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Abstract

This thesis describes work undertaken to enhance the current understanding of the 

fundamental mechanics of flexible pipe structures. In particular, this work relates 

to flexible pipes that are used as flowlines and risers to convey oil and gas in 

offshore environments. These are subjected to various loadings such as axial, 

torsional and bending forces, and variations in external and internal pressure.

The structure of these pipes is complex, comprising several concentric layers of 

various materials and includes steel armouring, which also resists the internal 

pressure due to the fluid. It is the behaviour of the armouring (which in some 

designs is interlocked) that forms the basis of this thesis. In order to understand 

the mechanics of this ‘pressure armour’, the work presented here reduces the layer 

to its most basic form - that of a helical spring. This rationale has permitted 

several loading modes to be characterized, including axial loading, internal 

pressure loading and the combination of axial-internal pressure loading.

Analytical solutions were developed for the modes of loading considered, 

followed by numerical solutions and finally experimental investigation. The 

results provide a better understanding of armour behaviour and hence can assist in 

the design of pressure armour. Unexpected, non-conventional responses were seen 

in helices that were subjected to combined axial and internal pressure loads. 

Surface contact between adjacent coils in a helix was also studied, given that this 

is a feature of interlocked pressure armour designs, and when combined with 

applied loads, this can give rise to failure mechanisms such as fretting fatigue. 

Attempts were made to understand some of the significant factors in this aspect. 

Studies were also undertaken to improve the design of pressure armour profiles 

for use in high pressure environments based on a patented design, the Omega 

cross-section, which has an interlocking feature.
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Ql helical line load in the axial direction of pipe

Qf shear force

q shear traction

R radius of helical spring

Rc contact radius

Rr radius of ring

r position vector
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r radius of helical wire

S arc length along centreline in initial configuration

Sr stress ratio

s current arc length

T tangential resultant internal force

Tr torque

t tangent vector

t time

parametric variable

X normal resultant external force

Xr total line load in radial direction

Xc radial line load

X horizontal displacement point of the contact surface

Y binormal resultant external force

Yk geometric factor

Z tangential resultant external force

Greek Symbols

a  helix angle

P lay angle

AR change in helical spring radius

Ap change in pitch length

8 deflection of helical coil

5ij Kronecker delta function

Stotai total deflection of spring due to both internal pressure and axial load

8U variation in internal strain energy

5V variation in external potential forces

8saw element volume of wire

eas spring axial strain

£aw wire strain

£r radial strain

y angle between contact force and surface of the reference cylinder
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K b curvature in the binormal direction

Kij curvature matrix elements

K n curvature in normal direction

X angle between contact force and resultant force

ax arc angle of element

p coefficient of friction

V Poisson’s ratio

4> twisting angle of helix

q> angle of twist of cross-section

a stress due to radial strain

a b bulk stress

a c contact stress

a p contact stress at thin width of protrusion

T tortuosity

0 tangential resultant external moment

Subscripts

1, 2 denote initial and final values respectively 

c denotes parameter derived by Phillips and Costello (1973)

Superscript

‘ refers to parameter with the effect of twisting of cross-section



1 Introduction

1.1 Background

This thesis describes work carried out in understanding the mechanical behaviour 

of the armour reinforcement used within the structure of flexible pipes. Such pipes 

are employed to convey oil and gas from the wells to offshore production systems, 

such as the oil rigs in the offshore industry. These pipes have to withstand 

dynamic loads due to sea currents, as well as to operate in high pressure and high 

temperature settings to extract the oil safely and efficiently to the production 

systems. In the 1970s, fixed jacket platforms were the prevalent production 

systems, operating in depths of 200 -  400 metres. They were later followed by 

tension leg platforms (TLP), SPARS, semi-submersibles and floating production 

system and offloading (FPSO), which operated in depths of well over 2000 

metres. For example, GSF Explorer FPSO operated by ExxonMobil was 

positioned in the Gulf of Mexico at 2200 metres and Deepwater Expedition FPSO 

operated by Petrobras, is currently (2005) offshore of Brazil drilling in the region 

of 2600 metres.

Initially, rigid steel pipes were used for the connection between the wells and the 

fixed platforms. However, these were replaced with flexible pipes when 

introduced in the 1970s (Feret and Boumazel, 1987; Tan, 1992). Now, flexible 

pipes are used extensively in offshore applications as flowlines and risers for 

hydrocarbon production. Flowlines are used for intrafield connections of wells, 

wellheads and loading terminals to the processing platform while risers are mainly 

used for conveying the hydrocarbon products from wells and delivering injection 

fluids into wells from the sea surface facilities. Thus these are dynamic pressure 

vessels in dynamic service (Berge et al, 1992). For applications using long lengths 

of these pipes, it is of great advantage that the flexible pipe has a compliant 

structure compared to their rigid steel pipe equivalents. Production of long lengths 

of flexible pipes is easier, and installation and retrieval of such pipes are much 

simpler compared to rigid pipes. By using long lengths of a flexible pipe, fewer 

connections and end fittings are needed.
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Flexible pipe systems have evolved into highly complex composite structures, 

containing many concentric layers and a range of materials including metals and 

polymers. Some of these layers are designed specifically to contain fluids, 

withstand internal pressure, protect and armour the flexible pipe and/or withstand 

axial loads. The design codes that govern their construction have been determined 

largely by the years of experience gained since their introduction. Only recently 

have serious attempts been made to understand the underlying mechanics of the 

structures in order to improve and optimize their design.

The use of flexible pipes is advantageous compared to rigid steel pipes as 

described earlier. However, with the decreasing availability of oil reserves from 

shallow water regions, there is a definite trend towards drilling and production of 

oil and gas in deeper regions, and thus higher pressures are experienced by the 

flexible pipe structure. The increasing use of FPSO units for exploration and 

production confirms this trend. As the shallow regions are being exhausted, it 

makes economic sense to move into deeper regions, where there are thought to be 

massive oil reserves. Hence, there is a need to further improve the performance of 

subsea systems such as flexible pipes to accommodate the higher operating 

pressures and temperatures experienced in deep-water applications. In order to do 

this, the mechanics of flexible pipe systems needs to be better understood. There 

is a deficiency in the present knowledge and in the approaches taken by various 

workers in optimizing designs and understanding their behaviour. For example, 

insufficient consideration has been given to the effect of the internal pressure (due 

to the hydrocarbon) on the mechanics of flexible pipes.

This thesis attempts to further understand the fundamental mechanics of flexible

pipe design, in particular the pressure armour layer of the pipe. This is a layer of

steel reinforcement that helps to withstand load and protect a pipe. Additionally,

the present knowledge of flexible pipes considers the global deformation of the

structure under load, for example as described in Oliveira et al (1985) and Goto et

al (1987), whilst this work aims to deal with deficiencies in the limited

understanding of the localized behaviour of individual layers. This knowledge will

provide the basis for the optimization of the design of flexible pipe structures for

higher pressure applications. A brief review of flexible pipe structure and design
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is given in section 1.2 below and will aid in defining the scope of work presented 

here.

1.2 Flexible Pipe Structures and Configuration

1.2.1 Construction Layers and Material

The construction of a flexible pipe includes two generic components; helical 

metal wires to withstand axial, torsional and bending loads and polymer 

cylindrical tubes for containment of fluid (Berge et al, 1992; Patel et al, 1993).

There are two classes of flexible pipe: -

• Unbonded flexible pipe

• Bonded flexible pipe

Unbonded flexible pipes are structures where each layer forms an independent 

cylindrical layer of polymer or wire. Each layer performs a particular function and 

the layers deform independently in response to the loading conditions applied 

(American Petroleum Institute (API) document 17B, 1998). Bonded flexible pipes 

are structures where the layers of steel, fabric and polymer are bonded together to 

form a composite structure, which allows flexibility when deformed under shear 

and tension. The bonding process involves the use of adhesives or by application 

of heat and pressure (Berge et al, 1992). Examples of these flexible pipes are 

shown in figures 1.1 and 1.2 respectively.
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Thermoplastic sheath

Double crosswound ormours 
^  /  Thermoplastic sheath

/  Zeta spiral 
f r  ^ | L  /  Thermoplastic sheath

/  interlocked steel carcass

Figure 1.1 Unbonded flexible pipe (Berge et al 1992)

Internal pressure sheath Reinforcement winding

Fluid containing liner

Figure 1.2 Bonded flexible pipe (adapted from API document 17B 1998)

The work in this thesis concentrates on the unbonded pipe configuration given that 

this allows the optimization of the design of the pressure armour layer, 

independent to the function of other layers. From here on, any illustration or 

description refers to the unbonded pipe configuration unless specifically quoted 

otherwise. Referring to figure 1.1, a typical unbonded flexible pipe consists of the 

following layers, starting from the innermost layer: -

• Internal carcass -  Interlocking metallic layer which is used to prevent collapse 

of the structure due to external pressure load.

• Inner sheath -  This is a polymer sealing layer for containment of fluid such as 

crude oil and gas.

• Pressure armour -  Consists of overlapped and/or interlocked, wound helical 

metallic wire or wires, and acts to prevent internal pressure of the fluid from 

expanding the polymer.
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• Intermediate sheath -  Polymer layer to reduce friction and wear between the 

pressure armour layer and the tensile armour layer.

• Tensile armour -  Usually cross-wound to obtain torsional balance of the 

whole pipe structure and to provide axial strength of the pipe.

• Outer sheath -  Polymer sheath acting as robust marine coating which prevents 

chemical degradation of the pipe.

The polymer sheath layers are extruded onto the metallic layers, and are primarily 

used for fluid containment or separation of the armour layers. Therefore, the key 

requirements for the polymer material are long term resistance to chemicals such 

as crude oil, to include a low permeability, low absorption and high resistance to 

swelling, as well as being able to withstand long term static and dynamic strains. 

Such details are given in API document 17B (1998). Additionally, the polymer is 

required to have good wear and abrasion resistance, to function well as a marine 

coating. Typically, high density polyethylene (HDPE), polyamide 11 (PA11) or 

polyvinylidene fluoride (PVDF) are suitable for internal and intermediate sheaths 

depending on operating temperature, fluid compatibility and fatigue 

characteristics. However, for the outer sheath, polyamide 11 (PA11) is preferred 

to HDPE for higher temperature applications because of better abrasion resistance.

For the metallic layers, stainless steel and low carbon steel are usually used. The 

choice of metal for an internal carcass is based on the fluid components that are 

being conveyed. As the severity of the fluid environment grows, stainless steel 

alloys are usually used to resist corrosion. Carbon steels are used for the armour 

layers since high structural strength and fatigue resistance is required.

7.2.2 Riser Configurations

Another important parameter which has to be considered when designing a 

flexible pipe system is the riser configurations. A good riser configuration 

provides compliancy to the vessel motions, and also allows the riser to sustain the 

extreme loading conditions to which it is subjected to when in-service (Patel et al, 

1993; API document 17B, 1998). For example, large tensile loads near both the
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riser-vessel and riser-seabed points can cause an undesirable response of the 

flexible pipe to the various loading conditions. There are several designs of riser 

configuration for optimum operation of a flexible pipe for different loading 

conditions. These configurations are depicted in figure 1.3 and are described 

briefly as follows: -

• Simple catenary -  The simplest and least expensive of the various 

configurations, where the riser is suspended freely between the surface vessel 

and the seabed. This configuration is only suitable for shallow waters. In 

deeper regions, the tension of the pipe increases via the additional weight of 

the pipe. This can cause tensile failure at the vessel connection because most 

of the weight is supported at that point.

• Steep-S -  The configuration consists of two different sections with the 

introduction of subsea buoys in between. The buoys effectively support the 

lower section of the pipe, hence reducing the high loads experienced at the 

vessel connection point. This configuration is suitable for moderate depths 

(200 metres) but can experience possible torsional instability.

• Lazy-S -  This is a natural progression from the Steep-S configuration. The 

upper section is similar to the Steep-S while the lower section is in the form 

of a simple catenary. The buoys are tethered using a large weight and chains. 

This is used in deeper waters where the Steep-S and simple catenary 

configuration are not suitable due to tension or buoy stability problems.

• Steep wave -  The buoyancy is distributed rather than concentrated at points 

as is the case for the various S configurations. This configuration is suitable 

for heavy flexible pipes in shallow waters where axial tension needs to be 

reduced.

• Lazy wave -  Similar to Lazy -  S configuration but with distributed buoys 

instead. A large vessel offset from the wellhead can be accommodated and 

this configuration is suitable for large water depths.
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Lazy waveSteep wave

Figure 1.3 Riser Configurations (API document 17B 1998)
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1.3 Pressure Armour Profiles and Issues

As discussed earlier, there is a growing demand to employ flexible pipes in high 

pressure environments, which is the case when exploration depths of 2000 metres 

or more are reached as cited in the examples given previously. The conventional 

structural configuration of flexible pipes is capable of reliably supporting 

pressures resulting from only a shallow water environment. Hence, to 

accommodate the higher pressure ratings experienced in deep water, the size of 

the pressure armour layer of the pipe has to be increased. Sometimes, an 

additional backup pressure armour layer is used instead to achieve higher pressure 

ratings. Consequently, the flexible pipe experiences an increase in weight, posing 

difficulty in transportation, installation and operation and also a significant 

increase in the costs involved.

Flexible pipe manufacturers have been looking at alternatives to current pressure 

armour material as a means to achieve higher pressure ratings and reduce weight 

of these flexible pipes. One alternative material under consideration is carbon 

fibre which has higher strength compared to steel and is relatively light in weight. 

However, carbon fibres are expensive when employed in long lengths of pipe.

One other possible method of overcoming the high in-service pressure loading is 

by optimizing the design of the cross section of the pressure armour layer. The 

pressure armour layer is primarily designed to withstand internal pressure loading. 

This work will also consider the ability of this layer to resist axial loading. 

Currently, there is no data on the axial loading capability of the pressure armour 

layer. The pressure armour layer is also an important component in contributing to 

the overall weight of the flexible pipe.

There are several cross sectional profiles currently available for use as pressure 

armour wires. Examples of commonly used profiles are shown in figure 1.4.
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2 profile

T profile

C profile

Figure 1.4 Pressure armour cross sections (API document 17B 1998)

Interlocks of subsequent turns of the pressure armour wires maintain the structural 

integrity of the layer when an internal pressure loading is applied. The profiled 

wires can also allow axial movement and flexural rotation without generating 

excessive gaps. Large gaps in between the profiled wires are detrimental because 

they allow the polymer layer underneath the pressure armour to creep through and 

compromise the fluid containment ability. These profiled wires can reliably 

support the pressure loading experienced in shallow waters.

Very little, however, is known about the behaviour of the interlocked sections of 

the pressure armour layer when subjected to internal pressure and axial loads. For 

example, contact between the tips of Z profiled wires can affect the way in which 

the pressure armour responds to internal pressure loading and axial loading (Chen 

et al, 1995). There has been relatively little work done on contact forces on 

pressure armour profiles despite its importance in resisting loads in flexible pipes.

There are also potential issues involving the frictional effects of the pressure 

armour layer when the internal pressure loads are being applied. Together with the

33



oscillatory movements experienced by profiled wires under service conditions, 

this could generate fretting fatigue on the contacting surfaces of the pressure 

armour wires (API document 17B, 1998; Burke and Witz, 1999). Fretting fatigue 

is a contact failure mode, which can lead to crack formation, when tangential and 

normal forces are applied to contacting surfaces. While fretting is a common 

problem in mechanical components such as bearings, relatively little work has 

been done in observing this in pressure armour wires (Burke and Witz, 1999).

With a non-symmetrical profiled wire such as the Z profiled wire, the stress 

distribution across the cross-section of the wire is not uniform under internal 

pressure loading mode. This could be due to rotation of the section being 

generated by moments as a result of the internal pressure load acting on a non- 

symmetrical cross-section. Stress gradients across the profiled wires can cause the 

cross-section to be inefficient in terms of material utilisation. To date, twisting 

moments of these non-symmetrical profiled wires due to internal pressure load has 

not been fully observed. In this work, the T and C profiled wires are not 

considered as they are symmetric sections.

An alternative pressure armour wire profile, the Omega profiled wire has been 

developed within the Department of Mechanical Engineering at UCL (GB Patent 

No. 2336886, 1999) to eliminate the need to scale up the conventional flexible 

pipe structure for high pressure load applications. An example of this profile is 

shown in figure 1.5.

Figure 1.5 Omega profiled pressure armour cross section
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Potential advantages of the Omega profile are as follows: -

• Ability to resist axial tension load when compared to conventional profiled 

wires, hence possibly eliminating the need to use the tensile steel layer to 

withstand axial loads.

• Ability to operate in higher pressure environments due to the more uniform 

cross section of the wire, which increases the efficiency of the material 

utilisation for the same cross-sectional area.

• Interlocking feature of Omega profiled wire allows small uniform 

displacement of gaps when load is applied, and therefore no excessive creep of 

the polymer sealing layer occurs.

The Omega profiled wire has been designed in such a way as to have a protrusion 

at one end and a socket at the other end of its cross-section. This allows the 

profiled wire to interlock with the subsequent turn of its helical configuration by 

having the protrusion locked into the socket of its adjacent coil. The need to 

interlock the sections of the helical coil will inevitably require new or modified 

production methods but the benefit appears to be attractive. An example of the 

interlocking of Omega profiled sections is shown in figure 1.6.

D fO

Centreline of cylinder

Figure 1.6 Interlocking Omega Profiled pressure armour sections

The Omega profiled wire is an exciting development but there are many issues 

that need to be addressed if it is to be realized in practice. For example, the 

mechanics of the Omega profiled wire’s response to axial deformation with 

respect to internal pressure loading and axial tension loading should be
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investigated. The way in which the cross-section of the wire twists with respect to 

the loading modes is important in order to understand the stress distribution and 

also the contact stresses arising from these loads.

As the Omega profiled wire interlocks with each subsequent turn, there is a 

coupling force generated along the length of this pressure armour layer. The effect 

of this coupling force on the performance of the flexible pipe to withstand higher 

in-service pressures is unknown. Also, frictional forces that arise from the contact 

of the turns of the Omega profiled when loads are applied have not been 

accounted for and this may well be an important issue to the load carrying 

capacity of the flexible pipe and fretting fatigue susceptibility.

Another point of interest is whether the Omega profiled wire, which has an axis of 

symmetry in the cross-section, improves the material utilization by having a more 

uniform stress distribution for the same cross-sectional area as of a conventional 

profiled wire. Clearly the structures utilised in flexible pipes are complex but most 

of the modem work to date has attempted to tackle this complexity by dealing 

with the structure as a global entity rather than examining the individual behaviour 

of the constituent components. Whilst this approach is a valid one, it can fail to 

provide localized information regarding aspects of behaviour and failure, or 

potential degradation in these structures.

As can be seen in section 1.4, this work attempts to address some of the issues 

highlighted above by examining the behaviour of pressure armour components 

away from the overall flexible pipe structure. The insight into the behaviour of 

pressure armour that this work provides has also been used to lay down the 

foundations of an understanding of the mechanics of an Omega type interlocked 

pressure armour.

1.4 Aims of Work

Much of the current understanding of the behaviour of helically reinforced 

flexible pipes has been obtained through experience of in-service installations.
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The historical development of flexible pipes and their reinforcement has occurred 

through piecemeal improvements in design and materials, rather than through an 

understanding of the fundamental mechanics behind their operation. The work 

described herein aims to redress at least some of this imbalance through the 

generation of analytical and finite element based models. It is hoped that such 

models will enable engineers to better understand the mechanics and interactions 

that occur within the pressure armour layer, such that structural design can be 

enhanced and design codes developed to raise the reliability and safety of flexible 

pipeline systems. Furthermore, with the invention of more complex pressure 

armour designs, such as the Omega profiled wire cited earlier, it is important to 

understand the fundamental constraints operating so that potential issues and 

problems with these new designs can be addressed before they are placed in 

service.

The approach used in this work starts by simplifying the notional construction of 

pressure armour reinforcements such that the underlying mechanics can be 

investigated. A further fundamental simplification has been the assumption to 

treat the pressure armour reinforcement as a helical spring. This is justified not 

just on the grounds of geometric similarity but also on the desire and need to 

validate the models developed.

In this thesis, the mechanics of helical springs are first investigated for circular 

cross-sections from an analytical viewpoint. This is then extended to the study of 

more complex cross-sections to eventually arrive at a model which is able to 

analyze interlocked designs (such as the Omega profile). The behaviour was 

investigated under various loading conditions, including tensile, internal pressure 

and the combination of the two. Other scenarios such as bending and torsion were 

not part of this study, although where deemed relevant, then they are briefly 

considered.

To be ultimately useful, the analytical solutions presented here should also be able

to account for some frictional effects. However, this is limited to a discussion of

the role of friction in interlocked profiles, given the complexity of the problem.

For now, it is sufficient to assume that many of the simplifications made here have
37



been done in order to expedite the overall analysis, and to ease the design of the 

experimental apparatus used to make the observations necessary to assist in model 

validation. With relevance to the latter, a novel approach was made towards 

observing the practical behaviour of helical springs by the design and construction 

of a spring lathe which was successfully used to cut helical springs of different 

profiles. The spring lathe was also used to cut an interlocked Omega profile type 

spring. This would have been extremely costly to produce by any other means, 

and provided a useful insight into the Omega wire concept.

While it is straightforward to carry out tensile testing of a spring, it is a 

challenging task to apply pure internal pressure loads on a helical spring structure. 

This loading scenario is critical to developing and understanding at how pressure 

armour behaves in practice. It was thus necessary to devise a means of applying 

internal pressure loads to the experimental helical springs. A purpose-built pulley 

rig was thus developed to apply radial loads, and to simulate as authentically as 

possible, the changes in response originating from the application of an internal 

fluid pressure.

The spring lathe and pulley rig are fully described in chapter 5. In addition to 

performing analytical and experimental investigation, a third aspect of this work 

has been the numerical modelling of various loading scenarios relevant to pressure 

armour profiles. ABAQUS was selected as the finite element modelling software 

and attempts were made to mesh and model a wide variety of coil configurations. 

In general, strong correlation between analytical and finite element modelling was 

observed, which is not surprising given that the origin of the latter is within the 

former. Although similar trends were observed in the practical experiments, close 

correlation was more difficult to achieve.

Overall, by applying the helical spring simplification, it has been possible to

generate a staged route to the development of a useful flexible pipe pressure

armour reinforcement model. This is discussed in more detail in chapters 3 - 6 ,

which also reveal how, at each stage in the development of the model, constraints

or extra degrees of freedom were introduced in order to move further towards the

goal of a global model capable of handling complex profiled wires and multi-axis
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loading scenarios. A final aspect of this work has been to utilize the information 

gleaned from the analytical, numerical and experimental studies to provide 

feedback into the design of future pressure armour profiles. There are many 

design criteria that are relevant to pressure armour, but one of the most significant, 

other than load carrying capacity, is the ability to withstand long term degradation 

and failure of the attendant components of the armour. Fatigue is a significant 

factor, but for this study, it was decided to concentrate on a more insidious form 

of damage, namely that due to fretting fatigue.

As was mentioned earlier, fretting fatigue occurs when mating surfaces rub 

together, hence a significant part of this study was devoted to understanding 

where these relative movements could occur. Treatment of the pressure armour as 

a helical spring allowed several modes of movement to be studied, including axial, 

radial, and intercoil sliding. By combining the predicted movements with an 

understanding of the stresses that could be developed, a prediction of the likely 

impact upon the fretting behaviour could be made. This in turn was used as a basis 

for suggested design modifications and/or criteria that could improve component 

lifetimes. In this way, it has been possible to feed back the results of the analysis 

of the mechanics of helical wire reinforcement into a set of design 

recommendations and to also discuss how the design of the fully interlocked 

systems, such as the Omega profiled wire, could be optimized.

A summary of the aims of this work is described as follows: -

• To develop analytical solution of a helical wire subjected to combination of 

axial and pressure loads, by reducing pressure armour to a helical spring 

analogue.

• To extend the analytical solution to include the behaviour of non-symmetric 

helical wire cross-sections.

• To verify of the analytical solutions developed using finite element analysis.
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• To cut and test helical springs of various cross-sectional shapes under axial

and radial loads, to aid in model verification and physical observation.

• To understand the behaviour of interlocked helical wire profiles, such as the

Omega profiled wire.

• To develop design codes of flexible pipe pressure armour based on

observations from the analysis carried out, with an emphasis on reducing 

susceptibility to fretting fatigue damage.

1.5 Overview of Chapters

The arrangement of chapters in this thesis has been largely determined by the need 

to present three forms of analysis in a coherent manner. These take the form of an 

analytical, numerical and experimental study into the mechanics of helical wire 

reinforcement. Chapters 3 - 6  contain this information whereas chapter 7 builds 

on the implications generated and attempts to influence the future design of 

flexible pipe structures through best practice recommendations. The background 

of flexible pipe design in general, and the aims of work are described in the 

present chapter. A detailed overview of the rest of the thesis is provided below.

Chapter 2 centres around a literature review of the work relating to the mechanics 

of helical wires. This includes the review of the early work done with regards to 

cables and wire ropes (the mechanics of helical wire for a pressure armour layer is 

similar to the analytical solutions for wire ropes, albeit more complex because of 

the cross-section of the wire involved). Also presented therein is the state of the 

art of flexible pipe design in general, together with a discussion of the possible 

failure of such pipes, in particular, through fretting fatigue.

Chapter 3 describes the theory of conventional spring behaviour, limited to 

circular cross-section wire. From the basis of wire rope theory, where Love’s 

equilibrium equations are presented, an analytical solution for a single helical wire 

constituent, subjected to various loading conditions, is described. Finite element
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models are used to confirm the analytical solutions obtained. A key feature in this 

chapter is the spring stiffness results obtained from analytical and finite element 

analysis for combined axial tension and internal pressure load on the helical wire, 

which interestingly has revealed a variable stiffness behaviour.

Similarly, the analytical solution of a helical wire for different cross-sectional 

shapes, based on Love’s equilibrium equation, is presented in chapter 4. The 

effects of the axial, internal pressure and combination of both loads on the 

different cross-sectional shapes are also discussed. Additionally, for non- 

symmetrical sections such as L and Z, the twisting effect of the cross-section due 

to internal pressure load is discussed.

Chapter 5 details the experimental work, where a spring lathe was developed to 

cut polystyrene springs for subsequent testing. A pulley rig was also built for 

application of internal pressure to the springs. Results were compared to the 

analytical solutions developed in chapter 4 and are discussed.

Chapter 6 investigates the loading behaviour and also clarifies the difference 

between conventional spring based layers and interlocked layers, both in 

mechanical terms and with a view to the failure mechanics (particularly fretting 

fatigue). As the surfaces of interlocked profiles such as Z and the Omega cross- 

section are in contact with its adjacent turns, frictional effects critical to some 

particular loading modes can become an issue and are addressed here. Results of 

an Omega cross-section polystyrene test to destruction are also discussed here. 

The mechanics of a helical wire are influenced by the condition at the termination 

ends, for example, whether it is fixed from movement or free to rotate or move 

axially. To this end, chapter 6 also discusses the influence of pipe end fittings to 

the behaviour of the helical wire constituent on the flexible pipe.

Design codes for pressure armour profile are described in chapter 7 using the 

observations made through theoretical, numerical and experimental aspects of the 

behaviour of helical wires. As detailed in chapter 6, the pipe end condition, which 

is important in the design consideration of pressure armour is also discussed in 

chapter 7.
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Finally, the overall conclusions and recommendations for high pressure 

applications are presented in chapter 8. Discussions on the shortcomings of the 

analytical model and identification of future work to advance and improve the 

solutions to replicate in-service scenarios are also presented.
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2 Literature Review

2.1 Introduction

This chapter outlines the fundamental development of the theories pertaining to 

the mechanics of helical wires of flexible pipe pressure armour. As flexible pipes 

were only introduced in the late 1970s, much of the analytical solutions were 

based on the behaviour of wire ropes and cables, both which have helical strands 

wound onto a central core. Although quite similar in nature, there are some 

apparent differences in the orientation of the helical components as well as some 

of the loading modes experienced by the pressure armour. Notwithstanding the 

latter, the review presented here details the development of the mechanics of wire 

ropes and demonstrates to how these approaches are made applicable to the 

analysis of flexible pipes mechanics. Several theoretical approaches have been 

taken previously for the study of the mechanics of wire ropes and cables, namely:-

• Equilibrium of forces

• Slender rod theory

• Castigliano’s energy method

• Orthotropic sheet theory

A discussion of these methods used by past researchers is presented here together 

with the assumptions made and the type of cables investigated. Where possible, 

comparison of the various methods is made.

Much of the work done on flexible pipe designs concentrated on the global 

deformation of the composite structure. The review presented here includes 

various analytical solutions produced for interlayer interaction and the global 

deformation of the pipe subjected to axial, torsional and bending loads. None of 

the literature to date has focused on the pressure armour layer and the complex 

interaction that such a layer has between the contacting surfaces (adjacent coils). 

Some designs have the coils partially (or even fully) interlocked and therefore
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constraint by friction is a consideration that needs to be addressed, but has largely 

been ignored by previous workers. Hence relevant aspects of fretting fatigue are 

also described.

2.2 Mechanics of Helical Wires and Flexible Pipes

The analytical behaviour that describes the behaviour of a wire rope under axial 

loading was first introduced by Hruska (1951). In this instance, the wire rope 

consisted of concentric helical wires wrapped around a central core. The forces 

considered were purely tensile, without any consideration of torsion or bending 

loads on the wire rope. Also, small deformations were considered, therefore the 

helix angle (defined in section 3.22) was assumed to be constant. The analytical 

solution was solved by summing up the contribution from the different layers, via 

resolving the forces experienced in each individual helical wire, together with the 

contribution experienced via the rope’s core.

Further to this, Hruska (1952, 1953) also considered the effects of radial and 

tangential forces that arose when the helical wire components pressed on to the 

central core due to applied axial loads. As the wire rope being considered 

consisted of helical wires with a large helical angle, such a radial contact load 

could be significant because the radial deformation was expected to be larger. It 

should be noted that the wire rope configuration considered by Hruska (1952, 

1953) is not necessarily similar to a pressure armour configuration, where the 

helical angle is usually very small. The small helix angle generates a smaller 

radial loading scenario. Nevertheless, for a pressure armour, the main contribution 

to the radial loading is the force that arises from the internal pressure load. The 

tangential force arose due to the applied axial load and the resulting tension in the 

helical wire. Tangential loads considered by Hruska (1952, 1953) caused the wire 

rope to rotate along the centreline of the core, thus producing a moment on the 

cable. It was pointed out by Hruska (1953) that if both ends of the cables were 

fixed, then the driving moments are negated by the reaction moments produced at 

the ends. However, when one or both ends are not fixed, then the cable is free to 

rotate.



Machida and Durelli (1973) extended Hruska’s work to investigate the response 

of a cable made up of circular cross section wires, subjected to axial (tensile) and 

torsional (twisting) loads, and also under a combination of both loads. The cable 

investigated was limited to the case of six concentric helical wires wrapped 

around a central core. From geometrical considerations, analytical solutions for 

axial force and bending moments were established using the assumption that no 

frictional forces arose from contact of wire with the core and that the deformation 

was small, i.e. the initial helix angle and the final helix angle remained the same. 

In the combined effects of torsion and tension, the analytical solution was similar 

to one under the effect of torsion alone (again when deformation of the wire was 

small). Based on this, it was concluded that if the rope deformation was small, the 

torsional rigidity of the strand would not be affected by the effects of an axial load 

component. It is worth noting that the experimental work done by Machida and 

Durelli (1973) showed that cables with fixed ends were stiffer than ones with free 

ends.

The behaviour of a helical wire can be regarded as that of an elastic rod of narrow 

cross-sectional area with respect to its length, assuming that plasticity is ignored. 

The theory of elastic slender rods was first postulated by Kirchoff in the 19th 

century and later considered by Love (1934). A set of equilibrium equations 

describing the forces and moments of a slender rod was established. Love’s 

equilibrium equation can be used to solve for the forces and moments in helical 

rods, assuming that the rod is inextensible. This assumption however, leads to the 

conclusion that the cable is of infinite stiffness in some loading modes, for 

example pressure loading. This will prevent the equilibrium equation from being 

solved in these cases. In this work, the assumption of inextensibility is removed 

for the pressure loading cases so that the equilibrium equations can be solved.

Love’s equilibrium equation (slender rod theory by Love (1934)) was extended by

Phillips and Costello (1973) to the application of wire ropes which were helically

wound. They considered a cable consisting of a single layer, made up of several

concentrically wound helical wires. Each wire was considered as a slender rod,

subjected to an axial load and a twisting moment (via the application of a torsion

force). The assumptions made in solving the general non-linear equations were
45



that frictional forces between wires were ignored and the radial forces exerted by 

the core of the cable (if any was used) on the wire were neglected. This meant that 

the radial deformation was solely within the outer wires. The investigation by 

Phillips and Costello (1973) also included contact stresses between the wires 

when they were pressed together due to the applied loads.

Blanco and Costello (1974) illustrated the effect of having a cylindrical constraint 

on a helical wire. The work again assumed that there was no wire strain and 

because of the constraints imposed, no radial strain was present as well. The 

results showed that the system comprising the helical wire had a higher stiffness 

compared to one which was not radially constrained.

Costello and Phillips (1976) extended their previous studies to determine the 

effective tensile modulus of twisted wire system. Basically, the same initial and 

final configuration as in Phillips and Costello (1973) was used and the same 

assumptions were made. However, the assumption that the wire was inextensible 

was removed. The effects of cable axial force due to the cable strain and rotation 

for two cases were determined. The first case was for conditions of the cable end 

free to rotate and the second for one with no end rotation. A few notable 

conclusions were made. The stiffness of a cable with fixed ends was deemed to be 

higher than one which ends are free to rotate and the stiffness of cables with fixed 

ends were not influenced by axial load applied. Also, increasing the load applied 

increased the stiffness of cable with free ends unless the wires were almost 

straight initially. This investigation showed that cable end conditions were 

important in determining the cable’s stiffness.

Further analysis using Love’s equilibrium equations was carried out by Velinsky

et al (1984) on complex cable cross-sections. The cable considered was ‘6 x 19

Seale’, which is a cable with a large number of helical wires, each having large

helical angle. The work performed by Velinsky et al (1984) showed that the

equilibrium equations were useful in solving multi-layered cables consisting of a

large number of helical wires. LeClair and Costello (1986) considered frictional

forces between the helical wire layer and the core. The bending behaviour of the

cable, consisting of numerous helical wires wrapped around the core was
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investigated and their work concluded that slippage of the helical wires took place 

as the cable was being bent.

An analytical solution for the axial -  torsional and bending response of a helical 

wire was presented by Ramsey (1988). This theory was similar to the one obtained 

by Phillips and Costello (1973) based on Love’s slender rod theory. However, the 

current analysis included a set of generalized strain equations which characterized 

the helical wire response under various loading conditions. One critical difference 

in this approach was that it illustrated the difference between twist and tortuosity 

of a wire. In the work by Costello and his co-workers (Phillips and Costello, 1973; 

Costello and Phillip, 1976; LeClair and Costello, 1986), the rod cross-sectional 

rotation was not taken into account due to misrepresentation of the twist -  

tortuosity term in Love’s equilibrium equation. The difference between twist and 

tortuosity is further explained in section 3.2.3. In view of this, the solution by 

Ramsey (1988) clearly provided a means to determine the orientation of the wire 

cross-section. This is particularly useful if the wire cross-section is non-circular, 

given that if the wires used were circular in nature, the misrepresentation by 

Costello and his co-workers would not have been obvious because the rotation 

could not be clearly observed. Since the work presented in this thesis covers 

various wire cross-sectional profiles, the rotation of the cross-section is evidently 

important in the response of the helical wire subjected to various loading 

conditions.

Further advanced models were developed by Ramsey (1990) to investigate

interwire friction in multilayered cables. When the cable undergoes uniform

extension or twisting, the only extra component in Love’s equation that is

attributed to the frictional force is a moment generated between the sliding wires.

In this instance, it was argued that the frictional moment only acts to resist the

change in helix angle of the wires. This may not be particularly true if the cable

changes its radial dimension. Ramsey (1991) extended this work to study the

effects of clamped ends of the helical wires in multilayered cable. Here, the

interwire frictional components were ignored for simplicity of analysis. Boundary

conditions were applied at the ends of the cable in the slender elastic rod theory to

analyze the effect on the fixed ends. It was found that the effect on the stresses of
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the wires was small but caused slippage of the wires near the fixed ends, and may 

have contributed to wear. The effect of end terminations on the behaviour of 

helical wire structures is further discussed in chapter 6. It will be clear from 

chapter 6 that the constraint imposed by end terminations is significant in 

determining the lifetime of helical reinforcement and hence its design.

An energy method first introduced by Castigliano was used by Knapp (1979) to 

obtain the axial and torsional response of helical armoured cable. The effects of 

core radius variation were considered. Core radius variation could be due to 

pressure from other layers of the cable. The non-linear equations produced by 

Knapp (1979) were linearized to achieve a closed-form solution, albeit limited to 

small cable deformation. Another important consideration in the analysis was that 

it could be extended to non-circular cross section wires by approximating an 

equivalent wire radius.

The effects of coupling between axial, torsional and flexural forces for helically 

armoured cables under static loading conditions were studied by Lanteigne 

(1985). The analytical solution provided could be used to solve for cases of 

unbalanced load where some of the constituent wires in the cable had failed and 

these loads transferred directly to other wires in the cable. It was found that the 

effect of coupling forces between the axial-flexural and torsional-flexural did not 

produce a significant difference when compared to the behaviour of the wires 

under each independent load alone. However, for the cases of unbalanced loads, 

these coupling forces should be taken into account.

