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Abstract
The phosphoinositides (Pin) are a family of phospholipids that contain myo­

inositol as their headgroup. Despite being present in eukaryotic membranes with 

low abundance, their high rates of metabolic turnover allow them to control a 

plethora of cellular functions. In particular, phosphatidylinositol 4,5-6wphosphate 

(PtdIns(4,5)P2) regulates several processes, including preparing secretory 

organelles to undergo fusion with the plasma membrane in response to a stimulus 

(regulated exocytosis), budding and fission of vesicular cargo from the plasma 

membrane (endocytosis), and controlling the cortical actin cytoskeleton. In this 

thesis, the role of Pin in regulated exocytosis is examined in mast cells, since 

these undergo an acute, massive and rapid exocytosis, without any immediate 

endocytosis.

Using a reconstitution approach, it was not possible to define which Pin are 

involved in exocytosis, although it was concluded that at least one Pin that is not 

PtdIns(4,5)P2 is required. In order to study Ptdlns(4,5)P2 dynamics in primary 

mast cells, a novel quantitative immunofluoescence technique for Pin was 

established. Using this technique, PtdIns(4,5)P2 was identified at the plasma 

membrane of mast cells, but was depleted almost entirely during exocytosis; the 

latter observation was confirmed using biochemical approaches. This depletion 

was blocked by inhibitors of phospholipase C (PLC), an enzyme that breaks down 

PtdIns(4,5)P2 into diacylglycerol (DAG) and the calcium mobilising messenger, 

inositol 1,4,5-rnsphosphate (Ins(l,4,5)P3). Although PLC activity was required 

for initiation of calcium signalling in mast cells, experiments whereby the 

Ins(l,4,5)P3/calcium pathway was bypassed demonstrated further requirements 

for PLC activity. These were not precisely defined, but simple elimination of 

plasma membrane PtdIns(4,5)P2 or production of DAG were not sufficient. Both 

events may be required in conjunction, however. A model is proposed whereby 

elimination of plasma membrane PtdIns(4,5)P2 together with production of DAG 

may activate the protein machinery for membrane fusion during exocytosis.
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Lay abstract
The various tissues in our bodies are made-up of tiny modules called cells. These 

cells release chemical messengers that coordinate the tissues, allowing the body to 

function as a whole. Failure to release these messengers, or their inappropriate 

release, can therefore cause disease. The outsides of cells are made of a 

vanishingly thin layer of fat. Opening of pores in this fatty layer allows release of 

the messengers from compartments inside cells.

The aim of this thesis was to better understand how these pores in the fatty layer 

are formed. The role of the fatty layer itself has been considered: in particular, a 

family of special fatty units called PIPS (“pips”) were studied. Consistent with 

previous reports, one of the PIPS, PIP-2 (“pip-two”) was observed within the fatty 

layer of mast cells. Mast cells release the messenger histamine, which causes 

allergic and inflammatory reactions in the body. Mast cells were studied because 

they release all their histamine extremely rapidly, so are easy to study. It was 

found that, whilst releasing histamine, all of the PIP-2 is destroyed. This process 

of destruction was essential for the release of histamine, although quite why was 

not clear. Mast cells destroy the PIP-2 by breaking it into two fragments. These 

fragments by themselves do not allow histamine release to occur, nor does 

manipulating the cells so that PIP-2 is destroyed in another fashion. From these 

observations, it is concluded that destruction of PIP-2 as well as one of the 

fragments produced are required to form the pores, allowing histamine release. In 

addition, it seemed that another type of PIP is required, but this has not been 

identified. Together, these results increase our understanding of how mast cells 

(and by extension, other tissues) release their chemical messengers.
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Chapter 1: Introduction

This thesis is concerned with the regulation of exocytosis from rat peritoneal mast 

cells by phosphoinositides. Mast cells were chosen not for their biological 

properties per se, but as a model system that possesses certain features that are 

advantageous for dissecting regulated exocytosis. In this chapter, a brief 

introduction to the cell biology of exocytosis will be given, followed by an 

overview of the phosphoinositides. Next, the current knowledge concerning the 

control of regulated exocytosis by these molecules will be discussed. This 

background will then be placed in the context of the biology that underpins mast 

cell exocytosis. Finally, the aims of the work presented in this thesis will be laid 

out.

1.1. Exocytosis

Exocytosis is an eukaryotic process that may be defined as fusion of the limiting 

membrane of a cellular organelle with the plasma membrane. Traditionally, 

exocytosis is associated with the secretion of the organelle’s lumenal content 

(Keller and Simons, 1997). However, there are several functions that are 

associated with exocytosis (Chieregatti and Meldolesi, 2005). Increases in cell 

surface area are mediated by exocytosis of excess membrane; a fundamental 

example is exocytosis of membrane required for increases in cell surface area 

during cytokinesis (Danilchik et al., 2003). Deposition of membrane proteins at 

the cell surface also occurs by exocytosis; a prominent example of this is 

exocytosis of Glut4 transporters to enable uptake of glucose by cells (Watson et 

a l., 2004). Finally, membrane lesions may be repaired by the stimulated 

exocytosis of lysosomes (Reddy et al., 2001). This may be associated with the 

secretion of lysosomal hydrolases in defence against microbial infection 

(Chakrabarti et al., 2003). In this thesis, exocytic secretion is considered, so from 

here on exocytosis will be discussed in this context.

1.1.1. The secretory pathway

Before outlining the secretory pathway, it is important to distinguish between 

secretion and exocytosis; the latter is a cellular mechanism that can be used to 

achieve the former. Examples have been described above of non-secretory 

exocytosis. However, it is also important to note that secretion often occurs by
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Chapter 1: Introduction

means distinct from exocytosis. For example, acinar cells of the salivary gland 

secrete amylase by exocytosis (Fujita_Yoshigaki etal., 1996), whereas water is 

secreted by means of aquaporin channels (Krane et al., 2001). Thus when the 

secretory pathway is discussed, it is actually the exocytic secretory pathway that is 

being referred to. Thus from hereon, where ‘secretion’ or ‘secreted’ is mentioned, 

the author is referring to exocytosis.

Secreted proteins are translocated co-translationally into the lumen of the 

endoplasmic reticulum (ER). As discussed above, membrane proteins also reach 

the cell surface by exocytosis, i.e. along the secretory pathway; these are inserted 

into the membrane of the ER co-translationally. Once at or in the lumen of the 

ER, the protein undergoes folding to reach the correct conformation. After 

satisfying a quality control mechanism, the protein is packaged into vesicular 

transporters at ER exit sites for transport to the Golgi (Lippincott-Schwartz et al.,

2000). Once the protein arrives at the Golgi, it is transported through the 

cistemae, receiving pertinent post-translational modification along the way. Once 

it reaches the trans-Golgi network, it is packaged into tubular-vesicular transport 

carriers; these pinch off and migrate along microtubules towards the plasma 

membrane, where they undergo exocytosis (Keller and Simons, 1997; Lippincott- 

Schwartz et al., 2000).

In the case of regulated exocytosis, the transport organelles wait in the cytosol 

until they receive an appropriate stimulus to fuse at the plasma membrane, and 

this defines the difference between regulated  and constitutive exocytosis. 

However, in the case of regulated exocytic secretion there is a second crucial 

difference: a process of vesicle maturation occurs before the secretory organelle is 

ready for exocytosis. This is exemplified by the formation of endocrine cell 

secretory granules, which involves the aggregation of the newly-budded, 

immature secretory granules (ISGs). The ISGs undergo a process of homotypic 

fusion, followed by removal of excess membrane and proteins that are no longer 

required by a clathrin-dependent mechanism. After acidification, the lumenal 

contents condense to form a dense core, thereby forming mature secretory 

granules (Tooze etal., 2001).
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Chapter 1: Introduction

Thus this pathway defines the first type of secretory organelle: the secretory 

granules or large dense-core vesicles (LDCV), so called due to their large size 

(200-800 nm) and electron-dense granule cores. Secretory granules are found 

ubiquitously in professional secretory cells throughout the body (Burgoyne and 

Morgan, 2003). The second class of organelle are smaller (~50 nm), and electron 

lucent: these are the small synaptic vesicles (SV), and predominate at the synapse 

although they do occur in neuroendocrine cells (Burgoyne and Morgan, 2003; 

Torrealba and Carrasco, 2004).

1.1.2. SNAREs and membrane fusion

Membrane fusion between secretory organelles and the plasma membrane is the 

defining feature of exocytosis. Membrane fusion between cellular organelles is 

believed to be controlled by Soluble NSF-Attachment Receptor proteins 

(SNAREs). The first clue to the role of SNARE proteins in membrane fusion 

came from studies on the clostridial neurotoxins, which cleave SNARE proteins 

and prevent neurotransmission, a process that relies on synaptic vesicle exocytosis 

(Schiavo et al., 1992; Schiavo et al., 2000). The SNAREs represent a large family 

of proteins containing a juxtamembrane heptad repeat, or SNARE motif, with 

either glutamine (Q) or arginine (R) residues at their core (Chen and Scheller,

2001). Four of these motifs (from 3 or 4 SNARE proteins) combine to form a 

four-helix bundle, with unique thermodynamic properties (Brunger, 2000). 

However, the Q/R core per se is not required for assembly, since functional 

SNARE complexes may be formed with normal kinetics after mutation of these 

residues; rather, they seem to function in efficient disassembly of the complex 

(Chen and Scheller, 2001).

Traditionally, SNARE proteins have been assigned as either target membrane (t- 

SNAREs) or vesicle membrane (v-SNAREs). Since each complex generally 

contains three Q-containing SNAREs on one membrane and a single, R- 

containing SNARE on the other membrane, the nomenclature has since been 

changed to R-SNAREs and Q-SNAREs. This is favoured, since it can be applied 

to SNARE-dependent homotypic fusion events (Chen and Scheller, 2001).
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Figure 1.1: Two models of SNARE-mediated membrane fusion. (A) shows a 
vesicle before assembly of the 4-helix SNARE complex between the 2-Q SNARE 
SNAP-25, 1-Q Syntaxin 1 (Stxl) and 1-R VAMP 2. In (B), formation of the 
complex brings the membranes into close apposition, overcoming the hydration 
barrier. Fusion may then occur spontaneously, or be initiated by another factor. In 
(C), formation of the complex is sufficient to force the bilayers together and drive 
fusion, proceeding via a hemifusion state. See text for details.
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The assembly of the four-helix SNARE complex is an exothermic reaction, and it 

is believed that this may provide sufficient energy to drive membrane fusion (Jahn 

et al., 2003); this could occur either by driving membranes into a conformation 

that initiates lipid mixing, or by bringing membranes close enough together to 

overcome their hydration shells and undergo spontaneous fusion (figure 1.1). 

Recent evidence favours the former, active mechanism over the latter, passive 

model. Mutant SNAREs with extended linkers between the transmembrane and 

SNARE domains were unable to drive membrane fusion (McNew et al., 1999). 

On the other hand, fusion could be supported by replacing the transmembrane 

helices with lipid or isoprenoid membrane anchors of sufficient hydrophobicity 

and, in the case of the R-SNARE, that spanned the bilayer (McNew et al., 2000b). 

These results imply a model in which SNARE complex assembly transmits force 

to the transmembrane helices and actively drives lipid mixing between bilayers. 

This appears to proceed through a hemifusion state (figure 1.1C), with the 

cytoplasmic leaflets merging before the exoplasmic leaflets (Lu et al., 2005). 

Indeed, truncation of the transmembrane domain of a yeast R-SNARE leads to 

arrest at the hemi-fusion stage (Xu et al., 2005).

In conjunction with other factors, SNAREs are also thought to confer some 

specificity to which membranes may fuse (McNew et al., 2000a). Interaction 

among SNAREs can also negatively regulate fusion in inappropriate locations in 

the cell by competitive formation of non-productive SNARE complexes 

(Varlamov et al., 2004).

There is some controversy as to whether SNAREs initiate the final step of 

membrane fusion (Mayer, 2001; Szule and Coorssen, 2003). This largely arises 

from the observations that blocking SNARE complex formation does not block 

the fusion of sea urchin cortical granules (Szule et al., 2003), and that yeast 

vacuolar fusion can occur downstream of SNARE complex disassembly (Peters et 

al., 2001). In these models, SNARE complex assembly acts before fusion (figure 

1.1B), with lipid mixing initiated by another protein such as the V0 ATPase 

(Mayer, 2001). However, there is compelling evidence that SNAREs constitute 

the minimal machinery necessary for membrane fusion. SNAREs incorporated 

into the outer leaflet of the plasma membrane are sufficient to drive fusion of cells
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(Hu et al., 2003), and SNARE proteins incorporated into artificial membranes are 

sufficient to drive fusion (Weber et al., 1998) at physiologically relevant rates 

(Fix et al., 2004). Thus SNAREs certainly play a central role in controlling fusion 

at many stages of membrane traffic, including exocytosis. It should be noted, 

however, that there are examples of membrane fusion in eukaryotes that proceed 

independently of SNARE proteins, such as viral entry (Jahn et al., 2003) and 

mitochondrial fusion (Mozdy and Shaw, 2003).

1.1.3. Regulated exocytosis

Regulated exocytosis occurs in response to an appropriate signal. This is usually 

relayed by an increase in cytosolic calcium concentration, as exemplified by 

exocytosis from chromaffin cells (Baker and Knight, 1978). However, certain cell 

types can employ other 2nd messengers in the absence of increases in cytosolic 

calcium, such as cAMP in the case of parotid acinar cells (Fujita-Yoshigaki, 

1998) or GTP (presumably acting via G-proteins) in the case of gastric chief cells 

(Raffaniello and Raufman, 1993). No matter what the stimulus, the response will 

be to drive membrane fusion of the secretory organelle with the plasma 

membrane; since it is generally held that fusion is catalysed by SNARE proteins, 

SNARE complex assembly represents the ultimate point of regulation. Indeed, 

recent structural studies of the neuronal R-SNARE VAMP-2 show that the 

juxtamembrane region of the SNARE motif is buried in the membrane, and so 

unable to form a SNARE complex; therefore, triggering of exocytosis presumably 

requires induction of conformational changes in this region that, thereby 

permiting SNARE complex formation (Kweon et al., 2003).

The molecular characterisation of regulated exocytosis is most advanced in the 

case of neuronal and neuroendocrine cells (Rettig and Neher, 2002; An and 

Zenisek, 2004), so these will be used to outline the major points of what is 

understood about regulated exocytosis. Figure 1.7 shows the major steps in the 

regulated exocytosis of SV, although these general concepts are also applicable to 

neuroendocrine cells. It should be noted that although Ca2+ plays the central role 

in triggering exocytosis in these cells, GTP is still required to activate small G- 

proteins of the Rab family, which co-ordinate multiple stages of membrane traffic 

(McBride et al., 1999).
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Two key regulators of neuronal exocytosis, Unc 13 and Unc 18, have been 

discovered in Caenorhabditis elegans and are conserved in mammalian cells 

(Richmond and Broadie, 2002). Mammalian Unc 18 (Muncl8) binds to the 

plasma membrane Q-SNARE syntaxin 1A, holding it in a closed conformation 

and inhibiting exocytosis (Dulubova et al., 1999). Unc 13 was shown to displace 

Unc 18 from syntaxin in vitro (Sassa et al., 1999), and mutants of syntaxin that 

are held in open conformations are able to bypass the blockade of 

neurotransmission in an Unci3 background (Richmond et al., 2001). Therefore, it 

is believed that Muncl8 acts as a chaperone, preventing non-productive SNARE 

complex formation until the appropriate time, when Muncl3 displaces Muncl8 

and allows formation of productive SNARE complexes (Richmond and Broadie, 

2002).

Calcium-binding proteins, or “calcium sensors” mediate the triggering of 

exocytosis in neurons and neuroendocrine cells. Calmodulin was the first such 

sensor proposed, although it now appears that it plays a modulatory rather than 

essential role in exocytosis; nevertheless, it may act as the predominant calcium 

sensor in other membrane fusion events such as yeast vacuole fusion (Burgoyne 

and Clague, 2003). One family of proteins involved in the coupling of calcium 

transients to SNARE complex formation in neurons are the synaptotagmins. 

These proteins are found in the secretory organelle or plasma membranes. They 

contain a transmembrane domain, a cytoplasmic linker region and two C2 

domains; they are implicated in coupling the Ca2+ transient to exocytosis via their 

C2 domains (Bai and Chapman, 2004), though not all synaptotagmins bind Ca2+ 

(Sudhof, 2002). Synaptotagmins have been shown to oligomerise, and to bind to 

SNARE complexes as well as to phospholipids in a Ca2+-dependent manner 

(Chapman, 2002), although recent studies imply that phospholipid binding 

activity is more important for exocytosis (Shin et al., 2003). Whatever the 

relevant interaction, synaptotagmins play an important role in membrane fusion 

and are able to enhance SNARE-mediated fusion between artificial membranes, 

although whether this is Ca2+-dependent is controversial (Mahal et al., 2002; 

Tucker et al., 2004).
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Another class of calcium-sensitive proteins implicated in the regulation of 

SNARE complex assembly are the complexins. These proteins were shown to be 

essential for efficient coupling of calcium transients to exocytosis in neurons 

(Reim et al., 2001). Squid complexin was found to form a helical interaction with 

the SNARE complex (Bracher et al., 2002); these SNARE-complexin complexes 

are present at stoichiometric quatities in brain extracts, and cause a shift in the 

migration of the core complex of full length SNAREs. This is interpreted as 

efficient coupling of Q- and R-SNARE transmembrane domains (Hu et al., 2002). 

These observations indicate that complexins could in principle couple calcium 

influx to SNARE complex assembly, although a precise mechanism for how this 

occurs is not yet clear.

Many of the molecular interactions described above, particularly in terms of the 

SNARE complex, are required for membrane fusion outside the nervous system. 

However, the molecular identities of the components involved are less well- 

defined in non-nervous tissues (Burgoyne and Morgan, 2003).

1.1.4. Compensatory endocytosis and the exo-endocytic cycle

As a result of fusion, secretory organelle membrane becomes incorporated into 

the plasma membrane, creating an increase in surface area. Furthermore, if 

secreted cargo is ejected completely from the cell, there is a net decrease in 

cytoplasmic volume. Exocytosis may thus create a problem in the maintenance of 

cell surface area to volume ratio. Another potential problem of stimulated 

exocytosis from high activity secretory systems, such as the chemical synapse, is 

that vesicles will become depleted faster than biogenesis can form new vesicles de 

novo. One mechanism that prevents such problems is so called “kiss-and-run” 

exocytosis, a mechanism commonly employed by chemical synapses (An and 

Zenisek, 2004). In this mode of exocytosis, a transient fusion pore opens between 

the synaptic vesicle and the plasma membrane, and persists long enough to release 

neurotransmitter before re-sealing. The vesicle may then be refilled with 

neurotransmitter before undergoing another round of fusion. However, even at 

central synapses, full fusion of synaptic vesicles and incorporation of their 

membranes into the synaptic membrane is seen to predominate 

(Sankaranarayanan and Ryan, 2000).
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In most secretory systems, catastrophic increases in surface area do not occur, 

since exocytosis is accompanied by compensatory endocytosis (Gundelfinger et 

al., 2003). This again has been best characterized at the synapse, where 

compensatory endocytosis both removes excess plasma membrane, and leads to 

the recycling of synaptic vesicle components (De Camilli, 1995). Under 

physiological conditions, stimulated endocytosis is sufficiently fast to balance 

exocytosis from central synapses (Femandez-Alfonso and Ryan, 2004). How exo- 

endocytosis is coupled is not yet clear, although endocytosis is stimulated by 

calcium and can still occur when exocytosis is blocked with botulinum toxin A 

(Neale et al., 1999). Exocytosis can also be uncoupled from endocytosis: snake 

phospholipase A2 neurotoxins (SPANS) cause depletion of synaptic vesicles by 

triggering their exocytosis, without compensatory endocytosis. This causes 

paralysis and massive increases in synaptic surface area (Rigoni et al., 2004). 

Exocytosis may also regulate compensatory endocytosis indirectly via 

postsynaptic nitric oxide (NO) production, which diffuses back to the presynaptic 

terminal and accelerates recycling by a cGMP-dependent mechanism (Micheva et 

al., 2001; Micheva et al., 2003).

Although not well characterised at present, compensatory endocytosis also occurs 

after secretory granule exocytosis: there are specific reports of this in adrenal 

chromaffin cells (Smith and Neher, 1997; Engisch and Nowycky, 1998) and 

pancreatic beta cells (Takahashi et al., 1997; Ohara-Imaizumi et al., 2002).

1.1.5. Secretory vesicle priming

Before a recycled or de novo sythesised exocytic organelle may undergo 

exocytosis, it must be prepared for fusion. As observed in chromaffin cells, this 

involves trafficking along the microtubule and actin cytoskeletal elements (Neco 

et al., 2002), followed by a process of docking at the plasma membrane (Parsons 

et al., 1995). The latter is largely a morphological rather than functional term. The 

one exception is at the synapse, where synaptic vesicles dock in specific regions, 

know as active zones, containing a network of scaffolding proteins and calcium 

channels (Rosenmund et al., 2003).

26



Chapter 1: Introduction

Early studies in chromaffin (Holz et al., 1989) and PC 12 cells (Hay and Martin,

1992) resolved functionally an ATP-dependent step that precedes fusion during 

exocytosis, know as vesicle priming. This has been extended to neurons, where 

pre-primed vesicles form a ‘rapidly releasable pool’, whilst other vesicles must 

undergo priming before fusion and form a ‘slowly releasable pool’ (Rettig and 

Neher, 2002). Although it has been assumed that morphological docking 

corresponds to primed vesicles, recent work has demonstrated that this is not the 

case at synapses (Rizzoli and Betz, 2004). The functional process of ATP- 

dependent priming is thus distinct from simple vesicle docking. Work by 

Eberhard and colleagues demonstrated that the requirement for ATP during 

priming was due, at least in part, to a process of lipid phosphorylation (Eberhard 

et ah, 1990). Before exploring this concept in further detail, it will be necessary to 

introduce the class of lipids into which ATP was incorporated: the 

phosphoinositides.

1.2. Phosphoinositides

The phosphoinositides (Pin) belong to a family of biological molecules that 

contain the hexameric cyclitol myoinositol (figure 1.2). ‘myo' defines the isomer 

in which the hydroxyl groups at positions 1, 2, 3 and 5 lie above the plane of the 

carbon ring, whereas positions 4 and 6 lie beneath the plane (written (1,2,3,5/4,6- 

)-inositol); in its most relaxed chair conformation, all but the 2-hydroxl group are 

equatorial with respect to the carbon ring. Anti-clockwise numbering around the 

ring when viewed from above (with the axial hydroxyl projecting towards the 

viewer) distinguishes chiral derivatives such as D-myoinositol-3-phosphate from 

its enantiomer, L-myoinositol-1 -phosphate; the D-enantiomer is referred to as 

standard in the biological literature (IUBMB, 1989). Since it is m yoinositol 

which predominates in cells, and which forms the inositol-containing molecules 

described below, inositol (or its abrevation Ins) will be used to refer specifically 

to this isomer from here on.

Ins is synthesised by cells from D-glucose-6-phosphate, which is converted 

enzymatically to D-myoinositol-3-phosphate (Ins3P), or L-myoinositol-1- 

phosphate (Maeda and Eisenberg, 1980). The human enzyme was recently cloned 

and named 1 -myoinositol-3-phosphate (MIP) synthase (Ju et al., 2004). The
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hydroxyl groups around the inositol ring may be reversibly phosphorylated, 

containing either mono or pyrophosphate moieties (Irvine and Schell, 2001). 

Collectively, these are referred to as inositol phosphates, or inositol 

polyphosphates (InsPP) where more than one phosphate group is present. There 

are at least 25 biologically relevant inositol phosphates and pyrophosphates.

Inositol can be esterified by a phosphodiester bond at the D -l position to 1,2- 

diacyl-sn-glycerol (DAG). This occurs via the CDP-DAG pathway (Kent et al., 

1991) using the ER-associated phosphatidylinositol synthetase (Ghalayini and 

Eichberg, 1985). The resulting phospholipid, phosphatidylinositol (Ptdlns), forms 

the parent compound for two families of biological molecules. In the first, 

glucosamine and three mannose residues are added in a step-wise fashion to the D- 

6 position, forming glycosylphosphatidylinositol (GPI); GPI can then be attached 

to the carboxyl terminus of a protein via a phosphoethanolamine moiety, forming 

GPI-anchored proteins (Eisenhaber et al., 2003). These molecules are not 

examined in this thesis, so will not be described further.

The second family of Ptdlns-derived compounds includes Ptdlns itself, and are 

collectively known as the phosphoinositides (Pin), defined as lipids that contain 

D-my o-inositol as their headgroup. Like inositol phosphates, Ptdlns can be 

reversibly phosphorylated on free hydroxyl groups around the inositol ring. 

However, to date, phosphorylation of only the d-3, -4 and -5 positions has been 

observed, and only monophosphate is added. This means that the resulting 

polyphosphoinositides (PPIn) contain only seven members: three monophosphate 

and three fcisphosphate isomers, as well as a single fraphosphate (figure 1.3). The 

metabolic pathways linking the Pin are described in the following two sections, 

with reference to mammalian cells unless otherwise stated.
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(A) Inositol is an isomer of C6H120 6, 
in which the carbon atoms are in a 
cyclical arrangement, with a hydroxyl 
group at each position around the 
ring. The anticlockwise numbering 
around the carbon ring defines the D 
enantiomer of chiral derivatives; myo 
refers to the isomer in which hydroxyl 
goups at positions 1, 2, 3 and 5 lie 
above the plane of the carbon ring, 
and positions 4 and 6 lie below. The 
molecule is shown in its most relaxed 
chair conformation, in which only the 
hydroxyl at position 2 is axial.

(B) Phosphatidylinositol is the 
phospholipid formed by covalent 
attachment of diacylglycerol to myo­
inositol at position D-l via a 
phosphodiester bond. It is shown with 
the most common fatty acid chains, 
stearic (C18) and arachidonic (C20;4„_6) 
acids.
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1.2.1. Synthesis o f  polyphosphoinositides

As shown in figure 1.3, the d -3, -4 and -5 phosphates are available for 

phosphorylation by cytosolic kinases when Ptdlns is present in a membrane. The 

most abundant monophosphate (PtdlnsP) is PtdIns4P, which is synthesized by the 

activity of either class II or III Ptdlns 4-OH kinases (PI4K II and III) (Fruman et 

al., 1998). Ptdlns3P is made by the action of a class III Ptdlns 3-OH kinase (PI3K 

III), Vps34 (ScHti et al., 1993; Volinia et al., 1995). Although PI3K III account 

for the majority of PtdIns3P synthesis in mammalian cells, the class II enzymes 

(C2-containing PI3K Ila, p & y) also make PtdIns3P (Zhang et al., 1998; 

Maffucci et al., 2005; Meunier et al., 2005). However, these enzymes will also 

phosphorylate PtdIns4P in vitro to produce PtdIns(3,4)P2 (Domin et al., 1997). 

The final monophosphorylated isomer, PtdIns5P, has been shown to exist in cells 

at low levels (Rameh et al., 1997; Morris et al., 2000), but its mechanism of 

synthesis is unclear. It may occur by dephosphorylation of PtdIns(4,5)P2 or 

PtdIns(3,5)P2, although type I and III PtdlnsP-kinases have been shown to 

synthesize it in vitro (Tolias et al., 1998; Sbrissa et al., 1999).

All three monophosphate isomers may be phosphorylated to produce three 

^/^phosphorylated PPIn isomers. Of these, the most abundant is PtdIns(4,5)P2. 

The predominant pathway of synthesis is by d -5 phosphorylation of PtdIns4P by 

type I PtdIns4P 5-OH kinase (PIPK I), of which there are three isoforms (Fruman 

et a l., 1998). A second, minor pathway exists in which PtdIns5P is 

phosphorylated at d -4 by PtdIns5P 4-OH kinase (Rameh et al., 1997), of which 

there are again three isoforms. This enzyme was originally designated as type II 

PtdIns4P 5-OH kinase before the substrate specificity was determined, although 

the abbreviation PIPK II still persists. The third family of PtdlnsP kinases are the 

type III PtdlnsP 5-OH kinases (PIPK III), which make PtdIns(3,5)P2 from 

PtdIns3P. The single isoforms are Fablp in yeast (Cooke et al., 1998) and 

p235/PIKfyve in mammalian cells (McEwen et al., 1999; Sbrissa et al., 1999). 

PtdIns(3,4)P2 is synthesized primarily by dephosphorylation of PtdIns(3,4,5)P3 

(Stephens et al., 1991). However, a PtdIns3P 4-OH kinase activity has been 

detected in cells (Banfic et al., 1998b), which may correspond to the PIPK II 

enzymes (Zhang et al., 1997).
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PtdIns(3,4,5)P3 is generally thought to be synthesized exclusively from 

PtdIns(4,5)P2 via the action of class I Ptdlns 3-OH kinases (PI3K I) (Auger et al.,

1989), which are stimulated in response to receptor activation (Vanhaesebroeck et 

al., 2001). However, the fission yeast Schizosaccharomyces pombe does not 

contain PI3K I or II, yet synthesises PtdIns(3,4,5)P3 (Mitra et al., 2004). It is 

thought to do so via phosphorylation of PtdIns3P at the d-4 and -5 positions by 

the yeast PIPK, Mss4p. Interestingly, mammalian PIPK I can synthesize 

PtdIns(3,4,5)P3 from PtdIns3P (Tolias et al., 1998), and the same enzymes have 

been found to account for a PtdIns(3,4)P2 5-OH kinase activity during oxidative 

stress (Halstead et al., 2001). InsPP multi kinase (IPMK) has also recently been 

shown to posses Pin 3-OH kinase activity, and to utilise PtdIns(4,5)P2 exclusively 

as a substrate (Resnick et al., 2005).

Although not an enzyme that adds phosphate moieties to Ptdlns, the Ptdlns 

transfer protein (PITP) is thought to play an important role in the synthesis of 

PPIn. These proteins catalyse the transfer of Ptdlns and phosphatidylcholine 

(PtdCho) between membranes in vitro (Thomas and Pinxteren, 2000), and were 

shown to maintain PtdIns(4,5)P2 synthesis during receptor activation in 

permeabilised cells (Thomas et al., 1993).
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1.2.2. Breakdown o f polyphosphoinositides

PPIn are broken down by one of two pathways: hydrolysis of either the monoester 

or diester phosphate bond. The monophosphate moieties are removed by several 

classes of lipid phosphatases, as illustrated in figure 1.4.

Ptdlns(3,4,5)P3 is dephosphorylated at position d-3 by PTEN (Maehama and 

Dixon, 1998), which thus antagonises the PI3K I pathway. Alternatively, 

PtdIns(3,4,5)P3 can be used as a substrate in the synthesis of PtdIns(3,4)P2 as 

mentioned above, through the action of the SH2-containg inositol 5-phosphatase 

SHIP (Damen et al., 1996), of which there are two isoforms. PtdIns(3,4)P2 is 

attacked at position 4 by inositol 4-phosphatases (Norris et al., 1997); the 

concerted action of SHIP and inositol 4-phosphatase has recently been 

demonstrated to degrade PtdIns(3,4,5)P3 to Ptdlns 3 P after receptor activation 

(Shin et al., 2005).

PtdIns3P is degraded by the action of myotubularin (MTM) 3-phosphatase 

(Taylor et al., 2000) and a family of related proteins, MTMRs (Wishart and 

Dixon, 2002). Recently, MTMR3 was shown also to remove the D-3 phosphate 

from PtdIns(3,5)P2, defining the first in vivo pathway of PtdIns5P sythesis 

(Walker et al., 2001); a similar activity has since been found for MTM and 

MTMR6, which are allosterically activated by the PtdIns5P product (Schaletzky 

et al., 2003). Thus it is not clear whether MTM-related proteins catalyse the 

destruction of PtdIns3P, Ptdlns(3,5)P2 or both in vivo.

