CATH homologous 

superfamilies (red) and Pfam domain families (blue).

The s35 sequence family size distribution of CATH, Pfam and uncharacterised 

(Newfam) domain families also shows power law like behaviour. This is illustrated in 

the power law plots in figure 3.5 below for CATH, Pfam and Newfam families and 

show that most of the uncharacterised families (Newfam) tend to be much smaller than 

the CATH and Pfam families.
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Figure 3.5 Log-log Plots of (a) CATH, (b) Pfam and (c) Newfam Families. Graphs 

show power-law like behaviour. Fitted power law functions and their exponents are 

shown for comparison (d). Note that most Newfam families are small with relatively 

few members.

Although the Newfam families are much smaller families, with less members 

than CATH and Pfam families, it is encouraging to note that the length distribution of 

Newfam sequences is close to the length distribution of domains classified in the CATH 

(see figure 3.6 below). This is indicative that many Newfam families, whilst sparsely 

populated, are likely to represent protein domains. A small percentage of Newfam 

domains are very long and are thus more likely to represent multiple domains.
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Figure 3.6 Length Distribution of Newfam Sequences compared to CATH 

Domains.

The number of domain assignments for the largest CATH and Pfam domain 

families are shown in table 3.2 below. These largest families identified in Gene3D have 

also been identified by previous analyses (Buchan et al., 2002; Bateman et al., 2004).

100



Table 3.2 Largest Domain Families in Gene3D. The top ten domain families with the

most members are shown for CATH and Pfam domain families.
CATH Domain 

Family
CATH Domain 

Name

Size 
(# Relatives)

3.40.50.300 P-loop Containing Nucleotide Triphosphate Hydrolase 28,417

3.30.160.60 Classic Zinc Finger 19,118

2.60.40.10 Immunoglobulins 11,386

3.40.50.720 NAD(P)-Binding Rossmann-Like 9,451

1.10.10.10 Winged Helix Repressor DNA Binding Domain 7,519

1.10.10.60 Homoedomain-Like 6,403

1.10.510.10 Transferase (Phosphotransferase) Domain 1 6,088

3.30.200.20 Phosphorylase Kinase Domain 1 5,526

3.40.190.10 Periplasmic Binding Protein-Like II 5,454

2.10.25.10 Laminin 5,327

Pfam Domain 
Family

Pfam Domain 

Name

Size 
(# Relatives)

PF00096 Zinc Finger, C2H2 Type 15,012

PF00005 ABC Transporter 8,352

PF00069 Protein Kinase Domain 6,085

PF00028 Cadherin Domain 5,601

PF00041 Fibronectin Type HI Domain 5,389

PF00400 WD Domain, G-Beta Repeat 5,278

PF00001 Seven Transmembrane Receptor (Rhodopsin Family) 4,709

PF00023 Ankyrin Repeat 4,679

PF00083 Sugar (and Other) Transporter 4,252

PF00076 RNA Recognition Motif (RRM, RBD, RNP Domain) 4,079

3.3.3 Domain Assignments to Protein Families in Gene3D

By combining protein family and domain assignment data in Gene3D, the 

domain coverage of protein families can be characterised. The figures below illustrate 

the extent of CATH (figure 3.7) and Pfam (figure 3.8) domain assignments to protein 

families in Gene3D.

The graphs show that for most protein families with more than 5 members, at 

least half of the protein families have a Pfam domain assignment. The coverage of
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protein families is slightly less comprehensive for CATH domains, where for protein 

families with at least 20 members, at least half of the protein families have a CATH 

domain assignment. Coverage of protein families by CATH is lower than that of Pfam. 

Additionally, families annotated with CATH are, on average, much larger than families 

annotated with Pfam, this is because small families are under-represented in CATH, 

whilst Pfam annotates many more smaller families. Structural data allows detection of 

very distant relatives, so that Pfam families are often merged once representative 

structures are solved. This can be clearly seen in Figure 3.7 and 3.8 below.
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Figure 3.7 CATH Domain Coverage of Protein Families. Crosses indicate where 

50% of protein families of this size have a CATH domain assignment (blue) or do not 

have a CATH domain assignment (red).
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Figure 3.8 Pfam Domain Coverage of Protein Families. Crosses indicate where 50% 

of protein families of this size have a Pfam domain assignment (blue) or do not have a 

Pfam domain assignment (red).

3.3.3.1 CATH and Pfam Domain Assignment Overlap

Since some domain families are classified in both CATH and Pfam, it is 

expected that some CATH and Pfam domain assignments will be made to the same 

regions within protein sequences and result in overlapping CATH and Pfam domain 

assignments. Figure 3.9, below, shows the extent of the overlap between CATH and 

Pfam domain assignments. As figure 3.9 shows, 21% of Pfam domain families have a 

significant overlap (where, on average, greater than 80% of the Pfam domain 

assignment is overlapped by a CATH domain assignment) with CATH domain families, 

suggesting that these Pfam and CATH families may be regarded as equivalent domain 

families. Whilst 68% of the 5,179 Pfam domain families assigned in Gene3D have no 

significant overlap (i.e. overlap less than or equal to 20%) with any CATH domain 

families, 11% of Pfam domain families have an intermediate level of overlap, 

suggesting that these Pfam domain families may comprise additional structurally 

uncharacterised domains. This is in agreement with an earlier study by Elofsson and 

Sonnhammer (Elofsson and Sonnhammer, 1999), which compared Pfam and SCOP
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classifications (a structural domain classification similar to CATH). Whilst this earlier 

study compared a much smaller version of Pfam (containing only 1407 domain 

families), of these, 802 domain families (or 57%) were found to exist in SCOP, which is 

close to the 1087 Pfam domain families (21% of Pfam domain families with a 

significant CATH overlap) identified in Gene3D, which uses a more recent release 

containing significantly more Pfam domain families. Pfam built up their database by 

using the largest families and these were more likely to contain at least one structural 

representative, hence the initial high overlap with SCOP.
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Figure 3.9 Overlap of CATH and Pfam Domain Assignments. Most Pfam families 

show negligible overlap with CATH (0-20% sequence overlap) but 1,085 Pfam families 

show substantial overlap (81-100% sequence overlap). There are relatively few Pfam 

families with an intermediate level of overlap.

3.3.4 Domain Architectures in Gene3D

CATH and Pfam domain assignments were combined into domain architectures 

using the DomainFinderll protocol described previously (see section 2.4.2.8). When 

combining CATH and Pfam domain assignments into domain architectures, 63% of all 

Pfam domain assignments are excluded by an overlapping CATH assignment. As
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figure 3.9 shows, there are 1,085 Pfam domain families that overlap significantly 

(greater than 80%) with CATH. Since these 1,085 families represent 63% of all Pfam 

assignments, they are large domain families, where the domain family is also 

represented in the CATH classification.

Domain architectures were assigned to a total of 386,340 proteins in Gene3D. 

59% of these domain architectures contain only CATH domain assignments, 32% 

contain only Pfam domain assignments, leaving 9% of domain architectures containing 

both CATH and Pfam domain assignments. This is consistent with the level of 

observed overlap between CATH and Pfam domain classifications.

3.3.4.1 Domain Architecture Consistency in Protein Families

From the structural benchmarking of TribeMCL clustering (see section 2.4.1.1), 

protein families in Gene3D might be expected to show highly consistent domain family 

architectures across the members of each protein family. However, the domain 

architecture consistency in protein families from clustered completed genome sequences 

could be different from that seen clustering a far smaller and less sequence diverse 

benchmarking dataset. The consistency of domain architectures in Gene3D protein 

families was therefore examined.

Figure 3.10 shows domain architecture consistency in 7,453 protein families 

which contain at least 3 relatives, in which the domain architecture covers on average at 

least 80% of the protein’s residues. 77% (5,719) of these protein families have >90% of 

annotated members with the same domain architecture, whilst 87% of the protein 

families have more than 70% of members sharing a common domain architecture. 

Although these 7,453 protein families represent only -11% of non-singleton protein 

families in Gene3D, comprising 17% of non-singleton sequences, they give some 

indication of consistency in domain architecture achieved by the TribeMCL clustering.
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Figure 3.10 Consistency of Domain Architecture in Protein Families. More than 

three-quarters of protein families have more than 90% of their members annotated with 

the same domain architecture.

3.3.4.2 Domain Architecture Superfamilies in Gene3D

For protein families that are completely annotated, domain architecture 

information can be used to resolve subgroups of dissimilar relatives into separate 

families sharing common architectures. It also allows mapping between protein 

families with common domain architectures. Figure 3.11 shows the distribution of 

2,212 domain architectures that are found in 5,719 protein families, which contain at 

least 3 relatives and in which the domain architecture covers on average at least 80% of 

protein residues, and where >90% of annotated protein family members have the same 

domain architecture. 60% of these domain architectures are unique to a single protein 

family, a further 20% only occur in two protein families, whilst the remaining 20% 

occur in 3 or more protein families.

This suggests that TribeMCL is rather conservative at clustering sequences, but 

this is desirable since it preserves the consistency of the domain architecture within a 

protein family. Sequences sharing common domain architectures but placed in separate 

protein families can be merged into the same domain architecture superfamily. For 

example, the 5,719 protein families described above can be collapsed into 2,212 domain
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architecture superfamilies. The number of families which can be merged in this way 

will increase following expansion in the HMM domain libraries of CATH and Pfam; 

and the inclusion of novel domain-like sequence families (NewFam domain families, 

see section 3.3.2.1) which will extend domain mapping of the gene sequences. Future 

HMM libraries could be constructed to include HMMs built from large domain 

architecture superfamilies to improve the detection of evolutionary relationships 

between protein families.
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Figure 3.11 Domain Architecture Distribution across Protein Families. The

percentage of domain architectures against the number of different protein families in 

which they are identified. Note that 60% of complete domain architectures are found in 

only a single protein family.

3.3.5 Using Gene3D Families to Validate Genscan Predictions

Genscan protein sequences are in-silico translations of open reading frames 

identified in eukaryotic genomic DNA sequences using the Genscan (Burge and Karlin, 

1997) prediction program. These predicted protein sequences are not included in 

analysis in Gene3D since their validation as biologically active entities cannot be
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verified from existing sources, but have been included in the PFscape process to expand 

the information for Tribe-MCL clustering. The distribution of these genscan predicted 

proteins within the protein families and domain families identified in Gene3D is of 

interest because it can indicate the biological relevance of these protein predictions and 

allow an estimation of the proportion of predicted proteins that are likely to have a 

biological function.

Of the 854,897 proteins in Gene3D, 270,846 proteins are genscan predicted 

sequences. These proteins are assigned to 127,804 protein families of which 29,765 are 

non-singleton. Of these, 22,332 protein families contain both genscan predicted 

proteins and known proteins. The 154,965 genscan predicted proteins in these protein 

families are most likely to be biologically active proteins that have yet to be 

characterised experimentally.

107,524 CATH domain assignments and 125,277 Pfam domain assignments are 

made to genscan predicted proteins. Whilst 62% of eukaryotic known proteins have a 

domain assignment, only 30% of genscan predicted proteins have a domain assignment.

To summarise, 57% of genscan predicted proteins occur in protein families with 

known characterised proteins and 30% genscan predicted proteins have a CATH or 

Pfam domain assignment. These genscan predicted proteins would make the most 

promising targets for expression studies in eukaryotes to determine whether they are 

expressed, as suggested by Gene3D, and should therefore be studied further.

3.3.6 Genome Coverage in Gene3D

Genome coverage can be assessed in two ways: Gene Coverage - the percentage 

of protein sequences in a genome that have at least one domain assignment; and 

Residue Coverage - the percentage of protein residues in a genome that are covered by 

one or more domain assignments. The first of these measures simply describes the 

percentage of proteins in a genome for which some domain information can be 

assigned, and does not necessarily provide an accurate measure of how completely such 

information describes these proteins as a whole. The percentage of residues within a
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genome with domain assignments gives a much clearer indication of the completeness 

of protein annotation by domain assignment.

The following figures show gene coverage (figure 3.12) and residue coverage 

(figure 3.13) in all the 120 genomes in Gene3D, data for individual genomes can be 

seen in appendix I.
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Figure 3.12 Gene Coverage of Genomes in Gene3D. Percent of genes in each 

genome with a CATH domain assignment (red), Pfam domain assignment (blue), a 

CATH and a Pfam domain assignments (orange) and genes with no domain assignment 

(green) for all genomes grouped into Archaea, Bacteria and Eukaryota.
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Figure 3.13 Residue Coverage of Genomes in Gene3D. Percent of residues in each 

genome with a CATH domain assignment (red), Pfam domain assignment (blue), a 

CATH and a Pfam domain assignments (yellow) and residues with no domain 

assignment (green) for all genomes grouped into Archaea, Bacteria and Eukaryota.

Table 3.3 summarises the average coverage for all genomes in Gene3D, and for 

each kingdom in Gene3D.
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Table 3 3  Average Domain Coverage in Gene3D. Average percentage o f proteins 

and residues for Archaea, Bacteria, Eukaryota and all genomes that have been 

annotated with a CATH, Pfam, a CATH & a Pfam domain assignment Total un­

annotated and total annotated with domain assignments for all genomes are indicated 

in bold. Numbers in parentheses indicate the number o f genomes in each dataset.

Archaea (16) Bacteria (90) Eukaryota (14) All (120)

Annotation:
%

Protein
%

Residue
%

Protein
%

Residue
%

Protein
%

Residue
%

Protein
%

Residue

CATH only 38.81 33.42 41.88 35.49 38.15 26.04 41.04 34.11

Pfam only 22.17 16.30 24.33 19.37 19.72 13.80 23.50 18.31

CATH & non- 
overlapping 

Pfam

2.8 0.03 4.41 0.05 5.81 0.03 4.36 0.04

Total
Unannotated

36.22 49.44 29.38 45.09 36.32 60.14 31.10 47.42

Total

Annotated
63.78 50.56 70.62 54.91 63.68 39.86 68.90 52.58

Combination of CATH and Pfam annotations gives an average overall coverage 

of 68.9% of proteins within a genome having at least one domain assignment. In some 

small bacterial genomes (for example Buchnera) the total coverage is as high as 97%. 

On average 45.4% of proteins in a genome can be assigned at least one CATH structural 

domain. In addition, Pfam domain assignments can be made to a further 23.5% of 

proteins. An average of 4.36% of proteins in a genome comprises non-overlapping 

domains from both CATH and Pfam. It should be noted that genome coverage by 

proteins with an assignment is on average 16% higher than genome coverage by 

residues, indicating that whilst many proteins have a domain assignment, these domain 

assignments do not characterise all the residues in these proteins and so do not fully 

describe their domain architecture.

Genome coverage in Gene3D is comparable to the coverage in related databases, 

see table 3.4.
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Table 3.4 Genome Coverage in Gene3D. Gene coverage and residue coverage for

Gene 3D and comparable databases.

Database Release
Gene Coverage 

(%)

Residue Coverage

(%)

Gene3D (CATH) Aug 2003 45.4 34.2

Gene3D (CATH & Pfam) Aug 2003 68.9 52.6

SUPERFAMILY Feb 2005 57.4 49.5

Genomic Threading Database Feb 2005 81.6 61.6

A lower Gene3D CATH coverage compared to SUPERFAMILY and the 

Genomic Threading Database is because the CATH fold library is smaller than the 

SCOP fold library used to provide SUPERFAMILY and The Genomic Threading 

Database domain assignments and more stringent criteria are used in the match/query 

overlap between the HMM and the protein sequence during domain assignment.

3.3.7 Increasing Genome Coverage in Gene3D

3.3.7.1 HMM Library Expansion

Gene3D CATH domain assignment HMM libraries are built using CATH s35 

sequence family seed sequences provided from the CATH database. However, seed 

sequences from additional sequence families in CATH may provide a mechanism to 

capture more sequence diversity within CATH domain families. HMMs were built as 

described previously, but using seed sequences from CATH s95 sequence families to 

produce an s95 CATH HMM library. This library was used to scan the Escherichia coli 

K12 genome in order to compare genome coverage with that previously achieved using 

the s35 CATH HMM library, shown in table 3.5 below.
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Table 3.5 Escherichia coli Genome Coverage using s35 and s95 HMM Libraries.
Gene coverage (% ofE.coli K12 genes with a CATH domain assignment).

HMM Library Scan Library Size Gene Coverage (%)

s35 CATH HMMs E.coli K12 4023 models 52.36

s95 CATH HMMs E.coUK12 7913 models 54.04

As can be seen from the table, an increase in genome coverage of 1.68% was 

achieved using the s95 CATH HMM library. However, this slight increase in genome 

coverage required a doubling in the size of the HMM library. The computational time 

required for scanning the genome is also doubled. This small increase in genome 

coverage is simply not worth the huge increase in computational resources which it 

takes to achieve. Similar results were obtained by Sillitoe et a l (Sillitoe et a l, 2005) 

where the authors used s35 and s95 CATH HMM libraries to scan a dataset of 4,036 

sequence homologues, none of which had more than 35% or 95% sequence identity 

respectively to the HMM being scanned against. The authors concluded that coverage 

of their dataset was not increased significantly by using an s95 CATH HMM library 

over an s35 CATH HMM library.

3.3Z7.2 Updated Versions of CATH and Pfam

Updated releases of both the CATH and Pfam databases contain more domains 

in established domain families as well as novel domains in novel domain families, and 

thus cover a larger amount of sequence and structure space. In addition, HMMs built 

using more recent and larger non-redundant protein sequence databases (see methods) 

are more sensitive (Sillitoe et a l, 2005). Successive releases should therefore provide 

an increase in genome coverage. All the sequences in Gene3D were scanned with 

CATH version 2.4 and CATH version 2.5 s35 HMMs, as well as Pfam version 10 and 

Pfam version 13 HMMs. In addition, SAMOS A HMMs (models built by Ian Sillitoe) 

were scanned against all sequences in Gene3D. SAMOSA models are built from 

multiple structural alignments of large CATH domain families and have previously 

been shown to increase coverage in specific datasets (Sillitoe et a l, 2005). An increase 

in genome coverage of 6-7% was achieved using these expanded HMM libraries (see 

table 3.6).
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Table 3.6 Genome Coverage In Gene3D using various HMM Libraries. Gene 

coverage (average % o f genes with a domain assignment) for all genomes in Gene3D.

HMM Library Release Date Library Size Gene Coverage (%)

CATH 2.4 02/02 3,285 38.1

CATH 2.5 08/03 4,036 45.4

Pfam 10 07/03 6,190 61.2

Pfam 13 04/04 7,426 67.8

CATH + SAMOSA 2.5 - 4,725 45.5

CATH + Pfam 2.5 /10 - 10,226 68.9

CATH + Pfam 2.5 /13 - 11,462 72.9

The insignificant increase in genome coverage found when using SAMOSA 

HMMs underlines the difference between genomic datasets and those previously used to 

benchmark SAMOSA models which showed an increased coverage of -10% (Sillitoe et 

al., 2005).

