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Abstract

This thesis presents a concept called flow context, defined as any information that can be
used to characterize the situation of a sequence of protocol data units, called a flow, within
a network. Flow context is designed to enable the realization of context-aware networks:
networks that can sense, process, disseminate and use context information in order to
enable or trigger services, or modify and optimize their operation.

The thesis discusses a conceptualization for flow context, and describes its characteristics.
A semantic model for flows and flow context in the form of an OWL-DL ontology is
developed. The various components of the flow context life cycle, consisting of the stages
of sensing, processing, dissemination and use, arc described.

To account for its multi-faceted nature, a multi-dimensional approach to sensing flow con-
text is adopted. Novel implementations for three exemplar sensors, including sensors for
intrinsic flow context, node and device characteristics, and for device location, are pre-
sented.

Mechanisms for locating flow context sensors and propagating context event notifications
using a distributed hash table (DHT) are described and evaluated. Simulation results
suggest that DHTSs can provide decentralized and scalable solutions for flow context location
and dissemination. In addition, a novel mode of context distribution called path-coupled
flow context dissemination is described.

An evaluation of semantic flow context processing using the RacerPro reasoner is presented.
Various platform-specific reasoning modes are tested, including the use of queries, ABox
modification, and incomplete reasoning.

Finally, several application scenarios illustrating the potential uses of flow context in areas
such as mobility and moving networks, quality of service, intelligent flow classification,
network management, and other applications, are presented. Many of these scenarios are
demonstrated through proof-of-concept implementations, which may be further evaluated
and developed into full, working, and useful applications.
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Chapter 1

Introduction

Today we find ourselves almost completely blanketed by a plethora of wired and wireless
overlay networks [1] including those provided by different mobile phone services, privately-
owned and public “hotspot” wireless LANSs, personal area networks that use Bluetooth, as
well as satellite-based mobile communication and Internet services. The diversity of these
networks is only rivalled by variety of the features and characteristics of the mobile devices

used on them, and the applications that run on these devices and networks.

As we shift from one activity to the next, we find it increasingly inconvenient, if not
outright difficult, to continuously and consciously adapt to the different devices and con-
nectivity modes appropriate to our activities, as well as to the constant changes in network
characteristics and conditions. Such a situation would simply demand too much of our at-
tention. As we move towards having ubiquitous network connectivity, we face the challenge
of transforming networks into “invisible” [2] tools, much in the same way that Mark Weiser

identified the challenge of attaining invisibility in the area of Ubiquitous Computing;:

“A good tool is an invisible tool. By invisible, I mean that the tool does not
intrude on your consciousness; you focus on the task, not the tool. Eyeglasses
are a good tool — you look at the world, not the eyeglasses. The blind man
tapping the cane feels the street, not the cane. Of course, tools are not invisible
in themselves, but part of a context of use. With enough practice we can
make many apparently difficult things disappear: my fingers know vi editing
commands that my conscious mind has long forgotten. But good tools enhance
invisibility” [3].

13



CHAPTER 1. INTRODUCTION 14

So how does the network become a useful yet invisible, or more reasonably, a minimally-
distracting [4] tool? A network that requires little or no attention from the user might

have the following characteristics:

1. Little or no user configuration. The network requires little or no explicit configuration
nor re-configuration by the user even when the user’s goal, task or environment
changes. The term “environment” here includes the computing and access devices
used, the network, applications, other users, or any other objects or factors that
influence the user’s task. There may be cases however where the user might actually
prefer to exercise some form of control over configuration choices; in these cases
the user should be provided the opportunity to make such decisions in an informed

manner.

2. Quality of service guarantees and adaptive capabilities. The network is able to pro-
vide the services necessary for the user to achieve her goals, and is able to offer a
performance level that strikes a balance between the user’s task at hand, the level of
available resources, and the needs of other users. It should be able to adapt in the
face of changes in the user’s activities or in his computing and network environment

in order to maintain this delicate balance. This is also called self-tuning [4, 5|.

3. Reliability and availability. The network and its services should provide certain levels
of reliability, availability, and fault-tolerance, perhaps commensurate to the impor-
tance of the task at hand.

4. Security and privacy. The network should provide a certain degree of privacy and
security appropriate to the user’s task, or based on the user’s preferences, or at a
level that the user is comfortable with.

In networked cnvironments, where resources such as bandwidth arc often shared, it may
not be feasible for the network to simultaneously satisfy the needs of all individual users
under all possible situations. A more pragmatic approach is to set an adaptation policy P
that applies to class of users U, for a particular type of usage or activity A, under a certain
situation or set of network conditions C. In other words, an adaptation P is triggered
by the general parameters (U, A, C). An important requirement, therefore is to determine
whether (1) the condition C exists within the network or user environment, (2) the traffic
belongs to the class of users U, and (3) if the traffic is the result of usage activity A. It may

be said that these parameters describe a certain situation or contert within the network.
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1.1 Aims and motivation

The work in this thesis is motivated by the fact that prior work on adaptive networking, as
will be seen in the next chapter, did not have a comprehensive framework and architectural
support for obtaining, processing, distributing and using the wide range of information
now known as contezt in the literature. As a result these previous efforts failed to enable
the wide range of optimizations and adaptation required in today’s highly dynamic and
heterogeneous networking environments. This thesis aims to enable these by providing a

framework for the management and utilization of context information within networks.

Context is defined in the New Oxford Dictionary of English as “the circumstances that form
the setting for an event ... and in terms of which it can be fully understood and assessed.”
An often-cited definition of context in the human-computer interaction (HCI) and pervasive
computing domains comes from the work of Dey, Salber and Abowd, who define context
as “any information that can be used to characterize the situation of cntitics ... that are
considered relevant to the interaction between a user and an application, including the
user and the applications themsclves” [6]. Perhaps due to its origins, the interest and
work in context has largely revolved around the use of the situations of users, i.c., “user-
centric context” |7|, in triggering execution or adaptation in applications. However, as this
thesis is concerned with the interactions between users and applications via the network,
or more directly, on the interaction between users and networks, it focuses more on the
use of context information by the network rather than by applications. In other words,
rather than context-aware applications, the focus and main motivation behind this work is
on building contert-aware networks through the application and use of context-awareness
within the network domain.

In order to advance the study of context-aware networks, the work in this thesis aims to
further develop its conceptual foundations, contribute to the design and implementation of
architectural components, and explore its potential applications and implications. Specif-
ically, in order to enable the systematic use of context information within networks, the

work in this thesis aims to:

1. Define and develop concepts that may be useful in understanding, designing, imple-

menting, operating and managing context-aware networks;

2. Identify specific entities within the network whose context could be sensed, processed

and used;

3. Develop models for the context information describing these network entities;
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4. Develop architectural and software components that would allow such context in-
formation to be obtained, processed, distributed and used within the network and

end-applications; and

5. Investigate illustrative application scenarios for the use of context information within

networks.

Through the use of context information, networks would be able to achieve some, if not
most of the desired characteristics previously mentioned, such as the ability to dynami-
cally adapt, automatically reconfigure, and provide quality of service, privacy and security

assurances. The approach advocated here is in agreement with Dobson, who writes:

“(we) advocate instead increasing the amount of information available to a net-
work sub-system about the content it is carrying and the context in which that
content will be used. We argue that this view of the network as an equal part-
ner in interactions — rather than as a simple packet carrier — is an appropriate
reaction to the desire for autonomic communication systems that facilitates a

range of optimisations currently difficult to accomplish in a scalable fashion” [8]

The apparent lack of a solid conceptual foundation for context-aware networks also serves
as a specific motivation for the work in this thesis. While the concepts used in the domain
of context-aware applications (such as in the fields of Ubiquitous Computing and Human-
Computer Interaction) are still under continuous development, relatively much progress
has been made there. Recently however there have been attempts to import the concepts
developed in those fields — particularly the definition of the term “context” — into the
domain of computer networks in order to define concepts such as “network-centric context”
[7] and “network-related context” [9]. While these concepts have appeared in the literature
perhaps as an attempt to draw a distinction from the “user-centric” type of context used
in the HCI domain, these abstract definitions still have to be complemented by more
concrete, operational concepts that can easily be translated into actual realizations of
context-aware networks. Thus, Section 3.1.2 discusses why “network-related context” or
“network-centric context” seem to be poorly-defined, or at the very least, not yet well-
understood. Section 3.2 then explains how a better understanding of the nature and use of
context within the network can be achieved by focusing on the context of specific entities,

such as flows within the network, rather than on a nebulous concept of “network context.”

Once the contextual entities of interest have been identified, it is also necessary to develop
appropriate representations and models for their context information, so that the infor-

mation may be obtained, processed, shared, and used by other entitics. The work here
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specifically aims to investigate the applicability and use of ontologies to model context
information within the network, enabling context to be represented using formal and stan-

dardized languages, and allowing them to be semantically processed and reasoned upon.

The development of architectural and software components that would be useful for the
design and implementation of actual context-aware networks is another objective of the
work in this thesis. The aim is to develop and present novel designs, mechanisms and
implementations of components that help sense, collect, aggregate and distribute context

information within context-aware networks.

1.2 Thesis structure

In accordance with these research objectives, the rest of this thesis is organized as follows:

Chapter 2 (“From Adaptive to Context-Aware Networks”) sets the scene for the work in
this thesis by reviewing related work in context-aware application architectures, adaptive
networks, and the recent work in context-aware networks. Previous efforts in adaptive
networking are analyzed to gain insights into the types of information used for adaptation
and the methods employed to use it. The review of context-aware applications on the
other hand examines the distinction between adaptive and context-aware networks, and
identifies the functional components needed to make networks “context-aware.” The on-
going efforts in the development of context-aware networks are then examined to position
the work described in this thesis within a broader perspective.

Chapter 3 (“Understanding Flow Context: Concepts”) establishes the conceptual founda-
tions of this thesis. The concepts of context and context-awareness are defined, and an
examination is made on how these concepts were imported into the field of computer net-
works to arrive at a notion of “network context.” An alternative approach that focuscs
on flows as entities of interest within the network, using the concept of flow context is
proposed. A detailed definition and description of the characteristics and life cycle of flow

context are provided.

Chapter 4 (“Modeling Flow Context”) discusses a formal model for flows and their context
based on ontologies. This chapter attempts to answer the question: “How do we represent
flow context?’ The merits of an ontology-based approach to flow context modeling are
presented, followed by a detailed discussion on implementation of an ontology for flows
and their context. Since the ontology uses technologies developed for the Semantic Web,
an overview of these technologies is provided in Appendix D.
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Having identified the types and characteristics of flow context in previous chapters, Chap-
ter 5 (“Sensing Flow Context”), answers the question: “How do we obtain flow context?”
The notion of using context sensors to perform this task is introduced, and the design and
implementation of some representative sensors, covering a variety of types of flow context,
is described.

Chapter 6 (“Aggregating and Disseminating Flow Context”) discusses the functions that
bridge sensing and using flow context: the discovery and location of context sources, the
processing and aggregation of the information, and its subsequent dissemination within
the network. A method for locating and disseminating flow context using distributed hash
tables (DHTs) and a simulator developed for its evaluation are presented. The semantic

processing of flow context using a reasoner is also evaluated in detail.

In Chapter 7 (“Using Flow Context: Applications”) some of the potential applications of
flow context are explored. The use of flow context in implicit QoS signaling, intelligent
flow classification and management, and in host mobility and moving networks are demon-
strated using proof-of-concept demonstrations. Other potential applications, such as in
overlay routing, content delivery, attack mitigation and control, network security, privacy,

accounting, billing, and network management arce also explored.

Chapter 8 (“Conclusion and Future Work”) summarizes and concludes this thesis, discusses

some open questions, and outlines future work.

Figure 1.1 illustrates the organization of key topics in this thesis, mapping their location
and links with related sections.
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Figure 1.1: Organization of this thesis, showing the location of key topics and their links
with related sections. '



Chapter 2

From Adaptive to Context-Aware
Networks

This chapter sets the scene for the work in this thesis by reviewing related and relevant
prior and ongoing work. It initially describes architectures of context-aware systems that
were developed primarily in the application domain. It then deals with adaptive networks,

which may be viewed as precursors to contert-aware networks.

The view in this thesis — that adaptive networks are precursors of context-aware networks
— implies that there may be overlaps and shared characteristics between these two classes
of networks. This be seen conceptually from the overlaps between adaptation and context-
awareness in the human-computer interaction (HCI) and ubiquitous computing domains.
An adaptive application may be considered context-aware, as it would have to sense and
use some information about its own state or that of its environment prior to performing
adaptation. In other words, any application that reacts to either explicit or implicit input
(the latter from its sensed context) may be considered context-aware to a certain extent,
given the broad definition of the term “context” [6)].

On the other hand, although many applications that are context-aware are adaptive, not
all context-aware applications perform automatic adaptation in response to context. For
example, applications that collect and process context in order to present relevant infor-
mation to the user, thereby allowing the user (rather than the application) to adapt or
select the next course of action accordingly, may also be considered context-aware [10]. In
other words, it is possible to have a context-aware application that does not automatically

perform adaptation.