PtdIns(4,5)P2 is dephosphorylated at position 5 by type-II inositol 5-phosphatase 

(Jefferson and Majerus, 1995) and OCRL (Zhang et al., 1995). The resulting 

PtdIns4P is then dephosphorylated by Sac domain phosphatases (Hughes et al., 

2000). Notably, the synaptojanins are a family of inositol phosphatases that 

contain both type II inositol 5-phosphatase and Sac domains; the name derives 

from the Roman God of two faces, Janus (McPherson et al., 1996; Nemoto et al., 

2000). These enzymes are thus able to degrade PtdIns(4,5)P2 to Ptdlns (Guo et al., 

1999).
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As for its synthesis, little is known about the degradation of PtdIns5P, although a 

specific phosphatase, PLIP, has recently been identified that will remove the 5- 

phosphate in vitro (Pagliarini et al., 2004). It is also possible that PtdIns5P is 

removed via hydrolysis of the phosphodiester bond (Roberts et al., 2005).

The second pathway of degradation occurs by hydrolysis of the phosphodiester 

bond to produce DAG and the 1-phosphorylated inositol phosphate (figure 1.5). 

This reaction is catalysed by members of the phospholipase C family, of which 

there are 5 sub-families |3-£ (figure 1.6); a  has since been shown to be a 

proteolytic fragment of 5 (Rhee, 2001; Saunders et al., 2002). The enzymes are 

calcium-dependent, and prefer PtdIns(4,5)P2 as their substrate (Rhee et al., 1989). 

The p-isoforms are regulated by G-protein coupled receptors, the y by tyrosine 

kinases and the e by Ras signalling. The other isoforms are less well 

characterized, but the 6 isoforms seems to be regulated by calcium and lipids 

(Ochocka and Pawelczyk, 2003); the £, isoform is delivered from the sperm upon 

fertilization to signal the activation of the oocyte, and thus constitutes the so- 

called “sperm factor” (Saunders et al., 2002).

The importance of Pin in human health and disease is evident from the large 

number of genetic disorders caused by mutations in genes encoding the Pin 

phosphatases discussed above. These include MTM, which causes mytotubular 

myopathy, M TM R2 , which causes Charcot Marie Tooth disease, OCRL, 

associated with occulocerebrorenal syndrome of Lowe, SH1P2's implication in 

type 2 diabetes, and the frequent mutations in PTEN associated with a variety of 

cancers (Wishart and Dixon, 2002; Pendaries et al., 2003; Lowe, 2005).
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activated by GTP-bound Ras. PLC8 isoforms are regulated by lipids and activated by 
Ca2+.
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1.2.3. Regulatory interactions o f the polyphosphoinositides

Aside from acting in the generation of the second messengers DAG and 

Ins(l,4,5)P3, PPIn also act as regulatory molecules in their own right. Indeed, 

synthesis and degradation of PPIn is tightly regulated, spatially as well as 

temporally (Czech, 2003; Roth, 2004). Regulatory functions of the PPIn are 

mediated through their direct interaction with effector proteins, of which there are 

two classes. The first bind inositol lipids with high affinity and stereospecificity 

(Cullen et al., 2001; Lemmon, 2003). As a rule, they contain a modular Pin- 

binding domain, and are found in several proteins from divergent families; a list 

of these is provided in table 1.1.
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Domain Common name Lipid bound References

Phox homology PX Ptdlns3 P, 
PtdIns(3,4)P2

(Kanai et al., 2001)

(Xu et al., 2001)

(Yu and Lemmon, 
2001)

Epsin/AP180 N- 
terminal homology

ENTH/ANTH PtdIns(4,5)P2,
PtdIns(3,5)P2

(Friant et al., 2003) 

(Ford et al., 2001) 

(Itoh et al., 2001)

Protein 4.1, ezrin, 
radixin, moesin

FERM PtdIns(4,5)P2 (H a m a d a  et al., 
2000)

F ab lp , YOTB, 
Vaclp, EEA1

FYVE PtdIns3P (Misra and Hurley, 
1999)

(Sankaran et al., 
2001)

Plant homeodomain PHD PtdIns5P (Gozani et al., 2003)

(5-propeller WD40 PtdIns(3,5)P2 (Dove et al., 2004)

Tubby Tubby PtdIns(4,5)P2 (Santagata et al., 
2001)

Pleckstrin homology PH Various (Harlan et al., 1994)

(Lem m on and 
Ferguson, 2000)

Table 1.1: Pin binding domains

The second class of PPIn effector protein do not display stereospecificty for the 

lipids, but may still bind with high affinity. Many of these proteins contain simple 

polybasic motifs; these bind to the acidic face of a membrane due to the presence 

of monobasic lipids such as Ptdlns and phosphatidylserine (PtdSer), but once 

bound sequester PPIn in the plane of the membrane (McLaughlin et al., 2002). 

Such motifs are commonly found in proteins associated with the actin 

cytoskeleton (Janmey and Lindberg, 2004). The pleckstrin homology domains
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also appear for the most part to fall into this category; although some PH domains 

display specific, high-affinity interactions with one or two PPIn, many display 

low-affinity, promiscuous interactions (Kavran et al., 1998). A recent screen of all 

thirty-three PH domains from Saccharomyces cerevisiae revealed that only a 

single example exhibited a specific, high-affinity interaction. The remaining 

domains bound PPIn promiscuously or not at all, and were targeted by other 

molecular interactions (Yu et al., 2004). Lastly, C2 domains bind to acidic lipids 

via interactions with calcium, as the acidic residues in the lipids are thought to 

provide additional coordination for calcium (DiNitto et al., 2003; Bai and 

Chapman, 2004). The C2B domain from synaptotagmin is also able to specifically 

bind PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in vitro (Schiavo et al., 1996; Mehrotra et 

al., 2000; Bai et al., 2004).

The biological function of the PPIn-protein interactions can be mediated in a 

number of ways. Firstly, and most simply, the PPIn may recruit a protein to a 

particular membrane, so restricting its sphere of influence or increasing the local 

concentration. This is exemplified by the recruitment of protein kinase B (PKB) to 

the plasma membrane by PtdIns(3,4,5)P3, where it encounters its activator, 

phosphoinositide-dependent kinase (PDK) (Currie et al., 1999). A second mode 

can be allosteric activation of a protein due to binding of its PPIn ligand. PKB 

once again provides a good example, as the binding of Ptdlns(3,4,5)P3 induces a 

conformational change that further advances activation (Calleja et al., 2003). As 

mentioned above, polybasic motifs can bind to several PPIn molecules and 

sequester them in the plane of the membrane, as observed with the myristolated 

alanine-rich C-kinase substrate (MARCKS) effector domain (ED) (McLaughlin et 

al., 2002; Gambhir et al., 2004). Such local sequestration can also couple with 

allosteric activation of effector proteins, as demonstrated recently for the F-actin 

nucleating protein N-WASP (Papayannopoulos et al., 2005). Finally, the 

interaction between PPIn and binding protein may lead to changes in membrane 

bilayer structure, as demonstrated for the interaction between epsin and 

PtdIns(4,5)P2. This causes epsin to partially insert into the lipid bilayer, 

generating curvature that assists in the budding of a vesicle (Ford et al., 2002).

40



Chapter 1: Introduction

Through these various modes of interaction, PPIn modulate an impressive 

diversity of biological functions. For ease of description, these have been 

separated into two groups: those that occur constitutively in the cell 

(“housekeeping”), and those that occur to transduce a signal within the cell, 

largely through bursts of PPIn synthesis. However, since all of these events are 

tightly regulated within the cell, and associated with turnover of PPIn (i.e. 

controlled synthesis and degradation), the distinction between the two may be 

somewhat arbitrary.

1.2.4. Housekeeping functions o f PPIn

All of the PPIn are implicated in vesicular traffic within the cell, and are 

synthesised at restricted endomembrane compartments (Czech, 2003; Roth, 2004). 

Functions include control of early and late endocytic vesicular traffic by PtdIns3P 

and Ptdlns(3,5)7*2, respectively (Gillooly et al., 2000; Cooke, 2002; Jeffries et al.,

2004), Golgi trafficking by Ptdlns47* (Godi et al., 2004; Wang et al., 2004; Balia 

et al., 2005) and regulation of vesicle fusion and budding at the plasma membrane 

by Ptdlns(4,5)7*2 (Martin, 2001). Furthermore, Ptdlns(4,5)7*2 is implicated in the 

regulation of ion channel activity (Suh and Hille, 2005) and cytoskeletal dynamics 

(Takenawa and Itoh, 2001; Janmey and Lindberg, 2004) at the plasma membrane, 

as well as control of gene expression in the nucleus (Irvine, 2002; Hammond et 

a l , 2004).

Thus PPIn can perform multiple functions within specific cellular membranes. 

How can several functions be mediated by the same pool of lipid? A controversial 

but popular model is that there are spatially restricted pools of PPIn within 

cellular membranes. This has been demonstrated for Ptdlns3P at the endosomal 

membrane, where it mediates sorting between the recycling and degradative 

pathways (Gillooly et al., 2003). Early reports using the Ptdlns(4,5)7*2-specific PH 

domain from PLC61 fused to green fluorescent protein (GFP-PH-PLC61) showed 

that this lipid was concentrated in F-actin-rich ruffles (Honda et al., 1999; Botelho 

et al., 2000). A subsequent study showed that this was in fact an artefact caused 

by increased membrane density at the ruffle (van Rheenen et al., 2005). However, 

ultrastructural studies have demonstrated enrichment of PtdIns(4,5)P2 in 

lamellipodia of cultured cells (Watt et al., 2002). Plasma membrane patches of
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PtdIns(4,5)P2 were also reported by Laux et al.; however, these patches were 

shown to be induced by formaldehyde fixation, and were not observed after 

glutaraldehyde treatment (Laux et al., 2000). Taken together, these studies 

indicate that there may indeed by spatially restricted pools of PPIn within 

individual membranes, but spatial resolution of these pools is unclear. An 

alternative mechanism involves local sequestration and release of PtdIns(4,5)P2 at 

the membrane, which may create the sub-pools required to mediate the plethora of 

functions (McLaughlin et al., 2002).

1.2.5. Signalling by PPIn

The first function ascribed to PPIn was PLC-catalysed generation of the second 

messengers Ins(l,4,5)P3 and DAG, which cause the release of calcium from 

intracellular stores and activation of novel and classical protein kinase C (PKC) 

isoforms, respectively (Berridge, 1993; Parker and Murray-Rust, 2004). A second 

important PPIn signalling pathway is agonist-induced generation of 

PtdIns(3,4,5)P3 and PtdIns(3,4)P2, which controls many cellular functions such as 

growth, apoptosis and migration (Vanhaesebroeck et al., 2001). Signalling is 

initiated by receptor mediated recruitment and activation of PI3K, specifically the 

class IA for tyrosine kinase signalling and class IB for G-protein coupled 

receptors (GPCRs). As discussed above, these enzymes phosphorylate the d-3 

position of Ptdlns(4,5)P2; the resulting PtdIns(3,4,5)P3 then transduces singals by 

recruiting and in some cases activating downstream signalling enzymes. These 

include PKB (Gray et al., 1999), p-REXl (Welch et al., 2002), Bruton’s tyrosine 

kinase (Kojima et al., 1997; Bolland et al., 1998) and PLCy (Falasca et al., 1998). 

However, PI3K is not always required to recruit and activate PLCy (Matsuda et 

al., 2001).

As discussed above, class I PI3K are antagonised by conversion of 

PtdIns(3,4,5)P3 back to PtdIns(4,5)P2 by PTEN. This forms one manner in which 

to terminate signalling, although a second pathway exists whereby SHIP 

phosphatases remove the 5-phosphate, generating PtdIns(3,4)P2. This lipid will 

still recruit proteins such as PKB, although others such as General Receptor for 

PIn-1 (GRP1) are not recruited (Gray et al., 1999). In this way, certain 

PtdIns(3,4,5)P3-dependent signals will be terminated, whilst others, such as those
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transduced by PKB, will persist. Interestingly, it appears that PKB is responsible 

for the most prominent aspects of PtdIns(3,4,5)P3-mediated signalling, since 

mutations in its PH domain that reduce PtdIns(3,4,5)P3 binding will rescue the 

phenotype observed in PTEN null Drosophila (Stocker et al., 2002). Ptdlns(3,4)P2 

also appears to have signalling functions that are independent of PtdIns(3,4,5)P3, 

through its interaction with the monogamous Ptdlns(3,4)P2-binding proteins 

TAPP1 and 2 (Marshall et al., 2002). It appears that PtdIns(3,4)P2 signalling is 

terminated by a 4-phosphatase, generating PtdIns3P at early endosomes as the 

activated receptor complex enters the endocytic pathway (Shin et al., 2005).

Cross-talk between pools of PPIn that mediate signalling reactions and 

housekeeping functions may also occur. For example, PtdIns(4,5)P2 regulates 

many housekeeping functions at the plasma membrane as described above. This 

explains why in certain cells there is a burst of Ptdlns(4,5)P2 synthesis in response 

to receptor activation. This provides a pool of PtdIns(4,5)P2 for hydrolysis by 

PLC; there is thus a comparatively small decrease in the resting PtdIns(4,5)P2 

level after PLC activation (X u et al., 2003). Furthermore, the yeast 

Saccharomyces cerevisiae does not contain Ins(l,4,5)P3-receptors, so does not 

release calcium in response to this molecule. Despite this, yeast contain a PLC 

isoform whose function appears to be in a pathway of rapid Ins(l,2,3,4,5,6)P6 

(InsP6) synthesis, which regulates the constitutive process of mRNA export (York 

et al., 1999). Higher inositol phosphates such as InsP6 also perform a plethora of 

functions in mammalian cells (Irvine and Schell, 2001). Another consequence of 

PLC activation is signalling by phosphatidic acid (PtdOH), which is generated 

rapidly after PLC activation through the catalytic activity of DAG-kinase (Luo et 

al., 2004). Furthermore, despite its housekeeping function in the endosomal 

network, PtdIns3P was shown recently to be synthesised on the plasma membrane 

in response to agonists, where it functions in Glut4 exocytosis and cell migration 

(Maffucci et al., 2003; Maffucci et al., 2005).

1.3. Phosphoinositides in regulated exocytosis

As noted above, Pin regulate many stages of membrane traffic, including

constitutive exocytosis. However, Pin have additional roles in the control of

regulated exocytosis, which are outlined in detail in this section. The importance
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of Pin in regulated exocytosis can be underscored by the fact that Pin metabolism 

was first observed in the context of regulated exocytosis (Hokin and Hokin, 1953; 

Hokin and Hokin, 1955, 1958). Figure 1.7 outlines the various points of 

regulation of the SV cycle by PtdIns(4,5)/>2. Specific interactions at individual 

stages are outlined below.

1.3.1. PtdIns(4,5)P2, vesicle priming and fusion

Despite many studies demonstrating that Pin metabolism was associated with 

exocytosis (e.g. (Harwood and Hawthorne, 1969; Schacht and Agranoff, 1972; 

Pickard and Hawthorne, 1978; Whitaker, 1985)), it was not until 1990 that the 

first direct link between the Pin and exocytosis was published. In this seminal 

study, Eberhard and colleagues showed that depletion of Pin using a bacterial 

Ptdlns-specific PLC could abolish ATP-dependent chromaffin cell exocytosis, i.e. 

prevent vesicle priming (Eberhard et al., 1990). Similar effects were achieved 

after removal of ATP; neomycin, which prevented depletion of PPIn after ATP 

removal, permitted the maintenance of a primed state. Together, these 

observations highlighted the importance of PPIn in the priming reaction. 

Subsequently, work by Martin and co-workers in PC 12 cells found that priming 

could be reconstituted by soluble cytosolic factors in broken cells (Hay and 

Martin, 1992); two of these factors were later identified as PITP (Hay and Martin,

1993) and PIPK (Hay et al., 1995). Recently, it has been established that the 

isolated kinase domains from PIPK la, (3 and y are sufficient for priming activity, 

with the efficiencies of the three isoforms correlating with their in vitro kinase 

activities (Wang et al., 2005). Soon after discovery of the priming activity of 

PIPK came the observation that a PI4K activity is required for chromaffin cell and 

synaptic vesicle exocytosis (Wiedemann et al., 1996; Wiedemann et al., 1998), 

which was later identified as type Ila at the synapse (Guo et al., 2003). Therefore, 

enzymes involved in the synthesis of PtdIns(4,5)P2 were demonstrated to be 

important for exocytosis in neuroendocrine cells.

Similar evidence exists in endocrine cells. Maintenance (via PI4K activity) or 

addition of PtdIns4P and PtdIns(4,5)P2 to pancreatic beta cells was shown to 

maintain a primed state, whereas decreases in free PtdIns4P or PtdIns(4,5)P2 

levels decreased priming (Olsen et al., 2003). Furthermore, neuronal calcium
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sensor 1 (NCS1) was shown to act through PI4K Hip to maintain a primed state in 

these cells via increases in PtdIns4P and PtdIns(4,5)P2 levels (Gromada et al.,

2005). Thus although specific isoforms differ, a similar requirement for PPIn 

sythesis for priming of exocytosis exists in the endocrine system.

Notably, inhibitors of PI3K were shown to have no effect on priming in PC 12 

cells (Martin, 1997). PtdIns(4,5)P2 represents the metabolic “end-point” of PPIn 

synthesis in the absence of PI3K activity, so it is this lipid that is believed to 

function during priming. On which membranes does PtdIns(4,5)P2 perform its 

priming function? PIPK was identified as a soluble factor, so could mediate its 

effect at the plasma or vesicular membranes. However, the PI4K activity 

necessary for exocytosis was isolated on the vesicular membranes (Wiedemann et 

al., 1996; Wiedemann et al., 1998). It therefore came as somewhat of a surprise 

when Holz and co-workers identified a plasma membrane pool of Ptdlns(4,5)P2 as 

important for chromaffin cell exocytosis, using the GFP-PH-PLC61 probe, and 

confirmed with fluorescent neomycin. Similar observations have been made in 

intact PC 12 cells, where PIPK Iy was also recruited to the plasma membrane 

(Aikawa and Martin, 2003). This was confirmed in mechanically permeabilised 

cells using anti-PtdIns(4,5)P2 antibodies (Grishanin et al., 2004). Finally, a plasma 

membrane pool of PtdIns(4,5)P2 also regulates priming in pancreatic beta cells 

(Lawrence and Bimbaum, 2003).

45



( 4)  Vesicle 
retrieval?

(T)Priming
© Fusion?  ^

Q3) Endocytosis

r  P td ln s(4 ,5 )P2 V esicle m em brane 1 = 1  Clathrin &
protein(s) adaptors

r  P td ln s4P Plasm a m em brane 
’ protein(s)

- j n r  ^ F-actin &
adaptors

Figure 1.7: PtdIns(4,5)/*2 and the SV cycle. ATP-dependent priming produces 
interactions between vesicle and/or plasma membrane associated protein(s) with 
PtdIns(4,5)P2 that renders the vesicle competent to undergo fusion in response to 
calcium influx. The question mark beside PtdIns4P denotes the undefined role for 
this lipid on SV and granules. At the moment of fusion, PtdIns(4,5)P2 may expedite 
the fusion reaction via interactions with plasma membrane and/or vesicle proteins. 
Next, local PtdIns(4,5)P2 accumulation recruits the clathrin-associated machinery 
that mediates vesicle budding and fission. Finally, interactions between PtdIns(4,5)P2 
and the actin cytoskeleton may assist in vesicle retrieval and recycling. Question 
marks indicate those stages where Ptdlns(4,5)P2 function is inferred, rather than 
being supported by direct experimental evidence. See text for details of the specific 
candidate proteins.
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Recent work confirms the requirements for PtdIns(4,5)P2 in intact cells. Artificial 

manipulation of PtdIns(4,5)P2 levels produced corresponding changes in the 

number of primed vesicles in chromaffin cells (Milosevic et al., 2005), and 

priming is severely reduced when these cells are devoid of PIPK Iy, again 

correlating with diminished Ptdlns(4,5)P2 levels (Gong et al., 2005). PIPK Iy- 

deficient neurons also exhibit a reduced readily-releasable pool size, suggesting a 

role in priming at the synapse (Di Paolo et al., 2004). Agents that sequester 

Ptdlns(4,5)P2 or inhibit PI4K were found to block both synaptic vesicle and large 

dense-core vesicle exocytosis in permeabilised synaptosomes (Zheng et al., 

2004). Recent studies have also noted the accumulation of the R-SNARE syntaxin 

1A at PtdIns(4,5)P2-rich plasma membrane patches, with granules docked at these 

patches (Aoyagi et al., 2005). Together, these studies demonstrate a requirement 

for synthesis of a plasma membrane pool of Ptdlns(4,5)P2 that regulates the ability 

of the vesicles to undergo exocytosis.

1.3.2. PtdIns(4,5)P2 binding proteins in exocytosis

How do plasma membrane pools of PtdIns(4,5)P2 mediate vesicle priming? A 

number of proteins have been identified that are required for or are associated 

with exocytosis, and which bind PtdIns(4,5)P2 in vitro. One example is the plasma 

membrane protein Mint (Munc 18-interacting), which is found in complex with 

Muncl8 and syntaxin, and binds PtdIns(4,5)P2 via its PTB domain (Okamoto and 

Sudhof, 1997). Another, more controversial example is the calcium-dependent 

activator protein for secretion (CAPS), which is a cytosolic factor that restores 

secretory competence in broken PC 12 cells (Walent et al., 1992). CAPS 

undergoes a conformational change upon binding PtdIns(4,5)P2 (Loyet et al., 

1998), and the lipid is required to target the protein to the plasma membrane in 

permeabilised cells (Grishanin et al., 2004). However, Ptdlns(4,5)P2 binding is 

redundant for CAPS function when it is overexpressed (Grishanin et al., 2002), 

and the major defect in CAPS 1-deficient (knock-out, KO) chromaffin cells is at 

the stage of vesicle loading, rather than exocytosis (Speidel et al., 2005). Thus in 

embryonic chromaffin cells from homozygous KO mice, vesicles fuse as normal, 

but do not release catecholamines since these are not taken up by the vesicle. 

However, it is possible that CAPS2 is able to compensate for an exocytic function
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in the absence of CAPS1 at this developmental stage. In CAPS1 KO heterozygous 

chromaffin cells from one-month old mice, CAPS2 is no longer expressed and 

CAPS1 is expressed at reduced levels. In this situation, there is indeed a deficit in 

vesicle priming; homozygous mice were not viable after birth, so it was not 

possible to asses the effect of a complete absence of CAPS (Speidel et al., 2005).

Two vesicle-associated proteins have been shown to interact with PtdIns(4,5)P2 in 

vitro. One is the Rab3A interacting protein rabphillin, which binds PtdIns(4,5)P2 

and PtdIns(3,4,5)P3 via its C2 domain. A second example is the proposed calcium 

sensor for exocytosis, synaptotagmin. Synaptotagmins I and II bind to 

Ptdlns(4,5)P2 via their C2B domains in a calcium-dependent manner (Schiavo et 

al., 1996; Mehrotra et al., 2000). Recently, this binding was shown in vitro to 

cause insertion of the domain into a lipid bilayer; this suggests a model where the 

calcium/PtdIns(4,5)P2 interaction can stimulate a change in bilayer structure that 

may assist in fusion and thus triggering of exocytosis (Bai et al., 2004).

Together, these studies suggest that binding of proteins to PtdIns(4,5)P2 may 

localise the fusion machinery present on both the plasma and vesicular 

membranes, thus leaving factors in place to expedite fusion on arrival of the 

stimulus. In this way, PtdIns(4,5)P2 would mediate priming by acting simply as a 

locally-produced factor that defined the site of fusion. However, the calcium- 

dependent interaction with synaptotagmin suggests that there may be a role for 

PtdIns(4,5)P2 in the fusion process itself. However, given that depletion of PPIn 

does not inhibit calcium-dependent, ATP-independent fusion (Eberhard et al., 

1990), this seems unlikely to occur in vivo.

1.3.3. Regulation o f compensatory endocytosis

Plasma membrane pools of PtdIns(4,5)P2 are required for SV cycling (Micheva et 

al., 2001). In synapses from PLPK Iy KO cells, the major PLPK isoform at the 

synapse (Wenk et al., 2001), the major defect is in compensatory membrane 

retrieval after exocytosis (Di Paolo et al., 2004). Combined with a second study 

(Kim et al., 2002), these data points to a cycle of PtdIns(4,5)P2-synthesis and 

degradation as being important for efficient synaptic vesicle endocytosis: 

synapses devoid of synaptojanin fail to efficiently uncoat clathrin-coated vesicles
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after endocytosis, impairing vesicle recycling. Furthermore, plasma membrane 

pools of PtdIns(4,5)P2 were shown to regulate synaptic vesicle recycling in 

hippocampal neurons (M icheva et al., 2001). The rate of recycling was 

subsequently shown to be modulated by postsynaptic NO signals, which increased 

PtdIns(4,5)P2 levels in a cGMP-dependent manner (Micheva et al., 2003).

PtdIns(4,5)P2 is also known to regulate clathrin mediated endocytosis in a variety 

of other cell types (Itoh et al., 2001). Although not well characterized in 

endocrine cells, it is likely that clathrin mediated membrane retrieval, and by 

extension PtdIns(4,5)P2, is necessary for endocytosis in these cells, too. 

Furthermore, given the role of PtdIns(4,5)P2 in actin dynamics, the lipid may also 

impinge on stages of vesicle transport. Interestingly, Micheva et al noted an effect 

of PtdIns(4,5)P2 downstream of vesicle endocytosis, but could not resolve any 

effect of PtdIns(4,5)P2 on synaptic vesicle exocytosis (Micheva et al., 2003). 

Therefore, despite an impressive weight of evidence implicating PtdIns(4,5)P2 

during priming of exocytosis, it may be difficult to define precisely at which 

stage(s) of the exo-endocytic cycle the lipid acts.

1.4. Mast Cells

1.4.1. Biology and pathology o f  the mast cell

Mast cells are haemopoietic cells originating from bone marrow precursors. These 

precursors express the c-kit receptor, and proliferate in response to the c-kit 

ligand, otherwise known as stem cell factor (SCF). The cells differentiate in the 

tissues in response to local factors, such as interleukins. Broadly speaking, there 

are two classes of mast cells: the connective tissue or serosal mast cells (CTMCs), 

and the mucosal mast cells; the latter contain fewer, smaller cytosplasmic 

granules and have a histamine content ~10% that of the CTMCs (Metcalfe et al., 

1997). Typical experimental models for CTMCs are rat peritoneal mast cells 

(RPMCs); common models for mucosal mast cells include cultured bone-marrow 

derived mast cells (BMMCs) and the rat basophilic leukaemia cell line (RBL).

The physiological functions of mast cells include mediating inflammatory and 

allergic responses, clearing of microbial infections, and co-ordinating the adaptive
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immune response in the peripheral tissues (Abraham and Malaviya, 1997; 

Metcalfe et al., 1997; Theoharides and Cochrane, 2004). This occurs in two 

stages: firstly, pre-formed mediators such as histamine and proteases are released 

from the cytoplasmic granules via regulated exocytosis. Secondly, mediators such 

as arachidonic acid metabolites and interleukins are synthesised de novo and 

secreted from the cells. The first step is initiated very rapidly (in seconds or 

minutes), whereas the second produces a long-term response (tens of minutes to 

hours)(Metcalfe et al., 1997).

Due to their ability to initiate inflammatory and allergic reactions, mast cell 

dysfunction is associated with a large number of human diseases. Among these is 

systemic mastocytosis, associated with over-proliferation of mast cells in specific 

tissues, with a spectrum of symptoms depending on the affected tissue and the 

degree of proliferation (Akin and Metcalfe, 2004). Other prominent examples 

include inflammatory diseases such as arthritis and migraine (Theoharides and 

Cochrane, 2004) and complex roles in asthma (Marone et al., 2005).

1.1.2. Activation o f mast cells

Mast cells become activated through two pathways. The archetypal pathway 

involves cross-linking of antigen receptors of the FCeRl family. These receptors 

interact with IgE antibodies via their a  subunits, which are cross-linked by 

binding of multivalent antigen. This in turn leads to phosphorylation of p and y 

receptor subunits on their immune receptor tyrosine-based activation motifs 

(ITAM) by the Lyn tyrosine kinase. In turn, activation of the downstream tyrosine 

kinases Fyn and Syk occurs, adaptor proteins such as Vav, SLP-76, LAT and 

Gab2 are recruited, and activation of the signalling enzymes PLCy and PI3K IA 

takes place (Kinet, 1999; Siraganian, 2003; Blank and Rivera, 2004). Studies with 

BMMCs from genetically manipulated mice have underscored the importance of 

PLCy2 (Wen et al., 2002) and PI3K 16 (Ali et al., 2004). However, studies with 

human umbilical cord mast cells have given rise to doubts as to how general the 

requirement for PLCy is, since these cells instead rely on sphingosine kinase to 

mediate calcium signalling (Melendez and Khaw, 2002).
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The second pathway involves activation by polycationic agonists, such as the 

synthetic agonist compound 48/80, the wasp venom mastoparan, and 

neuropeptides such as substance P (SP) and neurotensins (NT) (Ferry et al., 

2002). Antimicrobial peptides secreted from neutrophils, the defensins, have also 

been shown to activate mast cells (Befus et al., 1999), as have the aminoglycoside 

antibiotics, which include neomycin (Raab, 1968; Aridor and Sagi-Eisenberg,

1990). Activation occurs through the heterotrimeric G-proteins Gi2 and Gi3, as 

formally demonstrated for 48/80, spermine and mastoparan (Aridor et al., 1993; 

Ferry et al., 2001), with the signal most likely transduced by the G^ subunits 

(Pinxteren et al., 1998; Ferry et al., 2001). Polycations are thought to activate the 

G-proteins directly after penetration of the plasma membrane by an ill-defined 

mechanism (Ferry et al., 2002). The resulting exocytosis occurs via activation of 

PLCp, but is independent of PI3K (Aridor et al., 1993; Shefler et al., 1998). Mast 

cells are often observed in the vicinity of neurons in the peripheral tissues, where 

they can be directly activated by exocytosis of SP and NT from synaptic granules 

(Furuno and Nakanishi, 2005). Therefore, this second activation pathway could 

reflect a neuroparacrine role for mast cells.

There is also evidence of autocrine signalling during mast cell exocytosis after 

activation of the antigen receptor pathway. This came from studies on BMMCs 

from mice devoid of the GPCR-coupled PI3K Iy (Laffargue et al., 2002). These 

cells exhibit severely impaired exocytosis, because they are unable to mediate 

stimulatory signalling by PI3K Iy coupled to A3 receptors, which are activated by 

adenosine. The adenosine is secreted from mast cell granules during exocytosis, 

activating PI3K Iy via A3 receptors, which leads to further degranulation. Thus 

adenosine mediates an autocrine-like, self-amplifying response. Similar 

observations were made with RPMCs, which activate calcium signalling in 

response to ATP secreted by neighbouring cells (Osipchuk and Cahalan, 1992).

Therefore activation of exocytosis by either pathway is believed to require G- 

proteins. In support for this, RPMC exocytosis is stimulated by the non- 

hydrolysable GTP analogue GTPyS when introduced via a patch pipette, by 

microinjection or through cell permeabilisation (Gomperts, 1983; Fernandez et 

al., 1984; Howell et al., 1987; Tatham and Gomperts, 1991). In addition to the
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heterotrimeric G} proteins discussed above, GTPyS is thought to act through small 

monomeric GTPases. Indeed, the small GTPases RhoA, Rac2 and Cdc42 activate 

exocytosis when introduced into permeabilised cells, whereas antagonists of these 

proteins inhibit exocytosis (Price et al., 1995; Brown et al., 1998). Furthermore, a 

cytosolic complex that supports exocytosis from permeabilised RPMCs was 

identified as Rac2 and Rho guanine nucleotide dissociation inhibitor (RhoGDI). 

The Rac2:RhoGDI complex supports exocytosis, whereas RhoGDI alone inhibits 

(O'Sullivan et al., 1996). As is the case for neuronal cells, the Rab GTPases have 

also been implicated in mast cell exocytosis. Expressly, these include Rab27 

(Goishi et al., 2004) and the mast-cell specific Rab37 (Masuda et al., 2000).