The trends seen above in genomic datasets are supported by the observations of 

Sillitoe et al., who illustrate how the increase in the size of Genbank sequence 

repository and the increased number of CATH structural families is responsible for the 

increased rate of detection of remote homologues from the CATH structural database 

over time. The author's note that as Genbank increased in size from 907,000 sequences 

used for CATH version 2.4 HMM building to 1,399,000 sequences used for CATH 

version 2.5.1 HMM building, an increased coverage of 6% was observed in their dataset 

consisting of 4,036 remote homologues with less than 35% sequence identity to the 

models being matched. Future releases of both CATH and Pfam are likely to provide 

increased coverage not only due to an increase in the domains described by these 

resources but also as future Genbank sequence databases will be significantly larger and 

produce more sensitive HMM libraries.
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3-3-8 Kingdom Distribution of Protein Families and Domain Families in

Gene3D

It is interesting to consider the proportion of domain or protein families common 

to all the genomes in Gene3D and the percentage of genome sequences belonging to 

these families. For a domain to be considered universal it should be detected in a 

significant proportion of organisms within a kingdom, in order to reduce the likelihood 

of its presence being due to recent horizontal transfer between organisms as opposed to 

vertical transfer from a common ancestor.

However, universal domains will not necessarily be present or detected in all 

120 genomes in Gene3D for several reasons. Some of the organisms are obligate 

intracellular parasites (e.g. Chlamydia trachomatis) and symbionts (e.g. Wigglesworthia 

brevipalpis) and cannot independently perform some of the functions that are essential 

to life (Zomorodipour and Andersson, 1999). The domain assignments in these 

genomes are unlikely to reflect their evolutionary heritage since protein functions and 

their associated domains may no longer be present in these genomes. Furthermore, 

HMMs used for domain mapping are not expected to identify all remote homologues. 

Indeed, as previously described, the level of domain assignment in genomic datasets has 

not saturated, and as sequence databases and domain classifications become larger more 

domain assignments will be made to genomes. Currently 76-80% of remote 

homologues are detected using the CATH HMM library (see Chapter 2, section 2.4.2.2).

Taking these factors into account we decided that domain families found in at 

least 70% of the organisms could be considered universal. Using this 70% universality 

measure the percentage of CATH and Pfam domain assignments in each genome that 

are probably universal to each Kingdom can be calculated. Figure 3.14 shows the 

percentage of CATH and Pfam domain assignments within a genome where the domain 

is universal in one, two or three kingdoms. Domain assignments unique to the genome 

are also indicated. Where a domain occurs in more than one genome but does not occur 

in 70% of genomes within any Kingdom and cannot therefore be considered universal 

to any Kingdom, the domain is indicated as not specific to a Kingdom (i.e. it is specific 

to only a subset of a Kingdom).
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Figure 3.14 Kingdom Distribution of Domains in Gene3D. Percent o f proteins in 

each genome belonging to a domain family that is universal to one (K1 - yellow), two 

(K2 - blue), three (K3 - red) Kingdoms, unique to the genome (Ku - green) or specific to 

a subset o f a Kingdom (KO - black).

It can be seen from figure 3.14 that -16% of domain assignments within a 

genome belong to domain families which are not universal to any kingdom, while 

almost 50% of all domain assignments are universal to all three kingdoms of life. There 

are 212 CATH and Pfam domain families that are found in at least 70% of the genomes 

from each of the three kingdoms of life and these domains may correspond to universal 

families with essential functions (listed in appendix II). In contrast, figure 3.15 shows 

that less than 10% of protein sequences (mostly comprising multidomain architectures) 

are assigned to protein families universal to all three kingdoms of life while -63% do 

not appear to be universal to any kingdom, as they occur in less than 70% of the 

organisms in any of the kingdoms.
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Figure 3.15 Kingdom Distribution of Protein Families in Gene3D. Percent of 

proteins in each genome belonging to a protein family that has members from one (K1 - 

yellow), two (K2 - blue), three (K3 - red) Kingdoms, unique to the genome (Ku - green) 

or specific to a subset of a Kingdom (KO - black).

Interestingly, 50% of the domain structure annotations arise from families that 

are common to all the genomes. By contrast less than 10% of genome sequences are 

assigned to protein families common to all kingdoms. This is in agreement with 

previous findings (Chothia et al. 2003; Hegyi et al. 2002) suggesting that common 

domains have been combined in different ways to generate kingdom specific domain 

architectures. Since modification in domain architecture is frequently associated with 

change in protein function (Todd et al., 2001), changes in domain architecture provide a 

mechanism for expanding the functional repertoire of the organism. These findings will 

be discussed and expanded later, but show that Gene3D protein families and domain 

assignments can be used to gain insight into the evolutionary relationships between 

genomes, protein families and protein domains.



3.4 Summary

The family size distribution of protein families in Gene3D was found to closely 

follow Pareto’s 80/20 Law, where 20% of non-singleton protein families contain 70% 

of non-singleton protein sequences. Power law family size distributions were also 

observed in domain assignment data, where 20% of CATH domain families account for 

80% of CATH domain assignments. The size distributions of Newfam regions indicate 

these families are mostly extremely small. Length distributions of Newfam regions 

were shown to be similar to those of individual CATH domains, indicating that many of 

these novel domain-like regions may be single domains.

The largest protein families and domain families in Gene3D are shown to be 

similar to those previously reported in similar protein clustering and domain family 

classifications. In addition, the most sequence diverse and sequence invariant protein 

families were functionally characterised, revealing that highly invariant protein families 

perform very specific functions, interacting with few ligands, whilst highly diverse 

protein families perform many more functions and interact with a huge variety of 

different ligands.

The domain architectures identified in Gene3D protein families were shown to 

be highly conserved within protein families, 87% of the protein families were found to 

have more than 70% of members sharing a common domain architecture. The power 

law distribution of domain architecture superfamilies across protein families was 

described, highlighting the potential for development of HMMs representing specific 

domain architectures in fast assignment of newly completed genomes.

Analysis of Genscan predicted protein sequences in Gene3D, showed that up to 

57% of eukaryotic Genscan predictions are likely to be correct protein sequence 

predictions.

The distribution of domain families and protein families across the genomes in 

Gene3D revealed that whilst 50% of domain assignments in a genome are common to 

all three Kingdoms of life, less than 10% of proteins in a genome are assigned to protein 

families common to all three Kingdoms, indicating that common domain families are 

reused in different contexts providing diverse protein functions across the genomes.
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CHAPTER FOUR

Application of Gene3D to Structural Genomics

4.1 Introduction

Many structural genomics initiatives are currently in progress and although the 

aims vary between consortia, many groups are selectively targeting protein families for 

which the fold is unknown in order to increase our knowledge of fold space.

In order to attempt predictions on fold space we need to know how many protein 

families there are in nature and how many of these are likely to possess a novel fold. 

Genome sequencing still considerably outpaces the structure genomics initiatives with 

more than 260 completely sequenced genomes, yielding over a million protein 

sequences at the start of 2005 (GOLD database, Bernal et a l, 2001). This contrasts 

with 30,041 PDB entries (Deshpande et a l , 2005), some 1000 of which were 

determined by structure genomics consortia over the last five years. Encouragingly, and 

in parallel with the expansions in the structure and sequence databanks over the last 

decade, HMM based sequence homology detection methods allow the granularity of 

protein family space to be more accurately charted by allowing recognition of extremely 

distant homologues.

Although analyses of completed genomes suggest that there are tens of 

thousands of domain families (Lee et a l , 2005; Liu and Rost, 2002), currently only 5% 

of newly determined structures are observed to have a novel fold (Todd et a l , 2005), 

suggesting the there are a much smaller number of folds in nature. The Protein 

Structure Initiative (PSI; www.nigms.nih.gov/Initiatives/PSI/) is a large-scale, high- 

throughput structural genomics project with groups from the United States, European 

Union, Japan, China, Canada and Israel. The PSI entered a production phase, with the 

aim of solving structures for all the large structurally uncharacterised domain families, 

to increase the number of known folds in the PDB. Around 2% of structures deposited 

in the PDB by conventional structural biology contain novel folds. In contrast, 11% of 

structures deposited in the PDB during the initial phase of the PSI (September 2000
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until June 2005) were novel folds, and 67% were structures for new sequence families, 

compared to 21% from conventional structural biology (Todd et al., 2005).

Thus it is clear from this initiative that even when sequence families are targeted 

because they are predicted to have a novel fold, a relatively small percent (-11%) are 

found to possess a novel fold once their structures are solved. These observations 

support earlier hypotheses (Chothia, 1992; Orengo, 1994) derived from analyses of 

sequence data that there are a limited number of folds in nature.

Over the last decade there have been several attempts to predict the number of 

folds. Whilst Wolf et al. (2000) predict the number of folds in individual genomes; 

most estimates consider the total number of folds in nature. Current estimates of the 

number of folds range from 1000 to 10,000 depending on the models and 

approximations applied (Leonov et al., 2003; Coulson and Moult, 2002; Koonin et al., 

2002).

One of the earliest estimates of fold numbers was a simple approximation by 

Chothia (1992). This assumed that there are a limited number of folds in nature that 

sequences could adopt due to physical constraints. If these are randomly sampled then 

the probability that a new sequence has a novel fold can be estimated by determining 

the proportion of unrelated sequences e.g. in the structure classification SCOP that are 

found to share the same fold. This approach predicted 1000 structural families based on 

the proportion of sequences of known structure in SCOP that had unique folds, the 

fraction of the SWISSPROT sequence database these sequences comprised and the 

fraction of new sequences found to be related to sequences in SWISSPROT. A similar 

model applied by Orengo and co-workers (1994) also took account of the number of 

protein families in SWISSPROT. Using the CATH structure database they predicted a 

higher estimate of -8000 folds. Both these calculations were undertaken when 

sequence and structure databases were relatively sparse, and under-represent the bias in 

the distribution of certain folds, often referred to as superfolds (Orengo et al., 1994), 

which are more highly reused by different protein families in nature than expected by 

chance.

Since Chothia* s early estimates, several groups have applied approaches that 

model this uneven distribution of fold usage (Zhang and DeLisi, 1998; Govindarajan
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and Goldstein, 1996). Random sampling of known sequence families assigning equal 

likelihood to each fold gives rise to a non-uniform fold distribution which, when further 

modified to account for the extreme bias of the superfolds and the fact that many folds 

are only rarely seen in nature, gives an estimate of 4000 folds (Govindarajan et al., 

1999).

Coulson and Moult (2002) assume three types of folds -  superfolds which are 

adopted by very many protein families and are highly recurrent in the genomes, 

mesofolds which have an intermediate number of protein families associated with them 

and unifolds adopted by a single narrow sequence family. They simulated the 

expansion of new folds classified in the SCOP structure database over the last two 

years, as a fraction of new sequence families added. Assuming a maximum of 50,000 

protein families in nature, this approach predicts up to 400 mesofolds and some 10,000 

unifolds in addition to 9 superfolds. Perhaps more importantly, the majority of 

sequence families belong to superfold and mesofold groups and for 80% of these 

families we probably know the fold already.

Several groups attempt to model the uneven fold/family distribution using power 

laws. Power laws appear to be ubiquitous in nature and society and seem to explain 

many of the biological trends recently revealed by genome data e.g. protein family 

distributions, domain associations, protein-protein interactions (Koonin et al., 2002; 

Qian et a l, 2001; Luscombe et al., 2002).

Karev et al. (2003) model protein family distributions by simulating the birth 

(gene duplication), death (gene loss) and innovation (new protein) of different domains 

in individual genomes (Karev et al., 2002). Although this entirely stochastic model 

fails to account completely for the observed distribution, it shows that a close fit is 

possible using a model with only three independent parameters. Implicit in the model is 

the notion that the ‘fit’ get ‘fitter’ and domains randomly duplicated early in evolution 

increasingly dominate the population. None of these models incorporate selection 

pressures that might operate to favour the retention of duplicated domains performing 

important biochemical activities. However, many highly recurrent domains appear to 

have important biochemical functions; for example in providing energy or redox 

equivalents for enzyme reactions or in responding to cellular signals and binding to 

DNA (Pawlowski et al., 2001).
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These models still ignore possible bias in the structure and sequence databases. 

However, it is likely that proteins sampled for structure determination have been 

relatively easy to purify and crystallise - witnessed by the small numbers of 

transmembrane structures known. Perhaps more worrying are recent analyses 

suggesting that we have barely sampled sequence and family space as each new genome 

adds more families and there is no sign of saturation in this expansion (Kunin et a l , 

2003). Even with the huge advances in genome sequencing, there are still at least ten 

million more organisms uncharacterised (Koonin et al., 2002).

4.1.1 How many Domain Fam ilies are Currently Recognised and how  

many N ovel Folds can we predict using this data?

One of the first steps in calculating how many new folds remain to be 

discovered is the determination of the number of sequence families in nature. Once we 

have a reasonable prediction for this number we can estimate the number of new folds 

based on the proportion of structurally characterised families that have unique folds. 

Perhaps the hardest problem in clustering sequences into protein families is handling the 

similarities between multi-domain proteins and the fact that many different multi­

domain proteins share common domains but in different contexts. This recurrence of 

domains suggests their importance as primary evolutionary units and although some 

researchers hypothesise that smaller super-secondary structural motifs may be the 

building blocks of evolution (Soding and Lupas, 2003), the majority of globular 

compact folds characterised to date comprise whole domains.

However, domain boundary recognition is a non-trivial algorithmic challenge 

particularly if no structural data are available. Even methods based on structures 

disagree in their assignments 20-40% of the time (Jones et al., 1998). The problem is 

compounded by discontinuities in some domain sequences whereby the insertion of a 

second domain disrupts an existing domain region within a multidomain protein. 

Structural data in CATH suggests these discontinuities exist in about 23% of domains 

occurring in multi-domain proteins (Pearl et al., 2002). In Gene3D, there are 341,726 

domain assignments made to multi-domain proteins, of which 31,090 or 10.0% are 

discontinuous domain assignments.
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Some of the most successful approaches to boundary prediction combine 

multiple sequence data and residue propensities using neural networks (Liu and Rost, 

2003; Yona and Levitt, 2000). Other methods exploit the recurrence of domains in 

different contexts to identify boundaries from multiple alignments (Servant et al., 2002; 

Park and Teichmann, 1998; Heger and Holm, 2003). The elegant approach of Holm 

and co-workers (ADDA) exploits graph theory to build networks of domain links in 

multidomain proteins from which multiple alignments can be extracted and recursively 

analysed and chopped to yield their single domain components.

Estimates of the numbers of domain families identified vary substantially 

depending on the sequence datasets clustered and thresholds employed. The ADDA 

algorithm of Holm and co-workers which firsts chops sequences into domains and then 

clusters, identifies some 34,000 domain families in a combined sequence dataset of 

SWISSPROT, TrEMBL, PIR, PDB, WORMPEP and ENSEMBL which after removing 

redundancy at 40% sequence identity, contained almost 250,000 protein sequences. 

Almost 170,000 sequences remain as singleton sequences that are not clustered into any 

family.

Similarly, a recent analysis by Liu and Rost (2002), chopping and clustering 

sequences from 5 eukaryotic genomes suggested 22,000 domain-like clusters in 

eukaryotes. Again these represent low estimates as only a tiny percentage of species 

have been completely sequenced. Additional analysis by Liu and Rost (2002), 

chopping and clustering sequences from 62 complete genomes identified 118,108 

singleton and 63,300 non-singleton domain-like clusters.

Although, similarity in the structures adopted by different families may reflect 

folding preferences and Convergence to energetically stable folds it is possible that 

many of the families adopting the superfolds are in fact very distantly related, beyond 

the sensitivity of current algorithms to detect homology. Families adopting TIM barrel 

folds are a case in point with recent analysis suggesting that many families may have 

evolutionary links supported by unusual sequence signatures and functional properties 

(Copley and Bork, 2000; Nagano et al., 2002).

Recent calculations of the number of folds using new estimates of sequence 

families, suggest about 400-6000 well populated folds in nature (Grant et a l , 2004; see
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also section 4.3.3 below). The PSI proposes to solve 3000 structures within the next 

five years (Chandonia and Brenner, 2005). Thus, provided families are targeted 

carefully, we may know a significant proportion of all highly populated folds in nature 

by the end of the initiative. However, due to the very high attrition rates, target 

selection is important for increasing the efficiency of future structural genomics 

initiatives. In the first phase of the PSI, which ran from September 2000 until June 

2005, only 2-10% of the proteins selected by PSI structural genomics centres resulted in 

a solved structure. For example the Midwest Center for Structural Genomics Center 

targets around 5000 proteins a year from which only 100-200 are solved 

(www.mcsg.anl.gov/). The loss of targets at each stage in the process of structural 

determination is shown in figure 4.0 below.
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Figure 4.0 The Number of Targets at each stage of the Structural Genomics 

Pipeline. From over 30,000 elected targets, 314 structures were deposited in the PDB 

in 2003. Adapted from Bourne et al., 2003.

We now know the fold for many of the largest domain families, particularly 

those which dominate the genome annotations, for example 813 CATH folds can be 

assigned to 45.4% of protein sequences in the genomes, and an additional 4,440 Pfam 

families can be assigned to approximately 23.5% of protein sequences (see figure 3.3.6 

and table 3.4). Once a fold has been identified for one member of these domain
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families, it can be confidently predicted that all other domain family members will 

adopt a similar fold. However, it may not be possible to model every member of the 

domain family to give accurate models, since many relatives are likely to have a 

prohibitively low sequence identity to the relative with solved structure. Vitkup et al. 

(2001) suggest that 30-35% sequence identity is sufficient to achieve accurate 

comparative modelling, and recent analysis of CATH supports this view (Reeves et al., 

in preparation). Therefore in addition to targeting structurally uncharacterised 

sequences that have been predicted to have a novel fold, it is clear that in some families 

multiple targets must be solved to increase the number of accurate models available for 

the family.
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4.2 Objectives

This chapter describes using Gene3D for selection and prioritisation of targets 

for structural genomics initiatives. The largest structurally uncharacterised domain 

families occurring in the genomes are identified as primary targets, solving at least one 

structure for these families will increase the proportion of genome sequences with a 

known fold. This has been referred to as 'coarse grained* structural coverage of 

genome sequences. Additional targets are then identified in large families which are 

already structurally characterised but are under-represented in the PDB. Solving these 

structures increases the number of sequences in these families for which accurate 

homology models can be built, so called 'fine grained’ structural coverage of genome 

sequences. A protocol for prioritising these structural genomics targets will be shown, 

that allows rational target selection.
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4.3 Results

4.3.1 Calculating the Number o f Dom ain Fam ilies in Gene3D

The following section details the identification of sequence families in Gene3D 

data, including CATH domain sequence families of known structure, Pfam domain 

sequence families, and Newfam domain sequence families. Newfams are novel domain 

families identified in Gene3D (described previously, see section 2.4.2.8). Analysis of 

the distribution of these sequence families can suggest the total number of fold groups 

present in the 120 genomes in Gene3D and can be used to identify families suitable for 

coarse grained target selection i.e. to increase the number of known folds and structural 

families.

