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Abstract
Basal cell carcinoma (BCC) is the most common skin cancer in humans. The 
demonstration of genetic and protein alterations has, so far, had limited 
correlation with either biological behaviour or histological classification of these 
tumours.

It was observed that Glil-overexpressing keratinocytes express elevated levels of 
genes known to be associated with neuronal development, including fi-tubulin III, 
GAP-43, Arc and neurofilament. It was proposed that these genes may similarly 
be overexpressed in BCCs and that different levels of expression may be present 
in different BCC subtypes

Immunohistochemistry o f BCCs demonstrated that neuronal differentiation 
marker proteins are expressed in BCCs, but that this expression is significantly 
reduced in tumours that behave aggressively.

Elevated neuronal differentiation marker gene expression was shown in BCCs. 
Again, expression was more prominent in tumour types that behave indolently. 
Results were obtained for tumour samples processed by laser capture 
microdissection, needle microdissection and homogenised tissue.

Expression of neuronal differentiation marker genes in Gli-overexpressing 
keratinocytes was examined by semi-quantitiative PCR. Neuronal differentiation 
marker expression was associated with Glil and Gli2 over-expression in some 
cases {fi-tubulin III and Arc). Glil and Gli2 also promoted the expression of each 
other in a positive-feedback loop.

Expression of these markers was examined in archival tumours for which the 
clinical outcome was known in terms of recurrence. In completely excised 
tumours p-tubulin III was significantly reduced in tumours that went on to 
subsequently recur. Other markers were not expressed in significantly different 
amounts.

In summary, I have shown that expression of markers associated with neuronal 
development is a feature o f Basal Cell carcinoma, and that the expression of these 
markers correlates strongly with the tumour histological subtype but only weakly 
with tumour recurrence. More work will be required to discover further alterations 
in BCC molecular biology that impact significantly on tumour behaviour.
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Chapter 1: Introduction

Section 1: Clinical and histological aspects of Basal 
Cell Carcinoma

The World Health Organisation Committee on the Histological Typing of Skin 

Tumours has defined Basal Cell Carcinoma (BCC) as a group of malignant cutaneous 

tumours characterised by the presence of lobules, columns, bands or cords of basaloid 

cells ("germinative cells") (LeBoit P.E. et al., 2006). Many authors have 

synonymously used the more benign-sounding words epithelioma and basalioma, but 

in this thesis the term BCC shall be used exclusively.

1.1 Histogenesis of BCC

Historically there has been much debate about the site and cell of origin of BCCs. The 

main debate questions whether these tumours arise from cells of adnexal structure 

(and particularly hair follicle) origin, or whether they arise from non-adnexal 

epidermal cells.

The search for the cellular origin of these tumours has focussed on stem cells which 

may retain the ability to develop into tumours. Several cell types have been suggested 

to be the precursor cells or stem cells for BCC: interfollicular basal keratinocytes, 

basal keratinocytes from hair follicles or sebaceous gland cells (Kruger et al., 1999; 

Potten and Morris, 1988; Zackheim, 1963). In general, stem cells have a relatively 

undifferentiated and slow-cycling phenotype, but they can be stimulated to proliferate 

and give rise to transient amplifying cells which have a limited proliferative potential 

(Miller et al., 1993b). Stem cells may be the target of carcinogens and as such play an 

important role in tumorigenesis. One observation suggesting that uncommitted stem 

cells are the most likely cells of origin for human skin cancer is the fact that sunlight 

exposure in childhood may contribute to tumours many decades later (Brash et al., 

1991).

As first suggested by Cotsarelis and refined by Taylor et al. the ultimate source of 

stem cells in the skin is the bulge region of the outer root sheath of the hair follicle
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(Cotsarelis et al., 1990; Taylor et al., 2000). As a result, hair follicles are likely to play 

an important role in skin homeostasis, wound healing and tumourigenesis. Many lines 

of evidence support this theory. Histologically, BCCs may resemble hair follicles 

(Miller, 1991) and may show characteristics from both bulge region stem cells and 

transient amplifying cells (Kore-eda et al., 1998). In particular, BCC can 

histologically resemble trichoepithelioma, a benign hair follicle tumour (Walsh and 

Ackerman, 1990). The suprabulbar region of the ORS of the hair follicle has an 

immunohistochemical profile that is almost indistinguishable from that of a BCC 

(Asada et al., 1993; Kruger et al., 1999). The hair follicle hypothesis is further 

supported by the fact that when a carcinogen is added in the anagen phase, in which 

the hair follicle bulge region cells undergo transient amplification, BCCs are 

generated more frequently (Miller et al., 1993a). Furthermore, BCCs seldomly occur 

on non-hairy skin (Kore-eda et al., 1998). Support for the hair follicle hypothesis can 

be found in the expression of the basal cell adhesion molecule (B-CAM) in normal 

and diseased skin as well as the ORS of the hair follicle and BCCs (Bememann et al., 

2000).

There is limited evidence to suggest that BCCs originate from interfollicular 

epidermis. The lack of cytokeratin-15 expression in the tumour cells suggests that 

BCCs do not differentiate towards a hair bulge cell fate (Kanitakis et al., 1999). 

Markey et al have shown that keratin subtyping of BCCs is similar to the profile 

shown by interfollicular stem cells which are predisposed to follicular differentiation 

(Markey et a l , 1992).

Overall, the current understanding of BCC molecular genetics as outlined above tends 

to support the idea that the hair follicle stem cell is the progenitor cell of the BCC. In 

all, it seems as if the cell of origin of BCC is a hair follicle stem cell in which the 

normal differentiation and anagen-initiation programme has gone awry.
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1.2 Incidence of BCC

As well as being the commonest form of skin cancer, BCC is assumed to be the 

commonest malignant tumour of all in Caucasians (Miller, 1991) but is not as news­

worthy as other malignancies due to its negligible mortality rate. It has been estimated 

that up to 80,000 cases occur annually in the U.K. and up to 500,000 cases annually in 

the USA (Gloster, Jr. and Brodland, 1996; Holme et al., 2000). Some of the 

discrepancy between these two countries’ rates may be accounted for by improved 

data recording in the U.S. as a result of their healthcare economy. It certainly seems 

that incidence rates are increasing over time, with Ko et al reporting that the UK 

incidence of the disease increased by 235% between 1978 and 1991 (Ko et a l , 1994). 

This has mostly been attributed to increased exposure to ultraviolet radiation and may 

be due to both altered personal habits and the reduced degree of environmental 

protection afforded to us following atmospheric ozone depletion. The cost of 

treatment of non-melanoma cancer as a whole has been estimated as being among the 

top five most expensive cancers to treat in the USA (Housman et al., 2003).

1.3 Aetiology of BCC

1.3.1 Environmental risk factors

1.3.1.1 Sun exposure

There is a vast amount of aetiological evidence suggesting that sun exposure is the 

principal cause of Basal Cell Carcinoma. Firstly, the location of BCCs on the body 

matches closely with the areas that get maximum sun exposure, with 85% occurring 

on the head and neck, and 30% on the nose alone (Miller, 1991). Since then it has 

been suggested that there may be an increasing trend of BCCs occurring on the upper 

trunk in younger patients, reflecting altered habits of clothing and sunbathing (Marks, 

1995).

Secondly, the incidence of BCC drops off markedly with increasing distance from the 

equator. Extremes of incidence were measured by Stone et al with rates in Hawaii 

(692 cases per 100,000 population per year) more than sixty times those in Iceland 

(10 per 100,000) (Stone et a l , 1986). The “world leader” is Australia, with male and
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female incidence rates in Queensland measured respectively as 849 and 605 cases per 

100,000 population per year in 1993 (Marks et al., 1993).

Thirdly, there is a strong association with duration of exposure to the sun. What is 

unclear, however, is how specific the timing of that exposure is for BCC. It was 

discovered that non-melanoma skin cancer is more common in outdoor workers who 

spend a greater proportion of time in the sun (Marks et a l, 1989). Recreational sun 

exposure seems to predispose to BCC development (Corona et a l, 2001). Sunlight 

exposure in childhood certainly seems to predispose for BCC later in life -  both 

Marks and Gallagher demonstrated that there is significant association between 

childhood exposure and sunburn and BCC in later life (Gallagher et al., 1990; Marks, 

1995).

1.3.1.2 Other radiation

Prior non-diagnostic X-ray treatment for skin conditions has been associated with 

increased risk for BCC development (Gallagher et a l, 1996). Nuclear radiation 

following atomic warfare has been shown to increase subsequent rates of BCC 

development, whereas no data exists to date as to whether high dose radiation from 

industrial accidents such as that in Chernobyl has similar effects (Sadamori et al., 

1991). Exposure to UVA-treatment (PUVA) combined with use of psoralens in 

psoriasis patients has been shown to not significantly alter the rate of BCC 

development (Stem, 2001).

1.3.1.3 Chemical carcinogens

Boyd et al. recently proved that an association exists between smoking and BCC in 

young women (Boyd et al., 2002). Furthermore, Ergbaci et al showed that smoking is 

associated with the development of more aggressive morpheaform BCCs (Erbagci and 

Erkilic, 2002). Intake of alcohol has been reported to be associated with development 

of BCC in one recent study (Fung et al., 2002). Diepgen and Mahler found that other 

chemical carcinogens such as arsenic and coal tar products increase the risk of non­

melanoma skin cancer, but these increases are mainly in development of squamous 

cell carcinoma (Diepgen and Mahler, 2002).
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1.3.2 Constitutional Risk Factors

1.3.2.1 Skin colouring

99% of persons who develop BCC are white. Epidemiological studies suggest that it 

is the photoprotective effects of melanin that account for this increased protection in 

those with darker skin types. There is increased risk of BCC development in those 

with blue eyes and fair complexion, who sunburn easily, tan poorly, freckle with sun 

exposure, have red or blond hair, or are of Celtic ancestry (Zanetti et a l , 1996). BCC 

is rare in blacks but as in whites it occurs on the sun exposed areas. Blacks have a 

decreased incidence of BCC on sun exposed areas but have the same incidence of 

BCC on covered areas (reviewed by Gloster, Jr. and Brodland, 1996). Most BCCs in 

black people are pigmented which can lead to delayed diagnosis. Multiple BCC is rare 

in blacks and usually occurs in patients with Gorlin’s syndrome.

1.3.2.2 Melanocortin gene receptor variation

The melanocortin 1 receptor (MC1R) is part of the system by which the body attempts 

to control photoprotection by increasing levels of melanin in the skin. Genetic 

variants of this receptor cause red hair and fair skin and have also been linked to an 

increased susceptibility for development of both melanoma and non-melanoma skin 

cancers (Bastiaens et al., 2001; Box et al., 2001). Although adding this genotypic 

information to phenotypic information (red hair, light skin colour) has been shown to 

improve the prediction of risk of skin cancer development, the improvement was too 

small to be of routine clinical use (Dwyer et a l , 2004).

1.3.2.3 Immunological factors

1.3.2.3.1 Pharmacological immunosuppression

SCC occurs more frequently than BCC in transplant patients undergoing 

pharmacological immunosuppression (Ondrus et al., 1999) and although 40% of renal 

transplant recipients develop skin cancer within 20 years after grafting (Hartevelt et 

al., 1990), no increased incidence of BCC has been described in organ recipients and 

it seems that immunosuppression as practised after organ transplantation does not 

increase the risk of developing BCC.
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1.3.2.3.2 Human immunodeficiency virus (HIV)

People suffering from acquired immune deficiency syndrome (AIDS) have shown an 

elevated risk for the development of BCC (Franceschi et al., 1998). There have been 

reports of BCCs metastasizing in people suffering from AIDS (Sitz et al., 1987), 

suggesting that immune surveillance is one of the factors determining the normally 

non-metastatic nature of the BCC.

1.3.2.4 Cancer Syndromes which predispose to BCC

A number of conditions exist where a genetically inherited syndrome predisposes to 

development of cancer and some of these particularly affect the development of BCC. 

The investigation of these diseases has provided great insight into the mechanism of 

dysregulation of cancer control.

1.3.2.4.1 Nevoid Basal Cell Carcinoma Syndrome (Gorlin’s syndrome)

Gorlin’s syndrome is a familial cancer syndrome that is inherited in an autosomal 

dominant fashion. It predisposes sufferers to the development of BCCs from a very 

young age, and it is not uncommon for these patients to accumulate thousands of 

BCCs in their lifetime. A significant number of cases have no family history and this 

therefore suggests a high rate of spontaneous mutation. Rather than generalised 

disease, segmental or unilateral disease has been described, reflecting the possibility 

of a single cell mutation very early in embryonic development (Gutierrez and Mora, 

1986).

Gorlin and Goltz initially described the syndrome (Gorlin and Chaudary, 1960); 

sufferers not only have to contend with a life of BCC treatments but also they have a 

predisposition to other more serious cancers including medulloblastoma, meningioma 

and fibromas affecting the heart or ovaries (Bale, 1997). Non-malignant features 

include skeletal abnormalities such as odontogenic keratocysts, bifid ribs, frontal 

bossing and polydactyly (Gorlin, 1987). Characteristic pitting of the palms and the 

soles is not commonly seen but is pathognomonic for the syndrome. Expression of 

these features varies within families and on top of the primary genetic defect this 

variation probably represents modifier genes or environmental factors that differ in 

each patient.
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The genetic mutation responsible for Gorlin’s syndrome was mapped in the mid 

1990’s to chromosome 9q22-31 and it codes for PTCH, the human homologue of the 

drosophila polarity gene, patched (Famdon et al., 1994). PTCH is thought to act as a 

tumour suppressor gene, and this mutation at this site has been shown to not only 

occur in syndromic BCCs but also in a significant proportion of sporadic BCCs 

(Gailani et a l, 1996). The genomic basis of this condition and its effect on BCC 

development will be more fully described in part two of this introductory chapter 

(section 1.9).

1.3.2.4.2 Xeroderma Pigmentosum (XP)

This uncommon disease (USA prevalence is estimated at 1:250,000) is inherited in an 

autosomal recessive fashion. Patients are extremely sensitive to sunlight and 

experience a 2,000 fold increase in sun-related skin cancers.

The disease is due to defective DNA repair mechanisms which result in inadequate 

nucleotide excision and repair following ultraviolet-induced DNA damage. Each 

disease subtype is determined by the specific enzyme that is deficient within the 

repair pathway, and this confers a spectrum of aggression of disease within the 

disease as a whole. It is this repair system that is responsible for the restoration of 

DNA structure following sunlight damage-induced pyrimidine dimer formation (as 

discussed in section 1.3.3.2.1).

1.3.2.4.3 Bazex syndrome

This is a rare X-linked syndrome that not only predisposes individuals to multiple 

BCCs at an early age, but also involves marked abnormalities of hair follicle growth 

resulting in hypotrichosis and hypohidrosis. So-called “ice pick scars” are 

pathognomonic for this disease. The link between BCC formation and hair follicle 

abnormalities is particularly interesting because of the possible origins of BCCs from 

hair follicles.

1.3.2.4.4 Rombo syndrome

Rombo syndrome is clinically very similar to Bazex syndrome, including the 

predisposition to BCC development. Slight differences include the striking 

degeneration of elastic fibrils in sunlight-exposed areas causing dramatic skin
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alterations called atrophoderma vermiculatum. It appears to be inherited in an 

autosomal dominant fashion.

1.3.2.4.5 Muir-Torre Syndrome

This syndrome was first described by Muir in 1967 and is characterised by the 

presence of one or more adnexal skin neoplasms (such as BCC) in association with an 

internal malignancy such as colonic carcinoma (Muir et al., 1967). The clinical and 

pathological features overlap with the hereditary non-polyposis colorectal cancer 

syndrome (Kruse and Ruzicka, 2004), with characteristic microsatellite instability and 

mutated MSH2 mismatch repair gene present in both cases.

1.3.2.5 Skin lesions which predispose to BCC

Prior to development of definitive BCCs, there are no proven precursor 

(premalignant) lesions that lead to the tumours. This contrasts with the case of SCC, 

which is clearly preceded in many cases by actinic keratoses or Bowen’s disease 

(carcinoma-in-situ). There are, however, two particular lesions that seem to 

predispose to BCC development and a number of reports of less specific associations, 

such as the development of BCCs in scars.

7.3.2.5.1 Fibroepithelioma o f  Pinkus

This was first described by Pinkus in 1953 as a “pre-malignant fibroepithelioma”. It is 

a tumour typically composed of thin anastomosing strands of basaloid or squamous 

cells, sometimes only two cells thick, surrounded by abundant stroma. They appear as 

flesh coloured tags and are most common on the trunk and extremities. There seems 

to be an increased risk of BCC development in these lesions, but recent debate has 

taken place as to whether these lesions are really fenestrated trichoblastomas or 

trichoblastic carcinomas (Ackerman and Gottlieb, 2005; Bowen and LeBoit, 2005).

1.3.2.5.2 Naevus sebaceous o f  Jadassohn

These lesions are congenital hairless plaques that are most commonly found on the 

scalp, face and neck. They have the propensity to develop into basal cell carcinoma; 

the rates of malignant transition have been reported as ranging from 6% to 50% of 

cases (reviewed by Santibanez-Gallerani et al., 2003).
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1.3.2.5.3 BCC formation in scars

BCCs have been reported in surgical scars, bum scars, tattoos, vaccination scars, and 

chronic ulcers, although it is unclear whether the scarring process has a promoting 

effect on BCC development (Earley, 1983; Ewing, 1971; White, 1983).

1.3.3 Ultraviolet radiation and its effects

1.3.3.1 Damage caused by UV radiation

Ultraviolet radiation is classified by its wavelength into UV-A (wavelength 320- 

400nm), UV-B (280-320nm) and UV-C (200-280 nm). Generally, the shorter the 

wavelength, the more damaging the radiation is to the human body. The majority of 

high energy UV-C is filtered out within the earth’s atmosphere, although in certain 

parts of the world, the concentration of the ozone partly responsible for this is thought 

to be diminishing (Madronich and De Gmijl, 1994). Of the remaining ultraviolet 

radiation which penetrates the earth’s atmosphere and which we are exposed to (UV- 

A and UV-B), it is generally believed that UV-B is the principal carcinogen in 

sunlight. However, lower energy UV-A may play a greater role than previously 

realised.

UV radiation is believed to have both direct and indirect mechanisms of inducing 

damage which can lead to malignant change. At shorter wavelengths important 

molecules such as nucleic acids absorb ultraviolet radiation (UV-C and UV-B). 

Longer wavelengths of radiation (UV-A) induce damage by more indirect means, 

with absorption by cellular chromophores (such as porphyrins, quinones and flavins) 

resulting in the production of active intermediates such as hydroxyl radicals and 

superoxide ions. These direct and indirect mechanisms cause damage to DNA, 

mitochondria and membranes. Therefore protection against ultraviolet-induced 

cellular damage consists of UV exposure reduction, DNA repair and antioxidant 

pathways.

1.3.3.1.1 DNA Damage

DNA is made up of pyrimidine bases (cytosine, “C”, and thymine, “T”) and purine 

bases (guanine, “G” and Adenine, “A”). Adenine bases are bound by intermolecular 

forces to a corresponding thymine and guanine is similarly linked to cytosine. These
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combinations are wound in a double anti-clockwise helix. The maximum absorption 

of ultraviolet radiation occurs at a wavelength of 260nm. The photons absorbed tend 

to be absorbed at the double bond joining adjacent pyrimidines, allowing the helix to 

open up. At “hot-spot” sites where adjacent pyrimidines exist (C’s and T’s), 

cyclobutane dimers may result, or alternatively pyrimidine-pyrimidone 6-4 

photoproducts may be produced (reviewed by Mitchell and Naim, 1989). Both 

products lead to an abnormal configuration of the DNA structure.

Because of the “A-rule”, where DNA polymerase typically inserts an adenine residue 

at bases it cannot interpret, a pairing with thymidine (T) is produced after another 

round of replication. The overall effect is one of a C—>T substitution and ten per cent 

of these changes occur at adjacent cytosine molecules, giving rise to the characteristic 

UV signature CC—►TT base substitution. This process is summarised in Figure 1.1. 

The result of these base substitutions is damage to genes such as TP53, ptch and Ras. 

TP53 damage is particularly significant since this can contribute to malignant 

transformation - the p53 damage response protein is involved in initiation of cell cycle 

arrest, DNA damage repair and apoptosis; in the absence of p53 cells do not apoptose 

when exposed to UV radiation. It may also act as a promoter of transformation (since 

cell cycle arrest and DNA repair is not accomplished). This results in the 

accumulation of further DNA damage.

Other changes in the cell as a result of UV exposure include membrane damage (UV- 

A and UV-B can cause lipid peroxidation altering the cell permeability and transport 

systems), protein damage (including antioxidant enzymes and DNA repair enzymes), 

cytokine modulation and immune modulation.

1.3.3.1.2 Alteration o f  immune function and relation to UV susceptibility

Langerhans cells (acting as antigen-presenting cells) in the skin, together with the 

regional draining lymph nodes that serve them, have been labelled “skin associated 

lymphoid tissues” (SALT) and it is thought that UV irradiation affects this system 

because of direct DNA damage (Streilein, 1983). The involvement of the immune 

system in human skin carcinogenesis is suggested by the increased risk of malignancy 

in immunosuppressed patients.
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C ellu la r  DNA

Excision
repair

Failure of DNA 
repair

Replication

Mutation averted

Polymerase
error

 C*----------

 A ---------

Replication or 
excision repair

C to T mutation

Figure 1.1. The mechanism of UV induced CC-TT substitution. Following the UV- 
induced creation of pyrimidine dimers, the process of excision repair attempts to 
excise the abnormal DNA and repair the defect with newly synthesised DNA (dotted 
line) with the complementary strand serving as the template. In the absence of repair, 
the polymerase enzyme leaves a gap opposite the lesion (asterisk) during replication. 
Incorrect filling in with A causes mutation in the complementary strand in the 
subsequent round of replication, resulting in C—>T mutations (after Grossman and 
Leffell, 1997)
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1.3.3.2 Normal defence against UV radiation damage, and how it fails

1.3.3.2.1 Normal DNA repair and how its failure promotes BCC formation

DNA repair mechanisms exist to repair the damage done to DNA (including proto­

oncogenes and tumour suppressor genes) by carcinogenic insults. The variation in 

DNA repair mechanisms may explain part of the varied susceptibility to these 

tumours in certain individuals.

There are a number of principal routes of DNA repair. The mismatch repair system 

acts on single base mismatches and small displaced loops of 4-5 base pairs: colonic 

carcinomas in patients with Hereditary Non-Polyposis Coli Carcinoma (HPNCC) 

have been shown to have derangements in genes within this pathway (Chung and 

Rustgi, 2003). The nucleotide excision repair system is able to detect and repair the 

damage done by ultraviolet radiation such as the creation of pyrimidine dimers as 

described previously: this system is affected in xeroderma pigmentosum. Patients 

with BCCs have been shown to have a reduced capability for DNA repair compared 

to normal subjects as described in figure 1.2 (Grossman and Wei, 1995). This also 

applies to those who have a family history of BCC or SCC.

*4  D e f ic ie n t  1+ ■flomwl -Super-

C r

GENERAL POPULATION
XP PATIENTS

7SX 100XSOX 125X ’25X0 10X
RELATIVE REPAIR CAPACITY

Figure 1.2. Proposed distribution of DNA repair capacity among populations (after 
Grossman and Wei, 1995).

1.3.3.2.2 A ntioxidant pathways

Antioxidants are substances which are critical in cellular defence against reactive 

oxygen intermediates which arise from UV-induced damage (typically the longer
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wavelengths, as opposed to those which cause direct DNA damage). Important 

antioxidants include vitamins A, C and E, and protein enzymes such as superoxide 

dismutase (which converts the superoxide ion to hydrogen peroxide), catalase (which 

destroys hydrogen peroxide) and glutathione enzymes, such as glutathione-s- 

transferase (GST).

It has been shown that these GST enzymes (which are responsible for the disposal of 

the potential mutagens such as lipid peroxidation and DNA hydroperoxide formation) 

are likely to be involved in susceptibility for BCC (Hayes and Strange, 2000). 

Although the exact role of these enzymes in the development of skin cancer is poorly 

understood, it appears that several polymorphisms in GST family members exist and 

that these have been associated with impaired detoxification, thus influencing the risk 

for several cancers, including BCC.

1.4 Clinical features of BCC

Basal Cell Carcinomas are typically recognised as skin tumours which grow slowly 

over a period of months or years. They can present as a simple lump, an ulcer, or a 

skin lesion that does not heal over a long period of time. Erythematous and crusted 

lesions are often misdiagnosed as other pathologies but are often found to be BCCs 

following definitive diagnosis.

The main methods of classifying these tumours clinically are to describe their clinical 

type, their relative time course (whether primary or recurrent), and their histological 

features. It is important to mention clinical and histological criteria when attempting 

to describe a BCC because often a clinical appearance cannot be adequately 

represented by a histological description and vice versa.

1.4.1 Clinical classifications

The clinical classification that is principally used in clinical practice today refers to 

the main clinical appearances of BCC, some of which are seen in Figure 1.3. In the 

description of clinical features which follows, pigmentation and ulceration are not 

discussed since these features can be seen in all of the tumour subtypes.
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1.4.1.1 Nodular BCC

Nodular BCC is the most common subtype and is found in up to 45% of cases 

(Emmett, 1990). They typically present as a pearly nodule or papule and may later 

progress to central ulceration, resulting in occasional bleeding. Telangectatic vessels 

are characteristic of this subtype. These tumours may be pigmented, and thus may be 

easily be mistaken for malignant melanoma.

1.4.1.2 Superficial BCC

Superficial BCCs are usually typically flat lesions which are erythematous and have a 

lightly scaled surface. As a result they can often be confused for dermatitic lesions. 

Small superficial ulcerations are often present. Their border is often indistinct, they 

occur more commonly on the trunk than elsewhere and have an overall incidence of 

approximately 20% (McCormack et al., 1997; Sexton et al., 1990).

1.4.1.3 Infiltrative and Morphoeic BCCs

Infiltrative and Morphoeic BCCs are not as common as the nodular and superficial 

subtypes, and do not tend to have a characteristic physical appearance. They do 

however often present as lesions that are not typically recognised initially as BCCs, 

and can resemble scars or benign areas of atrophy. Morphoeic tumours tend to have 

areas of fibrosis present, and thus they may have a shiny or white patch or plaque. 

The disparate nature of these tumours means that it is often difficult to define exactly 

where the tumour margin is, and as such complete excision may be more difficult to 

achieve.

1.4.1.4 Basosquamous (“metatypical”) BCC

These tumours are relatively uncommon and show clinical and histological features of 

both BCC and SCC with an intermediate degree of tumour keratinisation, aggressive 

behaviour and time course (Martin et al., 2000). However, no clear diagnostic criteria 

exist as to whether these tumours should be classed as collision tumours (synchronous 

SCCs and BCCs), or whether they are merely variants of BCCs with a degree of 

squamous differentiation.
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Figure 1.3: appearances o f different clinical types of Basal Cell Carcinoma: (a) 
nodular BCC; (b) pigmented nodular BCC of the lower eyelid; (c) superficial BCC; 
(d) aggressive infiltrative peri-orbital BCC; (e) morphoeic BCC.
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1.5 Histopathological Features of BCC

Basal Cell Carcinoma is a heterogeneous disease. This is reflected in both the variety 

of clinical presentations and the diversity of histological appearances of the tumours. 

A large number of terms and classifications have been used to describe the 

differentiation status, cellular features and growth patterns that exist.

Many histological features are shared across BCC subtypes. Tumours are typically 

composed of groups or nests of “basaloid” cells which tend to be arranged with little 

order centrally and a more organised “palisading” manner peripherally. The cells of 

these tumours do not have well defined cytoplasm and their nuclei are typically 

hypochromatic. Intercellular bridges are usually not seen on light microscopy. 

Numerous mitotic figures have been described (Kerr and Searle, 1972). Most tumour 

islands show a degree of attachment to the epidermis although some subtypes (such as 

micronodular and morphoeic tumours) tend to have a higher number of tumour 

islands separated by some distance from this layer. The majority of tumours remain 

intradermal, but some tumours invade locally and extend into surrounding tissues 

such as bone and cartilage. Perineural invasion, however, is rare.

Surrounding the tumour islands, BCCs are surrounded by a characteristic stroma. This 

stroma contains variable amounts of acid mucopolysaccharides and a patchy 

lymphocytic infiltrate. Morphoeic tumours particularly exhibit a degree of fibrosis in 

the stroma adjacent to tumour islands. Compared to normal skin, the dermis adjacent 

to BCC tumours shows significantly higher rates of elastosis, probably due to the 

solar damage that has partly caused the tumour to occur in the first place (Moon and 

Oh, 2001). Similarly, the overlying epidermis may show changes of solar keratosis 

secondary to the radiation damage it has incurred.

Regression has been recognised as a feature of some BCCs (Curson and Weedon, 

1979). Clinically it masquerades as central scarring within a tumour, whereas 

histologically it is characterised by a dense lymphocytic infiltrate at the margins of the 

tumour islands and prominent apoptosis.
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1.5.1 Histological classification

Following earlier classification systems based on cellular differentiation and 

histological growth pattern, Sloane described four histological subtypes: Nodular, 

Nodulo-infiltrative, Infiltrative (including sclerosing and non-sclerosing types) and 

Multifocal tumours (Sloane, 1977). With this classification the infiltrative and 

multifocal types were shown to have a higher recurrence rate than the other groups.

Five years later Jacobs produced a classification, again based on the growth pattern of 

the BCC, which had prognostic value (Jacobs et al., 1982). This was based on three 

major growth pattern types (I, II and III), each of which contained subtypes as 

detailed in figure 1.4.

(I)

Nodular Nodulo-ulcerative
(II)

Ulcerative Infiltrative Morphoea-like

(III)

# #

Multifocal Superficial

Figure 1.4. A proposed classification of BCC growth patterns (after Jacobs, Rippey et 
al. 1982)
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The most recent, most useful, and currently most commonly used classification was 

published by Sexton et al (Sexton et al., 1990). In this, growth pattern was used as a 

defining feature, and it was at this stage that the concept of micronodular tumours 

arose. According to Sexton’s classification BCCs can be grouped thus:

1) Superficial tumours: multiple tumour islands arise from the epidermis and/or 

adnexae and either abut or penetrate the papillary dermis.

2) Nodular tumours: a rounded mass of tumour cells, typically with a well defined 

edge and presence of peripheral cellular palisading.

3) Micronodular tumours: the multiple tumour islands are smaller than in nodular 

tumours (less that 0.15 mm in diameter) but are still clearly delineated from 

surrounding tissues.

4) Infiltrative tumours: irregularly shaped tumour islands are large or small and 

usually have little well defined peripheral palisading.

5) Morpheic tumours: tumour islands may be small with “cords” or “strands” 

extending from them. The surrounding stroma is sclerotic.

Given the current use of this system in UK histopathology laboratories and its 

relevance to clinical outcome I have used this classification in this thesis to define 

tumour subtypes.

1.6 Associations of BCC occurrence

Factors that have been investigated in BCC outcomes have included clinical factors 

(age, gender, anatomical site, relation to sun exposure), histological factors (subtype, 

cellular differentiation status), treatment factors (surgical or non-surgical, and if 

surgical -  extent or completeness of resection) and to a small degree molecular 

biology factors. The outcome of any management strategy is of course a combination 

of the clinical behaviour of the tumour and the efficacy of the treatment chosen. It is 

in precisely this issue that difficulties of comparison arise, because the data recorded 

in many studies is not exhaustive and does not make for easy comparisons between 

studies.

A primary BCC is one that has developed in a site in which BCC has not previously 

been present. A recurrent BCC may be defined as the occurrence of a histologically-
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verified BCC in exactly the same site as a previously treated BCC. In practice this 

means that the new BCC occurs within or adjacent to a scar from a previous 

procedure. Rowe stated that BCCs may recur up to ten years from the original tumour, 

but that 80 per cent occur in the first five years, and 66% in the first 3 years (Rowe et 

al., 1989). Metastatic BCC must originate from an original tumour that is cutaneous 

and not mucosal, the metastasis must be at a distant site and not merely an extension, 

and the original and metastatic tumours must both be of a similar histopathological 

subtype. Rates of BCC metastasis are extremely low, ranging between 0.0028% and 

0.55% of tumours (Snow et al., 1994) with metastasis occurring on average 12 years 

following the original tumour.

1.6.1.1 Age and gender of BCC patients

Primary BCCs are most common in patients aged between 60 and 70 years old and 

95% occur in patients between the ages of 40 and 79 years (Kopf, 1979; Roenigk et 

al., 1986). In most of the studies published on this subject the gender distribution of 

BCC patients is approximately equal. Recurrence of BCCs has been noted to be 

associated with age in patients who have been treated with curettage and 

electrodessication but not in those treated with surgery or radiotherapy (Dixon et al., 

1989; Kopf, 1979; Koplin and Zarem, 1980).

It is unclear whether gender is a significant factor in recurrence. Kopf and Koplin 

found no association between the the gender of patients with recurrent BCCs and 

those primary BCCs, but Robins et al differed and concluded that tumours were more 

likely to recur in young women than in other groups (Robins and Albom, 1975). 

Although the rates of recurrence following Mohs surgery are much lower than 

following other treatments, a significant difference in both age and gender has been 

noted in patients initially treated this way, with more likelihood of recurrence in males 

less than 50 years of age (Rigel et al., 1981).

1.6.1.2 Anatomical position of BCCs

The head and neck was the commonest recorded site by far in two of the largest 

studies of this type. K opf s data showed that 85% of tumours occurred above the 

clavicles, and Koplin broadly agreed, with 93% of BCCs in this area (Kopf, 1979;
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Koplin and Zarem, 1980). It is clear from both studies that mid-facial tumours are 

most common and that the limbs and truncal areas are relatively under-represented.

There is no absolute consensus on the impact of tumour position on recurrence. 

Following treatment Kopf concluded that anatomical position had no statistically 

significant impact on the likelihood of recurrence, whereas Koplin and Zarem showed 

that a significantly higher number of tumours recurred above the clavicles than 

elsewhere (Kopf, 1979; Koplin and Zarem, 1980). Cosmetically and surgically 

challenging areas such as the scalp and mid-face have high rates of recurrence; 

whether this is due to the biological nature of these tumours or a more conservative 

approach to their excision remains unclear. This latter theory is supported by 

Breuninger and Dietz who showed that there is no significant difference in subclinical 

tumour extension between these sites (Breuninger and Dietz, 1991). Surgical 

conservatism in challenging sites has also been suggested as a cause of high 

incomplete excision rates on the eyelids (Rakofsky, 1973).

What small amount of data that does exist on metastatic BCCs suggests that scalp and 

ear tumours metastasize most commonly. It is possible that a combination of thin skin 

and large blood vessels may play a role in this. Tumours from the trunk and the 

genitalia are those that are next most likely to spread (Snow et al., 1994; von Domarus 

and Stevens, 1984).

1.6.1.3 Duration and size of tumour

Kopf reported that 80 per cent of patients are likely to present with a tumour less that 

15mm in diameter (Kopf, 1979). He also stated that more than half the patients will 

claim to have had the tumour for less than a year, although extraordinarily some may 

claim to have known about their skin lesion for up to twenty years.

Koplin did not find tumour size and duration at presentation to be related to 

recurrence (Koplin and Zarem, 1980). Two other studies, however, did find that these 

factors were important for recurrence in tumours treated with curettage and 

electrodessication and in tumours treated with Mohs surgery (Kopf, 1979; Rigel et al., 

1981).
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It appears that there may be increased likelihood of metastasis in tumours that are 

large and more deeply penetrating. Three-quarters of BCCs that metastasize are stage 

T2 to T4, and Snow suggested that large size makes it more likely that BCCs may 

spread (Snow et al., 1994).

1.6.1.4 Histology

In general it appears that nodular tumours (variously including papulo-nodular, 

nodulo-ulcerative, nodulo-cystic) are the most common primary BCCs and that they 

occur in 45-60% of cases (Emmett, 1990; Jacobs et al., 1982; Sexton et al., 1990; 

Sloane, 1977). Superficial tumours represent approximately 8% of BCCs and the 

more aggressive infiltrative and morphoeic BCCs comprise 8% and 2-9% 

respectively. Pigmented BCCs occur in 1-6% of cases (Emmett, 1990; Hauben et al., 

1982; Kopf, 1979). In none of these cases is there evidence of subtype association 

with age.

There have been many attempts to correlate histopathological subtype to the ultimate 

indicator of tumour behaviour, that of recurrence. Over the years a large number of 

studies have been published and all have slightly different takes on the complex 

interaction between histological subtype, completeness of excision and BCC 

recurrence.

Shannoff and Pascal both concluded that there is only limited association between 

histology and recurrence (Pascal et al., 1968; Shanoff et al., 1967). More recent data, 

however, infers some association between histological subtype and likelihood of 

recurrence. Emmett found that 35% of infiltrating tumours were likely to recur and 

Dixon reported that infiltrative and morphoeic tumours were more likely to recur than 

nodular or nodulo-ulcerative types (Dixon et al., 1991; Emmett, 1990).

Beyond histological growth pattern other, more “cellular”, markers of growth have 

been correlated with recurrence. Recurrence is associated with the presence of 

irregularity of 75% of the peripheral palisade and a lack of lymphocytic infiltrate 

(Dellon et al., 1985; Sexton et al., 1990). Hauben, however, found no association 

between peripheral palisading or lymphocytic infiltrates or squamous differentiation 

and outcome but did find an increased recurrence rate in those tumours with high
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mitotic activity (>10 mitoses per 5 high power fields) and the absence of ulceration 

(Hauben et al., 1982).

Clearly, the relationship between tumour growth pattern and tumour cell 

characteristics, likelihood of complete excision and tumour recurrence is a complex 

one. It is likely that differences in tumour excision (as determined partly by 

complexity of the growth pattern) may account for some of the differences between 

the results of these studies. Going beyond these markers using molecular biology will 

be discussed in the section 1.10.

1.7 How treatment of BCC affects recurrence

A variety of treatment options are used to treat BCCs. This reflects not only the 

variety of available options and the variety of practitioners to whom BCC patients are 

referred, but also the fact that no clear consensus exists for the optimal routine 

treatment for different types of tumour. All treatment modalities can essentially be 

split down to either ablative (curettage, cryotherapy, electrodessication, radiotherapy, 

topical chemotherapy) or excisional (“routine” surgical excision, Mohs’ micrographic 

surgery) techniques.

1.7.1 Curettage and electrodessication

This technique involves ablation of a lesion using a curette under local anaesthesia, 

followed by electrodessication of the tumour bed. This is best used for soft 

circumscribed tumours such as nodular BCCs which are limited in size and have not 

been previously treated.

Five-year recurrence rates range between 3% and 18% which reflect technique and 

patient selection. Tumour size and anatomical site are independent risk factors for 

recurrence using this method (Silverman et al., 1991b). Suhge d'Aubermont and 

Bennett excised the sites where curettage and cautery had been performed for BCC. 

They found high rates of residual tumour and this was more significant in facial sites 

compared to truncal sites (Suhge d'Aubermont and Bennett, 1984). Recurrent lesions 

should not be treated by this technique since re-recurrence rates may reach 40% 

(Rowe et al., 1989).
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The main problem with this treatment method is the lack of histological information 

available following the procedure. Given that a watch and wait policy is advocated in 

every case with this technique, the first sign of a potential problematic tumour may be 

recurrent disease.

1.7.2 Cryotherapy

Liquid nitrogen has been used to ablate BCCs and has been reported to have good 

success, ranging from no recurrence to 12.9% (Kuflik, 1980). Only one study, 

however, has data for five-years of follow up; this demonstrates a recurrence rate of 

7.5% (Fraunfelder et a l , 1984). Larger infiltrative tumours were shown in this study 

to be most likely to recur. In a similar fashion to curettage, no histological information 

is available and the efficacy of cryosurgery cannot be directly compared to other 

treatments (as reviewed by Kokoszka and Scheinfeld, 2003).

1.7.3 Radiotherapy

Radiotherapy has progressed from its initial regimens to now include fractionated 

conventional radiotherapy and interstitial brachytherapy. Five-year recurrence rates 

can be as high as 31% (Nordman and Nordman, 1978). Size of tumour before 

treatment has been found to be an independent prognostic marker of recurrence 

following radiotherapy with Silverman reporting a 4.4% recurrence rate for tumours 

less than 1cm rising to 9.5% for larger tumours (Silverman et al., 1991a).

There is only one prospective randomised control trial comparing radiotherapy and 

surgery and this concluded that both recurrence and cosmesis were superior at 4 years 

in the group treated with surgery (Avril et al., 1997). In this series recurrence over 

four years following surgery was low (0.7%).