20
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The same overlaps and distinctions are used in this thesis between adaptive and context-
aware networks. Adaptive networks may be considered context-aware, however, most of
the early adaptive networks lacked the formal architecture and a comprehensive set of com-
ponents for the systematic collection, processing, aggregation and distribution of context
information — architectural components that may be considered hallmarks of context-aware
networks. On the other hand, not all context-aware networks might be adaptive. It is con-
ceivable to build a context-aware network whose main context-related task would be to
sense and process context information, not for its own use, but for the use of other entities

such as end-applications, or even by humans.

The rest of this chapter is organized as follows: in order to identify the architectural
characteristics that distinguish the early adaptive networks from the emerging context-
aware ones, Section 2.1 surveys some representative context-aware applications, focusing on
their functional and architectural components. This is followed by a survey of early efforts
in building adaptive networks, in Section 2.2. Section 2.3 then provides an overview of
recent efforts to integrate context-related architectural components into networks, leading

to the emergence of context-aware networks.

2.1 Context-aware architectures

In order to specify and design the architectural components that would support the func-
tions of context sensing, distribution, processing and aggregation of context within net-
works, it is necessary to review the work done on context-awareness in the application
domain. However, rather than present another survey of context-aware applications and
architectures, only the essential features and components that describe how context is
obtained and processed in general are summarized and presented here. Interested readers

may instead refer to |10, 11, 12, 13| for more general surveys on context-aware applications.

Pascoe identified four generic capabilities needed by context-aware applications, namely
contextual sensing, adaptation, resource discovery, and augmentation [14]. In Pascoe’s
framework, contextual sensing referred to the detection of environmental states and their
subsequent presentation to the user. Applications then adapted their behavior to this
contextual knowledge. Contextual augmentation extended these capabilities further by
adding information, either through the digital data augmenting reality, or reality augment-
ing digital data. Contextual resource discovery made context information and information
resources available to interested entities.
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Several context-aware architectures evolved from work on location systems. Wallbaum pro-
posed a layered system model for indoor geolocation systems that included data collection,
location computation, location normalization, and location provisioning components [15].
In contrast with Pascoe’s approach, Wallbaum decoupled location sensing into separate
data collection and computation components, permitting the use of different positioning
algorithms. Normalization then transformed the computed location into a standardized
representation, and the information was provided to applications in the provisioning step.
Hightower, Brumitt and Borriello introduced the Location Stack model which similarly
focused on location context, and consisted of a seven-layer stack that included sensors,
measurements, fusion, arrangements, contextual fusion, activities and intentions [16]. Al-
though the models introduced by Wallbaum and Hightower et al. were originally proposed
to handle location context, the essential components may be applied to other types of

context sensing.

Dey, Salber and Abowd offered a conceptual framework that included context widgets,
interpreters, aggregators, services and discoverers |6]. Context widgets abstracted under-
lying sensors and acquired context information. This information was further abstracted
by interpreters into higher-level information. Aggregators gathered information relevant
to an entity. Services then executed behaviors using context. Discoverers maintained

information on which of these components are available for use by applications.

Schmidt proposed a “perception architecture for context-aware systems,” consisting of sen-
sors, cues, contexts, and the applications that used them [11]. In this architecture, physical
and logical sensors provided information about the world, to be abstracted or processed into
symbolic or sub-symbolic values called cues. The context layer then abstracted cues into
situations and decided whether a situation satisfied the definition of a particular context.

The context was then passed on to applications.

Finally, Ocampo and de Meer suggested a framework for “cognitive services” that provided
functions for context sensing, interpretation, augmentation and adaptation by networks,
rather than by applications [17]. Sensing referred to the collection of measurable or quan-
tifiable physical data or the observation of an event. Interpretation involved the application
of a numerical process, an algorithm, or a logical process such as inference or reasoning
to transform the raw data into a more relevant or useful form, or to detect the occur-
rence of an event of interest. Augmentation involved the examination or aggregation of
recently-sensed or interpreted events and data with other pieces of information, such as
data or events originating from other sensors (sensor fusion), or historical data from the
same sensor. Adaptation consisted of the specific actions in response to the detection of

certain contexts, or changes in these contexts, including service triggering, modification of
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application or network behavior, or learning.

2.2 Network adaptation

In this section, network architectures that demonstrated adaptivity in the face of changes
in network conditions or user requirements are discussed. Although they used some forms
of context within the network, in general, they only provided implicit and limited support
for context. Thus, these architectures should be considered as precursors to the emergence
of context-aware networks. Nonetheless, these architectures still provide some important

lessons, to be summarized and presented in Section 3.4.1.

The early work on network adaptation may be traced back to the emergence in the early
1990s of heterogenous multimedia-enabled devices and applications that required networks
to transport graphics, digital audio, and digital video, in addition to text and other forms
of data. To deal with transporting these types of traffic, for instance, Campbell, Coulson
and Hutchison developed an integrated, multilayer Quality of Service Architecture (QoS-A)
spanning end-systems and the network [18]. QoS-A allowed the required performance pa-
rameters of media flows in an asynchronous transfer mode (ATM) network to be expressed
in a service contract. Fluctuations in the network service, resulting in violations to the ser-
vice contract could be signalled back to the user, allowing the latter to adapt accordingly.
Such adaptation might include readjusting the application’s performance to accommodate
current network conditions, re-negotiation of the flow’s QoS, disconnection from the ser-
vice, or no action. Subsequent work by Yeadon, Garcia, Campbell and Hutchison, likewise
dealing with continuous media flows in heterogeneous environments, focused on the issue
of flow management, particularly addressing the arcas of QoS adaptation and flow filtering
[19]. A flow management model incorporated three main QoS policies, including a resource
selection policy for resource allocation and sharing, a media conversion policy for media
encoding conversion and scaling, and a QoS adaptation policy to alter encoding character-
istics at the source. Sources and receivers then interacted with a flow manager, which was
responsible for setting up and maintaining communication group membership and resource

sharing lists, flow set-up, resource reservation, routing, and filter management.

The early adaptive architectures represented by the work of Campbell et al. and Yeadon
et al. focused solely on providing QoS-related adaptive mechanisms that allowed the net-
work to deal with multimedia flows, and thus the context information of interest, primarily
involved traffic parameters and knowledge of the media type carried within the flow. Sub-

sequent work on adaptive networks, as will be shown in this section, enabled other types
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of adaptation such as reassembly, buffering, encryption, and adaptation to mobility, in
addition to QoS-related adaptation. Although the body of work on adaptive networks is
quite extensive, a sampling of representative works is presented here. These were selected

to provide a view of the different approaches in designing adaptive networks, including:

e the different levels of end-application involvement in the adaptation process, e.g.
whether adaptation is “application-aware” (Odyssey), or if it only involves the net-
work (Conductor);

e where the adaptation may take place, such as within end-hosts (Odyssey), within the
network edge (TranSend), within specific network segments (Transformer Tunnels),

or in a distributed fashion within the network (Conductor);

e what type of context information is sensed, such as traffic parameters (Congestion
Manager) or flow content type (Transend).

A brief discussion of these works is presented in the next few sections.

2.2.1 TranSend

Fox et al. introduced an application called TranSend which performed lossy Web image
compression on the fly on behalf of users on low-bandwidth (dial-up) links, through the
use of active transformational prozxies that performed distillation, or datatype-specific lossy
compression' [20]. TranSend relied on the Multipurpose Internet Mail Extensions (MIME)
type [21] of an object returned from an origin server in order to determine the type of
compression to be done on the inbound content. The general programming model that
formed the basis for TranSend, called TACC (for transformation, aggregation, caching
and customization) also supported a database of stored user profiles that allowed request
processing to be customized. However, it is unclear whether these user profiles were actually
used by TranSend to personalize distillation requests.

Fox et al. argued that adaptation machinery, such as the active proxies used in their
approach, was better placed in the network infrastructure rather than on servers or clients,
because it allowed for incremental deployment of service functionality without having to
modify a very large base of servers and clients. They further stated that a centralized
resource for adaptation placed within the infrastructure was more efficient in terms of cost

and utilization.

14088y compression” refers to a method of data compression that results in some (usually acceptable)
level of information loss, distortion, or quality degradation in the output.
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TranSend illustrated a specific example of network adaptation on flows based on capabil-
ities of the clients (and possibly user profiles) that requested these flows. Although there
was an implicit use of client capability, connectivity characteristics and user profiles as
context in their model, there was no explicit architectural support for the use, processing
and distribution of context in general. In addition, although a centralized resource for
adaptation may be desirable from an economic point of view, the scalability, availability
and reliability of such an approach is somewhat debatable.

2.2.2 Odyssey

Noble et al. introduced Odyssey, a set of operating system extensions designed to support
adaptation for mobile applications running on an end-host [22]. Odyssey monitored shared
resources on an end-host, particularly network bandwidth, although conceptually the de-
sign could be used to manage other resources as well. Applications expressed their resource
expectations to Odyssey and were notified when these expectations could no longer be met,
enabling them to adapt by allowing changes in the fidelity? of the data presented at the

client.

Odyssey’s approach to adaptation was characterized by Noble et al. as application-aware
adaptation, essentially a collaborative partnership between the system and individual ap-
plications. They distinguished this from what they called laissez-faire approaches, where
applications bear the entire responsibility for adaptation, and application-transparent ap-
proaches, where the entire responsibility for resource management and adaptation lied with
the operating system.

Odyssey’s designers claimed that application-aware adaptation provided good support for
application concurrency, and enabled the management of shared resources in coordinated
and cooperative way. While Odyssey promoted concurrency (i.e., the ability to execute
multiple applications simultaneously) by ensuring that local resources within a single end-
host were optimally shared, it did not promote concurrency among multiple end-hosts
sharing a common resource, such as wireless network bandwidth, for example. In addition,
Odyssey’s focus on end-hosts did not provide any support for adaptation to be done by

network elements — a function that would be essential in context-aware networks.

2«pidelity” was defined in [22] as the degree to which the data presented to a client matched a reference
copy in a server.
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2.2.3 Conductor

Yarvis, Reiher and Popek presented Conductor, a system that allowed distributed adap-
tation within the network [23]. Software modules called adaptors, written in Java, were
dynamically deployed along the communication path between a client and a server on
Conductor-enabled nodes such as routers or on end-devices. Adaptors were specialized,
immplementing only a single algorithm or function, and were combined when appropriate.
Each one had an input and output protocol, a set of interoperability parameters which
restricted adaptor combination, and an observation component that monitored local node

resources such as CPU load and link characteristics.

When a new client-server connection formed, Conductor gathered all relevant informa-
tion (for some partitioning of the network) to a single node, generated a plan that was
distributed to the nodes along the communication path, and finally deployed adaptors.
Adaptors were typically deployed in pairs, so that an adaptor that converted the stream
from protocol A to protocol B would have a counterpart downstream that converted from
protocol B back to protocol A.

Conductor was application-transparent, that is, applications were not aware of or able to
control adaptation. The rationale for application transparency, according to the designers,
was to free application developers from the complexities of building support for adaptation
and from the need to change or upgrade end-applications as user requirements or network
technologies evolved.

Some important design approaches that may be learned from Conductor include adaptor
composition, and the need to deploy adaptors (in some cases) in pairs. The need to
optimally plan the deployment of adaptors, based on existing conditions within some level
of network partitioning is another important concept that may be worth considering in
future designs.

The Conductor design however raises some questions about the ability of the the system
to quickly respond to the onset of flows, and whether the overhead of adaptor deployment
can be justified in the case of short-term flows. One major assumption made by the de-
signers was that information gathered during the planning stage was primarily connection-
independent and somewhat static, and thus planning information could be cached, reducing
the planning overhead. This assumption might not be entirely valid as network resources,
particularly bandwidth, may change continuously, and each new connection could poten-
tially trigger a further change in the state of these resources. A planning node would thus

have no means of knowing in advance whether the observation data within the nodes had
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changed significantly since the last time it had been polled (unless it applied some predic-
tion algorithm), or know statistically if data from the nodes could be sampled without loss
of information. In the worst case therefore one might expect a significant amount of traffic
generated by the collection of planning information and the deployment of plans to nodes

every time a new connection (flow) was initiated.

2.2.4 Transformer Tunnels

Sudame and Badrinath proposed the idea of Transformer Tunnels that provide route-
specific adaptation functions, called transformation functions, operating on packet flows
between two nodes of a network segment [24]. The authors claimed that packet flows
that may have originally been tuned for transmission over some types of links, perhaps
in terms of packet size, transmission rate, encryption method, or some other parameter,
may be unsuitable for transmission over other types of links. Hence, their approach bound
the adaptation function to specific segments of the network, and forced packets traversing
transformer tunnels existing within those segments to undergo an adaptation appropriate

to the link characteristics.