Sequence families for CATH domains (CATH-fams), non-overlapping Pfam 

domains (Pfam-fams) and novel domains containing neither CATH nor Pfam 

assignments (Newfams) were characterised from s35 protein family subclusters in 

Gene3D (see section 2.3.3).

50% of Gene3D domain assignments to genomes can be assigned to 93,571 

CATH-fams representing 1277 CATH homologous superfamilies from 813 folds. A 

further 33% of domain assignments can be assigned to 61,722 Pfam-fams representing 

1832 Pfam domain families (Pfam release 9). The remaining 17% of domain 

assignments are assigned to 52,973 Newfams. The number of sequence families of each 

family type (CATH-fam, Pfam-fam, Newfam) is shown in table 4.0 below. As can be 

seen from table 4.0, there are a total of 208,266 sequence families in Gene3D.

Table 4.0 Domain Family Characterisation in Gene3D. This table excludes 148,578 

singleton sequence families not considered in this analysis.

Family Type

Percentage of 

Total 

Domains

Number of 

s35 Sequence 

Families

Number of 

Superfamilies

Number of 

Folds

CATH-fam 50 93,571 1277 813

Pfam-fam 33 61,722 1832 -

Newfam 17 52,973 - -
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The uneven fold/family distribution, revealed by several previous analyses 

(Zhang and DeLisi, 1998; Govindarajan and Goldstein, 1996) can be clearly seen in 

figure 4.1 below, which shows that a small percentage of fold groups in the CATH 

domain structure database - 54 ‘superfolds’, (defined as CATH folds with three or more 

homologous superfamilies), representing only 6.6% of the number of fold groups in 

CATH, are very highly populated, accounting for 76% of s35 sequence families, whilst 

there are many folds adopted by a single family.
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Figure 4.1 Percentage of CATH Folds Accounting for Percentage of CATH s35 

Sequence Families in Gene3D. The percentage of CATH folds against the cumulative 

percentage of CATH sequence families shows marked sequence family size distribution 

bias where a small number of folds account for a large proportion of sequence families.

Although, similarity in the folds adopted by different families may reflect 

folding preferences and convergence to energetically stable folds it is possible that 

many of the families adopting the superfolds are in fact very distantly related, beyond 

the sensitivity of current algorithms to detect homology. Families adopting TIM barrel 

folds are a case in point with recent analysis suggesting that many families may have 

evolutionary links supported by unusual sequence signatures and functional properties 

(Copley and Bork, 2000; Nagano et al., 2002).
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4.3.2 Should Structural Genomics be Targeting Singletons?

Are the singleton sequence families (almost 150,000 in Gene3D) distant 

relatives of existing families unrecognised by current algorithms or are they genuinely 

unique sequences having novel folds, and therefore good targets for structural 

genomics? Kunin and co-workers (2003) showed that as newly sequenced genomes are 

completed, there is a constant gain in the number of singleton families. This may 

change as the databases expand and recognition methods improve. Original estimates 

of the proportion of singletons in bacterial genomes lay at about 50% (Zhang and 

DeLisi, 1998) but this number has steadily fallen with average values of 30% for the 

first release of Gene3D (Buchan et al., 2002) and 18% for the current release of 

Gene3D. However, some proportion of these proteins may represent genuinely new 

families and folds.

The length distribution of singletons is lower than the average structural domain 

(Rost and Liu, 2003; Marsden et al., 2006 in press) and many of the very small 

sequences containing disordered regions may correspond to unstructured proteins 

existing only as complexes and/or peptides involved in regulation and binding to DNA. 

As such, these proteins may not fold independently and will therefore lie outside the 

range of targets amenable to structural genomics.

4.3.3 How many folds remain to be discovered bv Structural Genomics?

Using the numbers of s35 sequence families identified by Gene3D we can make 

an approximation of the total numbers of folds in completed genomes by assuming the 

following: (1) We have sampled all the superfolds -  defined as folds with 3 or more 

homologous superfamilies in CATH (i.e. 71,080 CATH-fams from the 54 highly 

populated CATH folds); (2) We have been able to map these folds onto all their 

relatives in the genome sequences and so we can remove these folds from the estimates 

of the remaining numbers of folds; (3) Singletons can also be removed from the 

estimate as they are probably very distant relatives belonging to these or other folds, 

that have diverged beyond the sensitivity of current recognition methods or because 

they are short sequences unlikely to fold independently but associated with functional 

complexes. Although singletons could be novel folds and as such could skew any
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estimate of total number of protein folds, they do not represent a significant proportion 

of domains; and finally (4) We assume that non-superfolds and non-singletons have 

been sampled randomly by families in nature and that there are no biases in the current 

sequence and structure databases.

Removing the 54 superfolds from the Gene3D dataset leaves (93,571 -  71,080) 

22,491 CATH-fams of known structure which adopt (813-54) 759 folds in CATH. 

Therefore, we can expect the 114,695 remaining s35 sequence families in Gene3D of 

unknown structure (61,722 Pfam-fams + 52,973 Newfams) to adopt

((114,695/22,491)*759) 3871 new folds. We must also take into account the fact that 

about 25% of the sequences of newly sequenced genomes can not be assigned to any 

protein family in Gene3D (Marsden et al., 2006 in press), increasing the number of 

novel folds by 4/3 to 5161. Adding together the superfolds, known folds, and estimated 

number of new folds (54 superfolds + 759 known folds + 5161 estimated folds) we get 

an estimate of the number of folds in the 120 genomes in Gene3D of 5974. Although 

all fold estimates are unsatisfying in that they necessitate simplified models of fold 

usage and optimism regarding lack of bias in the databases and our sparse sampling of 

species space, the values predicted by current data suggest that provided families are 

targeted rationally in the next phase of the PSI, we may know a large proportion of the 

major fold groups by the end of the initiative.

4.3.4 Structural Genomics Target Selection Using Gene3D

4.3.4.1 Coarse Grained Target Selection to Identify Novel Folds

There are 4,365 Pfam domain families (Pfam release 10) identified in Gene3D 

that are non-overlapping with CATH domain assignments, including singleton Pfams. 

Pfam families would make good targets for structural genomics initiatives since Pfam is 

a well validated and curated resource and these families represent some of the largest, 

structurally uncharacterised families in the genomes. Figure 3.5 (see section 3.3.2.1) 

iUustrates the fact that Pfam families are much larger than Newfam families. In 

addition, they have been manually validated to improve domain boundary identification, 

an important consideration for structure determination. Of these targets, 1,876 Pfam 

families contain more than 20 members identified in the genomes, representing 89.3%
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of total Pfam domain sequences; and 447 Pfam families contain more than 100 

members identified in the genomes, representing 56.3% of total Pfam domain 

sequences.

Since protein structure initiatives propose to solve 3000 structures over the next 

five years, these Pfam families would be good targets for structural genomics initiatives 

that aim to identify novel folds, since these larger Pfam families would have a 

significant impact on genome coverage for each solved structure (shown in figure 4.2 

below). Alternatively, these Pfam family targets could be prioritised according to 

Kingdom distribution, or individual genome occurrence, using Gene3D information, 

according to any specific aims of individual structural genomics efforts. For example, 

the Midwest Center for Structure Genomics consortium (MCSG) is particularly 

interested in targeting pathogens.

This approach is similar to the Pfam5000 strategy reported by Chandonia and 

Brenner (2005), in which the authors propose targeting the 5000 largest Pfam families. 

As the authors note, solving a single structure for each Pfam family could significantly 

increase coarse grained structural coverage of sequence space. However, if 

representative structures for the largest 1,876 Pfam families are solved this would then 

give structural assignments for, on average 66.4.0% of genome sequences (45.4% 

previously characterised by CATH domain assignments, and an additional 21.0% 

characterised by the 1,876 newly determined Pfam families; see genome coverage 

section 3.3.6 and table 3.4). Although aiming to solve 5000 or more structures may be 

outside the scope of the PSI initiative, 1,876 new structures may be achievable, and if 

the largest uncharacterised Pfam families are targeted, this will cover nearly 90% of 

Pfam domain sequences (see figure 4.2 below) and ensure that a significant proportion 

of domain sequences have a known structure (see figure 4.3).

Of these 1,876 Pfam families identified above, 1,369 families have been selected 

for structural determination by the PSI over the next two years. These were chosen 

because they had low probabilities of containing transmembrane regions, or other 

features which might make these targets harder to solve. To improve the probability of 

obtaining a structure for a selected family, each consortium typically identifies 5-10 

relatives per family. Over the remaining three years of the PSI initiative, further 

sampling from these families may be needed and targeting of the next largest Pfam
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families will be undertaken. Once all the Pfam families have been targeted, large 

Newfam families will be sampled.
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Figure 4.2 Running Total of the Percentage of Pfam Domain Sequences in the 

largest Pfam families in the Genomes. Pfam families are ordered by number of 

relatives in the family. Note that the largest 1,876 Pfam families account for 89.3% of 

Pfam domain sequences in the genomes (red dotted lines).
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Figure 4.3 Running Total of the Percentage of Domain Sequences in CATH, Pfam 

and Newfam families in the Genomes. CATH domain families of known structure 

(red), Pfam domain families of unknown structure targeted by the PSI (blue) and 

remaining families (untargeted Pfam families and novel Newfam families, of which 

-20% are membrane associated; green), ordered by decreasing number of members 

plotted against the percentage of domain sequences in the genomes.

Although solving the structures of the largest structurally uncharacterised Pfam 

families will increase the proportion of genome sequences for which we know the fold, 

as discussed above many of the sequences in families of known structure will not be 

closely enough related to the solved structure to build accurate homology models from 

this structure. Therefore to increase the number of sequences for which an accurate 

homology model can be built, it is necessary to select additional targets from families of 

known structure. This has been described as fine grained sampling.
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4 3.4.2 Fine Grained Target Selection to Increase the Number of Homology Models 

for Genome Sequences

Below, a strategy is described for identifying multiple representatives from 

domain families of known structure, where the structure has already been solved and 

classified in CATH. Multiple sampling from CATH rather than the uncharacterised 

Pfam families was undertaken initially as these domain families tend to be much larger 

than the Pfam families (see section 3.3.2.1) and because these families are much more 

under-represented in the PDB (see figure 4.5). Furthermore, knowing the structure of 

one or more relatives already can help in structure determination of other relatives by 

isomorphous replacement. In the future a similar strategy can be applied for multiple 

sampling of uncharacterised Pfam and Newfam families.

Since sequence identities above 30-35% ensure that good homology models can 

be built (Vitkup et al., 2001), structural genomics initiatives aiming to provide accurate 

homology models for all members of a structural family require domain family 

subclusters to be identified. Clustering was performed as described previously in 

Chapter 2 (see section 2.3.3).

Sequence identities between domain sequences from each CATH homologous 

superfamily were calculated from an all against all BLAST (where at least 80% of the 

longer sequence is overlapped) and TCluster was then used to cluster each CATH 

domain family in Gene3D at 35 sequence identity (see section 2.3.3). CATH domain 

assignments made to genscan predicted protein sequences are included in this analysis 

as these genscan predictions are likely to represent translated reading frames.

Clustering of CATH domain family sequences in the 120 genomes of Gene3D 

produced more than 93,000 s35 subclusters. However, since this represents a very large 

number of targets and may be outside the scope of what is possible in current structural 

genomics initiatives, further analysis using Gene3D has been used to prioritise these 

targets and is discussed below.
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4.3.5 Prioritising Sequence Diverse Domain Families

The most sequence diverse CATH domain families identified in the genomes, as 

measured by the number of distinct s35 subclusters, are shown in table 4.1 below. 

These comprise a total of 20,763 s35 subclusters representing 20.4% of the genome 

sequences. Many of these families are already observed to be structurally very diverse 

(Reeves et al., in preparation), and solving additional structures in these families will 

give further insights into the manner by which structures and functions have evolved in 

diverse relatives.

Table 4.1 Most Diverse CATH Domain Families in Gene3D. The CATH domain 

family name o f the top ten most diverse CATH domain families is shown, with the total

number o f family members and the number ofs35 subclusters identified in Gene3D.

Domain Family
Number of family 

members in Gene3D

Number of s35 subclusters 

in Gene3D

P-loop containing nucleotide 

triphosphate hydrolases
31,908 4881

Immunoglobulins 19,290 2571

DNA binding domain, 

transcription factor
4456 2385

NAD(P)-binding Rossmann- 

like Domain
10697 2069

"winged helix" repressor 

DNA binding domain
8270 1710

Hydrolase activity, aromatic 

compound metabolism
4738 1633

Periplasmic binding protein­

like H
5637 1439

S-adenosylmethionine- 

dependent methyltransferase 

activity

5674 1432

YVTN repeat- 

like/Quinoprotein amine 

dehydrogenase

5162 1369

Ribonuclease Inhibitor 4566 1274
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Since known structures in CATH only represent a small proportion of CATH 

domain sequences in Gene3D, and since these may not have been sampled to reflect the 

true sequence diversity of these families in nature, the difference between the sequence 

diversity of these families in CATH was compared to the predicted diversity of families 

in the genomes. The relative diversity was calculated by dividing the percentage of 

total s35 subclusters in the genomes by the percentage of total s35 subclusters in CATH 

for each domain family. To enable this comparison, the CATH classification of domain 

families with known structure was clustered to identify s35 subclusters using the same 

protocol described previously for identification of s35 subclusters in Gene3D (see 

section 2.3.3). 193 domain families in CATH are from Kingdoms (i.e. viruses) or

genomes not represented in Gene3D and are therefore excluded from this analysis. The 

relative diversity of domain families is shown in figure 4.5 below. There are 21-fold 

more s35 subclusters in total in the genomes than in CATH.

Figure 4.4 below shows the most diverse domain families in the genomes are 

comparatively more diverse than indicated by their CATH classification. Clearly it 

would be beneficial to have more structural representatives for these highly expanded 

domain families.

100

2
30)

f  50 

*5 40

g  30
re
3
E
3o

1200 1400200 400 600 800 10000
Domain Families (ordered by num ber of s35 subclusters)

Figure 4.4 Size/Diversity of CATH and Gene3D Domain Families. Domain families 

ranked by number of s35 subclusters (diversity) against percentage of total s35 

subclusters (total diversity) for CATH (pink) and Gene3D (blue).
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As can be seen in figure 4.5 below, some domain families are much more 

sequence diverse in the genomes than in the CATH classification. 132 domain families 

with a relative diversity greater than 2 were considered significantly structurally under­

represented, representing 37,214 s35 subcluster targets. Taking into account the current 

attrition rates of 2-10%, multiple targeting of these families could provide structures for 

a further 700-3000 relatives from these families.
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Figure 4.5 Relative Diversity of CATH Domain Families. Relative diversity (% of 

total s35 subclusters in Gene3D /  % total s35 subclusters in CATH, for each domain 

family) between CATH domain families of known structure classified in CATH and 

predicted in the genomes. Domain families are ranked by CATH Class (1-4) and 

descending relative diversity.

The sequence and structural diversity of CATH domain families has been shown 

to correlate with their functional diversity (Ranea et al., submitted; Reeves et al., in 

preparation). Targeting family relatives from expanded domain families identified in 

Gene3D may therefore aid in understanding how function evolves in these structurally 

diverse domain families. The top most under-represented domain families (in terms of 

predicted structural diversity) are shown in table 4.2 below. There are 5,966 s35
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subclusters altogether in these families with no structural representative, that could be 

targeted for structure determination.

Table 4.2 Most Structurally Under-represented CATH Domain Families. The

relative diversity (% o f total s35 subclusters identified in Gene3D divided by the % o f 

total s35 subclusters identified in CATH) is shown for the ten most under-represented

domain families.

Domain Family
No.

Subcl

CATH

)fs35

lusters

Gene3D

% o f l

Subc

CATH

'otals35

lusters

Gene3D

Relative

Diversity

Cadherins, calcium 

dependent cell adhesion
2 601 0.05 0.62 13.5

Galactose oxidase, radical 

copper oxidase family
1 268 0.02 0.28 12.0

Tachycitin domain 1 247 0.02 0.25 11.1

Two-component signal 

transduction protein
1 242 0.02 0.25 10.9

DNA binding, transcription 

regulation
10 2385 0.23 2.46 10.7

"winged helix" repressor 

DNA binding domain
1 193 0.02 0.20 8.7

Two-component signal 

transduction protein
1 186 0.02 0.19 8.3

Two-component signal 

transduction protein
5 906 0.11 0.93 8.1

AMP binding domain, 

peptide synthase proteins
4 642 0.09 0.66 7.2

Complement Protease Cls, 

immune response
2 296 0.05 0.31 6.6

Some of these domain families are found in proteins performing important 

biological functions. Three of the domain families are involved in the two-component 

signal transduction pathway, an extremely functionally diverse protein family
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(described previously, see section 3.3.1.2.2). Of particular interest is the galactose 

oxidase domain family, from a copper oxidase family of enzymes. These enzymes have 

a distinct active site, containing a novel Tyr-Cys modified amino acid dimer, formed 

spontaneously during the maturation of the protein. Interestingly, the metal ion ligands 

in the active site of these proteins have been shown to perform essential proton transfers 

and redox functions. This family of oxidases has a wide phylogenetic distribution, and 

may play a fundamental role in the biology of oxygen (Whittaker, 2002). The diversity 

across the family may reflect different interaction partners and solving the structures of 

multiple relatives from this family may provide insights into these interactions.

Also of functional interest is the tachycitin domain, a chitin-binding domain 

found in a variety of proteins. Tachycitin has been shown to have antimicrobial 

properties in many organisms, and in mammals in particular is thought to participate in 

immune defence response against nematodes and other pathogens (Tjoelker et al.,

2000). Finally, the complement protease C ls, the first protein of the classical 

component cascade system consisting of about 30 serum proteins, has a well 

documented biological function. Solving the structure of additional representatives may 

allow a greater understanding of the structural mechanisms underlying the activation, 

mechanism of action and substrates of relatives in this important protease family.

4.3.6 Prioritising Functionally Diverse o f Domain Fam ilies

Another approach is to preferentially target functionally diverse and highly 

expanded families in the genomes, whose functional diversity is currently under­

represented by known structures in CATH. To compare the functional diversity of 

domain families of known structure in CATH and Gene3D, the functional diversity of 

each domain family was characterised by four criteria: (i) Annotation -  this indicates 

whether there is one or more functional annotations for the family; (ii) Coverage -  the 

percentage of members within a domain family with a functional annotation; (iii) Scope 

-  the number of different functional annotations in the domain family; and (iv) 

Agreement -  this indicates whether at least 80% of annotated family members have the 

same functional annotation. Average values for (ii) and (iii) are calculated for all 

families in Gene3D and CATH. In addition, the percentage of families classified as (i)
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Annotated and (iv) in Agreement in Gene3D and CATH was also calculated. Figure 4.6 

below illustrates these criteria.