Radiotherapy was initially popular because the tumour site usually healed without the 

need for formal surgical reconstruction. However depigmentation, atrophy, 

radionecrosis and induction of new malignancies are potential complications and so it 

is now principally used when palliation is desired for elderly patients who have large 

potentially incurable lesions for whom major reconstructive surgery would not be 

appropriate.
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1.7.4 Surgical excision

The ideal end result of surgery for BCC is complete tumour excision combined with 

an acceptable cosmetic result. Attaining complete tumour excision is greatly 

dependent on the skill of the surgeon, both in appreciating that the actual extent of 

tumour may not tally exactly with what is seen at the tumour surface, and in having 

the confidence to fully excise the lesion and make the correct (not necessarily the 

easiest!) reconstructive choice. However, the term “complete excision” is only 

correctly used if one is totally sure that that is indeed the case. This relies greatly on 

the skill of the pathologist examining the surgical specimen, and requires that 

histological processing and analysis has been performed as well as is possible.

Routine excision is generally carried out as a one step procedure with closure or 

reconstruction of the surgical defect immediately following the excision of the 

tumour. The benefits of this obviously include a rapid procedure, no delay between 

excision and closure of the wound, low cost and ease of performing it due to the basic 

surgical material required. The major drawback with routine excision, however, is that 

although an effort should have been made to predict the extent of tumour by visual 

assessment, no microscopic assessment is possible at that time. It is therefore not 

uncommon to find out much later that the resection was inadequate and at that stage 

the decision needs to be made as to whether repeat excision needs to be performed. 

Some of these problems may be overcome using Molls’ surgery, discussed in section 

1.7.5.

Reports of overall BCC recurrence following routine surgical excision range from 

0.7% to 23.4% (Avril et al., 1997; Hauben et al., 1982) over a five-year follow-up 

period. The effect that histopathological subtype has on recurrence of routinely 

excised BCCs is closely related to the completeness of excision and this in part 

explains the diversity in results with this technique.

1.7.4.1 The link between tumour characteristics, surgical treatment and 
outcomes

Growth properties of the tumour determine whether significant subclinical extension 

is present. This may then define how large an excision margin is chosen (in the case
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of routine excision) and this will determine the completeness of tumour excision (as 

determined by histological examination, discussed below). The completeness of 

excision combined with the patient’s host response may then affect the likelihood of 

recurrence.

Histological reporting is essential to accurately assess the degree of completeness of 

excision. Random sampling is the easiest method of histological assessment, but due 

to the small amount of the specimen examined, this may lead to a high level of falsely 

negative excision margins. “Breadslicing” of tumours provides better information 

regarding the tumour histology and growth pattern. Mohs surgery is the best method 

for assessing the margins of excision specimens (as disccused in section 1.7.5); this 

gives unrivalled information but comes at the expense of time and cost.

1.7.4.1.1 Subclinical extension and completeness o f excision

Extension of BCCs is similar to that of an iceberg: there is often much more of the 

tumour beneath the surface than is visible from above it. This extension is often 

asymmetrical, and it varies according to tumour size and subtype. It has mainly been 

assessed by histological assessment of completeness of excision following excision 

with standard margins.

Wolf assessed the adequacy of lateral margins by marking the skin with 1mm 

increments and found that a 4mm margin would eliminate 98% of all tumours less 

than 2cm diameter. He found that increased margins would have inferred little benefit, 

and that reduced margins of 3mm or 2mm would have achieved complete clearance in 

only 85% and 75% of cases respectively (Wolf and Zitelli, 1987). Epstein showed that 

a 2mm margin was adequate to clear 95% of tumours, but the tumours in this group 

were small (average diameter only 8mm) and the failures in this group had an average 

size of 13mm, indicating that size of tumour may impact on the likelihood of 

subclinical extension (Epstein, 1973).

However, the main determinant of the extent of subclinical extension (both lateral and 

deep), and therefore of incomplete excision is the histological subtype of the BCC. A 

number of studies have strongly suggested that infiltrative, morphoeic and 

micronodular subtypes are most likely to be incompletely excised due to their patterns
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of extension (Epstein, 1973; Hendrix, Jr. and Parlette, 1996; Sexton et al., 1990). 

Lastly, the chronicity of the tumour may play a role here: recurrent tumours were 

also more likely to be incompletely excised than primary tumours (Breuninger and 

Dietz, 1991).

1.7.4.1.2 How completeness o f  excision affects BCC recurrence

Taking the previous discussion a step further and considering how incomplete 

resection translates to tumour recurrence is not so straightforward. The belief that an 

incompletely excised tumour should lead to recurrence relies on a number of 

assumptions and these can fall down at any step along the way. Firstly, falsely 

positive margins may be reported, by way of errors in histological processing. This 

immediately means that the link in these cases is incorrect -  even if recurrence does 

occur, there may not have been residual tumour present after all. False negative 

margins may also be recorded, due to inadequate histological assessment. This will 

also skew subsequent comparisons of completely and incompletely excised tumours.

A true positive margin error may occur because a tumour does actually “shell out”, 

and although there may be tumour at the absolute margin of the excised specimen (i.e. 

truly positive margins), there is indeed no tumour residing in the tumour bed and 

hence there is no recurrence. It is interesting that excision of previous sites of 

incomplete BCC excision show that residual tumour is only found in approximately 

50% of cases (Griffiths, 1999; Suhge d'Aubermont and Bennett, 1984). Whether this 

is due to regression of the residue or because there was never any residue remaining is 

unknown.

Lastly, in the case of tumours where excision data is accurate, follow-up data must be 

adequate, and should ideally last ten years. This is necessary to ensure that the 

recurrence data is also accurate, and that there is no chance that tumours may be 

recorded as not having recurred when actually they have.

Notwithstanding all these potential difficulties, there is still strong evidence that the 

degree of completeness of tumour excision relates to the likelihood of recurrence. A 

significant increase in tumour recurrence following incomplete (or suboptimal) 

excision has been described by many authors (De Silva and Dellon, 1985; Gooding et
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al., 1965; Lang, Jr. and Maize, 1986; Pascal et al., 1968). Richmond further explored 

the relative importance of clear deep or lateral margins. He followed 60 cases of 

incomplete BCC excision and found that all four cases which had both deep and 

lateral margins originally involved recurred (Richmond and Davie, 1987).

However the rate of BCC recurrence in tumours which have been supposedly 

incompletely excised is still lower than the absolute incomplete excision rate (Dellon 

et al., 1985; Pascal et al., 1968; Richmond and Davie, 1987) -  hence the acceptance in 

many cases of incomplete BCC excision.

1.7.5 Mohs surgery

Originally described by Dr. Frederick Mohs, this technique produces flat excision 

margin specimens that are parallel to the tumour / stroma interface (Mohs, 1976). 

Following initial excision, successive saucer-shaped planes of tissue are taken and by 

rapidly identifying where residual tumour lies within these specimens, one can then 

continue the excision process only where tumour remains until one is sure that all 

surgical excision margins are clear of tumour. This essentially guarantees complete 

tumour excision (hence resulting in very low recurrence rates) and minimises the 

removal of uninvolved tissue.

However it is unsuitable for assessing tissues with any bony component as bone 

cannot be decalcified within the time frame of the procedure. It is also time- and 

labour-intensive, it requires specialist skills and equipment, and therefore is costly. It 

is best reserved for the treatment of aggressive primary or recurrent tumours in 

anatomical sites where as much normal tissue as possible must be spared (good 

examples are orbital and peri-alar BCCs).

93% and 97% cure rates have been reported for the fixed and fresh tissue methods 

respectively. This technique has a recurrence of 8.7 times less than that of all non- 

Mohs modalities for primary BCCs (Rowe et al., 1989). A recent study of peri-ocular 

BCC by Malhotra et al showed that there were no recurrences following Mohs 

resection of primary BCCs, and that the recurrence rate of previously treated tumours 

was 7.8% (Malhotra et al., 2004). In this study previous recurrence, medial canthal
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site and superficial or infiltrative subtype were all significant factors associated with 

recurrence.

1.7.6 Non-Surgical Techniques

There are many non-surgical techniques that have been used to treat BCC. However, 

at this stage none of them have the bulk of data or solid evidence base for their use 

that the previously mentioned treatments do.

Prophylactic use of oral retinoids has been shown to be of no benefit in the reduction 

of subsequent BCC formation (Moon et al., 1997). Topical retinoids, in the form of 

Tazarotene, have been shown to promote regression in selected cases, but are 

associated with high incidence of disease persistence (Bianchi et al., 2004; Brenner et 

al., 1993).

Intralesional interferon a2b been demonstrated to cure 67% of BCCs in the short 

term but long term follow-up data is limited in such studies (Kim et al., 2004). 

Immune modulating drugs, such as Imiquimod, induce the production of interferon 

and other cytokines through the innate immune system and stimulate cell-mediated 

immunity. They have been used topically to treat BCCs, and Geisse et al have shown 

that a statistically significantly higher clearance rate is achieved using this cream over 

control in superficial BCCs (Geisse et al., 2004). The end point in this study was 

histological clearance rather than actual tumour recurrence.

Photodynamic therapy (PDT) with either topical or systemic haematoporphyrin 

derivatives is also under evaluation. Topical application of photosensitisers has the 

advantage of less systemic side effects but is only suitable for more superficial 

tumours. Rhodes et al compared the use of topical methyl aminolevulinate 

photodynamic therapy with routine surgical treatment and found that although 

cosmesis was better with PDT higher recurrent rates were present in this group 

(Rhodes et al., 2004). However, in all the studies performed to date, no precise rates 

of BCC clearance using PDT are known, and recurrence rates do seem to be higher 

than for conventional treatment methods (as reviewed by Marmur et al., 2004). 

5-Fluorouracil has been used topically since the 1970s, but long term data with its 

use is lacking. Epstein found that cure rates of superficial BCCs were improved by 

combining its use with curettage (a drop from 21% to 6% recurrence at five years) 

(Epstein, 1985).
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Section 2: Molecular Biology of BCC

Tumour formation results from a disruption of the normal balance between cell 

proliferation and cell death. As summarised by Vogelstein and Kinzler, neoplastic 

cells differ from normal cells by their ability to proliferate, unrestrained by normal 

regulatory mechanisms and by their ability to colonise territories normally reserved 

for other cells (Vogelstein and Kinzler, 1993). Differentiation and proliferation are 

controlled by certain genes which may themselves be regulated by extrinsic factors. 

Cancer, therefore, is essentially a genetic disease; the genetic changes predisposing us 

to cancer affect either a small number of crucial genes, leading to rare highly 

penetrant syndromes that predispose to cancer (such as Gorlin’s syndrome) or a larger 

number of less critical genes that have a contributory effect to cancer susceptibility in 

the general population.

1.8 Molecular biology of cancer in general

1.8.1 Genetics of cell replication

Cell proliferation and differentiation is controlled by standard cell signalling methods 

involving external signals, cell surface receptors, cytoplasmic signal transduction and 

transcription of specific target genes. Many of the genes known to be responsible for 

tumour development and growth code for proteins involved in these pathways, and 

de-regulation of their expression results in a breakdown of normal cellular replicative 

function.

The regulatory components that control cellular proliferation, differentiation or death 

are usually external growth factors that act via signal transduction pathways, affecting 

the gene expression of that cell. Various components of these pathways are altered 

(increased, decreased or mutated) in cancer physiology. Some of these end-pathways 

such as Wnt and P-catenin will be discussed later as specific end results of altered cell 

signalling in basal cell carcinoma. For each cancer in question, there are many 

complex pathways which overlap to govern whether cell behaviour will conform to 

being safe, or whether malignant transformation occurs, including those of apoptosis, 

senescence, cell adhesion, and angiogenesis.
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Of all the major genes that contribute to cancer development, there are three large 

categories of genes which affect cellular proliferation and survival: growth-promoting 

oncogenes, tumour suppressor genes and mutator or caretaker genes. In general 

(proto-)oncogenes need to be activated, and tumour suppressor genes inactivated for 

malignant transformation to occur.

1.8.2 Oncogenes

The normal counterparts of oncogenes, the proto-oncogenes, are crucial in regulating 

normal cell cycling and division, differentiation and apoptosis. When these become 

mutated or amplified (i.e. then properly known as oncogenes) the normal restraints of 

cell growth are overcome, resulting in tumour formation.

These genes act in a dominant manner, encoding proteins whose activity promotes the 

malignant phenotype. Cellular proto-oncogenes (c-onc) have the normal functions 

described above, and only upon alteration do they exert their proliferative effects as 

true oncogenes.

1.8.2.1 Tumour Suppressor Genes

Tumour suppressor genes are ‘anti-oncogenes’ -  they normally inhibit cellular 

proliferation, and their suppressive effects on cell growth are inactivated by loss-of- 

function mutations during cancer development. The first evidence for these loss-of- 

function genetic changes was from studies in the rare childhood eye cancer 

retinoblastoma. From studying sporadic and familial retinoblastoma Knudson 

formulated his “two-hit” model of carcinogenesis in 1971 (Knudson, Jr., 1971) as 

illustrated in figure 1.5. In the familial form an affected parent has a 50% chance of 

passing the condition to any offspring and the tumours are usually bilateral, whilst in 

the sporadic form there is no additional risk of inheritance to any offspring, and the 

tumour is usually unilateral. Knudson hypothesised that this must be a two-hit event, 

with two rate limiting steps of tumour formation.

This is now known to be the case because in the inherited form of the disease, 

germline mutations in one allele of the tumour suppressor gene predispose to tumour 

formation. Somatic mutation of the second allele occurring during
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Figure 1.5: Graphical representation of Knudson’s two-hit hypothesis model for 
acquisition of a malignant phenotype (after Strachan and Read, 2004)
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Selective growth Selective growth Continuing Malignant 
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mutation no. 1 mutations 1+2 natural selection

Figure 1.6: Graphical representation of sequential acquisition of genetic mutations 
resulting in frank malignancy (after Strachan and Read, 2004)

50



the lifetime of the individual then results in tumour formation. The second “hit” can 

occur by point mutation, allelic loss, methylation, or other methods of silencing the 

allele. In the sporadic form of the disease two separate sporadic ‘hits’ are needed in 

the same cell for it to develop into a tumour clone, hence this is fairly rare. Naturally, 

the chance of this happening in both eyes is so small that formation of sporadic 

bilateral retinoblastoma is incredibly uncommon. The tumour suppressor gene 

associated with the disease maps to chromosome 13ql4. Subsequently named RBI, 

this gene encodes the cell cycle regulatory protein pRb (Friend et al., 1986). Other 

tumour suppressor genes include TP53 (p53), BRCA1, BRCA2 and Ptchl. Mutations 

or deletions of tumour suppressor genes have been reported in various types of cancer 

(Chen et al., 1990; Marshall, 1991). Mutations of these genes usually behave in a 

recessive fashion, i.e. both copies require inactivation for the effects to be seen.

1.8.2.2 Caretaker genes

‘Mutator’ or caretaker genes are principally involved in DNA repair and maintain 

stability of the genome. In some inherited disorders and familial cancer syndromes 

defects in these repair mechanisms result in genomic instability, leading to 

chromosomal breaks, abnormal chromosome numbers, and widespread mutations; 

these somatic changes often affect genes important in proliferation and 

carcinogenesis.

1.8.2.3 Progression to malignancy

This process of malignant transformation does not occur in a single step or by the 

actions of one gene in isolation. Co-operation between several genes, usually from 

different classes, results in a series of genetic alterations which lead to cell 

transformation.

This multi-step process towards malignant transformation is thought to involve a 

number of essential alterations in cell physiology. It is the subject of continuing 

debate as to how multiple mutations arise in a cell, as the apparent probability of a 

single cell undergoing multiple mutations is virtually nil. There are mechanisms that 

can explain how this process can happen. The mutated cells are subject to selection, 

and eventually a cell population evolves that can escape the controls of proliferation 

and territory. Initially mutations increase proliferation (growth), and this gives an
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increased target population of cells for the next mutation. At the same time some 

mutations (germline or somatic) will alter the stability of the whole genome, either at 

the DNA or chromosomal level, increasing the overall mutation rate (Lengauer et al., 

1998). This multi-step process explains why tumours develop in stages from benign 

growths to malignant tumour cells, at each step developing and selecting for new 

mutations. This is illustrated in figure 1.6.

Hanahan and Weinberg have suggested that there are six key factors that are essential 

for the transition of a normal cell to malignant one (Hanahan and Weinberg, 2000). 

They are:

1: independence from external growth signals

2: insensitivity to external anti-growth signals

3: ability to evade apoptosis

4: ability to indefinitely replicate

5: sustained angiogenesis

6: ability to invade tissue and metastasise

Obviously there does not have to be a strict order of events for a cell to mutate, but it 

makes sense that certain requirements are crucial early on, whereas others may come 

into their own later on (such as angiogenesis or the ability to invade). Metastasis may 

not be a requirement at all -  this does not necessarily confer any survival advantage 

for the tumour, as the death of the organism will mean the death of the tumour. In the 

case of BCC, local invasion is the mainstay of tumour aggression, with metastasis 

only very rarely described in fewer than 1% of cases.

The first mutation in the multi-step evolution of a tumour is critical because it should 

confer some growth advantage on an otherwise normal cell that has all its defences 

intact. According to the gatekeeper hypothesis one particular gene is responsible for 

maintaining a constant cell number in a given renewing cell population (Kinzler and 

Vogelstein, 1996). Mutation of a gatekeeper gene leads to a permanent imbalance 

between cell division and cell death, and sets the scene for clonal expansion and the 

subsequent accumulation of other genetic events. Mutation of other genes, however, 

may have no long term effect if the gatekeeper is functioning correctly. According to 

this theory, the tumour suppressor genes identified by studies of cancer syndromes
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inherited in a mendelian fashion are gatekeepers for the tissue involved -  Ptch is an 

example of this relevant to the skin, and its dys-regulation leads to basal cell 

carcinoma.

1.8.3 The cell cycle

1.8.3.1 Replication

A significant proportion of the genes implicated in tumourigenesis are involved in the 

control of the cell cycle (figure 1.7), an essential component of cells’ ability to divide 

and grow.

The process of nuclear division is known as mitosis or M phase. The cell then has 

much longer period of DNA replication and cell growth between each mitotic phase 

known as interphase. Interphase is divided into three phases -  the S phase (in which 

the DNA replicates), Gi (gap phase 1, the interval between completion of mitosis and 

the beginning of DNA synthesis) and G2 (the interval between the end of DNA 

synthesis and beginning of the next cycle of mitosis). Cells in Gi can pause in a 

specialised resting state known as Go indefinitely before resuming proliferation 

(Pardee, 1989). In G2 , between the S and M phases, the nucleus contains a tetraploid 

number of chromosomes (i.e. four sets as opposed to a normal complement of two). 

Following mitosis, the normal diploid number of chromosomes is restored. The 

daughter cells can then either re-enter the cycle at the Go / Gi phase, proceed to 

differentiate, or undergo apoptosis.

1.8.3.2 Cell loss

With all of this replicative activity resulting in the net creation of cells, in the 

normally functioning organism there must be a balance of cell loss. Death of the cell 

and cell shedding are methods by which this may occur. Cells may be shed either into 

the local environment (e.g. exfoliation) or into the lymphatic or vascular system (e.g. 

metastasis). Apoptosis (planned cellular suicide) or necrosis (unplanned cell death) 

may result in cellular death. These two processes are distinctly different pathways, 

although alternate responses may result from the same stimulus (such as an event 

causing necrosis also triggering apoptosis in surrounding tissue because of local cell 

toxicity).
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Figure 1.7: The cell cycle (after Strachan and Read, 2004)
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1.8. S. 2.1 Necrosis

Necrosis is an unplanned end result of severe cellular injury, such as a tumour 

outgrowing its blood supply and it causes cellular death. Organelle swelling and 

subsequent cellular disintegration ensues. Due to leaky cell membranes lysosomal 

enzymes (which accelerate disintegration) are released. Subsequently nuclear 

chromatin disappears (karyolysis) and often an inflammatory reaction occurs in the 

surrounding tissue: ths may result in scarring.

1.8.2.2.2 Apoptosis

Apoptosis, a form of programmed cell death, is characterized by cell shrinkage and 

fragmentation. Abnormal, unwanted or damaged cells are removed by apoptosis 

without the involvement of the immune system, but through rapid phagocytosis of 

apoptotic cells before lysis, which prevents inflammation. In this respect the process 

of programmed cell death is clearly distinguished from necrosis

Apoptosis is one of many processes that is necessary for correct embryonal 

development and for elimination of auto-reactive lymphocytes in development of the 

immune system (McDonnell et al., 1993; Raff et al., 1998). Regulation of cell death is 

also an essential defence against viral infection and the emergence of cancer. Too 

much cell death, however, can result in impaired development and degenerative 

disease.

Morphologically, the earliest changes are compaction of the nuclear chromatin and 

condensation of the cytoplasm. Continuation of this condensation is accompanied by 

fragmentation of the nucleus. Surface protuberances (blebs) then separate from the 

cell, converting the cell to into a number of membrane bound apoptotic bodies. These 

apoptotic bodies are absorbed rapidly by adjacent cells and are degraded by 

lysosomes. It is thought that the apoptotic bodies are only visible (by light 

microscopy) for only a few hours (Kerr et al., 1994).

Apoptosis in the epidermis is a common phenomenon. It plays a pivotal role in the 

morphogenesis of human fetal skin and the maintenance of adult epidermis
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(Polakowska et al., 1994). In fetal skin, cells undergoing apoptosis are present in 

several epidermal cell layers, whereas in neonatal epidermis these are found in the 

terminally differentiating granular cell layer, and in adult skin the spinous cells also 

show occasional apoptosis. In normal adult life, apoptosis occurs as a physiological 

response following irreparable DNA damage due to excessive UV light exposure 

(Tyrrell, 1996).

1.8.4 Control of the cell cycle

1.8.4.1 Cyclins and Cyclin-Dependent Kinases

For the cell cycle to occur, a number of large-scale molecular changes must take 

place. The chromosomes must be replicated, condensed, segregated and de-condensed 

and the spindle poles must duplicate, separate and migrate within the cell. A family 

of molecules termed the cyclin dependent kinases (CDKs) are thought to be critical 

for this. Expression of different members of these families and differential 

phosphorylation states of these members ensures that specific signals are sent at 

specific times in the cell cycle. Hence the cell cycle is driven from one “checkpoint” 

to another (Hunter and Pines, 1994). Each CDK and cyclin gene are transcribed for 

only a short time during the cell cycle; following a short spell of activity, the proteins 

are degraded. Each CDK and cyclin is only capable of binding (and activating) a 

specific partner. Thus tight control is exerted over the progress of the cell cycle at any 

time.

One of the most critical points of control in the cell cycle is known as the Gj-S 

checkpoint. It is at this stage, prior to the S-phase, that checks are made as to whether 

a cell is ready and fit to have its DNA replicated- a major event in the life of the cell 

and critical for normal functioning of progeny cells. Any cell in which there is 

unrepaired DNA damage should, in the normal situation, proceed to apoptosis. At this 

point D- and E- cyclins and their associated CDKs are sequentially expressed, and the 

key role of these macromolecular combinations is to phosphorylate (inactivate) the 

key negative regulator of cell cycle progression (pRb) permitting exit from the Gi 

phase to the S phase.
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Lastly, a number of specific Cdk-inhibitors (Cdkl) exist but are not discussed in detail 

here. They include p21 and p27 (which are able to bind and inhibit all known cyclin- 

Cdk complexes) and p i4 and p i6 (which specifically inhibit the D-cyclin complexes).

1.8.4.2 RBI and pRb

The RBI gene was identified through its role in the childhood eye cancer, 

retinoblastoma (Friend et al., 1986), but it is widely expressed and helps to control the 

cycling of all cells. In normal cells the gene product, a 110-kDa nuclear protein is 

inactivated (phosphorylated) and activated (dephosphorylated) by cyclin/Cdk 

combinations. When phosphorylated, its inhibitory effect on the transcription factor 

E2F is reduced, leaving E2F free to transcriptionally activate genes critical for S- 

phase function. Thus pRb activity reduces cell cycling.

1.8.4.3 TP53 and p53

Along with the pRb pathway, the p53 pathway is particularly important in cell cycle 

control, regulating many of the genes controlling the cell-cycle checkpoints as 

illustrated in figure 1.8. The tumour suppressor gene TP53 is thought to be the most 

mutated gene involved in human cancer (Hollstein et al., 1991). It may be knocked 

out by deletion or mutation, and constitutional mutations are found in families with 

the dominantly inherited Li-Fraumeni syndrome.

p53 has key roles in cell cycle control, apoptosis, angiogenesis, and genetic stability 

(reviewed by Levine, 1997). Normal functions with relevance to the cell cycle include 

induction of Gi cell cycle arrest in response to DNA damage and regulation of 

apoptosis. In the normal situation, p53 levels in the cell are low because the protein is 

rapidly degraded. Upon cellular stress, however, p53 protein is activated by 

phosphorylation and stabilized, and it is this enhanced stability which allows the 

increased p53-dependent gene transcription that occurs. The cellular outcome 

following DNA damage may either be growth arrest (cell cycle arrest), senescence or 

apoptosis (Sionov and Haupt, 1999). The relative cellular content of p53 determines 

the response following this damage; when the content is low to moderate, cells will go 

into cell-cycle arrest to allow DNA repair, but when p53 levels are high, cells will 

progress to apoptosis.
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(after Strachan and Read, 2004)
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The timing of the p53 somatic mutation depends on tumour type. In cutaneous 

squamous cell cancer p53 mutation may be an early event and mutations are found in 

some pre-malignant lesions (about 40% of Bowen’s disease) (Rees, 1994). Mutations 

have also been found in mild dysplasias of the oesophagus breast and larynx. In other 

tumours mutation of p53 may be a late event and in that case is associated with 

tumour progression (reviewed by Hollstein et al., 1994).

1.8.5 General cancer features in Basal Cell Carcinoma

1.8.5.1 Apoptosis in BCC

Evidence for apoptosis in BCCs comes from both morphological study and molecular 

biology. A high number of morphologically apoptotic cells are present in BCC 

(Mooney et a l , 1995). On a molecular level, over-expression of Bcl-2 is sufficient to 

enhance the formation of BCC by suppressing apoptosis (Staibano et al., 2001b). 

Altered expression of Bcl-2 family member proteins suggests that dys-regulation of 

expression of these proteins may be a possible explanation for the indolent growth 

behaviour of BCC (Cerroni and Kerl, 1994; Tilli et al., 2002). Bcl-2 in general is 

homogeneously expressed in BCC (Morales-Ducret et al., 1995; Rodriguez- 

Villanueva et al., 1995; Tilli et al., 2002; Verhaegh et al., 1995), while the apoptosis- 

inducing Bax protein is also expressed at high levels (Delehedde et al., 1999; Tilli et 

al., 2002). This shows that a considerable proportion of cells in BCC are in principle 

capable o f undergoing apoptosis, confirming the earlier findings of Mooney et al.

1.8.5.2 p53 in BCCs - control of DNA repair

Principally due to UV radiation, p53 mutations have been detected in up to half of all 

BCCs (D'Errico et a l , 1997; Moles et a l , 1993; Rady et a l,  1992; van der et a l, 

1994; Ziegler et a l,  1993). This results in the accumulation of p53 in cells and 

immunohistochemical evidence of its over-expression (Auepemkiate et al., 2002; 

Demirkan et al., 2000). Furthermore, Auepemkiate found that histologically 

aggressive BCCs are strongly associated with increased p53 expression. Other studies, 

however, have found varying rates of immunohistochemical p53 expression in BCCs 

(Barbareschi et al., 1992; Ponten et al., 1997; Shea et al., 1992) and no variation of 

staining between subtypes (Demirkan et al., 2000).

59



Much of this evidence, however, is based on immunohistochemistry and there are a 

number of problems associated with this. Because of the specificity of antibodies for 

three-dimensional antigen structure, not only does a change in the amount of antigen 

present affect the staining one sees, but if the protein is altered due a genetic mutation, 

then false negative results may occur because the antibody no longer reacts with the 

altered p53 epitope. False positive results may also occur due to accumulation of wild 

type p53 following DNA damage, where there is no evidence of mutation (Campbell 

et al., 1993). Additionally, false negative results have been discovered in the presence 

of defined DNA mutations (as assessed by DNA sequencing). Positive or negative 

immunostaining cannot therefore necessarily be taken to imply the presence or 

absence of a mutation.

However, it is still striking that patients suffering from Li-Fraumeni syndrome do not 

show an increased incidence of BCC. Consequently, it seems reasonable to assume 

that p53 mutations are secondary events in BCCs, occurring after tumour initiation. 

Oddly, one of the hallmarks o f p53 dysfunction, aberrant mitosis, has never been 

observed in BCC (Pritchard and Youngberg, 1993). The relevance of p53 mutations 

for BCC growth remains to be demonstrated.

1.9 Hedgehog signalling and Basal Cell Carcinoma

Much of the general features o f cancer development as outlined above apply to the 

molecular biology of Basal Cell Carcinomas. The known changes in apoptosis 

signalling and p53 biology have already been discussed. However, many of the 

specific changes in BCC biology are not explained by these general measures, and it 

has been discovered that the gatekeeper theory does seem to have particular relevance 

for BCC. As will be outlined, alterations in Hedgehog signalling and patched 

membrane receptor function are widely held to be responsible for the emergence of 

BCC, and such genetic changes are the only changes found in BCC to have a causal 

link in development of the disease.

1.9.1 How hedgehog signalling was linked to BCC

The discovery that mutations of the patched receptor are responsible for BCC 

development is one of the classic discoveries of molecular genetics. The first 

breakthrough came with the identification of Gorlin’s syndrome (Gorlin-Goltz
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syndrome, NBCCS, as described in section 1.3.2.3.1) as a defined entity, and this was 

followed nearly 40 years later with the combined approaches of chromosomal loss in 

sporadic tumours and linkage analysis in familial tumours leading to identification of 

patched as the culprit gene.

This syndrome was first reported by a dentist called Gorlin (Gorlin and Chaudary, 

1960). Over the next twenty years numerous other reports were published, and Gorlin 

published numerous evolving descriptions of the disease. The subsequent study of 

chromosomal loss in sporadic BCCs identified a large region on chromosome 9q that 

is lost in approximately 50% of BCCs from sporadic or Gorlin’s patients (Gailani et 

al., 1992; Quinn et al., 1994). Once the region was identified through comparison of 

DNA from tumours and control tissue, it was possible to use the second approach -  

linkage analysis -  to demonstrate that the gene whose mutations underlie the 

hereditary BCNS also mapped to the same region of chromosome 9. This culminated 

in the near-simultaneous discovery by Famdon and Reis (Famdon et al., 1992; Reis et 

a l,  1992) that the genetic abnormality mapped to the short arm of chromosome 9, and 

that the responsible gene was acting as a tumour suppressor gene. Since that time its 

locus has been mapped to 9q22.3, and our understanding of the molecular basis of 

BCC has progressed significantly, although there are still many features (such as the 

BCC subtype differences) yet to be unwrapped.

The intracellular cellular signalling pathways involved in sporadic and syndromal 

BCCs in both animal models and humans are known collectively as the hedgehog 

signalling pathway. The main features of hedgehog signalling are described below.
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1.9.2 H edgehog  (H h) s ig n a llin g

The Hedgehog signalling network was initially discovered in Drosophila, but is highly 

conserved between invertebrates and vertebrates (Goodrich et al,  1996). It consists of 

a series of interacting extracellular ligands, membrane receptors, intracellular signal 

transducers, transcription factors and target genes; these are summarised in figure 1.9. 

There are many similarities between the drosophila and human networks but there are 

some crucial differences, particularly in the variety of down-stream transcription 

factors.

A c tiv e

Target g en es

Figure 1.9: Hedgehog signalling. In the absence of ligand, the Hh signalling pathway 
is inactive (left). In this case the transmembrane protein receptor patched (Ptch) 
inhibits the activity o f Smoothened (Smo). The transcription factor Gli is prevented 
from entering the nucleus through interactions with cytoplasmic proteins including 
fused and Suppessor o f Fused (Sufu). As a consequence, transcriptional activation of 
Hh target genes is repressed. Activation of the pathway (right) is initiated through 
binding of any of the three mammalian ligands (Sonic, Desert and Indian hedgehog 
are represented as Hh in the figure) to Ptch. Ligand binding results in de-repression of 
Smo, thereby activating a cascade that leads to the translocation of the active form of 
the the transcription factor Gli to the nucleus. This activates nuclear gene expression 
including Ptch and Gli itself (after Pasca and Hebrok, 2003).
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1.9.2.1 The Hh network in vertebrates

Unlike the one hedgehog gene found in Drosophila (Hh), three hedgehog genes, first 

identified in the mouse, are found in vertebrates, including humans (Marigo et a l , 

1995). These include Desert hedgehog (Dhh), Indian hedgehog (Ihh), and Sonic 

Hedgehog (Shh). Sonic Hedgehog (the first discovered vertebrate homologue) is so- 

called because the hero of a popular computer game at the time of its discovery was 

called “Sonic the Hedgehog” (Sega, San Francisco, USA). “Sonic” has two closely set 

eyes with a common scleral rim, suggesting holoprosencephaly, which the murine 

null mutation (Shh -/-) also demonstrates.

Shh

In vertebrates SHH protein is synthesized as a 45kD precursor protein which is 

cleaved to produce a 19 kD N-terminal signal peptide and a 25 kD C-terminal 

fragment. Initially the SHH-N signal peptide remains tethered to the plasma 

membrane of the producing cell but is then transported to the responding cells locally 

by diffusion (regulated by interaction with heparin sulphate proteoglycans or over 

longer distances by multimerising within lipid rafts, rendering it more soluble (Zeng 

et al., 2001).

HIP

HIP (Hedgehog interacting protein, found in vertebrates but not in drosophila) binds 

all three Hedgehog proteins, has a binding affinity for SHH comparable to that of 

PTCH1 and may act as a negative regulator of SHH signalling (Tojo et al., 2002).

PTCH

Human patched (Ptchl) is a tumour suppressor gene which maps to 9q22.3. It 

encodes a 12-pass transmembrane protein, PTCH1; it is the principal receptor of SHH 

and plays a key role as a negative regulator of SHH signaling. The PTCH protein (as 

depicted in figure 1.10) is expressed in the cell membrane of target tissues where, in 

the absence of its ligand SHH, its function is the constitutive repression of 

smoothened (SMO), transducer of the SHH signal (Carpenter et al., 1998).
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Patched 1

Figure 1.10: schematic representation of the PTCH1 protein (after Daya-Grosjean and 
Sarasin, 2000)

A second protein, PTCH2, maps to Ip32-p34, has a 54% overall identity to human 

PTCH1 and a 90% identity to Ptch2 in mice, but its specific role is currently 

unknown. PTCH1 and PTCH2 are differentially expressed during development of the 

epidermis, suggesting that the two proteins may have different functions.

SMO

Similar to the case in drosophila, Smo (which maps to 7q31-q32) encodes for a 

transmembrane protein called Smoothened that acts as a transducer of the Sonic 

hedgehog (SHH) signal. SMO protein has 7 hydrophobic membrane-spanning 

domains, an extracellular amino-terminal region, and an intracellular carboxy- 

terminal region (Murone et al., 2000).

Relationship between Patched (Ptch) and Smoothened (Smo)

Much of the evidence relating to the interaction between patched and smoothened 

comes from mouse model experiments. In summary, in the absence of HH, PTCH 

prevents SMO from signaling. When hedgehog binds to Patched, however, 

Smoothened is free to upregulate downstream genes in the network. Patched 

negatively regulates Smoothened by post-translational modification of its C-terminal 

domain, resulting in alteration o f the phosphorylation status of Smoothened, thereby 

affecting its stability, activity, and subcellular localization (Alcedo et al., 2000; 

Ingham et al., 2000).
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Sufu

Suppressor of fused (sufu) has been identified in chicks, mice and humans (Stone et 

al., 1999); human sufu exhibits a 97% sequence identity with murine sufu. Stone 

found that human sufu interacts with G//7, Gli2, Gli3 and it is thought that SUFU 

protein is important for the shuttling of GLI proteins between the cytoplasm and 

nucleus (Murone et al., 2000).

GLI proteins

The GLI proteins are vertebrate orthologues of the Cubitus Interruptus (Ci) gene 

products in Drosophila. GLI proteins function as transcription factors in 

morphogenesis and normal development (reviewed by Matise and Joyner, 1999).

The Gli gene family was originally identified by the amplification of human Glil in 

glioblastoma (Kinzler et a l , 1987). GLI1, GLI2, and GLI3 have similar zinc finger 

structures and have a high degree of sequence homology. Less is known about GLI 

family function in vertebrates than is known about Ci function in Drosophila. GLI1 is 

an activator of hedgehog target genes. Apparently GLI1 does not undergo proteolytic 

cleavage and does not function as a repressor in the way that Ci does. GLI2 is known 

to have both activator and repressor forms whereas GLI3 undergoes proteolytic 

cleavage, resulting in a truncated 83 kDa repressor form and possibly an activator 

form (Ingham and McMahon, 2001).

As can be seen, three distinct GLI proteins in vertebrates (instead of Ci in Drosophila) 

encompass a complex signalling network. The concerted activity of the GLI proteins 

is thought to control HH-dependent signalling in a highly context-dependent manner. 

Activation of latent GLI proteins is an intricate process that involves modifications 

and interactions of a number of positive and negative pathway regulators and is not 

fully understood. It has been suggested that the cellular response to hedgehog 

signaling might not simply depend on the level of ligand exposure, but also on the 

particular Gli genes expressed (Ingham and McMahon, 2001). Gli genes may have 

unevenly partitioned activator and repressor functions, may be co-expressed, possibly 

being competitive or working synergistically, or may be partially redundant.
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1.9.2.2 Downstream of the Gli proteins

As well as positive and negative feedback mechanisms that exist to regulate the 

expression of the Gli and Ptch genes, other target genes of hedgehog signalling in 

humans include Wnt and P-catenin, cyclins, FOX genes and TGF-p.

1.9.2.2.1 Wnt andP-Catenin

Wnt genes encode a family of secreted glycoproteins and misregulation of Wnt 

signaling is implicated in developmental defects and oncogenesis (Taipale and 

Beachy, 2001). They exert their effects via two signalling pathways.

•  • ^  i

Activation of the Wnt/Ca pathway results in intracellular calcium release and 

activation of the calcium-sensitive enzymes Ca2+-calmodulin-dependent protein 

kinase II (CamKII) and Protein Kinase C (PKC).

In the Wnt/p-catenin signaling pathway, Wnt ligand binding results in the 

accumulation of unphosphorylated p-catenin (a crucial member of the E- 

cadherin/catenin complex) in the cell, p-catenin then complexes with members of the 

T-cell factor (Tcf) or lymphoid enhancer factor (LEF) transcription factor families 

and activates expression of downstream Tcf/LEF-regulated genes including cyclin Dj 

(part of the pRb pathway -  see section 1.8.4.2) and matrilysin (Tetsu and McCormick, 

1999). p-catenin also forms a complex with y-catenin (plakoglobin) and E-cadherin 

which plays a role in controlling cellular adhesion and motility by forming adherens 

junctions and functioning as an invasion suppression system. Mutation of any of the 

components of the complex can lead to impairment of function, and is thought to lead 

to cancer development and invasion.

P-catenin plays a significant role in many cancers and inter-links with many important 

pathways other than the Wnt pathway. Activating mutations in p-catenin have been 

identified in many human cancers, including, among others, colorectal cancer, 

endometrial cancer, hepatocellular carcinoma, ovarian cancer, uterine cancer, prostate 

cancer, melanoma, and pilomatrixoma. Mutations in APC, a tumour suppressor gene 

that is part of the Wnt/ p-catenin pathway, are known to cause colorectal polyposis 

and adenocarcinoma (Miller et al., 1999).
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1.9.2.2.2 Cyclins

Direct interaction between PTCH1 and cyclin Bi has been proposed by Barnes et al 

(Barnes et al., 2001). They found that PTCH1 has a direct role in the management of 

the G2/M checkpoint and thus plays a part in controlling cell division.

D-Cyclins have also been proposed as effectors of hedgehog signalling and as 

mediators of cell cycle control. In mice, cyclins Di and D2 are expressed under the 

control of Sonic Hedgehog (Mill et al., 2003).

1.9.2.2.3 FOXM1 andFOXE1

It was recently shown that the transcription factors FOXM1 and FOXE1 are both 

upregulated in BCCs and are under the control of GLI transcription factors. These 

molecules are implicated in the control of cell growth, proliferation, differentiation, 

longevity and transformation (Eichberger et a l , 2004; Teh et al., 2002).

