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Abstract

This thesis examines techniques for analysing bioprocess flowsheet simulations so as 

to determine operating strategies. Currently approaches cited in the literature for 

analysing bioprocesses employ visualisation of two-dimensional subsets of the 

feasible region. However this approach is restricted to two control variables and relies 

heavily on the engineer’s judgement to estimate the potential impact of uncertainties 

in both the model and the process operation. The objective of this research was to 

generate methods capable of locating robust operating points for multivariate 

bioprocesses.

Increasingly the biopharmaceutical firms are under economic pressure to speed up 

process development. This had lead to an increased interested in computer simulation 

as a tool to develop robust bioprocess. Whilst simulation has been applied extensively 

in the process industries it has not often been applied to bioprocesses as these tend to 

be more complex to model and frequently only a partial understanding of behaviour 

exists. Recent work has led to a capacity to simulate complete bioprocess sequences 

using models that capture the interactions between the unit operations. However, a 

major limitation is the interpretation of results from such simulations.

In conventional process engineering studies optimisation routines have been used to 

identify the best operating conditions for a given set of objectives. Such techniques 

have not been applied effectively to bioprocesses due to limitations in the reliability of 

the models. These limitations mean that results obtained via such an approach are 

unlikely be useful as, in practice, the optimal points found are unlikely to be robust.

The work in this thesis also looks at defining methodologies that are able to analyse 

multivariable bioprocesses. It looks at the application of techniques developed in the 

chemical process industry that can be used to account for the variability in the control 

variables and process parameters and at the application of statistical techniques for 

analysing bioprocess robustness. Overall work highlights the nature of the bioprocess 

insights that can be obtained through simulation and explores the utility of the 

application of the developed methods of analysis.
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1 Introduction and Scope

1.1 Abstract

This thesis looks at issues and solutions surrounding the development of methods for 

selection of operating strategies within particular bioprocess flowsheets. It does so 

against a backdrop of an industry subject to extensive regulation which means that 

many of the features of a process will be fixed during the development phase whilst 

the drugs are still being investigated for their clinical efficacy. This can lead to either 

a suboptimal process or delays in getting the drug to market, both of which can result 

in a loss of earnings. Consequently it is important that an effective process design is 

found rapidly and early in the development phase. This necessitates better strategies 

for evaluating process designs that do not increase the time to bring the product to 

market. Furthermore, effective strategies are required to ensure that the objectives of 

the process, once in operation, are met consistently when the process is operated.

This chapter examines the cost pressures bearing on the biopharmaceutical industry 

which are leading to a renewed interest in techniques that could be applied to reducing 

production costs and as an aid process development.

Computer simulations are often used in the traditional chemical industry. However, 

they are less common in the bioprocessing industry. Some work has been carried out 

into evaluating the costs associated with specific flowsheets and scheduling of task to 

reduced manufacturing costs. However little work has been carried out into methods 

for analysing process interactions to determine robust operating strategies. The 

inability to quantify these effects means that bioprocess engineers need to rely on pilot 

plant trials. This chapter demonstrates a need within the industry for better simulation 

and analysis techniques in order to reduce both the time and costs associated with 

developing a robust and efficient bioprocess.
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Introduction and Scope

1.2 Background

The healthcare industry is being revolutionised by developments in biotechnology. 

The genetic revolution has lead to the discovery of a new generation of biological 

macromolecular drugs that have both enormous pharmacological and commercial 

potential. These drugs however are significantly more complex than the small 

chemical entities that have traditionally been developed by the pharmaceutical 

industry. This complexity means that the development and commercialisation of such 

products is difficult and takes a long time, as the drugs and their manufacturing 

processes are subject to a large amount of regulation (Werner et al, 1988, Baird & De 

Santis, 1994).

The manufacturing process is a critical bridge between the science and the market, as 

without a robust, scaleable and economic manufacturing process drugs would be 

unlikely to reach the market. The manufacturing costs, associated with 

macromolecular drugs, are typically around 20% - 25% of the sales (Farid, 2002), 

although the manufacturing costs are heavily dependent on scale (Werner, 1998a). By 

contrast the costs of manufacturing small chemical entities are significantly cheaper. 

In addition the development of the manufacturing process needs to be carried out as 

quickly as possible since longer development times would reduce the profit generated 

if the drug is successfully commercialised.

Traditional bioprocess design methods have been very empirical, relying heavily on 

pilot plant trials, which are both expensive in labour and capital resources (Zhou & 

Titchener-Hooker, 1999). One potential methodology for improving bioprocess 

design is the use of computer tools to speed up the process design and reduce 

manufacturing costs. Computer tools such as process modelling, simulation and 

optimisation have already been extensively used in chemical engineering design. 

However, in bioprocesses the phenomena underlying process behaviour are generally 

less well understood and the use of computer tools more limited.

This chapter looks at the biopharmaceutical industry in more detail and in particular 

the importance of manufacturing. A short review will be given of the typical process
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Introduction and Scope

steps involved in bioprocess manufacturing. The chapter will then examine the trade

offs inherent in bioprocessing and the need for better design methodologies in order to 

develop more robust and economic bioprocesses.

1.3 The Biopharmaceutical Industry

1.3.1 Introduction

According to a recent report from Price Waterhouse Coopers (Arlington et al, 1998) 

the pharmaceutical industry is facing some serious challenges. The costs of research 

and development are soaring. Meanwhile research productivity, in terms of the 

number of new pharmaceutical products reaching the market, has declined. The report 

claims that the number of new substances that will be produced by the pharmaceutical 

companies is likely to remain short of that necessary for their revenue generating 

targets. Therefore their total shareholder returns are likely to drop significantly 

(Arlington et al, 1998). As a result there is increasing interest in biotechnology and its 

potential for providing new medicines.

Current developments in the fields of genomics and proteomics have generated a large 

number of candidate therapeutics. A significant proportion of these are likely to be 

large molecule drugs or biopharmaceuticals (Dvorin et al, 2001). Such drugs are 

based on understanding diseases at a molecular level. Currently the 

biopharmaceuticals in the market can be divided into three distinct groups (Werner, 

1998b): -

1. Products that had previously been available from a natural source and can now 

be manufactured using recombinant technology. These include insulin, factor 

VIII and human growth hormone. Often the natural sources for these drugs are 

scarce and there are also potential risks with products, so derived (e.g. Insulin 

taken from bovine or pork islet cells).

2. Biological drugs whose modes of action are well understood, but are 

unobtainable from natural sources. Such drugs include tissue plasminogen 

activator, erythropoietin and DNase.
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Introduction and Scope

3. Biopharmaceuticals as rationally designed biologicals such as monoclonal 

antibodies designed to interact with specific enzymes or receptors.

Increasingly genetic engineering is being used to modify protein structure in order to 

optimise the pharmacokinetic and pharmacological behaviour and this too is leading 

to new products (Werner, 1998b). There is also increased interest in non-protein based 

biopharmaceuticals such as gene therapy, whereby DNA is introduced into cells so 

that they are able to produce a deficient or absent protein in vivo. Finally antisense 

oligonucleotides are being investigated for their ability to block the formation of 

undesirable proteins (Werner, 1998b).

Despite the apparent potential of new candidates, many pharmaceutical companies 

have been reluctant to invest in biopharmaceuticals. One factor, suggested by Dvorin 

(2001), is that biological drugs need to be delivered intravenously, and hence were not 

seen as being of sufficient commercially value. However recent analysis predicts that 

in the next 10-15 year 50% of new active substances could be biologies and therefore 

pharmaceutical companies need to invest in capabilities to develop and manufacture 

these drugs (Dvorin, 2001).

1.3.2 Research and Development

In order to get any drug to market a significant amount of time and money needs to be 

invested in research and development. Before drugs are able to reach the market they 

have to have clinical proof of their safety and efficacy. The clinical process required 

to bring a drug to the market is shown in figure 1.1. The first stage of this process is 

testing the toxicity of the drugs using animal models. After the safety has been 

assessed, the drugs are tested on health volunteers in Phase I clinical trials to evaluate 

their potential side effects. Finally in Phase II and Phase III clinical trials the drugs are 

tested on patients prove their efficacy. Typically of 2,500 screened compounds only 

250 will enter pre-clinical trials, of which only 5 will ever enter clinical trials and only 

1 will reach the market (Pharmaceutical Industry Profile, 2002).
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The development times for biopharmaceuticals have been generally shorter than those 

for small chemical entities (Werner 1998b). According to Foo et al (2001), the 

average time to market for biopharmaceuticals is around 7.8 years. However, as 

Werner (1998b) point out, this could be in part attributed to the early 

biopharmaceuticals already having clinical proof of concept. Critically recent 

biopharmaceuticals whose mode of action is not understood have shown longer 

development times, between 9-17 years similar to that of chemical entities (Werner, 

1998b). Such long development times mean that the time on the market under patent 

is reduced and potential revenues are lost.

Another important factor is the development cost of drugs. According to Arlington et 

al (1998) the research and development costs per approved drug are between $350m - 

$600m. The PhRMA report estimates the research and development cost per approved 

drug at over $800m (Pharmaceutical Industry Profile, 2002). However, 90% of drugs 

have annual revenues of less than $180m. Hence if the industry is to increase its 

profitability then it will need to find methods of reducing substantially the cost of 

drug research and development (Arlington et al, 1998).

A number of technologies could potentially reduce research and development costs. 

Better drug discovery methodologies should lead to more focused drug discovery to 

reduce the attrition rates in the clinical trial phases. Equally many delays occur during 

clinical trials and better clinical trial procedures could potentially reduce the time to 

market. However, as the next section will demonstrate, better process development 

strategies could have a significant impact on the costs throughout the lifecycle of the 

product.

1.3.3 Manufacturing Process Development

Traditionally process development in the pharmaceutical industry was done at a late 

stage and process modifications were only considered later when the patent life of the 

product was running out and the threat of generic competition had increased. There 

was a good economic logic for this strategy as manufacturing cost were typically less 

than 10% of revenues and inefficient processes would have a limited impact on the 

product's profitability (Pisano and Wheelwright, 1995). However, the cost of
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manufacturing a biologic is typically 20-25% of revenue (Farid, 2002), significantly 

higher than for small chemical entities. Piscano and Wheelwright (1995) showed, 

through analysing a number of case studies, that treating process development as an 

after-thought can lead to delays in the product reaching the market. Such delays can 

lead to the loss of potential revenue, therefore highlight the importance of effective 

process development.

It is difficult to determine the exact impact that process development plays on the 

overall development time. However, according to Foo et al (2001) one o f the critical 

roles of process development in the early phases of drug development is to devise a 

process to manufacture enough product to support the clinical trials. Insufficient 

material for clinical trials can lead to delays in the trials and ultimately delays in 

product launch. Early stage investment in process development can potentially reduce 

the time to market. Karri et al (2001) showed how time spent improving process 

efficiency could improve the productivity of the process, thereby reducing the time 

required to manufacture material for clinical trials. In addition to this, effective 

process development is also advantageous due to the extensive regulation in the 

biotechnology sector.

In contrast to the chemical synthesis of drugs, the cellular synthesis of biological 

products cannot be directly controlled, but only indirectly through environmental 

parameters. As a result small changes in the environmental conditions have a 

significant impact on the quality of the product (Werner, 1994). Before 

biopharmaceuticals are tested on human subjects the manufacturing process needs to 

be validated by the regulatory authority, such as the EMEA in Europe and the FDA in 

America. The validation procedure involves the planning and carrying out of a testing 

procedure to prove a process will constantly produce a product to the predetermined 

specifications. The results of the testing are documented to provide evidence to the 

regulatory agencies that the process is suitable for manufacturing (Baird & De Santes, 

1994).

Any significant process changes after validation would require bioequivalence studies 

to compare the product of the modified process to that of the original process
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(Werner, 1994). As a result, bioprocesses technology gets locked-in at an early phase, 

usually before clinical testing. Ideally any process used in the phase I clinical trials, 

should be suitable for scale-up, otherwise the company could end up with a 

manufacturing process that is difficult to operate at industrial scale (Foo et al, 2001). 

One such example given by Foo et al (2001) is that of Amgen whose process for 

manufacturing Epogen is done in roller bottle cultures, which although economic for 

that particular molecule, would not likely be so for a drug with a lower market value. 

Therefore, effective process development in the early stages of clinical development 

should result in a more efficient and economic manufacturing process that will 

produce better gross margins.

However a recent paper by Byrom (2000) acknowledges that although extensive 

process development at an early stage may reduce the manufacturing costs, it will 

require a large investment in a high-risk project. Ideally process development should 

be done in parallel with clinical development. A methodology for achieving this is 

suggested by Byrom (2000), in which the development was looked at in three stages 

(figure 1.2). The strategy described tries to link the resources invested in process 

development at each stage to the risk of clinical failure.

In conclusion the ultimate aim of process development is to design a robust and 

economic bioprocess within the time and resource constraints available. The next 

section will focus on the design of bioprocesses, with particular reference to unit 

operations that are included in the manufacturing processes examined in this thesis. 

The section following will then highlight new techniques being developed that could 

potentially reduce process development costs and enable more advanced process 

development to be achieved at an earlier stage.

1.4 Bioprocess Design

1.4.1 Introduction

Typically processes for producing bioproducts can be divided into an upstream stage, 

where the product is produced by fermentation, and the downstream stage, used to 

recover and purify the product. When designing a bioprocess an engineer will need to
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develop an effective fermentation process that will produce the product in the quality 

and quantity that is required. They will then need to develop a downstream process to 

obtain the product at the right purity and concentration. Often the downstream process 

will critically depend on how the product is expressed in the upstream stage (Kelley 

and Hatton, 1991).

The basic structure of most downstream flowsheets is set out by Gandikota et al 

(1992). Figure 1.3 shows three basic routes to purify a protein, depending on how it is 

expressed at the fermentation stage: -

1. If the product is extracellular, the cells are separated from the broth, and the 

cell free liquor is then concentrated before the product is purified from it by a 

sequence of high-resolution purification steps and finally by a polishing step.

2. If the product is intracellular and soluble the cells are separated from the broth 

and passed through a cell rupture step to release the intracellular product. 

Initial product recovery step or steps are used to remove key contaminants 

before the concentration, high-resolution purification steps and the polishing 

steps.

3. Finally if the product is intracellular and insoluble then often it will amass 

inside the cell in the form of large aggregates called inclusion bodies. Cell 

rupture is used to release the inclusion bodies from the cells. The inclusion 

bodies are then separated from the intracellular compounds using a physical 

separation technique that takes advantage of their relatively high density and 

size compared to the cell debris. In order to obtain the protein in a useful from, 

the inclusion bodies are then resolublised and a refolding step is used to 

convert the protein into its active form. Finally a concentration step is used 

before the high-resolution purification steps and the polishing step.

The three flowsheets are each based on a sound logic; intracellular products need to 

be released from the cells; proteins in the form of inclusion bodies need to be 

resolublised and refolded to be in a useful form; reducing the amount of feed via
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concentration before the high-resolution purification steps reduces capital cost in such 

steps; finishing on a polishing step ensures the purity of the final product. However, 

the challenge is establishing the appropriate unit operations and their order to 

accomplish these tasks.

In work by Bonnerjea et al (1986), 100 different protein purification processes were 

examined to determine the typically order of unit operations. The work looked at the 

position of each unit operation within a sequence and showed that a typical order of 

unit operations was: -

• Homogenisation -  Cell rupture

• Protein Precipitation - Purification and production concentration

• Ion Exchange - High resolution purification

• Affinity Chromatography - High resolution purification

• Gel Filtration - Polishing

Ultimately the design of a bioprocess needs to consider two fundamental factors, the 

process economics and the reliability of the process. A significant body of work has 

been carried out looking at process economics. Very little work has been carried out 

to look at developing models to determine the reliability of bioprocess. The next 

section looks in greater detail at the bioprocess economics and discusses how factors 

that affect the economics may have a detrimental effect on the process reliability.

1.4.2 Process Economics

Any new bioprocess will require an initial capital investment in process equipment. 

The cost involved will depend on the complexity of the product being manufactured 

and the unit operations required. For example, a complex biological therapeutic is 

likely to involve considerably higher downstream processing costs, due to the high 

level of purity required. This was demonstrated by Datar (1986) who showed that the 

ratio of recovery to fermentation cost was 0.16 for ethanol and 2 for an enzyme. For a 

drug to be profitable it must be able to provide a return on both this investment and 

the research and development costs. The profitability of the drug will depend on the 

throughput per year, the cost of production (or cost of goods) and the value of the end 

product.

Page 21



Introduction and Scope

The costs associated with operating a biopharmaceutical plant can be divided into 

variable costs that are dependant on the amount produced and fixed costs that are 

independent of the amount produced, although as pointed out by Reisman (1999) most 

costs will have a fixed and variable element. Many of the fixed costs such as 

maintenance, insurance and depreciation of capital equipment can be estimated as a 

proportion of the capital investment. Work done by Petrides (1994) and Petrides et al 

(1995, 1996) using the simulation package, Biopro Designer, showed that in the 

insulin production process the fixed costs form the largest proportion of the costs. 

Significant variable costs are waste treatment and disposal, raw materials and 

consumables, such as matrices for chromatography and membranes (Petrides, 1996). 

However, both labour costs and utilities were shown to make up a small proportion of 

the total costs.

In another study Farid et al (2000) developed a cost of goods models for 

biopharmaceutical production using Rethink (Gensym, MA). Here the variable costs 

were computed on the basis of the utilisation of the material, utilities, and staff 

resources and the fixed costs were derived from the capital investment. The model 

was used to compare the costs of producing batches of a high value biopharmaceutical 

with a conventional stainless steel plant or a plastic disposable plant, where the items 

of equipment are thrown away after use. This work showed that disposable equipment 

can be particularly cost effective for carrying out small scale manufacturing for 

clinical trials.

Three methods for increasing the productivity of a bioprocess are: better scheduling of 

unit operations, operating at a larger scale and the development of more efficient 

processes. Better scheduling of unit operations can increase the production rate 

without significantly increasing the operating cost (Petrides et al, 1999; Petrides et al, 

2002). However, better scheduling can sometimes only be achieved by de

bottlenecking by the purchase of additional capital equipment. For example, 

fermentation steps usually take longer than the downstream processing so adding a 

second parallel fermentation train could result in double the utilisation of the 

downstream processing equipment. However in such situations the improvement in

Page 22



Introduction and Scope

the process performance needs to be weighed against the additional investment 

(Petrides, 2002).

Equally increasing the scale of production can dramatically reduce the production cost 

per amount of product. Werner (1998) demonstrated this by showing the cost of 

producing protein in mammalian cell culture was inversely proportion to the scale of 

operation. This was because the large increases in production rate were offset by 

relatively small increases in operating costs. However such an approach will only be 

cost effective, if there is a market for the additional product and will have little value 

for products with a small market. Equally the longer fermentation times associated 

with larger scale production could potentially mean a greater risk of contamination 

particularly for mammalian cell cultures (Werner et al, 1988).

Finally another method is to improve the process design. A typical protein production 

process may require as many as eight steps to obtain the crude enzyme (Wheelwright, 

1991). Subsequent purification based on chromatography may need a significant 

number of additional stages. The effect of these additional stages is to decrease the 

process yield and significantly increase the costs. However as Zhou et al. (1997) 

acknowledge, systematic methods are required to ensure that any process changes will 

not result in a reduction in product quality or process reliability.

One factor that they note will be of particular importance is process interactions. 

Process interactions are where change in the conditions in one unit operation leads a 

change in the output of a later unit operation. These interactions are caused by 

changes in the properties of the process stream that have an impact on the 

performance of later unit operations. In extreme cases such interactions can lead to an 

apparent improvement in the performance of one step but actually reduce the 

efficiency of the whole process.

Equally such interactions can result in small fluctuation in parameters having a 

significant effect of process output making process performance unreliable. Typically 

engineers will want to design reliable processes and hence will be prepared to increase 

capital and operating costs to ensure this. However, greater systematic analysis of
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interactions and uncertainty should enable engineers to make more informed decisions 

and hence reduce the production costs. The next section looks in more detail at 

problems associated with interactions and robustness in bioprocesses.

1.4.3 Interactions and Process Robustness

One of the main sources of interactions and uncertainty in a bioprocess will be the 

fermentation step. This is because the properties of the broth will have an impact the 

how the recovery operations can be performed. For the whole manufacturing process 

to be efficient the fermentation product should be in a form that can be easily purified 

in the downstream processing steps (Datar et al, 1993). Oolman and Liu (1991) give 

the example of a P. chrysogenum fermentation where changes in the morphology 

under different fermentation conditions have a significant impact on the recovery 

steps. It will also affect the amount of product that will be available for purification 

and the form of this product. This was demonstrated by Gregory et al (1996) who 

looked at the production of a number of intracellular enzymes in Saccharomyces 

cervisae.

Fermentation will also be a major source of uncertainty as there is no direct means of 

controlling the processes within the cells. Instead operators have to regulate the cells 

environmental parameters inside the fermentation vessel, such as temperature, oxygen 

supply, carbon source and pH to ensure the cells consistently produce the product 

(Werner and Langlouis-Gau, 1989).

If the product produced by the cell is intracellular then the cell wall will need to be 

ruptured to release the product. The most common method for this is by using a high- 

pressure homogeniser (Middelberg et al, 1992a; Middelberg et al, 1992b; Klenig and 

Middelberg, 1996). In a high-pressure homogeniser, cells are disrupted by forcing the 

cell suspension through an adjustable, restricted orifice valve under high pressure. 

Increasing the pressure and the number of times the cells are passed through the 

homogeniser will increase the release of product. However, it will also result in the cell 

wall being broken into micronised debris. Micronised debris is difficult to separate 

using normal solid/liquid separation methods. If intracellular product is soluble there 

is a trade-off between achieving a high level of recovery of intracellular product and 

removing the debris contaminant (Zhou & Titchener-Hooker, 1999). However, if the
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intracellular product is in the form of inclusion bodies, the inclusion bodies will be 

easier to separate from the debris if the debris is micronised (Wong et al, 1997).

Once a solution has been obtained a step is used to get it in a higher concentration 

before chromatography. The main advantage of using protein enrichment techniques 

is that the scale of subsequent high-resolution operations is significantly reduced, 

thereby providing savings in both capital and operating costs. Commonly used 

enrichment operations include precipitation, extraction and ultrafiltration. Both 

precipitation and extraction utilise differences in protein solubility behaviour as a 

basis for separation. The efficiency of these steps will also be affected by upstream 

processing. One example of this was demonstrated by Zhou et al. (1996) who showed 

how protein solubilities are reduced when debris is present.

The final steps in most bioprocesses are high-resolution chromatography steps. The 

performance of these unit operations will be affected by the feed. Often when 

homogenised solutions are used the solid particle contaminants, particularly cell wall 

material, foul the columns by damaging the matrix and reducing separation efficiency. 

A methodology for experimentally determining the impact of such foulants on the 

performance of chromatography was developed by Hearle et al (1994).

Additionally chromatography will have a significant impact on the process 

economics. The capacity of the column will be proportional to its length; however, 

longer columns will require more matrix and hence cost more. Another approach to 

increase the capacity of the column is to reduce the load speed (Jungbauer and 

Kaltenbrunner, 1991, Ngiam et al, 2001). However this also reduces the productivity 

of the column. Fahmer et al (1998) looked at these trade-offs for a given system and 

determined that the optimum operating conditions for their specific column was a 

relatively short column length with a slow throughput. Equally for both adsorption 

and non-adsorption chromatography the yield will be affected by the elution stage. 

Here, there is a trade-off between purity and yield of product (Ngiam et al, 2001). 

Typically collecting a broad fraction will yield greater amounts of product but of a 

lower purity whereas a narrow fraction will increase the purity at the expense of yield.
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One problem with bioprocess design has been the inability to quantify these effects. 

Currently the only way to investigate such interactions is through pilot scale 

experimentation (Zhou and Titchener-Hooker, 1999). This is because standard 

laboratory equipment does not replicate the performance of industrial scale processes 

(Maybury et al. 2000, Boychyn et al. 2000 and Boychyn et al. 2001). Additionally the 

current generation of bioprocess simulators are unable to accurately predict the 

performance of processes. This is because many of the interactions are not yet well 

understood. The ability to quantify these effects would enable the development of 

accurate whole process models and effective analysis of different strategies on the 

quality of the product.

1.5 Improved Bioprocess Development

In order to design better processes, methods are required for evaluating different 

process options at an early stage of development. This would enable different 

processing options to be evaluated and a reliable and economic manufacturing process 

to be selected. The next section looks at the problems associated with early stage 

process development and potential tools that can be used to help overcome these 

problems.

Currently there is a trade-off in investing resources in process development. If 

resources are allocated to process development at an early stage then there is a real 

chance of improving the efficiency of the manufacturing process and hence the 

profitability of the therapeutic agent. However during early stage development the 

risks associated with the project are high as large numbers of drugs fail. Investing 

process development effort on all early stage drugs, before it is known whether they 

will be clinically effective, would result in a large increase in overall development 

costs.

The critical problem is that there are few tools available for the predictive design of 

processes and for determining the most suitable operating conditions. Traditionally 

most process design in the biopharmaceutical industries has made recourse to existing 

processes and has relied on the use of expensive pilot plant facilities to test new 

designs (Zhou and Titchener-Hooker, 1999). This approach is expensive in both
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resources and time. Increasingly companies are looking for systematic methodologies to 

speed up process development, cut development costs and design bioprocess more 

efficiently.

One approach that has been used in a variety of engineering disciplines is ‘Scale-up’. In 

process engineering small scale laboratory equipment is used to mimic industrial scale 

process. However, one problem that has been traditionally encountered in biochemical 

engineering is that standard laboratory equipment cannot replicate industrial scale 

process equipment. Often laboratory scale equipment cannot be used to analyse the 

impact of shear forces and mixing when scaling up from a laboratory process to an 

industrial process. For example, production scale fermenters will not transfer oxygen to 

a culture as efficiently as laboratory scale fermenters (Titchener-Hooker et al, 2001). 

Equally laboratory centrifuges do will not replicate the shear forces in continuous 

industrial centrifuges and hence cannot be used to emulate the recovery of “delicate” 

biological material (Boychyn et al. 2001).

One methodology that has been examined recently is the use of small experimental 

devices that more accurately replicate the actions of industrial unit operations. This 

approach is more commonly known as ‘scale down’. This emulates the behaviour of 

industrial scale equipment (including the unwanted effects) at a smaller scale, meaning 

that industrial processes can be mimicked using small amounts of material and hence at 

lower cost. This enables processes to be investigated rapidly and at an earlier phase in 

the products development when the project is still risky. A number of ‘scale-down’ 

devices have been developed and more detail on this field is given by Maybury et al. 

(2000), Boychyn et al. (2000), Varga et al (1997) and Boychyn et al. (2001).

Another tool with the potential to aid process development in the biotechnology 

industry is process simulation (Evans and Field, 1988; Gritsis and Titchener-Hooker, 

1989; Petrides et al., 1989; Narodoslawsky, 1991). Unlike in the traditional chemical 

industry, computers are not used extensively in the field of biochemical engineering 

for design and evaluation of processes. One of the main obstacles to a greater use of 

simulation in this area has been the lack of robust, predictive models (Gritsis and 

Titchener-Hooker, 1989). This is due to the complex nature of biochemical systems,
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the lack of available physical property data and poorly understood unit operations. A 

more extensive review of process simulation and computer application in bioprocess 

design is given in the next chapter.

'Scale-down' models offer the potential to extract critical process parameters via 

experimentation. The data from such experiments can then be used to generate 

accurate process models of unit operations that capture key interactions between the 

steps. Such models can ultimately be used to generate simulation of whole processes 

and hence analyse process trade-offs (Titchener-Hooker et al, 2001).

1.6 Aims of Research

The aim of this project is to apply modelling and simulation techniques to the analysis 

and design of a whole bioprocess, which consists of production, recovery and 

purification stages. As previous work focuses more on the individual unit operation, 

this work will take an integrated approach as the interactions between unit operations 

should be taken into consideration in process analysis and design.

The first part of this thesis will look at the development of bioprocess simulation that 

is able to capture interactions between unit operations using models generated from 

‘Scale-down’ experimental data. This will build upon earlier simulation and 

modelling work. This work will look at a number of different packages for developing 

such simulation and analyse their merits.

The second part of this work will develop methods to analyse bioprocess simulations. 

This will look at methods for evaluating the impact of different control variables so 

that process operating strategies can be determined that will fulfil a set of 

predetermined conditions such as minimum acceptable yields of product and 

maximum acceptable levels of purities. This work will also look at methods for 

determining likely performance given uncertainty in both control variables and model 

parameters. The objective here will be to determine operating strategies which will 

offer reliable performance.
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1.7 Summary of the Thesis

The next chapter will look at computer simulation tools that have been developed for 

the chemical industry as well as simulation tools aimed specifically at bioprocess 

engineers. The chapter will examine recent advances in the simulation of uncertainty 

and dynamic processes that could have application for bioprocess engineers.

Chapter 3 will present a bioprocess case study and will look at how the unit operations 

models were developed from information in the literature including the assumptions 

that had to be made and the limitations of the models. The chapter will look at the 

various packages used to simulate the processes, from high-level packages to low- 

level programming languages.

Analysis methods for analysing the simulation outputs will be explored in Chapter 4. 

This chapter will look at how the feasible region is distributed in a multi-dimensional 

space defined by the operating variables. This work will show how this can be used in 

order to analyse the process interactions and potential operating points. This chapter 

will show how different methodologies can be used for evaluating the size of a multi

dimensional feasible region.

Chapter 5 investigates the impact of inaccurate control and inaccuracies in the 

underlying models on the simulation. This will be used to determine operating 

strategies that allow for these inaccuracies and ensure robust process performance. 

The work will seek to determine under what constraints a process design that had 

been feasible can be rendered infeasible by inaccurate control and parameters.

Chapter 6 shows how stochastic simulation techniques can be applied to generate 

probabilistic simulation. The work will then show how the results of such a simulation 

can be analysed to determine which process control strategies are likely to result in 

‘unacceptable’ risk of a constraint being broken and how this should result in the 

selection of more reliable operating strategies. This chapter will also look at how 

stochastic simulations can be used to in conjunction with optimisation techniques to 

look at the trade-off between probability of achieving a constraint and achieving

Page 29



Introduction and Scope

higher yields. The work will show both the potential benefits of using optimisation 

techniques as well as the difficulties of applying them effectively.

Finally the conclusions review the work methods applied in the thesis and examine 

their potential for analysing bioprocesses and determining operating strategies. The 

future work then looks at how these approaches could be improved as well as the need 

for more research examining the development of bioprocess models from 

experimental data.
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Figure 1.1: The clinical process required to bring a drug to the market 

(PhRMA, Pharmaceutical Industry Profile 2002, Chapter 2)
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Figure 1.2: Steps involved in process development

(Bryon (2000), Pharmaceutical Technology Europe, 12, page 54)
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Figure 1.3: A Schematic of Different processing options

(Gandikota et al (1992), Chemical Technology, Vol 12(11), pages 694-695)
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2 Simulation and Modelling

2.1 Abstract

Chapter 1 reviewed the increased pressure to reduce operating costs, which is leading 

to a renewed interest in computer tools for bioprocess design. This chapter looks at 

computer tools that are used for the design of processes with particular focus on tools 

used for simulating flowsheets. The chapter then looks at methods used for analysing 

the results of such simulations.