Packets entering a transformer tunnel were modified either by changing the content or by
changing the way they were transmitted in order to fine tune the flow according to the
segment properties. At the other end of the tunnel, packets were restored to their original
form. Some examples of transformation functions tested included reassembly, buffering,
encryption and compression. Reassembly involved combining small packets into larger ones
in order to improve link utilization and reduce contention in shared-medium wireless links.
Buffering allowed mobile hosts to put their interfaces into sleep mode and save energy, and
also to recover packets lost during mobile handoff. Encryption enhanced the security of
data transmitted over wireless links, and compression improved transmission performance
and reduced link traffic, particularly when the link was slow enough such that the savings in

transmission time were significantly higher than the compression-decompression overhead.

Although the basic idea behind Transformer Tunnels made it applicable for deployment
on any suitably-configured segment within the network, the implementation presented
was limited to last-hop links, typically between a mobile host and its access point or base
station. A client-server architecture was used where the client (mobile host) could remotely
configure tunnels at the server (the base station) in order to add or delete transformations
at any time. The concept could have been more general and powerful had there been
mechanisms for creating and tearing down transformer tunnels on “transformer-enabled”

segments elsewhere within the network, e.g., further downstream along the flow path,
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perhaps by providing a mechanism for sharing “transformation-triggering” (i.e. context)
information.

2.2.5 Congestion Manager

Andersen et al. introduced Congestion Manager (CM), an operating system module that
provided integrated network flow management and an application programming interface
(API), that allowed applications on end-hosts to be notified of and adapt to changing net-
work conditions [25]. CM provided integrated congestion management across macroflows,
which the authors described as a group of flows that shared the same congestion state, con-
trol algorithms, and state information. Their rationale for operating on macroflows rather
than individual flows is that multiple concurrent connections originating from single appli-
cations, such as in the Hypertext Transfer Protocol (HTTP) |26] tended to compete with,
rather than learn from each other about network connections to the same receiver. These

applications then ended up being unfair to other applications that used fewer conncctions.

CM cmployed a congestion controller that performed congestion avoidance and control on
macroflows using a window-based algorithmn similar to TCP’s additive increase / multiplica-
tive decrease (AIMD) scheme [27]. A scheduler then decided how the current window (rate)
determined by the congestion controller should be apportioned among the constituent flows.
User-space applications or in-kernel protocols that sent flows using CM, called CM clients,
opened CM-enabled sockets3, where the flow was assigned to a macroflow based on its
destination. When a client requested permission to send data, CM’s scheduler checked if
the corresponding macroflow’s window was open, and if so, granted the request and noti-
fied the client that it could proceed with transmission. When the client received feedback
from its remote counterpart, it informed CM of the loss rate, number of bytes transmitted
correctly, and the observed round trip time. CM then applied these parameters to its
congestion management algorithm to open up the window and grant the pending request

of the next scheduled flow associated with the current macroflow.

While CM'’s ability to share information across concurrent flows may have promoted coop-
eration rather than competition, this mechanism only worked within the end-host where it
operated. Thus CM did not have the ability to extend the same advantages over multiple
concurrent flows originating from multiple hosts. In order for that to happen, multiple
hosts running CM would have had to share macroflow QoS information among each other

in a cooperative fashion, within timescales appropriate to the flow lifespan — a task which

3A socket is an application programming interface that allows communication between hosts on a
network. It was first developed for the Unix operating system and is widely used in systems that support
TCP/IP.
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would have been difficult to realize. There is a need for a mechanism (as will be presented
in Section 6.2) to share macroflow QoS information obtained by CM (or a similar scheme)
with network devices in order to permit the further aggregation of macroflows from different

hosts, thus further transforming these competing macroflows into cooperating macroflows.

2.3 Context-aware networks

Based on the definition of context by Dey, Salber and Abowd (cf. Section 1.1, on page 15),
which referred to any information that can be used to characterize the situation of entities
[6], it may be argued that networks that used such information to trigger adaptation, such
as those discussed in Section 2.2 may be considered context-aware to a certain extent.
The emergence of the concepts of context-sensitive and context-aware communications, as
will be discussed in Section 3.5 are marked by explicit reference to the term “context” to
describe information that may trigger or influence communications. These concepts have
further progressed the evolution of networks from “adaptive” to “context-aware,” although
the distinction is somewhat blurred. In this section, a number of architectures that may
be classified as contezt-aware networks are discussed. Context-aware networks have one or
more of the following characteristics:

The use and processing of information generally considered to be or explicitly defined

as context information within the network

Systematic sensing of context information (in its broadest sense) within the network

e Provisioning of context-aware or context-triggered services within the network

Presence of a well-defined context management infrastructure

2.3.1 The CONTEXT Project

Anagnostou et al. described the CONTEXT Project (Active Creation, Delivery and Man-
agement of Efficient Context-Aware Services; http://context.upc.es/index.htm), whose
main objective was to “design, develop and assess innovative models and middleware solu-
tions for the efficient provisioning of context-aware services making use of active network
technology on top of fixed and mobile networks,” enabling context-aware services to be
composed and dynamically adapted for the benefit of users [28]. Anagnostou et al. listed
a wide range of information types treated as context information in the CONTEXT archi-

tecture, including user information, state, preferences and agenda; location, time and date;
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application information; terminal parameters; and network parameters. Jean et al. fur-
ther enumerated some features of the CONTEXT architecture that allow its classification
under “context-aware networks,” including: (1) the integration of the context management
infrastructure within the network rather than in end-applications, (2) the use of context
information sensed not only from outside, but also within the network (the so-called “net-
work context”), and (3) its focus on the provisioning and management of “network-centric
context-aware services” [29], which essentially constitutes an awareness and response by

the network, rather than by end-applications, to context information.

Although the CONTEXT architecture does not adopt a flow-centered approach to the
sensing and use of context, many of its features may be of potential use by context-
aware network architectures. For example, its policy-based framework for service creation,
provisioning and management may be used as a means of triggering network services in

response to flow context.

2.3.2 Ambient Networks and ContextWare

Karmouch |9] et al. proposed the development of an architecture called Context Ware and
the deployment of its functional elements to manage context and mediate between context
sources and sinks within networks called ambient networks (ANs) [30]. The role of context
in ANs would be to enable automatic decision-making and adaptation within network con-
trol components and to allow externally-accessible user services (called user-facing services)
to adapt their operation, thereby optimizing network service delivery, reducing complexity,
and enhancing performance and functionality [31].

Two main functional entities (FEs) were defined within the ContextWare architecture,
namely the Context Coordination (ConCoord) FE and the Context Management (CM) FE.
The ConCoord FE was the first point of contact for any context client, such as any other
functional entity within an ambient network, or external applications that required context
information. A key function of the ConCoord (described in more detail in Section 6.1.1) was
to provide context clients with the locations where context information may be obtained
within the network.

The CM FE managed operations such as the collection and dissemination of context infor-
mation within an AN. It was also responsible for scheduling and monitoring interactions
between context sources and sinks, as well as allocating resources (such as communication
channels) for such interactions. Other functionality managed by the CM FE concerned

the processing, manipulation and aggregation of context information from its “raw” form
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provided by context sources into the form required by the context client.

The ConCoord also enforced policies and resolved conflicts governing the kind and quality
of context exchanged between sources and clients, and the rules governing this exchange
were called Context Level Agreements (CLAs). While the notion of context clients having
to request and pre-negotiate the type and quality of context information with the ConCoord
FA seems justified within the Ambient Networks framework, it also seems to be a rather
complex and possibly costly way, in terms of computational and time overhead, of obtaining
context.? Consider for instance a mobile host (considered an ambient network in itself by
definition) transiting through a third-party network, possibly for a brief period of time.
Would the respective ConCoord FAs of these two networks need to go through the process
of CLA negotiations for instance just to accommodate a brief flow from the mobile host?
Despite these pragmatic concerns about the performance and overhead associated with
context negotiation and CLAs, the idea of associating a certain quality metric with context
is interesting and potentially useful, given its dynamic and occasionally imperfect nature
132].

One conceptual weakness in AN (discussed further in Section 3.1.2) was the use of the
rather abstract notion of “network context” [31] without providing a clear and operationally
useful definition of it. As the term was quite vague and open-ended, it could have referred
to practically anything about everything within the network, thus making it difficult to
separate the concerns of the ContextWare architecture from those of the other functional
areas within an ambient network. For example, if the location, availability and state of
services within the network were also considered forms of network context, then should the
implementation of service location be placed within ContextWare? Another example might
be: should the current mapping between a host name and its IP address be considered a
form of network context, and if so, should name resolution be the task of ContextWare?
These questions merely illustrate the need to improve or evolve ContextWare’s conceptual

framework, perhaps as work in the project progresses.

Despite these criticisms on some approaches taken in ambient networks, several of Con-
textWare’s design approaches and components prove valuable in this thesis, such as in
Section 6.1.1, where the ConCoord concept is used to locate sources of flow context, and
in Sections 6.2 and 6.3, where functionalities similar to those provided by the CM FE —

those of dissemination and aggregation — are explored.

4An alternative method is proposed in Section 8.3.8.



CHAPTER 2. FROM ADAPTIVE TO CONTEXT-AWARE NETWORKS 32

2.3.3 Situated and Autonomic Communications

Situated and Autonomic Communications (http://www.cordis.lu/ist/fet/comms.htm) is a

relatively new®

research initiative sponsored by the Commission of the European Union
under the Information Society Technologies — Future and Emerging Technologies Pro-
gramme. The long-term goal of this initiative is to “promote research in the arca of new
paradigms for communication/networking systems that can be characterised as situated
(i.e. reacting locally on environment and context changes), autonomously controlled, self-
organising, radically distributed, technology independent and scale-free” in order to enable

the development of task- and knowledge-driven communication networks.

Sestini described two major (and perhaps overlapping) research areas that comprise this ef-
fort: self-organization in networks, and cognitive situated networking [33]. Self-organization
in networks means that network elements have the capability to observe, react and recon-
figure themselves to fit communication goals and environmental situations, without explicit
user interaction. These elements would likely to be programmable, and autonomously con-
trolled by policies, rules and events that lead to or facilitate certain desired group behaviors.
Cognitive situated networking, on the other hand, attempts to move away from the tra-
ditional view of networks as self-contained systems of information channels, and instead
recognizes that networks interact and relate in intricate ways with their larger surround-
ings. The use of context, meaning and semantics are seen as key approaches in cognitive
situated networking, bridging the gap between the physical and digital worlds, and ensur-
ing that communication technology takes full advantage of the setting and environment in
which it is being used [33].

The emergence of this research effort highlights the relevance of the work described in
this thesis within the larger research context. A section in [33] states: “The final step
will be leveraging meaning into the network, using semantics and context ... For instance,
the notion of adding semantic tags to information exchanges — letting the network “know”
what it is transporting — can be a key enabler for adaptive and intelligent behaviour.” Flow
context is envisioned to provide exactly this function, and perhaps even more, as will be
seen in Section 3.3, where flow context is defined to encompass information not only about
the flow itself (i.e., “what it is transporting”) but likewise information about other entities
that are also relevant to or associated with the flow, such as the users that generate the

flows, their activities, their devices, the applications, and others.

5Projects funded under this initiative commenced in January 2006.
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2.4 Chapter summary

This chapter presented a critical review of relevant prior and ongoing work, including
the architecture of context-aware applications, adaptive networks, and the recent work in
context-aware networks. The features of these architectures were summarized, and when
possible, related with the relevant aspects of this thesis.

It had been mentioned that adaptive networks served as precursors to current context-
aware networks. The next chapter re-examines some of the lessons learned in the review
presented in this chapter, and identifies the particular context-handling functionalities and
architectural components needed in order to evolve yesterday’s adaptive networks into

tomorrow’s context-aware ones.



Chapter 3

Understanding Flow Context:
Concepts

3.1 Context

Context is defined in the New Oxford Dictionary of English as “the circumstances that
form the setting for an event ... and in terms of which it can be fully understood and
assessed.” Within the related domains of human-computer interaction (HCI) and perva-
sive and ubiquitous computing, the term context has been used to refer to a number of
things, including: the location and identities of nearby people and objects relevant to an
application [34]; the elements of the user’s environment that a computer may know about
[35]; or knowledge about the state, situation and surroundings of the user and her devices
[36, 37]. A well-accepted definition of context is given by Dey, Salber and Abowd as “any
information that can be used to characterize the situation of entities ... that are considered
relevant to the interaction between a user and an application, including the user and the

applications themselves.” [6].

In context-aware computing, applications (called contert-aware applications) discover and
take advantage of context information to present information and services to a user, execute
services automatically, or provide information tags for later retrieval and use, based on the

relevance of this information or services to the user’s task [6].

34
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3.1.1 Entity-centered context

One common characteristic of context-aware applications in the HCI and pervasive comput-
ing domains is that context information is centered around or bound to particular entities
of interest. As shown by the synonyms and definitions of context given in the previous sec-
tion, these entities of interest are usually the user or the application. It is relatively easily
to conceptualize, say, the context of a user, because a user is essentially a single entity that
can easily be distinguished from its surroundings or environment, and although humans
have complex behaviors, it is still possible to come up with concise descriptions of their
situation, disposition, social setting, or activity, i.e., context. Thus, one frequently encoun-
ters the following contextual description of humans in pervasive computing applications

such as “user A is in a meeting,” or “user B is in location X.”