G 0 1 .G 0 2  
G 0 1 .G 0 2 . G 03  
G 02. G 03  
G 0 1 .G 0 2 . G 03  
GQ1.GQ3

ANNOTATION
COVERAGE
SCOPE
AGREEMENT

= YES 
= 100% 
= 4 
= NO

G04
G 03. G 04  
G 03. G 04  
G 03
G 03. G 04

ANNOTATION
COVERAGE
SCOPE
AGREEMENT

= YES 
= 100% 
= 3 
= NO

G01
G01

G01
G01

ANNOTATION
COVERAGE
SCOPE
AGREEMENT

= YES 
= 80%

= YES

Family Members Annotation Functional Criteria

Annotation 
(YE9+YES+YES)/3 
= 100% YES

TOTAL

S cope 
<4+3*1)13 
= 2.7

A greem ent 
(NO+NO+YES)/3 
= 334%  YES

Figure 4.6 Functional Characterisation of Domain Families. Characterisation of 

functional annotation in three domain families is illustrated. Note that scope is defined 

by the number of distinct, ordered, concatenated GO functional terms per family (i.e. in 

Family B “G03, G 04 '\ “G 0 3 ” and “G 0 4 ” gives a scope of 3).

The functional characteristics of Gene3D domain families and CATH domain 

families are shown in table 4.3. Functional characteristics for the CATH classification 

were taken from the Dictionary of Homologous Superfamilies (DHS version 2.5.1, 

released January 2005, downloaded July 2005), which functionally annotates CATH 

(described earlier, see section 2.1.5.4). It can be seen that because Gene3D domain 

families have many additional sequence relatives from the genomes, there is a much 

clearer picture of the functional diversity than currently observed in CATH, with 

increased Annotation, Coverage and Scope.
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Table 43  Scope of Functional Annotation In Gene3D Families. Functional 

annotations in Gene3D and CATH domain families, assessed by Annotation, Coverage, 

Scope and Agreement.

Family Resource
Annotation

(%)

Coverage

(%)
Scope

Agreement

(%)

Gene3D

Domain

Family

GO 97.8 45.5 191.9 1.5

KEGG 68.3 63.5 73.6 0

COG 69.7 1.2 82.2 0.2

CATH

Domain

Family

GO 70.9 15.1 20.8 2.6

KEGG 62.8 7.3 6.7 2.1

COG 66.0 7.4 6.9 1.9

The functional diversity of domain families in CATH and the genomes was 

compared by reference to GO functional annotations, since these have the highest 

coverage of the three resources (GO, KEGG, and COG). Functionally under­

represented families were identified by the relative scope of the family between Gene3D 

and CATH. Relative scope was calculated by dividing the scope in Gene3D by the 

scope in CATH for each domain family. 380 domain families with a relative scope 

greater than 2 were considered functionally under-represented, representing 27,191 s35 

subclusters.

Not all structurally under-represented domain families are also functionally 

under-represented. Of the 132 structurally under-represented domain families identified 

previously, 60 of these domain families are also functionally under-represented and thus 

can be selectively targeted as likely to be more informative for investigating the 

structural mechanisms for the evolution of function within a domain family.

The relationship between the sequence diversity and functional diversity of 

domain families in the genomes is shown in figure 4.7 below, revealing a general trend 

where sequence diverse domain families are also functionally diverse, supporting the 

observations of Reeves et al. and Ranea et al. (Reeves et al., in preparation; Ranea et 

al., submitted).
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Figure 4.7 Log-iog plot showing Functional Diversity versus Sequence Diversity of 

CATH Domain Families in Gene3D. Functionally diverse families (greater than 2000 

scope) and sequence diverse families (greater than 1% of total s35 subclusters) are 

indicated by red dotted lines.

Ten domain families dominate the sequence diverse and functionally diverse 

CATH domain families in the genomes. Each of these families represents 1% or more 

of total s35 subclusters and has a functional scope of 2000 or more, shown in table 4.4 

below. Collectively these ten domain families represent 20.1% of total s35 subclusters, 

and comprise 19,000 potential targets for structural genomics. Solving the additional 

structures from these families would enable greater understanding of the relationship 

between the structural variation and the evolution of functional diversity in these 

domain families. However, some of these families already dominate the PDB (for 

example the P-loop containing nucleotide triphosphate hydrolases). For these families 

we may want to use additional information in Gene3D to target those s35 subclusters 

which have particular GO functions for which we currently have no structural 

representative, or which have novel domain contexts for which we have no structural 

representative. Targeting novel domain contexts has been suggested previously by 

Vogel et a l, (Vogel et a l, 2004), target selection of novel domain contexts using 

Gene3D is currently ongoing.
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Table 4.4 Ten Structurally and Functionally Diverse CATH Domain Families
Dominate Gene3D.

Domain Family
% of total s35 

Subclusters
Scope # Targets

P-loop containing nucleotide 
triphosphate hydrolases,

5.2 20,464 4,881

NAD(P)-binding Rossmann-like 
domain

2.2 7,134 2,069

"winged helix" DNA binding domain, 
transcription factor

1.8 5,780 1,710

S -adenosy lmethionine-dependent 
methyltransferase activity

1.5 3,987 1,432

Homeodomain-like transcription 
regulation

1.2 3,859 1,127

Periplasmic binding protein-like n, 
transporter activity

1.5 3,409 1,439

Hydrolase activity, aromatic 
compound metabolism

1.7 3,136 1,633

Electron transport, Oxidoreductase 
activity, metabolism

1.2 2,494 1,088

Electron transport, Thioredoxin-like 1.1 2,448 1,050

Immunoglobulins 2.7 2,388 2,571

TOTAL 20.1 - 19,000
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4.4 Summary

Analysis using Gene3D can identify suitable targets for structural genomics 

initiatives. Of the 4,365 Pfam families identified in the genomes, that are structurally 

uncharacterised, selection of the largest 1,876 of these families permits a greater 

proportion of genome sequences to be structurally annotated. All these families contain 

more than 20 relatives, 447 contain more than 100 relatives, allowing multiple targets to 

be selected from these families to increase the probability that a substantial proportion 

of structures will be solved, given the high attrition rates.

The identification of 93,571 target subclusters from structurally characterised 

families in CATH would be required to accurately homology model all the relatives of 

domain families in the genomes from known fold groups. This is a prohibitively large 

number and underscores the need for rational prioritisation of structural genomics 

targets. Analysis using Gene3D has identified the most sequence diverse domain 

families, representing 20,763 target subclusters. Comparison of the distribution of 

sequence diversity between known structures classified in CATH and those predicted in 

the genomes has shown that many domain families are more sequence diverse than 

suggested by their current classification, with a 21-fold increase in the number of target 

clusters identified in Gene3D. 132 domain families have been identified that are 

significantly structurally under-represented, some of the most under-represented of 

these families perform diverse and biologically important functions, and greater insight 

into the structural mechanisms behind these functions may be gained from targeting the 

5,966 homology modelling targets identified in these domain families. Analysis of the 

structural and functional diversity of domain families shows that ten domain families 

dominate the genomes - these families comprise 19,000 target subclusters.

In summary, Gene3D data allows sampling of all apparently diverse families to 

select targets for functions and domain contexts that have not yet been structurally 

characterised. By considering Kingdom distribution, the number of domain family 

relatives represented in each target subcluster, and the domain context of the domains 

represented in each target subcluster, further prioritisation of these targets can be 

accomplished.
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CHAPTER FIVE

Phylogenetic Occurrence Profiles to Analyse the Function and 

Evolution of Domain Families

5.1 Introduction

Phylogenetic profiles have been exploited to detect functionally related proteins, 

and proteins that interact (see section 1.2.3.4 for a description and review of methods). 

Traditional phylogenetic profiles are based upon a presence/absence profile, whereby 

the presence of an orthologue in a genome is designated 1, and the absence 0. The 

resulting binary string represents the presence/absence profile of a protein across several 

genomes. These profiles can be compared and clustered into groups of profiles that are 

statistically significantly similar and may indicate that the proteins interact or are 

functionally related.

Bacterial genomes provide a good dataset for analysing protein domain and 

family evolution. The size of bacterial genomes has long been hypothesised to be under 

natural selection. The gene repertoire of bacterial genomes results from a balance 

between opposing mechanisms of gene increase, via horizontal transfer and gene 

duplication, and gene loss, via gene inactivation and deletion. The evolutionary 

mechanisms that maintain a small bacterial genome size, in order to maintain a 

competitive rapid rate of replication have been analysed by several researchers. Mira et 

al. (2001) describe a ‘deletional bias’ in bacterial genomes that acts to eliminate non­

functional genes with decreased functional selection. The loss of genes that are no 

longer functionally selected for acts to maintain small bacterial genomes that lack non­

functional sequences. Evolution by reduction, whereby the smallest genomes are 

derived from bacteria with larger genomes (Dobrindt and Hacker, 2001; Moran, 2002) 

has been described in many obligate intracellular bacterial pathogens. Massive gene 

loss significantly reducing genome size to an optimal genome size is an adaptive 

response to intracellular environmental selection pressures.
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The gene repertoire of these genomes is far from static. As noted by Ochman et 

al. (2000) bacteria obtain a significant proportion of their genetic diversity through the 

acquisition of sequences from distantly related organisms. Horizontal transfer 

introduces substantial amounts of genetic material into bacterial genomes, combined 

with a high level of deletion of genetic material, bacterial gene repertoires are dynamic, 

maintaining a small efficient genome that can adapt to and exploit changing selective 

pressures. Bacterial genome size is not simply related to phenotype or lineage. Bacteria 

with a wide range of different phenotypes and lifestyles can have similar genome size; 

conversely, bacteria from narrow phylogenetic groups can have considerable diversity 

in genome size (Ochman et al., 2000).

Gene duplication (Koonin et al., 2002) and lineage-specific gene loss (Dobrindt 

and Hacker, 2001; Moran, 2002) are the primary mechanisms determining bacterial 

genome size. The influence of horizontal transfer in determining bacterial genome size 

is less apparent (Chothia et al., 2003; Kurland et al., 2003). Jordan et al. (2001), 

describe a positive correlation between the fraction of genes within lineage specific 

expansions (gene duplications occurring within specific prokaryotic lineages) and the 

total number of genes in a genome.
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5.2 Objectives

The first section of this chapter describes using Gene3D to analyse bacterial 

evolution. In particular the identification of universal domains and the analysis of their 

genome frequency with regard to genome size. The following sections describe 

identification of genome size-dependent and universal domain families in bacteria using 

phylogenetic profiles, and the relationship between these domain families and bacterial 

genome size. Later sections of this chapter exploit domain family subclustering to 

generate more highly resolved phylogenetic profiles. A novel method of fine tuning 

these phylogenetic profiles to identify functionally related domain family subclusters is 

described, along with preliminary results describing some novel functional relationships 

identified using this method.
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5.3 Results

There is a large complement of completely sequenced bacterial genomes in 

Gene3D. In collaboration with Juan Ranea, the distribution and occurrence of CATH 

homologous superfamilies in 100 bacterial genomes was investigated to explore the 

genetic and functional determinants involved in bacterial size distribution. We decided 

to study the distribution of CATH homologous superfamilies in bacteria, as there was a 

large dataset of bacterial genomes available. These genomes are less complex than 

those of eukaryotes (for example more accurate gene identification and annotation), 

which consisted of only 16 completed genomes existed at the time of this study. In 

bacterial genomes the absence of introns and long intergenic non-coding regions make 

open reading frame identification more accurate. Bacterial genome size will therefore 

be more likely to reflect the size of the bacterial proteome. Evolutionary selection on 

bacterial genome size, to promote small, reproductively efficient genomes, allows 

genome complexity and size to be estimated from the number of ORFs (Mira et a/.,

2001), which is the measurement of genome size used in this chapter.

5.3.1 Analysis of the Genome Size Dependence of CATH Superfamilies

For each of the 940 CATH domains assigned to at least one gene in the bacterial 

genome dataset, an occurrence profile was derived (see figure 5.0). These occurrence 

profiles were used to explore the distribution of the CATH homologous superfamilies in 

the bacterial dataset.
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Domain Occurrence Profiles
Domain Bacteria Bacteria Bacteria Bacteria

Superfamily: 1: 2: 3: 4:

A 12 13 14 11

B 35 0 0 60

C 16 0 0 0

Figure 5.0 Domain Occurrence Profiles. The number of open reading frames 

containing domain family relatives in each bacterial genome is converted into an 

occurrence profile for each CATH homologous superfamily.

The occurrence of a CATH domain within each bacterial genome was calculated 

by counting the total number of different proteins in which the CATH domain had been 

assigned. Proteins that contained more than one CATH domain assignment of the same 

homologous superfamily were only counted once. This avoids redundancy and gives 

equal weight to domains occurring in different multi-domain contexts so more 

accurately reflecting a domains contribution to bacterial complexity. To explore the 

correlation between genome size and the number of domain relatives in a particular 

organism, correlation coefficients between genome size variation and CATH domain 

occurrence profiles were obtained by Spearman’s rank correlation method (Kendall and 

Gibbons, Rank Correlation Methods (5th edition), 1990). 116 CATH domains with a 

Spearman’s coefficient greater than or equal to 0.7 were considered significantly 

correlated with genome size and are termed size-dependent CATH homologous 

superfamilies (shown in figure 5.1). A Spearman’s coefficient of 0.7 corresponds to a 

statistical probability of less than 0.0005 that the correlation occurs in the dataset by 

chance. These 116 size-dependent CATH homologous superfamilies represent only 

12% of the total number of superfamilies occurring in the bacterial dataset, but account 

for 60% of domain assignments.
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Figure 5.1 Size-Dependent CATH Homologous Superfamilies. Spearman's Rank 

Correlation values for all CATH homologous superfamilies in the bacterial dataset. 

Correlation values greater then 0.7 indicate size-dependent superfamilies.

5.3.2 Identification of Universal CATH Homologous Superfamilies

Within the set of size-dependent CATH homologous superfamilies identified in 

the bacterial dataset, a sub-set of universal CATH homologous superfamilies was 

identified. Size-dependent CATH homologous superfamilies with a wide representation 

in bacterial genomes (identified in at least 70% of genomes in the bacterial dataset) 

were considered universal to bacteria. A cut-off of 70% was considered an acceptable 

threshold since the sensitivity of the HMM method used to identify the CATH domains 

in the genomes is 76% using a structural dataset (see section 2.4.2.2). As can be seen 

from figure 5.2 below, 73% (85/116) of size-dependent CATH homologous 

superfamilies are universal to bacterial genomes. These size-dependent universal 

CATH homologous superfamilies represent only 9% of the total number of CATH 

homologous superfamilies, but account for 56% of domain assignments. This indicates 

that a few, highly recurring superfamilies are primarily responsible for genome 

complexity in bacteria, and suggests there are ancestral, homologous genetic 

mechanisms that narrowly specify genome complexity. Only 28% of non-size- 

dependent CATH homologous superfamilies are found to be universal, suggesting that
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most superfamilies with low size correlation are likely to be associated with functions 

specific to a few organisms.
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Figure 5.2 Universal Size-Dependent Superfamilies. The universality value 

(percentage o f total genomes containing domain family members) for all size dependent 

superfamilies in the bacterial dataset. Universal superfamilies are present in at least 

70% of bacteria.

5.3.3 Distribution of Size-Dependent Universal CATH Superfamilies

The distribution of 85 CATH homologous superfamilies that are both size- 

dependent and universal was analysed by plotting domain occurrence against genome 

size for each CATH domain in order to determine the type of relationship between 

domain occurrence and genome size. Linear regression model validation was 

performed by standardised residual analysis plotted against their respective y fitted 

values calculated from the linear regression model (Anscombe 1973; Atkinson 1985). 

Linear regression assumption was validated independently for all the universal and size- 

dependent superfamilies distributions. Three different types of distributions were 

identified: linear, power-law and logarithmic which characterised a total of 66 

superfamilies. The type of distribution for the remaining 19 superfamilies was not 

clear. See appendix III for a complete list.
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Figure 5.3 below shows the residual pattern analysis of the linear regression 

validation for the three main types of behaviour observed; linear, power-low and 

logarithmic. For each type of behaviour, the pattern of the error distribution around the 

linear model gives an indication of the most appropriate model.
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Figure 53  Distribution of Size-Dependent Universal Superfamilies Plotting domain 

occurrences against genome size for each size-dependent universal superfamily reveals three 

types of distribution. Left hand plots show the best linear regression fitting for the three main 

types of domain superfamilies distributions: (a) linear, (c) power-law and (e) logarithmic. The 

equations for the regression lines and the R2 values are indicated. The plots on the right show 

the standardised residual (r) (y-axis) calculated for each of the three linear regression models 

plotted against y* fitted values (x-axis): (b) plot shows a residual distribution pattern 

confirming linearity, and (d) and (f) plots show curvatures characteristic of nonlinearity.
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5.3.4 Analysis of the Function of Size-Dependent Universal CATH

Superfamilies

Functional analysis was undertaken for all superfamilies from each distribution 

set (linear, power law, logarithmic) using annotations from the COG database, as well 

as additional annotations from Pfam, SWISSPROT, CATH, SCOP and the literature 

where required. Functional classifications of each superfamily can be seen in appendix

m.

The 38 linearly distributed, size-dependent universal superfamilies were found 

to be primarily involved with metabolism. 87% of domains and 82% of superfamilies 

in this category are involved in cellular metabolism. For example, the two most 

frequently occurring superfamilies in bacteria occur in this category: the nucleotide 

triphosphate hydrolase domain (CATH code 3.40.50.300) supplies reaction energy in 

both prokaryotes and eukaryotes; whilst the NADP-binding domain (CATH code 

3.40.50.720) performs reducing or oxidising chemistry for a wide range of different 

reactions (Apic et a l, 2001; Hegyi et al, 2002).

The 20 power law distributed, size-dependent universal superfamilies were 

found to be primarily involved in gene regulation mechanisms. 80% of domains and 

60% of superfamilies in this category perform gene regulatory roles in bacteria. Major 

transcription factors occur in this category: winged-helix (CATH code 1.10.10.10); 

homeodomain-like (CATH code 1.10.10.60); and 1-repressor DNA-binding domain 

(CATH code 1.10.160.10) (Babu and Teichmann, 2003). In addition to transcription 

factors, domains of the two-component signal transduction system (CheY response 

regulator domain (CATH code 3.40.50.2600), high-affinity periplasmic solute-binding 

protein (CATH code 3.40.190.10), and histidine kinase domain (CATH code 

3.30.565.10)) are found in this category (Goudreau and Stock, 1998). Since regulatory 

domains show a high degree of modularity and usually combine with enzymatic or 

small molecule binding domains responsible for regulatory specificity (Apic et a l , 

2001; Babu and Teichmann, 2003), it is perhaps not surprising that this category also 

contains some metabolic superfamilies.

The 8 logarithmically distributed, size dependent universal superfamilies do not 

show any common functional tendency. These superfamilies are involved in diverse
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functions such as metabolism, RNA binding and DNA repair, which makes it difficult 

to define a single functional term for this category. However, since these superfamilies 

represent only 10% of all size dependent universal domains and 9% of all size 

dependent universal superfamilies they represent only a small proportion of 

superfamilies and are not considered for further analysis.