Another approach that was used to model cables was due to Raoof and Hobbs 

(1988). The analysis treated the individual layers of helical wires as a series of 

cylindrical sheets (in essence, a collection of thin walled tubes) using orthotropic 

sheet theory to determine the overall response. This method is more applicable to 

large strands, that is having large number of wires in a layer. The underlying 

assumption is that the wires in each layer are just touching each other when no 

axial load is applied. An attempt was also made to analyze the effects of friction 

and interwire contact. Similarly, Raoof (1991) extended the analysis for the 

combined axial -  torsional loading of large strand cables.
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Blouin and Cardou (1989) used a similar method to that of Raoof and Hobbs 

(1988) in treating the helical wires as a cylindrical layer. However, the cylinder 

was treated as a (local transverse isotropic) material under symmetrical loads in 

the axial direction. This method is attractive only if a large number of wires are 

present in each layer of the cable so that the total area of the wires approximates 

the area of a cylindrical layer.

Jolicoeur and Cardou (1991) presented a comparison of results of different models 

of twisted wire under axisymmetric loading (thus bending was excluded). 

Axisymmetric loads that were considered were those due to axial forces and 

twisting moments. This led to the assumption that the wires had the same 

elongation and twist per unit length across the length of the cables. The models 

compared were from different approaches such as the simple equilibrium of forces 

by Hruska (1951) and energy methods by Knapp (1979). These models were 

linear and ignored the torsional and bending stiffness of the wires, which is often 

not the case in the actual response of a flexible pipe where the geometry of the 

structure is complex. Nevertheless, many of these linear analyses are still used 

today to study the behaviour of flexible pipes subjected to axisymmetric loads 

despite the limitation due to its structural complexity. The solution based on 

Love’s equilibrium equation by Phillips and Costello (1973) was also considered 

in Jolicoeur and Cardou’s study.

The type of cables that were considered by Jolicoeur and Cardou (1991) contained 

several helical wire layers, typically of large helix angle. Although all the models 

presented in Jolicoeur and Cardou (1991) gave good correlation with the 

experimental data, Knapp’s model gave closer results to experimental data 

because the cable’s core radial variation was included.

In spite of the different starting points in the approaches used, the first three 

theories mentioned earlier in the introduction of this chapter produced quite 

similar results as pointed out by Feld (1992). The orthotropic sheet theory is less 

relevant in the study of pressure armour layers as it assumes that the helical wires
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behave in a similar manner to that of a cylindrical layer, and that the localized 

twisting and bending stiffness of a helical wire cannot be properly observed.

The modelling of global deformation of flexible pipe structure has only surfaced 

in the last two decades. Early investigation into the axial and torsional effects on 

the flexible pipe was carried out by Oliveira et al (1985). The global deformation 

of a flexible pipe constructed from different layers of polymer sheath and helical 

steel armours were considered. Simple axial, torsional and bending stiffnesses 

were derived from geometric considerations and the equilibrium of forces. 

Reasonable agreement was obtained when the analytical result was compared with 

the experimental data for a representative flexible pipe.

Goto et al (1987) presented similar solutions to that of Oliveira et al (1985) for 

axial, torsional, bending and crushing strength of flexible pipes. Crushing strength 

is the elastic deformation of the pipe when opposing pair of concentrated loads act 

in plane of the pipe’s diameter. Feret and Boumazel (1987) extended this to 

evaluate the stresses and contact pressure of the different layers of flexible pipes 

due to axisymmetric loads. The flexible pipes were assumed to have small 

deformation after loads were applied, all layers remained in contact after loads 

were applied and that the polymer sealing layers transmitted the loads fully to the 

helical steel wires. Feret and Boumazel (1987) concluded that the analytical 

solution would be a good approximation of the behaviour of the pipe. However 

this would not have been the case if gaps between layers occurred after loads were 

applied.

McNamara and Harte (1989) presented a general computational solution of a 

flexible pipe structure based on the work done by previous workers (Lanteigne, 

1985; Goto et al, 1987). The polymer layers were treated as orthotropic sheets 

while the solution for the pressure armour layer was obtained from Lanteigne 

(1985). The analysis also involved determining the pressure differential between 

layers when the internal pressure or external pressure was a known quantity.

In an extension to his previous work on the modelling of helical wire under

tension and torsion, Knapp (1988) produced a computer program for the structural
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model of undersea power cables. Analytical solutions from Knapp (1979) were 

used and the same underlying assumptions were made. The computer program can 

be used as a preliminary design tool for structural analysis of cables.

Witz and Tan (1992) presented the results of axial torsional structural behaviour 

of flexible pipes, umbilicals and marine cables. For helical wire, similar initial and 

final configuration of the wires to the conditions of Phillips and Costello (1973) 

were used. For any given number of helical wires wound together, the same 

expressions for axial force and bending moments were obtained. The non-linear 

governing equations which described the interaction of the multilayered structures 

were solved using the Newton-Raphson numerical method. A comparison of the 

experimental and theoretical results of tensile tests carried out on the marine cable 

and umbilical was made. A good correlation was obtained for the marine cable 

and the umbilical tested. The results of the axial loading and the longitudinal 

deformation of the flexible pipe exhibited high linearity although the analytical 

model was non-linear.

The effects of tension, torque and wall pressure on the different layers of the 

flexible pipe section were considered by Mclver (1995). Analytical solutions for 

tension and torque were established, and the analysis took into account the 

temperature changes (due to service conditions) in the wire section. Mclver (1995) 

investigated the different layers across the pipe section and tested the validity of 

the widely used assumption that each layer in a complex flexible pipe structure 

could be designed in isolation without compromising its overall pipe structural 

integrity. In the conclusion of his work, models that used the above simplifying 

assumption could be used to provide reasonably good results. However, for wear 

and fatigue analysis, Mclver (1995) recommended that the different layers should 

be taken into account, as contact forces invariably emerged between layers.

Mclver (1995) also pointed out the difference between tortuosity and twist of a

wire. Tortuosity measures the changing direction of the binormal vector rather

than measuring the wire twist. The principal normal and binormal vectors are

constantly changing throughout the orientation of the wire for twisting (the

normal, binormal and tangent vector directions on a wire are shown in the next
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chapter). Succinctly, the normal vector measures the direction of curvature of the 

wire while the tangent measures the rate of change of the arc length. The binormal 

vector is mutually perpendicular to the normal and tangent vector. This is further 

explained in section 3.2.3.

The use of finite element analysis to study the cross section of a flexible pipe in 

general has only surfaced in the last ten years. A simple analytical model which 

describes the global axial deformation of flexible pipes was derived by Chen et al 

(1995). Frictional forces between layers were neglected and a small displacement 

of the pipe was assumed. Also, the internal carcass and pressure armour 

reinforcement were modelled as thin tubes (even though the two structures were 

actually helical in shape) because the helix angle was very small. Results were in 

agreement to experiments carried out on a typical flexible pipe. However, for 

detailed stress distribution of the pressure armour layer, finite element modelling 

was employed, as the analytical solution could not predict the localized stresses in 

flexible pipe layers. An axisymmetric model of the pressure armour cross-section 

subjected to internal pressure was presented to show good agreement between the 

circumferential stress of the global analytical model and the numerical results 

obtained from finite element modelling. Thus, it was pointed out by Chen et al 

(1995) that finite element analysis proved to be a good method for studying 

localized stresses of the pressure armour reinforcement to better understand its 

fatigue and wear behaviour. Much of the remaining literature on such analysis is 

invariably confined to the pipeline components and remains out of public domain 

and proprietary.

A case study on a commercial flexible pipe was performed by Witz (1996). 

Analytical results in the structural analysis of flexible pipes were obtained from 

different investigators and were compared to experimental data collected for a 

representative commercial pipeline cross-section. Witz (1996) mentioned that the 

structural analysis of a flexible pipe was not straightforward and often analyses 

were simplified by considering axisymmetric loading of the pipe structure only. 

For such axisymmetric load, uniform extension and twist were assumed. Results 

from the different models showed that the axial stiffness of the pipe was smaller 

than the one predicted from Hruska (1951) which assumed a rigid core.
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Ramos et al (2000) compared analytical solution of a flexible pipe with finite 

element based models using the same underlying assumptions as of Witz (1996). 

The agreement between the analytical and finite element models was reasonable 

given the fact that some of the assumptions imposed in solving the analytical 

solution could not be directly applied to the finite element models. For instance, 

when modelling the analytical solution, every layer of the pipe was assumed to 

have the same twist and elongation. However, this restriction is applied only at the 

extremities of a finite element model.

A new model that could estimate the stresses and displacement in each of the 

flexible pipe layers and the overall flexible pipe structure under axisymmetric 

loads was presented by Custodio and Vaz (2002). This model took into account 

material non-linearity and gaps formations after loads were applied.

It should be noted that these investigations into flexible pipes take into account the 

global deformation only and not those due to the independent layers, while this 

present work attempts to present the deformation and stress distribution solution 

on the pressure armour reinforcement layer alone.

2.3 Fretting Fatigue

As was mentioned in the introduction to this work (chapter 1), one of the possible 

causes of failure in pressure armour is likely to be initiation and propagation of 

fatigue cracks. An understanding of the possible mechanisms of failure is critical 

to any design process. In the case of a pressure armour, the possibility of contact 

between layers, and between coils means that fretting fatigue is a strong candidate 

for the principal failure mechanism, and hence this work concentrates on this 

aspect.

Fretting occurs when components are subjected to oscillating forces, for example, 

mechanical vibrations, giving rise to relative slip over the contacting surfaces on 

the components. The pressure armour reinforcement of a flexible pipe is therefore 

a likely candidate for this type of fatigue as the pressure loads experienced by the
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pressure armour reinforcement cause the contact surfaces to rub against each 

other, together with a substantial contact load in the normal direction.

Johnson (1985) explained the stresses and deformations involved in contacting 

bodies for various types of contacts. There are several types of relative movement 

between two bodies; these include sliding, rolling and spin. The design of the 

pressure armour used in flexible pipe construction will obviously affect the 

expected form of contact that occurs. In the case of the Omega profiled wires, for 

example, sliding occurs between the contacting surfaces due to movements in the 

axial direction of the pipe.

Another important factor for occurrence of fretting fatigue is the normal force 

acting on the contacting surfaces. Johnson (1985) noted that the effect of normal 

loads on elastic bodies was first investigated by Hertz in 1882. Hertzian contact on 

elastic bodies was introduced where the stress distribution of the contact area was 

generally assumed to be elliptical based on his observations on contact of lenses. 

The Hertzian theory of elastic contact can be used to calculate local stresses on 

contacting bodies where each body is treated as an elastic half-space. This implies 

that the stress distribution on the contacting bodies is not affected by the general 

stress distribution of the bodies which is due to their shape and the way they are 

supported. For this to be applicable, the contact size must be much smaller 

compared to the dimension of the bodies. Also, the strain produced on the 

contacting surfaces must be small.

Mindlin (1949) investigated the distribution of tangential load over the contact 

surface when the bodies in contact are subjected to small displacements. Smith 

and Liu (1953) investigated the stresses on elastic bodies due to tangential and 

normal loads. Analytical solutions presented by Smith and Liu (1953) can be used 

for problems involving sliding friction force or normal loads acting when 

cylindrical rollers are pressed against each other. It was noted by Smith and Liu 

(1953) that the rollers generally failed in two principal modes. Failure could either 

start out as a localized inelastic deformation followed by fracture or fracture due 

to repetition of loads on the localized crack.
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The expressions for stresses beneath a circular region of contact subjected to 

tangential and normal loads were then derived by Hamilton and Goodman (1966). 

It was found that the most likely region of failure is the front edge of the contact 

circle. A novel study of normal loading effects in fretting on different metal alloys 

was presented by Goss and Hoeppner (1974). From the experimental work carried 

out, it was concluded that fretting damage due to normal loads imposed different 

life behaviour for different metal alloys which could be explained in terms of the 

material’s microscopic variation in toughness.

More specifically, fretting fatigue experiments were carried out on carbon steel by 

Endo and Goto (1976). Small fatigue cracks were found to initiate very early in 

the life of the material and grow to be propagating cracks. Tangential loads and 

repeated stress were found to affect the initiation of the crack propagation. 

However, very little is discussed on the crack initiation stage of fretting. Hills et al 

(1988) proposed that a critical contact size must be reached before fretting fatigue 

cracks were observed to nucleate.

The crack propagation behaviour of a stainless steel under contact pressure in 

fretting was studied in detail by Sato and Fujii (1986). In their work, experimental 

investigations were carried using a stainless steel fretting pad on a flat stainless 

steel plate and the crack propagation rate for a number of contact pressures was 

measured for different crack lengths. It was explained by Sato and Fujii (1986) 

that in fretting fatigue, the shorter cracks propagated very rapidly in comparison to 

plain fatigue. The crack propagation rate then decreased with crack growth when 

it reached a crack length of 1 millimetre. From this point onwards, the crack 

propagation rate increased monotonically with crack growth which was associated 

with plain fatigue. It was also concluded that at very high contact pressures, the 

crack propagation rate in fretting fatigue decreased because of crack closure.

Contact conditions in fretting changes with the displacement amplitude. Vingsbo

and Soderberg (1988) identified three different regimes in fretting by variation of

tangential loads and measurement of displacement in their experimental work. A

series of fretting maps was produced for a few materials and this was useful to

identify whether fretting was likely to occur given the contact regimes
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experienced. Nowell and Hills (1990) further reinforced that the crack initiation 

criteria had to be associated with the displacement amplitude and contact width as 

suggested by Hill et al (1988).

Waterhouse (1992) presented a review of the development of fretting fatigue 

mechanisms from the experimental and analytical studies of previous researchers 

(Mindlin, 1949; Endo and Goto, 1976; Sato and Fujii, 1986; Nowell and Hills; 

1990). It was mentioned that their major development had been the measurement 

of the crack growth rates due to fretting fatigue. Additionally, the mechanical 

factors such as normal load, slip amplitude and the physical factors such as the 

material properties and surface finish were discussed in greater detail in order to 

predict the likelihood of fretting fatigue. Waterhouse (1992) emphasized the 

importance of tackling fretting at the design stage, whether through better design 

of the components or by applying the appropriate surface treatments when the 

problem could not be overcome by changes in design to avoid contacting 

interfaces.

The effect of slip amplitude to the fretting fatigue behaviour of several alloy steels 

was investigated by Gao et al (1991). Experiments were carried out on flat 

contacting surfaces of the alloy steels under axial tension. It was concluded that in 

the range of gross slip, the fretting fatigue decreases as slip amplitude increases. 

Conversely, in the stick-slip regime, where slip amplitude was in the region of 

micrometres, the fretting increases as slip amplitude increases. Further to this, 

Nakazawa et al (1994) investigated the combined effects of the slip amplitude and 

the contact pressure on high strength steels. The relationship of the fretting fatigue 

life due to the contact pressure on the fretting specimens for a range of slip 

amplitudes was established. In their work, the minimum life of the specimens was 

taken in terms of localized stress concentration at the fretted area.

More recently, Nakazawa et al (2003) studied the effect of the contact pressure on

the fretting fatigue behaviour of austenitic stainless steel. The experiments

performed by Nakazawa et al (2003) considered the effect of the contact pressure

using a bridge-type flat fretting pad on flat specimens of the same material.

Bridge-type pads have contacting pads which are flat, therefore forming complete
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contact with the surface of the specimen (a complete contact is resulted when the 

size of the contact is independent of the normal load applied). This result was 

compared to another set of fretting fatigue test using the same type of specimens 

and conditions, however this time, together with the introduction of plain fatigue 

for a number of cycles prior to the fretting tests.

In was concluded by Nakazawa et al (2003) that an increase in contact pressure 

decreased the fretting fatigue life rapidly. This observation was attributed to the 

concavity form at the fretted area during the high contact pressure tests due to 

contact with the fretting pad. Introduction of plain fatigue to the specimen before a 

fretting fatigue test at high contact pressures resulted in an increase in the fretting 

life since the concavity formed was thought to be suppressed by the cyclic strain 

hardening of the material. Conversely, no apparent effect on fretting was observed 

for low contact pressure when the specimen was subjected to plain fatigue 

initially.

Much of the above work has been applied to controlled laboratory conditions and 

in order to transfer the knowledge obtained in practical applications, such as the 

offshore case of flexible pipe pressure armour, a link needs to be generated 

between the lab based fretting behaviour, the forces and contact zones that are 

likely to be generated in pressure armour systems. Whilst much of the present 

work has been aimed at understanding the way in which pressure armour behaves 

(and hence interacts with itself), problems remain with transferring fretting data 

over to real life scenarios. Chief among these is actually determining the levels of 

loads and the actual contact area involved. Work undertaken by Liu et al (2001) 

highlighted this problem, and presented a novel numerical method simulation 

technique to analyze the contact loads in sliding wear. They also confirmed that 

the pre-test surface finish of the specimens (which has implications for machining 

and manufacturing processes) had a significant effect on the contact behaviour.

From the review of the literature, it is difficult enough to characterize the fretting

fatigue failure mechanism, on contacting surfaces, in terms of the displacement

amplitude, tangential or normal loads, let alone factor in the different behaviour of

various materials and the size of contact area. For different components and
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materials, the fretting characteristics are totally different. Szolwinski and Farris 

(1996) provided a good review into the work on the mechanics of fretting. Their 

work noted that the models so far had their shortfalls and none could suggest a 

specific method in predicting the life because of the complexity involved. In 

addition, an analytical model which could predict fretting fatigue crack nucleation 

was presented by Szolwinski and Farris (1996).

Fellows et al (1997) characterized the initiation of fretting using shear stress 

amplitude. It was claimed that a critical shear stress amplitude must be exceeded 

before fretting occurred. However, it was acknowledged that it was very difficult 

to quantify initiation life of a fretting crack from experimental methods.

A review of the experimental methods used to carry out fretting fatigue tests was 

presented by Lindley (1997). In his study, the preferred type of specimen and 

contact pad geometries for fretting experiments was identified. Well defined stress 

fields were necessary to study the effect of fretting. Therefore fretting pads which 

were cylindrical in nature, in contact with flat plate specimen were desired 

compared to flat fretting pads because of the difficulty in defining stick-slip zones 

in such geometries and also the stress singularity that would be present at the flat 

fretting pad comer. Comparisons of the fatigue strength of various engineering 

alloys were presented by Lindley (1997) for cases of specimens with and without 

fretting. Additionally, Lindley (1997) compared the fretting strength data for a 

range of contact pressures and contact width. The various analytical approaches 

for quantifying the crack growth were also examined.

Fretting fatigue should not be confused with plain fatigue as discussed in Moobola

et al (1998). Surface displacement of the contacting bodies encourages initiation

of a crack in fretting fatigue while in plain fatigue, cracks can initiate from small

defects or imperfections on the surface of the material. In fretting fatigue, unlike

plain fatigue, as the crack moves away from the contact, the tip experiences a

decreasing stress field (unless there are superimposed tensile loads), hence the

crack growth rate may slow down and then be impeded. Conversely, for the

particular case of pressure armour, there are often combined loading scenarios

where normal loads and cyclical movement can be augmented with static tensile
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or dynamic loading of components. Hence there is a possibility that cracks 

initiated purely by fretting mechanisms could rapidly enter tensile stress fields 

and/or propagate by conventional fatigue mechanism. Therefore, fatigue is 

comprised of two distinct phases, initiation and propagation. Fretting fatigue has 

an important effect on the initiation of the crack but has very little influence on the 

propagation stage of the crack (Moobola et al, 1998).

Since fretting can lead to premature failure of mechanical components, methods to 

mitigate the effect of fretting should be employed. Waterhouse (1992) suggested 

surface treatments should be encouraged in situations where contact of 

components cannot be avoided. The effect of palliatives to the fretting fatigue 

mechanism was investigated by Zhou and Vincent (1999). Generally, palliatives 

fall into one of these three categories: -

1) reducing the relative slip

2 ) raising the strength by changing the base material

3) lower the coefficient of friction between the contacting surfaces

However, these palliative methods can interact with each other, for example 

lubricants, which could allow relative slip but at the same time lower the 

coefficient of friction of the contacting surfaces. Zhou and Vincent (1999) 

investigated the influence of various lubricant types on fretting. The result 

indicated that the palliative effect of lubricants on fretting should be characterized 

using slip amplitude regimes.

The investigation into the effects of fretting fatigue so far has been limited to 

mechanical components such as bearings and gears. The possibility of fretting 

fatigue occurring in pressure armour reinforcements has only been mentioned 

recently. Saevik and Berge (1995) carried out experimental tests on flexible pipes 

with multiple layers of tensile armours. The pipes were subjected to axial, internal 

pressure and bending loads. The fatigue failure of the tensile armours was found 

to be due to fretting mechanisms. An analytical model to characterize this fretting 

failure of the tensile armours was established by Saevik and Berge (1995). 

Additionally, Saevik and Berge (1995) identified the likely sites of fretting failure 

on the tensile armours based on their experimental work and analytical model.
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Burke and Witz (1999) addressed the issue of fretting fatigue of flexible pipe 

pressure armour due to high pressure loading. Generally, the structural 

performance of the pressure armour is determined by considering the wires of the 

pressure armour as a continuous helix. In high pressure dynamic service, fretting 

fatigue in pressure armour was thought to be influenced by factors such as normal 

and tangential loads and also the coefficient of friction of the contacting surfaces 

(Burke and Witz, 1999). They explained that since the contact was non-conformal 

(that is the contacting surfaces have different profiles), the contact condition was 

similar to that of a cylinder-on-flat plate for a ‘Z’ profiled wire. Contact points 

where stress concentrations existed because of geometric discontinuity was 

thought to be the critical points of potential fretting fatigue. It was proposed that 

the fretting crack would initiate at the ‘cylinder’ part of the contact as opposed to 

conventional studies where the stress distribution was thought to concentrate on 

the surface of the flat plate (Burke and Witz, 1999). This is because the pressure 

armour layer effectively experienced the same dynamic stress across the profile. 

Another important point to note was that the manufacturing and assembly process 

leaves the component with residual stresses that may affect the fretting response 

as well.

In summary to this section, chapter 7 provides a further insight into the particular 

aspects of fretting fatigue relevant to the case of pressure armour and discusses 

issues of design that can possibly improve the service lifetimes.
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3 Helical Spring Theory and Analysis

3.1 Introduction

This chapter concentrates on the development of analytical solutions that help 

describe the behaviour of the pressure armour layer of the type found within riser 

structures. It begins with the fundamental consideration of helical armour layers, 

making the assumption that they behave, to the first approximation as helically 

wound tension/compression springs. This approximation is fair, given that many 

designs of pressure armour are simple helices, and those that are overlapping or 

even interlocked helices are likely to (at least initially) behave as helical springs. 

The possibility that this approach can in turn be used to explain the response of 

the pressure armour layer to different loading conditions is attractive as it offers a 

simplified route to understanding the fundamentals of the behaviour of the 

pressure armour layer whilst providing good opportunities for experimental 

verification.

This chapter describes the development of the analytical solution for the simple 

case of circular cross-section helical springs based on three different approaches, 

basic theory provided by Wahl (1963), the energy approach by Knapp (1979) and 

the other from slender rod theory by Love (1934) and this approach has been 

extended further for wire rope and cable analyses. It will be shown later that the 

slender rod theory provides the option to investigate more complex cross-sectional 

shapes under the different loading conditions. Where possible, the results of these 

methods are compared with each other and also with the finite element analysis in 

chapters 3 and 4. The approach here has been to review the existing literature, 

present an understanding of the major factors in helical spring mechanics and then 

attempt to modify some of the analysis to fulfil some of the needs of this work.

The early investigation into the mechanics of springs was carried out by Thomson 

and Tait (1889). The curvature and tortuosity of a helix was defined and this study 

formed the basis of the work of Love (1934) and Wittrick (1966). Subsequently, 

aspects of spring theory have been developed for specific components such as
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wire ropes as is evident in the works of Phillips and Costello (1973), Phillips and 

Costello (1979), Lin and Pisano (1988) and Costello (1990).

The equilibrium equation used by Love (1934) for solving the forces and moments 

in slender rods has been used by Phillips and Costello (1973) to derive the contact 

forces in wire ropes which has multiple wires wound together in a helical manner. 

If the number of wires are reduced to just a single wire, the contact force no 

longer exists and the analytical solution reduces to the force and moment equation 

acting on a simple helical spring based on the works of Blanco and Costello 

(1974) and Tan (2002). The mechanics of a simple spring based on slender rod 

theory will be further discussed in section 3.2.3. The following sections introduce 

the theory of helical spring mechanics for circular cross-section spring starting 

with Wahl (1963).

3.2 Mechanics of Helical Springs -  Circular Cross-section

3.2.1 Basic Helical Spring Equations

Wahl (1963) defined a spring as an elastic body which deflects under an applied 

load and recovers its original shape when the load is removed. The basic equations 

of the helical spring provide the parameters for the author’s study of the 

mechanics of the pressure armour reinforcement. For example, the deflection and 

stiffness equations will provide the necessary understanding on how much the 

pressure armour reinforcement displaces under an applied load and also how this 

displacement is affected by the stiffness of the helical structure.

Timoshenko (1955, 1956) produced a simple derivation for the shear stress and in 

turn the deflection of circular cross-section helical spring. Shear stress of the coil 

cross-section here is caused by a twisting couple on the coil. These equations 

were comprehensively presented in Reiner (1960) and Wahl (1963). The shear 

stress of helical spring loaded in the axial direction of the spring was assumed to 

behave similarly to a straight bar in pure torsion. This implied that the axial load
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applied onto the spring is resisted by a transverse shear force together with torque 

acting on the cross section of the spring. Each element of the pitch, which is one 

complete turn of a helix, is thus subjected to a torque about the centreline of the 

spring, Tr, shown in figure 3.1, which is given by

Torque,Tr = FaR (3.1)

where Fa = axial load

R = radius of helical spring

Tr = FaR

Figure 3.1 Helical spring under axial load

The extension of the spring is mainly due to the twisting effect of the helical 

spring under the torque, Tr as described by Reiner (1960). Although the shear 

stress can be an important parameter in determining the deflection of a spring, 

usually only the effects of torsion of the spring are taken into account when 

defining the deflection equation as explained by Timoshenko (1955). This was 

essentially done to simplify the analysis and also done in part due to the fact that if
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the helical spring in consideration is of large spring index (defined in equation 

3.2), the maximum shearing stress will be one caused by torsion.

The helical spring index, c is defined as

where d = diameter of helical wire 

r = radius of helical wire

Now, consider point B, which is fixed and point C at the end of the spring as 

shown in figure 3.1. When an axial load is applied, all the elements below point A 

of the spring would have rotated, fixed relative to point A. Thus, point C would 

now have moved to point D. The complete deflection of the spring is obtained by 

summing up the extension, d8  (which was deduced by similarity of triangles), due 

to the twisting of the elements along the length of the spring. Hence, the 

deflection, 8  of a helical spring considering the effects of torsion only, is 

presented by Wahl (1963) based on Timoshenko’s derivation as

s = ^ E â ul ( 3 3 )
Gr4

where G = modulus of rigidity of helical wire 

n = number of pitch in helical spring

From here on, the analytical solutions presented here will be expressed in terms of 

the radius of helical spring since the subsequent analyses is derived in terms of the 

helical spring radius. Ancker and Goodier (1958) derived another expression for 

the deflection, 8  of a helical spring taking into account the curvature effects of the 

beam.
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This corrected deflection equation by Ancker and Goodier (1958) is given in 

terms of the helical spring radius, as: -

s = 4
Gr4

(3.4)

where y/ = 1 tan2 a

v = Poisson’s ratio 

a  = helix angle

Solution in equation 3.3 by Wahl (1963) differs with equation 3.4 by a factor \|/ 

which involves the material Poisson’s ratio, helical spring index parameter and its 

helical angle. For example, if the spring index is large and equal to 25 while the 

helical angle is about 10 degrees and given Poisson’s ratio of 0.33 for steel, 

equation 3.4 gives a deflection value which is about 4% larger than Wahl (1963). 

Deviation in the two solutions gets progressively larger if the helical angle is of 

large value. Therefore basic spring solution by Wahl (1963) is used when the 

spring does not undergo large changes in its dimensions, for example its helix 

angle and spring radius, which meant that the spring was initially closed coil as 

well. Additionally, this solution only takes into account the stress due to the 

torsional moment but not the stress due to axial force as it is negligible unless a 

spring of small spring index was used.

The deflection experienced by a helical spring varies linearly with the applied 

load. This is true given the system behaves in a linear elastic manner for small 

displacements and as long as the elastic limit is not exceeded as stated in Hooke’s 

law. Therefore

FA= kS (3.5)

where k = spring stiffness

6  = deflection of the helical spring
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The spring stiffness, k is then a measure of the force required to produce a unit 

deflection. It should be noted that Hooke’s law is only an approximation. Even if 

the elastic limit of the spring is not exceeded, a spring stretched to the state of 

being uncoiled or straightened has a larger spring constant than that is predicted 

using Hooke’s law.

Based on the solution by Wahl (1963), it can be shown that from equations 3.3 

and 3.5,

s

Gr4 

4 R'n
(3.6)

and from the solution based on Ancker and Goodier (1958) in equation 3.4, the 

spring stiffness gives

k = - ^ ~ r -  (3-7>4 y/R n

Although Ancker and Goodier (1958) took the curvature effect into consideration 

and provided a more accurate result, the solution from Wahl (1963) is still widely 

used for calculation because it is less laborious compared to the former (the 

helical angle of the spring needs to be known and is not easily measured) and still 

gives a very good approximation of the load-deflection of the spring.

The load-deflection solution by Wahl (1963) is valid for fairly large helical spring 

deflections, but ignores changes in its spring diameter and helical angle, therefore 

is only valid for closed coil springs. The limitation of this solution is discussed in 

the results section of this chapter. The following section provides the axial load 

and twisting moment of a helical spring solution from the principle energy 

method, which is useful for analyses involving small strains. In addition, these 

solutions are particularly practical for wire ropes and cables analyses as well. It is
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important to note that the axial loading solution from the energy approach is 

defined in terms of the spring helical angle and wire strain, which can readily be 

plotted on a load-deflection curve for comparison with basic spring theory.

3.2.2 Helical Spring Theory Based on Energy Method

The energy method principle first introduced by Castigliano, states that the system 

is in equilibrium when the potential energy has a stationary value for small 

displacements. Although the method has been used extensively to solve beam 

deflection equations, this approach can be used to obtain a load-deflection solution 

for helical springs. The method was first used to solve for the axial and torsional 

loads for cables rather than helical springs by Knapp (1979) and investigated for 

combined axial and bending loads by Lanteigne (1985). Cables in question here 

refer to those with helical wire constituents wrapping around a central core.

Similarly, when the central core of the cable is removed and the solution is treated 

for a single wire, the expression reduces to the form which can be used to solve 

for helical springs. This work here illustrates the derivation of the energy method 

for the case of a helical spring which was first presented for a cable in Knapp 

(1979) and Lanteigne (1985). Certain modifications which were applicable to the 

helical spring and more latterly pressure armour were included and are defined in 

this section.

The geometry of the helical spring is shown in figure 3.2. A reference spring 

cylinder is used to define the helical spring radius. The pitch of spring is denoted 

as p while R is the helical spring radius.
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I
I

A Helical wire

Reference 
spring cylinder

R

Spring Centreline 

Figure 3.2 Helical spring geometry

Axial strain of a spring, eas is given by

where 8  = deflection of spring 

las = length of spring 

p = pitch length 

R = radius of helical spring

When a helical spring is deformed axially, either in tension or compression, the 

helical spring changes its dimension in terms of its length, helix radius and thus its 

helical angle. Also, if the helical spring is not fixed at the ends, coiling or 

uncoiling of the spring occurs.
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For pure radial deformation (twisting moment of wire not taken into 

consideration), this radial strain is defined as

Rx- R
R

AR
R

(3.9)

where er = radial strain

Ri = final radius of helical spring 

AR = change in helical spring radius

From geometric considerations, the relationship between change in radius, length 

of spring, length of wire and its twisting angle can be derived and is shown in the 

figure 3.3. This illustration depicts the deformation parameters of the helical wire 

for one pitch length. The helix angle, a is defined as the angle the helical wire 

makes with the axis perpendicular to the helical spring centreline. The helix angle, 

a and the lay angle, P of a helical spring is complementary. Therefore,

(3.10)
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27tRi+<|)R

□ '

2tcR

a

Where R, Rj = initial and final 
radius of helix

p, pi = initial and final pitch

1, li = initial and final length of wire

a, cti = initial and final helix angle

= twisting angle of helix

Figure 3.3 Geometrical relationship of initial and final helical wire configuration

The twisting angle of helix, <|) is the helical spring rotation when deformed under 

load. An illustration of the twisting angle of spring is shown in figure 3.4 below.

<i>

I*::::.

T I

Reference 
spring cylinder

Spring Centreline

Figure 3.4 Twisting angle of helical spring
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From figure 3.3, the spring axial strain, eas is given as

e = P iZ L

Pi = p{e„ + 1) (3.11)

The axial strain of wire, eaw is given as

I - I  
£ = -----

/, = * K .+ 1 )  (3.12)

and the relationship of the initial and final helix angles in terms of its spring 

geometry is given respectively in equation 3.13 and 3.14.

sin a  = — (3.13)

sin a. = —  (3.14)
' h

It follows that from equation 3.11 -  3.14, the deformed helix angle can be 

expressed in terms of the strain components and is given by

( £  + 1)
sin cc< = sin ct  -------   (3.15)

( * ~ + l )

Equation 3.15 is rearranged to give

(em + l)s in « i= s in a ( f„ + l)  (3.16)
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The helix angle can also be expressed in terms of the change in helical spring 

radius and twisting angle. From figure 3.3, this is given by

tan a x =
2nRx + (f)R

p(g„+i> 
2nRx + <f)R

tan a(£^  +1)

K  + ±
R 2 n

(3.17)

From the wire axial strain in equation 3.12 and using relationships in 3.13 and 

3.14, it can be shown that

, sin a .
£aw 1 — h

P
(3.18)

which leads to

k „ + l ) 2 =sin2a
P )

+ 1 /l \ R</> ------(l+ €r) +----
tanctr p

\ 2
(3.19)

where Ap = change in pitch length

Equation 3.19 now takes into account the effects of radial deformation of helical 

spring. In the work of Lanteigne (1985), the radial deformation of helical 

constituent wires of the cable is ignored since the wires are assumed to touch the 

core and are not allowed to compress the core when a tension load is applied. It is 

also worth mentioning that the deformed helical spring geometry in figure 3.3 

differs slightly from the one in Knapp (1979), hence it is important to show the 

full derivation of equation 3.19 which can be found in Appendix A. Now, the 

strain equation can be linearized, ignoring second order strain quantities.
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Therefore,

£aw=sm a API D f ^+ /?, sm tfcos a
P ) \P J

(3.20)

Equilibrium is achieved when the sum of its internal strain energy and the 

potential energy of applied external forces are equal to zero. This is due to the 

theory of stationary potential energy given by Knapp (1979) as

SU + SV=  0 (3.21)

where 8 U = variation in internal strain energy

5 V = variation in external potential forces

Accordingly, for a linear elastic material, the variation in the internal strain energy 

is given by Lanteigne (1985) as

SU = E \ \ l e aJ e aJ V (3.22)

where 5saw = element volume of wire

dv = variation in axial strain of wire 

E = Young’s modulus

The solution is solved for the axial loading mode since this is the only loading 

scenario that is needed. Full integration is shown in Appendix A. Succinctly,

SU = AE^sin3 ^r(Ap) + /?1 sin2 aco sa r(^ )]£
Ap (3.23)
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The variation in internal strain energy is created by a variation in the potential of 

external forces, giving rise to the form shown below as presented in Lanteigne 

(1985).

8V = FA8{t±p) + M 8 {f}  (3.24)

where Fa = external force 

M = applied moment

In matrix form, equations 3.23 and 3.24 lead to the following:-

ku

1

M Jt2i N> N> 1

I P  A

where kn, k^, k2i, k22 = stiffness coefficients

The stiffness coefficients are of 2x2 matrix. To obtain the axial loading solution, 

the stiffness coefficients kn and k^  can be determined from equation 3.23 and 

3.25.

kn = AE  sin a

k22 = AERX sin2 a  cos a (3.26)

Therefore from stiffness coefficients determined above, the applied axial load on a 

helical spring is given as the from below based on the author’s geometric 

deformation of a helical spring illustrated in figure 3.3.

Fa = AE sin a + AERX sin2 a  cos a ( I s
yP j

(3.27)

The solution above is expressed in terms of its deflection and twist angle per unit 

length of the helical spring. For small deformation, the twist angle term can be
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ignored for simplicity of calculation. Also, taking into account the fact that a 

pressure armour is constrained at its ends, this will prevent twisting of the helical 

structure.

If all the deformation terms are taken into account, the applied axial force on the 

spring from equation 3.27 using the relationship from equation 3.20 reduces to

Fa = AE sin a
V

sm a
v

Ap

\  P
+ RX sin or cos ctr

( A>\\ 
—

<P)j

= AEeaw sin a (3.28)

From here, it can be observed that the solution from the energy method reduces to 

the same form as that of Hruska (1953) and Machida and Durelli (1973) for the 

case of pure axial loading, when the cables concerned are assumed to have a rigid 

core. The rigid core assumption means that the radial deformation of a helical 

spring does not need to be taken into consideration, implying that the deformation 

of the helical spring is assumed to be small and is thus given in Machida and 

Durelli (1973) by

Fa = AE  sin a sin2 a + R sin a  cos a
r
\ p j )

(3.29)

The basic spring theory presented by Wahl (1963) and the energy method provide 

the necessary means to measure the deflection of a spring under axial force. 