1.9.2.2.4 TGF-P

There is some evidence that TGF-p expression is under control of Hedgehog 

signalling, although most of this work has been done in Drosophila (Heberlein et al., 

1993). Immunohistochemistry of human BCCs (which are known to have 

dysregulated hedgehog signalling as explained below) shows reduced expression of 

TGF-p in the tumour islands and increased TGF-p3 and type-I and -II TGF-p 

receptors the peri-tumoural stroma (Furue et al., 1997; Schmid et al., 1996; Stamp et 

al., 1993).

1.9.2.3 The normal function of Hh in vertebrates

Sonic Hedgehog, which is involved in normal embryonic development, is expressed 

in the floorplate of the neural tube, the early gut endoderm, the posterior limb buds 

and throughout the notochord, and encodes a signal responsible for patterning the 

early embryo. The effect of this signal on organ development is thought to be dose- 

dependent, as shown by the development of pancreatic tissue only in areas with lower 

levels of Hedgehog expression (Apelqvist et al., 1997). Recently, the Hedgehog/Gli 

signaling pathway has been shown to play a prominent role in a number of different 

developmental processes (reviewed by Ingham and McMahon, 2001).
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The normal function of hedgehog signalling has been demonstrated by the effects of 

absence or mutation of Sonic Hedgehog and its associated genes on development. 

Several human diseases, syndromes and malformations seem to be due to aberrant 

hedgehog signalling. Holoprosencephaly (HPE) is a syndrome affecting the head 

and face that is caused by haploinsufficiency of sonic hedgehog or mutations in other 

genes which affect Gli function (Roessler et al., 1996).

Two other syndromes appear to be caused by the loss or dysfunction of GLI3. Greig’s 

cephalopolysyndactyly syndrome (GCPS) results from haploinsufficiency of GLI3 

and affects multiple tissues, including the face, limbs and central nervous system 

(CNS) (Vortkamp et al., 1991). Pallister-Hall syndrome (PHS) results from the 

production of a truncated GLI3 protein that is prematurely terminated at the C- 

terminus, just downstream of the zinc-fmger domain (Kang et a l, 1997). PHS 

presents a phenotype similar to, but distinct from GCPS, affecting also multiple 

structures such as the face and CNS.

Hedgehog signalling has been proposed as having a role in increasing stem cell 

numbers, such as in the human bone marrow (Bhardwaj et al., 2001). This may partly 

explain why HH/GLI signaling plays a prominent role in development of epidermal 

appendages including whiskers and hair in mammalian skin. Loss of HH-signaling in 

murine epidermis results in an arrest of hair follicle growth at an early stage of follicle 

development due to reduced proliferation, and re-expression of Gli2 in Hh knockout 

mice may rescue hair follicle function (Chiang et al., 1999; Mill et al., 2003).

The transcriptional programs activated in response to HH-signaling in epidermal 

development and BCC are mainly controlled by GLI1 and GLI2. The skin phenotype 

of GH2-I- mice largely resembles that of Shh deficient mice, suggesting that Gli2 

encodes the major transcriptional effector of HH-signaling during epidermal 

development. By contrast neither loss of GUI nor of Gli3 affects epidermal 

development (Mill et al., 2003; Park et al., 2000). The involvement of SHH signaling 

in proliferation has been elucidated from in vitro and in vivo studies that have 

implicated both SHH and PTCH in promoting the proliferation of human epithelial 

cells by direct interaction with cell cycle regulatory proteins such as cyclin B1 

(Barnes et al., 2001).
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1.9.2.4 Abnormal Hh in vertebrates: cancer

1.9.2.4.1 Animal model data

Elegant experiments have been performed in animal models to investigate the role of 

various members of the hedgehog signalling pathway on the development of cancer, 

and in particular BCC. These have included the injection of pathway components into 

model systems, such as the injection of GUI into tadpoles resulting in BCC formation 

(Dahmane et al., 1997).

However, the mainstay method used in the relevant animal model studies has been the 

creation of transgenic mice with knockouts of one or both alleles of the hedgehog 

pathway. Over-expression of SHH in murine skin results in the development of BCC- 

like tumours (Oro et al., 1997). Regenerated human skin transgenic for SHH also 

displays abnormal BCC like structures when grafted onto immune-deficient mice (Fan 

et a l , 1997). The rapid and frequent appearance of BCC like tumours in the absence 

of induced mutations are a strong indication that activation of the SHH pathway is 

sufficient for BCC formation.

BCC-like tumours develop in mice overexpressing GLI1 and GLI2 (Grachtchouk et 

al., 2000; Nilsson et al., 2000). Beyond the inductive capacity of GLI1, GLI2 appears 

to be required for tumour survival and progression in mice: in Gli2 knockout mice 

with a tetracycline-regulated Gli promoter, tumours were switched off and on by 

tetracycline administration (Hutchin et al., 2005).

Mice which are homozygous for patched (Ptch-/-) die as embryos. In heterozygote 

transgenic Ptch mice, BCC lesions are not found, although cerebellar tumours are 

(Goodrich et al., 1997). However, these mice do develop microscopic BCC lesions 

upon chronic UV exposure, 40% of which contain p53 mutations (Aszterbaum et al., 

1999).

Similar microscopic BCC like lesions are seen in transgenic mice carrying a 

constitutively active mutated Smo gene (Xie et al., 1998) and the mouse epidermis is 

hyperproliferatve, expresses BCC protein markers and gives rise to numerous down 

growths which invade the underlying dermis (Grachtchouk et al., 2000).
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1.9.2.4.2 Hh pathway mutations in human cancers including BCC

SHH

Mutations in the Sonic hedgehog gene have been seen in tissue from sporadic basal 

cell carcinoma, medulloblastoma, breast cancer and from patients with Gorlin’s 

syndrome (Oro et al., 1997), although the rare association with sporadic BCC has 

been questioned by Wicking who found no such modification in 36 sporadic BCCs in 

a later study (Wicking et al., 1998). It is only from a recent study of BCCs in patients 

with Xeroderma pigmentosum that a role for Shh in human skin tumourigenesis has 

been established. Six novel Shh gene mutations were found in 33 such tumours and all 

were UV-specific C—>T transitions or CC—►TT tandem substitutions located at 

pyrimidine dimer sites (Couve-Privat et al., 2004).

PTCH

Mutations in Ptchl have been identified in patients with Gorlin’s syndrome, isolated 

basal cell carcinoma, medulloblastoma, meningioma, neuroectodermal tumor, breast 

carcinoma, esophageal carcinoma, squamous cell carcinoma, rhabdomyosarcoma and 

trichoepithelioma (reviewed by Cohen, Jr., 1999). Expression of PTCH2 and rare 

Ptch2 mutations have been reported in medulloblastoma and basal cell carcinoma 

(Smyth et a l, 1999).

Ptch gene mutations occur in 12-38% of sporadic BCCs and the mutation spectrum 

indicates a major role for solar irradiation in tumour development, as 50% of 

mutations are UV-specific C—>T or CC—►TT transitions (Aszterbaum et a l, 1998).

Smoothened

Smoothened mutations have been reported in Gorlin’s syndrome patients, sporadic 

BCCs and medulloblastoma (Reifenberger et al., 1998). In a study of 30 BCCs from 

XP patients, a significantly higher level (30%) of Smo gene alterations were noted 

(Couve-Privat et al., 2002).

SUFU

Mutations in Sufu have been found in medulloblastoma tissue and BCCs 

(Reifenberger et al., 1998). Although not discovered yet, there is suspicion that other
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cancers may be affected by such mutations because the gene locus (10q24-q25) has 

been found to be deleted in glioblastoma, prostate cancer and endometrial cancer.

Gli proteins

GU3 alterations have been found in medulloblastoma tissue (Erez et al., 2002). 

Although no definitive mutations in GUI and GU2 have been discovered yet in BCCs, 

GUI is expressed in almost all basal cell carcinomas due to gain-of-fimction or loss- 

of-suppression mutations upstream in the signalling pathway (Dahmane et al., 1997). 

The investigation of hedgehog signalling in other tumours has revealed a possible 

correlation between Gli levels and the grade of sarcoma (Stein et a l, 1999), but this is 

not currently a strong enough link to be used in practical staging terms.

1.9.2.4.3 Overall alterations in Hh signalling in human BCCs

Constitutive activation of the sonic hedgehog signalling pathway leads to the 

development of BCCs. Several studies have shown consistent over-expression of 

PTCH1 and SMO in human BCCs (Bonifas et al., 2001; Kallassy et al., 1997; 

Reifenberger et al., 1998; Tojo et al., 1999; Unden et al., 1997).

GLI1 is frequently over-expressed in BCCs where it is located principally in the 

cytoplasm (Bonifas et al., 2001; Kallassy et al., 1997; Reifenberger et al., 1998; Tojo 

et al., 1999; Unden et al., 1997). Upregulation of GLI2a/|3 isoforms by GLI1 in 

human BCCs has also been reported along with evidence for a positive feedback 

mechanism between GLI1 and GLI2 (Regl et al., 2002). Furthermore the latest study 

by this group provides evidence that GLI2 plays a dual role as activator of 

keratinocyte proliferation and repressor of epidermal differentiation (Regl et al., 

2004). It is postulated that the hyperactivation of GLI2 by aberrant SHH signaling 

would then disrupt epidermal homeostasis and lead to neoplasia.

The importance of GLI2 in BCC is further consolidated by Ikram et al. (Ikram et al., 

2004) who show that GU2 is expressed in the interfollicular epidermis and the outer 

root sheath of hair follicles in normal skin as well in BCC tumour islands. This 

implies that hedgehog signalling regulates hair follicle growth and when 

inappropriately activated it may cause hair follicle-derived tumours, the most
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clinically significant being the BCC. To date, there is no evidence that expression of 

GLI3 is altered in BCCs compared to normal skin.

Quantification of Glil levels has been investigated in BCCs and other skin lesions, 

including tricoepithelioma, squamous cell carcinoma and seborrhoeic keratosis, and 

was found to be upregulated in BCCs and tricoepithelioma (Hatta et al., 2005). The 

best comparison so far of Gli transcript levels in different tumours has been published 

by Grachtchouk et al (Grachtchouk et al., 2003). In both mice and human tumours, a 

greater degree of hedgehog signalling transcripts (PTCH1 and GLI1) were seen in 

BCCs than in follicular hamartomas. Also, mice with limited hedgehog signalling 

upregulation (due to activating Smo mutations) developed only hamartomas. Thus, 

they suggested that a greater level of hedgehog upregulation is required for the 

induction of BCCs than other related tumors.

1.10 Variation of signalling pathways within BCC: 
biomarkers

Even in the face of all this information, little progress has been made over the many 

years of study in explaining the molecular basis for the variation of tumour phenotype 

that exists. Within the world of cancer biology BCC is a good example to study, for it 

is common and has a spectrum of behaviour ranging from indolent to aggressive and 

although some aspects of behaviour may be predicted by histological appearance, this 

is by no means absolute.

Previous attempts to link molecular biology to BCC subtype (or even better, but less 

commonly, risk of recurrence) have included investigation of expression of cyclins, 

Bcl-2, p53, Ki67 and P-catenin.

1.10.1 Cyclins

Staibano et al studied the immunohistochemical expression of Cyclin Di in BCCs 

(Staibano et al., 2001a). Their study assumed that any positivity of expression 

correlated with cells overexpressing cyclin Di, which has been previously 

documented. They noted that aggressive BCCs (as defined by recurrence or 

metastasis) demonstrated a significantly higher degree of cyclin Dj staining than
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tumours with a good outcome. They proposed that BCCs likely to have an aggressive 

course express higher levels of cyclin Dj and that this reflects the higher cell turnover 

present in the tumour cells.

1.10.2 Bcl-2

The features of Bcl-2 expression have been discussed previously (section 1.8.5.1). 

The diffuse staining pattern typically seen in BCCs is useful in discriminating them 

from tricoepitheliomas, which have a more peripheral staining pattern (Abdelsayed et 

al., 2000; Poniecka and Alexis, 1999; Smoller et al., 1994; Swanson et al., 1998). In 

contrast to BCCs, squamous cell carcinomas do not stain for Bcl-2 (Verhaegh et al., 

1995). Higher levels of Bcl-2 are found in the more indolent subtypes of BCC with a 

concomitant reduction in the more aggressive groups (Crowson et al., 1996; Ramdial 

et al., 2000).

1.10.3 p53

p53 staining in BCCs shows conflicting results. This may be partly due to the specific 

problems with p53 immunohistochemistry mentioned previously. De Rosa et al 

demonstrated that there is greater degree of p53 immunohistochemistry staining in 

aggressive BCCs compared to non-aggressive BCCs (De Rosa et al., 1993), whereas 

Demirkan stated that there is no relationship between histological subtype of BCC and 

p53 staining (Demirkan et al., 2000). This issue has not been resolved.

1.10.4 Ki67

Immunohistochemical staining with antibodies to Ki67 has been shown to correlate 

with the growth fraction of a tumour, as measured by both labelled mitoses and by 

BrdU incorporation (McCormick et al., 1993; Smith et al., 1995). Baum found that 

Ki67 was equally expressed amongst different histopathological subtypes of BCC 

(Baum et al., 1993) but Healy et al went beyond histopathology, to correlate the actual 

recurrence of surgically excised BCCs with Ki67 expression (Healy et al., 1995). This 

was achieved by comparing the immunohistochemical staining of two groups of 

BCCs, one of which comprised of tumours that following excision, had gone on to 

recur, whereas the other contained tumours that had been similarly excised and had 

not recurred (in this study however there was no mention of what their definition of
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“complete” excision was). They found that tumours which went on to recur had a 

higher proliferative index, as assessed by staining with Ki67.

1.10.5 p-catenin

Conflicting evidence exists as to the relevance of p-catenin and different subtypes of 

BCC. Boonchai et al found that there was no significant relationship between positive 

staining and subtype of BCC (Boonchai et al., 2000), whereas El-Bahrawy et al 

showed that the staining pattern of P-catenin in BCCs did correlate with the 

histological subtype of the tumour (El Bahrawy et al., 2003). From this 

immunohistochemical study they concluded that infiltrative and morphoeic BCCs 

were more likely to have positive nuclear staining, whereas this was absent in indolent 

tumours. Micronodular tumours, interestingly, did not exhibit such strong nuclear 

staining (even though they are known to behave in an aggressive fashion) but showed 

strong membranous staining for P-catenin, contrasting with the absence of such 

localisation in other aggressive tumours.
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1.11 Chapter 1 section 3: Background work leading to this 
study

1.11.1 Overall hypothesis

As described in this introductory chapter there is a vast amount of work that has 

described the different clinical, histological and molecular characteristics of basal cell 

carcinoma. My overarching hypothesis is that differences in molecular biology 

underpin both the different growth patterns that are seen and the degree of 

aggression that a tumour displays. Chapter-specific hypotheses are described in 

section 1.11.4 below.

1.11.2The use of cultured cells in this study

It is well accepted that cell culture techniques have been of limited use in BCC. This 

is thought to be because of various specific features of BCC cells that make them less 

likely to grow in cell culture than other tumour cells. Reasons for this are thought to 

include the stromal dependency of the tumours, which may also explain the relative 

lack of metastasis that occurs. The resulting paucity of data from BCC cell culture 

means that previous studies have searched for new biomarkers in tissue from animal 

models or human tumours. This has its drawbacks in terms of the ease and bulk of 

cellular material that can be examined. A cell culture system that gives insight to the 

molecular mechanisms of BCC would be a significant development in the 

investigation of skin cancer pathogenesis.

A medline search for cell culture in Basal Cell carcinoma provides only seven 

published reports in English where culture of BCC cells has been successfully 

achieved and has yielded results in the investigation of BCC cell biology. Of note, 

Asada mentioned that there were only some cellular characteristics of the BCC 

tumours preserved in culture (Asada et al., 1992). This, and the small number of 

reports of the technique being successful implies that the difficulty in culturing these 

cells is due to the fact that the cells require a milieu such as the stroma to grow 

efficiently, and that without it, growth is limited. As a result of such difficulties, many 

of these reports state that the cultures were short term only, and that although a small
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number of passages may have been possible, few of these studies go beyond the 

technical aspects of cell culture to derive useful information from the cell analysis.

To get around this difficulty of growing and manipulating BCCs cells for the purpose 

of molecular biology investigation, a model system using keratinocytes has been used 

in the laboratory in which I performed this work. Given the importance of Gli 

expression in development of BCC, the group I have worked with has developed a 

system by which keratinocytes may be retrovirally transduced to over-express Gli 

transcription factor genes, as outlined in section 2.3.3.2.

1.11.3 Searching for novel biomarkers

In comparison to further development of existing theories, choosing a completely new 

direction of investigation is comparable to looking for a needle in a haystack. The 

emergence of gene array technology, however, has dramatically improved the ability 

to search for genes that may be responsible for differences between tumours, and I 

have made use of such developments in this work.

When analysing the growth features of G/z'-transfected N-terts cells, it was noted that 

the growth of the cells was altered. Non-transfected (normal) keratinocytes had a 

uniform near-spherical pattern on development, whereas cells that over-expressed 

Glil (as measured by fluorescence of EGFP linked to the Glil molecule) developed a 

marked fibroblastic appearance as shown in Figure 1.11.

The messenger RNA (mRNA) from these different sets of cells was analysed by gene 

array analysis, and a number of genes were seen to be specifically highly upregulated 

in the setting of Gli over-expression. Some of these genes are known to be associated 

with presence of a neuronal phenotype.
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EGFP

Figure 1.11: normal appearance o f keratinocytes in culture, contrasting with the 
development of a fibroblastic appearance in cells that over-express Gli 1
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1.11.4 Chapter-specifc hypotheses and experimental aims

1: The hypothesis that I test in chapters three and four is that markers of 

neuronal differentiation are upregulated in human basal cell carcinoma 

compared to control non-tumour skin tissue, and that tumours with different 

histological features express these markers differentially. This is examined in 

chapter three using archival BCC tissue using immunohistochemistry techniques, and 

in chapter four using freshly-biopsied BCC tumour and skin tissue using PCR-based 

methods of gene expression quantification.

2: In chapter five my hypothesis is that expression of neuronal markers in a 

keratinocyte cell culture model results in elevated levels of neuronal marker gene 

expression. This is examined using real-time PCR-based semi-quantitative 

comparision of gene expression in Gli-overexpressing keratinocytes.

3: In chapter six my hypothesis states that there is a differential level of neuronal 

marker protein expression between tumours that go on to recur and those that 

do not. This is examined using immunohistochemisty techniques on archival BCCs, 

the clinical outcome of which is known following extensive follow-up.
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Chapter 2: Materials and Methods

2.1 Introduction

The principal aim of this study was to determine whether neuronal differentiation 

markers are a feature of BCCs and what impact this has on their biological growth. 

This was investigated by comparing BCCs of differing histological subtype to control 

tissues (immunohistochemistry and genomic experiments) and by comparing BCCs of 

differing clinical outcomes (immunohistochemistry of recurrent and non-recurrent 

tumours). Both archival and fresh tissue BCC was used: archival tissue has the 

advantage of being plentiful and easily handled and was used in these experiments for 

investigation of protein expression. Fresh tissue was more difficult to come by 

(limited amounts of tissue could be taken from individually excised tumours because 

of the need to avoid disrupting the tumour margins for the purposes of histological 

examination) but is more reliable when it comes to examination of mRNA expression. 

The three main types of material used for these experiments are detailed below.

2.2 Tissue used

2.2.1 Archival tissue for immunohistochemistry

2.2.1.1 Primary Basal Cell Carcinomata

The histopathology records of the Royal London Hospital were used to determine a 

series of BCC tumours which had been excised during the calendar year of 2003. A 

consecutive series of tumours was selected and the slides corresponding to these 

tumours were retrieved from the archived collections. These slides were examined by 

me and by a consultant dermatopathologist (Dr. Rino Cerio) and the following data 

points were noted in each case

• Presence of Basal Cell Carcinoma
• Dominant histopathological subtype
• Gender of patient

Given that the aim of experiments using this tissue was to examine properties of 

tumours of certain histopathological subtype without recourse to patient outcome, 

other clinical variables were not recorded in these cases. Inclusion criteria were 

merely those tumours that were clearly basal cell carcinomata which had been
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surgically excised and for which histological slides and blocks were available. 

Exclusion critieria included those tumours that did not clearly exhibit the architectural 

features of BCC, and those that consisted of more than one obvious BCC subtype.

Following review of these tumours a sub-series of tumours that best represented the 

classical appearance of the five main histological subtypes were chosen for further 

investigation.

All cases were given a unique code which was only known to me. All downstream use 

of the tissues was referred to by this code such that individual patient identification 

would not be possible by other people.

2.2.1.2 Recurrent Basal Cell Carcinomata

The pathology archives of Mount Vernon Hospital contain a huge amount of patient 

material spanning many years of plastic surgery at this centre. All records are either 

computerised or stored on microfiche. For this part of the study, BCCs were 

specifically sought that had recurred following either complete or incomplete surgical 

excision. These were compared with tumours that were known to have not recurred 

following surgical excision.

2.2.1.2.1 Recurrent tumours

All histopathology reports from the years 1996 (the advent of computerisation in this 

department) to 2001 were merged and converted to Microsoft Word format 

(Microsoft, Seattle, USA). Word searching techniques were used to find reports that 

included the words “recurrent” or “recurrence”. All these cases were recorded, and 

further searching through patients’ computer records, notes and microfiche files was 

used to try and confirm whether the tumours were truly episodes of recurrence or not. 

For those tumours that were confirmed to be recurrences, the slides for the original 

tumours and the recurrences were obtained for examination. Data recorded for each of 

these cases includes

• Site of original tumour or possible recurrent tumour
• Histological subtype diagnosis of BCC (if described)
• Follow-up duration, either at Mount Vernon Hospital or GP
• Lateral surgical excision margins
• Deep surgical excision margin
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• Sex
• Age
• Duration of follow-up

Exclusion criteria included

• tumours which were not definitive BCCs in both original and recurrent 
tumours

• tumours which occurred at different sites
• tumours where secondary tumours did not arise contiguous to the original 

excision scar

BCCs that were found to have recurred following excisional surgery were classified 

into two groups: those that recurred following complete surgical excision (as defined 

by excision margins of at least one millimetre) and those that recurred following 

incomplete surgical excision (where the original tumour had positive or very close 

(<0.2mm) excision margins). All specimens considered had been examined with 

multiple sectioning techniques with the aim of determining the margin of excision as 

closely as possible without recourse to Mohs surgery.

Thus, four groups of tumours were formed -  Completely excised Original BCCs, 

Completely excised Recurrent BCCs, Incompletely excised Original BCCs and 

Incompletely excised Recurrent BCCs (see table 2.1 below).

The tumours that went on to recur were specifically classified by the following 

methods

• Age
• Sex
• Body site (Trunk, Head and Neck, Upper limb, Lower limb)
• Histological growth pattern subtype class

o Indolent (Nodular and Superficial tumours) 
o Micronodular tumours 
o Aggressive (Infiltrative and Morphoeic)

2.2.1.2.2 Non-recurrent tumours

The databases were then searched for tumours that were known to have not recurred. 

Essential to this was the knowledge that the patients in question had not suffered a 

recurrence of their tumour at the same site, and that they were alive and available for
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follow up. Review of patients’ case notes and consultation with the patients’ General 

Practitioners was used to confirm whether this was the case with each patient. Patients 

who had died, or who had had BCCs in a similar site to their previous tumours were 

excluded at this point. In addition, patients who had had a BCC incompletely excised 

but who did not have further surgery (either because of their personal preference or 

because of surgical advice) were only included if it was clearly documented in the 

patients’ notes that this was the reason why no further surgery was performed.

Tumours from these cases were then also classified by criteria as described above for 

the recurrent tumours. Cases were chosen such that each group of non-recurrent 

tumours (complete and incomplete excisions) matched the relevant recurrent groups 

in terms of body site, sex, average age and histological growth pattern class (Indolent, 

Micronodular or Aggressive). This was done so that any differences in 

immunohistochemical staining between the groups would be attributable to the 

biological differences between these groups and not other characteristics that may 

affect staining patterns such as histological subtype, sex, age or body site. Two groups 

were created by this method: Completely excised Non-recurrent BCCs and 

Incompletely excised Non-recurrent BCCs. The six groups of tumours are described 

in table 2.1.

Original tumour which 
g o e s  on to recur

Recurrent
tumour

Original tumour which 
does Not go on to recur

Complete excision CO CR CN
Incomplete excision IO IR IN

Table 2.1: Summary of groups of recurrent and non-recurrent tumours

All cases were allocated a secret code (according to the groups described above) the 

key for which was known only to me. All downstream use of the tissues was referred 

to by this code such that individual patient identification would not be possible by 

other people.
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2.2.1.3 Control tissues

2.2.1.2.1 Normal skin

Blocks of wax-embedded normal skin samples were obtained from the department of 

Pathology, Royal London Hospital. These sections had been removed as a result of 

excess of skin being removed, such as in facelift surgery, or in breast reduction 

surgery and had been routinely preserved and fixed.

2.2.1.3.2 Appendix tissue

Blocks of wax-embedded appendix tissue were available from the Department of 

Histopathology, Royal London Hospital. They had been excised during 

appendicectomy procedures and the remaining tissue was available for histological 

examination. This tissue was used because the nerve fibres in the muscle coat act as 

good neuronal marker positive controls (as described in section 2.4.1.2).

2.2.2 Fresh tissue used for mRNA isolation

2.2.2.1 BCC Tumour tissue

Fresh biopsies of Basal Cell Carcinoma tissue were obtained from patients 

undergoing excisional surgery at Mount Vernon Hospital. All patients that had been 

booked to undergo excision of a BCC at Mount Vemon Hospital during April and 

May 2005 were sent consent forms and information sheets about this study. The

patients were then contacted on the day of their surgery before their operation to

discuss further the issues regarding the donation of their tissue. At this stage a clinical 

assessment of the tumour was performed by myself - given that the different subtypes 

of BCC can have markedly different clinical appearances any tumour that resembled 

any subtype of BCC was considered. Patients with tumours in excess of 0.8cm 

diameter who agreed to donate tissue and had signed consent forms prior to their 

procedure were considered eligible.

Recording of patient data was performed by entering patient details onto a spreadsheet 

(Excel, Microsoft, Seattle, USA) and allocation of a unique letter and number code to 

each patient tumour. This code was known only to me and as such any handling of 

tissues downstream was referred to in this anonymous fashion.
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As part of my ethical application for this part of the study, an agreement was reached 

with the West Hertfordshire Hospitals Trust Local Research Ethics Committee and 

the Consultant Histopathologists as to how samples of tissue should be taken. This 

technique is described in detail below.

222 .2  Control tissue

Donation of non-tumour normal skin tissue was obtained in a similar manner from 

patients undergoing excisional surgery at Mount Vemon hospital. These patients 

included those that were undergoing facelift surgery or breast reduction surgery. 

Consent was sought in a similar manner to those undergoing surgery for BCC. Larger 

samples were obtained from these patients because of the lack of subsequent 

histological examination required. Coding, data recording and processing was 

performed as for BCC tumour cases.

2.2.3 Cultured cells

2.2.3.1 Primary keratinocytes

Keratinocytes were prepared from fresh foreskin samples obtained from patients 

undergoing circumcision surgery at the St. Bartholomew’s and Royal London 

Hospitals Trust as previously described (Rheinwald and Green, 1975). These samples 

were kept initially in transport medium, minced and incubated in trypsin (0.25% v/v) 

for 2 hours. The cell suspension was filtered and centrifuged. Following washing of 

the cell pellet the re-suspended cells were stored at -80°C. Preparation of primary 

keratinocytes was principally carried out by Dr. Luke Gammon (Centre for Cutaneous 

Research, QMUL. London).

2.2.3.2 SH-SY5Y cells

These are immortalised cells which originally derived from neuroblastoma tumour 

tissue and they are available commercially (LGC Promochem, Teddington, UK, 

ATCC number CRL-2266). RNA from these cells (kind gift from Dr. Graham Neill) 

was available for reverse transcription and use in PCR experiments. Because of their 

origin they are suitable for use in these studies as a neuronal differentiation positive 

control (Biedler et al., 1978).
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2.2.4 Ethics

Ethical approval was granted for collection of each type of tissue required. Details of 

the approvals are given in table 2.2. Specific consent was sought and received from all 

patients who donated both fresh tissue and archival recurrent BCC tissue.

Tissue Hospital LREC Reference

Archival primary BCCs & skin RLH East London and the City T/01/028

Archival recurrent BCCs MVH West Hertfordshire 04/Q0203/37

Fresh BCCs and skin MVH West Hertfordshire T/01/037

Table 2.2: Details of Ethics Committee approvals for archival and fresh tissue 
collection. RLH = Royal London Hospital; MVH = Mount Vernon Hospital; LREC = 
Local Research Ethics Committee.

2.3 Harvesting, processing and storing of tissue

2.3.1 Wax-embedded archival tissue

2.3.1.1 Block retrieval, Sectioning, Labelling, storage

Following identification of patients and tumours to be used, the blocks corresponding 

to the tumour samples were retrieved from the archives of the Royal London Hospital 

and Mount Vernon Hospital. The blocks were re-labelled as per the coding system 

described earlier, and 5 pm sections were cut and mounted onto APS coated slides 

(VWR, Leuven, Belgium), which had been pre-labelled with the corresponding code. 

After a period of drying at room temperature, the slides were baked at 45°C overnight 

to ensure no moisture remained. Thereafter slides were stored at room temperature.

2.3.2 Fresh frozen human tissue -  BCC and normal skin

2.3.2.1 Harvesting and biopsy storage

Upon excision of the putative BCC the fresh specimen was handled carefully and 

depending on its size either a punch biopsy cutter (Stiefel, High Wycombe, UK) or a 

scalpel was used to cleanly remove a piece of tissue from it. Care was taken not to 

include the lateral edges or the deep margin of the tumour so as not to affect the 

subsequent histological examination of the margins of excision. This biopsy specimen 

was then snap frozen in liquid nitrogen so as to maximise preservation of the RNA in
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the sample. In the majority of cases only one biopsy was possible from each tumour 

without affecting the excision margins of the tumour.

Samples of normal skin were also obtained as described previously, from patients 

undergoing procedures resulting in excision of excess skin. These samples were cut 

into small pieces (approximately 5 x 5  mm) and these were snap-frozen as described 

above.

With all samples having already been assigned a letter and number code a 1.5 mis 

cryotube (Coming, New York, USA) was labelled with this code. It was then used to 

store this sample in a box of dry ice (Global Ice, Middlesex, UK) prior to longer term 

storage in a freezer at -80°C.

2.3.2.2 Embedding

All biopsy samples were transported on dry ice from location of freezer to site of 

subsequent processing. At all times the biopsies were kept as cold as possible to avoid 

degradation of RNA.

Embedding was performed using “Cryo-M-bed” (Bright Instruments, Huntingdon, 

UK). Although a liquid at room temperature, this material forms a solid block around 

a small piece of tissue allowing attachment to cryostat rotors and stabilisation of the 

tissue during sectioning. In this case a mould of Aluminium foil (Aluchef foil, 

Terinex, Bedford, UK) was filled with liquid Cryo-M-bed and the tumour sample 

placed within it. Great care was taken to ensure that the orientation of the sample was 

correct such that when sectioned the correct cross section of tissue was presented to 

the blade. This mould and contents were then immersed in liquid nitrogen and the foil 

removed prior to mounting the frozen block on a small cork board. These blocks were 

stored at -80°C.

2.3.2.3 Sectioning, confirmation of biopsy architecture and quality scoring

Sections were cut using a cryostat (Bright Instruments) with the cabinet maintained at 

-35°C. For each tumour, a sharp blade was treated with “RNaseZap” (Ambion, 

Huntingdon, UK) and cooled prior to cutting. Tumour and normal skin blocks were 

mounted onto carriers for the cutting arm of the cryostat by using embedding
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compound and freezing them in liquid nitrogen. 5 pm sections were cut in each case 

and were mounted on APS-coated glass slides.

These sections were dehydrated, stained with haematoxylin and eosin and rehydrated 

prior to mounting and coverslipping with Depex mounting medium (Fisher Scientific, 

Loughborough, UK). Microscope examination of these sections confirmed the 

diagnosis of BCC and was compared to the histological examination of the original 

tumour mass. At this point an assessment was made of the biopsy’s relative size 

(small, medium, large and very large) and the quality of the biopsy in terms of how 

the tissue architecture represented the predominant tumour subtype (no tumour, poor 

quality, medium quality, high quality).

Further sectioning of these blocks for mRNA examination occurred as described, with 

the exception that the slides were quickly returned to dry ice to keep them cold. The 

slides needed to be at room temperature initially so that the sections would melt onto 

the slides in a flat fashion, but once this had occurred they were chilled so as to 

preserve the integrity of the RNA. Slides were pre-labelled with the number and letter 

code assigned to each tumour.

2.3.2.4 Laser Capture Microdissection

Laser Capture Microdissection (LCM) is a technique that has recently been promoted 

as a way of detecting specific gene expression in small distinct areas of tumours and 

non-malignant tissues. The specificity it can achieve in terms of cellular harvest 

within a chosen area of a tissue slide is unrivalled compared to other techniques but 

the quantities of genomic material gained are small (in the order of hundreds of cells, 

and nanogram/microlitre RNA extracts). I have used this technique to examine gene 

expression in BCCs. The advantage in this case over conventional techniques is the 

ability to specifically pick up the target tumour cells and leave all other cellular 

material behind. This is particularly attractive in the case of infiltrative and morphoeic 

BCCs. The microscope, laser and processing kit I used were all manufactured by 

Arcturus (Mountain View, California, USA).
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2.3.2.4.1 Sectioning

Sectioning was carried out as described previously. For sectioning of samples for 

RNA work the freshly sharpened blade was treated with “RNaseZap” to minimise 

RNA loss from RNAse activity. Following the sections being cut and being “melted” 

onto the slides, the slides were rapidly placed into the cryostat cabinet to ensure that 

the tissue warmed up as little as possible so that RNase activity was minimised. A 

maximum of four sections were placed on any one slide so as to minimise the period 

of time that the slide would spend at room temperature. Up to five slides (i.e. up to 

twenty sections of one sample) were cut at the same session and stored on dry ice.

2.3.2.4.2 Dehydration and staining o f  sections

Slides were removed from the dry ice box and immediately placed (in batches of up to 

four) in a series of vials containing RNase free graded alcohols, nuclear stain and 

xylene (“Histogene” kit, Arcturus, Mountain View, USA). It was found that 

epidermal capture from normal skin was very difficult, and so a trypsin step was 

included during this processing step to reduce the intercellular bonds (Agar et al., 

2003) and personal communication with author). Trials of 20 seconds, 2 minutes and 

5 minutes using 0.25% v/v trypsin were performed. On the basis of these trials, it was 

decided that for normal skin samples a two-minute 0.25% v/v trypsin step gave the 

best results and did not seem to affect downstream processing. The slides were then 

briefly air-dried and placed in a box with desiccant before proceeding to Laser 

Capture Microdissection.

2.3.2.4.3 Laser Capture Microdissection

Slides are removed from the dry box and placed onto the stand of the Laser Dissection 

microscope. Laser dissection caps are placed into the fixed-location holder on the side 

and the swing arm is moved around to pick up the cap. As soon as the optically-clear 

cap has been placed directly onto the tissue, the laser beam can then be focused onto 

the tissue.

Firing of the laser (in single or rapid fire mode) distorts the plastic cap in such way 

that a carpet layer of cells becomes attached to the undersurface of the cap. It is easy 

for moisture to be noticed here -  cell attachment does not occur in the event of the 

slides being anything other than totally dry.
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Following attachment of the cap, it is then removed from the slide, akin to “ripping” 

cells from the section. Such a series of slides is shown in figure 2.1, with the final 

selection of cells shown in figure 2.1 (c). The cap containing these cells is then 

placed onto a 0.5ml microcentrifuge tube containing “picopure” lysis buffer (see the 

following section). The tube is inverted and kept on wet ice until the next processing 

step.

2.3.2.4.4 RNA extraction

“Picopure” is the RNA extraction kit produced by the makers of the Laser Capture 

Microdissection Microscope (Arcturus, Mountain View, USA). It is designed for use 

with small cell populations such as those produced with this method, and consists of a 

series of solutions and spin columns.

Once the cap with the captured cell population is immersed in extraction buffer, a 

series of heating and centrifugation steps takes place prior to adding the mixture to a 

specifically designed RNA purification column. Various conditioning buffers and 

wash buffers are used in conjunction with certain centrifugation steps. The final step 

involves addition and centrifugation of between 11 and 30 pi of elution buffer, 

resulting in a similar volume of RNA solution for onward use. In all cases the 

manufacturer’s recommendations were adhered to.

2.3.2.5 Routine BCC RNA extraction

2.3.2.5.1 Needle Microdissection (NMD)

Following the sectioning required for Laser Capture Microdissection, 15 pm sections 

were cut and kept in similar conditions as above. Tumour areas were then 

microdissected with a 25G (orange) needle (Becton Dickinson, Oxford, UK) and the 

resulting cell populations were placed into 1ml Trizol (Invitrogen, Paisley, UK) in a 

1.5ml microcentrifuge tube kept on wet ice.
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Figure 2.1: Sequential photographs of a micronodular BCC section (a) before and (b) 
following capture, and (c) the resected cells for RNA processing.
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2.3.2.5.2 Whole Tissue Homogenisation (WTH)

Lastly, the remaining embedding compound was removed by scalpel leaving the 

remaining section of biopsy tissue intact. This was then also placed into 1ml Trizol in 

a 1.5ml microcentrifuge tube kept on wet ice. An ultra-turrax T15 tissue homogeniser 

(IKA, Wilmington, USA) was used to homogenise the tissue in Trizol: 3 x 30 second 

bursts were used, with the samples being kept on wet ice between bursts.

2.3.2.5.3 RNA extraction

The manufacturer’s standard protocol for Trizol RNA extraction was used. This 

resulted in 30pl aliquots of needle microdissection RNA solution and whole tissue 

homogenate RNA solution for each BCC processed.

2.3.3 Cultured cells

Retroviral transduction of cells was used to produce cells that over-expressed the 

genes Glil and Gli2. Two separate transduction experiments were performed, each 

under identical conditions, six weeks apart.

2.3.3.1 Cell culture techniques

Frozen populations of primary keratinocytes were thawed, and placed into flasks at a 

density of 1.0 x 105 cells per 6 cm diameter culture dish in defined serum-free medium 

(Invitrogen, Paisley, UK). These were cultured for 18-24 hours prior to retroviral 

transduction. All cell culture procedures were carried out in a ventilated cabinet in a 

category II containment suite (Laminair HBB2448, Hearoes Instruments, UK). Cells 

were cultured in a water-saturated atmosphere of 4.9% CO2 at 37°C in an incubator 

(Sango, Loughborough, UK).

2.3.3.2 Retroviral transduction of cells and RNA extraction

Retroviral particles encoding EGFP, EGFP-Glil, and EGFP-GU2 were produced and 

retroviral transduction of keratinocytes was achieved as described previously (Deng et 

al., 1997), except the more efficient Phoenix amphotropic packaging line (gift from 

Dr. Gary Nolan) was used as described by Regl et al (2002). Efficient transduction 

was confirmed by fluorescent microscopy, as illustrated in figure 2.2. RNA was 

harvested 96 hours post-transduction using a commercial “RNeasy Miniprep” spin-
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Figure 2.2: Appearance o f  Gli-transfected cells following retroviral transduction.
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column RNA extraction kit (Qiagen, Crawley, UK). The resulting RNA solution was 

kept at -80°C until required for reverse transcription. Retroviral transduction and RNA 

extraction using the spin-column kit was principally carried out by Dr. Graham Neill, 

Centre for Cutaneous Research, QMUL, London. All subsequent procedures using 

RNA from transduced cells were carried out by me unless otherwise stated.

2.4 Proteomic and Genomic investigation

2.4.1 Proteomics: Immunohistochemistry

Immnohistochemistry is a technique that is widely used to demonstrate protein 

expression in both fresh and fixed tissue. Both monoclonal and polyclonal antibodies 

have been developed to a huge array of antigens, enabling detection of a vast number 

of proteins.

Although fresh frozen material can provide good immunohistochemical data this 

tissue is less plentiful than fixed archival tissue. Relative loss of antigenicity is, 

however, a drawback: antigenic sites tend to become “hidden” by protein cross- 

linking following aldehyde fixation. Unmasking of hidden epitopes as described by 

Shi and later Catoretti has improved the ability to demonstrate protein expression in 

fixed tissues (Cattoretti et al., 1993; Shi et al., 1991).

Following tissue section preparation I used an immunoperoxidase 

immunohistochemistry staining system. The “Vectastain Elite ABC” 

immunohistochemistry reagent kit (Vector Laboratories, Burlingame, USA) includes 

a suitable blocking serum, biotinylated secondary antibody and preformed Avidin- 

Biotin horseradish peroxidase macromolecular Complex (“ABC”) tertiary antibody. 