5.3.5 Identifying the Bacterial Genome Size Determinants o f Size  

Dependent Universal Superfamilies

When considering the influence of size dependent universal superfamilies upon 

bacterial genome size, the balance between metabolic and regulatory functions and their 

respective costs can be considered. As hypothesised by Bird (1995), increasing 

complexity is limited by the increase in logistical problems of distinguishing signal 

from noise. In terms of bacterial complexity, the benefits of environmental exploitation 

and adaptation gained from an increase in genome size come with combinatorial 

increases in protein network complexity to fully integrate and apply the functions of 

additional genes. As each additional gene is added to a genome, the combination of 

possible gene interactions and protein interactions increases by an increasing amount. 

Thus the benefits derived from expansion of the metabolic repertoire are accompanied 

by an increase in the regulatory repertoire necessary to control interactions between 

these proteins and so distinguish signal from noise.

5.3.5.1 Economies of Scale

The relationship between a linear increase in one factor (i.e. metabolic 

repertoire) requiring a non-linear increase in another (i.e. regulatory repertoire), is 

analogous to the factory optimisation model exploited in economic analyses (Mankiw, 

Principles of Microeconomics (2nd edition), 1998). The factory optimisation model is 

used to describe microeconomics -  a single factory which produces a single product 

which is always in demand. In the factory optimisation model illustrated in figure 5.4, a 

linear increase in unit production produces a non-linear increase in production 

overheads. At low levels of unit production there is little restraint on production unit 

increases as the required increases in production overheads are low. However, at high
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levels of unit production there is a large restraint on production unit increases as the 

required increases in production overhead cost more than the benefit of increased unit 

production. A major factor influencing optimum size in productive systems is the effect 

where any linear increase in production complexity is usually associated with a larger 

increase in the associated logistic cost (Frizelle, The Management of Complexity in 

Manufacturing, 1998; Orr, 2000).
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Figure 5.4 Economies of Scale: Optimum Factory Size Factory production revenue 

(straight line) and factory production overhead costs (curve) values show maximum 

economic factory size (red arrow) where any further increase in production revenue 

results in a larger increase in production overhead costs, making an increase in factory 

size unprofitable; and optimal factory size (blue arrow) where production revenue is 

offset by an equivalent production overhead cost, maximising profit.

53.5.2 Predicting Optimal Bacterial Genome Size

This model can be applied to an analysis of bacterial genome size, shown in 

figure 5.5. An analogy between unit production and metabolic capacity can be made 

since an increase in metabolic capacity provides bacteria with new ways to exploit the 

environment and hence increase survivability. The regulatory processes required to
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integrate and control metabolic systems is analogous to the cost of production 

overheads, since an increase in the number of regulatory genes can be considered a cost 

because bacteria have to keep their genome size to a minimum in order to replicate most 

efficiently, which is important for their survival. The cellular cost of regulatory systems 

can be seen in bacteria with stable substrate sources (for example endosymbiotic 

bacteria) where the strategy of constant expression of metabolic enzymes and loss of 

regulatory genes is observed. In contrast, in free living bacteria, efficient exploitation 

and response to diverse environmental pressures provides a survivability advantage that 

offsets the cost of maintaining regulatory systems.

Fitting the distributions of metabolic (linearly distributed size-dependent 

universal superfamilies) and regulatory (power law distributed size-dependent universal 

superfamilies) superfamilies to regression lines shows two interesting effects of these 

superfamilies on bacterial genome size.
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Figure 5.5 Economies of Scale: Optimum Bacterial Genome Size. Plotting the 

distribution curves of metabolic size-dependent universal superfamilies and regulatory 

size-dependent universal superfamilies indicates maximum bacterial genome size (red 

arrow) and optimal bacterial genome size (blue arrow).
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The two functions cross at 10,500 open reading frames. This suggests that 

above a genome size of 10,500 ORFs the cost of additional regulation exceeds the 

benefit of increased metabolic complexity. The optimal bacterial genome size occurs 

when the incremental costs of metabolic increase and regulatory increase are equal, this 

level of metabolic complexity is of maximal efficiency, since it is achieved at minimal 

relative regulatory cost, i.e. where the regulatory superfamilies distribution gradient is 

equal to the metabolic superfamilies distribution gradient. This optimum bacterial 

genome size occurs at 4,805 open reading frames. Deviation away from this optimum 

incurs a cost of reduced reproductive efficiency. Above optimal genome size an 

increase in metabolic complexity demands a comparatively higher increase in regulatory 

complexity. For example, as can be seen from the gradient of the regulatory 

superfamilies distribution curve, the regulatory increment required to add one gene 

when the genome size is 8000 is almost triple that required when the genome size is 

2000.

The size distribution given by the metabolic and regulatory superfamily 

distribution curves is shown in figure 5.6 (blue bars). This shows the percentage benefit 

at particular genome sizes, obtained by subtracting the regulatory cost from the 

metabolic revenue (i.e. the shaded area in figure 5.5). Interestingly this distribution is 

similar to the size distribution of generalist species of bacteria (black line, de Bruijn et 

al., 1998), that can use multiple carbon and energy sources with few organic growth 

requirements in culture. The average number of genes in a generalist bacteria, 4,900 (de 

Bruijn et a l , 1998), is very close to the optimal bacterial genome size of 4,805 

calculated above.

The distribution of genome sizes in the 100 bacterial genomes in the dataset 

used in this analysis (yellow bars) is actually closer to the distribution of genome size of 

specialist bacteria (intracellular bacteria incapable of reproducing by themselves; dotted 

line, de Bruijn et al., 1998) than generalist bacteria (free living bacteria). The fact that 

the calculated optimal genome size derived from metabolic and regulatory superfamily 

distribution curves is in good agreement with the average genome size of generalist 

bacteria, indicates that the size dependent universal superfamilies represent universal 

molecular technology shared by all prokaryotes to perform their metabolic and 

regulatory processes, and that all bacteria have used similar molecular technology to 

optimise their reproductive efficiency. This efficiency has been achieved by maintaining
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a metabolic complexity and associated regulatory complexity that balance the capacity 

for environmental exploitation with reproductive efficiency.
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Figure 5.6 Distribution of Bacterial Genome Size. The size distribution curve for  

bacterial genomes predicted from metabolic/regulatory size-dependent universal 

superfamilies (figure 5.5 hashed area) shown by blue bars is similar in range and shape 

to the size distribution of generalist bacteria (black line). The size distribution of the 

100 bacteria in the dataset (white bars) is similar to the size distribution of specialist 

bacteria (dotted line).
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5.4 Using Gene3D Phylogenetic Occurrence Profiles for 

Predicting Protein Functional Relationships

A novel method of phylogenetic profiling using Gene3D domain family data 

was developed in collaboration with Juan Ranea. This approach was based on three 

considerations. Firstly, phylogenetic profiles consisting of a range of values, rather than 

presence/absence profiles are able to discern more subtle profile relationships (Date and 

Marcotte, 2003). Whilst presence/absence profiles are effective in bacterial genomes, 

which maintain low gene copy numbers, presence/absence profiles are less effective in 

eukaryotic genomes, since they do not account for the wide variation in gene copy 

number. Gene3D phylogenetic occurrence profiles were therefore developed to use 

occurrence profiles rather than presence/absence profiles in order to detect more subtle 

relationships in bacterial and eukaryotic genomes.

Secondly, the use of phylogenetic profiles based upon occurrences of conserved 

protein domains across complete genomes, rather than whole protein sequences, can 

detect functional relationships and protein interactions that are not detectable using 

phylogenetic profiles of whole proteins (Pagel et al., 2004). Gene3D phylogenetic 

profiles use the occurrence of CATH homologous superfamilies across complete 

genomes. At present, only CATH domain assignments are used to generate 

phylogenetic occurrence profiles, an obvious future expansion of this method would be 

to incorporate Pfam, Newfam and other domain assignments (via InterPro).

Thirdly, and perhaps most importantly, Gene3D phylogenetic occurrence 

profiles are derived not only from the occurrence of CATH homologous superfamilies 

across complete genomes, but since CATH homologous superfamily assignments have 

been clustered into domain family subclusters at several different levels of sequence 

identity (for example s30, s35, s40, s50, s60, s70, s80, s90, s95 and s i00 subclusters, 

described previously, see section 4.3.1.2), phylogenetic profiles are also constructed 

from each domain family subcluster level. This unique approach allows individual 

domain family subcluster profiles to be compared and clustered into statistically 

significant groups of profiles, thus identifying functional relationships and protein 

interactions between specific domain family subclusters. The building of Gene3D 

phylogenetic profiles is illustrated in figure 5.7 below.
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Figure 5.7 Building Gene3D Phylogenetic Profiles. An occurrence profile is derived 

from the number o f relatives identified in each genome from each CATH domain family 

and from each CATH domain family subcluster level within the domain family. Thus 

multiple profiles are generated from a single domain family that represent the 

occurrence o f domain family relatives and the occurrence of domain family subcluster 

relatives across complete genomes in Gene3D.

5.4.1 Pair Comparison of Profiles

Once phylogenetic profiles have been built for all CATH domain families and 

domain family subclusters in Gene3D, the similarity between each profile and all other 

profiles is calculated by an all versus all pairwise profile comparison, which uses two 

similarity criteria.

Firstly, for each profile pair, the Pearson correlation coefficient (Weisstein, 

1999) is calculated, pairs with a Pearson correlation coefficient of 0.8 or higher are
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retained since this indicates significant similarity between these profiles. The Euclidean 

distance between each occurrence value in each genome of both profiles is also 

calculated. Profiles pairs are retained where the total Euclidean distance divided by the 

mean occurrence value across all genomes is less than or equal to 10. Although this is 

an arbitrary cut-off, in practice it was found to ensure that profiles which contain similar 

occurrence values across the genomes are retained, and that profiles representing 

domains present in similar species but with very different numbers of relatives in those 

species are eliminated, as they would have a prohibitively greater average Euclidean 

distance. This is illustrated in figure 5.8 below, where profiles with low Pearson 

correlation coefficients and high Euclidean distance are excluded from further analysis.

S ,»1 S p 2 S p 3 5|>4 SpS Sp6 S |>7

Pro file  1 1 3 1 3 1 3 1

Pro file  2 2 4 2 4 2 4 2
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Figure 5.8 Profile Pair Comparison. An all versus all pairwise profile comparison 

selects profile pairs that have a Pearson correlation coefficient o f 0.8 or higher (for 

example profile pair 1 and 4 (A) is rejected (Pi <0.8) whilst profile pair 1 and 5 (B) is 

retained (P2 > 0.8)), and a Euclidean distance/mean occurrence value less than or 

equal to 10 (for example profile pair 1 and 3 (C) is now rejected (Ei> 10) whilst profile 

pair 1 and 2 (D) is retained (E2 < 10)).

■  Profile 1 □  Profile 2D
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5.4.2 Degenerate Domain Family Subcluster Profiles

Gene3D profiles pairs that are retained (according to the selection criteria 

described above, see section 5.4.1) are further filtered to remove profile pairs that are 

degenerate, that is where a profile pair between profiles from a deeper subcluster level 

has already been retained. This reduces the number of profiles without reducing the 

correlation information they represent, and thus enables faster profile clustering 

(discussed below). For example, in a profile pair consisting of profile A (representing a 

domain family 1.10.10.10 s40 subcluster) and profile B (representing a domain family 

3.40.50.300 homologous superfamily); this profile pair is degenerate and can be 

removed if another profile pair has been retained containing profiles from 'deeper* 

subcluster levels. For example a pair consisting of the same profile A but a deeper 

profile subcluster than profile B (for example representing a domain family 3.40.50.300 

s35 subcluster profile, instead of the homologous superfamily). This filtering does not 

remove any informative pairwise relationships, but permits ‘fine tuning* of any 

identified correlated profile pairs to the deepest domain family subcluster level, and so 

may reveal correlations between different domain family members that may not be 

apparent when only comparing profiles of less depth.

5.4.3 Information Content of Profiles

In addition to removing degenerate profiles, profiles with low information 

content were also removed. Low information content profiles are those profiles 

containing domain occurrences in either very few or very many genomes. Profiles 

where domain relatives are only found in few genomes (less than 10 genomes) are more 

likely to be due to random occurrence, or horizontal transfer. Profiles where domain 

relatives are found in nearly all genomes are also of low information content, since 

these profiles do not show any distinctive phylogenetic pattern. Removal of these low 

information content profiles reduces the number of false-positive profile relationships 

(Pagel et al., 2004).
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5.4.4 Comparison of Gene3D Profiles to Randomised Null Models

The functional relevance of related profiles derived from Gene3D data could be 

obscured by correlations due to non-functional factors in our dataset such as correlations 

between profiles resulting from variations in the size of genomes in Gene3D or 

variations in the size of domain families in Gene3D. To account for these factors, 

Gene3D data was randomised in two different ways to generate two different null model 

datasets: genome shuffling and profile shuffling.

The genome shuffling null model dataset is used to estimate the effect that 

genome size has on profile correlations. This dataset is generated by randomly 

shuffling domain assignments between genomes, each genome receives the same 

number of domain assignments it had before, but because these assignments are made 

randomly, any correlations due to genome size are eliminated.

The profile shuffling null model dataset is used to estimate the effect of domain 

family size on profile correlations. This dataset was generated by shuffling each 

domain family s i00 subcluster profile, in effect assigning domain occurrences to 

random domain families. All other lower level profiles were then regenerated from this 

shuffled data. The resulting null model dataset effectively contains genomes with a 

generic set of domain assignments where any correlations due to domain family size are 

eliminated.

Pairwise Pearson correlation coefficients for each null model dataset were 

calculated, and the resulting distribution of Pearson correlation coefficients compared to 

Gene3D profile data. As can be seen in figure 5.9 below, neither of the null model 

datasets produced pairwise comparisons with significant Pearson correlation 

coefficients of 0.8 or higher, indicating that Gene3D profile pairs with Pearson 

correlation coefficients above 0.8 are likely to be due to the correlated evolution of 

functionally related or interacting protein domains, rather than effects of genome size or 

domain family size.
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Figure 5.9 Comparison of Gene3D Profile Correlations to Randomised Null Model 

Datasets. The distribution o f Pearson correlation coefficients in all versus all pairwise 

profile comparison for each o f three datasets: Gene3D profiles (red), genome shuffled 

null model profiles (blue) and profile shuffled null model profiles (green) is shown.

5.4.5 Gene3D Phylogenetic Occurrence Profile Clustering

Gene3D profiles are clustered into single linkage and multilinkage clusters on 

the basis of their Pearson correlation coefficients, using TCluster (described previously, 

see section 2.3.3). Multilinkage clustering produces tight clusters where all the member 

profiles in a cluster have a significant relationship to one another. This produces quite 

restrictive clusters, often containing less than ten member profiles (see figure 5.10 

below). Single linkage clustering produces much less restrictive clusters, since a 

member profile within a cluster only requires one significant relationship to an existing 

cluster member to be included in the cluster. As can be seen in figure 5.10 below, this 

can result in a giant cluster containing the vast majority of profiles. This giant cluster 

effect is typical of small world networks which have been observed in other biological 

data including protein domain co-occurrence, protein-protein interactions, and 

metabolic pathways (Wuchty and Almaas, 2005).
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Figure 5.10 Gene3D Profile Clustering. Representation of the network o f profile 

clusters seen using single linkage. The figure shows clustering o f eukaryotic profiles 

from Gene3D produced using the BioLayout program (Goldovsky et al., 2005). 

Labelled clusters indicate profiles representing proteins involved in 1: Actin and VCP- 

like ATPases, 2: Chaperones and Cytoskeleton, 3: DNA Replication and Repair, and 4: 

DNA Topoisomerase and Elongation Factor G.

5.4.6 Functional Clusters revealed by Gene3D Phylogenetic Occurrence 

Profile Clustering

The 1277 CATH homologous superfamilies assigned in Gene3D produced 2.1 

million individual domain family and domain family subcluster profiles, providing 2.2 

billion possible pairwise profile comparisons. These profiles were analysed in three 

analysis groups: eukaryotic profiles, prokaryotic profiles and eukaryotic/prokaryotic 

profiles. After the filtering process, the number of profiles with significant pairwise 

relationships is significantly reduced. For example, the eukaryote/prokaryote analysis 

group contains 1,255 profiles found in 4,029 profile pairs.

5.4.6.1 Profile Clusters Representing known Functional Groups

The functional significance of clusters was analysed using GO functional 

information from Gene3D. For each profile in a cluster, the GO functional terms
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associated with the proteins containing the domain assignments that built the profile 

were used to identify the functions represented by the profile. Profile clusters that 

represent proteins already known to be functionally related were identified in all three 

analysis groups. These clusters contained either profiles representing different protein 

domains from the same protein, or profiles representing protein domains from different 

proteins.

The eukaryote/prokaryote dataset consists of 1,255 profiles that are found in 

4,029 profile pairs. These profiles are clustered into 80 single linkage and 214 

multilinkage clusters. An example identified in eukaryotic/prokaryote multilinkage 

clustering is the urea amidohydrolase multilinkage cluster, which contains four profiles, 

all of which represent domains occurring in urea amidohydrolase. Urea amidohydrolase 

catalyses the hydrolysis of urea to ammonia and carbamate. The enzyme consists of 

three protein subunits: alpha, beta and gamma (Mobley et al., 1995). Profiles 

representing both the urease alpha domain (CATH code 2.30.40.10) and the metal- 

dependent hydrolase domain (CATH code 3.20.20.140) in the urease alpha protein 

cluster with profiles representing the urease beta domain (CATH code 2.10.150.10) in 

the urease beta protein and the urease gamma domain (CATH code 3.30.280.10) in the 

urease gamma protein. Profiles in this cluster represent domain family relatives in 36 

genomes, of which 2 are eukaryotic (A. thaliana and S. pombe) and 34 are prokaryotic. 

Interestingly, whilst the domain profiles from urease beta and gamma subunits are 

homologous superfamily level profiles, the profiles representing the two domains in the 

urease alpha subunit are both domain family s30 subcluster profiles, implying that these 

specific domain family s30 subclusters are functionally and evolutionarily more closely 

linked, as might be expected from domains occurring in the same protein.

Initial analysis of the eukaryotic dataset, single linkage clustering produced a 

giant cluster, as can be seen from figure 5.10 above. In addition, several interesting 

clusters were identified, containing profiles representing Actin/VCP-like ATPases; 

Chaperones/Cytoskeleton; DNA Replication/Repair; and DNA Topoisomerase 

/Elongation Factor G. These clusters can be seen in figure 5.10 above. The DNA 

topoisomerase/elongation factor G cluster contains three profiles, shown in figure 5.11 

below.
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Figure 5.11 Eukaryotic Cluster Domain Occurrence Profiles. Domain occurrence 

in each species represented in the eukaryotic dataset for the three profiles in the DNA 

Topoisomerase/Elongation Factor G cluster.