However, it does not account for the localized behaviour of the cross-section of 

the spring. This is important in view that a pressure armour reinforcement cross- 

section can twist along its rod centreline and therefore affect its overall behaviour 

under load. In view of this, the axial force and twisting moment equations of a 

helical spring derived from the slender rod theory is presented in the next section. 

Although the slender rod theory is more complicated compared to the basic spring 

theory, the analytical solution can be adapted to account for the behaviour of the 

cross-section of the helical wire.
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3.2.3 Helical Spring Based on Slender Rod Theory -  Circular cross-section

The slender rod theory was presented in Love (1934) which considered the forces 

and moments on a thin rod. A thin rod is defined as one whose cross-sectional 

dimension is small compared to its length. This theory can be used to solve for 

rods in a helical configuration. Particularly, the curved rod in the deformed and 

undeformed state possesses both curvature and tortuosity and is related to the 

equilibrium equation of a helical spring by the applied forces and moments in 

three principal directions that hold the rod in its final configuration. The rod cross- 

section is constrained to remain plane before and after deformation and normal to 

its centreline. Also, the analysis here is for small helical wire strain, although large 

deflections of the spring are permitted. The equilibrium equation will be presented 

below starting with the description of a rod in terms of a space curve and 

assumption that the centroid of the cross-section of the rod coincides with its wire 

centreline.

The points along the centreline of a rod can be described using a position vector as 

shown in figure 3.5. This is identified as

r = r(S,t) (3.30)

where r = position vector

S = arc length along centreline in initial configuration 

t = time

The initial state is taken when t = 0 and is taken as the undeformed reference state.
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rod
centreline

Figure 3.5 Position vector of a rod centreline

Right-handed orthogonal base vectors can be used to describe the deformed state 

as one that moves along the curve, in which

where a* = base vector in the orthonormal set in which a3 coincides with the 

tangent of the centreline. Therefore

where s = current arc length which will vary as load is applied

Vectors that are mutually perpendicular to each other are known as orthogonal 

vectors. Orthonormal refers to unit vectors that are orthogonal. In this instance, 

there are three vectors direction that are mutually perpendicular, namely the 

normal, binormal and tangent vector. Figure 3.6 illustrates the direction of these 

vectors on a helical strip.

(3.31)

d r

ds
(3.32)
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b
t

t = tangent 

n = normal
Rod

b = binormal

Helical wire strip

Figure 3.6 Relationship between the normal, binormal and tangent vector directions

Referring to the figure above, the normal vector gives the direction in which the 

centreline of the helical rod is turning. The tangent vector acts along a line which 

touches the centreline at a single point as the curve is turning. The binormal vector 

completes the right handed orthonormal triplet.

In terms of the arc length of the wire from figure 3.3,

Vectors ai and a2 then correspond to the rotation of the cross-section. It is 

deduced later that the direction 1 and 2  corresponds to the normal and binormal 

direction of the cross-section of the rod.

If the vectors are orthonormal, they satisfy the condition that

where 5ij = Kronecker delta function, in which a set of nine quantities occur and 

can take suffixes of value between 1 and 3

ds = d S ( e m + 1)

ds
~dS

(3.33)

(3.34)
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Differentiation of the base vectors with respect to S gives 

da.
g j = (3.35)

where Ky = curvature matrix elements which defines curvature and tortuosity of 

rod

From Ramsey (1988), it can be deduced that Ky is a skew symmetric matrix when 

equation 3.34 is differentiated with respect to S and then substituted into 

expression 3.35. A skew symmetric matrix is a square matrix where the transpose 

equals the minus of the matrix. For example, if the value of matrix element, K21 is 

the negative value of element K21 and transpose of all other corresponding 

elements behave in the same way, then the matrix is said to be skew symmetric. 

Depending on the relevant values of i and j, Ky gives rise to the curvature or 

tortuosity of the curved rod.

Tortuosity must not be confused with twist of the cross-section. This will be 

explained when Love’s equilibrium equation is described in the following 

paragraphs. This confusion rendered mistakes in the solution produced by 

Costello et al and was pointed out by Ramsey (1988) and Mclver (1995). 

However, since all the cited references so far have dealt only with circular cross- 

section wires, it does not make a difference to the results obtained as the curvature 

and tortuosity remain the same. For non circular cross-section wires such as those 

used in pressure armour reinforcements, this aspect is important and will be 

described in chapter 4.

The initial value of Ky in the undeformed initial configuration is denoted by K y .  

Since it is a skew symmetric matrix as described in Ramsey (1988), it can be 

shown that

^ t =Ki r Kv (3.36)

where eyk = alternating symbol in which i, j, and k can take the values 1,2 or 3 

cok = bending or twisting strain 

Therefore, tc.. -  Ktj measures the bending or twist of the rod.
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In a curved rod, points along the centreline of the rod can also be described using 

the widely used Serret -  Frenet set of equations which have been presented in 

Ramsey (1988) and Mclver (1995). This is given by

d_
ds

V '  0 K 0 " V

n = - K 0 T n

b , 0 - T b

(3.37)

where d/ds represents the change in parameter with respect to current arc length 

t = tangent 

n = principal normal 

b = binormal

K and t are the generalized curvatures and tortuosity respectively

When the base vectors defined earlier is used in equation 3.37 to coincide with the 

three orthogonal vectors, in the initial configuration, it can be shown that

' 0 *0 Ol

11ixT -To 0 0

v 0 0

(3.38)

where Kbo = initial curvature in binormal direction 

To = initial tortuosity

Equation 3.36 is substituted into equation 3.38 to give

Kij =

-(*io +®2 )A 

0

(3.39)

where ©i = bending strain in normal direction 

©2 = bending strain in binormal direction 

©3 = twisting strain of cross-section
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The initial and final curvature and tortuosity of a helical wire can now be defined 

based on the configuration given in figure 3.7 below.

Figure 3.7 Helical wire orientation

Initial configuration of a helical wire as presented in Phillips and Costello (1973) 

give

k m = 0

*io =
cos a

*0 =

R

sin a  cos a  
R

(3.40)

(3.41)

(3.42)

where Kno = initial curvature in normal direction 

Kbo = initial curvature in binormal direction 

to = initial tortuosity 

R = initial radius of helical spring 

a  = initial helix angle

After loads are applied to the structure, it is assumed that the helical wire remains 

a helix in shape. The deformation causes the helical wire to take a final 

configuration as
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(3.43)

cos2 a,
(3.44)

sin a, cos a.
(3.45)

where Kni = final curvature in normal direction

Kbi = final curvature in binormal direction 

Ti = final tortuosity 

Ri = final radius of helix 

ai = final helix angle

The equilibrium equation of slender rod is given by Love (1934) as components of 

forces and moments on the wire cross-section. This method was used extensively 

by Phillips and Costello (1973) in their work for wire ropes, which as described in 

the literature review, consists of multiple helical wires wound together. The 

solution obtained by Phillips and Costello (1973) is reduced to that of a single 

wire to get analytical solution required for a helical spring. As the analysis 

involves only a singular wire, contact forces which arises due to multiple wires 

considered in previous work is no longer valid.

Slender rod equation by Love (1934) gives

dN
ds

— Nbr +T Kb + X  — 0 (3.46)

dNb
-T fcn + N t + Y = 0 (3.47)

ds

dNb -T K n+ N r+ Y  = 0 (3.48)
ds
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dG, -G bT + HKb- N b+Kn = 0 (3.49)
ds

dGb -H rcn+GnT+N + Kb =0 (3.50)
ds

dH
(3.51)

ds

where s = arc length

X, Y, Z = components of external force 

Kn, Kb, 0 = components of external moments 

N, Nb, T = resultant internal forces 

Gn, Gb, H = resultant internal moments

Earlier, it was shown that the tangent to the centreline, t is coincident with vector 

a3 and from expressions 3.33, 3.35 and 3.37, it follows that from substitution,

When the bending and twisting strains are taken to be small, the equations can be 

linearized, that is to ignore product of strains. This is done to simplify the 

corresponding analysis since small wire strain was considered. Further to this, 

when equation 3.52 is used in conjunction with expression 3.39, it can be shown 

by Ramsey (1988),

Describing equation 3.53 in terms of the curvature and the principal normal gives

(3.52)

Kn — ( Kb0 - Kb0Eaw + 0)2 ) flj Q\0,2 (3.53)

k s (kk> +“h) (3.54)

1n = a1 coxa2
K b0

(3.55)
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Similarly, now to derive the expression for the twisting strain, equations 3.33, 

3.35, 3.37 are used together with 3.55. This gives

, dn ( , x 1 da), 1- Kt + rb=  —  = ( l -£aw)fc]la l -------------------------------a2----------------------

ds V 11 ’ Km dS 2 K„
(3.56)

When 3.37 and 3.54 are used, it follows that

.  1w  - — TQa\ax +
(

Kb 0

1 d a \  

Km dS j
(3.57)

Finally, ignoring all products of the different strains due to assumption of small 

strains, the twisting strain, ©3 as described in Ramsey (1988) is of the form shown 

below.

T =
1 dco^ 

Kb 0  dS
(3.58)

This completes the necessary derivations to define the constitutive equations of a 

curved rod with respect to a helical spring of the relevant cross-sectional shapes. 

In structural analysis, constitutive equations relate the stresses to the strain of the 

material. Now, the equilibrium equation can be solved once the constitutive 

equations have been defined. So far, a helical spring of circular cross-section has 

been considered and the relevant second moment of area of a circle and polar 

moment of inertia are thus used. The bending moment and twisting moment of the 

wire cross-section is related to its respective stiffnesses by

T = AEe„

G — E l a),n n l

Gb — EIbco2

H  = GJa).,

(3.59)

(3.60)

(3.61)

(3.62)
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where AE = axial stiffness

EIn = normal bending stiffness 

Elb = binormal bending stiffness 

GJ = torsional rigidity

These constitutive expressions which relate to the axial, bending and twisting 

strains presented by Ramsey (1988) are rather different to the expressions 

presented by Costello et al. As pointed out by Ramsey (1988), this is due to the 

fact that Costello et al has mistakenly identified the tortuosity in Love’s 

equilibrium equation as the twist of the rod cross-section. These set of constitutive 

expression are presented below to illustrate the differences.

o) (3-63>

Gb c = E l b (Kb l - K m ) (3.64)

H c = G J ( t1- t0 )  (3.65)

where Gnc, GbC, He are the internal moments derived by Phillips and Costello 

(1973)

From 3.63 -  3.65, it can be observed that the internal moments are expressed in 

terms of the change in curvature and tortuosity rather than the correct form which 

related to the bending and twisting strains. To understand the implication of the 

above equations, a simple illustration is required. If a straight rod is twisted, then 

the twist of the centreline is equal to zero as there is no initial twist. Therefore, To 

= 0. When equation 3.65 is used, it is clear that the twisting moment does not take 

into account any rotation of rod cross-section. This is fine given that a circular 

cross-section helical spring is used, as the curvatures will remain the same. 

However, it poses a different problem if a non-circular cross-section helical wire 

is used given that the curvature will change accordingly when the profile is 

rotated. This problem is investigated separately and is discussed in chapter 4. 

Therefore, the constitutive expressions used by Costello et al suppresses the 

rotational factor which was presented in Ramsey (1988), which was shown to be 

important if non-circular cross-section helical wire is used.
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Now, assuming that there are no external moments acting, which means that the 

helical spring is not bent, and with the tensile force along the wire cross-section 

constant, the equations 3.46 -  3.51 reduce to

-N br , +Tkm + X  - 0 (3.66)

~Girl + H k m - N b =0 (3.67)

To find the applied axial force and twisting moments of the spring structure, the 

components of internal forces on the wire are added and resolved in the direction 

of centreline of the spring. This is given by

It can be seen that the axial load spring solution here in equation 3.68 differs from 

the energy method in equation 3.29 because of the fact that the energy method 

does not consider the binormal shear force. In the energy method analysis, as the 

applied force is acting at the end of the helical spring, the shear forces are 

inevitably ignored. For small deformations, the applied axial load equation for 

both slender rod theory and energy method gives good agreement. However, for 

larger deformations, the energy method is no longer applicable unlike the solution 

from slender rod theory. Also, because the equations were linearized in the energy 

method, the deformed parameters were not taken into consideration in defining the 

axial load.

3.3 Combined Load Analysis of a Helical Spring

Whilst the above can be used to understand and model the behaviour of springs 

under axial loads, such as purely tensile or compressive, the equations are 

inadequate for dealing with springs under the complex loading scenarios which 

might occur in the case of pressure armour reinforcements. To understand this 

aspect further, an attempt has been made here to simplify matters and consider

Fa =T sin ax + Nb cos a x (3.68)

M  = H  sin ax + Gb cos a x + TRX cos a x -  NbRx sin a x (3.69)



helical springs under three different loading conditions, namely axial loading 

(which was described in section 3.2), internal pressure, and the combined effect of 

an internal pressure and axial loading.

These three loading scenarios were chosen because together, they approximate to 

the conditions thought to occur within pressure armour reinforcements under 

service, with the internal pressure load being applied by the fluid contained within 

the pipe and the axial load being created by the effects at pipe termination and 

weight of suspended pipe, as described in chapter 1. The following section 

attempts to investigate the effect of an internal pressure load on a helical structure.

3.31 Helical Wire under Internal Pressure

From the previous section, the axial loading of a helical structure was defined in 

equation 3.68 by resolving the internal forces in the axial direction. In the case of 

internal pressure, the loading acts in the lateral direction, which is perpendicular to 

the axial direction. This is illustrated in figure 3.8.

Fa

Helical wire

Fl

Reference 
spring cylinder

Fa = axial load

Fl = lateral load

Spring Centreline

Figure 3.8 Direction of loads on the helical wire
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The lateral load, Fl has been defined here to assist in obtaining the internal 

pressure solution. It shows the way in which the helical spring deforms in the 

radial direction. Therefore, from equations 3.66 and 3.68 using the slender rod 

theory, it can be shown that

Fl = T c o s  a x -  Nb sin a x (3.70)

Rearranging expression 3.66 gives the tension of the rod, T in terms of the 

binormal shear force, Nb and the radial line load, X of the helical spring,

T = N"T' X  (3.71)
*ii

When equation 3.71 is substituted into 3.70, the lateral load can be defined in 

terms of the radial line load component.

Nbr , - X  .
Fl = ——-------cos a x -  Nb sin a x

XRx
COS O'

(3.72)

The above defines the lateral force, Fl in terms of the internal line which acts 

towards the centreline of the helical spring. Dividing the internal line load by the 

width of the cross-section of the rod gives

Pxdw= -X  (3.73)

where Px = internal pressure on helical wire 

dw = width of helical wire

The above expression describes the internal pressure on a helical spring wire. If 

the wire is of circular cross-section, the width is just the diameter of the helical 

spring wire. This internal pressure solution will be the one used fundamentally for 

future analytical solution.
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Additionally, this solution is compared to the one presented by Oliveira (1985). 

The helical wire was treated such that it was closely wound and as such, covers 

the area of a cylinder. This meant that the solution was usually used to measure 

the internal pressure of the helical structure as if it were made up of a cylindrical 

tube. A modification of this solution is clearly necessary in order to provide a 

comparison with the solution using slender rod approach. To illustrate this, a 

cylinder whose area is equivalent to the area covered by the helical strip is 

sectioned into half and the internal pressure is treated as an axisymmetric load. 

This is shown in figure 3.9.

Half cylinder 
(top view)

Figure 3.9 Forces on cut cylinder

From Oliveira (1985), the internal pressure is given by

2 T
P , = ^ ~  (3.74)
*  KD

where Pcyi = internal pressure of helical wire with equivalent area of a cylinder 

h = length of cylinder

D = diameter of cylinder (diameter of helix centreline)

Te = T cos a

The solution above is used when the helical wire is closely wound. Also, it was 

noted that Te corresponded with Fl in equation 3.70. However, similarly, as in the 

case of the energy method, this solution by Oliveira (1985) considered only the
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tension in the wire and not the binormal shear force as developed in equation 3.70 

from slender rod theory. Now, if the helical spring in question has a certain pitch 

length and helical angle with a width of dw, the internal pressure on wire, Px is 

modified from equation 3.74 and is given here as

P  -  2T« 
X d D

(3.75)
Rd

Comparing the solution by Oliveira (1985) with analytical solution, it could be 

observed that the former take into account the initial dimension of the helical 

spring only and not the changes in dimension as the helical spring wire deforms. 

Hence, the solution in equation 3.73 is used for subsequent analysis.

The following section describes the analytical solution for the helical spring under 

combined axial and internal pressure load, based on slender rod approach.

3.32 Helical Wire under Combined Axial and Internal Pressure Loading

The solution for a helical spring wire under the combination of axial load and 

internal pressure is presented here. Referring to figure 3.8 in the previous section, 

it can be observed that the components of the two different loads act perpendicular 

to each other. Since there are two variable forces in question, the solution here is 

to make one load constant while varying the other. This gives a clearer 

relationship on how the helical spring is behaving under application of an axial 

load for a certain internal pressure load and vice-versa. Rearranging the axial load 

solution in equation 3.68, the tension of the wire gives

r = Fa -  Nb cos ax
sin a,

(3.76)
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Furthermore, when equation 3.76 is substituted into expression 3.66, the response 

of helical spring to the internal line load and axial load can be obtained for 

condition FA ^ 0 and X ^ 0. The full derivation is shown in Appendix A.

Fa c o s  -  N.
-X = -* -------1 b-  (3.77)

R{ tan a x

Conversely, if the axial load response is expressed in terms of the shear force in 

the binormal direction, the response of the helical spring to internal line load and 

applied axial load in terms of the tension of the wire for FA ^ 0, X ^ 0 gives

■X = T - F*sina' (3.78)

Using the internal pressure load equation in 3.73 and considering a fixed axial 

tension force in equation 3.77,

FAcosax- N b
dRx tan a x

where Px = internal pressure of strip

Nb = shear force in binormal direction 

ai = final helix angle 

Ri = final radius of helical spring 

d = diameter of helical wire

Similarly, from equation 3.78, the internal pressure load on the helical wire, Px for 

a fixed axial load in terms of the tension in the wire is given by

T Fa c o s  g ,  

* dR,

where T = tension of helical wire
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The relationship of the deformation of the spring subjected to an axial load for a 

fixed internal line loading rearranging from 3.77 for X ^ 0, Fa # 0 is then given by

N b-X R x tan O' 
cos a.

(3.81)

Therefore, together with equation 3.73 for relationship between the internal 

pressure and internal line load, for an axial load on spring with fixed internal 

pressure, where Px ^ 0 and FA ^ 0,

Finally, the total deflection of spring due to both internal pressure and axial load, 

5totai is given here as

This is a valid assumption since the total deflection of the spring is taken as the 

sum of each individual deflection due to axial load and internal pressure loading 

respectively. In other words, the deflections caused by the loads are independent 

of each other. If the axial load is kept constant, the total deflection of a spring due 

to a varying internal pressure can be measured. Conversely, the deflection of a 

spring due to varying axial load with constant internal pressure loading can also 

be measured.

The analytical solutions presented above are used to solve for helical springs of 

circular cross-section under various loading conditions. Verification of these 

solutions is made using numerical modelling and will be described in the 

following section.

PxdRx tan a x + Nb 
cos a,

(3.82)

(3.83)
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3.4 Finite Element Analysis of Helical Wire

In order to verify the analytical solutions obtained, finite element analysis was 

used. It offered several advantages to solve complex non-linear equations as 

presented in the previous sections. First and foremost, finite element analysis is a 

numerical method and is particularly useful for structural analysis. Succinctly, in 

this instance, finite element analysis can easily work out the stress distribution of a 

beam when loads are applied by breaking down the beam to smaller elements and 

the behaviour of these smaller elements determined from simple mathematical 

analysis. A computer is used to perform the calculation on these elements and 

reveal the stress distribution of the whole structure. This served as a means to 

verify the analytical solution determined from the basis of the helical spring 

mechanics, starting from a simple circular wire to more complex cross-sectional 

wire profile (as described in chapter 4).

Secondly, as can be observed from the analytical solutions presented earlier, the 

determination of the deformation of the helical spring requires an iterative process 

in order to obtain an approximation of the spring dimensions after loads are 

applied. This was conventionally performed using a purpose written FORTRAN 

(Feld, 1992) or C++ program. Finite element analysis was used in this work to 

obtain the strain of the helical spring wire after loads are applied. This was also 

estimated iteratively using a spreadsheet based analysis. In this way, the finite 

element analysis was used as a verification tool.

3.4.1 Helical Spring Modelling Software

ABAQUS finite element software was used to model and perform the analysis on 

helical springs. This software was chosen because it offered excellent 

convergence for solving non-linear problems and modelling of the full helical 

spring structure using solid elements.
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3.4.2 Modelling Procedure and Parameters

There are several routes to the modelling of the helical spring in ABAQUS and 

the reasons for the chosen method of modelling are described here. In finite 

element modelling, not only the accuracy of the results is important, but also the 

time and computational costs involved in achieving these results. While a complex 

helical spring wire of numerous coils can be modelled using 3-dimensional solid 

elements (that is to model the spring as a whole structure), it is time consuming 

and uses a lot of computer resources for the solution to reach convergence. Hence, 

a helical spring structure was modelled here mainly using 3-dimensional beam 

elements.

Beam elements are one dimensional representation of the actual solid three 

dimensional models where the deformation of the spring can be considered 

entirely along the length of the beam axis rather than its cross-section. This type 

of modelling is appropriate for a structure which is slender, that is the dimension 

along the beam axis is much larger than the dimension of its cross-section. There 

are six degrees of freedom at each node of the beam, which can describe the 

rotation and moments at the nodes of the beam. Since only the global deformation 

of the spring under applied load is needed, the use of beam elements offered a 

clear advantage in terms of simplicity of modelling and computational resources 

without the sacrificing the accuracy of the results obtained.

The full 3-dimensional solid element modelling was used only when the strain 

parameter of helical wire was required. The beam element did not provide the 

stress distribution across its cross-sectional area of the wire, hence did not provide 

the strain results required for the internal pressure loading analytical solution. 

Only for this particular parameter, the helical spring was modelled using 3- 

dimensional solid elements and this did not affect the verification process and 

analysis undertaken via beam element modelling.

Although a helical spring is made up of numerous coils, it is possible to model one 

coil of the spring as each coil experiences the same deformation as long as it is not
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affected by the conditions of the spring ends. It was not possible to model a helical 

coil using beam elements directly in the ABAQUS/CAE program. ABAQUS/CAE 

is the pre-processor module where the modelling of the structure is performed. 

Additionally, it can also be used for monitoring the analysis and viewing of the 

results.

The helical spring coil elements were created by the author through coordinate 

generation of the parametric equation of a helix using a purpose written C++ 

program and the results fed back into ABAQUS/CAE via an input file. The 

parametric equation of a helix was given by Kreyszig (1999) as

x(t p) = (R cos t,R  sin t,chtp) (c ^  0) (3.84)

Where R = radius of helical spring

tp = parametric variable where 1 pitch of the helix corresponded to27t 

Ch = number of turns in the helix

The C++ program written for the coil model is shown in Appendix B. The elements 

were modelled for 10 degree turns (the implication of the element size used is 

described later in the mesh density discussion). Each model consisted of a helical 

spring with a helix radius of 152.4 mm (6”) and a corresponding pitch length of 

125.66 mm. The coil radius was chosen to replicate as closely as possible the 

helical wire reinforcement structure of a flexible pipe. Additionally, for pressure 

armour layers, the wires are closely wound, therefore they have a small helix 

angle. The output of the program successfully generated a finite element 

modelling based coil with the desired small helical angle as shown in figure 3.10.
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Figure 3.10 Example of helical coil modelled into ABAQUS

The radius of the circular cross-section coil wire was modelled as 3 mm to 

replicate typical pressure armour layer thickness. The material employed for the 

helical spring was steel with a Young’s modulus of 207 GPa and Poisson’s ratio 

of 0.33. The coil was fixed from moving at one of its ends as shown in figure 

3.10. Additional boundary conditions were imposed on the helical coil where 

necessary depending on the loads applied to the coil.

ABAQUS/Standard, which is the analysis module, was used to perform the load 

analysis on the helical coil constructed of beam and solid elements. 

ABAQUS/Standard is a general-purpose analysis module which provided the 

necessary capability to solve the static stress or displacement response to a 

structure under applied load. The general static stress analysis step was chosen 

and the analysis was carried out to include the effects of geometric non-linearity, 

which can occur due to helical coil undergoing large deformations after loads are 

applied. The load analysis on the coil in the finite element model is described in 

the next section.
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3.4.3 Finite Element Loading Analysis

The behaviour of a helical spring under axial, internal pressure, and the 

combination of axial and internal pressure loading was provided by the analytical 

solutions derived in section 3.3. Verification of the results from the analytical 

work was performed by finite element analysis for the three loading modes, and is 

described here.

For the axial load analysis, the axial load was applied at one end but at the 

centreline of the helical coil as shown in figure 3.10. This point was essentially 

chosen to correctly apply a pure axial load to the coil without inducing a moment, 

which would otherwise bend the coil to one side when loads are gradually applied. 

For the axial tension case, the incremental loads were taken to coincide with the 

values of the axial load calculated in the analytical solution. The corresponding 

deflection obtained by the finite element analysis was compared with the 

deflections which had been defined in the analytical work. The percentage 

difference in result for each load was measured. Similarly, this was done in the 

axial compression models. The change in geometry of the helical coil was noted. 

The deflection and change in spring radius was measured from the distance 

between the respective nodes in the model.

A pressure load could not be applied directly to a beam element model because in 

theory there were no surfaces for the force to be applied to. A distributed load was 

applied instead and divided by the width of the wire to obtain the pressure load. 

This distributed load was coincident with the internal line loading parameter, X, 

derived earlier. The distributed load was applied along the length of the wire, 

which represented the force on the helical wire which was constantly changing its 

orientation due to its helical configuration. Hence, it was necessary to define the 

beam orientation appropriately so that the correct loading was experienced along 

each element. Figure 3.11 depicts the line loading on each element for a helical 

coil model. The small boxes indicate the line force on the element. Additionally, a 

set of constraints were placed on the end of the coil pitch as shown to prevent the 

coil from opening up due to the applied load.
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Figure 3 .11 Line load and constraints on helical coil model

For the case of combined loading, it had been decided to use the model similar to 

that of the internal pressure loading analysis. This meant that the constraints were 

still in place on the coil pitch end to prevent the coil from opening up. Such a 

constraint had some restriction on the axial movement of the coil. The implication 

of this will be further discussed in section 3.5. The helical coil was subjected to a 

series of axial loads for a given internal pressure load. The process was then 

repeated for a series of chosen increments of internal pressure. Additionally, the 

whole analysis was repeated for variable internal pressure loading, together with a 

fixed axial load on the coil.

3.4.4 H elical C oil M esh

As described earlier, the helical coil was modelled using an element size 

corresponding to a 10 degree turn (as measured from the centre). Therefore the 

mesh of one coil consisted of 36 elements. The number of elements in a mesh is 

known as the mesh density. This mesh density was chosen because it was 

sufficiently accurate for the analysis considering the number of load analyses that

98



had to be performed. While an increase in the mesh density of the coil can 

potentially give better results, this comes at the expense of computational 

resources and time. The result of the deflection of a helical spring using different 

mesh densities was compared. One model consisted of 360 elements, which is one 

element of each degree turn of the coil and one of 36 elements. The nodes and 

elements are shown in figure 3 .12 where the red circles represent nodes and the 

elements are in between each pair of nodes. It should be noted that each element is 

a straight beam.

helical coil of 360 elements helical coil of 36 elements

Figure 3.12 Nodes and elements on helical coil of different mesh densities

An axial load of 2.22 N was applied to each of the coils. This was chosen as it 

corresponded to a 5 mm deflection as calculated using the analytical solution 

derived earlier. Comparison of results is shown in table 3.1.

Mesh density ( no. of elements) 360 36

Deflection (mm) 4.992 4.955

% difference to 5 mm 0 16 0 9

Table 3.1 Comparison of deflection to helical spring for applied axial load
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The coil with higher mesh density showed a closer result to the predicted 

deflection value. Nonetheless, both sets of results showed good accuracy (within 

1%). For this work, therefore, it was sufficient to use the helical coil model with 

the lower number of elements since it did not affect the outcome of the result 

significantly and considerable time and computer resources was saved given the 

number of analyses that had to be performed.

Similarly, for estimation of the wire strain value, which was necessary for the 

verification of the analytical solution for the internal pressure scenario, the wire 

strain was obtained given an applied pitch compression displacement of 10 mm to 

a solid element model of the coil is presented in table 3.2. The dimension of the 

helical coil was similar to the one used in the beam element model and 1 pitch of 

the coil was employed. Essentially, one coil had a mesh seeding of 4.0 which 

corresponded to 5760 elements and the other with a mesh seeding of 1.0 which 

corresponded to 38640 elements. Figure 3.13 shows the solid helical coil and its 

section face meshes.

38640 elements5760 elcmunls

Figure 3.13 Helical coil and section face meshes using solid elements
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The wire strain, measured at the centreline of the helical wire was calculated for 

an axial compression of 10 mm and is given in the table below.

Mesh density ( no. of elements) 5760 38640

Wire strain -4.68675 x 10 b -4.9624 x 10*b

Run time (minutes) 5 30

Table 3.2 Comparison of wire strain of helical spring for 10 mm axial compression

The calculated run time was typical for analysis performed using a Pentium IV 

based machine with 1 GB of Ram. The percentage difference in result was 5.6%. 

Given that the helical coil with lower mesh density gave close agreement to the 

one with high mesh density, it was decided to use the former for subsequent 

analysis to reduce cost of computational analysis.

Once the computational overheads had been optimized, formal modelling was 

begun. The results for the helical spring subjected to the loading modes described 

earlier are given below. The helical spring was assumed to have a circular cross- 

section. Both the analytically derived behaviour and the finite element analysis 

(for verification) are presented.

3.5 Results of Analytical and Finite Element Analysis

For the analytical solution and finite element modelling, a one pitch helical coil 

with spring radius of 152.4 mm and pitch length of 125.66 mm was used unless 

specified otherwise (these values correspond to imperial measurement which are 

the norm in offshore industry). The material used for the spring wire was assumed 

to be steel with a Young’s modulus of 207 GPa. The radius of the helical spring 

wire was taken as 3 mm as previously described in the finite element modelling 

procedure. Pure axial loading is considered first, followed by the inclusion of an 

internal pressure load.
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3.5.1 Results fo r  Axial Loading

A comparison of the axial load -  deflection curves from the three different 

theories used in this work are shown in figure 3.14. The helical spring was 

subjected to a tensile load. The three theories showed a highly linear trend in the 

deformation range as depicted in figure 3.14. As larger deformations were 

considered, the energy method solution deviated from the solution of Wahl’s basic 

spring equation and the analytical solution based on Love’s equilibrium equation 

for slender rods. This confirmed that the energy method analysis was applicable 

only to small wire strains and applied loads. In figure 3.15, it could be seen that 

the theory was accurate for spring axial strain of up to 0.01 for the given spring 

length. For the spring dimension considered, the solution using energy method 

differs by about 20% from the basic spring theory after 0.01 spring strain. It 

should be noted that the wire strain relates to the actual strain in the length of the 

wire from which a spring is made and spring strain relates to the change in the 

deflection of the spring as a complete system.

Axial tension versus Deflection
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Figure 3.14 Comparison of the axial load versus deflection response
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Axial tension versus Spring axial strain
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Figure 3.15 Comparison of axial load versus spring axial strain

For large deflections of the spring, which is of several spring lengths, the solution 

by slender rod theory accounted for the changes in the diameter of the spring and 

the helical angle of the spring. The response of the spring became non-linear. This 

somewhat unusual result is counter to the commonly accepted view that springs 

are linear systems. However on closer inspection it is of course unreasonable to 

expect a spring system to behave in this manner at deflections where the spring 

geometry becomes substantially deformed. Indeed Wahl (1963) recognized this 

limitation and suggested that modifications to the basic spring theory were 

required. For this work, it is sufficient to note that the deflections likely to be 

experienced in pressure armour layers are small enough to be very remote from 

the non-linear region of behaviour. Therefore, the basic solution by Wahl (1963) 

can only be use if the change in dimension of the helical spring is not large. Figure 

3.16(a) -  (c) shows the change in dimensions of a helical spring coil subjected to 

axial tension load using the slender rod theory for large deformation.
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Axial tension versus Deflection
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Figure 3.16a Axial load versus deflection for large deformation

The deflection of the spring revealed the non linear behaviour as large axial loads 

were applied (figure 3.16(a)). The spring became progressively stiffer. A similar 

non-linearity is revealed for the spring radius under axial load, and is shown in 

figure 3.16(b). However, what is interesting is that a non linear behaviour is also 

detected at small deflections (which corresponded to large spring radii). This may 

well have implications for understanding the behaviour of a pressure armour, 

especially those which is multilayered, where one layer impinges upon another 

and where the contact forces can lead to damage.
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Axial tension versus Spring radius
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Figure 3.16b Axial load versus spring radius for large deformation

It can be seen from figure 3.16(c) that the spring deflection begins to deviate from 

linear behaviour (with respect to applied load) when the helical angle exceeds 45 

degrees. This non-linearity is therefore not apparent since most helical spring 

analyses are usually subjected to applied load, which do not change spring radii or 

helical angles by large amounts. Hence, it was decided that for the forthcoming 

analyses, the helical spring would be treated to behave in a linear manner. From a 

simplistic viewpoint, a spring no longer behaves like a true helical spring due to 

the fact that the wire under large deflections behaves like a bent beam being 

straightened out. This explained the increasing stiffness observed in figure 

3.16(a). The remaining responses of the spring radius and spring deflection with 

helix angle are given in Appendix C.
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Axial tension versus Helix angle
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Figure 3.16c Axial load versus helix angle for large deformation

The basic spring theory presented by Wahl (1963) is useful, but only valid for 

certain cases of spring design. Firstly, the springs are assumed to have a small 

helix angle and changes in the spring radius after a load is applied, is ignored. 

This means that the conventional spring theory predicts a linear axial load -  

deflection as expected. However, when large changes in the dimensions of the 

spring occurred, this theory was no longer useful. The energy approach is useful 

to investigate the deformation of a cable or wire rope wrapped helically by a 

number of smaller wires. Usefully, if the number of wires were reduced to that of 

a single helical wire constituent, the solution is similar to that of a basic helical 

spring. This method however is restricted to small spring strain (i.e. a small 

deformation of the structure). In spite of this, the energy approach can still be used 

since the pressure armour of a flexible pipe has relatively small movements in the 

axial direction of the pipe. Nonetheless, an analytical solution was sought to 

include the deformation of a helical spring under internal pressure loading. This 

was akin to the pressure armour layer of a flexible pipe being subjected to internal 

pressure loading. It was decided to continue using the slender rod theory given 

that it had been shown to account for large changes in the dimensions of the
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helical wire whilst at the same time account for the changes in dimension of the 

spring as it was deformed. This suggested it might be better at dealing with 

internal pressure loads. It also provided a means to solve for an internal pressure 

loading on a helical spring, and a means to measure the combined effect of the 

axial and internal pressure loading on a helical wire constituent. Advantageously, 

the analytical solution based on the slender rod theory was able to account for 

various cross-sectional shapes other than a circular section. This was important 

considering the fact the pressure armour layers usually consist of non-circular 

profiles. These analytical solutions and the discussion of the results are presented 

in chapter 4.

While these approaches are appropriate to use with pressure armour 

configurations, the analytical solution provided by the author nevertheless 

considered the implications of large dimensional changes of the helix to the 

overall change in behaviour of the spring. The reason for this is that the work here 

has revealed that non-linearities in spring behaviour do exist, and in order to 

ascertain the origin of these, it was important to understand whether large 

deflections were implicated. This will be further discussed later. Another 

important point to note is that good correlation between basic spring theory by 

Wahl (1963) and solution based on slender rod theory was obtained. This 

confirmed that helical wire reinforcements are essentially analogous to a spring. 

An interlocked profile helical wire is just a constraint experienced due to the 

deformation of a helical spring which justified the assumption of pressure armour 

being similar to a helical spring in terms of its free movement.

The analytical solution presented here is for a spring with ends fixed from rotation 

while the finite element result is for a spring free to rotate. This was done to 

simplify calculation of the results from the analytical solution. An example of the 

finite element analysis result obtained is shown in figure 3.17. For an applied axial 

load, the corresponding deflection and spring radius was measured from the 

distance of the appropriate nodes on the coil. The procedure was repeated for each 

load step to obtain enough data points for graph plotting.
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Figure 3.17 Finite element analysis for deflection of helical spring under 2.22N axial load

The following graphs depict the finite element analysis results obtained in the 

‘small deflection region’ characteristics of pressure amour. Figure 3.18(a) -  (c) 

shows the response of a helical coil subjected to axial tension load and the 

corresponding finite element analysis results.