Thus in contrast to neuronal and endocrine systems where calcium alone provides 

the trigger for exocytosis, mast cells rely on the dual action of GTP- and Ca2+- 

binding proteins (Howell et al., 1987). Under certain conditions, either effector 

alone is sufficient to trigger exocytosis in the presence of MgATP (Churcher and 

Gomperts, 1990; Koffer and Churcher, 1993). However, exocytosis triggered in 

response to guanine nucleotide is rather less dependent on MgATP (Koffer and 

Churcher, 1993); the dependence of calcium-induced secretion on ATP can be 

ascribed, in part, to transphosphorylation of GDP from ATP by an endogenous 

guanine nucleoside diphosphate kinase (Lillie and Gomperts, 1992; Koffer, 1993). 

Thus GTP is believed to be essential for exocytosis, whereas calcium only acts in 

a modulatory role.

1.4.3. Cell biology o f exocytosis

The morphology of CTMCs is exemplified by the RPMC, as shown in figure 

1.8A. The cytosol is packed with around a thousand dense-core granules. These 

are of lysosomal origin (Blott and Griffiths, 2002), and form by homotypic fusion 

of smaller granules as the cell matures over a period of weeks (Alvarez de Toledo 

and Fernandez, 1990b). The surface morphology of the cells is characterized by a 

taut plasma membrane overlying cortical granules, and is decorated with 

numerous thread-like membrane folds (Kessler and Kuhn, 1975; Burwen and 

Satir, 1977).
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Complete exocytosis of all the granules occurs from RPMC within approximately 

30 s upon stimulation with antigen (Lawson et al., 1975; Lawson et al., 1977) or 

polycations (Kagayama and Douglas, 1974). During exocytosis, compensatory 

endocytic events are comparably rare (Fernandez et al., 1984). However, 

catastrophic increases in surface area:volume ratio are prevented by the 

exploitation of a specialised mode of exocytosis, called compound exocytosis. 

This occurs by virtue of the fact that only the cortical granules fuse at the plasma 

membrane; these granules become targets for sequential fusion of internal 

granules (Rohlich et al., 1971). In this manner, heterotypic fusion between 

granule and plasma membranes is accompanied by homotypic fusion between 

granules, forming large vacuole-like structures that communicate with the 

extracellular space (figure 1.8B). A model of this process is presented in figure 

1.9A.

Studies on increases in membrane capacitance during RPMC exocytosis noted 

step-like increases in capacitance representing fusion of single granules. However, 

larger step sizes were also observed which could represent fusion of a large, or 

compound granule formed by homotypic fusion of the smaller granules 

(Fernandez et al., 1984). This suggests a modified model for exocytosis (figure 

1.9B) whereby homotypic fusion between granules is not always sequential, but 

can occur before fusion at the plasma membrane. A third model was proposed by 

Alvarez de Toledo and Fernandez, after further examination of capacitance (figure 

1.9C): as well as larger increases in capacitance, large decreases in capacitance 

could be observed. Therefore, sequential exocytosis of a cortical granule with the 

plasma membrane followed by fusion of internal granules could form an internal, 

compound granule after fission of the cortical granule from the plasma membrane. 

When this granule re-fuses at the plasma membrane, a large compound fusion 

event is thus observed (Alvarez de Toledo and Fernandez, 1990a). This model 

suggests that some factor is transferred from the plasma membrane to confer 

fusion competence on the granules.
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Figure 1.8: Resting and stimulated rat peritoneal mast cells (RPMCs). (A) Resting 
RPMCs viewed by transmission electron microscopy (TEM) (i), confocal microscopy 
after staining with BODIPY-ceramide for membranes (ii) or by field-emission electron 
microscopy (FESEM) with false-colour (iii). Note the electron-dense granule cores. (B) 
RPMCs after exocytosis (degranulation), viewed by TEM (i) or confocal (ii) 
microscopy. For the latter, cell membranes were stained with BODIPY-ceramide (green) 
and granule cores with Alexa647-concanavalin A (red). Bars = 5 pm (TEM 
micrographs) or 10 pm (confocal micrographs). FESEM micrograph was kindly 
provided by Stephen Gschmeissner (CR-UK electron microscopy unit). TEM 
micrographs are reproduced from Alberts et al "Molecular Biology of the Cell" 4th Ed. 
Garlund Publishing 2004.



Figure 1.9: Three models of mast cell degranulation. A resting mast cell is shown 
at top. In (A), degranulation begins with fusion of cortical granules with the plasma 
membrane. Subsequently, the internal granules fuse with these plasma membrane- 
fused granules to form compound granules, which are continuous with the 
extracellular milieu. In a second model of degranulation (B), fusion of cortical 
granules with the plasma membrane is accompanied by homotypic fusion between 
granules, forming compound granules that are yet to fuse with the plasma membrane 
(lighter shading). Degranulation is completed after fusion of single and compound 
granules with the plasma membrane or plasma membrane-fused granules. In the third
(C), granules fuse with the plasma membrane and each other in a sequential manner 
as in (A). However, certain granules that have fused with the plasma membrane then 
re-seal (red arrow heads); these re-fuse with the plasma membrane later on as a multi­
granule compound. The end result of all three models is thus the same, with 
compound granules continuous with the extracellular milieu.



Chapter 1: Introduction

All three models of compound exocytosis were shown to occur in the eosinophil 

(Hafez et al., 2003). Fusion of granules with the plasma membrane is sensitive to 

both Ca2+ and GTP, whereas sequential fusion between fused and un-fused 

granules is sensitive to Ca2+ alone; fusion between granules that have yet to fuse is 

sensitive only to GTP (Hartmann et al., 2003). The authors of these studies 

proposed that, in addition to allowing massive exocytosis, compound exocytosis 

can confer directionality on secretion: granules may fuse with each other 

throughout the cell, but with the plasma membrane in only one region. Secretion 

would thus occur from a focal point, delivering anti-microbial factors only onto an 

adjacent, bound pathogen (vectoral exocytosis). Similar observations were made 

for RPMCs (Lawson et al., 1978).

Because exocytosis from RPMC occurs by the generation of such large 

intracellular cavities, compensatory endocytosis occurs via a quite distinct 

mechanism from that employed in neural and endocrine cells. The large cavities 

fuse with each other to form two or three large vacuoles in the cell, which pinch 

off from the plasma membrane following completion of exocytosis (Nemeth and 

Rohlich, 1982).

1.4.4. Molecular aspects o f mast cell exocytosis

As has been shown in many other systems, membrane fusion during mast cell 

exocytosis is believed to require SNARE proteins. RPMCs were shown to express 

the SNARE proteins VAMP-2 and syntaxin 3 on granule membranes, and 

syntaxin-4 and SNAP-23 at the plasma membrane (Guo et al., 1998). SNAP-23 

was found associated with the actin cytoskeleton in the surface membrane folds, 

but relocated to granule membranes to expedite compound exocytosis (Guo et al.,

1998). Therefore, SNAP-23 may constitute a plasma membrane factor conferred 

to the granules to enable their fusion during sequential exocytosis. However, 

SNAP-25 has recently been demonstrated on RPMC granules (Salinas et a l, 

2004). Several studies have also been performed on the mucosal RBL mast cell 

model (Blank et a l, 2002). These have detected expression of syntaxins 2-4, 

SNAP-23 and VAMP 2, 3, 7 and 8; overexpressed syntaxin 3 and VAMP7 were 

found on granule membranes, with syntaxin 3 also present at the plasma 

membrane (Hibi et al., 2000). Endogenous syntaxin 4 and SNAP-23 could be
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detected in complex with all four Vamp proteins but not syntaxin 3 from RBL cell 

lysates (Paumet e t  a l , 2000). Furthermore, overexpression of syntaxin 4 lead to 

an inhibition of exocytosis, leading the authors to propose syntaxin 4 as the 

relevant isoform in mast cell exocytosis (Paumet e t  al., 2000).

Several regulatory proteins have also been discovered in mast cells. RBL cells 

express Muncl8-2 and Muncl8-3 (Martin-Verdeaux et al., 2003). Muncl8-3 is 

found at the plasma membrane in complex with syntaxin 4, whereas Muncl8-2 is 

present at granule membranes in complex with syntaxin 3; overexpression of 

Muncl8-2 but not Muncl8-3 led to inhibition of exocytosis (Martin-Verdeaux e t  

al., 2003). The authors therefore proposed that the Muncl8-2:syntaxin 3 complex 

was required for RBL cell exocytosis, in contrast with their earlier proposal 

(Paumet et al., 2000). Muncl3-4 has also been detected in RBL cells as an 

effector of Rab27 (Goishi e t  al., 2004; Neeft et al., 2005), and overexpression of 

Muncl3-4 potentiates exocytosis (Neeft e t  al., 2005).

Synaptotagmin I has been demonstrated to enhance RBL exocytosis when 

ectopically expressed (Baram e t  al., 1998). However, subsequent studies showed 

that this isoform is not endogenously expressed, and the predominant isoform, 

synaptotagmin II, was a negative regulator of exocytosis (Baram et al., 1999), 

since a reduction in expression levels potentiates exocytosis. Recently, complexin 

II has also been identified in RBL cells, where it is required for efficient coupling 

of calcium transients to exocytosis (Tadokoro e t  al., 2005).

Several novel regulators of exocytosis have been identified in RPMCs. A 

cytosolic factor from bovine brain, secemin, is able to enhance the calcium 

sensitivity and extent of exocytosis from RPMCs (W ay et al., 2002). 

Sequestration of endogenous secemin with antibodies was also shown to inhibit 

exocytosis. Secretory carrier associated membrane proteins (SCAMPs) have also 

been demonstrated to be important regulators of exocytosis. Peritoneal mast cells 

from SCAMP-1 deficient mice display a reduced extent of exocytosis and 

impaired fusion pore kinetics (Femandez-Chacon et al., 1999). SCAMP-2 was
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also demonstrated to be required at a late stage of RPMC exocytosis (Guo et al., 

2002), as was the case in PC 12 cells (Liu et al., 2002).

Together, these studies demonstrate that the molecular machinery controlling 

SNARE-dependent membrane fusion is present in mast cells. However, it is still 

far from clear which isoforms are required, and when they interact during the 

fusion process.

Mast cell exocytosis is also accompanied by dynamic changes in the cytoskeleton. 

Resting mast cells contain an F-actin cortex, which is partially disassembled in 

response to stimulation in RPMCs (Norman et al., 1994) and BMMCs (Nishida et 

al., 2005). Subsequently, polymerisation of actin occurs to produce centripetal 

filaments in RPMCs (Norman et al., 1994). This is regulated by the same Rho- 

family GTPases as exocytosis, but by a parallel pathway, since actin dynamics 

can be blocked without effect on exocytosis (Norman et al., 1996; Sullivan et al., 

1999). However, partial disassembly of the F-actin cortex with latrunculin B or 

gelsolin potentiates exocytosis in RPMCs, BMMCs or RBL cells (Borovikov et 

al., 1995; Martin-Verdeaux et al., 2003; Sasaki et al., 2005), whereas complete 

disassembly prevents exocytosis in RPMCs (Pendleton and Koffer, 2001). 

Therefore, actin appears to play a complex and poorly-defined role in mast cell 

exocytosis. On the other hand, there is clear evidence for a role of microtubule 

formation in RBL and BMMC exocytosis (Martin-Verdeaux et al., 2003; Nishida 

et al., 2005). Polymerisation of microtubules in the interior of BMMCs was 

proposed to facilitate translocation of granules to the plasma membrane, where 

they fuse (Nishida et al., 2005).

1.4.5. Priming and the role o f phosphoinositides in mast cell 

exocytosis

Evidence for priming of exocytosis in mast cells comes from experiments 

conducted on streptolysin-0 (SL-O) permeabilised RPMCs. SL-0 binds to 

membrane cholesterol in a temperature-independent manner, before oligomerising 

to form ~30 nm circular and arc-shaped pores in a cholesterol-independent, 

temperature-dependent fashion (Bhakdi et al., 1985; Sekiya et al., 1996; Palmer et 

al., 1998). RPMCs permeabilised in this way leak soluble proteins and lose
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responsiveness to stimulation by Ca2+ and GTPyS (Koffer and Gomperts, 1989; 

Pinxteren et al., 2000). This system also permits the effect of exogenously applied 

proteins in maintaining secretory competence to be tested (Gomperts and Tatham, 

1992).

No ATP is required if stimulation (Ca2+ and GTPyS) is provided at the moment of 

permeabilisation with SL-0 (Howell et al., 1987). However, if the stimulus is 

delayed, RPMCs lose responsiveness within 5 minutes; the presence of ATP 

prolongs the period of responsiveness for approximately half an hour (Howell et 

al., 1989). Notably, these requirements persist if endogenous ATP is depleted by 

metabolic inhibition. From these experiments, it was concluded that a 

phosphorylation state is required for exocytosis, and that ATP preserves 

responsiveness to stimulation by maintaining this phosphorylation state (Pinxteren 

et al., 2000). By analogy with the terminology of vesicle priming applied to 

neuroendocrine cells, (Holz et al., 1989; Hay and Martin, 1992), it may be 

concluded that the mast cell granules exist in a primed state, but that priming is 

lost after cell permeabilisation. Rundown of cell responsiveness thus occurs due 

to the loss of soluble factors required for both priming and the coupling of the 

stimulus to the exocytic response.

As for neural and endocrine cells, several studies have furnished evidence that 

PPIn are required for priming RPMC exocytosis. A PH domain that sequesters 

endogenous PPIn was shown to inhibit exocytosis from permeabilised RPMCs 

(Pinxteren et al., 1998; Pinxteren et al., 2001). Furthermore, neomycin, which 

tightly binds PPIn (Schacht, 1978), was found to mimic the effect of ATP 

depletion on the loss of secretory reponsiveness from RPMCs; on the other hand, 

responsiveness could be prolonged using PITP (Pinxteren et al., 2001). The basic 

effector peptide from SCAMP2 that antagonizes exocytosis in RPMC (Guo et al., 

2002) was recently show to sequester PtdIns(4,5)P2 (Ellena et al., 2004). 

Maintenance of secretory competence in SL-0 permeabilised RBL cells was also 

shown to require phospholipase D (PLD) and Arfl-driven synthesis of 

Ptdlns(4,5)7*2 (Way et al., 2000).

As described above, activation of PI3K is important for stimulation of mast cell 

exocytosis in response to antigen. Inhibitors of PI3K were found to block
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exocytosis from BMMCs evoked using calcium ionophores (Marquardt et al., 

1996), although they had no such effect on SL-0 permeabilised RPMCs activated 

with Ca2+ and GTPyS (Pinxteren et al., 1998). PI4K IIIp was shown to be 

necessary for exocytosis from antigen-stimulated RBL cells, though not for cells 

stimulated with calcium ionophore (Kapp-Bamea et al., 2003). Furthermore, 

stimulation of RBL cells with antigen also activates a type II PI4K activity 

(Naveen et al., 2005), apparently required for exocytosis. Finally, accelerated 

PPIn metabolism is observed in RPMCs activated with either antigen or 

polycations (Cockcroft and Gomperts, 1979).

1.5. Aims

As discussed above, it is clear that the PPIn, especially PtdIns4P and 

PtdIns(4,5)P2» are required for exocytosis. Their synthesis seems to be a requisite 

step in the acquisition of fusion competence for a regulated secretory organelle. 

Mast cell exocytosis is certainly associated with PPIn metabolism, and this may 

even be required for the maintenance of a primed state. However, it is not clear 

which PPIn are required. Furthermore, precisely at which stage and within which 

membranes the lipids act is unresolved, as are the molecular interactions that 

mediate their function during exocytosis. RPMCs possess certain advantages as a 

model system in which to resolve these issues. Firstly, as in neuroendocrine cells, 

the ATP-dependent priming step can be easily dissected out from the ATP- 

independent triggering step. Secondly, exocytosis occurs in a single, rapid burst 

and can therefore be resolved from other stages of the exocytic/endocytic cycle. 

Finally, the PPIn-dependent membrane recycling steps do not accompany mast 

cell exocytosis.

Therefore, the express aims of the experiments described in this thesis were to 

discover (i) which PPIn are required for mast cell exocytosis, (ii) in which 

membranes they reside and (iii) what the mechanisms of action of these lipids are.

In chapter 3, results are presented from studies in permeabilised cells that 

attempted to resolve which PPIn need to be synthesised to maintain secretory 

competence, i.e. which lipids are involved in priming. In the following chapter, 

conditions for immunofluorescent detection of PPIn are established. Using this
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technique, it is established that Ptdlns(4,5)?2 resides at the plasma membrane, but 

becomes transiently depleted during RPMC exocytosis. Chapter 5 aims to resolve 

which enzyme activity is responsible for this decrease, and whether it is 

mandatory for exocytosis to occur. Finally, these results are discussed in the 

context of a model for PPIn function at multiple stages of the exo-endocytic cycle.
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2.1. Materials

2.1.1. Antibodies

The following monoclonal antibodies were from CR-UK monoclonal antibody 

services: anti-PI4K II 4C5G (Endemann et al., 1991), anti c-erbB3 

2Ell(Rajkumar et al., 1993), anti-PtdIns(4,5)P2 2C11 and 10F8 (Thomas et al.,

1999). All were purified, except 10F8, which was culture supernatant from clone 

10F8. Monoclonal anti-PtdIns(4,5)P2 kt3g (Matuoka et al., 1988) was from Assay 

Designs. Monoclonal anti PtdIns(3,4)P2 antibody P034 was a kind gift of 

Echelon. Polyclonal anti-GST was from Chemicon; monoclonal anti-GST was 

from Sigma. Alexa fluorophore conjugated goat secondary antibodies were from 

Molecular probes. Horseradish peroxidase (HRP)-conjugated rabbit anti-mouse 

antibodies were from Dako.

2.1.2. Chemicals

Synthetic PPIn and InsPP were from Cell Signals. Lipids were dissolved in 

CHCl3:MeOH (1:1), whereas InsPP were dissolved in water. GroPIns(4,5)P2 was 

from Sigma and dissolved in EtOH; 1-oleoyl 2-palmitoyl PtdCho was from 

Avanti and dissolved in CHCl3:MeOH (1:1). All were stored in sealed glass vials 

(except InsPP, which were in plastic vials) at -20°C.

Neomycin and amikacin were from Alexis and Sigma, respectively. 100 

mM stocks were dissolved in water and stored in small single-use aliquots at 

-20°C. U73122, U73343 and Et-18-OMe were from Calbiochem. U73122 and 

U73343, dissolved in CHC13, were split into aliquots, dried under nitrogen and 

stored at -20°C. Aliquots were warmed to room temperature, dissolved in 

anhydrous DMSO to 2 mM and used within a day; they were diluted immediately 

prior to use. PAO (Sigma) was dissolved in CHC13; aliquots were dried and stored 

under nitrogen at room temperature. Immediately prior to use, aliquots were 

dissolved in anhydrous DMSO to 20 mM and diluted. Et-18-OMe was dissolved 

to 9 mM in EtOH and stored at -20°C. Aliquots were warmed and diluted 

immediately before use. LY294002 and LY303511 (Sigma) were prepared as 5 \A 

single-use aliquots in anhydrous DMSO at 65 mM; they were stored at -20°C,
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thawed and diluted immediately before use. Wortmannin was from Sigma; a 20 

mM stock solution in anhydrous DMSO was prepared in the dark, split into 

aliquots and stored at -20°C. Aliquots were thawed and diluted immediately prior 

to use. p-glycerophosphate (Sigma) was dissolved in water to 1 M and stored at 

-20°C. DAG analogues phorbol 12-myristate 13-acetate (PMA), 4-a-PMA, 

phorbol 12,13-dibutyrate (PDBu) and 1-oleoyl 2-acetyl-sw-glycerol (OAG) were 

from Sigma. Stock solutions were frozen as 20 mM aliquots in DMSO at -20°C. 

100 mM solutions of MgATP were prepared by dissolving Na^TP (Roche) in 

100 mM MgCl2, 200 mM Tris-Cl, pH 6.8. 100 //I single-use aliquots were stored 

at -20°C. GTPyS (Li salt solution; Roche) was stored at -20°C. Myo-[2-3H]- 

inositol, myo-[2-3H]-PtdIns, [14C]-PtdCho and [y-32P]-ATP were from Amersham. 

Myo-[2-3H]-Ins(l,4,5)P3 was from Perkin Elmer.
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2.1.3. Constructs

The following constructs were obtained as detailed:

Construct Vector Source Reference

GST-PH-PARKwaa pGEX-2T J. Pinxteren (Univeristy 
of Gent)

(Touhara etal., 1995)

GST-2xFYVEHrs pGEX-5X-3 H. Stenmark (The 
Norwegian Radium 
Hospital)

(Gillooly et al., 2000)

GST-PH-FAPP1 pGEX-4T-l O. Gozani (Stanford 
University)

(Dowler et al., 2000)

GST-PH-TAPP1 pGEX-4T-l D. Alessi (University of 
Dundee)

(Dowler etal., 2000)

GST-PH-DAPP1 pGEX-4T-l D. Alessi (University of 
Dundee)

(Dowler et al., 2000)

GST-PH-PLC51 pGEX-2T M. Katan (ICR, London) (Lemmon etal., 1995)

GFP- PH-PLC61 pEGFP-Nl M. Katan (ICR, London) (Vamai and Balia, 1998)

His6-SigD pET28a B. Finlay (University of 
British Columbia)

(Marcus etal., 2001)

His6-SigDC462S pET28a B. Finlay (University of 
British Columbia)

(Marcus etal., 2001)

Table 2.1: Constructs used in this thesis and their sources

PH-GRP1 (2-G splice variant), defined according to (Klarlund et al., 2000), was 

cloned from a pQE30-GRPl construct (a kind gift of G. Thomas, University 

College London) by polymerase chain reaction using the following primers:

5’: GAGCTGCTGAGGAATTCGfTATGAGAGCATTAAGAACGAGCq

3’: GTCTTTTAGCCTGTCGAC|CfATTTTrrArrGGCAATCCTTCG

The coding sequence of PH-GRP1 is boxed and the stop codon is shaded. 

Restriction sites are underlined. The resulting oligomeric nucleotide was digested 

with EcoRl (5’) and Sail (3’), and ligated into the same sites of a pGEX-4T3-Cys 

vector (Lalli et al., 2003). This vector contains an alanine-rich helical linker 

between the GST tag and cloned protein, which contains 4 cysteines so may be 

covalently bound to maleimide conjugated reporters.
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2.1.4. Proteins

Ptdlns-specific PLC from Bacillus cereus was purchased from Sigma. Aliquots 

were dissolved in PIPES buffered salts solution (137 mM NaCl, 2.7 mM KC1, 1 

mM MgCl2, 0.05% NaN3, 20 mM PIPES-NaOH, pH 6.8) at 10 U/ml, flash frozen 

in liquid nitrogen and stored at -80°C. MARCKS15M75 was produced by the 

peptide synthesis laboratory, CR-UK; it was dissolved to 10 mM in PIPES 

buffered salts solution and split into small single use aliquots; these were flash- 

frozen under liquid nitrogen and stored at -80°C.

DNA was freshly transformed into the indicated strain of E. coli, then grown in 21 

cultures (with ampicillin or kanamycin, as appropriate) until ODgoo = 0.8-1.4. 

They were induced with Isopropyl (3-D-1 -thiogalactopyranoside (IPTG) and left 

to express as indicated in Table 2.2.

Protein Strain of E. coli IPTG
0<M)

Induction time (h) Induction 
temperature (°C)

GST-PH-PARKwaa TGI 400 8 25

GST-2xFYVEHrs BL21 (DE3) 500 3 37

GST-PH-FAPP1 BL21 (DE3) 400 3 30

GST-PH-TAPP1 BL21 (DE3) 400 3 30

GST-PH-DAPP1 BL21 (DE3) 400 3 30

GST-PH-PLC51 TGI 400 3 30

GST-PH-GRP1 BL21 (DE3) 400 3 30

His6-SigD BL21 (DE3) 100 18 16

His6-SigDC462S BL21 (DE3) 100 18 16

Table 2.2. Conditions for induction of recombinant protein expression

After induction, bacteria expressing GST-fiision proteins were harvested, washed 

twice in phosphate-buffered saline (PBS: 137 mM NaCl, 3 mM KC1, 10 mM 

Na2HP0 4, 2 mM KH2P04, pH 7.2) containing 0.05% Tween-20 and lysed by two 

passages in a French Press maxi cell (Aminco) at 1300 p.s.i. in breaking buffer 

(PBS with EDTA-free protease inhibitor tablets [Roche], 2 mM EDTA, 4 pig/ml 

pepstatin, 0.1% p-mercaptoethanol and 0.05% Tween-20). Lysates were then
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cleared of insoluble material by centrifugation at 27,000 gAW for 15 min to 

produce a bacterial suspension, followed by 160,000 gAW for 20 min to produce a 

bacterial extract. Supernatants were then bound to glutathione-agarose (Sigma) 

for 1-2 hours at 4°C with rotation. Unbound proteins were removed by extensive 

washing with PBS-0.05% Tween-20; bound proteins were eluted twice with 2.5 

mM reduced glutathione (Roche), 100 mM NaCl (in 50 mM Tris-Cl, pH 8.0), and 

once with 2.5 mM reduced glutathione, 500 mM NaCl (in 50 mM Tris-Cl, pH 8.0) 

for 5 minutes at room temperature. Proteins were concentrated against either 10- 

40% PEG (40,000, MWCO = 14,000) or by centrifugation through Amicon Ultra 

centrifuge filter devices (Millipore) (MWCO = 15,000) until > 1 mg/ml. 

Concentrations were determined by the Bradford method. Finally, proteins were 

dialyzed into PIPES buffered salts solution, flash-frozen in liquid nitrogen and 

stored at -80°C.

PH-pARKWAA required further purification by gel filtration on a Superdex High 

resolution preparatory grade 16/60 column (Amersham) at a flow rate of 0.1 

ml/minute with PIPES buffered salts solution. The columns were connected to an 

AKTA™ fast protein liquid chromatography (FPLC) system running 

Unicom™3.10 software (Amersham Pharmacia). 0.5 ml fractions were analysed 

by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) and 

Coomassie staining; purified fractions were pooled, concentrated and frozen as 

above.

For His6-tagged proteins, a similar procedure was used with modifications. Firstly, 

breaking buffer consisted of PBS with EDTA-free protease inhibitor tablets, 2 

mM EDTA, 4 pig/ml pepstatin, 0.1% p-mercaptoethanol, 10 mM imidazole and 

0.2% Triton X-100. Secondly, proteins were bound on Ni-agarose (Qiagen), and 

unbound proteins removed with PBS-0.2% Triton X-100. Finally, recombinant 

protein was eluted from the Ni-agarose resin using a solution consisting of 250 

mM imidazole, 150 mM NaCl and 50 mM Tris-Cl, pH 8.0.

Purity of all proteins was assessed by SDS-PAGE (figure 2.1), and was £ 80% of 

the total protein content, with the exception of SigD and SigDC462S, which were 

-50%.
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2.1.5. Streptolysin-0

Steptolysin-0 (SL-O) was purchased from three separate suppliers during the 

course of the experiments described in this thesis, as it became unavailable from 

various sources. SL-O obtained from Corgenix or Sigma-RBI (reduced and 

lyophilised with phosphate-buffered saline) was dissolved in water to 20 IU/ml. 

4.8 IU aliquots were frozen in liquid nitrogen and lyophilised, before storing at 

-80 °C for up to 6 months. SL-0 from iTEST came as a purified, lyophilised 

powder in 22 ILF aliquots. This was reduced for lh at 37 °C with 20 mg sodium 

dithionite in PBS (supplemented with 1 mg/ml BSA) at a concentration of 20 

ILF/ml. 4.8 IU aliquots were flash frozen, stored at -80°C and used within 1 

month. SL-0 from different sources showed comparable activities on the loss of 

secretory competence of mast cells after permeabilisation (figure 2.2).

2.2. Calcium buffers

An approximately 284 mM (prepared in error; the solution would ideally have 

been 300 mM) solution of EGTA (Sigma, £ 97% purity) was prepared with 60 

mM PIPES-NaOH, pH 6.8. 25 ml of this solution was end-point titrated against a 

volumetric solution of 0.4 M CaCl2, using 5 ml 10 M NaOH and 2.5 ml potassium 

oxalate as an indicator (end-point was reached when persistent cloudiness of the 

solution formed). From this titration, it was apparent that the EGTA solution was 

96.4% pure, i.e. at a concentration of 0.2736 M. To 100 ml of this solution, an 

equimolar quantity of CaCl2 was added. Both the equimolar CaEGTA and the 

EGTA solutions were adjusted to pH 6.8, and made up to 200 ml with Millipore 

water, giving a final stock solution of EGTA or CaEGTA of 136.8 mM. These 

solutions were mixed in appropriate ratios to form a buffered solution with 

[Ca2+]free between 10"8 and 10-5 M at 30 °C, pH 6.8. This was achieved using 

LigandY software as described previously (Gomperts and Tatham, 1992).
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GST-
PH-GRP1

Figure 2.1: Purification of GST-PH-GRP1. (A) Coomassie stained polyacrylamide 
gel (10%); lanes show different stages of purification as indicated in the text. "Not 
induced" was sampled just prior to addition of IPTG (400 fiM). "Flow-through" is the 
material that did not bind to the reduced glutathione-agarose resin; "exhausted resin" is 
the protein remaining bound after elution with free reduced glutathione. The arrow 
points to the GST-PH-GRP1 band with expected molecular mass of 46 kDa.
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Figure 2.2: Rundown after permeabilisation with SL-O from different sources. (A)
RPMCs pre-incubated with 1.2 IU/ml SL-O from the indicated supplier were 
permeabilised by warming to 30°C at time = 0 in 0.3 mM Ca:EGTA at pCa 8, 100 pM 
MgATP. Thereafter, they were stimulated at the indicated time with 3 mM Ca:EGTA (at 
pCa 5) and 100 pM GTPyS in the continuing presence of 100 pM MgATP. Secretion 
was allowed to proceed for 10 minutes, before cells were quenched on ice with 5 mM 
EGTA. Data are means ± S.E.M. of triplicate determinations. (A) compares SL-0 from 
Corgenix and Sigma-RBI; (B) compares SL-0 from Sigma-RBI with iTest.
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2.3. Cells

2.3.1. Rat peritoneal mast cells

Rat peritoneal mast cells (RPMCs) were purified from the peritoneal cavities of 

Sprague Dawley rats (Charles River). For most experiments, male retired-breeder 

rats were used. Rats were killed in a rising concentration of C02 followed by 

cervical dislocation. Peritoneal cells were isolated by peritoneal lavage using two 

approximately 50 ml washings of 0.9% NaCl, 0.1% BSA. Washings were 

centrifuged at 300 gAV, resuspended in a buffered salts solution and pooled to a 

volume of ~8 ml. The buffered salts solution was either Intracellular Buffer (IB: 

137 mM NaCl, 2.7 mM KC1, 1 mM MgCl2, 20 mM PIPES-NaOH, pH 6.8, 1 

mg/ml BSA) for cells that would be kept in suspension, or Extracellular Buffer 

(EB: 137 mM NaCl, 2.7 mM KC1, 2 mM MgCl2, 1 mM CaCl2, 5.6 mM D- 

glucose, 20 mM HEPES-NaOH, pH 7.2, 1 mg/ml BSA) for cells that would be 

used adherent (see below). The suspension was filtered through a nylon mesh 

(made of ‘net curtain’ material, John Lewis), and layered over -  2 ml of a 1.114 

g/ml Percoll cushion (Amersham) in a ‘v’-bottom, 15 ml polystyrene centrifuge 

tube. The Percoll cushion consisted of (for 20 ml) 15.91 ml Percoll stock at 1.13 

g/ml, 2 ml lOxPBS at 1.1056 g/ml (Gibco) and 2.09 ml sterile Millipore water 

(density taken as 1.000 g/ml).

Mast cells were purified by centrifugation over this cushion for 5 minutes at 300 

gAV; the dense mast cells pass through the Percoll and form a pellet at the base of 

the tube, whereas contaminating neutrophils and macrophages form an interface 

between the buffered salts and Percoll. After aspirating away the buffered salts, 

interface and Percoll, the mast cell pellet was resuspended in 200 }A of buffered 

salts. This suspension was transferred to a fresh 15 ml tube, and the cells were 

washed once by dilution with buffered salts and centrifugation at 300 gAW. Finally, 

cells were resuspended in a convenient volume depending on the experiment 

(between 1-5 ml). Yield was typically 106 cells/rat with a purity > 98%.