Similarly, Schmidt argued for the use of entity-based contexts rather than system-based

contexts:

“The domain knowledge about a specific entity is more universal and easier
to establish than the domain knowledge of a complex system, and hence it

is simpler to identify and implement contexts on entity level than on system
level.” [11]

This however does not imply that system-level context should not be inferred from more
elementary entity-level contexts. On the contrary, one may use a bottom-up approach to
sensing context, where information and domain knowledge would progressively be built up
from simpler and more manageable pieces of information coming from sensors working at
the level of entities [11]. If one were to apply this design principle to the use of context
within networks, it would mean that one should first identify specific entities of interest
within the network, sense their context, and attempt to infer higher-level system contexts
from these.

3.1.2 The notion of “network context”

Recently there have been some efforts to introduce the notions of “network-related context”
as well as “network-centric context” [7, 9, 31, 38]. One possible distinction between this
type of context and the traditional type of context considered in context-aware computing
is in terms of where the context is used to trigger changes: network-related context trig-
gers changes primarily within the network rather than in host applications {38]. Another

distinction revolves around the class of entities whose operational state are of interest:
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“The relevant entities of network-related context information include network
nodes and network parameters. Examples of context information include the
location of a node in the network topology, its own resources, network resources
available to it, and its other states (for example, mobility, security, etc.).” [9]

Yang used the term “network-centric context” to refer to context information where the
entities of interest may be physical devices such as routers or switches, or virtual objects
such as network services |7]. His view of context is “any information, obtained either
explicitly or implicitly, that can be used to characterize one certain aspect of an entity

that is involved in a specific application or network service.”

It is difficult to see from these definitions how network-related or network-centric context
are different from, say, information gathered and processed by contemporary network man-
agement systems such as those using the Simple Network Management Protocol (SNMP)
[39]. While some definitions included the notion of inferred information about the state
of network-based entities [7], it is unclear if this is what differentiated network-centric
context from any other information currently obtained and processed by contemporary
network management systems. Is SNMP data different from network context? Or is it
merely a subset of what is now considered network context? Does it have to be processed

before it can be considered context?

It is also somewhat difficult to apply the entity-based definition of context by Dey, Salber
and Abowd (cf. Section 1.1, on page 15) using the network as the entity of interest in
order to arrive at a notion of “network context.” One reason is that a network is composed
of multiple sub-entities such as nodes, links, and end-hosts; one may as well include all
of the traffic lowing among the physical devices or the services provided by the network
as entities of interest if one pertains to networks that are actually operational. Thus
when one says “network context” it is rather difficult to identify the specific entity of
interest, or to isolate what is considered to be its environment or situation, or to arrive
at an aggregate description of the situation — context — of the complex entity collectively
referred to as the network. As an example, when users sometimes complain that “the
network is congested,” they may actually be making an observation based on high error
rates on a specific transmission link, packet loss within a single router, or congestion along
a particular path in the network. Another user whose application flow might be traversing
a different path may not encounter the same conditions, and therefore arrive at a different
conclusion. Thus, some contextual descriptions or observations about the network may

not necessarily be true or applicable on a global, system-wide sense.
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Context type Definition

Entity-level context Context information centered around a particular en-
tity. For example, the location of a single (human)
user.

System-level context Context information that has been collected and pro-

cessed to describe an entire system composed of mul-
tiple entities. For example, the collective state of the
network from a user’s point of view (“the network is
congested”).

Network-related context, network-centric context | Context information that describes or pertains to en-
tities within the network. For example, the state of
nodes within the network, or their location in the
topology, or their available resources.

User context Context information characterizing a single user.

Table 3.1: Some views for context.

Finally, there is a danger that the terms “network-related context” or “network-centric
context” may tend to exclude, albeit unintentionally, the more traditional forms of context
such as user context. Ultimately, users are the ones whose applications generate traffic
over networks, so it is logical to assume that their activities — as described explicitly or
implicitly by their contexts — affect network state and impact network performance. For
example, a user accessing the Internet from home for recreational purposes may exhibit a
different network traffic profile than the same user working at the office, or when traveling

between these two locations.

Table 3.1 summarizes the different views for context so far discussed in the preceding
sections.

3.2 Flows as entities of interest

In Chapter 1 it was stated that it was the vision of this thesis to enable minimally-
distracting networks to be built. A user however may be distracted as a result of ex-
plicit interaction with the network. Thus, to minimize this distraction, this user-network

interaction needs to be examined more closely.

When a user runs a networked application on an end-host, the application generates a
sequence of packets, traditionally called a flow [41]. The flow traverses network links and
nodes, where it may be switched, buffered, routed, queued or processed in some other
way. In addition the low may suffer packet loss, delay, or its constituent packets may be

subjected to variable delays resulting in what is called jitter.

The flow is the physical (or rather, electronic) embodiment of the user’s interaction with

the network. Furthermore, in many cases, the conditions experienced by the flow directly
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affect the user’s experience, despite the attempts of most architectures to abstract or
hide the details of low-level interactions through mechanisms such as retransmission (such
as in the Transmission Control Protocol, or TCP) and error correction. Some examples
of network conditions producing perceptible effects on users include network congestion
producing large delays in downloading files or Web pages, insufficient bandwidth or packet
loss resulting in the degradation of real-time audio or video streams, or large transmission

latencies resulting in annoying echoes in two-way voice over IP (VoIP).

Equally significant is the fact that flows are distinguishable and identifiable entities, so it
is also possible to view and analyze them separately from their environment, consequently
making it possible to identify the elements that constitute or describe their environment

or context.

3.2.1 Defining “flows”

Multiple definitions of the term flow and its variants exist, usually shaped by the domain
where the concept is applied. Clark originally conceptualized it as an alternative building
block for the Internet, defining it broadly as a sequence of packets traveling from a source
to a destination [40]. This sequence of packets may typically be the result of the activity
of a single entity [41].

Subsequent definitions that emerged from the network measurement community focused on
defining the set of attributes that allowed packets to be classified into flows for measurement
purposes. A well-known definition for instance uses the 5-tuple (IP protocol, source IP
address, source port, destination IP address, destination port), delimited by a fixed timeout
interval [42]. Brownlee considered flows to include arbitrary groupings of packets defined
by the attributes of endpoints that in turn may be described by a complete 5-tuple, a pair of
netblocks, or two lists of netblocks [43]. A more general, parameterized definition by Claffy,
Braun and Polyzos further took into account the directionality, endpoint aggregation,
endpoint granularity, and protocol layer of the packet sequence [42]. Flows may be further
qualitatively characterized by their size (mice and elephants) or their lifetime (dragonflies
and tortoises) [44]|. Likewise associated with the notion of flows are streams, made of bi-
directional 5-tuple flows, and torrents, comprising all traffic on a link [43]. In addition, the
term session could refer to a data flow defined by the triple (DestAddress, ProtocollD, |,
DstPort]) [45], or a data flow delimited by transport-layer protocol semantics (e.g. SYN
and FIN for TCP) or end-application initiation and termination.

In the EU-IST Ambient Networks Project, the terms flow, bearer and session referred
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to connectivity abstractions [46]. A flow was defined as a unidirectional data exchange
between endpoints that were identified by a pair of locators, and was usually constrained
to a single network technology. A bearer, on the other hand, had a more end-to-end
character, and its endpoints were not bound to locators but to higher-level objects in the
AN naming framework. Sessions, which were associated with end-applications, combined

multiple bearers to form custom transport entities for use by the application.

Given the wide range of operational and application-dependent definitions of the term
“flow” and its variants, and the fact that flows, in reality, do exist at various levels of
abstraction (e.g. at different “layers,” such as network-layer flows, transport-layer flows,
application-layer flows, and others), a broad definition of the concept is adopted instead
and presented below:

Definition 1. A flow is a distinguishable and related sequence of protocol data units

(PDUs) transmitted across a network.

In Chapter 4, this broad definition is further divided into specialized subclasses through
a formal taxonomy of flows, classified along a range of parameters called flow context.
Clearly however, the scope of the “flow” concept used in this thesis involves only PDUs
transmitted across a network: for example, at the link layer, it may involve a flow of
frames; at the network layer, it may involve a flow of packets; at the transport layer, it
may include a flow of datagrams or segments; at the application layer it may involve an
exchange of application messages.

3.3 Flow context

3.3.1 Motivation

Given the definition of flows in the previous section, what sort of information might then
constitute flow context? As examples, the following information about a flow or group
of flows might be of interest in a network that adapts to context in order to optimize

user-network interactions:

e What kind of links did the flow encounter within the network? Were they high-speed
or low-speed links? Were they congested? Were they relatively error-free, or do they
have high error rates? Were they secure links?

e Did the flow encounter significant switching or queueing delays within the network



CHAPTER 3. UNDERSTANDING FLOW CONTEXT: CONCEPTS 40

nodes or devices it traversed? Were the router buffers full, resulting in packets being
dropped?

e What are the traffic characteristics of the flow? Does it have a “bursty” (highly
variable bit rate) traffic profile, or does it have a fairly constant bit rate? Does it
tend to have a relatively constant bit rate, regardless of the bandwidth or transmission
rate of the link, such as in some classes of streaming audio or video, or does it seek

to occupy most of the available bandwidth, such as in TCP flows?

e What kind of application generated the flow? Was it a real-time, interactive voice
application? Does it require a certain amount of guaranteed bandwidth or bounds
on latency? Can it be given best-effort treatment within the network? Can the
flow withstand a certain level of packet loss? Can its average bit rate be reduced

somehow? Is it a malicious flow, or of suspicious or dubious nature?

e What were the activities of the user who generated the flow? Where is she located?
Is she moving? If she is moving, will the flow have to be rerouted? Will it originate

from or terminate at a new access point within the network?

e What kind of device generated the flow? Does the device have limited amounts of
power, such that it cannot afford to retransmit the flow?

These questions help illustrate the definition and specific instances (examples) of flow con-
text, and highlight the motivation for using it. Each case describes information that helps
characterize not only the flow itself, but also the factors that affect the flow’s properties
or state.

The main motivation for developing a broad concept of flow context is that it is advan-
tageous to be able to view flows within the context of their environment. Since the flow
is the embodiment of the interaction between the user and the network (cf. Section 3.2,
page 37), by extension, flow context also serves to characterize this user-network interac-
tion. By using this information, a context-aware network can potentially adapt or respond

properly, and optimize the interaction between the user (or group of users) and itself.

The intrinsic properties of flows, particularly parameters that describe its traffic char-
acteristics, are already extensively used in network management and traffic engineering
[42, 43, 44, 47, 48, 49]. However, context-awarc networks may also benefit from informa-
tion describing the state, characteristics or properties of external entities that affect or may
have influence over the flow in order to better characterize or “understand” the nature of

the flow, or predict its behavior, for adaptation or optimization purposes. For example, the
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knowledge that a flow is being routed over a congested link may help explain why its loss
rate is high, or why its bandwidth is low. Equivalently, the knowledge that a set of flows
are generated by certain application classes, such as peer-to-peer or malicious applications,
may help networks predict their traffic volume and resource impact, allowing solutions for
mitigation [50] or protection [51] to be deployed or activated. This rather broad concep-
tualization and scope for flow context differentiates it from, say, the limited mapping of
flows to QoS-related parameters typical of the early work in network adaptation [18, 19].
Because such early work was limited to mapping flows to their QoS characteristics and
negotiated service contracts, the range of adaptations within the network was necessarily
limited to QoS-related actions. Network adaptation dealing with, for example, user mobil-
ity, the need for security and privacy, were generally not supported or investigated in such
early QoS-centric work.

Furthermore, if flows can be explicitly associated with the relevant external entities within
their environment, then context-aware networks may attempt to infer information about
the state, propertics, behavior or intention of these external entities through an examni-
nation of the flow, and use this information in order to improve user-nctwork interaction,
properly manage resources, adapt or optimize opcrations, or to protect themsclves. For
example, the type of applications generating the flow may be determined through an ex-
amination of the flow itself [52, 53|, or the implicit intention of the user inferred from it,

such as in the cases of email filtering for spam [54] and network intrusion detection [55, 56].

It is sometimes surprising how much information about entities that are external, or ez-
trinsic to the flow, but which are related to it, can be inferred through an examination
of the flow. For example, Kumar, Paxson and Weaver, through an analysis of limited
and imperfect flow data attributed to the Witty worm, coupled with knowledge about the
algorithmic behavior of the worm'’s code, were able to deduce surprisingly detailed and ac-
curate information about infected hosts, such as “who infected whom,” which network was
specifically targeted (despite an effort to obfuscate this through a world-wide, randomized
infection pattern), the initial point of infection, each host’s access bandwidth, the last time

they were booted up, and even the number of disks attached to infected hosts [57].