In figure 3.18(a), it could be seen that the solution is highly linear in both the 

analytical and finite element result. Additionally, it should be noted that the finite 

element analysis gave a very close approximation to the analytical solution even 

though the spring coil was allowed to rotate (the ends were not constrained). This 

showed that in practice the helical spring does not rotate much for the given 

applied loads. Figure 3.18(b) confirmed this observation from the plot of twisting 

moment against deflection. This twisting moment is induced when a helical spring 

is fixed at the ends against rotation. In other words, the twisting moment acts to 

prevent the helical spring from coiling or uncoiling.
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Axial tension versus Deflection
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Figure 3.18a Axial load versus deflection for analytical and finite element

Twisting moment versus Deflection
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Figure 3.18b Twisting moment versus deflection for analytical solution
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Figure 3.18(c) shows the change in spring radius due to axial tension load. It can 

be seen that the radius does not vary linearly with respect to the applied loads. The 

spring radius contracts when the deflection of the spring increases. The fact that 

the relationship is non-linear is confirmed by Wahl (1963), who noted that the 

spring radius is a function of power of three, with respect to an applied axial load 

and hence the deflection. It can be seen that the spring radius behaviour via the 

finite element route differed by less than 1 mm from the analytical route. It can be 

concluded that the finite element analysis showed good agreement with the 

analytical solution despite the fact that the analytical solution predicted a slightly 

stiffer spring. This could be due to the fact the helical spring in consideration was 

fixed at the ends in the analytical solution, which prevented the spring from 

contracting in the radial direction.

Axial tension  versus Spring radius
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Figure 3.18c Axial load versus spring radius for analytical and finite element

The change in helical angle with applied load was plotted for the analytical 

solution and is shown in figure 3.18(d). As small deformations were encountered, 

an approximate linear response of the change in helical angle with respect to axial 

load was observed.
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Axial tension versus Helix angle
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Figure 3.18d Axial load versus helix angle for analytical solution

It can be seen that the helix angle varied linearly with the applied axial tension 

load for the small helical angle in consideration. The change in helical angle with 

respect to axial load could not be measured in the finite element model, although 

it can still be estimated (given that the deflection and radius of the helical spring 

were measured in the finite element model) using the geometric analysis shown in 

figure 3.3.

Similarly, in the axial compression loading mode, the deflection varied linearly to 

the compressive force. The deflection curves are positive in the direction of 

decreasing length and should not be confused with the axial tension cases. The 

graphs of the change in spring radius, deflection and spring helical angle under 

compressive loads are shown in Appendix C for completeness. Finite element 

analysis showed good agreement with the responses of the analytical solution.

3.5.2 Results for Internal Pressure Loading

The internal pressure solution from slender rod theory was compared with the 

equilibrium of forces solution obtained by Oliveira (1985) and the responses
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shown in figure 3.19. A helical spring of similar dimensions to the one subjected 

to axial loading (in the previous analysis) was used. In order to solve the slender 

rod analytical solution, the wire strain had to be estimated and this was done 

through the use of spreadsheet iteration method described earlier and verified 

using finite element analysis. The wire strain was calculated for different values of 

spring deflection and the internal pressure loads corresponding to these spring 

deflections were calculated. An important point to note is that a helical spring 

decreases in length and expands in radius when subjected to axial compressive 

force. In such a case, the strain of the wire is assumed to be negative. However, in 

the internal pressure loading mode, although the helical spring decreases in length 

and the radius expands, the tension in the wire is positive because the wall of the 

spring is undergoing a tension force in the radial direction because the internal 

pressure is trying to enlarge the spring in that direction. This is akin to a pressure 

vessel being subjected to internal pressure and hence expanding its radius because 

of tension forces in the hoop direction. Therefore, in contrast to an axial 

compressive load, which generates a negative wire strain, the wire strain of the 

helical spring when subjected to an internal pressure load is positive.

Internal pressure, Px versus Deflection
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Figure 3.19 Comparison of internal pressure versus deflection for analytical and Oliveira

model
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It can be seen that the internal pressure solution from both analytical and the 

modified Oliveira (1985) equation showed good agreement although the latter did 

not take into account changes in the dimensions of helical spring. However, for 

larger deformations, a noticeable deviation of the solution occurs as the internal 

pressure gets larger.

Figures 3.20 and 3.21 show the example wire strain obtained from the finite 

element analysis and the corresponding radial deflection generated by the applied 

line loading (pressure) respectively.
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Figure 3.20 Result of finite element for helical spring wire strain for 5 mm compression
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Figure 3.21 Finite element result for helical spring deflection for 0.0151 MPa internal
pressure

The analytical solution for the deflection of helical spring under internal line 

loading (which corresponds to an internal pressure) is shown in figure 3.22. The 

finite element analysis result is plotted in the same figure.
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Figure 3.22 Internal line load versus deflection for analytical and finite element
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The analytical solution revealed that the deflection varied linearly with the applied 

internal line loading. In figure 3.22, -X is defined as the line load directed out 

from the centreline of the helical wire so as to depict an internal pressure loading. 

The finite element result showed a linear trend as well. However, as the line load 

gets larger, the coil tended to bend in one direction. This was determined during 

finite element analysis. Additionally, this ultimately caused the non-convergence 

of the finite element solution and hence, further data points could not be obtained. 

It was not possible to constrain the coil to prevent this bending as doing so 

affected the movement of the coil as a whole and caused the coil to become stiffer, 

hence invalidating the analysis.

The analytical and finite element results for a helical spring subjected to internal 

pressure loading is presented in figure 3.23(a) -  (c).

Internal pressure, Px versus Deflection
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Figure 3.23a Internal pressure versus deflection for analytical and finite element

115



Internal pressure, Px versus Spring radius
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Figure 3.23b Internal pressure versus spring radius for analytical and finite element

Internal pressure, Px versus Helix angle
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Figure 3.23c Internal pressure versus helix angle for analytical solution

The level of the internal pressure loading was chosen in order to deflect the helical 

spring by the same amount as would be the case for an axial compressive load and 

the behaviour is shown in figure 3.23(a). A linear trend is observed. Figure
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3.23(b) reveals that the internal pressure does not vary the spring radius linearly. 

This was expected given the earlier comment that the spring radius is a function of 

the power of three in relation to the deflection. Figure 3.23(c) shows the variation 

o f the helix angle to the internal pressure loading. As internal pressure increases, 

the helix angle decreases and the sign change is in contrast to the response that is 

obtained when the spring is subjected to axial load.

3.5.3 Results fo r  Com bined Axial an d  Internal Pressure Loading

The finite element analysis of a helical spring subjected to combined loading 

modes is shown in figure 3.24 for internal line load of 91 N/m (this corresponds to 

an internal pressure o f 0.015 MPa, chosen to ensure resultant deflections are 

comparable to the previous section) as the axial load is varied.
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Figure 3.24 Sample finite element analysis result for combined 2.22N and 0.0151 MPa
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Figures 3.25(a) and (b) show the result of the helical spring subjected to combined 

axial tension and internal pressure. The 0.015 MPa internal pressure causes a 

spring contraction of 5 mm.

Axial tension versus Deflection (Px = 0.015 MPa)
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Figure 3.25a Axial tension versus deflection for fixed internal pressure
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Figure 3.25b Axial tension versus spring radius for fixed internal pressure
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It can be seen from the responses in figure 3.25(a) and (b), that the finite element 

analysis predicted a spring with a somewhat larger spring stiffness than the 

analytical solution. This is probably due to the fact that the axial loading is partly 

constrained by the boundary condition imposed when applying an internal 

pressure load. The coil ends had to be fixed to prevent the helix from uncoiling 

itself due to the applied internal pressure. Hence, the axial movement of the 

helical spring was restricted and the deflection of the spring affected. 

Nevertheless, this did not change the overall response shown by the helical spring. 

The deflection measured from the finite element model for large loading gave 

differences of more than 10%. In addition to the effect of end constraints, the 

deviation may be partly due to the fact that the differences seen in the purely axial 

and purely pressure loaded models, are now combined, and may do so 

unfavourably.

Following on from this, the subsequent models were used to verify the 

combination of a varying axial load for different internal pressure loadings (fixed 

at step values of 0.015 MPa, 0.030 MPa and 0.045 MPa). Figures 3.26(a) and (b) 

show the response of the helical spring under these loads. This analysis was done 

to check that the response of the spring and in particular, the spring constant, did 

not alter as the pressure load was incremented. The pressure was raised in steps, 

and the corresponding tension versus deflection response obtained.

Axial tension versus Deflection (with fixed Px)
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Figure 3.26a Axial tension versus deflection for fixed internal pressure step values
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Axial tension versus Spring radius (with fixed Px)
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Figure 3.26b Axial tension versus spring radius for fixed internal pressure step values

It can be seen from figure 3.26(a) that when in combination with an internal 

pressure load, the axial load required to cause the same amount of deflection as 

for a helical spring under purely axial loading increases with each internal 

pressure load step. This basically shifts the curves to the left side of the original 

zero internal pressure curve. Effectively, the internal pressure becomes a way of 

‘preloading ’ the helical spring. Preloading is a method of obtaining a spring with 

unconventional deflection characteristics, as described by Chironis (1961). 

Springs which are preloaded do not deflect under load until that load exceeds the 

preload. They then deflect at their original spring rate. In this respect, preloading 

does not alter the spring constant of the system but does alter the deflection 

characteristics. This is further discussed later.

The corresponding results for the finite element analysis are shown in figures 

3.27(a) and (b). Here, the helical spring was subjected to a varying axial load for 

fixed internal line loading of 0.1 N/mm, 0.2 N/mm and 0.3 N/mm to simplify the 

analysis.
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Axial tension versus Deflection (with fixed -X)
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Figure 3.27a Finite element result for axial tension versus deflection for fixed internal line

load
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Figure 3.27b Finite element result for axial tension versus spring radius for fixed internal

line load
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The finite element analysis results in figures 3.27(a) and (b) confirmed the trend 

seen in the analytical work, where the curves shifted to the left with increasing 

internal pressure step load. Additionally, an interesting feature is that the gradient 

of the finite element obtained curves increases with increasing internal pressure as 

can be seen from the curve fit equation in figure 3.27(a). This subtle trend is seen 

much more dramatically in the analytically derived responses, seen in figure 

3.26(a). Taken together, this extremely unexpected result suggests that a variable 

spring stiffness was obtained by applying an internal pressure load. If this 

observation is valid, then given that the pressure armour in-service would 

probably experience an axial tension load together with internal pressure, the load 

carrying capacity of the pressure armour would rise as the internal pressure rose.

It should be noted that a helical spring with a variable spring stiffness is entirely 

different from a spring with preload. Chironis (1961) described two methods of 

changing the stiffness of a spring system. The first method is to preload the spring. 

As described earlier, this means that the spring is prevented from moving back to 

its original free length position. An additional force is required to overcome the 

load preventing the spring from deflecting to its original length. Hence, a 

minimum force must be overcome before the spring starts to deflect. Graphically 

this can be shown in figure 3.28. Chironis (1961) contends that this alters the 

spring constant, but this is an incorrect description of what actually happens, given 

that the gradient ‘k’ remains the same in both cases.

'A

Deflection

'A

preload

Deflection

Figure 3.28 Change in curve of axial load versus deflection under preload
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The second method, and one which genuinely delivers a system of variable spring 

rate (although not continuously variable), is to combine springs of different spring 

rates which will reduce the total spring stiffness of the system. For example, 

consider two springs, one with spring stiffness ki and the second with stiffness of 

k2 shown in figure 3.29.

Spring 1

Spring 2

P

Figure 3.29 Helical springs arranged in series

The total spring stiffness of the system becomes

1 1 1

(3.85)

and a typical load -  deflection response is shown in figure 3.30.

Deflection

Figure 3.30 Load -  deflection response of combined helical springs
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Furthermore, both methods can be combined together, to generate further degrees 

of freedom of the deflection of the system. In practical terms, this procedure is 

used in applications where variable damping is required such as in the automobile 

industry.

Returning to the earlier analysis, it is clear form the finite element analysis and 

analytical responses, that the application of a preload, of the type discussed by 

Chironis (1961), can be achieved by subjecting a helical spring to an internal 

pressure. As an aside, this offers some interesting technological advantages over 

mechanical preloading, in that a pressure derived preload can be varied and 

removed at will. It should be remembered, however that in preloading, the actual 

spring stiffness of the helical wire itself does not change but the load-deflection 

curve is altered to accommodate a new load-deflection characteristic which can be 

customized to a particular application or purpose. This applies equally to both the 

mechanically generated preload condition and the pressure generated preload.

As described earlier, a series of springs are required to produce multi-rate stiffness 

in a spring, but the rates present in the system cannot be altered during operation. 

In essence, they are predetermined by the springs selected. However, the 

behaviour seen in figure 3.26(a) indicates that the application of an internal 

pressure load can alter the absolute spring rate. Given that the pressure load can be 

removed and applied infinitely, the change in the stiffness can also be varied 

infinitely. Once an internal pressure load is applied to a spring, the spring stiffness 

of that spring changes to a new value and remains constant whilst the pressure is 

maintained. The reason for this behaviour clear but the author believes that the 

subtle changes in the geometry of the spring when under internal pressure act to 

alter its subsequent behaviour under load (and by definition, its stiffness).

This can be illustrated by the following argument. Consider two springs of

different dimensions as shown in figure 3.31. Each of the springs will have its

own spring stiffness due to the difference in overall length and in spring radius.

Assume that the chosen spring geometry and load scenario such that helical spring

1 deflects to the length of spring 2  and also contracts in dimension to reach the

same spring radius as of helical spring 2. Subsequently, when the springs are
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loaded axially, it would be expected that because the spring dimensions are the 

same, their spring stiffness should be the same, but this ignores the fact that the 

stress state in the material of spring 1 is different from that of spring 2. It should 

be noted that the springs originally had different spring constants and that these 

are unlikely to change during extension (unless large extensions are applied). The 

fact that the springs retain their original stiffness value despite one being 

tensioned, was confirmed by the author using slender rod analysis, which showed 

that the two springs maintained the difference in their spring constants. It can 

therefore be concluded that the spring constant is determined not just by geometry 

and dimension but also by the stress state in the spring wire. The spring stiffness 

of helical spring 1 (which is strained to the size of helical spring 2 ) is higher 

compared to helical spring 2 because of the axial tension loading that is present. It 

is thought that this causes the strain of the helical wire to increase. An increase in 

the strain leads to an increase in the overall stiffness of the wire and thus the 

helical spring structure, because the wire is predicted to be longer. This increase in 

length is extremely small and was measured to be micro strains using the finite 

element modelling.

Spring 1

*asl

Spring 2

*as2

A

Figure 3.31 Springs of different dimensions
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As has been shown, the internal pressure loading will alter the dimensions of the 

spring and acts as a preload, but the presence of the line tension also ensures that 

the spring constant is altered too. These two effects can clearly be observed in 

figure 3.26(a) where the preload is responsible for the change in x-axis intercept 

and the tension effect alters the gradient of the load -  deflection response. The 

effect of an internal pressure is to raise the spring constant, commensurate with a 

rise in the tension of the wire. It should be noted that a supplementary effect might 

also be present given that as the spring radius of the spring gets smaller due to the 

axially applied load, the internal pressure now acts on a smaller radius and hence 

increases the tension in the wire further. However, this is probably a second order 

effect, given that it would suggest a change in the spring constant as the axial load 

is increased and this was not observed.

Figures 3.32(a) and (b) show the response of the helical spring subjected to axial 

compression load with fixed internal pressure. For a varying axial compression 

load on a spring under an applied internal pressure, the linear relationship in figure 

3.32(a) shows that a larger compressive force is required to produce the same 

deformation. Thus, it can be observed that the spring stiffness also increases with 

increasing internal pressure, due to an increase in wire tension.

Axial com pression versus Deflection (with fixed Px)
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Figure 3.32a Axial compression versus deflection for fixed internal pressure step values
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Axial compression versus Spring radius (with fixed Px)
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Figure 3.32b Axial compression versus spring radius for fixed internal pressure step

values

Figure 3.32(b) shows the corresponding change in spring radius under axial 

compressive force (with internal pressure load fixed). Result of helical spring 

subjected to varying internal pressure with the axial tension load fixed at various 

load steps is presented in figures 3.33(a) and (b). In figure 3.33(a), axial load steps 

were applied together with an internal pressure on a helical spring. If a single 

curve is considered, it can be seen that the application of an internal pressure 

alters the deflection and hence the preload in the spring, and does so in a 

reasonably linear manner. Given that a pressure load would be expected to alter 

the spring constant, as described earlier, it might also be assumed that the change 

in the preload deflection be non linear. However, this is not observed in figure 

3.33(a) and can be explained by the fact that changes in the gradient of the load -  

deflection response have a small effect on the way the intercept of that response 

changes.
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Internal pressure, Px versus Deflection (with fixed F)
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Figure 3.33a Internal pressure versus deflection for fixed axial tension step values

Internal pressure, Px versus Spring radius (with fixed F)
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Figure 3.33b Internal pressure versus spring radius for fixed axial tension step values

The finite element analysis result (figure 3.34) showed a similar trend to the 

analytical solution although numerical model did show a higher stiffness. This 

was discussed earlier and is due to the constraint placed on the helical spring coil 

in the radial direction to avoid the coil from opening up due to pressure load. The 

corresponding response of the change in the spring radius with respect to the 

internal pressure is shown in Appendix C. Additionally, results for the helical
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spring subjected to internal pressure loading (for fixed axial compressive load 

steps) are also shown in Appendix C.

Internal pressure, Px versus Deflection
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Figure 3.34 Finite element result for internal pressure versus deflection for fixed axial
tension

The results presented in this chapter have shown that there is a close agreement 

between the analytical solutions and the finite element models created, and that 

these models can be used to predict the behaviour of helical systems in pressure 

armour configurations. Additionally, some interesting results have been obtained 

when pressure has been factored into the overall system. These indicate that 

internal pressure loads will alter the behaviour of pressure armour systems. In 

particular, the change in spring stiffness with applied pressure suggests that the 

conditions within a flexible pipe need to be considered more closely in future 

analyses. Rather interestingly, the ability to alter spring stiffness by the presence 

of an internal pressure may have applications outside of the flexible pipe area and 

are the subject of a patent application by the author.

The following chapter extends the theory o f helical wire to accommodate non- 

circular profiles. Behaviour of non-symmetric cross-sections due to the various 

loading modes was discussed.
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4 Analysis of Helical Spring for Various Cross-sectional Shapes

4.1 Introduction

The analysis in chapter 3 was carried out for a conventional helical spring with 

circular cross-section. Since the polar moment of inertia is the same in any 

direction for a circular cross-section wire, the twist and curvature of the helical 

spring wire due to the loads applied is the same regardless of whether the cross- 

section rotates or not. A typical cross-section of a helical wire reinforcement of a 

flexible pipe (for example the ‘Z’ profiled wire and the Omega profiled wire), 

however has a non-circular shape and therefore has a different polar moment of 

inertia in different axis directions. It is therefore expected that these non-circular 

shaped wires will affect the way in which a helical spring behaves due to 

differences in twisting responses of the wire cross-section. A knowledge of 

orientation of the cross-section with respect to the spring axis is also required for 

complete understanding of the mechanical response.

This chapter investigates the effect of different loading modes on the various 

cross-sectional shapes of relevance to pressure armour. Furthermore, it is 

important to examine how helical springs with different cross sections, whether 

they are symmetrical about some axis (such as square or rectangular or 

asymmetrical sections), twist with applied internal pressure and/or axial loads. 

This twisting effect of the helical wire will tend to generate a stress gradient 

across the cross-section of the wire. This in turn implies that the profile that twists 

is not efficient in resisting pressure loads and that cross-sections with more 

uniform stress are likely to withstand higher pressures.

The analysis presented here begins with a theory of relatively simple non-circular 

shape helical springs (square and the rectangular sections), and is based on 

conventional spring theory as given by Timoshenko (1955) and Wahl (1963). 

More complex cross-sections such as the L, Z and Omega profiles require a
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rigorous analytical model based on Love’s equilibrium equation and will be 

considered later in this chapter.

It must be emphasized here that all the analyses were performed for helical 

springs with ends fixed from rotation, as was first discussed in chapter 3. 

Although a simplification, this constraint is similar to that found in the end fittings 

of pressure armour system, which prevents the helical wire from coiling/uncoiling 

when loads are applied. Issues of end constraints are revisited in chapter 6 . From 

the assumption, it follows that the number of coils of the helical spring remains 

the same under load, because the helical wire does not coil/uncoil. Also, it is 

assumed that the wire cross-section does not rotate with applied axial loading and 

any rotation is due to pressure only. In the scenarios investigated here, the helical 

spring cross-section can rotate due to the moment generated on the non-symmetric 

sections by the internal pressure loading. For symmetric sections, the analysis is 

straightforward and is discussed in the next section.

4.2 Symmetrical Cross-Sections

4.2.1 Basic Spring Theory

Helical springs with non-circular cross-sections are rarely found in industry and 

are mainly restricted to square and rectangular cross-section wires. This is due to 

the fact that a non-uniform stress distribution is present in such a cross-section 

compared to circular cross-sections when loading is applied as discussed in Wahl 

(1963). The stress concentrations that are generated can affect the fatigue life. 

Their main advantage, however, is that they can store more elastic energy 

compared to circular cross-section springs, of a given overall dimension. This 

section presents the basic theory of closed-coil helical springs for symmetrical 

sections of square and rectangular nature. Timoshenko (1955) presented an 

analytical solution for the helical spring for generalized cross-sections.
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As described previously, equation 3.1 in chapter 3 gave the expression of the 

torque on the helical spring elements due to the axial force, FA. The total 

deflection of a spring, 8  was obtained by summing the deflection due to all the 

elements along the length of the spring and is given here as

„ In n F J?o =   —  (4.1)
GJ

where R = radius of helical spring

G = shear modulus of spring material 

J = polar moment of inertia

When the polar moment of inertia of the appropriate cross-section is taken into 

account, the solutions yield the same form as of Wahl (1963) for square and 

rectangular cross-sections. Because of the warping of non-circular cross-sections 

(Timoshenko and Goodier, 1970), the corrected polar moment of inertia due to 

this effect has to be taken into account and these values can be obtained from 

Young (1989).

Wahl (1963) discussed the design of these square and rectangular cross-section 

helical wires in detail for axial loading. The curvature of square cross-section 

springs has a significant effect on the deflection calculations. Hence the corrected 

stress due to effects of curvature was taken into account for the deflection 

derivation (Wahl, 1963).

For square cross-section wire, the deflection, 8 , and spring stiffness, k, is given by 

Wahl (1963) as



Ga.
44.72R3n

(4.3)

where FA = axial load

D = diameter of helical spring 

R = radius of helical spring 

G = shear modulus of spring material 

as = length of side of square cross-section

The calculation for the deflection of a rectangular helical spring is more 

complicated than a square cross-section. Correction factors that depend on the 

dimensions of the rectangular section must be included in order to obtain accurate 

deflections. This correction factor is given in Wahl (1963), adapted from an earlier 

solution based on a paper presented in German by Liesecke in 1933.

Figure 4.1 Dimensions of a rectangular cross-section

For a large spring index, the deflection is given by

„ 8 FaR no = — ■ (4.4)
krlarb G

where kri = correction factor for large spring index which depends on ratio ar/b 

ar = long side of rectangular cross-section 

b = short side of rectangular cross-section
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kri can be estimated from the table below as presented in Wahl (1963).

Ratio

dijb

1 1 .2 1.5 2 2.5 3 5 1 0 00

kri 0.180 0 .2 1 2 0.250 0.292 0.317 0.335 0.371 0.398 0.424

Table 4.1 Correction factors for rectangular cross-section spring

The deflection for a small spring index is given by

s _&kn Fi Rn_
a.zb2G

(4.5)

where kr2 = correction factor for small index spring

The correction factor chart is presented in figure 4.2.
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Figure 4.2 Correction factor chart for small spring index (Wahl, 1963)
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Spring stiffness, k for rectangular cross-section wires is of the form shown below.

2 7.2Ga;b
Skr2R3n

(4.6)

If this equation was to be applied to a typical pressure armour layer configuration, 

a large spring index ratio is normally encountered and the appropriate deflection 

expressions would be used. It can be observed that the solution by Wahl (1963) is 

of the same form as of the analytical solution derived in the general solution by 

Timoshenko (1955) and can be used readily if the spring index ratio is known.

4.2.2 Slender Rod Theory

The slender rod theory offers many advantages in solving the deformation of a 

helical wire. Unlike Wahl’s approach, the slender rod theory provides a route to 

solving for springs of various cross-sectional shapes, but it also can account for a 

combination of axial and internal pressure loading. The previous chapter applied 

the slender rod approach to circular cross-sections. Here it is applied to sections 

likely to be encountered in pressure armour. For symmetrical sections, the same 

underlying solution as presented in section 3.2.3 is valid for use. The only 

difference here is that the appropriate polar moment of inertia, J was chosen for 

the respective sections based on the corrected value due to effects of warping. 

Warping affects the shear strain of the cross-section, but does not affect the 

overall longitudinal and axial strain of wire because of the assumption that the 

wire behaves as a slender rod.

The appropriate sectional values for cross-sectional shapes such as square and 

rectangle can be input into equations 3.59 -  3.62 as before, and are presented 

again for the reader’s ease.

T = AEem (4.7)
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G„ = E I^  (4.8)

Gb =EIbco2 (4.9)

H = GJco3 (4.10)

From equation 3.71, the deflection of a helical spring subjected to axial loading

can be described as follows :-

Fa = T sin a x + Nb cos a x (4.11)

M = H sin a x + Gb cos a x + TRX cos a x -  NbRx sin a x (4.12)

where the deflection is characterized in terms of its helical angle, a

If an internal pressure load is considered, it can be assumed that if it acts on a 

symmetric cross-sectional shape, no rotation of the section is observed because no 

moment is generated on the centroid of the cross-section. The internal pressure, as 

in the case of circular cross-section helical springs, will only cause the helical 

spring to expand its diameter and shorten its pitch length. Therefore the pressure -  

line load relationship for a helical spring subjected to internal pressure is as 

presented in chapter 3 and is given by

Pxdw= ~X  (4.13)

where Px = internal pressure on helical wire 

dw = width of helical wire

Similarly, for combination of axial and internal pressure, equations 3.80 -  3.82 

derived in the previous chapter can be used.
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4.3 Non-symmetrical Sections

Non-symmetric cross-sections subjected to an internal pressure load would be 

expected to rotate. As the analysis here involves only cases where the helix ends 

are fixed (to simplify the problem), the rotation of the helical wire cross-section is 

assumed to be purely due to internal pressure load. It is known that the cross- 

section of a helical spring does rotate with respect to applied axial load. However, 

since the ends are fixed from coiling/uncoiling, this rotation of the cross-section is 

assumed to be prevented. Hence, the same expression as given in equation 4.11 

can be used for the deflection of helical wire of non-symmetrical shape due to 

axial loading.

For cross-sections such as L, Z and the Omega, rotation of the cross-sections due 

to internal pressure loading occurs because a moment is generated on the centroid 

of the cross-section and not due the helical spring movement. Thus a pressure load 

will likely alter the helix configuration and this may have important implications 

on the load carrying capacity (in terms of pressure) of the pressure armour.

The next section analyzes the angle of twist of a non-symmetric helical wire 

cross-section due to internal pressure.

4.3.1 Angle o f Twist o f a Cross-Section

Within the literature, some work has been performed on the twisting of pressure 

armour cross-sections under internal pressure loading. The angle of twist of a 

helical wire cross-section is conventionally taken as similar to that of the angle of 

twist of a ring cross-section. This is a common and simplifying assumption given 

that the helical wire is usually of small helix angle. The helical wire structure can 

then be modelled in finite element analysis as an axisymmetric problem, for 

example as was done by Chen et al (1995). They presented a simple analytical 

model which described the global axial deformation of flexible pipes, with 

frictional forces between layers neglected and small displacements of the pipe

137



assumed. Chen et al (1995) modelled the internal carcass and pressure armour 

reinforcement as thin rings. In reality however, both the internal carcass as and 

pressure armour structures are actually helical in shape (albeit of small helix 

angle). Although a helical wire can be described as ‘closed-coil’, that is having a 

small helix angle, the axisymmetric ring assumption is too simplified. The ring is 

akin to a short span of a pressure vessel, thus, is more rigid when compared to a 

helical spring, which would be connected to its next coil. Therefore it was 

expected that the axisymmetric modeling would produce some error due to the 

rigidity of the ring and that the angle of twist of a ring cross-section would be 

smaller than the actual angle of twist of a helical wire cross-section, when an 

internal pressure was applied.

Nevertheless, the angle of twist of a ring cross-section is described here first and 

then compared to a solution developed in this work for the angle of twist of a 

helical wire cross-section. This is then factored into consideration during 

axisymmetric modelling of a helical spring structure.

A general solution for the angle of twist of a ring cross-section was presented by 

Timoshenko (1956). Considering the forces on half of the ring as shown in figure 

4.3, the degree of twist was presented for a generalized local system that created a 

twisting moment.

m

P

Figure 4.3 Cross-section of half of ring
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For condition of equilibrium, there is a twisting moment, Mr acting across the 

cross-section mn, shown in figure 4.3. This gives

(4.14)

where Mt = twisting couple per unit length 

Rr = radius of ring

The following is summarized from Timoshenko (1956). Point C is defined as the 

centre of rotation and the angle 0r, is the twisting angle of the ring cross-section. If 

the point in the cross-section starts rotating from B to Bi, using similarity of 

triangles as shown in the figure, then distance B1B2 can be measured and is given

This assumes that the rotation is small and the distance is inscribed by a small arc 

of the twisting angle 0 r.

Following this, the radial strain, 6 can be defined and is given as

by

(4.15)

€  =  — (4.16)

The stress, a  due to this radial strain is then given by

(4.17)

where E = Young’s modulus of the material

139



From the equilibrium of half of the ring, the sum of the normal forces acting on 

the cross-section must equal zero and the moment of the forces about the x axis 

must equal the twisting moment, Mr. Hence

where dA = elemental area of cross-section

Expression 4.18 confirms that the centroid of the cross-section lies at some point 

on the x-axis. Equation 4.19 defines the twisting angle in terms of the twisting 

moment. For the purpose of this analysis, it is assumed that the internal moment is 

generated by an internal pressure loading on the inside of the coil. Integration of 

equation 4.19 gives rise to

where Ix = moment of inertia of ring cross-section with respect to x-axis

If instead of a ring, a helix is now considered, it can be shown that there exists a 

definite difference in the twisting response. It must be stressed that the rotation of 

the cross-section of the helix is solely due to the moment generated by the internal 

pressure, given the constraint conditions imposed as described earlier.

(4.18)

(4.19)
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Figure 4.4 shows the twisting moment generated by an internal pressure on a short 

element of the non-symmetric cross-section helical spring.

Figure 4.4 Twisting moment on helical spring of non-symmetric cross-section

It is assumed that the helical spring has a small helix angle and its ends are fixed 

from rotation, therefore, the number of helical coils remains the same. Also, the 

centroid of the cross-section is taken to coincide with the centreline of the helical 

wire since the cross-sectional dimension is assumed to be small compared to the 

dimensions of the helical spring.

The twisting moment, Me about the centreline of the wire due to internal pressure 

load is then given by

R

M c = Fpdc (4.21)

where Fp = Equivalent force due to internal pressure

dc = distance of load to centroid of cross-section
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Now, the small cylindrical element AB is considered. The length of this element is 

given by Rd/l, where d>. is the angle of arc of the element. The twisting moment of 

a cylindrical element is commonly known and given in Young (1989) as

M C=GJ j  (4.22)

where G = shear modulus of spring material

J = polar moment of inertia of cross-section 

cp = angle of twist of cross-section 

1 = length of element

Equation 4.21 and 4.22 can be combined to obtain an angle of twist per length of 

element of the helical wire cross-section element due to internal pressure load. 

This is given by

* * = ? &  (4.23)
dl GJ

Integrating expression 4.23 for n helical coils, the total angle of twist of the helical 

wire cross-section can be obtained. The solution gives

GJ *

2nRnFpdr.
<P=— - r r ^  (4-24)

KJJ

It must be noted that the corrected polar moment of inertia value obtained from

Young (1989) should be used for the respective cross-section. Inspection of the

equations of the angle of twist of a ring cross-section (equation 4.20) and helical

coil (equation 4.24) was performed by substitution of values for an L shape cross-

section with dimensions shown in figure 4.7 (see later). In this instance, angle of

twist of ring gave 0 .0 1  degrees while angle of twist of closed-coil helical cross-

section gave 1.05 degrees based on a 15.24 mm (6 ”) helix radius and coil
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deflection of 5 mm. It can be concluded that the values generated by the angle of 

twist of helical coil will always be larger.

4.3.2 Analytical Solution Based on Slender Rod Theory

The analytical solution presented here by the author considered the change to the 

equilibrium equation due to twisting of the helical wire cross-section. When 

twisting of the helical wire cross-section is taken into account, the twist and 

curvatures of the centreline changes accordingly by an angle cp, therefore changing 

the constitutive equations in expression 4.8 -  4.10. Figure 4.5 shows the change in 

curvature of the centreline due to twisting of a helical wire cross-section, where 

twist in the anticlockwise direction is taken to be positive.

Figure 4.5 Angle of twist and change in curvatures of the centerline of wire

After twist of cross-section occurs through the xy plane, the new component of

curvatures in the principal normal, Kni and binormal, km of the centreline of the

wire are

Kn[ = Kbx sin (p (4.25)

Kb\ = ^ b{cos(p (4.26)
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The angle of twist of the cross-section, 9  corresponds with the angle n il -  f 

defined by Love (1934) as shown in figure 4.6 below. The angle tt/2 -  f is defined 

as the angle between the principle plane of the rod and the principal normal of the 

centreline. In other words, when the rod cross-section is rotated clockwise the 

angle that the cross-sectional plane makes with the rod centreline normal axis is 

the angle of twist of the cross-section. The angle f as mentioned in Love (1934) 

then corresponds to the angle defined by Ramsey (1988) shown in equation 3.58 

in the previous chapter and is related to the strain variables in the equations.

b

Figure 4.6 Angle between principal plane of cross-section and the centerline of wire

Therefore expressing angle f in terms of the author’s defined angle of twist of 

cross-section,

/ = ■ § - *  (4-27>

As shown previously in chapter 3, the slender rod equation by Love (1934) was 

given in equation 3.46 -  3.51. When changes in the twist and curvature are taken 

into account, for an internal pressure load, the set of equilibrium equations reduce 

to

- N bT{ + T/cbl cos (p + X  = 0 (4.28)
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-T K bx sin (p + N tx = 0 (4.29)

-N K bj cos (p + NbKbx sin (p = 0 (4.30)

-G brx + HKbx cos <p-Nb =0 (4.31)

-H K bx sin (p + Gnrx + N  = 0 (4.32)

where - X = internal line load 

N, Nb, T = resultant internal forces 

Gn, Gb, H = resultant internal moments

From 4.8 -  4.10, taking the new values of curvatures due to twisting of the cross-

section, the internal moments now have the following form respectively

(assuming small strain of wire).

where f = angle between cross-section principal axes to rod centreline principal 

normal

s = arc length

Equations 4.30 -  4.32 are found to be redundant, and show the relationship 

between the normal and binormal shear force, while equation 4.29 expresses the 

shear force in the normal direction in terms of its wire tension.

Hence, the solution of a non-symmetrical helical spring subjected to internal 

pressure, Px (knowing the relationship of internal pressure to the line loading as

Gn =EIn/cbx sin (p 

Gb = ElbKbx cos (p

(4.33)

(4.34)

(4.35)
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given in equation 4.13 and knowing the tension in the wire) is given by solving 

equations 4.28 and 4.31, thus,

P _ TKblcos<p-(HKbicos<p- G„r,) r, 

d»

For the combination of axial and internal pressure load, equations 3.80 - 3.82 

derived previously can be used. However, it must be noted that the internal 

pressure on the helical wire is now taken from equation 4.36. For the cases of a 

helical spring (ends fixed from twisting) subjected to axial loading with fixed 

internal pressure load, the respective binormal shear force value for the axial 

loading is used. This should not be confused with the binormal shear force derived 

for the internal pressure as shown above.

The results calculated from the analytical solutions are given later in this chapter. 

Analytical solutions for the helical spring subjected to the various loading modes 

were verified using finite element modelling and is described below.

4.4 Non-circular Helical Spring Verification using Finite Element Modelling

The finite element modeling procedure as described in section 3.4.2 was used to 

verify the response of helical coils of various cross-sections, and will not be 

repeated here. As previously, the helical coil was modelled using beam elements 

10 degree turn apart from each other. The material employed was a typical steel 

with a Young’s modulus of 207 GPa and a Poisson’s ration of 0.33. A helical 

spring radius of 152.4 mm (6 ”) was used. Figure 4.7 shows the dimensions of the 

helical wire cross-section used, which corresponded to the same area as of the 

circular cross-section wire modelled in chapter 3. This was done to assist the 

comparison of the load carrying capacity for the different profiles.
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Figure 4.7 Various helical wire cross-section dimensions



For the verification of angle of twist of the cross-section of a helical spring 

subjected to internal pressure, a 3-dimensional solid coil was modelled. The 

dimensions used were similar to those of the beam element models built 

previously. The non-symmetric cross-sectional dimensions given above were used. 

Figure 4.8 shows the helical coil of one pitch length modelled using the Z-section 

profile.

2

Figure 4 .8 Helical coil model for angle of twist of cross-section

The coil was pinned at the centreline of the wire at both ends to prevent the coil 

from being displaced from its current position. This was done in order to correctly 

simulate the twisting moment generated by the internal pressure on the surface of 

the coil, which would twist the cross-section of the helical coil. The force 

equivalent to this internal pressure was applied at one end of the coil as shown in 

figure 4.8 as a consequence of the peculiarities of the finite element package used. 