In the chemical industry, both sequential modular and equation-orientated packages 

have been used for simulating processes. Sequential modular packages have the 

advantage that they can be built with unit operation libraries that can be reused. 

Equation orientated simulator do not usually contain libraries making it difficult to 

reuse models. In contrast with the traditional chemical industry, the biotechnology 

industry has not used simulation as extensively for process analysis. Currently the 

best-known commercial bioprocess simulation package is SuperPro Designer. This is 

a sequential modular simulation with relatively simple built in models that have a 

limited capacity to capture interactions in bioprocesses. Consequently, some academic 

researchers have investigated both the development of more detailed models and the 

implementation of them using generic simulation packages and programming 

languages.

Techniques exist for analysing simulations to obtain useful results. One technique that 

has found application in bioprocess simulation is the so-called “Window of 

Operation”, where a two-dimensional plot is drawn showing a feasible region defined 

by two control variables. By contrast, in the traditional chemical industry the 

technique that is typically used is mathematical optimisation, which in part reflects the 

greater confidence in the underlying models. However, other researchers have 

investigated techniques for determining robust operating points given variations in 

model parameters. One technique commonly applied in a number of areas is Monte 

Carlo integration, which can be used to analyse a multi-dimensional space. Both 

Monte Carlo integration and methods for finding robust operating points
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could potentially be applied to the analysis of multivariable bioprocess simulation to 

determine robust operating points. The application of these approaches is investigated 

in later chapters.

2.2 Introduction

The last chapter demonstrated the need for new tools for developing bioprocesses that 

are both economically viable and can reliably manufacture the desired product. 

Existing strategies for bioprocess development make extensive use of experimentation 

and "rules-of-thumb". Currently the bioprocessing industry is in a situation that is 

similar to the traditional chemical industry during the 1970s (Evans et al, 1988). One 

tool that has the potential to improve process development is process modelling and 

simulation. Modelling can be defined as the mathematical presentation of a process 

and simulation as the use of the model to predict a plant's performance and ultimately 

its economics.

Computer simulation tools have been extensively used for the design of bulk chemical 

manufacturing processes. An overview of its applications in this field is given in 

section 2.3, looking at both existing commercial packages as well as recent 

developments in academia. This section then examines work that has been done on 

bioprocess simulation. Compared to bulk chemical processes less work has been 

carried out into bioprocess simulation because of the complexity of biological 

systems, which often involve many interactions that are not well understood and not 

easily simulated. Finally Section 2.4 looks at the techniques that have been used to 

analyse both chemical and bioprocess simulations in order to determine operating 

points.

2.3 Computer Aided Design in Process Development

2.3.1 Introduction

The key objectives in process design are sizing equipment and determining operating 

conditions to ensure the process will deliver enough of the product with the desired 

specification at an affordable cost. Before the development of computers the design of 

chemical engineering plants used simple strategies to find solutions to specific
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problems. Consequently process design relied heavily on engineering judgement, 

rather than systematic methods (Sargent, 1967).

The use of computer simulation has enabled a more systematic approach to process 

development. By applying process models, that mathematically describe the unit 

operations in the process, mass and energy balances can be calculated over an entire 

process. Over the last four decades, the application of process simulation has been 

examined extensively by both industrial and academic groups.

The advantages that may be realised through using such packages are faster process 

design and improved process efficiency. Increasingly computer simulation is being 

seen by many large chemical companies as a core competency for gaining competitive 

advantage, in an increasingly global market (Kreiger, 1995).

By contrast, the biotechnology industry does not make significant use of simulation 

and carries out process development based on pilot plant experiments (Zhou and 

Titchener-Hooker, 1999), which is both expensive and time-consuming. The industry 

is only just beginning to make use of simulation for process development. According 

to one estimate, bioprocess simulation has the potential to reduce manufacturing costs 

by 10% to 30% by improving process recovery yields (Evans et al, 1988). With 

increasing competitive pressure in the pharmaceutical industry such benefits are likely 

to increase the interest in this technology.

There are, however, a number of fundamental differences between biochemical 

engineering and chemical engineering. These distinctions have an impact on the 

ability of traditional, chemical engineering simulation packages to tackle biochemical 

engineering processes. Evans et al (1988) suggested the three key issues impeding the 

building of a bioprocess simulator are:

• Models of novel unit operations.

• New types of materials and physical properties.

• Integrated batch, semi-batch, semi-continuous and cyclic operations.
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Bioprocesses have many novel unit operations that are not used in traditional 

chemical engineering processes. An example is high-pressure homogenisation for 

rupturing cells. When analogous unit operations do not exist in chemical engineering, 

the bioprocess models tend to be inadequate for simulation. This is because such unit 

operations are often poorly understood and accurate predictive models frequently do 

not exist.

Physical property models and data are essential for the accurate simulation of 

chemical processes. Chemical simulations deal mainly with liquids and vapours. 

However, bioprocess simulations have to handle complex materials such as cells, cell 

debris, precipitates, proteins, and polymers. Ideally each of these biomaterials should 

be characterised according to biological activity, viscosity, partition coefficients, 

solubilities, diffusivity, etc (Evans et al, 1988). However they are difficult to 

characterise and the accuracy of the assays used is often limited.

Finally in biochemical processing, batch, semi-continuous and continuous unit 

operations are often encountered within one process (Gritsis and Titchener-Hooker, 

1989). This is in stark contrast to many bulk chemical processes where each unit 

operation is operated continuously at a steady state. As a result bioprocess simulation 

often requires dynamic models. These differences mean that flowsheeting and design 

packages designed for the chemical industry are unsuitable for the bioprocess 

simulation. Therefore a number of attempts have been made at developing computer 

simulation tools for bioprocesses (Evan et al, 1988; Petrides et al, 1995). The next 

sections look how different types of software packages can be applied in process 

design.

2.3.2 Software in Early Design

The design of both traditional chemical plants and bioprocesses can be split up into 

several stages (Westerberg, 1989)

• Conceptualisation, where the basic premise of the design is focused

• Generation of designs

• Analysis and evaluation of the solutions
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Early-stage process design is a critical step in getting a product to market. In the 

chemical industry process design usually constitutes 10-15% of the cost of generating 

a new product, but choices made at this stage will fix 70-80% of the manufacturing 

cost (Westerberg, 1989). As a result a number of computer tools aimed at automating 

process synthesis have emerged for both chemical processes and bioprocesses. These 

process synthesis packages are able to generate automatically potential process 

designs from specifications set by the user.

In chemical engineering, the most commonly used process synthesis packages are 

based on implicit enumeration. The approach commonly used is to generate a 

superstructure of all the potential process routes, and then formulate an optimisation 

problem to search for the best process flowsheets. By contrast, approaches used for 

bioprocess synthesis are generally based on expert systems and the use of artificial 

intelligence, which in part reflects the limitations in current bioprocess models. A 

number of synthesis tools based on these concepts have been developed by academic 

groups. For example, the approach taken by Gandikota et al (1992) was to use a set of 

rules to determine the appropriate steps in a downstream process (Fig 1.2). A similar 

rules-based approach was also used by Silletti et al, (1992) in BioSep designer. One 

notable exception is the work of Steffan et al, (1999), who chose to extend Jacaranda, 

a numerical process synthesis tool used by the chemical industry, to synthesis 

bioprocesses. However, in their work they used relatively simple models; therefore 

any results are likely to be subject to significant inaccuracy.

In both chemical engineering and biochemical engineering, process synthesis software 

is rarely able to produce detailed or accurate process designs. Typically such 

techniques are used in the early stage of design and then refined later using more 

detailed simulation packages. These are discussed in the next section.

2.3.3 Process Simulation

A significant amount of research has been carried out on the development of process 

simulators. Early work in process simulation looked at traditional continuous chemical 

processes operated at steady state. Early simulators were able to carry out mass and 

energy balances over entire processes. In such simple situations the application of 

simulation enabled engineers to examine multiple "what-if' scenarios and even to
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determine the most effective mode of operation through mathematical optimisation 

(Section 2.4.2).

All process simulations are composed of the flowsheet topology defining the unit 

operations and their connectivity, a physical property database or calculation routines 

and feed stream data. Simulations can either be performance based for calculating the 

performance of a particular process, or design based for determining equipment sizes so 

that the process can meet a set of objectives.

Early research into computer simulation of processes evolved in two distinct 

directions, sequential modular simulation and equation-orientated simulation

(Biegler, 1989). The sequential modular approach breaks down the simulation task 

into discrete modules each describing specific unit operations. By contrast equation 

orientated approaches in their purest form remove the distinction between stream 

connections, the unit operations, and physical property data and focus on solving the 

underlying equations.

In sequential modular simulators, the flowsheet is represented by a collection of 

modules, containing the equations that describe the mass and energy balance 

relationships. This modular nature makes developing new process simulations relatively 

easy and means the packages themselves can be adapted to include new unit operations. 

Consequently, this architecture remains popular amongst current commercial simulators. 

Examples of such commercial simulators are ChemCAD (Chemstations, 1998), ASPEN 

PLUS (Aspen Technology, 1998), and SuperPro Designer (Intelligen, 1999).

In contrast with Equation Orientated simulators, the process model is in the form of 

a set of equations (and inequalities). The process equations are solved simultaneously 

to find a solution within the constraints specified (Pantelides, 1988). Generally 

equation-oriented simulators offer better computational performance for solving 

problems with recycles and process constraints as less time is spent on iterative 

calculations. This improved performance is particularly critical for dynamic 

simulation and carrying out process optimisation (section 2.4.2). Two of the leading 

commercially available equation orientated simulation packages are Aspen Customer
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Modeller (Aspentech, MA), formerly know as SpeedUp and gPROMs (Process 

System Enterprise, UK).

Dynamic simulation enables the examination of process performances that are subject 

to change over time. This is particularly critical when simulating batch processes. 

However, dynamic simulation is also a useful tool for examining continuous 

processes, which typically show time-varying behaviour during start-up, shut down, 

and when subject to set point changes and process disturbances. The demand for 

better dynamic simulation tools has been driven in part by increased concern over 

safety and environmental hazards as well as the re-emergence of batch processing for 

speciality chemicals (Naess et al, 1993). Improvements in computer hardware have 

enabled this subject area to develop significantly. Most industrial bioprocesses are 

batch and therefore dynamic in nature.

The research carried out in dynamic simulation has focused primarily on equation- 

orientated simulation. This is in part due to better computation performance of such 

approaches. It is also because there is such a diverse array of dynamic processes, that 

it would be impossible to generate a complete library of dynamic models (Pantelides 

& Barton, 1993). This limitation removes one of the key benefits of sequential 

modular simulation. The focus of much research has been on packages that enable 

engineers to decouple model formation from the numerical methods that provide the 

solution (Pantelides & Barton, 1993).

The basis of the equation-orientation system is to collect all of the equations 

describing the flowsheet and to solve them as a large system of non-linear differential 

and algebraic equations. This can be expressed mathematically as: -

f {(x ,x ,z ,u ,t)= 0  Equation 2.1

f 2(x ,z,u ,t) = 0, Equation 2.2
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where f i  is the set of differential equations,^ is the set of algebraic relationships, x is 

the set of differential state variables, x is the set of derivatives of the state variables, u 

is the set of algebraic state variables, z  is the set of Control variables and t is time.

Aspen Custom Modeller (Aspentech, MA) provides a comprehensive set o f facilities 

for performing dynamic simulation. The input language enables a complex set of 

differential algebraic equation to be solved including problems with dynamically 

changing control variables (Pantelides, 1988). However, the package is unable to 

model discrete changes that are a consequence of changes within the system (e.g. the 

rupture of a safety valve due to excessive pressure). Clarkson (1994) reported 

convergence problems when modelling a bioprocess made up of a mixture of dynamic 

and steady state models using SPEEDUP, the precursor to Aspen Custom Modeller. 

Such mixed mode operation is common in bioprocesses and therefore this represents a 

significant limitation of this package.

Research has lead to the development of gPROMS, an equation orientated simulation 

package that is able to model processes that are subject to a combination of 

continuous and discrete actions (Barton & Pantelides, 1994; Pantelides & Barton, 

1993). gPROMS also enables the development of simulation using techniques to 

break the model down into sub-components and derive models from existing models 

using inheritance. They argue that such approaches have the capacity to simplify the 

process of building complex dynamic models and enable the reuse of existing models.

Most of the current generation of commercial bioprocess simulators have limited 

dynamic capabilities. This is because they generally have sequential modular 

structure. The sequential modular structure means that they can have predefined 

libraries of unit operation models. This makes them easier to use and enables the rapid 

development of whole process simulations. The next section looks at the commercial 

packages that have been developed for bioprocess simulation.

2.3.4 Bioprocess Simulation Packages

A significant amount of work has been carried out on bioprocess simulation since the 

mid-1980s, driven in part by the commercialisation of the first high-value bioproducts
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(Petrides et al., 1995). BioProcess Simulators™ was the first commercially available 

process simulation tool specifically designed for the biotech industry (Petrides et al., 

1996). The package was an extension of the established chemical process simulator 

ASPEN PLUS and used the infrastructure and facilities provided by ASPEN PLUS. 

BioProcess Simulators ™ was able to carry out mass and energy balances and could 

be used to estimate the size and cost of equipment and economic evaluations of 

processes (Petrides et al., 1996). The utility of the package was demonstrated through 

a published case study showing how it could be applied to the modelling of the 

manufacture of porcine growth hormone from E. coli (Petrides et al., 1989). However, 

a number of chemical engineering characteristics made it difficult to apply Bioprocess 

Simulator to bioprocesses and therefore Aspentech discontinued technical support for 

it in 1998. Since then Aspentech has developed two computer packages suitable for 

the biotechnology industry, Aspen Chromatography and Batch Plus™, which are used 

for simulating chromatography and complex batch processes respectively.

BioPro Designer® was the second commercial bioprocess tool (Petrides et al, 1996). 

This was based on research carried out at MIT. BioPro Designer was then developed 

further by Intelligen, Inc. Petrides et al. (1996) showed that this tool handles material 

and energy balances, equipment sizing and costing, economic evaluation, process 

scheduling and debottlenecking of batch operations. The package has an intuitive user 

interface making it easier to use and faster to learn.

Intelligen recently introduced a new version of their software called SuperPro 

Designer, which also included other packages such as EnviroPro Designer®, for 

design and evaluation of water purification processes and BatchPro, for batch 

chemical production. A description of the architecture of the package is given by 

Petrides (1994). Later publications illustrated the use of BioPro Designer for the 

evaluation of the production of biosynthetic human insulin (BHI) from E. coli 

(Petrides et al., 1996) and the production of a monoclonal antibody (Petrides et al., 

1999).

Aspen Batch Plus and SuperPro Designer were evaluated by an industrial research 

group at Merck (Shanklin et al., 2002). They used both packages to simulate a vaccine
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manufacturing process. From this research, they concluded that Aspen Batch Plus and 

SuperPro Designer can successfully perform specific simulation tasks but cannot 

model of all phenomena occurring within a bioprocess. Nevertheless such packages 

are useful for process management, determining material and energy balances, 

answering scheduling question, and performing economic calculations. However, the 

critical limitation of the software was the inability to predict accurately the impact of 

scale-up and changing the process operating strategy. For such challenges it was 

deemed that more sophisticated models would be required. The next section looks an 

alternative strategy for bioprocess simulation.

2.3.5 Alternative Bioprocess Simulation

Research at UCL has been focused on using the knowledge gained from experimental 

investigations to generate more accurate models able to predict the effects of changes 

in upstream conditions. As the current generation of bioprocess simulators cannot 

easily be extended or adapted to include such models, researchers have built 

bioprocess simulations in scientific programming languages and general-purpose 

simulation packages. Such simulations can then be used for detailed analysis that 

would otherwise be impossible.

The first stage of this work is using experimental data to develop a model. A 

mathematical model describes how a system will perform under a particular set of 

operating conditions. By creating models of unit operations, engineers are able to 

examine process performance and assess the impact of changes on the process without 

having to perform time-consuming experimentation. Model generation typically 

requires considerable effort although this will be dependent on the type of model 

generated.

The simplest models to generate are Empirical models. These models are produced 

simply by finding a relationship between the inputs and outputs usually from 

experimental data. The standard empirical model can be in the form of a correlation, 

however other techniques that can also be used are neural networks (Chen et al, 2001) 

and multivariate statistics (Pate et al, 1999). The advantage of empirical models is that 

the are relatively easy to develop, as they are not based on physical reasoning.
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Theoretical Models are based on a fundamental understanding of the underlying 

physical, chemical and biological process in operation. Such models can often be 

extended to allow for changes in the process as the impact of the underlying 

phenomena are understood. However, true theoretical models often take a greater 

effort to develop. This is particularly true in complex bioprocesses. For example, a 

true theoretical model of a fermentation process would require detailed knowledge of 

the internal kinetics of the cells. Most bioprocess models are therefore semi- 

empirical. Such models require less knowledge of the underlying science and do not 

require detailed understanding of all the physical mechanisms.

Many researchers investigating bioprocess modelling have chosen to focus on specific 

unit operations e.g. fermentation (Pascal at al., 1995, Naroclaslowsky, 1991), or 

chromagraphy (Jungbauer and Kaltenbrunner, 1991). Review of some of these models 

used for common bioprocessing step can be found in Bailey and Ollis (2002). 

However, there are often interactions between unit operations, such that changing the 

conditions in one unit operation leads to a change in the output of a later unit 

operation. This means that models cannot simply look at unit operations in isolation 

and as a result the whole process needs to be modelled to take such interactions into 

consideration. One of the main problems encountered with generating such bioprocess 

models is the collection of experimental data from whole process runs. Traditionally 

such data has been obtained from pilot plant work. However, this approach requires a 

significant investment in terms of both time and money.

More recently there has been significant effort in the development of 'scale down' 

devices that can accurately mimic full-scale process equipment. Such devices enable 

engineers to mimic the results from processes under different combinations of 

experimental conditions. This additional data can be used to generate models of 

bioprocesses that are better able to capture the interactions between unit operations.

In order to obtain value from the models in tasks such as process design, the models 

need to be incorporated into whole process simulations. This enables the impact of the 

entire process to be judged. One limitation of this approach is that the current 

generation of commercially available bioprocess simulation packages cannot be
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extended to include new models. Therefore more generic simulation packages and 

programming languages have to be used in order to develop accurate bioprocess 

simulations.

Early work at UCL used SPEEDUP (AspenTech, MA) a general-purpose simulation 

tool. Its capabilities for dealing with batch operations made it ideal for developing 

bioprocess simulations. Gritsis & Titchener-Hooker (1989) used SPEEDUP for 

modelling ultrafiltration, precipitation and centrifugation in order to determine the 

minimum processing time. Later Clarkson (1994) used SPEEDUP to model 

precipitation and centrifugation steps in the production of alcohol dehydrogenase 

from Saccharomyces cervisae and the production of beta-galactosidase from E. coli. 

However difficulty was experienced simulating processes with both steady state and 

dynamic models (Clarkson, 1994). Such mixed mode operation is common in 

bioprocesses and therefore represents a significant limitation of this package.

More recently specialist-programming packages have been used for developing 

models, in particular MATLAB (Mathworks, MA) and Labview (National 

Instruments, TX). Both packages, whilst requiring skill to program, are very user 

friendly and designed for scientist and engineers to prototype programs. Both 

packages contain multiple built in subroutines for solving dynamic equations and 

producing graphical outputs. This significantly reduces the programming effort. 

Recent work by Varga (1997) used MATLAB and spreadsheets to model recovery of 

a protein-engineered enzyme (pe-ADH).

Simulations have also been developed in Labview, a program primarily designed for 

monitoring and control applications. Labview includes its own graphical 

programming language (G Language) that can be used for developing simulations. 

This programming language also facilitates the design of graphical user interfaces, 

thus enabling simulations to be developed by non-programmers. Labview has been 

used for developing a simulation of the alcohol dehydrogenase process (Zhou et al, 

1997; Zhou and Titchener-Hooker, 1999) and more recently for simulating the 

plasmid gene process.
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This work has shown that with enough experimental data, simulations of bioprocesses 

can be developed. The results generated from such simulations may then be analysed 

to determine operating strategies and evaluate process designs. The next section looks 

at methods for analysing processes and their applicability to the biotechnology sector.

2.4 Process Analysis

2.4.1 "Windows of Operation"

One of the primary reasons for carrying out process simulation is to understand the 

whole process behaviour. The knowledge and the insight gained from running the 

simulation can be used for improved process design. One approach that has been used 

for developing operating strategies for bioprocesses is the so-called "Windows of 

Operation" (Woodley and Titchener-Hooker, 1996). This work defines a "Window of 

Operation" as the region on a graph defined by two process control variables, where 

all the specified performance levels, or constraints, are met. Through visualising this 

region the inter-play, between two control variables and their effect on the capability 

of the process to achieve its objectives, can be examined. The advantage of this 

approach is that it shows all the solutions that satisfy the design requirement rather 

than a unique solution, which maximises or minimises an objective function. 

Therefore an engineer can easily add on or change the requirements without having to 

solve an optimisation problem again. It gives an engineer the scope for decision

making based upon their empirical knowledge about the unit operations and the 

reliability of the underlying models. The other advantage of the visualisation 

approach over traditional optimisation is that it gives insight into the interactions in 

the process and the importance of process trade-off. The ability of "Window of 

Operation" to communicate this information in an intuitive manner is of critical 

importance in an industry where often engineers are in a minority (Titchener-Hooker 

et al, 2001).

However one limitation of this approach is that most bioprocesses have multiple 

control variables. Consequently visualisation of two control variables will not enable 

a process engineer to see all the trade-off between all the other control variables. 

Processes with n control variables will have an n-dimensional feasible region, defined
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as the combinations of set points that meet the process constraints. This can be written 

as: -

where R f r  is the feasible region, g is the set of inequality constraints, d  is the set of 

design variables and c  are the levels of the constraints.

A "Window of Operation" can only be used to represent a two dimensional subset of 

the feasible region. The problem of visualising processes with multiple control 

variables was first encountered by Zhou and Titchener-Hooker (1999), in which they 

applied "Windows of Operation" to visualise the alcohol dehydrogenase process. The 

"Windows of Operation" were only able to highlight the interactions between two 

control variables. In order to look at the interplay between three control variables a 

series of "Windows of Operation" were plotted, where a third control variable was 

changed. This highlighted how trade-offs can exist between multiple control 

variables.

Another technique for analysing multi-dimensional feasible regions was developed by 

Samsatli e t  a l  (2001) in their work looking at batch processes. In this work they used 

a hyper-rectangle inside the feasible region to define the ranges of the control 

variables (z). Typically batch processes are operated manually and therefore subject to 

significant variability in the control. Hence the focus of this research was determining 

a range that can be operated in. The approach uses the geometry of the hyper

rectangle to de-couple each of the control variables to determine a range for each 

control variable such that operating at any point within the ranges defined will result 

in the process meeting its constraints.

These both approaches are in stark contrast to approaches typically used in standard 

chemical engineering simulation. Typically the emphasis is on trying to maximise the 

performance of the process or improve process design to attain better economic 

performance rather than analysing a feasible region. Consequently the focus is often 

on the use of optimisation. This is discussed in greater detail in the next section.

Equation 2.3
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2.4.2 Optimisation

Optimisation is commonly used in traditional chemical process design. Here 

optimisation problems for process design are formulated and algorithms are used to 

determine the best designs or operating strategies according to an objective. Generally 

optimisation can be viewed as improving the economic returns of a process. 

However, non-monetary objectives can also be used e.g. the reduction of the release 

of a pollutant (Edgar et al, 1999). Most commercially available chemical process 

simulators now have built-in optimisation tools.

According to Edgar et al (1999) there are a number of situations in a process where 

optimisation can be very useful. These include: -

• Sales limited by production, where optimisation could lead to higher production.

• Sales limited by market, where optimisation could focus on cutting operating 

costs.

• High raw material or energy consumption, which can be reduced through 

optimisation.

• Losses of valuable components through waste streams and therefore loss of 

potential revenue

• High labour cost, which is often a problem in the biotechnology industry. 

Optimisation can lead to reduced labour requirements and more efficient 

processing.

Most optimisation problems in process engineering have three components: -

• The objective function, which will be maximised or minimised. The objective 

function could be, for example, maximising profit or minimising costs.

• The equality constraints, which include all the mathematical relations for the 

material and energy balances and the physical laws such as rate equations.

• The inequality constraints, which are limits placed on the feasible solutions and 

typically include: material flow limits; equipment operating limits; environmental 

stipulations; safety constraints etc.
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This can be expressed mathematically as: - 

Minimise or maximise: f ohj(d ,z ,x )

Subject to: h(d ,z ,x) = 0

Equation 2.4

Equation 2.5 

Equation 2.6g (d ,z ,x )<  0

where f 0bj is the objective function, h is the set of equality constraints , g  is the set of 

inequality constraints, * are the state variables and z are the control variables.

The simplest type of problem will have a linear objective function and constraints. In 

such a situation the problem can be solved using Linear Programming (LP) techniques 

such as the simplex method. However, most chemical engineering optimisation 

problems will have both a non-linear objective function and constraints. Classically 

such problems are solved by Non-Linear Programming techniques such as Successive 

Linear Programming (SLP), Successive Quadratic Programming (SQP) or 

Generalised Reduced Gradient (GRG) (Edgar et al, 1999).

Both SLP and SQP use Lagrange multipliers to incorporate the equality and inequality 

constraints. SLP solves the problem using first order differentials whereas SQP uses 

second order differentials or quasi-Newton approximations. The GRG method does 

not explicitly use a Lagrange multiplier. Instead it uses the equality constraints to 

reformulate the problem into dependent (basic) and independent variables (non-basic) 

variables. It can also be adapted to deal with inequality constraint by using slack 

variables. The advantage of GRG over SLP and SQP is that the solution is guaranteed 

to be lie within the feasible region (rather than close to it); however GRG can be 

slower to converge.

There are a number of drawbacks to these techniques. The first is they can only 

guarantee global optimal solutions to problems with convex objective functions and 

constraints that form a convex region. This means that for the majority of optimisation 

problems such techniques can only guarantee a local optima. However the main 

disadvantage of all of these techniques is they require knowledge of the derivative. 

When the analytical partial derivative cannot be easily be obtained, approaches 

commonly used are finite different approximation methods or quasi-Newton (secant)
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methods. These methods however are not as robust as similar implementations using 

analytical derivatives (Pantelides, 1988). This is one of the motivators for integrating 

automated algebraic manipulation into SPEEDUP (Pantelides, 1988).

Such approaches can be difficult to implement for sequential modular simulators 

where the simulation can be regarded as a ‘black box’. In such situations the most 

robust approach is often to use direct search methods, which do not calculate 

derivatives but instead determine the search direction based on application of rules or 

heuristics (Biegler and Hughes, 1982). However this is not always efficient.

An example of a heuristic approach is the Nelder-Mead algorithm (Nelder and Mead, 

1965). This algorithm searches for the minimum or maximum point by generating a 

simplex. With each move it determines a new point through a series of expansions, 

reflections and contractions. This has the advantage that it is relatively simple to 

implement and will usually find an optimum point. However the disadvantage of this 

approach is that it can be slow to converge. This method can be extended for dealing 

with constrained problems by using a penalty function. However, a large penalty 

function could lead to an ill-conditioned problem that is difficult to solve. Another 

limitation of the Nelder-Mead technique is that it is a greedy algorithm, meaning that 

it will follow the path that gives the quickest payoff, often finding a local optima 

(Press et al, 2002).

One solution to this problem is to use meta-heuristic optimisation techniques such as 

Simulated Annealing, which have the capacity to find global optima amongst many 

local optimum points. Simulated Annealing is so named because it is based on an 

analogy to the annealing of metals. In most optimisation techniques the optimisation 

routine will look for the best downhill move. However, the simulated annealing 

algorithm also allows uphill moves. The probability of the simulation routine making 

an uphill move will be proportional to the ‘Temperature’ of the optimisation routine. 

As the optimisation progresses the temperature is lowered until eventually only 

downhill moves are allowed. The theory behind this approach is that it will allow the 

routine to ‘escape’ local optima in the early stages of the optimisation. Using the 

analogy o f the annealing of metals, this approach can be regarded as the slow cooling
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of a metal. The other techniques discussed so far are the equivalent o f quenching a 

hot metal.

The technique was first applied by Metropolis et al (1953) who developed the 

techniques for solving combinatorial optimisation problems. More recently a version 

of this algorithm was developed by Press et al (2002) that can be applied to 

continuous space. Their algorithm is an adaptation of the Nelder-Mead algorithm, 

where the values of the vertices of the simplex are modified to reflect the temperature 

in the system. This means that the simplex will occasionally move in the opposite 

direction to the objective function.

This algorithm was used by Cardosa et al (1996), who looked at the application of two 

variants of this algorithm to chemical engineering problems. They concluded that this 

algorithm performed significantly better than a standard simplex search for a variety 

of constrained optimisation problems. In a later paper Cardosa et al (1997) developed 

an adapted version of this algorithm capable of dealing with Mixed Integer Non 

Linear Programming problems.

In bioprocess engineering there has been a reluctance to use modelling and simulation 

tools. Titchener-Hooker et al. (2001) suggested that this might be due to the relative 

infancy of the approach and the lack of accurate models. These factors lead to a lack 

of confidence in the results produced by such approaches. This scepticism is not 

without basis; the optimum point in a constrained optimisation problem is likely to lie 

on the boundary of the feasible region. This means small variations or inaccuracies in 

the process performance will result in the constraint being broken. Furthermore, as 

Edgar et al (1999) point out, the solution generated by optimisation can only be as 

accurate as the model it is based on.

By contrast, “Windows of Operation” provides a visual output, which can be used by 

an engineer to both assess the accuracy of the underlying model and determine a 

robust operating point given the level of variation th.it they would expect. In chemical 

engineering, where simulation is more widely used and accepted, a number of 

approaches have been developed for solving the robustness problem. The next section
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looks at methods that have been applied to evaluating the robustness of processes 

subject to uncertainty. These methodologies enable the engineers to evaluate the 

process and determine optimum designs and operating strategies given the uncertainty 

in the process.

2.4.3 Robustness

There are many reasons why process simulations may not accurately represent process 

behaviour. The models of the unit operations in the process could be based on noisy 

data, making parameter estimations inaccurate. Alternatively the process may be 

subject to variations in the operation conditions that are not accounted for in the 

model. For example the model might not account for seasonal changes in the 

composition of a feed-stock and its impact on process performance.