For adherent cells, 40 p\ of the above suspension was pipetted into wells of 8-well 

multitest slides (MP Biomedicals) or flat-bottom 96-well plates (Costar). Cells 

were left to adhere for 30 minutes at room temperature.
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2.3.2. NIH-3T3 and HEK-293 cells

NIH-3T3 and HEK-293 cells were maintained in complete medium consisting of 

Dulbecco’s minimal essential medium (DMEM; CR-UK Cell Services) 

supplemented with 2 mM L-glutamine (CR-UK Cell Services) and 10% foetal 

calf serum (FCS; Sigma) in a humidified atmosphere at 10% C02, 37°C in T80 

tissue culture flasks fitted with ventilated filter caps (Nunc). They were passaged 

every 4-5 days by dissociation with a trypsin/versene solution (CR-UK Cell 

Services), dilution and re-plating. For imaging, cells were seeded overnight at 

approximately 20% confluence on 8-well, multitest test slides in the above media. 

For HEK-293 cells, the wells were first coated with a 1 mg/ml solution of poly-L- 

lysine (Sigma) to assist with adhesion of the cells.

2.3.3. Transfection

25 jA of pEGFP-Nl-PH-PLCSl at 1.6 ng//fi was mixed with 25 ]A of 0.1% 

lipofectamine (LFA; invitrogen) in DMEM. After 20 minutes’ incubation at room 

temperature to allow DNA:LFA complexes to form, the mixture was diluted with 

50 jA DMEM, and mixed by pipetting. 40 ]A of this solution was added per well 

of HEK-293 cells on 8-well multitest slides, i.e. 16 ng DNA/well. After 4 hours at 

10% C 02, 37°C in a humidified atmosphere, the media was removed and replaced 

with complete media. Cells were fixed after 24 hours; transfection efficiency was 

-25%.

2.4. SDS-PAGE and Coomassie staining

Protein samples to be analysed by SDS-PAGE were mixed with an equal volume 

of Laemmli sample buffer (20% glycerol, 5% p-mercaptoethanol, 1-5 mg 

bromophenol blue, 4% SDS and 120 mM Tris-Cl, pH 6.8) and boiled for 3 

minutes. After spinning for a brief period to collect liquid in the bottom of a 0.5 

ml or 1.5 ml tube, samples were loaded on a polyacrylamide protean III™ minigel 

(BioRad). These gels were freshly prepared, and consisted of a separating gel (8- 

12% acrylamide [ratio of acrylamide:bis-acrylamide 37.5:1), 0.1% SDS, 375 mM 

Tris-Cl, pH 8.8), overlaid with a stacking gel (4.5% acrylamide, 0.1% SDS, 125 

mM Tris-Cl, pH 6.8) into which crenellation had been moulded for sample
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loading. Gels were polymerized with 3 mM ammonium persulphate (AMPS) and 

0.25% Temed. Samples were run at 20 mA/minigel in running buffer (190 mM 

glycine, 0.1% SDS, 25 mM Tris-Cl, pH 8.5). When the sample front had reached 

the end of the gel, proteins were fixed and stained with Coomassie staining 

solution (50% MeOH, 10% acetic acid, 0.1% Coomassie stain) for 15 minutes at 

room temperature; bands were revealed by de-staining the gel using 10% acetic 

acid in 10% isopropanol.

2.5. Activation of mast cell exocytosis

2.5.1. Stimulation o f intact cells

Adherent RPMC in 40 //I of EB in 96-well plates were treated with 20 //I of the 

indicated inhibitor (e.g. U73122) at 3x final concentration for the indicated time at 

room temperature. Subsequently, exocytosis was activated with 20 //I EB in the 

presence or absence of 40 //g/ml 48/80 (to give [48/80]final =10 //g/ml). After 10 

minutes, secretion was stopped on ice with 80 pi\ of 5 mM EGTA in IB. The plate 

was spun for 5 minutes at 4°C, 300 gAV to pellet detached cells. 50 pA aliquots 

were then withdrawn for assay of secreted (3-hexosaminidase (see below)

For cells adhered on 8-well multitest slides, EB was aspirated and the cells treated 

with 20 ]A of the stated compounds for time periods as indicated for individual 

experiments. Subsequently, cells were stimulated by the addition of 20 pil 48/80 at 

20 //g/ml (giving [48/80]^ = 10 pig/ml) in EB. When no pre-incubation was 

required, cells were directly activated with 40 pA of EB with 10 //g/ml 48/80. 

Approximately 5 s before the indicated time period, 48/80 was aspirated and the 

secretion was stopped on ice at the appropriate time by addition of ice-cold 3% 

glutaraldehyde in PBS.

2.5.2. Permeabilisation o f intact cells

RPMC on 8-well, multitest slides in EB were placed on an ice-cold metal plate 

and rinsed twice with 5 mM EGTA in IB to remove Ca2+. They were then 

incubated with ice-cold SL-0 at 1.6 U/ml in IB for 8 minutes. Streptolysin-O 

binding to membranes is temperature-independent, whereas pore formation only 

occurs above 12°C (Sekiya et al.y 1996); therefore, unbound SL-0 can be
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removed from the cells before permeabilisation. Unbound SL-0 was removed by 

rinsing once with ice-cold IB, and ice-cold IB containing Ca:EGTA ([Ca2+]free as 

indicated), nucleotides, proteins and compounds as described for individual 

experiments was added. Permeabilisation was then initiated by transferring the 

slide to a heated metal plate at 30°C. If stimulation was immediate, the cells were 

permeabilised in 40 pi 1 of buffer. If the stimulus was to be delayed, 

permeabilisation was in 20 //l; stimulation was initiated by addition of 20 pi\ 

stimulation buffer at 2x final concentration of effectors. Buffer was removed ~5 s 

before the end of the incubation; cells were then quenched at the indicated times 

on ice with ice-cold 3% glutaraldehyde.

2.5.3. Permeabilisation in suspension and the rundown assay

Immediately after purification and washing, RPMCs were resuspended in 1 ml of 

IB. Cellular metabolism was then blocked by addition of 0.6 mM 2-deoxyglucose 

and 10 piM antimycin-A for 5 minutes at 30°C; ~90% depletion of ATP occurs 

under these conditions (Koffer and Churcher, 1993). RPMCs were next chilled on 

ice for ~30 s, then transferred to 3 ml ice-cold SL-O in IB to give a final [SL-O] 

of 1.2 IU/ml. After 5 minutes’ incubation on ice, cells were washed free of 

unbound SL-O by dilution with ice-cold IB, centrifugation for 5 minutes at 4°C, 

300 gAV, and aspiration of the supernatant. The RPMC-pellet was immediately re­

suspended in ice-cold IB (~2.5 ml/96-well plate) and transferred to a plastic 

trough in an ice/water bath. Permeabilisation was initiated by transferring 20 pi\ 

aliquots of the cell suspension to 96-well ‘v’-bottom plates (Greiner) in a water 

bath at 30°C, as rapidly as possible using a multi-channel pipette. When 

exocytosis was evoked at the time of permeabilisation, the cells were transferred 

to wells containing a cocktail of the compound or protein to be tested (in 40 pi\ at 

twice the final concentration) and 20 //I of the stimulus (at four-times the final 

concentration, i.e. 12 mM Ca:EGTA at pCa 7 or 5 and 400 piM GTPyS as 

indicated).

For the rundown assay, where the stimulus is withheld for a designated time after 

permeabilisation, cells were transferred to wells containing a cocktail of the 

compound to be tested (in 20 pi\ at three-times the final concentration) and 

rundown buffer (in 20 pil at three-times the final concentration, i.e. 0.9 mM
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Ca:EGTA at pCa 8 and 300 pM  MgATP). After the indicated rundown times, 

cells were stimulated by the addition of 20 pi of the pre-warmed stimulus at four- 

times the final concentration (i.e. 12 mM Ca:EGTA at pCa 7 or 5, 100 pM  

MgATP to maintain [MgATP]final = 1 0 0  pM, and where indicated 400 pM  

GTPyS).

For both assays, stimulation was allowed to proceed for 10 minutes, before the 

96-well plates were transferred to ice and quenched with an equal volume (i.e. 80 

pi) of ice-cold 5 mM EGTA in IB. Cells were pelleted by centrifugation at 4°C, 

300 gAV for 5 minutes, and 50 pi aliquots of supernatant were sampled for 

secreted P-hexosaminidase activity (see below).

2.6. Assay for secreted p-hexosaminidase

One of the secretory products of RPMCs is iV-acetyl-p-D-glucosaminidase (p- 

hexosaminidase; p-hex). Therefore, measurement of secreted hexosaminidase 

activity in the supernatant provides a quantitation of the extent of exocytosis. This 

is achieved through the provision of the substrate 4-methylumbelliferyl A-acetyl- 

p-D-glucosaminide, which is cleaved by p-hexosaminidase, liberating fluorescent 

4-methylumbeliferone (Gomperts and Tatham, 1992).

The 50 pi samples of supernatant from secretion assays (see preceding section) 

were transferred to black flat-bottom 96-well plates (Labsystems) containing 50 

p\ 1 mM 4-methylumbelliferyl A-acetyl-P-D-glucosaminide (Sigma) in 0.2 M Na 

citrate, pH 4.5. After sealing the plate to prevent evaporation, the reaction was 

allowed to proceed at 37 °C typically for 1 hour. The reaction was quenched with 

150 pi Tris base, and fluorescence measured with a fluorescence plate reader 

(PerSeptive Biosystems) (excitation = 360 nm, emission = 450 nm).

Exocytosis was calibrated for a given sample x in terms of p-hex release 

according to one of two formulae:

(i) 6 - hex release (% of total) = 100 x —^ —Blank) 
r  (Total-Blank)
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(ii) - hex release (% of control) = 100 x

“Blanks” are the fluorescence quantified in the absence of cells, “Total” is given 

by cells lysed with 0.2% Triton X-100 and “Control” is a sample of stimulated 

cells to which the other samples are normalised. Data are expressed as single 

values, means ± range of duplicates or mean ± S.E.M. of triplicates and 

quadruplicates. For some experiments, secretion was expressed as “Stimulated 13- 

hex release”. This was calculated as above, followed by subtraction of 

unstimulated (at pCa 7) from stimulated (at pCa 5 with GTPyS) values.

2.7. Myo-[2-3H] inositol labelling and HPLC

RPMC were prepared from four Sprague Dawley rats (^ 500 g) as described 

above, except that after the Percoll step cells were suspended and washed in 

Medium 199 (Gibco RBL) supplemented with 1 mg/ml BSA, 60 //g/ml penicillin 

and 100 //g/ml streptomycin. Cells were seeded in four 35 mm dishes (2 ml/dish) 

in the presence of 25 //Ci/ml myo-[2-3H] inositol (Amersham Biosciences). After 

19 hours at 37°C, 10% C 02, cells were rinsed five times with EB, and stimulated 

with 48/80. Reactions were stopped by removing 48/80 and killing cells at the 

indicated times with 0.5 ml 1 M HC1, supplemented with 5 mM tetrabutyl 

ammonium hydrogen sulphate (TBAHS, Fisher). Lipids were then extracted 

following a previously described protocol (Jackson et al., 1992). The cells in HC1 

were scraped and transferred to a glass bottle (Chromacol). The empty well and 

rubber policeman were washed with 0.667 ml MeOH, which was then pooled 

with the acid-killed cells in the glass bottle. 1.333 ml of CHC13 was added to this 

mixture, giving a ratio of CHCl3:MeOH:acid of 8:4:3 (Folch et al., 1957). The 

combination was mixed by vortex and resolved into organic and aqueous phases 

by centrifugation at 300 gAV. The lower, organic phase (~ 1.5 ml) was isolated and 

transferred to a fresh glass bottle The aqueous phase (~1 ml) was re-extracted 

with 1.5 ml synthetic organic phase (prepared from CHCl3:MeOH:l M HC1 with 5 

mM TBAHS and 5 mM EDTA in the ratio 8:4:3). The bottle was then mixed, 

centrifuged and the synthetic organic layer isolated as before. Both organic phases
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were washed sequentially with 1 ml synthetic aqueous phase (prepared as above), 

before pooling the two phases and drying under nitrogen.

The extracts were deacylated with monomethylamine reagent (a kind gift of Dr. 

F.T. Cooke, University College London) for 35 minutes at 53°C. Samples were 

then extracted with petroleum ether and analysed by high performance liquid 

chromatography (HPLC) by Dr. Stephen Dove, University of Birmingham as 

previously described (Dove et al., 1997).

2.8. Extraction of Ins(l,4,5)P3

These experiments were used to test the efficiency of Ins(l,4,5)P3 extraction in 

the presence of neomycin, and were performed exactly as described in (Cockcroft 

et al., 1987). 1 yM  Ins(l,4,5)P3 in a buffer consisting of 137 mM NaCl, 2.7 mM 

KC1, 10 mM LiCl, 5.6 mM D-glucose, 20 mM PIPES-NaOH, pH 6.8 and 1 mg/ml 

BSA was spiked with 3 nCi [2-3H]-Ins(l,4,5)P3 in glass scintillation vials with or 

without 0.3 mM neomycin. To 0.4 ml of this solution, 0.5 ml CHC13 and 1 ml 

MeOH were added, and the mixture vortexed. 0.5 ml each of CHC13 and either 

water or 0.2 M HC1 were then added, giving a ratio of CHCl3:MeOH:water of 

1:1:0.9 to achieve a two-phase system (Bligh and Dyer, 1959). The phases were 

resolved by centrifugation at 300 gAV. 1 ml of the aqueous phase and 0.5 ml of the 

organic phases were then transferred to fresh scintillation vials. The remaining 

liquid was designated as ‘interface’; all three samples were evaporated under a 

stream of nitrogen to remove CHC13 and MeOH, which acts as potent quenching 

agents for scintillant; in contrast, almost no quenching with HC1 (at ~ 0.1M) was 

observed. 5 ml of scintillation fluid (Ultima Gold; Perkin Elmer) was then added 

to each sample, and radioactivity was quantified by scintillation counting on a 

Beckman LS6500.

2.9. In vitro enzyme assays

2.9.1. Ptdlns-PLC assay

0.3 U/ml Ptdlns-PLC was assayed in IB (without BSA) with or without PLC 

inhibitors in a volume of 20 y\. Heat-inactivated Ptdlns-PLC was treated at 110°C 

for 15 min. To start the reaction, 20 y \  of 1 yM  Ptdlns spiked with 10 nCi [2-3H]-
77



Chapter 2: Materials and Methods

Ptdlns in 0.16% octylglucoside was added, and the reaction allowed to proceed 

for 10 min at 30°C. The reaction was stopped with 50 jA 1 M HC1; 200 jA of 

CHCl3:MeOH (1:1) was then added, the mixture vortexed and the aqueous phase 

separated from the organic by brief centrifugation. 50 ]A of aqueous phase was 

then assayed for released [2-3H]-InsP by scintillation counting as described above.

2.9.2. PI 4-kinase assay

300 ]A SL-0 permeabilised cells were quenched with 300 \i\ ice-cold 5 mM 

EGTA in IB, and pelleted at -400 gAW for 3 min. After removing the supernatant, 

PI4K assays were performed essentially as described (Meyers and Cantley, 1998). 

Briefly, cells were lysed using 25 jA Ptdlns lysis buffer, which consisted of 40 

mM HEPES-NaOH, pH 7.4, 0.3% Triton X-100, 0.4 mg/ml Ptdlns. DiC16-PtdIns 

in CHC13 was dried under a stream of nitrogen gas and dispersed into Ptdlns lysis 

buffer by sonication for 5 min at 80% output, 50% duty cycle on a Branson 

Sonifier 250 with a bath sonicator attachment.

Reactions were started by addition of 25 pA 20 mM MgCl2, 100 piM MgATP, 5 

]iCi [y-32P]-ATP, and allowed to proceed for 30 minutes at room temperature. 

Reactions were stopped with 50 jA 2 M HC1 and lipids were extracted by addition 

of 200 jA CHCl3:MeOH (1:1) spiked with 25 nCi [14C]-PtdCho as a loading 

control; the lower organic phase was removed and washed with 80 ]A 1 M 

HCl:MeOH (1:1). Samples were spotted onto 1.2% potassium oxalate- 

impregnated TLC plates (Whatman), dried and run with 

CHCl3:Me0H:H20:NH40H  (90:90:20:7), before drying and developing on 

phosphorimager plates. Spots were identified by co-migration with 10 pig diC16- 

PtdIns4P (revealed with copper molybdate staining) and analysed by 

densitometry using NIH Image.

2.10. Protein-lipid overlay assay

These assays were performed essentially as described previously (Dowler et al., 

2002). 1:2 serial dilutions of diC16-PPIn were prepared in a 2:1:0.8 mixture of 

MeOH, CHC13 and water at concentrations from 100 ]AA down to 0.78 piM. 1 ]A 

of these dilutions (working up the dilutions for each PPIn) was spotted onto a grid
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(0.5 mm intervals) on H-bond+ membranes (Amersham), so that spots contained 

0.78-100 pmol of the selected lipid. Membranes were left to dry for 1 hour at 

room temperature and then blocked for 1 hour at room temperature with antibody 

solution, consisting of 3% fatty-acid free BSA (prepared by cold EtOH 

precipitation, Sigma) in TBST (150 mM NaCl, 50 mM Tris-Cl pH 7.5, 0.1% 

Tween-20). Indicated concentrations of GST-tagged proteins were then incubated 

with the membranes for 1 hour at room temperature or overnight at 4°C, with 

gentle rocking. The blots were then washed six times over 30 minutes with TBST, 

and incubated with monoclonal anti-GST (1:1000) in antibody solution either for 

1 hour at room temperature or overnight at 4°C, with gentle rocking. After 

washing as before, membranes were incubated with HRP-conjugated rabbit anti­

mouse secondary antibodies for 30-60 minutes at room temperature, and washed 

12 times over 1 hour with TBST. Bound proteins were revealed with ECL 

(Amersham). Exposure time was between 10 and 30 s.

2.11. Immunofluorescence

2.11.1. Immunostaining before fixation

Adherent RPMCs on 8-well multitest slides were SL-O permeabilised as 

described above, except IB was replaced with potassium glutamate buffer (KGB: 

137 mM potassium glutamate, 2 mM MgCl2, 20 mM PIPES-KOH, 1 mg/ml 

BSA). After removing unbound SL-O, cells were permeabilised in 40 ]A KGB 

with 3 mM EGTA (KGB-E) and the indicated concentration of MgATP by 

warming the slides to 37°C. After 10 minutes, this buffer was removed and 

replaced with 40 ]i\ KGB-E blocking solution, which contained 32% normal goat 

serum (NGS, Gibco). After RPMCs were blocked for 30 minutes at room 

temperature, blocking solution was replaced with antibody solution (KGB-E with 

16% NGS) containing 10 pig/ml 2C11. RPMCs were stained for 1 hour at room 

temperature, washed twice with KGB-E and incubated with 6.7 pig/ml Alexa488 

anti-mouse IgG secondary in antibody solution for 30 minutes. Finally, cells were 

washed 4 times in KGB-E, fixed for 20 minutes in 4% paraformaldehyde (PFA) 

in PBS, rinsed thrice in PBS, once in water and mounted in Mowiol4-88 

(Calbiochem).
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2.11.2. Immunostaining post-fixation at room temperature

Cells were fixed with 4% PFA (unless otherwise stated) for 20 minutes, and 

rinsed thrice with PBS. A blocking reaction was next performed for 30-60 

minutes in sodium glutamate buffer (NaGB: 137 mM sodium glutamate, 2 mM 

MgCl2, 20 mM PIPES-NaOH, 1 mg/ml BSA) containing 5-10% NGS, 50 mM 

NH4C1 and 0.5% saponin. Subsequently, this solution was removed and replaced 

with antibody solution (NaGB with 5% NGS) containing 16 //g/ml 2C11 or 5 

//g/ml P034. After 1 hour, cells were washed twice for 5 minutes with NaGB and 

stained for 30 minutes with 6.7 //g/ml Alexa488 anti-mouse IgG, Alexa488 anti­

mouse IgG3 or 10 //g/ml Alexa555 anti-mouse IgM. Finally, cells were washed 

four times for 5 minutes each with NaGB and mounted with Mowiol4-88.

2.11.3. Immunostaining post-fixation <4°C

For this protocol, cells were fixed with ice-cold aldehydes. All handling of the 

samples was on an ice-cold metal plate in an ice-water bath. All solutions were 

ice-cold before use. For incubations, slides were transferred rapidly to a fridge so 

that at no point did the slides warm > 4°C.

Cells were fixed in 3% glutaraldehyde (GA) or a mixture of PFA and GA as 

indicated (such as 0.2% GA in 4% PFA) for 3 hours at 4°C. They were next rinsed 

thrice with PBS with 50 mM NH4C1. At this point, RPMCs were stained with 200 

//g/ml Alexa647 concanavalin-A (Molecular Probes) for 5 min in PBS, and rinsed 

twice in PBS. Cells were then blocked for 4 hours with 5% NGS, 50 mM NH4C1 

and 0.5% saponin in NaGB. When cells were incubated with GST-tagged 

recombinant proteins, these were included at this stage, and cells were 

subsequently washed twice with NaGB. Blocking solution was removed and 

replaced with antibody solution (NaGB with 5% NGS and 0.1% saponin) 

containing the following antibodies as indicated: 2C11 (16 //g/ml), 10F8 (1:10 

dilution), kt3g (10 //g/ml), P034 (5 //g/ml) or polyclonal anti-GST. Staining was 

typically 13-14 hours at 4°C. Cells were then washed twice for 10 minutes each 

with NaGB, and stained for 4 hours with antibody solution containing the 

following additions: 6.7 //g/ml Alexa488 anti-rabbit IgG, 10 //g/ml Alexa555 anti­

mouse IgM, 10 //g/ml Alexa555 anti-mouse IgG, 5 //M BODIPY-ceramide
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(Molecular Probes) or 5 U/ml Alexa488 phalloidin (Molecular Probes). They 

were then washed 4 times for 10 minutes with NaGB; when used, DAPI (Roche) 

or Draq5 (Alexis) were included at 1:2000 in the second wash. Finally, cells were 

fixed as before for 10 minutes on ice and 5 minutes at room temperature, in order 

to immobilise antibodies. They were rinsed four times in PBS with 50 mM 

NH4C1, once in water, and mounted with Mowiol4-88.

2.11.4. Staining for nuclear Ptdlns( 4,5)P2

In order to stain for nuclear PtdIns(4,5)P2> RPMCs were seeded in EB on 13 mm 

glass coverslips placed in four-well tissue culture dishes (Costar) for 30 min at 

room temperature. This was because detergent-containing solutions would run off 

the glass wells of multiwell test slides onto the Teflon-coated surrounding. Steps 

were performed at ^ 4°C as in the previous section, except where indicated. Cells 

were fixed for 3 hours with 4% PFA, rinsed thrice with PBS containing 50 mM 

NH4CI, and blocked for 4 hours at room temperature with TX solution (5% NGS 

and 0.2% Triton X-100 in PBS). This solution was replaced on ice with TX 

solution containing 16 //g/ml 2C11, and cells were stained overnight. 

Subsequently, coverslips were washed twice for 10 minutes with PBS, and stained 

for 4 hours with 10 //g/ml Alexa555 anti-mouse IgM and 5 U/ml Alexa488 

phalloidin in TX solution. They were next washed four times for 10 minutes each 

with PBS, including 1:2000 Draq5 in the second wash. Finally, cells were fixed 

with 3% GA in PBS for 10 minutes on ice and 5 minutes at room temerature, 

before rinsing 4 times with 50 mM NH4C1 in PBS, once in water, and mounting in 

Mowiol4-88.

2.12. Confocal microscopy and image analysis

Images were acquired on a Zeiss 510 LSM confocal microscope equipped with 

405, 488, 543 and 633 nm laser excitation lines, using a 63x 1.4 NA 

PlanApochromat oil-immersion lens. Image intensity profiles were created with 

the Zeiss LSM 3.2 software.

For quantitative image analysis, image stacks comprising four (nuclei) or six 

(whole cell) 4 //m sections were acquired using a 40x 1.3 NA PlanApochromat
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oil-immersion lens and 4x averaging. Image stacks were saved in the original 

Zeiss format, with 2C11 (Alexa555, 543 nm excitation) in the red channel. Laser 

power and detector gain/offset were set such that 2C11 signal was never saturated, 

and background fluorescence from secondary antibody just detectable. BODIPY- 

ceramide (488 nm excitation) was in the green channel and nuclei (DAPI, 405 nm 

excitation or Draq5,633 nm excitation) in the blue; the detector gain was set such 

that both signals just saturated the detector.

Image stacks were then analysed in MetaMorph 6.3 image analysis software 

(Molecular Devices), using a journal written by Drs Alastair Nicol and Daniel 

Zicha (CR-UK Light Microscopy Laboratory). The journal performed the 

following operations: Image stacks were separated into red, green and blue 

channels and the fluorescence intensities for each image channel in the stacks 

summed. Nuclei were detected in the blue channel using the “Count Nuclei” 

application module and a binary mask of the nuclei generated. The detected nuclei 

were used as markers for watershed segmentation of the green channel (cell 

location) image. This generated boundaries between cells and between touching 

cells. Visual inspection of such images revealed accurate separation of touching 

cells in the vast majority of cases. To analyse 2C11 fluorescence in individual 

cells, a cell body mask obtained from the segmented green image was used to 

extract the total red (2C11 labelling) intensities of the individual cells from the red 

channel image. To quantify nuclear PtdIns(4,5)P2» a “Count Nuclei” derived 

nuclear mask was used to extract the total intensities of the individual nuclei from 

the red channel image. Data were analysed in Excel spreadsheet software 

(Microsoft).

2.13. Measurement of intracellular calcium

Cells were seeded in the presence of 2 yM  Fluo3/AM (Molecular Probes) for 30 

min, before incubating in the presence of the stated compounds. Cells were then 

stimulated with 48/80 whilst images were acquired at approximately 3 frames/s 

with a lOOx 1.25 NA PlanApochromat oil-immersion lens (Nikon) mounted on a 

Nikon Diaphot 200 inverted microscope, using a standard Nikon FITC B-2A 

filter. Exposure time was 111 ms. Fluorescence changes were measured within 

defined regions of interest encompassing whole cells using Tracker software
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(Kinetic Imaging), and fluorescence intensity at a given frame (Ft) normalised to 

the initial fluorescence intensity (F0).

2.14. Preparation of liposomes

Sufficient 1-oleoyl 2-palmitoyl-PtdCho and diC16-PtdIns(3,4)P2 or diC16- 

PtdIns(3,4,5)P3 were dispensed into a glass vial (Chromacol) such that [lipid]final = 

1.3 mM with 5 mole % Pin. Lipids were dried under nitrogen, resuspended in 200 

pt 1 ethanol and dried again. Finally, lipids were washed with 200 //I diethyl ether, 

and dried completely under nitrogen followed by vacuum for 30 minutes. Finally, 

liposomes were formed by bath sonication in an ice/water bath for 15 minutes at 

80% output, 60% duty cycle using a Branson Sonifier 250. Liposomes were 

mixed with an equal volume of 10 //g/ml P034; this gave final concentrations of 5 

//g/ml (33 nM) P034, 650 //M total lipid and 33 //M Pin (i.e. 1000-fold molar 

excess over antibody, or 500-fold if 50% of the Pin is on the inner leaflet of the 

vesicle).
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Chapter 3: Phosphoinositide 

regulation of exocytosis
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3.1. Introduction

Experiments that established the role of heterotrimeric G-protein Py-subunits 

during exocytosis from permeabilized RPMCs first indicated the requirements for 

PPIn (Pinxteren et al., 1998). This study relied in part on the use of recombinant 

PH domains to sequester endogenous py-subunits and thus prevent their 

facilitation of exocytosis. One such PH domain from p-adrenergic receptor kinase 

(PH-PARK) binds to both G-protein Py-subunits and PtdIns(4,5)P2 (Touhara et 

al., 1995). To clarify which interaction impaired exocytosis, specific mutants 

were employed which retained py-subunit binding at the expense of PtdIns(4,5)P2 

binding, and vice versa\ both types of mutant were in fact shown to inhibit 

exocytosis (Pinxteren et al., 1998). Further studies showed that ATP acted to 

maintain secretory competence in permeabilised RPMCs, at least in part, by 

phosphorylation of Ptdlns: sequestration of endogenous PPIn with neomycin 

mimicked the effect of ATP-depletion on the rundown of RPMC exocytosis 

(Pinxteren et al., 2001). Furthermore, Ptdlns transfer proteins were found to 

maintain secretory competence in a manner that correlated with their ability to 

maintain Pin metabolism (Pinxteren et al., 2001).

Neomycin was demonstrated to bind tightly to fo’s-phosphorylated, and with lower 

affinity to mono-phosphorylated Pin and other acidic phospholipids (Schacht, 

1978). Furthermore, the PH domain from pARK was shown to bind 

promiscuously to PPIn which included PtdIns3P, PtdIns4P, PtdIns(3,4)P2, 

PtdIns(4,5)P2 and PtdIns(3,4,5)P3 (Kavran et al., 1998). Therefore, although a role 

for PPIn during RPMC exocytosis has been established, the identity of the 

specific Pin isomer(s) involved is yet to be determined. In this chapter, the results 

from experiments that were designed to clarify this issue are presented. Three 

broad experimental strategies were employed in permeabilised cells. First, 

specific interactions between neomycin or PH-pARKWAA (an alanine insertion 

mutant that has lost its py-subunit but not Pin-binding properties) (Touhara et al., 

1995) with endogenous lipid were tested by competition with exogenous short- 

chain lipid analogues. Second, reagents that would interfere with specific aspects 

of Pin metabolism were tested for their effects on the maintenance of secretory 

competence. Finally, proteins with defined Pin-binding properties were
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introduced into the cells in order to establish if sequestration of the respective 

lipid would inhibit exocytosis.

3.2. Results

The inhibition of RPMC exocytosis by neomycin was shown to be reversed so 

long as soluble di-octanoyl (diC8) PtdIns(4,5)P2 was present in excess or at 

equimolar concentrations (Pinxteren et al., 2001). This was interpreted as 

displacement of neomycin from endogenous Ptdlns(4,5)P2 by the soluble 

analogue. However, given the interactions between neomycin and other PPIn 

(Schacht, 1978), it could equally be possible that exogenous PtdIns(4,5)P2 

displaces neomycin from other Pin. To test this hypothesis, neomycin (100 jM )  

was pre-absorbed with a two-fold molar excess of diC8 analogues of all seven 

PPIn. This led to substantial increases in the level of p-hex secretion from 

permeabilized cells for several of the PPIn in the presence of neomycin (figure 

3.1 A). However, in the case of PtdIns(4,5)P2, PtdIns5P and PtdIns(3,4,5)P3 the 

release occurred independently of exocytosis since it was observed at resting 

calcium levels in the absence of GTPyS. The most likely explanation for this 

phenomenon was that neomycin preferentially forms complexes with these lipids, 

which have detergent-like properties and lead to lytic release of p-hex from the 

granules. Only PtdIns4P produced a substantial reduction in the level of inhibition 

when stimulated exocytosis was considered (i.e. the release of p-hex in response 

to Ca2+ and GTPyS, calculated by subtraction of the non-stimulated release), 

although this was not reproducible in all experiments (figure 3. IB).
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Figure 3.1: Effect of neomycin at 10 minutes rundown. RPMC were permeabilised 
with SL-O and left to run down in a solution containing 100 pM MgATP and 300 pM 
Ca:EGTA (pCa 8) with the indicated reagents at 30°C. After 10 min, they were 
stimulated by addition of buffer containing 3 mM Ca:EGTA (pCa 7) or 100 pM GTPyS 
+ 3 mM Ca:EGTA (pCa 5), as well as maintaining 100 pM MgATP; p-hex release was 
measured as described in Materials and Methods. (A & B). Cells were run down in the 
presence of 100 pM neomycin ± 200 pM of the indicated diC8-PIn. A refers to the 
change in P-hex release due to the presence of neomycin, calculated by subtracting 
release in its presence from that in its absence. Data are from a single, representative 
experiment and are means ± S.E.M. (n = 3). (C) as A & B, but with 30 pM neomycin 
and 90 pM diC8-PIn. Data are the mean of 4 experiments carried out in triplicate ± 
S.E.M. Note neomycin:diC8-PIn complexes were left to form for 30-60 minutes at room 
temperature before applying to cells.
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To circumvent this problem, it was established that pre-absorption of 30 //M 

neomycin with a three-fold molar excess of diC8-PPIn would not lead to such lytic 

behaviour, whilst neomycin still produced an ~50% inhibition of exocytosis 

(figure 3.1C). However, in this case no reversal of the inhibitory effect of 

neomycin on exocytosis was observed with any of the PPIn. Therefore, it could 

not be confirmed that neomycin caused inhibition of exocytosis through 

sequestering an endogenous Pin. To rule out an alternative effect of this 

aminoglycoside antibiotic on exocytosis, the effect of amikacin, another 

aminoglycoside with greatly reduced affinity for Pin (Marche et al., 1983; Marche 

et al., 1987), was tested. Indeed, whereas neomycin at 100 piM and 1 mM 

substantially reduced the levels of exocytosis from mast cells permeabilised for 10 

minutes before stimulation, amikacin had only a minor effect (figure 3.2). 