Coils with mesh densities of 5796 and 10320 elements were used and the 

comparison of the angles of twist generated is shown in table 4.2.
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Mesh density ( no. of elements) 5796 10320

Angle of twist, cp (degrees) 5.5 5.3

Run time (mins) 1 0 25

Table 4.2 Comparison of angle of twist of cross-section of helical spring for 5 mm axial

compression due to internal pressure

The calculated run time was typical for analysis performed using a Pentium IV 

based machine with 1 GB of Ram. The percentage difference in the results was 

1.8% and 5.4% respectively when compared to the analytical solution (see later). 

The result of the angle of twist of cross-sections of helical wire using the lower 

mesh density gave better agreement with the analytical solution and was used 

subsequently for other load values, given the faster processing time it provided.

The result for the cross-sections defined in figure 4.7 above, subjected to the 

various loading modes, is presented and discussed in the next section.

4.5 Results of Analytical Solution and Finite Element Analysis

The analytical results for the helical wire cross-sections shown in figure 4.7 

subjected to axial load showed similar trends to that of the circular cross-section 

wire as described previously.

4.5.1 Results for Axial Loading

For a given axial tension load, the helical spring increases in length while the 

spring radius decreases. It should be noted that the analytical solutions applied to 

helical wire with ends fixed from rotation. This meant that a twisting moment was 

induced as a result of such a constraint. Finite element analysis showed good 

agreement with the analytical result. Slight discrepancies were obtained for the L 

and Z-sections, which could be due to the estimation of the section properties 

obtained from the formula in Young (1989). Individual graphs for the responses
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seen for the various cross-sections are shown in Appendix D. Here, only 

comparison of the result is presented and shown in figure 4.9(a) - 4.9(d).

Axial tension versus Deflection
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Figure 4.9a Analytical solution for axial tension -  deflection for various cross-sections

Axial tension versus Deflection (FE)
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Figure 4.9b Finite element for axial tension -  deflection for various cross-sections
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Axial tension versus Spring radius
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Figure 4.9c Analytical solution for axial tension -spring radius for various cross-sections

Axial tension versus Helix angle
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Figure 4.9d Analytical solution for axial tension -  helix angle for various cross-sections
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For all cross-sections, the axial tension versus deflection curves showed high 

linearity. In figure 4.9(a), the analytical result showed that for the same cross- 

sectional area, the circular cross-section wire had the highest stiffness. This is 

followed by the square, rectangular, L and Z sections respectively. For a 

rectangular cross-section, it was observed that a section with a narrower width had 

larger stiffness. As can be seen from the figure, a highly symmetrical section is 

desirable in order to obtain high helical spring structure stiffness. The analytical 

solutions were confirmed by, and good agreement obtained with the finite element 

analysis shown in figure 4.9(b). Figures 4.9(c) and 4.9(d) show the response of the 

spring radius and helix angle to the applied axial loading. In a pressure armour, 

where a circular wire is not appropriate because the layer has to prevent the 

polymer sheath underneath from extruding, the structure has to have a narrow 

cross-sectional width in order to obtain high structural stiffness based on the axial 

loading mode result.

4.5.2 Results for Internal Pressure Loading

Similarly, the comparison of results of the helical spring subjected to internal 

pressure is shown in figure 4 .10(a) -  4 .10(d) for the symmetrical sections.

Internal pressure, Px versus Deflection
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Figure 4.10a Analytical solution for internal pressure -  deflection for symmetric cross-

sections
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Internal pressure, Px versus Deflection (FE)
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Figure 4.10b Finite element for internal pressure -  deflection for symmetric cross-

sections

Internal pressure, Px versus Spring radius

0.25

« 0.20 
2
x0. 0.15£3
8Q. □T?0.10 
15
E3
E 0.05

0.00
152.4 152.6 152.8 153 153.2 153.4

O  circular 

- B  sq u a re

rectangular (6.5 x 4.3499) 
-©■ rec tangu lar (4.3499 x 6.5)

Spring radius (mm)

Figure 4.10c Analytical solution for internal pressure -  spring radius for symmetric cross-

sections

153



Internal pressure, Px versus Helix angle

0.25

2  0.20

—O  circular 

—□  sq u a re

rec tangu lar (6 .5  x 4 .3499) 

O  rectangular (4 .3499 x 6.5)

0 .15

0.10

c  0 .05

0.00

Helix angle (°)

Figure 4. lOd Analytical solution for internal pressure -  helix angle for symmetric cross-

sections

The finite element result shown in figure 4.10(b) further confirms the analytical 

result plotted in figure 4.10(a) for the deflection response of the symmetrical 

sections to internal pressure. Figures 4.10(c) and 4.10(d) show the comparison of 

internal pressure -  spring radius and internal pressure -  helix angle curves for 

symmetric sections. The trend of the curves was expected given the response from 

figure 4.10(a).

For symmetric sections, the internal pressure deflection curves showed high 

linearity. Based on figure 4 .10(a), it was concluded that the sections with narrower 

width had a larger load capacity. This was expected as the sectional thicknesses of 

these cross-sections are larger, hence the smaller deflection for the same pressure 

applied.

The non-symmetrical section results are shown in figure 4.11(a) -  4.11(d). The 

responses for the helical springs subjected to internal pressure are given in 

Appendix D. When compared to the respective finite element analysis result, the
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analytical responses were found to show similar trends to those discussed in the 

previous chapter (section 3.5).

Internal pressure, Px versus Deflection
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Figure 4.1 la Analytical solution for internal pressure -  deflection for non-symmetric

cross-sections
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Figure 4.1 lb Analytical for internal pressure -  cross-section twist angle for non-

symmetric cross-sections
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Internal pressure, Px versu s Spring radius
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The non-symmetric sections had a lower load carrying capacity compared to those 

of symmetrical cross-sections. Additionally, the internal pressure applied to the L 

and Z-sections did not vary linearly with the spring deflection compared to the 

symmetric sections. This can be seen in figure 4.11(a). This is due to the fact that 

the cross-section twists with an applied internal pressure, causing the surface area 

exposed to internal pressure to reduce. Hence, as shown in the figure, the spring 

deflection gets larger with each step change in the load applied. For design 

considerations, the twisting of cross-section is to be avoided in order that the 

cross-section can fully maximize its pressure carrying capacity.

Figure 4.11(b) shows the cross-section twist angle for applied internal pressure for 

L and Z-sections respectively. The polar moment of inertia measures the tendency 

of a cross-section to twist and a comparison of the L and Z-sections, which are of 

similar cross-sectional areas, shows that the Z-section has a smaller polar moment 

of inertia compared to the L-section. Hence, in this case, the Z-section has more 

tendency to twist as is evident in the graph.

This effect in turn causes the change in spring radius to be smaller for increasing 

internal pressure as observed in figure 4.11(c), which is an entirely different 

response compared to that seen for the symmetrical cross-section shapes (figure 

4.10(c)). This trend was most prominent in the Z-section, which can be explained 

by the fact that this cross-section has a larger twist compared to the L-section 

helical spring. Figure 4.11(d) shows the relationship between the changes in the 

helix angle to an applied internal pressure. This is non-linear unlike those of the 

symmetric sections in 4.10(d).

4.5.3 Results for Combined Axial and Internal Pressure Loading

The responses of helical spring when subjected to varying axial load with a fixed 

internal pressure load (to cause a spring axial contraction of 5 mm) are shown in 

figures 4.12(a) and (b). These can be compared to those in chapter 3 for circular 

cross-section systems and is reproduced in the figures 4.12(a) and (b).
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Axial tension versus Deflection (for fixed Px)
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Figure 4 .12b Comparison of analytical solution of axial tension -  spring radius for fixed

internal pressure

Referring to figure 4.12(a), it can be seen that with a fixed internal pressure, the

axial load -  deflection curves show similar trends to the case of pure axial loading

alone, however with an offset to the spring deflection to account for the axial
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contraction due to internal pressure. Additionally, an increase in the stiffness of 

the helical spring was observed for all cross-sections. Figure 4.12(b) shows 

corresponding result of the axial tension -  spring radius response (with fixed 

internal pressure).

Further to this, a similar trend was observed for the case of a helical spring 

subjected to varying axial load with fixed internal pressure for the individual 

cross-sections. Here the stiffness of the helical spring increases with increasing 

internal pressure load step. The graphs are repetitive and will not be shown here. 

The trends of varying internal pressure with fixed axial loads were found to be 

similar as expected.

Figure 4.13 shows an example of the angle of twist (of the cross-section) 

verification from the finite element analysis models. The results are for 

displacement of the helical spring cross-section in the direction shown in figure 

4.8, which was due to the twisting moment. The angle of twist can easily be 

calculated from geometrical relationships of the cross-section. In this case, the 

equivalent force due to internal pressure to cause 5 mm axial spring deflection 

was modelled and this corresponded to angle of twist of 5.5°.

+ 4 .3 1 8 * 4 0 0  
+ 3 .6 0 3 e 4 0 0  
+2 .8 B 9 e+ 0 0  
+ 2 .1 7 4 e 4 0 0  
+ 1 .4 6 0 e + 0 0  
+ 7 .4 5 4 e - 0 1  
+ 3 .0 9 8 e - 0 2  
- 6 .8 3 5 e - 0 1  
- 1 .3 9 8 e + 0 0  
- 2  .1 1 2 * 4 0 0  
- 2 .8 2 7 e 4 0 0  
- 3 .5 4 1 e + 0 0  
- 4 .2 5 6 e 4 0 0

dimensions in mm

Figure 4.13 Example of finite element result for angle of twist of cross-section of helical 

spring subjected to a twisting moment
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In summary, an investigation of how the various cross-sections behaved with 

respect to a range of loading modes was made and the results presented here. 

From the discussion above, it should be noted that in particular, an internal 

pressure load causes a twist in the cross-section of a helical wire with a non- 

symmetrical profile. The solution obtained can be used to better design a pressure 

armour layer in order to maximize the pressure loading capacity without having to 

increase the cross-sectional area. The next chapter further enhances the 

understanding of the above via an experimental route in order to observe the 

rotation of the cross-sections under radial loading.
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5 Experiments and Results

5.1 Introduction

In chapters 3 and 4, the theory of the mechanics of helical springs was shown to 

provide the basis for the analytical solutions relevant to pressure armour 

reinforcements. This work assumed that the complex profiled wire of pressure 

armour could be usefully reduced to a simple helical spring model of circular 

cross-sectional shape. Once this was done, the behaviour of various cross- 

sectional shapes could be investigated by appropriate additions to the model. Such 

simplifications have been made not only because of the geometric similarity of the 

pressure armour structure to a helical spring, but also to assist in the verification 

of the analytical solutions developed via simple experiments carried out on helical 

spring systems. This chapter describes the experimentation process and the tests 

carried out to observe the response of helical springs of various cross-sectional 

shapes to the different loading scenarios. The experimental work provided a useful 

method to physically observe the deformations of the helical springs. This enabled 

both the analytical and numerical approaches described earlier to be tested against 

experimental data. The experimental work was able to highlight some issues in the 

models developed and permitted subsequent modifications of these. Some of these 

aspects will be discussed later in this chapter. In order to experimentally test 

spring designs, it was necessary to source a wide variety of geometries and coil 

cross sections. Some of these were likely to be fairly complex in shape and it was 

noted, early on, that the procurement of such springs would be difficult and likely 

to be costly. In an attempt to solve this problem, it was decided to fabricate 

springs in-house. This necessitated, as described below, the development of a new 

method to manufacture helical springs of complex cross-section.

5.2 Spring Lathe and Materials Selection

Although commercially available helical springs come in a large range of sizes 

and materials, it was decided to fabricate custom helical springs for the
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verification work. This decision was made for several reasons. Firstly, in order to 

measure the forces and the change in dimension generated in the springs under 

various loading scenarios, large spring dimensions, in particular the spring 

diameter, wire cross-sections and spring length obviously assisted the process. For 

example, deflections would be proportionally larger and the measurement 

sensitivity required would be well within the limits of standard laboratory 

experimental facilities. However, since most springs, not withstanding their size, 

are manufactured from ferrous metals, large springs would necessitate the 

application of large forces in order to generate measurable deformations, hence 

complicating the experimental setup. Something akin to an automobile suspension 

coil spring would constitute the size and type of coil in mind for the work 

proposed. It was obvious that these types of helical springs are difficult and 

expensive to procure, while large axial forces are required just to carry out simple 

extension tests. Additionally, a significant portion of this work was dedicated to 

understanding how coil springs (hence pressure armour layer) behaved when 

under an internal pressure load. Thus, even if the metallic springs of the required 

section and geometry were fabricated, the experimental problems associated with 

pressuring these were likely to be significant. For example, a 25 x 25 mm square 

cross-section helical spring of nominal pitch length 100 mm and diameter of 300 

mm would be expected to show 10 mm deflection only after a pressure of 3.2 bars 

was applied.

Secondly, although the problems associated with a suspension spring were not 

insurmountable, such springs would greatly limit the scope of verification work 

because at the time of writing, nothing other than a circular cross-sectional shaped 

spring had been found to be available. Specially manufactured helical springs 

would have been prohibitively expensive. If the verification process was to remain 

useful and indeed credible, springs comprising complex cross-sections would have 

to be tested.
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As a result of this, an alternative spring material was sought and with it, an 

alternative and flexible means of helical spring manufacture, which would permit 

coils of varying and complex cross-sections to be produced. Several materials and 

methods were considered including: -

1) wood in the form of block sections, bonded together to generate a helix,

2 ) polymeric resins that could be cast into shape, and

3) expanded polystyrene cut to required cross-sections

The first two ideas were rejected in favour of the one involving expanded 

polystyrene cut into the required shape. This was because expanded polystyrene 

offered several advantages as a modelling material. It was inexpensive and fairly 

easy to shape using conventional methods. Attempts at shaping it using normal 

woodworking tools revealed that the best method by far was to use a hot wire 

cutter of the appropriate profile for the helical wire cross-section required.

Initially, the proposed idea was to have blocks of polystyrene cut with the 

necessary section and cut-off angle, and then adhesively bonded together to form 

a helical spring. However, it was decided that the block assembly method might 

introduce errors into the spring system if one considered the bond line as an area 

of critically enhanced stiffness by virtue of the adhesive used. Therefore a spring 

fabricated as a continuous, homogeneous form was deemed to be better. To 

achieve this, a purposed built hot-wire helical spring lathe was designed and 

fabricated from readily available components on a medium density fibreboard 

(MDF) carcass. The helical spring lathe was required to perform the following 

tasks: -

1) machine a cylindrical polystyrene form, approximately 750 mm long and 300 

mm in diameter,

2 ) remove the inside of this cylinder to form a tube of wall thickness of 

approximately 30 mm,

3) machine a variety of cross-sectional profiles, through the thickness of the 

polystyrene tube whilst simultaneously traversing the cutting head along the 

axis of the tube in order to cut a helix.
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Whilst requirements (1) and (3) were reasonably straightforward to fulfill in terms 

of design and construction of the lathe, requirement (2 ) involved a far more 

radical lathe design that allowed internal machining to a depth of nearly a metre. 

The overall design was ultimately simplified by eliminating requirements (1) and 

(2). To this end, an extensive search of companies that regularly cut and trim 

expanded polystyrene (mainly for the packaging industry) located several who 

were willing to fabricate polystyrene tubes to the required dimensions. None of 

these companies agreed to fulfill requirement (3) bar one, which confirmed that 

the block assembly method, where the polystyrene was cut into the necessary 

sections and bonded together, would be used to fabricate such a shape. Hence it 

was still necessary for the author to construct a lathe capable of ‘machining’ the 

various spring designs required for the work.

There were quite a number of profiles to be cut (these will be described later), 

some of which were fairly complex and would entail interlocking coil sections. 

This would never have been achievable for metal based specimens unless a major 

manufacturing facility had been located and employed -  and even so, the 

requirement to interlock adjacent sections would not have been fulfilled simply by 

a machining process. The spring would have to be coiled and the coils locked 

together sequentially as part of the coiling process. This would add to the expense 

and require considerable forces to open and/or close the profile onto its adjacent 

partner. Polystyrene offered an elegant route to achieving an interlocked profile as 

it could be wire cut and a single pass could instantly create two sections that were 

interlocked by default. The design of the apparatus was loosely based on a screw 

cutting lathe, where a motor rotates the machined item under constant and defined 

speed and another drive is used to traverse the cutting head along the longitudinal 

axis of the item, again of a constant and definable speed. Most screw cutting 

lathes work by deriving the longitudinal drive from the motor that powers the 

rotational drive, through a series of gears or belts that can be altered to change the 

pitch of the cut.

It was decided at an early stage to computer control the cutting process in an 

attempt to simplify the overall design of the lathe. Two motors were used, one to 

rotate and one to traverse. Stepper motors were chosen in order to give precise
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control of speed. A gearbox was mounted to the stepper motor to provide enough 

torque to rotate and traverse the polystyrene block, and speed control was done via 

calibration trial runs in order to obtain the optimum speed configuration for 

various helical pitch cut (the operation of the stepper motors is described later). 

The gear and belt method, if used, would have posed challenging problems in 

terms of the speed and torque selection given that it was desired to have numerous 

cutting speeds (which defines the helical pitch).

The spring lathe consisted of a purpose built frame to rigidly hold the driving and 

cutting components. Referring to figure 5.1, each of these is described below:-

• 2  stepper motors -  to rotate the polystyrene cylinder and to allow the hot wire 

cutter to traverse along length of cylinder

• stepper motor RS232 serial interface -  to allow computer control of the 

stepper motor

• gearbox -  to allow stepper motor to have higher output torque

• rod with disc -  to hold the polystyrene cylinder in place

• mechanical holder -  a hot wire shaped into desired profile is mounted here and

is allowed to move along length of cylinder when a command is given to the

stepper motor

• lead screw -  the M8  size studding was used and this corresponded to a pitch of 

1.25 mm. When the studding completed one rotation, the mechanical holder 

moved a distance of 1.25mm. The required pitch length of the spring is 

attained from multiple full rotations of the lead screw.
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If it is desired for future work, additions to the spring lathe could be made in order 

to perform stages 1 and 2 , described earlier, by extending the frame and having a 

long hot wire to cut a central hole in a solid polystyrene cylinder. Details of this 

design are not discussed here as it did not form part of the experimental work. 

Figure 5.2 depicts the assembled spring lathe together with the electrical 

connections.

Figure 5.2 Assembled helical spring lathe

Two particular methods were considered for rotational and traverse movements of 

the cutter to cut a helical spring. Method one involved connecting a series of gears 

to the rotation and traverse shaft of the lathe. In essence, to obtain the pitch of the 

coil required, the gears were to be meshed in their respective ratios and mounted 

to the shafts. A mechanical handle could have been mounted to one end of the 

shaft and hence the rotational and traverse movements would have been obtained 

simultaneously when the handle was rotated. For different gear ratios, the gears 

consisted of different diameters and therefore the many holes would have been 

drilled into the MDF board with precision. In line with this and also due to the fact 

that a consistent speed needed to be applied to the handle to obtain a good cut, the 

second method was chosen. As mentioned earlier, this method involved using two 

stepper motors mounted at the end of each shaft and the precise movements 

controlled with consistent speed throughout via a computer. This is further 

illustrated in the following paragraph.
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To control the rotation and traverse movements, the stepper motors were 

connected to a computer and purposed written stepper motor driver software was 

used to input the desired speed of the motors. Figure 5.3 shows the schematic 

diagram of the control circuitry for the stepper motors, the 15 Volts DC power 

supply and the computer. The stepper motor control board was connected to the 

host computer by means of an RS232 serial line on COM 1 port.

TRASVERSE
STEPPER MOTOR 
BOARDMOTOR A

COM 1

COMPUTER

15V DC

MOTOR B

ELECTRONIC 
ROTATIONAL STEPPER 
MOTOR BOARD

+  -

15V DC

Figure 5.3 Schematic diagram of connections between stepper motor and computer

Shown overleaf in figure 5.4 is an example of the stepper motor driver software 

provided by the manufacturer of the control board, Milford Instruments Limited 

UK. There were two sections to this software; the first allowed the stepper motor 

setup, where the rotational and traverse motors were defined respectively. This 

included the direction and the relative speed of the motors to each other. The 

COM port of the serial interface was also defined here. In the second section, the 

speed and number of rotations of the motors could be defined to obtain the 

required pitch of the spring coil. The driver software permitted the definition of a
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mini program in order to obtain continuous looping of the stepper motor rotation. 

This was useful as sometimes several continuous runs were necessary in order to 

cut the required pitch and number of coils.

Step per S etup

-  CommPort 
©  C0M1 O COM2

-Key Increments
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Figure 5.4 Stepper motor driver software



The hot wire cutter was fabricated from nichrome wire (based on a nickel 

chromium formula). When sufficient current was passed through to the cutter, it 

self heated (due to resistance of the nichrome) to a temperature sufficient to melt 

the polystyrene. The polystyrene material was very sensitive to the level of heat 

applied. If the temperature of the wire was too high, for example, the polystyrene 

burnt away rapidly and this caused uneven cutting or sometimes a variation in 

thickness throughout the helical spring, while, if the temperature was too low, 

then frictional effects caused the hot wire to be held up at a particular position, 

and again gave poor profile consistency along the full helix. This behaviour was 

also dependent on stepper motor speeds. To prevent such problems from 

occurring, the hot wire was connected to a current controller. This was a 

commercial solid state device that permitted output currents to be controlled in the 

range of 0 -  15 A (DC motor control module type X I0335 manufactured by 

United Automation Ltd.). Current settings were achieved by using a potentiometer 

and resistor network. The circuit was supplied by a linear power supply at a fixed 

output voltage with a full load capability of 22 A. Figure 5.5 shows the schematic 

setup of the hot wire and current controller.

CURRENT
CONTROLLER POWER SUPPLY 

20-22A OUTPUT 
13.8V

IN OUT

RT

-^-WWWV-UVW\AA— < 
POTENTIOMETER RESISTOR

HOT WIRE

Figure 5.5 Schematic of hot wire and current controller
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The interaction between the speed of cutting and the temperature of the wire, and 

the behaviour of the polystyrene meant that the optimum setting for the cutter 

current (and hence wire temperature) had to be found by trial and error. However, 

once this level was ascertained, it varied only marginally between cross-section 

designs.

5.3 Experimental Procedure and Test Regime

The polystyrene cylinder hollow tube procured had the dimensions shown in 

figure 5.6. The expanded polystyrene obtained was of the soft grade with density 

of 16 kg/m3. This corresponded to shear modulus of 1.93 MPa and Poisson’s ratio 

of 0.086 using standard material data obtained from polystyrene material 

manufacturers, although data for polystyrene differs greatly between 

manufacturers and these values may be somewhat inaccurate for the grade chosen 

here.

Several polystyrene helical spring cross-sections were cut from these tubes using 

the spring lathe. These were square, rectangular, L and Z profiles. An attempt was 

also made to cut the Omega profile. This will be further detailed later. The 

dimensions of some of the cut profiles are shown in figure 5.7. The dimensions 

and cross-sectional profiles were chosen using several criteria. For example, in 

order to verify the expected decrease in spring constant as the cross-sectional 

depth was reduced (see section 3.5), profiles A, B and C were cut. Additionally in

25 mm

720 mm

Figure 5.6 Polystyrene tube dimensions
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order to test the hypothesis that asymmetry in cross-section profile would cause a 

rotation under loading (see section 4.3), profiles D and E were cut. Measurements 

of the section rotation were made (see later) and the results compared with the 

analytical solutions for the complex profiled pressure armour cross-sections.

25
Centreline of spring 

l
i

25 !

12.5 12.5

D 1 18

10 
< — ►

30

17

25

All dimensions are in mm

The profiles are drawn with the centreline of 
spring on the right hand side of the cross-section

Figure 5.7 Dimensions of some cut helical spring cross-sections
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The number of coils present in the spring depended upon the pitch length of the 

spring that was required. Given the dimensions of the procured polystyrene, the 

thickness the cross-section was always 25 mm. An example of the cut polystyrene 

spring of five pitch length is shown in figure 5.8. The photo depicts a square cut 

profile.

Figure 5.8 Cut polystyrene helical spring

Once the springs were fabricated and enough experience had been gained in using 

the cutting apparatus, the measurements of the change in diameter, deflection and 

rotation of the cross-sections were observed for a series of different loading 

modes. It was hoped that the trends in the deformation behaviour, with respect to 

the different loading modes, would provide an understanding on how the stiffness 

of the springs change with internal pressure and axial load, which in turn would 

assist in the design code of pressure armour layers.

The cut polystyrene springs were subjected to tensile or compressive forces with 

or without constraints at the spring ends and an internal pressure load via a 

purpose built test rig which could apply radial forces on the coils of the spring as 

well as a longitudinal axial load. The three loading modes that were tested on the 

polystyrene helical spring models were as follows: -

1) pure axial load

2 ) simulated internal pressure load (lateral loading)

3) combined axial and internal pressure load
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1) Experimental methods for pure axial loading mode

For pure tensile loading of a helical spring, although the cut spring was comprised 

of several coils, only one complete coil was required for the measurements. The 

spring was fixed at one end with the other end free to rotate. The analytical 

solution presented in section 4.5 did consider the case of both ends being fixed, 

however this would have been difficult to achieve experimentally. It was assumed, 

however, that the polystyrene spring would not rotate much under axial tensile 

loads. In any case this is a reasonable assumption given the low magnitude of the 

applied load. Polystyrene has a low Young’s modulus, hence only small forces are 

required in order to get accurate measurements of the change in dimensions of the 

spring. Axial loading of the spring was performed by placing small weights at the 

end of the first coil for measurement. Coins in denominations of lp and 2p were 

used as weights. A lp coin weighed 3.5 g whilst 2p coins weighed 7.1 g. The 

tensile tests were carried out for all the profiles shown in figure 5.7 previously. A 

coil loaded in this way is shown in figure 5.10. Note that only one coil was needed 

for loading and measurements although it was possible to use all the coils. This 

was done to simplify the measurement exercise, not least for the experimental 

setup of combined axial and radial loading tests.

One of the ends fixed from
movement

Polystyrene 
helical spring

Location of coins placed to
measure deflection of helical 
coil

Figure 5.10 Loads on axial loading of spring
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Following on from the axial loading tests, an experiment was done to find out 

whether the helical spring wire cross-section rotated under axial load. The interest 

in rotation relates to the discussion presented in chapter 4 section 4.3. The setup of 

this experiment is shown in figure 5.11 below. A small mirror was placed on one 

of the flat surfaces of the helical spring and aligned to a laser diode mounted on a 

travelling microscope. When an axial tensile load was applied to the helical 

spring, any change to the angle of the laser after it reflected back from the mirror 

was recorded.

laser diodemirror

spring

telescopic
boom

i travelling
microscope

Figure 5.11 Setup of cross-sectional rotation observation under axial load

It was observed that when the helical spring was subjected to a tensile force, the 

laser light reflecting back from the diode did not show a change in angle. This 

implied that the surface of the spring where the mirror was attached did not twist. 

Hence, it can be concluded that under axial loading, the cross-section of the 

helical spring did not rotate. This conclusion was in line with the predictions from 

the analytical solution presented and discussed in chapters 3 and 4.

2) Experimental method for internal pressure loading

The simulation of internal pressure loading of a helical spring was more 

challenging. Several options were considered. An early proposal was to use some
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kind of rubber membrane concentric to the spring axis. The pressure load would 

have been applied using air pumped into the rubber membrane. However this 

method was not thought to be viable since it was considered that frictional forces 

would be introduced between the membrane and the coils, and hence free 

movement of the coils would therefore be prevented and the overall response 

would be a complicated combination of the response due to internal pressure load 

and the frictional force. Friction would act to restrain the movement of the spring 

and generate the impression that it was stiffer than expected and hence mask any 

real effect caused by an internal pressure load. Free movement of the coils under 

internal pressure load was a necessary prerequisite for the situation of combined 

axial and radial loading which is discussed in the next section.

A non-contacting force transfer method was therefore sought and the proposal was 

to generate magnetic forces between the inside surface of the helical spring and an 

inner cylindrical tube. This method was considered viable as magnetic discs small 

enough to fit on the coil profile were relatively cheap and easy to procure. Pairs of 

magnets were positioned (one magnet on the coil and another on the inner tube) 

and aligned in such a way that the mutual repulsion would have been strong 

enough to cause the spring to move radially outwards. The repelling force was 

measured by a simple calibration test and determined for each coil as long as the 

distance between the magnet pairs was known. However, once the helical spring 

coil moved radially it was also likely to move axially (due to applied radial 

forces), hence the magnet pairs were no longer aligned. This caused the magnetic 

force to weaken and hence did not reflect the true force applied on the spring.

One other major disadvantage of the magnetic method was the concern that as the 

magnetic pairs would go out of alignment there would be the possibility that 

additional and unintentional forces would have been superimposed on those 

experimentally applied. In other words the magnets would influence the 

measurements of the deflections. The only way of overcoming this would have 

been to fabricate the inner cylinder as one whole magnet with the disc magnets 

being applied to the coils only. In this case, the disc magnets would always be 

radially aligned with an opposing magnet. Overall, the magnetic method was

177



abandoned in favour of a simpler and slightly more primitive method utilizing 

pulleys and suspended masses as described below.

The final method for simulating an internal pressure load comprised a purpose 

built test rig to apply radial forces to the polystyrene helical spring. It consisted of 

several pulleys with weights to apply radial forces on the spring coil. The design 

of the pulley test rig is shown in figure 5.12.

▲

steel loop

studding

frame

r̂

cross-section
C>

nylon cord

pannier

Figure 5.12 Pulley test rig

Studding of about 1 m in length was mounted onto two wooden frames as shown 

in the figure above. The helical spring to be tested was mounted onto the top 

wooden frame. Radial loads were applied using weights which were then placed 

into a pannier and a nylon cord attached between the pannier and the helical coil 

via a steel loop. Nylon was chosen for its low coefficient of friction between it and 

steel (used for the ‘pulleys’). A pulley took the form of a smooth plated steel loop 

through which the nylon was passed. The frictional effect was extremely small 

even with large loads applied. The pulley system was designed to rise up and 

down along the studding rods by means of an adjusting nut. In order to ensure that 

the load applied via the pannier and pulley was purely radial (and hence have no
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axial component) it was necessary to maintain the angle between pannier, cord 

and coil at 90 degrees, hence the need for the adjusting nuts. As the coil was 

loaded (either radially and/or axially) any axial movement in the coil position 

could be counted by moving the pulley up or down to maintain the 90 degree 

condition. The 90 degree condition was checked by using a travelling microscope 

equipped with a horizontal graticule. The adjusting nuts were moved to 

‘horizontalize’ the nylon cord and the travelling microscope was moved up or 

down so that the image of the line in the graticule was located along the nylon 

cord. This iterative procedure was repeated every time a mass was added to the 

pannier in order to adjust the radial ‘pressure’ load.

Measurements of the change in radius of the coils and of the axial deflection were 

made as a function of the mass in the pannier. It was important to ensure that the 

same mass was added to each of the five panniers in order to maintain loading 

symmetry. A better simulation of the internal pressure load could have been 

achieved by increasing the number of pulley/pannier combinations, but five was 

chosen for practical reasons and was considered sufficient. Additionally, it should 

be noted that the rig only allowed a single coil within the spring to be tested. 

Again this was chosen for practical reasons (testing more would have required a 

complex arrangement of pulleys, panniers and studding, offset from each other to 

avoid interference). The implications of the results are discussed later. Figure 5.13 

shows one helical coil being stretched radially using the pulley test rig.

Figure 5.13 Helical coil experiment on pulley test rig
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3) Experimental method for combined internal pressure and axial load

For the experiments involving the combined axial tension and internal pressure 

loading, the whole process described above was repeated but masses were placed 

on the coil as well as in the pannier. As described previously, coins were found to 

be an ideal way of uniformly loading the coils axially. Again, all the cords for all 

the panniers had to be adjusted so that they remain right angles to the studding 

before any measurements were recorded. Figure 5.14 depicts a helical coil being 

subjected to tensile and radial forces and it can be seen that the position of the 

cord between loop and coil is at right angles to studding.

Figure 5.14 Helical coil subjected to tensile and radial forces 

4) Supplementary considerations

The arrangement for applying an internal pressure load functioned well for 

symmetric cross-sections, but for more complex designs, it was necessary to 

devise a means of applying a load that would not deliberately add an unwanted 

twisting moment to the section. Accordingly, a parallelogram arrangement was
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used as shown in figure 5.15. The parallelogram also permitted free rotation of the 

cross-section should it have wished to do so.

splint
nylon cord

nylon cord

To existing 
pulley system

Figure 5.15 Helical spring cross-section attachment for measurement of angle of rotation

The arrangement also permitted the measurement of the angle of twist of a section 

using a simple protractor based method. This modified pulley system thus allowed 

the rotation of helical spring cross-sections that were not symmetrical, such as Z 

and L sections, to be measured when subjected to radial loads.

5.4 Interlocked Profile Cutting

The situation pertaining to the Omega profiled wire was quite complex given that 

each coil is interlocked within its immediate neighbour. As has been discussed 

previously, the coupling between the coils is likely to severely restrict the relative 

movement of the coils with respect to one another. Movement however, must be 

allowed, or else the pressure armour reinforcement will provide a low degree of 

flexibility much as would be generated if  the reinforcement was a solid tube. Thus 

the helical spring approach remains justified, albeit within the constraints placed 

upon the coils by the flexibility and movement allowed within the interlocks.

For the case of the physical model, machining an interlocking cross-section was

actually easier than might have been first thought, since the hot wire cutter was
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appropriately profiled to cut a line between two coils, without it ever being 

necessary to reassemble those coils, unlike a true Omega profiled wire 

reinforcement, which would have to have been manufactured as a wire and then 

slotted together. Figure 5.16 shows an example of a cut interlocked Omega profile 

helical spring.

Figure 5.16 Cut Omega profile helical spring

The experimental implications of interlocked profiles, in particular the Omega 

profile are discussed in chapter 6 . Given the relative ease of fabricating 

interlocked profiles, the polystyrene model described thus offered considerable 

advantages for the verification of both simple and complex helical geometries. In 

the next section, the results of some of these cut springs are presented and 

discussion made on the deformation of the springs.
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5.5 Results and Discussion

Figures 5.17 -  5.23 show the experimental results for the range of cross-sectional 

profiles that were cut. The results are first presented for axial loading cases, 

followed by radial loading (internal pressure) and the combined axial and radial 

loading.

5.5.1 Results for Axial Loading

The changes in the coil deflection and radius were noted and plotted against the 

applied load. For all the pure axial loading tests, the applied axial load varied 

linearly with the coil deflection. This was expected given the observations in the 

earlier chapters and the fact that the springs were not operated in the large 

deflection condition. An axial tensile load caused the coils to extend their length 

while the coil radius contracted. The coil stiffness depended upon the cross- 

sectional area of the spring. A larger cross-sectional area generated larger spring 

stiffness, as was expected from the theory. The reduction in radius due to the 

applied force was not linear, again as expected from the theory. However, 

discrepancies occurred in the relative radius magnitudes.

The results for the square cross-section are a representation of most of the profiles 

and hence will be described here. The responses of the square section subjected to 

axial loads are shown in figures 5.17(a) - (c). Results for the other cross-sections 

tested are presented in Appendix E. Although at first look, the discrepancy 

between the analytical result and the experimental measurements seems large, 

when consideration is given for the likely inaccuracies in the material data (see 

section 5.3) and also the necessity to constrain the helix ends (in the analytical 

model -  see section 3.5), then the differences in response are not surprising. End 

constraint would be expected to raise the stiffness and this indeed is seen in figure 

5.17(b).

The experimental results of the axial force -  deflections for all cross-sections gave 

good agreement with the analytical plots (for example, see figure 5.17(a)). Several
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reasons were attributed to the small differences obtained. These reasons however 

were not concerned with the assumptions made in obtaining the analytical 

solution. First, it was noted that the results were affected by the values of shear 

modulus and Poisson’s ratio. Secondly, the measurements made on the 

deformation of a coil were to the nearest 0.5 mm. This caused some error in the 

data measured as some of these deformations were quite small. For example, the 

coil radius contracted less than 0.5 mm when the coil was deflected by 10 mm 

axially in the analytical solution. Experimentally, such a small deformation is hard 

to observe, not least to measure. Hence, where possible, the experiments for the 

axial tensile loading were carried out twice to obtain a more accurate data spread.

It was also worth noting that the results obtained analytically were for coils with 

both the ends fixed from rotation. As for the experiments, the coils were only 

fixed at one end while the other end was free to rotate. The experimental 

responses mirrored the trends obtained from the finite element responses (see 

figure 3.18(c) in chapter 3), where the helical coil in the finite element model was 

also constrained at one end only. This helps to explain the discrepancy seen in 

figure 5.18(b), where a larger change in the radius was observed experimentally 

than analytically, as a consequence of the greater degree of freedom.
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Figure 5.17a Axial load -  deflection for square cross-section experimental result
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Axial tension versus Spring radius
(square cross-section)
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Figure 5.17b Axial load -  spring radius for square cross-section experimental result
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Figure 5.17c Spring radius -  deflection for square cross-section experimental result

However, the results are still comparable because the measurements were taken in 

small deformation region as the polystyrene is not as elastic as a metallic material 

and large deformations could have caused the coil to plastically deform. Given the 

discrepancies in the magnitudes of the coil radius obtained, the corresponding 

response of the change in the overall spring deflection is also affected (see figure 

5.17(c)).
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5.5.2 Results fo r  Internal Pressure Loading

It was noted that the dimension of the polystyrene cross-sections compared to the 

helical spring is no longer small, hence there would be some error obtained in the 

analytical result. However, to minimise this effect, the appropriate wire strain 

value can be obtained from finite element analysis for the cases of pure radial 

loading and the cases of combined axial and radial loading modes. This was 

appropriate since in the previous chapters, the wire strain values obtained from the 

analytical result corresponded well with the result of finite element analysis. 

