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Abstract

Two abstract theories are developed. The first concerns isomorphism in­

variants with the same multiplicative properties as the Euler characteristic. It 

is used to show that the index of a subgroup in a semi-simple lattice is deter­

mined by its isomorphism type when that index is finite. This is also proved 

to be the case for subgroups of finite index in free products of finitely many 

semi-simple lattices as well as certain non-trivial extensions of Z by surface 

groups. In addition, a criterion for the failure of this property is given which 

applies to a large class of central extensions.

The second development concerns the syzygies of groups. The results of 

this theory are used to define the cohomology groups of a duality group in 

terms of morphisms between stable modules in the derived category. The 

Farrell cohomology of virtual duality groups is also considered.
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Preface

This thesis is concerned with the algebraic properties of semi-simple lattices 

and groups related to them. It has arisen out of an attempt to establish 

further intrinsic properties of semi-simple lattices, with the long term aim of 

determining an algebraic classification of all such groups. This effort has led 

firstly, to the development of a theory of "e-invariants’' based upon the Euler 

characteristic, and secondly, to the proof of two theorems on the cohomology 

of duality groups.

An e-invariant, as defined in this thesis, is a real-valued isomorphism in­

variant defined on the commensurability class of a group that is multiplicative 

with respect to covers. The canonical example is the rational Euler character­

istic of C.T.C. Wall [41]. The utility of the definition is that e-invariants can 

be shown to exist in many cases where the traditional Euler characteristic is 

difficult to calculate or else known to be zero. Here, e-invariants will be shown 

to exist for all lattices in semi-simple Lie groups with finite centre, the free 

product of finitely many lattices in linear semi-simple Lie groups of real rank 

> 2, and certain central extensions of Z by surface groups.

The theorems proved in the final two chapters simplify cohomology for 

duality groups by showing that, in all but the top dimension, the cohomology 

groups of a duality group can be defined as groups of morphisms from syzygies 

to coefficient modules in the derived category. This reduces the problem of 

calculating the cohomology of many lattices in semi-simple Lie groups to that 

of identifying syzygies. A duality theorem for syzygies of duality groups is also 

proved.
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Chapter 1 

Preliminaries on discrete groups

In this thesis, unless explicitly stated otherwise, all rings will have a unit and 

all ring homomorphisms will be unital.

1.1 Schanuel’s lemma, syzygies and the derived 

category

Let R  be a ring and M  an P-module. Then a projective (resp. free) resolution 

of M  over R  is said to have finite type if and only if all of the projective (resp. 

free) modules occurring in the resolution are finitely generated. Similarly, a 

partial projective (resp. free) resolution

0 -> K  -> Pn -> ------ >Po ^ M - > 0

will be said to have finite type when each of the modules Po, . . . ,  Pn is finitely 

generated.

The following proposition, known as Schanuel’s Lemma, is fundamental to 

what follows:

9



/

Proposition 1.1.1. (Schanuel’s Lemma)

Let R  be a ring and M  an R-module. Then, if

0 - > K  -> Pn - ^ ------ > P0 -> M  -+ 0

and

0 -+ K ' P ; - * ----- > Pq M  0

are partial projective resolutions of M  over R,

K ® P ^@  Pn—i © • • • e* K ' © Pn © © • • • .

Proof. See [37] □

Two P-modules K  and K ' are said to be stably equivalent if there exist 

finitely generated free P-modules E  and E' such that K  © E' = K ’ © E. This 

is an equivalence relation on the class of P-modules whose equivalence classes 

are called stable modules. Now, it is clear from Schanuel’s lemma that if

0 —> K  —> Fn —> •••—> Fq > M  >0

and

0 -> K ' -*F'n -> -----> F ^ M  0

are partial free resolutions of finite type, then K  is stably equivalent to K '.

Consequently, if

0 —► J  —> Fn—i —̂ * * * —̂ F0 —► AI  —> 0

is a partial free resolution of finite type, then the stable module fin(Af) =  [J] 

is a well-defined isomorphism invariant of M. When it exists, Q,n{M) is called 

the nth syzygy of M. For a finitely generated P-module M, flo(M) is defined 

to be the stable class [M\.

10
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Proposition 1.1.2. Let M  be an R-module and n > 0. Then, when defined, 

Ctn(M) depends only on the stable class of M.

Proof Fix an integer n > 1 and let M ' =  M  ® F, where F  is a finitely 

generated free R-module. Then, if

0 -> J  -  Fn_! - ------► Pi ^  F0 A  M  -> 0

is a partial free resolution of finite type,

0 —► J  —> F„_ 1  ► Fi F0 0  F  ê id M ®  F  —► 0

is a partial free resolution of finite type for M'. [J] is therefore the nth syzygy 

of both M  and M'. As Qo(M) is just the stable class [M], this completes the 

proof. □

1.2 A criterion for the existence of syzygies

Definition 1.2.1. An .R-module M  is said to have type FPo over R if it is 

finitely generated and type FPn (n > 1) if

1. it has type FPn_i and

2 . for any partial projective resolution

0 -> K  Rn_i —►------  ̂R0 -♦ M  -* 0

of finite type, K  is finitely generated.

M  will be said to have type FPoo if it has type FPn for all n > 0.

Lemma 1.2.2. I f

0 -> Pn -+ ------ >P0 -+ M  ->0

11



is a partial projective resolution of finite type, then there exists a finitely gen­

erated projective module Q and an exact sequence

0 —► K  © Q —> Fn —> • • • —> F0 —► M  —> 0

in which F0, . . . ,  Fn are free and finitely generated.

Proof. For every finitely generated projective module P  there exists a finitely 

generated projective module Q such that P  © Q is free and finitely generated. 

Let 0 —> K  —> P0 y M  —■► 0 be a short exact sequence in which P0 is a 

finitely generated projective module and suppose tha t Q0 is a module such 

that Po © Qo is finitely generated and free. Then the obvious exact sequence

0 — > K  ©  Q o  —> P o  ©  Qo — > M  — » 0

is a partial free resolution of finite type. This proves the result for n = 0. Now

choose n  > 0 , suppose the result holds for n — 1 and let

0 —> K  —> Pn —> • • • —> Po —► M  —> 0

be a partial projective resolution of finite type. Set K \ = Im(Pn —» Pn- 1).

Then, by hypothesis, there exists a finitely generated projective Qn- i and an 

exact sequence

0 —> K \ © Q n-1 —> Pn—1 —̂ • > Fo —> M  —> 0 ,

in which Ft is free and finitely generated for all i. Spliced with the obvious 

short exact sequence 0 —> K  —> Pn © Qn- i  —> -Pi © Qn- i  —̂ 0 , this yields an 

exact sequence

0 —> K  —> Pn © Qn—i Fn-1 * ' * * ~^ Fq —> M  —> 0 .

12



Now let Qn be a projective module such that Fn = (Pn ® Qn-\)  ® Qn is free 

and finitely generated. Then, by adding 0 —> Qn Qn —> 0 to the sequence 

above we obtain a free resolution of finite type

0 —► K  ® Qn —> Fn —> Fn~i —> • • • —> Fq —» M  —> 0,

as claimed. □

P ro p o sitio n  1.2.3. For n > 0, fin(M) is defined if  and only if M  has type 

FPn_i and finitely generated if  and only if M  has type FPn.

Proof =») Fix n > 0. Suppose that Qn(M) is defined, and let

0 —> J  —> Fn—i —* ' • ’ —► Fq —> A/ —> 0

be a partial free resolution of finite type. We wish to prove that M  has type 

FPn_i. Now, M  has type FPo if and only if it is finitely generated, so for n = 1 

this is just the fact that the homomorphism Fq —> M  is surjective. For n > 1, 

let 0 —> K  —> Pn - 2  —» • • • —► P o —> M —» O b e a  partial projective resolution of 

finite type and suppose that M  has type F F n_2. By Schanuel’s lemma, there 

exist finitely generated projective modules P  and Q such that

K  ® P  = Im(Fn_i Fn- 2) © Q.

But Fn_i, and therefore Im(Fn_i —> Fn_2), is finitely generated. Thus K  © P  

and, therefore K , is finitely generated, so that M  has type FPn_i as claimed. 

Now suppose that ^ n(Af) is finitely generated where n > 0, and let

0 K  -> Pn-1 - + ------ > PQ-> M  -> 0

be a partial projective resolution of M  having finite type. As Cln(M) is finitely 

generated, so is J . But, by Schanuel’s lemma, the finite generation of J  implies 

that of K , which shows that M  has type FPn in this case.

13



<=) If M  has type FPn_i, then there exists a partial projective resolution 

of finite type,

0 —> J  —> Pn—i —> ' '  ■ — Pq —* M  —> 0.

By Lemma 1.2.2, we can assume that Pi is free and finitely generated for all 

i. So, Qn(M) certainly exists. If, in addition, M  has type FPn, J  must be 

finitely generated, and so Cln(M) is finitely generated also. □

1.3 Derived categories and corepresentability

Let R  be a ring. Following F.E.A.Johnson [16], the derived category D er(R ), 

will be defined to be the category of R-modules with morphisms given by

H om Der(R)(M; N) = H om R(M; N ) /  « ,

where a  «  (5 if and only if a  — (3 factors through a projective .R-module. That 

is, there exists a projective module P  and morphisms M  —> P , P  —» N  whose 

composition is a  — (3.

Proposition 1.3.1. An R-morphism a  : M  —> N  factors through a projective 

R-module if  and only if  it factors through a free R-module, which may be taken 

to be finitely generated whenever M  is finitely generated.

Proof. P  is projective if and only if there exists an R-module Q such that 

P  © Q is free over R. An R-morphism a  : M  —+ N  that factors through P  

via a  : P  —> N , therefore also factors through the free module F  =  P  ® Q 

via a  ® 0. If M  is finitely generated and q : M  —> F  any R-morphism, then 

q(M) is a finitely generated submodule of F  and as such is spanned by a finite 

subset of any R-basis of F. So, when M  is finitely generated, we may replace 

F  by a finitely generated free submodule. □

14



The significance of the derived category in the context of syzygies is that, 

within it, stably equivalent modules are isomorphic. This means that mor­

phisms can be assigned to stable modules. This is not normally possible as 

there is in general no canonical choice of representative for the stable class.

P ro p o sitio n  1.3.2. I f  S  and T  are stable modules over a ring R  with repre­

sentatives M  and N  respectively, then the groups

H om Der{R)(S \T ) = HomDer{R)(M ;N )

are well defined up to isomorphism.

Proof. Immediate from the additivity of HomR(M ; N) in M  and N. □

C oro llary  1.3.3. HomDer{R){Qn{M)', [A]) w an isomorphism invariant of M  

for all n > 0 and all stable R-modules [AT],

I will often drop the brackets and write HomDer(R)(Cln(M); N) instead of 

HomDer(R)(Cln(M ) ; [AT]).

1.4 Modules of type FP and FL

A module M  is said to have finite projective dimension if it admits a projective 

resolution of finite length. That is, a resolution of the form

0 —> Pn —> • • • —> Po —> M  —► 0 ,

where Pi is projective for all i. n  is the length of the resolution. The projective 

dimension of M  is the minimum n  for which such a resolution exists.

If in addition to having finite projective dimension, a module M  has type 

FPqo, then it is said to be of type FP. It is well known that this definition is

15



equivalent to the existence of a projective resolution of finite length and type 

and that the length of the resolution can always be taken to be equal to the 

projective dimension [12, Chapter VIII, Proposition 6.1].

Now suppose that there exists an exact sequence,

0 —> Fm —► • • • —> Fq —> M  —> 0

in which F0, . . . ,  Fm are finitely generated and free. In this case M  is said to 

have type FL. If

0 P„  ------ >P0 ^ M ^ O

is a projective resolution of finite type, where n is the projective dimension of 

M, then it follows from Lemma 1.2.2 that we can construct an exact sequence

0 —> Pn ©  Q —> F n - i  — ► • • • —> E q —> M  — ► 0 (1.4.1)

in which Eq, . . . ,  En„i are free and finitely generated and Q is finitely generated 

and projective. Schanuel’s Lemma then implies the existence of a finitely 

generated free module E  such that (Pn © Q) © E  is free and finitely generated. 

By taking the direct sum of the exact sequence 0 —> E  ^  E  —> 0 and the 

resolution (1.4.1) at the appropriate point, we obtain a free resolution of finite 

type whose length is equal to the cohomological dimension of M. Thus we 

have proved:

Proposition 1.4.1. A module M  has type FL and projective dimension n if 

and only if  there exists an exact sequence

0 —> Fn ------ >F0 ^ M ^ O

in which F0, . . . ,  Fn are free and finitely generated.

16



The principal example of a module of type FL is that of Z when it is 

given the structure of a trivial ZT-module, where T is the fundamental group 

of a compact manifold without boundary having contractible universal cover. 

Such groups are known to satisfy Poincare duality, which is a special case of 

the duality criterion due R.Bieri and B.Eckmann given in the next section.

1.5 Duality groups and their virtual neighbours

A group G is said to satisfy Poincare duality if and only if, for all (7-modules 

N  and al i i  >  0, there exist cap product isomorphisms

Hz : H l(G; N ) —► Hd-i{G\ N),

where d is a fixed non-negative integer. In [3], R.Bieri and B.Eckmann defined 

G to be a duality group if, for all (7-modules N  and all i > 0, there exist cap 

product isomorphisms

Hz : 7T (G; N) -» tfd_i(<7; A <g> N),

where A is a fixed (7-module, called the dualising module of G. For a group 

of type FP there are a number of equivalent definitions:

T heorem  1.5.1. Let G is a group of type FP. Then the following are equiva­

lent:

1. There exists an integer d and a G-module A such that

E x tia iA ;N ) *  Tor“ (Z; A ® N) 

for all G-modules N  and all non-negative integers i.

17



2. There is an integer d such that

0 i ^  d
E x tZG(Z\ZG ) = < (1.5.1)

A i = d

where A is Z-torison-free.

3. There exists a class z  € Hd(G; A) such that the cap product map

Hz : ExTm (Z; _ ) -> Tor^%{Z; A 0  _ )

is an isomorphism for all i, where d is the cohomological dimension of 

G and A =  E x tZG(Z ; ZG).

Proof. [12, Chapter VII, Theorem 10.1]. □

K.S. Brown showed in [11] that a module M  has type FPqo over a ring R  

if and only if E x t^ M ,  _ ) commutes with direct limits for all i. As the cap 

product is natural, while the functors T o rfG(Z; _ ) and A <g> _  commute with 

direct limits, this showed that every duality group has type FP.

Now, any group G for which there exist functorial isomorphisms

E x tlZG(Z ; _ ) =  Tor^[2i{Z; A 0  _ )

necessarily has type FP, satisfies condition 1 of Theorem 1.5.1 and is therefore 

a duality group. As the cap product is natural, this means that a group G is 

a duality group if and only if there exists an integer d and G-module A for 

which the above equivalence of functors holds. It is well known however that 

if R  is a ring and M  an .R-module with no Z-torsion, then, for any R-module 

N  and al i i  > 0, there exist functorial isomorphisms

Tor?(M , N ) = Tor*(Z; M  ® N)

18



(see [12, Chapter III, Proposition 2 .2]). Furthermore, it follows from Theorem

1.5.1 and the fact that all duality groups have type FP that the dualising 

module of a duality group is necessarily Z-torsion-free. So we have shown:

P ro p o sitio n  1.5.2. G is a duality group if  and only if  there exist natural 

isomorphisms

® « 4 o ( Z ; J s T « K (  A; J

where d is a fixed non-negative integer and A a fixed G-module with no Z- 

torsion.

A virtual duality group is a group containing a duality group with finite 

index. Such groups are closely related to duality groups and share many of 

their properties. In particular, they satisfy 1.5.1. This is a consequence of 

Shapiro’s lemma, which is discussed in the next section.

1.6 Shapiro’s Lemma

Let R and S  be rings and 6 : R  S  a ring homomorphism. Any right (resp. 

left) 5-module N  can be given the structure of a right (resp. left) .R-module 

via 6 by defining n.r = n 0(r) (resp. r.n — 6(r) n) for all n € N. For a any left 

R-module M, set Inde(M ) = S  <S)e M. Inde(M ) is then a left 5-module. It is 

characterized by the following universal property:

P ro p o sitio n  1 .6 .1 . Let M  and 0 : R  —> S  be as above and suppose that 

a : M  —> N  an R-morphism for some (left) S-module N . Then, there exists 

a unique S-morphism as  : Inde(M ) —> N  extending a. That is, a  = a s  o i, 

where i : M  —► Indo(M ) is the natural inclusion induced from m  i—► 1 <S>s m.

Proof. See [12, Chapter III, Section 3]. □

19



Dual to the concept of the induced module is that of the coinduced module. For 

M  and 9 as above, Caind$(M) is defined to be the left 5-module H o m ^ S ; M). 

The 5-module structure on H otyir{S ; M) is given by (s • f){s ') = f ( s '  • s).

Proposition 1.6.2. Let N  be a left S-module, M  a left R-module and a : 

N  —> M  an R-morphism. Then there exists a unique S-morphism a s : 

N  —► Coindg(M) such that a  = p o a s , where p is the natural projection 

Coindg(M) M \ f  / ( l ) .

Proof. See [12, Chapter III, Section 3]. □

Let G be a group and H  a subgroup. Given an i/-module N, define 

In d ffN  = Ind iN  and C oind^N  — CoindiN  where i : H  *-> G is the nat­

ural inclusion. The universal properties of induced and coinduced modules 

then lead to the following identities of functors, which together are known as 

Shapiro’s Lemma:

Theorem 1.6.3. Let G be a group and H  a subgroup. Then, for any H-module 

N ,

T o rfH(Z, N ) ^  T o rfG(Z , Ind%N)

E x tlIiH{Z, N ) = E x tlZG(Z , Ccdnd^N)

Proof. [12, Chapter III, Proposition 6.2]. □

Proposition 1.6.4. I f  H  has finite index in G, then In d ^ N  =  C oind iN .