Two of these profiles represent domains found in the same protein, elongation 

factor G (CATH codes 3.40.50.670 and 3.90.199.10), whilst the remaining profile 

represents a domain found in DNA topoisomerase (CATH code 3.30.970.10). The 

domain occurrences for each profile in the cluster are shown in figure 5.11 below. Both 

proteins represented by profiles in this cluster are involved in protein synthesis, whilst 

elongation factor G catalyses the translation reaction in the ribosome, DNA 

topoisomerase unpackages/repackages the DNA. Experimental evidence suggests that 

there may be a functional association between DNA topoisomerase and protein 

translation regulation. Rapisarda et al., (2004), describe the repression of hypoxia- 

inducible factor 1 (HIF-1) protein accumulation by the topoisomerase poison topotecan 

(TPT). The authors show that TPT inhibits HIF-1 translation, and that topoisomerase is 

required for this inhibition. The authors conclude that a novel pathway connects 

topoisomerase-dependent signalling events and the regulation of HIF-1 protein 

expression and function. The identification of a cluster containing domains from 

topoisomerase and elongation factor G provides potential insight into the mechanisms in 

this novel pathway.
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5.4.6.2 Deep Domain Family Subcluster Profiles

The depth of the profiles in a cluster is indicative of the closeness of the 

evolutionary and functional relationships between the domain families and subfamilies 

represented in the cluster. The deeper a profile, the higher the sequence identity 

between the relatives, indicating a higher level of sequence conservation across the 

domain subcluster represented in the profile. A cluster containing an s70 profile, for 

example, represents domains with an extremely high degree of sequence conservation 

across the genomes. This is indicative of domains that are intimately evolutionarily or 

functionally linked. The number of profiles at different depths in the 

eukaryote/prokaryote dataset is shown in table 5.0 below. As the table shows, there are 

six profiles that represent domain family s70 subclusters.

Table 5.0 Depth of Profiles in Eukaryote/Prokaryote Dataset. The number of 

profiles o f each depth (subcluster level) is indicated. Note that there are no profiles 

that represent domain family subclusters levels deeper than s70.

Profile Depth Frequency
Homologous Superfamily 39

s30 193
s35 109
s40 78
s50 45
s60 14
s70 6

This section describes one of the clusters containing a domain family s70 

subcluster profile in the eukaryote/prokaryote dataset, which can be used to predict 

probable functional relationships of profiles representing domains in proteins that have 

no known function. The cluster contained two profiles. One profile represented a 

domain family s70 subcluster of the CATH homologous superfamily 2.20.29.10, 

functionally annotated as 'translocation elongation factor G’ (a G protein factor that 

catalyses the translocation of peptidyl-tRNA from the A site to the P site of the 

ribosome during protein synthesis). The other profile in the cluster represented a 

domain family s30 subcluster of CATH homologous superfamily 3.40.50.610, 

functionally annotated as 'conserved hypothetical protein*. Both these profiles have 

identical species distributions across 32 genomes, and represent 37 domain assignments
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to 37 different proteins across the 32 genomes, and 34 domain assignments to 34 

different proteins across the 32 genomes respectively. These domain assignments 

occurred in different proteins in each genome, indicating that within each of the 32 

genomes, these proteins were functionally associated and in addition, that the 34 

conserved hypothetical proteins were likely to be specifically functionally associated 

with a highly conserved 2.20.29.10 domain family s70 subcluster found only in 

elongation factor G. Although the proteins containing domains represented in the 

domain family s30 subcluster have no known function, and are simply annotated as 

‘conserved hypothetical proteins’, Gene3D phylogenetic profile clustering provides 

compelling evidence that predicts these proteins are intimately associated with 

elongation factor G, an essential protein involved in the elongation process during 

protein synthesis.

5.4.7 User Defined Query Profiles

Gene3D profile clusters can also be searched to identify proteins that have a 

functional relationship to user-defined data. In a test example, Gene3D profiles were 

searched to find proteins that may have a significant functional relationship to ras (a 

well studied protein with an established role in eukaryotic signalling cascades). Query 

phylogenetic profiles were generated using ras occurrences across eight eukaryotic 

genomes. In these profiles the user defined the subset of, in this case, eight species 

which made up the occurrence profile, and manually assigned ras occurrences to these 

genomes. However, the user could have chosen any subset of species from which to 

generate the query profile, and any method of defining protein or domain occurrence in 

their chosen genomes. Gene3D profiles were searched to identify significantly similar 

Gene3D profiles to the query profile, by calculating Pearson correlation coefficients and 

Euclidian distances between the ras query profiles and Gene3D profiles. Single linkage 

clustering of eukaryotic profiles and the user-defined ras query profiles produced a ras 

cluster containing the ras query profile and 17 additional profiles, these are shown in 

table 5.1 below.

From table 5.1 it can be seen that three profiles in the ras cluster represent 

proteins directly involved in signal transduction and the activation of transcription. Six 

profiles represent proteins involved in transcriptional regulation, including 

developmental transcription regulators with Homeobox domains and Polycomb
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domains. Proteins with these domains are already known to be involved in embryonic 

development and regulation of cell cycle control acting through ras-mediated signalling 

pathways (Maclean et al., 2005; Jacobs et a l, 1999).

The presence of profiles representing proteasome 20S subunit proteins in this 

cluster indicates a link between ras and the proteasome. /tas-activated kinases are 

known to regulate levels of other proteins (for example c-Myc (Sears, 2004) and 

retinoic acid receptors (Srinivas et a l, 2005)) via phosphorylation and induction of 

ubiquitin-proteasome protein degradation. Ras has also been shown to inhibit 

proteasome mediated degradation by promoting the stabilisation of otherwise degraded 

proteins, for example ras-induced stabilisation of p21 cyclin-dependent kinase inhibitor 

(Coleman et a l , 2003), however these effects are not thought to involve direct 

interaction between ras and the proteasome.

Recently, solute carrier family 4, member 11 has been shown to function as an 

Na/borate co-transporter involved in cell cycle control (Romero, 2005), raising the 

possibility that solute carrier family 4, member 1 represented in the ras profile cluster 

may also be involved in cell cycle control, possibly mediated by ras.

Interestingly, three profiles in the ras profile cluster represent a total of 60 

eukaryotic proteins that have no known function. The domain families that generated 

these three profiles (shown in table 5.1) are the protein tyrosine phosphatase domain (26 

proteins), fibronectin type 3 domain (9 proteins), and the NAD(P)-binding Rossmann- 

like domain (25 proteins). Since protein tyrosine phosphatase domains may be 

regulated by, or themselves regulate, ras (Zhang et a l, 2004), and cellular attachment to 

extracellular fibronectin type 3 domains has been shown be abolished by ras (Fang et 

a l, 1994), the 60 proteins of unknown function represented by these three profiles make 

intriguing targets for experimental study to determine the nature of any functional 

association to ras.

Table 5.1 Profiles in the Ras Query Cluster. The 17 profiles that clustered with the 

user-defined Ras query profiles.

CATH
Depth of # Relatives

Domain Functional Description
Profile

Code
in Profile
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Homologous
Superfamily

1.20.1050.20 109
Signal transduction/transcription 
activation

Homologous
Superfamily

2.60.40.630 104
Signal transduction/transcription 
activation

Homologous
Superfamily

1.10.532.10 93
Signal transduction/transcription 
activation

s30 1.20.58.30 47 Solute carrier family 4, member 1

s30 1.20.920.10 60 Bromodomain: transcription regulation

s30 3.40.50.2020 23 Uridine kinase

s30 3.40.50.720 25 NAD(P)-binding Rossmann-like domain

s30 3.90.190.10 26 Protein tyrosine phosphatase domain

s30 3.90.830.10 20 Vesicle transport related

s30 1.10.10.60 25 Homeobox: transcriptional regulation

s30 1.10.183.10 60 Myosin heavy chain

s35 2.60.40.30 9 Fibronectin type 3 domain

s35 3.60.20.0 25 Proteasome 20S subunit

s50 3.90.490.0 16 p33 ING1 tumour suppressor-like

s50 3.30.40.10 19 Polycomb: transcription regulation

s70 1.10.10.60 37 Homeobox: transcription regulation

s70 1.10.10.60 88 Homeobox, transcription regulation
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5.5 Sum m ary

Phylogenetic profiles built from Gene3D data have been shown to identify size 

dependent and universal CATH homologous superfamilies in prokaryotic genomes. A 

subset of universal size-dependent CATH homologous superfamilies (just 9% of CATH 

homologous superfamilies in prokaryotes) has been shown to account for 56% of 

prokaryotic genome domain assignments. The relationship between genome size and 

domain occurrence of metabolic domain families and regulatory domain families within 

these universal size-dependent CATH homologous superfamilies appears to follow 

microeconomic principles that may underlie determination of the size of prokaryotic 

genomes.

A novel protocol using Gene3D domain family subcluster phylogenetic 

occurrence profiles has been designed and shown to identify novel functionally 

associated domain clusters across complete genomes. The use of domain family 

subcluster occurrence profiles allows functional associations between specific domain 

family subclusters to be identified. Initial analysis of these clusters shows encouraging 

results. The method has been shown to identify known functionally associated proteins, 

as well as novel functionally associated proteins. These profile clusters can also be 

searched for significant matches to user-defined occurrence profiles, in which the user 

can specify the species distribution and genome occurrence in their own query profile. 

Initial analysis using user-defined ras (a well established signalling cascade protein) 

occurrence profiles identifies known ras-associated signal transduction and 

transcription regulators. In addition, three novel profiles representing a total of 60 

functionally uncharacterised eukaryotic proteins have been identified as functionally 

associated with ras, and would make good experimental targets for further analysis.
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CHAPTER SIX

Discussion and Future Work

6.1 Discussion

Gene3D is the first domain architecture database which characterises completely 

sequenced genomes by clustering into protein families and then assigning structural and 

sequence domain families from well characterised resources (CATH, Pfam). 

Throughout this thesis this resource is extensively described and used for genomic 

analysis to identify evolutionary relationships between individual components of 

completely sequenced genomes.

The identification of power law like behaviour in the size distributions of protein 

families, domain families and domain architecture families underlines the evolutionary 

relationships of proteins and protein domains in genomes, where few families dominate 

genome-space. The re-use of protein domains to form novel domain architectures in 

different protein families provides an illustration of the evolutionary strategy applied by 

Nature in genome evolution, whereby 50% of domain family assignments are common 

to all three Kingdoms of life, whilst only 16% of protein families are common to all 

three Kingdoms of life.

The power law distributions described in Gene3D can be exploited in several 

ways. Analysis of domain family distribution across multiple genomes has been used to 

estimate the number of folds in Nature. Structural genomics initiatives have already 

exploited Gene3D to identify novel domain families and prioritise structural genomics 

targets. Novel fold groups and structural families identified by analysing Gene3D data 

can be prioritised by several criteria including species distribution and fold group size, 

according to the strategic requirements of the different structural genomics consortia. 

Given the limited resources of structural genomics initiatives, it is vital to provide the 

best possible strategy for mapping fold space. The expansion of certain domain 

families in the genomes illustrates the bias in current protein structure classifications, 

where some domain families appear to be highly under-represented. Identification of
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these expanded domain families can be used to select further targets to allow homology 

modelling of a greater proportion of the genome sequences.

The expansion of CATH domain families with sequences from completed 

genomes significantly increases the amount of functional data associated with these 

families. This data revealed those families in which multiple functions had evolved and 

highlighted the importance of considering domain context when inheriting functional 

properties between domain relatives. Analysis using Gene3D therefore allows domains 

in different contexts having different functional properties to be targeted for structure 

determination to reveal the structural mechanisms by which function evolves.

Analysis also identified 154,965 genscan sequences belonging to protein 

families containing known proteins, indicating that at least 57% of these genscan 

predictions are likely to be real protein sequences, thus warranting further study. This 

shows that gene predictions in eukaryotic genomes can be assessed for their reliability 

using protein family and domain assignment data.

The relationship between domain family frequency and genome size in bacteria 

was analysed. The identification of 85 universal, size-dependent domain families that 

are strongly correlated with bacterial genome size, representing just 9% of domain 

families but accounting for 56% of domain assignments in bacterial genomes highlights 

the dominance of a small number of domain families in bacterial genome evolution. 

This data adheres to microeconomics principles that can provide an explanation of the 

correlation between domain family usage and genome size in prokaryotes. The balance 

between the selection pressures of reproductive efficiency promoting small genomes, 

and environmental response and exploitation capacity promoting larger genomes, acts to 

enforce a balance between metabolic and regulatory genes a highly competitive system.

To attempt to understand the complex relationships between domain distribution 

across genomes and protein functional networks, a novel phylogenetic profile method 

for identifying functionally associated clusters of proteins, based upon domain family 

subcluster occurrence profiles was developed. This protocol enables identification of 

protein clusters sharing discrete domain distributions across genomes, which are 

indicative of functional and evolutionary associations. In addition to identification of 

clusters containing proteins with previously reported functional associations, novel
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clusters containing proteins with no previously reported functional association were also 

identified. User-defined occurrence profiles have been used to search Gene3D profiles 

for proteins with functional associations to the user-defined query profile. Since these 

user-defined query profiles can be built according to the users specific requirements (in 

terms of species distribution and domain/protein occurrence identification method), they 

provide a readily accessible and easily interrogated resource. Initial analysis using ras 

query profiles (a well established signal transduction cascade protein) identified proteins 

known to be involved in ras-associated systems, such as signal transduction and 

transcription regulation. Additionally, 60 eukaryotic proteins with presently unknown 

functions were identified that are likely to have a functional association with ras. These 

proteins would make good targets for further study.
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6.2 Future Work

Expansion of the Gene3D resource to include all completely sequenced genomes 

as they are completed would provide a more comprehensive resource for biologists 

interested in particular genomes. Addition of novel archaea and eukaryota genomes 

will permit a more rigorous analysis of these Kingdoms. Development of an efficient 

protocol for the automated inclusion of these additional genomes would therefore be of 

benefit.

As protein sequence databases increase in size, they produce an increase in the 

sensitivity of profile based methods of domain assignment. Additionally, source 

databases (for example Pfam and CATH) are updated; this necessitates regular updating 

of Gene3D data not only to incorporate expansions to domain family classifications, but 

also to reflect increases in performance of profile based methods. Development of 

efficient, fully automated protocols for updating domain assignments would be 

extremely beneficial to the resource.

The recent addition of Gene3D to the InterPro resource (which integrates major 

protein family classifications and provides regular mappings from major resources 

(UniProt, PROSITE, PRINTS, Pfam, ProDom, SMART, TIGRFAMs, PIR SuperFamily 

and SUPERFAMILY)) permits Gene3D families to be integrated with definitions from 

other InterPro member databases and provides integration between InterPro domains 

and the CATH classification. Gene3D domain mappings can thus be supplemented 

with domain mappings from InterPro to further increase genome coverage and perhaps 

better define domain architectures, by including resources such as SCOP and 

TIGRFAMs. In addition, building HMMs from the largest Newfam domain families 

identified using Gene3D, would also contribute to increasing genome coverage and 

enable additional complete domain architectures to be identified. The use of recent 

profile-profile HMMs methods for the identification of distant relatives, which have 

been shown to be more sensitive than the HMM methods used in this thesis, would also 

increase domain assignment genome coverage, and hence allow a greater 

characterisation of completed genomes.

A program to compare domain strings using dynamic programming would be 

advantageous in identifying protein families having similar domain architectures, and
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identifying similar domain architectures that have been defined using different domain 

family resources. This program could also help to identify protein families in Gene3D 

that contain multiple domain architectures. Although low in number, untangling these 

protein families may produce insight into the evolution of domain architectures. In 

order to facilitate identification of specific domain architecture families, HMMs 

representing complete domain architectures and partial domain architectures that are 

highly recurrent in the genomes should be developed. These HMMs would not only 

allow rapid classification of new genomes, but can be used to untangle protein families 

containing poorly defined domain architectures.

Further analysis of domain family subcluster phylogenetic profile correlations 

may permit identification of the mechanisms underlying the evolution of domain 

networks in bacterial genomes, and also identify biologically and medicinally important 

clusters. Inclusion of Gene3D derived data, such as domain occurrence profile cluster 

information, and phylogenetic profiles derived from protein families and domain 

architecture superfamilies, as well as addition of protein-protein interaction data would 

make the Gene3D resource more useful to biologists. However, it is important that the 

database and user interface is capable of rapid retrieval of user query results. The 

addition of genomes, domain assignments, additional functional resources and data 

derived from Gene3D analysis will only be of benefit if this data can still be accessed 

quickly.

With the recent advances in the field of bioinformatics, it might be wise, when 

considering the massive amount of different associations gleaned from current genomic 

data, to remember that currently we can only see a very tiny fraction of genome space. 

Only by exploring this genome space further can we hope to fully comprehend the 

myriad of evolutionary processes involved in the struggle for life.
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APPENDICES

Appendix I — Genome Coverage in Gene3D. Coverage shown for each genome in Gene3D, 

identified by NCBI Taxonomy taxon identifier and organism name. Coverage is calculated as percentage 

of total proteins/residues in genome assigned only a CATH domain (Class 1-4), overlapping CATH and 
Pfam domains, and only a Pfam domain. The percentage of total annotated proteins/residues is also 
shown.