Additionally, the finite element analysis does not work on the assumption of 

slender rod, hence making it valid for use in this analytical solution.

The results of internal pressure loading for square section are presented in figures 

5.18(a) -  (b) and results of other sections are shown in Appendix E. It should be 

noted that the internal pressure was simulated using radial forces applied at five 

locations at angles equally spaced. There are distinct discrepancies obtained 

between the analytical results compared to those obtained in the experimental 

tests. This can be attributed to several problems. One is that the rod from which 

the spring is fabricated is no longer considered slender and secondly to get close 

to a distributed line loading, the number of points of applied radial loads appears 

to be insufficient, and would ideally need to be increased. However, this was not 

practical given the experimental setup and measurements of the resultant 

deformation would have been difficult to obtain, as the iterative adjustment of the 

pulley system would have been required.

In figures 5.18(a) and (b), it can be seen that a radial load applied to the 

polystyrene expands the spring radius much more than that predicted from the 

analytical solution. This suggested that the experimental helical spring was of 

lower stiffness than its analytical model. The reason for this discrepancy is 

thought to be due to the limited number of points over which the pressure load 

was applied (as suggested earlier), which causes the coil to expand in a non- 

uniform manner and to rotate off-centre (one of the ends is not fixed). 

Measurements of the change in spring radius taken at various diametrical points 

thus gave larger average values as the coil was eccentric to the spring axis.
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Furthermore, as only one coil was loaded, the coil expanded more than it would if 

more coils were loaded in the tests. The additional loading of adjacent coils would 

prevent the large radial expansion given that each coil constrains its neighbour. 

Loading a single coil can be regarded as loading a curved beam whose free end 

can thus deflect without constraint.
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Figure 5.18a Internal pressure -  deflection for square cross-section experimental result
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Figure 5.18b Internal pressure -  spring radius for square cross-section experimental result

Although the radial load did not fully simulate the internal pressure, the twisting 

of the cross-section of the helical wire can still be observed for the L and Z



sections and the results are shown in figures 5.19 and 5.20 respectively. This 

confirmed that that a resultant moment was generated about the centroid of the 

cross-section by the radial load, resulting in the twist of the wire cross-section. 

This was not observed in the square and rectangular (i.e. symmetric) sections. The 

analytically derived response for the angle of twist is not shown in figures 5.19 

and 5.20 due to the large discrepancy between these and the magnitudes seen in 

the experimental work, nevertheless the trends seen are still the same.
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Figure 5.19 Internal pressure -  angle of twist for L cross-section experimental result
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Figure 5.20 Internal pressure -  angle of twist for Z cross-section experimental result
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5.5.3 Results fo r  Combined Axial and Internal Pressure Loading

The results for the square cross-section helix are presented in figures 5.21(a) and 

(b) and given that the trends seen in the other sections was similar, these are 

presented in Appendix E. For the applied tension load with fixed internal pressure 

load step, it can be seen that the stiffness of each spring increases as the radial 

load step increases. This is very obvious for the rectangular cross-section helices 

(shown in figures 5.22 and 5.23) and less obvious for the other sections. This 

confirms the analytical and numerical findings in this work, that spring stiffness is 

raised by the application of an internal pressure load. Generally, the pressure and 

hence the stiffness effect was small as the radial load step only caused small axial 

deflections. The line loads, X of 2.79, 3.97, 4.79 and 5.61 N/m corresponded to 

weight of pannier added with 0, 3, 5 and 7 coins respectively in each of the 

panniers. The results for the spring radius measurements reinforced the above 

conclusions and were in line with those expected from analytical studies. A 

representative plot can be seen in figure 5.21(b) with the remaining plots shown in 

Appendix E.
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Figure 5.21a Axial tension - deflection for fixed internal pressure step values

(experimental result for square section)
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Axial tension versus Spring radius (with fixed Px)
(square cross-section)
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Figure 5 .21b Axial tension -  spring radius for fixed internal pressure step values 

(experimental result for square section)
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Figure 5.22 Axial tension - deflection for fixed internal pressure step values (experimental 

result for rectangular section (18mm x 25 mm))
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Axial tension versus Deflection (with fixed Px) 
(14mm x 25mm rectangular cross-section)

0 :3 0

0 .25  - 

0.20 -  

0 .15  

0.10 -  

0 .0 5  - 

O
-;o

-0:05"
20 40 6 0 8D

Deflection (mm)

o X=2.74

□ X =3.97

A X=4.79

X X=5.61

y = 0 .0028x  + 0 .0 1 2 3

------ y = 0 .0028x  + 0 .0 1 4 4

y = 0 .0029x  + 0 .0 1 5 7

y = 0.003X + 0 .0 1 7 2

Figure 5.23 Axial tension - deflection for fixed internal pressure step values (experimental 

result for rectangular section (14mm x 25 mm))

Additionally, the increase in preload that was discussed in section 3.5 (chapter 3) 

was readily observed for all cross-sections tested (for example, see figure 5.21(a)). 

An interesting observation which can readily be seen in some of the response (for 

example, figure 5.22) was that the responses appear to converge at a particular 

preload value. This suggests that the change in preload is less that the 

corresponding change in gradient.

The analyses performed thus far have been for free helical coils. For the case of 

pressure armour, the coils are usually wound into its adjacent turn and hence 

interlocked. The next chapter presents and discusses the mechanics of interlocked 

helical coils compared to their free-moving counterparts.
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6 Mechanics of Interlocked Helical Wire Profiles

6.1 Introduction

The analyses carried out in chapters 3 and 4 were for a helical wire with cross- 

sections that were not interlocked, unlike a Z pressure armour profile, which is 

partially interlocked, or the Omega profile based armour, which, if manufactured 

would be a fully interlocked system. Such an interlocking feature could improve 

the flexible pipe’s ability to sustain end loads and also minimize the extrusion of 

the polymer sheath beneath the armour (this can suffer from creep due to the high 

service temperatures and pressures), and prevent any non-uniform (i.e. localized) 

extrusion. The interlocked nature will consequently also restrict the degrees of 

freedom of the helical coil compared to one without the interlock. In reality, the 

helical coil for a fully interlocked Omega profile layer would most likely be 

permitted a small movement in the axial direction of the helical structure before 

being restricted from further movement due to the interlocking feature. The 

behaviour of the system is therefore complex and may involve several 

mechanisms.

This chapter describes the mechanics of the interlocked profile, with reference to 

the Omega profile in particular. The response of interlocked helical coils to axial 

and pressure loading modes was investigated mainly by analytical methods, and 

also using some numerical and experimental studies, with these results presented 

here. Given that the coils were assumed to be interlocked, the structure is akin to a 

cylindrical tube but with lines of weakness along the tube and hence was expected 

to have a larger degree of freedom of movement compared to a purely cylindrical 

tube. The effect of the interlocking feature on the overall response of the helical 

structure and the implications on its load carrying capacity compared to one which 

is not interlocked is also discussed here. Additionally, issues with ends of a helical 

spring were also considered. For a pressure armour, the ends are always fixed to 

the end fittings, which prevents the coils from rotation when loads are applied.
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The analysis of the mechanics of helical springs, presented here, assumes that the 

pipe is of long length and the relative coil movements are similar along that 

length. This is most definitely true at the centre portion of the helical structure but 

towards the ends, there is expected to be some restriction of freedom of 

movement. The differences in relative movement along that length of the armour 

may well suggest a variation in the behaviour of the coils in terms of fretting 

fatigue. This will be discussed in detail in the next chapter.

The next section describes the mechanics of an interlocked profile subjected to 

axial and pressure loading modes, and highlights any possible mechanisms which 

could affect the fretting fatigue behaviour (some of these points will be discussed 

in detail in chapter 7).

6.2 Mechanics of Interlocked Helical Wire

As described in the previous chapters, for a helical wire which is not interlocked, 

the coil is permitted to change its dimension axially and also radially when 

subjected to axial loading. This holds true if the helical spring is not fixed at the 

ends, from rotation. Hence, when an axial load is applied, the helical spring not 

only changes in length but can also twist.

When a helical wire is interlocked to its adjacent coil, the free movement of the 

spring will be restricted. Referring to the hypothetical Omega profile given in 

figure 1 .6  in chapter 1 , it can be seen that the coil initially behaves like a helical 

spring until the protrusion part of the profile comes into contact with the walls of 

its respective socket. When this occurs, a force is generated between the two 

contacting components. At this stage, the helical spring is then prevented from 

free movement. The mechanics of the interlocked helical wire when it is fully 

locked and in contact is of great importance for several reasons. Firstly, the 

behaviour under axial and pressure loading is expected to be totally different to a 

conventional non-interlocked profile, and the response to these loads will govern 

factors such as the flexible pipe’s inherent flexibility. Secondly, the fact that the 

surfaces are now in contact, and that these zones carry substantial loads coupled

193



with the possibility that relative movement may still occur (before and/or after full 

locking has been achieved), has implications for fretting fatigue given that a tiny 

amount of movement can cause fretting to occur on the contacting surfaces. 

Figure 6.1 shows a schematic of an interlocked helical spring with the Omega 

profile.

Omega 
profiled wire

helix centreline

Figure 6.1 Omega profile interlocked wire helical spring

Consider the case where the profile is fully locked and the mating surfaces are in 

contact. When an axial load, say a tensile force is applied to the ends of the helical 

wire as shown in figure 6 .1 , the helical system does not extend in length in the 

axial direction in the same way a helical spring would. Additionally, conventional 

helical springs would be expected to rotate about its spring axis when under axial 

load; however it appears unlikely that an interlocked system would behave in the 

same manner. In spite of this, minor movements between adjacent coils cannot be 

ruled out and if they existed, would provide a possible mechanism for fretting 

fatigue. The possibility of generating small intercoil sliding movements can be 

understood better by considering figure 6.2. This figure shows a schematic of a 

series of blocks which are assumed to be interlocked using something akin to an 

Omega profile.
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Figure 6.2 Straight elemental interlocked blocks

If the system shown in figure 6.2 is subjected to an axial load, the blocks would be 

expected to slide away from each other. The smaller the inclination angle, 0i, to 

the direction of the axial loading, the greater the tendency of the blocks to slide 

past each other. This behaviour is due to the fact that the axial load generates a 

resultant force which tends to move the blocks apart. This is illustrated in figure 

6.3.
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Elemental block

Figure 6.3 Straight elemental interlocked blocks sliding apart under axial load

It is important to note that the sliding motion of the blocks results in a 

misalignment of the axial load components. If this is permitted to occur (i.e. if the 

axial loads can shift to accommodate this movement) then the blocks will continue 

to slide past each other. In practice such a degree of freedom is not present and 

sliding can only continue if the system rotates such that the axial local axes 

realign. This is shown in figure 6.4. This structure is similar to the one created in 

metal single crystals where slippage between the atomic planes occurs (Pascoe, 

1978).

Elemental block

Figure 6.4 Realignment of axial load on interlocked blocks
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A physical demonstration of the movement of interlocked blocks was set up using 

sections cut from cable trunking and adhesively bonded together. This is shown in 

figure 6.5. An axial tensile load was applied at each end and the blocks tended to 

slide away from each other as expected.

Load applied at 
direction shown

v \,w w  w w?'

Resultant of 
forces cause 
blocks to slide

Figure 6.5 Demonstration of interlocked blocks before and after applied axial load

In the course of this work, the initial postulation was that an interlocked helical 

spring system would behave in the same manner under axial loading. However, 

this was probably only true in the initial stages after an axial load is applied, given 

the fact that the helical wire is a curved beam compared to the straight elements 

considered earlier. This can be illustrated in figure 6 .6 , which shows a 

hypothetical single interlocked coil and considers it as a series of interlocked 

blocks of the type described above.

Initially, it would seem that the interlocked block will also slide relative to its 

adjacent block under an axial load. From a geometrical consideration, this will be 

accompanied by a commensurate reduction in coil diameter. However, because 

the wire is a curved beam, additional force is needed to expand or contract the 

helical structure as a whole, depending on whether it is subjected to an axial 

tensile or compression load.
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In order to do that, a large force is needed to bend the beam into its required 

position. Additionally, a large contact force is generated due to the axial loading. 

This prevents further sliding, if it occurs at all, by generating an increased 

frictional component which opposes sliding, and rises as the axial load rises. 

Therefore, the interlocked helical wire would be expected to move only minute 

amounts with respect to its adjacent coil under this mechanism. Even so, small 

movements of the order of microns are known to be ideal for generating fretting 

damage. Hence the mechanism described should not be ignored in any fretting 

design analysis. The relative sliding of the coil elements will correspond to the 

twisting of the helical spring about its spring axis. By implication then, if the 

pressure armour is subjected to a twisting load in contrast to a purely axial load, 

then relative sliding will definitely occur.

Omega elemental
block

\

Figure 6 .6  Elemental interlocked helical spring under axial load

The presence of constraints in the degrees of freedom of movement of the helical 

coil as provided by the practical terminations of the flexible pipe suggests that 

intercoil sliding would theoretically be impossible. However, in practice, these 

constraints may not be absolute, and in any case, their influence may not be 

transformed uniformly throughout the helical structure, especially if the frictional 

forces are substantial.
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If the previous discussion is valid, the boundary conditions at the ends of the 

interlocked helical coils are of great significance to the intercoil movements of an 

interlocked system (such as the Omega profile). Furthermore, if the nature of the 

interlocking is such that the coils are permitted a large degree of freedom of 

movement (i.e. the profiles do not contact fully along all interlock surfaces), then 

the armour may (at least initially) behave as a simple helical spring until such time 

as the movement generated, produces a full interlock. This raises the possibility 

that additional relative movements can occur between adjacent coils, and that 

these may give rise to fretting fatigue. To illustrate this further, the figure 6.7 

shown here is used.

Figure 6.7 Helical coils with ends free to rotate subjected to applied axial load

This shows a simple helical spring with no interlocking between adjacent coils. 

When an axial load is applied to stretch the helix as shown in the figure, the helix 

not only increases its length but also experiences a contraction in its diameter. 

Additionally, the helix is free to rotate about its axis when the axial load is applied 

and as described in chapter 3, a geometric analysis reveals that this rotation will 

indeed occur. Hence, in this instance, there is also an increase in the effective 

number of coils of the helix. This must mean that there is relative movement 

between adjacent coils. Thus, if an interlocked helical wire is used and the 

interlock is not perfect, there will then be relative sliding between the contacting 

surfaces about the spring axis, which in turn could encourage fretting fatigue.

Before axial 
load applied After axial 

load applied

Spring
centreline
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If however, as mentioned earlier, the flexible pipe structure is fixed at the 

termination ends using end caps, this mode of relative movement is also prevented 

and the helix only increases in length along its axis and contracts in radius, as 

axial load is applied. The number of coils remains the same. This is shown in 

figure 6 .8 .

Before axial
load applied After axial 

load applied

  Spring
centreline

Figure 6.8 Helical coils with ends fixed from rotation subjected to applied axial load

In order to simplify the analysis of an interlocked system, as presented later, it has 

been assumed that the end rotation is prevented by the constraining influence of 

terminations. Indeed for the analysis of an interlocked helical wire subjected to an 

internal pressure, it was necessary that the ends of the helical coil be fixed from 

rotation, or else the helix will just straighten out when the load is applied. The 

coils move a similar distance (relative to each other) when an internal pressure is 

applied, therefore no relative sliding about the spring axis is experienced by the 

surfaces of the interlocked profile as the number of coils remains the same.

The movements above are assumed to be uniform throughout the length of the 

pipe. However, in real systems, at coils near to the end terminations of the pipe, 

which are fixed from movement, there is a constraint imposed which does not 

allow the coils to move as freely as in the middle portion of the long pipe. End 

terminations are likely to constrain the end of the helix from radial movement as 

well as rotation. This implies that relative movement of the coils can occur for 

short distances near the end terminations. These movements are required in order 

to reconcile the need to constrain the helix ends, with the need to alter the helix
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diameter. The movements, though small could theoretically cause fretting to occur 

as pointed out by Ramsey (1991). This will be discussed further in the next 

chapter.

The next section describes the response of the interlocked helical spring, with 

particular reference to an Omega profiled wire, subjected to axial load, internal 

pressure and a combination of both.

6.3 Load Analysis of an Interlocked Helical Coil

6.3.1 Axial Loading Analysis

The previous discussion dealt with the possible degrees of freedom of movement 

of a helical interlocked coil, with a view to understanding the potential for fretting 

damage. In order to proceed with the analysis of the behaviour of an interlocked 

helix, the configuration chosen has been of a coil with its ends prevented from 

rotation and its coils having come into contact along the mating surfaces of the 

interlocking profiles. For clarity, this is defined as the ‘locked’ position. When the 

coils are not locked, the behaviour can be determined from the analysis of the 

mechanics of a helical spring as presented in chapter 3. However, it should be 

noted that during the process of reaching the locked condition, the protruding 

portion of a profile slides along the internal surfaces of the socket of the adjacent 

coil. There is a possibility that friction impedes the free movement of these 

sections and hence of the helix as well. The effect of friction on the response of an 

interlocked system is therefore briefly considered here. Dry Coulomb friction is 

considered where the frictional force is proportional to the normal force between 

the two bodies that are sliding and as described in Hills and Nowell (1994). When 

the surfaces of the interlocked profile is considered, the frictional force, Ffriction is 

given here as

= VM  (6-')

where p = coefficient of friction between the contacting surfaces
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X = line loading (normal force to surface) per unit length 

1 = length of helical wire in one coil

Since the frictional force acts to oppose the relative motion between two surfaces 

in contact, the total axial force, FA of the interlocked helical spring considering the 

effect of friction is then given here as

Fa =T  sin a x + Nb cos a, + fxXl (6.2)

which is a modification of equation 3.68 given in chapter 3.

Moving on to the scenario where the helical coil is now fully locked with its 

adjacent coil, as discussed above, it is clear that the overall helix length remains 

the same, and that this implies that the radius remains constant as well. Hence, the 

helix angle also remains constant from the geometrical relationship defined earlier 

in chapter 3. Therefore, using the slender rod theory presented in chapter 3, the 

final curvatures and tortuosity of the interlocked helical coil when subjected to 

applied axial loading are given respectively by

(6.3)

(6.4)

(6.5)

where k„o, KnJ = initial and final curvature in normal direction

Kbo, Kbi = initial and final curvature in binormal direction 

To, Tj -  initial and final tortuosity

It must be emphasized that this analysis considers the configuration when the 

helical coil is fully in contact and therefore fully interlocked. Therefore, the initial 

curvatures and tortuosity values are different from those defined in section 3.2.3 

and can be thought to take the value of the point just when the wire starts to be in 

contact and locked.

K b l = KbO



Given that the initial and final values of the curvatures and tortuosity are 

essentially the same from equations 6.3 -  6.5 (because the coil is locked), this 

implies that the internal moments which were defined using the constitutive 

relationship as described in chapter 3 are then given by

Using slender rod theory, the equilibrium equations presented earlier in equations 

3.46 -  3.51 can now be employed. With expressions 6.3 -  6 .8 , equation 3.49 

shows that the binormal shear force, Nb is equal to zero. Hence, the equilibrium 

equation reduces to the form shown below.

The radial line loading component, X, corresponds to the resultant of the contact 

force, between the contacting surfaces of the interlocked profile, pointing towards 

the centreline of the helical spring axis. This contact force is denoted Xc to avoid 

confusion with the internal line loading force which corresponds to an internal 

pressure load. Xc can be defined in terms of the individual contact forces between 

the coils, thus this is very similar to the situation of contacting of the wire surfaces 

as described in Phillips and Costello (1973), except here, the wire profile is of 

approximately rectangular in nature. Figure 6.9 shown overleaf indicates that for 

any one coil cross-section, two adjacent coils contact it; hence two contact forces 

are experienced. From an understanding of the geometry of the helix, if  a section 

is taken along plane A-A, then it can be seen that the individual coils sit along 

curves whose radius is defined by the angle of cut.

G„ = 0

= Elb (Kbl ) =0 

H  = GJ{ r ,- T 0) = 0

(6.6)

(6.7)

(6.8)

Tkm + X  = 0 (6.9)
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I A
Spring Centreline

Helical
wire

A

Note that the interlock features are not shown here

Figure 6.9 Observation of the contact force through cut section A-A

When observed through cut section A-A, the true cross-section of the wire under 

the contact loads can be observed. The cross-section of each coil can now be 

approximated by an elongated rectangular area contacting its adjacent coils. 

Additionally, a helical wire cross-section is located on the reference spring 

cylinder (see figure 6.9) with an angle y to adjacent coil cross-sections. It can be 

seen that along this cut section A-A, the reference cylinder is now somewhat
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elliptical in nature. However, the angle y is small and the distance of the wire 

centreline to the spring centreline is still taken as the radius of the helical spring in 

order to derive the contact load angle to the resultant contact force towards the 

spring centreline, denoted here by X. The derivation given by Phillips and Costello 

(1973) cannot be used in this scenario, in part because their analysis considered a 

number of helical wires wound concentrically together. Also, due to the fact that 

the helical angle considered is very large, observation of the cross-section through 

the cut section generates a very different view from the one shown in figure 6 .9 . 

The definition of the angle X is illustrated in figure 6.10, where the contact point is 

at point A shown on the helical wire cross-section.

Q

helix centreline
C

helical wire

Figure 6.10 Definition of wire contact angle to centreline of helical coil from cut section

A-A
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The width o f the profile from the cut section A-A, dwcs is given by

=
cos a,

(6.10)

where dw = width of wire cross-section 

ai = final helix angle

It is assumed that the dimensions of the helical cross-section are small compared 

to the coil diameter, hence the angle between the contact force and the surface of 

the reference cylinder, y is given by

s in  y  = - s s l  ( 6 . 1 1 )
2RX

where Ri = final radius of helix

Substituting equation 6.10 into 6.11 gives

sin) ' = r r ^ —  (6-12)
2 Aj cos a,

From figure 6.10, it can be observed that the angle y and angle X add up to tt/2. 

Therefore the angle between the contact force and the resultant force towards the 

spring centreline, X is given here as

A = —- [  sin 1---- —------| (6.13)
2  ̂ 2Rl coscq j
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The line of action of the contact force is acting approximately towards to the 

centreline of the helical wire. Hence the resultant of this contact force between the 

contacting surfaces of the adjacent coils gives

X c =-2Q  cos A (6.14)

where Xc = radial line loading

Q = contact force per unit length

As can be observed from figure 6.10, the resultant of this contact force in the axial 

direction of the helical spring cancels out because one side of the interlocked 

profile is pulling while the other is being pulled. As discussed in section 6.2, for 

an interlocked profile helical wire, it is expected to have a higher structural 

stiffness compared to a normal helical spring which has large degree of freedom 

of movement. This implies that a helical spring with an interlocked profile, such 

as the Omega wire can be made to withstand some axial load. In conventional 

flexible pipes, the tensile armour wires, which have large helical angles, take up 

most of the axial load of the pipe structure. If an interlocked profile pressure 

armour is used, the tensile armour wires could be constructed using a smaller 

cross-sectional wire area. Hence, the overall weight of the pipe structure could be 

reduced, while still retaining its axial load carrying capacity.

The axial load, Fa can now be expressed in terms of the component of its line 

loading in the axial direction of the pipe as the interlocked helical wire is now 

treated as a cylindrical tube. This is given by

Fa = 2kRxQl costtj (6.15)

where QL = helical line load in the axial direction o f  pipe
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Further to this, the relationship of the helical line load in the axial direction of the 

pipe, Ql to the actual contact force, Q is given by

QL =QsmX  (6.16)

Therefore, the applied axial load can then be expressed in terms of the contact

force, Q of the contacting surfaces and is given here by

Fa =2nRxQ cosax sin A (6.17)

Furthermore, from equations 6.9, 6.14 and 6.17, the tension in the wire gives

T = p   (6.18)
n cos a, tan A

Although the interlocked helical wire now behaves like a tube, this tension force 

still exists because of the possibility of some sliding contact between the wire 

surfaces.

The axial load carrying capacity of the interlocked helical coils is determined by 

the yield strength of the material. Once the yield strength is reached, then necking 

can occur at the thinnest portion of the interlocking profile. The stress at this part 

is given by the force normal to the surface area under load, which is approximated 

by

Q sin A
T<yp = — ,—  (6.19)

Where a p = contact stress at thin width of protrusion 

hw = height of wire cross-section 

and A is defined in figure 6 . 1 0
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6.3.2 Internal Pressure Loading Analysis

The behaviour of an interlocked helical spring subjected to internal pressure is 

based on the conclusion that the initial and final configuration of the helical spring 

remains the same, as given by equations 6.3 -  6.5. Furthermore, for consideration 

of a symmetric cross-section, that is a cross-section which does not twist with 

respect to the internal pressure (see section 4.2), the conditions 6 . 6  -  6 . 8  apply. 

Hence, from the set of equilibrium equations in 3.46 -  3.51, the solution reduces 

to the form shown below.

where X r  = total line loading in radial direction

The total line loading, XR, is made up of the internal pressure line loading, X, as 

well as the contact line loading, Xc given that the helical wires are fully in contact 

with their adjacent coils. The direction of the internal pressure is always pointing 

out from the spring centreline while the contact force is pointing in the opposite 

direction (see figure 6.10). Therefore, the response of an interlocked helical spring 

with a symmetric cross-section subjected to pressure is given by

where Px = internal pressure on helical wire

It can be observed from the solutions derived above, that an interlocked helical 

spring under internal pressure behaves in a similar manner to a cylindrical tube. 

Essentially, the tension in the wire is influenced by the applied internal pressure, 

just as would be the case for a thin walled cylindrical tube. However, localized 

stresses are generated in the case of an interlocked helical spring, at the 

interlocked contact sites and this makes the pressure armour more susceptible to 

failure than a solid of similar dimensions. The above analysis has ignored the

TKu + X r =0 (6.20)

Tkm -2 Q  c o s  X

7. (6 .21)
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possibility of relative movement between the coils as suggested in section 6.2. As 

has been discussed, such movements even if minute, could impact upon the 

fretting fatigue behaviour of interlocked pressure armour.

For the case of non-symmetric cross-section helical wire, consideration has to be 

made for the possibility that rotation of the cross-section could occur. The 

curvatures and twist of an interlocked helical spring subjected to an internal 

pressure are given by the analysis undertaken in section 4.3.2.

K, i =KM = Kn sin<P (6-22)

Kbi =ICM =Kblcos(p (6.23)

r , ' = T 0' (6.24)

where k„o , Kni ’ = initial and final normal curvatures of non-symmetric section 

Kbo, Kbi ’ = initial and final binormal curvatures of non-symmetric section 

To, ii = initial and final tortuosity of non-symmetric section 

(p = angle of twist of cross-section

Assuming small wire strain after the loads are applied, the internal moments have 

the following form (extending the analysis from axial loading mode in section 

6.3),

G, = 0;H  = GJ
ds

(6.25)

where GJ = torsional rigidity

f  = angle between cross-section principal axes to rod centreline principal 

normal 

s = arc length
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The set o f  equilibrium equations now reduces to the form as shown here.

-N brl + Ticbl cos(p + X  = 0 

- T km sin (p + N rx = 0 

-Nicbl cos cp + NbKbl sin<jo = 0

(6.26)

(6.27)

(6.28)

HKb, cos(p-N b =0 

- H k m sin<p + Af = 0

(6.29)

(6.30)

Where - X = internal line load 

N, Nb, T = resultant internal forces 

Gn, Gb, H = resultant internal moments

Substituting the values in equation 6.24 into 6.26 -  6.30, inspection showed that 

equation 6.29 and 6.30 give rise to expression 6.28. Additionally, equation 6.27 

expresses the tension in the wire in terms of the shear force in the helical wire in 

the normal direction. Therefore, to obtain the expression for an interlocked helical 

spring subjected to internal pressure, expression 6.26 was used. The internal 

pressure, Px considering the effect of the contacting surfaces and twisting of 

cross-section of the wire is then given by

6.3.3 Combination o f Axial and Internal Pressure Loading Analysis

From the analysis done above, the response of the interlocked helical structure to 

combined axial and internal pressure loading can be deduced. Using equations 6.9, 

6.18 and 6 .2 1 , the response of the helical spring of symmetric section subjected to 

internal pressure, Px with fixed axial load step for FA ^ 0 is given by

(6.31)
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n _ Fa +2nR]Q cosal sin A
X nKd. cosa, tan A

(6.32)

Similarly, for an interlocked helical wire with a symmetric section, the axial load, 

Fa with fixed internal pressure (X ^ 0) is given by

Fa = tcRx c o s  a { (Pxdw tan A -  2Q sin A) (6.33)

Finally, for non symmetric cross-sections, the response of the interlocked helical 

wire to the combined loading modes can be deduced using equations 6.18 and 

6.31. The response is given by the expression below for internal pressure, Px with 

fixed axial load (F a  ^ 0 ),

r
K bl COS (p

F a

px =
n cos a, tan A

— G J— t 
ds

+ 2£)cosA
(6.34)

and rearranging expression 6.34 for an interlocked helical wire subjected to axial 

with fixed internal pressure (X f  0),

(■ P X ,-2 gcosA ) d f

K bl COS (p
+ G J— tx 

ds 1
n cos3 a x tan A (6.35)

Where possible, the verification of the analytical solutions developed for the 

interlocked helical wire, in particular the Omega profile was performed using 

finite element analysis. Additionally, attempts to cut an interlocked Omega profile 

polystyrene spring were successful and are described in chapter 5. The finite 

element analysis on an interlocked spring subjected to axial load is described in 

the next section.
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6.4 Verification by Finite Element and Discussion of Results

From the analysis performed in this chapter, it was found that the interlocked 

helical spring behaves much like a cylindrical tube when it is fully interlocked. 

This means that the helical coil overall will not change its length and its radius. 

Hence, the helical angle remains constant. When an axial or internal pressure is 

applied to the interlocked helical spring, the interlocked helical coil will not fail 

until the stress at the contacting surfaces of the profile exceeds the yield strength 

of the material. At this stage, necking of the thinnest part of the wire in the 

interlocked profile can occur given that the axial and/or internal pressure load now 

causes the helical wire to deform plastically.

In order to model the localized stresses, it was not appropriate to perform finite 

element analysis using a beam element model on a helical spring because beam 

elements are assumed to be slender rods. Additionally, using the beam element 

model to analyze the global response of an interlocked system would have been 

complicated by the need to link adjacent coils together. Thus an attempt was made 

to model the entire 3-dimensional solid helix, but it proved problematic to run and 

solve the model in ABAQUS. This was thus abandoned in favour of a simpler, but 

nevertheless valuable model consisting of vertical interlocked sections from a 

hypothetical Omega helix. The dimensions of the representative Omega profile 

modelled is shown in figure 6.11. The chosen representative helix radius was

152.4 mm, which corresponded to a typical flexible pipe configuration.

20

2 .5

3 .5

~  5 ,6  *

Al t dimensions in xntn

Figure 6.11 Dimensions of Omega cross-section used for finite element modelling
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A total of four interlocked sections, each corresponding to a 5 degree turn of the 

helix, were chosen and the material employed was steel with a Young’s modulus 

of 207 GPa and Poisson’s ratio of 0.33. The end section was constrained from 

movement while a total axial load of 8400N was applied at the other end of the 

protmsion to cause the structure to yield at the thin width portion of the 

protrusion. This level was chosen with reference to the analytical solutions 

presented earlier as sufficient to cause yielding of parts of the Omega profile. The 

yield strength of the material was taken to be about 250 MPa for low carbon steel 

as given by Llewellyn (1992). Figure 6.12 shows the mesh of the helical sections 

modelled, with a higher mesh density chosen for the contacting parts of the central 

profiles.

I'tzM

Figure 6.12 Mesh of Omega cross-section used for finite element modelling
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It is important to note that each segment is curved in nature and also interlocks its 

neighbour along a plane inclined to the horizontal (as defined by the helix angle -  

calculated as 1.3 degrees. Figure 6.13 illustrates this geometry.

Figure 6.13 Omega profile helical segments

Figure 6.14 shows the result of the finite element analysis. The von Mises stress 

within the Omega profile was measured as 243 MPa. Von Mises stresses were 

utilized because these better represent the yield criterion in multiaxial stress 

systems. The stress calculated corresponded with that predicted using the 

analytical solution presented earlier, to within 3%. The small difference can be 

attributed to the fact that the axial load was applied at two node points rather than 

using a line loading, which cannot be done on solid sections in the finite element 

package utilized. The use of a higher mesh density could also have improved the 

accuracy of the result.
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Figure 6.14 Result of finite element analysis axial loading to cause yielding at protrusion

The reasonable correspondence between the analytical and numerical models is 

not surprising given that the system of blocks chosen can essentially be reduced to 

a simple 2 -dimensional model, given that the helical angle is small and the spring 

radius is large. However, the finite element model was also valuable in confirming 

the tendency of the sections to slip relative to one another. This can be seen in 

figure 6.15. As discussed in section 6.2, such movement, if it occurs would 

eventually stop as it becomes necessary to bend the coil in order to reduce its 

radius. However, even small micro-level movements could be sufficient to 

establish the conditions for fretting fatigue.
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Figure 6.15 Omega profile helical sections slipping under axial loading

As an enhancement of the above analyses, the polystyrene lathe described earlier 

(chapter 5) was used to cut an Omega profiled helix. This was subjected to tensile 

testing to destruction in order to observe the behaviour. For this experiment, four 

Omega profiled continuous coils were cut. The resultant helix was mounted in the 

apparatus shown in figure 5.12 in the previous chapter, and loaded in tension 

using a set of weights. Both ends of the polystyrene helix were fixed from 

rotation. The dimensions in mm of the Omega cross-section that was cut is shown 

in figure 6.16. The dimensions chosen were a compromise between what could be, 

in practice, cut and what was necessary to model a hypothetical Omega profile.

3

<*■
All dimensions in mm

Figure 6.16 Dimensions of Omega cross-section used for tensile testing
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The weights used were mounted in a pannier, which was connected to the base of 

the tube into which the helix was cut in order to simulate a line loading along the 

coil. From the experimental testing, the interlocked profile obviously showed a 

considerably larger axial loading capacity than a free-moving helical spring. A 

force per unit length of 158 N/m was required to cause the helical coil to stretch to 

failure. This roughly corresponded to a stress of 79 kPa at the neck of the profile, 

using the analytical solution developed earlier in this chapter. The typical 

documented yield strength of expanded polystyrene, similar to one used for the 

experimental work, is about 120 kPa. The discrepancy could be caused by the 

Omega profile not being cut uniformly along the coil given that it had a small 

overall protrusion dimension. The ‘neck’ stress was assumed to be uniform along 

the helix although this may have not been the case experimentally.

It is also likely that stress concentrations present at the comer of the profile could 

have initiated failure earlier. Failure of the neck section was not accompanied by 

much plastic deformation. This is unlikely to be the case for Omega profiles 

formed from metallic materials, where plasticity would be expected as a prelude 

to failure. The fact that the failure occurred by fracture and not by the ‘pull-out’ of 

the profiles as a result of elastic or plastic deformation of the adjacent profile 

edges illustrates that interlocking profile designs can be optimized against a 

particular form of failure. Finite element appears to be the obvious choice for this 

process, given that the desire is to create a geometry that is both economic in 

material usage, whilst maximizing the resistance to either pull-out, plastic failure 

or fracture.

The analysis in this chapter has allowed the response of a helical wire, which is 

interlocked to its adjacent coil, to be studied. This has enabled the movement of 

the helical wire with respect to the axial and internal pressure load to be 

characterized. In turn, the relative movement between contacting surfaces, if 

present, can give rise to fretting fatigue mechanisms. This aspect is further 

discussed in the next chapter.
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7 Fretting Fatigue and Design Recommendations

7.1 Introduction

As described previously, the pressure armour layer of a flexible pipe consists of a 

helical wire of a particular cross-sectional profile wound such that there is some 

overlap between adjacent coils. This overlap and the inherent flexibility of the 

pipe encourages relative movements between the contacting surfaces of adjacent 

coils when external loads are applied. As discussed in the literature review in 

chapter 2 , the consideration of the structural integrity of the flexible pipe structure 

ignored the contact between the helical wire coils for simplicity of analysis 

(Oliveira et al, 1985; Goto et al, 1987). However, issues of the contacting surfaces 

become increasingly important when high pressure loads are experienced by the 

flexible pipe as would be the case if it was used in deep water regions. The 

internal pressure load, together with the possible relative movement between the 

coils in the same layer and the between the different layers (if multiple layers are 

used) of the flexible pipe could combine to cause premature failure of the pipe 

structure due to fretting fatigue. Fretting damage could thus be a possible failure 

mechanism operating in deep water flexible pipes, although no data exists in the 

literature to characterize whether it is a significant factor in determining overall 

lifetimes. This may not necessarily indicate that fretting fatigue is unimportant, 

but just that insufficient studies have been performed. Additionally, as deep water 

structures become more commonplace, such damage may well emerge, given the 

additional loads placed on the structure. Also, as will be seen below, with complex 

cross-sectional profiles of the fully interlocked type, rubbing contact will be a 

definite feature in this behaviour.