Proof. [12, Chapter III, Proposition 5.8]. □

Corollary 1.6.5. I f  G is a virtual duality group and H  a duality group of finite 

index in G with dualising module A  and cohomological dimension d, then



In particular, every virtual duality group of type FP is a duality group.

Proof. ZG = IndffjifLH) =  CoindfftifLH) and so, by Shapiro’s lemma, there 

exist Z-module isomorphisms

E x tZG(Z]ZG) = E x tZH(Z;ZH )

for all i. When G has type FP, it therefore satisfies the second criterion of 

Theorem 1.5.1 and is consequently a duality group. □

C oro llary  1 .6 .6 . I f  G is a duality group and H  a subgroup of finite index in 

G, then H  is a duality group with the same cohomological dimension as G.

Proof As every projective ZG-module is projective when regarded as a ZH- 

module, a projective resolution e : P  —► Z over ZG is also a projective reso­

lution of Z over ZH. But G has type FP, so H  must be a group of type FP 

also. As
0 i 7̂  d

A i = d

Theorem 1.5.1 now shows that H  is a duality group of dimension d. □

E x tlZH(Z-,ZH) = E x tlZG(Z;ZG) = <

1.7 Farrell cohomology

In this section, the resolution

 >Pn -> ------ >P0 ^ M - * 0

will be dentoed e : P  —> M, where P  refers to the associated chain complex

• • • —» Pn —> • • • —> Po.

Now, let G be a group. Then a complete resolution of a G-module M  over 

ZG is defined to be a pair (F, e : P  —> M), where e : P  —> M  is a projective
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resolution of M  over ZG and F  an acylic chain complex of projective G- 

modules which coincides with P  in sufficiently high dimension.

Theorem 1.7.1. Let G be a group of virtual finite cohomological dimension 

d. Then,

1. if  e : P  —► M  is a projective resolution of M  over ZG, there exists a 

complete resolution for M  of the form (F, e : P  —> M) such that F  

coincides with P  in dimensions greater than or equal to d.

2. if  (F,e : P  —> M) and (F ' , e' : P 1 —► M) are complete resolutions of M  

over 7LG and 0 : P  —> P' an augmentation preserving chain map, then 

there exists a chain homotopy equivalence 0 : F  —> F' which coincides 

with 0 in dimensions greater than or equal to d.

Proof. [12, Chapter X, Proposition 2.1].

□

It follows easily from the projectivity of P  and the exactness of e' : P' —► M  

that augmentation preserving chain maps P  —* P' always exist. This means 

that F  and F' are chain homotopy equivalent whenever (F,e : P  —► M)  and 

(F ', e' : P' —> M)  are complete resolutions of M  over ZG.

Corollary 1.7.2. The groups

N ) := H r(HomZG(F, N))

are well-defined invariants of G for all r G Z, where (F, e : P  —> M) is any 

complete resolution of M  over ZG.

The groups H r( G\ N ) =  E x tZG{Z; N ) are called the Farrell cohomology groups 

of G. It is clear from the definition of H r(G; N) that H r(G; N) = H r(G; N) for
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all r > d. In dimension d there exists an epimorphism H d(G ; N ) —> H d(G ; N ), 

which we shall now describe explicitly.

Let J  and N  be G-modules and H  a subgroup of finite index having 

finite cohomological dimension. The transfer map tr  : Hom%H{J] N ) —*■ 

H om zciJ'iN ) is defined by t r( f ) (m)  = T,geE where E  is a set

of right coset representatives for H  in G.

If e : P  —> M  is a projective resolution of M  over ZG, then e : P  —► M  is 

a projective resolution of M  over ZH  whose differentials dn : Fn —> Fn_i are 

G-morphisms. In particular, for /  E HomzH(En; N), t r ( f  o dn) =  t r ( / )  o dn 

for all n. tr  therefore induces morphisms

E x tz„{M-, N ) -  E x 4 g (M; iV); [/] -  [*■(/)],

for all i.

Proposition 1.7.3. Let G be a group of virtual finite cohomological dimension 

n and H  as subgroup of finite index and finite cohomological dimension. Then, 

for all G-modules M , there exists an exact sequence

N ) *  E x fZG(M-, N ) N ) -> 0

Proof See [12, Chapter X, Section 3.4]. □
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Chapter 2

Preliminaries on Lie groups

2.1 Linear algebraic groups

G L(n , C) inherits the structure of an affine variety from the embedding

GL{n, C) Cn2+1; A y  ^  (Ay, ( d e t ^ ) " 1).

By a linear algebraic group we shall mean a subgroup G of G L(n , C) whose 

image under this embedding is an affine subvariety of G L(n , C). For any such 

group, the group operations are necessarily polynomial. G will be said to be 

defined over a subfield k C C when its image in Cn2+1 is defined over k.

Identify G L(n , C) with its image in Cn2+1. Then, given a ring B  C Cn2+1, 

set Gb =  G fl G L(n , B ). A subgroup T C G will be called arithmetic if it is 

commensurable with Gz-

Let H  denote the closure of a subset H  C G in the Zariski topology of 

G. Then, if H  is a subgroup of G, so is H. To see this observe that, since 

right multiplication is homeomorphic, given a G H, Ha =  Ha  =  H, so that 

H H  c  H. Thus, if a e H ,  aH = aH C H .
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Lemma 2.1.1. Let Hi and H 2 be subgroups of the linear algebraic group G. 

Then

1. if Hi normalizes H 2 , Hi normalizes H 2

2. if Hi centralizes H2, then Hi centralizes H2 .

Proof (1) Pick a e  Hi. Since Hi normalizes # 2, while the map x  i-> axa~l is 

homeomorphic with respect to the Zariski topology, H 2 =

Thus Hi normalizes H2.

Now let N  be the normalizer of H 2 in G. Since Hi C AT, to prove that Hi 

normalizes # 2? it is sufficient to show that N  is closed in the Zariski topology 

of G. Let fh(g) = ghg~l for all g € G. Then

g € N  -*=* ghg- 1 € W2 for all h € W2 ■*=>■ g € Q
heih

As H 2 is algebraic and fh is polynomial, this shows that N  is Zariski closed.

(2) Pick a G Hi and set ca : x  1—► axa~lx~l . Then, as Hi centralizes H 2 ,

H2 C c~1(l). Since ca is polynomial, this is a Zariski closed subset of G. Thus

H2 C c“ 1(l). This implies that Hi centralizes H2. But Hi centralizes H 2 if and 

only if H2 centralizes Hi. So by the same argument, H2 centralizes Hi. □

Proposition 2.1.2. Let H  be a subgroup of GL(n, C) and K  a subgroup of

finite index in H. Then K  has finite index in H.

Proof. Let X  be a set of coset representatives for K  in H . Then H  =  IJ/iex 

and, since K  C H,

H e  { J h K c H ,
hex

so that K  has finite index in H.  □
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2.2 Real algebraic groups

If A  C GL(n , C) is a linear algebraic group, then the set of real points of A, 

Ar =  A  fl GL(n , R), is a closed subgroup of GL(n, R). A group of this form is 

said to be a real algebraic group. The following theorem is due to G.D.Mostow.

T heorem  2 .2 .1 . Real algebraic groups have finitely many connected compo­

nents.

Proof. See [26]. □

D efinition 2.2.2. Let X  C CtL(71,R). Then X r  is called the real Zariski 

closure of X  in GL(n, R).

P ro p o sitio n  2.2.3. I f  A  and B  are subsets ofGL(n,  R) such that A r  =  Bn, 

then A  — B.

Proof. Let X  = An. Then, since A C X  C A, A C X  C A = A, Thus X  =  A, 

which implies the result. □

Analogous to Proposition 2.1.2, we have:

P ro p o sitio n  2.2.4. Let H  be a subgroup of GL(n, R) and K  a subgroup of 

finite index in H. Then X r  has finite index in Hn-

Proof. By Proposition 2.1.2, K  C H  with finite index. Thus K  contains the 

identity component of H  and K n  the identity component of L/r. But by 

Theorem 2.2.1, Hn has only finitely many connected components. Thus ATr 

has finite index in Hn  D
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2.3 Semi-simple Lie groups

Let g be a finite dimensional real Lie algebra. If a, b < 0 are soluble ideals in 

0 , then so is a +  b. This means there exists a unique maximal soluble ideal in 

0 . It is called the radical of 0 and denoted rad(0 ).

rad(0 ) contains all the soluble ideals of 0 . Consequently, if rad(0 ) =  0, then 

every soluble ideal in 0 is trivial. Moreover, as the radical is characteristic, if 

b < 0 , then rad(b) C rad(0 ). In particular, when rad(0 ) =  0, rad(b) =  0 for 

every ideal in 0 .

D efinition 2.3.1. 0 is said to be semi-simple if and only if rad(0 ) =  {0}.

We have shown:

P ro p o sitio n  2.3.2. I f  0 is semi-simple, then so is every ideal in 0 .

It follows from the proposition above that if 0 is a real Lie algebra of finite 

dimension, then 0 /rad (0 ) is semi-simple. Now, it is classical result (see [31, 

page 3]) that the corresponding short exact sequence

0 —> rad(0 ) —> 0 -> 0 /rad(0 ) —► 0

always splits, so that every finite dimensional real Lie algebra is the semi-direct 

product of a soluble and a semi-simple Lie subalgebra. This decomposition is 

known as the Levi decomposition of 0 . In terms of Lie groups, this means that 

every connected Lie group G = S  • R, where R  is the connected soluble Lie 

subgroup of G corresponding to rad(0 ), S  semi-simple and S  D R  is discrete. 

R  is called the radical of G.

We shall now prove a decomposition theorem for semi-simple Lie algebras.

P ro p o sitio n  2.3.3. Let 0 be a real semi-simple Lie algebra of finite dimension. 

Then 0 decomposes as the direct sum of finitely many simple non-abelian ideals.
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Proof. Suppose first that 0 is simple. Then, given a G 0 , Ker(ad(o)) < 0 , so 

that ad(a)(0 ) =  0 or {0}. However, if ad(a)(0 ) =  {0} for all a, then 0 must be 

abelian. So there exists at least one a G 0 such that ad(a) is an automorphism 

of 0 .

Now suppose that 0 is semi-simple. If 0 is not simple, let 0 i be a minimal 

ideal in 0 . Then 0 i is simple and, by the argument above, we can pick a G 0 i 

so that the restriction of ad(a) to 0 i is an isomorphism. Since [a, x] G 0 i for 

all x  G 0 , we have ad(a)(0 ) C 0 i. Thus

0 =  Im(ad(a)) +  Ker(ad(a)) =  0 i 4- Ker(ad(a)).

Ker(ad(a)) is an ideal in 0 of strictly lower dimension. It is semi-simple by 

the proposition above and so, by induction, decomposes as the sum of finitely 

many simple non-abelian ideals 02, • • • , 0 fc- As each 0* is clearly an ideal in 0 

and 0 =  0 i -i j- 0 ,̂ this proves the result. □

If a is an ideal in 0 , then a fl 0* is an ideal in 0* for all i. So, for each i, 

either a fl 0* =  0 or a D 0* =  0*. This means a =  (a fl 0 i) 4- • • • 4- (a fl 0jt). 

In particular, the centre Z(g) of 0 decomposes as the internal direct sum 

Z(g) = Z(g i) 4- • • • 4- Z(gk). The centre of any simple non-abelian ideal is 

necessarily trivial, so this shows Z(g) =  0.

Let G be a connected Lie group with Lie algebra 0 , and for i =  1, . . . ,  k, 

let Gi be the connected Lie subgroup of G corresponding to 0*. Then G =  

G\ • • • Gk- Moreover, since [0*,gj] = 0 whenever i ^  j ,  G i , . . .  ,Gk are mutually 

centralizing.

The groups G4, . . . ,  Gk are known as the simple factors of G. Clearly Gi<G 

for all i , so that Gi fl Gj < G for all i and j .  As gi fl 0j =  {0} whenever i ^  j ,  

this shows that Gi fl Gj is a discrete normal subgroup of G for all i and j  with
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i ^  j .  However, every discrete normal subgroup of a connected Lie group is 

necessarily central, so that Gi fl Gj C Z(G) whenever i j .

If Z(G) =  {1}, it follows G is the internal direct product G i o • • • o Gk. 

Since Z(G) = Ker(Ad), where Ad : G —> Aut(g) is the adjoint representation, 

G = Ad(G) whenever Z(G)  =  {1}. For this reason, semi-simple Lie groups of 

this type are said to be adjoint.

Adjoint semi-simple Lie groups are a particular example of linear semi­

simple Lie groups, which share many of their properties. A Lie group G is said 

to be linear if there exists a faithful representation p : G —► GL(n, R). The 

following theorem shows that every connected linear semi-simple Lie group is 

isomorphic to a real algebraic group.

Theorem 2.3.4. Let G be a connected linear semi-simple Lie group and p : 

G —> GL(n, R) a faithful representation. Then p(G) = p{G)° fl GL(n, R); 

where p(G) is the Zariski closure of p(G) in GL(n, C).

Proof See [31, page 10]. □

The Zariski topology on G induces a topology on G. This topology turns 

out to be independent of p (see [31, page 10]). It is called the Zariski topology 

of G.

The closure of a subset H C G in the Zariski topology will be called its 

Zariski closure and denoted Hr. H  will be said to be Zariski dense in G 

whenever H r  =  G. By Proposition 2.2.3, this is equivalent to requiring that 

p(G) and p(H)  have the same Zariski closure in GL(n,  C). We conclude with 

the following proposition:

Proposition 2.3.5. Let G be a linear semi-simple Lie group. Then the centre 

Z(G) of G is finite.
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Proof. Let p : G —* GL(n , R) be a faithful linear representation of G. Identify 

G with its image under p and let G be the Zariski closure of G in GL(n, C). 

Then, as Z(G) centralizes G , Z(G) centralizes G by Lemma 2.1.1. Hence 

Z{G) C Z{G), so that Z(G) = Z{G) n  GL(n,R). As Z(G) = f l5GG/5_1( l ) 5 

where f g is the polynomial map x  i-> gxg~lx~l , Z(G) is Zariski closed in 

GL(n , C). Thus Z(G) a real algebraic group and as such has only finitely many 

connected components. Since Z(G) is discrete, this completes the proof. □
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Chapter 3 

The fundamentals of semi-simple 

lattices

3.1 Definitions and normalizations

Every locally compact Hausdorlf topological group admits a non-zero left in­

variant Borel measure that is unique up to multiplication by a real number. 

Such a measure is called a Haar measure, after A.Haar, who first proved its 

existence (see [28]).

If T C G is a discrete subgroup of the Lie group G, then the quotient space 

G /Y  admits a unique differentiable structure with respect to which the covering 

G —► G /Y  is smooth (see [44, page 41]). Moreover, G acts transitively by left 

multiplication on G/Y. Consequently, G /Y  admits a left-invariant volume 

form, say u. This induces a left invariant Borel measure /x on G/Y.

Now, u  lifts to give a left invariant volume form on G, which in turn 

determines a unique Haar measure Jl. However u  is determined by its lift to 

G so that ^  is uniquely determined by Jl. We will say that /x is the measure
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induced by Jl on G/Y.

D efin ition  3.1.1. Y C G is a lattice if and only if p(G/Y)  is finite.

If the quotient space G /Y  is compact, then Y is clearly a lattice in Y. Such 

lattices are said the be cocompact or uniform. Not all lattices however have 

this type (see [6] and [15]).

T h eo rem  3.1.2. I fY  is a lattice in a connected Lie group G, then Y is finitely 

generated.

The first step toward a proof of the finite generation of lattices was taken by 

C.L.Siegel in [32], who showed that if Y is a discrete subgroup of a connected 

Lie group G and there exits a "normal" fundamental domain F  for the action 

of T on G , then the set {7  € Y : 7 F  fl F  ^  <f>} generates Y. This result was 

subsequently used by A.Borel and Harish-Chandra to show that all arithmetic 

groups are finitely generated [9].

The restriction on the class of domain meant however, that it was unclear 

how to apply C.L.Siegel’s result without the assumption of arithmeticity. This 

problem was circumnavigated by A.M.MacBeath in [22], who showed that the 

assumption of normality could be dropped. This proved the finite generation 

of cocompact lattices. The non-cocompact case however, proved much harder 

to deal with.

The finite generation of lattices in a solvable Lie groups was eventually 

settled by G.D.Mostow in [26]. Then, L.Auslander [42] proved the following:

T h eo rem  3.1.3. Let G be a Lie group and R  a closed connected soluble normal 

subgroup. Let tt : G —» G /R  be the natural map. Let H  be a closed subgroup 

of G such that H° is soluble. Let U be the closure of tt(H) in the Euclidean 

topology of G /R . Then U° is soluble.

32



L.Auslander’s theorem has the following corollary:

C oro lla ry  3.1.4. Let G be a connected Lie group and T C G a lattice. Let R  

be the radical of G and S  a semi-simple subgroup of G such that G =  S  • R. 

Assume that the kernel of the action of S  on R  has no compact factors in its 

identity component. Then, if n : G —► G /R  is the natural projection, 7r(r) is 

a lattice in G /R  and T fl R  a lattice in R.

Proof. [31, Corollary 8.28] □

Since a connected Lie group G is isomorphic to a quotient G /Z,  where 

Z  is a discrete central subgroup of the universal cover G , to prove the finite 

generation of a lattice T C G, it is sufficient to show that lattices in G are 

finitely generated.

Now, every connected and simply-connected Lie group G is isomorphic to 

a product G\ x G2 in which G\ is connected and semi-simple and G2 =  SR, 

where R  — rad(<2), S  is semi-simple. Moreover, G2 can be assumed not to 

contain any connected normal semi-simple subgroup of G and S  to act almost 

faithfully on R  (see [42]).