Following consecutive incubations, a complex of these molecules is formed which 

results in peroxidase localisation to the site of primary antibody binding. Upon 

addition of hydrogen peroxide and an electron donor (a substrate), the substrate 

becomes oxidised as it catalyses the conversion of hydrogen peroxide to water. In my 

study the electron donor (the substrate, or chromogen) used was 3- 

diaminobenzidinetetrahydrochloride (DAB). This produces an insoluble brown 

pigment which is easily recognised by light microscopy.
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2.4.1.1 Experimental design

For both the tumour groups (subtype-categorised BCCs and recurrence-categorised 

BCCs) the study designs were similar. In each case four different primary antibodies 

were used (P-tubulin III, GAP-43, Arc and Neurofilament). All samples tested within 

one tumour group were exposed to the same antibody in the same run. Included in 

each run were normal skin samples and control tissues (as described below).

2.4.1.2 Controls

Positive controls consisted of 5pm sections of appendix tissue. The nerve fibres in the 

muscle coat of the appendix are an excellent positive control for detection of neuronal 

antigens. Negative controls consisted of 5pm sections of tumour and appendix, which 

were not exposed to primary antibody, but were exposed to all other stages of 

immunohistochemical processing. Normal skin samples (from non-BCC patients as 

described previously) were used to compare tumour staining with that of normal 

epidermis.

2.4.1.3 Technical steps

In all cases the “Vectastain Elite ABC” immunohistochemistry reagent kits were used 

(Vector Laboratories, Burlingame, USA). This provided blocking sera, secondary and 

tertiary antibodies for each type of antibody used.

2.4.1.3.1 Initial treatment

Labelled sections were de-waxed in xylene and rehydrated through decreasing 

concentrations of alcohol (100%, 90% and 70% v/v), immersing them in each solution 

for three minutes. Endogenous peroxidase activity was blocked using a solution of 

0.3% v/v hydrogen peroxide in methanol for 15 minutes at room temperature.

2.4.1.3.2 Microwaving

Slides were then washed well in water before immersion in 1000ml of 10 mM citrate 

buffer (adjusted to pH 6 as required with 2M NaOH) in a microwave pressure cooker 

device. The sections were microwaved (Hinari, 900W) on high power for five 

minutes. The cooker was removed from the microwave and the slides were left to 

stand in the cooling fluid for 15 minutes before being washed well in running water.
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2.4.1.3.3 Blocking serum and primary Antibody

After microwave pre-treatment the slides were removed from the running water and 

rinsed in Phosphate-buffered saline (PBS, pH 7.6). A wax pen was used to ring the 

area of tissue on the slide, thus minimizing the volume of antibody reagents used. 

Blocking of non-specific binding was carried out using serum from the same species 

in which the biotinylated secondary antibody was raised. This was available by 

diluting the blocking serum (1:100 using PBS) provided within the 

immunohistochemistry reagent kits.

Following application of this blocking serum for ten minutes, it was tipped off and 

primary antibody (diluted with PBS) was applied as described in table 2.3. The slides 

were left in this state overnight at 4°C. The next morning three PBS washes (one 

minute each) were used to rinse the primary antibody away.

Antibody Company Dilution
used

Antigen
retrieval

Duration of 
1° antibody

Raised
in

Blocking 
serum used

Vectastain 
kit used

Beta Tubulin III Chemicon 1:800 Y Overnight Mouse Horse Universal

Arc Sigma 1:200 Y Overnight Mouse Horse Universal

GAP-43 Chemicon 1:3,200 Y Overnight Mouse Horse Universal

Neurofilament Dako 1:200 Y Overnight Mouse Horse Universal

Table 2.3: Antibodies used in this study -  see section 2.4.1.4

2.4.1.3.4 Secondary and tertiary antibodies

According to the Vectastain elite protocol, a solution comprising of secondary 

antibody (horse anti-mouse antibody, dilution 1:50) and blocking serum (horse serum, 

dilution 1:50) was applied to the slides for 60 minutes at room temperature. Following 

this period PBS was used to wash away the secondary antibody. Tertiary antibody 

(preformed Avidin-Biotin horseradish peroxidase complex, dilution 1:100) was then 

applied to the slides for 30 minutes at room temperature. PBS washes were then used 

to rinse off any remaining antibody.

2.4.1.3.5 Chromogens, dehydration and mounting

As described, the DAB chromogen (3-Diaminobenzidinetetrahydrochloride) was used 

to visualise the binding of the antibody complexes to the tissue sections. Using a kit 

system (Liquid DAB Substrate Pack, Biogenex, San Ramon, USA), the DAB solution
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was made up according to the manufacturers instructions and applied to the sections 

until the positive control sections were uniformly stained (typically two minutes).The 

sections were then rinsed under running tap water for five minutes before lightly 

counterstaining with Haematoxylin and dehydrating in graded alcohols and xylene.

Mounting was achieved by use of DePex (BDH Laboratory Supplies; Poole, UK) 

mounting medium applied to coverslips which then covered the stained tissue sections 

adequately.

2.4.1.3.6 Solutions used 

PBS:

1 Sachet of lOmM Phosphate buffered saline (PBS) powder mixed in lOOOmls 

distilled water. For rinsing of sections.

Ethanols and Xylene:

Absolute ethanol used as 100%; lesser dilutions made up with appropriate volumes of 

distilled water. Xylene used neat following dehydration of sections (ethanol and 

xylene from Fisher Scientific, Loughborough, UK).

H2O2 in Methanol:

30mls 3% v/v Hydrogen peroxide (Sigma, Steinheim, Germany) mixed in 270mls 

absolute methanol at room temperature. For tissue section fixation.

Citrate buffer:

Citric Acid (monohydrate) 7.56g, tri-sodium citrate 47.56g, EDTA disodium 7.4g, 

distilled water 2000mls. This stock solution was then diluted 10:1 with distilled water 

for use in microwave treatment of tissue sections.

2.4.1.4 Antibodies used in this study

The antibodies used were chosen because of their specific relevance to neuronal 

differentiation and the previous results of gene array experiments.

2.4.1.4.1 Beta-tubulin III

Beta-tubulin III is a well-known marker of neuronal differentiation and was 

highlighted in our gene array data as being up-regulated by Glil over-expression. It 

has previously been used as a marker to demonstrate the ability of dermal papilla 

pluripotent stem cells to undergo neuronal differentiation (Fernandes et al., 2004).
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2.4.1.4.2 GAP-42

Growth-associated protein (GAP-43) is a membrane protein that is expressed at high 

levels during neuronal development, and is newly produced in injured and 

regenerating adult nerve tissue. It is considered to be a marker for sprouting, and is 

usually associated with physiological events such as neuronal growth and synaptic 

plasticity (Gispen et al., 1991; Hoffman, 1989). In my study it was used as an 

independent marker of neuronal differentiation; the GAP-43 gene had not been noted 

to be elevated in the gene array data.

2.4.1.4.3 Arc

The activity-regulated, cytoskeletal-associated gene, arc, is an immediate-early gene 

associated with neuronal development. It is translated to become a cytoskeletal 

protein expressed not only in the nucleus of neurons but also in their dendrites. It was 

discovered as a gene that was rapidly induced in active neurons in models of adult and 

developmental plasticity (Lyford et al., 1995) and is a known marker of neuronal 

differentiation. It was seen to be massively up-regulated in the initial gene array data 

from G lil-transfected cells.

2.4.1.4.4 ULK-1

ULK1 (Unc51.1-like kinase 1) is the human homologue of Unc51.1, one of the 

earliest genes involved in neuronal differentiation (Kuroyanagi et al., 1998). Whereas 

UNC-51 is specifically detected in the nervous system of C. elegans, it appears that 

ULK1 is ubiquitously expressed in adult human tissues such as skeletal muscle, heart, 

pancreas, brain, placenta, liver, kidney, and lung. It was also greatly up-regulated in 

the gene array data, and with its precursor’s specificity to the nervous system it was 

used to correlate gene array findings with those in BCC.

2.4.1.4.5 Neurofilament

Neurofilament is a routinely used marker of neuronal differentiation in many 

histological laboratories. There are a number of isotypes referred to as H, M, and L 

(heavy, medium, light chains). In this case the antibody used was “Neurofilament 

M+H” -  an antibody to the medium and heavy chains.
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2.4.1.5 Quantification of results

2.4.1.5.1 Visual Analogue Scoring

Immunohistochemical slides were visualised using a Leica DM RXA optical 

microscope and digital imaging system (Leica Microsystems AG, Wetzlar 

Germany).

Assessment of intensity of staining was carried out using a visual analogue scale 

familiar to histopathologists, described in table 2.4. Two independent examiners 

(myself and Dr. Rino Cerio, consultant dermatopathologist, Royal London Hospital) 

observed each section and a score was allocated to it. An average was taken of the 

two scores and this was recorded as the intensity of staining for each section with 

each antibody.

Score Description Example tissue
0 No staining at all Negative control sections
1 Weak staining
2 Moderate staining
3 Strong staining Positive control nerve fibres

Table 2.4: visual analogue scoring method of immunohistochemistry staining

Similarly, an assessment of the intracellular staining localisation was performed by 

each examiner by classifying the staining intensities of the cytoplasmic, membranous, 

and nuclear compartments. Again, for each compartment this was performed by 

allocation of a visual analogue score (as above) to each compartment for each tumour.

Direct visual observation is clearly the simplest technique of immunohistochemical 

quantification but its power of discrimination is limited. The human eye-brain 

combination is an excellent sensor for observing and identifying particular 

morphological features but is limited in its ability to quantify the intensity of staining. 

Most ‘measures’ have thus been limited to the adoption of some arbitrary scale such 

as the visual analogue scoring method described here. A more sensitive method of 

assessing these sections could give one a better understanding of the differences 

between certain groups. Spectral Imaging Analysis is such a method.
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2.4.1.5.2 Spectral Imaging Analysis (S. I. A.)

Spectral Imaging Analysis is a technique in which a computer is used to assess the 

staining intensity of a tumour. Briefly, it does this by picking out the specific colours 

of whatever chromogens it is set to recognise. It will then calculate the intensity of 

these colours that are present in the section examined. The result of this is a 

histogram, with, among other values, a mean staining intensity for the area examined. 

This value is not an integer, but a number anywhere on the continuous scale of 0 (no 

staining) to 1 (very dense staining).

The Spectral imager works in a way analogous to a spectrophotometer, where light 

over a range of wavelengths is shone through a sample and the amount of light 

transmitted through the sample is measured. In this case, each pixel (“picture 

element”) of a digital image is assessed in this way. It is of course also important that 

any sections which are to be compared should be of the same thickness, so as not to 

affect the optical density measurements. The Gray Cancer Institute spectral imager is 

an accessory to a standard microscope camera and is used to acquire a number of 

images that are processed to derive spectral information. The camera used merely 

measures the light intensity of the image pixels, whereas wavelength selectivity is 

provided by the filter which allows a number of wavelength-specific images to be 

generated. In the case of DAB, 12 different images across the spectrum of visible light 

were assessed.

The culmination of this is that a 3-dimensional data set (multiple pixel intensities at n 

wavelengths) is eventually generated by the software. Normalisation of the images is 

performed by a ‘black’ (i.e. zero light) image being acquired by energising a shutter in 

front of the camera, and then a “white” image is acquired with the shutter open but 

with no sample present. The resulting light intensities in each pixel in this normalised 

data set will have values ranging 0 to 255 (8-bit resolution giving a maximum of 256 

possible values). Therefore each pixel can be described in gradation so of up to 256 

degrees of intensity, which is markedly better than the eye-brain combination, which 

at best, can distinguish some 30-60 intensity levels.
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Figure 2.3: Histogram of DAB staining intensity in a uniformly stained BCC

Figure 2.4: (a): original image of micronodular BCC; (b): Image Masker™ is used to 
highlight tumour areas in red; (c): DAB staining represented by red tones, 
Haematoxylin represented by green tones.

Figure 2.5: (a): an infiltrative BCC prior to tumour selection; (b): with the tumour 
islands highlighted in red.
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To get an idea of the spread of staining intensities rather than just the average value, a 

convenient method is to use some form of histogram analysis. A histogram of the 

staining intensity describes the frequency distribution of the staining intensity, as 

illustrated in figure 2.3.

As well as the average intensity being calculated, the shape of the histogram 

illustrates the distribution of staining intensity. For example, in most cases, a single, 

albeit broad, peak will be present and the mode, mean and width of the peak may be 

used to indicate heterogeneity. Of course the distribution could also be bi-modal, i.e. 

with two peaks, indicating that there are clusters of staining intensity, e.g. distinct 

weakly and strongly stained regions. Additionally, a confounding factor is that, in 

general, some degree of background staining is likely to be present. Some tissue areas, 

e.g. stroma, may thus appear to contain some concentration of the chromophore and it 

is likely that one would wish to exclude these from the analysis.

Specific selection of tumour areas for analysis using this method was achieved by the 

use of an additional piece of software (Image Masker™’ Gray Cancer Research 

Laboratory) which enables a free-hand selection of the area of interest to be analysed 

(figure 2.4). With this, the whole area of the tumour tissue that one wishes to examine 

can be marked out on the computer screen and highlighted with a red overtone (as 

seen in figure 2.4b). This area can be added to or subtracted from until the 

representative area is selected. If a tumour does not stain at all (i.e. to the same degree 

as a negative control) then that is reflected accurately in the resulting histogram..

This method of assessment is particularly useful in the assessment of disparate 

tumours, as in figure 2.5. In the case of nodular BCCs it may be easy to compare 

staining intensities with the naked eye, but with increasingly disparate tumours (such 

as infiltrative or morphoeic subtypes) this software enables one to selectively assess 

the staining of tumour islands, without the “background noise” of the surrounding 

tissue.

With regards to tumour biology this system has the power to be more sensitive than 

the human eye in picking up differences between comparison groups. With 

predominantly weakly staining sections, it may be difficult with the results from
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visual analogue scoring to tell if there is a significant difference between groups (as 

they will tend to be classified by visual analogue scoring as 0’s or l ’s). With this 

system the continuous nature of the data is more reflective of the spectrum of staining 

that occurs. As a result the statistical comparison of groups is more likely to be truly 

representative of the actual differences present.

2.4.2 Genomics

Since messenger RNA (mRNA) is translated for protein synthesis, mRNA levels are 

commonly used as a surrogate for protein expression; a high level of any particular 

mRNA species typically reflects a high degree of protein expression. RNA is however 

very prone to degradation and cannot easily be quantified directly, but viral reverse 

transcriptase can be used to transcribe mRNA into complementary DNA (cDNA). 

This stable cDNA template can then be quantified by modifications of the polymerase 

chain reaction (PCR). In this study real-time semi-quantitative PCR and standard RT- 

PCR were used following reverse transcription.

2.4.2.1 Experimental design

Tumour samples of RNA were prepared as described previously. In all cases samples 

of BCC tissue were compared with technical negative controls (as described below), 

samples of non-tumour skin and, in some cases, positive controls. This was the case 

when using both agarose gels and real-time PCR.

2.4.2.2 Controls

Technical negative controls were developed at all stages of RNA processing. During 

reverse transcription an “RT-“ cDNA sample was created by including BCC RNA for 

reverse transcription but without including reverse transcriptase in the reaction. 

Similarly at the stage of a PCR reaction, a sample was created where a ’’water” 

negative control was used by adding a similar volume of DNA-free water to a PCR 

reaction mix instead of the usual volume of BCC cDNA.

Positive controls were used in both agarose gel and real-time PCR experiments. In the 

real time PCR experiments on cell culture material one of my principle aims was to 

determine the expression of neuronal markers secondary to the expression of Glil and 

Gli2 genes. Thus, checking the expression of Glil and GU2 genes were in essence a
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positive control in these cell groups. In terms of the neuronal marker primers used in 

this study, I used the cDNA prepared from the SH-SY5Y cells previously described.

2.4.2.3 Quantification of RNA extraction

Quantification of RNA was achieved using a “Nanodrop” spectrophotometer 

(Nanodrop, Wilmington, USA). This can measure the concentration of both RNA and 

DNA in a sample by analysing the amount of light of specific wavelengths that is 

absorbed when passed through it. With an RNA concentration for each sample known 

to me, I was in the position to proceed to reverse transcription using a standard 

quantity of RNA in each case. This principle was used when preparing cell culture 

RNA for reverse transcription. In the case of fresh BCC tissue samples (Laser Capture 

Microdissection, Needle Microdissection and Whole Tissue Homogenate samples) 

RNA was quantified in this way, but typically the concentrations of RNA were low 

and variable such that creating reverse transcription reactions with identical amounts 

of starting RNA was not possible. In these cases reference to internal control genes 

was the mainstay of quantity comparison.

2.4.2.4 Reverse transcription of mRNA

Reverse transcription is the process by which RNA may be converted into DNA 

(known as complementary DNA, cDNA). It occurs by virtue of reverse transcriptase, 

an enzyme which converts an RNA nucleotide sequence to the corresponding DNA 

nucleotide sequence. Resulting cDNA can be amplified by the polymerase chain 

reaction and quantified. In my case all reverse transcription experiments were 

performed using the Promega “Reverse transcription kit” according to the 

manufacturer’s recommendations (Promega, Madison, USA).

The steps involved are:

1: RNA denaturation by heating to 70°C for 10 minutes using a PCR block set to this 

temperature (Thermo Hybaid, USA).

2: Creation of a reverse transcription solution master mix including the substances 

listed below, and then addition of RNA and reverse transcriptase in the following 

amounts:
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• 2pl reverse transcription lOx buffer
• 0.5pi recombinant RNasin ribonuclease inhibitor
• 0.5pi random primers
• 0.5 pi oligo-dt primers
• 4pl magnesium chloride (25mM)
• 2 pi dNTP mixture (lOmM)
• 0.6pl AMV reverse transcriptase
• lOpl RNA solution (containing 5pg RNA, made up to volume with nuclease- 

free water)

3: A negative control sample which had distilled water as opposed to reverse 

transcriptase included was included at this stage.

4: These samples (total mixture volume 20.1 pi each) were then placed onto a PCR 

block with the following settings:

• 42°C for 60 minutes
• 99°C for 5 minutes.
• Hold at 4°C

Following this reaction samples were stored at -20°C until PCR processing was used.

2.4.2.5 RNA amplification

Given the small amounts of RNA generated from Laser Capture Microdissection, 

amplification of this RNA was attempted using a commercially available kit designed 

for this purpose (RiboAmp RNA amplification kit, Arcturus, USA). This process 

involves reverse transcription of RNA to cDNA, amplification of cDNA and lastly 

transcription back to RNA. This resultant RNA may then be used for further reverse 

transcription. It is claimed that this method may amplify the amount of mRNA by a 

factor of up to 1,000-fold with each round of amplification, whislt retaining 

specificity of the sample. The manufacturers’ instructions were followed meticulously 

in every case.

2.4.2.6 Polymerase Chain Reaction

The polymerase chain reaction (PCR) is an in vitro method that uses enzymatic 

synthesis to amplify specific DNA sequences. Devised by Mullis et al in 1985 (Mullis 

et al., 1986), the technique is powerful enough to amplify one copy of a specific DNA 

sequence millions of times. It exploits the unusual ability of thermophilic bacterial 

DNA polymerase to withstand high temperatures without denaturing. Taq polymerase 

from thermus aquaticus is such an enzyme (Chien et al., 1976). DNA polymerase 

starts copying DNA from the point where a short complementary nucleotide sequence
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known as a primer binds (or “anneals”). Primers can be designed to anneal to both 

ends of the target sequence on the complementary DNA strands, and to differentiate 

the two primers for any target molecule they are known as 5’ and 3’ primers. The 

primers are generally around 20 nucleotides long in length, sufficiently long to be 

unique within the genome.

The PCR reagents including the enzyme, template and primer oligonucleotides are 

heated to a high temperature such that the DNA strands separate. They are then 

cooled to a chosen temperature to allow the primers to anneal to the specific target 

sequence in the template, and then heated to 72 °C for optimal DNA polymerase 

activity. Since DNA polymerase synthesises DNA in a 5’ to 3’ direction, this 

annealing pattern allows the target sequence to be copied in both directions. Lengthy 

DNA strands are generally not synthesised because taq polymerase stalls at DNA 

sequence mismatches, the enzyme having no repair activity. On cooling, the primers 

anneal to the newly synthesised DNA strands. Taq polymerase then copies the target 

sequence again or the newly synthesised product. Thus the cycling rapidly replicates 

the target sequence alone, as illustrated in figure 2.6. As the cycles proceed, so the 

amount of target DNA generated increases essentially exponentially. The process of 

using cDNA copied from mRNA by reverse transcriptase (RT) as the DNA template 

for PCR is known as RT-PCR (Strachan T. and Read A.P., 2004).

2.4.2.6.1 Primer design

The ideal characteristics of PCR primers include a length of 15-30 base pairs (bp), 40- 

60% G+C content with no complementary sequences between or within the primers. 

Additionally, they should span a gene intron and represent a unique sequence in the 

genome. These characteristics prevent primers from self-complementation with each 

other, maintain the highest possible specificity and aid detection of genomic DNA 

contamination.

Primer sequences were designed using the Discovery Studio primer design software 

package (vl.5, Accelrys, USA). The target sequence of the gene in question was 

entered into the computer and from this the program calculates possible primer 

pairing sequences, and gives each pair a score of likelihood of being unique to that
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gene. From this list pairs were selected and suitability for use in terms of G/C content 

and primer size was assessed.

Once the sequences of a set of primers had been defined, primers were obtained by 

ordering directly from MWG (MWG, Ebersberg, Germany). These primers were 

provided desiccated, then diluted to a 100 pM concentration in nuclease-free distilled 

water. Aliquots o f this stock solution were then used for further use at 5 pM 

concentration.

2.4.2.6.2 Primers and PCR conditions

Properties of the primers used in these experiments are detailed in table 2.5.

Double stranded 
target DNA

Denaturation 
'makes DNA single 

stranded

Annealing 
primers to 

DNA strands

Extension Taq 
polymerase 

extends DNA 
5’ to 3’ in each 

direction

Figure 2.6: The polymerase chain reaction: Denaturation separated the DNA strands; 
cooling to a specific annealing temperature allows the primers to bind to the DNA 
strand. In the final step Taq polymerase can then synthesise new DNA strands 
extending from the bound primers. This cycle can be repeated many times allowing 
amplification of the target sequence.
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PCR
target

Sequence 5’- 3’: 
Forward Primer

Sequence 5’- 3’: 
Reverse Primer

Intron
span

Annealing
temperature

Product 
size (bp)

B-Actin
GTT TGA GAC 
CTT CAA CAC 
CCC

GTG GCC ATC 
TCT TGC TCG 
AAG TC

No 60°C 320

Gli-1
GAA GAC CTC 
TCC AGC TTG 
GA

GGC TGA CAG 
TAT AGG CAG 
AG

No 60°C 246

Gli-2
GGG TCAACC 
AGG TGT CCA 
GCA CTG T

GAT GGA GGG 
CAG GGT CAA 
GGA GTT T

Yes 57°C 194

B-tubulin
III

GGC CTC TTC 
TCA CAA GTA 
CG

ACC ACA TCC 
AGG ACC GAA 
T

No 60°C 200

Arc
GCT CAG GGT 
TCA TCG TTC 
TGC CTT G

AAA GCC TGT 
GCC AGC CTT 
GAG GAT T

Yes 65°C 146

GAP-43
ACC CTC TTC 
TCA GCT CCA 
CTC

GCC ACA CGC 
ACC AGA TCA 
AAT A

Yes 60°C 267

Neuro­
filament

ATC TCC TGG 
TCG TAC GCG 
T

TCC TCC TCC 
TAT AAG CGC 
A

No 60°C 361

Table 2.5: PCR primers sequences and product sizes.

2.4.2.6.3 Standard PCR protocol

PCR reactions were performed to a standard protocol. The components of this 

reaction were placed in a 0.5ml microcentrifuge tube, kept on ice:

template cDNA: 2 pi
1 Ox reaction buffer 2.5pl
magnesium chloride (25mM): 1.75 pi
dNTP mix (2mM): 2.5 pi
“Red Hot”™ taq polymerase: 0.25 pi
forward primer (5pM): 0.5 pi
reverse primer (5pM): 0.5 pi
PCR grade distilled water: 15 pi

These components were obtained by using a commercial PCR kit (Abgene, Epsom, 

UK). After a final pulse spin (to pool the reagents) the samples were placed in a 

Hybaid PCR block (Hybaid, Thermo, USA). Standard PCR conditions are as follows:

95°C x 3 minutes (1 cycle)
95°C x 30 seconds
X°C x 30 seconds (30-40 cycles)
72°C x 40 seconds
72°C x 10 minutes (1 cycle)
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• 4°C x Hold

(X = annealing temperature, see table 2.5)

A negative control PCR reaction was included in each PCR run. This consisted of a 

PCR reaction of the relevant volume, including all relevant reagents, but no DNA. 

The reaction volume was made up using PCR grade distilled water.

2.4.2.6.4 Agarose gel electrophoresis.

Agarose gel electrophoresis is used to separate DNA molecules according to their 

size. Agarose gels are made up of a polysaccharide matrix in a buffer. When an 

electric current is passed through the gel the negatively charged DNA molecules will 

migrate through the matrix towards the positively charged anode. The matrix offers 

greater resistance to larger DNA molecules, thus a population of different DNA 

molecules can be separated by their size. Ethidium bromide chelates DNA and its 

addition to the gel and running buffer allows visualisation of the DNA by UV 

fluorescence. The concentration of agarose directly affects the resolution qualities of 

the gel. A more concentrated gel will resolve smaller fragments, due to the reduced 

pore size of the gel matrix.

1% agarose gels were made up as follows:

• agarose (Fisher UK) 1 .Og added to TBE electrophoresis buffer lOOmls
• solution boiled for 30sec
• addition of ethidium bromide lmg/pl, 1 pi

Stock solution of lOx TBE buffer was made by mixing Tris Base (108 g), Boric 

Acid (55g), 0.5M EDTA (20mL) and adding distilled water to 1.0 L. This was then 

diluted 10-fold with distilled water for use as above.

This was then cooled in a gel casting system (Gibco, Gaithersburg, USA) with a comb 

to create the wells. When cool, the comb was removed to allow filling of the wells.

In each case 5 pi of PCR product was loaded with 2 pi blue/orange loading dye 

(Promega, Madison, USA). 3 pi of lKbp ladder (Promega) used in a control lane to 

estimate fragment size. Bands were viewed using a ultraviolet imaging system
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(Uvitec, Cambridge, UK). Ultraviolet-fluorescent images of agarose-PCR product 

gels were photographed and printed out using a printer attached to the camera above 

(Mitsubishi P91E, Japan).

2.4.2.7 Real-Time PCR

A polymerase chain reaction classically amplifies DNA without offering any accurate 

index of the amount of DNA template present. The use of a chelating fluorescent dye, 

however, allows indirect assessment of the total amount of DNA present by 

fluorescence measurement at the end of the DNA polymerase phase of each cycle; the 

fluorescence of the chelating dye is greatly enhanced by binding to double-stranded 

DNA. Thus the exponential rise in PCR product over the series of cycles can be 

monitored in a “real time” manner. The point on the fluorescence plot at which the 

PCR product starts to rise most rapidly (“lift o ff’) is related to the amount of template 

cDNA present in the original aliquot.

The log plot of this rise can be extrapolated back to the base line to estimate this 

“cross-over point”, and using calibration data the number of cDNA molecules in the 

original template can be calculated. This is known as quantitative real-time PCR. If 

absolute quantification is not required, comparison between samples can be used to 

produce relative quantification data. In this case reference to a constant housekeeping 

gene is required to normalize the data. In this study p-Actin was used as it is a good 

marker for epidermal cell populations, whether of tumour or non-tumour origin.

Real-time PCR was performed in this study using cDNA that had been prepared from 

the RNA of cells transfected with Gli genes or controls (as described in section 

233.2). The fluorescent dye used in these studies was SYBR green chelating dye, 

which was included as part of the SYBR-green PCR kit (SYBR green qPCR kit, 

Finnzymes, Finland) and all reactions were carried out using the same machine 

(Opticon II Quantitative PCR machine, MJ Research, USA). Reactions were carried 

out according to the manufacturer’s directions. Each reaction mix comprised of

• 1 Opl SYBR green quantitative PCR master mix
• 0.5 pi Forward primer
• 0.5pl Reverse primer
• 1 pi cDNA (of a 20.1 pi RT reaction mix containing 5 pg RNA)
• 8pi PCR grade distilled water
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The same primers and parameters were used as for RT-PCR and in all cases 

experiments were performed in triplicate. Positive and negative technical controls 

were included.

The Opticon II program cycled as indicated below (X = annealing temperature, see 

table 2.5):

(1 cycle)x 10 minutes 
x 10 seconds 
x 10 seconds 
x 20 seconds 
x 5 minutes 

65—>95°C melting curve 
4°C x Hold

95°C
94°C
X°C
72°C
72°C

(35 cycles) 

(1 cycle)

2.5 Data storage

All categorical and numerical experimental data was recorded in Microsoft Excel 

spreadsheets (Microsoft, Seattle, USA). Identification of tissue or product samples 

was achieved using the number-and-letter code assigned to each tumour.

2.6 Data analysis

2.6.1 Gene array data

Array data produced by Regl et al in Salzburg was analysed using a spreadsheet 

programme (Excel, Microsoft, Seattle, USA). This data had been generated following 

hybridisation of Gli-transfected keratinocyte cDNA to nylon gene array membranes as 

described previously (Aberger et al., 2001).

Prior analysis of hybridisation intensities had included normalisation for total signal 

intensity and with two copies of each gene present on the array. Both copies had to be 

registered as having hybridized with the membrane to be included in this data.

The data available to me was presented in a spreadsheet fashion and referred to 

hybridisation intensities of each gene present on the nylon gene array membrane. Two 

values of hybridisation intensity were recorded for each gene on the array. An average
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was taken of these two values to represent the level of gene expression for each cell 

group. By comparing the control keratinocyte sample data with the data generated 

from Gli-transfected keratinocytes, it was possible to generate fold-change data, 

representing up- or down-regulation of gene expression in Gli-transfected 

keratinocytes compared to control keratinocytes.

The data in this spreadsheet was then ordered according to the level of up-regulation 

of gene expression in Gli-transfected cells compared to controls. The genes with the 

top 100 levels of up-regulation due to Gli transfection were focussed on and a record 

made of the known function of such genes.

2.6.2 Immunohistochemistry data

Comparison across groups was performed using statistical analysis software (SPSS, 

Chicago, USA) using tests as outlined in table 2.6. Multiple groups were considered 

by a One Way Analysis of Variance (ANOVA). Specific related groups were 

compared using a paired t-test. An example in this study is the comparison of 

recurrent tumours with their original counterparts (e.g. groups CO vs CR). Specific 

unrelated groups were compared using an unpaired t-test. Such examples are the 

comparison of tumours that do go on to recur vs those (from other patients) that do 

not (groups CN vs CO) and the comparison of separate tumour class groups (e.g. 

indolent vs aggressive).

Type of 
comparison Groups compared Example in this study Statistical test 

used

Multiple
groups

Skin and primary BCC 
subtypes

Skin and Nodular, Superficial, 
Infiltrative, Micronodular and 
Morphoeic BCCs

ANOVA

Related
groups

Recurrent tumours vs 
their original 
counterparts

CO vs CR 
10 vs IR Paired t-test

Unrelated
groups

Tumours that recur vs 
those that do not recur

CN vs CO 
IN vs 10 Unpaired t-test

Primary BCC 
histological classes Indolent vs Aggressive Unpaired t-test

Table 2.6: Statistical methods used in this thesis.
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2.6.3 mRNA expression data

2.6.3.1 Real-time PCR

Real time PCR data was recorded initially as the number of cycles required to hit a 

certain threshold for each group of cells. Details of the melting curve was also 

recorded and examined to ensure the quality of the reaction.

Within each transfection / primer / cell / Gli-status combination used, the triplicate 

values were averaged to give a representative figure for the cycles-to-threshold value. 

Within each transfection experiment, there were 3 main groups to compare (cells 

transfected with EGFP-Glil, EGFP-GU2, or EGFP alone). Comparison of these 

independent groups was performed by assessing the Analysis of Variance (ANOVA) 

with differences between specific groups considered using post-hoc Bonferroni 

comparisons.

2.6.3.2 RT-PCR

In this case no statistical analysis was performed, with the main comparison between 

groups being direct visual comparison between bands seen on agarose gels.
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Chapter 3: Immunohistochemical expression of 
neuronal markers in Basal Cell Carcinoma

3.1 Introduction

The expression of neuronal markers in Basal Cell Carcinoma has not previously been 

described in the medical or scientific literature. Following the analysis of gene array 

data derived from Gli-transfected N-terts cells, I wished to investigate whether this 

would be a feature of human Basal Cell Carcinomata. Not only did I wish to ascertain 

whether these markers were expressed at all in BCCs, but I specifically wished to 

determine whether a differential degree of expression was present in the various 

histopathological subtypes of BCC.

3.2 Methods

An immunohistochemical analysis of neuronal differentiation marker staining in 

BCCs was performed using the panel of primary BCC tumours described in chapter 2. 

Thirty-two tumours were selected for examination, as described in table 3.1. All these 

tumours had characteristic appearances of a particular histological growth pattern 

subtype. Positive and negative controls were included as well as normal non-tumour 

skin samples.

BCC growth pattern subtype Tumours examined
Nodular 7
Superficial 4
Micronodular 9
Infiltrative 8
Morphoeic 4
Total 32

Table 3.1: Histopathological subtypes of BCC examined in this study

Five antibodies (as described in table 3.2) were applied to all the sections. The same 

techniques were employed for all antibodies and all sections, as described previously 

in chapter 2. Staining was analysed by both visual analogue scoring and by spectral 

image analysis in all cases. Comparisons were made using both of these methods 

between histological subtypes and growth pattern class within each antibody group.
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Antibody Raised in Manufacturer Dilution used
ULK-1 Goat Santa Cruz 1:50
3-Tubulin III Mouse Chemicon 1:800
GAP-43 Mouse Chemicon 1:3,200
Neurofilament-M+H Mouse Dako 1:200
Arc Mouse Sigma 1:200

Table 3.2: Antibodies used in immunohistochemistry study of neuronal differentiation 
marker expression in BCCs.

3.3 Results

3.3.1 ULKl expression

Multiple human tissues were used as controls for the expression of ULK-1 as has been 

described. These included normal kidney, rhabdomyosarcoma, normal skin, bowel, 

appendix, placenta and spinal cord. The intensity of staining in all of these tissues was 

zero, with the exception of spinal cord tissue (representative slides are shown in figure 

3.1). In this case a subsection of neuronal cell bodies stained positively for ULK-1, 

and this staining was specific to the use of primary antibody (the negative control in 

which the primary antibody was omitted did not stain at all). In the case of appendix 

tissue which was used as a positive control with the other antibodies used, no staining 

of the nerve fibres was seen.

In only one out of thirty-two BCCs was there any staining above the baseline level. 

This staining was seen to be very weak and was not specific to any part of the tumour. 

No further formal quantification of staining with this antibody was undertaken due to 

the negative technical findings.
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Figure 3.1: Essentially negative staining with ULK-1 antibody in multiple control 
tissues: appendix, kidney and BCC. Minimal positive staining was seen in some cells 
of the spinal cord section.
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3.3.2 p-tubulin III expression

Images representing the staining present in each type of tissue and BCC are shown in 

figure 3.2. Neuronal tissue within the human appendix positive control sections 

stained strongly. Negative controls did not stain at all.

3.3.2.1 p-tubulin III: Visual Analogue Scoring

Results of the visual analogue scoring of the staining of these tumours were analysed 

by plotting the mean staining results (with 95% confidence limits) by subtype. The 

results are depicted in figure 3.3 and show a much lower level of staining in the 

aggressive and morphoeic groups than in the other groups. ANOVA analysis of these 

figures demonstrated that the differences in staining are significantly different 

between these groups and that they do not represent the same population of tumours 

(p <0.001). The wide variation in confidence limits with the superficial tumours is 

likely to due to both the heterogeneity of staining seen, and the small number of 

tumours examined.

Further ANOVA analysis by tumour growth class (Indolent, Micronodular, 

Aggressive) demonstrated a marked difference between these groups (p<0.001). 

These results are shown in figure 3.4. Using a Bonferroni multiple comparisons 

analysis it was evident that there was a highly significant difference between the 

intensity of staining of the aggressive tumours and the other classes. Infiltrative and 

morphoeic tumours (which tend to behave more aggressively) stain less than those 

that behave indolently (typically superficial and nodular tumours) or those have a 

micronodular growth pattern.

3.3.2.2 p-tubulin III: Spectral Image Analysis

Results of the computerised scoring of the staining of these tumours was analysed by 

plotting the mean staining results (with 95% confidence limits) by subtype. The 

results are depicted in figure 3.5 and concur with the previous results - a lower level 

of staining is seen in the aggressive and morphoeic groups than in the other groups. 

Although there are differences between the means and confidence limits in this data 

compared to the visual scoring data, the results of statistical comparisons are similar.
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(a) normal skin (b) appendix positive control

(c) nodular BCC (d) superficial BCC

(e) micronodular BCC
■- . v
(f) infiltrative BCC

(g) morphoeic BCC

Figure 3.2: Representative examples of p-tubulin III staining in control tissues and 
BCC tumours classified by histological growth pattern subtype
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Figure 3.3: P-tubulin: means o f visual analogue scoring staining values with error bars 
(95% Cl) by tumour subtype. ANOVA analysis demonstrated highly significant 
differences between these groups (p> 0.001).

IND MN AGG ' > '
IND MN AGG

Class types compared p value.
Indolent & Micronodular >0.999
Indolent & Aggressive <0.001
Micronodular & Aggressive <0.001

Figure 3.4: p-tubulin: means o f staining values (as determined by visual analogue 
scoring) with error bars (95% Cl) by tumour class. Significances of Bonferroni 
multiple comparisons are shown.
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ANOVA analysis again demonstrated that the differences in staining between these 

groups are highly significantly (p< 0.001).

Further analysis by tumour growth class (Indolent, Micronodular and Aggressive, as 

shown in figure 3.6) demonstrated a marked difference between these groups -  using 

an ANOVA analysis it was shown that different tumour-staining populations were 

represented here (p<0.001). By performing multiple comparisons (Bonferroni) a 

highly significant difference between the aggressive tumours and the other classes 

was evident, with aggressive tumours staining much less strongly than indolent and 

micronodular types.

3.3.2.3 Comparison of visual scoring with Spectral Image Analysis

Graphs plotting the visual analogue score on the x-axis and the computerised score on 

the y-axis are shown in figure 3.7. It can be seen that there is a near-linear correlation 

between these values with little overlap between staining classifications and 

measurements. ANOVA analysis showed a highly significant difference between 

these groups (pO.OOl). Bonferroni multiple comparisons reveal a significant 

difference between all individual visual analogue score staining groups, except for the 

comparison between groups scoring “0” and “1”, where the difference did not attain 

significance (p=0.268).

3.3.2.4 Intracellular localisation

Representative images of the immunohistochemical localisation of P-tubulin III 

within the different growth pattern classes of BCC are seen in figure 3.9. This was 

assessed by visual examination as described in chapter 2 and the results were plotted 

on a graph as shown in figure 3.8.

Inspection of the data showed that a higher proportion of membranous staining was 

seen in micronodular tumours compared to all other types. In no case was nuclear 

staining seen to be present.
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Figure 3.5: P-tubulin: means of spectral image analysis staining values with error bars 
(95% Cl) by tumour subtype. ANOVA analysis demonstrated highly significant 
differences between these groups (p< 0.001)
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Figure 3.6: P-tubulin: means o f staining values (as determined by spectral image 
analysis) with error bars (95% Cl) by tumour class. Significances o f Bonferroni 
multiple comparisons are shown.
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Figure 3.7: P-tubulin III: Plots o f visual analogue score data and spectral image 
analysis data. On the left, all absolute figures of spectral imaging data are plotted 
(horizontal bars = means, boxes = interquartile range, whiskers = maximum and 
minimum values). On the right, means and associated error bars (95% Cl) are shown. 
ANOVA analysis showed highly significant differences between these groups 
(pO.OOl). Significance values o f Bonferroni multiple comparisons are shown.
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Figure 3.8: p-tubulin III: Relative intensity of membranous and cytoplasmic staining 
seen in BCCs according to subtype.
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Figure 3.9: p-tubulin III: representative images of staining according to subtype. 
Differences in predominant cellular localisation are seen.
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3.3.3 Arc expression

Images representing the staining present in each type of tissue and BCC are shown in 

figure 3.10. Neuronal tissue within the human appendix positive control sections 

stained strongly. Negative controls did not stain at all.