The work here considers issues of contact between the coiled wire of the pressure 

armour layer, with particular reference to the Omega profiled wire. Notably, the 

latter is fully interlocked into its adjacent coil and the contacting surfaces slide 

against each other when axial and internal load is applied. From an initial 

viewpoint, the protrusion of the Omega profile is likely to slide (axially) past the 

surfaces of the socket of its next turn. Continuous axial loading and unloading of
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the pressure armour could thus give rise to fretting fatigue, where crack initiation 

occurs due to the relative microslip movements between the coils under 

oscillatory motion. It is assumed that when an Omega profiled coil is finally 

manufactured, the maximum relative movements between the coils will be 

restricted by the profile dimension to displacements of a few millimetres, or less. 

This level of movement is more than sufficient to generate conditions suitable for 

fretting, given that microslip movement on the contacting surfaces of the order of 

25 to 100 micrometres are assumed. Additionally, the potential fretting fatigue 

process would be exacerbated by the fact that the contact surfaces will experience 

high normal contact forces in the form of the internal pressure from the fluid being 

conveyed. In addition to pure axial movement, this work has identified many more 

modes of relative displacement between adjacent coils, including radial and 

intercoil sliding mode. All or some of these could lead to fretting damage.

This chapter considers some of these modes of movement identified previously, 

together with the loading scenarios and attempts to utilize the literature on fretting 

fatigue to predict possible sites for the generation of cracks. The important 

parameters in understanding the likelihood of fretting damage include the contact 

pressure, the contacting sites and the relative level of sliding motion. Factors such 

as the geometry of the wire’s cross-section, the level of axial loading and the 

internal pressure all impact upon the condition of fretting, and are thus considered 

in this chapter. Additionally, the issues of fretting fatigue generated in multiple 

pressure armour layer systems are also discussed here. Multiple pressure armour 

layers are employed in situations where very high internal pressure loads are 

experienced. Each helical coil is sheathed in another coil and therefore the 

possibility for intercoil contact can occur.

After the possible modes of relative movement have been considered, design 

recommendations are developed to help optimize future Omega profiles to reduce 

the potential fretting sites. In this way, it is hoped that the basic understanding of 

the mechanics of helical coils can be employed to better design pressure armour 

profiles to prolong their lifetime.
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The next section presents the description of the underlying conditions for fretting 

in general, of contacting surfaces, moving on to the surfaces within a pressure 

system, with particular emphasis on a fully interlocked Omega profile scenario. 

Potential sites for fretting damage are identified and their implications discussed.

7.2 Fretting Fatigue Mechanisms

There are several parameters that are significant in identifying potential fretting 

failure in a pressure armour. These are namely, the contact pressures developed, 

slip amplitudes generated and the contact area present. A basic review of the 

mechanics of fretting fatigue in consideration of these parameters is presented 

here based on the works by Johnson (1985), Waterhouse (1992), Hills and Nowell 

(1994) and Szolwinski and Farris (1996). Where possible, this information on 

fretting is discussed in the context of a pressure armour. Additionally, brief 

consideration is made on the likely influence of fretting crack initiation and 

propagation stages on the overall lifetime of a pressure armour, using data from 

Nowell and Hills (1990), Szolwinski and Farris (1996), Fellows et al (1997) and 

Lindley (1997).

7.2.1 Contact Conditions in Pressure Armour

The stress distribution at contact points is highly influenced by the contact shape 

and the shape of the contacting components. In considering pressure armour of the 

Omega profile type, the protrusion part of the cross-section is in contact with the 

flat surfaces of the socket when the coil of the wire is interlocked. This is shown 

in figure 7.1. When an axial load is applied to the interlocked coil, or as discussed 

in section 6.3 when an internal pressure is applied to the helix, the protrusion can 

be displaced by a small amount tangentially (direction parallel to the flat surface 

of the socket) whilst under a contact pressure. Hence, the Omega profiled wire is 

akin to a cylinder-on-flat Hertzian contact commonly considered in fretting 

fatigue literature. Such a contact is usually described as non-conformal and
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incomplete, that is having dissimilar contacting bodies and only a small area of the 

protrusion is assumed to be in contact with the surface of the socket.

Normal load

Cylindcr-on-flat Hertzian contact 

Figure 7.1 Contact geometry of the Omega profiled wire

Johnson (1985) provides a comprehensive review of the mechanics relevant to 

Hertzian contact and fretting fatigue. Considering the cylinder-on-flat plate above, 

in order to simplify the analysis of the local deformation of the contacting surfaces, 

assumptions such as the contact being in the form of an ellipse are made. 

Furthermore, the highly concentrated stresses on the contact surfaces are treated 

separately from the general distribution of the stress in the two components, which 

arise from the loading conditions as well as the body shapes. Therefore the contact 

area must be small compared to the dimensions of each component and the radius 

of curvature of their surfaces. The equations that result from these assumptions 

allow parameters such as the contact pressure (local stress) and contact size to be 

determined, which in turn can be used with real-world data to predict the 

susceptibility to fretting.

For the contact of two cylinders pressed together under normal load, P, and

subsequently loaded by a tangential shear force, Qf, the solution of the distribution

of normal pressure, p was given by Mindlin (1949). If the radius of one of the
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cylinders is assumed to be very large, and therefore approaching infinity, the 

solution can be used to define the contact of a cylinder on a flat (plane) surface.

The distribution of the Hertzian normal pressure, p(x) is presented in Hills and 

Nowell (1994) as

where po = peak contact pressure

x = horizontal displacement point of the contact surface 

a = contact half-width

The peak contact pressure is defined in Hills and Nowell (1994) as

2 P
(7-2)

na

and the contact half-width, a is given by

f 4P * n x \a = \—p j \  (7-3)n E  k

where E’ is the equivalent Young’s modulus and k is the relative curvature which 

is given respectively by

E Ex E2

* =  —  + —  (7.5)

where u = Poisson’s ratio
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Here, E refers to Young’s modulus and Rc is the contact radius the subscripts 1 

and 2  refer to the two different contacting components respectively.

To understand how the pressure and contact area affect the fretting behaviour, it is 

necessary to determine the distribution of the stresses generated and the 

relationship between this and the relative movement of the contacting surfaces. 

Friction obviously plays an important part in altering the fretting behaviour. 

Following Amonton’s law of sliding friction quoted in Hills and Nowell (1994),

\q\ = n p (x)  (7.6)

where p is the coefficient of friction and q is the ‘shear traction’ on the surface. 

The parameter q helps to define to the mode of movement at the sliding surfaces.

When subjected to a sliding load, surfaces can ‘stick’ or ‘slip’ apart. In most cases, 

a combination of stick and slip occurs across the contact zone. This mixed 

scenario is illustrated in figure 7.2 from which it can be seen that the shear traction 

differs depending on whether the stick or slip zones are considered. From 

Szolwinski and Farris (1996), the shear traction equates to

q(x) = q'(x) + q"(x) (7.7)

where

q'(x) = Mp0J l -
\ a j

c < \x < a (7.8)

q (x) = n p 0z^ . \ \ - \x\ < a (7.9)

The parameters ‘csz’ and ‘a’ define the extent of the zones within the overall 

contact area, where csz is the stick zone half-width.
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The relationship of csz/a is defined by

H'-&)
Equation 7.9 presented in Szolwinski and Farris (1996) missed out the csz/a term 

and this is thought to be a typographical error. The surface traction distribution 

due to the applied normal load and the coordinate system used is illustrated in the 

diagram shown in figure 7.2 as provided by Szolwinski and Farris (1998).

IQfhMP

>
specimen

For localized stick, |q(x)| < gp(x) 
For localized slip, |q(x){ = pp(x)

>+x

shear tractions, 
normal pressure, p(x) q'(x) and q”(x)

net normal and 
shear tractions

m

stick+a +a-a

Figure 7.2 Fretting contact shear traction distribution and the coordinate system for 

normal pressure analysis (Szolwinski and Farris, 1998)

Here, the x and y axes taken are purely for fretting fatigue analysis and must not 

be confused with the axes used for global helical spring deformation analysis in 

the previous chapters. Additionally, the normal and shear forces are denoted by 

the capital letters ‘P’ and ‘Qf’ here for the fretting analysis. (‘P’ has been used in 

previous chapters to denote applied internal pressure.)
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Additionally, the components may be subjected to a bulk stress which displaces 

the contacting surfaces from their current position. This essentially happens when 

the components are subjected to some loading other than the normal contact load 

or the tangential force. Hence, there is a shift in the shear traction and the 

boundaries of the various zones, and this is then given by Hills and Nowell (1994) 

as

where e = offset of centre of stick zone from centre of contact

Expression 7.11 reduces to the form of expression 7.9 when the bulk stress is not 

present. It must be noted, however, that the solution is only valid if the bulk stress 

is small compared to the tangential force, or else the edge of the stick zone will 

approach the edge of the overall contact area. Hills and Nowell (1994) give this 

range of bulk stress, Gb as

If the applied bulk stress is large, then reverse slip takes place, where the stick 

zone shifts towards the leading edge of the contact.

The fretting fatigue life is influenced by the slip amplitude parameter (a measure 

of the relative displacement of the contacting surfaces) as reported by Waterhouse 

(1992). As pointed out by Vingsbo and Soderberg (1988), the contact condition in 

fretting fatigue changes with the change in the slip amplitude. It was in their work 

that a series of fretting maps was proposed, based on the regimes that the 

contacting surfaces were in. These regimes can be classified into four categories 

and are summarized here.

(7.11)

(7.12)
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Firstly, the stick regime, where the wear and oxidation of the material is small as 

no slip of the contacting points is observed. No crack formation is observed in this 

regime. The second regime, known as the mixed stick-slip regime, is where slip 

occurs at the surfaces of the contact. Wear and oxidation are small although in this 

region the fretting fatigue life can be severely be reduced because of extensive 

crack formation and growth. This is the most important state in fretting fatigue life 

analysis. In the gross slip region, slip occurs over the entire contact area and 

fretting wear is observed. Here severe surface damage is encountered although 

crack formation in this regime is limited. Lastly, in the reciprocating sliding 

regime, the wear rate becomes identical to the conditions of unidirectional sliding 

and is termed ‘sliding wear’.

Vingsbo and Soderberg (1988) measured the tangential loading, Q f parameter to 

the relative surface displacement, df for a complete fretting cycle to determine the 

different regimes of fretting contact. This is illustrated in figure 7.3. The changes 

in the dynamic tangential force, Q f were compared to the fretting scars obtained 

from experiments of fretting on engineering alloys and hence the fretting regimes 

identified.

dv

(a) fol ie]
Characteristic examples o f tangential force ,Qf versos displacement, d recordings for 
different contact conditions. A1 is the transition amplitude corresponding to incipient 
partial slip and T l, the corresponding tangential force. A2 is the transition amplitude 
corresponding to incipient gross slip and T2, the corresponding tangential force.
(a) stick zone (b) mixed stick-slip zone (c) gross slip

Figure 7.3 Tangential force, Qf versus the relative contact displacement for different 

fretting contact regimes (adapted from Vingsbo and Soderberg, 1988)
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They then produced fretting maps which correlated the various parameters that 

affect the fretting fatigue life of the contacting points. For example, the 

relationship between the wear and fretting fatigue life as a function of the slip 

amplitude is shown in figure 7.4 as re-presented by Lindley (1997). The fretting 

fatigue life decreases with increasing slip amplitude up to a certain threshold value 

and increases again as the slip amplitude increases. The wear is seen to increase 

rapidly under the gross slip regime. It can be seen, however, that the components 

should operate in the gross slip regime if the fatigue life is to be increased. This 

may be attributed to the fact that solid debris formed from the wear process can 

inhibit crack propagation. The wear rate then accelerates in the full sliding regime. 

It was pointed out by Hills and Nowell (1994) that the wear process can abrade the 

initial embryo cracks before they have a chance to grow.
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Figure 7.4 Example of Vingsbo and Soderberg (1988) fretting map for relationship 

between wear and fatigue life as function of slip amplitude (Lindley, 1997)

Furthermore, experiments on the fretting fatigue of structural steels were 

performed by Gao et al (1991) and the relationship of fretting fatigue life as a 

function of slip amplitude under different pressure loads was established. A 

similar trend to one from the Vingsbo and Soderberg fretting maps was obtained.
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The types of steel studied were of the 2Crl3 composition, which has a low carbon 

content, and 35CrMo structural steel, which has medium carbon content. Results 

of fretting life as function of slip amplitude under normal pressure of 24.5 MPa 

and 49 MPa from experiments done by Gao et al (1991) for the different steels are 

shown in figure 7.5.

o 20 40
S lip Amplitude (ixm)

60 80

20 40 800 60
'  Slip Amplitude (pm)

Diagrams (a) 2Crl3 specimen and (b) 35CrMo(AC) specimen 

for contact pressures 24.5 MPa •

49 MPa °

Figure 7.5 Results of fretting life as function of slip amplitude for different steels and 

normal pressure (adapted from Gao et al, 1991)

Investigations into the effect of the slip amplitude and the normal load to fretting 

susceptibility of high strength steel were further studied by Nakazawa et al (1994).
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The results of the fretting life as function of slip amplitude to the different normal 

loads from Nakazawa’s work is shown in figure 7.6 for steel with 0.18% carbon 

content. These figures are applicable to the present work given that the pressure 

armour layer is likely to be manufactured from structural steel of low to medium 

carbon content depending on requirements of the oil field.

contact pressure 

A 40 MPa 

o 80MP& 

□ 120 MPa 

V 160 ME^

Vuc-_; q̂ -7-'

Stress Amplitude 200 MPa

5 10 15 20 25
Relative S lip Amplitude (pm)

30

Figure 7.6 Results of fretting life as function of slip amplitude for various normal 

pressures (Nakazawa et al, 1994)

7.2.2 Crack Initiation and Propagation

The analytical solutions described earlier enable the sites of fretting in pressure 

armour to be identified and quantified for various parameters given the basic 

assumption that Hertzian contact occurs. The remaining work in this chapter 

focuses on the prediction of sites where fretting fatigue is likely to occur. Once 

fretting damage occurs, however, crack-like defects are created and these can 

propagate under the applied global loads by ‘plain’ fatigue mechanisms. It is 

therefore insufficient to simply determine the points of initiation, if no 

consideration is given to the subsequent crack propagation given that the lifetime 

of a structure such as pressure armour, is as important as the knowledge of where 

fretting will develop.
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Fatigue fracture consists of a crack initiation and a propagation stage. In fretting 

fatigue, where two components in contact are subjected to bulk stress and normal 

loads, the fretting fatigue crack can be initiated in the early stages of the stress 

cycle and then propagated under plain fatigue mechanisms. It is obvious that 

fretting fatigue plays an important role in the initiation of the crack while plain 

fatigue is more important in the propagation stage. Hills and Nowell (1994) 

described the crack initiation process in fretting fatigue as a continuous process 

rather than a discrete process. This meant that the crack initiation phase took place 

over a period of time and involved accumulation of damage when loads were 

applied. Cracks were observed after a number of cycles but it was not possible to 

quantify when the damage from the applied loading due to fretting fatigue became 

a crack. As pointed out by Waterhouse (1992), the fretting fatigue crack initiation 

process is a complex interaction between physical factors such as the slip 

amplitude, normal pressures, mechanical factors such as morphology and the 

environmental factors which include temperature and presence of corrosive agents.

However, many researchers (Hills and Nowell, 1994; Szolwinski and Farris, 1996) 

have used the crack initiation damage parameter, a TTssdf, where aT is the 

maximum tangential stress, which is the stress parallel to the contacting surfaces, 

i ss is the maximum traction during one cycle and df is the relative slip between the 

surfaces. This damage parameter was formulated by Ruiz et al in 1984 and 

presented in the works of Hills and Nowell (1994), Szolwinski and Farris (1996) 

and Lindley (1997). A crack was predicted to initiate at the point where the 

maximum value of the crack initiation damage parameter reaches a critical value 

as pointed out by Lindley (1997).

In fretting fatigue, the initiation phase of fatigue is quite short as mentioned by

Hills and Nowell (1994) and most of a component’s life is consumed by the

propagation phase. The initiation phase occurs at a microscopic scale, while the

propagation phase of crack life can be quantified using a fracture mechanics

approach as used in plain fatigue once the crack size has grown to a few material

grain sizes. The life of a crack can be divided to a number of stages. Hills and

Nowell (1994) explained that the crack growth takes place by shear deformation

in the localized slip band near the crack tip. This is the early stage of crack growth
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when the threshold stress intensity factor is reached. Once the crack has grown to 

within a few diameters of the grain size, it moves into a region of fast growth rate, 

where the crack now grows due to the principal applied load being normal to the 

crack plane. Lastly, once the crack reaches the high stress intensity factor range 

region, the crack growth accelerates to fracture. The stress intensity factor, Kc is a 

measure of the fracture toughness of the material. Stress intensity factor has the 

general form as shown below.

where Yk = geometric factor of component 

Ob = bulk stress 

acrack = crack half-length

According to Hills and Nowell (1994), the stress intensity factor range is more 

useful in quantifying cyclic loading conditions and is given by

where Kcmax = maximum value of stress intensity factor during loading cycle 

Kcmin = minimum value of stress intensity factor during loading cycle

The relationship between the crack growth rate, dacrack/dN and the stress intensity 

factor range, AKc can be described by the well-known Paris law for metallic 

materials, whereby

(7.13)

Cmax (7.14)

dacrack
= C(AATc ) ' (7.15)

dN

where C and m are constant that depends on the material and environment.



Crack propagation rate can be plotted against the stress ratio, S r .  This is defined in 

Hills and Nowell (1994) as

5 * = ! ^  (7.16)
C max

When fretting conditions are superimposed upon plain fatigue scenarios, the 

response of the component differs from that under pure plain fatigue conditions. 

Experiments to determine the extent of such effects in steel were performed by 

Endo and Goto (1976) and also by Sato and Fujii (1986). The effects of the stress 

ratios to fatigue life as a function of the crack growth length were established by 

Sato and Fujii (1986) and are shown in figure 7.7. It can be seen that for a given 

crack length, the crack was initiated earlier in the fretting specimens. However, 

when the data in figure 7.7 was used to work out the crack propagation rate, it was 

found that the crack propagation in fretting specimens was lower compared to the 

plain (normal) fatigue specimens. It was concluded by Sato and Fujii (1986) that 

the crack growth in fretting fatigue can be retarded because of crack closure 

experienced by the components unlike in plain fatigue, where the crack 

propagation rate increased monotonically with crack growth.

o

o

0 2 4 (RQ33)____________
0 2 4 6 8 10 12 (R=0)
(RM3.33) 0 2 4 6 8 10 12 14 16 18

Number o f  cycles N , x 10* cycle 

N-a relation for p = 80 MPa andR =  0.33, Oand -0.33 ofSUS304Ls teel (oa = 120 MPa)

A > *  »  ̂ fretting fatigue A > O > normal fatigue

Figure 7.7 Results of fretting life as function of crack depth for various stress ratios (Sato

and Fujii, 1986)
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It should be noted that when in service, pressure armour is more likely to be 

subjected to a combination of both plain fatigue and fretting conditions, hence an 

understanding of how rubbing contact alters the plain fatigue behaviour is of 

significant importance.

7.2.3 Contact Condition in Multi-layered Armour

Returning to the original argument, the solution described earlier applies for the 

Hertzian contact condition, where the protrusion of the Omega profiled wire is 

contacting the surface of the socket in the adjacent turn. For the analysis of 

multiple layers of helical wire reinforcement, the assumption of a cylinder-on-flat 

surface is not applicable as the dimensions of the components are not small 

compared to the contact area. Hence, a new analytical solution for the stress at the 

contacting points is required. This was described in the work of Saevik and Berge 

(1995) for two layers of helical wire reinforcement in contact when loads were 

applied.

Saevik and Berge (1995) assumed that the contact area was circular, with radius of 

curvature taken as the contact line curvature of the contacting components. This is 

illustrated in figure 7.8. The fretting damage was observed from their 

experimental work to be on either side on the inner helical wire. Saevik and Berge 

(1995) explained that the curvature of the outer helical wire was larger than the 

curvature of the inner helical wire along their common contact line and thus the 

contact would be at some point on either side of the helical wire centreline.

The maximum contact stress, ac and the contact radius, Rc is given in Saevik and 

Berge (1995) by

(7.17)
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cos2 a  cos 2arV
k KE

(7.18)

where E = Young’s modulus

R = radius of helical spring 

a = helix angle 

po = peak contact pressure 

dw = width of helical wire 

h = thickness of helical layer

Figure 7.8 Fretting fatigue contact model for helical reinforcement layers (Saevik and
Berge, 1995)

The literature on fretting is extremely comprehensive, but for the purposes of this 

study, it has been important only to define to conditions under which fretting can 

occur in the materials of interest. The following section presents several ‘contact 

scenarios’ that have been identified within an Omega profile type pressure armour 

layer, on the basis of the previously described work on mechanics of helices, 

which are strong candidates for sites of fretting damage. These sites are predicted 

based on the conditions of contact that are present in the mating surfaces of the 

pressure armour both before and after application of an applied axial and/or 

pressure load. Design recommendations are made to mitigate the potential effects

(f t)  Fr«nnQQ«orMtry

k^ cos ô/R) cos2a

OwtortNMfan V

(b )  Contact
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of fretting where possible, through optimization of the profile and/or other 

considerations based on the fretting review presented in section 7.2.

7.3 Potential Sites of Fretting and Design Recommendations

There are various configurations that the contacting surfaces of the pressure 

armour are in, at any given time. Initially, the geometry of the profile will 

determine the contact points, but when the helical wire is subjected to axial load 

and internal pressure, movements will occur and new contacts established. Some 

of these movements are due to the cross-sectional behaviour of the Omega profile 

while others involve the global movement of the helical structure. Here, the 

various configurations of the pressure armour are described and the potential sites 

of fretting due to the contacting surfaces are discussed. The deterrence of fretting 

fatigue is also discussed based on the optimization of the cross-section and/or the 

use of palliatives where such design changes could not be achieved.

Configuration 1 -  Single Pressure Armour Layer under Various Loading Modes

It was shown from the previous analyses in chapters 3 and 4 on helical springs, 

that the coils move closer together under internal pressure and stretches further 

apart when under axial tension load. When the helical wire is interlocked into its 

adjacent coil, the movement of the helical spring is restricted as the coils are in 

contact and locked after some axial deflection of the pipe.

Considering a single layer of pressure armour, where the Omega profiled wire is 

wound into its adjacent coil, there is the possibility of contact between the 

protrusion and the surface of the socket, and relative sliding when it is subjected 

to axial and internal pressure loading. As a flexible pipe is constructed from 

various structural layers, the pressure armour is prevented from larger expansion 

due to the internal pressure and cylindrical wall of the subsequent layer. Hence, 

the Omega profiled wire is akin to a cylinder-on-flat contact configuration under 

normal load as shown in figure 7.9. It is assumed that the stress field on the
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contact radii of both sides of the protrusion is independent of each other as the 

dimension of the protrusion is large compared to the contact radii. Additionally, 

axial loads can cause slip of the contacting surfaces and the fretting effect is very 

much governed by the coefficient of friction of the contacting components, and 

hence the relative displacement between the two contacting surfaces.

Qf2

Contact sites 1 and 2

P And Qf denotes the 
normal load and shear 

force respectively.
The subscript 1 and 2 
refers to the location of 

the loads.

Figure 7.9 Protrusion -  socket contact of the Omega profiled wire

There is a variation in the stress field on both points of contact of the Omega 

profile. Potentially, the effect of fretting at the contact surfaces at the bottom of 

the protrusion due to normal load P2 is larger than the top portion of the protrusion 

because of the inherent internal pressure load acting at the bottom of the profile to 

push the cross-section in the upward direction.

- Behaviour under Axial Load

An interesting insight would be to observe whether contraction in the helical coil 

contributes to the potential fretting on contact site 1 in figure 7.9, which is the top 

side of the protrusion, due to axial loading. It was recalled in section 3.5 that as an 

axial load is applied to a helical structure, the radius of the helix reduces if  the 

load is tensile and rises if it is compressive. To model this, the helical coil is fixed 

at one end while an axial load is applied at the other end. A radius contraction of 

the helical coils is expected when an axial tensile load, FA is applied. This can be 

approximated akin to a deflection in a cantilever beam and is shown in figure 7.10.
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Fixed end

i k

Centreline of helix

I

Cantilever beam

I yp = R2 -  Rj

Figure 7.10 Pressure armour axial loading and cantilever beam analogy

Assuming that the contact point is at the end of the cantilever beam, the radius 

contraction, R\ -  R2 is equivalent to the deflection of the cantilever beam 

experienced when a load is applied, shown in the figure as Fp. Hence, the contact 

load, Fp can be measured once the deflection is known. From the beam deflection 

equation for cantilever beam obtained in Timoshenko (1955), rearranging the 

equation to give the contact load, Fp in terms of the beam deflection, we obtain: -
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F -  3EIy> (7.19)

where yp = deflection of cantilever beam 

Lx = length of beam

In order to quantify this possible mode of contact, a parametric study was 

performed using equation 7.19 to observe the effects of changing the deflection of 

the beam (by changing the geometry of the helical spring) and the displacement 

length of the beam to the contact load. The dimension of the Omega profiled wire 

used was similar to that shown in figure 6.11 in the previous chapter. Table 7.1 

shows some selected results of deflection of the helical spring for typical 76.2 -

152.4 mm (3 and 6 inches) radius flexible pipe and pitch length of 21 mm. The 

slip amplitude of the contact surfaces of the Omega profiled wire was also varied 

from 5 - 1 0  mm. This is the amount of ‘slack’ in the design of the profile, and 

provides the freedom of movement which is required to generate flexibility in the 

pipe. This is one of the variables that has to be optimized when a fully interlocked 

profile such as the Omega system is designed. Young’s modulus of 207 GPa of a 

typical steel was chosen with section I = 8.33 x 10'10 m4.

helix radius 

(mm)

76.2 76.2 152.4

max. allowable 

slip amplitude 

(mm)

5 10 10

helix

extension(mm)

yp(mm) FP(N) yp (mm) FP(N) yp (mm) FP(N)

2 0.014628 0.00151 0.014628 0.00076 0.007313 0.00038
4 0.030589 0.00316 0.030589 0.00158 0.015292 0.00079
6 0.047883 0.00495 0.047883 0.00248 0.023936 0.00124
8 0.066513 0.00688 0.066513 0.00344 0.033245 0.00172
10 0.086478 0.00895 0.086478 0.00447 0.043221 0.00224

Table 7.1 Comparison of contact load, helix radius and slip amplitude
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From this simple analysis, it can easily be seen that as the helix is allowed to 

extend in length, the contact load rises as a consequence of a decrease in the helix 

radius. Also, the contact load appears to be larger for smaller diameter flexible 

pipes as the radius contraction due to axial loading is larger. An unexpected result 

is that as the slip amplitude increases, the contact load can be seen to reduce. This 

is because the maximum slip amplitude is obviously related to the length of the 

Omega protrusion. As this rises, the load generated by its deformation drops for a 

given value of deflection. It should be noted that the slip amplitude coincided with 

the reciprocating sliding regime of the Vingsbo and Soderberg (1988) fretting map 

as depicted in figure 7.4, where wear rate accelerates, and fretting is less of a 

problem.

Figure 7.11 shows the calculated contact load, Fp for applied helix deflection of a 

6 inch radius helical spring with maximum slip amplitude of 10 mm. It can be 

seen that the contact load increases progressively with the helical spring deflection, 

up to a point where the Omega profile is fully locked, and then the contact load 

increases rapidly. It can be seen however, that an Omega profiled pressure armour 

subjected to axial loading will not generate a sufficiently large contact load to 

cause fretting at contact site 1 shown in figure 7.9. The high stresses, if  incurred at 

this point are probably due to the internal pressure loading ‘squeezing’ the profile 

together.

Contact load versus Helix Deflection
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Figure 7.11 Contact load versus helix deflection for 6 inch helical spring
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To minimize the effect of fretting, the contact width of the protrusion should be 

increased so that the total contact area is increased when subjected to internal 

pressure. This is observed through equation 7.1, where increasing contact width of 

the contacting surface reduces the peak contact pressure experienced, hence 

reducing the overall stress distribution at the contact areas. The potential for 

fretting crack formation depends on the slip amplitude regime that the contact is in, 

and other factors such as bulk stress as discussed in section 7.2. The use of 

lubricants is also encouraged to reduce the coefficient of friction and lower the 

effect of wear, although this might have an effect on the fretting behaviour.

- Behaviour under Internal Pressure

To understand the movement under internal pressure loads, the finite element 

approach was used as a tool to observe the stresses at the contact surfaces of the 

pressure armour profile and to perform the optimization of the cross-sectional 

shape to reduce the high stresses experienced at the contact points and hence 

susceptibility to fretting. Axisymmetric modelling of the pressure armour profile 

was performed to observe the variation in contact stresses to applied internal 

pressure loading. Although the axisymmetric models do not replicate the full 

helical spring, it is extremely useful in observing the stress distribution at the 

contacting points of the surfaces.

The omega profiled wire with dimensions as given in figure 6.11 in the previous 

chapter was used as a starting point to perform the stress analysis under internal 

pressure loading. A 20 MPa internal pressure was applied to the 152.4 mm (6 inch) 

pressure armour constructed from steel with Young’s modulus of 207 GPa. Figure 

7.12 shows the result of the stress distribution across cross-section for a few coils 

using a coarse mesh and the end pieces fixed from axial and radial movement.
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Figure 7.12 Axisymmetric model of Omega profile under 20 MPa internal pressure

The stress distribution of the coils towards the middle section is more uniform as 

the end profiles of the pressure armour are constrained from movement, and thus 

suffer from boundary condition effect. Hence, to obtain the true stress distribution, 

the middle section is considered. An internal pressure load could alter the contact 

points and loading in several ways. Firstly, if contacts are already established 

during manufacture, an applied pressure would raise the contact load especially if 

an external constraint exists. Also, if rotation of the cross-section of the helical 

wire occurs (see section 4.3), then new contacts can be established and loads 

altered. From the analysis, it can be observed that the base of the pressure armour 

experiences bending due to the high applied loads. This in turn causes the high 

stresses seen at the base and not at the contact sites as predicted from discussions 

above. The undesirable effect of bending the overall structural behaviour of the 

pressure armour can be removed when a polymer layer is added into the 

axisymmetric model. This is appropriate given that in the actual flexible pipe 

structure, the polymer fluid containment layer is beneath the pressure armour and 

the internal pressure exerted by the fluid conveyed is transferred directly to the 

pressure armour layer. An example of the axisymmetric layer which includes the 

polymer layer is shown in figure 7.13. The polymer layer is modelled using



polyamide-11 (PA11) material which has a Young’s modulus of 235 MPa and 

Poisson’s ratio of 0.42.

S , H l a e s  M P *  
(A v e . C r l t .  : 7 5 1 )  

+ 5 .0 0 0 e + 0 2  
+ 4 .5 8 3 e + 0 2  
+ 4 .1 6 7 e + 0 2  
+ 3 .7 5 0 e + 0 2  
+ 3 .3  33e-H32 
+ 2 .9 1 7 e + 0 2  
+ 2 .5 0 0 e + € 2  
+ 2 .0 8 3 e + 0 2  
+ 1 .6 6 7 e + 0 2  
+ 1 .2 5 0 e + 0 2  
♦ 8 .3 3 3 e + 0 1  
+ 4 .1 6 7 e + 0 1  +0.000e+00

Figure 7.13 Axisymmetric model of Omega profile and polymer under 20 MPa internal

pressure

It can be observed that the stress distribution is more uniform than previously, 

without the effects of bending being induced at the base of the Omega profile. The 

average stress across the profile is approximately 250 MPa. Closer inspection of 

the contact surfaces using higher mesh densities reveal that the contact stresses are 

high between the base and the protrusion, and is shown in figure 7.14. This was 

expected given that the internal pressure load acts to push out the base of the 

profile. It was found that the higher stress occurred at the base side of the contact, 

with the highest stress distribution measured at about 264 MPa.
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S, M lses  M Pa 
(Ave. C r i t . :  75*) 

+ 3 .155e+02 
+2.896e+02 
+2. 638e+02 
+2.379e+02 
+ 2.12  le+02 
+1.8  62e+02 
+ 1 .603e+02 
+1 .345  e+02 
+1.086e+02 
+8.276e+ 01 
+5.690e+01 
+ 3 . 104e+01  
+ 5 .180e+00

1

H 2

Figure 7.14 Close-up of contact between protrusion and socket of Omega profile under 20

MPa internal pressure

Additionally, when the internal pressure is large, such that it is enough to cause 

the coils to move so close to each other that it is now locked and prevented from 

more compressive movements, some surfaces of the Omega profiled wire are now 

in contact and can lead to fretting failure when microslip movements are present. 

The contact sites are depicted in figure 7.15. This movement is a direct 

consequence of the reduction in helix length as an internal pressure is applied, and 

was first analyzed in section 3.5.

244



|  Qf

Contact sites

Figure 7.15 Possible contact sites of Omega interlocked wire when subjected to internal

pressure

It should be noted that the contact pressure, P shown in figure 7.15 should not be 

confused with the internal pressure applied at the bottom of the Omega profiled 

wire. This potential contact site is in addition to the contact between the protrusion 

and the socket surface as depicted in figure 7.9 due to internal pressure pushing 

the contact surfaces together. From equation 7.1, it can be seen that high internal 

pressure causes the stress at the contact points to be large. As the internal pressure 

is the external parameter that defines the design of the flexible pipe pressure 

armour, the use of higher strength steels should be encouraged in place of low 

carbon steels. This is confirmed from various analyses such as the one shown in 

figure 7.5 as presented by Gao et al (1991), which confirms an increase in the 

service life of the component, for a given pressure, if a higher strength steel is 

used.

If palliatives are considered in order to mitigate either wear or fretting damage, it 

should be noted that it is difficult for liquid lubricants to be applied to the 

contacting surfaces due to their proximity. However, the use of molybdenum 

disulphide coatings or polymeric films (for example, polystyrene) on the 

contacting surfaces can be considered (as described in Zhou and Vincent (1999)) 

as part of the manufacturing process. The latter researchers reported, however, 

that there were concerns that these types of protective coatings were only valid in
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the early stages of fretting because of the low bonding strength between the film 

and the metal surface.

Another palliative method considered here is to put a polymeric layer between 

each turn of the coil. In essence, another helical coil made of polymeric material 

in inserted between each turn of the Omega profiled wire as shown in figure 7.16. 

The coefficient of friction of polymer to steel is relatively very low compared to 

the coefficient of friction of steel to steel surface. One possible problem with this 

method might be the issue of polymeric extrusion due to the high temperatures 

and pressures experienced in service conditions.

Omega profiled wire

Fluid retention layer

Polymeric helical layer

Figure 7.16 Polymeric protective layer between each turn of Omega profiled wire

As described earlier, an appropriately design Omega profiled wire when subjected 

to axial load can extend initially as a free helix, by the protrusions sliding along 

the surfaces of the socket. This process continues until each protrusion is locked 

and in contact with the wall of the socket. In this instance, there are additional 

contacting sites that can cause fretting damage. This is shown in figure 7.17, with 

the original fretting sites included.
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Old contact sites 1 and 2

New contact sites 3 and 4

Figure 7.17 Contacting sites of fully locked Omega profiled wire under axial load

From here, it can be observed that the fretting damage is a competition between 

the contact surfaces of the protrusion at the wall and the flat surface of the socket. 

When optimizing the design of the cross-section, considerations should take into 

account whether contact at wall or surface is desired in terms of the applied load 

and also the dimensions of the protrusion and socket.

Configuration 2 -  Rotation of Cross-section due to Non-symmetric Sections

One of the conclusions of the work presented here, is that when internal pressure 

is applied to a helical wire, rotation of the cross-section is possible if  the profile is 

non-symmetric (refer to chapter 4 for further details on the analysis of rotation the 

cross-section under internal pressure). The Omega profiled wire used in a pressure 

armour is indeed non-symmetric in nature. When internal pressure is applied to 

the profile, the cross-section might therefore be expected to rotate about the wire 

section (although the profile may not rotate much due to proximity to being a 

rectangular section). The direction of rotation depends on the direction of the 

moment generated from the non-symmetric section. Figure 7.18 shows the 

rotation of the section under internal pressure. The protrusion is still in contact 

with the surface of the socket and could potentially lead to fretting failure due to
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the high pressure experienced at the contact points as described in previous cases. 

Additionally, there is geometric contact at the surfaces of the profile when the 

coils are rotated.

Contact sites
additional 
fretting sites due 
to geometric 
contact

Figure 7.18 Contacting surfaces of rotated Omega wire cross-section under internal

pressure

The sliding contact generated between the protrusion and the socket under applied 

pressure is similar to the other configurations mentioned above and therefore 

lubricants could be used to alter the fretting damage behaviour. For the geometric 

contact problem, however, the design of the Omega profile could be altered to 

avoid mating at the surfaces shown. Figure 7.19 shows a possible design of the 

profile to avoid such geometric contact. However, such a design would need to be 

further optimized to take into consideration other factors such as the effect of 

creep of the polymer sheath underneath the pressure armour layer.

contact between protrusion 
and socket as before, but 
now geometric contact is 
removed

Figure 7.19 Example of changes to the design of Omega profiled wire
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In addition to developing contact stress, the rotation o f the cross-section under an

applied pressure load could influence the stress distribution at the existing contact 

sites in the pressure armour profile. This would be more apparent in sections that 

have a greater propensity to rotate. For example, in the Z profiled wire, there is a 

tendency for the cross-section to twist as described in chapter 4, and this would 

increase the sliding and contact load between the contacting points. An example of 

the stress distribution of such a profile generated from axisymmetric modelling is 

shown in figure 7.20. The Z profiled wire chosen had a base length of about 15 

mm with thickness of 10 mm and was assumed to be constructed from steel with a 

Young’s modulus of 207 GPa and Poisson’s ratio of 0.33.