If T is a lattice in G and C  the maximal connected compact normal sub­

group of G\, then T fl C  is finite so that p(r) is a lattice in G/C, where 

p : G —> G /C  is the natural projection. Since T is finitely generated if and 

only if p(T) is finitely generated we may therefore assume that G1 has no 

compact factors.

Following L.Auslander’s theorem therefore, it remained to show only that 

lattices in connected semi-simple Lie groups are finitely generated. Since any 

connected compact normal subgroups can be factored out as above, this prob­

lem was equivalent to proving the finite generation of lattices in a connected 

semi-simple Lie group G without compact factors.
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When G has real rank 1, this was proved by M.S.Raghunathan in [31, 

Corollary 13.20]. The finite generation of lattices in semi-simple Lie groups 

with real rank > 2 was not however settled until D.A.Kazdan introduced his 

famous T  property in [19], which finally proved the finite generation of all 

lattices.

Our principal objects of study will be lattices in connected semi-simple Lie 

groups with finite centre, whose finite generation will permit certain normal­

izations.

D efin ition  3.1.5. Let L  be the class of lattices in connected semi-simple Lie 

groups with finite centre and L$ the subclass of torsion-free lattices in L.

P ro p o sitio n  3.1.6. Lattices in T are virtually torsion-free.

Proof. Pick r  £ L. The group T embeds as a lattice in a connected semi-simple 

Lie group G with finite centre. As Ad : G —> Ad(G) =  G/Z(G)  is a covering 

map of finite degree, Ad(r) is discrete in Ad(G) and the G-invariant volume 

on Ad(G)/Ad(r) is finite. That is, Ad(r) is lattice in Ad(G).

Now, if H  C Ad(r) has finite index d in Ad(T), then Ad-1(# ) has index 

d in T also. Thus, if Ad(r) is virtually torsion-free, so is I\ But Ad(G), and 

therefore Ad(r), is linear, whilst Selberg’s theorem [6] states that every finitely 

generated linear group is virtually torsion free. This proves the result. □

P ro p o sitio n  3.1.7. I f  T € Lq, then T embeds as a lattice in a connected 

adjoint semi-simple Lie group without compact factors.

Proof. T is a lattice in a connected semi-simple Lie group G with finite centre. 

As T is torsion-free, T fl Z(G) =  {e}. The adjoint map is therefore injective 

on T, which embeds as a lattice in Ad(G). Let C  be the product of the
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compact simple factors of Ad(G). Then, as T and therefore Ad(r) is torsion- 

free, Ad(r) fl C  =  {e}, so that Ad(r) embeds as a lattice in the quotient 

group Ad(G)/C, non of whose simple factors are compact. As Ad{G)/C  is 

also adjoint, this completes the proof. □

3.2 The Borel density theorem

The Borel density theorem is fundamental to the theory of lattices in semi­

simple Lie groups. The statement of the theorem given below is less general 

than Borel’s original result [5], but sufficient for the purposes of this thesis. 

We shall use it to prove that lattice in L0 have finite centre.

T h eo rem  3.2.1. (Borel Density) Let T be a lattice in a linear semi-simple Lie 

group G without compact factors. Then T is Zariski dense in G.

C oro lla ry  3.2.2. With T and G as above, C(r) C Z(G), where C(r) is the 

centralizer o fT  in G and Z(G) the centre of G.

Proof. Fix g G G. Then, g G C (r )  g ig -1 =  7  for all 7  G T < = >  T C

C(g), the centralizer of g. But C(g) =  / - 1(1.) where f is the polynomial map 

h 1—► ghg~lh~l . Thus C(g) is a Zariski closed subset of G containing T. But T 

is Zariski dense in G , and so in fact G C C(g). Thus g G Z(G). This proves 

the result. □

C oro lla ry  3.2.3. Lattices in Lq have finite centre.

Proof. Pick r  in L q. Then T can be embedded as a lattice in an adjoint semi­

simple Lie group G without compact factors. As the adjoint representation is 

faithful G is linear. So, by the corollary above, Z (r)  C C (r )  C Z(G). But G 

is adjoint and thus Z(G) is trivial. Hence Z(r) =  {l} . □
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3.3 A structure theorem for groups in L

Two groups A  and B  are said to be commensurable if there exists a group 

A together with embeddings j i  : A «—► A  and 72 : A <-* B , such that the 

subgroups 71(A) and 72(A) have finite index in A  and B  respectively. An 

infinite group T is said to be irreducible if it is not commensurable with the 

direct product of two infinite groups. The concept of irreducibility is important 

in the classification of infinite groups. In the theory of lattices in semi-simple 

Lie groups however, this concept has a more natural formulation.

Let T be a lattice in a connected linear semi-simple Lie group G whose 

simple factors . . . ,  Gn are all non-compact. For each subset J  of {1, . . . ,  n}, 

define G j = Uj£jG j  and let p j  : G —► G/Gj> be the natural projection, where 

J' is the complement of J  in { 1, . . . ,  n}.

Theorem 3.3.1. T is irreducible if  and only i fn j(T )  is non-discrete for every 

subset J  of {1 , . . . ,  n}.

The proof depends on the following:

Theorem 3.3.2. Let T be a lattice in a connected linear semi-simple Lie group 

G without compact factors. Let H  and H' be closed normal subgroups ofG  such 

that G =  H H ' and H  fl H' is discrete. Let n and n' be the natural projections 

onto G /H ' and G /H  respectively. Then, the following are equivalent:

1. 7r'(r) is discrete in G /H

2. H  DT is a lattice in H

3. 7r(T) is discrete in G /H

4 . H f fl T is a lattice in H'
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5. (H  fl r  )(H' n r )  has finite index in T 

Proof. [31, Corollary 5.19].

□

proof of Theorem 3.3.1.

Suppose that 7T/(r) is discrete for some J  C {1, . . . ,  n}. Set J' = { 1 , . . . ,  n } —J. 

Then, by the theorem above, (r  fl Gj)(F  fl Gj>) has finite index in T and T is 

reducible.

Conversely, suppose that T is commensurable with the product A  x B  of 

two infinite groups. As a subgroup of finite index in a lattice is lattice of the 

same type, we may assume without loss of generality that T embeds with finite 

index in A x  B. Identify T with its image in A x  B. Then there exist injections 

A /T  fl A ( A x  B ) / r  and B /T  fl B  *—*■ (A x B)/V. So, the groups T H A  and 

T n B  have finite index in A  and B  respectively and (T Pi A)(T  fl B)  has finite 

index in T. Thus G =  f R =  ( r n i ) ( m %  But (r  fl A)(T  fl B) normalizes 

r n A  and T f l B ,  and so, by Proposition 2 .1 .1 , ( r  fl A and ( r  fl B )jjj are nor­

mal in G. Each of these groups is therefore a product of simple factors from 

G. Moreover, as A  and B  are mutually centralizing, they commute. Since 

the simple factors of G are non-abelian this shows that ( r  fl A)J and ( r  fl B )J  

have no common factor. Hence ( r  fl A)J fl (T fl B is a discrete normal sub­

group of G and therefore contained in Z(G), which is finite. This implies that 

the projection of T on to either group is discrete. □

By reformulating of the concept of irreducibility in this way, it is possible 

to show that every lattice in L  is commensurable with the direct product of 

finitely many irreducible lattices from the same class. The proof of this fact 

depends on the concept of compatible partitions.
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Let T be a lattice in a connected linear semi-simple Lie group G as above. 

Then, a partition {J i , . . . ,  Jm} of {1 , . . . ,  n} is said to be compatible with T if 

7Tj(r) is discrete in G j  for each J  6  { J i , . . . ,  Jm}. The relation,

{J i , . . . ,  Jm} < { K \ , . . . ,  K n} <=>• m > n  and for each r, Jr C K s for some s.

is a partial order on the set of compatible partitions. As only finitely many 

partitions exist, minimal partitions compatible with T can certainly be found. 

If {J i , . . . ,  Jm} is such a partition, then, for each i, the projection of F on to 

any product of simple factors from Gj. is non-discrete. In this case therefore, 

ttji (r) is an irreducible lattice in G jr

The following proposition shows that the intersection of distinct sets from 

two minimal partitions must be empty, so that, in fact, there is only one such 

partition. This fact will be used to prove the structure theorem for L.

P ro p o sitio n  3.3.3. Let F be a lattice in a connected semi-simple Lie group 

G with finite centre. Let Hi and H 2 be closed connected normal subgroups of 

G such that G =  H 1H 2 . Set K  = Hi fl H 2 and for j  = 1 ,2  let Aj be the 

unique closed connected normal subgroup of Hj such that K  fl Aj is discrete 

and Hj =  K A j. Let 7Ti : G —> G /A 2 and tt2 : G —> G /Ai be the natural 

projections. Then, if  7Tj(T) is discrete in Hj for j  =  1,2, the image of F is 

discrete under the natural projection G —> G /A 1A 2 .

Proof. There is a commutative diagram:

Qi G q2

G /A 2 G /A i

Pl \  / p 2

G /A iA 2

Since G = H i A 2, whilst H i C\A2, together with the image of F under the natural
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projection G —> G /A 2 is discrete, Theorem 3.3.2 shows that (T fl Hi)(F  n  A 2) 

has finite index in T. It is therefore sufficient to prove that the image of 

( r  fl # i ) ( r  fl A 2) is discrete in G /A \A 2. Now, as qi(F f) A 2) is trivial,

Pi9i ( ( r  n  H i)(r  n  a 2)) =  px<7X( r  n  Hi) = p2q2{F n  Hi).

Moreover, ^ ( r  fl Hi) C <72(r)  fl H 1/ A 1 is discrete in G /Ai.  But, H 1/ A 1 =  

K / K  fl Ai while G /A iA 2 = K A iA 2/A iA 2 = K / K  fl A iA 2. So, by naturality, 

the restriction of pi to H 1 / A 1 corresponds to the finite covering map K / K  fl 

Ai —> K / K  fl A iA 2 and this implies that p2q2(F fl H2) is discrete in G /A iA 2. 

Hence the result. □

T h eo rem  3.3.4. Let V be a lattice in L. Then F is commensurable with a 

direct product Ti x • • • x T* of irreducible lattices from L. Moreover, the groups 

T i , . . . ,  Tfc are uniquely defined up to commensurability.

Proof. Let A be a torsion-free subgroup of finite index in T. Then, by Proposi­

tion 3.1.7, A embeds as a lattice in a connected adjoint semi-simple Lie group 

G without compact factors. Suppose that G has n simple factors and let 

{J i , . . . ,  Jk} be the unique minimal partition of {1, . . . ,  n} compatible with A. 

Then A j  =  A fl Gjj is an irreducible lattice in Gj5 for each j .  Moreover, by 

Theorem 3.3.2, the product Ax • • • A*. =  Ax x • • • x A* is contained in A with 

finite index, so that F is commensurable with Ax x • • • x A*.

Suppose now that T ~  Tx x • • • x T/, where Fj is irreducible for each j .  Let 

H  be a group that embeds in Tx x • • • x T/ and F with finite index. Then, as 

F j/F jD H  injects into ( r x x • • • x T i)/H , H  OF j has finite index in Fj for each 

j , and T' =  (HHFi) • • • (HC\Fi) has finite index in F. As the groups H n F j  are 

mutually centralizing, (H  fl Tj)J is a connected normal subgroup of G for each 

j , and therefore a product of simple factors of G. That is, (H  fl F =  Gj. 

for some Jj C {1, . . .  n}.
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Suppose that Gjp fl Gj q ^  {1} for some pair p , q. Then, since T' fl Gj j =  

Tj fl H  for all j ,

r  n (Gjp n Gj q) = (r  n GJp) n (r n GjJ = (rp n h )  n (r9 n #),

which is non-trivial if and only if p =  q. Thus {J i , . . . ,  J/} is a partition of 

77,}. As Fj and therefore H  fl Tj is irreducible for each j, this partition 

must be minimal. But there exists only one such partition. So, I = k and 

there exists a bijection a € Sk such that Tj ~  Aa(j) for all j .  □
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Chapter 4

E-invariants and the SFC property

Let T be a group of type FP and £ : P  —» Z a projective resolution of 

Z over Z r  having finite type. Then, as Pi is finitely generated as a Zr~ 

module, Homzr(Pi,Z) and its subquotient H l{r ,  Z) are finitely generated 

abelian groups for all i. Consequently every group T of type FP has a well- 

defined Euler characteristic

x(r) =  S j=0( - l ) irank(ffi(r;Z)).

Now, it is well known that in this case,

x(A) =  [r : A]x(r)

whenever A is a subgroup of finite index in T (see [12, Chapter IX, Theorem 

6.3]). This fact is expressed by saying that x  is multiplicative with respect to 

covers (on groups of type FP). In [41], C.T.C.Wall used this result to extend 

the definition of the Euler characteristic to groups containing a subgroup of 

type FP with finite index. He showed that if A  is a group and T a subgroup 

of finite index in A  having type FP, then the quantity

1
Xq (A ) =  x ( r )
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is independent of the choice of T and therefore an isomorphism invariant of A.

Of course this also means that Xq(A) ls a defined for any group A  that is 

commensurable with a fixed group T having type FP. In this way, C.T.C.Wall 

extended the definition of the Euler characteristic from a particular group of 

type FP to the whole of its commensurability class.

It turns out that C.T.C.WalPs argument is entirely general and that any 

isomorphism invariant that is multiplicative with respect to covers can be 

extended to define an isomorphism invariant on the commensurability class of 

a group with the same property. This is the content of Theorem 4.1.6.

D efin ition  4.0.5. A non-zero isomorphism invariant that is defined on the 

commensurability class of a group and multiplicative with respect to covers 

will be called an e-invariant.

This term will also be used to describe isomorphism invariants which are mul­

tiplicative with respect to covers but have only been defined on subgroups of 

finite index within a particular group.

Now, if v is an e-invariant for a group T and Ai and A2 isomorphic sub­

groups of finite index in T so that v(A i)  =  ^(A 2), then, since v(T) ^  0,

[r : AJ =  v(A 0/t;(r) =  v(A2)M r )  =  [r : AJ.

This shows that the index of a subgroup of finite index in T only depends on 

its isomorphism type.

D efin ition  4.0.6. A group T will be called strongly finitely cohopfian or SFC, 

if the index of a subgroup of finite index in T is determined by its isomorphism 

type.

We have shown,
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Proposition 4.0.7. I f  a group admits and e-invariant, then it is strongly 

finitely cohopfian.

The aim of this chapter is to prove that the SFC property is in fact a property of 

the commensurability class and that possession of this property is a necessary 

and sufficient condition for the commensurability class of a group to admit an 

e-invariant.

4.1 Duality in the SFC property and the exis­

tence of e-invariants

In the following, an embedding of groups ip : A ^  T will be called cofinite if 

</?(A) has finite index in T.

Definition 4.1.1. V will be said to have the finite index property if, given any 

two cofinite embeddings i\ : H  «—► T and i2 : H  T, [T : ii(H)] = [T : i2 (H)\.

Definition 4.1.2. T will be said to have the finite coindex property if, for cofi­

nite embeddings j \  : T —> Ti and j '2 : T —► T2, the existence of an isomorphism 

Ti = r 2 implies that [Ti : ji(T)] = [T2 : j2(r)].

Lemma 4.1.3. (Duality) Let T be a group with the finite index property. Then 

T also has the finite coindex property.

Proof. Let j \  : T c—► Ti and j 2 : T T2 be cofinite embeddings and suppose 

that ip : Ti —► T2 is an isomorphism. Then j 2( r)  C T2 and ipji{T) C T2 with 

finite index. Set H  = ^ ( r )  fl (pji{T). Then H  has finite index in j 2 {T) and 

<pji(T) and

F i  : ■■ T~l m  = [T, : p ~ \H ))  = [T2 : H\ = [T2 : J2(r)][j2(r)  : H\.
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So, to show that pTi : ji(T)] = [T2 : j 2(P)], it is sufficient to prove that

l3i(r) : V- \ H ) \  =  [fc(D : H\.

Now, [ii(r)  : <p~l (H)] =  [tpj'i(r)  : H\. Moreover, v>ji(r) =  T =  J2(r). Pick an 

isomorphism 6 : (pji(T) —> j 2(r). Then, as T has the finite index property,

b'2(P) : 6(H)] =  b'2( r)  : H],

So ^ ( r )  : <p-\H)] = [ipMT) : H] = \j2(T) : 9(H)} =  [?2(r)  : H}. Hence the 

result. □

Theorem 4.1.4. A group T has the finite index property if  and only if every 

subgroup of finite index in T has the finite coindex property.

Proof <=) Let H  be a group and suppose that there exist cofinite embeddings 

ii : H  T and i<i : H  T. Then H , being isomorphic to a subgroup of 

finite index in T, must have the finite coindex property by hypothesis. But 

this means [T : i\{H)\ =  [T : 22(^)], so that T has the finite index property.

=») If T has the finite index property, then so does any subgroup H  of finite 

index in T. But H  then has the finite coindex property by Lemma 4.1.3 above. 

Hence the result. □

Clearly a group T has the finite index property if and only if it is SFC.

Corollary 4.1.5. I f  a group T has the strong finite cohopfian property, then 

so does any group commensurable with T.

Proof. Let B  be a group commensurable with T. Any group that embeds with 

finite index in T is certainly SFC, so it is sufficient to show that B  is SFC 

whenever there exists a cofinite embedding T B.
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Identify T with its image in B. By Theorem 4.1.4, B  has the SFC property 

if and only if every subgroup of finite index has the finite coindex property. 

So, let H  be a subgroup of finite index in B  and suppose that j \  : H  «—> Ti 

and j 2 : H  c—> T2 are cofinite embeddings, where IT =  T2. Then, as T fl H  has 

the finite coindex property,

[IT : ^ ( r  n  H)} =  [r2 : j 2( r  n  h )].