The performance of a process is determined by the equality constraints, which define 

the mass and energy balances within the process. Most processes are also subject to 

inequality constraints that define limits on the process performance. These equations 

are functions of the design variables, the control variables and the state variables. 

However, if parameters within the process vary, equality and inequality constraints 

will also be functions of the parameter values (0).

h(d, z, x ,0 ) = 0 Equation 2.7

g(d , z, x ,9 )< 0  Equation 2.8

where 6  is the set of parameter values

By assuming that the state variables are determined by the equality constraint 

equation 2.8 can be simplified to: -

x = h(d, z, d)
=> g(d, z, h(d, z, 6 \  Q)< 0 Equation 2.9
=> g (d ,z ,0 )<  0
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where h is the set of function for the state variables (based on the equality constraint)

In situations where parameters can vary, the output of the process will also vary 

meaning the location of the inequality constraint will change. One approach adopted 

in early work was to assume the parameter will vary within a range T, where 

T  = {sfo < 0 < 6V }. Consequently an operating point was considered robust when all

the constraints were met for all the parameter values. As the constraints are written 

with maximum values of zero, an operating point will be robust if the largest (most 

positive) constraint under all the possible parameter values within the range T is less 

than zero. This can be written as: -

m a xm axg '(d ,z ,6 )<  0 Equation 2.10
0eT ie l

where I is the set of inequality constraints { * j l v - , * m a x }  and i m a x  is the number of 

constraints

However with chemical engineering problems this approach leads to conservative 

designs as it assumes that the control variables cannot be adapted to compensate for 

variations in the parameters. Grossmann and Sargent (1978) assumed that the control 

variables could be adjusted in light of a variation in process parameters. They 

proceeded to optimise the design variables on the basis that for any design there must 

be a set of control variables that will result in the constraints being met for any 

combination of parameters. Halemane and Grossmann (1983) showed that this can be 

expressed as: -

V d e  T{3z(Vi e l\g,(d,z,d)<, o])} Equation 2.11

Equation 2.11 states that for all potential values of the uncertain parameters (0) within 

the range T, there must be a set of control variables (z) where all the constraints (g) 

are met. Halemane and Grossmann (1983) then showed that it was equivalent to: -

maxminm ax g id ,z ,6 ) <  0 Equation 2.12
0eT z ie l
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This states that within the worst combination of variable parameters, there must be a 

set of control variables, which ensures that the most positive or 'worst' constraint is 

still satisfied.

Halemane and Grossman (1983) adapted this approach so that it could be used as a 

means to determine the feasibility of a design. The measure of feasibility (\\j) was 

calculated by determining the values of the largest constrained variable under 

different parameter conditions.

y/(d, 6) = min max g t (<d, z, 6) Equation 2.13
z ie l

where y/ is a measure of the feasibility of a design at a given set of parameters

For a design to be feasible under the specified set of the variable parameters (0), \\j 

must be smaller than or equal to zero, as values greater than zero would mean that at 

least one of the constraints had been broken. Generally the lower (more negative) 

values o f v|/ correspond to more combinations o f control variables that result in 

feasible process performance. However, feasibility studies do not directly address the 

issue of robustness.

This work was later built upon by Swaney and Grossman (1985) who looked at the 

flexibility of a design. They started by examining the region of flexibility defined as 

the combinations o f variable parameters where control settings exist that result in the 

constraints being met. (See Figure 2.1): -

Within the region of flexibility lies a hyper-rectangle {Tjiex) (see figure 2.1). The use 

of the hyper-rectangle enables each of the parameters to be decoupled and be defined 

as having upper and lower limits within which the process constraints can be met: -

Equation 2.14
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T)kx= ^ \ e L < 9 < 9 U) Equation 2.15

Such that: Tfex <= R/kx Equation 2.16

where Rjjex is the Flexible Region and Tjjex is a hyper-rectangle in the flexible region

The size of the hyper-rectangle is calculated by evaluating the allowable deviation 

within each parameter from a nominal fixed set of parameters (0 n ). This approach 

differs from earlier work on robustness as the ranges of the parameters are calculated 

from the constraints rather than being fixed. The flexibility of the design to cope with 

changes in the parameter values can then be calculated from the size of the largest 

hyper-rectangle within the constraints. This can be expressed as: -

JFiex “  max $  Equation 2.17

where f n ex is a measure of the flexibility of the process, On is the nominal set of 

parameter values, A (f~  and AO are vectors of expected parameter deviations and c) is 

the scaled parameter deviation.

This approach provides a useful indicator on the ability of processes to cope with 

variations of different combinations of parameter values and gives ranges for each of 

the parameters. However the approach can only be applied by engineers with a good 

understanding of the significance of the each of parameters.

If the uncertain variables can be assigned a probability distribution then the expected 

values and the variance can be calculated for the process outputs: -

Subject to: max m in m a x g ^ J ,^ ,# )^  0
6eT{s)  z ie l

Equation 2.18

Equation 2.19

Page 55



Simulation and Modelling

y  = E@{fu)= \ f u{d) j{d)de  Equation 2.20
©

= Eely-yf\

where y  is the expected or average value, Ee(f) is the expectancy function, f u(0) is the 

function defining process performance, subject to uncertainty, j(0) is the joint 

probability density function for the uncertain parameters and 0  represents the entire 

parameter space.

This can be used to generate optimisation problems based on the expectancy function. 

It also enables the formulation of constraints based on the statistical moments. 

Bemando et al. (2001) suggest a number of possible constraints such as constraints on 

the variation in a process and the expected value. Additionally, constraints can also be 

generated to reflect the probability of a constraint being broken: -

y  + O -1 (y)ery < 0 Equation 2.21

where y is the desired probability for a parameter and ® ■' is the inverse normal 

distribution.

Using such techniques enables the user to determine an optimum point given an 

‘acceptable’ risk of the constraints being broken. In many respects this reflects the 

situation in biochemical engineering where the objective, when selecting control 

variables, will be to maximise the productivity whilst ensuring critical quality 

constraints are met. However, one limitation of this approach is that it assumes the 

output variable will be approximately normally distributed.

2.4.4 Multi-Dimensional Integration

In order to carry the type of analysis proposed in the previous section, techniques are 

required to evaluate multi-dimensional integrals. A number of algorithms exist for 

evaluating such integrals and many have been applied to chemical engineering 

problems. One approach that is commonly used is quadrature. In this approach the
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integration of each dimension is solved separately. In a case with two dimensions this 

would mean calculating the integral of one of the variables and then using the return 

values from this function as the basis for the integration with the second variable.

The work by Bernando et al (2001) uses Gaussian quadrature. In such an approach the 

algorithm determines the integral by determining both the position of the interior 

points and their relative weights. This can give significantly improved performance 

particularly if the integrand is the product of two polynomials (Press et al, 2002). 

However, the limitation of this approach is that generally the number of points that 

need evaluation will increase exponentially with the number of dimensions in the 

problem (Bernando et al, 2001).

An alternative strategy is to use Monte Carlo integration, which is based on sampling. 

If a complex shape is known to reside in a multi-dimensional space then the size of 

the shape can be estimated by selecting random points in this space and determining 

whether these points lie within the shape. The advantage of this approach is that it can 

easily be applied to complex regions defined by mathematical formulae that cannot be 

integrated analytically. Additionally the sampling technique can be adapted to reflect 

specific properties of the integral by choosing more sample points in a region that is 

likely to be of more importance.

An example o f such an approach is demonstrated by Press et al (2002). This shows 

how Monte Carlo integration can be used to calculate the size of a region of a 

truncated torus. They then showed how a theoretical weight can be calculated given a 

variation of density in the object by skewing the sample set to denser regions that are 

likely to have a greater impact on the overall weight.

In integration problems such as the one described in Equation 2.20, the distribution of 

the uncertain parameters will be known. Hence the sampling set can be skewed to 

sample from the parameters that are more likely to occur. For normally distributed 

variables this can be achieved using the Box-Muller technique, which calculates 

random normally distributed variables (Press et al, 2002), or an inverse normal 

distribution function (Acklam, 1999).
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In theory, the Monte Carlo technique is completely scaleable with increasing 

dimensions as the number of sampling points could stay constant. In practice, the 

error on such a calculation is given by: -

err = ~^= Equation 2.22
yjm

where o is the variance, and m is the number of sampling points.

Consequently in order to obtain increased accuracy a larger number of simulations is 

required. As equation 2.22 shows, increasing the number of samples (m) will decrease
i yn

the error by m' . The error also has an impact of the scalability of the technique with 

a larger number of dimensions. This is because increased variance would be expected 

when a larger number of dimensions is used.

Another mechanism that has been reported in the literature is the use of quasi-random 

numbers in Monte Carlo simulations. Unlike ‘true’ random numbers, quasi-random 

numbers are generated to fill uniformly a multi-dimension cube. An example of such 

a sequence is the Sobol algorithm. A description of this algorithm and its performance 

is given by Bratley and Fox (1988). The advantage of this approach is that the error of 

the integral is proportional to log(m)/m, meaning that more accurate estimates of a 

feasible region are obtained for less computational effort.

2.4.5 Application to Bioprocesses

Classical optimisation would not be suitable for analysing biochemical engineering 

processes due to the limitations in both the models and the process control. However, 

even robust optimisation techniques are not particular useful for analysing the nature 

of the interactions in a process as they do not yield an intuitive output. The focus of 

the work reported in this thesis will be to study the use of using such techniques in 

conjunction with visualisation tools to determine more intuitive means for analysing 

bioprocess performance.
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The next chapter looks in more detail at simulation development, including the use of 

different programming packages. A case study will be used as the basis for the work 

and is built upon an extension of that used by Zhou et al (1997) with a fermentation 

model included so as to provide a complete sequence for analysis.
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Figure 2.1: Maximum scaled hyper-rectangle within the feasible region 

(Swaney and Grossmann, 1985).
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3 Bioprocess Case Study and Simulation 

Development

3.1 Abstract

This chapter looks at the development of a bioprocess simulation as the basis for an 

investigation into methods for determining bioprocess operating strategies. The 

objectives of the work were to develop a simulation, using an appropriate platform, 

capable of capturing process interactions and based on models in the literature. A 

secondary objective was to design the simulation so that it could be easily maintained.

Simulations were built using four platforms: SuperPro Designer, Labview, Matlab and 

C++. SuperPro Designer was the simplest to use but was unable to capture the 

interaction between the unit operations. Consequently the focus was directed to more 

generic programming languages such as Matlab and C++. O f these Matlab had the 

advantage of being simpler to use whereas C++ offered certain performance 

advantages.

Another consideration was the architecture of the simulation. In this work, modules 

were built for each unit operation and a common data structure was defined to hold all 

data on the material flowing between the unit operations. In Matlab and Labview the 

unit operations are defined using a series of functions for each unit operation whereas 

in C++ this was done using objected orientated design.

In order to build an accurate whole bioprocess simulation, it was necessary for new 

models to be generated. A fermentation model was built and a first-order degradation 

model was included to predict the impact of proteolytic enzymes on the product. The 

chapter concludes with an examination of the results that can be obtained through 

such simulations and highlights the need for improved forms of data visualisation in 

order to capture fully the insights contained within such datasets.
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3.2 Introduction

The process of developing a simulation model will be heavily dependent on both the 

objectives of the simulation and the resources available. Simulations can be used to 

solve many different processing problems. In this work the objective is to understand 

the impact of interactions in processes and how they will affect the selection of an 

operating point in terms of the ability to achieve predefined performance metrics i.e. 

productivity, yield, etc.

Previous bioprocess simulation work has looked at two different approaches. These 

were using bioprocess simulation software or producing bioprocess simulations using 

programming languages and generic simulation tools. Bioprocess simulation packages 

have the advantage of ease of use. This is often advantageous if an organisation does 

not have programming skills or time and resources to develop such a skill set. 

However, as reported by Shankin et al (1999) such simulations are less suited for 

accurate simulation.

Bioprocess simulations can be developed using programming languages and gerneric 

simulation packages. Such approaches enable the use of unit operations models that 

can capture process interactions (Clarkson et al. 1993; Bulmer et al. 1996; Zhou et al, 

1997; Zhou and Titchener-Hooker, 1999). This is because these packages give 

developers the freedom to develop the simulation in the way they want. However, 

such packages often require either expert knowledge or time to master and many 

organisations may not have resources available for this. Additionally, simulations 

developed in such packages need to be designed and implemented in such a manner 

than they can be easily adapted or modified by other users.

In this chapter, a number of different approaches for developing a simulation for a 

typical bioprocess are examined. The aim was to obtain a simulation using available 

knowledge to predict the interactions between control variables. The next section 

looks in more detail at the process selected as the case study. Section 3.4 looks at the 

merits of different simulation packages and languages and section 3.5 examines how 

to ensure the resulting model can be maintained. Section 3.6 looks at some of the 

additional model development work carried out in the course of this PhD.
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3.3 Case Study

The process that was selected as the case study was based on the use of a yeast to 

produce alcohol dehydrogenase. Its production features many manufacturing 

problems typically associated with labile intracellular enzymes, making it a good 

model system. Extensive work has already been carried out on unit operations 

comprising the alcohol dehydrogenase process. The process that was simulated is 

shown in Figure 3.1.

The process starts with 100L fed-batch fermentation of Saccharomyces cervisae. The 

fermentation follows the protocol described by Gregory et al (1996). The fermentation 

finishes when the fermenter reaches its full working volume, in this case 70L. After 

the fermentation finishes it was assumed that enzyme product was subject to first 

order degradation caused by the action of proteolytic enzymes. This is a major reason 

why processing has to be rapid in order not to sacrifice yields.

The broth from the fermentation then passes directly from the fermenter into a 

centrifuge. The simulation was based upon a disk-stack centrifuge (CSA1, Westfalia) 

with an equivalent settling area of 1465m2 calculated using Stokes law. Previous 

work by Bulmer et al. (1996), Clarkson (1994) and Clarkson et al (1996) has shown 

that the performance of the centrifuge can be modelled using the grade-efficiency 

model. Details of this approach are described in Appendix A.

The cell paste from the centrifugation step is then moved into a storage vessel. It is 

then re-suspended by mixing it with buffer solution at a concentration to 450g/L. This 

solution is passed through a homogeniser, which ruptures the cells releasing product 

and producing cell debris contaminant. Previous work has shown that homogeniser 

operation affects both the release of product and the properties of the cell debris 

(Hetherington et al, 1971; Siddiqi 1996).

The resulting homogenate is then passed into a vessel where it is re-suspended using a 

buffer. This is then put into second disk stack centrifuge modelled using the same 

approach as described previously. The objective of this centrifuge is to remove the
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cell debris. The efficiency of this process will depend on the properties of the 

homogenate. Efficient debris removal is a pre-requisite for later purification steps.

After these steps the volume of product is reduced using two-step precipitation before 

the ion-exchange and gel-filtration steps. These latter steps were not included in the 

simulation as there was limited information on their performance to model them 

successfully.

A simulation of the process had already been developed in Labview (Texas 

Instruments, TX), a package used for laboratory automation and basic calculations 

(Zhou et al, 1997; Zhou & Titchener-Hooker, 1999). However there were a number of 

limitations in the package, the architecture of the simulation as well as the underlying 

models used in this simulation. Consequently a specific simulation was built for this 

work with new models to capture more of the process and better architecture to enable 

future editing. The remainder of this chapter looks at the packages used, simulation 

design and additional modelling work carried out to develop the overall process 

simulation.

3.4 Simulation Packages and Languages

3.4.1 Introduction

When building a simulation the first problem is to determine which package is most 

suitable for solving the problem. Ideally a package needs to be easy to use. This 

serves two critical purposes. An easy to use package will cut down the time to 

produce a model as well as enabling the model to be passed on to other users. 

However, often ease of use comes at the expense of the flexibility necessary to adapt a 

simulation to fit an exact set of requirements.

The package used previously, Labview, had a number of limitations and therefore it 

may not be the best choice of package for such simulation development. These 

limitations are discussed in greater detail later in this section. As a result of these 

limitations, simulations were built in a number of different packages using a range of 

simulation languages, including specialised bioprocess simulation tools, and 

fundamental programming languages. This section looks at the relative merits of the
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different approaches that were used, explaining both their advantages and drawbacks. 

The section finally looks at the development work carried out for this thesis.

3.4.2 SuperPro Designer

Probably the simplest method for producing a bioprocess simulation is to use 

SuperPro Designer (Petrides, 1994; Petrides et al., 1995; Petrides et al., 1996). This 

commercial package offers a relatively intuitive graphical user interface. The package 

enables the user to select the unit operations they wish to include in a simulation from 

menus as well as the materials they are using for the mass balance. This enables the 

user to generate a simple flowsheet of the process.

After this is completed the user can select the parameters for each of the items of 

equipment and run a mass balance. The mass balance is carried out using a series of 

built in models for each of the items of equipment. Additionally, the package can also 

be used to perform relatively simple scheduling and basic economic calculations. 

[Both of these are outside the scope of the current study.]

However the big disadvantage of this package is that there is no easy method to 

extend it to incorporate more sophisticated models of unit operations. For example, 

the model used for homogenisation does not incorporate any analysis o f the size 

distribution of the debris. Instead it assumes the debris will have a fixed size, which 

needs to be defined by the user. Consequently the model is unable to give a realistic 

assessment of how well the debris removal centrifuge will work as the feed input 

changes with the homogenisation conditions selected. In addition, work by Siddiqi et 

al (1995) and Siddiqi (1996) showed that fermentation conditions would have a major 

effect on cell wall size and strength. The current set o f models in Superpro Designer is 

unable to take such factors into account. To incorporate new models would involve 

either reverse engineering the product or obtaining the source code. This is 

impractical and consequently SuperPro Designer was deemed to be an unsuitable 

package for this work, principally because of its limited flexibility and adaptability.

3.4.3 Labview

The main focus of the package is connecting measuring and control devices to a PC to 

automate experimentation and to enable a user to log data from such experiments
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(Labview Starter Guide). Labview has the advantage in that the programming is done 

through a graphical interface and therefore it does not require a high-level o f skill to 

program. Each variable is represented by a wire and a series of blocks can be used to 

represent mathematical operations such as addition or subtraction. The other 

advantage of this package is that the programming interface automatically generates a 

graphical user interface. This means a relatively inexperienced user can build a simple 

application that is easy to use. The interface that is built can then be adjusted and 

configured by the developer.

However, the main problem with this package is actually the graphical programming 

language. When handling a large number of variables the resultant visual presentation 

of the model rapidly becomes complex and can get very confusing very quickly, 

particularly if the code is not structured well to start with.

3.4.4 Matlab

Matlab (Mathworks, MA) is a language primarily designed for engineers and 

scientists to develop and prototype simulations. In Matlab the user creates a text file 

containing the basic Matlab script that they wish to run. The code in the text file is 

interpreted by the Matlab engine at runtime. The advantage of such a text file is that it 

is easier to analyse such code than the diagrams produced in Labview. Additionally 

the Matlab package also contains extensive debugging tools that allow the code to be 

stepped through to spot errors.

Matlab is based around matrices and has built in functions for matrix arithmetic. This 

makes programming linear systems very simple. Additionally it also contains a 

number of easy to use visualisation functions for analysing the results of the 

simulation. The power of Matlab can be extended by using a series of toolboxes, 

which provide additional functions for solving specific problems (e.g. the Neural 

Network Toolbox and the optimisation toolbox).

One disadvantage of Matlab is that it does not lend itself particularly well to object- 

orientated programming. Although there are some basic capabilities in this area they 

are not particularly easy to use. This makes it hard to develop a simple modular
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architecture. The main disadvantage o f Matlab is that it can be quite slow, 

particularly when dealing with code that contains loops. One way of avoiding the 

generation of inefficient and slow code in Matlab is to replace loops with matrix 

calculations where possible. However when modelling non-linear systems this is not 

always possible.

3.4.5 C++

C++ is a modification of the C language to allow for object-orientated programming. 

C++ on first appearance would appear to solve some of the problems with Matlab. It 

can be used for object-orientated programming and therefore it is possible to develop 

a simple modular structure. Equally this work used Visual Studio 6 (Microsoft, WA) 

that includes an Integrated Development Environment which offers a number of 

features that make it easy to analyse the code.

Additionally, as it is a relatively low-level compiled language, faster performance 

would be expected from C++ than a language such as Matlab, which relies on an 

interpreter. However, the disadvantage of this is that C++ code can be harder to write 

and therefore requires a greater level of expertise. Another limitation of C++ when 

compared to Matlab is that it is difficult to visualise the results using a graph. To do 

so would require the simulation to be linked to a suitable graphical library. This would 

mean either finding a suitable graphical library or developing one, neither o f which is 

a trivial challenge.

3.4.6 Development of the Simulations

Initially a new simulation was built in Labview. The objective of this was to remove 

some of the problems with the previous implementation through a more coherent 

design. This ensured that the simulation could be amended and updated later to allow 

for the impact of variation. Although a better design was able to reduce some of the 

confusion associated with the previous implementation, the resulting code was still 

difficult to understand.
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A simulation was then developed in Matlab. This had the advantage that the code was 

stored in a series of text files that could be easily examined. In order to optimise the 

code a number of calculations were carried out using matrices. However, in the 

bioprocess used for the case study, there are many non-linear equations making it 

difficult to do many calculations using matrices. Moreover, much of the work carried 

out in this thesis relies on running the simulations many times within a high level 

program. Such repeat simulations need to be carried out using a loop, which is slow 

and results in a long runtime.

Consequently another simulation was developed in C++. The idea was to develop a 

simulation with a faster runtime enabling more advanced analysis. In order to 

compare the speeds of the two simulations they were each run 10,000 times using 

random numbers for the control variables. The tests were run on a laptop with a 

2.66GHz Pentium 4 processor running Windows XP. The results for the simulations 

were: -

• C++ simulation - approx. 20secs

• Matlab simulation - approx. 90secs.

This indicated that the C++ was capable of fast performance, however, this was still 

slower than required for later analysis. Further analysis revealed that the slowest step 

in the C++ simulation was the code used to calculate the amount of solids collected by 

the centrifuge. The proportion of solids removed is calculated using the equation 3.1 

below: -

where Fss is the amount of solid being collected in the sediment, X the particle size, 

A,pu is the largest particle size, x(Xp)  is the solid of size (Xp) collected according to the 

grade-efficiency model and (p(X) is the distribution density of solids of a particular 

size.

Equation 3.1
0
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In the Matlab simulation this calculation was done using vectors. By contrast there is 

no mechanism for handling vectors in the basic C++ language. Consequently the 

calculation was done using a ‘for’ loop. In order to speed up the C++ simulation, the 

integral in Equation 3.1 was evaluated using an algorithm demonstrated by Press et al 

(2002). The algorithm evaluates the integral by: -

• Calculating the integrated function at a series of evenly spaced points.

• Uses these values to calculate an approximate value of the integral.

• Determines the mid points between the previous sets of points.

• Uses these values in conjunction with the previous estimate of the integral to 

calculate a new estimate of the integral.

• It continues these steps until the difference between the two previous 

estimates of the integral is small.

In this work the integration was treated as having converged when the relative 

difference between two successive evaluations was <0.1%. This procedure cut the 

simulation time significantly. This version of the simulation was tested, by calling the 

simulation 10,000 times; the time taken could not be measured as it was so short. 

Consequently a second test was performed using 100,000 points and this took 12secs.

In theory, reducing the number of points should also speed up the Matlab simulation. 

However the specific approach suggested by Press et al (2002) will not result in faster 

Matlab code. This is because the algorithm uses a loop and generally in Matlab 

vectors should be used instead of loops in order to attain optimal performance (Matlab 

User Guide, 2000). To investigate this further a second test was run using a modified 

version of the Matlab code with the number of elements in the vector reduced by a 

factor of twenty. However, interestingly when the test was performed the code ran at 

the same speed as the previous version of the Matlab simulation (90secs to complete 

10,000 simulations). This result indicates that there is internal logic in Matlab that 

means that the processing speed is not directly proportional to number of instructions 

contained in the code.

As well as differences in the approaches used for the underlying calculations, the 

different languages needed different approaches to the design and architecture of the
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simulation. The next section describes in more detail the architecture of each 

simulation.

3.5 Simulation Architecture

3.5.1 Introduction

In this work, a sequential modular simulation was built since this allows the 

complexity of each of the unit operation to be contained in discrete modules. One of 

the main challenges when developing such a simulation is to write the code in such a 

manner that it can easily be adapted and developed further at a later date and ideally 

by another user. The key to this is designing the code in such a way that it can be 

easily extended. This is typically done by breaking code down into logical units using 

data structures, functions and classes.

The simulation developed by Zhou and Titchener-Hooker (1999) was also sequential 

modular in nature. However, the simulation was simply a collection of procedures 

linked by variables and the code was not structured into logical units that 

corresponded to the unit operations. Equally, the inputs to the procedures were not 

always logical. For example, a procedure used to calculate the output of the 

homogeniser took the fermentation growth rate as an input. This made understanding 

the simulation difficult and meant that it could not easily be extended to incorporate 

additional unit operations or even adjust existing operations.

In this PhD the streams were modelled using a complex data structure designed to 

hold all the parameters that defined the properties of the liquid flowing from one unit 

operation to the next. [Details of the data held in these streams are given in the next 

section.]

Two different approaches were then used to model each of the unit operations. For the 

Labview and Matlab simulations the approach used was to define each unit operation 

as functions. The C++ simulation used classes to represent each of the unit operations. 

More details of this object-orientated approach are given in section 3.5.3.
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3.5.2 Modelling the Streams

Details on the process streams were held in complex data structures containing the 

necessary information on the material flows and physical properties of the streams 

generated in the preceding unit operation. These were used throughout the simulation. 

A common stream data structure simplified the programming, since a universal data 

structure was passed between unit operation rather than sets of unstructured data. The 

resulting code was easier to understand. As the same data structure was used for each 

stream throughout the simulation, unit operation modules could also be re-used 

whenever a unit operation occurs more than once in a process.

In bioprocesses, components can exist in multiple phases. For example a protein can 

be intracellular, in aqueous solution, in organic solution or in a solid precipitant phase. 

This is analogous to bulk chemical processes where volatile components can often be 

in either liquid or vapour phases. The phase that a component is in will have an effect 

on how it is processed by a particular unit operation. For example a protein precipitate 

can be collected by a centrifuge whereas proteins in solution cannot. To capture this 

information, the stream data structure contained a series of component structures 

storing information on each component as follows: -

• intracellular phase

• precipitant phase

• total (in all phases)

• concentration of each component

The stream did not include a separate field for components in the aqueous phase and 

consequently all components are assumed to be in this phase by default. In the alcohol 

dehydrogenase simulation, five components were tracked through the processes; 

alcohol dehydrogenase (units), total protein (g), nucleic acids (g), cell wall/ cell debris 

(g) and whole cells (g). In the actual process there will be many more components 

present, however, these components provide an adequate description of the process.

The remaining fields in the stream structure store the physical properties of the stream 

and its contents. The physical properties of the stream may determine how later unit 

operations will perform. For example, increased viscosity will hinder a later
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centrifuge separation step. The physical properties are often the underlying cause of 

interactions between unit operations. The following fields were included in the stream 

definition to characterise different aspects of the streams physical properties: -

• liquid properties -  containing viscosity and density of the liquid phase.

• solid properties -  storing average size and size distribution of the particles, the

concentration and density of the particles.

• other properties -  holding details such as cell wall strength and protein

degradation rate.

Finally the streams also contained details of the volume of material per batch and the 

time spent to get to that point in the process. A summary of the structure of the stream 

data is given in Table 3.1, which shows the fields used in the data structure and the 

data stored within each of the fields.

3.5.3 The Unit Operations

Both Labview and Matlab have only a limited capacity for object-orientated coding. 

Therefore a series of functions were defined for each of the unit operations. These 

functions were designed to take the control variables and the input stream as 

arguments and generate output streams.

There are many drawbacks to this approach. In particular, functions that take multiple 

parameters can become difficult to use, as there is a danger that parameters will be 

entered in the wrong order. Equally, related functions cannot easily be grouped 

together to use a common set of data.

Such problems can be solved using object orientated programming. Object-orientated 

programming allows a programmer to define a class, which describes the data and 

functions associated with an object. The class definition is used as a template for 

creating objects. For example, a fermentation class could be created and used to create 

two fermentation objects. These objects could be the same or could have different 

properties (e.g. different growth rates).
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There are many advantages to this approach. It means that all the data associated with 

one item can be stored with the functions associated with them. For example, an 

object can be used to store the necessary parameters for a particular unit operation 

thus ensuring that it is not necessary to pass these parameters as a long list of 

arguments into a function. Equally, functions may be grouped together in a logical 

fashion, hiding functions that will not be needed elsewhere and enabling functions to 

work with the data stored in the object.

The C++ simulation had an object-orientated structure with classes defined for each 

unit operation. Each unit operation class was designed to store the control variables 

and have accessor functions so that these values could be updated. Additionally they 

store the memory address of their respective input and output streams.

3.6 Model Development

3.6.1 Introduction

The utility of a simulation for analysing a process will depend on the level of detail 

within the models. At the simplest level stoichiometric models can be used to generate 

mass balance predictions based on simple assumptions. Such models have the 

advantage that they are simple to develop. Typically however such models are not 

suitable for detailed analysis. More detailed models based on theory and observations 

have the advantage that they can be used for much more detailed analysis. The 

drawback is that they will require more time and effort to develop.

The alcohol dehydrogenase process used as the case study in this work has been 

studied previously. The earlier work of Titchener-Hooker and Zhou, 1999 did not 

include a fermentation simulation. Instead a lookup table was used that simply stored 

values taken directly from experimental work. Equally the simulation did not 

incorporate the degradation of the alcohol dehydrogenase caused by the presence of 

proteolytic enzymes in the yeast. In order to achieve a better simulation, new models 

were developed. The next section gives details on these models, the sources used and
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assumptions that were made. Details on these and other models used in the new 

process simulation are given in Appendix A.

3.6.2 Fermentation

The fermentation model was designed to capture the pertinent aspects of cell growth, 

product formation, as well as the properties of the cells. Of particular interest in this 

simulation were cell size and cell wall strength. Previous experimental work had 

shown that growth rate has a significant impact on the cell properties of 

Saccharomyces cerevisae (Siddiqi et al, 1995) as well as the expression levels of 

different intracellular proteins (Gregory et al, 1996). Growth rate will affect the 

fermentation time, which has a critical impact on the production rate and process 

economics.

In this work a fermentation model was developed based on the experimental protocol 

described by Gregory et al (1994). In this work the feeding strategy used was based 

on the Wang-Cooney model (Wang et al, 1979), in which the feed rate is 

exponentially increased so as to ensure a constant growth rate (Equation 3.2): -

fiCx V juCx0V0̂  ^  „
Qjed = - Y g = —— ----- £ Equation 3.2

N x / .v N x / .v

where Qfed is the feed rate (L/hr), e is the respiratory quotient, Cn is the 

concentration of substrate (g/L), Cx is the concentration of biomass (g/L), Cxo is the 

initial concentration of biomass (g/L), Yx/S is the yield of biomass on substrate (g/g), V 

is the Volume in the fermenter (L), Vo is the initial volume in the fermenter (L) and 

jj. is the Growth rate (h '1)

From previous chemostat experimentation, the yield of biomass on substrate for 

Saccharomyces cerevisae was found to vary with growth rate (Gregory et al, 1996). 