Figure 7.20 Axisymmetric model of Z profiled wire under 20 MPa internal pressure

The model indicates that the stress distribution in not uniform although the contact 

stresses due to the clockwise rotation of the Z profiles are quite small. It could be 

argued that since all the profiles rotate, the contact load may not necessarily 

increase although this would not be the case near the constrained ends. 

Additionally, it should be noted that the numerical values in this analysis should 

not be directly compared with the Omega profiled wire analysis since they have 

different cross-sectional areas.

s , Mlses MPa 
(A v e . C e l t . :  7 5 t )

+ 2 .9 0 9 e + 0 2  
+ 2 .7 0 8 e + 0 2  
+ 2 .5 0 8 e + 0 2  
+ 2 .3 0 7 e + 0 2  
+ 2 . 1 0 7 e+ 0 2  
+ 1 .9 0 6 e + O 2  
+ 1 .7 0 5 e + 0 2  
+ 1 .5 0 5 e + 0 2  
+ 1 .3 0 4 e + 0 2  
+ 1 .1 0 4 e + O 2  
+ 9 .0 3 0 e + 0 1  
+ 7 .0 2 4 e + 0 1  
+ 5 .0 1 8 e + 0 1
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The contact stresses are lower if the section becomes more symmetric, because the 

angle of twist of the cross-section becomes smaller. This is best illustrated through 

various axisymmetric models generated from the finite element analysis for the 

optimization of an Omega profiled wire. Figure 7.13 depicted earlier shows the 

original Omega profile wire under a 20 MPa internal pressure load. If the cross- 

sectional profile is shaped in such a way to encourage rotation, a higher stress 

gradient is expected together with higher contact stresses at contacting points. 

Figures 7.21 and 7.22 show some of these exaggerated ‘less symmetric’ Omega 

profiles to encourage rotation.

S , M ls e s  MPa 
(A v e . C r l t . :  7 5 4 ) 

+ 5 .6 6 1 e + 0 2  
+ 5 .2 0 0 t +02 
+ 4 .7 3 9 e + 0 2  
+ 4 .2 7 8 e + 0 2  
+ 3 .8 1 8 e + 0 2  
+ 3 .3 5 7 ® + 0 2  
+ 2 .8 9 6 e + 0 2  
+ 2 .4 3 5 e + 0 2  
+ 1 .9 7 4 e - t0 2  
♦ 1 .5 1 4 e + 0 2  
+ 1 .0 5 3 e + 0 2  
+ 5 .9 2 1 e + 0 1  
+ 1 .3 1 3 e + 0 1

1

Figure 7.21 Axisymmetric model of less symmetric Omega profile example 1
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3 ,  M ls e a  M P a  
(A v e . C r i t . :  7 5 1 ) 

+ 5 .9 1 6 e + 0 2  
+ 5 .4 3 0 e + 0 2  
+ 4 .944e-K )2  
+ 4 .4 5 9 e + 0 2  
+ 3 .9 7 3  e-*02 
+ 3 .4 0 7 e+ O 2  +3.001e+02 
+ 2 . 515e+ 02  
+ 2 .0 2 9 e+ 0 2  
+ 1 .5 4 4 e + 0 2  
+ 1 .0 5 8 e + 0 2  
+ 5 .7 2 0 e + 0 1  
+8.610C-K3O

1

Figure 7.22 Axisymmetric model of less symmetric Omega profile example 2

The increase in the maximum stress in the Omega profile in figure 7.21 is about 

19% and in figure 7.22 is about 25% larger than the original Omega shaped profile 

shown in figure 7.12. However, it should be noted that the increase in stress could 

also result from the contribution of the bending at the base of profile that was 

experienced by all the profiles. It can be concluded that rotation of the cross- 

section encourages sliding of the contact surface and hence promotes the 

possibility of fretting. The less symmetric the profile, the more likely the slip 

amplitude increases and subsequently the contact stresses, which then promotes 

fretting.

By reducing the slip amplitude of the contacting surfaces, the life of the structure 

is increased. This is evident from the work of Gao et al (1991), where contact 

pressures of 24.5 MPa on a low carbon steel gave rise to a material life of 106 

cycles for a 10 pm slip amplitude. This compares to a decrease in the life if the 

slip amplitude was increased to 20 -  30 pm. Experimental data from the likes of 

Gao et al (1991) and Nakazawa et al (1994) served as a useful tool to analyze 

fretting life of the contacting components once the contact stresses were 

determined using the finite element analysis performed here.
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The fretting fatigue mechanism can be further compounded if multiple layers of 

the pressure armour are used. Relative displacement between layers of helical 

reinforcement armour can occur and cause sliding between the contacting surfaces. 

This is discussed in the subsequent multiple pressure armour configurations 

described below.

Configuration 3 -  Multiple Pressure Armour Layers under Internal Pressure

In chapter 6, it was concluded that the pressure armour constructed from 

interlocked helical coils behaved like a cylindrical tube when the coils were fully 

locked. This meant that the pressure armour, whose primary function is to 

withstand internal pressure loading, can be made to withstand a certain amount of 

axial loading. For example, it was deduced that the pressure armour of six inch 

radius with a thin protrusion height of 2.5 millimetres can be subjected to an axial 

load of magnitude of few hundred kilonewtons. This compares to the tensile 

armour layer of the same pipe which can withstand axial loads of few thousand 

kilonewtons. Hence, a pressure armour layer, if designed appropriately can be 

made to carry 10% -  30% of the load of the conventional tensile armour.

Therefore it is possible to construct multiple layers of helical wire reinforcement 

to withstand internal pressure loads and some axial loads. Figure 7.23 shows an 

example of the configuration of a flexible pipe with two layers of pressure armour. 

The American Petroleum Institute (API) document 17B (1998) quotes that a back­

up pressure armour can be put in place and be used to withstand additional 

pressure seen in service environments. This type of configuration generally has a 

few advantages for the loading capacity of the flexible pipe structure. Firstly, the 

most obvious is that the amount of internal pressure that it can withstand is 

increased significantly and hence the ability to operate in higher pressure 

environments. Additionally, if multiple pressure armour layers are used, the size 

of the tensile armour wire cross-section can be reduced significantly as each 

pressure armour layer is able to withstand about 10 - 30% of the total load 

experienced by the flexible pipe, thereby reducing the weight of the structure. On

the other hand, the total weight of the pressure armour layers is increased and
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hence the design needs to be optimized, based on the requirements of the in- 

service conditions.

=Q) =o

^  1
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Q f

contacting surfaces

centreline of pipe

Figure 7.23 Configuration of pressure armour layers under internal pressure

The use of multiple pressure armour layers poses issues of contact of surfaces 

between the helical wires. High pressures experienced by the armour can cause the 

Omega profiled wire pressure armour layer to expand in radius and shorten in 

length. Potentially, these small deflections can cause the pressure armour layers to 

experience small amount of slip (mixed stick -  slip and gross slip regime) against 

each other on the contacting surfaces together with the applied normal load as 

shown in figure 7.23. This could result in fretting fatigue due to the high contact 

pressures experienced by these layers.

Additionally, when the Omega profiled wire is locked-up between the protrusion 

and the socket, a bulk stress is present in the Omega profiled wire and therefore 

the pressure armour layer. It is possible for fretting cracks to initiate at the 

contacting surfaces shown and propagate inwards to the centre of the cross-section.

Palliative effects using lubricant were mentioned earlier as a possible solution to 

this contact problem. However, Burke and Witz (1999) concluded that lubricants
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do not appear to affect the contact stresses in a statically loaded system. In fatigue 

experiments carried out by Saevik and Berge (1995) on flexible pipes with 

multiple tensile armour layers, the same conclusion was reached, whereby the 

lubricants did not appear to alleviate the contact problem between the armour 

layers.

An anti-friction tape layer is therefore highly encouraged to be placed in between 

the two pressure armour layers to prevent the inner surface of one layer to contact 

the outer surface of the other as shown in figure 7.24. It is not appropriate to place 

an additional polymer sheath in between the layers of pressure armour subjected 

to high contact pressures, unlike in the case of tensile armour layers. Although this 

polymer sheath could act as an anti-friction layer, its inherent material properties 

mean that it will creep through the gaps of the Omega profiled wire under the 

effects of high pressure and also the high temperature, seen in service conditions.

r } 1

=CD =Q) =CD ^

r } =Q) =Q) =CD < 3 Anti-friction layer

Figure 7.24 Anti-friction tape between the pressure armour layers

Configuration 4 -  Multiple Pressure Armour Layers under Axial Load

In this configuration, the arrangement of the pressure armour layers used in the 

previous section is used, but an axial tension load is applied to the pressure 

armour. This is akin to axial load being applied to stretch two concentric helical 

springs wrapped around a core. As concluded from the analysis performed in 

section 3.5, when a helical coil is stretched axially, the radius of the helical 

structure contracts. When two helical springs of differing radius are stretched
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together, there is the possibility that the coils of the outer spring will contact the 

coils of the inner spring. This is further illustrated using the graph shown in figure 

7.25, which shows the response of two springs subjected to axial loading.

Axial tension versus Change in spring radius

2.5

2.0  -

u_

0.0
0.0200.000 0.005 0.010 0.015

Change in spring radius (mm)
0.025 0.030

Figure 7.25 Axial tension -  change in spring radius for two springs concentric to core

From the analysis, hypothetical helical springs of the same steel material were 

used. The inner spring (denoted by spring 1) has a spring diameter of 152.4 mm (6 

inches). The height of the cross-sectional area was 6 mm and therefore the outer 

spring (denoted by spring 2) was constructed in such a way that it was positioned 

above the inner spring. When the same amount of axial load was applied to the 

two springs, it was observed that the contraction in radius of the outer helical 

spring was greater than the contraction in radius of the inner spring. This meant 

that the coils of the outer helical spring would come into contact with the surface 

of the inner helical spring. With increasing axial load, the contact force between 

the two layers must therefore increase. Thus, the pressure armour layers under 

axial load could be subjected to fretting damage.

This effect is exacerbated by the fact that the pressure armour is predominantly 

used to resist the internal pressure during the loading cycle. The sites of likely 

fretting damage are shown in figure 7.26. Sliding wear between the helical coils is
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inevitable given that the pressure armour layers induce the condition for fretting 

when subjected to axial load.

contact sites

centreline of pipe

Figure 7.26 Configuration of pressure armour layers under axial load

In a similar manner to the case of pressure armour layers subjected to internal 

pressure, the fretting contact sites can be eliminated using an anti-friction tape 

layer placed in between the two contacting surfaces as shown in figure 7.24. As 

described by Saevik and Berge (1995), the contact geometry between two helical 

armour layers is not similar to that of Hertzian contact because the dimension of 

the contact is large compared to the overall structure of the pressure armour. 

Hence, to evaluate the maximum contact stress experienced for a given internal 

pressure load and helical spring geometry, the equations 7.17 and 7.18 in section

7.2 can be used.

Configuration 5 -  Effect of Fixed Ends due to Pipe End Terminations

As discussed in chapter 6, when helical wires are fixed from movement at the end 

of a pipe using end terminations, discontinuity in the response of the helical coils 

to applied loads is obtained for coils near the terminations. The relative movement 

of the coils would be fairly symmetric from coil to coil in the middle portion of a
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long pipe, but additional relative sliding of coils occurs for helical coils near the 

end because of the constraint placed on the movement. Because of this 

discontinuity, enhanced contact is likely to develop and hence fretting or sliding 

wear of the pipe will be encouraged. Indeed this aspect of fretting near the end 

terminations has been discussed in Ramsey (1991) and has also been observed 

experimentally by Saevik and Berge (1995). When designing the flexible pipe 

structure, the end termination portion should be taken into consideration as it may 

result in fretting fatigue failure even though other design aspects of the cross- 

section of the pressure armour might have been optimized. Additional palliative 

methods should be considered near the ends besides the use of lubricants.

The configurations shown describe the potential fretting contact sites for in-plane 

movements. This is partly due to the fact that the axial load and internal pressure 

only cause such movements, as described in the earlier chapters. When the 

flexible pipe structure is fixed from movement because of the end terminations, 

sliding of coils is not permitted. It should be noted that movements such as 

relative sliding of the helical coils are more likely to occur during twisting of the 

flexible pipe as well as bending loads. In addition to the fretting fatigue under in­

plane movements, due to the effect of internal pressure and axial load, the 

structure will undergo out-of-plane movements when twisting and bending are 

considered. Consequently, the fretting problem is made even more complicated.

The design of the pressure armour to minimize the effect of fretting is therefore an 

interplay between optimising the contact pressure requirements, width of the 

Omega wire strip, number of layers of helical wire reinforcement, lubrication and 

design of cross-sections of the interlocked helical wire profile.

A fully interlocked wire such as the Omega profiled system has been shown

(chapter 6) to withstand some axial loading in addition to its primary function of

resisting internal pressure load. Therefore, this type of interlocking has an

advantage compared to a partially interlocked wire (for example, Z profile), where

the application of axial load could cause the unlocking of the profile (hence

requiring extra axial load bearing components). From the analysis in this chapter,

both the fully and partially interlocked wire could be subjected to fretting damage
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given the pressure loading and the predicted contact between adjacent coils. 

However, since a fully interlocked profile is made to withstand some axial loading, 

it is equally possible that a cyclical tensile load could cause plain fatigue to occur 

in addition, or as an alternative, to fretting fatigue.

Cracks can initiate under fretting condition and grow to a length of few grain sizes 

before propagating to failure under plain fatigue condition if cyclical tangential 

stresses due to an axial load exist. Such loading could occur, for example due to 

internal pressure variations or movement of the flexible pipe either by sea currents 

or more likely wave/vessel motion. Stress concentrations in combination with the 

higher stresses generated in the thinnest section of the profile would create ideal 

conditions for plain fatigue initiation and propagation. The net result could be a 

significant reduction in the lifetime of the pressure armour layer although the 

helical wire is subjected to stresses below the yield strength. For a fully 

interlocked profile, therefore consideration has to be given to the fact that both 

fretting fatigue and plain fatigue interaction can be critical to the overall lifetime 

of the whole pipe structure. Cross-sectional designs of the fully interlocked 

profiles such as the Omega wire should take into account such damage parameters 

and look to increase the thickness of the thinnest section in order to reduce the 

likelihood of fracture due to plain fatigue crack formation.

The next chapter presents the conclusions from the investigation into the 

mechanics of pressure armour for flexible pipes and the future work to be 

undertaken in order to further the understanding on how pressure armour behaves 

when subjected to the combination of the various loading modes. A 

comprehensive study of the design of the Omega profiled wire is clearly necessary 

to ensure the structural integrity of the flexible pipe, and to minimize the potential 

for premature failure due to fretting fatigue.
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8 Conclusions and Recommendations

8.1 Conclusions

The analyses performed in this work permitted the analytical solution of the 

pressure armour structure of a flexible pipe subjected to axial and internal pressure 

for various profile shapes. In particular, pressure armour profiles with interlocking 

features were investigated to establish its pressure and axial load carrying 

capacity. As the interlocked pressure armour profiles were intended for use in 

very high pressure environments, the loading modes investigated were important 

in optimization of the flexible pipe design as a whole, in terms of the load carrying 

capacity, weight, structural life and costs.

Given that a pressure armour is constructed from a helically wound wire, the 

configuration of the pressure armour structure was reduced to the form of a simple 

helical spring for analytical formulation using the slender rod theory presented by 

Love (1934). The use of the slender rod theory permitted the following analytical 

solutions to be established: -

1) The response of the helical wire structure under axial, internal pressure and 

the combined axial and internal pressure loading. Although a small wire 

strain was assumed in the analysis, the solution could be used to measure 

large helical spring deflections. In particular, the analytical solution of the 

helical spring subjected to the combination of axial and internal pressure 

loading is new, and an unexpected but salient feature, due to the combined 

loading was observed. The helical spring subjected to axial tension loads 

for fixed internal pressure step loads showed an increase in the spring 

stiffness. This implied that the helical spring could vary its spring stiffness 

when internal pressure was applied.

2) The analytical solutions included the responses of the helical spring for

various cross-sectional profiles subjected to the loading modes as

mentioned above. They fell into two categories, one which was symmetric
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and the other, non-symmetric sections. The response of symmetric and 

non-symmetric cross-sections to internal pressure load differed 

significantly. For the non-symmetric cross-sections, the helical spring 

subjected to internal pressure could rotate about the helical wire centreline. 

The twisting of the cross-section of the pressure armour affected the 

pressure loading capacity significantly. An increase in the angle of twist of 

the wire cross-section indicated a decrease in the pressure load capacity. In 

this work, the twisting of the cross-section of the wire was factored into 

the analytical solution in order to account for the reduction in loading 

capacity. This twisting effect was not taken into account in the analytical 

solutions of flexible pipe structure by previous researchers. Although some 

numerical modelling was carried out by previous researchers to observe 

the twisting of the cross-section, this was based on an axisymmetric 

model, which meant that the cross-section was modelled as a series of 

rings rather than helical coils. It was shown in chapter 4 that the helical 

spring was not as rigid as a ring section, hence larger deflections of the 

spring were expected for the applied load. Since this was the case, the 

modelling using a series of rings resulted in measurements of twist of the 

cross-section which was much lower than a helical spring, hence 

overestimating the pressure loading capacity. It was also shown here that 

the response of the helical spring for non-symmetric cross-sections 

subjected to internal pressure was non-linear in contrast to linear responses 

obtained for symmetric cross-sections.

3) The analytical solution for an interlocked helical spring subjected to the

various loading modes was also established. In such a configuration, the

overlapping of the wire inevitably caused the surfaces to be in contact, and

the contact loads between the contacting surfaces were also determined

analytically. Particular reference was made for the pressure armour profile

used, which was the Omega profiled wire devised in UCL. It was

concluded that the interlocked Omega profiled pressure armour subjected

to axial and internal pressure behaved like a cylindrical tube (albeit with a

line of weakness) when it was fully locked and in contact with its adjacent

coils. Hence, it can be seen that the pressure armour constructed from
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interlocked Omega profiled wire could be used to resist some axial load in 

addition to its primary function of withstanding internal pressure. Such a 

feature is attractive, as it allows the tensile armour layers to be removed or 

scaled down depending on the in-service environments, which in turn is 

able to reduce the weight of the flexible pipe for deep-water applications.

4) Verification of the analytical solutions developed in this work was 

performed using numerical modelling. ABAQUS finite element analysis 

software was used, and both consistent and close agreement with 

analytical results were obtained. Furthermore, the physical deformation of 

helical springs was realized using a novel experimental setup. This 

included the design of a spring lathe to cut helical springs made from 

polystyrene. The spring lathe enabled the cutting of springs with various 

cross-sectional shapes such as rectangular and Z profiles for experimental 

measurements, which would otherwise have not been achieved using 

metallic helical springs. This is due to the fact that the cross-sectional 

shapes available commercially and the load required to cause significant 

deformation for measurement were not practical for verification work. 

Successful attempts to cut interlocked polystyrene springs were also 

achieved. This was possible because the polystyrene cross-section could be 

shaped using a hot wire cutter, thus alleviating the residual stresses that 

would be present if the wire was slotted into its adjacent coil. An 

interlocked profile made from metallic materials would have been slotted 

in together, consequently causing some plastic deformation even before 

being placed in-service. Simulation of an internal pressure load on the 

polystyrene spring was rather difficult as a pressure load acted on the inner 

surface of the open coil structure, rather than on a tube surface. A 

purposed built pulley test rig was assembled to apply radial forces at 

various points to a helical coil to replicate internal pressure loading. There 

were significant discrepancies in the results of this experimental work 

compared to those obtained analytically. This error was attributed to the 

fact that the radial loading applied caused the coils to expand non- 

uniformly in the radial direction. A possible solution to this problem is to
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increase the number of points of applied load to obtain a more uniform 

radial expansion.

5) Issues of contact between mating surfaces from the use of interlocked 

pressure armour profiles were discussed. In this work, it was shown that 

the movements and applied loads on the helical spring encouraged 

conditions for fretting fatigue. Potential sites of initiation of fretting were 

identified based on the analysis done and design recommendations were 

made to overcome premature pressure armour fatigue failure.

8.2 Recommendations and Future Work

Some good design practice is summarized here based on the analysis carried out 

in this work. Ideally, the cross-sections of the pressure armour profile should have 

a symmetric section. This is to avoid twisting of the wire cross-section, which 

reduces the pressure load carrying capacity of the pipe and allow the creeping of 

the fluid retention polymer layer underneath. A pressure armour cross-section 

with a small base width is desired, to maximize the stiffness of the helical wire 

and to increase internal pressure loading capacity. However, this should be 

optimized with consideration to the overall increase in costs and weight of the 

flexible pipe. The use of full interlocked pressure armour profiles such as the 

Omega profiled wire should be encouraged given that it can withstand some of the 

axial loads resisted primarily by the tensile armours.

There are discontinuities in the behaviour of the helical coils near to the end 

terminations. Further design considerations have to be taken at the terminations to 

account for the relative slip of the coils, which can promote fretting mechanism. 

From the analysis carried out in chapter 7, when optimizing the Omega profiled 

wire for the various loading modes, considerations have to be given to the 

potential fretting damage due to the contacting surfaces. Ideally, the design of the 

profile should eliminate unnecessary geometric contact. However, this is not 

always possible and hence the use of lubricants or other protective methods such 

as material coating should be considered.
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In summary, the following conclusions can be derived from the analyses

performed with respect to the generic pressure armour designs: -

• The depth of the profile (radial direction of pipe) should be larger than the

width (axial direction of pipe) to achieve larger pressure load capacity. 

Conversely, a larger cross-sectional width has higher axial stiffness (see page 

152).

• The cross-sections should be as symmetric as possible to avoid twisting under 

pressure loading. Twisting can bring adjacent sections, which were previously 

non-contacting, into close contact. Point loading can thus be generated and 

hence the possibility of fretting damage is present. Non-symmetric sections 

also exhibit a non-uniform distribution and can support stress concentrations.

• The axial load carrying capacity obviously depends on the thickness of the 

slender part of the cross-section in fully interlocked systems. Plain fatigue in 

these areas can be encouraged if high stresses and/or stress concentrations are 

designed in and fretting may thus be an incidental consideration.

• Where contact between the surfaces exists, the contact width should be

increased to reduce the overall stress around the contact area, and hence

reduce the possibility of fretting damage.

• A compromise between the amount of freedom of axial movement of the 

cross-sections allowed and the resulting gap between adjacent coils has to be 

attained in order to increase the likelihood that the contact zones work in the 

sliding regime rather than the mixed stick-slip regime to reduce the onset of 

fretting (see page 228). However, large gaps could increase the risk of 

polymer extrusion through the profile and hence loss of pressure integrity and 

fluid containment ability. Smaller gaps have the added disadvantage of 

reducing overall pipe flexibility.
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• Lubrication is a plausible method to reduce fretting crack initiation. However, 

considerations have to be given to the fact that although the coefficient of 

friction is being reduced, the slip amplitude will increase as a result and this 

can cause sliding wear. Ironically, it may be that sliding wear is more 

preferable to fretting damage, highlighting the many compromises that 

interlocking profile design will demand.

In addition to the above, it should be noted that there are further issues relating to 

the design which have not been discussed in this work, but which are relevant to 

future design methodology. Chief among these are the methods used to 

manufacture a fully interlocked profile. For example, it is clear that generating an 

interlock would require plastic deformation of the socket part of each coil. It is 

unlikely that pure elastic deformation would be sufficient to generate a reliable 

interlock given the high stiffness of metals used in pressure armour. Residual 

stresses would thus be present in the structure in zones which are clearly subjected 

to high loads and stress concentration. Such stresses could enhance crack 

propagation rates and hence reduce lifetimes.

As mentioned earlier, the interlocked pressure armour behaved very much like a 

cylindrical tube, albeit with a line of weakness when subjected to axial and 

internal pressure load. This is because a pressure armour still consisted of a 

helically wound wire. However, when a pressure armour is twisted about the pipe 

centreline, relative slip of the helical coils can occur. This can affect the pressure 

loading capacity and/or cause potential fatigue failure due to fretting. This aspect 

should be investigated further.

Additionally, in a flexible pipe, the bending load is an important loading mode in

service conditions. The overbending of a flexible pipe can cause the pressure

armour to collapse under applied loads and the possibility of unlocking of the

interlocked pressure armour profile. Furthermore, the pipe structure undergoes

tensile stresses on one side of the coil while the other side is under compressive

stresses when bent. As such, the contact between the Omega profiled wire

contacting surfaces is even more complex given that one side of the pressure

armour experiences higher stresses than the other side. The bending of a flexible
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pipe structure can also cause reciprocating sliding in the interlocked helical coils 

because of relative slip between the contacting surfaces of the coils. This can 

result in the sliding wear of the pressure armour layer, and reduces the pressure 

loading capacity and service life of the pipe.

Therefore, there is a need to quantify twisting about a pipe centreline and the 

bending characteristics of a flexible pipe in conjunction with the response of the 

pressure armour to the various loading modes that was established here. 

Furthermore, flexible pipes in service conditions are subjected to various 

combinations of dynamic loading, hence the interaction is more complex than the 

static case analysed here. Further work should therefore be performed to simulate 

the actual deformations experienced. On the experimental front, which has 

implications on the production of the interlocked pressure armour profiles, further 

investigation should be carried out to enhance the manufacturing process of 

Omega profiled wire made from metallic material in order to eliminate residual 

stresses induced and potential sliding of contacting surfaces due to slotting of the 

profile.
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A ppendix A

Supplementary Derivation for Helical Wire Analysis

Energy method

Derivation for wire axial strain: -
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The wire axial strain is linearized by ignoring all second order strain values, hence
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Slender rod theory

Derivation of the internal line load and axial load in terms of the binormal shear force 

of wire: -
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A ppendix B

Computer Program Listing for Helical Coil

- Program for element listing of a helical coil

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <iomanip.h>

int main()
{

ofstream output_fileCelementlisting.txt"); 

float n , x , y;
for (int i = 1; i<=40; i++) //I pitch + 2 nodes on each end

{
n = 0+i; //number for listing of result

x = 0+i; //node 1
y=l+i ;  //node 2

output_file «  setw(5) «  n « " ,  " «  setw(5) «  x «
«  setw(5) «  y «  endl;



- Program for generating nodes of a helical coil

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include<iomanip.h>

int main()
{

ofstream output_file("coord_result.txt");

int degree = 0; 
float n , x , y , z , t;
for (int i = 1; i<=37; i++) //37 for 1 helix turn

{
t = degree*3.141592654/180;

n = 2+i; //number for listing of result

// define parametric expressions

x = 152.4*cos(t); //6" radius
y = 152.4*sin(t); //6" radius
z = 20*t;

output_file «  setw(10) «  setprecision(O) «  n « " ,  "
«  setiosflags(ios::fixed)«  setw(10)
«  setprecision(2)
« x « " ,  "
«  setw(10) «  y «  ", " «  setw(10) «  z «  endl;

degree += 10; // for every 10 degrees turn
}

}



Appendix C

Supplementary Results for Circular Cross-section

- Results for Axial Loading (Large Deformation)

Spring radius versus Helix angle
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Figure C.la Spring radius versus helix angle for large deformation
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Deflection versus Spring radius
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- Results for Axial Tension (Small Deformation)

Deflection versus Spring radius
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Deflection versus Helix angle
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- Results fo r  Axial Compression (Small Deformation)

Axial com pression  versus Compressive deflection
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C om pressive deflection versu s Spring radius
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Com pressive deflection versus Helix angle
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- Results fo r  Combined Axial Tension and Internal Pressure Loading

Internal pressure, Px versus Spring radius

0 .070

S. 0 .060S
*  0 .050

2! 0 .040

0 .030

15 0 .020

0.010

0.000
151 .6 151.8 152 152.2 152.4 152.6 152.8

Spring radius (mm)

O  F = 5N  Q  F = 10N F = 15N

Figure C.4 Internal pressure versus spring radius for fixed axial tension step values

- Results for Combined Axial Compression and Internal Pressure Loading
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Line load, -X versus Compressive deflection (with fixed F)
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Appendix D

Supplementary Results for Non-circular Cross-sections

- Results for Axial Loading

Axial tension versus Deflection
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Figure D.la Axial load - deflection for analytical and finite element for square section

Axial tension versus Spring radius
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Figure D.lb Axial load -  spring radius for analytical and finite element for square section
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Deflection versus Spring radius
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Figure D. lc Deflection -  spring radius for analytical and finite element for square section

Axial tension versus Helix angle
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Figure D.ld Axial load -  helix angle for analytical solution for square section
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Axial tension versus Deflection
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Figure D.2a Axial load - deflection for analytical and finite element for rectangular

section (6.5mm x 4.3499mm)

Axial tension versus Spring radius
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Figure D.2b Axial load -  spring radius for analytical and finite element for rectangular

section (6.5 x 4.3499)
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Deflection versus Spring radius
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Figure D.2c Deflection -  spring radius for analytical and finite element for rectangular

section (6.5mm x 4.3499mm)

Axial tension versus Helix angle
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Figure D.2d Axial load -  helix angle for analytical solution for rectangular section

(6.5mm x 4.3499mm)
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Axial tension versus Deflection
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Figure D.3a Axial load - deflection for analytical and finite element for rectangular

section (4.3499mm x 6.5mm)

Axial tension versus Spring radius

25 .0

20.0 -

15.0  -

10.0 -

5 .0

0.0
150.0 150.5 151.0 152.5151.5 

Spring radius (mm)

152.0

Analytical —B — FE

Figure D.3b Axial load -  spring radius for analytical and finite element for rectangular

section (4.3499mm x 6.5mm)

291



Deflection versus Spring radius
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Figure D.3c Deflection -  spring radius for analytical and finite element for rectangular

section (4.3499mm x 6.5mm)

Axial tension versus Helix angle
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Figure D.3d Axial load -  helix angle for analytical solution for rectangular section

(4.3499mm x 6.5mm)
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Axial tension versus Deflection
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Figure D.4a Axial load - deflection for analytical and finite element for L-section

Axial tension versus Spring radius
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Figure D.4b Axial load -  spring radius for analytical and finite element for L-section
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Deflection versus Spring radius
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Figure D.4c Deflection -  spring radius for analytical and finite element for L-section

Axial tension versus Helix angle
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Figure D.4d Axial load -  helix angle for analytical solution for L-section
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Axial tension versus Deflection
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Figure D.5a Axial load - deflection for analytical and finite element for Z-section

Axial tension versus Spring radius
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Figure D.5b Axial load -  spring radius for analytical and finite element for Z-section
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Deflection versus Spring radius
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Figure D.5c Deflection -  spring radius for analytical and finite element for Z-section

Axial tension versus Helix angle
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Figure D5d Axial load -  helix angle for analytical solution for Z-section
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- Results fo r  Internal Pressure Loading

Internal pressure, Px versus Deflection
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Figure D.6a Internal pressure - deflection for analytical and finite element for square

section
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Figure D.6b Internal pressure -  spring radius for analytical and finite element for square

section
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Internal pressure, Px versus Helix angle
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Figure D.6c Internal pressure -  helix angle for analytical solution for square section

Internal pressure, Px versus Deflection
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Figure D.7a Internal pressure - deflection for analytical and finite element for rectangular

section (6.5mm x 4.3499mm)

298



Internal pressure, Px versus Spring radius
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Figure D.7b Internal pressure -  spring radius for analytical and finite element for 

rectangular section (6.5mm x 4.3499mm)

Internal pressure, Px versus Helix angle
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Figure D.7c Internal pressure -  helix angle for analytical solution for rectangular section

(6.5mm x 4.3499mm)
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Internal pressure, Px versus Deflection
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Figure D.8a Internal pressure - deflection for analytical and finite element for rectangular

section (4.3499mm x 6.5mm)

Internal pressure, Px versus Spring radius
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Figure D.8b Internal pressure -  spring radius for analytical and finite element for

rectangular section (4.3499mm x 6.5mm)
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Internal pressure, Px versus Helix angle
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Figure D.8c Internal pressure -  helix angle for analytical solution for rectangular section

(4.3499mm x 6.5mm)

Internal pressure, Px versus Deflection
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Figure D.9a Internal pressure - deflection for analytical and finite element for L-section
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Internal pressure, Px versus Spring radius
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Figure D.9b Internal pressure -  spring radius for analytical and finite element for L-

section

Internal pressure, Px versus Helix angle
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Figure D.9c Internal pressure -  helix angle for analytical solution for L-section
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Internal pressure, Px versus Cross-section twist angle
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Figure D.9d Internal pressure -  cross-section twist angle for analytical solution for re­
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Figure D.lOa Internal pressure - deflection for analytical and finite element for Z-section
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Internal pressure, Px versus Spring radius
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Figure D. 10b Internal pressure -  spring radius for analytical and finite element for Z-

section
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Figure D.lOc Internal pressure -  helix angle for analytical solution for Z-section
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Internal pressure, Px versus Cross-section twist angle
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Figure D.lOd Internal pressure -  cross-section twist angle for analytical solution for Z-
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Appendix E

Supplementary Experimental Results for Various Cross-sections

- Results for Axial Loading

Axial Tension versus Deflection 
(18mm x 25mm rectangular cross-section)
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Figure E.la Axial load -  deflection for rectangular cross-section (18mm x 25mm)

experimental result

Axial Tension versus Spring radius 
(18mm x 25mm rectangular cross-section)
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Figure E.lb Axial load -  spring radius for rectangular cross-section (18mm x 25mm)

experimental result
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Spring rad ius v e rsu s  Deflection
(18mm x 25mm rectangular cross-section)
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Figure E.lc Spring radius -  deflection for rectangular cross-section (18mm x 25mm) 

experimental result

Axial tension versus Deflection 
(14mm x 25mm rectangular cross-section)

0.40 

0.35  

0.30  

£  0 .25  

g  0 .20
k.

i f  0 .15  

0.10 
0.05  

0.00
0 20  40  60  80 100 120 140 160 180

D eflec tio n  (m m )

-  -O  analy tical □  experim en t 1 A  experim en t 2

Figure E.2a Axial load -  deflection for rectangular cross-section (14mm x 25mm)

experimental result
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Axial ten sio n  v ersu s  Spring radius
(14mm x 25mm rectangular c ro ss-section )
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Figure E.2b Axial load -  spring radius for rectangular cross-section (14mm x 25mm) 

experimental result
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Figure E.2c Spring radius -  deflection for rectangular cross-section (14mm x 25mm)

experimental result
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Axial tension  v ersu s  Deflection
(L cross-section)
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Figure E.3a Axial load -  deflection for L cross-section experimental result
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Figure E.3b Axial load -  spring radius for L cross-section experimental result
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Figure E.3c Spring radius -  deflection for L cross-section experimental result
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Figure E.4a Axial load -  deflection for Z cross-section experimental result
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Figure E.4b Axial load -  spring radius for Z cross-section experimental result
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Figure E.4c Spring radius -  deflection for Z cross-section experimental result
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- Results fo r  Internal Pressure Loading

Note that internal pressure loading results were plotted only for the experimental 

data obtained.
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Figure E.5a Internal pressure -  deflection for rectangular cross-section (18mm x 25mm) 

experimental result
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Figure E.5b Internal pressure -  spring radius for rectangular cross-section (18mm x

25mm) experimental result
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Internal pressure, Px versus Deflection
(14mm x 25mm rectangular cross-section)
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Figure E.6a Internal pressure -  deflection for rectangular cross-section (14mm x 25mm) 

experimental result

Internal pressure, Px versus Spring radius 
(14mm x 25mm rectangular cross-section)
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Figure E.6b Internal pressure -  spring radius for rectangular cross-section (14mm x 

25mm) experimental result

313



CL
®"
310Mak_a

Internal pressure, Px versus Deflection
(L-section)

0.00035

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000
8 9 10

Deflection (mm)

11 12

- S — experim en t

Figure E.7a Internal pressure -  deflection for L cross-section experimental result
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Figure E.7b Internal pressure -  spring radius for L cross-section experimental result
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Internal pressure, Px versus Deflection
(Z-section)
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Figure E.8a Internal pressure -  deflection for Z cross-section experimental result
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Figure E.8b Internal pressure -  spring radius for Z cross-section experimental result
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- Results fo r  Combined Axial and Internal Pressure Loading
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Figure E.9 Axial tension -  spring radius for fixed internal pressure step values 
(experimental result for rectangular section (18mm x 25 mm))

Axial te n s io n  v e r s u s  S p rin g  ra d iu s  (w ith  fixed  Px)
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Figure E. 10 Axial tension -  spring radius for fixed internal pressure step values

(experimental result for rectangular section (14mm x 25 mm))
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Figure E. 1 la Axial tension - deflection for fixed internal pressure step values 
(experimental result for L section)
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Figure E. 1 lb Axial tension -  spring radius for fixed internal pressure step values 
(experimental result for L section)
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Axial tension versus Deflection (with fixed Px)
(Z-section)
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Figure E. 12a Axial tension - deflection for fixed internal pressure step values 
(experimental result for Z section)
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Figure E. 12b Axial tension -  spring radius for fixed internal pressure step values

(experimental result for Z section)
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