But, for r = 1,2, [rr : j r{T fl H)\ =  [rr : j r (H)][jr(H) : j r(F fl H)\, while 

[T(tf) : ji(T  fl H)\ = [H : T n  H] =  [j2(H) : j 2(T fl H)]. Consequently 

[Ti : ji(H)] = [T2 : j 2 {H)], which completes the proof. □

Let T be SFC and pick a non-zero real number c. Define u(T) =  c. Now 

suppose that T' is a group commensurable with T, so that there exists a group 

A and cofinite embeddings j  : A «-> T and k : A c-* V. Define

(p<) F : c
V(l j [P : *(A)] C'

T heorem  4.1.6. v (r ')  is independent of the choice of A , j  and k and therefore 

depends only on the isomorphism type of T'. Moreover v(A) =  [T' : 

whenever A  is a subgroup of finite index in T', so that v is an e-invariant 

defined on the commensurability class of T.

Proof Let Ai and A2 be groups such that there exist cofinite embeddings

j i  : Ai «-> T and fci : Ai T'

j 2 : A2 *—> T and k2 : A2 c-> T'

Set H  = j i{A i)  C\j2(A 2). Then H  is contained in T with finite index and

[r : : H] = [r : H) =  [T : j 2(A2)]L?2(A2) : H],
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Let : ji(A i)  —* &i(Ai) and ^2  : ^2 ( ^ 2 ) —> ^2( ^ 2) be isomorphisms. Then 

[M AO : M H ) \  = [71  (AO : # ]  and [^ (A 2) : M ^ ) }  =  ba(A2) : #]• So,

[T : ii(A0][^i(A0 : MH)\ = [T : j2(A2)][fe(A2) : M^)]-

Multiplying both sides by [r; : fci(Ai)], we deduce:

[T : M B W  • ii(Ai)] = ir' • ^i(Ai)][r : j2(A2)][MA2) : * (# )]

But H  is SFC and so [M A 2) : ^ 2 (H)\ — [A;2(A2) : Vh (H)]. Therefore,

[r : k2(A2)][r : *(A0] = [T : *i(Ai)][T : j2(A2)],

which completes the proof. □

Corollary 4.1.7. A group T is SFC if and only if  it admits an e-invariant. 

Proof. Immediate. □

4.2 The relation to rigidity

In this section, an irreducible lattice in a connected semi-simple Lie group 

with finite centre will be shown to be SFC. This result, which makes use of 

the Mostow rigidity theorem [27], subsumes an earlier result due to A.Borel, 

who originally initiated investigation into the relationship between the index 

of a subgroup in a semi-simple lattice and its isomorphism type, proving the 

following theorem in [7]:

Theorem 4.2.1. Let G be a linear algebraic group defined over R and T a 

lattice in Gr such that i / 1(A; Ad) = 0 for all subgroups A of finite index in T. 

Then T is not isomorphic to a proper subgroup of finite index.
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Here H*(_; Ad) denotes cohomology with local coefficients in the sense of 

N.Steenrod [35, pages 151-166]. The local system in question is constructed 

in a canonical way from the representation Ad a described in [31, pages 105 - 

107].

Now, A.Weil had proved in [43] that if T is a discrete cocompact subgroup 

of a connected linear semi-simple Lie group whose non-compact factors all 

have dimension > 3, then ^T1(r;Ad) =  0. Any such group G C GL(n,  R) 

is however, just the set of real points of the identity component of its Zariski 

closure in GL(n , M). As A.Borel observed, the above theorem therefore applies 

to any cocompact lattice T in a connected linear semi-simple Lie group whose 

non-compact factors all have dimension > 3. In addition, using the results of 

M.S.Raghunathan (see [29] and [30]), A.Borel was able to show that Theorem

4.2.1 holds for a large class of arithmetic lattices in semi-simple Lie groups that 

includes all arithmetic lattices in connected linear algebraic groups defined and 

simple over Q that are not locally isomorphic to SL(n,  C). A linear algebraic 

group that is defined over Q is said to be Q-simple or simple over Q if it 

contains no proper connected normal subgroup defined over Q.

In a later chapter, I will show that any lattice in a connected semi-simple 

Lie group with finite centre has the SFC property (Theorem 5.2.2). This 

result extends both A.Borel’s original theorem and the theorem derived from 

the Mostow Rigidity Theorem in the next section.

4.2.1 The SFC property of irreducible lattices in L

In [27], G.D.Mostow showed that if Tj is an irreducible cocompact torsion-free 

lattice in an adjoint semi-simple Lie group Gj  ^  P S L ( 2, R) without compact 

factors (j  =  1, 2), then every isomorphism <p : Ti —> I^ extends to a unique
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Lie group isomorphism <p : G\  —► G^- This phenomenon is known as (Mostow) 

rigidity. The hypotheses of G.D.Mostow’s original theorem were subsequently 

weakened by G.A.Margulis, G.Prasad and M.S.Raghunathan to include non­

cocompact lattices (see [27, pages 8-9]) .  The full theorem is therefore:

Theorem 4.2.2. For j  =  1,2, let Tj be an irreducible torsion-free lattice in 

a connected adjoint semi-simple Lie group Gj without compact factors and 

not isomorphic to P S L (2,M). Then, every isomorphism Ti —> T2 , extends 

uniquely to a Lie group isomorphism G\  —► G2.

A couple (G, T) satisfying the hypotheses of the full rigidity theorem will 

be called a rigid couple. The following proposition shows that once a Haar 

measure ft has been fixed on G, the volume p{G/T) depends only on the 

isomorphism type of T, where p  is the G-invariant Borel measure on G/T 

induced by p.

Proposition 4.2.3. Let (G , A) and (G, B) be rigid couples and suppose that 

A = B, then p(G/A)  =  p(G /B).

Proof Let p  : A  —> B  be an isomorphism and <p : G —> G the unique Lie 

group isomorphism extending p. Let u  be the volume form on G inducing /L 

Then, it follows from the definition of p that

M G/B) =  J1(V) = [  u,
Jv

where V  is a fundamental domain for the action of B  on G. But U = p~l iy )  

is a fundamental domain for the action of A, while p*u = det(Lp)uj, where L 

is the Lie functor. So in fact

p(G /B ) = f  u  = \det(Lp)\ f  u  = \det(L<p)\p(G/A)
Jv Ju
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It is therefore sufficient to show \det(Lip)\ =  1. To see this, first observe that, 

as G is semi-simple, Ad(G) =  Aut(g)0, where g is the Lie algebra of G. As 

connected semi-simple Lie groups only admit trivial characters, this implies 

det(0) =  1 for all 0 G Aut(o)°. Let {Ei} be a basis for g. We may identify 

Endfa) with GL(n2,R)  via a  i—> o;^, where a(Ei) = oijiEj for all i,j. Let Cijk 

be real numbers such that [E^ Ej] =  CijkEk for all i,j,k. Then G GL(n, R) 

corresponds to an element of Aut(g) if and only if

OtipOLjqCpqrEr — [ĉ (-!?{), Q.(E j )j — Ej] — C{jizO/.(KE]i] — Cij^OirkEr ,

so that OLipOLjqCpqr = CijkOLrk> But this mean that Aut(g) is an algebraic 

subgroup of GL(n2yR) defined over R and therefore has only finitely many 

connected components. {1, - 1} contains all finite subgroups of R, and any 

real-valued character of Aut(g) must therefore take values in this set, which 

implies that \det(L<p)\ =  1. □

Corollary 4.2.4. Let T be an irreducible torsion-free cocompact lattice in a 

connected adjoint semi-simple Lie group G without compact factors. Then, if 

p is a non-zero G-invariant Borel measure on G/T, the mapping

fp :  A h  /x(A),

defined on subgroups of finite index in T, is an e-invariant for T.

Proof The proposition above shows that is an isomorphism invariant. We 

must show that it is multiplicative with respect to covers. Let A be a subgroup 

of finite index d in T. Then there exists a d — 1 covering map G /A  —> G /T  

defined by gA  h-> gT, so that p(G /A )  =  d • p,{G/T). Hence the result. □

Theorem 4.2.5. I f T e L  is irreducible, then it has the SFC property.
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Proof. As lattices in L  are virtually torsion-free by Proposition 3.1.6, while the 

SFC property is a property of the commensurability class (Corollary 4.1.5), we 

may assume that Y is torsion-free. In this case however, Proposition 3.1.7 

shows that Y embeds as a lattice in a connected adjoint semi-simple Lie group 

without compact factors. The only case that is excluded by the theorem above 

is therefore that of lattices in P S L (2, R) (which are necessarily irreducible since 

P S L (2, R) is simple). Now, P S L ( 2 , R) acts transitively on the upper half-plane 

H by Mobius transformations. The stabilizer of i is the compact subgroup 

P SO (2), so that P SL (2 ,R )/P SO (2) = H. But Y is discrete and torsion-free, 

and therefore acts freely and properly discontinuously on P S L(2,R)/ PSO(2) 

by left multiplication. The double coset space X r =  Y \P S L (2 ,R )/P S O (2 )  

is a smooth manifold covered by H =  PSL(2,M.)/PSO(2) whose fundamental 

group isomorphic to Y. Thus X r  is a K(Y, 1) space and x ( 0  =  x (^ r)-

Now, when T is cocompact, X r , being the image of the compact space 

r \P S L (2 ,R )  under the continuous map Yg i—> YgPSO(2), is a compact mani­

fold. X r  is therefore the fundamental group of compact surface without bound­

ary. But by Corollary 3.2.3, Z(Y) = {1}, so that Y is non-abelian. Thus X r has 

genus > 1 and x ( 0  =  x ( ^ r )  7̂  0. As the Euler characteristic is multiplicative 

on covers, this shows that Y is SFC.

If T is not cocompact, then its cohomological dimension must be strictly 

less than the dimension of Xp (see [12, Chapter VII, Proposition 8.1]). T, being 

non-trivial, therefore has cohomological dimension 1. It is a celebrated theorem 

of J.R.Stallings [34] and R.G.Swan [38] that every group of cohomological 

dimension 1 is free. As Y is finitely generated and non-abelian, it is therefore 

isomorphic to the free group on r generators, for some r > 1. So x(F) =  

1 — r  7̂  0, which shows that Y is SFC. □
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Chapter 5 

Direct products of groups and the 

SFC property

If I \  and r 2 are groups, and x T2 is SFC, then so are Ti and T2. For, if A  

and B  are isomorphic subgroups of finite index in r l5 then A  x T2 and 5 x T 2 

are isomorphic subgroups of finite index in Ti x T2, so that

[A : I \]  =  [A x r 2 : Ti x T2] =  [B x T2 : T, x r 2] =  [B : TJ.

In this chapter it will be shown that, for a suitably strong notion of irreducibil- 

ity, the converse is also true. The resulting product theorem will then be used 

to show that all lattices in connected semi-simple lattices with finite centre are 

SFC (Theorem 5.2.2). Finally, counter examples will be given to show that for 

an arbitrary extension 1 —> K  G —» Q —> 1 in which T is SFC, both K  and 

Q can fail to possess the strong finite cohopfian property.

As a non-zero Euler characteristic is an e-invariant, were it the case that 

y(r) ^  0 whenever T G L, Theorem 5.2.2 would be well-known. However, 

though always defined for such T, in many cases y( r )  is either zero or else 

still unknown. For example, if T is a cocompact lattice in L  then any torsion-
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free subgroup A of finite index in T satisfies Poincare duality. So, if the

cohomological dimension of A is odd, then 0 =  x(A) =  Xq (0 -  addition,

certain non-cocompact lattices are known to have zero Euler characteristic. In 

particular, x{SL(n ,Z))  =  0 for all n > 3 (see [12, page 256]).

5.1 The product theorem

D efin ition  5.1.1. An infinite group H  will be called strongly irreducible if it 

is not commensurable with a group that can be written as the product of two 

infinite mutually centralizing subgroups.

T h eo rem  5.1.2. The direct product of finitely many strongly irreducible torsion- 

free SFC groups has the strong finite cohopfian property.

We begin with the following lemma:

L em m a 5.1.3. Suppose that H  =  Hi o • • • o Hn and K  = K \ o • • • o K n are 

internal direct products of strongly irreducible torsion-free groups. Then, if  K  

is contained in H  with finite index, there exists a permutation a G Sn such 

that Hj contains K a(j) with finite index for all j  G {1, . . .  n}.

Proof. Let 7T* : H  —► Hi be the natural projection onto the ith factor. Then

7ri(K) = Ki(Ki) • • -7Ti(Kn) has finite index in Hi. As . . . ,  7ri(Kn) are

mutually centralizing subgroups of the strongly irreducible group Hi, there 

exists a(i) G { l , . . . , n }  such that ni(K) = 7Ti(Ka^ )  and ni(Kj) =  {1} for

j  ±  <*(*)•

Now, suppose that j  is fixed and that Kj  ^  K a^  for i — 1, . . .  ,n. Then 

7Ti(Kj) = {1} for all i so that Kj =  {1}, which is a contradiction, since Kj  is 

assumed to be infinite. The map

a : {1, . . . ,  n)  {1, . . . ,  n}; i »-> a{i),
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is therefore onto and hence bijective. So, K ^  Ko{j) for i ^  j .  In particular, 

nj(K a(i)) =  {1} whenever i ^  j , which implies that K a^) C Hi. Thus ni{K) = 

T^i{Ka[i)) — which shows that K a^) has finite index in Hi. □

proof of Theorem 5.1.2. Let (Ti , . . . ,  Tn) be a sequence of strongly irreducible 

torsion-free groups with the SFC property. Set T =  Ti x • • • x Tn. For each 

i G {1, . . . ,  n)  do the following: if for some j  ^  i,Ti is commensurable with, 

but not isomorphic to Tj, replace T* by Tj in the sequence. Now relabel the 

sequence as (r'l5. . . ,  r'n). Then V  = x • • • x ~  T, and, as T is SFC if 

and only if T' has the SFC property by Corollary 4.1.5, we may assume that 

T =  T'. i.e. if Tj is commensurable with Tj for some j  then T* =  Tj.

For each i G {1, . . . ,  n}, identify T* with its image in T under the canonical 

embedding r i ^ - » r i X - - - x r n. Then T is the internal direct product Ti o 

• • • o r„ . Let A  and B  be isomorphic subgroups of finite index in T and, for

i G {1, . . . ,  n}, set Ai =  T* fl A, Bi — Tj D B. Then A' = A\  o • • • o An and

B ’ =  B\ o • • • o B n have finite index in A  and B  respectively.

Pick an isomorphism : A —> B. Then (p(A') = y (A \)  o • • • o ip(An) 

is a product of strongly irreducible torsion-free groups contained in T with 

finite index. By the lemma above, there exists a permutation a G Sn such that 

<p{Ai) C r a(q with finite index for all i. But this means that T* ~  tp(Aj) ~  

for i =  1, . . . ,  n. By our assumption, there must therefore exist isomorphisms 

Li =  T^i) for all i. As T; and therefore Ai is SFC, duality in the SFC property 

(Lemma 4.1.3) now implies that [T* : Ai] = [r^q  : (p(Ai)]. However, C

To-(j) D B  — B a(j). So, as (p is an isomorphism and a  is bijective, <p(Ai) = B a^ .  

Thus <p(Af) = B', [A : A'] =  [B : B'] and [T* : Ai] = [ r ^ j  : B ^ ]  for all i. As 

a  is a permutation, this shows that [T : A'] =  [T : B'}. Hence

[r : A] = [r : A']/[A : A'] = [r : B']/[B : B'] =  [T : B\.
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□

5.2 The SFC property of lattices in L

The hypothesis of Theorem 4.2.5 can be extended using Theorem 5.1.2 above 

to include all lattices in L, and not just those which are irreducible.

Theorem 5.2.1. I fF  is an irreducible lattice in a connected semi-simple Lie 

group with finite centre then F is strongly irreducible.

Proof. Suppose that F embeds as a subgroup of finite index in a group H  = 

H i H2i where Hi and H2 are mutually centralizing infinite subgroups of H. 

Then, as Hj/(F  fl Hj) injects into the finite set H/F, F D Hj has finite index 

in Hj for j  = 1,2. Pick h € H. Then h = h\h2, where hi 6  Hi and h2 € H2. 

Moreover,

hih2( F n Hi)(F  n h 2) = hi(F n Hi) h2( r  n h 2),

so that [H : ( T n H ^ T nH i ) ]  < [Hi : m H{\[H2 : FOH2]. Thus ( r n # i) (r n tf2) 

is contained in F with finite index. Consequently, it is sufficient to show that 

T itself cannot be decomposed as the product of two mutually centralizing 

infinite subgroups.

Now, as strong irreducibility is a property of the commensurability class, 

we may further assume that F is torsion-free, so that F embeds as a lattice in a 

connected adjoint semi-simple Lie group G, without compact factors (Propo­

sition 3.1.7).

Identify G with its image in GL(n,C)  under the adjoint representation 

and suppose that F =  where Fi and F2 are infinite mutually centralizing 

subgroups of T. Pick 7  € F. The mapping x  1—> 7 x7 “ 1 is polynomial with
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polynomial inverse and therefore a homeomorphism of G onto itself in the 

Zariski topology. So, for j  =  1, 2 ,

Tj =  7 r ^ " 1 =  ryTj'y~1,

which shows that T normalizes both Ti and T2.

T is Zariski dense in G , so that T = G and by Lemma 2 .1 .1 , G normalizes 

Tj for j  =  1,2. However, G =  (G)J C GL(n,  R). Thus (Tj)® is normal in G 

and (Fj)J, being characteristic in (T; )r, is a closed connected normal subgroup 

of G.

Since Ti and r 2 are mutually centralizing, it also follows from Lemma 2 .1.1 

that (ri)jR and (1^)^ centralize eachother, so that ( r i)^ f l  (I^)^ is abelian. As 

the simple factors of G are all non-abelian, this shows (Ti)J fl ( r 2)J =  {1}. 