Therefore, although neomycin appears to act through binding to an endogenous 

phospholipid, it was not possible to identify the molecules with this approach.

A similar strategy was employed to define the endogenous lipids bound by PH- 

PARKwaa. Pre-incubation of 5 piM PH-pARKWAA with a 10-fold molar excess of 

any of the diC8-PPIn caused an almost complete ablation of the inhibitory effects 

of this protein (figure 3.3A). The complexes formed between the exogenous 

proteins and PtdIns(4,5)P2 did not cause non-stimulated release of p-hex from the 

granules (figure 3.3B). Note that in the latter experiment, a different batch of PH- 

pARKWAA was used with a higher specific activity than that of figure 3.3A. Hence 

a lower concentration (2.5 piM) was used to produce a similar inhibition, and a 

larger molar excess (40-fold) of lipid was required for effective competition. 

Given that any of the PPIn could alleviate the inhibition of exocytosis observed 

with PH-PARKwaa (figure 3.3A), the protein may be interacting with any of these 

lipids within the cell via a non-specific electrostatic interaction. To test that the 

protein did not cause inhibition simply by interaction with acidic phospholipids, 

PH-PARK was preincubated with the same molar excess of phosphatidic acid 

(PtdOH, figure 3.3B). Under these conditions, PtdOH produced only a small 

effect on the resulting inhibition. Thus although the inhibitory effect of PH- 

pARKWAA may be ascribed to interaction with a PPIn, the identity of the isomer(s) 

involved was not apparent from these experiments.
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Figure 3.3: Effect of PH-pARKWAA at 10 minutes rundown. RPMC were 
permeabilised for 10 minutes before stimulation as described in figure 3.1, in the 
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(n = 3) for stimulated cells (pCa 5). For non-stimulated cells (pCa 7), n = 2 (A, mean ± 
range) and n = 1 (B).
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Given that both neomycin and PH-pARKWAA may inhibit exocytosis by 

interaction with any of the seven PPIn, the data would be compatible with a role 

for PtdIns(4,5)P2. To test if this were true, the effect of sequestering this PPIn 

with a specific monoclonal IgM antibody 2C11 (Thomas et al., 1999) raised 

against this lipid was tested. 2C11 caused a concentration-dependent inhibition of 

stimulated exocytosis as well as non-stimulated p-hex activity (figure 3.4A, inset). 

However, when the incubation was performed in the absence of cells, the same 

non-stimulated activity was observed indicating that the antibody preparation was 

contaminated with p-hex activity. Therefore, only stimulated release of P-hex was 

considered, which yielded an almost complete inhibition of exocytosis at high 

concentration of antibody (figure 3.4A). To test the specificity of this interaction 

2C11 was heat inactivated, or an irrelevant IgM raised against the c-erbB-3 

receptor (2E11) was used (Rajkumar et al., 1993). Figure 3.4B shows that 2E11 

caused an almost identical concentration-dependent inhibition of exocytosis, and 

that heat inactivation of 2C11 only partially restored secretion. Therefore, the 

effects observed appear to be a non-specific effect of high concentrations of IgM.

Another monoclonal antibody against PtdIns(4,5)P2 was previously shown to 

inhibit RPMC exocytosis (Guo et al., 2002), whereas other IgG antibodies were 

without effect in the same assay (Guo et al., 1998). This result was confirmed 

under the assay conditions presented in this thesis (figure 3.5A). To establish 

whether kt3g may indeed block exocytosis through sequestering endogenous 

PtdIns(4,5)P2, the in vitro binding characteristics of anti-PtdIns(4,5)P2 antibodies 

were tested in a protein-lipid overlay assay (or “fat blot”) (Dowler et al., 2002)). 

Both 2C11 and kt3g interacted strongly with PtdIns(4,5)P2 in this assay; however, 

kt3g displayed a more potent interaction with PtdIns(3,4)P2 (figure 3.5B), 

indicating this that lipid is a potential endogenous target of kt3g in RPMCs. 

Further evidence on the specificities of kt3g and 2C11 are presented in the next 

chapter.
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Figure 3.4: Effect of anti-PtdIns(4,5)P2 antibody 2C11 at 10 minutes rundown.
RPMC were permeabilised in the presence of the indicated concentration of anti- 
PtdIns(4,5)P2 antibody 2C11 (A), or another IgM, 2E11 (anti-cerbB-3), and stimulated 
as described in figure 3.1. "Boiled" refers to 2C11 that was heat-inactivated for 3 
minutes at 110°C. The inset of A shows total p-hex release. In the main panels, secretion 
is expressed as "stimulated" (= pCa 5 -  pCa 7). Data are from representative 
experiments, and are means ± S.E.M. {n = 3).
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The effects of diC8-PPIn furnished further clues as to the nature of the PPIn 

regulating mast cell exocytosis. When the effects of the diC8-lipids alone are 

considered, PtdIns(4,5)P2, PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in the 50-200 yM  

range are all seen to retard the degree of rundown observed after 10 minutes of 

permeabilisation (figures 3.1 and 3.3). Taken together with the results with PH- 

pARKWAA, neomycin and kt3g, these observations are consistent with a role for 

PtdIns(4,5)P2 or a D-3 phosphorylated Pin as a regulator of RPMC exocytosis.

All known pathways of 3-phosphorylated inositol lipids rely on the action of types 

I, II or III PI 3-kinases (PI3K) (Vanhaesebroeck et al., 2001). Therefore, to 

determine whether these PPIn could function in mast cell exocytosis, 

pharmacological inhibition of PI 3-kinases was employed to deplete the levels of 

D-3 Pin. If these lipids were required for mast cell exocytosis, then exocytosis 

would be seen to run down at an accelerated rate, leading to a reduced levels of 

exocytosis after a given time of permeabilisation. Exposure of permeabilised mast 

cells to increasing concentrations of the PI 3-kinase inhibitor LY294002 (Vlahos 

et al., 1994) caused acceleration of rundown after 10 minutes of permeabilisation, 

with 40% inhibition at 100 yM  and an apparent IC50 of 30 yM  (figure 3.6A). 

LY294002 inhibits type I and type II PI3K-C2a with IC50’s of 1.4 yM  (Vlahos et 

al., 1994) and 19 yM  (Domin et al., 1997), respectively. Therefore, these data 

would be consistent with a role for PI3K-C2a in this process. No data are 

available on the IC50 of LY294002 for the mammalian type III PI3K Vps34. 

Notably, a single atom substitution of LY294002 produces LY303511, a 

compound with no effect on PI-3K (Vlahos et al., 1994; Ding et al., 1995) and 

only a minor effect on RPMC rundown when present at 50 yM  (figure 3.6A).

To clarify whether PI-3K may be involved in the maintenance of secretory 

competence in RPMC, the effects of various concentrations of the fungal inhibitor 

wortmannin (Arcaro and Wymann, 1993) were tested (figure 3.6B). This 

compound had no effect on exocytosis up to 1 yM-, beyond this concentration, 

results were variable with a maximal inhibition of 50%, and an IC50 of 3 yM. 

Wortmannin inhibits classical, type II C2a and Vps34 PI-3Ks with IC50’s of 1-5 

nM (Vlahos et al., 1994), 420 nM (Domin et al., 1997) and 2.5 nM (Volinia et al.,
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1995), respectively. Thus when taken together with the LY294002 results, effects 

of classical, type II PI3K-C2a and Vps34 PI3Ks can be ruled out.

Another hypothesis could be that PI-3K inhibitors were without effect because the 

pool of 3-phosphorylated lipids required turned over too slowly to be depleted by 

inhibition of their synthesis for 10 minutes. Therefore, other high-affinity D-3 Pin 

binding domains were tested. Introduction of a high affinity PtdIns3P binding 

protein, a tandem fusion of the FYVE domain from Hrs (Gillooly et al., 2000), 

had no effect on RPMC rundown (figure 3.6C). Neither the PH domains from 

GRP1 or DAPP1 affected exocytosis, despite their respective abilities to bind 

PtdIns(3,4,5)P3 (Klarlund et al., 2000) or both PtdIns(3,4)P2 and PtdIns(3,4,5)P3 

(Dowler et al., 1999) in vitro (figure 3.6C). It was not possible to produce 

sufficient quantities of recombinant Svpl, which binds with great specificity and 

affinity to PtdIns(3,5)P2 (Dove et al., 2004), to directly test a role for this last 3- 

phosphorylated Pin in mast cell exocytosis (not shown). Despite this shortcoming, 

it seems unlikely that synthesis of this lipid is required to maintain secretory 

competence, as sequestration of its precursor lipid, PtdIns3P (Cooke, 2002), was 

without effect.

Thus no direct evidence could be discerned that 3-phosphorylated PPIn were 

required for exocytosis from RPMC. This leaves possible roles for PtdIns4P, 

PtdIns(4,5)P2 and PtdIns5P. PH-pARK was demonstrated to bind the headgroup 

of Ptdlns(4,5)P2 with a Kd of ~200 piM (Fushman et al., 1998). If this PH domain 

inhibited exocytosis by sequestering endogenous Ptdlns(4,5)P2, then domains 

with a higher affinity for this Pin would also impair secretion. The PH domain 

from PLC61 binds to the headgroup of PtdIns(4,5)P2 with a K d of 200 nM 

(Lemmon et a/., 1995), yet fails to produce significant effects on secretion at 

concentrations sufficient for PH-pARK to inhibit > 50% of exocytosis (figure 

3.7A). When the lipid binding properties of these domains were tested in a 

protein-lipid overlay assay (figure 3.7B), PLC61 indeed yielded a higher affinity 

for PtdIns(4,5)P2. However, PH-pARK interacts with mono-phosphorylated Pin 

with greater affinity than PH- PLC61. Since the FYVE domain has been shown to 

bind to PtdIns3P with a Kd of 2.5 piM (Sankaran et al., 2001), it seems unlikely 

that this interaction with PH-pARK is relevant, given that a tandem fusion of the
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former protein failed to affect exocytosis (figure 3.6C). This leaves PtdIns4P and 

PtdIns5P, both of which may function independently of their role as substrates for 

PLP-kinases (Fruman et al., 1998).

To test for a role of PtdIns4P, the PH domain from FAPP1 was used, which 

interacts with PtdIns4P (Godi et al., 2004; Roy and Levine, 2004). The loss of 

secretory competence was retarded in RPMC when 10 piM of this PH domain was 

present (figure 3.8A). This probe may retard rundown of secretion by protecting 

endogenous PtdIns4P from degradation, whilst still permitting access of a higher 

affinity effector protein. PtdIns4P is synthesised by type II and III PI4K activities 

(Fruman et al., 1998). A role for the type III activity in mast cells may be ruled 

out for several reasons. Firstly, these enzymes have a Km of ~400 piM for ATP 

(Downing et al., 1996), whereas the effect of ATP in maintaining secretory 

competence in mast cells is saturating at 50 piM. (Pinxteren et al., 2001). Secondly, 

LY294002 and wortmannin inhibit type III PI4K with IC50’s of 100 piM and 50 

nM, respectively. These concentrations are incompatible with the observed IC50’s 

for RPMC exocytosis (figure 3.6A & B). On the other hand, type II PI4Ks are 

insensitive to LY294002 and wortmannin, and possess a Km of ~100 piM with 

respect to ATP. Conditions are therefore amenable for the action of these enzymes 

in maintaining secretory competence in RPMCs.
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Type II PI4K activity was shown to be specifically inhibited by monoclonal 

antibody 4C5G (Endemann e ta l., 1991). However, this antibody failed to affect 

exocytosis at concentrations up to 250 pig/ml (figure 3.8B). To establish whether 

the antibody inhibited the endogenous type II PI4K activity under these 

conditions, permeabilised RPMC were incubated with 250 pig/ml 4C5G as in 

figure 3.7B, before lysing the cells with 0.2% Triton X-100. PIn-kinase activity 

was then assayed against exogenous Ptdlns micelles (see Materials and Methods). 

4C5G was able to block > 60% of the endogenous Ptdlns kinase activity in RPMC 

(figure 3.8D); the remaining activity produced a spot that migrated faster than the 

PtdIns4P standard, and may therefore represent PI3K-generated PtdIns3P (figure 

3.8C). However, if non-permeabilised cells were incubated with 250 pig/ml 4C5G, 

an almost identical inhibition of endogenous Ptdlns kinase activity was observed 

(figure 3.8C & D). Therefore, it was only possible to conclude that the majority of 

the Ptdlns kinase activity in 0.2% Triton X-100 was a type IIPI4K activity. Since 

this activity was blocked after lysing non-permeabilised cells in the presence of 

4C5G (see Materials and Methods), sufficient antibody was associated with the 

surface of intact cells to abolish activity in the lysate. It remained an open 

question, therefore, as to whether the antibody was able to block the kinase 

activity in situ in a permeabilised cell. One can speculate that it might not, since a 

membrane associated PI4K may not expose its epitope in a manner that permits 

access of the antibody.
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Figure 3.8: Activity and effect of type II PI4K. RPMC were permeabilised with SL-0 
in the presence of 10 pM PH-FAPP1 (A) or the indicated concentration of monoclonal 
anti-PI4K II antibody 4C5G (B) for 10 minutes before stimulation as described in figure 
3.1. Data are means ± range of two experiments (A), or are results from a representative 
experiment (B) and are means ± S.E.M. (n = 3). (C & D) RPMC were treated with 250 
pg/ml 4C5G as in B, except after 10 minutes incubation, the cells were lysed in 0.2% 
Triton X-100 and assayed for PI 4-kinase activity (Materials and Methods). [14C]- 
PtdCho was included as a loading control, and was not saturated in the original 
exposure. (C) shows a representative radiograph from a single experiment (PtdIns4P 
was identified by co-migration with an unlabelled standard), whereas (D) shows 
normalised results after densitometric analysis of 4 experiments (Ctrl and 4C5G, means 
± S.E.M.), 2 experiments ([14C]-PtdCho, mean ± range) or a single experiment (4C5G, 
not-perm). "not-perm" refers to non-permeabilised cells (i.e. where SL-O was omitted).
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Phenylarsine oxide (PAO) inhibits type IIPI4K activity (Wiedemann et al., 1996; 

Naveen et al., 2005), although not as potently as its inhibition of type III PI4K 

(Balia et al., 2002). This compound was found to completely abolish exocytosis 

with an IC50 of 10 pM  (figure 3.9). However, this effect presented itself without 

rundown of the cells, i.e. when the drug was presented coincident with 

permeabilisation and stimulation. Since RPMC exocytosis occurs independently 

of ATP when stimulation is concurrent with permeabilisation (Howell et al., 

1987), this argues against the effect of PAO as inhibition of an ATP-dependent 

kinase activity. Indeed, whilst these experiments were being conducted, it was 

reported that PAO abolishes activity of Rho GTPases (Gerhard et al., 2003). Since 

Rho has been reported to be absolutely required for exocytosis from RPMC (Price 

et al., 1995; Sullivan et al., 1999), the most parsimonious explanation is that PAO 

blocks exocytosis by blockade of Rho-mediated stimulation-secretion coupling. It 

was therefore impossible to use PAO to specifically probe a role for type IIPI4K.

3.3. Conclusions

The results presented herein did not resolve the Pin isomer(s) required to maintain 

secretory competence in RPMC. However, several clues were furnished by these 

results. Firstly the inhibitory effects of PH-pARKWAA were likely to be due to 

sequestration of an endogenous PPIn, since inhibition by this protein could be 

specifically reversed with short chain PPIn analogues (figure 3.3). However, use 

of the high affinity Ptdlns(4,5)P2 binding PH-domain from PLCSj demonstrated 

that this was unlikely to be the endogenous lipid sequestered by PH-(3ARKwaa. 

Secondly, a role for 3-phosphorylated Pin appears unlikely because rundown was 

insensitive to high affinity PtdIns3P, Ptdlns(3,4)P2 or Ptdlns(3,4,5)P3 binding 

proteins. The respective concentration-dependent acceleration of rundown by 

LY294002 and wortmannin were inconsistent with their concentration-dependent 

effects on PI 3-kinases; the observed effects may rather be due to inhibition of 

protein kinase activities at higher concentrations (Davies et al., 2000). Therefore, 

it appears most unlikely that d-3 Pin are required to maintain secretory 

competence in mast cells.
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In this light, the interaction of PH-|3ARKwaa with monophosphorylated Pin 

isomers in a protein-lipid overlay assay (figure 3.4B) would implicate a role for 

PtdIns4P or PtdIns5P. No tools were available to test a role for the latter, since it 

was not possible to produce enough recombinant protein of the only published 

PtdIns5P binding protein to date, Ing52 (Gozani et al., 2003). It was also not 

possible to provide conclusive evidence that PtdIns4P was required. However, 

several lines of evidence lead one to suspect that it may be important. Firstly, the 

PH domain from FAPP1, which binds to PtdIns4P, was seen to retard RPMC 

rundown (figure 3.7A). However, care must be taken in interpreting results using 

this protein, given its interactions with the Arfl GTPase (Godi et al., 2004) and 

PtdIns(4,5)P2 (Roy and Levine, 2004). Secondly, type II PI 4-kinase is present in 

mast cells (figure 3.7C & D), and will operate under conditions of rundown to 

produce PtdIns4P.

Surprisingly, no direct evidence was found that PtdIns(4,5)P2 is required to 

maintain secretory competence in mast cells. However, inhibition was observed 

with monoclonal antibody kt3g, which interacts with PtdIns(4,5)P2 and 

PtdIns(3,4)P2 (figures 3.5B and 4.10). Given that the latter relies on PI3K for its 

synthesis, the lack of effect of PI3K inhibitors at concentrations that block PI3K 

argue against a role for PtdIns(3,4)P2. The inhibition observed with kt3g may 

therefore indeed be due to an interaction with PtdIns(4,5)P2. Consistent with this 

observation, the inhibitory and maintaining effects of PH-pARKWAA and PH- 

FAPP1 may be due to sequestration or protection of PtdIns4P, respectively. This 

pool of PtdIns4P, synthesized by a type II PI4K, may act independently, as well 

as being required for the synthesis of PtdIns(4,5)P2 by PtdIns4P-5 kinases 

(Fruman et al., 1998).

103



Chapter 4: Quantitative

immunofluorescence analysis of 

phosphoinositides

104



Chapter 4: Quantitative immunofluorescence analysis of phosphoinositides

4.1. Introduction

Much has been learnt about phosphoinositide localisation and metabolism through 

the use of specific lipid binding domains fused to green fluorescent protein (GFP) 

or its spectral derivatives expressed in living cells (Halet, 2005). Indeed, studies 

using the GFP-tagged PH domain from PLC61 have demonstrated the 

requirement for plasma membrane PtdIns(4,5)P2 for exocytosis from chromaffin 

cells (Holz et al., 2000) and the related PC 12 cell line (Aikawa and Martin, 2003), 

as well as from pancreatic beta cells (Lawrence and Bimbaum, 2003). 

Furthermore, studies using this tool demonstrated that plasma membrane 

PtdIns(4,5)P2 is required for synaptic vesicle endocytosis (Micheva et al., 2001). 

However, this technique relies on heterologous expression of this fluorescent 

probe, an approach not feasible in RPMCs.

Other studies have employed immunofluorescence to follow phosphoinositide 

localisation and function in fixed cells, with variable results. Anti-PtdIns4P 

antibodies revealed a predominantly Golgi membrane localisation of this lipid in 

HeLa cells (Wang et al., 2003), consistent with results from GFP-tagged 

PtdIns4P-binding PH domains (Godi et al., 2004). Several studies have employed 

a monoclonal antibody against PtdIns(4,5)P2, KT10 (Fukami et al., 1988). It was 

found to stain both the plasma membrane and internal membrane compartments of 

HeLa cells (Wang et al., 2004), or to produce a “patchy” labelling of the plasma 

membrane in COS-7 cells (Laux et al., 2000). Notably, in the latter study such 

PtdIns(4,5)P2 patches were found to be an artefact of paraformaldehyde fixation, 

and were not seen with glutaraldehyde. Staining exclusively at the plasma 

membrane was observed in hippocampal neurons after microwave fixation 

(Micheva et al., 2001). Triton X-100 permeabilisation of fixed NRK cells 

produced a speckled stain in nuclei at inter-chromatin granule clusters 

(Boronenkov et al., 1998), a localisation reported in HeLa cells with a different 

monoclonal anti-PtdIns(4,5)P2 antibody, 2C11 (Osborne et al., 2001). Thus the 

subcellular location of PtdIns(4,5)P2 reported with antibodies seems to vary 

greatly, depending on the fixation and permeabilisation conditions employed.
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Alternative tools to monitor Pin in cells have also been developed. One example 

is FITC-conjugated neomycin (Arbuzova et al., 2000), although this tool seemed 

to stain plasma membrane PtdIns(4,5)P2 as well as other cellular compartments 

independently of the presence of PPIn (Holz et al., 2000). Recently, specific Pin- 

binding PH domains have been used in an on-section labelling approach to report 

the localisation of PtdIns(4,5)P2 and PtdIns(3,4)P2 at an ultrastructural level 

(Watt et al., 2002; Watt et al., 2004).

In this chapter, results are presented that establish an accurate method for 

quantitative measurements of PtdIns(4,5)P2 localisation in cells. This technique 

has then been employed to study the dynamics of this lipid during RPMC 

exocytosis. Finally, the approach is applied to another PtdlnsP2 isomer, 

PtdIns(3,4)P2, to report this lipid’s accumulation at the plasma membrane during 

challenge with an oxidative stress in HEK-293 cells.

4.2. Establishing conditions for detection of PtdIns(4,5)P2 by 
immunofluorescence

To determine the subcellular localisation of PtdIns(4,5)P2, monoclonal antibodies 

2C11 (Thomas et al., 1999) and kt3g (Matuoka et al., 1988) were employed. 

Since 2C11 had revealed a punctate staining of nuclei after Triton X-100 

permeabilisation (Osborne et al., 2001; Thomas et al., 2001), milder 

permeabilisation with SL-0 or saponin was utilised in order to preserve 

membranes in fixed cells (see Materials and Methods). Under these conditions, 

both antibodies yielded a punctate staining of the cytoplasm, apparently excluded 

from the nucleus (figure 4.1 A & B). The staining appeared specific for 

PtdIns(4,5)P2, since it could be prevented by pre-absorbing 2C11 with 

glycerophosphoinositol (4,5)-fc«phosphate (GroPIns(4,5)P2), or kt3g with 

dioctanoyl-PtdIns(4,5)P2 (figure 4.1 A & B). Furthermore, sequestering 

endogenous PtdIns(4,5)P2 with neomycin also prevented the staining, an 

observation made previously with monoclonal anti-PtdIns(4,5)P2 antibody KT10 

in NRK cells (Laux et al., 2000). However, the signal obtained was not well co­

localised with endogenous membranes, as assessed by staining with BODIPY- 

ceramide (Koffer et al., 2002).
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Figure 4.1: anti-PtdIns(4,5)P2 antibodies produce a discontinuous stain of the 
cytoplasm at room temperature. RPMC were fixed and stained for Ptdlns(4,5)P2 with 
monoclonal antibodies 2C11 (A) or kt3g (B) at room temperature as described in 
Materials and Methods. Left panels show antibody staining, centre panels show antibody 
preabsorbed with either 0.2 mg/ml GroPIns(4,5)P2 (A) or 0.5 mg/ml diC8-PtdIns(4,5)P2 
(B); panels at right show cells preabsorbed and stained in the continuing presence of 100 
pM neomycin. Top panels show anti-PtdIns(4,5)P2 antibodies alone (red), whereas 
bottom panels show this channel merged with BODIPY-ceramide stained membranes 
(green). Scale bars =10 pm.
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Figure 4.2: anti-PtdIns(4,5)/>2 antibodies do not co-localise with expressed GFP- 
PH-PLC51 at room temperature. HEK cells expressing GFP-PH-PLC81 were fixed 
and stained with 2C11 at room temperature as described in Materials and Methods. The 
graph refers to the fluorescence intensity (in arbitrary units) of the GFP (green) and 
2C11 (red) channels along the line through the cell depicted in the merged image. Scale 
bar = 5 pm.



Chapter 4: Quantitative immunofluorescence analysis of phosphoinositides

To determine the validity of the signal observed with 2C11, the staining was 

compared with that given by GFP-PH-PLC61, a probe commonly used to 

determine PtdIns(4,5)P2 localisation in living cells (Halet, 2005). Upon transient 

transfection of this probe into HEK-293 cells, a plasma membrane staining was 

observed; in contrast, 2C11 produced a punctate staining of the cytoplasm in the 

same cells, which displayed a grossly different distribution to that of GFP-PH- 

PLC61 (figure 4.2). Although it has been suggested that GFP-tagged lipid binding 

domains may not reveal all pools of phosphoinositides in cells (Balia et al., 2000), 

the inability of 2C11 to detect an intact plasma membrane pool of PtdIns(4,5)P2 

observed with the expressed probe suggested that the 2C11 staining, apparently 

specific for PtdIns(4,5)P2 (figure 4.1 A), did not reflect the pre-fixation 

localisation of the lipid. Therefore, it was possible that fixation perturbed the 

localisation of PtdIns(4,5)P2.

To circumvent the fixation problems described above, RPMC were permeabilised 

with SL-0 in the presence of 100 piM Mg ATP, prior to blocking and staining of 

the cells; fixation was then performed as the last step in the protocol (Materials 

and Methods). Such an approach produced a punctate staining at the cell surface 

(figure 4.3A); this signal was again abolished by preabsorbing the antibody with 

GroPIns(4,5)P2 and was not observed if SL-O permeabilisation was omitted 

(figure 4.3B & C). These data were therefore consistent with localisation of 

PtdIns(4,5)P2 to the inner leaflet of the plasma membrane. Interestingly, the 

majority of cells displayed this distribution so long as MgATP was provided at > 

10 f4M (figure 4.4); such concentrations of MgATP are sufficient to maintain 

exocytosis in permeabilised cells (Howell et al., 1989; Pinxteren et al., 2001). A 

similar set of observations were also made recently using antibody KT10 in 

mechanically permeabilised PC12 cells (Grishanin et al., 2004).
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Figure 4.3: 2C11 stains the cell periphery in permeabilised cells before fixation. (A)
RPMC were permeabilised with SL-O in the presence of 100 pM MgATP and 3 mM 
EGTA, before blocking and staining with 2C11 as described in Materials and Methods. 
A single confocal section (2D) or z-stack of several confocal sections (encompasing the 
whole cell) taken at 1 pm intervals (3D) are shown. (B) as A, except 2C11 was 
preabsorbed with 0.2 mg/ml GroPInsP2- (C) as A with omission of SL-O. Scale bar =10 
pm.
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Figure 4.4: 2C11 staining is dependent on MgATP. RPMC were permeabilised with 
SL-O in the presence of 3 mM EGTA and the indicated concentration of MgATP before 
staining with 2C11 as described in figure 4.3. Images at left show 2C11 staining 
(green), those at right the same field by phase contrast. Scale bar =10 pm.
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Taken together, these results indeed seemed to indicate that fixation could perturb 

the endogenous localisation of PtdIns(4,5)P2 in cells. Different fixation conditions 

were therefore tested in an attempt to preserve PtdIns(4,5)P2 at the plasma 

membrane. The results of this study are presented in figure 4.5A: inclusion of 

0.2% glutaraldehyde (GA) with 2% paraformaldehyde (PFA) led to good co­

localisation with BODIPY-ceramide stained membranes. In most cells, the 

staining apparently reflected plasma-membrane proximal granules and/or the 

plasma membrane itself. PFA alone or with a lower concentration of GA led to 

poor co-localisation of PtdIns(4,5)P2 with membranes, whereas 3% GA alone 

produced weak Surface staining and intensely fluorescent extracellular patches. 

None of these conditions reflected closely the localisation observed with staining 

prior to fixation (figure 4.3).

Whilst these studies were underway, it was reported that PtdIns(4,5)P2 could be 

shed from membranes during staining of cryo-sections with GST-tagged PH- 

PLC61 (Watt et al., 2002). Such a phenomenon would be consistent with the 

results obtained above. Watt et al. discovered that PtdIns(4,5)P2 was retained in 

membranes if the staining protocol was performed at < 4°C. This principle was 

therefore adapted to the immunofluorescent protocols reported herein. However, 

whereas Watt et al. fixed 1321N1 astrocytoma cells at room temperature, all 

stages from fixation through staining to post-fixation were performed at < 4°C. 

This was done in an attempt to avoid cell lysis, which is observed after fixation of 

RPMCs at room temperature, but prevented at reduced temperatures (Lawson et 

al., 1977). Since the samples would need to be imaged at room temperature, a 

post-fixation step was included to preserve antibody localisation, preventing 

artefacts due to loss of PtdIns(4,5)P2 after warming the cells (see Materials and 

Methods).

Such a protocol produced a discontinuous staining of the plasma membrane in 

PFA-fixed cells; inclusion of > 0.05% GA yielded a continuous plasma membrane 

stain (figure 4.5B). For subsequent experiments, 3% GA was employed as a 

fixative since this reduced non-specific binding to exposed granule cores. When 

3-dimensional projections of confocal sections were observed, 2C11 was seen to 

produce a threadlike staining of the PM, co-localised with the cortical F-actin
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network (figure 4.6), and consistent with that observed after staining 

permeabilised cells prior to fixation (figure 4.3). Such a distribution was also 

observed with the anti-PtdIns(4,5)P2 antibodies 10F8 (Thomas et al., 1999) and 

kt3g, or with the PH domain from PLC61 (figure 4.6). The PH domain from 

GRP1, which is selective for PtdIns(3,4,5)P3 (Gray et al., 1999; Klarlund et al., 

2000), produced no staining. The thread-like staining at the cell surface appeared 

to reflect plasma membrane morphology when viewed either by field emission 

scanning electron microscopy or with the generic PM dye, CM-DiIlg (figure 4.6). 

Therefore, these data are consistent with a uniform distribution of PtdIns(4,5)/>2 at 

the PM of RPMCs, although local heterogeneity of PtdIns(4,5)P2 distribution may 

exist but be undetectable at this level of resolution.

Two different control experiments were performed to address the specificity of 

the staining with 2C11. Firstly, the antibody was preabsorbed prior to staining 

with a 10,000-fold molar excess (or 1000-fold, assuming 10 PtdIns(4,5)P2 binding 

sites per 2C11 IgM) of various inositol phosphates, corresponding to the 

headgroup of various inositol lipids. Figure 4.7A shows that of the inositol 

phosphates tested, only those of Ins(l,4,5)P3 and Ins(l,3,4,5)P4 were able to 

compete with the cellular antigen for antibody binding. Thus, it could be 

concluded that the cellular antigen is either PtdIns(4,5)P2 or PtdIns(3,4,5)P3. 