3.3.3.1 Arc: Visual Analogue Scoring

A lower level of staining was seen in the aggressive and morphoeic groups than in the 

other groups. These results are depicted in figure 3.11. ANOVA analysis of these 

figures demonstrated that the differences in staining are significantly different 

between these groups and that they do not represent the same population of tumours 

(p=0.001). There is a variation in confidence limits with many of these groups: a 

degree of heterogeneity of staining was seen with this antibody across the groups.

Further ANOVA analysis of the staining as classified by tumour growth class (as 

shown in figure 3.12) demonstrated a difference between these groups (p=0.001). 

Using a Bonferroni multiple comparisons analysis it was evident that there was a 

highly significant difference between the aggressive tumours and the other classes, 

with the aggressive tumours staining less that the other groups.

3.3.3.2 Arc: BCC Spectral Image Analysis

Results of the computerised scoring of the staining of these tumours was analysed 

again by plotting the mean staining results (with 95% confidence limits) by subtype. 

The results are depicted in figure 3.13 and concur with the previous visual analogue 

results - a much lower level of staining is seen in the aggressive and morphoeic 

groups than in the other groups. Although the differences between the means and the 

confidence limits are slightly different, the results of statistical comparisons are the 

same as those derived with visual analogue scoring. ANOVA analysis again 

demonstrated that the differences in staining between these groups are highly 

significant (p=0.001).
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(a) normal skin (b) appendix positive control

(c) nodular BCC (d) superficial BCC

(e) micronodular BCC (f) infiltrative BCC

(g) morphoeic BCC

Figure 3.10: Representative examples of Arc staining in control tissues and BCC 
tumours classified by histological growth pattern subtype
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Figure 3.11: Arc: means of visual analogue scoring staining values with error bars 
(95% Cl) by tumour subtype. ANOVA analysis demonstrated highly significant 
differences between these groups (p=0.001).
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Figure 3.12: Arc: means of staining values (as determined by visual analogue scoring) 
with error bars (95% Cl) by tumour class. Significances of Bonferroni multiple 
comparisons are shown.
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ANOVA analysis by tumour growth class (Indolent, Micronodular and Aggressive, as 

shown in figure 3.14) demonstrated a marked difference between these groups 

(p=0.001). Using a Bonferroni multiple comparisons analysis a highly significant 

difference between the aggressive tumours and the others was evident.

3.3.3.3 Comparison of visual scoring with Spectral Image Analysis

Graphs plotting the visual analogue score on the x-axis and the computerised score on 

the y-axis are shown in figure 3.15. It can be seen that again there is a strong positive 

correlation between these values with no overlap between the 95% confidence limits 

of staining in different groups. ANOVA analysis showed highly significant 

differences between these results (p<0.001). Comparisons between groups using 

Bonferroni multiple comparisons showed that the differences between each of the 

groups was different to each of the others. In the case of the visual analogue “0” and 

“1” tumours, the difference between the staining in each group was marginally 

insignificant (p=0.051). Potential factors affecting this are discussed at the end of this 

chapter.

3.3.3.4 Intracellular localisation

Location of intracellular staining was assessed by visual examination and the results 

plotted on the graph shown in figure 3.16. No membranous staining was present in 

any of these tumours, with all of the staining being cytoplasmic in nature. Again, in 

no case was nuclear staining seen to be present.

126



I

A

: 0.4

* 7 ?

& 0 .3

i  i i i i r
SKIN NOD SUP MN INF MOR

0 . 6 0 -

to  0 .5 0  —

jjj 0 .4 0  —

0 . 3 0 -

<  0 .20 -

0 . 10 -

o>
o.oo-

INF MN MOR NOD SKIN SUP

Figure 3.13: Arc: means of spectral image analysis staining values with error bars 
(95% Cl) by tumour subtype. ANOVA analysis demonstrated highly significant 
differences between these groups (p=0.001).

0 . 5 -

-  0 . 4 -

£  0 . 3 -

0 .2 -

0 . 1 -

0 . 4 -

<
0 . 4 -

>.

c£ 0 . 3 -  
c
K 0 . 2 -  
<

0  0 .2 -
IP01

0 .2 -

IND MN AGG

Class types compared p value.
Indolent & Micronodular >0.999
Indolent & Aggressive 0.006
Micronodular & Aggressive 0.002

Figure 3.14: Arc: means of staining values (as determined by spectral image analysis) 
with error bars (95% Cl) by tumour class. Significances of Bonferroni multiple 
comparisons are shown.
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Figure 3.16: Arc: Relative presence of membranous and cytoplasmic staining seen in 
BCCs according to subtype.
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3.3.4 GAP-43 expression

Images representing the staining present in each type of tissue and BCC are shown in 

figure 3.17. Neuronal tissue within the human appendix positive control sections 

stained strongly. Negative controls did not stain at all.

3.3.4.1 GAP-43: Visual Analogue Scoring

Results of the visual analogue scoring of the staining of these tumours was analysed 

by plotting the mean staining results (with 95% confidence limits) by subtype. The 

results are depicted in figure 3.18 and again show a lower level of staining in the 

infiltrative and morphoeic groups than in the other groups. ANOVA analysis of these 

figures demonstrated that the differences in staining are significantly different 

between these groups and that they do not represent the same population of tumours

(p<0.001).

Further ANOVA analysis of staining by tumour growth class (Indolent, Micronodular, 

Aggressive) as shown in figure 3.19 demonstrated a marked difference between these 

groups (pO.OOl). Using a Bonferroni multiple comparisons analysis it was evident 

that there was a highly significant difference between the aggressive tumours and the 

others.

3.3.4.2 GAP-43: Spectral Image Analysis

Results of the computerised scoring of the staining of these tumours was analysed 

again by plotting the mean staining results (with 95% confidence limits) by subtype. 

The results are depicted in figure 3.20 and concur with the previous results - a much 

lower level of staining is seen in the infiltrative and morphoeic groups than in the 

other groups. Although the differences between the means and the confidence limits 

are slightly different, the results of statistical comparisons are the same as those 

derived from visual analogue scores. ANOVA analysis again demonstrated that the 

differences in staining between these groups are highly significantly (p<0.001).
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(a) normal skin (b) appendix positive control

(c) nodular BCC (d) superficial BCC

(e) micronodular BCC (f) infiltrative BCC

(g) morphoeic BCC

Figure 3.17: Representative examples of GAP-43 staining in control tissues and BCC 
tumours classified by histological growth pattern subtype
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Figure 3.18: GAP-43: means o f visual analogue scoring staining values with error 
bars (95% Cl) by tumour subtype. ANOVA analysis demonstrated highly significant 
differences between these groups (p<0.001).
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Figure 3.19: GAP-43: means o f staining values (as determined by visual analogue 
scoring) with error bars (95% Cl) by tumour class. Significances o f Bonferroni 
multiple comparisons are shown.
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Plotting these results by tumour growth class (Indolent, Micronodular and Aggressive, 

as shown in figure 3.21) demonstrated a marked difference between the staining of 

these groups, as illustrated by an ANOVA analysis (p<0.001). Using a Bonferroni 

multiple comparisons analysis again a highly significant difference between the 

aggressive tumours and the others was evident.

3.3.4.3 Comparison of visual scoring with Spectral Image Analysis

Graphs plotting the visual analogue score on the x-axis and the computerised staining 

score on the y-axis are shown in figure 3.22. It can be seen that there is a strong 

correlation between these values; the main overlap between raw values occurs in the 

strongly staining groups (Visual score 2 or 3). ANOVA analysis showed highly 

significant differences between these groups (pO.OOl) and individual comparison 

(Bonferroni multiple comparisons) demonstrated a significant difference between all 

these groups.

3.3.4.4 Intracellular localisation

Visual examination revealed that a higher proportion of membranous staining was 

seen in micronodular tumours compared to all other types (data shown in figure 3.23). 

In no case was nuclear staining seen to be present. This is similar to the results of this 

analysis seen with p-tubulin III, where micronodular tumours also exhibit a higher 

degree of membranous staining than other groups.
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Figure 3.20: GAP-43: means o f spectral image analysis staining values with error bars 
(95% Cl) by tumour subtype. ANOVA analysis demonstrated highly significant 
differences between these groups (p<0.001).
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Figure 3.21: GAP-43: means o f staining values (as determined by spectral image 
analysis) with error bars (95% Cl) by tumour class. Significances of Bonferroni 
multiple comparisons are shown.
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Figure 3.22: GAP-43: plots o f visual analogue score data and spectral image analysis 
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Significance values of Bonferroni multiple comparisons are shown.
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Figure 3.23: GAP-43: Relative presence of membranous and cytoplasmic staining 
seen in BCCs according to subtype.
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3.3.5 Neurofilament expression

Images representing the neurofilament staining present in each type of tissue and BCC 

are shown in figure 3.24. Neuronal tissue within the human appendix positive control 

sections stained strongly. Negative controls did not stain at all.

3.3.5.1 Neurofilament Visual Analogue Scoring

Results of the visual analogue scoring of the staining of these tumours was analysed 

by plotting the mean staining results (with 95% confidence limits) by subtype. The 

results are depicted in figure 3.25 and show a slightly lower level of staining in the 

aggressive and morphoeic groups than in the other groups.

Analysis by tumour growth class (Indolent, Micronodular, Aggressive) as shown in 

figure 3.26 demonstrated a marginally significant difference between these groups 

(ANOVA p=0.048). Using a Bonferroni multiple comparisons analysis it was evident 

that there was no significant difference between any of the tumour groups.

3.3.5.2 Neurofilament: Spectral Image Analysis

Results of the computerised scoring of the staining of these tumours was analysed 

again by plotting the mean staining results (with 95% confidence limits) by subtype. 

The results are depicted in figure 3.27 and demonstrate a lower level of staining in all 

groups compared to previous antibodies. The mean staining intensity in the aggressive 

and morphoeic groups is lower than in the other subtypes. The differences between 

the means and the confidence limits are slightly different between the visual analogue 

score results and these spectral imaging results. As a result, statistical comparisons 

reveal different degrees of difference between groups when using the two techniques. 

ANOVA analysis demonstrated that the differences in staining between these groups 

are highly significant (p=0.003).

Further analysis by tumour growth class (Indolent, Micronodular and Aggressive, as 

shown in figure 3.28) using an ANOVA comparison did not demonstrate a significant 

difference between these groups (p=0.12). Using a Bonferroni multiple comparisons 

analysis, however, a significant difference was shown between the staining of the
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(a) normal skin (b) appendix positive control

(c) nodular BCC (d) superficial BCC

(e) micronodular BCC (f) infiltrative BCC

(g) morphoeic BCC

Figure 3.24: Representative examples of Neurofilament staining in control tissues and 
BCC tumours classified by histological growth pattern subtype
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Figure 3.25: Neurofilament: means o f visual analogue scoring staining values with 
error bars (95% Cl) by tumour subtype. ANOVA analysis demonstrated significant 
differences between these groups (p=0.028).
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Figure 3.26: Neurofilament: means of staining values (as determined by visual 
analogue scoring ) with error bars (95% Cl) by tumour class. Significances of 
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aggressive tumours and the other groups. This contrasts with the lack of significance 

between the staining of these same groups when assessed by the visual method.

3.3.5.3 Comparison of visual scoring with Spectral Image Analysis

Graphs plotting the visual analogue score on the x-axis and the computerised score on 

the y-axis are shown in figure 3.29. It can be seen that there is a degree of correlation 

between these values with a minimal amount overlap between the confidence 

intervals of the staining measurements. ANOVA analysis showed highly significant 

differences between these groups (p<0.001) and specific comparisons were 

significantly different in all cases.

3.3.5.4 Intracellular localisation

Location of intracellular staining was assessed by visual examination and the results 

plotted on the graph shown in figure 3.30. Very little membranous staining was 

present in any of these tumours, with all of the staining being cytoplasmic in nature in 

the majority of tumours. Only in the micronodular subtype was a small element of 

membranous staining seen. In no case was nuclear staining seen to be present.
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Figure 3.27: Neurofilament: means of spectral image analysis staining values with 
error bars (95% Cl) by tumour subtype. ANOVA analysis demonstrated highly 
significant differences between these groups (p=0.003).
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Figure 3.28: Neurofilament: means of staining values (as determined by spectral 
image analysis) with error bars (95% Cl) by tumour class. Significances o f Bonferroni 
multiple comparisons shown.

139



<  0 . 3 -

0 . 5 -

(D3
5  0 . 4 -  

<
w  0 . 3 -u.
z
o
55 0 .2 -
ino>

0 .1 -

20 1

NF VAS value NF VAS value

Visual score groups compared p value.
“0” staining and “1” staining 0.030
“0” staining and “2” staining <0.001
“1” staining and “2” staining <0.001
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Figure 3.30: Neurofilament: Relative presence o f membranous and cytoplasmic 
staining seen in BCCs according to subtype.
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3.4 Discussion

3.4.1 Overall results

My experiments show that at a protein level there is a marked difference in the 

expression of neuronal differentiation markers between normal skin and BCCs and 

that there is a variation of expression within BCCs as seen by comparing the staining 

of different subtypes. To the naked eye the staining was most prominent with p- 

tubulin III and GAP-43, and less so with Arc and Neurofilament. However, with all 

the antibodies I used there was a variation in staining according to subtype.

3.4.2 Specific antibody markers used

ULK1 (“Unc51.1-like kinase 1”) is the human homologue of Unc51.1, one of the 

earliest genes involved in neuronal differentiation in nematodes (Kuroyanagi et al., 

1998). Whereas Unc51.1 is specifically detected in the nervous system of C. elegans, 

it has previously been reported that ULK1 is ubiquitously expressed in adult human 

tissues such as skeletal muscle, heart, pancreas, brain, placenta, liver, kidney, and 

lung.

My results however did not confirm the previous findings, and I suspect this is mainly 

due to the fact that the above findings were produced by genomic techniques and not 

immunohistochemistry. There is no commercially available antibody that is 

recommended for use in immunohistochemical detection of the associated protein. 

The Santa Cruz antibody I used had recommendation for use in immunocytochemistry 

and for western blotting but not for immunohistochemistry of tissue sections. No 

tissue was recommended even, for use as a positive control, and the routine controls I 

have used for other antibodies (external controls - nerve fibres with the muscle coat of 

appendix; internal controls -  nerve fibres within BCCs and other tissues) did not stain 

to any significant degree. For these reasons I was unable to confirm whether ULK1 

protein is “ubiquitously expressed in human tissues” as suggested by PCR, nor was I 

able to determine whether it is upregulated at a protein level in BCCs.

p-tubulin III is a well-known marker for cells of neuronal origin. This property was 

confirmed in my experiments by strong expression in the nerve fibres of positive
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control appendix sections. Although it has been demonstrated in the testis in 

mammals (Burgoyne et al., 1988; Lewis and Cowan, 1988) it is generally thought of 

as being specific to neuronal tissue. In this regard it has been used as a marker of 

neuronal differentiation in pluripotent dermal papilla stem cells undergoing change to 

a neuronal phenotype (Fernandes et al., 2004). As a component of the intracellular 

cytoskeleton, immunostaining typically demonstrates a cytoplasmic location for the 

protein. This was reflected in my experiments with the notable exception of 

micronodular BCC tumours.

It has previously been investigated as a feature of other non-melanoma skin cancer. 

Scott et al investigated the expression of P-tubulin III in squamous cell carcinomata, 

and found that this specific isotype was upregulated in these malignant biopsies 

compared to normal non-tumour ski (Scott et al., 1990). Additionally, it has 

unsurprisingly been proposed as a marker of neuroendocrine tumour development, 

and has been used in studies of these tumours in the gastrointestinal tract (Jirasek et 

al., 2002).

Its expression has not previously been recognised as a finding in basal cell carcinoma. 

In this study I found that it did seem to be expressed in BCCs, in many cases strongly, 

and that it was not expressed in normal non-tumour epidermis. It was principally 

expressed in the cytoplasmic compartment, and only in micronodular tumours was 

there any exception to this. In this case a higher degree of membranous staining was 

seen although this did coincide with cytoplasmic staining also.

Arc (the “activity-regulated cytoskeleton-associated protein”) was discovered as a 

gene that was rapidly induced in active neurons in models of adult and developmental 

plasticity (Lyford et al., 1995) and has been described as an “immediate early gene”. 

On the basis of this expression it is known as a marker of neuronal differentiation. It 

shares homology with the actin-binding protein a-spectrin, and in vitro studies 

suggest that it is associated with the actin cytoskeleton. Immunohistochemical studies 

have previously indicated that Arc protein is expressed selectively in neurons, where 

it is located in the cytoplasm of the cell body and in dendritic processes (Fosnaugh et 

a l , 1995). All this and its expression in rat brain following administration of cocaine
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suggests that it may be involved in structural alterations underlying neuronal 

plasticity.

In my study Arc was one of the most highly up-regulated genes highlighted in the in- 

vitro gene array data analysis. The immunohistochemistry results stated above seem 

to imply that it is indeed expressed in human BCCs, and not in normal non-tumour 

skin. No significant amounts of membranous staining were seen in this case -  in 

virtually all the cases described the staining pattern was exclusively cytoplasmic in 

nature. The degree of staining did not appear to be as strong as that of P-tubulin III.

Growth-associated protein (GAP-43, B50, neuromodulin) is a membranous nervous 

system-specific phosphoprotein which is widely considered to be involved in axonal 

growth, axonal regeneration and the modulation of synaptic connections (Benowitz 

and Routtenberg, 1997). It was initially recognized because of its greatly increased 

synthesis and axonal transport following axotomy (Skene and Willard, 1981; Skene, 

1984). It was also shown to be synthesised at high rates during axonal development 

(Skene and Willard, 1981). Subsequently its expression was demonstrated in some 

regions of the normal adult central nervous system (Benowitz et al., 1988; Jacobson et 

al., 1986; Neve et al., 1987). It is interesting that high basal levels of GAP43 have 

been found in those areas of the adult central nervous system that are presumed to be 

in a functionally more plastic state than other parts of the mature brain (McGuire et 

al., 1988; Neve et al., 1987).

Experimental evidence of the role of GAP43 in guiding the growth of axons and 

modulating the formation of new connections is available. A recent study in 

transgenic mice showed animals which over-expressed high levels of an gene 

encoding GAP43 showed spontaneous formation of aberrant connections and new 

nerve terminals (Aigner et a l, 1995). Conversely, suppressing GAP43 expression has 

adverse effects on axon outgrowth: mice bearing a null mutation of the GAP43 gene 

showed defects in axonal pathfinding and most died shortly after birth, despite having 

what was described as a grossly normal nervous system (Strittmatter et a l, 1995).

As well as a central nervous system location, GAP-43 has been localized in peripheral 

nerve endings in the rat adrenal glands, heart, intestine and olfactory neuroepithelium
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(McGuire et al., 1988; Verhaagen et al., 1989). Its presence in neuronal fibres within 

the skin has previously been studied, and in this case (as in my study) no staining of 

the normal epidermal tissues were seen (Fantini and Johansson, 1992). It is considered 

to be a marker for sprouting, and is usually associated with physiological events such 

as neuronal growth and synaptic plasticity (Gispen et al., 1991; Hoffman, 1989; Skene 

and Virag, 1989). The distribution of GAP-43 in the central nervous system has raised 

the hypothesis that throughout life GAP-43 could play a key role in the plasticity of 

neuronal relationships (Benowitz et al., 1988; Neve et al., 1987).

In this study it was seen to be expressed at a protein level in BCCs, but not in normal 

skin. Again, a variation in expression does occur amongst the various BCC subtypes, 

with significantly less expression in the more aggressive subtypes. Similar to p- 

tubulin III, a marked degree of membranous staining occurred in the micronodular 

subtypes in conjunction with cytoplasmic staining, whereas cytoplasmic staining 

occurred in isolation in all other subtypes.

Neurofilament protein expression was also seen in BCCs in this study. 

Neurofilaments are intermediate filaments and are one of the major components of the 

neuronal cytoskeleton. Three subunits constitute the basic assembly blocks of 

neurofilaments - these are the light (NFL protein, NEFL gene), medium (NFM 

protein, NEFM gene) and heavy (NFH protein, NEFH gene) subunits. In neurons the 

three neurofilament subunits assemble into a lOnm filamentous structure running the 

length of the axon, maintaining communication within the cell and having roles 

including intracellular signalling and maintaining the calibre of the axon. 

Neurofilament expression is a late marker of neuronal development in the embryo 

compared to P-tubulin III, which is known to be an early marker. By definition, as 

part of the cytoskeleton, staining is typically cytoplasmic in nature, as was seen in this 

study.

As with the other neuronal differentiation markers used, there was an absence of 

expression in normal epidermis but a presence of staining in BCCs. The staining did 

not appear to be as strong in these tumour sections as had been seen with GAP43, Arc 

or P-tubulin, but still a variation in expression did exist. No membranous staining was 

seen with this antibody, as all the staining seen was cytoplasmic in location.
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3.4.3 Relation of molecular markers to growth pattern subtype

3.4.3.1 Neuronal differentiation markers

There is a difference in both the level of expression and cellular localisation of these 

neuronal differentiation markers in different histological growth pattern subtypes of 

BCC. This type of tumour classification has most recently been clarified by Sloane 

and Sexton (Sexton et al., 1990; Sloane, 1977) and it is this that has been adopted by 

the Royal College of Pathologists as its main classification for these tumours. This 

classification has a degree of relevance to outcome -  it has been shown that the 

infiltrative subtype of tumour has the highest chance of recurrence following 

treatment (Jacobs et al., 1982; Rippey, 1998). The main reason, of course, for 

classifying tumours, is to try and correlate (histological) appearance at the time of 

excision with future clinical behaviour. The spectrum of aggression of these tumours 

is, to a degree, reflected by the variations in growth pattern that are seen, but little 

work on molecular biology of the tumours has managed to show any significant 

differences in marker expression in the different subtypes.

The reduced expression of these markers in infiltrative and morphoeic tumours could 

be attributed to de-differentiation as is seen in other tumours, where the phenotype of 

the tumour changes as it becomes more malignant (da Costa, 2001; Cumming et al., 

1990). This reduced expression was not, however seen in the case of micronodular 

tumours, which do tend to have a more aggressive course than its nodular or 

superficial counterparts. It is clear that expression of these markers, for example, is 

not the defining feature of tumour behaviour -  otherwise a much closer link would 

exist between the variation in aggressive behaviour and the variation in staining in 

these tumours. Micronodular BCC is the group that defies this link.

More evidence of differing molecular biology between micronodular tumours and 

other subtypes is provided by the degree of membranous staining present in these 

tumours in this study. This was noted with P-tubulin and GAP-43 antibodies, but not 

with either Arc or Neurofilament. Membranous staining was present alongside 

cytoplasmic staining in all cases, and in no case was nuclear staining demonstrated. I
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cannot say that tumours with a micronodular type of growth pattern have an exclusive 

expression of P-tubulin and GAP-43 at the cell surface, but I can surmise that there is 

some shift in expression of these markers within the cell compared to other subtypes, 

both more and less aggressive in nature. This specificity of micronodular tumour 

intracellular localisation is a feature noted with other antibodies as discussed below 

(P-catenin, section 3.4.3.2) and adds to the suspicion that in many ways micronodular 

tumours do exhibit properties that are unique to that subtype.

3.4.3.2 p-catenin

Other molecular biology findings that correlate specific marker expression to 

behaviour are uncommon. One of the studies that has shown a degree of correlation 

demonstrated that nuclear localization of P-catenin was most prominent in infiltrative 

and morphoeic tumours, and least so in nodular tumours (El Bahrawy et al., 2003). P- 

catenin is a crucial member of the E-cadherin / catenin complex and it plays a major 

role in cell-cell adhesion. Its structural role includes the management of interactions 

between membranous E-cadherin molecules and the actin microfilament network of 

the cell. In addition, it is thought that P-catenin is a key player in the Wnt signalling 

pathway, directly mediating downstream events through transactivation of 

transcription factors of the lymphocyte enhancer factor / T-cell factor family. These 

include cell cycle regulating genes such as c-myc, and the gene encoding the matrix- 

metalloproteinase, matrilysin.

They discovered in immunohistochemical studies that the intracellular localisation of 

P-catenin was strongly associated with growth pattern subtype of the tumour. 

Specifically, they noted that nodular and superficial tumours lost the characteristic 

membranous staining of normal epidermis, and that a slightly greater degree of both 

cytoplasmic and nuclear staining was present. In infiltrative and morphoeic tumours it 

was seen that membranous staining was completely lost, and that cytoplasmic and 

nuclear expression was prominent, especially in the advancing edges of the tumour. 

Interestingly, micronodular tumours did not have this characteristic appearance, but 

they instead had a staining profile comparable to normal epidermis. From this work 

they postulated that the features of infiltrative and morphoeic BCCs may be partly due 

to the activity of P-catenin and that its increased expression and nuclear localisation at 

the advancing edges of these tumours could link this area of molecular biology to
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biology to subtype. Additionally, they proposed that micronodular tumours were a 

separate molecular entity in this regard, since none of the features of infiltrative and 

morphoeic BCCs were present, yet it is known that these tumours do have an 

aggressive biological pattern.

3.4.3.3 Bcl-2

Bcl-2 is a 24kDa anti-apoptotic protein which was initially identified in a human B- 

cell lymphoma cell line. Bcl-2 expression in normal skin includes basal keratinocytes, 

the dermal papillae of the hair follicle, the keratinized Huxley’s and Henle’s layers, 

and the keratinized outer root-sheath cells of the isthmus and infundibulum of the hair 

follicle (Rodriguez-Villanueva et al., 1995). Suprabasal keratinocytes do not express 

Bcl-2. BCCs appear to have characteristic expression of Bcl-2: most BCCs express 

high levels of Bcl-2 throughout the tumour (Rodriguez-Villanueva et al., 1995; 

Verhaegh et al., 1995), the diffuse staining pattern is helpful in distinguishing BCC 

from the peripheral pattern of Tricoepitheliomas (Abdelsayed et al., 2000; Poniecka 

and Alexis, 1999; Smoller et al., 1994; Swanson et al., 1998) and moreover, higher 

levels of Bcl-2 are found in the less clinically aggressive subtypes of BCC compared 

to invasive subtypes (Crowson et al., 1996; Ramdial et al., 2000).

3.4.3.4 p53

Inactivating mutations in the p53 gene are one of the most frequently found defects in 

all tumours (Levine, 1997). The p53 gene exerts anti-proliferative effects in response 

to a variety of different stimuli, such as DNA damage. Current opinion is that p53 

prevents cells from cycling when DNA damage has been detected, so that repair 

enzymes can correct the errors. Should the DNA damage be found to be irreplaceable, 

an apoptotic pathway is activated leading to cell death. Non-functional or mutated p53 

is unable to halt the cell cycle when damage is detected, so that replication of DNA 

errors can occur, leading to the accumulation of activating mutations in oncogenes or 

loss of tumours suppressor function. Loss of functional p53 may also inhibit an 

apoptotic pathway and hence enhance survival of abnormal cells (Levine, 1997). 

Genetic mutations of p53 are typical UV-induced changes (C-T and CC-TT 

nucleotide changes). Despite the frequency of p53 mutations in BCC a causal role for 

these mutations in BCC development or progression has not been demonstrated. 

Patients with Li-Fraumeni syndrome are susceptible to an increased incidence of
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internal malignancies, but interestingly an increase in the numbers of skin cancers has 

not been reported.

Rather confusingly between fifty and one hundred per cent of BCCs contain p53 

mutations (Barbareschi et al., 1992; Ponten et al., 1997; Shea et al., 1992). The figures 

vary widely because of the different techniques used to identify p53 mutations and the 

importance placed on identifying mutations based on the intensity of p53 antibody 

immunohistochemical staining. Comparison between actual mutations (as 

demonstrated by genomic analysis) and immunohistochemical staining is not 

straightforward: Campbell et al demonstrated a lack of correlation between actual 

mutations and immunohistochemical staining, with an increased incidence of positive 

staining compared to genomically defined mutations (Campbell et al., 1993).

Data regarding the relationship of p53 staining to histopathological subtype is also 

mixed. Multiple studies have stated that the intensity of p53 staining does not vary 

between subtypes of BCC (Demirkan et al., 2000; Shea et al., 1992), whereas de Rosa 

et al demonstrated that p53 staining was increased in aggressive BCC subtypes (De 

Rosa et al., 1993).

3.4.3.5 Ki67

The growth fraction of a tumour, i.e. the proportion of the cells of that tumour 

committed to the cell cycle at any particular time, may be easily assessed by Ki-67 

antibodies, which identify an antigen expressed in Gi, S and G2 phases of cycling 

cells. This has been used extensively to attempt to correlate cellular activity with 

clinical tumour behaviour. However, from the small number of studies conducted on 

specific Ki67 expression in different BCC subtypes, it is difficult to come to a definite 

conclusion.

Baum et al could determine no difference between subtypes of BCC when staining for 

Ki67 (Baum et al., 1993) with a huge variation of staining patterns seen within 

tumours, and within growth pattern subtypes. However, Horlock et al showed an 

increased rate of Ki67 expression in infiltrative, morphoeic and superficial BCC 

subtypes (Horlock et al., 1997).
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3.4.4 Summary

In this chapter I have described how four markers of neuronal differentiation are 

expressed at a protein level in Basal Cell Carcinoma, as demonstrated by 

immunohistochemistry. This contrasts with the expected absence of expression in 

normal skin (epidermis and dermis, except for internal positive control nerve fibres). 

The level of expression differs according to histopathological subtype for each 

antibody, with the degree of difference being more significant when measured by an 

automated computerised system than by visual analogue scoring. Additionally, a 

difference in intracellular localisation exists when comparing BCC subtypes, with p- 

tubulin III and GAP-43 staining having an increased membranous component in 

micronodular tumours.

These results add to the existing data regarding differential antigen expression in BCC 

subtypes. This has been described for other markers with known intra-cellular 

functions such as p-catenin, p53, Bcl-2, and Ki67. The wider relevance of the addition 

to this list of antigens normally associated with tissues of neuronal phenotype will be 

discussed at further length in chapter 7.
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Chapter 4: Investigation of Neuronal Markers in 
BCC by PCR

4.1 Introduction

Investigation of changes in BCC gene expression and sequences has mainly focussed 

on the major targets of hedgehog signalling, as outlined in section 1.9.2. Methods 

used have included in-situ hybridization and PCR methods following mRNA 

extraction by tissue homogenisation, needle microdissection and laser capture 

microdissection (LCM). The last method is particularly attractive for my purposes, as 

it theoretically enables the investigator to specifically select areas of tumours for 

genomic examination. This is not so necessary for well circumscribed tumours such 

as nodular BCCs, but would be of great use for disparate tumours such as infiltrative 

and morphoeic subtypes. To assess whether the genes corresponding to the previously 

examined proteins (P-tubulin III, GAP-43, Arc and neurofilament) are differentially 

expressed and associated with growth pattern subtype, specific isolation of both 

circumscribed and disparate tumour islands is required. Laser capture microdissection 

was therefore used in this study (as well as needle microdissection and tissue 

homogenisation) to examine the presence and variation of gene expression in different 

subtypes of BCC.

Previous published reports of LCM use in BCC has been limited to a small number of 

studies such as that published by Backvall, Asplund and Micke (Asplund et al., 2005; 

Backvall et a l , 2005; Micke et al., 2004). However, this technique is rapidly 

becoming part of the mainstream armamentarium in molecular diagnostics; a medline 

search revealed a total of 178 publications on the use of this technique in the last two 

years alone (2004 and 2005). These include applications in a wide variety of 

conditions including other cancers, infectious disease, degenerative conditions and 

normal hair biology.

My assumption was that RNA extracted by LCM would show more specific changes 

in BCC gene expression than either the standard method of homogenising whole
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biopsies or needle microdissection. I have compared all three methods using the same 

biopsy samples to determine whether this assumption is correct.

4.2 Methods

As described in section 2.2.2.1, biopsies of tumour samples were taken from patients 

following ethical study approval and individual patient consent. These samples were 

limited in size so as not to affect the histological examination (and the surgical 

margins) of the rest of the specimens. All specimens were immediately snap frozen in 

liquid nitrogen, stored at -80°C and then embedded in embedding medium. Each 

biopsy was visually graded by size (“small” to “very large”) and H&e slides of each 

biopsy were used to quantify the grade of biopsy quality (a scale of 0-10 as to how 

well the biopsy represented the fully excised BCC).

LCM and subsequent RNA extraction was performed at separate times to the RNA 

extraction following needle microdissection and whole biopsy processing. Some RNA 

derived from LCM samples was processed using a RNA-amplification kit 

(“RiboAmp”, Arcturus). This is designed to amplify RNA from nanogram/pl 

concentrations (as are typically produced with LCM) to microgram/pl concentrations 

for use in downstream applications such as gene array analysis and real-time PCR. As 

described below, however, this amplification did not occur in this case, and so all 

further RNA was reverse transcribed in the standard manner and the resulting cDNA 

was used in PCR experiments to assess gene expression. 2% agarose gels were loaded 

with cDNA from less aggressive tumours in the left-hand lanes, and from more 

aggressive tumours in the right-hand lanes.

4.3 Results

4.3.1 Patients and biopsies

Between 26.4.04 and 7.6.04 a total of 57 patients were examined prior to surgery for 

lesions considered suspicious of being BCCs. Of these, 42 patients (25 males, 17 

females) had lesions suitable for biopsy and punch biopsies were taken from a total of 

54 lesions. The thirteen patients who did not undergo biopsy had lesions that were 

either very small (in which any biopsy would have affected surgical margins) or were
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not likely to be BCCs. All patients gave written consent for their tissue to be used for 

research.

Of these 54 lesions, formal histological analysis of the definitively excised lesion 

confirmed that 39 were BCCs (11 nodular, six superficial, five micronodular, 17 

infiltrative, no morphoeic specimens) and the remaining biopsies included those from 

actinic keratoses (6), squamous cell carcinomas (6), Bowen’s disease (1), a 

tricoepithelioma (1) and a dermatofibroma (1).

Of the 39 BCC biopsies, examination of the H&e slides prepared from that biopsy 

showed the characteristics described in table 4.1:

Size n = quality (sc o re /10) n =
Small 15 no tumour in biopsy (0) 8
Medium 19 poor quality (1-3) 8
Large 3 medium quality (4-7) 16
Very large 2 high quality (8-10) 7

Table 4.1: Sizes and quality of BCC punch biopsy specimens

On the basis of this 22 BCC specimens and two normal skin specimens were chosen 

as candidates for laser capture microdissection. As is described below, nine of these 

were also subjected to needle microdissection and whole biopsy processing, along 

with two control normal skin samples.

4.3.2 Laser Capture Microdissection

Of the 22 tumour biopsies that were used for LCM, a total of nine were excluded from 

further use due to either very poor architecture being preserved during processing, 

making accurate capturing of tumour cells impossible (five samples), or due to 

essentially no RNA yield in the extracted samples (four samples, see table 4.3).

Of the 13 remaining BCC RNA samples, four were used in a trial of RNA 

amplification (see section 4.3.2.5 below). The remaining nine suitable BCC RNA 

samples and two skin samples were used (without amplification) for further 

downstream processing.
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An attempt was also made to prepare samples in which both peripheral and central 

populations of cells could be taken from the same tumour, with the aim of comparing 

gene expression in the leading edges of tumours to that in the central portion (figure 

4.2). With the quality of samples being used, this was only realistically possible in 

one of the tumours (BCC 44) and the peripheral sample consistently had no intact 

RNA in the final extract. No comparison was therefore possible in this study between 

tissue derived from the periphery of tumour islands and the central portion.

Aspects which affect the reliability and product of this technique are discussed below.

4.3.2.1 Biopsy orientation, size and content

The biopsies used were harvested using punch biopsies ranging from 2 to 4mm in 

diameter. It was of course essential that these small tissue blocks were embedded in 

the correct orientation to ensure that a representative cross section of epidermis, 

dermis and subdermis was presented for sectioning. In most cases this was not 

difficult, but in a small number of cases the lack of defined epidermis over an 

ulcerated BCC and the small nature of the biopsy meant that the biopsy was initially 

incorrectly oriented: this was corrected by melting of the embedding material and re­

orienting the block. The proportion of each biopsy that consisted of defined tumour 

ranged from 0 to 100%. As long as good quality tumour was present in great enough 

quantities for meaningful LCM it was included in this study.

4.3.2.2 Section thickness

One can imagine that the process of laser capture microdissection ensures that the 

selected cells adhere to the plastic of the harvesting “cap”. This is analogous to a 

carpet of cells being lifted from the tissue section. Because it relies on surface cell 

adherence the optimal thickness of section is approximately 5-7pm: thinner than this 

and less cells are captured per laser “shot”; thicker than this and residual cells remain 

on the section slide, obscuring what has been captured and what has not.

4.3.2.3 Use of trypsin to improve capture selectivity

During the “Histogene” dehydration and staining steps, I found that a two minute step 

of immersion in trypsin greatly improved the ability to selectively remove epidermal 

and tumour cell populations (as suggested by Nita Agar, personal communication).
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Longer than this (5 minutes) produced friable sections in which cells were non- 

specifically ripped off the slide, whereas less than this (none, 20 seconds and 1 

minute) did not produce any discemable difference. This additional step did not 

appreciably affect the RNA extracted.

4 3 2  A  Timing of LCM

From the point of sectioning the tissue block to immersing the captured cells in lysis 

buffer (as part of the “Picopure” kit) a large number of steps are required. This takes 

time (especially when a number of samples are being processed) and RNA 

degradation can be a major problem in this setting. At all stages preservation of RNA 

was attempted by keeping blocks and sections on dry ice. When sampling nine BCCs 

at the one sitting it was interesting to note that the strength of housekeeping p-actin 

PCR bands appeared to decrease in the later samples processed by LCM (which were 

also the right-hand lanes of the agarose gels). This reduced PCR yield may correlate 

with the increased time delay between sectioning and cell capture in these cases, as 

seen in Figure 4.1. However, as can be seen in Table 4.3 this reduced PCR yield does 

not correlate with RNA yield or quality of RNA as determined by A260/A280 ratio.

The moisture content of the sections was critical for successful cell capture. If any 

moisture was present cells would not adhere to the cap upon firing of the laser. 

Keeping the dehydrated sections cold (on ice) and dry (using dessicant) produced the 

most reliable conditions for good cell capture.

4.3.2.5 RNA amplification

The RiboAmp kit produced by Arcturus, the manufacturers of the LCM microscope 

and all associated products, is designed to amplify small quantities of RNA such as 

that produced by LCM. This is supposedly especially useful when using LCM RNA 

for gene array analysis (such as the gene chips produced by Affymetrix, Santa Clara, 

USA), in which microgram quantities of RNA are required. Given the low overall 

RNA concentrations in my BCC LCM samples, I attempted to use this kit on four 

LCM BCC RNA samples, control RNA, and RNA derived from cell culture 

experiments to assess the effect on RNA quantity. Results of RNA amplification are 

shown in table 4.2 below.
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Biopsy
number

Diagnosis Original RNA Amplified RNA
Concentration
ng/pl

A260/A280
ratio

Concentration
ng/pl

A260/A280
ratio

9 BCC 49.44 2.03 1.53 1.74
23 BCC 26.45 2.45 4.2 2.06
29 BCC 81.31 1.98 4.31 1.52
53 BCC 45.4 2.43 4.47 2.21
Control RNA 359.98 1.96 1604.8 2.33
Primary keratinocyte RNA 467.03 1.96 1440.9 2.36

Table 4.2: RNA concentrations and purity (A260/A280 values) before and after use of 
the Arcturus “RiboAmp” RNA amplification kit.

The RNA amplification kit was effective at increasing the concentration of RNA in 

the samples with the higher starting concentrations (i.e. the RNA that does not need 

amplification to produce quality cDNA). Even in these samples the purity appears to 

have deteriorated, with A260/A280 values further from 2.0. No amplification was seen 

using RNA with lower concentrations (the RNA that I would ideally have wished to 

amplify). This step was therefore abandoned, and further reverse transcription used 

only the raw RNA extracted following LCM, needle microdissection or biopsy 

homogenisation.

4.3.2.6 Final sample results

Examples of cell capture achieved by LCM are illustrated in figures 4.2 - 4.4.

With all these experimental variables taken into account, the final RNA 

concentrations for the 17 laser-captured samples are stated in table 4.3 below. The 

nine samples with greater than lOng/pl RNA and absorbance curves suggestive of 

RNA presence were also used for needle microdissection and whole tissue 

homogenisation. Because of the low concentration of the RNA in these samples, all 

available RNA was used for reverse transcription in each case.
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Figure 4.1: Diminishing expression of (3-actin with increased length of time from 
sample preparation to capture of cells (NS1 and NS2 with the shortest interval, BCC 
44 and BCC 51 with the longest interval).