Now, for j  =  1,2, (Tj)r  is a real algebraic group, and as such has only finitely 

many connected components. Consequently A j — (Fj)J fl Tj is a subgroup of 

finite index Tj for j  = 1,2. Moreover, Ai fl A 2 C (1^)1 fl (I^ )! =  {1}, so that 

Ai • A2 =  Ai x A2. As x ix 2A i  • A2 =  x iA i  • x 2A 2 for all x\ € Ti, x 2 € r 2, 

Ai • A2 has finite index in T. This contradicts the irreducibility of T. Hence 

the result. □

Theorem 5.2.2. I f  T E L then T has the SFC property.

Proof. As we have seen, T admits a torsion-free subgroup of finite index, say 

T', that embeds as a lattice in an connected adjoint semi-simple Lie group. 

The irreducible factors of T' are also lattices in adjoint semi-simple Lie groups 

and by the above theorem, strongly irreducible. Thus F , and therefore T, 

is commensurable with a direct product of finitely many strongly irreducible 

torsion-free SFC groups. This product has the SFC property by Theorem

5.1.2. As the SFC property is a property of the commensurability class, this 

shows that f  is SFC. □



5.3 SFC group extensions with non-SFC factors

The aim of this section of to show that a group G arising as an extension

can possess the SFC property even when K  or Q fail to do so. This will be 

demonstrated by two examples: non-trivial extensions of Z by oriented surface 

groups of genus > 1, and Stallings fibrations constructed via pseudo-Anosov 

diffeomorphisms.

5.3.1 The Stallings fibration

Let X  be a compact orientable surface without boundary and ip a diffeomor- 

phism of X .  The quotient space E(<p) = X  x  1/ ~  is then a smooth closed 

3-manifold, where ~  identifies (x, 0) with {p{x), 1) for all x  G X .  Let [x, t] de­

note the equivalence class of (x , t). The map [x , t] i—► t then defines a fibration 

E(p)  —* S 1 with fibre X , called a Stallings fibration, after J.R.Stallings, who 

proved the following theorem in [33]:

Theorem 5.3.1. Let M  be a compact irreducible orientable 3-manifold without 

boundary for which there exists a short exact sequence of groups

1 -> K  -* tti(M ) -> Z 0,

in which K  is finitely generated. Then M  is a locally trivial fibre bundle over S 1 

whose fibre is a closed orientable surface X  such that n i(X ) = K . Moreover, 

the short exact sequence 1 —> ni{X) —*■ 7Ti(M) —> ^ ( .S 1) —> 0 arising from the 

long homotopy exact sequence of M  is isomorphic to the extension above.



be a short exact sequence. It follows easily from the Lyndon-Hochschild-Serre 

spectral sequence for T that ran k (i/2(T;Z)) =  2# — 1, where g is the genus of 

E. Since E is determined upto isomorphism by its genus, this shows that the 

isomorphism type of E is determined by I\

The following proposition shows that when g > 1, E is characteristic in T.

Proposition 5.3.2. I f  1 —► E —» Tj —► Z —> 0 is an extension for j  =  1,2, 

then any isomorphism 0 : Ti —» T2 induces a commutative diagram,

l - »  E —► Ti —► Z ^ 0

0' i  19 16"

l - »  E - ^ r 2 -^ Z -> 0

Proof We must show that 0(E) =  E. Set T =  r 2, Ei =  E and E2 =  0(E). 

Suppose that Ei 7̂  E2. Then, as Ej is a normal subgroup of T for j  =  1,2, 

H = Ei • E2 is also a normal subgroup in T. Suppose that H  C T  with finite 

index. Then, if Pj is the projection T —> T/Ej, Pj(H) =  Z for j  =  1,2 and 

there exists a short exact sequence

This means that there exists a = ai E H  such that o\ is not contained in 

Ei n E 2 and P2 {v) has infinite order. As P2 {&) = V2 (? 1^2) =  ^2(^1), this means 

P2 {&i) has infinite order also. So, there must exist a short exact sequence

1 —> Ei n E2 —> Ei —> A. —> 0.

in which A  is finitely generated and abelian ([Ei,E i] C [T, T] C Ei fl E2, so 

that E i/E i fl E2) is abelian). But this implies that 2 — 2g = x (^ i)  =  0, a 

contraction.
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This shows that H  is contained in T with infinite index. But then, for 

.7 =  1,2,

T /H  & (r/E j )/(H /S j) -  Z / { H / £ ,)

Thus H/Y,j is finite for j  =  1,2. So, Ei fl E2 C H  with finite index. So

T /E i n  E2 =  Z and there exists a short exact sequence

i  — > Ei n e 2 — > r  — > z  —> o.

But the genus of Ei DE2 is determined by T and so x (^ i HE2) =  x (^ i) , which 

is impossible unless Ei =  E2. □

It follows from the above proposition that if 0 : —> T2 is an isomorphism,

then there exist sections Sj : Z —* Tj such that

M l )  =  *2(± 1).

So, if <pj is the operator homomorphism of the extension

1 —► E —> Tj- —► Z —► 0,

then [6,]'(pi(l)'[0']'~1 — </?2(± l) , where O' is the restriction of 0 to E. This shows

that, up to isomorphism, T is uniquely determined by the couple (g,C(<p)), 

where C(<p) is the set of elements in Out(E) conjugate to either </?( 1) or (p(—1). 

We shall write T =  T(p,

Now, if E(ip) is an orientated Stallings fibration, then the image of 1 under 

the canonical homomorphism a  : 7Ti(5 '1) —> Out(7Ti(S)) induced by the outer 

action of 7T\(S1) on the fibre E of E(<p), is just [y?], where [/] denotes the 

element determined by a diffeomorphism /  under the canonical homomorphism 

7To(Diff(T,)) —> Out(7Ti(E)). However, a  is the operator homomorphism of the 

extension



arising from the long exact homotopy sequence of E{tp). Thus iri(E(ip)) =  

T(p, C[p>}), so that, if E(<pi) and E(ipi) are Stallings fibrations constructed from 

the same surface X , then ni(E((pi)) =  iri(E((pi)) if and only if C[pi) — C[p2[.

For a compact orientable surface X  without boundary and having genus > 

1, F.Waldhausen [40] has shown that ir0( D i f f ( X ) )  = O ut(7ri(X )), so in fact 

b i]  =  [<£2] if and only if (pi is isotypic to ip2 > According to W.P.Thurston [39], 

a diffeomorphism /  G D i f f ( E) corresponds to an element of infinite order 

in Out(7Ti(X)) if and only if is isotopic to a pseudo-Anosov diffeomorphism. 

As Out(7Ti(A)) is known to have non-zero virtual cohomological dimension 

(see [13]), diffeomorphisms of this type certainly exist. The following theorem, 

also due to W.P.Thurston [25], shows that if ip is such a diffeomorphism, then 

7Ti(E(p))  is a lattice in L:

T h eo rem  5.3.3. Let X  be a closed orientable surface of genus > 1 and (p a 

diffeomorphism of X .  Then, the Stallings fibration E(ip) admits a complete hy­

perbolic metric if  and only i f  p> is isotopic to a pseudo-Anosov diffeomorphism. 

That is, there exists a Riemannian metric on E((p) with respect to which it is 

complete Riemannian manifold of constant negative curvature.

Proof. See [25, Theorem 3.9]. □

C oro lla ry  5.3.4. I f  ip is isotopic to a pseudo-Anosov diffeomorphism, then 

7Ti(E(tp)) is isomorphic to a cocompact lattice in the simple Lie group 0 (3 ,1).

The corollary is an entirely standard deduction from the theorem above. 

However, the proof is often omitted from texts on group theory and has there­

fore been included below.

Proof. Let 7r : E  —> E(p)  be the universal covering. Then, in the Riemannian 

structure induced by 7r, E  is also a complete Riemannian manifold of constant
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negative curvature (see [20, pages 176 and 202]). Moreover, with respect to 

this structure, 7r is a local isometry and so the canonical action of 7Ti(E(<p)) on 

E  by covering transformations is isometric. T =  ni(E((p)) therefore embeds as 

a discrete subgroup of 1(E) , the isometry group of E.

It is a classical theorem that a complete simply connected Riemannian 

manifold M  of constant curvature k and is isometric to the space form L(k) 

[20, Chapter VI, Theorem 7.10]. That is, the hypersurface

{(#1, . . . ,  xn, t) € R n+1 : x\  H 1- x 2n +  r t2 = r},

where r = l / k  and n is the dimension of M. The metric on L(k) is given

by restriction of the form dx\ + -----1- dx2n +  rdt2 and its isometry group I (k)

consists of those linear transformations of Rn+1 that leave the quadratic form 

x \  H-------1- x ^  + r t2 invariant (see [44, Theorem 2.4.4]).

Now, I(k) = 0 ( n , 1) whenever k < 0, so that 1(E) = 0 (3 ,1 ). Moreover, 

I(r)  acts transitively on L(k) with compact stabilizers [20, Chapter VI, The­

orem 3.4] so that E  = 0 (3 ,1  ) / K  for some compact subgroup of K  of 0(3 ,1). 

Thus E(ip) =  T \0 (3 ,1 ) /K .  As T \0 ( 3 ,1) is a fibre bundle over T \0 (3 ,1 ) /K  

with fibre K , this shows that T is cocompact in 0(3 ,1). Hence the result. □

As 0(3 ,1) is simple, this shows that tti(E((p)) has the strong finite cohop- 

fian property whenever is a isotopic to a pseudo-Anosov diffeomorphism. 

However, 7Ti(E(<p)) is given as an extension,

1 —> 7Ti(E) —> TTi(E(<f)) —> Z —> 0 

and Z is certainly not SFC.
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5.3.2 The groups T( ,̂ c)

Let T be a group arising as a central extension of Z by the fundamental group 

E5 of a closed orientable surface with genus g > 1, so that there exists a short 

exact sequence

0 - > Z - + r - > E 5 - > l .  (5.3.1)

As Z (E9) =  {1}, E5 == r /Z (r ) depends only on the isomorphism type of T, so 

that g is an isomorphism invariant of T.

Now, the extension 5.3.1 is classified by a class c € H 2(E9,Z) =  Z. Since 

Aut(Z) =  {±1}, up to sign, c depends only on the isomorphism type of T. 

So, for fixed g , c determines a unique group T =  T(^, c) upto isomorphism for 

each c > 0. We will show that when c > 0, T(p, c) is SFC, thereby proving 

that an extension of a non-SFC group by one with the strong finite cohopfian 

property can still be SFC. This example also shows that SFC groups can have 

non-trivial centres.

Let A be a subgroup of finite index in T. Then A fl Z{T) has finite index 

in Z{r ) . Consequently A fl Z(T) =  Z. Moreover, the inclusion : A —> Y 

induces an injection A /A  fl Z(T) E5, so that A is given as an extension

1 _> z  —► A -> E^ ^  1 (5.3.2)

for some h. This extension is clearly central, so that A =  T(h,d), where 

d € / f 2(E/l;Z) classifies 5.3.2. Moreover, there exists a commutative diagram

z  --> A Eh

I I  9 I v ?

z -+ r Ê

in which all of the downward arrows are inclusions.

T h eo rem  5.3.5. I f  c > 0, then T(g,c) has the SFC property .
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Proof. Since surface groups of genus > 1 have the SFC property and are de­

termined up to isomorphism by their genus, the index [E5 : ip"(fEh)\ depends 

only on h (g being given). We shall show that the index [Z(T) : Z(A)] is 

determined by the value of d. Since [r; A] =  [E5 : '£h][Z(r) : Z(A)], this will 

prove the theorem.

Let s : E5 —» T be a section and

cs : Es x E5 —> Z; (gi ,g2) s{gi )s(g2)s{gig2)~1

the corresponding cocycle (which represents c). By commutativity, s(<p"(x)) C 

\m<p for all x  € E \  In addition, <p is injective, so that s defines a section 

t : Eh —► A such that

ip't =  s o <p".

Let dt be the corresponding cocycle (which represents d). Then,

cp'dt = cs o (p" x ip").

However, [cso(p"xip")] =  (<p")*c, where (ip1')* is the induced map H 2(E5; Z) —► 

H 2(E ^Z ). But this is just the map defined by 1 ^  [E5 : Efe]. Similarly, 

[<p'dt} =  (<p')*d, where (ip')* is defined by 1 i-> [Z(T) : Z (A)]. Thus

[Z(T) : Z(A)]d = [E5 : Eh]c,

so that [Z(T) : ^(A)] depends only on the isomorphism type of A. □
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Chapter 6 

E-invariants and the theory of 

central extensions

Let G be a group with centre Z, and suppose that both Z  and H 2(G/Z\'L) 

are finitely generated. Then, modulo torsion, the characteristic class of the 

extension

0 -> Z -> G —► G /Z  1

can be regarded as a matrix with entries in Z. The rank of this matrix turns out 

to be an isomorphism invariant of G, and closely related to the SFC property. 

Before any theorems can be proved however, some definitions are required.

Let Mmn(Q) be the group of m  x n  matrices with rational entries and 

&ij =  &ik&ji the canonical basis of Mmn(Q). For x  G Mmn(Q), define the 

numbers Xij by x  =  Xijeij. Set Cj =  {eu, . . .  ,emi}, and take Qc* to be the 

subgroup of Mmn(Q) generated by the elements of ci5 so that Mmn(Q) is the 

internal direct sum

Q ci +  • • • 4- Qcn =  Q m © • • • ©  Q m =  (Q m)n.

Similarly, let r* =  {en , . . . ,  ein}, and take Qr* to be the subgroup of Mmn(Q)
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generated by the elements of r i5 so that

M mn{Q) =  Q n  +  • • • +  Q rm *  Q n © • • • © Q n =  (Qn)ro.

D efin ition  6.0.6. A group homomorphism t : Mmn(Q) —► Mmn(Q) will be

said to have type L if t : X  i-> P X  for some m  x m  matrix P  and type R  if

X Q  for some n x n matrix Q.

If t is given by X  P X , and Xi  are the columns of the matrix X  E Mmn(Q),

so that X  = ( Xi , . . . ,  X n), it is elementary to see that P X  =  (P X i , . . . ,  P X n). 

t therefore corresponds to the transformation ■-> Pkjeki applied to each of 

the subgroups Qcj. Similarly, if t is given by the map X  \ X Q ,  then t cor­

responds to the transformation eij i-> eikQjk applied to each of the subgroups 

Q n.

6.1 Matrix invariants and central extensions of 

groups

Let E be a group for which H 2(E; Z) is finitely generated, so that there exists 

an isomorphism j  : H 2(E;Q) —► Qm for some non-negative integer m. Then, 

given a finitely generated abelian group A  and an isomorphism i : A 0 Q =  Qn, 

define 0(i,j)  to be the composition

H \ E; A  ® Q) h  H 2(E; Qn) ^  H 2{E; Q)n (Qm)n “  Mran(Q),

where 7r : i f 2(E;Q n) =  H 2(E;Q )n is the natural isomorphism, and i* is the 

induced map z* : [/] i-> [i(f)\.

D efin ition  6 .1 .1 . An isomorphism i^2( E ; A ® Q )  —► Mmn(Q) will be called 

admissible when it is equal to 9(i, j )  for some pair of isomorphisms i : A<g)Q —>



T h eo rem  6.1.2. Let G be a group, Z  its centre and c the characteristic class 

the canonical extension

0 -> Z  —> G —> G /Z  —> 1.

Suppose that Z  and H 2(G /Z;Z) are finitely generated and let

9 : H 2( G / Z - , Z ® q ) ^ M mn(Q)

be an admissible isomorphism. Then, i f  cq denotes the image of c under the 

natural map H 2(G/Z; Z) —► H 2{G/Z\ Z<8>Q), rank(6(cq)) is independent of the 

choice of isomorphism 0 and therefore an isomorphism invariant of G. Simi­

larly, when ranh(Z) =  rank(H2(G/ Z\ Z)), so that 9(cq) is square, \det(0(cq))\ 

is an isomorphism invariant of G.

When the hypotheses of the above theorem hold, rank(G) =  rank(0(c<Q)) will 

be called the rank of G and det(G) =  |det(0(cQ))| its determinant. The proof 

of their existence is based upon the following:

For j  =  1,2, let 0 —> Aj —> Gj —> Ej —> 1, be a central extension in which 

Aj  and H 2(T,j;Z) are finitely generated. Let tp : G\  —► Gi  be a homomorphism 

and suppose that ip(A\) C A 2, so that (p induces maps ip" : Ei —► E2 and 

p' : Ai —> A2. Now define

tp, : H 2(Z,i : A,  ® Q) -  H 2(E, : A 2 <S> Q)

^ : H 2CZ2 : A 2 ® Q ) - ^ H 2(Z1 -.A2 ® Q)  

to be the natural maps induced by ip' and p" respectively.

L em m a 6.1.3. Suppose A\ ® Q =  A 2 0  Q and ip" is an isomorphism. Then 

ip* and p* induce group homomorphisms Mmn(Q) —> Mmn(Q) defined over Z 

with respect to all admissible isomorphisms, where n = rank(Aj) and m  =
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rank(H2('Ej;Z)) for j  = 1,2. Moreover, the maps determined by (p* and p* 

have type type L and R  respectively.