However, given that the PH domain from GRP1 did not stain cells, it seemed 

unlikely that the cellular antigen could correspond to the latter. To formally 

exclude this possibility, a second control experiment was performed: cells were 

pre-incubated with high concentrations of agents that would specifically sequester 

the endogenous lipid, preventing antibody binding. Figure 4.7B demonstrates that 

sequestering endogenous PtdIns(4,5)P2 with 1 mM neomycin (Schacht, 1978) or 

50 piM PH-PLC61 (Lemmon et al., 1995) prevented staining with 2C11, whereas 

sequestering endogenous PtdIns(3,4,5)P3 with PH-GRP1 (Klarlund et al., 2000) 

did not. The cellular antigen must, therefore, correspond PtdIns(4,5)P2. 

Interestingly, the PH domain from FAPP1, which binds to PtdIns4/\ as well as to 

PtdIns(4,5)P2 with a lower affinity (Roy and Levine, 2004), seemed to produce a 

partial competition with 2C11 (figure 4.7B). No competition was observed after 

sequestering endogenous PtdIns(3,4)P2 with the PH domain from TAPP1 (Dowler 

et al., 2000).
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Figure 4.5: Effect of temperature and fixation on anti-PtdIns(4,5)P2 staining.
RPMC were fixed with the indicated concentrations of paraformaldehyde (PFA) and 
glutaraldehyde (GA) and stained with anti-PtdIns(4,5)P2 antibodies 2C11 (A) or 10F8 
(B). Fixation and staining was performed at 25°C (A) or 4°C (B) as described in 
Materials and Methods. Top panels show anti-PtdIns(4,5)P2 (red), bottom panel a merge 
between 2C11 and BODIPY-ceramide stained membranes (green). Scale bars = 10 pm.



Figure 4.6: PtdIns(4,5)/>2 probes label the plasma membrane, (a-c) RPMCs were 
labelled with monoclonal anti-PtdIns(4,5)P2 antibody 2C11 (red) and Alexa488- 
phalloidin (green), (d-e) merged images of RPMCs stained with anti-PtdIns(4,5)P2 
antibodies 10F8 and kt3g, respectively (red); merged images are shown of cells 
counter-stained with Alexa488-phalloidin (green), (f) RPMCs stained with 100 nM 
GST-PH-PLC81 (red), (g) RPMCs stained with GST-PH-GRP1 (red) and Draq5™ 
(blue), (h) RPMCs stained with the plasma membrane dye CM-DiIlg (red). All images 
are z-stacks of confocal sections taken at 1 pm intervals through the cell, except for 
(g) which is a single equatoral confocal section. Scale bars = 10 pm. (i) field- 
emission scanning electron micrograph of a fixed RPMC (image courtesy of Dr. 
Stephen Gschmeissner).
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Figure 4.7: specificity of anti-PtdIns(4,5)P2 antibody 2C11. RPMC were fixed and 
stained with 2C11 (red) and Draq5™ (blue) at 4°C as described in Materials and 
Methods. (A) Antibodies were applied after preabsorption with 213 pM of the indicated 
inositol phosphates (a 1000-fold molar excess assuming 10 PtdIns(4,5)P2 binding 
sites/IgM). Images show equatorial confocal sections. (B) Cells were either pre­
absorbed with 50 pM of the indicated PH domain, or stained in the presence of 1 mM 
neomycin. Scale bars = 10 pm.
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Notably, it was concluded in chapter 3 that the inhibition of exocytosis by the 

mutant PH domain from PARK (PH-pARKWAA) must be due to an interaction 

with an inositol lipid other than PtdIns(4,5)P2. Indeed, 50 piM of this PH domain 

(a concentration 20-fold that required to produce substantial inhibition of 

exocytosis, figure 3.2B) did not compete with 2C11, demonstrating that PH- 

pARKWAA did not sequester endogenous PtdIns(4,5)P2 (figure 4.7B). This lends 

further evidence to support the original conclusion drawn in chapter 3.

When RPMCs were stained with a lower concentration (10 piM) of GST-PH- 

PLC61, the domain did not compete with 2C11; if its localisation was revealed 

with anti-GST antibodies, it was seen to co-localise with 2C11 (figure 4.8B). 

Control experiments revealed that the anti-GST antibody, despite giving a weak 

background signal, did not produce a similar localisation when used in the 

absence of the GST-tagged PH domain (figure 4.8A). Similar experiments were 

performed in HEK-293 cells transiently expressing GFP-PH-PLC51 (figure 4.9). 

In contrast to results obtained at room temperature, an excellent co-localisation 

between the two probes was produced with the cold staining protocol. When 3- 

dimensional projections of several confocal sections were viewed, 2C11 produced 

a higher resolution image of the surface structures picked out by both probes. The 

poorer resolution observed with GFP-PH-PLC61 is likely caused by the diffuse 

cytosolic signal, corresponding to unbound PH domain, or PH domain bound to 

soluble Ins(l,4,5 )P3.

Because a similar staining pattern was observed with monoclonal anti- 

PtdIns(4,5)P2 antibodies 10F8 and kt3g, inositol phosphate competition 

experiments were also performed with these antibodies (figure 4.10). However, as 

well as being competed with Ins(l,4,5)P3 and Ins(l,3,4,5)P4, both antibody 

stainings were prevented with Ins(l,3,4)P2. In fact, Ins(l,3,4)P3 and Ins(l,3,4,5)P4 

were better competitors for kt3g staining than Ins(l,4,5)P3. Taken together with 

the observation that kt3g displays a higher affinity interaction with PtdIns(3,4)P2 

on protein-lipid overlay assays (figure 3.4), it appears that kt3g forms a higher 

affinity interaction with PtdIns(3,4)P2 than PtdIns(4,5)P2.
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Figure 4.8: 2C11 co-localises with GST-PH-PLC61 at the plasma membrane.
RPMC were fixed and stained with 2C11 (red) and polyclonal anti-GST antibody 
(green) after incubation during blocking in the presence (B) or absence (A) of 10 pM 
GST-PH-PLC81. Left panels show a merged image from the red and green channel. Co­
localisation appears yellow. The graphs on the right show the fluorescence intensity 
profiles for both chanels along the lines depicted in the images. Scale bar =10 pm.
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Figure 4.9: 2C11 co-localises with expressed GFP-PH-PLC81 at 4°C. HEK cells 
expressing GFP-PH-PLC81 were fixed and stained with 2C11 at 4°C as described in 
Materials and Methods. The graph refers to the fluorescence intensity (in arbitrary 
units) of the GFP (green) and 2C11 (red) channels along the line through the cell 
depicted in the merged image. 2D indicates a single confocal section; 3D denotes a z- 
stack of confocal sections acquired at 1 pm intervals through the same field. Scale bars 
= 20 pm.



rv

0

• \
f v '  { )

10F8 kt3g
Figure 4.10: specificity of anti-PtdIns(4,5)/>2 antibodies 10F8 and kt3g. RPMC were 
fixed and stained for PtdIns(4,5)P2 with monoclonal antibodies 10F8 (A) or kt3g (B) at 
4°C as described in Materials and Methods. Antibodies were applied either alone (top 
pannels) or after preabsorption with 300 pM of the indicated inositol polyphosphates. 
Images show fluorescence intensity scales for equatorial confocal sections, proceeding 
from black at 0, through red to 250 (arbitrary units) in white, as indicated in the inset. 
Laser power and CCD camera gain and offset were set such that background signal (in 
the absence of secondary antibody) and the maximum intensity fell within the range of 
detection. Scale bar = 10 pm.
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2C11 thus gives a reliable localisation of PtdIns(4,5)P2 in fixed cells after a cold 

fix and staining protocol in RPMC and HEK-293 cells. To address whether this 

protocol has a general application, staining of NIH-3T3 fibroblasts was also 

performed. These cells are rather flattened, and 2C11 produced a continuous 

staining pattern across the cell when confocal sections were views, which was 

apparently more intense in the juxtanuclear regions (figure 4.11). Similar staining 

patterns were observed in COS-7 cells stained with KT10 (Laux et al., 2000). 

However, when orthogonal sections through the cell were reconstructed from 

stacks of confocal sections, staining was observed at the cell periphery. The signal 

was specific for PtdIns(4,5)P2, since it could be competed with GroPIns(4,5)P2 or 

Ins(l,4,5)P3, or by sequestering endogenous lipid with neomycin or GST-PH- 

PLC61, but not GST-PH-GRP1 (figure 4.12). Furthermore, GST-PH-PLC61 

produced a similar staining to 2C11 when revealed with anti-GST antibodies, 

whereas GST-PH-GRP1 produced no staining (figure 4.12B). Unexpectedly, 10 

piM of GST-PH-PLC61 was sufficient to compete with 2C11 in NIH-3T3 cells, 

whereas it was not in RPMC (figure 4.8B). Indeed, 50 piM was required to 

compete with 2C11 in RPMC (figure 4.7). Since identical protocols and antibody 

dilutions were employed in all these experiments, it seems likely that this 

discrepancy therefore reflects differences in the local concentration of 

Ptdlns(4,5)P2 at the plasma membrane of these cells. The implication would thus 

be that RPMC contain a higher concentration of PtdIns(4,5)P2 at the plasma 

membrane that do NIH-3T3 cells.
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Figure 4.11: Surface staining of NIH-3T3 cells with 2C11 at 4°C. 3T3 cells were 
fixed and stained with 2C11 (red), Draq5™ (blue) and Alexa488-phalloidin (green) as 
indicated at 4°C (Materials and Methods). For the image depicting 2C11, orthogonal 
views through the indicated horizontal and vertical axes are also shown. The blue line in 
the orthogonal views represents the position chosen for the optical section shown in the 
other panels. Scale bar = 20 pm.
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Figure 4.12: 2C11 detects PtdIns(4,5)P2 at the surface of NIH-3T3 cells. 3T3 cells 
were fixed and stained for PtdIns(4,5)P2 with monoclonal antibody 2C11 (red), nuclei 
with Draq5™ (blue) and either F-actin with Alexa488-phalloidin (green) or GST-tagged 
proteins with anti-GST (green) as indicated. (A) 2C11 was preabsorbed with 0.2 mg/ml 
GroPIns(4,5)P2 or a 2000-fold molar excess of Ins(l,4,5)P3. (B) Cells were preabsorbed 
with 100 pM neomycin (cells counter-stained with phalloidin) or 10 pM of the 
indicated GST-PH domain fusion proteins, which were revealed with anti-GST (green). 
Single confocal sections are shown, with orthogonal views for PH-PLC81 stained cells 
as in figure 4.11. Scale bars = 20 pm.
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4.3. PtdIns(4,5)P2 dynamics during exocytosis

Since 2C11 specifically detects plasma membrane pools of PtdIns(4,5)P2 in 

RPMCs, this tool was used to follow the dynamics of this lipid during exocytosis. 

As described in chapter 1, mast cell exocytosis occurs via the fusion of granule 

membranes with the plasma membrane, followed by fusion between granule 

membranes. PtdIns(4,5)P2 was only detected at the plasma membrane; thus if this 

lipid is required at the site of membrane fusion, PtdIns(4,5)P2 would be expected 

to either relocate to the granule membranes through the plane of the fused granule 

and plasma membranes, or to be synthesized de novo at granule membranes. 

Determining the localisation of PtdIns(4,5)P2 during exocytosis in RPMC would 

therefore have important implications for its role in membrane fusion.

To permit the simultaneous observation of exocytosis and PtdIns(4,5)P2 during 

degranulation of RPMC, exposure of granule cores after membrane fusion was 

monitored using Alexa647 concanavalin-A (Alexa647-ConA). This lectin binds to 

granule cores with high affinity, producing an intense staining pattern. Thus if this 

lectin is applied to the fixed cells before permeabilisation, it only has access to 

those granule cores exposed to the extracellular medium, i.e. those granules that 

have undergone exocytosis (Norman et al.y 1996). Notably, since RPMC 

exocytosis involves extrusion of granule cores from the cell, stained granules may 

be lost during exocytosis and so this technique has the drawback of being only 

semi-quantitative (Norman et al., 1996).

Surprisingly, RPMC stimulated to degranulate with the polycationic agonist, 

compound 48/80 (48/80) displayed a severe reduction in 2C11 staining (figure 

4.13A, 15 s). This loss of staining was apparent in most cells during the first 

minute of stimulation, although it reappeared at later time points (figure 4.13,150 

and 300 s), well after exocytosis is complete (Penner, 1988). At these later time 

points, some staining was also apparent on internal membranes from fused 

granules, although the majority was at the plasma membrane. It thus seemed that 

exocytosis was accompanied by the removal of plasma membrane PtdIns(4,5)P2.
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Figure 4.13: Transient depletion of plasma membrane Ptdlns(4,5)P2 staining after 
activation of exocytosis. RPMC were stimulated with 10 pg/ml 48/80 for the indicated 
time periods, before fixing and staining with 2C11 (red) and Alexa647-ConA (blue). 
Top panels show merged images between the red and blue channels, bottom panels a 
fluorescence intensity plot for the same field in the red channel, "ctrl" indicates 
stainings where 2C11 has been omitted, in order to determine the background 
fluorescence. The asterisk denotes a contaminating neutrophil. Scale bar =10 pm.
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To provide quantitative analysis of this reduction in PtdIns(4,5)P2-staining, 

metamorph software was used to provide an automated analysis of low- 

magnification image stacks of RPMC (see Materials and Methods). Such analysis 

revealed that the population of resting RPMC displayed a broad distribution of 

fluorescent intensities with a single peak (figure 4.14A). Analysis of cells stained 

in the absence of 2C11 yielded a much narrower peak centred at a reduced 

fluorescent intensity (figure 4.14A, ctrl), providing a measure of the background 

noise of this system. When cells stimulated for 15 s were analysed, a single peak 

was observed that substantially overlaid the background signal. However, this 

peak also contained a broad shoulder at higher fluorescent intensities, reflecting 

the small proportion of cells not yet degranulating (see figure 4.13, 15 s, lower 

cell). The implication of these data is that those cells degranulating at early time 

points undergo a complete loss of plasma membrane PtdIns(4,5)P2. After 

completion of exocytosis at 5 minutes, the population once again displayed a 

broad, single peak of fluorescent intensity overlapping the resting level (figure 

4.14A, 300 s), representing the recovery of staining.

From these data, the population mean fluorescence value was calculated at each 

time point, and used to plot the kinetics of PtdIns(4,5)P2 dynamics during 

exocytosis (figure 4.14B). From this curve, it is apparent that there is a rapid 

depletion of PtdIns(4,5)P2 within the first 15 s of stimulation, followed by a 

steady recovery of fluorescence to ~90% of the resting value in ~3 min. 

Comparison between the mean values (figure 4.14B) and the population 

distribution (figure 4.14A) reveals the nature of this depletion at 15 s: whereas the 

population mean drops by 73%, the fluorescence distribution reveals that 82% of 

the cells overlap with the background peak. Therefore, the mean value represents 

the majority of cells having undergone almost complete depletion of 

PtdIns(4,5)P2.

The simplest interpretation for these observations is that PtdIns(4,5)P2 itself is 

being transiently depleted from the plasma membrane during exocytosis. 

However, alternative explanations are feasible. For example, the decrease could 

represent binding of a high affinity effector protein to PtdIns(4,5)P2 in an 

interaction that survives fixation, and thus prevents access of antibody to the lipid.
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To test this possibility, radiolabelling of inositol lipids in RPMCs was performed. 

Notably, since this extraction procedure uses 1 M HC1 (see Materials and 

Methods), any interactions between protein and lipid are unlikely to survive. 

RPMC were labelled in low-inositol Medium 199, containing 1.6 piM inositol; 

parallel cultures contained either unlabelled inositol, or [2-3H]-inositol at 25 

//Ci/ml. After loading for 19 h, cells were rinsed and then stimulated for 0,15,  30 

or 60 s with 48/80 (figure 4.15).

After fixation and staining with 2C11, a number of differences between cells 

incubated for 19 h and those used immediately after purification could be 

observed (figure 4.15A). Firstly, the resting cells contained two peaks of 

fluorescence: the major peak containing 74% of the cells, and a minor peak 

overlapping that of background containing 26% of the cells. This latter peak 

presumably reflected cells that had not survived the 19 h incubation. Secondly, 

although a similar number of cells (79%) overlapped with the background peak 

after stimulation for 15 s, the population mean dropped only by 54% (figure 

4.15B). This most likely reflects the fact that the resting population contained 

cells with no fluorescence above background, decreasing the population mean and 

thus accounting for the relative decrease observed at 15 s. Finally, recovery of 

PtdIns(4,5)P2-staining appeared faster after incubating the cells for 19 h in culture, 

completing to ~80% of control in ~ 1 min (figure 4.15).

Importantly, when the mean fluorescence values were plotted along with the 

biochemical measurements of [2-3H]-PtdIns(4,5)P2, excellent agreement was 

found between the two estimates (figure 4.15B). Both displayed the transient 

depletion within 15 s (54 ± 6 % for 2C11, 52% for [2-3H]-PtdIns(4,5)P2), and 

recovery within -  60s. Therefore, the fluorescence measurement appeared to 

reflect changes in [2-3H]-PtdIns(4,5)P2 during exocytosis. However, fluorescence 

measurements had a tendency to slightly underestimate the biochemical analysis. 

Although this may be due to an undetermined experimental error in either 

technique, the disparity could also be due to the existence of a second, minor pool 

of PtdIns(4,5)P2 which is detected by [2-3H]-inositol labelling, but not by 2C11.
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Figure 4.14: quantitative analysis of 2C11 staining during exocytosis. Low
magnification images from the experiment presented in figure 4.13 were analysed using 
an automated programme (written by A. Nicol and D. Zicha, CR-UK Light Microscopy 
Laboratory) to determine total fluorescence intensity for the red channel as described in 
Materials and Methods. (A) The distribution of fluorescence intensity across a resting 
population, or across a population stimulated for 15 and 300 s with 10 jxg/ml 48/80 is 
plotted as indicated, "ctrl" refers to a population stimulated for 300s, where 2C11 was 
omitted from the staining procedure. (B) The population means (± S.E.M., n > 100) for 
the indicated time points, calculated after subtraction of the ctrl fluorescence and 
normalisation to the resting (0 s) level.
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Figure 4.15: 2C11 accurately measures PtdIns(4,5)P2 levels during exocytosis.
RPMC were cultured for 19 hours in Medium 199 with 1.6 JiM unlabelled Ins (A & B), 
or 25 |iCi/ml [2-3H]-Ins (B) before stimulation with 10 (Xg/ml 48/80 for the indicated 
time periods. (A) The distribution of fluorescence intensities as described for figure 
14.14A. (B) The mean fluorescent intensities (± S.E.M., n > 98) for the population 
stimulated for the indicated time point are plotted as in figure 4.14B. For comparison, 
the counts in [2-3H]-PtdIns(4,5)P2 arc plotted on the same graph; both data sets are 
normalised to the levels observed in resting cells (time 0). [2-3H]-PtdIns(4,5)P2 was 
determined after extraction of the lipids and analysis using HPLC (S.K. Dove, 
University of Birmingham) as described in Materials and Methods.
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As discussed at the beginning of this chapter, 2C11 was previously found to stain 

nuclear speckles in HeLa cells (Osborne et a/., 2001). In this study, Triton X-100 

was used to permeabilise all cellular membranes. Since saponin was used in the 

experiments presented hitherto, the nuclear envelope is most likely not 

permeabilised. To investigate whether mast cells contain a detergent resistant 

nuclear pool of PtdIns(4,5)P2, Triton X-100 was used to extract membranes 

during staining with 2C11. Indeed, RPMC contained a weak speckled staining in 

the nucleus (figure 4.16, resting). Notably, after stimulation with 48/80 the 

fluorescence intensity was seen to increase dramatically, increasing by 5-fold 

within 30 s, before dropping and eventually reaching a plateau at 4-fold after ~ 3 

min (figure 4.16). The total fluorescence intensity was compared to cells imaged 

using the standard protocol used for plasma membrane PtdIns(4,5)P2, and 

revealed that the resting nuclear staining was ~1% the intensity of the plasma 

membrane staining. The size of the nuclear PtdIns(4,5)P2 pool therefore seems 

relatively minor compared to the plasma membrane pool in RPMCs, and may 

therefore reflect the difference between fluorescence and radiolabelled estimates 

of PtdIns(4,5)P2.
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Figure 4.16: nuclear PtdIns(4,5)P2 levels increase in response to 48/80. RPMC were 
stimulated with 10 pg/ml 48/80 as indicated, fixed and extracted with 0.2% Triton X- 
100. They were stained with 2C11 (red), Alexa488-phalloidin (green) and Draq5™ 
(blue) as described in Materials and Methods. (A) Centre panels show an enlarged view 
of one of the nuclei from the top panel; bottom panels show fluorescence intensity 
profiles in the red channel for the nucleus shown in the centre panel. Scale bars = 5 pm. 
(B) Mean fluorescence intensity (± S.E.M., n > 100) of nuclei were calculated, and 
expressed as the % of the fluorescence of plasma membrane staining.
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PtdIns(3,4)P2 dynamics during oxidative stress

The results presented thus far indicate that immunofluorescence is an accurate 

technique with which to follow the dynamics of localised pools of PtdIns(4,5)P2. 

Might such a technique be applicable to other Pin? To address this question, 

experiments were conducted to establish whether antibodies against PtdIns(3,4)P2 

could be used to follow the dynamics of this lipid.

PtdIns(3,4)P2 is present at undetectable levels in resting cells (Auger et al., 1989; 

Stephens et al., 1991). Indeed, staining with anti-PtdIns(3,4)P2 antibody P034 

produced only a very faint, diffuse staining of HEK 293 cells (figure 4.17A). 

However, PtdIns(3,4)P2 levels have been shown to increase dramatically in 

response to oxidative stress, such as hydrogen peroxide treatment (Gray et al.,

1999). Incubation of HEK-293 cells with 10 mM peroxide led to the emergence of 

an intense surface staining of HEK 293 cells, which was abolished by the PI 3- 

kinase inhibitors LY294002 and wortmannin (figure 4.17B). This indicates that 

the staining observed was indeed due to synthesis of 3-phosphorylated inositol 

lipids. Since oxidative stress for 10 minutes leads to the accumulation of 

PtdIns(3,4)P2 and to a lesser extent PtdIns(3,4,5)P3 (Gray et al., 1999), the 

specificity of the antibody with regard to these two lipids was tested. Pre­

incubation of the antibody with PtdIns(3,4)P2-containing liposomes abolished 

staining in peroxide-treated cells, whereas PtdIns(3,4,5)P3-containing liposomes 

were without effect (figure 4.17C). Thus P034 appears to be a specific probe for 

the detection of PtdIns(3,4)P2.

In contrast to staining with anti-PtdIns(4,5)P2 antibodies, P034 appeared to work

at room temperature (see Materials and Methods). However, to enable

simultaneous detection of PtdIns(4,5)P2 and PtdIns(3,4)P2, the cold (< 4°C)

staining protocol was employed. In resting HEK-293 cells, 2C11 labelled the

plasma membrane as noted previously (figure 4.9); in contrast to cells labelled at

room temperature, P034 also produced a plasma membrane staining, albeit rather

weak (figure 4.18A). It seems likely that this is caused by cross-reactivity of

P034 with PtdIns(4,5)P2: this would explain why only a very weak, diffuse signal

is seen with P034 at room temperature (figure 4.17A), given that a similar

localisation of PtdIns(4,5)P2 is also seen under these conditions (figure 4.1).
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Upon a 10 minute oxidative shock with 10 mM peroxide, an intense staining with 

P034 appeared, whereas the staining with 2C11 was not appreciably altered 

(figure 4.18B). Notably, the two signals displayed an identical localisation, 

demonstrating synthesis of PtdIns(3,4)P2 at the plasma membrane in response to 

oxidative shock. Given that the co-localisation was near perfect, it was important 

to check that this was not due to cross-reactivity among the fluorescent secondary 

antibodies. Indeed, Alexa488 anti-IgG3 did not cross-react with the 2C11 IgM, 

and the Alexa555 anti-IgM did not cross-react with the P034 IgG3 (figure 4.18C).
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Figure 4.17: antibody P034 specifically stains PtdIns(3,4)P2. HEK 293 cells were 
treated for 10 min in the presence (B & C) or absence (A) of 10 mM H20 2. They were 
then fixed, permeabilized with 0.5% saponin and stained for PtdIns(3,4)P2 with 
monoclonal antibody P034 at room temperature as described in Materials and Methods. 
Images show fluorescence intensity scales, with signal strength increasing through red 
to white, as indicated in A. (B) cells were pre-incubated for 20 min with 50 pM 
LY294002 or 100 nM wortmannin (wort) before stimulation in the continuing presence 
of LY294002, as indicated. (C) P034 was preabsorbed with liposomes containing 5 
mole % dipalmitoyl-Ptd!ns(3,4)P2 or PtdIns(3,4,5)P3 as indicated. Scale bar =10 pm.
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Figure 4.18: anti-PIn antibodies can detect multiple Pin isomers in the same cell.
HEK 293 cells were treated for 10 min in the presence (B, C) or absence (A) of 10 mM 
H20 2 prior to fixation and staining with P034 and Alexa488-anti-IgG3 (green) plus 
2C11 and Alexa555-anti-IgM (red). The enlarged image on the right of A and B shows 
orthogonal views along the depicted axes at top and right. (C) shows cells stained with 
2C11 and Alexa488-anti-IgG3 (green) or with P034 and Alexa555-anti-IgM (red); DIC 
images from the same field are shown on the right. Scale bar = 20 pm.
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4.5. Conclusions

Although staining with anti-PtdIns(4,5)P2 antibodies appeared to be specific for 

the lipid (figures 4.1, 4.3,4.7, 4.10 and 4.12), the localisation observed depended 

strictly on the fixation conditions used and the temperature at which staining was 

performed (figure 4.5). Indeed, membrane association of the signal was only 

observed when fixation and staining was performed ^ 4°C. Watt et al. made 

similar observations on cryo-sections, noting that “when grid-mounted sections 

were exposed to room temperature at any time, there was significant staining of 

the grid film outside the cell profiles. This labelling could be inhibited specifically 

by InsP3 headgroups and was likely due to PtdIns(4,5)P2 release from the 

membranes” (Watt et al., 2002). A similar conclusion was drawn to explain the 

aberrant localisation of PtdIns(4,5)P2 detected by immunofluorescence at room 

temperature (figures 4.1 and 4.2).

Staining was also sensitive to the temperature of fixation, and was improved 

through the use of glutaraldehyde as a fixative (figure 4.5). This is in contrast with 

the report by Watt et al., wherein paraformaldehyde fixation at room temperature 

was employed. Several explanations may explain this discrepancy. Firstly, the 

data presented in this chapter on fixation conditions were performed in RPMC, 

whereas Watt et al. used 1321N1 astrocytoma cells; RPMC were previously 

reported to undergo lysis when fixed at room temperature (Lawson et al., 1977). 

Secondly, the two procedures differ drastically after fixation, therefore conditions 

optimal for retaining Pin in membranes during permeabilisation and staining of 

cells for immunofluorescence may be quite different than those required during 

sectioning and on-section labelling.

Use of GFP-PH-PLC61 as a reporter for the pre-fixation localisation of 

PtdIns(4,5)P2 provides compelling evidence that the cold fixation-staining 

protocol preserves such localisation, since the GFP-tagged probe and 2C11 show 

a near perfect overlap (figure 4.9). The immunofluorescence protocol also 

possesses the advantage of a lower cytosolic background. Furthermore, by 

comparing fluorescence measurements with biochemical measurements (figure 

4.15), 2C11 was shown to accurately reflect the relative PtdIns(4,5)P2 content of
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cells. Immunofluorescence thus provides a reliable, accurate and quantitative tool 

with which to observe PtdIns(4,5)P2 content in fixed cells.

In addition, monoclonal antibody P034 was shown to be a reliable tool to detect 

PtdIns(3,4)P2 in fixed cells (figures 4.17 and 4.18). Using this tool, PtdIns(3,4)P2 

was shown to be synthesized exclusively at the plasma membrane in response to a 

10 minute oxidative stress. This is in contrast with the results reported in two 

other studies, which noted that as well as appearing at the plasma membrane, 

PtdIns(3,4)P2 could also be observed on the nuclear envelope (Yokogawa et al.,

2000), endoplasmic reticulum (ER) and luminal vesicles of the multivesicular 

body (Watt et al., 2004) under similar conditions. Some of these differences may 

be explained by the use of saponin to permeabilise cells for the work presented in 

this chapter: saponin will probably not permeabilise the membranes of multi­

vesicular bodies or the nuclear envelope, preventing staining of the luminal 

vesicles and inner membrane of the nuclear envelope, respectively. It is harder to 

explain the lack of fluorescence on ER membranes, but it worth noting again the 

differences between the immunofluorescence protocol and on-section labelling of 

cryosections (Watt et al., 2002; Watt et al., 2004).

It was surprising that Ptdlns(3,4)P2-staining did not require reduced temperatures 

for retention at the plasma membrane (figure 4.17). One reason why PtdIns(3,4)P2 

may be more readily retained in the membrane than is PtdIns(4,5)P2 may be a 

difference in physical/chemical interactions with the membranes, possibly through 

different fatty-acid compositions of the lipids. Indeed, PPIn were shown to be 

enriched in stearic and palmitic acids (at the expense of arachidonate) relative to 

Ptdlns in liver (Augert et al., 1989) and myocardium (Lamers et al., 1993). 

Furthemore, PtdIns(3,4)P2 has been shown to be synthesised via PtdIns3P (Banfic 

et al., 1998a; Banfic et al., 1998b; Zhang et al., 1998); using kinase mutants, it 

was recently reported that PtdIns3P and PtdIns4P-deficient yeast displayed 

different changes in fatty-acid composition (Wenk et al., 2003). There is thus 

precedent in the literature for differential fatty acid profiles among Pin.

An alternative explanation is that peroxide treatment may lead to stabilisation of 

the lipids in the bilayer. There is evidence for cytoskeletal rearrangement after 

oxidative stress (Zhu et al., 2005), with the formation of a large number of
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protrusions (figure 4.18). Pin have been found to be strongly associated with the 

actin cytoskeleton (Fukami et al., 1992; Fukami et al., 1996), which may thus 

stabilise the lipids after fixation. Because PtdIns(4,5)P2 staining was not tested at 

room temperature in the presence of oxidative stress, this therefore remains a 

possibility. However, using the cold fixation-staining protocol, it was possible to 

image both Pin in single cells (figure 4.18). Together, these results demonstrate 

that immunofluorescence can be applied to monitor the localisation of PPIn pools, 

as well as enabling dynamic changes in lipid levels to be observed.
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5.1. Introduction

In the preceding chapter, a transient decrease in PtdIns(4,5)P2 levels was recorded 

after activation of exocytosis with compound 48/80. Previous studies showed that 

the turnover of Pin was accelerated after activation of RPMC with 48/80 or 

antigen (Cockcroft and Gomperts, 1979). It thus seems that a change in Pin 

metabolism is associated with exocytosis in RPMCs. The experiments presented 

in this chapter aimed to define which metabolic pathway(s) are responsible for 

this accelerated Pin metabolism, as well as if and how this metabolism affects 

exocytosis.

Notably, phospholipase C-mediated breakdown of PtdIns(4,5)P2 has already been 

implicated in the regulation of mast cell exocytosis. Bone-marrow derived mast 

cells (BMMCs) devoid of PLCy2 do not activate the requisite InsP3/Ca2+ pathway 

and fail to degranulate in response to antigen (Wang et al., 2000). Furthermore, 

antibodies against PLCp3, but not against PLCyl, blocked degranulation in 

response to 48/80 (Ferry et al., 2001). Therefore, phospholipase C activity appears 

a likely candidate to mediate PtdIns(4,5)P2 depletion.