Figure 4.2: Peripheral and central biopsies of BCC tumour island; A: before capture; 
B: first laser-selected area; C: central biopsy removed; D: peripheral biopsy area 
selected; E: peripheral biopsy removed.

Figure 4.3: Laser capture of cells from a nodular BCC; A: pre-firing of the laser; B: 
areas where laser has melted the plastic of the cap overlying tumour cells; C: after 
removal of the cap; D: isolated cells on the undersurface of the cap.

Figure 4.4: Laser capture of cells from a micronodular BCC



Biopsy
number gender Diagnosis quality

Laser Capture Microdissection RNA
size Concentration

(ng/ul)
A260/ A280 
ratio

RNA used 
onwards

6 F Nodular BCC 6 M 5.30 2.67 No

9 M Micronodular BCC 5 M 49.44 2.03 Amplification
10 M Nodular BCC 7 L 15.60 2.15 RT-PCR

12 F Superficial BCC 6 M 1.57 1.35 No

19 M Infiltrative BCC 6 S 52.44 1.99 RT-PCR

21 F Superficial BCC 4 M 27.32 2.31 RT-PCR

23 M Nodular BCC 6 M 26.45 2.45 Amplification

24 M Nodular BCC 8 M 67.24 1.89 RT-PCR

25 M Infiltrative BCC 8 S 1.98 1.40 No

28 M Nodular BCC 7 S 4.34 1.68 No

29 F Nodular BCC 8 M 81.31 1.98 Amplification

37 F Nodular BCC 8 S 18.70 1.78 RT-PCR

42 M Micronodular BCC 7 S 19.13 2.00 RT-PCR

44 M Infiltrative BCC 8 M 44.35 1.40 RT-PCR

47 F Nodular BCC 6 S 36.94 1.45 RT-PCR

51 F Infiltrative BCC 9 M 38.47 2.14 RT-PCR

53 F Infiltrative BCC 5 L 45.40 2.43 Amplification

NS1 F SKIN 9 9 31.72 1.38 RT-PCR

NS2 M SKIN 9 6 42.43 1.76 RT-PCR

Table 4.3: Features of RNA product from seventeen BCC biopsies (6 to 53) and two 
normal skin (NS) samples. Quality and size descriptions are as described in table 4.1.

4.3.3 Needle microdissection and whole tissue homogenisation

Many LCM trials were performed on the blocks of tissue before definitive LCM 

samples were finally prepared. When the remaining tissue was finally sectioned for 

needle microdissection and homogenisation, only a small amount of tumour tissue 

was left in some cases. Nonetheless, needle microdissection (NMD) was performed 

on all cases prior to whole tissue homogenisation. RNA was extracted from all these 

samples prior to reverse transcription and PCR. RNA concentrations and total 

amounts in the extracts from all three techniques are cited in the table below (Table 

4.4).

As can be seen, the RNA quantities gleaned from the tissue was greatest following 

gross tissue homogenisation and least following laser capture microdissection. 

Extracts from needle microdissection produced intermediate amounts. Approximately 

three times as much RNA was produced by needle microdissection as by laser
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microdissection (2mg vs 0.7mg), whereas this was still only about a quarter of the 

amount produced following tissue homogenisation ( approximately 8mg).

Biopsy Laser Microdissection Needle Microdissection Tissue homogenisation
RNA
conc. 
ng/ pi

A260/ A280 
ratio

x20 pi
volume
(Mg)

RNA
conc. 
ng/ pi i

f
0

> CD O

x40 pi 
volume
(ms)

RNA
conc. 
ng/ pi

A280/ A280 
ratio

x40 pi
volume
(MS)

10 15.60 2.15 312.0 96.3 1.71 3852 20.7 1.36 828

19 52.44 1.99 1048.8 79.9 1.91 3196 23.1 1.89 924

21 27.32 2.31 546.4 41.1 1.90 1644 161.2 1.95 6448

24 67.24 1.89 1344.8 55.1 1.89 2204 237.1 1.9 9484

37 18.70 1.78 374.0 41.6 1.73 1664 336.8 1.9 13472

42 19.13 2.00 382.6 57.2 1.83 2288 261.2 1.95 10448

44 44.35 1.40 887.0 24.1 1.62 964 157.5 1.83 6300

47 36.94 1.45 738.8 47.7 1.86 1908 288.4 1.86 11536

51 38.47 2.14 769.4 36.5 1.90 1460 117.8 1.94 4712

NS1 31.72 1.38 634.4 50.6 1.78 824 412.6 1.84 16504

NS2 42.43 1.76 848.60

Average 35.8 717.0 50.0 2000.5 201.6 8065.8

Table 4.4: Concentrations (RNA conc.), quality and total amount of RNA extracted 
from nine BCC (10 to 51) and two normal skin (NS) samples via laser capture 
microdissection, needle microdissection and tissue homogenisation.

The data in this table shows that the total amount of RNA used for reverse 

transcription did not significantly differ between the BCCs classified as indolent and 

those classified as aggressive: statistical comparisons as determined by unpaired t- 

tests are summarised in table 4.5 below (p>0.05 in all cases).

Laser
Microdissection

Needle
Microdissection

Tissue
homogenisation

Average indolent BCC 
RNA guantity 663.2 2254.4 8353.6

Average aggressive 
BCC RNA quantity 771.95 1977 5596

p value 0.335155 0.337686 0.197841

Table 4.5: Statistical comparison of total amount of RNA extracted from indolent and 
aggressive BCCs by laser capture microdissection, needle microdissection and tissue 
homogenisation in this study.

4.3.4 Gene expression in BCCs & control tissues

4.3.4.L I  /3-actin

P-actin was expressed in all samples using all three methods as shown in figure 4.5.
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Figure 4.5a: whole tissue
homogenisation samples

Figure 4.5b: Needle 
microdissection samples

Figure 4.5c: Laser capture 
microdissection samples

Figure 4.5: p-actin expression in nine BCCs, two control skin samples and 
negative controls.
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The intensity of these bands reflects the expression of p-actin genes in the tissue 

from which the sample was prepared, but because of differing quantities of 

starting RNA for each reverse transcription reaction I cannot say that they truly 

represent the expression per unit amount of tissue. As a result, these gels really 

only inform us that P-actin is expressed, but not to what degree.

The primers used do not span an intron and so any genomic DNA contamination 

of the RNA sample would not be picked up by another (higher) band on the gel. 

For this reason the RT- lane was required to check that contamination is not 

present.

The strongest bands are clearly seen in the samples prepared by whole tissue 

homogenisation. Given that the greatest bulk of tissue is generated this way this is 

not surprising. A tailing off of gene expression is apparent in the laser capture 

samples -  as previously discussed this may be due to RNA degradation due to a 

prolonged interval between preparation steps.

4.3.4.1.2 GUI

Glil was expressed in all BCC samples using all three methods, except in BCC 42 

when LCM was used. These results are shown in figure 4.6. Only an extremely 

faint band is seen in the normal skin and RT- lanes for the homogenised tissue 

samples. On the whole Glil was not expressed in the control skin samples, nor in 

the technical controls.

In the case of Glil, the primers used do span an intron of the gene, and so a band 

at a higher level on the gel would indicate genomic DNA contamination of the 

sample. Neither higher genomic DNA bands nor strongly positive RT- bands are 

present, showing the relative purity of the mRNA from which the cDNA is 

created.

Given that each cDNA sample was created using different quantities of RNA, it is 

again hard to draw conclusions about the relative degrees of Glil gene expression 

present in each tumour. However the mere presence of Glil in BCCs but not in
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skin shows that these genes are upregulated in these BCCs. This fits with data 

derived from genomic examination of BCCs discussed previously in chapter 1.

4.3.4.1.3 Gli2

Gli2 was expressed in most of the BCC samples using all three methods as shown 

in figure 4.7. GU2 was weakly expressed in the control skin samples when 

prepared by homogenisation or by needle microdissection, but was not expressed 

in the laser capture skin samples.

The overall levels of expression are much greater in the samples prepared by 

tissue homogenisation than by either of the other two methods. Even in the laser 

microdissection samples, however (Fig 4.7c), there does seem to be a good 

correlation between GU2 expression and BCC diagnosis.

4.3.4.1.4 0-tubulin III

Bands corresponding to 0-tubulin III expression were only faintly seen in the 

BCC samples, and not in the skin samples or negative controls, as shown in figure 

4.8. In all three gels it can be seen that any gene expression in the BCCs occurs 

mainly in the earlier lanes, i.e. in the more indolent BCCs. The aggressive and 

micronodular BCCs did not tend to express 0-tubulin III except for three very 

faint bands (sample 42, figures 4.8a; samples 19 and 44, figure 4.8b).

4.3.4.1.5 Arc

These results are illustrated in figure 4.9. Arc expression was seen in the majority 

of BCCs prepared by tissue homogenisation, with the most intense bands in the 

samples from nodular BCCs 24 and 47. Similarly, widespread expression was 

seen in the BCCs prepared by needle microdissection, with most of the positive 

bands occurring in the more indolent tumour samples (gel lanes 10 through to 47). 

Laser capture cDNA did not produce any strongly positive bands on PCR with 

these primers. Although any weakly positive bands on this gel are indistinct and 

not well defined (Fig. 4.9c), some of these intensities may correlate with 

marginally elevated gene expression levels in these samples. Up-regulation of Arc 

was not seen in the negative control lanes or the normal skin samples.
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Figure 4.6a: whole tissue
homogenisation samples

Figure 4.6b: Needle 
microdissection samples

Figure 4.6c: Laser capture 
microdissection samples

Figure 4.6: Glil expression in nine BCCs, two control skin samples and negative 
controls.

Figure 4.7a: whole tissue 
homogenisation samples

Figure 4.7b: Needle 
microdissection samples

Figure 4.7c: Laser capture 
microdissection samples

Figure 4.7: Gli2 expression in nine BCCs, two control skin samples and negative
controls.
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Figure 4.8a: whole tissue
homogenisation samples

Figure 4.8b: Needle 
microdissection samples

Figure 4.8c: Laser capture 
microdissection samples

Figure 4.8: fi-tubulin III expression in nine BCCs, two control skin samples and 
negative controls.

Figure 4.9a: whole tissue 
homogenisation samples

Figure 4.9b: Needle 
microdissection samples

Figure 4.9c: Laser capture 
microdissection samples

Figure 4.9: Arc expression in nine BCCs, two control skin samples and negative
controls.
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4.3.4.1.6 GAP43

GAP-43 was seen to be strongly expressed in three of the BCCs when prepared by 

tissue homogenisation (BCCs 21, 24 and 19), and moderately strongly expressed in 

two of the other BCCs (10 and 44) when prepared by needle microdissection. No 

positive bands were seen in the laser capture microdissection material at all. In none 

of the gels did skin or negative control lanes show any gene expression positivity.

In these cases there was no predilection for elevated expression in one type of BCC 

versus another (e.g indolent vs aggressive). The small number of tumours that were 

positive is rather inconsistent, such that few definite conclusions may be drawn about 

GAP-43 expression in different BCC subtypes, other than the fact that there does 

appear to be a degree of expression in BCCs and not in normal skin.

4.3.4.1.7 NF

Only faint expression of the neurofilament gene was seen in some of the BCCs 

prepared by tissue homogenisation. These weak bands were equally divided between 

the indolent and the aggressive tumours. No expression was seen at all in the needle 

microdissected specimens, and four very faint bands were again equally distributed 

between indolent and aggressive tumours.
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Figure 4.10a: whole tissue
homogenisation samples

Figure 4.10b: Needle 
microdissection samples

Figure 4.10c: Laser capture 
microdissection samples

Figure 4.10: GAP-43 expression in nine BCCs, two control skin samples and negative 
controls.

Figure 4.1 la: whole tissue 
homogenisation samples

Figure 4.1 lb: Needle 
microdissection samples

1wmm Figure 4.1 lc: Laser capture 
microdissection samples

Figure 4.11: Neurofilament expression in nine BCCs, two control skin samples and
negative controls.
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4.4 Discussion

The examination of gene expression in BCCs in this chapter has been limited to 

visualisation of PCR products on agarose gels. This has provided a great deal of 

information regarding the technical aspects of RNA extraction used in this study and 

the expression of neuronal differentiation markers in Basal Cell carcinoma.

4.4.1 Patients and samples

The examination of gene expression required that fresh frozen biopsies be harvested 

and kept cold so that mRNA stability would not be affected. For this purpose, 57 

patients were assessed as to whether their potential BCC would be suitable for biopsy, 

and from these patients a total of 54 lesions were biopsied, 39 of which turned out be 

BCCs. The spread of subtypes present in these BCCs (11 nodular, 6 superficial, 5 

micronodular, 17 infiltrative) was typical for the plastic surgery unit in which they 

were taken: this spread has a slight bias towards aggressive tumours compared to 

previously published overall subtype statistics (Emmett, 1990; Jacobs et al., 1982; 

Sexton et al., 1990; Sloane, 1977).

The limitation of size of biopsy was a relative problem, but this was essential for 

integrity of the surgical excision margins of the tumours. The biopsies were graded by 

size and quality (see table 4.1) and a number of these biopsies were excluded from 

further use because of a small amount or absence of tumour in the biopsy. It is 

possible that larger biopsies would facilitate better quality and larger amounts of RNA 

extraction, but the permission of the histopathologists to perform this in this setting 

was not favourable for anything more than a punch biopsy, even in the larger tumour 

cases.

The selection of what tumours were eventually used in this study rested on the success 

of laser capture microdissection (LCM). As well as investigating the expression of 

neuronal differentiation markers in these tumours, I was interested to see whether 

LCM was significantly better than more traditional techniques in showing gene 

expression. For that reason the same tumours were used, restricting the numbers of 

BCCs for comparison to nine.
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4.4.2 Technical aspects

Laser Capture microdissection is a complex technique that requires a great deal of 

time and experience to use effectively. Its potential benefits are that it can selectively 

capture cells that are visualised under the dissecting microscope, that cell populations 

can be specifically targeted and that surrounding tissue (accounting for “background 

noise” gene expression) can be excluded. In the more modem developed systems, 

much of the process is automated, increasing the speed of cell capture, and enabling 

automatic recognition of the cell areas to be targeted (“Veritas”, Arcturus, Mountain 

View, USA).

The system that was available to me, however, was a previous model which was not 

automated, and was housed in a different building to where the rest of my tissue 

processing occurred. Following cutting and dehydration of the frozen sections, the 

processing time for each sample could take up to fifteen minutes. All this of course 

meant that the first sample processed in a batch had a delay interval during which it is 

possible that RNA quality was degrading. This is not reflected in the RNA 

concentrations of the resulting samples (see table 4.3), but stronger housekeeping P- 

actin bands are seen in the specimens processed quickly (see Fig. 4.1).

Needle microdissection and tissue homogenisation were performed in a routine 

manner, which produced higher concentrations and total amounts of RNA (as 

measured by spectrophotometry). This is not in itself surprising, as it is much more 

feasible to harvest a greater number of cells by these techniques. Because, however, 

the concentrations of RNA in these solutions were still fairly low (average RNA 

concentration in the tissue homogenisation samples was 0.20pg/pl) the full amount of 

RNA was used to create maximal strength cDNA in every case.

Therefore, direct comparison of the intensity of each PCR product band is not likely 

to absolutely reflect the level of expression of that gene per unit volume, mass, or cell 

number. However, various trends can be seen and are commented on in the following 

sections.
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4.4.3 Baseline p-actin and Glil/2 expression

P-actin was chosen as a housekeeping gene because of its ubiquitous expression in 

cells of epithelial origin. This was clearly demonstrated in all three gels showing P- 

actin expression in all skin and BCC samples. The bands are all very strong in the 

samples prepared by tissue homogenisation and relatively strong in those prepared by 

needle microdissection, reflecting the starting RNA concentrations in these samples, 

p-actin was also expressed in all skin and BCC LCM samples although to a lesser 

degree than with the other two methods.

No significant variation exists between the intensities of the PCR bands in the first 

two gels (LCM and NMD) and the very strong signal implies that either a lot of p- 

actin is expressed equally in all these samples, or that the PCR reactions have all 

reached the point of saturation. In this case, no difference in intensities would be seen, 

masking any relative difference between the samples. The relative decrease of P-actin 

expression from left to right in the LCM gel is not explained by the measured starting 

RNA concentrations. Whether the time delay in processing the later samples has 

accounted for this variation in expression, or whether it is merely a feature of the cell 

populations captured cannot be commented upon here. A more formal trial of delay in 

processing versus RNA extraction and housekeeping gene expression would be 

required to ascertain this.

Glil and Gli2 were both expressed in BCCs (although not all BCCs in all cases) but 

not in normal skin or the technical negative controls. This correlates with data 

confirming Gli gene expression in these tumours (Bonifas et al., 2001; Kallassy et al., 

1997; Regl et al., 2002; Reifenberger et al., 1998; Unden et al., 1997). Recent data 

from mouse models show that Glil and Gli2 may be responsible for different stages 

of tumour induction and maintenance (Hutchin et al., 2005). Even when comparing 

the samples prepared by tissue homogenisation and needle microdissection, there does 

appear to be a slightly greater degree of gene expression (for both Glil and GU2) in 

the left hand BCC lanes. This may reflect slightly decreased Glil and GU2 expression 

in the more aggressive tumours.

168



4.4.4 Neuronal differentiation marker expression

Direct comparison of gene expression in RNA extracted from the same biopsies by 

different methods indicated some general trends. It appears that all the neuronal 

differentiation markers which were examined in chapter 3 are expressed to some 

degree at a genomic level in BCCs, but in general positive PCR bands were not seen 

when examining normal skin (the only exception to this was a very weak band with 

GAP-43 primers in NMD tissue).

In BCCs, gene expression results can be examined by comparing the overall 

expression in BCCs to that in normal skin, by comparing the expression in indolent 

(left hand lanes) BCCs to that in aggressive BCCs (right hand lanes), and by 

comparing the techniques used. More specific comparisons than these are not likely to 

be truly representative of gene expression in each tumour and more detailed analyses 

including quantitative PCR are required.

P-tubulin III was weakly expressed in BCCs, and predominantly the earlier (left hand 

lanes) tumour samples. BCC 10 had especially strong expression compared to the 

others, and this was seen in both tissue homogenisation and needle microdissection 

samples. Overall, expression became weaker in successive gels, but this 

notwithstanding, there was still some expression noted in the earlier tumours (i.e. the 

more indolent tumours) processed with laser capture microdissection.

Arc was moderately expressed in many of the BCC samples but again, not in normal 

skin. In the NMD samples the expression does appear to be more up-regulated in the 

earlier lanes corresponding to the more indolent tumours, but this variation is not so 

strongly seen in tissue homogenisation samples. The laser capture microdissection 

samples did not clearly express any PCR product and this contrasts markedly with the 

other more robust methods of RNA extraction.

GAP-43 showed some unexpected results in that a small number of bands (three) were 

particularly strong whereas others were completely negative in the homogenisation 

samples. The presence of these bands was distributed fairly evenly between indolent 

and aggressive tumours, but no particular comment can be made as to their
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significance due to the small numbers involved. It is of course possible that within 

these biopsies some other material (such as that arising from a nerve fibre) was 

present, but this seems unlikely in the face of three such tumours showing this pattern 

and such bands not being picked up by the other neuronal differentiation marker 

primers.

Very little evidence of neurofilament expression was seen in these samples, with only 

a very faint band present in four of the samples processed by tissue homogenisation. 

No positivity was seen in the samples processed by either needle microdissection or 

laser capture microdissection. Of the four weakly expressed bands, no difference was 

noted between indolent and more aggressive tumours.

Overall it can be seen that P-tubulin III, Arc and GAP-43 genes do seem to be up- 

regulated in BCCs compared to normal skin, and that this is most easily demonstrated 

by the techniques of either whole tissue homogenisation or needle microdissection. 

Laser capture microdissection, on the whole, was sensitive enough to detect P-actin 

and GU1/GU2 expression, but it does not appear to be sensitive enough to demonstrate 

the expression of the four neuronal markers used.

It is hard to say whether my assumption that the higher ratio of tumour sample to 

background non-tumour tissue in laser capture tissue would result in a more specific 

gene expression profile was upheld in this study. Additionally, the sensitivity of the 

technique may or may not be less with this technique, but without absolute 

comparison to starting biopsy weights or cell numbers dissected, or relative 

comparison to P-actin expression, this measurement is not meaningful. In both cases, 

the true estimation of sensitivity and specificity relies on the knowledge of what are 

true and false positive and negative results. The only information available on this 

subject is presented above, and further work would be required to perform truly 

accurate comparisons of particular gene expression between tumours and between 

subtypes.
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Chapter 5: Effects of Glil and Gli2 over-expression in 
human keratinocytes on expression of neuronal 
markers

5.1 Introduction

The expression of p-tubulin III, GAP-43, Arc and neurofilament has been previously 

demonstrated in this thesis at a protein and genomic level in BCC material. In the 

introduction to this thesis I have described how hedgehog signalling is crucial to the 

development of BCCs, and that irrespective of the site of the upstream genetic 

mutation, up-regulation of the Gli transcription factor genes and proteins seems to be 

fairly consistent.

Transgenic experiments in mice have shown us that Gli proteins may have differing 

roles in both the early stages of tumour development and the later stages of tumour 

persistence and survival. Glil and GU2 appear to be crucial for general development, 

but only Gli2 is essential for development of follicular skin appendages (Mill et al., 

2003; Park et al., 2000). Clearly the initiation of BCC formation and persistence of 

the tumour relies on both of the molecules to an extent.

Also discussed in the introduction to this thesis is the limited amount of knowledge of 

what happens downstream of these Gli proteins. Current knowledge of Wnt/p-catenin, 

FOX proteins and cyclins has given us only a few insights into the specificity of Glil 

and Gli2 downstream molecular signalling. Regl et al have previously used a 

keratinocyte culture model to examine the interaction of Glil and Gli2 and have also 

examined the expression of both of these transcription factors in human BCCs (Regl 

et al., 2002). They demonstrated a degree of inter-dependence between the two genes, 

suggesting that the expression of these genes were mutually controlled.

I have already shown that markers of neuronal differentiation are expressed in human 

basal cell carcinoma, but it could not be demonstrated clearly with such tissue what 

the interaction between Glil and GU2 is (even though expression of both genes in 

BCCs was demonstrated by PCR methods).
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In this chapter I describe how over-expression of Glil affects Gli2 and vice versa, and 

how their over-expression affects the four neuronal marker genes identified in this 

thesis.

The reason for using this system of retroviral transfection is that it allows the 

controlled over-expression of target genes and proteins, in this case Glil and Gli2. 

Such genetic manipulation would also be available using transgenic animal models, 

but the high proportion of very significant defects (at both a general and anatomically 

specific level) makes this a very challenging technique. Retroviral transfection of 

keratinocytes in culture is a robust and relatively cost-effective technique which can 

lead to reproducible results in a relatively short period of time.

Therefore, the aim of this chapter is to investigate over-expression of Glil and Gli2 in 

human keratinocytes to determine whether over-expression of these proteins up- 

regulates the expression of neuronal markers identified in previous chapters of this 

thesis.

5.2 Materials and methods

As discussed in section 2.3.3, populations of primary keratinocytes were retrovirally 

transfected to over-express EGFP alone, EGFP-Glil or EGFP-GU2 and were 

subsequently grown for 72-96h. With each transfection experiment this resulted in 

three sets of cells in which the gene expression of Gli transcription factors and 

neuronal differentiation markers could be compared. Each cell population was 

harvested and mRNA was extracted using a spin-column RNA extraction kit. This 

was subjected to reverse transcription and real-time quantitative PCR (qPCR) using 

primers for Glil, Gli2, P-tubulin III, GAP-43, Arc and neurofilament. RNA from SH- 

SY5Y neuroblastoma cells was used to synthesise positive control cDNA. Samples 

were analysed in triplicate. For each sample of each primer / cell group combination a 

cycle-to-threshold figure was recorded (as “c(t)”). This data was analysed in a relative 

quantitative fashion, with target gene expression compared in all cases to baseline P- 

actin expression. The relative difference between the c(t) values for each transfected 

cell group and the control group was calculated, accounting for P-actin expression 

(recorded as “Ac(t)”). Statistical analysis of these Ac(t) values was performed using 

the Statistical Package for Social Sciences (SPSS, Chicago, USA). Unpaired t-tests
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were used to compare the expression of the Gli genes and the neuronal marker genes 

in the three cell groups. Standard PCR was also performed and the PCR products run 

on a 1.5% agarose gel.

5.3 Results

5.3.1 Retroviral over-expression of Gli in keratinocytes

The appearance of keratinocytes in culture is shown in figure 5.1. Messenger RNA 

was extracted from cultured keratinocytes and quantitative and qualitative properties 

were measured using a spectrophotometer; these results are shown in table 5.1 below.

transfection 1 transfection 2
Concentration
(ng/uD

A260-A280
ratio

concentration
(pg/Ml)

A260-A280
ratio

KCs 4.75 1.91 1.06 1.93
Gli-1 KCs 2.61 1.96 0.34 1.88
Gli2-KCs 4.16 1.92 0.49 1.96
SH-SY5Y 2.62 1.9 -

Table 5.1: RNA samples extracted from transfected keratinocytes and positive control 
SH-SY5Y cells (KCs = £GFP-transfected keratinocytes; Gli 1-KCs = EGFP-Glil 
transfected keratinocytes; Gli2-KCs = EGFP-GU2 transfected keratinocytes)

5.3.2 Typical real-time qPCR graphs

Graphs such as those illustrated in figure 5.2 are typical representations of the 

exponential rise in PCR product. It can be seen that the earlier the take-off of gene 

product, the earlier this is likely to hit a pre-determined threshold. These examples are 

illustrative of one recording for each cell sample (although in reality the values were 

recorded in triplicate). In figure 5.2, which depicts the rise of GUI gene PCR product, 

it can be seen that the GUI-transfected cells (green) hit threshold earlier than the G//2- 

tranfected cells (blue).
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Figure 5.1: Fluoroscopic appearance o f G/j-transfected keratinocytes in culture

Figure 5.2: Typical graphical representation of a real-time PCR experiment in this 
case assessing the Glil expression in various cell samples. The right-hand copy of the 
graph has the cell samples labelled in blue for each curve
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Figure 5.3: Real-time PCR curves demonstrating Arc expression in the same cell 
cDNA samples as in figure 5.2 (the same colours apply to the same samples). A 
neuronal-phenotype cell line (SH-SY5Y) has been used as a positive control in this 
case.
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Figure 5.4: Expression of fi-actin in all cell samples, and not in technical negative 
controls shown in both real-time PCR graphical format and by agarose gel 
electrophoresis



Expression of G lil in retroviraliy transduced cells

Transfection 1 Transfection 2

Gli1-KCs 
vs KCs

Gli2-KCs 
vs KCs

Ac(t) 1 

Ac(t) 2 

Ac(t) 3

14.22

14.83

13.78

10.86

9.51

10.48

Ac(t) m ean 

SE

14.28

0.31

10.28

0.41

Gli1-KCs 
vs KCs

Gli2-KCs 
vs KCs

Ac(t) 1 10.28 3.94

Ac(t) 2 10.31 4.93

Ac(t) 3 9.28 4.29

Ac(t) m ean 9.96 4.39

SE 0.35 0.30

Figure 5.5: Number of cycles-to-threshold for Glil expression in Glil- and Gli2- 
transfected cells relative to normal keratinocytes (Ac(t)). The results of two separate 
transfection experiments are shown. SE = Standard Error

Figure 5.6: PCR products following amplification with Glil primers run on an 
agarose gel: expression of Glil in transfected cell groups is seen
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Expression of Gli2 in retrovirally transduced cells

Transfection 1
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— 3E—

KCs Gli1-KCs Gli2-KCs

Transfection 2
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£
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0.00

16.24
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I
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KCs Gli1-KCs Gli2-KCs

Gli1-KCs 
vs KCs

Gli2-KCs 
vs KCs

Ac(t)1 7.70 15.23

Ac(t) 2 8.71 15.22

Ac(t) 3 8.52 13.96

Ac(t) mean 8.31 14.80

SE 0.32 0.43

Gli1-KCs 
vs KCs

GN2-KCS 
vs KCs

Ac{t) 1 9.20 17.24

Ac(t) 2 6.94 17.81

Ac(t) 3 4.85 13.67

Ac(t) mean 6.99 16.24

SE 1.28 1.32

Figure 5.7: Number of cycles-to-threshold for Gli2 expression in Glil- and GH2- 
transfected cells relative to normal keratinocytes (Ac(t)). The results of two separate 
transfection experiments are shown. SE = Standard Error

Figure 5.8: PCR products following amplification with GH2 primers run on an 
agarose gel: some expression of Gli2 in transfected cell groups is seen
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In combination with the previous Glil expression data it appears that Glil and GU2 

both affect the expression of the other i.e. there is a positive feedback mechanism 

between these two Gli transcription factors.

5.3.5 Beta-tubulin III expression

As seen in figures 5.9 and 5.10, /3-tubulin III was expressed more highly in Gli- 

transfected cells than in normal keratinocyte controls. In the first transfection 

experiment the G//-transfected cells reached threshold between two and three 

(relative) cycles earlier than the control cells, and in the second experiment the 

differential was between four and six cycles. In neither case was the difference 

between Gli2 and Glil samples statistically significant, but in both cases there was a 

statistically significant difference between these samples and control keratinocytes 

(section 5.3.3).

5.3.6 Arc expression

Arc was expressed to a much greater degree in both Glil- and G//2-transfected cells 

than in normal keratinocyte controls, as seen in figures 5.11 and 5.12. There was no 

significant difference in the number of cycles to threshold between the G/z7-cell 

samples and the GU2 cell samples in the first experiment. In the second transfection 

G///-transfected cells expressed Arc more highly than GU2 cells, as reflected by the 

significantly earlier rise to threshold (on average over fifteen cycles earlier, data not 

shown).

5.3.7 Neurofilament expression

A reduction in neurofilament expression was seen in both G//-transfected cell groups 

compared to controls, as shown in figures 5.13 and 5.14. Only data from the first 

transfection experiment is shown -  no rise to threshold was seen in any of the cell 

samples in the second experiment and as such no major conclusion can be drawn, 

other than the suggestion that the smaller RNA concentrations present in the extracts 

from the second experiment were not sufficient to see the changes occurring in the 

first transfection.
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Baseline expression was present in keratinocytes, and a decrease in average relative 

neurofilament expression was seen in both G/z7-and G/z'2-transfected cells.

5.3.8 GAP-43 expression

In neither of the transfection experiments performed was GAP-43 expressed at 

detectable levels in keratinocytes or G/z-transfected cells. This resulted in no cycle-to- 

threshold value being recorded for any sample when using real-time PCR, and no 

gene amplification bands present on standard PCR, as shown in figure 5.15. The only 

positive value obtained in the real-time PCR experiments was with the use of 

neuronal phenotype positive control SH-SY5Y cell RNA (data not shown) which 

demonstrated that the primers were indeed working.
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Expression of B-tubulin III in retrovirallv transduced cells

Transfection 1
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KCs Gli1-KCs Gli2-KCs

Gli1-KCs 
vs KCs

Gli2-KCs 
vs KCs

Ac(t)1 0.95 2.56

A c(t)2 2.90 3.99

Ac(t) 3 2.27 1.50

Ac(t) m ean 2.04 2.68

SE 0.58 0.73

Glil-KCs 
vs KCs

GH2-KCS 
vs KCs

Ac(t) 1 5.05 1.70

Ac(t) 2 4.40 3.91

Ac(t) 3 6.94 7.06

Ac(t) m ean 5.46 4.23

SE 0.78 1.58

Figure 5.9: Number o f cycles-to-threshold for p-tubulin III expression in Glil- and 
G//2-transfected cells relative to normal keratinocytes (Ac(t)). The results of two 
separate transfection experiments are shown. SE = Standard Error

Figure 5.10: PCR products following amplification with p-tubulin III primers run on 
an agarose gel: expression of p-tubulin III in transfected cell groups is seen

f
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Expression of Arc in retrovirally transduced cells

Transfection 1
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Gli1-KCs 
vs KCs

Gii2-KCs 
vs KCs

Glil-KCs 
vs KCs

Gli2-KCs 
vs KCs

Ac(t) 1 12.69 13.63 Ac(t) 1 16.85 9.60
Ac(t)2 14.75 14.22 Ac(t) 2 15.44 8.02
Ac(t) 3 14.37 12.76 Ac(t) 3 12.88 9.58

Ac(t) mean 13.94 13.53 Ac(t) mean 15.06 9.06
SE 0.65 0.43 SE 1.18 0.53

Figure 5.11: Number of cycles-to-threshold for Arc expression in Glil- and Gli2- 
transfected cells relative to normal keratinocytes (Ac(t)). The results of two separate 
transfection experiments are shown. SE = Standard Error

Figure 5.12: PCR products following amplification with Arc primers run on an 
agarose gel: expression of Arc in transfected cell groups is seen. SH-SY5Y cell cDNA 
was used as a positive control.
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Expression of Neurofilament in retrovirally transduced cells
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Figure 5.13: Number o f cycles-to-threshold for Neurofilament expression in Glil- and 
G/z'2-transfected cells relative to normal keratinocytes. The results of one transfection 
experiment are shown.

Figure 5.14: PCR products following amplification with Neurofilament primers run 
on an agarose gel: expression o f Neurofilament in transfected cell groups is seen. SH- 
SY5Y cell cDNA was used as a positive control.

Expression of GAP-43 in retrovirally transduced cells

Figure 5.15: PCR products following amplification with GAP-43 primers run on an 
agarose gel: expression of GAP-43 in transfected cell groups is seen. SH-SY5Y cell 
cDNA was used as a positive control.
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5.4 Discussion

These results show that the expression of some of the genes previously examined are 

indeed under the control of Gli transcription factors. However, others are not, and 

must be assumed to be under the control of other cell signalling pathways. The 

association of the target genes with a neuronal phenotype is clearly shown by the use 

of SH-SY5Y cell cDNA as a positive control, which expressed strongly all four target 

genes (as seen in the agarose gels depicted above).

fi-actin was expressed fairly evenly in all the cell types examined. Since it is a gene 

that is intimately associated with epithelial cell function, this is to be expected. The 

similar levels of expression, however, correlate with the creation of these cDNA 

samples with the same quantity (5pg) of RNA in each case. Given that my 

calculations of gene expression have taken into account the variation in baseline 

expression of this housekeeping gene, only minor adjustments had to be made to the 

raw target gene c(t) values to derive relative target gene c(t) values.

Glil and Gli2 were both most strongly up-regulated in the cells that were transduced 

to over-express those genes. This is not surprising. However, the mutual interaction 

between the two Gli transcription factors shows that there must be a degree of 

downstream inter-dependence between the two genes and their products. Glil- 

transfected cells express GH2 significantly greater than controls and GU2 transfected 

cells express Glil significantly greater than controls. This suggests that these genes 

can regulate each other’s expression, and as such that there is a positive feedback 

mechanism occurring here.

Regl et al have extensively investigated the interactions between Glil and Gli2 in 

human keratinocytes and in human BCCs (Gispen et al., 1991; Regl et al., 2002; Regl 

et al., 2004). They have concluded that both Glil and GU2 are expressed in BCCs and 

that there is a positive feedback mechanism present whereby each gene drives the 

expression of the other. Using gene expression time course experiments they 

demonstrated that Glil is a direct target of G//2, whereas the stimulation of Gli2 by 

Glil is likely to be indirect. My data concurs with these results, in as much as an
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increase in Glil expression was seen (compared to baseline keratinocyte levels) in the 

presence of Gli2 transfection, and vice versa.

p-tubulin III and Arc were strongly expressed in those cells that over-expressed Glil 

and Gli2. Both of these genes appear to be at least partly under the control of Gli 

signalling, in that they were not so strongly expressed in keratinocytes that did not 

have up-regulated Gli expression.

GAP-43 and neurofilament did not appear to be under the control of Gli signalling. In 

the case of expression of neurofilament there were marginal small decreases recorded 

in cells transfected with Glil and Gli2. In the first transfection experiment only the 

G/z'2-transduced cells had a significantly later rise to threshold implying a decreased 

gene expression. However, none of these results were replicated in the following 

transfection, and as such it seems that I cannot definitely say that neurofilament 

expression is affected by Gli. GAP-43 was not recorded as rising in any of the real­

time PCR experiments. Similarly, no strong bands are seen in the standard PCR 

reaction as depicted on the agarose gel.

Overall in this set of keratinocyte transfection experiments it appears that Glil and 

Gli2 drive the expression of each other, and that both of them partly control the 

expression of Arc and P-tubulin III. They do not, however, affect the expression of 

neurofilament or GAP-43, which must be under alternative control pathways.

The finding that these four genes are not under similar transcription factor control but 

are all expressed as part of a neuronal phenotype (as in the SY-SY5Y cells) suggests 

that there multiple pathways that lead to specific cell differentiation features. In the 

case of these genes, their association with and supposed specificity to neuronal cells 

may be partly driven by G/z'-mediated cell processes, but there may be other 

mechanisms responsible as well.

Although I have identified Arc and p-tubulin III as downstream effectors of Gli in 

keratinocytes, the expression of GAP-43 and neurofilament in BCCs shows that this is 

not a complete model system, and that the cell signalling associated with BCC 

development is complex and must be subject to influences other than mere Gli up-
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regulation. Alternatively, Gli expression may be the major driving force in 

development of a tumour phenotype (much evidence for this has been presented in 

section 1.2) but other specific downstream factors that are present in human in vivo 

BCCs but not in vitro keratinocytes are responsible for transmitting the Gli signal and 

promoting a malignant phenotype. Gli2 itself has been suggested by Regl et al as 

having direct oncogenic effects on genes which promote cell cycling (such as E2F1, 

CCND1, CDC2 and CDC45L) while repressing genes associated with epidermal 

differentiation (Regl et al., 2004). As yet neither P-tubulin III nor Arc (which from 

these studies appear to be under the control of Gli signalling) have been associated 

with the development of a malignant phenotype in any setting. Given that all the 

evidence regarding their function concerns the development and repair of neuronal 

cells (Gispen et al., 1991; Hoffman, 1989; Lyford et al., 1995; Skene and Virag, 1989; 

Fernandes et al., 2004) it is highly likely that these cell signalling pathways are part 

of the wider network of Gli signalling and not direct mechanisms enacting cell 

transformation.
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Chapter 6: Immunohistochemical analysis of 
neuronal markers in recurrent tumours

6.1 Introduction

The aim of this chapter was to determine the relevance of neuronal differentiation 

marker expression to biological behaviour. The principal aim of any treatment 

modality for basal cell carcinoma is tumour eradication, and the only end point that is 

clinically relevant is prevention of tumour recurrence.

It is known that there is a correlation between histological growth pattern subtype and 

the aggression that a tumour displays, but this is by no means a set rule. Although it is 

known that infiltrative and morphoeic tumours have a higher likelihood of incomplete 

resection, and a higher chance of recurrence following treatment, it is also true that 

micronodular tumours have higher rates of these problems than “normal”. What is 

“normal” is exactly the problem here -  a biological variation does exist and this is not 

entirely accounted for by histological growth pattern subtypes.

In this section I examined a number of tumour sections that represented a variety of 

recurrent and non-recurrent tumour types. The expression of markers of neuronal 

differentiation markers was quantified in these sections and correlated with clinical 

behaviour.

6.2 Methods

As described in chapter 2, data mining techniques were used to build a database of 

potentially recurrent tumours from the archives of Mount Vernon and Watford 

General Hospitals. Cross-checking of the patients’ notes and computer records was 

then performed to exclude those tumours that were not definitely recurrences in the 

same site of the original tumour and for which both original tumour blocks and 

recurrent tumour blocks were not available.

From the tumours that remained, two main groups were created - tumours that had 

been completely excised with a margin of at least one millimetre (as determined by
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routine multiple-slice histological assessment) and those that were excised with a 

margin that was either positive for tumour tissue or very close to tumour (less than 0.2 

mm). Examples of the histological appearances of such tumours are shown in figures

6.1 and 6.2. These tumours were then classified according to factors that are known to 

affect recurrence including age, body site, gender, surgical excision margin and 

histological growth pattern subtype class (“indolent” = nodular and superficial 

subtypes, “aggressive” = infiltrative and morphoeic subtypes, micronodular tumours 

staying as a separate group).

For both of the groups of original tumours that went on to recur (groups CO and 10), 

a matched set of tumours was then developed where the BCC did not go on to recur 

(groups CN and IN). These groups were matched by the five factors listed above to 

the groups where tumours did recur. The final six groups of tumours are described in 

table 6.1.