Proof For r  =  1, 2 , choose isomorphisms ir : A r 0  Q —► Qn and

j r : H 2{Er ;Q) —* Qm. Then p* induces a homomorphism of Mmn(Q) defined

by the commutative diagram:

H 2(E2;A2 ®Q)  t f 2(E2; Q") -♦ f f2(S2;Q)" &! Mmn(Q)

•P* I  t ( < / ) * !  W Y T  i  I
H 2(Eu A 2 ®Q) H 2(S i ; Q”) f f2(£ i;Q )n *®^®21(Qm)" ^  Mmn(Q)

The map Mmn(Q) —> Mmn(Q) is clearly defined by a linear map z i—> P z  

applied to each of the subspaces Qc, and therefore has type L. Moreover, as it 

is induced by the isomorsphism P 2(£ 2; ^ 2) —► # 2(£ i; A 2)\ [/] —> [ f°(p"  x p")\ 

via the map H 2(E2; A 2) 0  Q =  H 2(E2; A2 ® Q ), <£* is also defined over Z.

The automorphism of Mmn(Q) induced by p * with respect to 6(i,j)  is 

defined by the commutative diagram:

i / 2( £ i; A,  ® Q) -  i / 2( £ i ; <Q)n) -  (Q n)m ^  M nm(Q) £  M mn(Q)

P* I a* |  |  i

H 2(E1;A2 ®Q) -> t f 2(Ei ; Q") -» «**)« a  Mnm(Q) £  Mra„(Q)

It is clear from the diagram that the map Mnm(Q) —> Mnm(Q) is given 

by a linear map a; »-» QTx  applied to each of the spaces Q(r,), so that 

the homomorphism Mmn(Q) —► Mmn(Q) induced by p * is given by right 

matrix multiplication X  —* XQ .  As p* is induced by the homomorphism 

P 2(£i; Ax) -+ P 2(£ i; A2); [x] [<£>'(/)], the map Mmn(Q) -> Mmn(Q) deter­

mined by </?* is also defined over Z. □
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Proof of theorem 6.1.2

For j  =  1, 2 , let Gj be group such that H 2(Gj\'L) and Zj =  Z(Gf) are finitely 

generated. Suppose that p : G\ —> G2 is an isomorphism. Then there exists a 

commutative diagram:

£1) 0 —► Z\ —>■ G\ —> G \jZ \  —> 1

4  1 V 1 I
£2) 0 — —* G2 —► G2 /Z 2 —► 1

in which all of the downward arrows are isomorphisms. If Cj is the characteristic

class of £j for j  = 1, 2 , then by naturality,

¥>*((cj)q) =  V».((ci)q)-

But <p* and <£>* induce isomorphisms of type L  and R  respectively. So, given 

admissible isomorphisms Qj : H 2(Gj/Zj; Zj <8>Q) —> Mmn(Q) (j = 1,2), there 

must exist invertible matrices P  and Q such that

P * l(C l)Q =  ^2(c2)q Q-

Thus rank(#i(ci)Q) =  rank(#i(c2)<Q). Similarly, when m = n, we may take 

determinants to obtain,

det(P)det(9i(ci)q) = det{02{c2)q)det(Q).

However, as the morphisms induced by ip* and <£>* are defined over Z, P  and 

Q lie in GLn(If). Consequently \det(P)\ = \det(Q)\ =  1 and \det(0i((ci)q))\ = 

\det(02((ci)q))\.

□
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6.2 A criterion for the failure of the SFC prop­

erty

T h eo rem  6.2.1. Let

o — > A - i  © a .2 —► r  — > Y j — > i

be a central extension classified b y c £  H 2(H; A \® A 2) — H 2(L\ Ax)®H2(T,\ A 2 ) 

and suppose that A\ and A 2 are finitely generated with rank(Ai) > 0. Then, if 

the projection of c onto H 2(E;Ai) is zero, V is not SFC.

Proof Choose a section s : £  —> T, so that

/ : E x E - ^ i i © i 4 2; (<7i, a2) s(o’i)s(a2)5(cr1cr2) _1

is a cocycle representing c. Then multiplication in T is given by

ais(cri) • a2s(<72) =  (a i +  a 2 +  f { ? u  <*2 ))s(cria2)

Let pi : H 2(E ; Ai  ©^42) —► H 2(E; A i)  be the natural projection so that Pi(c) =

0. Then, without loss of generality we may assume I m ( f ) C A 2. But this 

means

r 2 =  (as(cr) : a 6 A 2,cr e  £}

is a subgroup of T. Now, if B  is subgroup of A\, then B T 2 is also subgroup in 

T, for if b,b' € B  and as(<j), a'(a') 6  T2, then

(b +  a)s(a)(b' +  a')s(cr') =  (b +  b' +  [a +  a' +  f ( a , a')])5 (a (/) G B T 2.

It is clear moreover, that if B, B ' <  Ti, then any isomorphism 9 : B  —> B' 

extends to an isomorphism from BF2 —> £ T 2. But rank(^li) >  1, and so Ai 

admits an isomorphism onto a proper subgroup of finite index, say B , which 

extends to an isomorphism T = A i T2 —► B T 2. Thus T is not SFC. □
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In the light of the above, given a central extension, 0 —> Z  —> G —> E —> 1, 

it is natural to ask when a direct sum decomposition A  4- B  of Mmn(Q) is 

induced by a decomposition of Z. That is, when do there exist subgroups A  

and B  of Z  and an admissible isomorphism 9 : i f 2(E; Z 0  Q) —► Mmn{Q) such 

that

1. Z  =  A  -f B  and

2 . there is a commutative diagram,

ira © kb
H 2( Z ;A ® Q  + B ® Q ))  — >

0 \

Mmn(Q)

with 9 o tta{H2(T,] A  0  Q)) =  A  and 9 o 7T£(i/2(E; B  0  Q)) =  B , where tta 

and 7tb are the natural projections and 9 is induced by the same underlying 

isomorphisms as 9.

Lem m a 6 .2 .2 . Let E be a group such that H 2(E;Q) =  Qm and Z  a torsion- 

free abelian group of rank n, so that H 2(T,\Z 0  Q) =  Mmn(Q). Then, a 

decomposition Mmn(Q) =  A  -j- B  is induced by a direct sum decomposition of 

Z  if and only if there exists a type R  automorphism t defined over Z such that

t{Qci © • • • © Qca) =  A

t(Qca+l © • • • © QCn) =  B ,

where a is the rank of A. Since the choice of isomorphism H 2(E;Q) =  Qm is 

arbitrary, this shows that the image of a induced decomposition under any type 

L automorphism defined over Z is also induced.
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Proof. Suppose that the decomposition Mmn(Q) =  A  -j- B  is induced from a 

decomposition Z  = A  -j- B  via 9 = 9(i,j),  so that there exists commutative 

diagram:

t f 2(£; A  ® Q +  B  <g> Q)) — ► 2(£; A  <g> Q) © 2(E; B ® Q )

0 \  S O

A + B

with 6 o ita(H 2(E] A  ® Q)) =  A and 0 o 7rB( if2( £ ;£  ® Q)) =  J5. Choose 

an isomorphism p  : Z  Z  such that i o (p(A) ® Q) =  Q {e i,. . .  ,ea} and

i o (y>(£) ® Q) =  Q{ea+ i , . . . ,  en}, where {e\___ , en} is the standard basis of

Qn. Then there exists a commutative diagram,

# 2( E ; Z ® Q )  -> / f 2( E ; A ® Q ) ® H 2( E ; B ® Q )  ^  A + B

P* 1 1 -I

t f 2(£;Z<g> Q) -> i72(£; Q°) © JT2(E; Qb) -* Mmn(Q)

in which the automorphism t ,̂, being induced by </?*, has type R  and is defined

over Z. Moreover, tv (A) = Qci -j f- Qca and t ^ B )  = Qca+1 -j j- Qcn.

Thus, t ” 1, which is also has defined over Z is an automorphism of type R  with 

the required properties.

Now suppose that there exists an isomorphism q of type R  defined over Z 

such that

q(Qci +  • • • 4- Q c a ) =  A 

q ( Q c a + i 4- — i- Qcn) =  B.

q is induced by a matrix map q' : Qn —» Qn]X i-> xQ, where Q G GL(n, Z). 

Set (7Tj)* : \g] [^(p)], where 7Ti is the natural projection. Then, given

[/] G t f 2(E ;Q n), [/] =  [tti(f)ei] and so, qi[f] = [q'(7ri( /)e i)] =  [M f)Q ijej l
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which shows that q is induced by g'. That is, there exists a commutative 

diagram

J /2(£;Q ") t f 2(£ ;Q )" (Qm)n *  Mmn(Q)

I I q l

t f 2(E;Q") -> t f 2(£; Q)» (Qm)" “  Mmn(Q)

where j  : i / 2(E;Q) —> Qm is an (arbitrary) isomorphism. So, if A  = q'(Qei +

 hQea) and B  = q'(Qea+i H-------hQea), then the decomposition Mmn(Q) =

A  ® B  is induced by the decomposition Z  = A + B, where A = q(Qc\ © • • • © 

Qca)) and B  = g(Qca+i © • • • © Qc„)). Since q' is defined over Z, this shows 

that the decomposition Mmn(Q) = A  © B  is induced from a decomposition of 

Zn and therefore of Z. □

T h eo rem  6.2.3. Let

be a central extension classified by c G H 2(E;Z) in which Z  and i / 2(E;Z) 

are finitely generated, i72(E;Z) is torison-free and rank(Z) > 1. Then T fails 

to have the strong finite cohopfian property whenever rank(Z) > rank(cq). In 

particular, T is not SFC when rank(Z) > rank(H2(E;Z)).

Proof We will show that when n = rank(Z) > rank(cQ), there exists a de­

composition Z  =  A  4- B  such that rank (A) > 1 and 7r(c) =  0, where n is 

the natural projection H 2(T,;Z) —> i / 2(E;A). T will then fail to be SFC by 

Theorem 6.2.1.

Suppose first that c is a torsion element and let T (Z)  be the torsion sub­

group of Z. Then there exists a torsion-free subgroup M  of Z  such that Z  = 

M  + T{Z)  and t f 2(E;Z) S* # 2(E; M) © # 2(E; T(Z)).  As t f 2(E ;T(Z)) con­

sists entirely of torsion elements, while H 2(E;Z) torsion free, H 2(E;T(Z)) =
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T(i72(£; Z)), the torsion subgroup of H 2(£; Z). In particular, c G i / 2(£ ; T(Z)).  

As rank(M) =  rank(Z) > 1, this shows T fails to be SFC.

Now suppose that c has infinite order. Let 6 : i72(£; Z  0  Q) —> Mmn(Q) 

be an admissible isomorphism and set C  = 0(c q ). Then rank(C) < n by 

hypothesis. But this means there is a non-zero endomorphism a  : Qn —> Qn 

defined over Z such that a(Ci)  = 0 for each column C* of C.  So, by the 

rank-nullity theorem (for Zn), there exists a subgroup B  C Qn defined over 

Z such that Qn = A  +  B, where A = Ker(a). Moreover, as rank(C) < n, 

rank(B) > 1.

Let q be an automorphism of Qn defined over Z such that g(Z{ei , . . . ,  ea}) =  

A  and g(Z{ea+i , . . . ,  en}) =  B. Then, if Q G GL(n, Z) is the matrix such that 

q : x  •—► xQ  for all x  G Qn, the automorphism

tu X  i—> X Q

of Mmn(Q) operates as x xQ  on Qcj, so that C* G tu({eii, . . . ,  eai}) for all

i. That is, C G tu(Qci H Qca). However, it follows from Lemma 6.2.2 that

the decomposition

Mmn(Q) =  tu(Qci +  • • • (Q>ca) © tu(Qca+1 +  • • • Qcn)

is induced. Consequently T fails to have the SFC property by Theorem 6 .2 .1.

□

C oro llary  6.2.4. Let T be given by a central extension 0 —> Z n —>T —► £  —> 1 

with classifying class c, where £  is a surface group of genus g > 1. Then, T is 

SFC if and only if  n — 1 and 0.

Proof. Immediate consequence of Lemma 5.3.5 and Theorem 6.2.1. □
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6.3 Central extensions by lattices in L

If E is a lattice in a connected semi-simple Lie group with finite centre, then 

Z(E) =  {1} (Corollary 3.2.3). Thus, in a central extension of the form

0 - > Z - * r - > £ - + l ,

Z (T) =  Z. Cocompact lattices have type FL, so for such E, H 2(E;Z)  is 

finitely generated. This means that the rank of T is well-defined whenever E 

is cocompact and Z  is finitely generated.

We have already seen that when E is an oriented surface group with genus 

9 >  i, r  has the SFC property if and only if

1. rank(r) =  rank(Z) and

2 . the characteristic class 0 .

A slighter weaker result can be shown to hold for all cocompact lattices in L. 

Recall that a group T is said to be FC if every cofinite embedding r  —► T is 

an automorphism.

T h eo rem  6.3.1. Let

o _ > z - > r - * E - > i ,

be a central extension classified by the class c, where E is a cocompact lattice 

in L. Then T is FC if and only if  rank(T) ^  0.

For 0 /  c 6  Zn, let hcf(c) be the highest common factor of the non-zero 

coefficients of c. When c =  0 define hcf(c) =  0. By convention, the highest 

common factor will be taken to be a non-negative integer.

Lem m a 6.3.2. c € Zm is basic (that is, a member of a basis for ZmJ if  and 

only if  he f(c) = 1 .
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Proof, c G Zm is basic <=> the extension 0 —> Zc —► Zm —► Zm/Zc —> 0 

splits •£=>• Zn/Z c is torsion free. Now, (y +  Zc) G Zn/Zc is a torsion element 

if and only if there exist integers A; and I such that kyi = lei for all i. So, if 

hcf(c) =  1, it follows that k\l, and so y G Zc. Thus Zm/Z c is torsion free. 

Conversely, if h = hcf(c) ^  1, then y — c/h  is a torsion element. Thus c is 

basic if and only if hcf(c) =  1 as claimed. □

C oro lla ry  6.3.3. I f  P  G GLm(Z), then hcf(Pc) = hcfic).

Proof, c =  h .d , where d  is basic and h =  hcf(c). If P  G GLm(Z), then 

P d  is basic. Thus hcf(Pc)  =  hcf(hP(d))  =  |h| hcf(P (d))  = \h\ hcf(d)  =

fcc/(c). □

Proo/ o/ theorem 6.3.1.

Set m  =  ran k (i/2(£;Z )) and suppose that ip : T *—► T is a cofinite embedding. 

Then ip induces a commutative diagram:

o - >  z - >  r - >  e  - > i

^  1 1 /  
o_> z - *  r - >  e  1

in which all the downward arrows are inclusions and </?' and (p" are cofinite. 

Thus

[r : V(T)] =  [E : </(E)][Z : *>'(Z)].

Let c be the characteristic class of the extension 0 —> Z — —> £  —► 1. Then, 

by the naturality of <£* and ip*,

<P.(cq) =  V * (c q ) -

Let C  G Zm C Qm be a vector corresponding to cq under some admissible 

isomorphism. Since £  is FC, ip" is an isomorphism. So, <p* and <p* induce
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automorphisms of Mmi(Z) defined over Z of type L  and R  respectively. In 

particular, there exists P  G CLm(Z) and Q G i)(Z) =  Z such that P C  =  

CQ. Hence

hcf(C) = hcf(PC ) = hcf(CQ)  =  |def(Q)| hcf{C).

But, rank(r) =  rank(C) ^  0 <*==̂  C ^  0 hcf(C)  ^  0. Thus

\det(Q)\ = 1. As |det(Q)| =  [Z : p'(Z)], while [E : ^"(E)] =  1 this shows that 

[T : p{T)\ = 1 and that p  is an bijective. □

A similar result holds when T has a well defined determinant:

T h eo rem  6.3.4. Let T be a central extension of Zn by a cocompact lattice 

E G L and set m  =  rank(H2(E;Z)). Then, if  m  < n, T is not FC. I f  m  = n, 

T is FC if an only if  det(Y) ^  0.

Proof. The fact that a G fails to be FC if m  < n is a consequence of Theorem 

6.2.3 above. Suppose therefore that m  =  n and let p  : T e-> T be a cofinite 

embedding. As before, <p induces a commutative diagram:

o - ^ z - > r ^ E  i

1 I t  I t " 
o - ^ z ^ r - * s  - > i

in which all the downward arrows are inclusions and p ’ and p ” are cofinite, so 

that

[r : <p(T)] =  [S : </(£)][Z" : <p'(Zn)\.

Let c be the characteristic class of the extension and C the matrix corre­

sponding to cq under some admissible isomorphism. Then, since p" is an 

automorphism of E while p' is injective, there exist P  G GLn(Z) and Q G
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Mn(Z) fl GLn(Q) such that P C  = CQ. Taking determinants gives,

det(P)det(C) =  det(C)det(Q).

Now, \det(P)\ =  1 and det(F) =  det(C) ^  0, so that \det(Q)\ = 1. But 

[Zn : (p'(Zn)] =  \det(Q)\, and so <p is bijective. □
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Chapter 7 

Free products of groups and the 

SFC property

The aim of this chapter is to show that free products of certain generic classes 

of Poincare duality groups and irreducible lattices in semi-simple Lie groups 

with finite centre possess the strong finite cohopfian property. We shall begin 

by extending the results of A.G.Kurosh on free products of groups.

7.1 Kurosh’s theorem

A group G is said to be the (internal) free product of subgroups {Ha : a G A}  

if it is isomorphic to their free product. This is written as G =  U ae<A Ha.

T h eo rem  7.1.1. (Kurosh’s Theorem) Let G be a group and suppose G =  

UaeA Ha- Then, if H  is a subgroup of G,

H  = H i ] !  Ha0) * F,
aeA PeBa

where
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1. Hap =  H  n x apHax ap, and {xap : (5 6  B a} is a set of set of double-coset 

representatives of H \G /H a

2. F  is free

3. if  H  has finite index d in G, then d = rank(F) +  Ha€A\H\G /  Ha\ — 1 . 