Growth rates greater than 0.2h"' resulted in a significant drop in yield. This was 

attributed to a switch to oxido-reductive growth when placed in a glucose rich 

environment. A correlation was developed in this work to capture the drop in the yield 

(Equation 3.3). The correlation included a hyperbolic tangent term to capture the
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transition to oxido-reductive growth. The correlation’s coefficients were calculated 

using a Matlab program using the Nelder-Meld simplex algorithm:

Yxs = 0 .3 6 0 8 -0 .0 7 4 2 //-0 .4471//2 -0 .144tanh(l07.65(//-  0.2005))

Equation 3.3

Equations 3.2 and 3.3 enable the feed rate to be calculated for a range o f different 

fermentation growth rates. This in turn can be used to calculate the volume of liquid 

present in the fermenter at any given time if it is assumed that the fermentation will 

proceed until the vessel reaches its full working volume. The fermentation time can 

be calculated as below: -

t = — In 
M

f  f  v  \  v  r  ^I X/S'^N + j
V, C vnR

Equation 3.4
VV o j  xq y

This shows that the time taken is inversely proportional to the growth rate. However, 

both the growth rate and time will affect the level of biomass production. Hence 

equation 3.5 can be formed using the equation above: -

Y CP  _ 1 x is '-n
X f  ~

f  V ^ 
1--12-

v, j

+ Equation 3.5
v f

In addition to the amount of biomass, the simulation also needed to consider other 

factors. These include the amount of various components in the cells and the physical 

properties of the stream. Previous work by Gregory et al (1996) and Siddiqi (1996) 

examined the impact of growth rates on enzyme expression and cell properties. In 

most cases it was found that the there was a transition when the cells entered oxido- 

reductive growth. Therefore correlations were developed that also included a 

hyperbolic tangent function. Parameters for each of these correlations were then 

estimated using a Nelder-Mead routine. Using this approach, correlations were 

developed for showing the relationship between growth rate and the following 

fermentation properties: - 

• cell size
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• cell breakage coefficient

• cell breakage exponent

• protein release coefficient

• ratio of protein to dry cell weight

• ratio of alcohol dehydrogenase to protein

Details of these correlations are given in Appendix A along with assumptions used to 

build the simulation model.

3.6.3 Enzyme Degradation

An additional feature of the simulation developed in this work was the inclusion of an 

enzyme degradation coefficient. This was included as experimental evidence suggests 

that alcohol dehydrogenase from Saccharomyces cerevisae is subject to degradation 

caused by the action of protolytic enzymes in the downstream processing operations 

(Smith, 1997).

The degradation rate of the enzyme often has a decisive effect on the process control 

strategies. A high degradation rate means that slower downstream processing options 

will be infeasible, as they will only yield small amounts of the enzyme. Based on data 

from Smith (1997), the degradation rate was estimated as 0.112h_1 and was assumed 

to be unaffected by growth rate.

To simulate the impact of this degradation after performing mass balances, each unit 

operation calculates the loss of alcohol dehydrogenase caused by degradation. The 

degradation process is a first order process. The amount of alcohol dehydrogenase 

degradation is given by the following equation: -

m adh_d«s =  m adh ■*"*'' Equation 3.6

where M Ad h  is the mass of alcohol dehydrogenase (g), M A D H jeg  is the mass of alcohol 

dehydrogenase after degradation (g), kdeg is degradation rate (h_1) and t is time (h)
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3.6.4 Centrifugation and Homogenisation

In this work centrifugation was modelled using the grade-efficiency concept. This 

approach had previously been used in models by Bulmer (1996), Clarkson et al 

(1996) and Titchener-Hooker and Zhou (1999). Details of the model are given in 

Appendix A.

The one modification made to the model was to allow for the effects of discharge. 

Previous work had not allowed for the effect of loss of liquid when the solid is 

released from the centrifuge. This leads to errors in the mass balance predictions. The 

model developed in this work calculates both the number of times in a batch that a 

centrifuge will need to discharge and estimates the volume of liquid that will be 

discharged along with the solids.

Like centrifugation, homogenisation has also been extensively studied and no changes 

were made to the approaches reported in the literature that were used to calculate size 

distribution of the cell debris (Siddiqi et al., 1995; Siddiqi et a l, 1996).

3.6.5 Dilution

The process under study also includes two dilution steps; before and after 

homogenisation. Before homogenisation a buffer is added to the cells collected by the 

centrifuge in order to obtain a cell concentration of 450g/L. The second dilution step 

(used after the homogenisation step) reduces the viscosity of the homogenate and aids 

debris removal.

In previous work by Zhou and Titchener-Hooker (1999) it had been assumed that both 

dilution steps were fixed. In this work, the dilution step before the second debris 

centrifuge was allowed to vary so that the effect o f different amounts of buffer could 

be examined. To capture the impact of the dilution step equations 3.6 & 3.7 were 

generated to describe changes in viscosity and liquid density. The viscosity of the 

diluted cell stream is assumed to approach asymptotically the viscosity of the buffer. 

The density was given by linear interpolation reflecting the change in the volume of 

liquid.
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C o n e /
/v cCone Buf

Equation 3.7
V VBur

Equation 3.8

where Vconc is the volume of feed in the dilution step (L), VBuf  is the volume of 

additional buffer added (L), rjstream is the viscosity of the specified stream (Ns/m) and 

Pl,stream is the density of the specified stream (g/L). The subscripts Cone, Dil and B uf 

represented the concentrated feed, the dilution output and the buffer solution, 

respectively.

In addition to the changes in viscosity and liquid density, the addition of buffer also 

causes the solids concentration to drop. It also has an impact on the centrifugation 

because of hindered settling. (See Appendix A).

3.7 Results

In order to evaluate the simulation a series of graphs were plotted looking at both the 

amount of product (alcohol dehydrogenase) and contaminant (debris) produced. 

Figures 3.2a and 3.2b show respectively the amount of ADH and debris in each 

stream in the process, when operated under the following conditions: -

• growth rate -  0.18h‘]

• harvest centrifuge flowrate -  400L.1T1

• homogenisation pressure -  600bar

• number of passes through the homogeniser -  4

• dilution -1 :1

• debris removal centrifuge flowrate -  160L.1T1

Figure 3.2a shows that the yield of the alcohol dehydrogenase produced is high and 

very little is lost in the recovery. The total loss of product in the process operated 

under these conditions stated above is 40% and this is primarily from degradation. 

However, Figure 3.2b shows that around 10% of the cell debris is left in the
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supernatant stream after the debris removal centrifuge. This is because the high 

pressure results in micronisation o f the debris, which is then too small to be removed 

by the centrifuge.

Such a bar chart could be produced by a simple stochiometric model. However, the 

advantage of the simulation developed in this work is that it can be used as base from 

which to evaluate different operating points and determine the impact of changing 

control variables. This is demonstrated in figures 3.3a and 3.3b, which look at the 

impact of reducing the pressure in the homogeniser to 300bar. This is half the pressure 

assumed in the initial study. As can be seen from Figure 3.3b the resulting process is 

able to remove the debris. However, figure 3.3a shows that there is much less product 

in the supernatant stream. This is because fewer cells are getting ruptured and 

therefore a significant quantity of product remains within unruptured cells which are 

collected by the centrifuge. Under these operating conditions, less than 30% of the 

product is recovered in the centrifuge supernatant.

Comparing figures 3.2 and 3.3 it can be seen that increasing the pressure results in 

better cell rupture but more cell debris. Plotting multiple bar graphs would enable an 

engineer to find an operating point that meets the criteria. However, this would 

require analysis o f many bar charts and would require the examination of the 

interactions between each of the control variables. Additionally, once an operating 

point is found further analysis will be required to determine whether it will be robust 

given likely variations in the control variables.

A simpler alternative is to use surface response plots. Figure 3.4 shows a surface 

response plot defined by homogenisation pressure and debris removal centrifuge 

flowrate. The graph shows the amount of alcohol dehydrogenase produced with 

different combinations of pressure and centrifugation. Higher pressure results in more 

product released. However, low centrifuge flowrates result in the loss o f product due 

to proteolysis.

Figure 3.4 shows a series of contours representing increasing levels o f alcohol 

dehydrogenase. For the process to function effectively, cell debris must be removed,
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as it is a contaminant that fouls chromatography columns. In this process it has been 

assumed that the debris concentration needs to be below 0.5g/L. The purple region in 

Figure 3.4 represents the operating conditions where this constraint is not met. The 

region occurs when the pressure and the centrifuge flowrate are both high, which

produces a significant amount of micronised debris that cannot be picked up by the

centrifuge.

The alcohol dehydrogenase process has many similar interactions. For example 

Figure 3.5 shows the interaction between homogenisation pressure and homogeniser 

number of passes. However the disadvantage of this approach is that only two 

dimensions can be visualised at any time.

3.8 Conclusions

This work looks at how bioprocess simulations can be generated and the results that 

can be obtained. The process used as the basis of this investigation was the alcohol 

dehydrogenase process. This process has a number characteristics typically associated 

with labile intracellular enzymes and a number of models have been developed to 

predict the performance of unit operations used in the process.

The first part of this work looked at different platforms that can be used for

developing a bioprocess simulation. The simplest method for developing a simulation 

would be to use an existing bioprocess simulation package such as SuperPro designer. 

However, the limitation of this package is that the models are restricted in their 

predictive capabilities. Equally the package cannot be extended to incorporate new 

models. As the objective of this work was to look at interactions between control 

variables this was deemed unsuitable.

The other solution is to use a simulation package or programming language. Previous 

work had used Labview. However, the graphical programming language, whilst 

making simple tasks easy, actually made more difficult task very complex and 

resulted in code that was difficult to adapt and maintain.
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The languages looked at were Matlab and C++. Matlab has the advantage that it is 

relatively easy to program simulations. Additionally Matlab has the advantage that the 

results of any simulation can be easily visualised using a series o f built-in 

visualisation functions. However, the main drawback of Matlab is that code that 

requires loops can run slowly. Often however, this limitation can be overcome by 

writing the code using vectors, which Matlab can handle very efficiently. By contrast 

C++ can run faster. However, to get the performance from C++ requires a higher 

degree of expertise. This means that Matlab is probably more suitable for most 

simulations rather than C++. The only exceptions are for simulations where 

performance is critical and time and resource for development are less restricted.

When a simulation is developed one critical aspect is the architecture of the solution. 

The solution should ideally be structured in such a way that it can be easily 

understood and adapted. This ensures that effort spent developing a model will not be 

wasted and can be further developed at a later date. In this work a data structure was 

developed that could hold details of the streams that connect each of the unit 

operations. The unit operations themselves were modelled using functions in Matlab 

and Labview and classes in C++. This architecture means that the problem is broken 

down in a logical manner and is therefore easier to understand.

Ultimately, the utility of the simulation depends on the level of detail within the 

models. At the simplest level stochiometric models can be used to generate mass 

balance models. Such models can be used to track the levels of different components 

through the system. This can be used to determine steps that lead to a loss of product 

or are ineffective at removing contaminants so that they can be reviewed or optimised. 

However, such models are usually only valid for a small range of operating 

conditions. Critically the sensitivity of the models to different operating conditions 

cannot be tested. As a result they have no real utility for analysing operating 

strategies.

The models used in the simulation were able to predict performance of different 

control settings and take account of the properties of the input streams. The models 

for centrifugation and homogenisation were based on work by Bulmer et al (1996),
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Clarkson (1994), Clarkson et al (1996), Siddiqi (1996) and Hetherington (1971) and 

had previously been incorporated into a simulation built by Zhou and Titchener- 

Hooker (1999). However, this work has been extended by building a new 

fermentation model using data from Gregory et al (1994), Gregory et al (1996) and 

Siddiqi (1996)

The results of the simulation show that it can be used to analyse the trade-offs 

between control variables. This was demonstrated by using four bar charts to analyse 

the performance of the process when operated at different conditions. Surface 

response plots were also used to show that trade off between control variables can be 

analysed simultaneously. However as mentioned in Chapter 2, one limitation of this 

approach is that only two control variables can be analysed. The next chapter will 

look at how the feasible region (defined by a set o f constraints) can be analysed to 

find potential operating points.

Page 82



Simulation Development

Table 3.1: A summary of the components that define the streams in the ADH 

simulation

Stream Fields Contents
Volume Volume of Stream

Component Mass Protein (g)
ADH (units)
Nucleic Acid (g) 
Debris/Cell Wall (g ww) 
Whole Cells (g dw)

Intracellular Fractions Intracellular Protein (g) 
Intracellular ADH (units) 
Intracellular Nucleic Acid (g) 
Cell Wall (g ww)
Whole Cells (g dw)

Precipitant Fractions Precipitant Protein (g)
Precipitant ADH (units)
Precipitant Nucleic Acid (g) 
Precipitant Debris/Cell Wall (g ww) 
Precipitant Whole Cells (g dw)

Component Concentrations Protein (g L '1)
ADH (units L '1) 
Nucleic Acid (g L‘‘) 
Debris (g ww L '1) 
Whole Cells (g dw L '1)

Liquid Properties Viscosity (Ns/m2) 
Density (g/L)

Solid Properties Average Particle Size (pm) 
Standard Deviation (pm) 
Density (kg/m3) 
Concentration Solids (kg/m )

Cell Properties Hetherington breakage constant (Kp) 
Pressure Exponent (a)
Cell Fractionation (K d)
Protein degradation (k)

Operations Time Time of completion of operation (h)
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Figure 3.1: The alcohol dehydrogenase process.
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Figure 3.2: Two bar charts showing the levels of alcohol dehydrogenase and cell wall 

in the different streams in the alcohol dehydrogenase process.

The operating point is defined by: -
• growth rate - 0.18h*1
• harvest centrifuge flowrate - 400L.Ii'1
• homogenisation pressure - 600bar
• homogeniser passes -4passes
• dilution ratio -1:1
• debris removal centrifuge flowrate - 160L.li'1
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Figure 3.3: Two bar charts showing showing the levels o f alcohol dehydrogenase and 

cell wall in the different stream in the alcohol dehydrogenase process

The operating point is defined by: -
• growth rate - 0.18h_1
• harvest centrifuge flowrate - 400L.hr1
• homogenisation pressure - 300bar
• homogeniser passes -4passes
• dilution ratio -1:1
• debris removal centrifuge flowrate - 160L.li1
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Figure 3.4: The ‘Window of Operation’ showing the interactions between pressure 

and debris removal flowrate.

The sub-region was defined by: -
• growth rate - 0.18hr''
• harvest flowrate - 400L.li'1
• dilution r a t i o - 1:1
• homogeniser passes - 4

The purple region represents the area where debris concentration is greater than 
0.5g.L. The different coloured contour levels represent a series of ADH constraints 
ranging from 0 units (blue) to 12xl06 units (red) in increments of lx l0 6 units.
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Figure 3.5: The ‘Window of Operation’ showing the interactions between debris 

removal flowrate and the number of passes.

The sub-region was defined by: -
• growth rate - 0.18hr1
• harvest flowrate - 400L.li'1
• dilution ratio -1
• homogeniser pressure - 300bar

The purple region represents the area where debris concentration is greater than 
0.5g.L. The different coloured contour levels represent a series of ADH constraints 
ranging from Ounits (blue) to 8xl06 units (red) in increments of lxlO6 units.
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4 Analysing Bioprocess Operating Space

4.1 Abstract

Previous analysis of the feasible region of a bioprocess was restricted to two control 

variables. The work in this chapter looks at two techniques that can be used to analyse 

bioprocesses with multiple control variables. The main approach is to look at the size 

and distribution of the feasible region. The other technique is to locate the maximum 

ranges for each of the control variables, such that an operating strategy using any 

combination of points within these ranges will be feasible. This latter technique was 

previously suggested for use with batch processes by Samsatli et al (2001).

The size of the feasible region can be calculated using Monte Carlo integration. 

However using this approach an accurate estimate of the size would require many 

simulations. The technique used in this work was to calculate all the points on a 

multidimensional grid. The advantage of using a multi-dimensional grid of points is 

that once a set of results has been calculated, it can be used for many different types 

of analysis. The disadvantage of this approach is that it is not scalable.

Results examining the distribution o f the feasible region in an example bioprocess 

with respect to one and two control variables are presented. These results are used 

respectively to analyse the impact of control variables and examine their interactions. 

This chapter also looks at the impact o f changing the level of the constraints on the 

size of the feasible region, which can be used to estimate the practical upper limits for 

the constraints. Additionally the chapter also looks at the use of Monte Carlo 

integration and the accuracy of the results when the number of sample points is 

changed.

Finally the chapter applies a method for finding the largest feasible ranges for each of 

the control variables. However, the work here demonstrates that the proportion o f the 

feasible region captured within the maximum feasible ranges may be very small. This 

suggests that this approach may not give an accurate indication of all the potential 

operating points.
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4.2 Introduction

The effectiveness of a bioprocess design can be determined by the ability of the 

process to meet consistently quality criteria whilst generating the required amounts of 

product. There are typically many complex interactions between the unit operations in 

bioprocesses. Investigation into these interactions has lead to sophisticated models 

that are able to calculate the performance of a step based upon the quality o f the feed 

stream and the operating conditions. Such models can be used to develop whole 

process simulations that capture the interactions between unit operations. However, 

simulations can only provide value to an engineer or process scientist, when there are 

effective methods for presenting and analysing simulation outputs.

Previous work has focused on examining the interactions between two control 

variables by plotting a two-dimensional subset of the feasible region (Woodley and 

Titchener-Hooker, 1996). This gives the user the ability to evaluate the trade-offs in 

processes in an intuitive manner. However, this approach can only effectively 

examine two control variables simultaneously. In reality, the output of most 

bioprocesses is determined by more than two control variables. Therefore, multiple 

figures need to be plotted in order to understand the interactions in a bioprocess.

As a result new methods are required for analysing the operating space of processes 

with multiple control variables. One approach suggested by Samsatli et al (1999, 

20001) is to locate a set of ranges inside the feasible region such that an operating 

point in these ranges will be feasible. Another approach is to evaluate the size of the 

feasible region. This latter approach is the primary focus of this chapter.

The approach developed in this chapter can be used to evaluate the effect of imposing 

a variety of different constraints on a process. Calculating the feasible region for 

different constraints gives both an indication of the scope for optimising particular 

constraints and the corresponding changes in the size of the feasible region. The size 

in turn gives an indication of the number of viable processing options available and 

therefore the process robustness.
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This chapter looks at how analysing the size and distribution of the feasible region can 

give an insight into a bioprocess. It also compares the results of such an analysis with 

results from an approach similar to that of Samsatli et al. (1999, 2001). The next 

section explains the theory behind this approach. Section 4.4 looks at how the size of 

such a region can be calculated. The results section uses the simulation, described in 

the previous chapter, to demonstrate this approach.

4.3 Theory

In any bioprocess an operating point can be defined by an n-dimensional vector (z), 

where n is the number of control variables. This vector can lie at any point in the 

operating space (Z), an N-dimensional space with a range determined by equipment 

constraints.

However most bioprocesses are subject to performance constraints such as the 

maximum allowable amount of a contaminant or the minimum acceptable level of 

productivity. These constraints on the performance of the process define a feasible 

region, which is a subset of the operating space. The feasible region, R f r ,  for a given 

process design, d, with a set of performance constraints, c, can be expressed as: -

Rfr (d, c) = {z\g(d, z, c) < o} Equation 4.1

Previous work by Woodley and Titchener-Hooker (1996) has shown how a two- 

dimensional sub-region of the space can be visualised, however, as most processes 

have more than two control variables other approaches are required in order to make 

of the results of simulations useful. The approach demonstrated in this chapter is to 

determine both the size of the feasible region and how the region is distributed in the 

operating space. The size of the feasible region, I f r ,  is given by: -

I FR(d,c) = jjj...^d zldz2dz3...dzn Equation 4.2

The value that is generated will have units and a size dependent on the range and units 

used to define the control variables. Therefore a more meaningful measurement is to 

determine the fraction of the operating space occupied by the feasible region, />/?: -
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\ \ \ . . . \d z ldz2dz3...dzn 

I 'FR (d,c) = Rfr̂ '^ ----------------------  Equation 4.3

^""l(^v,max Z v ,m in  )  v=l

When trying to examine control variables an engineer will want to know how the 

feasible region is distributed with respect to one or more control variables. This will 

give an indication of where the region lies and therefore the location of potential 

operating points. This distribution is equivalent to finding the size of a series of 

“slices” of the feasible region along one control variable.

This is demonstrated in Figure 4.1, which shows a plot of a two dimensional feasible 

region and two graphs showing the size distribution of the feasible region along the 

control variables. In this case the distribution of the feasible region at each point for 

one control variable can be determined by finding the range of feasible values in the 

other control variable. This approach can also be used to analyse how the feasible 

region is distributed across multiple control variables by measuring the size of the 

feasible region along two control variables. The next section describes the 

methodologies used to calculate both the size of the multi-dimensional feasible 

regions as well as a mechanism for determining the largest feasible ranges.

4.4 Computational Methods

4.4.1 Calculating Feasibility

In order to calculate the size of the feasible region a method is needed to calculate the 

points that are feasible. Using the simulation the performance (y) of the constrained 

variables can be calculated: -

T/ = Si (^»z ) Equation 4.4

These values, generated by the simulation, can then be normalised so that all points 

below zero represent points where the constraint is not met and points above zero 

represent points where the constraint is met. It follows that for a point to be feasible
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all the normalised constraints must be greater than zero. Therefore the feasibility, % 

o f a point can be measured by calculating the minimum (or most limiting constraint):-

= min(g„orOT, (<d , z)) Equation 4.5
ie l

4.4.2 Size of the Feasible Region

Two approaches were examined for calculating the size of the feasible region. The 

first approach was to break each of the control variables into a series of discrete 

points, then evaluate the simulation at each point of this multi-dimensional grid. The 

second approach was using Monte Carlo integration. Here points are sampled at 

random and the size of the feasible region can be estimated by determining the 

proportion that is feasible.

This multi-dimensional grid approach was carried out using a series of nested loops to 

increment each control variable. Each point was assessed to determine whether it was 

feasible. If the point was feasible the size of the surrounding hyper-rectangle was 

calculated and added to the size of the feasible region. The algorithm finishes when all 

of the combinations of control variables have been evaluated, giving the total size of 

the feasible region.

The main limitation of this technique is that it is not scaleable to higher dimensions. 

This is because each additional dimension leads to an exponential increase in the 

number o f points that need to be evaluated. Also, doubling the number of intervals 

along each control variable would raise the computation requirement by a factor of 2n, 

where n is the number of dimensions or control variables. This means that the 

accuracy of the results is likely to be limited, particularly for problems with multiple 

dimensions.

By contrast, the Monte Carlo integration scales approximately linearly with increasing 

dimensions. The Monte Carlo integration works by running a series of simulations at 

random points. These points can be calculated using a random number generator in
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conjunction with a series linear function to generate points that lie in the ranges of 

each control variable.

In this work the objective was to analyse the size distribution with respect to many 

variables. Monte Carlo integration would require the generation of multiple sets of 

random points for each control variable in order to determine the size. The advantage 

of the grid of points is that the same set of results can be used for multiple integration 

calculations reducing the overall amount of simulation required. Nevertheless, a brief 

study of Monte Carlo integration was undertaken to compare its accuracy with the 

results generated by the grid approach.

4.4.3 Determining Operating Ranges

As mentioned in the introduction another approach for analysing the feasible region is 

to find a set of ranges for each control variable such that an operating point with 

control variables in these ranges will be feasible. The method proposed by Samsatli et 

al (2001) for achieving this is to find a hyper-rectangle that fits inside the feasible 

region. The geometry of the hyper-rectangle means that independent ranges can be 

defined for each control variable so that any operating point with these ranges will 

result in the performance constraints being met.

In this work, a simple algorithm was developed that calculates the size of this largest 

hyper-rectangle in the feasible region, so that the results of the integration approach 

could be compared with it. The algorithm used the multi-dimensional grid of data 

described previously. It cycles through all the possible combinations of lower and 

upper vertices. If the upper and lower vertices were feasible it checks the internal 

points to make sure that they were all feasible. Finally it retains the ranges of the 

hyper-rectangles with the highest internal volumes. The algorithm also screens 

solutions to remove instances where any of the operating ranges are below a set of 

minimum ranges. This stops the algorithm from returning solutions that are 

inappropriate.

This approach is it is not at all scalable and hence could not be used on a problem 

with many more control variables. Additionally the algorithm only looks at discrete
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points meaning that it is likely to under predict the size of the maximum hyper

rectangle. By contrast the algorithm described by Samsatli et al (2001) is more 

complex and is not constrained to discrete points. However, their algorithm requires 

that all the vertices in the problem are calculated at each iteration. For a problem with 

n control variables, this will correspond to 2n runs of the simulation, meaning that 

their algorithm is also inappropriate for very large problems.

Nevertheless, the solution proposed here should be able to generate a sensible set of 

results that could be used for comparison with the results from the volume analysis. 

The next section looks at the results obtained from both the volume analysis and this 

work

4.5 Results

4.5.1 Introduction

The approaches described in the previous section were applied to the alcohol 

dehydrogenase simulation, described in the previous chapter. The alcohol 

dehydrogenase process has six control variables. These are: -

• Growth Rate in the Fermenter

• Flowrate through the harvest centrifuge

• Number of Passes through the homogeniser

• Pressure in the homogeniser

• Dilution Ratio after homogenisation

• Flowrate through the second centrifuge

The objective of this work was to determine how effectively this process could be 

analysed using the techniques described in this chapter. The results section is divided 

into a number of sub-sections each looking at different approaches that can be applied 

to bioprocesses. The first sub-section shows how the volume analysis can be used to 

look at the distribution of the feasible region with respect to one control variable. The 

second sub-section extends this analysis to consider two control variables. Section 

3.5.4 looks at how the size of the feasible region can be used to analyse the capability 

of the process. Section 3.5.5 looks at an analysis that can be carried by determining
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operating ranges. Finally section 3.5.6 examines the application of Monte Carlo 

integration for examining the size of the feasible region.

4.5.2 Distribution of the Feasible Region

Figures 4.2-4.6 show the distribution of the feasible region. In this work debris 

concentration is treated as a hard constraint that must be met, whereas alcohol 

dehydrogenase production is treated as a soft constraint that should be as high as 

possible without breaking the hard constraints. The figures look at the impact of 

optimising the alcohol dehydrogenase production on the size and distribution of the 

feasible region as a function of different control variables.

Figure 4.2 shows how the growth rate in the fermenter significantly affects the 

performance of the alcohol dehydrogenase process. The growth rate in the 

fermentation step affects a number of cell properties that determine the effectiveness 

of the downstream process. Such properties include the quantity of alcohol 

dehydrogenase in the cells and the cell wall strength, which in turn determines how 

much product is released and the size of the cell debris. Figure 4.2 shows the 

distribution of the feasible region with respect to the growth rate. The plot shows that 

there are two peaks. Although the peak at 0.18h_1 is higher, the size of the feasible 

region decreases rapidly, indicating that any feasible point with this growth rate may 

not be robust. Above a growth rate of 0.22h‘! there is no feasible region. This is due to 

the drop in alcohol dehydrogenase expression at higher growth rates and production 

of weaker cell walls, which results in more cell debris in the end product. Figure 4.2 

also shows the impact of increasing the alcohol dehydrogenase production constraints. 

The distributions of the feasible regions, produced under the different alcohol 

dehydrogenase production constraints, follow a similar pattern. This shows that the 

feasible region is largest when the level of alcohol dehydrogenase production is 

greatest.

Figure 4.2 implies that lower growth rates could be effectively used in production. 

However, the fermentation process is time consuming and this ultimately affects the 

throughput and process economics. Figure 4.3 shows the size of the feasible region 

defined by productivity. Upon applying a productivity constraint low growth rates
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become infeasible as the long operation times reduce the overall productivity. In 

addition, the size of the feasible regions defined by different productivity constraints 

change rapidly. At growth rates between 0.lh_1-0.15h_1, the feasible region for the 

lowest productivity constraint can be met. However, feasible regions for the other 

productivity constraints cannot be met. Again this is due to longer processing times 

and the process would need to produce a large quantity of alcohol dehydrogenase to 

achieve the higher productivity specifications. [NB, productivity is only an indication 

of the economic performance of a process: economic performance is also critically 

dependent on process scheduling, and this is beyond the scope of this work.]

The next step in the process is the harvest centrifuge. Figure 4.4 shows how the 

feasible region varies with the harvest centrifuge flowrate. This graph shows that the 

size of the feasible region varies very little over a large range of operating conditions, 

although it is slightly smaller at very high and low flowrates. At low flowrates the 

processing time is longer and consequently more alcohol dehydrogenase is lost 

through degradation. Equally high flowrates result in less efficient cell separation and 

consequently a loss of some product in the supernatant.

The effect of homogeniser pressure on the size of the feasible region can be seen in 

Figure 4.5. More product is released at higher pressures meaning that a greater 

proportion of the feasible region lies here. However, increasing the pressure beyond a 

certain point results in a drop in the size of the feasible region, as micronised debris 

associated with higher pressures serve to decrease the size of the feasible region. 

When the constraint associated with the ADH production is increased the pressure 

associated with the largest proportion of the feasible region is increased. This is 

because more of the product is released at higher pressures and therefore the tighter 

constraints can be met.

The final step in the process is that of the debris removal centrifuge. The debris 

removal centrifuge primarily determines the amount of debris carried over from the 

homogeniser to subsequent high resolution steps such as chomotography. The debris 

can be very damaging and protective filtration may be needed, which is both 

expensive and time consuming. As can be seen from Figure 4.6, the distribution of the
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feasible region is generally skewed to lower flowrates, as higher flowrates are 

associated with less efficient removal of the cell debris. However, very low flowrates 

result in long processing times and a loss of product through degradation. The graph 

shows that the location of the largest feasible region varies with the alcohol 

dehydrogenase constraints used. For higher alcohol dehydrogenase constraints, higher 

flowrates are more suitable as they decrease the processing time and reduce the level 

of product degradation.

4.5.3 Interactions in the Feasible Region

The concept was also applied to analysing how the feasible region is distributed with 

respect to two control variables. This enables the user to identify key interactions 

between two control variables and therefore determine desirable operating points. 

Figure 4.7 shows how the size of the (n-2) feasible region changes with the debris 

removal centrifuge flowrate and homogeniser pressure. Previous work has shown that 

there are significant interactions between these control variables. Comparing Figure 

4.7 with Figures 4.5 and 4.6 suggests they roughly correspond to each other; in 

particular the largest feasible volumes for each of the two individual plots corresponds 

to the largest plot for the two control variables examined simultaneously (500bar and 

40L.li"1).