5.2. Defining the pathway of PtdIns(4,5)P2 depletion

There are three defined metabolic pathways that may lead to PtdIns(4,5)P2 

depletion: removal of the d-4 and d-5 phosphates by inositol phosphatases, 

phosphorylation of the d-3 position by PI3K to produce PtdIns(3,4,5)P3, or PLC 

mediated hydrolysis at the phosphodiester bond to produce diaclylgcerol (DAG) 

and Ins(l,4,5)P3. Notably, the first two pathways will not alter total Pin levels, 

whereas activation of PLC will lead to depletion of total Pin, ultimately at the 

expense of Ptdlns as PtdIns(4,5)P2 is resynthesized by phosphorylation (Augert et 

a l , 1989).
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Figure 5.1. Phospholipase C activity in RPMC is required for exocytosis and Ca2+ 
signalling. (A) Stimulation with 48/80 causes a decrease in bulk phosphoinositide 
content. Cells labelled with [2-3H]-inositol as in figure 4.15 were stimulated for the time 
indicated on the abscissa; the ordinate shows the change in radioactivity of Ptdlns, 
PtsIns(4)P, PtdIns(4,5)P2 or their sum (total Pin) relative to resting levels of total Pin. 
(B, C) PLC inhibitors prevent mast cell degranulation. RPMCs were pre-incubated with 
Et-18-OMe (or EtOH, as vehicle control) for 20 min (B), or U73-122/-343 for 5 min 
(C), at the indicated concentration before stimulation with 48/80 at 25 °C. After 10 min, 
the medium was assayed for released p-hexosaminidase activity. (D) PLC inhibitors 
block Ca2+ signalling. RPMCs were loaded for 20 min with Fluo3, pre-incubated with 
the indicated compound as described for (B-C) or for 20 min with BAPTA-AM, and 
activated with 48/80 (arrow). Normalised fluorescence intensity traces are shown from 
a single representative cell for each condition.



Figure 5.2: PLC causes depletion of PtdIns(4,5)P2 from the plasma membrane.
RPMC were incubated with the indicated compounds as described in figure 5.1. 
Subsequently, degranulation was evoked with 48/80 for 30 s. Cells were fixed and 
stained with 2C11 (red) and Alexa647-ConA (blue). Scale bar = 10 pM.
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Could any of these pathways be discerned in RPMC? To answer this question, 

data on the levels of all Pin detected after metabolic labelling of cells for 19 hours 

with [2-3H]-inositol were analysed (figure 5.1 A). From these data, it is apparent 

that Ptdlns underwent depletion such that approximately 15% of the total labelled 

Pin was depleted within 60 seconds of stimulation with 48/80 (figure 5.1 A). This 

result suggests that there is a sustained increase in PLC activity and that this is 

likely to account for the majority of the decrease in PtdIns(4,5)P2. The drastic 

decreases in Ptdlns levels relative to PtdIns(4,5)P2 may be explained by an 

increase in the rate of PtdIns(4,5)P2 synthesis from Ptdlns, whereas re-synthesis of 

Ptdlns from DAG and inositol does not keep up; PtdIns(4,5)P2 levels may 

therefore be ultimately maintained at the expense of Ptdlns, as observed after 

receptor activation in hepatocytes (Augert et al., 1989).

To address whether this PLC activity was required for exocytosis, a 

pharmacological approach was employed. The PLC inhibitor U73122 (Thompson 

et al., 1991; Yule and Williams, 1992) blocked exocytosis with an IC50 of ~ 2 yM , 

whereas its low activity analogue U73343 had a partial effect with an IC50 of -2 0  

yM  (figure 5.1C). Another PLC inhibitor, Et-18-OMe (Powis et al., 1992), also 

blocked exocytosis with an IC50 of -27  yM  (figure 5 .IB). PLC activity thus 

seemed to be mandatory for exocytosis.

As discussed above, PLOy2 activity has already been shown to be requisite for 

Ca2+ signalling in cultured BMMCs (Wang et al., 2000). Calcium has also been 

implicated as being important for exocytosis from RPMCs (Kagayama and 

Douglas, 1974; Gomperts et al., 1983; Howell and Gomperts, 1987). To test 

whether PLC activity was required for Ca2+ signalling, RPMCs were loaded with 

the calcium indicator Fluo 3, incubated with pharmacological agents, and 

challenged with 48/80. As previously reported (Penner, 1988; Mori et al., 2000), 

RPMCs displayed a rapid increase in intracellular Ca2+ levels, which then declined 

gradually (figure 5.ID). This transient was not observed if the cells were loaded 

with the calcium chelator BAPTA-AM; 5 yM  U73122 also abolished the Ca2+ 

transient, whereas U73343 was without effect. PLC inhibitors also appeared to 

block the bulk depletion of plasma membrane PtdIns(4,5)P2. As shown in figure 

5.2, 5 yM  U73122 or 40 yM  Et-18-OMe abolished exocytosis and the depletion
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of Ptdlns(4,5)P2, whereas U73343 was without effect. BAPTA also abolished 

PtdIns(4,5)P2 depletion, most likely by reducing basal Ca2+ levels and inhibiting 

PLC, which is a calcium-dependent enzyme (Rhee et al., 1989). These data are 

therefore consistent with a requirement for PLC in the generation of a calcium 

signal that initiates degranulation.

However, conditions are known whereby exocytosis can be triggered from mast 

cells in the effective absence of calcium (Penner, 1988; Churcher and Gomperts, 

1990; Koffer and Churcher, 1993). Furthermore, calcium release occurs within 2 s 

of stimulation with 48/80 (figure 5.1), whereas breakdown of PtdIns(4,5)P2 may 

take several seconds (figure 4.13). Therefore, it seemed possible that there may be 

other functions associated with PtdIns(4,5)P2 breakdown beyond the InsP3/Ca2+ 

pathway. Mast cells permeabilised with SL-O undergo robust exocytosis when 

stimulated with GTPyS if exogenous Ca2+ is provided in the pM  range. Since the 

calcium concentration is buffered with EGTA, InsP3-triggered calcium release 

from stores will not lead to an elevation of intracellular [Ca2+], therefore this 

pathway is bypassed.

Figure 5.3 shows the results of an experiment whereby RPMCs were 

permeabilised with SL-O in the presence of 100 pM  Mg ATP (so that 

PtdIns(4,5)P2 levels are not depleted without stimulation) for 3 minutes, before 

fixation and staining with Alexa647-ConA and 2C11. When calcium was buffered 

to a resting level (100 nM) in the absence of GTPyS, a pattern of plasma 

membrane PtdIns(4,5)P2 staining identical to that of resting, intact cells was 

observed (see figure 4.6). Furthermore, no exocytosis was evident. On the other 

hand, when calcium was buffered to 10 pM  in the presence of GTPyS, the cells 

exhibited “all-or-none” behaviour (Hide et al., 1993), with some cells showing no 

sign of exocytosis, whereas others had undergone substantial (and in most cases, 

complete) degranulation. Notably, those cells with no clear signs of exocytosis 

were replete with PtdIns(4,5)P2 staining; in fact, plasma membrane PtdIns(4,5)P2 

levels may even be elevated after the provision of Ca2+ and GTPyS. In contrast, 

the degranulated cells showed an almost complete ablation of PtdIns(4,5)P2, 

similar to that observed in the first few seconds of activation with 48/80 (figure
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4.13). So, it was apparent from these experiments that PtdIns(4,5)P2 hydrolysis 

was associated with exocytosis from permeabilised cells, as it was in intact cells.

As with intact cells, it was reasoned that loss of PtdIns(4,5)P2 could be due to the 

action of phospholipases, phosphatases or PI 3-kinases. Once again, a 

pharmacological approach was employed. U73122 and Et-18-OMe were used to 

inhibit PLC, and p-glycerophosphate was used as a generic phosphatase inhibitor. 

LY294002 (Vlahos et al., 1994) was used to inhibit PI3K; a high concentration 

(100 piM) was used in order to inactivate the relatively insensitive PI3K-C2a 

(Domin et al., 1997). Neomycin was also used; although this compound was 

previously reported to inhibit PLC (Sagawa et al., 1983), it most likely does so by 

preventing access of the enzyme via its high affinity interaction with 

PtdIns(4,5)P2 (Schacht, 1978). This makes it equally likely that neomycin may 

block phosphatases and PI 3-kinases. Results obtained with neomycin must thus 

be interpreted only in conjunction with comparative data from other inhibitors.

When applied to permeabilised cells in conjunction with MgATP, Ca2+ and 

GTPyS, 10 //M U73122 blocked degranulation along with the reduction in plasma 

membrane PtdIns(4,5)P2 (figure 5.4). Neomycin displayed a similar effect, 

although PtdIns(4,5)P2 levels appeared to be reduced in several cells. However, 

this may be due to the ability of neomycin to prevent access of the lipid to 2C11 

during staining (figure 4.7). Like control cells (figure 5.3), all of the other 

compounds tested displayed a mixture of degranulated, PtdIns(4,5)P2 depleted 

cells and non-degranulated, PtdIns(4,5)P2 replete cells (figure 5.4). Occasionally, 

cells were observed that had not degranulated but had lost their PtdIns(4,5)P2 

staining. These were always a minority (< 5%) for most of the conditions shown 

in figure 5.3. The presence of U73122 increased this proportion to approximately 

7% at 5 piM, and as high as 12% at 10//M. This is possibly due to the action of 

phosphatases in the absence of PLC-mediated PtdIns(4,5)P2 hydrolysis. However, 

cells with signs of compound exocytosis that retained resting plasma membrane 

PtdIns(4,5)P2 levels were not observed under any experimental condition tested.

145



pCa 7 pCa 5
felt

W W

4

w

Figure 5.3: PtdIns(4,5)P2 becomes depleted from the plasma membrane of 
permeabilised mast cells that undergo exocytosis. RPMC were permeabilised with 
SL-O in the presence of 100 jiM MgATP and 3 mM Ca:EGTA at pCa 7 (A), or 100 pM 
Mg ATP, 10 pM GTPyS and 3 mM Ca:EGTA at pCa 5 (B) for 3 min at 30°C. Cells were 
then fixed and stained with 2C11 (red) and Alexa647-ConA (blue). Upper panels show 
merged images of 2C11 and ConA; bottom panels show the fluorescence intensity 
profile for 2C11. Scale bar =10 pm.
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Figure 5.4: Effect of antagonists of PtdIns(4,5)P2 metabolism on PtdIns(4,5)P2 and 
exocytosis. RPMC were permeabilised with SL-O in the presence of 100 pM MgATP, 
10 pM GTPyS and 3 mM Ca:EGTA at pCa 5 for 3 min at 30°C in the presence of 10 
pM U73-122 or -343, 3 mM neomycin, 40 pM Et-18-OMe, 100 pM LY294002, 100 
pM LY303511 or 5 mM P-GP. Cells were then fixed and stained with 2C11 (red) or 
Alexa647-ConA (blue). Top panels show merged images of 2C11 and concanavalin A; 
bottom panels show the fluorescence intensity profile for 2C11. Scale bar = 10 pm.
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The number of degranulated cells observed in the control experiment (figure 5.3) 

varied widely. Since signs of degranulation were unambiguous (figures 5.3 and 

5.4), degranulated cells were simply counted. In 10 experiments, the proportion of 

degranulated cells in stimulated controls ranged from 44-100%, with a mean ± 

S.D. of 79 ± 20%. For each of the treatments outlined in figure 5.4, the number of 

degranulated cells was normalised to the number observed in the untreated, 

stimulated controls. As shown in figure 5.5, U73122 (figure 5.5A), neomycin 

(figure 5.5B) and Et-18-OMe (figure 5.5C) all substantially reduced the 

proportion of degranulating cells, whereas U73343 (5.5A) or 0.4% ethanol (as 

vehicle control for Et-18-OMe, figure 5.5C) were without effect. Notably, 13- 

glycerophosphate did not alter the proportion of degranulating cells, whereas 

LY294002 reduced the proportion by ~20%. However, a single atom substitution 

of LY294002, LY303511, produces an identical effect (figure 5.5C), yet has no 

effect on PI3K (Vlahos et al., 1994). It is thus concluded that the inhibition 

observed with these compounds is not due to inhibition of PI3K, but rather to 

impairment of other proteins required for exocytosis that are targeted by both 

drugs. Examples identified to date include the NF-kB pathway (Choi et al., 2004) 

and Kv channels (El-Kholy et al., 2003).

The effects of the PLC inhibitors were also titrated against permeabilised cells to 

determine the concentration-dependence of inhibition. U73122 inhibited 

exocytosis with an IC50 of 1.6 piM, whilst that of U73343 was > 10 piM. (figure 

5.6A). Et-18-OMe displayed an IQq of ~20 piM, whilst ethanol as vehicle control 

was without effect (figure 5.6B). The effect of the Myristoylated Alanine-Rich C- 

Kinase Substrate effector domain (MARCKS151_175) was also tested, since this 

peptide was shown to inhibit PLC in vitro (Wang et al., 2002). MARCKS151_175 

blocked exocytosis with an apparent IC50 of ~ 100 piM, although this dropped to 

~10 piM when the peptide was allowed to equilibrate into cells for 5 minutes 

before stimulation (figure 5.6C).
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duplicate experiments. 0.4% EtOH is the vehicle control for 40 pM Et-18-OMe.
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Figure 5.6: Concentration-dependent inhibition of exocytosis by PLC inhibitors.
RPMC were permeabilised in the presence of 100 pM MgATP and 3 mM Ca:EGTA at 
pCa 7 or 100 pM MgATP, 100 jiM GTPyS and 3 mM Ca:EGTA at pCa 5 in the 
presence of the indicated concentrations of U73122 and U73343 (A), Et-18-OMe and 
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(C). For the curves designated 5' in C, RPMC were permeabilised in the presence of the 
indicated concentration of peptide, 100 pM MgATP and 300 pM CaiEGTA at pCa 8. 
After 5 minutes, they were stimulated at pCa 7 or pCa 5 with GTPyS as above. For pCa 
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5.3. Discrepancies emerging from data in the literature

Taken together, these results support the conclusion that PLC catalyses the 

breakdown of PtdIns(4,5)P2 from permeabilised cells stimulated with Ca2+ and 

GTPyS, as is the case in intact cells stimulated with 48/80. This breakdown 

appears to be required for exocytosis, independently of a requirement for Ca2+ 

signalling. Such a conclusion is in stark contrast to previous studies, which 

reported that activation of PLC was not required for exocytosis from RPMC 

(Cockcroft et al., 1987; Aridor et al., 1990). Such evidence has even been used to 

demonstrate “PLC-independent” effects of U73122 on exocytosis (Gloyna et al., 

2005). These inconsistencies warrant resolution with the current data presented 

herein.

One study demonstrated that neomycin did not affect exocytosis in permeabilised 

cells at concentrations that abolish PLC activity (Cockcroft et al., 1987). As a 

read-out for PLC activity, this study measured the release of inositol phosphates 

(a product of PLC). These were isolated after separation from inositol lipids 

through addition of specific quantities of chloroform, methanol and water, which 

forms a dense, organic layer (containing the lipids) and an upper, aqueous layer 

containing inositol phosphates (Bligh and Dyer, 1959). Subsequently, phosphates 

were purified on Dowex anion exchange columns. One concern regarding this 

experimental strategy is that neomycin could bind to inositol phosphates and 

interfere with their extraction from the aqueous layer. To test this possibility, 1 

HM Ins(l,4,5)P3 was spiked with 3 nCi of [2-3H]-Ins(l,4,5)P3 in a buffer identical 

to that used by Cockcroft et al, and extracted as described in the same study. As 

shown in figure 5.7, addition of 300 piM neomycin (the maximum concentration 

used by Cockcroft et al.) caused the Ins(l,4,5)P3 to be retained at the interface 

between the aqueous and organic layers, unless the extraction mixture was 

acidified with ~0.1M HC1. Since Cockcroft et al specifically state that water was 

used for extraction, it seems possible that this study failed to report bona fide PLC 

activity; it may thus be possible that mM concentrations of neomycin are required 

to inhibit PLC in permeabilised cells, as is the case for exocytosis (Pinxteren et 

a l , 2001).
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A second study claimed that exocytosis could occur from RPMC without 

activation of PLC under certain conditions (Aridor et al., 1990). This study 

utilised formation of PtdOH as a readout of PLC activity, since PtdOH is formed 

by the activity of DAG-kinase on the PLC-generated DAG. However, this study 

relied on labelling of cells for two hours with [32P]-orthophosphate; under these 

conditions, phosphate may be incorporated in the phosphodiester bond of 

phospholipids, as well as into the y-phosphate of ATP. Therefore, [32P]-PtdOH 

may be formed via PtdCho-phospholipase D (PLD) activity, which is known to 

accompany mast cell exocytosis (Lu et al., 2004). Aridor et al ascribed [32P]- 

PtdOH formation to the activity of PLC since it was abolished by neomycin, but 

neomycin has since been demonstrated to inhibit PLD activity (Liscovitch et al., 

1991). Therefore, as for Cockcroft et al., it is not clear whether these experiments 

truly reflect PLC activity.

Finally, another study showed that in contrast to activation with antigen, 

stimulation of RPMC exocytosis with GTPyS did not lead to PLC-mediated 

release of inositol phosphates (Saito et al., 1989). This study conflicts with 

Cockcroft et al, where GTPyS was indeed seen to stimulate PLC activity. This 

discrepancy can be resolved based on the absence of LiCl in the experiments of 

Saito et al; therefore, inositol phosphatases may have degraded the PLC-liberated 

inositol phosphates (figure 5.8A). It follows that, since analysis was performed 

only after 10 minutes of stimulation, a transient activation of PLC may have been 

missed.

The experiments reported in this and the preceding chapter report PtdIns(4,5)P2 

levels directly. Although this may not be a direct indicator of PLC activity, only 

antagonists of PLC are seen to prevent the depletion of PtdIns(4,5)P2. That these 

antagonists also abolish exocytosis is the evidence presented that PLC is required 

for exocytosis. This does not discount the possibility that there may be certain 

conditions under which the requirement for hydrolysis of plasma membrane 

PtdIns(4,5)P2 may be bypassed. Such conditions have not, however, been 

discovered during the course of this thesis.
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5.4. Requirement for PtdIns(4,5)P2 depletion during exocytosis

Although Ins(l,4,5)P3 appears to be required for calcium signalling, the results 

with PLC inhibitors in permeabilised cells point to other functions for 

PtdIns(4,5)P2 hydrolysis. Inositol phosphates mediate a plethora of cellular 

functions aside from regulating intracellular calcium levels; notably, Ins(l,4,5)P3 

can be phosphorylated by Ins(l,4,5)P3 3-kinase, and the resulting Ins(l,3,4,5)P4 

enters a complex metabolic pathway of functionally distinct inositol 

polyphosphates (Irvine and Schell, 2001). However, given that exocytosis from 

RPMC can occur in the effective absence of ATP, roles for higher inositol 

phosphates seem unlikely to explain the requirements for PtdIns(4,5)P2 

hydrolysis. On the other hand, Ins(l,4,5)P3 or one of its catabolites may perform a 

critical function for exocytosis. Figure 5.8A shows the catabolic pathway for 

Ins(l,4,5)P3, along with the two enzymatic steps inhibited by mM concentrations 

of Li+. With this in mind, it can be predicted that if Ins4P or Ins itself were 

required, then mM Li+ should prevent their synthesis and also exocytosis; figure 

5.8B shows that this is not the case. This leaves possible functions for Ins(l,4)P2 

or Ins(l,4,5)P3 itself. Introduction of either molecule into permeabilised mast cells 

at ~1 O'4 M did not alter the level of exocytosis, nor did they restore exocytosis 

from cells in which PLC activity was abolished with U73122 (figure 5.8A & B). 

Together, these data argue against a direct role for inositol phosphates during 

exocytosis, beyond a role in Ca2+ signalling.
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The other product of PtdIns(4,5)P2 hydrolysis is DAG. Several studies have noted 

the ability of the DAG analogues (the phorbol esters) to prolong secretory 

competence in permeabilised RPMC (Howell et al., 1989; Pinxteren et al., 2001). 

Indeed, the phorbol esters phorbol 12-myristate 13-acetate (PMA) and phorbol 

12,13-dibutyrate (PDBu), as well as the DAG analogue 1-oleoyl 2-acetyl-sn- 

glycerol (OAG) all reduced the extent of rundown after 10 minutes’ 

permeabilisation (figure 5.9A). Despite this positive effect, the most potent 

analogue (PMA) was not able to restore exocytosis from cells treated with 

U73122 (figure 5.9B). From this, it is concluded that DAG itself is not sufficient 

for exocytosis in the absence of PLC activity. One possible explanation for this 

could be that a metabolite of DAG is required for exocytosis. In order to introduce 

authentic DAG into permeabilised RPMC, Ptdlns-specific PLC purified from 

Bacillus cereus (Ptdlns-PLC) was employed. This enzyme was far less sensitive 

to PLC inhibitors in vitro, and retained activity at concentrations that abolished 

the endogenous PLC (figure 5.10A). Figures 5.10 shows that, like DAG 

analogues, Ptdlns-PLC retarded the extent of rundown at 10 minutes, but was not 

sufficient to restore exocytosis when endogenous PLC was blocked with Et-18- 

OMe or U73122. Ptdlns-PLC was previously reported to inhibit chromaffin cell 

exocytosis by depleting endogenous PtdIns4P and PtdIns(4,5)P2 (Eberhard et al., 

1990); figure 5.10D shows that this was not the case for PtdIns(4,5)P2 in RPMC. 

Together, these results indicate that DAG synthesis cannot be the sole functional 

requirement for PLC-mediated PtdIns(4,5)P2 hydrolysis.

Ptdlns(4,5)P2 hydrolysis is required for actin cytoskeletal rearrangements 

necessary for phagocytosis (Scott et al., 2005), raising the possibility that removal 

of PtdIns(4,5)P2 per se could be the requirement for exocytosis. Removal of 

plasma membrane PtdIns(4,5)P2 is also required for invasion of cells by 

pathogenic Salmonella strains; rather than employing PLC activation, this parasite 

relies instead on an injected inositol phosphatase, SigD (Terebiznik et al., 2002). 

Recombinant SigD introduced into permeabilised RPMCs abolished plasma 

membrane Ptdlns(4,5)P2 (figure 5.11 A), but inhibited exocytosis (figure 5.1 IB). 

This depended on the catalytic activity of the protein, since the catalytically 

inactive C462S point mutant (Marcus et al., 2001) affected neither PtdIns(4,5)P2
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(figure 5.11 A) nor exocytosis (figure 5.1 IB). Thus elimination of plasma 

membrane PtdIns(4,5)P2 prior to activation was not favourable for exocytosis.

What if depletion of PtdIns(4,5)P2 by SigD occurred concurrent with (as opposed 

to before; figure 5.11) stimulation? Figure 5.12 shows the effect of SigD in cells 

permeabilised in the presence of stimulus for 10 minutes (sufficient time for 

PtdIns(4,5)P2 depletion by the enzyme). Under these conditions, SigD did not 

block exocytosis but was sufficient to restore exocytosis from cells where PLC 

was blocked with U73122 (figure 5.12A). However, this did not depend on the 

catalytic activity as the C462S mutant displayed an almost identical effect. 

Recombinant GST-2XFYVE (which should not impinge acutely on PtdIns(4,5)P2 

metabolism) also restored exocytosis. The reason for this is not clear, but when 

compared with the inactive analogue U73343, it can be seen that the functional 

group of U73122 is a maleimide. Therefore, the restoration by these exogenous 

proteins may simply be due to reaction of U73122 with cysteine residues, 

preventing blockade of PLC. In contrast, when PLC was inhibited with 40 j*M Et- 

18-OMe, no effect of Ptdlns(4,5)P2 depletion with SigD on exocytosis was 

observed. This indicates that dephosphorylation of PtdIns(4,5)P2 does not 

compensate for hydrolysis of Ptdlns(4,5)P2 at the phosphodiester bond.

The failure of DAG, or PtdIns(4,5)P2 depletion by dephosphorylation, to restore 

exocytosis indicates that neither are sufficient by themselves. However, it is 

possible that both hydrolysis of PtdIns(4,5)P2 and concomitant generation of DAG 

could be required. To mimick this under conditions whereby endogenous PLC 

was inhibited (with Et-18-OMe), permeabilised RPMC were incubated with SigD 

and Ptdlns-PLC together (figure 5.12C). The tendency of Ptdlns-PLC to retard, 

and of SigD to accelerate rundown could be seen under these conditions: in fact, 

accelerated rundown with SigD and retarded rundown with Ptdlns-PLC were 

additive, such that the increase in secretion due to Ptdlns-PLC was still apparent 

after inhibition of exocytosis with SigD. This indicates that removal of 

PtdIns(4,5)P2 and generation of DAG affect separate, parallel pathways required 

for exocytosis to occur.
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Such an observation would still be reconcilable with a model whereby both 

elimination of PtdIns(4,5)P2 and DAG generation are required (figure 5.13). In 

this hypothetical model, PtdIns(4,5)P2 anchors an effector protein(s) at the plasma 

membrane. Hydrolysis of PtdIns(4,5)P2 liberates the protein from the plasma 

membrane, allowing it to diffuse to sites of granule-plasma membrane and 

granule-granule membrane fusion. Notably, in this model the protein could either 

be membrane associated but diffusible within the plane of the membrane, or else 

soluble. Coincident with hydrolysis of PtdIns(4,5)P2 is the production of a pool of 

DAG, which will be rapidly diffusible and able to reach the same sites of 

membrane fusion as the PtdIns(4,5)P2-binding effector protein. DAG may then 

activate another protein(s), perhaps containing a DAG-binding Cl domain.

Such a model predicts two non-mutually exclusive scenarios for the inhibitory 

activity of SigD when applied to permeabilised cells before a stimulus. In the first, 

SigD dephosphorylates PtdIns(4,5)P2, causing bound soluble binding protein(s) to 

be shed, and to leak from the cell through SL-0 lesions. In the second, SigD 

dephosphorylates PtdIns(4,5)P2 to a PtdlnsP isomer which is still able to bind 

tightly to the effector protein. However, if this PtdlnsP is a poor substrate for 

PLC, then it will not be hydrolysed and the protein will be prevented from 

reaching its site of action. It is unlear whether SigD attacks the d-4, d-5 or both 

phosphates of Ptdlns(4,5)P2 (Marcus et al., 2001; Terebiznik et al., 2002). 

However, the plasma membrane-associated cytoskeleton, which is know to be 

tightly associated with PtdIns(4,5)P2 (Takenawa and Itoh, 2001), remains intact 

after elimination of PtdIns(4,5)P2 with SigD (figure 5.11 A). This would lend 

support to the idea that the catalytic product of SigD may mediate some of the 

functions associated with PtdIns(4,5)P2.
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To circumvent some of these uncertainties, the ability of neomycin to form 

electro-neutral complexes with Ptdlns(4,5)P2 was utilised (Arbuzova et al., 2000). 

Such electro-neutral complexes will be expected to have two functional 

consequences. Firstly, neomycin will displace the endogenous bound protein(s), 

which may or may not leak from the cell. Importantly, any such protein present in 

the cell will now be available to expedite exocytosis when a stimulus is presented. 

Secondly, neomycin will prevent hydrolysis of Ptdlns(4,5)P2 by PLC, preventing 

DAG generation and activation of the second protein(s). Overall, inhibition of 

exocytosis will be expected due to inhibition of DAG generation, as has indeed 

been observed (Pinxteren et al., 2001). However, if DAG generation is restored 

with Ptdlns-PLC, then the DAG-binding protein(s) can also be activated, 

therefore exocytosis should proceed. Figure 5.14A shows the result of such an 

experiment. Neomycin alone prevented exocytosis with an IC50 of 350 jaM  at 5 

minutes’ rundown; when Ptdlns-PLC was added, it retarded rundown as observed 

in figures 5.10 and 5.12. However, the slowing and accelerating effects on 

rundown of Ptdlns-PLC and neomycin, respectively, were more than additive: the 

presence of Ptdlns-PLC shifted the IC^ of neomycin to 900 jaM, a 2.5-fold 

increase. A similar observation has been made using PMA in place of Ptdlns-PLC 

(Howell et al., 1989).

One prediction of such a model is that Ptdlns-PLC will not have such potent 

effects on the inhibition of endogenous PLC with Et-18-OMe and U73122, which 

are not expected to mask PtdIns(4,5)P2. Ptdlns-PLC shifs the IC50 of U73122 from 

400 to 600 nM (figure 5.14B), and of Et-18-OMe from 7 jaM  to 10 jaM  (figure 

5.14C), an approximately 1.5-fold shift in each case. Therefore, the more potent 

effect of DAG generation in the presence of neomycin (when PtdIns(4,5)P2 is 

sequestered) compared to the presence of Et-18-Ome and U73122 (when 

PtdIns(4,5)P2 will be free to bind its effector) is consistent with the hypothetical 

model presented in figure 5.13.
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5.5. Conclusions

The experiments presented in this chapter demonstrate that PLC is responsible for 

the transient depletion of PtdIns(4,5)P2 during exocytosis. Furthermore, the 

continued depletion of Ptdlns after recovery of PtdIns(4,5)P2 levels suggests that 

PLC remains active after 48/80 stimulation, but that re-synthesis of PtdIns(4,5)P2 

from Ptdlns is accelerated and restores PtdIns(4,5)P2 to near resting levels. PLC 

also mediates the depletion of PtdIns(4,5)P2 observed during exocytosis from 

permeabilised cells, although recovery is not observed in this case. It is apparent 

from these experiments that this PLC-mediated depletion of plasma membrane 

PtdIns(4,5)P2 is an absolute requirement for exocytosis under the conditions 

applied.

Although PLC appeared to be required for the Ca2+ signal necessary to initiate 

exocytosis, there are other functional consequences of PtdIns(4,5)P2 breakdown 

that are mandatory. Generation of inositol phosphates, elimination of 

PtdIns(4,5)P2 or DAG production are not sufficient alone to allow exocytosis to 

proceed. However, the data presented in this chapter would be consistent with a 

model (figure 5.13) whereby concomitant removal of PtdIns(4,5)P2 and 

generation of DAG are required. Consistent with this, DAG generation was able 

to partially restore exocytosis when PLC was blocked with neomycin. There are a 

number of reasons that may explain why this restoration was incomplete. Firstly, 

incubation with neomycin may displace a soluble PtdIns(4,5)P2-binding protein(s) 

required for exocytosis, which leaks from the permeabilised cells. Secondly, 

neomycin may interact with a second Pin required for exocytosis but with lower 

affinity, producing the increased concentration-dependence of inhibition. Such a 

candidate Pin could be PtdIns4P, as discussed in Chapter 3.
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6.1. Quantitative immunofluorescence of phosphoinositides

Fusion of specific lipid binding domains such as those listed in table 1.1 to GFP 

and its spectral derivatives has enabled the direct visualisation of Pin and their 

turnover in living cells (Halet, 2005). In pioneering studies, Vamai and Balia used 

the PH-domain from PLC81 fused to GFP to study the turnover of PtdIns(4,5)P2 

(Vamai and Balia, 1998). Activation of PLC was seen to induce translocation of 

the probe from the plasma membrane to the cytosol; measurement of the plasma 

membrane to cytosol ratio correlated well with Ptdlns(4,5)P2 mass from 

equilibrium-labelled cells. However, since this study was conducted, controversy 

has arisen over whether GFP-PH-PLC51 truly reflects PtdIns(4,5)P2 levels. This 

has arisen due the high-affinity binding of the probe to the product of 

PtdIns(4,5)P2 hydrolysis, Ins(l,4,5)P3 (Lemmon et al., 1995). In epithelial cells, 

the translocation from the plasma membrane has been suggested to more closely 

report generation of Ins(l,4,5)P3, as opposed to depletion of PtdIns(4,5)P2 (Hirose 

et al., 1999). Indeed, this technique is routinely used to follow Ins(l,4,5)P3 

production in neurons (Nahorski et al., 2003). In contrast, another study 

demonstrated that translocation of GFP-PH-PLC81 more accurately reflects 

PtdIns(4,5)P2 depletion, and not Ins(l,4,5)P3 or Ins(l,4,5)P3-mediated calcium 

signalling in neuroblastoma cells (van der Wal et al., 2001). Yet another study 

conducted in astrocytoma cells revealed that the dynamics of GFP-PH-PLC51 

after activation of PLC was influenced by both Ptdlns(4,5)P2 and Ins(l,4,5)P3 (Xu 

et al., 2003). Together, these reports highlight the variable behaviour of expressed 

lipid-binding domains, depending on the cell type and stimulus applied. 