Original tumour which 
goes on to recur

Recurrent
tumour

Original tumour which 
does Not go on to recur

Complete excision “CO” “CR" “CN”
Incomplete excision “10” “IR” “IN”

Table 6.1: groups of recurrent or non-recurrent BCCs studied in this chapter.

Sections of these tumours were stained for P-tubulin III, GAP-43 and Arc, and the 

intensity of tumour staining was analysed by both visual analogue scoring and 

spectral image analysis. In all cases graphs were prepared to illustrate the staining 

results. Bar charts were used to illustrate the frequency of visual analogue scoring 

staining classifications and the mean values and associated 95% confidence limits 

were plotted by group. Data derived from Spectral Image Analysis was presented as a 

boxplot, where the horizontal bar represents the mean value, the upper and lower box 

limits represent the upper and lower quartile ranges and the whiskers represent the 

maximum and minimum values (excluding outliers, shown as separate marks). This 

data was also then shown as mean values and associated 95% confidence limits for 

each group being compared.
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Figure 6.1: examples of the histological appearance of completely excised BCC 
tumours

Figure 6.2: examples of the histological appearance of incompletely excised BCC 
tumours



6.3 Results

6.3.1 Tumours included in this study

8,444 histological reports including the code “Carcinoma, Basal Cell” were obtained 

from the Mount Vernon pathology archives for a five year period (1996-2001). Word 

searching in Microsoft Word generated an initial list of 71 tumours that were 

considered to be possible recurrent tumours.

Further review of patient pathology records and notes resulted in the exclusion of 40 

cases. The reasons for this are shown in table 6.2.

Exclusion criterion Number excluded
New tumour in different site to original 12
No tumour in second specimen 9
Patient notes not available 1
Excision of “recurrence” actually an elective wide local excision 7
Original or recurrent tumour tissue block not available 7
Use of radiotherapy or other treatments at this tumour site 4
Total cases excluded 40

Table 6.2: Causes of exclusion for tumours initially considered for this study

6.3.1.1 Original recurrent and non-recurrent cases

The histopathology sections of the original tumours that gave rise to these remaining 

31 recurrent cases were reviewed. The closest surgical excision margin (lateral or 

deep) of the original tumour was measured and classified as shown in table 6.3.

Closest surgical excision margin Group Number of cases
Greater than 1 mm CO 13
0.2mm to 1mm - 5
Less than 0.2mm / positive margin IO 13

Table 6.3: Closest surgical excision margins in 31 tumours, stratified into three 
categories

The tumours used were those where the closest surgical excision margin (lateral or 

deep) of the original tumour was either greater than 1mm or less than 0.2mm. For 

each of these original tumours a subsequent recurrent tumour was available for 

examination.
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The original tumour cases were classified by factors known to significantly affect the 

likelihood of tumour recurrence and the tumours comprising the matching groups 

were selected on the basis of this information (groups CN and IN). These factors and 

their distributions are listed in table 6.4.

Completely 
excised BCCs 
that went on 
to recur 
(group CO)

Completely 
excised 
BCCs that 
did not recur 
(group CN)

Incompletely 
excised BCCs 
that went on 
to recur 
(group 10)

Incompletely 
excised BCCs 
that did not 
recur 
(group IN)

GENDER
Male 4 4 6 6
Female 9 9 7 6
HISTOLOGY
Nodular / Superficial 4 4 8 6
Micronodular 1 1 0 0
Infiltrative / 
Morphoeic

8 8 5 6

SITE
Head / Neck 10 10 12 12
Upper limb 3 3 0 0
Lower limb 0 0 0 0
Trunk 0 0 1 0
AGE
Average age (yrs) 70.4 70.1 71.0 68.5
AVERAGE SURGICAL EXCISION MAFtGIN
Lateral margin (mm) 2.1 2.3 <0.1 0.1
Deep margin (mm) 2.9 2.3 1.9 1.3
Closest margin (mm) 2.0 1.9 <0.1 <0.1

Table 6.4: Characteristics of four groups of primary BCCs -  completely excised 
tumours which went on to recur (group CO), completely excised BCCs that did not 
recur (group CN), incompletely excised BCCs that went on to recur (group 10) and 
incompletely excised BCCs that did not recur (group IN).

Mean surgical excision margins with associated confidence limits for these groups of 

tumours are shown in figures 6.3 and 6.4. It can be seen from these results that there 

was no significant difference between the surgical excision margins of the cases used. 

When analysing the means and confidence limits of these distributions using an 

unpaired t-test, p-values of 0.64 (CN vs CO) and 0.80 (IN vs 10) reflected the 

similarity of these variables in these groups.
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6.3.1.2 Original and subsequent recurrent tumours

The subsequently recurrent tumours that arose following the excision of the “CO” and 

“IO” tumours were also available for examination -  these groups of tumours were 

known as “CR” and ”IR”. Obviously the number and body site of tumours and gender 

of patient was identical to their “original” group (CO for CR, IO for IR). Surgical 

excision margin was not considered in this group, as many of the samples were punch 

biopsies merely serving to prove the existence of recurrent tumour. Two other 

important tumour characteristics (histopathological subtype and time interval to 

recurrence) are described below.

Histopathological subtype

It can be seen from the results in table 6.5 that the majority of the completely excised 

tumours which went on to recur were of a subytpe that is known to behave 

aggressively (infiltrative / morphoeic). The recurrences associated with these were 

more typically classified as indolent tumours (nodular, superficial). The incompletely 

excised tumours which went on to recur were, however, mainly indolent in nature, 

and their recurrences were more aggressive in nature.

HISTOLOGICAL SUBTYPE Group CO Group CR Group IO Group IR
Nodular / Superficial 4 9 8 4
Micronodular 1 1 0 0
Infiltrative / Morphoeic 8 3 5 9

Table 6.5: Histological characteristics of four groups of recurrent tumours in this 
study

Time interval to recurrence

The results in figure 6.5 demonstrate that tumours that had been completely excised 

had a greater time interval to recurrence than was the case for incompletely excised 

BCCs. This difference is only marginally insignificant with a p-value of 0.052.
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Figure 6.5: Distribution of time interval between original and subsequent recurrent 
BCC tumours for each patient included in this study.



6.3.2 Immunohistochemistry: recurrent & non-recurrent tumours

This section of results compares the differences in immunohistochemical staining 

results between four groups of tumours. Firstly, the results of two groups of tumours 

that were completely excised are presented -  those that have been shown to recur 

(group CO) compared to those that have been shown to not recur (group CN).

Secondly, the results of tumours that were incompletely excised are presented -  

tumours in group IO have since gone on to recur whereas tumours in group IN have 

shown no signs of recurrence since the original excision.

6.3.2.1 Completely excised tum ours

This section considers the results of staining when comparing groups CN and CO.

6.3.2.1.1 P-tubulin III expression

The absolute visual analogue score values of the staining of these groups of tumours 

were plotted by tumour group, and then the mean and 95% confidence intervals were 

also plotted by group. These results are shown in figure 6.6.

Spectral Image Analysis staining values formed a continuum and these results were 

plotted as a boxplot as shown along with the mean values for each group (along with 

95% confidence intervals) in figure 6.7.

The results of staining in these groups show clearly that with both visual analogue 

scoring and spectral imaging analysis there is a significantly reduced intensity of 

staining for P-tubulin III in BCC tumours that go to recur when compared with those 

that do not. The significance of these differences is great enough such that the p-value 

of the unpaired t-test comparison is less than 0.001 when assessed with spectral image 

analysis and in the region of 0.01 with visual analogue scoring.

6.3.2.1.2 Arc expression

The absolute visual analogue score values of the staining of these groups of tumours 

are shown along with the mean values and 95% confidence intervals, also plotted by 

group. These results are shown in figure 6.8.
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Figure 6.6: Comparison of intensity of P-tubulin III staining (as measured by visual 
analogue scoring) between completely excised BCCs that did recur (group CO) and 
those that did not (group CN). Average staining values and significance values of 
statistical tests are given.
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Figure 6.7: Comparison of intensity of p-tubulin III staining (as measured by spectral 
image analysis) between completely excised BCCs that did recur (group CO) and 
those that did not (group CN). Average staining values and significance values of 
statistical tests are given.
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Spectral Image Analysis values were plotted as a boxplot as shown in the left-hand 

graph in figure 6.9. The mean values for each group (along with 95% confidence 

intervals) are shown in the right-hand graph of figure 6.9.

When comparing these groups of completely excised tumours it is evident that there is 

less Arc staining in the tumours which do on to recur (group CO). However, with 

neither method was statistical significance reached: when assessed by visual analogue 

scoring the p-value of the unpaired t-test comparison was 0.218, and with spectral 

image analysis, it was 0.204.

6.3.2.1.3 GAP-43 expression

Visual analogue score values of the staining of these groups of tumours are shown on 

the graph in figure 6.10, along with the mean values and 95% confidence intervals 

plotted by group.

Spectral Image Analysis staining values were plotted as a boxplot as shown along 

with the mean values for each group (along with 95% confidence intervals) in figure 

6 . 11.

Staining with GAP-43 antibody was also less intense in tumours that went on to recur 

(group CO). The differences in staining between groups attained a greater degree of 

significance with this antibody than with Arc, but again assessment by neither method 

proved this difference to be significant (p=0.058 (SIA) vs p=0.083 (VAS)). A wide 

variation in confidence limits was seen which reflects the heterogeneous nature of 

staining in these tumours.

6.3.2.2 Incompletely excised tumours

6.3.2.2.1 P-tubulin III expression

Absolute visual analogue score values of the staining of these tumours were plotted 

by tumour group, and then the mean and 95% confidence intervals were also plotted 

by group. These results are shown in figure 6.12.
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Tumour group Mean SD
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CO 0.77 0.60

Statistical test p value
Unpaired t-test 0.218

Figure 6.8: Comparison of intensity o f Arc staining (as measured by visual analogue 
scoring) between completely excised BCCs that did recur (group CO) and those that 
did not (group CN). Average staining values are given.
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Figure 6.9: Comparison of intensity o f Arc staining (as measured by spectral image 
analysis) between completely excised BCCs that did recur (group CO) and those that 
did not (group CN). Average staining values and significance values of statistical tests 
are given.
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Figure 6.10: Comparison of intensity of GAP-43 staining (as measured by visual 
analogue scoring) between completely excised BCCs that did recur (group CO) and 
those that did not (group CN). Average staining values and significance values of 
statistical tests are given.
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Figure 6.11: Comparison of intensity of GAP-43 staining (as measured by spectral 
image analysis) between completely excised BCCs that did recur (group CO) and 
those that did not (group CN). Average staining values and significance values of 
statistical tests are given.
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Computer-derived absolute staining values were plotted as a boxplot as shown along 

with the mean values for each group (along with 95% confidence intervals) in figure

6.13.

These results show that p-tubulin III is still expressed to a lesser degree in 

incompletely excised tumours which go on to recur. This is the case with both the 

visual analogue data and the computerised data. Interestingly, the significance of the 

difference in staining between groups is the same irrespective of the technique used 

and appears to be insignificant (p=0.07).

6.3.2.2.2 Arc expression

Visual Analogue staining intensity scores were plotted as previously with means and 

confidence limits on the right-hand graph below. These results are shown in figure

6.14.

A boxplot of the staining results was generated from the Spectral Image Analysis 

data and the mean values with confidence limits are shown in figure 6. 15.

It appears from this that Arc expression is slightly lower in BCCs which go on to 

recur than those that do not. Again, however, the differences in staining appear to be 

insignificant with both methods of examination (p = 0.271 (SIA) and 0.518 (VAS)).

6.3.2.2.3 GAP-43 expression

Visual Analogue Scoring results are shown as previously described, with actual 

values and mean values with confidence limits plotted by group. These results are 

shown in figure 6.16.

Similarly, actual Spectral Image Analysis values of staining intensity were plotted as 

a boxplot and these results compared by considering the mean values and associated 

confidence limits. These results are shown in figure 6.17.
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Figure 6.12: Comparison o f intensity o f p-tubulin III staining (as measured by visual 
analogue scoring) between incompletely excised BCCs that did recur (group 10) and 
those that did not (group IN). Average staining values and significance values of 
statistical tests are given.
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Figure 6.13: Comparison o f intensity of P-tubulin III staining (as measured by spectral 
image analysis) between incompletely excised BCCs that did recur (group IO) and 
those that did not (group IN). Average staining values and significance values of 
statistical tests are given.
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Figure 6.14: Comparison o f intensity of Arc staining (as measured by visual analogue 
scoring) between incompletely excised BCCs that did recur (group IO) and those that 
did not (group IN). Average staining values and significance values of statistical tests 
are given.

0 .21 -

0 18-

.  0 .15-

C 0.12—

0 0 9 -

: jo—

0 03 -

<  0 .16 -

0 .14-

0 .12-

0 .10-

o>
0 .08 -

IN IO

Tumour group Mean SD
IN 0.143 0.029
IO 0.123 0.056

Statistical test p value
Unpaired t-test 0.271

Figure 6.15: Comparison o f intensity of Arc staining (as measured by spectral image 
analysis) between incompletely excised BCCs that did recur (group IO) and those that 
did not (group IN). Average staining values and significance values of statistical tests 
are given.
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Figure 6.16: Comparison o f intensity of GAP-43 staining (as measured by visual 
analogue scoring) between incompletely excised BCCs that did recur (group 10) and 
those that did not (group IN). Average staining values and significance values of 
statistical tests are given.
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Figure 6.17: Comparison o f intensity of GAP-43 staining (as measured by spectral 
image analysis) between incompletely excised BCCs that did recur (group IO) and 
those that did not (group IN). Average staining values and significance values of 
statistical tests are given.



6.3.3 Immunohistochemistry: original tumours and their 
recurrences

This section of results compares the differences in immunohistochemical staining 

between four different groups of tumours to the previous section. Firstly, the results of 

the original completely excised tumours are compared with their subsequent 

associated recurrences. Secondly, the results of the originally incompletely excised 

tumours are compared with their subsequent associated recurrences.

6.3.3.1 Completely excised tumours

Results of BCC tumours in both group CO and group CR were plotted by group. 

Absolute values are shown in the left-hand graphs: Visual analogue score data 

consists of integral measurements, whereas spectral imaging analysis data is 

continuous. Therefore in these sections the visual data is presented as bar charts, 

whereas the computerised data is presented using boxplots with mean, interquartile 

and extreme values as described previously.

6.3.3.1.1 f3-tubulin III expression

These results as shown in figures 6.18 and 6.19 demonstrate that P-tubulin III is 

expressed at a higher level in subsequent recurrent tumours than in the original 

tumours. This was the trend when the same cases were measured with both the visual 

analogue method and the spectral imaging method. However, the difference between 

the staining of these groups achieved a greater degree of significance when the results 

of the spectral imaging analysis were compared. This was such that the inter-group 

difference in the visually-recorded data groups was not significant, with a p-value of 

0.165 (paired t-test), whereas the difference in the computerised data groups did 

achieve statistical significance (p= 0.04, paired t-test).

6.3.3.1.2 Arc expression

These results (shown in figures 6.20 and 6.21) demonstrate that Arc is also expressed 

at a slightly higher level in subsequent recurrent tumours than in the original tumours. 

As with P-tubulin III expression, this was the trend when the same cases were 

measured with both the visual analogue method and the spectral imaging method. 

However in this case the difference between the staining of these groups was not
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Tumour group Mean SD
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CO CR

Statistical test p value
Paired t-test 0.165

Figure 6.18: Comparison o f intensity o f p-tubulin III staining (as measured by visual 
analogue scoring) between original BCCs (completely excised, group CO) and their 
subsequent recurrences (group CR). Average staining values and significance values 
of statistical tests are given.

0 30 - 0 18-

eo 0 .1 5 -

w  0.20-
c  0 1 2 -

n 0 1 0-
-  0 1 0 -

0 0 5 -

o 0 0 - 0 .05 -

Tumour group Mean SD
CO 0.085 0.045
CR 0.129 0.059

Statistical test p value
Paired t-test 0.039

Figure 6.19: Comparison o f intensity o f P-tubulin III staining (as measured by spectral 
image analysis) between original BCCs (completely excised, group CO) and their 
subsequent recurrences (group CR). Average staining values and significance values 
of statistical tests are given.
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Figure 6.20: Comparison o f intensity o f Arc staining (as measured by visual analogue 
scoring) between original BCCs (completely excised, group CO) and their subsequent 
recurrences (group CR). Average staining values and significance values of statistical 
tests are given.
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Figure 6.21: Comparison o f intensity of Arc staining (as measured by spectral image 
analysis) between original BCCs (completely excised, group CO) and their 
subsequent recurrences (group CR). Average staining values and significance values 
of statistical tests are given.
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significant when measured by either technique (p=0.67 (paired t-test) when measured 

visually, p=0.48 (paired t-test) when measured by computer). From a statistical point 

of view, there was no difference in the staining of these groups with Arc.

6.3.3.1.3 GAP-43 expression

In contrast to both P-tubulin III and Arc, GAP-43 is expressed at a slightly lower level 

in subsequent recurrent tumours than in the original completely excised tumours, as 

shown in figures 6.22 and 6.23. This trend existed when the same cases were 

measured with both the visual analogue method and the spectral imaging method. 

However, the difference between the staining of these groups was not significant 

when measured by either technique (p=0.17 (paired t-test) when measured visually, 

p=0.25 (paired t-test) when measured by computer). From a statistical point of view, 

there was no difference in GAP-43 staining between these groups.

6.3.3.2 Incompletely excised tum ours

In this set of results the immunohistochemical staining of P-tubulin III, Arc and GAP- 

43 were compared between groups of tumours that had originally been incompletely 

excised and the subsequent recurrences of these tumours (groups IO and IR). As 

previously, these results were plotted by group (whether original or recurrent tumour) 

and compared statistically.

6.3.3.2.1 ^-tubulin III expression

The results shown in figures 6.24 and 6.25 demonstrate that there is no significant 

difference in P-tubulin III expression between the original tumours and subsequent 

recurrent tumours. When this staining was assessed by visual analysis there was no 

difference in the mean staining intensity of these tumours at all. Therefore no 

statistical analysis has been performed on these results, as it is obvious that there is no 

difference. When using spectral imaging analysis only a very slight increase in 

staining was seen in the recurrent tumour group. However, this difference was not 

significant (p=0.95, paired t-test).

6.3.3.2.2 Arc expression

Similar to the previous results, there is no significant difference in Arc expression 

between the original tumours and subsequent recurrent tumours, as shown in figures
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Figure 6.22: Comparison o f intensity o f GAP-43 staining (as measured by visual 
analogue scoring) between original BCCs (completely excised, group CO) and their 
subsequent recurrences (group CR). Average staining values and significance values 
of statistical tests are given.
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Figure 6.23: Comparison of intensity of GAP-43 staining (as measured by spectral 
image analysis) between original BCCs (completely excised, group CO) and their 
subsequent recurrences (group CR). Average staining values and significance values 
o f statistical tests are given.
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Tumour group Mean SD
10 1.00 0.58
IR 1.00 0.58

Figure 6.24: Comparison o f intensity o f p-tubulin III staining (as measured by visual 
analogue scoring) between original BCCs (incompletely excised, group IO) and their 
subsequent recurrences (group IR). Average staining values are given.

Tumour group Mean SD
IO 0.157 0.075
IR 0.159 0.072

Statistical test p value
Paired t-test 0.953

Figure 6.25: Comparison of intensity o f p-tubulin III staining (as measured by spectral 
image analysis) between original BCCs (incompletely excised, group IO) and their 
subsequent recurrences (group IR). Average staining values and significance values o f 
statistical tests are given.
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6.26 and 6.27. When this staining was assessed by visual analysis there was no 

difference in the means of and variation within the staining intensity of the tumours in 

these groups. Again, no statistical analysis has been performed on these results, as it is 

obvious that there is no difference between groups. When using spectral imaging 

analysis, only a very slight increase in staining was seen in the recurrent tumour group 

(IR), compared to the original tumours (IO). However, this difference was not 

significant (p=0.72, paired t-test).

6.3.3.2.3 GAP-43 expression

GAP-43 expression was seen to be decreased in the tumours of the subsequent 

recurrence group, as seen in figures 6.28 and 6.29. This was the case when the results 

were assessed by both visual analogue scoring and spectral image analysis. However, 

in neither case was a statistically significant difference found (p=0.44 (paired t-test) 

when measured visually, p=0.33 (paired t-test) when measured by computer). From a 

statistical point of view, there was no difference in GAP-43 staining between these 

groups.
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Figure 6.26: Comparison of intensity of Arc staining (as measured by visual analogue 
scoring) between original BCCs (incompletely excised, group IO) and their 
subsequent recurrences (group IR). Average staining values are given.
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Figure 6.27: Comparison of intensity of Arc staining (as measured by spectral image 
analysis) between original BCCs (incompletely excised, group IO) and their 
subsequent recurrences (group IR). Average staining values and significance values of 
statistical tests are given.
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Figure 6.28: Comparison o f intensity o f GAP-43 staining (as measured by visual 
analogue scoring) between original BCCs (incompletely excised, group IO) and their 
subsequent recurrences (group IR). Average staining values and significance values of 
statistical tests are given.
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Figure 6.29: Comparison o f intensity of GAP-43 staining (as measured by spectral 
image analysis) between original BCCs (incompletely excised, group IO) and their 
subsequent recurrences (group IR). Average staining values and significance values of 
statistical tests are given.
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6.3.4 Summary of results

All the results of statistical comparisons between groups are shown in table 6.6.

Antibody Method Groups compared 2nd group change Test p-value

Completely excised tumours which go on to recur or not recur

BT VAS CN CO Decrease Unpaired t-test 0.011*

SIA CN CO Decrease Unpaired t-test 0.001***

Arc VAS CN CO No change Unpaired t-test 0.218

SIA CN CO Decrease Unpaired t-test 0.204

GAP-43 VAS CN CO Decrease Unpaired t-test 0.083

SIA CN CO Decrease Unpaired t-test 0.058

Incompletely excised tumours which go on to recur or not recur

BT VAS IN IO Decrease Unpaired t-test 0.070

SIA IN IO Decrease Unpaired t-test 0.070

Arc VAS IN IO Decrease Unpaired t-test 0.518

SIA IN IO Decrease Unpaired t-test 0.271

GAP-43 VAS IN IO Decrease Unpaired t-test 0.243

SIA IN IO Decrease Unpaired t-test 0.617

Completely excised original tumours and their subsequent recurrences

BT VAS CO CR Increase Paired t-test 0.165

SIA CO CR Increase Paired t-test 0.04*

Arc VAS CO CR Increase Paired t-test 0.67

SIA CO CR Increase Paired t-test 0.48

GAP-43 VAS CO CR Decrease Paired t-test 0.165

SIA CO CR Decrease Paired t-test 0.254

Incompletely excised original tumours and their subsequent recurrences

BT VAS IO IR No change Paired t-test (1.0)

SIA IO IR Increase Paired t-test 0.95

Arc VAS IO IR No change Paired t-test (1.0)

SIA IO IR Increase Paired t-test 0.72

GAP-43 VAS IO IR Decrease Paired t-test 0.43

SIA IO IR Decrease Paired t-test 0.32

Table 6.6: Summary of differences in immunohistochemical staining by group with 
associated statistical significances of differences in staining. BT = p-tubulin III, VAS 
= visual analogue scoring, SIA = Spectral Image Analysis (* = p-values < 0.05, ** = 
p-values <0.01, *** = p-values <0.001).
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6.4 Discussion

6.4.1.1 Factors affecting recurrence of Basal Cell Carcinoma

This study of tumours that had arisen in the sites of previously surgically excised 

BCCs was undertaken to assess whether the expression of neuronal differentiation 

markers had any predictive value for tumour recurrence.

It is known already that there are a number of clinical and histological features that 

correlate with the likelihood of tumour recurrence. These have been extensively 

examined in a number of prior publications and include age and gender of patient, site 

of tumour, histopathological differences between tumours and degree of completeness 

of tumour excision, as cited previously in this thesis.

The question of incomplete excision and recurrence has come under the particular 

spotlight recently. Berlin et al (2002) retrospectively reviewed 64 patients who had 

had incomplete BCC excision and who had been followed up for a minimum of three 

years. They found that size of tumour (less than 1cm in diameter), histological 

subtype (of nodular or superficial subtype), and location (located anywhere except the 

nose and ears) were all significantly related to a reduced rate of BCC tumour 

persistence (Berlin et al., 2002). De Silva and colleagues, however, prospectively 

followed a cohort of patients who had BCCs incompletely excised and concluded that 

neither age, sex nor tumour location affected whether an incompletely excised tumour 

recurred or not (De Silva and Dellon, 1985).

The concept of recurrence itself in BCC is a topic that engenders much debate. 

Obviously if there is evidence that a tumour has been incompletely resected and that 

tumour may remain in the tumour bed, then re-occurrence of a BCC tumour should 

not be wholly surprising. In fact, as previously discussed, the recurrence rate of 

tumours where tissue is thought to have been left behind is not as high as might be 

expected. Good examples of this include the common dermatological practice of 

curetting BCCs and cauterising the tumour bed. In this case it is highly likely that 

tumour is left behind, and immediate biopsies of such BCC treatment sites have been 

shown to harbour remaining tumour in 33-45% of cases. However, the practice is still 

an accepted option because the rate of tumour recurrence is still much lower than this
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(Gooding et al., 1965; Pascal et al., 1968; Rowe et al., 1989). Similarly, when 

discussing the management of incompletely surgically excised BCCs, I have already 

mentioned that the recurrence rate for these tumours is in the order of 33-39%. This of 

course means that the remainder of the tumours have potentially got tumour 

remaining in the tumour bed following excision, but this group of incompletely 

excised tumours does not seem to recur. This may of course be due to the 

shortcomings of histological analysis as previously discussed, where this may be a 

false positive margin result. In the case of a true positive margin, however, two major 

factors that cannot be accounted for include how much tumour is actually left behind 

following excision or curettage of the tumour, and what component a host response 

plays in reacting to the remaining tumour.

Rather than bracket all cases as truly “recurrent” cases, it would be reasonable to 

instead consider cases where remaining BCC is thought to contribute to development 

of a subsequent tumour as “persistence” of tumour rather than a recurrence per se. 

However, in the practical setting using this as a separate classification may be 

impractical as its use would assume that tumours described in this way fit rather more 

rigorous criteria (in terms of presence of residual tumour) than can often be applied.

Certainly in the case of any work that has been done on investigating the molecular 

biology of BCCs, no studies have been published that have used anything other than 

archival material based on retrospective data. This has limited these studies to 

immunohistochemical experiments, assessing protein expression in archival material. 

To take this further (to assess gene expression) in such tumours would require a vast 

amount of extra work. The prospect of gathering fresh samples from every BCC 

harvested in a department with the intention of building a frozen library of biopsies, 

of which only a small number will recur, is beyond even the most committed skin 

cancer research units.

One of the few recent papers to try and address this lack of molecular biological 

knowledge in specifically recurrent BCCs (as opposed to different subtypes of BCC) 

was published by Healy et al (Healy et al., 1995). That study selected their tumour 

groups in a similar manner to how I have done -  seventeen tumours which had
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recurred following surgical excision were examined immunohistochemically, but in 

this case only completely excised tumours were considered and no mention is made of 

their definition of “complete” excision. These were compared with seventeen similar 

tumours that did not recur, and these groups were matched only for age, sex and year 

of excision. They examined the expression of a marker of proliferation, Ki67, and also 

the expression of p53. They concluded that Ki67 expression was expressed at higher 

levels in tumours that went on to recur, and this difference was statistically 

significant. No statistically significant difference was noted with p53 expression.

It has been discussed that improved complete excision of BCCs reduces the risk of 

tumour recurrence. Improved estimation of completeness of excision is possible 

compared to routine histological techniques where a single slice is taken transversely 

through the tumour section. One can progress to taking multiple slices in multiple 

planes, known as “breadslicing”, and this gives improved information to treating 

doctors and to patients following a definitive excision attempt, but even this method 

still only examines a small proportion of the tumour edge. The ultimate way to know 

whether you have completely removed all of the tumour in that area is to use Mohs’ 

surgery. Close examination of all tumour margins at the time of excision in a plane 

that is parallel to the edge of the tumour means that repeated excisions are performed 

until all regions are clear of tumour. Hence, recurrence following this type of 

procedure is the lowest of all treatment modalities for BCC (Rowe et al., 1989).

However Mohs’ surgery is expensive and time-consuming. Studies have been 

performed to compare costs and claim that there is little cost difference, but these 

studies have compared specific groups of tumours (BCCs of the face or ear) with 

specific additional diagnostic tests (including on site frozen section control) (Bialy et 

al., 2004; Cook and Zitelli, 1998). Mohs surgery also needs to be performed in units 

that regularly use it as method, limiting its availability. In this country it is 

traditionally reserved for tumours that are known to be high-grade or of an aggressive 

growth pattern, in areas where sensitive resection and reconstruction must be 

considered. Classic areas include the periorbital and perinasal areas, where the 

benefits of Mohs surgery in maximising tumour clearance while sacrificing as little 

normal tissue as is possible comes into its own. However, because of the practical and 

cost limitations in its use, the vast majority of skin cancer surgical excisions are
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performed using routine surgical methods. It stands to reason that for the majority of 

BCCs in non-critical sites which do not need immediate histological assessment 

routine surgery will be cheaper and less labour intensive than Mohs’ surgery. In all 

these cases there must always be an element of suspicion that so-called “recurrent” 

tumours are indeed “persistent” tumours because of relative lack of assurance that the 

original excision was definitely complete.

There is, however, some value, in considering these tumours that are routinely 

surgically excised, as I have. Standard surgical excision is the commonest method of 

surgical treatment and so this study which used archival material where excision 

margins had been recorded following examination of multiple slices, attempts to be 

representative of the majority of BCCs that are excised in this country. Questions such 

as those regarding the likelihood of recurrence following incomplete excision are the 

most clinically relevant questions that this research could hope to answer. Such 

incomplete margins do not exist with Mohs’ surgery, and so I aimed to use my 

previous experimental findings to shed light on everyday problems using material that 

is relevant to everyday practice.

In chapter three I showed that the staining intensity of p-tubulin III, Arc and GAP-43 

were related to the histological growth pattern subtypes of the tumours. Analysis of 

variance showed that, in terms of antibody staining, different populations of tumours 

were being represented. Specific comparisons of subtypes of BCCs, when grouped by 

predicted behaviour class (Indolent, Aggressive), showed that there were statistically 

significant differences in staining between these types of BCC. This however relies on 

the assumption that tumours with a certain histopathological appearance will fit neatly 

into the classification of predicted tumour behaviour. There is a good deal of evidence 

that the so-called more aggressive subtypes of BCC do behave more aggressively, but 

this rule is not absolute (Freeman and Duncan, 1973; Menn et al., 1971; Pascal et al., 

1968; Shanoff et al., 1967). This part of my study therefore aimed to go beyond 

predicted clinical behaviour and attempted to determine whether expression of these 

markers truly does have any value in predicting if a tumour has inherent biological 

features which are linked to recurrence.
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6.4.1.2 Groups compared and data measurement

Groups were selected to try and minimise the bias of multiple additional factors that 

affect recurrence. By matching the “going to recur” and “not going to recur” groups 

as closely as possible to each other in terms of the gender, body site, excision margin 

and class of histological growth pattern subtype, I attempted to highlight other 

potential biological differences in these groups that would affect their re-growth. Two 

groups of tumours that had been completely excised were compared as to whether 

their expression of p-tubulin III, Arc and GAP-43 were linked to whether they had 

recurred or not (CN vs CO). Similarly, tumours that had been incompletely excised 

were assessed in the same way (IN vs IO).

The original tumours were also compared with their subsequent recurrences (groups 

CO vs CR and IO vs IR). This was done to assess whether there was any correlation 

with a change in the expression of these markers and progression of the tumour. At no 

point were comparisons made between tumours that had been excised to different 

degrees (a strong factor in recurrence) -  for this reason at no stage was a “C” tumour 

compared with an “I” tumour. Similarly, tumours in groups that differed in their 

demographic make-up (sex, site, age) were not compared (such as an “N” tumour 

compared to an “R” tumour).

The methods of Visual Analogue Scoring and Spectral Imaging Analysis were 

compared in chapter three. It was obvious from those results that the methods are 

comparable in that a near-linear distribution was shown to exist between the two 

techniques’ results from the same tumours. This direct correlation of data has not been 

repeated in this chapter. I do however feel that spectral imaging analysis with its 

ability to specifically delineate staining intensities has benefits when considering the 

more subtle differences between groups such as these. When examining the 

comparisons between groups, in no case was there a reduction in staining when 

measured by visual analogue scoring and an increase as measured by the computer 

method (or vice versa).

The cases in which no difference was shown by visual scoring but where a change 

was present when assessed by spectral image analysis (comparisons IO vs IR for Arc
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and for P-tubulin III staining) had very close results when assessed by computer, as 

reflected by the respective p-values for these comparisons (0.72 and 0.95). Given the 

near-infinite number of values that the spectral imaging system can return, it is 

unlikely that absolutely identical values would be returned for two groups of tumours 

with such heterogeneity of staining. A high value of the p-number is as close as I can 

get to reassuring ourselves that this is the case.

6.4.1.3 Number of cases involved in this study

Of 8444 histological reports classified as consisting of Basal Cell Carcinoma from 

two centres, a total of thirteen were selected as being recurrent tumours which 

developed following complete excision of the original BCC tumours. Similarly 

thirteen BCCs were discovered that had been originally incompletely removed and 

which subsequently recurred.

If considered to represent all the recurrences in this large number of tumours, these 

figures represent a very low rate of recurrence (a total of 26/8444 = 0.3%). However 

this cannot be considered to be the case. Exclusion criteria ensured that only tumours 

with defined excision margins and for which paraffin-embedded tumour blocks were 

available were included. Tumours for which radiotherapy had been used as a 

treatment were also excluded. Additionally, there was no provision in this population 

for tumours that may have recurred following excision but which were either ignored 

by the patients, treated elsewhere, or in whom the patients died before re-excision. 

This is essential information in any true study of BCC recurrence incidence; that was 

not the purpose of this part of the study and as such these groups of tumours cannot be 

considered to be representative of all the recurrent tumours.

From a follow up point of view the important groups in this study were those tumours 

that did not recur following BCC excision (groups CN and IN). In this case it was 

essential to ensure that the patients had lived long enough following the original 

surgery, that they had not suffered a recurrence and that adequate follow up data was 

available to determine this. Part of this involved checking also that no further skin 

cancer treatment had been sought for that area of the patient’s body, so that other 

inventions would not act as a confounding factor. From this large number of reports 

initially available, groups (IN and CN) with similar numbers of tumours to the
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comparison groups (IO and CO) were generated. The high number of patients 

excluded due to lack of adequate follow up, recurrence or short survival follow up 

testifies to the difficulties with performing comparative research using archival 

material such as this.

6.4.1.4 Immunohistochemistry of tumours that recur and those that do not 
recur

Antibody Comparison p-value as per VAS p-value as per SIA
P-tubulin III CN vs CO 0.011* 0.001***
Arc CN vs CO 0.218 0.204
GAP-43 CN vs CO 0.083 0.058

P-tubulin III IN vs IO 0.070 0.070
Arc IN vs IO 0.518 0.271
GAP-43 IN vs IO 0.243 0.617

Table 6.7: Comparison of p-values representing differences in tumour staining 
between groups of tumours that do go on to recur and those that do not as measured 
by either spectral imaging analysis (SIA) or visual analogue scoring (VAS) using 
three antibodies (* = p-values < 0.05, ** = p-values <0.01, *** = p-values <0.001).

The comparisons of antibody staining in the various tumour groups showed a variety 

of differences, as shown in table 6.7. The main feature that was evident was that 

overall there appeared to be a consistently lower intensity of staining present in 

tumours that subsequently went on to recur following excision when compared to 

those that did not.

This was most marked in the groups where original excision had been complete, with 

radial and deep surgical margins of at least 1 millimetre. In the case of P-tubulin III 

expression this difference was highly significant with p-values less than 0.05. Such a 

strong degree of correlation with staining and recurrence was not present using other 

antibodies. GAP-43 staining was only marginally insignificant when assessed by 

computer SIA scoring (p = 0.058) but was less significant when staining was 

measured by visual methods (p = 0.083). Arc staining was markedly insignificant 

with mean values and confidence limits that overlapped greatly.

In cases where the tumour had originally been incompletely excised no significant 

differences in staining were present. Differences in staining with p-tubulin III were
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greater than those with other antibodies in these experiments, but still statistical 

significance was not reached (p = 0.07 with both assessment methods). With both Arc 

and GAP-43 large overlaps of confidence limits and mean staining intensities that 

were not very different resulted in insignificant differences between the groups as 

reflected by the high p-values shown.

The generally lower level of staining seen in the tumours that did recur correlates in 

an interesting way with the results from chapter three. I showed that the expression of 

these markers was related to histopathological subtype, and that tumours which are 

typically thought to behave aggressively expressed these markers to a lesser degree 

than those that tend to behave indolently. In this chapter I have shown that there is 

indeed a reduced level of staining in tumours that are more aggressive, as inferred by 

their recurring rather than not recurring.

When the differences in staining between similarly excised groups are compared, they 

imply that there is less difference between the incompletely excised groups (IO vs IN) 

than there is between the completely excised groups (CO vs CN). In other words, 

tumours in the IO group are likely to stain similarly to tumours in the IN group, 

whereas tumours in the CO and CN groups are likely to stain differently.

If one considers these markers of neuronal differentiation as a marker of biological 

similarity, one sees that IO tumours are more “like” IN tumours, i.e. whether they 

recur or not is less a feature of the fact that they are biologically different, and it is 

highly likely that the degree to which they have been incompletely excised has a 

major effect on the subsequent outcome. CO tumours, however, do appear to behave 

differently in staining terms to the CR tumours, and although these groups were 

matched by other factors known to affect recurrence they appear to behave differently 

in both biological terms and in staining terms.

The IO and IN groups were also matched by site, sex, age and subtype of tumour. The 

lack of difference in staining between them did not correlate with the lack of 

biological difference -  after all, one group recurred and one did not (as big a 

biological difference as can be measured in these cases). Yet no statistically 

significant difference was noted using any of these antibodies. The main factor (even
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accounting for the matching of other variables) linking these cases was that they were 

indeed incompletely excised. It is assumed from this therefore that tumour is left 

behind following the incomplete excision, and the two major factors affecting 

recurrence at this point would be the actual amount of tumour left behind (it makes 

sense that a lot of tumour is more likely to recur as a clinically detectable BCC than a 

very small amount) and the host response to that remaining tumour. These variables 

can in no way be accounted for in this type of study -  with the decision having been 

taken to “watch and wait” it is of course unknown how much tumour lurked behind, 

or what degree of host response is occurring in the period following the surgery. 

These factors may play a significant factor in the fact that many incompletely excised 

tumours do not recur.

One additional property of the staining of these tumours that is clear is that there is a 

great degree of heterogeneous staining in all groups examined. This reflects the fact 

that not only is there a variation of staining seen within tumour types (as discussed in 

chapter 3) but also that these groups are made up of tumours of different subtypes. 

Therefore a degree of heterogeneity would be expected and indeed this is reflected in 

the confidence intervals that are shown for each group with each antibody.

6.4.1.5 Immunohistochemistry of primary tumours and their subsequent 
recurrences

The tumours in the groups compared in this section were linked by the fact that in 

each case they were paired recurrences i.e. one tumour in the CO group had given rise 

to one of the tumours in the CR group. However, although age, gender and site 

differences did not exist (because each patient gave rise to a pair of tumours, one in 

each group) there were marked differences in the histological subtypes present in each 

group. Interestingly the majority of the completely excised original tumours which 

went on to recur were of a typically aggressive subytpe (8/13) whereas the 

recurrences associated with these were mainly classified as indolent tumour subtypes 

(9/13). The incompletely excised tumours which went on to recur were, however, 

mainly indolent in nature (8/13), and their recurrences were more aggressive in nature 

(9/13).
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It is also interesting to note that the mean time to recurrence was markedly less for the 

tumours that were incompletely excised compared to those that were completely 

excised (CO—♦CR mean 4.0 years, IO—*IR mean 2.1 years). The difference between 

them was not statistically significant, but only marginally so (p-value = 0.052). It 

makes sense that if tumours are going to recur, those with a higher starting amount of 

tumour bulk will grow to be clinically detectable BCCs in a shorter period of time.

Antibody Comparison p-value as per VAS p-vaiue as per SIA
P-tubulin III CO vs CR 0.165 0.04*
Arc CO vs CR 0.67 0.48
GAP-43 CO vs CR 0.165 0.254

P-tubulin III IO vs IR (1.0) 0.96
Arc IO vs IR (1.0) 0.72
GAP-43 IO vs IR 0.43 0.32

Table 6.8: Comparison of p-values representing differences in tumour staining 
between groups of original tumours and their recurrences as measured by either 
spectral imaging analysis (SIA) or visual analogue scoring (VAS) using three 
antibodies (* = p-values < 0.05, ** = p-values <0.01, *** = p-values <0.001).