Proof. See [14, Chapter 14, Theorem 10]. □

As there exist surjections H \G  —> H \G /H a for all a , this shows that if 

G =  G\ * • • • * Gn and H  has finite index d in G, then

H  & * . . .  *  J?W)) *  F)
t=l

where F  is free, d = rank(F) +  (/?! +  • • • + pn) — 1 and for each j ,  H® = 

H D xjG iX j1 for some Xj G G. Moreover, as H  and therefore X jH xJ1 has finite 

index in G , while G j / (XjH xJ1 C\Gj) injects into G / X jH xJ1, is isomorphic 

to a subgroup of finite index in Gj  for all i and j ,  namely X jH xJ1 fl Gj.

7.2 Indecomposable groups

In [21], Kurosh defined a group to be indecomposable if it cannot be written 

as a free product in a non-trivial way. He went on to show that when a group 

is isomorphic to a free product of indecomposable groups, the factors that 

occur in the decomposition are unique up to isomorphism. This leads to the 

fact that every non-trivial direct product of groups is indecomposable. The 

aim of this section is to show that this result still holds when the definition of 

indecomposability is extended to the commensurability class.

Definition 7.2.1. A group will be defined to be decomposable if it is com­

mensurable with a non-trivial free product of groups and indecomposable oth­

erwise.
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Suppose that H  is a group for which there exists a collection of proper 

subgroups {Ha : a  E A}  such that H  =  YTaeA^a- Let B  be the collection 

{a £ A  : Ha is free}. Then

H = I I
aeA\B PeB

That is, H  is the free product of the free group F  = U/3eB ^  an(  ̂ the proper 

subgroups {Ha : a  £ A \B } ,  none of which are free.

A couple of the form {{H a : a  £ A \B } ,F }  is said to be a free-product 

decomposition of H. Two decompositions {{H a : a  E A}, F}  and {{H a> : a ' E 

A'}, F'} are defined to be isomorphic if

1. F = F'

2. There exists a bijection 6 : A —> A' such that H'e^  is conjugate to Ha 

in G for all a £ A

A  refinement of a free product decomposition {{H a : a  E A } ,F }  of H, is a 

decomposition {{H ap : a  E A, (3 E B a} ,F }  such that Ha = ]lpeBa Hap for 

all a.

Lemma 7.2.2. Any two free-product decompositions of a group H  have iso­

morphic refinements.

Proof See [21, Chapter XI, Section 35]. □

Proposition 7.2.3. A decomposition {{H a : a  E A } ,F }  of G into in inde­

composable groups {Ha : a  E A} is unique up to isomorphism.

Proof. If {{H'a : a  E A!},F '}  is another free product decomposition of G, 

then {{H'a : a  E A'}, F'} and {{H a : a  E A}, F}  have isomorphic refinements. 

But the groups {Ha : a  E A}  are indecomposable and cannot therefore be
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decomposed as free products. So {{H'a : a  € A!},F '}  must be isomorphic to 

{{Ha : a e A } , F }  □

The following corollary, though not essential for the remaining discussion of 

the SFC property has been included for general interest.

C oro lla ry  7.2.4. I f  an infinite group G is commensurable with a free product 

LlaeA Ga of indecomposable groups Ga, no two of which are commensurable, 

then the groups Ga are uniquely defined up to commensurability.

Proof Suppose U a€AGa ~  L L ' g A ' w h e r e  the groups Ga> are also inde­

composable and pairwise incommensurable. Then, there exists a group H  that 

embeds with finite index in both products. By Kurosh’s theorem, H  admits a 

free product decomposition

# =11(11
aeA peBa

in which Hap is isomorphic to a subgroup of finite index in Ha for all a  G A  

and (3 G Ba. However, by the corollary above, up to isomorphism, this must 

also be the free product decomposition induced by U Q/G>1/ G'a,. In particular, 

given (3 € B a, there exists a(a) € A' such that Hag ~  G'^ay But Ga ~  Hap 

and the groups Ga are pairwise incommensurable, so q h  a(a) defines a 

map o : A  —> A' such that Ga ~  GUo  for a11 a. By the same argument,

there exist a map A : A' —> A  such that G'a, ~  G\(a>) for all a'. But then

G \a(a) ~  ^a(a) ~  which shows that A o a = id a- Similarly, a o A =  idA'-

This proves the result. □
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7.3 The strong irreducibility of decomposable 

groups

R.Baer and F.Levi proved in [1] that no group can be simultaneously isomor­

phic to a free product and a direct product of groups in a non-trivial way. This 

result is extended in the following theorem.

Theorem 7.3.1. Let G be a decomposable group. Then G is strongly irre­

ducible.

The proof depends of the following lemma, which is a very slight generalization 

of Baer-Levi theorem:

Lemma 7.3.2. Let G be a group such that A  * B  =  G = CD, for subgroups 

A , B , C , D, where C and D are mutually centralizing and infinite and A *  B  

denotes the internal free product. Then at least one of the groups {A , B , C , D} 

is trivial.

Proof. Suppose that A , B , C  and D  are non-trivial. If 1 ^  x  G A n C ,  then, since 

D centralizes x, D  C A.  But, as C  centralizes D , C  must also lie in A.  Thus 

G =  CD = A, which implies that B  is trivial, a contraction. S o A n C = { l } .  

Now, C  is normal in G. Thus xA x~ l C\C = A n  x~xCx  =  A  fl C  =  {1} for all 

x  G G. Similarly, x B x ~ l fl C = {1} for all x  € G. So, according to Kurosh’s 

Theorem, C  must be free.

Now, exactly the same argument applies to D  which is therefore also free. 

Let p : G —> G /C  be the natural projection. Then, as A D C  =  {1}, p 

maps A  injectively into D  which is therefore free. Similarly, B  is free so that 

G = A  * B  a free group. But, as G = CD, and C  , D  are infinite and mutually 

centralizing, the maximal abelian rank of G must be > 2 , a contradiction. 

Hence the result. □

81



Proof of Theorem 7.3.1.

G is commensurable with a non-trivial free product H.  By Kurosh’s theorem, 

any group that embeds with finite index in a non-trivial free product is also 

isomorphic to non-trivial free-product, so that we may assume H  C G.

Now suppose that G and therefore H  is strongly reducible, so that H  is 

commensurable with a product H iH 2 where Hi  and H2 are mutually central­

izing infinite groups. Let J  be a normal subgroup of H  that embeds with finite 

index in both H  and H iH 2. For j  =  1,2, there exists a commutative diagram

Hj  fl J  <-+ Hj  -> Hj /Hj  fl J  

1 !■

J  H\H2 H\ H2/ J

in which all the downward pointing arrows are inclusions. This shows that 

Hj  fl J  has finite index in Hj  for j  = 1,2, so that (Hi  fl J)(H2 fl J ) has finite 

index in H iH 2. (Hi fl J)(H2 fl J) therefore also has finite index in J, and by 

Kurosh’s theorem is isomorphic to a non-trivial free product. But the groups 

(Hi fl J) and (H2 D J) are mutually centralizing, contradicting Proposition

7.3.2.

□
This generalizes Kurosh’s second result and moreover, suggests a duality 

between irreducibility and indecomposability for infinite groups. The converse 

of Theorem 7.3.1, is however false. We will see in the next section that a lat­

tice in a connected semi-simple Lie group with finite centre and real rank > 2 

is indecomposable. An irreducible lattice of this type is therefore both irre­

ducible and indecomposable, showing that indecomposability does not imply 

reducibility.
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7.4 A theorem on the SFC property of free prod­

ucts

D efin ition  7.4.1. A group T will be said to have property (F) if L/i(A;Z) is 

finite for every subgroup A C T of finite index.

T h eo rem  7.4.2. The free product of finitely many indecomposable and finitely 

generated groups with property (F) has the strong cohopfian property.

Proof Let T i , . . . ,  Tn be finitely generated groups with property (F) and sup­

pose that H  is a subgroup of finite index d in Ti * • • • * Fn. If Ti * • • • * Tn has no 

subgroups of finite index, it will obviously possess the strong finite cohopfian 

property, so we may assume d > 1. By Kurosh’s theorem,

H  =  ( U ( l f  * • • • * T «)) * F', (7.4.1)
t = l

where . . .  , are isomorphic to subgroups of finite index in T* for i =

1 ,.. .  ,n , F' is free and rank(F ') =  d — (pH \-pn) + l. The groups T i, . . .  ,Tn

are indecomposable by hypothesis, and so T® is indecomposable for all i and 

j .  Equation 7.4.1 is therefore a decomposition of H  into indecomposable fac­

tors. By Theorem 7.1.1, this decomposition is unique up to isomorphism and

consequently the sum p\ H h pn depends only on the isomorphism type of

H.

Since the groups F i , . . . , r n have property (F) by hypothesis, # i ( r ^ ;Z )  

is finite for all i and j .  Thus rank(F ') =  ran k (i/i( if  : Z)). Consequently, d 

depends only on the isomorphism type of H , so that Ti * • • • * r n has the strong 

finite cohopfian property. □

C oro lla ry  7.4.3. For i = 1 , . . . ,  n, let Tj be the free product of finitely many
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indecomposable finitely generated groups with property (F). Then, if  Vi is also 

torsion-free for all i, r \  x • • • x Tn is SFC.

Proof. Tj is strongly irreducible for all i by Theorem 7.3.1, so that Ti x • • • x Tn 

is SFC by Theorem 5.1.2. □

7.5 Free products of lattices and Poincare dual­

ity groups

The following theorems show that groups from the two classes below are inde­

composable and have property (F), so that Theorem 7.4.2 applies:

Li) Poincare duality groups T of cohomological dimension >  2 

such that Hi(T;Z)  is finite.

L2) Irreducible lattices in connected semi-simple Lie groups having finite 

centre and real rank > 2.

The following theorem is well known. A proof has been included for complete­

ness.

Theorem 7.5.1. I fT  is a duality group of cohomological dimension d >  2 and 

r  =  Ti * T2, then either Ti o r T 2 is trivial

Proof Given any T module M, the Mayer-Vietoris sequence for the free prod­

uct of two groups (see [12, page 178]) gives rise to a natural map

r ; m ) -> i r ( r i; m ) © j f ( r 2; m )

that is an isomorphism for i > 1 and an epimorphism when i = 1.

Now, it follows from a theorem of R.Bieri [2] that, as T has type FP, so do 

Ti and T2- As Z r  is a flat Zf^ module for j  — 1,2, this implies



for all i (see [12, page 198]). Consequently, for each i > 0 there exists a natural 

map

i r ( r ; z r )  -> i n d ^ f r ^ j z r i )  © ind faf r ( r 2;z r 2)

that is an isomorphism for i > 1 and an epimorphism when i = 1. This shows 

that H l(Tj;ZTj) =  0 for all i < d. Moreover, as H d(r ;Z r )  is Z-torsion free, 

so is H d{Tj\ZTj)  and Tj is a duality group for j  =  1,2.

Set D =  H d(T; ZT) and Dj = H ^T ^ Z T j )  for j  = 1,2. Then D =  

IndJ^-Di 0  Indf2Z)2- By Shapiro’s Lemma #i(r;Ind£..D j) =  Hi(Tj’,Dj)  for 

all i. So

Z ^ H ° ( T ; Z )  “ Hd(T;D)

^  ^ ( r u I n d ^ D O  ® Hd(V2-,lnd^D2) 

^ H d(T1-,D1) ® H d(T2-D2) 

z  H°(r i; Z) © H°(r 2; Z) “  z 2,

which is a contradiction. Hence the result. □

The above theorem shows that groups from L\ are indecomposable. How­

ever, it also applies to groups in the class L 2 . A celebrated theorem of 

G.A.Margulis [24] states that given a lattice T in a connected linear semi­

simple Lie group G of real rank >  2, there exists a reductive linear algebraic 

group R  C G L(n , C) defined over Q together with an epimorphism 0 : R& —> G 

such that

1. Ker(0) is compact

2. 0(RZ) ~  r .

A.Borel and J.P.Serre proved in [10] that every arithmetic subgroup of a re­

ductive linear algebraic group defined over Q is a duality group. As every
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group of type FP that is commensurable with a duality group is itself a du­

ality group (Corollary 1.6.5 and 1.6.6), groups in the class L2 are themselves 

duality groups. It only remains to show therefore that groups from the classes 

Li and L2 have property (F).

P ro p o sitio n  7.5.2. I f T e  L\, then T has property (F).

Proof. It is a theorem of F.E. A. Johnson and C.T.C.Wall [18] that if G is torsion 

free and H  a subgroup of finite index in G, then G is a Poincare duality group 

if and only if i f  is. So, let A be a subgroup of finite index in T, and suppose 

that T has cohomological dimension d. Then, A is a Poincare duality group 

by the Johnson-Wall theorem and has the same cohomological dimension as 

T by Shapiro’s Lemma. Thus ffi(A ;Z ) =  f fd_1(A;Z). We will show that 

H d~1(A;Z) is finite.

The intersection N  of the conjugates of A is a normal subgroup of finite 

index in T. If Hi(N;  Z) =  N/[N, A] is finite, A/[A, A] must be finite also and 

we may therefore assume that A =  N  so that A is normal in T. In this case 

there exists a short exact sequence,

l - > A - » r - » Q - > l ,

in which Q is finite. Let {E r,dr} be the corresponding Lyndon-Hochschild- 

Serre spectral sequence. Then {E r,dr} is a third quadrant spectral sequence 

such that

E P,d cx HP(Q. H q(A . Z)) ^  j p + n r ; Z).

Thus, for all r > 0, there exist groups K v'q such that

0 C K r’° C K r~1'1 C • ■ • C K 1'r~1 C K°'r = H r(r :Z),

where “  E™ for all p and q.
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Since Q is finite, given any Q-module A  and m  > 0, H m(Q;A) consists 

entirely of elements of finite order [23, Chapter IV, Proposition 5.3]. So, as A 

has type FP, H P(Q; H q(A; Z)) is finite whenever p > 0. Thus, ran k (# r ( r ; Z) =  

K 0,r) = rank(.E^r) for all r > 0. Now, the differential dr has bidegree (r, 1 — 

r) and Ep,q is finite whenever p > 0. So =  E®+2 and rank(F?2’r) =  

rank(£r°;r2) =  rank(££,r)- But, E2'r “  H r{A;Z) and so

rank(ffr (A; Z)) > 0 => rank(E ^r) > 0 =* ran k (^ r ( r ; Z)) > 0.

Taking r =  d — 1 we deduce that if i f d-1(r; Z) is finite, then so is # d-1(A; Z)

□

The fact that groups in L 2 have property (F) is a consequence of the fol­

lowing theorem of D.A.Kazdan [19]:

Theorem 7.5.3. Let F be an irreducible lattice in a connected semi-simple Lie 

group with finite centre and real rank > 2. Then H 1(TjZ) is finite.

As we have seen, if G is a group containing a subgroup H  of finite index for 

which H\(H; Z) is finite, then Hi(G; Z) is finite also. Consequently, to prove 

that lattices in L2 have property (F), we need only consider the torsion-free 

case.

Now, any torsion-free lattice in a connected semi-simple Lie group G with 

finite finite centre embeds as a lattice in Ad(G). As the real rank of a semi­

simple Lie group is determined by its Lie algebra, Ad(G) has the same real 

rank as G. But Ad((j) is linear, so if T G L2 then Kazdan’s theorem applies, 

and i / 1(T;Z) must be finite. However, a subgroup A of finite index in T is 

also a lattice in Ad(G), so that i /^ A jZ )  is also finite. Thus T has property

(n
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Chapter 8 

Two theorems on the 

corepresentability of groups

In [16, pages 78, 132], F.E. A. Johnson gave the first explicit statement of the 

Corepresentability Theorem, which demands the existence of epimorphisms

pr : E x trZG{M\ N ) HomDer{ZG)(ttr(M); N)

for any finite group G and TLG lattices M  and N , where r  > 2. In this chapter, 

the corepresentability of infinite groups is considered. I will prove the existence 

of epimorphisms pr whenever M  is an ZG-module of type FPr_i and show, in 

addition, that pr is an isomorphism if and only if E x trZG(Z\ZG) =  0. When 

G is a virtual duality group of dimension d, so that Ext%G(Z; ZG) ^  0, pd will 

be shown to factor through the natural projection H d(G;N)  —» H d(G;N), 

yielding an isomorphism H d(G;N) = Horri£>er(zG)(Q,n{Z)',N).

Now, while it is not known whether every lattice in L  is a duality group, 

the results of A.Borel and J.P.Serre [10] and G.A.Margulis [24] show that with 

the possible exception of non-arithmetic lattices in semi-simple Lie groups of 

real rank 1, this is in fact the case. It is in this way that the results of the
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remaining two chapters relate to groups in L.

8.1 A proof of the corepresentability theorem

P ro p o sitio n  8.1.1. Let R  be a ring and M  an R-module of type FPn- \  over 

R, where n > 1. Then, for all 1 < r < n and R-modules N , there exist 

epimorphisms

pr : E x trR{M ; N) -> HomDer(R)(Qr(M ); N). (8.1.1)

Moreover, pr is natural in N  for all r.

Proof. Fix 1 <  r  <  n  and let 0 —► K  —> Fn —► • • • —> F0 —► M  —► 0 be a partial 

free resolution of M  over R  having finite type. Set J  — Ker(Fr_i —> Fr_2), so 

that [J] = Clr(M) (here F- 1 is taken to mean M). A map /  G HomR(Fr ; N)  

is a cocycle if and only if f o ( F r+i —> Fr) = 0, and any such map will therefore 

factor through Im(Fr+i —> Fr).

► Fr+l > Fr > F r-—1 ►

\  1 
N

But, by exactness, Im(Fr+i —► Fr) =  Ker(Fr —> Fr-i) , so that /  induces a map 

/  : J  = Im(Fr —► Fr_i) —> N. Clearly any such map also determines a cocycle 

in HomR(Fr ; N), so that the correspondence /  i-> /  identifies the cocycles in 

HomR(Fr\N )  with the group HorriR(J;N).