The primary objective therefore of defining and developing the concept of flow context is
to provide the means by which flows can be viewed and characterized both in terms of
their internal properties, called intrinsic contert, and their external environment, called
extrinsic contert. This would be achieved by (1) explicitly associating flows with their
contexts, both intrinsic and extrinsic, and (2) by providing the means by which this broad
notion of flow context can be modeled and represented. The vision is to enable the creation
of context-aware networks where the statements “flow A has bandwidth X” and “flow A is



CHAPTER 3. UNDERSTANDING FLOW CONTEXT: CONCEPTS 42

destined for user Y, who is watching video” can be represented and used.

3.3.2 Definition

Recalling the entity-based definition of context put forth by Dey, Salber and Abowd (cf.

Section 3.1, on page 15), the context of a network entity called a flow is defined as follows:

Definition 2. Flow context is any information relevant to an interested entity, that
can be used to characterize the situation of a flow. It includes information pertaining to
other entities and circumstances that give rise to or accompany the flow’s generation at the
source, affect its transmission and processing through the network, and influence its use at
its destination.

This definition includes not only the intrinsic, low-level characteristics of a flow, but also the
nature of the applications, devices, and the activities, intentions, preferences and identities
of the users that produce or consume the flow. Flow context may be directly sensed,

inferred, processed or aggregated into other forms of flow context.

Note that the above definition also involves the notion of an interested entity. The entity
may be a user or group of users, a class of end-applications, a network device, a user device,
network middleware, the network operator, or some other entity that may have some use
for the context information. The purpose of introducing such an entity, although it may be
abstract (rather than a specific and identified individual) is to limit the scope and purpose
of the context being collected. While the notion of context information is purposely very
broad by definition [10, 6], its scope is limited in practice by its relevance to its intended
consumer (i.e., the interested entity). This degree of relevance is described, along with its
other characteristics such as its fidelity, precision, frequency, timeliness, and other quality
attributes, by a concept called quality of context (QoC). QoC is an important parameter
that is further discussed in the next section of this thesis.

The conceptualization of flow context is expected to become more clear as the discussion
in this thesis progresses, particularly in the next section, where its characteristics are
discussed; in Chapter 4, where the concept is formally modeled; and in Chapter 5, where
some specific examples of flow context are presented and mechanisms for sensing them
are described. On the other hand, its usefulness will be demonstrated in Chapter 7,
where its application in areas such as implicit QoS signaling, intelligent flow classification
and management, mobility and moving networks, overlay routing, content delivery, attack
mitigation and control, network security, privacy, accounting, billing, and other areas of

network management, are described.
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3.3.3 Characteristics of low context

In this section some of the characteristics of flow context are examined. Since the definition
of flow context also includes information defined as “context” in the domain of context-
aware applications — such as user activity or location, or the capabilities of user devices
— flow context may therefore share many of the characteristics of these types of context.
However, there are other characteristics unique to flow context, which are examined as

well.

Henricksen, Indulska and Rakotonirainy suggested that context has the following charac-
teristics: (1) it can either be dynamic or static, (2) it tends to be imperfect, (3) it has many
alternative representations, and (4) it is highly interrelated [32]. These characteristics as

they apply to flow context are examined below:

Flow context may be dynamic or static. Flow context is conceptually more dynamic
than static, because flows — even those that exist for relatively long periods of time — exist
only on a temporary basis within the network. In mobile ad-hoc networks, the mobility of
participating hosts alone can continuously alter the path of a flow, and thus by definition,
alter its context. The internal dynamics of flows and their cross-interactions may also result
in highly variable behavior. Network traffic levels, for example, are highly variable and
“bursty” even at various levels of aggregation [58, 59, 60]. However, within the duration
that a flow exists, some pieces of information may remain static: for example, if a flow
traverses an invariant path within a fixed network, certain properties of the node, such
as the type of the interfaces encountered along that fixed path, would remain the same.
Thus, while some aspects of a flow’s context may be dynamic, others might be considered
relatively static.

Flow context is bound to be imperfect. The accuracy, precision, consistency and
completeness of flow context depends on the ability of a system to reflect the true state
of a flow or macroflow, and that of its environment. Although the individual bits and the
protocol data units (such as frames, cells or packets) that constitute flows are arguably
discrete and countable, physical limitations in the monitoring and measurement instru-
mentation may lead to inaccuracies in sensing and interpreting flow context. Monitoring
large numbers of flows can be a slow, inaccurate and resource-intensive activity [61], of-
ten forcing the use of statistical sampling (i.e., inferring the behavior of the whole from
an analysis of a subset) or the use of algorithms that favor speed and efficient execution

possibly at the expense of accuracy [62, 63]. In some cases, such as in the area of flow
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classification (i.e., classifying flows into groups of flows that share similar features, such as
similar types of media payloads or application content), statistical techniques yield results
that are typically no more than 50-70% accurate, although approaches that achieve up to
95% accuracy have been reported [64].

In addition, flow context also includes information about entities that may be external
to the flow itself, such as the activities or intentions of users. It is often difficult to
accurately deduce the high-level activities, much less the intentions, of users who generate
the flow simply from an examination of the flow itself. However, this is often the implicit
high-level objective of some systems, especially those that deal with network security. For
example, intrusion detection systems such as Snort attempt to identify potentially “hostile”
or “malicious” network flows by examining the contents and characteristics of the flow itself

[65], and in doing so, implicitly attempt to infer the intentions of the users generating them.

In relation to the imperfect nature of flow context, some authors used the important notion
of quality of context (QoC) to modecl some objective and subjective quality attributes of
context information, such as its fidelity, precision, accuracy, trustworthiness, resolution,
frequency, and timeliness |10, 31, 32, 65, 66, 67, 68, 69, 70, 71].

Flow context can have multiple representations. A flow’s context may be described
or represented in a variety of ways. For example, the rate of network traffic generated by
a flow might be represented in either kilobits per second or megabits per second, reflect-
ing a simple (but important) distinction in measurement units. However, network traffic
may also be validly expressed in terms of packets per second (for packet-based networks),
which, due to variable packet lengths, might not map in a predefined way to a traffic rate
representation in bits per second — to convert the former to the latter may also require
some knowledge of the packet size distribution within the flow. In addition, there may
be variations in contextual representations due to the level of abstraction in use. Using
flow rate once again as an example, qualitative descriptions such as “large flows” or “low-
bandwidth flows” may conceivably be more useful or desirable in some situations, rather

than a numerical representation.

Flow context is composed of interrelated information. A wide variety of factors
and entities influence the generation, transmission and consumption of flows, and these
often interact with or are interrelated with each other. For example, a user who wishes
to watch a certain movie might attempt to do so by opening a video application and
downloading a video stream, possibly generating a significant level of traffic over the net-

work. If the network is congested, resulting in poor video quality, the user might decide



CHAPTER 3. UNDERSTANDING FLOW CONTEXT: CONCEPTS 45

Context model

storage Extrinsic

Location relative to system <
Intrinsic

Central
Degree of distribution <
< Distributed

Context-push

Initiative ’<
Context-pull
Event-driven
Timing '<
Context Context Periodic

retrieval
Absolute

History < Rolati
ative
Explicit

Information presentation <
Implicit

Static

Dynamism of Updatable
context models
Dynamic

Figure 3.1: Context classification framework by Siljee et al. [72].

to terminate the stream. This example illustrates the relationships and possibly complex
interactions between different forms of flow context, such as user intention and activity,

existing network conditions, flow traffic levels and application-level quality of service.

Identifying the characteristics of flow context is useful in designing systems that are in-
tended to handle it. Siljee, Bosloper and Nijhuis [72] presented a classification framework
intended for systems that store and retrieve context. Their framework, shown in Figure 3.1
focused on three main areas, namely, the manner in which the context model is stored,
how context is retrieved, and the dynamism of the context model.! Although many of the
characteristics identified in this framework may also be found in the work of Henricksen et
al. discussed previously, the following additional set of characteristics are implicit in the

framework by Siljee et al.:

Flow context may be intrinsic or extrinsic to the flow itself. The basic definition
of flow context includes both intrinsic flow contert, which pertains to information about

the flow’s internal state, and which is usually obtained directly from an examination of-

!Their use of the term “context model” refers to the entity or process that translates raw data from
context sensors into useable context information.
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the flow; and extrinsic flow context, which deals with information about entities that are

external to the flow, but which nonetheless influence the flow’s state.

Because of interactions and interrelationships between different classes of flow context as
discussed in the previous sections, it is sometimes difficult to classify information strictly
and exclusively into one of these two types. For example, one can attempt to infer user
activity, which may be classified as extrinsic context, from a flow’s content, which by
definition is intrinsic context, as is the case in network intrusion detection systems such as
Snort [55]. In addition, it should be noted that the classification into intrinsic and extrinsic
context is different from [72], where the terms are used to denote whether a system stores

context information internally or externally, respectively.

Flow context may be implicit or explicit. Flow context information may either be
explicit, that is, the information directly sensed and provided by an appropriate piece of
hardware or software, called a sensor, is already in a form that may be directly used. On
the other hand, when context information needs to be processed, aggregated, or further
inferred, possibly in conjunction with other pieces of information, this may be called im-
plicit context. Such aggregation may include numerical, logical, or some other form of
algorithmic processing, validation, range-checking, conversion from one format to another,
or inference and reasoning. Aggregation may be performed over time (temporal), across
flows, or with other pieces of information. Raw data may also be used to infer the occur-
rence of events, and the confluence of multiple events may lead one to infer more complex

events, or situations.

Figure 3.2 illustrates how different pieces of context may need to be aggregated before
they can be used by a potential consumer. In this example, raw data on user activities,
packet flows and network links are sensed from user and network devices. The information
gathered from the appropriate sensors is aggregated, allowing a system to infer user-flow
mappings, per-flow QoS data, per-flow content profiles, and link capacities. The next
level of processing correlates the flow content profiles with the set of user privileges, and
determines the relative importance of the user’s activity and traffic on the network. On
the same level the traffic data from other flows is aggregated to yield a picture of the total
amount of traffic traversing the link. It might be the case, as in this example, that the total
amount of traffic, when compared to the link capacity (inferred from the interface type),
indicates a situation where the link is approaching congestion. The context consumer in
this case now has the pieces of information that are relevant to its decision-making, namely,
the fact that (a) the link is congested, (b) flow; is consuming a considerable amount of

bandwidth, and (c) flow, has low priority. The context consumer would then presumably
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Figure 3.2: An example of context aggregation.

initiate some actions that would address such a situation.

It should be noted that many of the axes of classification or characterization previously
mentioned do not provide strict dichotomies, as in “dynamic vs. static” or “intrinsic vs.
extrinsic” or “explicit vs. implicit.” It might be useful instead to envisage varying degrees
relative to some observer or user of the information. Using Figure 3.2 again as an example,
the information that flow, may be transporting an MPEG video stream might be sufficient
(i.e. complete) from the point of view of a network entity whose task is simply to perform
video stream adaptation. However, that same piece of information would be considered
insufficient (incomplete) by another entity whose task is prioritize flows based on both
their content types and the privileges of their respective users.

The foregoing discussion on the characteristics of context as enumerated by other re-
searchers in the field, and the subsequent attempt to examine these characteristics with
respect to flow context, hopefully leads to a better understanding of flow context. In ad-
dition, it is also a critical prerequisite to the development of appropriate models for flow
context, presented in Chapter 4.
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3.3.4 Context-tagged flows

In this section two complementary concepts are introduced: flow context tags, and context-
tagged flows. Both ideas were inspired by Brown, who presented the idea of associating
documents with their context information using stick-e notes [73|. Stick-e notes were the
electronic cquivalent of a Post-it reminder attached to a document to facilitate the future
use or retrieval of that document. A stick-e note primed a document for triggering when a
current context matched the previously stored context information in the document’s tag.
As an example, if the identity of a colleague was tagged to a document that had to be
discussed with that colleague, then when an appointment with that person was scheduled,
or the person was encountered in the hallway, a context-aware system would immediately

retrieve the document and issue a reminder to discuss it with the colleague.

Conceptually the approach in this thesis uses the same principle as stick-e notes: entities
are tagged with their context information. However, aside from the fact that stick-e notes
and flow context tagging operate in different application domains, the nature of the entities
that are associated with stick-e notes and flow context tags are vastly different: documents
(with which stick-e notes are associated) are persistent and typically long-lived entities,
while flows (with which flow context tags are associated) are ephemeral and may be short-
lived. Thus, while the primary application of context tagging in stick-e notes is for future

retrieval of a document, context tags for flows are expected to be used while the flow exists.

The early work expressing the idea of “flow context tagging”’ that appeared in [74], and
subsequently in [75, 76, 77], were based on the foregoing discussion on Brown’s stick-e
notes. However, these also contained a specific model on how flow context tags were to
be disseminated in the network (to be discussed further in Section 6.2.2). As the work in
this thesis evolved, it was realized that other context dissemination models may apply, the
concepts were subsequently modified to account for the wider perspective. Consequently,
the following definitions apply in this thesis:

Definition 3. A flow context tag is an explicit representation or encoding of a flow’s
context and its association with a particular flow instance.