Taxon
Id Organism Kingdom

% Coverage by Total Proteins % Coverage by Total Residues

CATH CATH 
& Pfam Pfam Total

Annotated CATH CATH 
& Pfam Pfam Total

Annotated

56636 Aeropyrum pemix A 36.4 1.5 14.8 52.7 31.7 0.0 11.2 42.9

2234 Archaeoglobus fulgidus A 41.4 2.8 17.3 61.5 36.6 0.0 14.0 50.6

54091 Haiobacterium sp. NRC-1 A 37.4 2.6 15.6 55.6 32.2 0.0 12.1 44.4

2190 Methanocaldococcus
annaschii A 40.0 2.4 19.2 61.5 33.1 0.0 14.3 47.5

190192 Methanopyrus kancNeri 
AV19 A 35.4 3.7 26.9 66.0 28.8 0.0 19.7 48.5

188937 Methanosardna 
aceth/orans C2A A 36.2 3.9 24.0 64.1 31.3 0.0 18.3 49.7

1929S2 Methanosardna maze! 
Goal A 36.0 4.3 27.4 67.7 31.3 0.0 20.7 52.1

187420 Methanothermobacter
thermautotroph. A 42.3 2.3 17.2 61.9 35.4 0.0 14.1 49.6

13773 Pyrobaculum aerophilum A 32.0 2.6 22.5 57.0 30.7 0.0 17.9 48.6

29292 Pyrococcus abyssi A 43.3 2.9 21.8 68.0 35.3 0.0 15.7 51.0

186497 Pyrocoocus furlosus DSM 
3638 A 38.7 4.2 30.0 72.9 34.9 0.0 23.1 58.1

53953 Pyrocoocus horikoahii A 39.3 2.6 20.7 62.6 32.9 0.0 15.1 48.0

2287 Suifolobus solfataricus A 36.1 2.5 30.7 69.3 32.1 0.0 24.4 56.5

111955 Sulfotobus tokodaii A 34.5 2.5 28.4 65.4 31.8 0.0 22.6 54.4

2303 rhermoplasma addophHum A 46.5 2.0 19.4 67.9 38.4 0.0 16.0 54.4

50339 rhermoplasma volcanium A 45.5 1.9 18.9 66.3 38.1 0.0 15.6 53.7

181661 Agrobacterium tumefadens 
C58 Cereon B 45.5 5.1 28.6 79.1 37.8 0.0 22.6 60.4

180835 Agrobacterium tumefadens 
C58 U.Wash B 44.9 4.7 28.2 77.7 38.3 0.0 22.9 61.2

53363 Aquifex aeoiicus B 48.4 3.1 19.8 71.3 38.5 0.0 14.1 52.6

86665 BadHus halodurans B 42.7 2.4 16.1 61.1 36.2 0.0 13.4 49.6

1423 BadHus subtHte B 42.6 2.6 16.3 61.4 36.7 0.0 13.9 50.6

206672 Bifidobacterium iongum 
NCC2705 B 44.2 5.3 27.9 77.3 34.3 0.1 19.9 54.2

139 Borrelia burgdorferi B 26.3 1.2 18.3 45.8 24.7 0.0 15.2 39.8

375 Bradyrhizobium japonicum B 43.0 3.8 25.5 72.3 34.6 0.0 20.6 55.2

29459 Brucella melitensis B 43.8 5.0 27.9 76.7 38.4 0.1 23.1 61.6

204722 Brucella suis 1330 B 41.1 4.6 26.9 72.6 38.5 0.1 23.2 61.7

135842 Buchnera aphidicola B 58.1 8.7 30.2 97.0 51.3 0.2 23.4 74.9
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198804 Buchnera aphkJicola str. Sg B 56.7 8.8 31.4 96.9 50.2 0.2 24.7 75.1

107806 3uchnera sp. APS B 1 63.8 3.1 16.6 83.4 50.8 0.0 10.4 61.2

197 Campylobacter Jejuni B 45.5 2.6 18.1 66.1 35.8 0.0 13.6 49.4

190650 Caulobacter crescentus 
CB15 B 44.8 4.6 25.5 75.0 39.0 0.1 20.2 59.2

33560 Chlamydia muridarum B 43.6 2.2 18.7 64.4 33.0 0.0 12.6 45.6

B13 Chlamydia trachomatis B 42.9 2.7 20.2 65.8 33.0 0.0 14.5 47.5

115711 ChlamydophHa 
xieumoniae AR39 B 36.1 1.9 18.3 56£ 29.5 0.0 13.7 43.2

115713 ChlamydophHa 
xieumoniae CWL029 B 38.1 2.0 19.4 59.5 29.7 0.0 13.8 43.5

138677 ChlamydophHa 
xieumoniae J138 B 37.6 2.0 19.2 58.7 29.4 0.0 13.7 43.0

194439 Chkxobium tepidum TLS B 39.5 4.8 23.0 67.3 38.9 0.1 20.5 59.4

1488 Clostridium acetobutylicum B 39.6 5.6 26.9 72.1 34.2 0.1 21.8 56.1

1502 Clostridium perfringens B 39.0 6.6 29.5 75.1 34.3 0.1 24.1 58.5

212717 Clostridium tetani E88 B 38.6 7.0 31.1 78.6 32.6 0.1 23.6 56.2

196164 Corynebacterium effidens 
YS-314 B 39.4 4.8 26.1 70.3 32.6 0.0 20.4 53.0

196627 Corynebacterium
jlutamicum B 41.9 4.3 24.9 71.1 34.8 0.0 20.2 55.1

1299 Deinococcus radiodurans B 42.9 2.1 14.4 59.4 34.4 0.0 10.2 44.6

199310 Escherichia coll CFT073 B 36.0 4.6 30.5 71.1 34.2 0.1 27.3 61.6

33333 Escherichia coll K12 B 45.4 2.7 19.3 67.4 37.1 0.0 15.9 53.0

33334 Escherichia coli 0157:H7 B 37.5 4.0 28.7 70.3 32.9 0.0 23.7 56.6

155864 Escherichia coii 0157:H7 
EDL933 B 39.7 2.3 19.3 61.3 33.2 0.0 15.6 48.8

190304 Fusobacterium nudeatum B 37.1 5.3 27.5 68.9 32.7 0.1 23.1 55.8

71421 Haemophilus influenzae Rd B 49.7 2.9 20.0 72.5 41.5 0.0 14.9 56.5

35962 Helicobacter pylori 26695 B 38.6 2.4 19.2 60.2 31.0 0.0 15.1 46.1

35963 Helicobacter pylori J99 B 40.7 2.5 20.6 63.8 31.6 0.0 15.6 47.3

220668 Lactobacillus plantarum 
WCFS1 B 42.7 5.7 27.9 76.3 36.4 0.1 23.9 60.3

1360 Lactococcus lactis subsp. 
lactte B 46.8 2.2 16.2 65.2 37.8 0.0 12.5 50.4

189518 Leptospira interrogans 
serovar tai 56601 B 27.4 3.2 17.3 48.0 27.6 0.0 16.6 44.2

1642 Listeria innocua B 41.7 5.5 28.7 75.9 35.7 0.1 23.4 59.2

169963 Listeria monocytogenes 
EGD-e B 44.4 6.1 29.6 80.1 37.9 0.1 24.5 62.4

381 Mesorhizobium loti B 45.1 1.9 14.3 61.3 36.6 0.0 11.6 46.2

1769 Mycobacterium leprae B 48.3 2.4 14.0 64.6 40.7 0.0 9.5 50.2

B3331 Mycobacterium 
tuberculosis CDC1551 B 38.1 4.2 25.9 68.2 34.2 0.0 19.1 53.3

33332 Mycobacterium 
tuberculosis H37Rv B 44.3 2.0 16.1 62.4 34.7 0.0 11.0 45.8

2097 Mycoplasma genitalium B 50.0 3.9 18.6 72.5 34.9 0.0 10.4 45.3

28227 Mycoplasma penetrans B 36.8 5.7 18.1 60.7 25.1 0.0 14.1 39.3

2104 Mycoplasma pneumoniae B 38.6 3.2 22.4 64.2 27.8 0.1 12.2 40.1

2107 Mycoplasma pulmonis B 37.2 6.8 26.1 70.1 28.3 0.1 18.4 46.8
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12258dNeisseria meningitidis 
MC58 B 38.1 4.9 28.6 71.7 35.5 0.1 25.1 60.6

122587 Neisseria meningitidis 
Z2491 B 37.9 4.7 28.6 71.2 35.7 0.1 25.4 61.2

103690 Nostocsp. PCC 7120 B 34.6 5.4 23.1 63.0 31.5 0.1 17.7 49.2

182710 Oceanobacillus iheyensis B 42.0 5.3 28.7 75.9 38.4 0.1 24.3 62.7

747 Pasteurella multocida B 49.7 3.0 20.0 72.7 39.5 0.0 14.2 53.7

208964 Pseudomonas aeruginosa 
PA01 B 47.7 2.8 17.7 68.1 37.0 0.0 14.3 51.3

160488 Pseudomonas putida 
KT2440 B 43.2 5.3 29.8 78.3 36.0 0.0 24.6 60.6

305 Ralstonia soianacearum B 42.2 4.3 27.1 73.7 33.9 0.0 22.0 56.0

781 Rickettsia conorii B 29.4 4.2 23.3 56.9 31.3 0.1 22.5 53.9

782 Rickettsia prowazekii B 47.4 3.1 21.1 71.6 36.7 0.0 14.8 51.5

90370 Salmonella enterica B 37.4 5.1 32.0 74.5 33.8 0.1 28.1 62.0

99287 Salmonella typhimurium 
LT2 B 40.7 5.6 34.7 81.1 35.4 0.1 29.6 65.0

211586 Shewaneila oneidensis 
MR-1 B 37.9 5.7 28.6 72.2 32.8 0.0 23.8 56.6

198214 Shigella flexneri 2a str. 301 B 41.0 4.9 37.9 83.8 36.0 0.1 29.6 65.6

382 Sinorhizobium meliloti B 45.8 4.7 28.2 78.8 38.5 0.0 23.0 61.6

158878 Staphylococcus aureus 
Mu50 B 40.0 5.7 29.5 75.2 36.0 0.1 25.4 61.5

196620 Staphylococcus aureus 
MW2 B 40.3 5.3 30.3 75.9 36.2 0.1 25.3 61.6

158879 Staphylococcus aureus 
N315 B 42.1 5.9 29.9 77.9 37.1 0.1 25.5 62.7

176280 Staphylococcus
spidermidis B 40.4 5.2 27.7 73.3 37.8 0.1 24.1 62.0

208435 Streptococcus agalactiae 
2603V/R B 41.4 5.6 28.5 75.6 37.1 0.1 23.1 60.2

211110 Streptococcus agalactiae 
NEM316 B 42.5 6.1 27.2 75.7 36.3 0.1 21.3 57.7

210007 Streptococcus mutans 
LIA159 B 44.0 6.1 26.3 76.5 39.6 0.1 21.8 61.5

171101 Streptococcus pneumoniae 
R6 B 41.3 6.3 26.9 74.4 38.2 0.1 22.9 61.2

170187 Streptococcus pneumoniae 
TIGR4 B 40.2 6.0 27.4 73.5 37.8 0.1 23.5 61.4

160490 Streptococcus pyogenes 
M1 GAS B 42.9 6.5 28.8 78.1 37.4 0.1 23.2 60.6

186103 Streptococcus pyogenes 
MGAS8232 B 40.8 6.0 27.3 74.1 36.5 0.1 23.3 59.9

198543 Streptococcus pyogenes 
phage 315.6 B 40.0 5.8 27.6 73.5 35.8 0.1 23.4 59.3

100226 Streptomyces coelicolor 
A3(2) B 41.8 4.3 23.9 70.1 33.5 0.0 18.3 51.8

1148 Synechocystis sp. PCC 
5803 B 43.5 3.0 15.3 61.8 34.2 0.0 10.5 44.8

119072 TTiermoanaerobacter
tengcongensis B 39.2 6.7 28.7 74.6 35.7 0.1 22.9 58.7

197221 Thermosynechococcus 
Blongatus BP-1 B 40.2 6.0 26.3 72.5 35.8 0.1 21.0 56.9

2336 Thermotoga maritima B 45.6 2.9 20.1 68.6 36.8 0.0 14.4 51.2

160 Treponema pallidum B 40.1 1.9 15.2 57.1 29.7 0.0 10.1 39.8

2130 Ureapiasma urealyticum B 40.6 2.4 14.0 57.0 26.1 0.0 7.7 33.8

DOO Vibrio choierae B 41.1 2.8 17.5 61.4 34.1 0.0 13.5 47.6

164609 Wigglesworthia brevipalpis B 52.1 7.3 31.2 90.7 48.2 0.2 24.7 73.1

190486 Xanthomonas axonopodis B 42.2 5.2 26.9 74.3 35.6 0.0 20.9 56.6

190485 Xanthomonas campestris B 42.3 5.4 27.9 75.5 35.8 0.0 21.5 57.4
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160492 Kyletta fastidiosa 9a5c B 33.9 2.2 13.2 49.3 33.2 0.0 11.3 44.6

183190 Xylella fastidiosa 
Temeculal B 40.2 6.3 28.0 74.5 36.0 0.1 21.9 58.0

532 Yersinia pestis B 40.1 5.2 34.0 79.3 34.6 0.1 27.2 61.9

187410Yersinia pestis KIM B 38.4 5.1 32.0 75.4 34.2 0.1 26.4 60.6

7165 Anopheles gambiae E 40.8 7.0 19.9 67.8 26.4 0.0 14.3 40.8

3702 Arabidopsis thaliana E 40.8 5.9 26.1 72.9 27.1 0.0 16.2 43.4

5239 Caenorhabditis eiegans E 33.0 5.7 26.2 65.0 21.8 0.0 17.3 39.2

7955 Dank) redo E 42.1 5.6 11.6 59.2 37.0 0.0 11.7 48.7

7227 Drosophila melanogaster E 39.9 6.7 21.4 67.9 22.7 0.0 13.8 36.5

5035 Encephalitozoon cuniculi E 36.4 3.3 18.6 58.4 24.0 0.0 12.1 36.2

55529 Quillardia theta polymorph E 39.8 4.3 23.2 67.2 32.3 0.1 14.9 47.3

9606 Homo sapiens E 41.8 9.0 19.3 70.2 27.9 0.0 14.2 42.1

10090 Mus musculus E 45.6 10.2 18.5 74.3 33.5 0.0 14.6 48.1

36329 Plasmodium falciparum 
3D7 E 28.3 3.3 20.8 52.5 9.8 0.0 11.4 21.2

10116 Rattus norvegicus E 35.2 5.4 13.1 53.7 24.1 0.0 9.7 33.9

4932 Saccharomyces cerevisiae E 36.9 3.6 16.5 57.0 21.6 0.0 11.1 32.7

4896 Schizosaccharomyces
xxnbe E 40.5 5.9 27.2 73.7 25.7 0.0 17.4 43.1

31033 laldfugu rubripes E 32.9 5.3 13.5 51.7 30.6 0.0 14.4 45.1
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Appendix II -  Universal Domain Families in Gene3D. The 212 universal CATH and 

Pfam domain families, where each domain family is universal to all three Kingdoms in 

Gene3D. Universal domain families are found to occur in a minimum o f 70% o f the 

genomes from a Kingdom, so these domain families are found in at least 70% o f the 

genomes o f each Kingdom in Archaea, Bacteria and Eukaryota. Domain families 

denoted by their CATH or Pfam identification are shown with the percentage o f 

genomes in each Kingdom in which they are identified: %A(rchaea), %B(acteria) and

%E(ukaryota) and the most common GO function associated with the domain family.
Domain
Family %A %B %E 0 0  Function

1.10.10.10 100 98 100 regulation of transcription; DNA-dependent;transcription factor activity
1.10.10.250 100 100 93 structural constituent of ribosome;intracellular; ribosome
1.10.10.60 100 81 100 regulation of transcription; DNA-dependent;transcription factor activity
1.10.1030.10 81 82 79 carbamoyl-phosphate synthase actMty,ATP binding;cytopiasm
1.10.1060.10 100 83 79 electron transport; electron transporter activity
1.10.1140.10 100 93 93 ATP-binding and phosphorylation-dependent chloride channel activity
1.10.1160.10 88 99 86 giutamate-tRNA Kgase acth/ity-ATP bindlng;glutamyl-tRNA aminoacyiation
1.10.15.10 100 94 86 base-excision repair; DNA binding
1.10.150.30 81 99 79 intracellular; DNA binding
1.10.260.10 100 88 86 DNA binding;regulation of transcription; DNA-dependent
1.10.260.30 100 99 71 RNA binding;GTP binding;signal recognition particle
1.10.275.10 100 93 79 catalytic activity;lyase activity
1.10.287.10 100 99 93 protein biosynthesis;structural constituent of ribosome
1.10.287.310 100 99 93 structural constituent of ribosome;intracellular; ribosome
1.10.287.40 81 100 71 tRNA ligase activity;serine-tRNA ligase activity;ATP binding
1.10.290.10 100 98 86 DNA topoisomerase type I activity;nucieic acid binding
1.10.340.10 100 96 86 base-excision repair; DNA binding
1.10.40.30 94 92 71 catalytic activity;lyase activity
1.10.455.10 100 100 93 structural constituent of rft)06ome;intraceilular,ribosome
1.10.460.10 100 98 86 nucleic acid binding; DNA topoisomerase type 1 activity; DNA modification
1.10.560.10 100 98 93 chaperone activity;ATP binding;protein folding
1.10.600.10 100 93 86 isoprenoid biosynthesis;transferase activity
1.10.730.10 100 100 86 tRNA ligase actMty,ATP binding;
1.10.8.50 94 100 93 RNA binding;structurai constituent of ribosome; intracellular
1.10.8.60 100 100 100 ATP binding;nucleotide binding
1.20.1010.10 100 100 86 ATP binding;arginine-tRNA ligase activity
1.20.120.140 94 99 86 GTP binding;signal recognition particle;protein targeting
1.20.200.10 100 93 79 catalytic activity;lyase activity
1.20.58.100 88 73 79 electron transport;oxidoreductase activity;
1.25.40.10 81 94 100 nudeus;intracellular
2.10.230.10 75 100 86 chaperone activfty.protein folding;
2.130.10.10 88 84 100 nucleus;membrane
2.160.10.10 88 94 79 transferase activity;acyitransferase activity
2.170.120.12 94 100 93 DNA binding; DNA-directed RNA polymerase activity;transcription
2.20.29.10 100 100 86 translation elongation factor activity;GTP binding;translational elongation
2.30.30.30 100 99 93 structural constituent of ribosome;intracellular;i1bosome
2.30.35.20 100 100 86 structural constituent of ribosome;intracellular, ribosome
2.30.35.30 100 94 79 ligase activity;ATP binding
2.30.42.10 94 94 100 protein binding;proteoiysis and peptidolysis
2.40.10.80 94 93 93 ATP-binding and phosphorylation-dependent chloride channel activity

182



2.40.150.20 100 100 93 structural constituent of ribosomejintraeellular; ribosome
2.40.240.10 100 80 86 protein biosynthesis;structural constituent of ribosome
2.40.30.10 100 100 93 GTP binding;translation elongation factor activity
2.40.33.10 81 92 86 pyruvate kinase activityglycolysis;
2.40.40.30 100 99 93 DNA binding;DNA-directed RNA polymerase activity,nucleus
2.40.50.100 94 99 86 membrane;protein secretion
2.40.50.140 100 100 93 protein biosynthesis; RNA binding
2.40.50.150 100 99 93 structural constituent of ribosome;intracellular, ribosome
2.70.150.10 81 86 93 ATP binding;membrane
2.70.20.10 81 96 79 DNA binding; DNA topoisomerase type I activity; DNA topological change
2.70.40.10 100 87 86 dUTP metabolism;hydrolase activity
3.10.129.10 88 93 79 catalytic actfvitymetabolism
3.10.180.10 81 81 79 lactoyiglutathione lyase activity;cart>ohydrate metabolism
3.10.20.30 88 93 93 electron transporter activity;electron transport
3.10.20.70 100 74 71 glutamate-ammonia ligase acttvity;nitrogen fixation
3.10.290.10 100 100 93 RNA binding;pseudouridytate synthase activity
3.10.50.40 88 98 93 protein folding;isomerase activity
3.20.19.10 100 72 79 metabolism;lyase activity
3.20.20.100 81 72 93 oxidoreductase activity,electron transporter activity
3.20.20.105 100 87 71 queuine tRNA-ribosyttransferase activityqueuosine biosynthesis
3.20.20.120 100 98 86 catalytic activity;metabolism