The coboundaries in HomR(Fr\ N)  are those cocycles which factor through 

the map Fr —> Fr_ 1 and therefore correspond to morphisms from J  ^  N  which 

factor through the inclusion J  c-> Fr_i. As, Fr_ 1 is a projective .R-module, 

any such map will be mapped to zero under the canonical projection
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HomR(J] N)  —» HomDer(R)(J; N), which therefore factors through the quo­

tient map H om R(J; N)  —> E x trR(M ; N)  to yield an epimorphism,

pr : E x tR(M ;N ) HomDer(R)(J ; N)  =  HomDer(R)(Clr(M); N).

This map is clearly natural in N. □

Proposition 8.1.2. Let M  have type FPn. Then, if  1 < r < n, pr is an 

isomorphism if and only if  E x tR(M] R) =  0.

Proof Since HomDer(R)(fi,r(M)] E) is zero for any free i?-module E, necessity 

is obvious. To prove sufficiency we must show that, in the notation above, 

any morphism from J  —» N  which factors through a projective is in fact a 

coboundary (i.e. factors through the inclusion map J  e-> Fr_i). As M  has 

type FPn and r < n, J  is finitely generated. So, by Proposition 1.3.1, if 

/  : J  —> Fr -1  factors through a projective, is must factor through a finitely 

generated free i?-module E. That is, there exists a commutative diagram:

J  c—> Fr—i

f l \ q
N  <- E

Now, q corresponds to a cocyle representing an element of E x trR{M\ E). How­

ever, the functor E x tR(M ; _  ) is additive and E x tR(M ; R) = 0 by hypothesis, 

so E x trR{M\ E) =  0. Thus q is a coboundary and therefore factors through 

J  *-»• Fr_ i. But this means /  also factors through J  *-> Fr_ i, which completes 

the proof. □

8.2 Corepresentability and Farrell cohomology

Let R  and S  be rings.
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Proposition 8.2.1. I f  a  : R —> S  is a ring homomorphism and P  a projective 

R-module, then IndaP  = S  ®Q P  is a projective S-module.

Proof Suppose there is a mapping problem of 5-modules,

IndsRP

9 i
A  <- B

P

where p is onto. Let i : P  —* Inda(P) be the natural inclusion (defined by 

p n p ®  1) and set /  =  g o i. Then, since P  is a projective .R-module, there 

exists an R-morphism f  : P  B  such that /  =  p o f .  By the characteristic 

property of Inda(P), there exists an 5-morphism g : Inda(P) —> B  such that 

g o i =  /  as an R-morphism. p o g is then an 5-morphism from Inda(P) to A  

extending / .  But g is the unique 5-morphism Inda(P) —► A  extending / ,  so 

that g =  p o g and I n tRP  is a projective 5-module as claimed. □

Let G be a group and H  a subgroup of finite index. For G-modules J  

and N, the transfer map tr : H(m iz h (J \N )  —* H o m zc(J iN )  is defined by 

tr( f)(m ) = p /(p _1^ ) j  where E  is a set of right coset representatives for

i f  in G.

It follows immediately from the definition of tr that if G is also a G-module 

and (p : P  —> N  a ZG-linear map, then tr(A o p) = tr{A) o <p for any Zif-linear 

map J  —> P.

Proposition 8.2.2. tr induces a homomorphism

tr : H om Der(zH){J 5 N)  -> HomDer{ZG)(J; N); [f] •-> [tr(f)].

Proof. Let /  : J  —► N  be an H-morphism and suppose that /  factors through 

a projective if-module P  via morphisms q : J  —> P  and r : P  —► N. By the
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characteristic property of In d ^P ,  there exists a G-morphism /  : In d ^ P  —♦ N  

such that the following diagram commutes:

J  N

q I /  i f
P  -> Ind%P

i

Set = ioq .  Then /  =  /  o ^  and, as /  is a G-morphism, t r ( f )  — t r ( f  o'tp) =

f  o tr fy ) .  But IndfftP is a projective G-module, so that t r ( f )  ~  0, which

proves the result. □

Let e : P  —> M  be a projective resolution of M  over ZG. Then e : P  —* M  

is a projective resolution of M  over Z H  whose differentials dn : F n —► Fn_i are 

G-morphisms. In particular, for /  G H o m z H { F n5 -W), £ r ( /  o <9n) =  tr*(/) o <9n 

for all n. tr  therefore induces a morphism

E x q „ ( M ; TV) -» SxtSc(M; TV); [/] -» [tr(/)J.

This map clearly commutes with the maps pn of 8.1.1.

P ro p o sitio n  8.2.3. Let f  : J  —► N  be a G-morphism. Then, if  f  factors 

through a finitely generated free ZG module, f  = tr ( f )  for some H-morphism

I
Proof. Since H o m z d  _  ; N)  and tr  are additive, it is sufficient to consider 

the case when /  factors through ZG. For A G H o m zH ^H ^N ),  define a map 

A G HomzH (ZG; N)  by

I 0 g i H
Let {p i,. . .  ,pd) be a set of left coset representatives for H  in G. Then, for 

g — gih G G

tr(\)(g) = E jfy H g ^ g ih )  = g^\(h) =  p*A(/i).
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Thus tr(A) =  Indff(X), where for each Z H  morphism a  : ZH  —> A, I n d ^ a )  

is the unique ZG morphism making the following diagram commute:

Z H<-+ Z G

a  ̂ >//Indff(a)
A

As every ZG-linear map a  : ZG  —> A) satisfies /  =  Ind^(f\zH ),  this shows 

Ind^j and therefore tr  is surjective.

Now, suppose /  =  ip o p  for ZG-morphisms p  : J  —► ZG  and ip : %G —> A". 

Then ip = tr(ipi) for some A-morphism ipi. Let / i  be the A-morphism ip\ op.  

Then, since p  is ZG-linear, tr( fi)  = tr(ipi o <p) =  tr(ipi) °  p  =  f ,  which 

completes the proof. □

T heorem  8.2.4. Let G be a group of virtual finite cohomological dimension 

d > 1 having type F P d - T h e n , for any coefficient module N,

H d(G\ N)  ss HomDer(ZG)(nd(Z); N),

where H d(G\ A ) denotes the Farrell cohomology in dimension d.

Proof. Let 0 —> J  —> Fj —> • • • —> F0 —> Z —> 0 be a partial free resolution 

of finite type over ZG  and H  a torsion-free subgroup of finite index in G. 

Then, since A  has cohomological dimension d, J  is a projective A-module and 

HomDer{pH)(J\ A) =  0. Moreover, as there exists a commutative diagram,

tr
A d( A; A) -» H d(G; A)

i  Pd i  Pd

HomDer(zH){J; A) —> HomperCZG)(d ; A) 
tr

the canonical map pd '• H d{G\N)  —> Aora£>er(zG)(d; A) factors through the 

quotient H d(G; N ) / t r (H d(H; A)). By Proposition 8.2.3, /  : J  —> A  rep­

resents zero in HomDer(zG)(J> N)  only if /  € Im(tr). So the induced map
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H d{G; N ) / t r (H d(H ; AT)) -> HamDer{ZG){J, iV) is in fact an isomorphism. Since 

N ) / t r (H d(H ; iV)) =  iV), this completes the proof. □
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Chapter 9 

A theorem concerning the syzygies 

of duality groups

This section introduces the concept of a duality module, which extends that of 

a duality group, viewing Z is a duality module over the ring ZG whenever G is a 

duality group. By extending a result of F.E.A. Johnson on the representability 

of fii(M ), I will show that if G is a duality group of type FL and cohomological 

dimension d > 3, then the map

J  J* = HomZG{J,ZG)

is a bijection from $7r (Z) to f2d_r (Z) for all 2 <  r < d. The identity,

Ext^o(A\ N) = T or^ .r(h\ N),

will be deduced as a corollary.
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9.1 Duality modules and their syzygies

Fix a ring R. An i?-module M  will be said to be a duality module if, for some

Am is called the dualising module of M. The follow proposition, due to 

F.E.A.Johnson will be used to show that, for any duality module M  and all 

k > 2, every element K  G ^ ( M )  can be explicitly realized as Ker(Fn —> Fn_ i), 

where e : F  —> M  is a free resolution of finite length and type.

P ro p o sitio n  9.1.1. Let M  be a finitely generated module over R  such that 

E x t1(M; R) = 0. Then, for each J  G Qi(M), there exists a short exact se­

quence 0 —» J  —> S  M  —>0, where S  is finitely generated and stably free.

C oro llary  9.1.2. I f  M  is an R  module of type FPn for some fixed n >  2 and 

if E x tr(M',R) = 0 whenever 1 < r < n, then, for each J  G Cln(M), there 

exists an exact sequence 0 —> J  —► Fn_i —> • • • —* Fo —> M  —> 0 in which 

F q ,.. . ,  Fn-1 are finitely generated and free over R.

Proof The proof is by induction on n. Pick J  GS l2(M) and K  G Q\(M). 

Then, since E x t l (M\ R) =  0, there exists a short exact sequence

in which So is stably free and finitely generated by the above proposition. How­

ever, since fi2(M) =  ^i(A ') and E x t l (K \R )  =  E x t2(M ;R) = 0, Proposition

9.1.1 also implies the existence of a short exact sequence

Proof See [17]. □

0 K  S0



where S\ is stably free and finitely generated. Splicing these two sequences 

together gives an exact sequence:

0 J  Si So -► M  -► 0. (9.1.1)

Now let Ei and Eq be finitely generated free modules such that Sj ® Ej is

finitely generated and free for j  =  0,1. Then, by taking the direct sum of 9.1.1 

with 0 —> E q® E\ E0(BEi —> 0, it is possible to construct an exact sequence

0 —► J  —> F\ —> F0 —► A/ —> 0

in which both F0 and F\ are free and finitely generated. This proves the result 

for n =  2.

Now pick n > 2 and fix J  € Qn(M). Pick and K  € f2n_i(M ). Then, 

since fln_i(M ) =  tt i(K )  and E x t l (K \R )  =  E x tn~1(M ;R) = 0, Proposition

9.1.1 implies the existence of a short exact sequence 0 —> J — >0 

in which S  is stably free. Let F  be a finitely generated free module such that 

Fn_i =  S  © F  is free. Then, adding on the exact sequence 0 —> F  F  —> 0 

gives an exact sequence,

0 -* J  -> Fn_i K  © F  ^  0 (9.1.2)

However, K  © F  ~  K  € fin- i  (M). So, by induction, there exists an exact

sequence

0 —> K  ® F  —> Fn—2 —̂ * ■ * —̂ Fq —> M  —> 0 (9.1.3)

in which the modules F0, . . . ,  Fn_2 are free and finitely generated. Splicing

9.1.2 and 9.1.3 now gives the desired result. □

T heorem  9.1.3. Let M  be a duality module of type FL and projective di­

mension n > 3. Then, for all 2 < k < n — 1, J  € flfc(Af) if and only if
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there exists a finite free resolution 0 —> Fn —> • • • —» F0 -* M  0 with 

Ker(Fk~i -  F*_2) £* J.

Proof. =>) trivial. <= Fix J  G Clk{M). Then, by the corollary above, we can 

construct an exact sequence

0 —> J  —> Ak-i —► . . .  —> A$ —> M  —> 0 (9.1.4)

with A q, . . . ,  Ak-\  are free and finitely generated over R. By Proposition 1.4.1, 

there exists an exact sequence 0 —► Bn —► . . .  —> B 0 —> M  —> 0 in which Bi is 

free and finitely generated for all i. Setting Dk = Ker(Bk-i —> Ffc_2), we may 

split this sequence to obtain exact sequences,

0 —> B n —> • • • —> Bk —> Dk —> 0

0 —> Dk Bk~i —> • • • —> Bk —» M  —̂ 0.

Now, by Schanuel’s Lemma, J  ~  Dfc. J  therefore has the same projective 

dimension as Dk over R  and is also FL. In particular, it admits a free resolution 

of finite type and length n — k:

0 -> An - > ------ > —► J  —> 0.

Splicing this sequence with 9.1.4 gives the desired resolution for M. □

Recall that an involution on a ring R  is a ring homomorphism i : R —> R ^  

satisfying i o i =  idr. If such a map exists, then for any left R-module M, 

the group HomR(M; R) has a left i?-module structure defined by (r • f) (m )  =  

f(m )i(r)  for all m  G M. If an R-morphism a  : R n —> R m is represented by 

an m  x n matrix A  with respect to the standard basis, then the dual map 

a* : (Rm)* —* (Rn)*;f  i—> /  o a  is represented by the matrix i(A)T, where 

i(A)ij = i{Aij). This means the double dual a** is also represented by A, so
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that a** corresponds to a  under the canonical isomorphism R  R** ; r d(r), 

where es denotes the evaluation map /  f ( s)  for all s G R.

T h eo rem  9.1.4. Let M  be a duality module of type FL over an involutive ring 

R  having projective dimension n > 3. Then,

1. the dualising module A m is a duality module of type FL and projective 

dimension n over R  with dualising module M.

2. for all 2 < k < n — 1, the duality map 8m • J  l~* J* is a bijection

* ^ n + 1 —fc(A^vf).

Proof Fix 2 <  k < n — 1 and pick J  E Qfc(M). By Theorem 9.1.3, there exists 

a finite free resolution

0 -> Fn - >  >F0 ^ M A O ,  (9.1.5)

such that J  = Im(Fjt —♦ F^-i). For r  > 1, set Jr =  Im(Fr —> Fr_i). Then 

there exist short exact sequences,

0 -> - Fo -> M

0 -> F\ -  Ji

0 —> Fn —> Fn_i —► Jn_i —> 0. 

Dualising them yields the following, which are again exact:



o -  J'n-1  - *  ^ - 1  -  K  -  E x t \ J n^ ,  R)  -  0.

M* =  E x t° (M ; i?) =  0 and E x t l (Jr\ R ) =  i£ r f ’+1(M; i?) for all r  >  1. Splicing 

these sequences together therefore gives the long exact sequence,

0 _> F * • • • -  F: -+ A m -> 0. (9.1.6)

As Fr is finitely generated and free, Fr = F* for all r, so that the above 

sequence above is in fact a finite free resolution of A M. This shows that 

Am has type FL. In addition, J* =  =  Ker(F% —> F£+1), which means

J* G Qn+i_fc(Am ) and 8 m is a map from f4(M ) —> f2n+i_*;(Am ) as claimed.

Now dualize again. As dualisation is self inverse for maps between finitely 

generated free i?-modules, dualising 9.1.6 just gives back the original resolution 

9.1.5 of M. Thus J  = J**, and the duality map 8&M : fin_fc+i(AAf) —> fl(M ) is 

a left inverse for 8m - We now prove that Am is a duality module of projective 

dimension n over R  with dualising module M. As precisely the same arguments

then apply to Am, this will show 8m is a left inverse to 8&M, showing that 8m

is indeed a bijection.

Now, dualising 9.1.6 yields the short exact sequences,

0 -  A*m -  Fn"  —>/('*—► E x t1 (Am-, R)  -» 0

0 - . r - >  F"_i -* Jn- 1  -* E x t \ K -  R)  -> 0

0 — J$' -> F2"  -> J** -> E x t\J Z ,  R ) - >  0

0 J2** -> F r  -» F0** -* E x t \ j ; ,  R ) - >  0

where K  =  Im( —* F*). The composition F** —* J** —» Fr**i is equivalent

to Fr —► Fr_i, while the composition F "  —» F* —> F**i is just F„ —» F„_!.
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Thus E x t l (K, R) =  0 and E x t l (J*\ R) =  0 for r  =  2, . . .  , n -  1 by the exact­

ness of 9.1.5. As J* G n n+i - r{AM) for all such r, and K  G Q \(A m ), this im­

plies E x t l (AM',R) =  • • • =  E x tn~l (A m \R) — 0. In addition, E x1P(Am ] R) = 

A*m =  0 and E x tn(J%; R) =  E x tn(AM , -R) — M, so that Am is a duality mod­

ule with projective dimension n  over R  and dualising module M  as claimed. 

This completes the proof. □

9.2 Identities for Ext and Tor

Theorem 9.1.4 leads to certain cohomological identities. In particular,

C oro llary  9.2.1. Let M  be a duality module of type FL and projective dimen­

sion n > 3 over an involutive ring R. Then for r = 0 , . . . ,  n and all R-modules 

N

E x tr{M ; N)  “  Torn- r(AM; N)  (9.2.1)

and

E x tr{Am; N)  “  Torn_r (M; N)  (9.2.2)

Remark 9.2.2. This result is a straight forward generalization of the equivalence 

Ext%G(Ii; N) = Torfflr{A; N)  for a duality group G with dualising module A. 

The point here is that, as Am is also duality module over R  and has dualising 

module M, 9.2.2 must also be true.

Proof. Take a finite free resolution 0 —> Fn —► • • • —► F0 —*■ M  —> 0 for M  over 

R. Then, as we have seen, 0 —► F0* —> • • • —> F* —> A m —̂► 0 is a finite free 

resolution of AM over. As Fr is free and finitely generated over R , there exists 

a natural isomorphism HomR(Fr;N) = F* ® N  for all r. Consequently, the 

cocomplex

0 -► HomR(F0; N) —> • • • —* HomR(Fn; N)  -> 0
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is equivalent to

0 —> F0* <g> AT —>------ > F * ® N - +  0,

proving (i). By the theorem above, Am is a duality module of type FL and 

projective dimension n > 3 with dualising module M, so 9.2.2 is just 9.2.1 

with M  replaced by Am- L]

According to our definition, a group G is a duality group if and only if, 

given the trivial G-module structure, Z is a duality module over ZG. Now the 

group ring ZG has an involution defined by j h  g~l . So, if in addition, G 

has type FL and cohomological dimension n > 3, Theorem 9.1.4 implies that 

E xtrZG{A; N ) =  TorJ?r (Z; N ), for all r G {0, . . . ,  n} where A is the dualising 

modules of G.
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