Therefore, the possibility that Ins(l,4,5)P3 interferes with the localisation of GFP- 

PH-PLC81 must be taken into account when using this probe, and is a serious 

caveat to its use.

Xu et al also highlighted a second major drawback of the use of GFP-PH-PLC81: 

this probe was unable to detect the rapid, transient synthesis of PtdIns(4,5)P2 prior 

to PLC activation (Xu et al., 2003), despite the probe’s ability to report the 

depletion of Ptdlns(4,5)P2 by PLC (Vamai and Balia, 1998; van der Wal et al., 

2001; Xu et al., 2003). Another potential problem is that expressed GFP-PH- 

PLC51 is not always a passive tool. At high expression levels, it can sequester
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PtdIns(4,5)P2 and so inhibit PtdIns(4,5)P2-dependent processes (Holz et al., 2000; 

Lawrence and Bimbaum, 2003; Micheva et a l , 2003). This latter point can be an 

advantage, however, since it can be used to reduce free PtdIns(4,5)P2 levels to 

investigate the function of this lipid.

A more general point with the use of expressed lipid-binding domains is that there 

may be another determinant within the probe that will bias its localisation to a 

particular membrane, independently of Pin binding (Balia et a l , 2000; Roy and 

Levine, 2004). Indeed, this is the case with the majority of PH domains from the 

yeast S. cerevisiae (Yu et a l , 2004). Bearing this in mind, it is particularly 

concerning that GFP-PH-PLC61 is usually reported to detect only plasma 

membrane pools of PtdIns(4,5)P2 (Halet, 2005): the plasma membrane is enriched 

in cholesterol, which is able to influence the membrane binding activity of GFP- 

PH-PLC61 (Flesch et a l , 2005). A similar caveat is present with the high-affinity 

PtdIns(4,5)P2-binding PDZ domains from syntenins. Domains from syntenin-1 

detect plasma membrane Ptdlns(4,5)P2 (Zimmermann et a l,  2002), whereas the 

same regions of syntenin-2 reports the PtdIns(4,5)P2-containing nuclear speckles 

(Mortier et a l,  2005); based on these results, it is clear that other interactions 

determine these probes’ localisation.

Thus whereas much has been learnt through the expression of GFP-tagged probes 

for Pin, such an approach has serious drawbacks. In this thesis, an 

immunofluorescence approach was developed to detect PtdIns(4,5)P2 in mast 

cells. This type of experiment was pursued since RPMCs are not amenable to 

transfection, and could not be maintained in culture (in the author’s hands) for 

extended periods of time. It was thus not possible to use GFP-PH-PLC61 to 

follow PtdIns(4,5)P2 dynamics during exocytosis. Immunofluorescence cannot be 

performed on live cells unless invasive microinjection techniques are employed. 

However, this technique presents a number of advantages over expression of 

GFP-tagged probes.

Firstly, since the antibody is applied to fixed cells, it passively reports the lipid 

distribution, and will therefore not impinge on PtdIns(4,5)P2-dependent processes. 

Secondly, the antibodies are targeted solely by their target lipid, so do not have 

the potential bias observed with Pin-binding domains. They can therefore be used
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to detect multiple pools of PtdIns(4,5)P2, such as those at the plasma membrane 

and in the nucleus (chapter 4). Furthermore, recombinant Pin-binding proteins 

may be used in a similar manner to the antibodies to report Pin in fixed cells, as 

shown in chapter 4 and (Gillooly et al., 2000). However, conditions were not 

found in which membrane and non-membranous, detergent-resistant pools of Pin 

can be determined simultaneously.

Use of fluorescence techniques presents the same problems of resolution as 

expression of GFP-tagged domains: apparent enrichment of the lipids is seen at 

regions of increased membrane density (figure 4.6) and (van Rheenen et al., 

2005)). However, such problems may be overcome by ultrastructural studies 

using immunogold labelling under the electron microscope (Gillooly et al., 2000; 

Watt et al., 2002; Watt et al., 2004).

As reported with GFP-PH-PLC61 (Vamai and Balia, 1998), immunofluorescence 

was seen to accurately reflect the levels of PtdIns(4,5)P2 in the cell. In addition, it 

presents certain advantages over biochemical methods, since the behaviour of 

individual cells as well as the population as a whole may be scrutinised. This led 

to the revelation that although the PtdIns(4,5)P2 levels in a population of RPMCs 

drops by ~80% within 15 s of challenge with 48/80, this value actually reflects 

near total elimination of PtdIns(4,5)P2 in ~80% of the cells (figure 4.14). 

Furthermore, using immunofluorescence it was possible to follow the different 

behaviours of plasma membrane and nuclear PtdIns(4,5)P2 pools, which is very 

challenging using biochemical techniques. Quantitative analysis was eased by the 

use of automated software, although the technique should also prove amenable to 

high-throughput analysis using fluorescence-activated cell sorting (FACS) or 

computer-assisted automatic microscopy.

Therefore, despite drawbacks, quantitative immunofluorescence appears to be a 

powerful tool with which to study Pin dynamics in cells. It has been demonstrated 

to work with PtdIns(4,5)P2 and Ptdlns(3,4)P2, providing proof-of-principle and 

strongly suggesting it may be applied for any Pin for which a specific probe is 

available. In this light, quantitative immunofluorescence presents a new technique 

that complements the current repertoire of tools, which includes expressed 

binding proteins and biochemical measurements.
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6.2. Phosphoinositides involved in mast cell exocytosis

6.2.1. Synthesis ofPPIn during permeabilisation and rundown

In chapter 3, experiments were conducted to determine whether synthesis of PPIn 

was required to maintain secretory competence in permeabilised RPMCs. 

Previous work had indicated that they were, since sequestering PPIn with 

neomycin mimicked the effect of depletion of ATP on the loss of secretory 

competence, and rundown was retarded by provision of PITP (Pinxteren et al., 

2001). From these studies, it appears that one or more PPIn forms part of a 

phosphorylation state required for exocytosis from RPMC. However, rundown 

also seems to occur in the presence of ATP due to a loss of the ability to couple 

stimulus with secretion, since it may be retarded by provision of the G-proteins 

that trigger exocytosis (O'Sullivan et al., 1996; Brown et al., 1998; Pinxteren et 

al., 1998). Furthermore, it has been demonstrated that unlike exocytosis, the 

levels of PtdIns(4,5)P2 and PtdIns4P do not rundown when RPMCs are 

permeabilised in the presence of 100 piM. ATP for 10 minutes (Pinxteren et al., 

2001). Therefore, rundown does not occur due to the loss of these PPIn when 

ATP is provided, and may occur simply because of leakage of the machinery 

necessary to trigger exocytosis.

That said, levels of PtdIns(4,5)P2 and PtdIns4P are seen to drop by > 50% when 

cells are permeabilised in the absence of ATP for 5 minutes (Pinxteren et al., 

2001), and the cells become refractory to stimulation under these conditions 

(Howell et al., 1989). Therefore, synthesis of PPIn may indeed be required to 

maintain secretory competence in permeabilised mast cells. Further evidence for 

this concept was evident from the inhibition of exocytosis by neomycin and PH- 

PARKwaa, agents that sequester PPIn (Pinxteren et al., 1998; Pinxteren et al., 

2001). It was not possible to determine which PPIn these agents sequester in order 

to block exocytosis; indeed, it could be any of them in the case of PH-pARKWAA 

(figure 3.3). However, it is almost certainly not PtdIns(4,5)P2; this comes from the 

complementary observations that PH-PLC61 does not block exocytosis (figure 

3.7) but effectively sequesters PtdIns(4,5)P2 (figure 4.7), whereas PH-pARKWAA
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blocks exocytosis (figure 3.7) but does not sequester PtdIns(4,5)P2 (figure 4.7). 

Another Pin is therefore implicated in exocytosis from permeabilised mast cells.

Recently, the LY294002- and wortmannin-resistant PI3K-C2a has been 

implicated in regulated exocytosis from endocrine cells (Maffucci et al., 2003; 

Meunier et al., 2005). However, the lack of inhibition by high concentrations of 

PI3K inhibitors or the PtdIns3P-sequestering 2xFYVE domain argue against a 

role for this enzyme in RPMC exocytosis. Indeed, the lack of effect of PI3K 

inhibitors or 3-PIn binding domains does not support a requirement for synthesis 

of this subclass of PPIn during RPMC exocytosis. However, whilst this thesis was 

in preparation, a novel wortmannin-resistant PtdIns(4,5)P2 3-OH kinase activity 

was reported (Resnick et al., 2005). Therefore, it is possible that this enzyme may 

synthesise a pool of PtdIns(3,4,5)P3 required for exocytosis. However, this seems 

unlikely given that PtdIns(3,4,5)P3-sequestering PH domains are without effect in 

permeabilised cells (figure 3.6), and that IPMK appears to synthesise 

PtdIns(3,4,5)P3 in the nucleus (Resnick et al., 2005).

If 3-PIn are not involved in maintaining secretory competence in permeabilised 

RPMCs, this leaves only the monophosphorylated isomers PtdIns4P and 

Ptdlns5P. No tools were available to study the latter, so no conclusions can be 

drawn as to the role of PtdIns5P during RPMC exocytosis. Sequestration of 

PtdIns4P using PH-FAPP1 (Dowler et al., 2000; Godi et al., 2004) was able to 

retard rundown in preliminary experiments. This could occur by protecting 

PtdIns4P from degradation during rundown (and thus possibly increasing its 

levels), yet still permitting access to a high-affinity effector protein. In support for 

this concept, the effect of PITP in the presence of ATP on RPMCs was to elevate 

PtdIns4P levels, without altering levels of PtdIns(4,5)P2 (Pinxteren et al., 2001). 

Synthesis of PtdIns4P can therefore occur in mast cells, and is most likely 

mediated by the type II PI4K. This assertion is based on the observations that 

RPMCs contain type II activity (figure 3.8), that exocytosis in insensitive to 

concentrations of PI3K inhibitors that block the type III activity (Downing et al.,

1996) and that the effect of ATP is maximal at 50 piM, a concentration sufficient 

to drive type II but not type III PI4K (Howell et al., 1989; Downing et al., 1996; 

Pinxteren et al., 2001). In this light, and with the caveats embedded in the use of
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pharmacological approaches, it will be interesting to observe the effects of the 

type II PI4K inhibitors adenosine and Resveratrol on rundown (Barylko et al., 

2001; Minogue et al., 2001; Naveen et al., 2005).

If PtdIns4P synthesis is required for the maintenance of secretory competence in 

permeabilised RPMCs, does it act in its own right or as a substrate for synthesis of 

PtdIns(4,5)P2? PtdIns4P has been implicated per se in the regulation of 

constitutive exocytosis at the Golgi complex in yeast (Hama et al., 1999; Walch- 

Solimena and Novick, 1999; Audhya et al., 2000) and mammalian cells (Wang et 

al., 2003; Godi et al., 2004). Furthermore, the PI4K activity required for neuronal 

and endocrine cell exocytosis is located on the secretory granules (Wiedemann et 

al., 1996; Wiedemann et al., 1998), whereas PtdIns(4,5)P2 synthesis occurs at the 

plasma membrane (Holz et al., 2000; Wenk et al., 2001; Aikawa and Martin, 

2003; Lawrence and Bimbaum, 2003). A similar PI4K activity is present in 

RPMC granules (Kurosawa and Parker, 1986). No evidence presents itself in the 

literature that this granule-associated PI4K is involved in the synthesis of plasma 

membrane PtdIns(4,5)P2, so it may thus be possible that a pool of PtdIns4P exists 

on secretory vesicles and regulates exocytosis.

(5.2.2. A role fo r  plasm a membrane PtdIns(4,5)V2

In chapter 4, a plasma membrane pool of PtdIns(4,5)P2 was identified which 

becomes transiently depleted during exocytosis. Thus PtdIns(4,5)P2 was not 

observed at sites of membrane fusion (i.e. granule membranes) during compound 

exocytosis. This observation has implications in itself for the role of PtdIns(4,5)P2 

during this process, since its absence from internal membranes during compound 

exocytosis precludes a direct function in membrane fusion. In chapter 5, this 

depletion was ascribed to PLC activity, and this activity was required for 

exocytosis. Since PtdIns(4,5)P2 depletion, but not recovery, was observed in 

permeabilised, degranulated RPMCs it was concluded that it is the depletion 

rather than re-synthesis of PtdIns(4,5)P2 that is required for exocytosis. In this 

light, the failure of PH-PLC61 to block exocytosis can be explained by the fact 

that it was only applied at concentrations up to 10 pM, which are not sufficient to 

completely sequester PtdIns(4,5)P2 (figure 4.8) and thus block PLC.
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Experiments conducted in chapter 5 (figure 5.1) confirmed the role for PLOy in 

calcium signalling during activation of mast cells (Penner, 1988; Kinet, 1999). 

However, PLC activity may not be required for generation of the calcium signal 

that triggers exocytosis in all types of mast cell (Melendez and Khaw, 2002), and 

indeed calcium may not be required at all under certain experimental conditions 

(Fernandez etal., 1984; Penner, 1988; Churcher and Gomperts, 1990; Tatham and 

Gomperts, 1991; Koffer and Churcher, 1993).

However, experiments in permeabilised cells where the Ins(l,4,5)P3/Ca2+ pathway 

is bypassed reveal other roles for PLC activity. Together, these results led to the 

conclusion that PtdIns(4,5)P2 does not function at the moment of membrane 

fusion, but may be required for maintenance of a secretion-competent state 

(Martin, 2001). In support of this, depletion of PtdIns(4,5)P2 with a bacterial Pin 

phosphatase was seen to accelerate rundown (figure 5.11).

6.2.3. Roles fo r  other pools o f Ptdlns(4,5)P2 ?

In chapter 4, two other pools of Ptdlns(4,5)P2 were identified in RPMCs: a 

granule membrane pool, which appears after exocytosis, and a nuclear pool, 

which increases dramatically after activation of cells with 48/80. These pools 

were not examined further, since they were not deemed as being important for the 

process of degranulation. This is because granule PtdIns(4,5)P2 appears only after 

the completion of exocytosis, and the nuclear pool is increased, which would 

require ATP; exocytosis, on the other hand, can occur in the absence of ATP 

(Howell et al., 1987). However, there may be non-exocytosis roles for these 

pools, which are speculated upon herein.

PtdIns(4,5)P2 has been shown to regulate actin polymerisation in a variety of other 

cell types (Janmey and Lindberg, 2004). In activated RPMCs, polymerisation of 

actin to form centripetal filaments occurs (Norman et al., 1994). One can 

speculate, therefore, that the granule membrane PtdIns(4,5)P2 may direct this 

polymerisation. However, the granule membrane pool may simply be due to 

diffusion of PtdIns(4,5)P2 through the plane of the fused membranes from the 

plasma membrane.
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Nuclear Ptdlns(4,5)P2 and its metabolites have been implicated in several stages 

of gene expression, from chromatin remodelling to mRNA export (Hammond et 

al., 2004). After activation, mast cells begin transcription and expression of 

various cytokines and chemokines, which are secreted in a sustained late response 

from the cell to mediate long-term inflammatory responses (Metcalfe et al.,

1997). It is tempting to speculate, therefore, that increases in nuclear PtdIns(4,5)P2 

reflect this activation of gene expression. In other words, it may simply reflect the 

nucleus “waking-up” in preparation for a sustained response to activation.

6.3. Functional outcomes of PtdIns(4,5)P2 hydrolysis for 
exocytosis

6.3.1. Are DAG generation and Ptdlns( 4,5) P2 depletion required for

mast cell exocytosis?

As discussed in the introduction, an important function of PLC is the generation 

of DAG and its metabolites, as well as InsPP. However, a role for PLC-generated 

InsPP seems unlikely, for a number of reasons. Firstly, InsPP would be expected 

to leak rapidly from permeabilised cells through the ~30 nm SL-O lesions. 

Secondly, given that exocytosis may proceed in the absence of ATP (Howell et 

al., 1987), phosphorylation of Ins(l,4,5)P3 to higher InsPP is unlikely to occur, 

unless it transpires by (uncharacterised) ATP-independent phosphotransferases. 

Finally, neither Ins(l,4)P2 nor Ins(l,4,5)P3 were able to modify exocytosis at 

concentrations up to '-l O'4 M, and inhibition of their degradation was also without 

effect. Together, there seems to be no evidence that InsPP may function during 

exocytosis from permeabilised cells triggered with Ca2+ and GTPyS. However, 

there is a role for Ins(l,4,5)P3 in generating the calcium signal in intact, 48/80 

triggered cells, and there may be other functions for Ins(l,4,5)P3 or its metabolites 

under these conditions.

On the other hand, DAG and its analogues were seen to retard rundown from 

permeabilised cells, suggesting a role for DAG during exocytosis. However, the 

failure of DAG to restore exocytosis under conditions whereby PLC was inhibited 

demonstrated that DAG production is not sufficient for exocytosis to occur. 

Another function for PLC is the simple removal of PtdIns(4,5)P2, as seen during
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formation of phagosomes (Botelho et al., 2000) and the modulation of ion channel 

activity (Suh and Hille, 2005). Removal of PtdIns(4,5)P2 may also be mediated 

via inositol phosphatases, as seen with pathogenic strains of Salmonella, which 

utilise the SigD inositol phosphatase (Terebiznik et al., 2002). However, this 

phosphatase was not sufficient to allow exocytosis to proceed when endogenous 

PLC was blocked. In fact, SigD accelerated rundown, suggesting roles for 

PtdIns(4,5)P2 in maintaining secretory competence, possibly by acting as a 

substrate for PLC when activation occurs.

These observations lead to the hypothesis that the coincident removal of 

PtdIns(4,5)P2 arid generation of DAG by PLC may both be required for exocytosis 

to proceed. To test this possibility, the electroneutral complex between 

PtdIns(4,5)P2 and neomycin (Gabev et al., 1989) was employed to mimic removal 

of Ptdlns(4,5)P2 in permeabilised cells. If the hypothesis were correct, inhibition 

of exocytosis would be expected by the resulting inhibition of PLC (Sagawa et al., 

1983) and thus failure to generate DAG. However, this block would be lifted if 

DAG were applied independently of the endogenous PLC, via the cleavage of 

Ptdlns by a bacterial PLC. The results from such an experiment showed a 2.5-fold 

increase of the IC50 of neomycin, which translates to a partial restoration of 

exocytosis by DAG. Similar results were obtained previously when 100 nM PMA 

was applied to neomycin-treated permeabilised RPMCs (Howell et al., 1989).

Why should the restoration of exocytosis by DAG under conditions of 

PtdIns(4,5)P2 sequestration be only partial? There could be a number of reasons 

for this experimental observation. Firstly, neomycin could displace an 

endogenous, soluble PtdIns(4,5)P2-binding protein required for exocytosis, which 

is lost from the cell through the SL-O lesions (figure 5.13). A second possibility 

presents itself from the conclusions of chapter 3: that a PPIn, most likely PtdIns4P 

or PtdIns5P, is required for exocytosis in addition to PtdIns(4,5)P2. Given that 

these monophosphorylated Pin isomers form lower affinity interactions with 

neomycin (Schacht, 1978) this would explain the increased concentration 

dependence of inhibition.

Together, the observations presented in chapter 5 confirm the importance of 

PtdIns(4,5)P2 for regulated exocytosis. However, they suggest an unsuspected
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dual mechanism of action for the lipid: it serves both as a membrane anchor for a 

protein required before and/or during exocytosis, and as a source of DAG required 

for membrane fusion (figure 5.13). This model remains speculative and requires 

further clarification. However, if the model is assumed to approximate the true 

situation for RPMC exocytosis, there are a number of candidate proteins that 

could perform the roles depicted in figure 5.13.

As discussed in the introduction, potential PtdIns(4,5)P2-binding proteins required 

for exocytosis include Mints, CAPS, Rabphillin and synaptotagmin. Furthermore, 

the requisite syntaxins expressed in neurons and RPMCs contain a polybasic 

juxtamembrane regions that is capable of sequestering PtdIns(4,5)P2 (S. 

McLaughlin, personal communication). Furthermore, SCAMP2, which has been 

shown to function during mast cell exocytosis (Guo et al., 2002), also contains a 

polybasic motif capable of sequestering PtdIns(4,5)P2 (Ellena et al., 2004).

Several candidate DAG-regulated proteins that may be required for compound 

exocytosis have been previously characterised, including Muncl3, chimaerins and 

Ras GRPs (Brose and Rosenmund, 2002). Although protein kinase C (PKC) is 

regulated by DAG (Parker and Murray-Rust, 2004), it seems that the catalytic 

activity of this enzyme is not required, for a number of reasons: firstly, the ATP- 

independence of exocytosis would not permit catalytic activity of PKC (Howell et 

al., 1987). Secondly, RPMC exocytosis is insensitive to the PKC inhibitors H7, 

staurosporine and K252a, or to PKC inhibitor peptides (Howell et al., 1989; 

Shefler et al., 1998; Pinxteren et al., 2001; Gloyna et al., 2005). Given that RPMC 

exocytosis is blocked by the ether lipid DAG analogue AMG.C16, another PKC 

inhibitor (Howell et al., 1989; Pinxteren et al., 2001), it will be interesting to 

verify whether this drug can antagonise other Cl-domain containing proteins.

As discussed in the introduction, the cortical F-actin cytoskeleton breaks down 

during mast cell exocytosis; this could be facilitated by breakdown of 

PtdIns(4,5)P2, as has been demonstrated during phagocytosis (Scott et al., 2005). 

Indeed, partial depletion of the F-actin cytoskeleton with latrunculin or gelsolin 

increases mast cell exocytosis (Borovikov et al., 1995; Martin-Verdeaux et al., 

2003; Sasaki et al., 2005). In BMMCs, this treatment partially phenocopies the 

augmented degranulation in cells derived from mice genetically devoid of PLPK
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la; these cells present reduced resting levels of PtdIns(4,5)P2 and cortical F-actin 

(Sasaki et al., 2005). From these observations, it was proposed that PtdIns(4,5)P2 

might regulate mast cell exocytosis in a negative manner, by maintaining an F- 

actin “barrier” at the plasma membrane (Sasaki et al., 2005). Such a hypothesis 

would be consistent with the role of PLC reported in this thesis, and would 

account for one of the roles of Ptdlns(4,5)P2 during RPMC exocytosis.

However, such a “barrier” hypothesis for regulation of exocytosis by 

PtdIns(4,5)P2 and F-actin appears over-simplified, based on two observations: 

firstly, complete removal of the F-actin cortex inhibits exocytosis from RPMCs 

(Pendleton and Koffer, 2001), and secondly, preventing actin depolymerisation 

with phalloidin does not inhibit exocytosis (Norman et al., 1996; Sullivan et al.,

1999). Exocytosis could be facilitated by detachment of cortical F-actin from the

plasma membrane, rather than by depolymerisation of actin. This might liberate a 

plasma membrane and F-actin-associated protein, which may then relocate to sites 

of membrane fusion. In this light, it is worth noting that SNAP-23, the Q-SNARE 

that relocates to granules from the plasma membrane, is associated with the actin 

cytoskeleton in resting RPMCs (Guo et al., 1998).

6.3.2. Clues to PLC function from  other cell types

PLC activity has been demonstrated during exocytosis from just about every cell 

type examined; examples include pancreatic exocrine cells (Hokin and Hokin, 

1953; Hokin and Hokin, 1958), chromaffin cells (Whitaker, 1985), synapses after 

electrical stimulation (Bleasdale and Hawthorne, 1975; Pickard and Hawthorne, 

1978) and RPMCs (Cockcroft and Gomperts, 1979). In fact, the only example 

where regulated exocytosis is observed in the absence of PLC activity is during 

barium-stimulated chromaffin cell secretion (Eberhard and Holz, 1987).

Inositol lipids were proposed to function during exocytosis based on the fact that 

depletion of the lipids with a bacterial Ptdlns-specific PLC abolished ATP- 

dependent exocytosis (Eberhard et al., 1990). However, in these studies the 

inhibition of exocytosis correlated well with the reduction in InsPP generation, a 

read-out of PLC activity. It could therefore be that depletion of inositol lipids 

prevented exocytosis in part by preventing PLC activity. Although Eberhard et al
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found no effect of DAG or its analogues, such observations are consistent with 

those presented in this thesis, and can only lead to the conclusion that DAG 

generation is not sufficient to mediate the functional outcome of PLC activity 

during exocytosis.

Another report in broken PC 12 cells found that a mammalian PLC6 could inhibit 

ATP-dependent exocytosis when applied before the stimulus, due to depletion of 

Ptdlns(4,5)P2 (Hay et al., 1995). Once again this could simply produce a block of 

exocytosis by depleting substrate for PLC, so that activity is not available at the 

appropriate time, i.e. when the stimulus is provided.

Is there any evidence for a functional requirement for PLC activity in these model 

systems? Indeed, it was recently reported that chromaffin cell exocytosis is 

inhibited by the PLC inhibitor U73122, and by inhibitory antibodies against 

PLOyl and PLC(33 (O'Connell et al., 2003). There is also a well-established role 

for DAG in exocytosis from neuronal cells, since Muncl3 is regulated by DAG 

and phorbol esters (Betz et al., 1998); in fact, Muncl3 activity is sufficient to 

account for the entire stimulatory effect of phorbol esters on SV exocytosis (Rhee 

et al., 2002). Muncl3 is indispensable for neuronal exocytosis, which is 

completely abolished in mice genetically devoid of Muncl3-1 and Muncl3-2 

(Varoqueaux et al., 2002). Further evidence comes from the studies on the 

cholinergic neuromuscular junction in the nematode worm Caenorhabditis 

elegans. In these cells, the heterotrimeric G protein Gq (EGL-30) was shown to 

activate PLCp (EGL-8); in turn, DAG activates U nci3 and leads to elevated SV 

exocytosis and animal mobility. Indeed, phorbol esters are able to restore mobility 

in EGL-30 or EGL-8 mutant animals (Lackner et al., 1999; Miller et al., 1999). 

Furthermore, motility in these animals is negatively regulated by diacylglycerol 

kinase (DGK-1), which is believed to reduce DAG levels and so reduce U nci3 

activation (Miller et al., 1999; Nurrish et al., 1999).

6.3.3. A model fo r  PLC-regulation o f  exocytosis

In figure 6.1, a model is presented to explain the molecular requirements for PLC 

activity in the triggering of mast cell exocytosis. In particular, certain aspects 

pertaining to the interactions with Muncl8 and Muncl3 would be consistent with
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current models of synaptic vesicle exocytosis (Galli and Haucke, 2004). However, 

the author is at pains to stress that, although consistent with the experimental 

evidence presented above, and supported by circumstantial evidence from other 

secretory systems, this model is entirely speculative. It is provided simply as a 

working hypothesis with which it may be possible to test the various events and 

interactions depicted within.

Activation via antigen receptor or polycations will lead to activation of PLCy and 

PLC (3, respectively. The resulting Ins(l,4,5)P3-stimulated calcium release (which 

may occur from the granules, (Quesada et al., 2003)) may in turn activate PLC6. 

The resulting PLC activity leads to consumption of plasma membrane 

PtdIns(4,5)P2, with a number of functional ramifications.

Firstly, the cortical F-actin cytoskeleton becomes dissociated from the plasma 

membrane, liberating SNAP-23 from plasma membrane folds so that it may 

relocate to sites of membrane fusion at the cell surface. Secondly, loss of 

PtdIns(4,5)P2 leads to dissociation of Mint from the syntaxin-4/Muncl8 complex. 

Concurrently, the PLC-produced DAG recruits and activates Muncl3, allowing 

dissociation of Muncl8, opening of syntaxin-4 and the assembly of SNARE 

complexes at the plasma membrane; this expedites a round of cortical granule 

fusion. Subsequently, DAG and SNAP-23 relocate through the fused membranes 

to internal granule membranes, where they again allow formation of SNARE 

complexes after displacement of Muncl8.

Although speculative, such a model would explain why depletion of PtdIns(4,5)P2 

does not lead to inhibition of ATP-independent, primed vesicle exocytosis 

(Eberhard et a l , 1990; Hay et al., 1995). According to the above model, primed 

vesicles would already have been in the proximity of a round of PtdIns(4,5)P2 

hydrolysis, so the switch of Muncl8 and Muncl3 would already have occurred, 

and the SNARE complexes will already be assembled and awaiting the final Ca2+- 

stimulus, which leads to membrane fusion (Chen et al., 1999; Chen et al., 2001).
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Figure 6.1: PLC activity during RPMC exocytosis. (1) Priming: PtdIns(4,5)P2 
localises F-actin and SNAP-23 at the plasma membrane, and is in a ternary complex 
with syntaxin 4, Muncl8 and Mints. (2) Activation: PLC isoforms are recruited, and 
break down PtdIns(4,5)P2 t° Ins(l,4,5)P3, which liberates Ca2+ from the granule 
stores. The actin cytoskeleton breaks down, releasing SNAP-23. (3) SNARE 
preparation: Mints is released from the ternary complex, and DAG activates 
Muncl3, displacing Muncl8 and opening syntaxin 4. (4) Fusion: SNARE complexes 
assemble at the plasma membrane; DAG and SNAP-23 diffuse onto the granule 
membrane. (5) Compound exocytosis: DAG activates Muncl3 on granule 
membranes, which opens syntaxin 3. See text for details.
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Conclusions and future perspectives

In the introduction to this thesis, a set of three specific aims were spelled out. The 

first objective was to define which PPIn regulate exocytosis from RPMC. This 

thesis has firmly established a role for PtdIns(4,5)P2, although at least one other 

PPIn is likely to be involved, and that this may be PtdIns4P. The second aim was 

to define the membrane in which these PPIn act. In terms of PtdIns(4,5)P2, this 

has been unambiguously assigned to the plasma membrane. Finally, this thesis 

aimed to define the mechanism of action of the PPIn; unfortunately, no 

unambiguous role for PtdIns(4,5)P2 can be assigned from the experiments 

conducted herein. However, it is clear that hydrolysis of PtdIns(4,5)P2 by PLC is 

an absolute requirement for its function in exocytosis from RPMCs, rather than 

the intact lipid acting during membrane fusion.

Although this observation disagrees with current models of PtdIns(4,5)P2-function 

during exocytosis from other systems (Chapman, 2002), it is entirely consistent 

with a role for PtdIns(4,5)P2 in pre-fusion vesicle priming, for which there is an 

impressive supporting literature (see introduction). On the other hand, there is no 

direct evidence for a role for PtdIns(4,5)P2 in membrane fusion itself, and the 

author proposes that it is hydrolysis of PtdIns(4,5)P2 by PLC that is required for 

the membrane fusion event. However, further work will be required to determine 

the molecular events leading to membrane fusion after hydrolysis of 

PtdIns(4,5)P2.

Requirements for PLC activity in regulated exocytosis have been proposed and 

substantiated by others (Brose and Rosenmund, 2002; Gong et al., 2005). 

However, such a requirement may be more apparent in the mast cell, due to the 

massive exocytosis observed within a few seconds of cell stimulation. In other 

cells, such as those in the nervous and endocrine systems, activity of PLC may be 

less apparent due to the restriction of PLC activity to small, polarised regions of 

secretory activity such as the synapse. Furthermore, since exocytosis can be 

sustained in these systems, break-down of plasma membrane PtdIns(4,5)P2 would 

be less apparent due to concomitant synthesis of this lipid, which is required for 

priming of reserve vesicles and membrane recycling events. It is therefore because
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of the unique biological properties of the mast cell that the importance of PLC in 

regulated exocytosis was so apparent.

Clearly, the work presented in this thesis is only the starting point for further 

clarification of the role of PtdIns(4,5)P2 and its metabolites during regulated 

exocytosis. In particular, it will be interesting to define which PLC isoforms 

regulate exocytosis in mammalian cells, a question that may perhaps be answered 

through the use of genetic manipulation in mice. Furthermore, a more precise 

view of how PLC functions in the triggering of exocytosis is required. In 

particular, a more detailed understanding of the proteins associated with 

Ptdlns(4,5 )P2 and its metabolites prior to and during exocytosis would aid in this 

endeavour. However, it is clear that exocytosis is regulated by a number of 

transient molecular contacts, and it will be of great value to elucidate how 

PtdIns(4,5)P2 metabolism regulates these dynamic interactions at membranes.
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