3.20.20.140 100 100 86 hydrolase acting on carbon-nitrogen (but not peptide) bonds; in cyclic 
amides

3.20.20.150 100 83 71 endonuclease activity; DNA repair
3.20.20.170 81 100 79 lyase activityfructose-bisphosphate aldolase activity
3.20.20.60 100 100 86 kinase activitytransferase activity
3.20.20.70 100 92 86 lyase activity carbohydrate metabolism
3.20.20.90 100 100 93 oxidoreductase activity; electron transport
3.30.160.30 100 98 93 structural constituent of ribosome;intracellular;ribosome
3.30.190.20 100 100 93 structural constituent of ribosome;intracellular; ribosome
3.30.200.20 88 90 100 ATP binding;protein amino acid phosphorylation
3.30.230.10 100 100 100 protein bk>synthesis;ATP binding
3.30.230.20 100 100 93 structural constituent of ribosome;lntracellular;ribosome
3.30.300.20 100 100 79 nucleic acid binding; RNA binding
3.30.360.10 75 89 93 oxidoreductase activfty;electron transport
3.30.390.10 100 98 86 catalytic activity;metaboiism
3.30.390.30 100 94 79 electron transport; oxidoreductase activity
3.30.420.10 100 100 93 DNA binding; DNA recombination
3.30.420.100 100 100 93 structural constituent of ribosome;intracellular; ribosome
3.30.420.40 81 100 100 ATP binding; heat shock protein activity
3.30.420.80 100 99 93 protein biosynthesis;structural constituent of ribosome
3.30.428.10 94 99 86 transferase activity; UTP-hexose-1 -phosphate uridylyltransferase activity
3.30.470.20 100 97 79 ligase activityATP binding
3.30.499.10 100 72 79 metaboiism;lyase activity
3.30.540.10 88 88 71 inositol/phosphatidylinositol phosphatase activity,hydrolase activity
3.30.550.10 100 94 79 gtyceraldehyde-3-phosphate dehydrogenase (phosphoryiating) activity
3.30.56.20 94 97 86 phenyialanine-tRNA ligase activitytRNA ligase activity
3.30.565.10 100 100 100 ATP binding;kinase activity
3.30.70.100 100 81 71 metal ion transport; metal ion binding
3.30.70.141 100 80 86 nucleoside-diphosphate kinase activityATP binding;GTP biosynthesis
3.30.70.160 100 100 86 transaminase activity;transferase activity
3.30.70.20 100 77 93 electron transport; electron transporter activity
3.30.70.210 100 92 86 nucleic acid binding;RNA binding
3.30.70.240 100 100 93 translation elongation factor activity; GTP binding;translational elongation
3.30.70.330 100 98 100 nucleic acid binding;RNA binding
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3.30.70.350 100 100 86 structural constituent of ribosome;lntracellular, ribosome
3.30.70.460 100 83 71 catalytic activity; ligase activity
3.30.70.530 100 100 93 DNA binding; DNA-directed RNA polymerase activity;transcription
3.30.70.580 81 94 86 pseudouridylate synthase activitytRNA processing
3.30.70.60 100 98 86 protein biosynthesis;structural constituent of ribosome
3.30.70.600 100 97 93 structural constituent of ribosome;intracellular; ribosome
3.30.70.660 81 96 86 pseudouridylate synthase activitytRNA processing
3.30.70.780 100 100 93 structural constituent of ribosome;intracellular; ribosome
3.30.70.810 88 98 79 arginine-tRNA ligase activityATP WncHng;arginyl-tRNA aminoacyiation
3.30.860.10 100 96 93 structural constituent of ribosome;intracellular,ribosome
3.30.930.10 100 100 86 tRNA ligase activityATP binding
3.40.1010.10 100 94 86 metabolism;methyitransferase activity
3.40.1060.10 100 70 79 metabolism;lyase activity
3.40.120.10 100 98 86 carbohydrate metabolism; phosphotransferases
3.40.190.10 100 99 93 transporttransporter activity
3.40.190.80 88 87 71 inositoi/phosphatidyiinositol phosphatase activity; hydrolase activity
3.40.225.10 88 70 79 isomerase activity; lyase activity
3.40.250.10 75 92 86 transferase activity;thiosulfate sulfurtransferase activity
3.40.30.10 94 100 93 electron transport;electron transporter activity
3.40.309.10 81 84 71 oxidoreductase activitymetabolism
3.40.350.10 81 79 71 proteolysis and peptidoiysis;metalloexopeptidase activity
3.40.367.20 100 87 93 structural constituent of cytoskeieton;actin cytoskeleton
3.40.430.10 75 94 86 5-amino-6-(5-phosphoribosylamino)uracil reductase activity
3.40.440.10 94 84 71 GTP binding;purine nucleotide biosynthesis
3.40.460.10 100 98 86 carbohydrate metabolism; phosphotransferases
3.40.47.10 100 93 86 transferase actMtyfatty add biosynthesis
3.40.470.10 81 98 86 DNA repair,uracil DNA N-glycosyiase activity
3.40.50.1000 100 100 93 hydrolase activity; metabolism
3.40.50.10050 100 99 93 GTP binding;translation elongation factor activity
3.40.50.1010 100 100 86 DNA binding;nudease activity
3.40.50.1050 100 92 71 carbohydrate metabolism; phosphotransferases
3.40.50.1090 100 76 79 intracellulantranscription factor activity
3.40.50.1100 100 84 71 amino add metabdism;lyase activity
3.40.50.1140 88 83 86 electron transport;oxidoreductase activity
3.40.50.1220 100 86 93 regulation of transcription; DNA-dependent;electron transport
3.40.50.1260 100 98 86 phosphoglycerate kinase activityglycolysis
3.40.50.1270 100 98 86 phosphoglycerate kinase activityglycolysis
3.40.50.1370 100 88 79 amino add metabolism; carboxyl- and carbamoyltransferase activity
3.40.50.140 100 98 79 nucleic add binding; DNA modification
3.40.50.1400 75 80 79 ferrochelatase activityheme biosynthesis
3.40.50.1440 75 93 93 GTP binding;structural molecule activity
3.40.50.150 100 100 100 S-adenosyimethionine-dependent methyitransferase activity
3.40.50.1580 100 98 79 nucleoside metabolism;catalytic activity
3.40.50.1820 94 98 86 catalytic activity; hydrolase activity
3.40.50.1900 100 87 71 lyase activity amino acid metabolism
3.40.50.1940 100 96 86 sugar binding;carbohydrate metabolism
3.40.50.1950 100 89 71 lyase activity carboxy-lyase activity
3.40.50.1990 100 100 93 structural constituent of ribosome;irrtracellular; ribosome
3.40.50.20 94 94 79 ligase activityATP binding
3.40.50.2000 81 94 79 transferase activity; transferring hexosyt groups;metabolism
3.40.50.2020 100 98 86 nucleoside metabolism transferase activity
3.40.50.300 100 100 100 ATP bincHng;nudeotide binding
3.40.50.50 81 91 86 pyruvate kinase activityglycolysis
3.40.50.610 100 100 93 ATP binding; ligase activity
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3.40.50.620 100 100 93 nucleotidyltransferase activity; biosynthesis
3.40.50.720 100 100 100 oxidoreductase activitymetabolism

3.40.50.7700 94 79 71 phosphoribosyiaminoimidazoie carboxylase activityi'de novo1 IMP 
biosynthesis

3.40.50.790 100 100 86 structural constituent of ribosome;intraceliular,ribosome
3.40.50.800 100 100 86 tRNA Hgase activity;ATP binding
3.40.50.850 88 72 79 catalytic activity.metaboiism
3.40.50.880 100 98 86 catalytic activity;glutamine metabolism
3.40.50.920 100 99 86 oxidoreductase activity; electron transport
3.40.50.970 100 99 93 oxidoreductase activitymetabolism
3.40.510.10 100 100 86 ATP binding;tRNA ligase activity
3.40.605.10 81 86 71 oxidoreductase activitymetabolism
3.40.630.10 100 99 86 proteolysis and peptidoiysis;metaiiopeptidase activity
3.40.630.30 100 94 100 N-acetyttransferase activitytransferase activity
3.40.640.10 100 100 86 transaminase activitytransferase activity
3.40.718.10 100 73 79 oxidoreductase activity.metaboiism
3.50.30.20 81 82 71 catalytic activitycarbamoyt-phosphate synthase activityATP binding
3.50.50.60 100 100 86 electron transport;oxicloreductase activity
3.50.7.10 100 98 93 chaperone activityATP binding
3.60.15.10 100 100 93 hydrolase activttymolecular_function unknown
3.60.20.10 100 94 100 metaboiism;endopeptidase activity
3.60.21.10 100 92 93 hydrolase activttyprotein serine/threonine phosphatase activity
3.90.110.10 81 86 79 oxidoreductase activity L-lactate dehydrogenase activity
3.90.170.10 88 84 79 GTP binding;purine nucleotide biosynthesis
3.90.180.10 81 78 79 alcohol dehydrogenase activity zinc-dependent;zinc ion binding
3.90.188.10 88 91 79 ribonudeoside-diphosphate reductase activity; DNA replication
3.90.226.10 94 94 93 catalytic activity metabolism
3.90.230.10 100 100 93 proteolysis and peptidolysis;metalioexopeptidase activity
3.90.244.10 88 98 86 ribonudeoside-diphosphate reductase activity; DNA replication
3.90.269.10 100 82 79 giutamate-ammonia ligase activity nitrogen fixation
3.90.470.10 100 100 93 structural constituent of ribosome;intracellular; ribosome
3.90.550.10 100 100 86 transferase activity; nudeotidyitransferase activity
3.90.700.10 88 78 79 oxidoreductase activityelectron transport
3.90.740.10 100 100 86 tRNA ligase activityATP bindlng;amino add activation
3.90.77.20 100 92 86 kinase activitytransferase activity
3.90.79.10 100 92 86 hydrolase activity isoprenokJ biosynthesis
3.90.80.10 81 73 86 metabolism;membrane;pyrophosphatase activity
3.90.800.10 88 96 86 giutamate-tRNA ligase activityATP binding;glutamyi-tRNA aminoacyiation
3.90.870.10 100 98 79 3;4 dihydroxy-2-butanone-4-phosphate synthase activity
3.90.930.12 100 100 93 structural constituent of ribosome;intracellular; ribosome
4.10.910.10 100 100 93 RNA binding;structural constituent of ribosome;intracellular
4.10.950.10 100 99 93 structural constituent of ribosome;intracellular; ribosome
PF00083 100 99 93 transport; membrane
PF00324 81 88 86 amino add-poiyamine transporter activity amino acid transport;membrane
PF00344 100 100 93 protein secretion;protein translocase activitymembrane
PF00534 100 91 86 biosynthesis;transferase activity
PF00571 100 99 79 membrane.transport
PF00572 100 100 93 structural constituent of ribosome;intracellular; ribosome
PF00573 100 99 93 structural constituent of ribosome;intracellular;ribosome
PF00588 75 97 79 RNA binding; RNA processing; RNA methyttransferase activity
PF00673 100 100 93 structural constituent of ribosome;intracellular;ribosome
PF00999 100 79 93 regulation of pH;integral to membrane
PF01066 100 96 86 phospholipid biosynthesis;transferase activity
PF01192 100 77 93 DNA-directed RNA polymerase activitytranscription; DNA-dependent
PF01509 100 92 86 pseudouridylate synthase activityRNA processing
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PF01513 100 89 79 kinase activitytransferase activity
PF01725 100 88 86 hydrolase activity;mdecular_functk)n unknown
PF01842 75 78 71 metaboiism;amino add binding
PF01966 100 93 79 catalytic activity; hydrolase activity
PF01979 100 78 71 hydrolase activity;N-acetyiglucosamine-6-phosphate deacetylase activity
PF02272 100 100 71 nucleic acid binding;ATP binding
PF03946 88 100 93 structural constituent of ribosome.intracellular; ribosome
PF04560 100 100 93 DNA binding; DNA-directed RNA polymerase activity;transcription
PF04561 100 90 93 DNA-directed RNA polymerase activity transcript ion
PF05362 75 76 79 ATP-dependent peptidase activity; serine-type endopeptidase activity
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Appendix HI -  Universal Size-Dependent Superfamilies in Bacteria. The 66 universal 

size-dependant superfamilies used in this analysis are denoted by their CATH code and PDB 
representative. The total number of domain assignments, percentage of genomes containing these 
assignments and Spearman’s Rank correlation coefficient between domain occurrence and genome size is 
shown. The size distribution group (PI -  power law, L -  linear, Log -  logarithmic) and functional 
classification (R -regulatory, M -  metabolic, O -  other, P -  poorly characterised) are indicated.

CATH Code PDB
Rep.

Number
of

Domains
Universality

Spearmans
Rank

Coefficient

Size
Distiribution

Function
Func.
Code Functional Definition

1.10.10.10 1lea00 5695 98 0.951 PI R Winged helix (DNA-binding)

3.40.190.10 1anf02 4595 99 0.867 PI R SBP-bacterial 1 periplasm ic binding 
xotein

1.10.10.60 ImbeOO 3391 86 0.926 PI R Homeodomain-like (DNA-binding)

3.40.50.2600 Babp02 3101 85 0.865 PI R CheY receiver domain

3.30.565.10 1cuk03 2400 100 0.861 PI R Histidine kinase

3.40.50.1820 IdqzAO 2338 97 0.878 PI M/P Alpha and Beta hydrolases

1.10.260.10 IneqOO 1684 89 0.773 PI R l-repressor (DNA-binding)

2.40.50.100 IhtpOO 1056 98 0.742 PI M Biotin-requiring enzymes

3.10.180.10 1kw3B1 778 82 0.823 PI M Clyoxalase/bieomydn/dioxygenase

3.90.180.10 IqorAI 737 79 0.851 PI M Zinc-binding dehydrogenase

3.40.605.10 1ag8A1 663 85 0.879 PI M NADP-oxidoreductase

3.10.20.30 4fxc00 637 92 0.721 PI R TGS-domain (nuciotide bindingin 
regulation)

2.130.10.10 2bbkH0 555 84 0.76 PI R WD domain (Beta-transduction)

3.10.129.10 ImkaAO 535 93 0.824 PI M fhioesterase/Maoc-like domain

3.40.50.1420 ImJhAO 456 80 0.75 PI R Universal stress protein

3.40.50.1090 1cf9A3 323 79 0.843 PI R DJ-1-Pfpl transcription regulator

3.20.20.120 1oneA2 320 99 0.746 PI M Enoiase Ct-domain/methylaspartate 
ammonia-lyase

3.30.70.130 2chsA0 241 77 0.787 PI R Endoribonudease

3.40.50.850 InbaAO 234 75 0.77 PI M Isochorismatase family

3.30.43.10 1uxy02 172 80 0.7 PI M FAD-binding domain

3.40.50.300 1efuA1 18,292 100 0.958 L M P-loop containing nucleotide 
triphosphate

3.40.50.720 1evyA1 6880 100 0.939 L M NAD(P)-binding domain

3.40.50.150 1admA1 3844 100 0.87 L M Methyttransferase

3.50.50.60 3ladA2 3101 100 0.91 L M MADH-FAD oxidoreductases

3.40.640.10 1tplA2 2498 100 0.917 L M rype 1 PLP-dependent aspartate 
aminotransferase

3.40.30.10 labeOO 2098 99 0.86 L M Fhioredoxin-like domain

3.40.630.30 IcjwAO 1814 96 0.868 L M/R Acetyttransferase

3.90.550.10 1qg8A0 1805 100 0.801 L 0 SpsA-glycosyltransferase

3.30.420.10 1rthA5 1635 100 0.72 L O RNAase-H

3.40.50.970 1poxA3 1611 100 0.8 L M Thiamine diphosphate binding fold

3.40.50.980 1ld01 1583 81 0.79 L M Acetyl-CoA synthetase family
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3.40.47.10 1pxtA1 1118 94 0.804 L M 3eta-oxidation,lipid metabolism

3.90.226.10 1dubA1 871 94 0.758 L M Enoyl-CoA hydratase

3.40.710.10 2bttA0 842 85 0.768 L O 3eta-lactamases

3.40.630.10 2ctc00 819 99 0.808 L M Zinc-metallopeptidase domain

3.90.77.20 1rkd02 719 94 0.784 L M Carbohydrate kinase

1.10.443.10 1aihA0 714 93 0.734 L O Phage integrase domain

2.160.10.10 1lxa01 647 94 0.797 L M Acetyltransferase

2.30.42.10 IpdiOO 495 94 0.705 L R PDZ domain (signaling protein)

3.40.50.1900 1qoqB2 491 89 0.767 L M Amino acid metabolism

3.40.250.10 IrhsOI 488 89 0.791 L M Rhodanase domain

3.60.20.10 IgdoAO 478 95 0.736 L M Glutamine amidotransferase class-ll

3.20.20.100 1adsOO 434 73 0.795 L M Mdo/ketoreductases

3.20.20.60 1pkm02 430 100 0.771 L M Pyruvate kinases

3.20.20.140 1a4mA0 417 100 0.762 L M Metal-dependent hydrolases

3.40.50.1140 1aa8A1 398 83 0.812 L M FAD-dependent oxidoreductase

2.40.40.20 1eu1A4 378 72 0.706 L M VAT-N domain (binding protein)

3.30.499.10 1c96A3 364 76 0.714 L M Acotinase

3.20.20.10 1bdOA1 356 83 0.716 L M Alanine racemase/pyridoxal binding

1.20.200.10 1fupA2 343 95 0.739 L M Lyase

3.90.230.10 1chmA2 338 100 0.72 L M/O M24 metallopeptidase family

3.40.109.10 InoxOO 297 83 0.755 L M MAD-NADPH oxidoreductase

3.40.50.170 IgarAO 241 90 0.723 L M Formyttransferase

3.30.1090.10 1qdlA2 199 84 0.714 L M Chorismate binding enzyme

3.40.718.10 1isoOO 179 77 0.76 L M Isocitrate/isopropyi malatede 
tiydrogenase

3.90.269.10 1lgr01 171 85 0.772 L M Glutamine synthetase

3.20.20.20 1ad4B0 153 90 0.748 L M Pterin binding enzyme 
fmethyltransferases)

3.30.470.10 3daaA1 146 77 0.75 L M Aminotransferases class IV

2.40.50.140 1ckmA2 2292 100 0.709 Log 0 RNA-binding domain

3.20.20.90 ItpfAO 2049 100 0.898 Log M FMN-dependent enzymes

3.40.50.1000 1jud01 1642 100 0.838 Log M Dehalogenase

3.30.470.20 1k>w02 1150 97 0.894 Log M ATP-grasp fold

3.40.50.880 IgpmAI 840 98 0.751 Log M Glutamine am idotransf erase class I

3.90.79.10 ImutOO 729 94 0.889 Log 0 DNA repair domain

3.40.50.620 IdnpAI 675 100 0.712 Log 0 DNA repair

3.60.21.10 4kbpA2 560 94 0.723 Log R/O Calcineurin-like phosphoesterase
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