Definition 4. A context-tagged flow is a flow whose context has been sensed and ez-
plicitly encoded using a context tag.

Flow context tags realize the earlier-stated objectives (cf. Section 3.3.1) of encoding and
representing both intrinsic and extrinsic flow context, and explicitly associating flow in-
stances with their context. Since flows occur at different levels of abstraction and aggre-

gation, that is, a “fow” could conceptually refer to a macroflow (i.e. a bundle of flows), it
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is possible for a single tag to encode the common characteristics of the flow bundle. For
example, a set of flows destined for a set of different users, each containing (say) the same
video stream, could be considered a macroflow, and a tag may be defined, describing the
common attributes (e.g. video payload characteristics such as the encoding type) of the

entire macroflow.

3.4 The flow context life cycle

This section describes the various stages in a notional life cycle for flow context, from the
moment it is obtained from information sources, until it is in a form that can be used and
accessed by context consumers. To develop this life cycle, the adaptive and context-aware
architectures reviewed in Chapter 2 are revisited, and some of the discussions and lessons
learned from the study of these architectures are restated and summarized. This is followed
by a brief description of the life cycle itself, with references to more detailed discussions of
each of the stages elsewhere in this thesis.

3.4.1 Lessons from adaptive and context-aware architectures

Many of the early adaptive architectures were designed only to handle “simple” forms of
context information, that is, they did not explicitly address the particular nature and re-
quirements of handling more complex forms of context. From the review of context-aware
architectures in Section 2.1 it was shown that oftentimes, several intermediate steps in a
layered architecture are needed in order to process raw data from sensors into useful con-
text. Some of the processing steps needed after raw data acquisition include augmenting
new sensor data with existing information [14], algorithmic computation and normaliza-
tion (i.e., transformation into a standardized representation) [15], fusion or aggregation of
relevant multi-sensor data and processed context [6, 16], interpretation of low-level data
into higher-level information [6], or abstraction of low-level data into symbolic cues and
contextual situations [11]. While some have used algorithmic techniques to achieve these
steps [15], others propose the use of artificial intelligence and machine learning techniques

in order to process raw context information into “higher-level” useful knowledge [78, 79].

Another useful lesson learned from prior work is the need to carefully plan the deployment
of services, such as adaptation services. Adaptation machinery may be placed within the
network to allow service functionality to be incrementally deployed with minimal mod-

ification to existing end-hosts [23], or to perform link- or route-specific adaptation [24].
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However, since adaptation should be a collaborative partnership between the system (op-
erating system and networks) and end-applications [22], a mechanism is needed by which
context information, used as basis for adaptation, may be shared between end-hosts and
the network. Such a mechanism has either been absent or not yet fully-developed in these
early architectures [20, 22, 25].

In some cases, service modules, particularly adaptor modules, may have to be dynamically
composed and sometimes deployed in complementary pairs in order to support data trans-
parency [23]. For example, if an encryption service module is deployed at one end of an
secure segment, a corresponding decryption module should be installed at the other end
in order to restore the information to its original format. A policy-based framework may
be one approach for expressing service deployment plans, while active networking may be
considered for dynamic and flexible service deployment [7, 23, 29).

3.4.2 A notional life cycle for flow context

From the foregoing discussion, it is apparent that the first step in obtaining useful context
information involves sensing, or the use of context sensors, defined in this thesis as any
software or hardware that can perform context sensing. The issue of sensing flow context

is discussed in more detail throughout Chapter 5.

If flow context is primarily obtained from context sensors, then entities that either ma-
nipulate, process or consume this information should be able to discover or locate these

sensors first. These steps are called discovery or location, and are discussed in Section 6.1.

To be able to transfer context information among the different entities that sense, manip-
ulate, process, and consume, a scheme for flow context dissemination should be in place.

The issue of dissemination is tackled further in Section 6.2.

Raw context information obtained by sensors and disseminated through the network may
have to be further processed or aggregated to transform it into a form that is useful or
relevant to the consumers of the information. The different types of processing described
in the previous section are collectively lumped under the terms aggregation or processing,

and discussed further in Section 6.3.

Finally, flow context may be used by context-aware elements within the network for various

purposes. The use and applications of flow context are explored in Chapter 7.

Note that these stages do not necessarily occur in this order, and may be performed itera-

tively, recursively, in combination, or in a modified sequence. For example, a context sensor
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—

may also inherently perform some internal processing or aggregation before it disseminates
its information. However, it is logical to expect that the sensing of raw or low-level infor-
mation would be one of the first steps in most systems. On the other hand, an information
aggregator might be viewed by other consumers of context information as a source or a

sensor, so it is also possible have sensing to exist at other levels of the life cycle as well.

In Section 3.3.4, the concept of flow context tagging was defined as the association of a
flow with an explicit representation or encoding of its context. In order to arrive at such
a representation or encoding, the flow’s context first has to be sensed, and in some cases,
disseminated and then aggregated or further processed. Flow context sensing and aggre-
gation, and therefore tagging, as will be explained in Chapters 5 and 6, can be performed
either at the network’s edge or within the network itself. In addition, since the flows in-
volved may exist at different abstraction layers, the context sensors may also exist at these
different layers as well. For example, for network- (i.e., packet-) level flow context sensing,
the sensing of the relevant flow context might occur at the network layer. Conversely, for
application-level flows, the appropriate sensors might exist within the applications them-
selves. However, it is also possible — and envisioned by this thesis — for flow context sensing
to be done in a multilayer and multi-entity fashion. Again, this is discussed in more detail
in Chapter 5.

3.5 Related concepts

This section discusses some concepts that arc cither similar or related to flow context, flow

context tagging, or context-tagged flows.

3.5.1 Context-aware communication

Henricksen, Indulska and Rakotonirainy uscd the term context-aware communication to
refer to the use of context in communications applications [32]. This definition was quite
vague, so the applications cited as examples by Henricksen et al., which included the Con-
text/Communication Information Agent (CIA) by Hong and Landay [80], the Context-Call
application by Schmidt, Takaluoma and Méntyjarvi [81], as well as four other applications
built under the theme Everywhere Messaging by Schmandt et al. [82], were examined in
detail.

CIA [80] was an autonomous software agent that helped find and deliver “the right in-

formation at the right time” through the use of context information. An early prototype
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built by Hong and Landay took speech input, processed it through a speech recognizer,
and performed Web searches based on keywords spotted in the recognized speech.

In Context-Call [81], an application provided a user, prior to making a telephone call, the
ability to view the context (social situation) of another person (a potential call recipient)
using the Wireless Application Protocol (WAP). Based on the indicated context of the po-
tential call recipient (Free, Meeting, Working, at Home, or BUSY!), a potential caller could
then decide whether to place the call, leave a message, or cancel the call. A similar feature
may also be found in popular instant messaging (IM) applications such as Yahoo! Messen-
ger (http://messenger.yahoo.com/), where similar status messages such as Available, Busy,
Stepped Out, On the Phone, and other user-defined messages provide potential message
senders context information about the intended recipient. More sophisticated contextual
cues were provided in ConChat [83, 84)], developed by Ranganathan et al., where users
were provided information on the activities, situation and surroundings of other parties in
an clectronic chat conversation, using first-order predicate calculus and Boolean algebra

to internally represent and process context obtained from a “siart space” infrastructure
called Gaia [85].

Everywhere Messaging [82] envisaged the ability to engage in clectronic messaging in a
way that was unintrusive and adaptive to the social situation and location of the receiver.
Four projects were described under this theme. Clues was an email filtering agent that
analyzed information on a user’s desktop computer in order to identify “timely” messages.
Active Manager used Clues to prioritize incoming email and forward each message to
an appropriate communication channel such as a pager, fax machine or phone based on
the user’s preferences and situation such as location and time-of-day. Nomadic Radio
analyzed the user’s attentive state and determined the extent to which a user may be
interrupted by auditory messages such as voice email, email, news and calendar broadcasts.
comMotion tracked user location using the Global Positioning System (GPS) and learned

travel patterns in order to provide “right time right place” messaging.

In the examples cited, the word “communication” in the phrase context-aware communi-
cation pertained to high-level communication between humans, either at the application
layer, or even direct person-to-person conversations between users. In addition, the primary

consumers of context information were end-applications, rather than network devices.
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3.5.2 Context-sensitive communication

Yau et al. used the term contert-sensitive communication (CSC) to refer to context-
triggered impromptu and possibly short-lived interactions between applications in ubiqui-
tous computing environments [86, 87|, or spontaneously-established communication chan-
ncls for this purpose [88]. The term was used in describing the operation of a type of
middleware called Reconfigurable Context-Sensitive Middleware that allowed applications
to dynamically discover and interact with other applications that may possess required
context information. Khedr and Karmouch extended the concept in order to define a
context-sensitive communication protocol (CSCP), which they described as a “communica-
tion protocol sensitive to the frequent changes in the environment ... capable of creating,
modifying, adapting sessions and persevering the context-based preferences of the sessions”
[89]. CSCP was basically an extension of the Session Initiation Protocol (SIP) [90] sup-
porting the context-based creation and management of sessions between entities and the

dissemination of context information between them.

In the Ambient Networks (AN) project (discussed in Sect. 2.3.2) context-sensitive com-
munications were defined as a type of communication where channels were established
between devices based on some specific contexts |9, 38|. These were envisioned to provide
the means by which communication protocols were kept continuously aware of the current
situation in their environments [31]. Unlike in the previous examples where context-aware
or context-sensitive communications were used to disseminate context primarily for use by
applications [32, 80, 81, 82, 83, 84, 86, 87, 88, 89|, context-sensitive communications were

used in ANs for context dissemination to network entities.

3.5.3 Situated and autonomic communications

In Section 2.3.3 the emerging concept of situated and autonomic communications was
briefly reviewed. As previously mentioned, this paradigm refers to communication and net-
working systems that react locally on environment and context changes, are autonomous,

self-organising, distributed, technology independent and scale-free.

3.5.4 Positioning context-tagged flows

Although the terms “context-aware communications” and “context-sensitive communica-
tions” seem to be synonymous (and were sometimes even used interchangeably, such as in

[38]), some differences may be seen in the way these concepts were translated into actual
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implementations. Among those examined, the applications that claimed to implement or
enable context-aware communications often focused on the use of high-level user-related
context (e.g. social situation) to influence how actual humans would conduct their inter-
action at a personal or social level; context-sensitive communications on the other hand
were often used in connection with low-level, device-to-device or application-to-application
interactions. There is no evidence however that the distinction was by design or in any
way intentional in nature; it is merely presented here in an attempt to position the concept

of context-tagged flows in relation to these synonymous concepts.

The concept of context-tagged flows seems to be more related to “context-sensitive com-
munications,” at least in the sense previously discussed, since this thesis is more concerned
with the notion of flows at the level of interaction between network- and end-devices as
well as applications, rather than at the level of personal conversation. However, it should
be pointed out that one possible use of context tags would be to encode, preserve and con-
vey, whenever useful or relevant, the high-level (personal, social) contextual and semantic
aspects of a conversation that generate a network flow so that the flow may be appro-
priately handled within the network and by end-applications. In addition, in most cases
both context-aware and context-sensitive communications often deal with the use of and
adaptation to context by end-applications. The work in this thesis, in contrast, is more
similar to the focus in the Ambient Networks (AN) project, where context is not only used

by end-applications, but more importantly, by network entities as well [31].

A further examination of the nature and properties of CSCs in ambient networks (ANs)
however reveals that in addition to some conceptual similarities with context-tagged flows,
there are crucial differences as well. In ANs, CSCs consisted of conceptual channels
needed to convey information as well as channels that conveyed control, context and meta-
information governing the exchange. In context-tagged flows, there is the flow itself, which
maps to the information channel in CSCs, and the context tags, which may be considered
as the control/context channel in CSCs. However, in ANs, the entities of interest as far as
context sensing and dissemination were concerned were quite general in nature (“network
entities”) [31]; in contrast, the approach in this thesis explicitly identifies flows as central

entities of interest for context sensing and context-based network adaptation.

The approach of focusing on flows and developing the flow context concept has cer-
tain advantages over the other approaches reviewed in this chapter, such as the use
of network-related context, network-centric context, context-aware communication, and

context-sensitive communications. Some of these advantages are:

1. A flow is a well-defined and easily identified entity, making it easy to distinguish
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the entity itself from its internal state, its situation and setting, and external envi-
ronment, i.e., its context. In contrast, it was explained earlier that the same is not
true for the more abstract idea of network context. As mentioned earlier, in ANs
the contextual entities of interest were quite general in nature [31]. The definition
of flow context on the other hand has operational usefulness because it can easily be

translated into designs and architectures.

2. The notion of flow context does not implicitly exclude user context; in fact the
definition asserts that it is an essential component of it. The concept of flow context
therefore provides a more complete picture describing the interaction of the user with

the network.