However, this example also shows how there is danger of misreading the data from 

the one-dimensional plots. According to Figure 4.6, there should be only a very little 

change when the debris removal flowrate is reduced from 40L.fi"1 to 20L.fi"1. A 

relatively large feasible volume would be expected when the debris removal 

centrifuge flowrate is 20L.li"1 and the homogenisation pressure is 400-500 bar. 

However Figure 4.7 indicates that there is only a small feasible region in this part of 

the operating space, thus highlighting the importance of interactions.

4.5.4 Size in Process Analysis

So far it has been assumed that the process must meet some predetermined 

constraints. However, in certain situations it may be more useful to analyse a process 

to see what the process is capable of when the constraints are changed. In such
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situations the size of the feasible region can be used to determine the ability o f the 

process to meet these constraints. Figure 4.8 shows the size of the feasible region 

when the alcohol dehydrogenase production constraint is varied and the debris 

concentration is set at <0.5g.L_1. As can be seen from the graph, when in the 

minimum level alcohol dehydrogenase is set at lx l0 7units, approximately 30% of the 

operating space is feasible. Increasing the alcohol dehydrogenase production 

constraint causes the size of the feasible region to drop rapidly so that when the 

constraint is greater than 5x 106 it is less than 10% of the operating space.

Figure 4.9 extends this concept to examine the impact of changing both minimum 

alcohol dehydrogenase production and debris concentration constraints. This graph 

shows a two-way trade-off between the debris concentration and the alcohol 

dehydrogenase production against the size of the feasible region generated. 

Decreasing the maximum acceptable debris concentration or increasing the alcohol 

dehydrogenase constraints results in a smaller feasible region.

The size of the feasible region decreases rapidly when the maximum debris constraint 

is below 0.5g.L''. This suggests that there is not much capacity in the process to attain 

debris concentration of less than 0.5g.L'\ as at this level the process is operating close 

to its maximum realistic performance. An engineer could therefore deduce that the 

process would need to be modified if higher levels of performance were required. 

Equally the rapid change in the size of the feasible region could indicate that the 

process is very sensitive to small changes in conditions when operated at this 

specification. Hence if the underlying model were inaccurate then the process may not 

be operable with this constraint at all.

Figure 4.9 can be used to analyse the trade-off between achieving a low debris 

concentration and maximising the amount of alcohol dehydrogenase production. An 

increase in the minimum concentration of alcohol dehydrogenase or decrease in the 

maximum amount of debris constraints reduces the size of the feasible region. The 

values of the debris and alcohol dehydrogenase production constraints, where the 

feasible region approaches zero, represent the Pareto optimum. The points along this 

curve represent the best combinations of debris concentration and alcohol
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dehydrogenase production possible with the process. However selecting process 

constraints from the Pareto curve would result in a very small feasible region and 

would make the process difficult to operate robustly. This graph can be used to 

determine realistic performance objectives that correspond to a feasible region with a 

reasonable size.

4.5.5 Monte Carlo Integration

All the work shown so far in this chapter is based on volumes calculated using a 

sequence of points in a multi-dimensional grid. This means that as the number of 

control variables increases the number of points that require analysis will also 

increase exponentially. An alternative approach is to use Monte-Carlo integration 

where random numbers are used to calculate the size of the feasible region.

To investigate the applicability of Monte Carlo integration a series of tests were 

performed. The objective of these tests was to find out whether Monte Carlo 

integration could be used as an alternative to calculating all the points in a grid. Figure 

4.10 shows the results obtained by using a series of Monte Carlo integrations. This 

shows that, as the number of points (m) used in the integration increases, the variation 

in the sizes of the feasible regions predicted decrease. Figure 4.11 shows the root 

mean error for all these runs. When the number of runs is low (<100) the errors are 

unacceptably large, however this decreases as the number of simulations increase. The 

results shown here seem to correspond with the data given by Press et al (1999) as the 

error seems to decrease at approximately m‘° 5. By the time the number of simulations 

reaches 10,000 the error is less than 3%.

The work shows that a relatively simple Monte Carlo integration can be used to 

investigate the size of the feasible region. The results also show that relatively good 

results can be obtained with a 10,000 simulation run. Such a simulation using the C++ 

version of the code only takes seconds to run indicating that this approach could be 

applied.

One other interesting feature is that the size calculated by this analysis is slightly 

higher than that generated by multidimensional grid. This is possibly because the grid
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evaluates points on the boundary, giving it a bias towards points that are less likely to 

be feasible. This may underestimates the size of the feasible region. However, the 

main advantage of this approach for future work is that it will scale well for larger 

problems.

4.5.6 Operating Ranges

As discussed in the introduction, an alternative strategy for analysing the shape of the 

feasible region was demonstrated by Samsatli et al (1999, 2001). In their work they 

used a hyper-rectangle in the feasible region to find ranges for each control variable. 

The advantage of this approach is that all points within the ranges are guaranteed to be 

feasible. To test the effectiveness of this approach a simple algorithm was used to find 

a suitable set of ranges. In the algorithm, the following minimum ranges were 

specified for the each of the control variables: -

Growth Rate 0.015h

Harvest Flowrate 50L.li'1

No of Passes 0 passes

Pressure 50bar

Dilution Ratio 0.25L.L'

Debris Removal Flowrate 40L.IT1

The five largest hyper-rectangles obtained for the first set of conditions are shown in 

Table 4.1.
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Table 4.1: The five largest hyper-rectangles that will fit inside a feasible region defined 

by an alcohol dehydrogenase constraint of 4x l06 units and debris concentration of 

0.5g.L"'.
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1 0.075 0.180 150 500 400 450 5 7 1.75 2.50 60 100 0.0840 0.9935

2 0.090 0.180 100 500 400 450 5 7 1.75 2.50 60 100 0.0823 0.9732

3 0.075 0.180 150 500 400 450 5 6 1.50 2.50 60 100 0.0747 0.8831

4 0.090 0.180 100 500 400 450 5 6 1.50 2.50 60 100 0.0732 0.8651

5 0.075 0.180 150 450 400 450 5 7 1.75 2.50 60 100 0.0720 0.8516

The operating ranges shown in the table above seem to correspond directly with the 

information given by the volume analysis carried out previously. For example, in 

Figure 4.4 the feasible region does not vary much in size for different harvest 

centrifuge flowrates. Consequently the harvest centrifuge has a relatively large 

operating range, which will ensure that the constraints are met.

Figure 4.2 also shows that the size of the feasible region has large variations for small 

changes in growth rate. Flowever there is a region in the middle of the range where the 

size of the feasible region is relatively constant for growth rate. As a result this range 

of values (between 0.0075b'1 and 0.18h_1) is selected as the operating range for the 

growth rate.

In contrast with growth rate and harvest centrifuge flowrate, the homogeniser pressure 

has a relatively small range. This can be correlated with the results shown in Figure 

4.5, which shows that there is a very small range of homogeniser pressures, which 

correspond to a large proportion of the feasible region. The small range in the pressure 

means that this algorithm is maximising the size of hyper-rectangle by keeping within 

this limited range.

Page 102



Analysing Bioprocess Operating Space

Equally the second centrifuge flowrate also has a very small range. Interestingly the 

range lies above that region with the maximum volume as predicted by Figure 4.6. 

This again may be due to interactions in the process. Looking at Figure 4.7, it can be 

seen that there is an interaction between homogeniser pressure and flowrate. That 

means low flowrates are less likely to be feasible when the pressure is around 400bar.

The advantage o f this approach is that an operating point can be selected that will lie 

in the middle of the operating ranges. Such a point should be robust to variations in 

control variables caused by inaccuracies in the process control. However, the results 

indicate two problems with this approach. The first problem is that the algorithm 

cannot take account of how difficult a particular control variable is to control. Hence 

the results shown here have a large range for the harvest centrifuge but the minimum 

range for both the homogeniser pressure and debris removal centrifuge, which in 

practice are likely to be much harder to control.

However, the most significant problem is that it does not capture that much of the 

feasible region. In fact the largest hyper-rectangle, calculated using this procedure, 

captures is less than 1% of the feasible region. This can in part be explained by the 

use of the data grid, which restricts the solution to certain set ranges. However the 

problem is largely due to a limitation in the technique, as hyper-rectangles will only 

ever capture a limited proportion of any irregular shape. Analysis suggests that this 

problem is likely to be more acute as the number of dimensions increases (see 

examining hyper-rectangles in hyper-spheres in Appendix B). Overall this seems to 

indicate that this approach will not give a very good indication of the full extent of the 

feasible region of a bioprocess.

4.6 Conclusions

In this chapter the objective was to find a method to analyse the feasible region of 

bioprocesses with multiple control variables. The main body of the work looked at 

analysing the size and distribution of the feasible region using different control 

strategies. The work shows that size of the feasible region can be used to analyse a 

process and to determine the location of good operating points. In order to determine 

the impact of control variables the work looked at how feasible regions were
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distributed with respect to one or more control variables. The distribution of the 

feasible region was calculated using a simple integration technique and the results 

were plotted to show where the feasible region lay. In this work both one and two 

dimensional distribution graphs were plotted and the latter were able to show 

interactions between the control variables and highlight regions where the one

dimensional plots can lead to misleading conclusions.

This work has also looked at the impact of adjusting the constraints on the size of the 

feasible region. This gives an indication of the likely performance of a process. An 

engineer can look at such a plot and determine that, if the size of the region is small 

when a constraint is met, then the process may not be robust. Equally, if a small 

increase in a constraint results in a rapid decrease in the size of the feasible region, 

then this could also indicate that it will be difficult to operate the process robustly.

One limitation of the work is that the current implementation is not scalable. An 

alternative approach is to use Monte-Carlo integration. The advantage o f Monte-Carlo 

integration is that it should be scalable to higher dimensions, as it does not need to 

examine every point in a grid. The work here shows that this approach can give very 

accurate results and hence has a lot of potential for solving such problems.

Finally results from the analysis of the size of the feasible region were compared to 

results generated by the trying to find the largest hyper-rectangle in the feasible 

region. The work in the thesis shows that this approach does not give any real 

indication of the extent of the feasible region. This can in part be attributed to the 

limitations of the implementation used here and in particular in the inability of the 

algorithm used to consider vertices that do not lie at discrete intervals. However, it is 

mainly due to the highly irregular shape of the feasible region. This seems to indicate 

a key limitation of the approach. The main advantage of the operating ranges 

approach is that an operating point can be selected so that it lies a fixed distance from 

each boundary meaning that it is more likely to be robust. A point selected using the 

feasible volumes would need to be validated by another approach to confirm that it is 

robust (and in extreme situations that it is feasible).
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Neither the integration nor the operating ranges methodology can guarantee a robust 

point because they do not account for the impact of variation in the bioprocess 

performance from that predicated by the model. Such variation could mean that some 

set points are not robust despite lying comfortably inside the feasible region. The next 

two chapters look at methods for analysing a process to allow for deviations and 

uncertainty in the control variables in the process.
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Figure 4.1: An example where analysing the size distribution of the feasible region 

can lead to the selection of a robust operating point.

(See section 4.3)

This figure shows an example feasible region defined by two control variables (zj and 

Z2). The two graphs underneath show the distribution of the size of the feasible region 

with respect to each control variable.
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Figure 4.2: Distribution of the feasible regions, defined by a maximum debris 

concentration o f 0.5g/L and a series of minimum levels of ADH production, with 

different growth rates.
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The minimum levels of ADH shown below are: -
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• 6x 106units -  green
• 7xl06units-blue,
• 8x 106units -  magenta
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Figure 4.3: Distribution of the feasible regions, defined by a maximum debris 

concentration of 0.5g/L and a series of minimum levels of productivity, with different 

growth rates.
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The minimum levels of ADH used were: -
• lx l 05units/h (fermentation time) -  red
• 1,25x 105units/h (fermentation time)- yellow
• 1.5x 105units/h (fermentation time)- green
• 1.75x 105units/h (fermentation time)- blue
• 2x 105units/h (fermentation time)- magenta
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Figure 4.4: Distribution o f the feasible regions, defined by a maximum debris 

concentration of 0.5g/L and a series o f minimum levels of ADH production, with 

different harvest centrifuge flowrates.

Harvest Centrifuge Flowrate (L .h1)

The minimum levels of ADH shown below are: -
• 4xl06units -  red
• 5x106units -  yellow
• 6xl06un its- green
• 7xl06units-b lue
• 8x106units -  magenta
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Figure 4.5: Distribution o f the feasible regions, defined by a maximum debris 

concentration of 0.5g/L and a series of minimum levels of ADH production, with 

different homogeniser pressures.
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The minimum levels of ADH shown below are: -
• 4xl06un its-red
• 5xl06units -  yellow
• 6xl06un its- green
• 7xl06un its- blue
• 8x 106units -  magenta
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Figure 4.6: Distribution o f the feasible regions, defined by a maximum debris 

concentration of 0.5g/L and a series of minimum levels of ADH production, with 

different debris removal centrifuge flowrates.

Debris Removal Centrifuge Flowrate (L .h1)

The minimum levels of ADH shown below are: -
• 4xl06un its-red
• 5x106units -  yellow
• 6x 106units -  green
• 7xl06units-b lue
• 8x 106units -  magenta
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Figure 4.7: Variation in the size of the feasible regions, defined by a maximum debris 

concentration of 0.5g/L and a minimum levels of ADH productions of 4xl06units, for 

different homogeniser pressures and flowrates in the debris removal centrifuge.
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Figure 4.8: Variation in the size o f the six-dimensional feasible regions.
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The feasible region encompasses the growth rate, the harvest centrifuge flowrate, 
number of passes through the homogeniser, homogeniser pressure, homogenate 
dilution and debris removal centrifuge under different minimum levels o f ADH of 
constraints.
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Figure 4.9: Variation in the size of the six-dimensional feasible regions, under 

different maximum debris removal constraints and minimum levels of ADH of 

constraints.
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Figure 4.10: A graph showing the results of a series of Monte Carlo integrations 

showing predicted size against the number of simulations.
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Figure 4.11: A graph showing the error when different numbers of simulations are 

used for calculating the size o f the feasible region. The error is calculated using the 

root mean square.
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5.1 Abstract

The work in this chapter looks at a technique that can be used to analyse the impact of 

variations on the performance of a bioprocess. Variation in bioprocess can be in two 

forms. The first is inaccuracies in the control variables meaning that a set point may 

vary. The second variation can also be in the underlying models, due to inaccuracies 

in the parameters used by the models.

In this chapter it is assumed that a fixed range can define the variations in the 

parameters and control variables. This means that the ranges in each of the parameters 

and control variables will define a hyper-rectangle. Assuming that the output variables 

are approximately monotonic, in other words will always have a positive or negative 

gradient, the worst (or best) performance will occur at one of the vertices. Therefore 

the method used to analyse the variation was to consider a series of scenarios, which 

correspond to the vertices of a hyper-rectangle defined by variations in the control 

variables and parameters.

The results show that both control variables and parameters can have a significant 

impact on the potential operating space. However the limitation of this approach is 

that most parameters will have a more complex distribution with some parameters' 

variations more likely than others. Selecting wide ranges for the parameters and 

control variables means that the operating points highlighted are likely to be very 

conservative resulting in over-designed processes. The results provide an intermediate 

solution prior to the application of more exacting representations which are detailed in 

the next chapter.

5.2 Introduction

In the last chapter, novel methods were used to visualise the feasible region and 

determine its size and analyse its distribution with respect to different control 

variables. This was based on the assumption that an operating point located in the 

middle of the feasible region would be the more robust. One problem with this
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approach is that it does not allow for the effects of likely variations in process 

performance. Such variations could mean that a feasible point is not robust despite 

lying in the middle of a feasible region. This chapter looks at techniques that consider 

robustness as part of the evaluation process so that robust points will be highlighted 

when determining a suitable operating point.

The two major factors that affect process reliability are accuracy of process control 

and uncertainty in the underlying models. The accuracy in bioprocesses control is 

limited because such processes are often operated manually and based on readings 

taken from measuring devices, which are themselves often subject to error. 

Imprecision in process control can mean that feasible operating points are not always 

suitable for full-scale operation as they may not be robust given such variations.

Bioprocess simulations are subject to uncertainty because of imprecision in the 

underlying models. Typically bioprocess models are imprecise because they are 

subject to simplifying assumptions, as capturing the full complexity of a bioprocess 

would be extremely difficult. Two sources of potential uncertainty are: -

• Process Repeatability

Typically in a bioprocess there will be a number of factors that will affect the 

performance of the process that may not be considered in any models. An 

example might be handling of the inocculum and the environmental conditions 

in the processing facility each of which can impact the performance of the 

process. In practice, strict adherence to the protocols should minimise the 

impact of these factors. However, there will always be some variation between 

batches and this will have an impact on the process performance.

• Measurement Inaccuracy

Models are based upon experimental measurements, which will be subject to 

error. Some assays have particularly low accuracies. For Example the ELISA 

assay for measuring monoclonal antibodies as an accuracy of ±20%. Short 

development times limit the number of times these experiments can be

Page 117



Scenario-Based Approaches

repeated. Consequently inaccuracies in the measurements will lead to 

inaccurate models.

For a point to be considered robust, it must remain feasible given the likely variation 

in both control variables and parameters. This chapter uses scenario-based techniques 

to determine whether a point is robust given possible variations in these variables. 

These results are used in conjunction with methods to visualise the feasible region to 

determine the robust subset of the feasible region.

5.3 Theory

A number of methods have been applied to analysis of chemical process simulations 

to obtain robust process designs. One approach that is often referred to as ‘Scenario 

based’ analysis, assumes that parameters will vary within fixed ranges and therefore a 

design will only be suitable if it can deal with all possible parameter variations 

(Grossmann and Sargent, 1978, Halemann and Grossmann, 1983). A variation of this 

approach (Swaney and Grossmann, 1985), seeks to determine maximum ranges for 

the uncertain parameters. These ranges were then used to calculate a flexibility index, 

which gives an indication of how effectively the process can cope with changes in 

parameters.

However, these approaches implicitly assume that control variables can be adjusted to 

compensate for changes in parameter values. Such approaches are unsuitable for 

analysing bioprocesses, since these are subject to strict regulatory requirements and 

this restricts the level of control variable changes permissible. The focus in this work 

is finding a set o f robust operating points that will be feasible over a range of 

parameter values.

In a bioprocess, an operating set point (zs) is defined as being feasible if the 

performance of the process (y) satisfies the pre-determined specifications c, i.e. yi>Cj, 

where i e  I, where I = {1, ..., imax}and imax is the total number of constraints. 

However such a point may not be robust if there are likely to be variations in either 

control variables or parameters.
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In a bioprocess subject to variation in control variables, the control variables will 

deviate from their set points independently and simultaneously. If each control 

variable can deviate by an amount (Az), then a point can only be considered robust if 

all the points in a hyper-rectangle defined as the set {zvar|zs. -  Az < zvar < zv + Az}, will 

result in the constraints being met.

This is demonstrated in Figure 5.1 for a two-dimensional example. The diagram 

shows two points both of which lie inside the feasible region. Around each point is a 

rectangle defined by the variation in the two control variables. While both points are 

feasible only point A can be considered robust. This is because the variation could 

result in such a point moving outside its operating space. Consequently a robust point 

will be one where: -

g(d ,zvai,c)< 0 Vzvar e Q 0 Equation 5.1

given that Q 0 = {zvar\zs -  Az < zvar < z, + Az}

where £2o is the set of all the possible control variables around the set point, zvar is 

the possible values of the control variables within the region Q, zs is the operating set 

point and Az is the set of possible variation in control variables

Consequently the robust region, where all the points meet the robustness criteria, can 

be defined as: -

Rofr c> A * )  = {z\g{d, zvar, c) <  0Vzvar e f i j  Equation 5.2

where R ofr is the robust region given variation in control variables.

This approach can also be extended and applied to bioprocesses subject to variation in 

the underlying models. The impact of variability in a bioprocess can be significant as
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it is hard to ensure both that the model is based on accurate data and that the process 

will perform in a reproducible manner.

In chemical processes, variations can occur in parameters such as reaction rates and 

heat exchanger coefficients, and external factors such as cooling water temperature 

and the quality of feeds. The impact of variation of factors can be evaluated using 

models, which include parameters for these factors.

By contrast, in bioprocesses the underlying phenomena are less well understood. For 

example, it is often difficult to determine the exact impact of changing a factor such 

as temperature or media composition will have on fermentation. Nevertheless a 

number of empirical models have been developed that estimate how much certain 

factors will affect process performance. An example of this might be a model to 

predict cell wall strength as a function of the fermentation growth rate. In such 

situations the approach could be to assume that the model accurately predicts the 

relationship but that the parameter will be subject to variability. Hence: -

where Aq is the possible variation in the parameter value and 6 n (z)  are the nominal 

parameter values as a function of the control variables.

A robust point, given variation in parameter values, can be defined using a similar 

approach to that used for defining robust points given variations in control variables. 

Here a point will be considered robust if all the variable parameters within a defined 

hyper-rectangle are feasible: -

e  = e„{z\ i  + a „ ) Equation 5.3

g {d ,z ,c ,evw)< OV0var eQ * Equation 5.4

Given that Q R = {<9var|<9s -  AG< 0var < 0S + Ao)
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where £2r is the set of all the possible parameter values, 6S is the normal parameter 

value, A0 is the variation in the parameter values and 0 var is the range of potential 

parameter values

Therefore a robust feasible region, given uncertainty in the parameter values, can be 

written as: -

RRFR(d’c)={z \g{d’z’C,6yaI)< 0 V 6 vai eQ *}  Equation 5.5

where Rrfr is the robust feasible region given uncertainty in the parameters.

The approach taken in this work was to look at the impact of different types of 

uncertainty on the size of the robust region relative to the feasible region. This was 

done by plotting two-dimensional subsets of both the feasible region and the robust 

region on the same graphs. The next section looks at the methods used to generate 

such graphs.

5.4 Computational Methods

A series of graphs was generated showing the robust feasible region defined by 

different levels of uncertainty in parameters and control variables. The approach that 

was taken was to calculate the feasibility and the robustness at each point on a grid. A 

contour plot was then used to visualise the regions where selected feasibility and 

robustness criteria were met.

A point is defined as feasible when all the constraints are met at that point. Each 

constraint can be written as: -

y i(d ,z )> C j Equation 5.6

Each constraint can be normalised so that any value greater than zero is feasible 

(e.g.the constraint is met) as described in the previous chapter. A measure of the 

feasibility (y) can be calculated by using the lowest normalised constraint: -
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W(d,z) = mm(gnormi(d,z))iel Equation 5.7

The feasibility measure can then be stored in an array and used to visualise a feasible 

region (e.g. the combination of points that are greater than zero). A similar approach 

can also be used to define robust regions, given variations in the level of control. For 

an operating point to be robust, given variation in control variables, all the points in 

the surrounding hyper-rectangle need to be feasible. Hence the robustness of a point 

can be measured by selecting the most infeasible of the normalised constraints in the 

surrounding hyper-rectangle. This can be written as: -

where Wo is a measure of the robustness of an operating point (z) given variation in 

control variables.

Equally for a point (zs) to be robustly feasible given uncertain parameters, it must be 

feasible for a range of parameter values. The robustness of each point can be written 

as: -

where Wr is a measure of the robustness given uncertain parameters.

However, there is an infinite number of points in a hyper-rectangle and therefore 

testing every point is not viable. The approach adopted in this thesis was to look at a 

limited number of scenarios. In this work, the simulation was run at each of the points 

furthest away from the set point given the variation in the control variables or 

parameters. These points provide the vertices of the hyper-rectangle. The number of 

vertices in a hyper-rectangle is given by 2Nv, where Nv is the number of parameters or 

control variables subject to variation.

Vo id ’ z) = min min(g (d, ))
lei

Equation 5.8

'J'k (rf, *) = min min(g„0„ , (d, z, 0„ ))
Pvar ieI

Equation 5.9
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The logic behind evaluating the vertices is that if the most extreme points are feasible 

then the intermediate points within the hyper-rectangle should also be feasible. This 

implicitly assumes that the constraints are monotonic (the gradient with respect to 

each control variable is either consistently positive or negative). However 

bioprocesses are often non-linear and such assumptions are not necessarily valid. 

Nevertheless, provided the variability of the control variables is relatively small (i.e. 

<10% of the parameter or control value), there are unlikely to be set points where the 

vertices are feasible but large parts of the hyper-rectangle are infeasible. This is 

because over such small ranges the control variables are generally monotonic.

A problem with the approach is scalability because for every additional uncertain 

variable the number of vertices that needs to be evaluated doubles. In other words the 

number of calculation increases exponentially with the number of uncertain variables. 

This means that if there were ten uncertain parameters over one thousand points 

would need to be evaluated.

One possible solution to this would be to determine the limiting vertex for each 

constrained value by looking at the linear change with respect to each parameter or 

control variable. For example we may determine that increasing control xi and 

decreasing control variable X2 will both result in a decrease in the constrained variable 

yi. This information could then be used to find the vertex with the highest value of yi 

without calculating all four vertices.

The advantage of this approach is that calculating the derivatives for each control 

variable will require two runs of the simulation. A further maximum of imax runs for 

each of the constraints is then required. This will mean that the number of calculations 

will be 2nv + imax, (where imax is the number of constraints.) and hence will scale 

better. For example if there are five uncertain variables and two constraints then this 

approach requires twelve simulation runs, whereas evaluating each vertex would 

require 32 simulation runs.

However in this work the numbers of parameters and control variables investigated 

were relatively small (the examples in this section have 2-4 uncertain variables).
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When there are few uncertain variables, this approach will actually increase the 

computation effort. For example if there are two control variables and two constraints 

then this approach would require six points to be evaluated, whereas only four 

vertices would need evaluating. The next section shows the graphs generated using 

this approach and give a brief description of the results they show.

5.5 Results

5.5.1 Introduction

The methods described in the previous section were applied to the alcohol 

dehydrogenase simulation, described in chapter 3. The results shown here look at a 

two-dimensional subset of the feasible region. Unlike similar analysis by Zhou and 

Titchener-Hooker (1999), the graphs also show the impact of variation in control 

variables and parameters. Consequently, they indicate how processes could be 

operated given such limitations.

The results section is divided into a two sub-sections looking at the impact of 

variation in the control variables and the impact of variation in the model parameters. 

These are demonstrated with a series of case studies. The cases studied are all based 

on the constraints that there must be at least 5xl06 units ADH and that the debris 

concentration in the supernatant is less than O^g.L'1, unless otherwise stated.

5.5.2 Uncertainty in Control Variables

Figures 5.2-5.7 show the robust feasible regions generated when there is imprecision 

in the level of control. These figures show a series of regions laid on top of one 

another. The outermost region is a feasible region and was generated when there was 

no anticipated imprecision in the control variables. Two robust regions defined by two 

levels of imprecision in the control variables are then super-imposed.

Figure 5.2 shows a robust region defined by debris removal centrifuge flowrate and 

homogeniser pressure. The smaller blue region, corresponding to a greater level of 

imprecision in the control variables, is defined by homogeniser pressure with a
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variability of 50bar and flowrate variable of 20L1T1. The larger yellow region 

corresponds to lower imprecision in the control variables, where the variability in the 

homogeniser pressure and debris removal centrifuge flowrate are 25bar and lOL.h'1 

respectively. This shows that reducing the variability in the control variables increases 

the proportion of the feasible region that can be used to operate the process robustly.

Smaller operable windows mean that there is less scope for process optimisation, as 

increasing the constraint specification may result in there being no feasible region. 

Figure 5.3 shows the same subspace as Figure 5.2, however the feasible and robust 

regions are defined here by an alcohol dehydrogenase constraint increased by 20% to 

6xl06 units ADH. This reduces the size of the feasible region and the robust regions 

defined by the more precise level of process control. Critically there is no robust 

region for operation with the most imprecise process control settings. However, 

Figure 5.3 only shows a subset of the operating space and there may be robust set 

points for the less precise controls elsewhere in the operating space.

In both Figures 5.2 and 5.3, the impact of imprecise control could have been 

determined from examining the feasible region because the controls that are subject to 

imprecision are those visualised. However, most bioprocess will have multiple control 

variables, many of which will be subject to variability. Often an engineer will wish to 

examine the trade-off between two control variables whilst considering variability 

caused by other control variables in the system. Such a situation is shown in Figures 

5.4 and 5.5.

Figure 5.4 shows the trade-off between the number of passes through the homogeniser 

and pressure in the homogeniser, whereas Figure 5.5 shows the trade-off between the 

number of passes through the homogeniser and debris removal centrifuge flowrate. 

Both figures are subject to variability in the debris removal centrifuge flowrate and 

pressure. In both figures, one of the imprecise control variables is not being 

visualised. In Figure 5.4 the centrifuge flowrate is not visualised on one of the axes. 

In this graph, both of the operable regions are skewed to lower pressures. This is in 

marked contrast to the earlier examples where the operationally robust regions lay 

concentrically inside the feasible region. This skew is caused by the imprecise control
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in debris removal flowrate and means that the debris removal centrifuge flowrate may 

be higher and hence unable remove small debris produced at higher homogeniser 

pressures.

In Figure 5.5 the pressure is not visualised on one of the axes. Here, it is clear that the 

impact of variability is very pronounced as both the robust regions are significantly 

smaller than the feasible region. At low numbers of passes the variability in the 

pressure could result in a lower pressure and a significantly reduced amount of 

product released. However, at high number of passes and flowrates, a higher than 

expected pressure due to the imprecise control would result in greater micronisation 

and therefore additional debris carry-over.

So far all the figures have examined the impact of imprecision in the second 

centrifuge flowrate and homogeniser pressure. However, other control variables in the 

alcohol dehydrogenase process will also be subject to imprecise control. Logically if 

there is imprecise control in the second centrifuge flowrate, there will also be 

variability in that of the first centrifuge. However, the impact is unlikely to be 

significant because the process is insensitive to changes in this operation, as proven in 

the previous chapter (Figure 4.4). By contrast the fermentation growth rate will have a 

significant impact on the process, as it determines the properties of the cells. In this 

study, the growth rate is controlled by an exponential feed. Control may be inaccurate 

due to poor calibration of the pump or actuator making the actual growth rate higher 

or lower than expected. The dilution step, which is used to reduce the debris 

concentration and solution viscosity prior to the debris removal centrifuge, may be 

imprecise due to poor measurement of the buffer solution. This could affect the 

centrifuge performance as well as the debris concentration in the output stream.

The feasible region shown in Figure 5.6 is defined by the same set of operating 

conditions and constraints as for Figure 5.2. However the robust region shown in 

Figure 5.6 considers variability in the dilution rate and the fermentation growth rate in 

addition to the debris removal centrifuge flowrate and the homogeniser pressure. The 

region in this figure is very similar to the region shown in Figure 5.2 because neither 

dilution nor growth rate impact on the size and shape of this part o f the feasible
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region. The robust region is primarily defined by the variability in the pressure and 

flowrate.