The immunohistochemistry results show that on the whole there was very little 

difference in staining intensity between original BCC tumours and their subsequent 

recurrences, as illustrated by the summary of these results shown in table 6.8. The 

only experimental combination that produced a significant difference was the 

comparison of completely excised tumours and their subsequent recurrences using the 

P-tubulin III antibody. This comparison yielded a significant difference where the 

staining of original tumours was significantly less than that of the matched subsequent 

recurrent tumours. All the other decreases seen with P-tubulin III and Arc were not 

statistically significant. Only in the case of GAP-43 was there seen to be a general 

increasing trend of staining in subsequent recurrent tumours. However these 

differences were also not statistically significant.

When comparing the original tumours and their subsequent recurrences one factor is 

constant: every tumour in these groups is either a recurrence, or will lead to one. The 

biological behaviour of these tumours is a fixed point of reference (unless one 

considers the timing of those recurrences, but that is not a debate I will address here).
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What is o f interest is that the differences between the comparison groups obviously 

vary and when the significance of the differences between groups is examined an 

interesting concept arises. There are, on average, more significant differences in 

staining between the completely excised tumour groups (i.e. CO vs CR, p-values 

0.165, 0.67, 0.165 (VAS) and 0.04, 0.48, 0.254 (SIA)) than there are between the 

incompletely excised tumour groups (i.e. IO vs IR, p-values 1.0, 1.0, 0.43 (VAS) and 

0.96, 0.72, 0.32 (SIA)). This is illustrated graphically in figure 6.30.

CO vs CR IO vs IR c o  vs CR !0 vs ,R

Figure 6.30: Bar chart and boxplot o f p-values arising from comparisons of staining 
intensity in completely and incompletely excised BCCs and their subsequent 
recurrences. For each group six p-values are shown -  two values (spectral imaging 
and visual analogue data) from each of the three antibodies.

It can be seen from these figures that the recurrent tumours which develop following 

the complete excision o f a BCC are more different in staining to their original source 

tumours (i.e. lower p-values o f statistical comparison), than recurrent tumours which 

arise following an incomplete excision are to their source tumours (i.e. higher p- 

values). The highest p-values in the IO/IR comparison come from visual analogue 

comparisons that were absolutely identical (p-tubulin III and Arc, p-values considered 

to be 1.0) and from the spectral imaging analysis of P-tubulin III staining (p-value = 

0.96). This reflects the similarity between the staining of incompletely excised 

tumours and how that contrasts with the staining differences that exist between 

completely excised BCCs.

If one assumes (again) that the change in expression of these proteins is indeed a form 

of marker for altered biological behaviour, then one could postulate that there is more
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biological difference between the completely excised original tumours and their 

recurrences than in the equivalent incompletely excised tumours. Or put another way, 

the recurrences that arise from incompletely excised tumours are more “like” their 

original tumours. This could of course be explained by the fact that if tumour resides 

in the excision site, then any recurrent tumour is likely to be a persistence rather than 

a recurrence per se. So actually in this category I am comparing “recurrent” tumours 

and “persistent” tumours, and demonstrate that although they both “recur” there are 

fundamental differences in their biological relationships with their subsequent 

recurrent tumours.

Completely excised tumours have to “overcome” a more complete excision if they 

recur, as opposed to incompletely excised tumours which could be said to “persist”. 

The more significant differences noted between the staining of the completely excised 

tumour groups could correlate with the tumour being that much more capable of re­

growth. The majority of completely excised tumours in this group that recurred were 

of a more aggressive subtype and did exhibit more significantly reduced levels of 

neuronal differentiation marker expression than those that did not.
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Chapter 7: General Discussion

7.1 Clinico-pathological background to BCC

As has been discussed in the preceding chapters of this thesis, there is a wide variety 

of tumour phenotype included within the diagnosis Basal Cell Carcinoma. 

Historically, it is known that these tumours were recognised as common, and that the 

treatment of them was often best achieved by excisional methods.

Today, many historical observations still hold true, but a great deal of scientific 

refinement has been applied to the knowledge of this disease. The main developments 

have come with identification of both environmental and genetic predispositions to 

skin cancer development. In particular, exposure to ultraviolet radiation and the 

subsequent mutation of the patched tumour suppressor gene is of key importance to 

the development of BCC. Any other predisposing condition such as 

immunosuppression (pharmacological or otherwise) or inherited traits (Gorlin’s 

syndrome or Xeroderma pigmentosum) which increase the likelihood of genetic 

abnormalities occurring or being preserved will have an additive effect on the normal 

causes for BCC development.

BCC is very common, and although a huge amount of data has been published on the 

clinical, histological and genetic aspects of the disease, there are difficulties when it 

comes to relating these changes to outcome. This is, of course, the most clinically 

relevant part of research; although better understanding of disease biology increases 

the chances of improving treatment, this is only possible if strong correlations can be 

made between treatment and outcome. Unlike more severe skin cancers such as 

melanoma (where outcome is definite: local, nodal or distant recurrence potentially 

leading to death), the problem with BCC is that outcome is a difficult term to define 

exactly. Local recurrence is the only end point of importance here -  regional and 

distant metastasis is only a problem in exceptional cases. The frequency of the 

disease, however, still makes BCC a considerable healthcare issue (and expense) and 

it is this that drives the search for more effective treatment modalities.
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Of course, eradication of disease and prevention of recurrence is the goal of any 

treatment, but in the case of BCC defining both the extent of treatment (specifically 

the extent of tumour mass excision or ablation) and the extent of success (do tumours 

recur, or do they merely persist following re-growth of residual tumour, or are they 

new tumours that happen to be in the same site as previous ones?) is challenging. To 

define the absolute rate of recurrence ten years follow-up has been used as the best 

indicator of disease recurrence, although of recurrences over ten years, 80% will 

occur in the first five (Rowe et al., 1989). For common tumours which already present 

a significant healthcare cost burden, the number of institutions which are able or 

financially willing to carry on such intense follow-up is small, and for this reason 

much of the data regarding tumour recurrence in this country is small. One of the 

more prolific researchers in this field is R.W. Griffiths, based in Sheffield, whose unit 

has a commitment to optimal surgical treatment and long term follow-up of BCCs. 

After many years of research and a number of quality publications on the subject, his 

conclusion is that BCCs which are conventionally excised (as proven by 

“breadslicing” of the histological specimens) with clearly defined excision margins 

have a low recurrence rate, in the order of 1.3% over 5 years (Griffiths et al., 2005). 

This compares favourably with other published data.

However, in the majority of cases, the treatment of BCC will remain surgical until 

improved treatments with equally effective or better eradication rates, less side-effects 

or lower costs are defined. Many such treatments are still being trialed; these include 

immunomodulators such as Imiquimod, retinoids such as tazarotene and intralesional 

interferon a-2b. These have mostly been used on either superficial BCCs or tumours 

that are likely to behave indolently such as nodular tumours. However, none of these 

therapies specifically target the changes in cell biology that define BCC, but instead 

they rely mostly on non-specific tissue ablation and subsequent healing of the area by 

the body’s innate wound repair mechanisms. Treatment with specific hedgehog- 

signalling antagonists has been trialed in mice but this has not been attempted in 

humans due to the likely risk of side effects following administration (Taipale et al., 

2000; Athar et al., 2004).

Therefore, in the majority of cases complete surgical excision is still the accepted gold 

standard. This is best achieved by Mohs surgery, but its expense and time
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consumption makes it unsuitable for routine use. For this reason, the search for ways 

to improve the efficacy of routine surgical excision and histological reporting is most 

likely to have benefits to all BCC patients. The recent evidence showing that discrete 

tumours (such as clearly visually defined nodular and superficial cases) should be 

excised with a 3-4mm margin, whereas indiscrete tumours (such as those likely to be 

infiltrative in nature) should be excised with greater margin is currently the most 

important consideration in routine surgery (Telfer et al., 1999). However, there will 

always be cases where tumours are incompletely excised, and the management of 

these is not clear cut. Even Griffiths states that in a unit where concerted efforts are 

made to re-excise such tumour beds, there are some that slip through the net and this 

proportion will be much greater in units where such an aggressive policy is not 

followed. In these cases, additional markers that may assist in predicting outcome 

would be particularly useful in affecting what are sometimes difficult surgical 

decisions.

7.2 Molecular Biology advances in BCC

The molecular biology of BCC took a great leap forward in the 1990’s following the 

discovery that patched mutations are the key alterations in Gorlin’s syndrome, and 

that these mutations are also found in sporadic BCCs. Since that time a vast amount of 

other work has progressed knowledge about this cell signalling pathway, and 

alterations or mutations in expression of many of the main components in this 

pathway (hedgehog, ptchl and ptch2, smoothened, suppressor o f fused, Glil and 

GU2) have been discovered in BCC. The action of Gli proteins as transcription factors 

has been established but only a limited amount is known about what happens 

downstream of its effect at the nucleus. Significant downstream effectors of hedgehog 

network signalling in BCC include the Wnt signalling pathway, other transcription 

factors such as FOXM1 and FOXE1, and the cyclins intimately involved in the 

control of the cell cycle.

Some attempt has been made to explain why the variation in BCC growth patterns and 

clinical aggression exists. Changes in the expression of cyclins, Bcl-2, Ki-67and p53 

have all been noted in different subtypes of BCCs and it is significant that all these 

factors are involved in the control of the cell cycle and apoptosis. Higher expression 

of the anti-apoptotic protein Bcl-2 has been noted in less aggressive tumours which
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correlates with decreased rates of apoptosis in these tumours. Lower levels of 

expression of both cyclins and Ki67 (all of which are associated with control of the 

cell cycle and cell turnover) have been noted in indolent tumours compared to 

aggressive ones. p53 expression in BCCs has received much attention but the 

difficulties in interpretation of the results (including the question of whether 

immunohistochemical positivity correlates with mutant p53 expression) has not 

resulted in any clear consensus.

Part of the difficulty in the investigation of the molecular biology of BCC has been 

that a robust cell culture model has not been available (unlike that which is routinely 

used in the investigation of malignant melanoma). Various attempts have been made 

to grow BCCs in vitro but as mentioned in section 1.11.2, few of these have resulted 

in successful growth in the laboratory. The perceived wisdom on this subject is that 

with current techniques, culture of BCCs in the laboratory is not a reliable technique, 

and as such is not used in the study of BCC molecular biology.

I attempted to circumvent this by creating a series of retrovirally transfected primary 

keratinocytes which over-express the Gli transcription factors. My hypothesis was 

that these cells would (at least partially) mimic BCC cell signalling and that analysis 

of gene expression in these cells (performed initially by Prof. F. Aberger’s group in 

Salzburg using gene array technology) would lead to new discoveries regarding the 

mechanisms of Gli signalling in BCCs. The finding that molecules such as P-tubulin 

III and Arc are expressed in these cells led me to investigate the expression of these 

markers and others known to be associated with neuronal differentiation.

7.3 BCCs express markers of neuronal differentiation

7.3.1 Protein expression

In chapter 3 I have presented evidence that four molecules which are normally 

associated with a neuronal cell phenotype (P-tubulin III, Arc, GAP-43 and 

neurofilament) are expressed at a protein level in BCCs. Assessed by both visual 

analogue scoring and spectral image analysis, there appears to be a significant 

difference between the expression of these markers in normal non-tumour epidermis 

and in BCC tumour islands. Additionally, there appears to be a reduction in the
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expression of these markers in tumours that possess infiltrative or morpheic growth 

patterns compared to either micronodular tumours or more typically indolent tumours 

with nodular or superficial growth patterns. This reduction was most marked in the 

cases of P-tubulin III and GAP-43. In all cases the statistical significance of these 

differences was greater when the immunohistochemical staining was assessed by 

spectral image analysis. A particular example is that of neurofilament, where only a 

limited difference was shown by visual analogue scoring (p > 0.05) but a greater 

degree of difference was noted when SIA was used (p < 0.05).

The intracellular localisation of each protein was also looked at by visual inspection. 

It was shown that micronodular tumours have a particular tendency to express p- 

tubulin III and GAP-43 in a membranous fashion, whereas other tumours tend to 

show mainly cytoplasmic expression. This adds weight to the concept that 

micronodular tumours have specific biological features that are not always shared by 

other tumour subtypes. This was first suggested on the basis of histological 

appearances by Lang and Maize (Lang, Jr. and Maize, 1986) and subsequently 

differences in intracellular localisation of p-catenin specific to this subtype have been 

shown by El-Bahrawy et al (El Bahrawy et al., 2003). All this data suggests that 

micronodular tumours have specific biological changes that result in not only a 

separate physical growth pattern, but also a unique expression profile compared to 

other subtypes.

7.3.2 Genetic expression

The results presented in chapter 4 show that different methods of tissue processing for 

RNA extraction provide different total quantities of RNA, and that laser capture 

microdissection (LCM) provides the smallest quantities. This is ideally a trade off 

where the increased specificity of cell capture is offset by the small RNA yield. The 

limitations of the technique resulted in nine BCCs being used to compare gene 

expression following LCM, needle microdissection (NMD) and whole biopsy 

homogenisation (WHT). The strength of housekeeping p-actin bands were most 

intense in the bands from samples obtained from WHT which fits with the higher 

average RNA yield (see table 4.4).
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The expression of Gli 1 and Gli2 was variable in the BCC specimens, but notably 

bands were absent in the normal skin samples as well as the technical controls. No 

great difference was noted in the strength of the bands when comparing indolent and 

more aggressive BCCs.

The expression of the four sets of primers designed to amplify p-tubulin III, Arc, 

GAP-43 and Neurofilament genes was also variable. Although p-tubulin III and GAP- 

43 antibodies stained most strongly in BCCs, this was not always consistent with the 

level of gene expression. Interestingly, a number of the GAP-43 WHT PCR product 

bands were very intense, suggesting a great degree of GAP-43 gene expression in 

these samples. The same tumours that were processed using needle microdissection 

did not show such intensity, and a different tumour showed a high level of gene 

expression in this case. Neurofilament expression was generally weak, although there 

did seem to be a small amount of PCR product present in four of the WHT samples 

and up to four of the LCM samples -  no bands were seen in the NMD samples. The 

variability of expression with these two primer sets is difficult to draw meaningful 

conclusions from in terms of expression amongst the different types of BCC analysed 

(i.e. less aggressive tumours to the left, more aggressive tumours to the right.

The expression of p-tubulin III and Arc, however, is more interesting. For both 

primers using all three methods of RNA extraction, PCR product shows up in many 

(but not all) of the BCCs, but not normal skin and not in the technical negative 

controls. In addition, there is a slight preponderance of PCR product band intensity in 

the left-hand lanes, i.e. in the less aggressive BCCs. Less band intensity is seen in the 

more aggressive tumours although the difference is subtle. This correlates with the 

reduced expression of the corresponding proteins in the wax-embedded BCC 

specimens investigated with immunohistochemistry as described in chapter 3. Such a 

reduction of marker gene expression in more aggressive tumours has been discussed 

in terms of increased “de-differentiation” (da Costa, 2001) and it is highly likely that 

the BCCs with growth patterns that predispose to more aggressive behaviour are 

showing this phenomenon.

This concept of tumour de-differentiation, however, implies that a tumour is 

regressing to a state where such fine control over genetic expression and therefore
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phenotype has diminished. It is hard to imagine that this is the case in tumours which 

exhibit growth patterns so very different from normal epidermis, as is the case with 

infiltrative and morphoeic tumours. However, if one of the purposes of tight 

regulation of gene expression and cell turnover includes ordered regulation of the 

microarchitecture of tumours, it is possible that loss of this control could result in a 

much more haphazard growth pattern arrangement, as demonstrated in infiltrative and 

morphoeic BCCs.

Exactly what effect these molecules have on the growth of BCCs is not clear from 

these studies. Certainly in all these cases there does seem to be a correlation between 

the nature of the BCC (indolent or aggressive) and the likely degree of gene or protein 

expression. This, however, is not absolute (as can be seen from the overlap of 

confidence limits in chapter 3, or the variability of PCR product band intensity in 

chapter 4). It may be that the expression of these genes does not have a direct role in 

the development of a growth pattern per se, but may be more strongly associated with 

the degree of differentiation (or de-differentiation) present in tumours. Irrespective of 

this, the fact that their expression does correlate with the histopathological growth 

patterns that are likely to be associated with an aggressive tumour course, makes them 

likely to be of interest in the search for biomarkers that predict for the likelihood of 

tumour recurrence following treatment.

7.4 Glil and Gli2

The results that are presented in chapter five provide evidence that both Glil and GU2 

appear to have regulatory effects on the expression of each other and on the 

expression of the markers described previously. Regl et al have shown that there 

appears to be a positive feedback mechanism whereby expression of Glil and GU2 is 

positively regulated by each other (Regl et al., 2002) and these findings are confirmed 

in my experiments.

Real-time relative PCR quantification was used to assess how many cycles PCR 

reaction mixes took to reach a threshold level of PCR product. This was possible 

using starting cDNA which was produced using the same quantity of transfected cell 

mRNA in each case. The relative gene expression was therefore comparable in each
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case, given that the same amount of cDNA (originating from the same quantity of 

RNA) was present in each PCR reaction.

Glil transfected cells showed a significant rise in GU2 expression over control cells, 

and likewise Gli2 transfected cells showed a significant increase in Glil expression. 

This trend was repeated in both cell transfection experiments performed.

The expression of the markers of neuronal differentiation varied greatly, p-tubulin III 

was moderately up-regulated by both Glil and Gli2 with these reactions in the first 

transfection experiment reaching threshold on average 2.04 and 2.68 cycles earlier 

respectively (and 5.46 and 4.23 cycles earlier respectively in the second experiment). 

If one assumes that the growth of PCR product is exponential this corresponds to a 4- 

fold and 44-fold (22 04 and 25'46) relative increase in the gene expression for p-tubulin 

/ / / in  the G lil-transfected cells over two experiments. Similarly, this corresponds to a 

6.4-fold and 18.7-fold relative increase due to Gli2 over two experiments.

Arc was massively upregulated by both Glil and GU2. Arc PCR reactions using Gli- 

transfected keratinocyte cDNA from the first retroviral transfection reached threshold 

over 13 cycles earlier than cDNA from control keratinocytes, corresponding to more
1 3than a 8,000-fold (2 ) upregulation of gene expression. This upregulation in Glil- 

transfected cells was even stronger in the second cell transfection experiment, but not 

quite as massive in the G//2-transfected cells.

The huge up-regulation of Arc by Glil and Gli2 shows that Arc is clearly strongly 

under the control of Gli signalling. In comparison to P-tubulin III, Arc is clearly more 

sensitive to Gli expression. It is interesting to note that in chapter four I showed that 

Arc expression was, on average, slightly stronger than P-tubulin III expression in 

cDNA derived from BCCs: it is therefore possible that in terms of P-tubulin III and 

Arc gene expression, my retrovirally transfected keratinocytes do act as a model for 

BCC.

In the first transfection experiment neurofilament expression in Glil- and Gli2- 

transfected keratinocytes was seemingly decreased in G//-transfected keratinocytes 

compared to control cells. In the second transfection no signal was recorded in any
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group. Although most of the results from this second transfection occur later than 

those from the first, the lack of signal from this second experiment implies that 

neurofilament expression is either absent or very low in all the cell groups examined. 

Certainly expression of neurofilament at all in keratinocytes is unexpected and in the 

cases where a result was recorded, threshold was only reached in over thirty cycles in 

every case. This paucity (and possible down-regulation) of gene expression correlates 

only partially with the results from chapter four, in which a very small amount of 

neurofilament up-regulation was seen in BCC specimens. However, the intensity of 

the neurofilament PCR product bands was very weak, and with no signal registered in 

the normal skin samples, it is impossible to say whether any down-regulation 

occurred in these BCC samples.

GAP-43 was not expressed in any of the keratinocyte samples from either transfection 

and only very faint bands were seen following a standard PCR reaction. No 

comparative conclusion can be drawn from this other than noticing that if there is any 

GAP-43 gene expression present, it is very low in all groups. This contrasts with the 

PCR results from BCC cDNA in chapter four, where most of the samples were 

negative for GAP-43, but a small number of samples (two WTH and two NMD 

samples) did show very strong expression. On this basis, the transfected keratinocytes 

do not appear to be an ideal model system for GAP-43 expression in BCCs.

All these findings in transfected keratinocytes have been compared with PCR results 

from BCCs and in some cases (such as p-tubulin III and Arc) they compare 

favourably. However, not all these findings correlate well with the 

immunohistochemical findings presented in chapter three. In that case, p-tubulin III 

and GAP-43 proteins were expressed strongly in the more indolent tumours, with 

markedly decreased expression in more aggressive tumours. Arc protein expression 

was less intense than either of these, and neurofilament was the weakest antibody of 

all. However, in all cases significant differences were shown between the expression 

of these proteins in aggressive and non-aggressive BCCs.

It is possible that the keratinocyte model as it stands reflects to some degree the 

expression of P-tubulin III and Arc in BCCs, but less comprehensively GAP-43 and 

neurofilament. Also, the variation in gene expression seen in the BCC samples (with
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tumour aggression an important factor) makes it difficult to compare transfected 

keratinocyte results to BCCs in general. The most that can be concluded from this is 

that in some cases the comparative expression between normal keratinocytes and 

transfected keratinocytes (whether Glil or Gli2) does appear to highlight differences 

in gene expression, as is the case in the BCC PCR results.

When comparing the BCC PCR results and the immunohistochemistry results there is 

certainly evidence to suggest that there is a variation in expression of these markers at 

both gene and protein levels. The association of marker expression with tumour 

aggression, however, is not so strong at the gene level as it appears to be at the protein 

level, and it is likely that post-translational modification accounts for this.

7.5 Association with tumour biology

The results presented in chapter six show that there are differences in 

immunohistochemical staining between tumours that go on to recur and those that do 

not. The material used for this study was archival material for which follow-up data 

was available for at least eight years, and because of this I can be as sure as is possible 

that these cases definitely represent cases where cases have truly recurred or have not. 

The groups that were examined were matched for broad anatomical site, gender, age, 

excision margin (if complete) and histopathological subtype class (i.e. typically 

indolent or typically aggressive). The only major differences between the groups was 

their recurrence status, and so it was possible to conclude that the differences in 

staining for the antibodies previously used in chapter 3 would be due to intrinsic 

differences in the biology of the tumours that are associated with recurrence.

Few previous studies have attempted to make such correlations, a recent example 

being that by Healy et al who demonstrated that there were significant differences in 

Ki-67 expression (but not p53 expression) between tumours that go on to recur and 

those that do not. The results outlined in chapter six demonstrate that there are indeed 

some differences between these tumours, but few of these are significant. The only 

marker that was significantly reduced in recurrent tumours was P-tubulin III, which 

was markedly reduced in tumours that recurred following complete excision (p=0.011 

by visual analogue scoring, and p<0.001 by spectral image analysis). The difference 

between groups of tumours that were incompletely excised were not significant in any
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case, although again P-tubulin III came the closest to this with a p-value of 0.07. In 

the case of each antibody the significance of the difference between the incompletely 

excised groups of tumours was less than the completely excised groups.

The main conclusion to draw from this is that completely excised BCCs that recur 

differ more greatly in one aspect of their molecular biology (their expression of P- 

tubulin III) from their non-recurring counterparts than the incompletely excised 

recurring BCCs do from their non-recurring counterparts. The completely excised 

tumours that do recur are significantly different to the BCCs that do not in both their 

clinical course and their expression of P-tubulin III. None of the other markers, 

however, showed significant differences in staining patterns according to clinical 

recurrence status.

The most pressing clinical question that this relates to is of course the management of 

incompletely excised BCCs. As has been discussed, there is a historical precedent for 

basing the decision of whether to re-excise the scar and tumour bed on 

histopathological, age and location grounds. Unfortunately none of the antibodies 

used in this study are expressed at significantly different levels in incompletely 

excised tumours which do or do not recur. Therefore, none of them have a future as an 

immunohistochemical marker of likely future recurrence. Although a prospective trial 

of P-tubulin III expression in completely excised tumours could be set up, it is 

unlikely that a patient with a histologically completely removed BCC would be 

offered revisional surgery, whatever the expression of the marker. For these reasons, 

the future of biomarkers in incompletely excised BCCs will not feature any of the 

markers I have investigated here.

7.6 Conclusions

7.6.1 BCC histogenesis

There has been much debate about the histogenesis of Basal Cell Carcinoma as 

discussed in section 1.1. The greatest quantity of recent data proves that the outer root 

sheath area (ORS) of the hair follicle (the “bulge”) is the most likely source of BCCs, 

although this may not be absolute. Such data includes
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1) BCCs resemble tricoepithelioma, a benign hair follicle tumour (Walsh and

Ackerman, 1990).

2) BCCs have a similar immunohistochemical profile to the hair follicle ORS (Asada

et al., 1993; Kruger et al., 1999).

3) BCCs are generated more frequently following carcinogen addition in hair follicle

anagen (Miller et al., 1993b).

4) BCCs seldomly occur on non-hairy skin (Kore-eda et al., 1998).

5) B-CAM is expressed in suprabasal cell layers, the ORS of the hair follicle and in

BCCs (Bememann et al., 2000) but not in normal skin.

The role of stem cells in BCC development (whether they reside in the ORS of the 

hair follicle or elsewhere) is as yet uncertain. Stem cell biology is progressing rapidly 

in all fields of cancer biology and there has, as yet, been no definite clarification of a 

site harbouring stem cells that may become BCCs. It is thought that stem cells may 

have a significant role to play in both normal development and in neoplasia, and 

increasingly the evidence for links between these two states is becoming stronger. Not 

only are stem cells (with unlimited replicative potential, low proliferation rates and 

several possible fates) thought to be responsible for tumours upon acquisition of 

genetic mutations (Reya et al., 2001), but it appears that the reverse may also be true: 

teratocarcinoma cells can contribute to normal development if placed in early mouse 

embryos (Mintz and Fleischman, 1981). This demonstrates that under certain 

conditions tumour cells may be “de-programmed” to become normal and totipotent. 

Ruiz i Altaba, who has published extensively on the subject, has concluded that 

“tumours may be considered as organs that normally do not develop although the 

potential of their development exists all the time”. He goes on to suggest that “this 

potential could reside in stem cells, which are present in many if not all adult tissues, 

and that the need for the body to remain morphologically plastic and therefore 

evolutionarily fit, by retaining stem cells in the adult has a price -  tumourigenesis” 

(Altaba et al., 2002).

This concept is relevant to the link between epidermal and neurological tissues: the 

stem cells that give rise to skin are the same as those that give rise to the neurological 

system. The epidermis and the neurological system both derive from ectoderm: at 18 

days of development a cranial area of ectoderm in the embryo is influenced by the
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underlying prechordal and notochordal mesodermal plate and transdifferentiates to 

form neurectoderm (Larsen W.J., 1998). The role of the hair follicle here is that the 

epithelial linings of the follicle (including the outer root hair sheath) are ectodermal, 

ie. arising from the same original stem cells that the neurological system did.

A number of pieces of evidence outside of pure embryology add weight to the idea 

that epidermal and neurological tissue could share an ability to express similar genes, 

and this may help to explain the findings of this thesis:

1) Gli transcription factors were originally isolated in glioma brain cancer tissue,

hence their name, but yet are critical for development of Basal Cell Carcinomas 

of the skin.

2) It is now known that hedgehog signalling has critical effects on development in

general and on development of neurological malignancies such as 

medulloblastomas: both BCCs and medulloblastomas are key features of 

Gorlin’s syndrome.

3) As cancers are a result of loss of cell proliferation and differentiation control, then

it is quite possible that genes that are repressed in differentiated adult tissues 

may be re-expressed during the de-differentiation process that occurs in 

neoplasia (da Costa, 2001).

4) In a keratinocyte model system, Gli drives the expression of Arc strongly and /?-

tubulin III moderately. Both of these genes are expressed in BCCs, but are 

associated with neuronal development and repair following injury.

Although the expression of markers of neuronal expression in BCCs was a surprising 

finding to me originally, it is not so unlikely given the lines of argument stated above. 

What is however confusing, is that it seems that the expression of these markers is 

strongest in the most indolent tumours and as the tumours become more aggressive 

the expression of the “unmasked” markers is lost. There may be a peak of repressed 

gene expression at the point of initial loss of normal epidermal cell function (i.e. upon 

development of an indolent tumour) and that a progression to an aggressive tumour 

results in loss of the normal growth control (hence disorganized growth pattern of 

infiltrative tumours) and loss of this specificity of gene expression (hence reduced 

expression of these neuronal differentiation markers).
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7.6.2 Gli-mediated cell signalling

It appears from the results of this thesis that another downstream target of Gli 

signalling in BCC has been identified. Whether Arc and P-tubulin III are direct 

targets, or are more indirectly linked to Gli expression is not clear from my studies. 

The strengths of the retroviral keratinocyte transfection system include the ability to 

over-express specific Gli transcription factors and determine the relative gene 

expression resulting from this. From my studies examining the expression of these 

markers of neuronal differentiation it appears that there is a great deal of overlap 

between the transcriptional control of Glil and Gli2, and that as well as both having 

an effect on the expression of Arc and P-tubulin III they have positive feedback 

effects on each other.

The drawbacks of this putative model system include the fact that it is an isolated cell 

culture system and, as has been shown by the difficulties in culturing BCC cells in the 

laboratory, there is a degree of location-specificity in BCCs. This has been previously 

described as the stromal dependency of the tumours, and this interaction between 

tumour cells and their immediate environment may have strong bearing on the tumour 

cell phenotype. This has not, as yet, been replicated in the laboratory (whether for 

BCC cells or cultured retrovirally transfected keratinocytes) and advances in this field 

may improve upon this. This crucial difference may account for the differences 

between the model system findings and the results in BCCs.

7.7 Further developments of this research

This research has focussed on the expression of markers of neuronal development in 

Basal Cell Carcinoma and in a putative keratinocyte model system. Further work that 

would improve upon the results presented could include a number of alterations to the 

work already performed.

The control tissues used in this work were mainly normal non-tumour skin distant to 

the site of the BCCs examined and normal non-Gli-transfected keratinocytes. It would 

be of great interest to examine hair follicles from the same patients and from control 

non-tumour patients to see if these markers that are expressed in BCCs are expressed
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in the outer root sheath of the follicle. This would add weight to the arguments in 

favour of the hair follicle histogenesis of BCCs.

Examination of the gene array data that led to the discovery of neuronal markers 

being up-regulated in G/z7-transfected cells could lead to other molecules being 

considered. No other markers that were known to be associated with a neuronal 

phenotype were noticed in the array performed by our collaborators (Prof. F. Aberger 

et al, Salzburg), but the sequence of investigation in this thesis could be repeated for 

other markers.

It would have been ideal to use larger biopsies of tissue, and in combination with 

better Laser Capture Microdissection abilities, obtain more uniform and concentrated 

RNA extracts from each tumour by each method. In the setting of more concentrated 

RNA (as was the case with the cultured cell model extracts) a more meaningful 

comparison could be made using real-time quantitative (or relatively quantitative) 

PCR. Unfortunately the amount of tissue I was able to harvest from the vast majority 

of BCCs was limited to a small biopsy, and following a number of trials of laser 

capture microdissection, this left a smaller amount of tissue for needle 

microdissection and whole tissue homogenisation than I would have wished for. Were 

the series of steps required for this thesis to be repeated I would choose to try and 

only take samples for larger tumours, thus enabling a larger biopsy to be harvested 

without affecting the surgical examination margins. This would then allow me to 

generate greater quantities of RNA and compare the results between tumours and 

methods more effectively.

The technique of Laser Capture Microdissection is a difficult one to master. The 

equipment for it is mainly marketed by Arcturus (Mountain View, California, USA) 

and since the production of the “PixCell II” (which was available to me), two 

successive generations of machines have been produced (“AutoPix” and “Veritas”). 

The main advantages of the new machines are that they have greater degrees of 

automation and therefore the speed of cell capture is much increased. This may have 

the advantage of decreasing the chance of RNA degradation during the crucial period 

between section dehydration and immersion of the cells in lysis buffer. To get the 

most out of an expensive system such as this (the new machines cost in excess of
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£120,000 in 2006), I feel that it is a technique that is best reserved for use by those 

who have a great deal of experience in molecular biology and who are used to 

extracting RNA from very small samples.

7.8 Summary

In summary, I have characterised the expression of neuronal markers of 

differentiation in Basal Cell Carcinoma and reported that they are expressed in BCC 

whereas this is not the case in normal epidermis. Also, this expression is reduced in 

tumours with a more aggressive phenotype. In a retroviral keratinocyte model, 

expression of P-tubulin III and Arc appear to be more strongly controlled by Gli 

signalling than GAP-43 or neurofilament. Of these, only P-tubulin is expressed at 

different (lower) levels in tumours that do recur following complete surgical excision 

compared to those that do not. No significant differences in expression of these 

markers correlated with recurrence following incomplete excision. Further work will 

be required to ascertain the sequence of downstream effects of Gli signalling and how 

these interact with genes associated with both neuronal development and tumour 

aggression.
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Chapter 8: Appendices

------ (3-Tubulin III— -------- GAP-43--------- ------n f -m +h — ------Arc----------
Int localisation Int localisation Int localisation Int Localisation

Cy Me Cy Me Cy Me Cy Me

SKIN1 - - - -
SKIN2 - - - -
BCC1 Nod ++ ++ - +++ +++ - - ++ ++ -
BCC2 Nod ++ + + ++ + + + + - ++ ++ -
BCC3 Nod +++ ++ + + + - - -
BCC4 Nod ++ + + ++ + + + + - + + -
BCC5 Nod + + - +++ ++ - + + - ++ ++ -
BCC6 Nod ++ + + ++ + + + + - + + -
BCC7 Nod - ++ ++ - - -
BCC8 Sup ++ ++ - - + + - + + -
BCC9 Sup +++ ++ ++ + + - - + + -
BCC10 Sup + - + + ++ ++ - ++ ++ -
BCC11 Sup +++ + +++ ++ + + ++ ++ - + + -
BCC12 MN +++ + +++ +++ - +++ + + - ++ ++ -
BCC13 MN +++ + +++ +++ + +++ ++ ++ + ++ ++ -
BCC14 MN ++ - +++ ++ + ++ + + - + + -
BCC15 MN ++ - ++ ++ + + + + - + + -
BCC 16 MN ++ - ++ + + - + + - ++ ++ -
BCC 17 MN ++ + ++ ++ + - + + - + + -
BCC18 MN ++ + + + + + - + + -
BCC19 MN ++ + + +++ + +++ + + - + + -
BCC20 MN ++ + + + + - + + - -
BCC21 Inf + + - + + - ++ ++ - + + -
BCC22 Inf + + + + + - ++ ++ - + + -
BCC23 Inf - + + + + + - -
BCC24 Inf - - - -
BCC25 Inf ++ + + + + - - -
BCC26 Inf - - - -
BCC27 Inf - + + - - -
BCC28 Inf + + + - - + + -
BCC29 Mor + + + - - -
BCC30 Mor - - + + - -
BCC31 Mor - - + + - -
BCC32 Mor + + - - - + + -

Table 8.1: Intensity of tumour immunohistochemistry staining and cellular 
localisation in two normal skin samples and 32 BCCs as determined by visual 
analogue scoring. Nod = Nodular; Sup = superficial; MN = Micronodular; Inf = 
Infiltrative; Mor = morphoeic. Int = intensity of tumour staining; Cy = cytoplasmic 
staining, Me = membranous staining. = no staining; “+” = weak staining; “++” = 
moderate staining, “+++” = intense staining.

241



Type P-tubulin III intensity GAP-43 intensity ARC intensity NF intensity
SKIN1 0.055 0.054 0.045 0.150 0.156 0.153 0.141 0.155 0.151 0.129 0.141 0.126
SKIN2 0.033 0.038 0.044 0.137 0.122 0.121 0.166 0.158 0.171 0.128 0.113 0.115
BCC1 Nod 0.336 0.430 0.433 0.390 0.403 0.339 0.293 0.266 0.280 0.236 0.214 0.171
BCC2 Nod 0.195 0.213 0.203 0.451 0.505 0.437 0.140 0.136 0.124 0.168 0.179 0.166
BCC3 Nod 0.289 0.288 0.329 0.352 0.418 0.423 0.247 0.277 0.287 0.212 0.219 0.230
BCC4 Nod 0.348 0.411 0.393 0.334 0.364 0.353 0.234 0.291 0.285 0.176 0.183 0.177
BCC5 Nod 0.130 0.515 0.526 0.241 0.246 0.280 0.203 0.181 0.180 0.232 0.238 0.281
BCC6 Nod 0.312 0.191 0.147 0.388 0.388 0.463 0.232 0.263 0.236 0.200 0.184 0.173
BCC7 Nod 0.245 0.302 0.300 0.541 0.573 0.560 0.350 0.329 0.311 0.207 0.166 0.160
BCC8 Sup 0.177 0.192 0.214 0.173 0.194 0.283 0.342 0.414 0.348 0.226 0.247 0.239
BCC9 Sup 0.388 0.414 0.411 0.195 0.197 0.243 0.204 0.202 0.186 0.254 0.235 0.232

BCC10 Sup 0.282 0.235 0.289 0.397 0.386 0.479 0.375 0.380 0.368 0.289 0.329 0.313
BCC 11 Sup 0.701 0.603 0.681 0.640 0.645 0.612 0.468 0.484 0.505 0.430 0.432 0.395
BCC12 MN 0.233 0.317 0.288 0.284 0.263 0.206 0.209 0.212 0.207 0.171 0.160 0.168
BCC13 MN 0.710 0.676 0.432 0.552 0.597 0.562 0.419 0.417 0.397 0.238 0.200 0.211
BCC14 MN 0.541 0.493 0.484 0.402 0.374 0.390 0.174 0.165 0.185 0.481 0.433 0.402
BCC15 MN 0.179 0.225 0.270 0.324 0.294 0.321 0.265 0.268 0.246 0.216 0.219 0.209
BCC 16 MN 0.159 0.129 0.111 0.401 0.492 0.441 0.232 0.215 0.225 0.210 0.198 0.163
BCC17 MN 0.337 0.329 0.428 0.217 0.234 0.206 0.466 0.639 0.489 0.261 0.278 0.266
BCC18 MN 0.244 0.309 0.281 0.364 0.346 0.333 0.398 0.353 0.383 0.316 0.312 0.262
BCC19 MN 0.233 0.254 0.338 0.396 0.391 0.414 0.294 0.267 0.254 0.141 0.136 0.145
BCC20 MN 0.352 0.369 0.460 0.489 0.441 0.487 0.298 0.258 0.277 0.225 0.217 0.209
BCC21 Inf 0.093 0.125 0.129 0.147 0.147 0.147 0.193 0.162 0.191 0.161 0.176 0.181
BCC22 Inf 0.049 0.045 0.061 0.173 0.201 0.182 0.170 0.153 0.191 0.254 0.242 0.239
BCC23 Inf 0.073 0.077 0.087 0.242 0.223 0.219 0.184 0.183 0.181 0.171 0.173 0.170
BCC24 Inf 0.038 0.041 0.031 0.196 0.220 0.181 0.148 0.162 0.168 0.147 0.164 0.148
BCC25 Inf 0.075 0.089 0.073 0.112 0.108 0.113 0.142 0.160 0.134 0.162 0.172 0.172
BCC26 Inf 0.068 0.088 0.058 0.162 0.161 0.158 0.171 0.175 0.180 0.178 0.175 0.171
BCC27 Inf 0.043 0.055 0.063 0.129 0.144 0.136 0.142 0.152 0.161 0.119 0.144 0.138
BCC28 Inf 0.033 0.032 0.032 0.152 0.151 0.141 0.139 0.152 0.150 0.108 0.104 0.117
BCC29 Mor 0.066 0.073 0.095 0.195 0.176 0.186 0.144 0.157 0.155 0.137 0.151 0.166
BCC30 Mor 0.120 0.137 0.160 0.121 0.124 0.112 0.138 0.136 0.149 0.140 0.131 0.133
BCC31 Mor 0.233 0.238 0.248 0.124 0.118 0.119 0.162 0.176 0.162 0.147 0.129 0.169
BCC32 Mor 0.159 0.171 0.154 0.119 0.125 0.131 0.216 0.199 0.189 0.161 0.151 0.135

Table 8.2: Intensity of tumour staining in two normal skin samples and 32 BCCs as 
determined by spectral image analysis: Nod = Nodular; Sup = superficial; MN = 
Micronodular; Inf = Infiltrative; Mor = morphoeic. Three Spectral Image Intensity 
readings are given for each tumour.
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