While the use of context to describe flows is novel and potentially useful, it should not
be said that flow context alone would be sufficient to encompass all classes of context-
aware networks, nor that the definition of flow context altogether replaces the ideas of
network-centric or network-related context. Rather, the concept of flow context further
refines these concepts and gives them a more concrete, tangible character. Flow context
complements rather than competes with these concepts. While network context is broad
and abstract, flow context is more well-defined in scope and concrete in nature. Finally,
the work in this thesis also maps quite well within the space of, rather than competes
with, the concept and vision of situated and autonomic communications, since it provides

concrete conceptualizations and offers mechanisms for their realization.

3.6 Chapter summary

This chapter began by defining some of the key concepts used in this thesis, such as
context and context-awareness, and argued for the adoption of an entity-centered approach
to building context-awareness within networks, leading to a focus on flows as contextual
entities of interest. Consequently, the concepts of flows, flow context, flow context tags,

and context-tagged flows, were defined.

To further understand and appreciate the concept of flow context, some of its characteristics
were described, such as its dynamism, imperfectness, its multiple representations, and
relationships with other types of context. It was also mentioned that flow context may be
intrinsic or extrinsic to the flow itself, and that it may be explicitly represented or exist
implicitly within the environment, or in other picces of information. The ideca that flow

context may exist implicitly, and that it might require some form of sensing, processing
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and dissemination, before it can be used, led to the definition of the various stages of its

notional life cycle.

Finally, related concepts in the literature, such as network-related context, network-centric
context, context-aware communication, context-sensitive communications, and situated
and autonomic communications were compared to the key concepts defined in this thesis.
It was argued that the strategies of (1) focusing on flows as contextual entities, (2) defining
and using flow context, and (3) endowing it with a broad and inclusive character, have
their advantages over related concepts and approaches. However, the view is that the work
described in this thesis occupies a distinct and novel solution space that can complement,

rather than compete with, these similar visions.



Chapter 4

Modeling Flow Context

In the previous chapter, a notional life cycle for flow context was presented, describing
the various stages that pieces of context information may go through before they can be
used by interested consumers within the network, or by end-applications. Before such a
life cycle can exist, a system that performs the corresponding functions has to be designed
and implemented, and during the design process, the representation or model for the

information to be exchanged and processed has to be determined.

Why is it important to develop a model for flow context? Perhaps the answer to this ques-
tion may be found within the definition of the word itself. The Oxford English Dictionary?

defines a model as:

“a simplified or idealized description or conception of a particular system, sit-
uation, or process ... put forward as a basis for theoretical or empirical under-
standing, or for calculations, predictions, etc.; a conceptual or mental repre-

sentation of something.”

This definition offers two possible uses of a model: (1) as a tool for understanding, and (2)

as an end-product that can be used for calculations or for other forms of processing,.

Since flow context is a new concept, it is important to develop a model, since the model-
ing process may further progress the understanding of the concept, and the end-product
or artifact (i.e. the model itself) could help others understand the conceptualization and

thereby effectively communicate the view within the research domain. On the other hand,

Thttp://dictionary.oed.com
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since the broader objective is to enable the realization of context-aware networks, develop-
ing a model for flow context that can be used during runtime by context-aware networks
as an aid in managing or manipulating flow context during the various stages of its life

cycle would be extremely useful.

This chapter therefore focuses on modeling flow context. The next section provides an
overview of context modeling approaches found in the literature. Section 4.2 argues for
the use of ontologies as models for flow context and related concepts. Section 4.3 describes
the ontology-building process, including the technologies and tools used for this purpose.

Finally, Section 4.4 describes related work, and Section 4.5 concludes this chapter.

4.1 An overview of context modeling approaches

The following presents an overview of context modeling approaches, based on existing

classification schemes described primarily in the domain of context-aware applications.

Some typical data structures used to represent context information in context-aware sys-
tems were enumerated by Chen and Kotz in a survey of context-aware mobile computing
research [12]. This enumeration had since been extended and presented as a taxonomy of
context modeling approaches by Wang et al. [91], Strang and Linnhoff-Popien [92] and
Balakrishnan et al. [93]. They classify modeling approaches primarily on the structure
of the representation used, into key-value models, markup-based models, graphical mod-
els, object-oriented models, and logic-based models. Strang and Linnhoff-Popien as well
as Balakrishnan et al. augmented this list with what they called ontology-based models,
while Balakrishnan et al. further introduced a hybrid model. On the other hand, Raz-
zaque, Dobson and Nixon provided a smaller set of modeling approaches: those based on
set theory, directed graphs, first-order logic, and profiles [71]. The models they enumer-
ated, along with a few examples of how these schemes may be used to describe flows and

their context, are summarized below:

e Key-value pair models, as the name implies, provide contextual descriptions using at-
tribute lists in a key-value? manner. Implicit in this classification is the association of
that key-value pair to the entity being described, so a more complete name might be
entity-attribute-value (EAV) model. As an example, the Session Description Protocol

3

(SDP) describes multimedia sessions® using lines of text of the form (type)=(value),

2A key-value pair refers to a pair of associated strings, where one, called the key, serves to identify an
item (typically for indexing or searching purposes), and the other describes the value of that item.
3RFC 2327 defines a multimedia session as “a set of multimedia senders and receivers and the data
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where (type) are single characters and (value) are structured strings whose format
depend on (type) [94]. An SDP description m=video 49232 RTP/AVP 0 would de-
note a media stream containing video, transported over UDP port 49232 using the
Realtime Transport Protocol — Audio/Video profile, with format RTP/AVP payload
type 0 [95, 96].

e Models based on set theory, as described by Razzaque, Dobson and Nixon [71], seem
to be a generalization of the entity-attribute-value model, supporting the clustering of
multiple key-value pairs into either tuples or sets of vectors that described a situation
based on multiple cues (abstracted information from sensors) [97, 65]. It is unclear

however from [71] how these models formally mapped to set theory.

e Profiles [71] extend the entity-attribute-value models into hierarchies of one or more
entity-attribute-value trees, where values may recursively be other entitics [98]. Since
the key-value model mentioned earlier also allows for pair recursion |12, 93], such as in
the work by Schilit et al. |99], a separate class called markup scheme models is used
to denote hicrarchical schemes that use languages such as the Extensible Markup
Language (XML) [100] or some other form of markup-based encoding [92, 93]|. For
example, HQML is an XML-based hierarchical QoS markup language that allows
distributed multimedia applications on the World Wide Web to signal their QoS

requirements to end-systems, middleware, and network devices [101].

e Graphical models such as in the Unified Modeling Language (UML) [102] and entity-
relationship (ER) diagrams [103] represent context models in a graphical fashion. In
the Ambient Networks project, for instance, a graphical conceptualization for various
network-related context, such as QoS and cost, was presented [109]. However, it
should be noted that in this example, as in others [32], the use of a graphical model
was intended mostly as a design tool convenient for humans, and that the final

machine-readable model would usually serialized in some other format, such as in

XML or RDF/XML [104].

e (Object-oriented models are based on the use of one or more principles of object-
oriented design, such as the use of classes, class methods and messages, inheritance,
encapsulation, abstraction, and polymorphism. For example, Serrano et al. used an
object-oriented context information model for the management of pervasive network
services, although the initial modeling was made using a scheme similar to entity-
relationship diagrams [105].

e Logic based models describe context in terms of facts, expressions, and rules, and

employ formal means by which other facts and expressions may be derived (reasoned

streams flowing from senders to receivers.”
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or inferred) from these. As an example, a context predicate describing the state of
a network interface might be written as Context (TrafficRate,InterfaceEth0,>,8
Mbps) to describe the situation where the traffic on an interface exceeds 8 Mbps,
using the Context ({ContextType), {Subject), (Relater),{0bject)) notation used
in the ConChat and Gaia systems [83, 85].

e Ontology based models use a formal specification for contextual concepts and their
attributes, restrictions, and relations. Such context models are typically expressed
in a formal ontology language such as the OWL Web Ontology Language [106].
Some examples of recent work that fall under this category include the Context
Ontology (CONON) by Wang et al. [91], CAMUS by Shehzad et al. [107], the
Agent-Based Context-Aware Infrastructure (ACAI) by Khedr and Karmouch [89],
ONTO-CONTEXT by Serrano et al. [108], and the work in Ambient Networks [109].
The approach used in this thesis also falls under this classification, and is compared

in more detail with the other cited examples later in this chapter.

Although the taxonomy of models presented above is based primarily on the data structures
used, structure alone is insufficient to classify the work found in the literature. For example,
context modeled in an ontology language like OWL [110] may ultimately be serialized in
RDF /XML, making it (according to the foregoing classification) a markup-based model.
Thus mere format or structure alone does not distinguish one class of modeling from the

next, and is insufficient basis for comparison or useful evaluation.

While the syntax and structure of context modeling schemes used in different systems are
important, the ability of a modeling scheme to capture and explicitly represent seman-
tics — meaning — is cqually crucial, and adds another dimension to the classification and
evaluation of models. One could perhaps distinguish or compare models also in terms of
their semantic explicitness, formality, and expressiveness, that is, where they might lie on
some conceptual “semantic spectrum” [111, 112]. The following section explains why the
ability to explicitly encode semantics has made the use of ontologies a popular approach
in modeling context, and why it is adopted in this thesis.

4.2 The case for ontologies

A major component of the work in this thesis concerns the development and use of an
ontology of flows and their context. An ontology is an explicit formal specification of the

terms in a domain and relations among them [113]. Gruber further defined an ontology
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as a specification of a conceptualization, where the term “conceptualization” referred to an
abstract, simplified view of the world, to be represented for some purpose [114]. Fensel et
al. in turn defined a conceptualization as “an abstract model of some phenomenon in the
world that identifies that phenomenon’s relevant concepts” [115].

Although there are numerous definitions and usages of the word “ontology” — for example,
Guarino and Giaretta identified at least seven interpretations of the word [116] — the
following definition by Guarino seems to be the most appropriate for the work in this

thesis:

“... in its most prevalent use in Al, an ontology refers to an engineering artifact,

constituted by a specific vocabulary used to describe a certain reality, plus a
set of explicit assumptions regarding the intended meaning of the vocabulary
words. This set of assumptions has usually the form of a first-order logical
theory, where vocabulary words appear as unary or binary predicate names,
respectively called concepts and relations. In the simplest case, an ontology
describes the hierarchy of concepts related by subsumption relationships; in
more sophisticated cases, suitable axioms are added in order to express other

relationships between concepts and to constrain their interpretation.” [117]

An ontology therefore is a formal and explicit specification of concepts, classes, objects,
and other entities in the domain of interest, as well as their relations, properties, and their

restrictions.

Why are ontologies relevant to the study of flow context? Before this can be answered, it
is useful to examine first why ontologies are developed in different domains or disciplines.
Chen et al. stated that ontologies arc key requirements in context-aware systems because
(1) they cnable knowledge sharing in open and dynamic distributed systems, (2) well-
defined declarative semantics in ontologies provide a means for intelligent agents to apply
reasoning to context, and (3) they allow devices and agents not expressly designed to work
together to interoperate [118]. Noy and McGuinness on the other hand listed the following
general reasons for developing ontologies [119]:

e To share common understanding of the structure of information among people or
software agents

e To enable reuse of domain knowledge

e To make domain assumptions explicit
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e To analyze domain knowledge

e To separate domain knowledge from the operational knowledge

Each of these reasons may be viewed within the context of the specific objectives and work

in this thesis as follows:

Sharing common understanding of the structure of information There are two
dimensions to this aspect, namely, (1) achieving common understanding between people,
and (2) an understanding between software agents. To make the use of flow context a
reality within the broad perspective of the Internet, a common understanding among the
different research and developer communities — groups of people who may be using different
implementations — would be required. On the other hand, at the operational level, the same
shared understanding must also exist among end-hosts, network devices and middleware
so that flow context information existing in one network administrative domain would be
used in a consistent fashion within that domain, and would be similarly interpreted in

other domains.

Enabling domain knowledge reuse The notion of low context is quite broad, encom-
passing information not only about the flow but also relevant information about the users
and their activities, applications, devices, links, protocols and other entities that gencrate
or affect the flow. In some cases, ontologies governing these related entities already exist,
or are in the process of being defined by research communities. For example, the Foun-
dation for Intelligent Physical Agents (FIPA) defined specifications for a device ontology
[120] and for quality of service [121], while an ontology for wireless networks was proposed
by Helin and Laukkanen [122]. The World Wide Web Consortium (W3C) Device Indepen-
dence working group also has a recommendation called Composite Capability /Preference
Profiles (CC/PP), which provides a description of device capabilities and user preferences
that can be used to guide the adaptation of content presented to that device [123]. In cases
like these it would be extremely useful and efficient to leverage the existing work done on
these ontologies, instead of reinventing them. In addition, the collaborative nature of the
work that goes into the development and standardization of some ontologies implies wide
acceptance within the community, and ensures interoperability between implementations

that use them.