Figure 5.7 shows a feasible region and robust region generated when the growth rate 

is increased to 0.18h_1. The feasible region is considerably larger than that in figure 

5.6, due to the higher amount of alcohol dehydrogenase expressed in the cell. 

However, the robust region generated is smaller because at this critical growth rate a 

small variation in growth rate would mean that the cells could enter oxido-reductive 

growth, where productivity is lower. [The impact of oxido-reductive growth was 

explored in Chapter 4, Figure 4.2, which shows that the size of the feasible region 

drops considerably when the growth rate is above 0.19h_1.]

5.5.3 Uncertainty in the Parameters

The case studies so far have looked at the impact of variation on the control variables. 

Here the focus was on finding a set of robust points given variation from a set point in 

the control variables. This methodology can be applied to look at variations in the 

parameters. Equation 5.9 shows a method for calculating the robustness for an 

operating point given parameters that are subject to uncertainty. Figures 5.8 to 5.10 

look at robust regions defined by uncertainty in the parameters. These figures 

examine the impact of two parameters (debris density and cell breakage coefficient), 

which are critical for defining the level of debris removal achieved.

Figure 5.8 shows a robust region defined by variations in debris density. Determining 

an accurate value for the wet debris density is difficult as it is experimentally hard to 

remove the excess water without changing the debris properties. In this work the 

robust region is defined by a 2% variation in debris density. Debris density has a 

critical impact on the efficiency of the centrifuge, as it is a key driving force in the 

separation of the solid and liquid phases. Figure 5.8 shows that this small amount of 

variation in debris density results in higher pressures and flowrates no longer being 

feasible.

Figure 5.9 shows the robust window defined by a 10% variation in the cell breakage 

coefficient. The cell breakage coefficient is a parameter that can only be calculated
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using results from homogenisation experiments. It is determined from the change in 

particle size in multiple homogenisation experiments run with different pressures and 

numbers of passes. Consequently there are likely to be errors when calculating this 

value as it is dependent on both accurately measuring the particle size of the debris 

and interpolating these values.

As can be seen in Figure 5.9, variation in the cell breakage coefficient can have a 

significant impact on the process performance. This is because a lower cell breakage 

coefficient results in more small debris for a given pressure and number of passes in 

the homogeniser. This smaller debris is more difficult to collect at high centrifuge 

throughputs resulting in the debris constraint not being met at higher pressures and 

centrifuge flowrates.

In reality both debris density and the debris breakage coefficient will vary 

simultaneously, and a more realistic scenario is shown in Figure 5.10, which shows a 

robust region defined by both a 10% variation in the cell breakage coefficient and a 

2% variation in the debris density. The combined effect of the two variable 

parameters is, as expected, to produce a much smaller robust region. The analysis 

indicates the significant impact that variations in parameters and control variables can 

have on the performance of a process and emphasises the need for techniques to 

determine robust operating strategies for process subject to these kinds of variations.

5.6 Conclusions

The objective in this work was to develop techniques to evaluate the robustness of a 

particular operating point. The idea here was to determine a sub-region within the 

feasible region where theoretically the process can be operated robustly. In this work 

the robustness of a process flowsheet was calculated when both parameters and 

control variables are subject to uncertainty.

In this work a scenario-based approach was used where the robustness was calculated 

by calculating the feasibility at each of the vertices of a hyper-rectangle. The 

advantage of this approach is that it is relatively simple to implement. However with 

each additional uncertain control variable or parameter, the number of points that
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needs to be evaluated doubles. Hence this approach is not scalable when there are 

many uncertain control variables and parameters. This problem can be overcome by 

determining which vertex will be lowest by examining the change in each constraint 

with each parameter and control variable. This approach assumes that output variables 

will vary monotonically with control variables and parameters. Nevertheless this 

approach might be justified when variations in parameter and control variables are 

small and the hence the output variations are likely to be linear.

In this work, the robust regions were then plotted on top of the feasible regions to 

show the impact uncertain variables can have on available operating space. The first 

set of results looked at the robust regions defined by variation in control variables. 

The second set of results looked at the impact of variation in model parameters. A 

limitation with this approach is that a robust region may be missed if it was not in the 

subspace that is visualised. In theory this approach could be applied in conjunction 

with the volume analysis technique shown in the previous chapter. However this was 

not done because significant computation time would be required to calculate such a 

large number of robust points.

Arguably the biggest limitation of this work is that it only partially solves the problem 

of determining an operating point. This is because it still relies on an engineer 

selecting appropriate ranges for each parameter. The parameters are often distributed 

values, with a large range of potential values but a much narrower range of values that 

frequently occur in practice. In such situations selecting a wide parameter range that 

covers all possible parameter values may result in an over-designed process whereas 

selecting a narrow range may result in a process that is not robust. In most of the 

examples shown here large ranges were selected to show points that should be robust. 

Ideally a method looking at robustness should give a user an indication of the 

probability that the constraint will be met. The next chapter looks at how probabilistic 

techniques can be applied to bioprocesses to determine the probability a constraint 

being broken given variations in multiple parameters and control variables.
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Figure 5.1: A schematic showing a two-dimensional feasible region ( R f r )  and the 

subset of the feasible region that is robust ( R o f r )  given a pre-determined level of 

uncertainty in the process control. The schematic also shows two points that are 

feasible, however one is not robust.
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Figure 5.2: The robust regions defined by homogeniser pressure and debris removal 

centrifuge flowrate given imprecision in the centrifuge flowrate and homogeniser 

pressure
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The sub-region is defined by: -
• growth Rate - 0.1 Shr'1
• harvest flowrate - 300L.h
• dilution ratio - 2
• homogeniser passes -4

The feasible region is defined by defined by a minimum ADH production of 5xl06 
units and a maximum debris concentration O.SgL'1.

The regions on the graph are: -
• Red region - the feasible region
• Yellow region - robust region given imprecision in the centrifuge flowrate of 

±10L.h_1 and homogeniser pressure of ±25bar.
• Blue region - robust region given imprecision in the centrifuge flowrate of 

±20L.h_1 and homogeniser pressure of ±50bar.
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Figure 5.3: The robust regions defined by homogeniser pressure and debris removal 

centrifuge flowrate given imprecision in the centrifuge flowrate and homogeniser 

pressure and given a higher ADH production constraint.
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The sub-region is defined by: -
• growth Rate - 0.15 h r1
• harvest flowrate - 300L.li'1
• dilution ratio - 2
• homogeniser passes -4

The feasible region is defined by defined by a minimum ADH production of 6xl06 
units and a maximum debris concentration 0.5gL_1. The regions on the graph are: -

• Red region - the feasible region
• Yellow region - robust region given imprecision in the centrifuge flowrate of 

HOL.h'1 and homogeniser pressure of ±25bar.
• [N.B. The robust region given imprecision in the centrifuge flowrate of

±20L.h'1 and homogeniser pressure of ±50bar does not exist.]
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Figure 5.4: The robust regions defined by homogeniser pressure and homogeniser 

passes given imprecision in the centrifuge flowrate and homogeniser pressure
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The sub-region is defined by: -
• growth Rate - 0.15hr_1
• harvest flowrate - 300L.li'1
• dilution ratio - 2
• debris removal centrifuge flowrate -  60Lh_1

The feasible region is defined by defined by a minimum ADH production of 5xl06 
units and a maximum debris concentration 0.5gL_1. The regions on the graph are: -

• Red region - the feasible region
• Yellow region - robust region given imprecision in the centrifuge flowrate of 

±10L.h'1 and homogeniser pressure of ±25bar.
• Blue region - robust region given imprecision in the centrifuge flowrate of 

zh20L.li'1 and homogeniser pressure of ±50bar.
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Figure 5.5: The robust regions defined by debris removal centrifuge flowrate and 

number of passes given imprecision in the centrifuge flowrate and homogeniser 

pressure
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The sub-region is defined by: -
• growth Rate - 0.15hr'1
• harvest flowrate - 300L.li'1
• dilution ratio - 2
• homogeniser pressure - 500bar

The feasible region is defined by defined by a minimum ADH production of 5xl06 
units and a maximum debris concentration 0.5gL_1. The regions on the graph are: -

• Red region - the feasible region
• Yellow region - robust region given imprecision in the centrifuge flowrate of 

llO L .h '1 and homogeniser pressure o f ±25bar.
• Blue region - robust region given imprecision in the centrifuge flowrate of 

L20L.li'1 and homogeniser pressure of ±50bar.
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Figure 5.6: The robust regions defined by homogeniser pressure and debris removal 

centrifuge flowrate given imprecision in the centrifuge flowrate, homogeniser 

pressure, dilution ratio and growth rate.
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The sub-region is defined by: -
• growth Rate - 0.15hr'1
• harvest flowrate - 300L.li'1
• dilution ratio - 2
• homogeniser passes -4

The feasible region is defined by defined by a minimum ADH production of 5xl06 
units and a maximum debris concentration O.SgL'1. The regions on the graph are: -

• Red region - the feasible region
• Yellow region - robust region given imprecision in the debris removal 

centrifuge flowrate o f ±10L.h'\ homogeniser pressure o f ±25bar, dilution 
ILL'1 and growth rate O .lh1
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Figure 5.7: The robust regions defined by homogeniser pressure and debris removal 

centrifuge flowrate given imprecision in the centrifuge flowrate, homogeniser 

pressure, dilution ratio and growth rate.
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The sub-region is defined by: -
• growth rate -0 .1 8hf'
• harvest flowrate - 300L.li"1
• dilution ratio - 2
• homogeniser passes -4

The feasible region is defined by defined by a minimum ADH production of 5xl06 
units and a maximum debris concentration 0.5gL_1. The regions on the graph are: -

• Red region - the feasible region
• Yellow region - robust region given imprecision in the debris removal 

centrifuge flowrate o f LlOL.h"1, homogeniser pressure of ±25bar, dilution 
ILL"1 and growth rate O.lh"1
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Figure 5.8: The robust regions defined by homogeniser pressure and debris removal 

centrifuge flowrate given imprecision in debris density parameter.
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The sub-region is defined by: -
• growth Rate - 0.15hr'1
• harvest flowrate - 300L.li'1
• dilution ratio - 2
• homogeniser passes - 4

The feasible region is defined by defined by a minimum ADH production of 5xl06 
units and a maximum debris concentration 0.5gL_1. The regions on the graph are: -

• Red region - the feasible region
• Blue region - robust region given a 2% variation in debris density.
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Figure 5.9: The robust regions defined by homogeniser pressure and debris removal 
centrifuge flowrate given imprecision in the cell breakage coefficient.

Homogeniser Pressure (bar)

The sub-region is defined by: -
• growth Rate - 0.15hr_1
• harvest flowrate - 300L.li'1
• dilution ratio - 2
• homogeniser passes -4

The feasible region is defined by defined by a minimum ADH production of 5xl06 
units and a maximum debris concentration 0.5gL_1. The regions on the graph are: -

• Red region - the feasible region
• Blue region - robust region given a 10% variation in the cell breakage 

coefficient.
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Figure 5.10: The robust regions defined by homogeniser pressure and debris removal 

centrifuge flowrate given imprecision in the debris density and the cell breakage 

coefficient.
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The sub-region is defined by: -
• growth Rate - 0.15hr'1
• harvest flowrate - 300L.li'1
• dilution ratio - 2
• homogeniser passes -4

The feasible region is defined by defined by a minimum ADH production of 5xl06 
units and a maximum debris concentration O.SgL'1. The regions on the graph are: -

• Red region - the feasible region
• Blue region - robust region given a 2% variation in the debris density and a 

10% variation in the cell breakage coefficient
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6 Stochastic Simulation and Analysis

6.1 Abstract

The work in this chapter builds on that in Chapter 5 and looks at the use of stochastic 

simulation for determining robust operating points. Stochastic simulation has the 

advantage that it can be used to look at the likelihood of a particular outcome. This 

means it can be used to determine of the probability of a bioprocess meeting its 

constraints.

In this work, it was assumed that each o f the parameters and control variables subject 

to variation were normally distributed. Two different approaches were then applied 

for generating a stochastic simulation. The first approach used the Box-Muller 

algorithm to produce normally distributed random numbers. The second approach 

used quasi-random numbers in conjunction with an algorithm for calculating points on 

a normal distribution. The advantage of this approach is that fewer points are required 

to estimate accurately the impact of variations on the bioprocess performance.

The stochastic simulation can then be used to look at the distribution of the output or 

performance variables at different operating points. The approach taken in this work 

was to assume that the output variables are approximately normally distributed. Using 

this assumption two approaches were then used to analyse the simulation. The first 

approach was to visualise a two-dimensional subset of the feasible region.

The second section o f the chapter uses optimisation to examine the trade-off between 

achieving robustness and maximising process performance. A non-greedy algorithm 

was used for the optimisation routine. Two versions of the algorithm were applied to 

the case study; the first algorithm is a standard algorithm that treats all the variables as 

continuous, the second algorithm was developed to handle discrete variables.

The work in this chapter demonstrates the potential insight that can be gained through 

using stochastic simulation. Equally it shows how the combination of stochastic
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simulation and optimisation has the potential to find robust operating points in multi- 

variable bioprocesses.

6.2 Introduction

The previous chapter demonstrated that variability in both the control variables and 

model parameters will have a significant impact on the performance of a bioprocess. 

However the limitation of the scenario-based approach is that it does not consider the 

likely variability o f each control variable or model parameter. An engineer can only 

assign ranges for each control variable and parameter. The temptation for an engineer 

will be to selects large parameter ranges; however, this is likely to lead to a sub- 

optimal design.

An alternative approach is to treat the parameters as having a distribution and this can 

be achieved by generating a stochastic simulation. This chapter looks at both the 

generation of a stochastic simulation and how such a simulation can be analysed to 

find robust operating points for a given flowsheet.

A stochastic simulation can be generated by running multiple simulations using 

different control and parameter values within a given distribution. The results can then 

be analysed to calculate the most likely outcome, the variation, and even risk of an 

undesirable outcome. When there are multiple parameters, each subject to uncertainty, 

it is not possible to look at all combinations of parameter settings. In this work the 

approach that is used to address the problem is that o f Monte Carlo integration. Monte 

Carlo Integration was demonstrated in Chapter 4 when analysing the integral of the 

feasible region. In this chapter it is used to analyse the uncertainty space defined by 

uncertain parameters and by variations in control variables.

Monte Carlo simulation has been applied in many situations including analysis of 

scheduling and resource allocation (Farid et al, 2000). However, there is very little 

work looking at its application in accurate modelling of bioprocess unit operations. 

One notable exception is the work by Uesbeck et al. (1998). However, this work only 

looked at a single fermentation step and not a bioprocess sequence. In their conclusion
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they acknowledged that the work needs to be extended to incorporate the impact of 

downstream steps.

This chapter examines how the approach of Monte Carlo Integration can be used in 

the analysis o f the interactions between unit operations. It also shows how it can used 

to evaluate suitable operating regions for different levels of risk. Finally the work 

demonstrates how Monte Carlo Integration can be applied to evaluate the general 

trade-off between maximising economic performance whilst ensuring process 

robustness.

6.3 Theory

6.3.1 Stochastic Modelling

A bioprocess operating at a specific set point will be subject to variation in both 

control variables and parameters. Therefore an engineer will need to consider the 

impact of such variations when selecting an operating point. When evaluating such a 

problem the engineer will have to make a trade-off -- normally between process 

robustness and process performance. In the previous chapter, the problem was dealt 

with by assuming that the parameters and control variables could be defined by a 

fixed range. However, an alternative approach is to treat the parameters and control 

variable variations as being distributed variables.

Typically the output o f a process will be dependent on a series of parameters and 

control variables e.g. (yj(x,0)). When both the control variable and the parameters are 

subject to variability the expected value of the output can be calculated by integrating 

the output function multiplied by the probability function: -

where y  is the average value for an output variable, E©(fu) is the expected value for 

the function (fu), fu(0) is the function of fu for a given parameter value (0) and j(0) is 

the probability of the parameter value (0).

Equation 6.1
©

Page 142



Stochastic Simulation and Analysis

Such a problem can be evaluated by using Monte Carlo Integration to estimate the 

integral by calculating both the value o f the function (fu(0)) and distribution function 

(j(0)) at a series of random points. However, often in such problems the probability 

distribution function will already be known. Hence the sampling set can be skewed to 

select from values that are more likely to occur. The advantage of this is that less 

simulation time is spent evaluating points that are unlikely to contribute significantly 

to the integral.

There are a number of techniques that can be used to calculate random numbers that 

fall into such distributions. One o f the simplest is to use an inverse normal distribution 

function, which converts raw probabilities into the corresponding numbers of standard 

deviations from a mean (Acklam, 1999). This technique can be used to transform a set 

of random numbers into a normally distributed set of values. A second, and more 

efficient approach, is the Box-Muller technique (Press et al, 2002).

As well as being able to calculate the average, Monte Carlo simulations can also be 

used to calculate the standard deviation. If it is assumed that the output variable can 

be approximated by a normal distribution then it is possible to determine the 

probability o f a constraint being broken in the course of a simulation using the 

equation below: -

y  + O -1 (y)c7y < 0 Equation 6.2

where y is the desired probability for a constraint, 0 _1(y) is the inverse normal 

distribution algorithm and ay is the standard deviation in the output variable (y).

The work in Chapter 4 showed that in a potential limitation of a Monte Carlo 

Integration was the accuracy of the results. In order to obtain increased accuracy a 

larger number o f simulations are required. It was shown that increasing the number of 

samples (m) will decrease the error by m"1/2. However, with large problems with more 

variables the error is likely to increase because of increased variance.
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One solution to this problem is to use quasi-random numbers in Monte Carlo 

simulations. Quasi-random numbers are generated to fill uniformly a multi-dimension 

cube and reduce the risk o f bias in a particular sample. The advantage of this approach 

is that the error of the integral is proportional to log(m)/m. This results in better 

estimates o f the integral for less computation effort. An example of such an algorithm 

is the Sobol generator and an overview of this is given by Bratley and Fox (1988).

6.3.2 Analysis of Uncertainty

A Monte Carlo simulation enables the prediction of both the expected outcome and 

the likely risk. As discussed in the literature survey, a significant body of research has 

been carried out investigating the impact of uncertainty. A review of optimisation 

under uncertainty for chemical engineering problems is given by Sahinidis (2004). 

However that paper primarily focuses on integer and linear programming. It only 

gives a passing mention to non-linear and non-convex problems typically found in 

bioprocesses.

In this thesis, stochastic simulation was used to determine a trade-off between the 

performance and reliability of an example process. The problem can be thought of as 

one of a multi-objective optimisation. Typically a bioprocess will be subject to a 

series of constraints. However, variation in the underlying process means that no 

operating point completely removes the risk of a constraint not being met.

The approach developed in this thesis was first to calculate the stochastic simulation. 

The results from the stochastic simulation were then used to create an objective 

function. The results of the objective function are then in turn used by an optimisation 

routine which searches for the optimum set of control variables. This approach is 

similar to that used by Bernardo and Saraiva (1998), which uses an optimisation 

routine with a stochastic simulation sub-routine. The advantage with this approach is 

that the two problems are dealt with separately, therefore reducing the complexity of 

the overall problem. However, one drawback is that a full stochastic simulation must 

be run at each point in the optimisation. Therefore overall time required by the 

algorithm will be the product of the time required by the stochastic simulation and the 

time required by the optimisation.
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In this chapter an objective function was created that combines the performance and 

robustness criteria. The optimisation problem was run several times using different 

parameters in order to analyse to the trade-off between robustness and performance. 

The example used in this work has one constraint that needs to be met robustly though 

the approach could easily be extended for multiple constraints. More details on the 

computation methods are given in the next section.

Most bioprocesses are likely to be non-linear. Bioprocesses are also likely to have 

non-convex feasible regions, meaning that their constraints will form a region where a 

chord between two feasible points may need to pass outside the feasible region. This 

means that any problem is likely to have several local optima. Such problems are 

often difficult for traditional optimisation techniques, such as Newtonian and Quasi- 

Newtonian methods. This is because these routines will look for the best downhill 

move at each point. However the best downhill move is often likely to lead to the 

routine finding a local optimum. The routines are said to be “greedy”. Often the only 

way such routines can solve such problems is by using multiple re-starts at different 

points which is computationally intensive.

The optimisation approach examined in this work was simulated annealing, which is 

non-greedy. This is because the simulated annealing algorithm occasionally allows 

uphill moves as determined by the ‘Temperature’ of the optimisation routine. This 

enables the routine to avoid being trapped in local optima and means that simulated 

annealing can find a global optimum even when there are many local optima. The 

next section gives more detail of the underlying computation methods used to solve 

these problems. Details on how the architecture of the problem was resolved are also 

included.

6.4 Computation Methods

6.4.1 Introduction

The work in this section can be divided into two parts. The first looks at the stochastic 

simulation and the changes required to convert the C++ version of the alcohol
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dehydrogenase simulation into a stochastic simulation. The second looks at methods 

for analysing the trade-off between robustness and performance.

The first section (6.4.2) analyses the methods used for generating the stochastic 

simulation and investigates the use of object-orientated design. The work also looks at 

different approaches for generating the Monte Carlo simulation and in particular the 

application of the Box-Muller algorithm and the Sobol sequence, techniques used 

respectively for generating normally distributed random numbers and Quasi-random 

numbers.

The second section (6.4.3) looks at metholodogies used to analyse the trade-off 

between performance o f the process and the robustness of the process. This work 

builds on the previous stochastic simulation work and uses the results of the 

simulation to evaluate the trade-offs.

6.4.2 Stochastic Simulation

The objective o f this work was to develop a simulation of the case study process 

(described in Chapter 3 and Appendix A) that was able to incorporate the effects of 

uncertainty in process models. This was done by running multiple trials using 

normally distributed random numbers for several variables. One of the main 

challenges identified at an early stage was the ability to generate a sample of random 

numbers with a normal distribution. Two different approaches were used: -

• Normally distributed random numbers using the Box-Muller algorithm.

• Normally distributed numbers from the Sobol Sequence.

Both of these approaches require the development of their own simulations and 

object-orientated programming was used to model the case study process in both 

cases. This enabled the problem to be broken down into logical sub-units. At the top 

level was the simulation class which contains the entire simulation. Other classes 

created for use in the simulation were: -

• Classes to represent the unit operations.

• A Stream Class to represent the streams contents.
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• A “Statistical” class designed for calculating the average and standard 

deviation.

• Random number generating class.

This class structure is illustrated in Figures 6.1 and 6.2, which show the relationship 

between the different classes used. Details on each of the classes are given in the 

sections below.

6.4.2.1 The Simulation Class

The simulation class was created so that any analysis work using the simulation could 

be performed using an instance of this class. The class had a series of methods for: -

• Setting each o f the control variables in the process.

• Setting the number of runs in the stochastic simulation.

• Running the simulation.

• Returning values calculated by the previous simulation run.

The “simulation” class was designed such that all the other objects required for the 

simulation would be initialised when the class was created. The initialisation therefore 

creates a series of stream objects and unit operations. These objects are created on the 

free-store with pointers to them being held internally in the class.

The main objective of the Simulation Class was to perform a Monte Carlo simulation 

of the process. This Monte Carlo simulation was carried out by running multiple trials 

of the simulation, each using different values for the parameters and control variables 

subject to uncertainty. In each run the mass balance and general property calculations 

are performed for each of the unit operations. At the end of each trial, each of the 

output variables is held in a corresponding instance of the “statistical” class. After the 

final trial, the “statistical” objects are used to calculate the average and standard 

deviation for each output variable.
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In this work, the primary interest was to obtain the highest level of performance whilst 

ensuring that there was minimal risk of the constraints being broken. This was 

calculated using the formulae below: -

fpv)  ~  ^
f  -  \

C -T , 
a .

Equation 6.3

where fpp) is the probability of a constraint being met, <£> is the function for evaluating 

the normal distribution, c, is the value of the constraint, is the expected (or average)

value of the constrained variable and oyj is the expected standard deviation in the 

constrained variable.

The function for evaluating the normal distribution was taken from work by Marsaglia 

(2004).

6.4.2.2 The Unit Operations and Streams

The design of the unit operations and streams is specified in chapter 3. The streams 

were designed to hold the values that described the material flowing between each of 

the unit operations. The unit operations themselves were designed with a series of 

methods for: -

• Setting the control variables.

• Setting the input and output streams.

• Calculating material balance and changes in stream properties.

In the previous simulation the parameters and variables were treated as normal 

variables. In this work the parameters and control variables had to vary between runs. 

To achieve this, two new classes were built that generated normally distributed 

random numbers and quasi-random numbers. These classes are described in greater 

detail in the next section.

The unit operation classes were changed, so that the variables that were subject to 

variability were defined as instances of this class. This approach meant that internal
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changes to the unit operations were minimised. Nevertheless new methods were 

added to each of the classes affected so that the distribution and average values of 

each of these uncertain parameters and control variables could be specified.

6.4.2.3 Random Variable Classes

In this work two classes (“Random” and “Quasi-Random”) were developed to 

calculate the normally distributed random number and quasi-random numbers. Both 

classes were designed with the following methods: -

• Setting the average and standard deviation of each variable.

• Setting minimum and maximum ranges on the variables.

• Returning a number when the object is used for calculations.

The methods for setting the average and standard deviation were incorporated so that 

a distribution profile could be defined for each instance of the class. The minimum 

and maximum values that were used ensured that random numbers did not lie outside 

set ranges. This was, for example, to stop variables from having negative values. 

Finally a method was built so that the object would return its current random value so 

that it could be used in the simulation.

Both the classes also had methods for calculating the normally distributed random 

numbers or quasi-random numbers for a particular run of the simulation. However, 

here there were substantial differences between the two classes. The simplest 

approach was that used by the “Random” class. This class had a method called 

“Reset” that ran the Box-Muller algorithm (Press, 1999) to calculate a normally 

distributed set of random numbers. This value was then converted into a value for the 

particular parameter using the average value and standard deviation. This was stored 

internally and returned every time the object was used in an equation.

The “Quasi-Random” class was calculated using the Sobol sequence and required a 

more complex approach. Unlike random numbers, quasi-random numbers follow a 

sequence meaning the class needs to keep track of how many times it has been called. 

Equally the numbers returned will be dependent on how many other random variables 

there are in the simulation.
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To handle this, the “Quasi-Random” class had three static variables and two static 

functions. Static variables and function are not applied to a specific instance of the 

class (like normal variables and functions) instead they are shared by all instances of 

the class. The first static variable was used for storing both the number of instances of 

the class and therefore was incremented each time a new instance of the “Quasi- 

Random” class was initialised. This static variable was also used to set an index 

number for each instance of the class. The second static variable was used to track the 

current step in the Sobol sequence. Finally a static array was used to store all the 

values of the Sobol sequence for a particular step.

The class also had two static functions called “Reset” and “Next” for calculating the 

random variables. The “Next” method is run to calculate a new set of “Quasi- 

Random” numbers. This function increases the static variable used to track the current 

step in the Sobol sequence. The function then puts the calculated values for the 

current step of the Sobol sequence into the static array. The “Reset” function was used 

to restart the Sobol sequence.

When the object is used in an equation it uses index number to retrieve the appropriate 

value from the static array. It then uses an inverse normal distribution algorithm in 

conjunction with its average and the standard deviation values to calculate a value. To 

improve performance this value is cached in the object after it is calculated to ensure 

that the same calculation is not run multiple times.

6.4.2.4 Statistics Class

The “Statistics” class is used to hold a list of values and then calculate the average and 

standard deviation.

After each run of the simulation, the “statistics” object stores each of the values that 

are given to it in a linked list. The advantage of using the linked list is that, unlike an 

array, it can be dynamically resized giving considerably more flexibility. When the 

simulation has finished the object interrogates its list and calculates both the average
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and standard deviations using the values stored in the list. At the end of each 

stochastic simulation the statistics object has its lists purged thus freeing up memory.

6.4.3 Analysis of the Stochastic Simulation

The second part of this work was evaluating the trade-off between the robustness and 

the performance of the system. The main problem with the process used for the case 

study is that the problem is non-linear and the feasible region defined by the debris 

constraint is non-convex. This makes it unsuitable for most traditional optimisation 

techniques as they are greedy and are likely to get trapped in a local optimum. 

Therefore the approach used in this work was to create a single objective function 

containing the constraints and optimise it using a simulated annealing algorithm. The 

objective function that was created included the following terms: -

• The performance term to be maximised.

• Penalty function based on the risk of breaking a constraint.

• Penalty function to ensure the control variables were inside their ranges.

By varying the penalty function based on the risk of breaking a constraint and re

running the optimisation routine, it should be possible to find a series of points 

corresponding to different levels of performance and robustness. This basic approach 

could be applied to any bioprocess.

Simulated annealing is based on an analogy with the thermodynamics of a liquid 

metal solidifying. Traditional greedy optimisation routines are analogous to 

quenching, where the metal is cooled quickly resulting in a suboptimal end product. 

To overcome this limitation, simulated annealing allows occasional uphill moves 

proportional to a ‘temperature’ property meaning it is analogous to a controlled 

cooling. The optimisation routine uses a high temperature initially to ensure that it 

does not fall into a local optimum. However, this temperature is decreased as the 

routine moves toward the optimum.

The version of the simulated annealing algorithm used was that given by Press et al 

(2002) based on the Nelder-Mead algorithm. The algorithm works by adding a 

random number onto each vertex of the simplex proportional to the ‘temperature’
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property. After a set number o f iterations the temperature is reduced by a cooling 

factor meaning that uphill moves become less likely. This procedure is repeated until 

either the algorithm meets the convergence criteria or exceeds the maximum number 

of iterations. This algorithm has four properties that need to be set: -

• The initial temperature -  This is the initial temperature of the system and 

determines the initial probability of an “uphill” move.

• The number of iterations per cycle - This is the number of iterations that will 

be at one temperature before the temperature is reduced.

• The cooling factor -  This is determined by the factor at which the 

temperatures is reduced after the number of iterations has been exceeded.

• The maximum number of iterations -  This is the maximum number of 

iterations before the algorithm will terminate (regardless of whether it has 

converged on an optimum point or not).

One limitation of this algorithm is that it treats each of the control variables as 

continuous. However in the example process, one of the control variables (the number 

of passes through the homogeniser) is actually integer. This necessitates that a second 

algorithm be developed.

This algorithm made a slight modification to the algorithm described by Press et al 

(2002) so that it could deal with integer variables. This was done by effectively 

treating the continuous variables as a subset of the control variables. The algorithm 

works by using the method proposed by Press et al (2002). However, after the cycle 

at a particular temperature is run an additional step is used to change the integer 

variable.

This step first uses a random binary to decide whether the integer variable should be 

allowed to increase or decrease in this iteration. Depending on this value the 

algorithm will evaluate the objective function at the lower or higher value. It will then 

determine whether moving the integer variable in this direction will improve the 

objective function. However, the decision on whether to move to the new value is 

based on a combination of this value and the random variable generated using the 

temperature property. This approach in theory could be expanded to allow for
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multiple integer variables. In many respects this new algorithm is similar to the 

algorithm described by Cardosa et al (1997), although their approach was limited to 

binary integer variables.

The next section looks at the results obtained using the methods described in this 

chapter.

6.5 Results

6.5.1 Introduction

The results look at the application of the stochastic model described in the previous 

section and are divided into two sub-sections. The first section looks at visualisation 

of the data generated by the stochastic model whereas the second section looks at the 

trade-off between robustness and maximising production.

The visualisation was used to determine whether the data generated by the stochastic 

simulation appears to be broadly accurate. The visualisation was carried out by 

writing two simple programs. The first program calls the stochastic simulation object 

and writes out the returned values to a series of text files. The text files were then 

imported into Matlab and visualised using a second program. Two examples were 

looked at: -

• A simple example where only homogeniser pressure and debris removal 

centrifuge flowrate were subject to variation.

• A complex example where a range of control variables and model parameters 

were subject to variation.

6.5.2 Visualisation

Figures 6.3 looks at the simple case where only homogeniser pressure and debris 

removal centrifuge flowrate are subject to variation. The graph shows a plot of the 

homogeniser pressure against centrifuge flowrate and a series of different levels of 

certainty in the debris constraint being met. The most confident region (coloured deep 

blue) represents a region where there is a less than 1% chance of the debris constraint
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being broken. The two red lines represent the points where there is a 50% chance of 

either the debris constraint or the alcohol dehydrogenase constraint being broken.

The first thing that can be seen from the graph is that the lines are not smooth because 

the number of points used to plot this contour is relatively low (20x20). As can be 

seen from the graph, the problem is particularly acute when plotting high and low 

probability contours. This is because probabilities range between zero and one 

meaning that the contour algorithm has less gradient information and therefore it 

cannot accurately interpolate at such values.

Figure 6.4 overcomes this problem by using more points (100x100) but at the cost of 

a significantly increased computational time required to generate a plot. An 

alternative strategy for solving this problem would be to use another utility for 

generating these plots that could use the results of the simulation directly. Figure 6.4 

shows that there is still some jaggedness in the lines that define low and high 

probabilities of the constraints being met. This is caused by the simulation itself since 

when low numbers of trials are used in the Monte-Carlo Integration there will be a 

relatively high error.

Figure 6.5 shows that increasing the number of simulations solves this problem 

though again at the expense of increasing the number of trials in a simulation and 

therefore the time to generate the graph is also increased. An alternative strategy is to 

use quasi-random numbers. Figure 6.6 shows the same graph generated using 100 

trials using quasi-random numbers. The main advantage of using quasi-random 

numbers is that it requires a lower number of trials to generate an accurate integration 

with little bias.

In figure 6.6 the jaggedness is removed by ensuring that each time the stochastic 

simulation was run it used the Sobol sequence with the same starting point. This 

means that each of the points on this graph is based on the same random number 

sequence. The danger of this approach is that if small numbers of runs are used in 

each stochastic simulation then the results will have a constant bias and therefore be
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misleading. However, here the number of trials is large (100) for two variables subject 

to uncertainty meaning that any bias should be small.

So far each of the graphs has only looked at the situation where there are two control 

variables subject to uncertainty. However this approach scales well to problems with 

larger numbers of uncertain parameters and control variables. This is demonstrated in 

figure 6.7, which looks at the variation in a number of control variables and 

parameters. In this work it was assumed that the control variables could be controlled 

relatively accurately. For this simulation the following control variables were all 

assumed to have a standard deviation of 2%: -

• growth rate

• harvest centrifuge flowrate

• homogeniser pressure

• dilution ratio (after the homogeniser)

• debris removal centrifuge flowrate

Figure 6.7 also looks at the variation in a number of parameters. For this work it was 

assumed that they all had a standard devation of 5%: -

• alcohol dehydrogenase in the cell

• protein in the cell

• alcohol dehydrogenase degradation

• protein release coefficient

• cell breakage coefficient

• pressure exponent for cell breakage

• debris size from homogeniser

• viscosity of the homogenate

Additionally, debris density was also assumed to be subject to variation. However, 

this was assumed to have a standard deviation of 5g/L.

One limitation of the work here is that each of the variations of the uncertain 

parameters and control variables is based on simple assumptions. For such analysis to

Page 155



Stochastic Simulation and Analysis

have real application the estimates for the variation in the parameters should be 

generated whilst the models are being built and the experiments carried out.

In Figure 6.7 there are several interesting features; in particular there is much greater 

variation then Figure 6.6. This is because there are additional factors that will affect 

the amount of debris and the ability of the process to collect the debris. However, the 

variability is not as large as might be expected and this is probably because many of 

the uncertain variables in this simulation do not directly affect the debris collection. 

This can also be attributed to constraints being calculated by looking at the 

distribution of output variables rather than assuming fixed ranges for control variables 

and parameters subject to uncertainty, as was done in the previous chapter. Using 

simple ranges for each of the parameters and control variables subject to uncertainty 

can lead to a very over-constrained problem.

Another advantage of this approach is that it can be used to look at the trade-off 

between robustness and maximum productivity. This can allow an engineer to 

determine whether the process will be able to produce enough of the product with the 

desired quality, consistently.

6.5.3 The Trade-off between Robustness and Performance

The optimisation tried to find the best operating points for various acceptable levels of 

uncertainty in the process. The optimisation routine was run to determine the best 

operating strategy within the following ranges: -

• growth rate

• harvest centrifuge flowrate

• homogeniser pressure

• homogeniser passes

• dilution ratio

• debris removal centrifuge flowrate

The objective function for this case study used: -

• alcohol dehydrogenase as the performance term.

0.03 - 0.251F1 

100 - 700Lh'' 

100 -  600bar 

1 -  7passes 

0 -  2.5L.L’1 

20 - 200L11'1
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• A penalty term for the probability of the debris constraint being broken.

• A penalty term to stop the search moving outside the operating space.

In this work a number of different objective functions were looked at. The first 

approach looked at a combination the three terms in a simple linear arrangement e.g: -

fo b j  = f ADH +  W  " fp (D ebris)  + f  Penalty Equation 6.4

where f 0bj is the objective function being optimised, / a d h  is a function for the amount 

of ADH produced, fp (D ebris)  is the function for calculating the probability of the debris 

constraint being broken, fp en a iity  is the penalty function for moving outside the 

operating space and w is the weight variable.

The idea here was that the weight value could be varied in order to locate a series of 

points, each with a decreasing amount of alcohol dehydrogenase but an increased 

probability of the constraint being met. However, this approach seemed to be only 

able to produce results at the two extremes regardless of what values the weight was 

set at. As a result, a second approach was tried. This approach used a penalty function 

when the probability of the debris constraint not being met was above a critical 

threshold. The penalty function used was linearly proportional to the violation of this 

threshold. E.g.: -

f o b j  = f ADH + max(w • {fp (D eb n s) ~ C P ( D e b n s ) \^ )+  f Penalty Equation 6.5

where cP(Debris) is the debris probability threshold.

In this approach the weight (w f)  was not varied. Instead different values of debris 

probability constraint (cp) were used. The problem with this approach is that if a high 

value of Wf is used then potentially it breaks up the feasible region forming steep 

valleys that the simulated annealing algorithm cannot climb out of. Therefore the 

penalty function was modified to: -
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f o b j  = f A D H  + m a X
■(fW  ' V  P(Debns) C P(Debris)

R /;P(Debris) - c P(Debri.
,0 +  f tPenalty Equation 6.6

The advantage of this penalty function is that it sets a maximum limit on the penalty 

size ( W f ) .  This means that it should, in theory, avoid creating barriers in the search 

space that the simulated annealing algorithm cannot escape. Ultimately Equation 6.6 

was the objective function used in the work, with the units of alcohol dehydrogenase 

normalised by dividing the value by 107. The debris penalty function was also set up 

so that it would have a minimum value of zero and a maximum value of 5. The 

stochastic simulation used had the variable parameters with the same standard 

deviations as those used to generate figure 6.7.

In this work the final objective function was used in conjunction with the two 

optimisation techniques defined in section 6.4.3. The simulated annealing profile is 

controlled by a number of parameters. The optimisation techniques were run with the 

parameters defined in Table 6.1 below. Each of the combinations of parameters was 

then run ten times for each of the probability constraints on the debris concentration. 

The three different conditions were used in case one set of parameters was not able 

locate an optimum.

Table 6.1: The parameters used during optimisation

Optimisation 

Parameters 1

Optimisation 

Parameters 2

Optimisation 

Parameters 3

Initial temperature 5 5 5

Number of iterations per cycle 20 20 50

Cooling factor 0.98 0.985 0.985

maximum number of iterations 5000 5000 6500

The initial temperature of 5 was selected as this corresponded approximately to the 

largest uphill move using the objective function. A relatively low number of iterations 

was used per cycle because the second optimisation routine needs to evaluate the 

integer variables between cycles. To compensate for the low numbers of iterations in 

each cycle a high cooling factor was selected giving a gentle cooling profile.
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These two techniques were then run using a series of different values of acceptable 

risk for the debris constraint being broken. In both cases good results were obtained 

using this approach, when the probability of the debris constraint being broken was 

between 0.002 and 0.5. The results for the two approaches are shown in Figures 6.8 

and 6.9. As can be seen from the graphs that the majority of the points are close to the 

optimum value. However, a number of points are a long way from this point. This is 

because sometimes the routine appears to stop at points below the optimum.

In theory lower cooling and a higher number of iterations per cycle should result in 

better convergence at the optimum point. However, there is no obvious trend that can 

be seen from Figures 6.8 and 6.9. This may reflect that ten runs for each set of 

parameters at each of the points along the curve was not enough to find a trend. It is 

possible that trends could be seen if a greater number of runs were carried out. 

Equally it is possible that there is not enough variation between the parameters and 

therefore none of the sets of parameters are significantly better. If the latter is true 

then it would seem sensible to use the first parameter set as this is likely to require the 

fewest iterations.

A comparison between Figure 6.8 and Figure 6.9 shows that the optimisation routine, 

which is designed to handle the integer variables, is more likely to converge sub- 

optimally. This seems to indicate that the new algorithm is not particularly efficient. 

One possible limitation of this algorithm is that the integer variable is examined less 

often and is restricted to either making an upward or downward move depending on 

the random binary variable. Consequently the algorithm probably could be designed 

to be more efficient.

Figure 6.10 is a comparison of the results obtained from the two processes. The 

results obtained when the number of passes is allowed to have any value are slightly 

better than the results obtained when the number of passes is limited to integer values. 

This is most probably due to the higher degree of freedom when selecting an 

operating point. In both cases however, a relatively small decrease in productivity will
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yield a more robust process indicating that the process can be operated in a robust 

manner without a significant drop in productivity.

Using this approach we can also look at the position of the optimum point and how 

this changes when better performance is required. Table 6.2 shows the best results for 

each of the different acceptable levels of risk of the debris constraint not being met.

Table 6.2: The best results for each of the different levels of risk of the debris 

constraint being broken.
Probability o f  

Failing to M et 

the Debris 

Concentration

Growth Rate 

( h 1)

Harvest

centrifuge

Flowrate

(L.h-1)

H om ogeniser

Pressure

(Bar)

H om ogeniser 

Number o f  

Passes

D ilution Ratio 

(L .L ')

Debris 

R em oval 

Centrifuge 

Flowrate 

(L h r')

Am ount o f  

A D H  (units) 

x 106

1 0.1796 283.2 600 4.15 0 200 15.34

0.5 0.1803 304.7 600 2.90 1.27 72.1 12.08

0.1 0.1803 289.3 600 2.75 1.44 67.8 11.66

0.05 0.1804 286.5 600 2.71 1.48 66.7 11.56

0.02 0.1804 283.9 600 2.68 1.51 65.6 11.45

0.01 0.1804 282.1 600 2.65 1.53 65.1 11.38

0.05 0.1804 280.2 600 2.62 1.55 64.4 11.32

0.002 0.1805 278.6 600 2.59 1.57 63.8 11.25

The results in this table show a number of interesting features. If we ignore the impact 

of the debris constraint (e.g. the probability of failure is one) then we can see that the 

optimum point lies at the maximum pressure, a relatively high number of passes, no 

dilution and a fast debris removal centrifuge step. This fits with our existing 

understanding of the process. Higher pressure and a larger number of passes results in 

more product being released. However, a large number of passes may result in the 

greater degradation due to longer processing times. Equally, high dilution and 

centrifuge flowrates will also increase the processing time and therefore the loss of 

product.

When the debris concentration constraint is set then the optimum point is shifted. The 

new optimum point has a lower number of passes, a lower debris removal centrifuge 

flowrate and a higher dilution ratio. This is because a lower number of passes will
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reduce the amount of micronised debris. Equally, increasing the dilution ratio and 

decreasing the centrifuge flowrate and number of passes will ensure that more debris 

can be removed. In this work it can be seen that changing these settings will ensure 

greater robustness.

One unexpected trend is that when the robustness criterion is increased the harvest 

debris flowrate should be decreased. Lower harvest centrifuge flowrates are 

associated with higher recovery of cells but greater loss of product through longer 

processing. It is possible that lower harvest centrifuge flowrates become more 

desirable when the debris concentration constraint is increased to compensate for the 

longer processing times in later steps. However, previous work has shown that this 

control variable will have a relatively small impact on the performance of the process.

As discussed earlier these results would only be realistic as they assume that the 

homogeniser is in a continuous mode. However often the number of passes is limited 

to an integer amount. The results in Table 6.3 show the performance using the second 

optimisation routine which limits the number of passes to integer values.

Table 6.3: The best results for each of the different levels of risk of the debris 

constraint being broken when the number of homogeniser passes is treated as an 

integer variable.
Probability o f  

Failing to M et 

the Debris 

Concentration

Growth Rate 

(h-1)

Harvest

centrifuge

Flowrate

(L.h'1)

Hom ogeniser

Pressure

(bar)

Hom ogeniser 

Number o f  

Passes

Dilution Ratio 

( L .L 1)

Debris

Removal

Centrifuge

Flowrate

(L.h-')

Am ount o f  

A DH  (units) 

x l0 f>

1 0.1798 283.5 600 4 0.00 200.00 15.34

0.5 0.1802 304.8 600 3 1.31 71.65 12.08

0.1 0.1802 287.7 600 3 1.51 64.96 11.63

0.05 0.1802 284.2 600 3 1.56 63.58 11.52

0.02 0.1802 279.7 600 3 1.61 62.10 11.40

0.01 0.1802 277.7 600 3 1.65 61.44 11.32

0.05 0.1802 274.9 600 3 1.68 60.53 11.26

0.002 0.1802 272.9 600 3 1.69 60.17 11.18
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This work shows similar trends to those shown previously. The number of passes 

through the homogeniser is rounded up to three when the debris constraint is 

enforced. Equally the dilution rate is higher and the debris dilution rate is lower than 

when the number of passes through the homogeniser was not constrained to integer 

variables. This is probably because they need to compensate for the number of passes 

being higher than they would be if the number of passes was not an integer variable.

This work shows that stochastic simulation can be used in conjunction with 

optimisation to look at the trade-off required to operate a process robustly. This can 

give some insight into how effectively the bioprocess is capable of performing as well 

as a potential set of operating conditions that will ensure both a higher productivity 

and a certain level of robustness.

6.6 Conclusions

In the previous chapter, it was shown that the impact of variation in parameters and 

control variables could be examined by using a series of worst-case scenarios for the 

control variable and parameters. However, this approach could lead to sub-optimal 

processes if large ranges are selected for each of the control variables or parameters. 

With this in mind this chapter looked at the use of stochastic simulation and how this 

can be applied to analysing a bioprocess. The advantage of stochastic simulation is 

that it is scalable meaning that potentially very large numbers of uncertain variables 

and parameters can be looked at simultaneously. Additionally this work can be used 

to make assumptions about how likely a constraint is to be broken with a particular 

operating strategy.

The first part of the work looked at visualising the results of such a simulation. Two 

examples were taken. The first looked at the impact of two control variables. As the 

impact of these two control variables are well understood it was used to gauge the 

effectiveness of this approach. The second example looked at a situation that included 

multiple control variables and parameters subject to uncertainty. The visualisation 

work shows that stochastic simulation can be used to find a subset of the feasible 

region that will actually be robust.
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The work also shows that Monte Carlo simulations will be subject to bias unless a 

large number of random points are used (as demonstrated in Figure 6.4 and 6.5). This 

can be avoided by using a higher number of trials or alternatively using quasi-random 

numbers. The advantage of quasi-random numbers is that the points are selected in 

such a way that they are distributed evenly across the sample space and hence reduce 

bias.

The second part of this work looked at the trade-off between robustly achieving a 

constraint and maximising process productivity. The approach used here was to 

generate an optimisation function that contained a penalty term whenever the 

probability of the constraint being broken was deemed unacceptably high. The 

objective function was then optimised using a simulated annealing algorithm selected 

for its ability to deal with problems with local optima.

In this work two version of the optimisation routine were run. The first uses a 

simulated annealing algorithm, which treats all the variables as continuous variables. 

However, the case study selected contained one control variable which could only 

have an integer value. Therefore a modified optimisation routine was developed that 

was able to deal with integer variables as well as continuous variables. The latter 

approach tended to converge on sub-optimal points which suggest further refinements 

may be necessary to improve performance of the routine.

In this work both optimisation routines were run using different optimisation 

parameters, which control the rate of cooling in the algorithm. However, with the 

limited number of runs using each combination of parameters, no conclusions could 

be drawn about the best parameter setting for the algorithm.

The main limitation of the stochastic simulation is the assumptions that had to be 

made about the distributions of the control variables and parameters. Future work 

should look at techniques for estimating the uncertainty from experimental data. 

Another limitation is the assumption that the output variables will be approximately 

normally distributed. Algorithms need to be investigated for when the distributions of 

the output variables exhibit skew.
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Overall the work in this chapter has demonstrated that such analysis can be used to 

show a trade-off between robustness and performance and give an indication of the 

capabilities of the process. In the case study looked at here the analysis indicates that 

the bioprocess being studied could be operated in a much more robust manner at the 

expense of a relatively modest drop in productivity. The approach was able to 

highlight a series of operating strategies that maximise process performance for 

various levels of risk. Ultimately if this approach could be used in conjunction with 

better model development strategies, it would have great potential for bioprocess 

design.
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Figure 6.1: A collaboration diagram showing how each of the objects in the 

stochastic simulation, using random variables, interacts.
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Figure 6.2: A collaboration diagram showing how each of the objects in the 

stochastic simulation, using quasi random variables, interacts.
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Figure 6.3: The robust region defined by 2% variation in debris removal centrifuge 

flowrate and homogenisation pressure with a graph generated using 2 0 x2 0  points, 

each calculated using 100 trials with random numbers generated using the Box-Muller 

algorithm.

100 200 300 400 500 600 700

Homogeniser Pressure (bar)

The sub-region is defined by homogeniser pressure and debris removal centrifuge 
flowrate where: -

• growth Rate - 0.1 Shr' 1

• harvest flowrate - 300L.li'1
• dilution ratio - 2

• homogeniser passes -4

The constraints represented by the red lines are >5xl06 units ADH and a debris 
concentration 0.5gL'‘. The shades of blue represent the probability of the debris 
constraint being broken with the probabilities of 0 . 1% (darkest), 1%, 1 0 %, 90%, 9 9 % 
and 99.9% (lightest).
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Figure 6.4: The robust region defined by 2% variation in debris removal centrifuge 

flowrate and homogenisation pressure. This graph was generated using 100x100 

points, each calculated using 1 0 0  trials with random numbers generated using the 

Box-Muller algorithm.

Homogeniser Pressure (bar)

The sub-region is defined by homogeniser pressure and debris removal centrifuge 
flowrate where: -

• growth Rate - 0.15hr"1
• harvest flowrate - 300L.li"1
• dilution ratio - 2

• homogeniser passes -4

The constraints represented by the red lines are >5xl06 units ADH and a debris 
concentration 0.5gL"’. The shades of blue represent the probability of the debris 
constraint being broken with the probabilities of 0 .1% (darkest), 1%, 1 0 %, 90%, 9 9 % 
and 99.9% (lightest).
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Figure 6.5: The robust region defined by 2% variation in debris removal centrifuge 

flowrate and homogenisation. This graph was generated using 100x100 points, each 

calculated using 1000 trials with random numbers generated using the Box-Muller 

algorithm.
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The sub-region is defined by homogeniser pressure and debris removal centrifuge 
flowrate where: -

• growth Rate - 0.15hr_1
• harvest flowrate - 300L.li'1
• dilution ratio - 2

• homogeniser passes - 4

The constraints represented by the red lines are >5xl06 units ADH and a debris 
concentration 0.5gL_1. The shades of blue represent the probability of the debris 
constraint being broken with the probabilities of 0.1% (darkest), 1%, 10%, 90%, 99% 
and 99.9% (lightest).
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Figure 6 .6 : The robust region defined by 2% variation in debris removal centrifuge 

flowrate and homogenisation pressure. This graph was generated using 100x100 

points, each calculated using 1 0 0  trials with quasi random numbers generated using 

the Sobol sequence and an inverse normal distribution algorithm.
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Homogeniser Pressure (bar)

The sub-region is defined by homogeniser pressure and debris removal centrifuge 
flowrate where: -

• growth Rate - 0.15 hr'1

• harvest flowrate - 300L.li'1
• dilution ratio - 2

• homogeniser passes -4

The constraints represented by the red lines are >5xl06 units ADH and a debris 
concentration 0.5gL_1. The shades of blue represent the probability of the debris 
constraint being broken with the probabilities of 0.1% (darkest), 1%, 10%, 90%, 99% 
and 99.9% (lightest).
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Figure 6.7: The robust region defined by variation in number of parameters and 

control variables. This graph was generated using 100x100 points, each calculated 

using 10,000 trials with quasi random numbers generated using the Sobol sequence 

and an inverse normal distribution algorithm.
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The sub-region is defined by homogeniser pressure and debris removal centrifuge 
flowrate where: -

• growth Rate - 0.15hr'1
• harvest flowrate - 300L.li'1
• dilution ratio - 2

• homogeniser passes -4

The constraints represented by the red lines are >5x106 units ADH and a debris 
concentration 0.5gL"1. The shades of blue represent the probability of the debris 
constraint being broken with the probabilities of 0.1% (darkest), 1%, 10%, 90%, 99% 
and 99.9% (lightest).
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Figure 6 .8 : The results showing the maximum amount of alcohol dehydrogenase 

(units of activity) in the product stream against predicted probability of failure to meet 

debris constraint where the Number of Passes is treated as a continuous variable.

The graph shows the results obtained using three sets of simulated annealing 

parameters and the best overall results from all of the methods.
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Figure 6.9: The results showing the maximum amount of alcohol dehydrogenase 

(units of activity) in the product stream against predicted probability of failure to meet 

debris constraint where the Number of Passes is treated as an integer variable.

The graph shows the results obtained using three sets of simulated annealing 

parameters and the best overall best results from all of methods.
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Figure 6.10: A Comparison between the results obtained looking at the trade-off 

between maximising alcohol dehydrogenase and probability of failure to meet the 

debris constraint, using the technique treating number of passes as a continuous 

variable (blue line) and as an integer variable (purple line)
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Conclusions

This thesis has examined techniques that can be applied for analysing bioprocesses 

flowsheets to determine operating strategies. The objective of the work was to 

investigate possible techniques that can be used in conjunction with bioprocess 

simulation to determine robust operating strategies for multi-variable bioprocesses.

Process development is central to the commercialisation of biopharmaceutical drugs. 

This development must be completed within tight time and economic constraints. One 

tool that has been used extensively in the chemical industry to aid process 

development is simulation. Bioprocess simulation has the potential to reduce the 

amount of pilot plant experimentation thus saving time and money. However, 

simulation is not commonly used in the biotechnology industry and this can be 

partially attributed to the limitations of the commercially available packages. In 

particular the readily available packages are not often able to capture the interactions 

between unit operations.

Simulation Development

In this work, a series of simulations were developed in SuperPro Designer, Matlab, 

Labview and C++ for the alcohol dehydrogenase process, a bioprocess which exhibits 

a number of interactions. SuperPro Designer was unable to capture many of the 

interactions in the process as it was limited to an in-built set of models. The other 

packages did not have this limitation making them more suitable for this work, 

although requiring a greater level of skill to use effectively. This work showed that 

although Labview, with a graphical programming language, appeared simple to use, it 

actually resulted in code that was harder to maintain. Matlab and C++ with their text- 

based languages resulted in models that were much easier to maintain. Matlab was the 

simpler of the two languages and probably the more suited for developing small 

simulations. However, C++ could offer performance advantages. Additionally C++ 

can potentially be used for developing a commercial package as the resulting code can 

be compiled to work on most computers.
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Analysing Multidimensional Feasible Regions

The remainder of the thesis focused on analysing the results generated by the 

simulation. One approach that has been used previously by the bioprocessing industry 

is “Windows of Operation”. This is a two dimensional region defined by two control 

variables where series of constraints are met. The advantage of this is that it enables 

the user to evaluate the impact of these control variables on the process meeting its 

specifications. However, this approach is limited to two control variables whereas 

most bioprocesses have multiple control variables. Therefore this work looked at 

alternative methodologies, which can examine processes with multiple control 

variables. One approach was to investigate the size of the feasible region. The impact 

of control variable settings was examined by evaluating the distribution of the feasible 

region with respect to different control variables. The methodology was also used to 

evaluate the impact of constraints on the size of the feasible region. This demonstrated 

that higher performance resulted in a smaller feasible region which would be harder to 

operate robustly.

This work was then compared with techniques suggested previously for determining 

feasible ranges for the control variables. Examining the feasible ranges had been 

previously suggested by researchers in this area as a method for analysing batch 

processes. However, the work in this thesis suggests that a short-coming of 

calculating the feasible ranges is that it only captures a very small proportion of the 

total feasible space. Nevertheless both the feasible ranges and the size of the feasible 

region can give an insight into multi-variable processes and some indication of how 

feasible the process is together with an indirect indication of process robustness.

Scenario Based Approaches

In a bioprocess, variability can be divided into two types, variation in the settings of 

control variables and variation in process performance caused by uncertainty in the 

models. The first approach used looked at a series of scenarios that corresponded to 

the largest expected variation in each of the process parameters or control variables. 

The maximum variations of the parameters and controls were looked at 

simultaneously creating a hyper-rectangle of points, where each scenario
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corresponded to a vertice. In this work it was assumed that if each of these “extreme” 

scenarios were feasible, then the corresponding operating point would be robust. The 

results of this approach were demonstrated by plotting a two dimensional robust 

region where all the points were robust, on top of a two-dimensional feasible region.

This technique has the advantage that it is relatively simple to implement and can 

highlight some regions where the process is guaranteed to be robust. In this work the 

scenario-based approach was only applied for visualising two-dimensional regions. 

However it could potentially used in conjunction with analysis of the size of the 

feasible region to look for robust regions in a multivariable process.

Stochastic Modelling

In this work stochastic modelling was also investigated to see if this could overcome 

some of the limitations in the scenario based approach. The parameters and control 

variables that are subject to uncertainty were approximated by normal distributions. 

This was more realistic than treating each of the parameters as having a fixed range. 

Ideally such stochastic simulations should be used in conjunction with model building 

strategies that enable the calculation of the parameter variability. However any 

technique for calculating this variability would need to ensure that it did not increase 

the quantity of experimentation required or slow down process development.

In this work two approaches were used for generating the stochastic simulation. The 

first was to use random numbers and the second approach was to use quasi-random 

numbers. The latter approach has the advantage that the values selected will be well 

distributed throughout the region being evaluated. Both these techniques are applied 

to generate plots of a sub-section of the feasible region. This demonstrates how the 

two approaches can highlight regions where robust operating points are possible. 

However, this approach is limited to looking at a sub region of the operating space.

To overcome this limitation, the stochastic simulation was used in conjunction with an 

optimisation routine. In this work an objective function was built that contained the 

level of production in the process combined with a penalty function for when the 

probability of a constraint being broken was deemed to large. This was used to
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analyse the trade-off between obtaining a robust process and maximising process 

performance. This shows how the location of the feasible region changes when greater 

levels of process robustness are required.

Ultimately this approach has the advantage that it can locate an operating point that 

maximises the process productivity whilst ensuring the process reaches a predefined 

level of robustness, given accurate estimates of the distributions of control variable 

and parameter variations. This means that this approach has the potential to analyse 

multi-dimensional processes whilst at the same time providing a robust operating 

point meaning that it meets both the original objectives of the research.
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The current work has shown that models can be developed for modelling and 

simulating bioprocesses. It has also show that complex strategies can be used to 

determine robust operating points given uncertainty in model parameters and process 

control. However, currently the application of advanced modelling strategies is likely 

to be consuming in terms of both labour and resources.

One key limitation of the advanced modelling work in this thesis was measuring the 

uncertainty in the models. The approach taken was to estimate using engineering 

judgement. However, this in part negates one of the key benefits of any systematic 

approach. Ideally estimating the errors in the models needs to be an integral part of 

the model and simulation building process.

Consequently future work will need to look at methods for reducing both the effort 

required to build such simulations and extracting data as effectively as possible. The 

list below highlights a number of areas that require further investigation to speed up 

the simulation development.

• Simulation Building Methodologies

In the current work, simulations have been developed on a case-by-case basis. 

This means when new simulations are developed, the existing unit operation 

models need to be re-coded. Work should be carried out to investigate developing 

a standard architecture.

This would involve developing a common stream definition to carry data between 

modules. This would enable to models to be built that would not be specific for 

one process simulation. In turn this would enable greater reuse of code and 

therefore faster simulation development. A common stream definition would 

require analysis of a number of different processes to determine what properties 

such a stream should contain.
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• Model Development

Although models have been developed for many unit operations, others have not 

yet been thoroughly examined. These unit operations should be studied so that 

models can be developed. Existing models also need to be further developed, to 

make them more comprehensive and better able to capture interactions in the 

process.

Ideally the unit operation models should be developed so they can be easily 

adapted for different processes, using data from scale-down experiments. This 

could be done using object-orientated programming. For example, a well-designed 

class architecture would enable the development of new models that inherit 

properties and methods from previous unit operation models.

• Measuring Uncertainty

In this work the approach taken was to assume a certain level of uncertainty, as 

there was limited information on which to base these estimates. More work is 

require to develop techniques that are able to determine accurately the level of 

uncertainty in a model (whilst requiring little experimental effort).

This will in part be achieved through the use of scale-down to attain more 

experimental data, however, will probably also require strategies that are able to 

estimate the uncertainty in the model that is generated. Such work lay outside the 

scope of this thesis. However, it will be essential if better model building 

strategies are to be used in the future.

• Simulation of Uncertainty

The work in Chapter 6  treated each uncertain control variable and parameter as 

being normally distributed. In reality it is quite likely that the distributions for 

some parameters may not be normal. Ideally the approach used to measure the 

uncertainty in the model should be able to suggest how the model parameters are 

likely to be distributed. This information should be incorporated into the
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simulation thus avoiding simplistic assumptions and providing a more accurate 

picture of the likely distribution of the robustness of the process.

Equally in this work only two approaches were looked at for simulating the 

distribution of the parameters. Future work will need to look at other techniques 

that could offer potentially better computational performance such as quadrature 

and advanced Monte Carlo algorithms that try to sample in areas that exhibit 

greater variations.

• Calculating Robustness

In the current work it is assumed that all the output variables were also normally 

distributed. Consequently the probability that a constraint will be met is 

determined from the number of standard deviations the expected value is from the 

constraint value and an inverse normal distribution function.

However, this is a simplification of the situation. In reality the output variables are 

unlikely to have a perfect normal distribution. Future work should look toward 

calculating the skew and curtosis of the output variable in order to use these 

properties to calculate a more accurate estimate of the likelihood of a constraint 

being met.

• Optimisation

In this work an optimisation routine was used in conjunction with stochastic 

simulation. The optimisation technique used was simulated annealing. This 

technique is not greedy and hence may find a global optima rather than getting 

trapped in a local optima. The work also extended a simulated annealing algorithm 

to look at a mixed integer non-linear programming problem.

This work did not investigate setting the search parameters for the optimisation 

nor did it specifically investigate other potential optimisation techniques. These 

aspects could potentially be investigated in future work to see if better strategies 

could be used to attain the optimum point.
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Another limitation was that the optimisation routine and the stochastic simulation 

took a long time to run. This could possibly be avoided by reducing the number of 

repeat simulations at the earlier stages of the optimisation routine and increasing 

this as the optimisation progresses.
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A.1 Introduction

The simulated process at the heart of this thesis is shown in Figure 3.2. Processing 

starts with a fed-batch fermentation. The cells are then separated from the 

fermentation broth by centrifugation and ruptured using high-pressure 

homogenisation. The debris is removed from the homogenate again by centrifugation. 

This section gives an overview of the models used and the source of these models.

A.2 Fermentation 

A.2.1 Overview

The first step in the simulated process was a 100 litre fed batch Saccharomyces 

cervisae fermentation. The model of the step was designed to examine cell growth 

and product formation as well as the impact of growth rate on downstream processing. 

Previous experimental work has shown that the growth rate of Saccharomyces 

cervisae has an effect on the physical properties of the cells (Siddiqi et al, 1995; 

Siddiqi, 1996) and the expression levels of different intracellular proteins (Gregory et 

al, 1996). Growth rate also affects the fermentation time, which has a critical impact 

on the production rate and therefore the process economics.

The fed-batch fermentation model used in the simulation is based on the experimental 

protocol described by Gregory et al (1994). Based on this text the fermentation was 

assumed to have the following parameters: -

• Initial cell concentration -  0.16g L' 1

• Concentration of glucose in the feed -  500g L' 1

• Initial fermentation volume -  45L

• Final working fermenter volume -  70L

• The respiratory quotient was 1.1

The feeding strategy in this protocol is based on the Wang-Cooney model (Wang et 

al, 1979), in which the fed rate is increased exponentially to obtain a constant growth
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rate. The fermentation is assumed to proceed until the fermenter has reached its final 

working volume.

A.2.2 Wang Cooney Fed-Batch Model

The Wang Cooney model predicts the addition of substrate into the fermentation: -

juCx V MCX0V0e^  . a i
Qm  = 7 r f — * = ' y — e Equation A.l

N x / .v N x / s

where Qfed is the Fed Rate (L/hr), s  is the Respiratory Quotient, Cn is the 

concentration of the substrate (g/L), C x  is the concentration of the biomass (g/L), Cxo 

is the initial concentration of the biomass (g/L), Yx/S is the yield of biomass on 

substrate (g/g), V is the volume in the fermenter (L), Vo is the initial Volume (L) and ju 

is the growth rate (If1).

This can be rearranged to give the volume at any given point in time: -
i

Vf =v0 + \QMdt
0 Equation A.2

‘ruC V 
=>Vr =V0 + e -d tj 0 j r  v

0 N x I s

In order to calculate the amount of feed that is added, the yield for that specific 

growth rate must be know. In this work, the yield was calculated using a correlation 

estimated from data in Gregory et al (1996). This work showed that the yield drops 

off above a critical growth rate reflecting the transition to oxido-reductive growth. To 

capture this in the model an equation was generated that included a hyperbolic tangent 

term and the Nelder-Mead algorithm was used to calculate the parameters.

Yx, = 0.3608 -  0.0742// -  0.4471//2 -  0.144tanh(l07.65(// -  0.2005))

Equation A.3
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The Wang-Cooney model can be re-arranged to determine the time take for the 

fermentation (given the like maximum working volume). This in turn can be used to 

determine the cell concentration (Equation A.5 and Equation A.6 ).

t = — In 
M

vj_ - 1
Y C1 X / S ^ N  + |

C Exo
Equation A.4

V0X 0e*

f  Vf

Y C
X  =  x / s  N

V
VqX q

V r

Equation A.5

Equation A .6

A.2.3 Intracellular Stream Properties

In this work, five stream properties were tracked through the system. These were 

DNA (g), protein (g), dry cell weight (g), cell wall/debris (g) and alcohol 

dehydrogenase (units). In this work, Equations A.7 and A .8  were derived using 

experimental work by Gregory et al (1996).

P̂rot/Biomass = H -4 + 273.0^ -  3 0 2 .0 ^  -10.72 tanh(682.25(// -  0.185))

Equation A.7

Fadhipto, = 5 .49-8.374// +10.02/z2 + 3.19 tanh(- 360.2(^-0.1906))

Equation A .8

where Fprot/Biomass is the fraction of the dry cell weight that is protein (g/g) and 

FADH/Prot is the fraction of the protein that is alcohol dehydrogenase (g/g).

The remaining components were assumed to be a constant proportion of cell weight. 

The wet weight of the cell wall was assumed to be equal to the dry weigh of cells, as 

the wet cell weight is roughly three times the dry cell weight and the wall makes up 

approximately one third of this mass. Also the nucleic acids were assumed to make up 

a constant 1 0 % of the dry cell weight.
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A.2.4 Solid Properties

Work by Siddiqi (1996) on characterising cell and size distribution, showed that the 

average cell diameter (dm) varied with growth rate with smaller cells produced under 

the oxido-reductive conditions. Equation 3.10 is a correlation giving the cell size at 

different growth rates and was generated using from data from Siddiqi (1996) 

containing parameters calculated by applying the Nelder-Meld algorithm.

Ken = 5 .3 -  tanh(- 92(ju -  0.1822)) Equation A.9

where Xcelj is the average Cell diameter (pm).

The standard deviation in the cell size was a constant at 0.75pm. In this simulation, 

the solids concentration was calculated from the wet cell weight, which is assumed to 

be three times the dry cell weight (Engelking, 2002). The cells are assumed to have a 

density of 11 lOg L '1, based on previous experimental measurements.

A.2.5 Liquid Properties

The liquid properties were found to be unaffected by the fermentation conditions with 

the viscosity of the fermentation set at 0.00169Ns m' . The density of the liquid was 

set at lOlOg/L.

A.2.6 Other Properties

One key factor that is affected by fermentation is the cell wall strength. The cell wall 

strength will determine how the cells behave in the homogenisation step. In particular 

it will affect how much intracellular product is released and the size of the cell debris 

produced.

The amount of product released is given by the Hetherington Equation (Hetherington 

et al, 1971). Siddiqi (1996) also looked at the impact of growth rate in the 

fermentation on both breakage constant and the pressure exponent. Using the results 

the following equations were generated: -

K p =exp(l.5-tanh(-92-(//-0 .1822))-15 .5) EquationA.10
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a  -  2.4 -  (0.4 • tanh(- 92 • (ju -  0.1822))) Equation A. 11

where Kp is the protein release coefficient and a is the pressure exponent in the 

Hetherington Equation.

Siddiqi et al (1996) also developed an equation for predicting the size of the 

homogenised debris with contained a breakage coefficient (kd). Siddiqi (1996) then 

ran a number of experiments looking at the impact of growth rate of how the debris 

fragments. From this the following equation was developed.

kd =1030 + 330tanh(-92(//-0.1822)) Equation A.12

where kd is the cell breakage coefficient.

A.3 Centrifugation 

A.3.1 Introduction

In alcohol dehydrogenase process simulation, centrifugation is used twice, to separate 

cells from the fermentation broth and later to remove the contaminant cell debris from 

the homogenate. The basic premise of the centrifuge is that it uses centrifugal force to 

separate an incoming feed stream into a solids heavy sediment stream and supernatant 

stream depleted in solids. This section looks at models for determining the separation 

efficiency of a disk stack centrifuge, so that the mass balance over the centrifuge can 

be calculated.

The simulation was based upon a disk-stack centrifuge with an equivalent settling 

area of 1465m (CSA1, Westfalia). The centrifuge model allows the flowrate through 

the centrifuge to be varied, so that different centrifuge operating strategies can be 

examined.
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A.3.2 Separation Performance

In this work, the separation of the solids is simulated by using the grade-efficiency 

model. In the grade-efficiency model, particles in the centrifuge are assumed to be 

subject to centrifugal forces pulling them out of solution and resistant drag forces 

determined by Stokes Law. At a critical size the centrifugal and drag forces will be 

balanced, the so-called critical diameter. Particles larger than a critical diameter 

should be ‘theoretically’ collected in the sediment, as their centrifugal forces will be 

greater than the drag forces. Equation A. 13 can be used to calculate the critical 

diameter. The equation also accounts for hindered settling, were the concentration of 

particles reduces their ability to settle (Zaki and Richardson, 1954).

Z.. = 18 Q n
{P s - p L) .Y .- { \ -C ,Y A t

Equation A. 13

where Xc is the critical diameter (m), 77 is the viscosity (Ns/m), Q' is the flowrate 

through the centrifuge (m3/sec), p i is the density of liquid phase (g/L), ps is the 

density of solids phase (g/L), E  is the centrifuge equivalent settling area (m2), Ag is 

the acceleration due to Gravity (m/s ), Cv is the volume concentration of solids in the 

suspension (L/L) and (3 is the particle geometric factor.

By knowing the critical diameter, the separation efficiency of particles of different 

sizes can be calculated using the grade efficiency curve (r(d)). Under ideal Stokes 

Law conditions, particles greater than the critical diameter should all be collected. 

However experiment work carried out with latex particles in a disk stage centrifuge 

showed that the efficiency curve varied from the predictions of the 'theoretical' model 

(Mannweiler, 1990). This data was used to generate a modified grade-efficiency 

curve: -

exp
(  It • 2 ^KGE

m

V A
Equation A. 14
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where Xp is the size of the solid particles, t(Xp)  is the proportion of solids of that size 

collected in the sediment, kcE is the coefficient in the grade efficiency model (0.865) 

and ex is the exponent in the grade efficiency model (2 ).

In most situations the solid particles will have a range of sizes, which can be modelled 

by using a normal distribution. The quantity of particles of a given size can be 

calculated from the mean particle size and the standard deviation: -

size in feed, X is the average particle diameter (pm) and is the standard deviations 

in particle size (pm).

The fraction of the solids that are collected by the centrifuge from the feed can be 

calculated using the equation below: -

where Fss is the fraction of solids to collected in the sediment.

In a disk stack centrifuge system, the collected solid needs to be periodically 

discharged from the centrifuge. This discharge step leads to some of the liquid phase 

leaving the centrifuge in the sediment stream. In this model it is assumed that the 

entire contents of the centrifuge are discharged when the solid collected in the 

centrifuge bowl reaches a critical amount. Based on this, the number of discharges can 

be calculated: -

Equation A. 15

where Ap is the particle diameter (pm), ^ (Xp)  is the fraction of solids with a particular

Equation A. 16
0

Equation A. 17
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where No* is the number of Discharges, Cs is the concentration of solids (g/L), ps is 

the density of solids (g/L) and Vsc is the maximum volume of solids in the centrifuge

The quantity of solid in the sediment predicted by equation A. 16, however, this 

overlooks any additional solids that may be released from the bowl during discharge. 

In this work Equations A. 18 and A. 19, were derived to account for this phenomenon.

and Vc is the total volume of centrifuge bowl (L).

A.3.3 Mass Balance

As described previously, the stream is defined with the components distributed across 

three phases; the aqueous phase, the intracellular/biological phase, and the precipitant 

phase. The total flow of components is the sum of all the components in all the phases 

in a stream.

(L).

Equation A. 18

Equation A. 19

where Fld is the fraction of liquid discharged, Fsd is the fraction of solids discharge

^ T . s u p  — ^ M r.fe ed  ^ I . f e e d  ^  P. feed ) '  0  ^ L D  )  +  1 .feed ^S D  )  +  ^  P. feed ^ S d )

Equation A.20

^/.suP — M j jeed{\- FSD) Equation A.21

^  P.sup ~ ^  P. feed 0 Fsd) Equation A.22
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M T.dis ~  (M r .f e e d  ^ I . f e e d  ^ P . f e e d ) '  ^ L D  +  ^  1 .feed ' ^S D  +  ^ P . feed ' ^S D

Equation A.23

Equation A.24

Equation A.25

where Mr,stream is a vector of total mass of each component in the specified stream (g), 

MiiStream is a vector of intracellular components in the specified stream (g) and Mpstream 

is the vector of precipitant components in the specified stream (g). The subscripts Dis, 

Feed and Sup refer to the discharge stream, the centrifuge feed and supernatant stream 

respectively).

A.3.4 Volume

Volume is conserved over the centrifuge and therefore the volumes exiting each 

stream are calculated using equation A.26 & A.27.

where Msoiids.Feed is the total mass in the solid phase in the feed stream (g), Vdis is the 

volume leaving the discharge stream (L) and Vsup is the volume leaving via the 

supernatant stream (L).

A.3.5 Concentration

The concentration of solid particles will change and hence the new concentrations can 

be calculated using Equation A.28 & A.29, for the supernatant and sediment streams 

respectively.

M Solids. Equation A.26

V = V - VSup feed Dis Equation A.27

Sol ids. Feed Equation A28
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C =s.Sup

C VK~ 'sv feed - M Sol ids. Feed Equation A.29
VcSuper

where CS Dis is the concentration of solids in the discharge (g/L) and C s.sup is the 

concentration of solids in the supernatant (g/L).

A.3.6 Time Taken

Higher centrifuge flowrates lead to shorter processing time (Equation A.30), resulting 

in less degradation of the product.

where / is the Time (hr), Vfeed is the volume of feed (L) and Q is the flowrate (L/hr). 

A.4 Homogenisation 

A.4.1 Introduction

In this unit operation the cells are forced at high pressure through a small valve 

causing the cells to rupture and release intracellular product. The performance of this 

unit operation is determined by two control variables, the homogenisation pressure 

and number of passes that the cells have through the valve. Higher pressure or an 

increased number of passes results in greater release of the intracellular components. 

However, this also causes the cell wall to break into smaller fragments, which are 

harder to remove via centrifugation. Consequently lower flowrates need to be 

employed in subsequent centrifugal stages to remove this debris which results in 

longer processing times. These trade-offs need to be considered carefully when 

assessing an operating strategy.

Homogenisation of yeast cells is dependent on upstream conditions, in particular 

fermentation growth rate and the concentration of the cells fed into the homogenate 

(Siddiqi, 1996). The impact of fermentation conditions has been examined and

Equation A.30
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consequently the simulation is able to predict changes in the cell properties that affect 

homogenisation. By contrast, the impact of cell concentration, although significant, 

has not been fully characterised. Hence the simulation assumes that all cells entering 

the homogenisation are diluted to a concentration of 450g/L.

A.4.2 Mass Balance

The amount of product released in this step is a function of the pressure drop and 

number of passes. The pressure drop over the valve determines the shear forces that 

act upon the cells and the number of passes determines the length of time that the cells 

are subjected to these forces. The effect of the step on the cells is to rupture them 

releasing intracellular product. Equation A.31, which describes the relationship 

between the operation conditions and the amount of product released, was developed 

by Hetherington et al (1971): -

r = 1 -  e~KpP Np“" Equation A.31

where P is the pressure in the homogeniser (bar) and Npass is the number of passes.

The fraction released can be used to calculate the mass balance on each component 

over the homogenisation step based on conservation laws.

^  T .hom.(protein, ADH,Nucleic,Debris) ~  ^ T .sus.(protein,ADH,Nucleic,Debris) Equation A.32

where MTstream.(components) is the total amount of the named components in the stream 

(g), Mi stream.(components) is the amount of the named intracellular components in the

Equation A.33

M  i hom.(DCW,protein,ADH,Nucleic,Debris) ~  0  V  ' ^ I  .sus. (DCWprotein,ADH, Nucleic, Debris)

Equation A.34

Equation A.35
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stream (g). The subscripts hom and sus refer to the homegenate stream and the cell 

suspension stream repectively.

A.4.3 Solid Properties

In addition to the changes in the mass balance a number of changes occur in the 

physical properties of the streams. Probably the most critical ones are the changes in 

the solids properties. As the cell wall breaks open small debris fragments are created. 

Using experimental data the following model was created to correlate the average 

particle size and particle size standard deviation to the number of passes and 

homogeniser pressure respectively (Siddiqi et al, 1996).

* , = 1 -  e a p,N=0 Equation A.36

U \
xi 0.4 n

1 + 23e N'~ p

cr3 =<

< j^_Q if <0.33

\
xi 0.4 r\

3.4 — 5.5^ Np™ 1

Equation A.37

Iv
cr^ =0 if >0.33

The cell rupture also results in changes to the density of the solid phase. The debris 

density was assumed to be 1050kg/m based on laboratory measurements. The 

average solids density was calculated by interpolating the density of the cells and 

debris based on the amount of cells ruptured (Equation A.38). Equally the 

concentration of solids is affect by the amount of cell rupture. The concentration of 

solids after homogenisation is the wet cell weight of the remaining cells plus the total 

free cell debris per unit volume (Equation A.39).

P s =  0 -  '■)■ P c e iis  +  r  • Aiebris Equation A.38

Cs —(b.M jhom. (d c w ) +  r.Mr. hom. (Debris)) /  Vhom Equation A.39

Page 194



Appendix A

where p s  is the average density of the solid phase (g/L), p ceiis is the 

density of cells (g/L) and pdebris is the density of cell debris (g/L).

A.4.4 Liquid Properties

The release of intracellular products increases both the viscosity and the density of the 

liquid. Equation A.41 relates the release of intracellular components to the viscosity 

of homogenate supernatant based on data generated in earlier experimental work 

(Mosquiera et al, 1981). This work was carried out using a cell concentration of 

450g.L_1 and indicated that there is a linear relationship between viscosity and the 

level of cell rupture.

where r}stream is the viscosity of the specified stream (Ns/m) and X  is the concentration 

of cells (g/L).

The rupture process also serves to increase the density of the surrounding solution by 

virtue of the released intracellular material having a higher density. The change in 

density of the homogenate is calculated from the volume of ruptured cells and the 

density difference between the cells and the surrounding liquor (Equation A.41).

where pl,stream  is the density of specified stream (g/L) and p ceiis is the density of cells 

(g/L).

A.4.5 Time Taken

The time taken by the homogenisation step is also dependent on the pressure and the 

number of passes. Reducing the size of the valve orifice increases the pressure drop 

across the orifice but decreases the flowrate through the orifice. For the homogeniser

Equation A.40

Equation A.41
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used in these studies there is the following experimentally determined relationship 

between flowrate and pressure.

Q = 9 4 .4  -  0.0384P Equation A.42

This can in turn be used to calculate the time taken in the homogenisation and in turn 

the amount of product degradation.

t _ —/»«» jeed Equation A.43

A.5 Dilution 

A.5.1 Introduction

The process also has two dilution steps, before and after homogenisation. Before 

homogenisation a buffer is added to the cells collected by the centrifuge to obtain a 

cell concentration of 450g/L. The amount of buffer added in this dilution step is 

determined by the amount needed to achieve this concentration, as the 

homogenisation model is based on data obtained at this concentration. The second 

dilution step is after the homogenisation step. Adding buffer reduces the viscosity, the 

liquid density and the concentration of solids, which improves the performance of the 

subsequent centrifuge process. However use of too much buffer solution results in 

longer processing times due to the higher batch volumes and therefore loss of product 

via degradation.

A.5.2 Liquid Properties

The main change is in the liquid properties. Equations A.44 & A.45 describe the 

changes in viscosity and liquid density. The viscosity is assumed to approach 

asymptotically the viscosity of the buffer. The density is given by linear interpolation 

and the change in the volume of liquid.

I dU ~  V buJ

.  X 'C o n e /t   ̂ A,
/  Lone 

VBuf
Equation A.44

Page 196



Appendix A

PL,Conc^Conc P L ,B u f^ B u f  . • a /I C
P l ,d„ =  y ----------y — -— -  Equation A.45

" Cone y  Buf

where Vconc is the volume into dilution step (L), Vbuf  is the volume of buffer added 

(L), r/stream is the viscosity of the specified stream (Ns/m) and pL,stream is the density of 

the specified stream (g/L). The subscripts Cone, Dil and B uf refer to the Concentrated 

Feed, Diluted Output and the Buffer Solution.
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This section looks at the largest n-dimensions hyper-rectangle that will fit inside an n- 

dimensional hyper-sphere. The equation that defines an n-dimensional hyper-sphere 

is: -
n

R 2 = s 2 Equation B. 1

The volume of an n-dimensional hyper-sphere is given by: - 

n ^ R "
vs (») = r (  | \  Equation B.2

Tyri/ 2 +1)

where Vs(n) is the volume of an n-dimensional sphere, R is the radius of the Sphere 

and r(x) is the Gamma function.

The gamma function can be calculated using the following equation: - 

Y(x)= ^  p x~xe~xdp Equation B.3

Assuming the largest hyper-rectangle sits on the same origin as the hyper-sphere, 

which would seem logical due to the symmetry of the hyper-sphere, the largest hyper

rectangle inside an N-dimensional hyper-sphere will be given by: -
n

VR (n) = 2" J~[ 5 , Equation B .4
;=i

where Vr(u)  is the volume of an n-dimensional hyper-rectangle and *,• is a vector of 

the distance from the axis which must lie inside Equation B.l.

In a two-dimensional case this problem becomes the largest rectangle inside a circle. 

Therefore Equation B.4 can be re-written as: -

Vr(2) = 4 5 ,s2 Equation B.5

Inserting Equation B l, this becomes: -
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Equation B.6

This can be solved to show that the largest rectangle is in fact a square with sides

that the largest hyper-rectangle inside a sphere would be a hypercube. Solving this 

from first principles for higher dimensions is not a simple problem. Therefore to 

investigate this, a small Matlab program was written that tried to find the largest 

hyper-rectangle inside a hyper-sphere. The program assumed that such a hyper

rectangle would be centred on the same origin as the hyper-sphere therefore only 

looked for one vertex (as the opposite vertex assumed to be a reflection through the 

origin). The program then used a Nelder-Mead optimisation routine to find the largest 

internal hyper-rectangle as calculated by Equation B.4. This sought to optimise (N-l) 

of the variables that defined the vertex in N-dimensional space, with the remaining 

variable calculated using Equation B 1.

The results of this program seemed to confirm that the hypercube would be the largest 

hyperrectangle inside the sphere. Therefore using Equation B.l it can be shown that

for a n-dimensional sphere the sides of the largest hyper-rectangle will equal 2r / 4n  . 

Therefore the volume of the hyper-rectangle will be: -

In this work we were interested in the volume of the hyper-rectangle to the 

hypersphere. The volume of a hyper-sphere relative to its radius to the power n 

increases as the number of dimensions increase until the 5 dimensions. After this 

number of dimensions the ratio of the hyper-sphere to its radius to the power n 

diminishes with increasing dimensions. By contrast the size of the hyper-cube inside 

the hyper-sphere drops consistently as the number of dimensions increases. Both of 

these characteristics can be seen in figure B.l.

R /V2 . It would seem sensible that given the largest rectangle in a circle is a square

Equation B.7
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More interestingly figure B.2 shows the ratio the hyper-rectangle inside the hyper

sphere to the hyper-sphere itself. It can be seen that this ratio drops rapidly as the 

number of dimensions increases. This indicates that a hyper-rectangle inside a hyper

sphere will capture an increasingly small proportion of the volume as the number of 

dimensions increases.
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Figure B.l: The volume of a Hyper-Sphere with a radius of 1 and the largest Hyper- 

Rectangle that can fit inside it for different numbers of dimensions.
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Figure B.2: The ratio o f the size of a Hyper-Sphere with a radius of 1 to largest 

Hyper-Rectangle that can fit inside it for different numbers of dimensions.
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Nomenclature

Roman Symbols

Cm

Cs

CS. Stream

Csalt

C y

Cx

Cxo

Cxf

c

Ci

D

d

Eed)

FADH/Prot

F l d

FPrecip  

FProt/Biomass

F s d

Fss

fAD H  

fo b j

fPenality  

fp(D ebris)

fPO)

fflex

f l

f 2

g

g>norm,i

Acceleration due to gravity (m/s2)

Concentration of Substrate (Nutrients) (g.L'1) 

Concentration of Solids (g.L'1)

Concentration of Solids in the Specified Stream (g.L'1) 

Concentration of Salt (g.L'1)

Volume Concentration of Supended Solids (L.L'1) 

Concentration of Biomass (g.L'1)

Initial Concentration of Biomass (g.L'1)

Final Concentration of Biomass (g.L'1)

Vector of the Constraints 

Value of the ith Constraint 

Dilution Ratio (L.L'1)

Design Variables 

Expectancy Function

Ratio Alcohol Dehydrogenase to Protein (g.g’1) 

Fraction of Liquid to Discharge (g.g’1)

Fraction of Component in Precipitant Phase (g.g’1) 

Ratio of Dry Cell Weight to Protein (g.g’1)

Fraction of Solids to Discharge 

Fraction of Solids to Sediment 

Function for calculating the ADH 

The Objective Function 

Penality Function

Probability of the debris constraint being broken 
Probability of constraint i being broken

Measure of Process Flexibility

Set of Differential Equations

Set of Algebraic Relationships

Set of Inequality Constraints

Normalised Values of the ith Constraint
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Nomenclature

h

I

I f r

I ’fr

i

l max

m

kp

k d

kdeg

kGE

M a d h

M a d H deg 

Maqueons

Mj

M l. stream

M j. stream, components

MP

M p  stream

MP. stream, components 

Msolids.Stream  

Mp

M p . stream

Mp.stream, components

m

Nois

•VPass

n

nv

P

Q
Q'
Qsubstrate

Equations for calculating the State Variables 

Set of Inequality Constraint 

Integral o f the feasible region 

Normalised Integral of the feasible region 

Index for different Constraints 

Total Number of Constraints

Joint Probability Density Function for the Uncertain Parameters 

Protein Release Coefficient 

Cell Breakage Coefficient 

Degradation Rate (h'1)

Coefficient in the Grade Efficiency Model (0.865)

Mass of Alcohol Dehydrogenase (g)

Mass of Alcohol Dehydrogenase after Degradiation (units) 

Vector of the mass of aqueous components (units)

Vector of intracellular components (g)

Vector of intracellular components in the specified stream (g) 

Named intracellular components in the specified stream (g) 

Vector of the mass of precipitant components (g)

Vector of the precipitant components in the specified stream (g) 

Named precipitant components in the specified stream (g)

Total mass of solids in the specified stream (g)

Vector of the total mass of each component (g)

Vector of the total components in the specified stream (g) 

Named components in the specified stream (g)

Number of Sample points in a Monte Carlo simulation 

Number of Discharges 

Number of Passes

Number of Control Variables or Dimensions 

Number of Control Variables subject to uncertainty 

Pressure in the Homogeniser (bar)

Flowrate (L/hr)

Flowrate (m3/sec)

Feed Rate into the Fermenter (L/hr)
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Nomenclature

R Radius of a hypersphere

Rflex Flexible Region

R fr Feasible Region

R ofr The Robust Feasible Region given Control Variations

R rfr The Robust Feasible Region given Parameter Variations

r Fraction of Protein Released

S i Variables used to define a hypersphere

T Hyper-Rectangle Defining a Series of Parameter Ranges

TFlex Hyper-Rectangle in the Flexible Region

Tfr Hyper-Rectangle in the Feasible Region

t Time (hr)

u Algebraic variables

V The number of control variables

V Volume (L)

Vo Initial Volume in the fermenter (L)

Vc Total Volume of Centrifuge Bowl (L)

vf Final Volume in the Fermenter (L)

Vstrean Volume in the Specified Stream (L)

Vsc Maximum Volume of Solids in Centrifuge (L)

W Weight variable in the objective function

X State Variables

X Derivative of the State Variables

Yx/S Yield of Biomass on Substrate (g,g"!)

y Process Performance

y Expected or Average Performance

yi Performance of the Ith Constrained Variable

z The operating Space (or control variable space)

z Control Variables

Zvar The range of Values of around a set point

Zv,min Minimum value for control variable v.

Zy.max Maximum value for control variable v.
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Nomenclature

Greek Symbols
a Pressure Exponent in the Hetherington Equation

P Particle Geometric Factor

r The Gamma Function

y Probability for a particular constraint

8 Scaled Parameter Deviations

£ Respiratory Quotent

n Viscosity (Ns/m)

Tjstream Viscosity in a Specified Stream (Ns/m)

e Parameter Values

On Nominal Parameter Values

0 L Lower Limit for Parameter Values

Os Specified Parameter Value

Ovar Range of Possible Parameter Values

0 u Upper Limit for Parameter Values

AO Vector of Parameter Deviations

Xc Critical Diameter (m)

^cell Average Cell Diameter (pm)

Xp Particle Diameter (pm)

K Average Particle Diameter (pm)

m Growth Rate (h'1)

n Production function

Pcells Density of cells (g.L'1)

Pdebris Density of Cell Debris (g.L'1)

PL Density of the Liquid Phase (g.L'1)

PL. stream Density of the Liquid Phase in the Specified Stream (g.L'1)

P S Density of the Solid Phase (g.L'1)

E Centrifuge Equivalent Settling Area (m2)

(Jyi Standard Deviation in a Performance Variable

ox Standard Deviation in Particle Size (pm)

r(X) Proportion of Solids of a Size Collected in the Sediment
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Nomenclature

0 Standard Normal Distribution Function

0 1 Inverse Standard Normal Distribution Function

<p(X) Proportion of particles with a particular size

w Feasibility of a Set Point

Vo Robustness of a Set Point given uncertainty in control variables

Yr Robustness of a Set Point given Uncertainty in parameters

Qo Hyper-Rectangle Surrounding defined by control variables

Or Hyper-Rectangle Surrounding defined by parameters

Logical Symbols

3 Existential quantification

V Universal quantification
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