Making domain assumptions explicit An ontology for flows and flow context would

explicitly define the objects that would constitute “flow context,” their semantics, and
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relationships. For instance, one issue raised with the notion of “network context” in Sec-
tion 3.1.2 was that it was not well-defined, making it difficult to translate the concept
into implementations. An ontology for flows and their context would therefore help avoid
this pitfall. In addition, having a flow context ontology promotes the design and imple-
mentation of systems where the domain assumptions about flow context are not hidden or
embedded in program code, making them more difficult to understand, change, update or
debug; rather, these are explicitly defined and documented. These explicit definitions are

also useful for new users who must learn what terms in the domain mean [119)].

Analyzing domain knowledge The construction of an ontology is an analytical and
often iterative process that involves a thorough examination of the knowledge in that
domain. Aside from the final output, the process itself leads to a better understanding of
the domain. This process would involve the enumeration of important terms and concepts
that are relevant to flows and their context, the definition of their classes and subclasses,
their properties, restrictions, allowed values, and instances [119]. This would also include
the analysis and reuse of existing ontologies related to the domain of interest, such as
existing device ontologies (e.g. [120]), quality of service ontologies (e.g. [121]), and wireless
network ontologies (e.g. [122]). Although the process necessarily involves analyzing large
amounts of information and knowledge, it should be done within a well-defined scope,

keeping in mind the target application, in order to keep the effort manageable.

Separating domain from operational knowledge An ontology would help decouple
the knowledge about flow context from the knowledge about the processes and mechanisms
that operate on flow context. The domain knowledge about flow context would cover the
cntitics that constitute it, their propertics, structure, attributes and relationships; while
the operational knowledge would deal with the methods that can be performed on flow
context in its nature as information that can be processed and manipulated. This sep-
aration would allow different approaches and algorithms for context sensing, processing
and management even in other domains (such as in the handling of user context) to be
investigated, objectively compared, evaluated and considered for application to the domain
models for flow context. Conversely, this separation also implies that novel methods de-
veloped for handling flow context may possibly find application in the handling of context
in other domains as well.

In the previous paragraph, although it was mentioned that one of the uses of an ontology
would be to separate domain from operational knowledge, it is interesting to note that

conversely, an ontology may be used to map operational concepts and their corresponding
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implementation artifacts to domain concepts. Ocampo et al. [124] for example used a
flow ontology as a guide in the design of software components (Java classes) for a context-
based flow classifier. Therefore, the following should be added to the rationale for using

ontologies, adapted in part from Jasper and Uschold [125]:

e As a common, implementation-neutral language that can specify how flow and flow
context artifacts can be authored and translated to specific implementations and

target languages, ensuring their interoperability and reuse; and

e As a specification for modeling the requirements and design of software components
that deal with flows and their context, and that perform classification, adaptation,

management or other operations based on them

4.3 Towards an ontology for flows and their context

The discussion in this section begins with a few words about its title, specifically the use of
the word “towards.” An ontology aims to capture and represent the concepts — the knowl-
edge — about a certain domain of discourse, and represent a shared, common understanding
of that domain. As such, it is often the product of an iterative and collaborative effort
between several people working in the field. Thus, it is expected that the ontology for
flows and flow context developed in this work — and most other ontologies for that matter
~ would continuously evolve, both because either the domain itself changes or evolves, or

the collective understanding of that domain changes or evolves.

With this in mind, an ontology for flows and their context is presented, with the view of
making two main contributions: (1) an ontology that in itself can be put to immediate use,
and (2) the same ontology, this time representing a starting point that could be further
expanded, modified, validated, critiqued or evaluated by others in the field. An ontology
that focuses on flows and links contextual concepts and relationships to flows is entirely
novel and would eventually need to evolve into a shared and common understanding of the
domain. It is hoped that the discussion in this section provides enough insight to allow

the use of the developed ontology in either of these two stated ways.

4.3.1 Technologies for the Semantic Web

Ideally, the discussion of the design and implementation of the ontology should begin with

a discussion of the design methodology and requirements, prior to the selection of the tools
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and technologies for its implementation. However, the presentation of the ontology later in
this section cannot entirely be separated from the technology (i.e., language) used for its
representation. In addition, it is also important to understand the motivation for selecting

these tools and technologies.

Why use Semantic Web technologies?

The ontology developed in this thesis is represented using the Web Ontology Language
(OWL), which is part of a stack of recommendations by the World Wide Web Consortium
(W3C) for the Semantic Web. The idea of a Semantic Web was put forth by the inventor
of the World Wide Web, Tim Berners-Lee, in describing his vision of a future Web where
information can be shared, integrated and reused more easily through the use of machine-
interpretable meaning, or semantics [126]. According to the W3C, it involves two aspects:
(1) the use of common formats for the interchange of data, and (2) the use of languages to

specify how the data relates to real objects.?

The principal technologies of the Semantic Web are built on the foundation of Uniform
Resource Identifiers (URIs) |127|, Extensible Markup Language (XML) [100], and XML
namespaces [128], supporting the current components which are the Resource Description
Framework (RDF) [129], the RDF Schema language [130] and the Web Ontology Language
(OWL) [110, 131].5 These technologies are designed as a layered set of specifications and
may be mapped to a “layered cake” architecture, where the languages and representations,
in order of increasing expressive power, are stacked on top of each other [132], as illustrated

in Figure 4.1.

Why were Semantic Web technologies used implementing the flow context model? There

were a number of reasons for this, including:

1. These technologies, although formally expressed by the W3C in the form of Recom-
mendations, are typically the result of extensive work and consensus-building and
eventually become adopted as standards by the community. It would therefore be

advantageous from an interoperability viewpoint to use these standards as well
2. With widespread adoption, more tools become available, and

3. Although the Semantic Web is intended for end-applications and systems, these are

networked systems, and consequently it would be reasonable to expect the use of the

“hitp://www.w3.0rg/2001 /sw/
5 Appendix D (“Overview of Semantic Web Technologies”) provides an overview of these technologies.
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Figure 4.1: “Layered cake” architecture for the Semantic Web. From [132].

same technologies in network middleware and other network software.

The ontology layer in Figure 4.1 was selected for modeling in this thesis, as the immediate
layer below it (represented by RDFS) was insufficient for this purpose. While RDF and
RDFS allow the representation of some ontological knowledge, these are mainly concerned
with the organization of vocabularies in typed hierarchies [292]. On the other hand, OWL
(which instantiates the ontology layer in Figure 4.1) has a richer vocabulary that is able to
further describe classes, relations between classes, and property types and characteristics
[291]. For example, while RDFS only allows existing classes to be subclassed, OWL allows
new classes to be constructed from existing ones, through enumeration, intersection, union,
complement, and property restriction. OWL is designed to be a well-defined and Web-
compatible ontology language, with supporting reasoning tools, a syntax intuitive to human
users, formal semantics, and compatibility with existing Web standards. In addition,
the ontology was implemented in the OWL DL sublanguage® because of its ability to
provide expressiveness, while retaining computational completeness (all conclusions are
guaranteed to be computable) and decidability (all computations will finish in finite time)
[106]. Therefore, this was the language used in the flow context ontology, presented in the

next section.

6See Appendix D: Overview of Semantic Web Technologies for more information on OWL DL.
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4.3.2 Design methodology and implementation

In this section, the methodology followed in designing and implementing the ontology, as
well as the tools used in implementing it, are described. The domain and scope of the
ontology and the specific design objectives are discussed. Some of its salient features,
including the classes and class hierarchies, the integration of external ontologies, and the

modeling of properties and relations, are presented.

The design approach was roughly based on a method for engineering ontologies suggested

by Noy and McGuinness in |119], consisting of the following general steps:

Determine the domain and scope of the ontology

Consider reusing existing ontologies

Enumerate important terms in the ontology

e Define the classes and class hierarchy

Define the properties of classes — slots

Define the facets of the slots

Create instances

The development process was based on these general steps, but not strictly in this order.
In addition, it was also iterative in nature as expected [119]. To provide a better feel for

this process, a few specific examples are given below:

e Domain and scope of the ontology - Includes concepts associated with flows of protocol
data units (PDUs) through computer networks, and their contextual descriptions

e Enumerate important terms in the ontology - Flows, “layer-3” (network-layer) flows,

packet count

e Consider reusing existing ontologies - Work in IPFIX (cf. page 77) can provide

similar terms and definitions related to traffic characteristics.

e Define classes and class hierarchy - From IPFIX, the class packetTotalCount is
defined, which is a subclass of PerFlowCounter, which in turn is a subclass of

InformationElement (see Figure 4.4 on page 80).
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e Define the class properties - packetTotalCount has the following properties: dataType,
dataTypeSemantics, elementID, and units.

e Define the property restrictions - elementID can only take on int values; units can

take on string values. For packetTotalCount, the unit value is packets.

A more detailed discussion on each of these steps is given in the next few sections of this

chapter.

Domain and scope of the ontology

The domain of the ontology covers the fields of networking in general, and context-aware
networks in particular. In addition, to provide both a conceptual and concrete links be-
tween the domains of 'conventional’ flow classification and characterization on one hand,
and context-aware computing on the other, related fields in the area of context-aware com-

puting that intersect with the scope of the ontology’s domain were taken into consideration.

The applicable domain of ontologies may also be illustrated through examples of their use

[119]. In addition to the general uses mentioned in Section 4.2, its specific uses are:

e To standardize the definitions of lows and flow context concepts, and where standard
definitions exist, to capture and encode these definitions in a formal, explicit and

unambiguous way, particularly for humans and organizations.

e To serve as a guide in designing software agents that handle flows and detect or
process their context.

e To encode the semantic basis for low and flow context processing by software agents,
network middleware, network protocols, end-host applications, reasoners, and other

program code.

Table 4.1 further illustrates, through a concrete example, how the ontology might be used

in the domain of QoS management.

Specific design objectives

In addition to the general reasons for creating ontologies (cf. Section 4.2), the following

specific design objectives served as a guide in developing the ontology:
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Ontology role

Specific example

Standardize definitions and terminology

Design guide in the implementation of software agents

Two service providers outline the terms of a
QoS service level agreement (SLA)
Network administrators develop or deploy soft-

69

Provide semantic basis for flow processing Software agents previously deployed detect

ware that would monitor and enforce the terms
of the QoS SLA

and process flows, sense their context, and au-
tomatically enforce the terms of the SLA

Table 4.1: Example use-case for a flow context ontology in QoS SLA management.

1.

The ontology should provide a taxonomy of flows. Section 3.2 showed that a wide
variety of definitions and conceptualizations for the term 'low’ exist in the literature.
This presents a problem, for instance, when two different entities nced to exchange
information or transact on the basis of some flow definition. To account for this, the
basic concept of flows (“a sequence of related protocol data units”’) was formulated in
the most broad and general terms as possible. The ontology then provided a scheme
for specifying and classifying the different kinds, or subclasses of flows under this
broad concept. This enables both humans and applications to distinguish one class
of flows from another, provides for consistent terminologies, and serves as a guide
in the design of applications intended to classify streams of protocol data units into

flows.

The ontology should describe the concepts of, and establish the links between, intrinsic
flow context and extrinsic flow contezt. At one conceptual level, the ontology should
provide the link between the internal properties and characteristics of flows on one
hand, and the external entities that form the flow’s extrinsic context on another
hand. In parallel with this, the ontology should likewise provide a link between the
concepts and terms found in the ’traditional’ domains of flow classification, metering
and quality of service (QoS), where much of the concepts of intrinsic context may
be found, with the concepts, terms and approaches in the relatively newer fields of
context-aware computing and context-aware ncetworks, where much work has been

done on describing the context of users, devices and applications.

The ontology should be able to link with existing related ontologies. The ontology
should, whenever possible, either directly import, or otherwise provide ’hooks’ to
existing related ontologies. This ensures that the ontology conforms with and is able
to use the terms and conceptualizations that are known to be accepted widely within
the domain of the linked ontology. In addition, this approach is practical from the
point of view of efficiency, to avoid “reinventing the wheel.” However, in some cases
the existing ontologies might not provide the necessary concepts, or the level of detail

required, or fail to express the necessary relationships with flow concepts. In such
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cases some additional modeling needs to be introduced. Thus, while the immediate
domain and scope of the ontology in this work relates to flows and networks, part
of the development process would necessarily include the expansion or adaptation
of concepts and relationships for contextual concepts that are normally centered on

other entities such as humans, devices, and applications.

Finally, an additional motivation for ontology interoperability stems from the fact
that not only is the ability to import related ontologies desirable: in the future, it
would equally be useful for the ontology described in this thesis to be easily examined,

processed, and imported by other people and applications in the domain.

Implementation tools

The use of Semantic Web technologies, particularly XML, RDF and OWL, is a direct result
of the interoperability objective mentioned in the preceding section. Although several
ontology authoring tools exist {133], the Protégé-OWL Plugin [134] open-source ontology
modeling environment was selected and used to edit and maintain the ontology in this
thesis, as it is freely available, has excellent support for OWL-DL and for a back-end
reasoner, is actively in development and supported by developers, has a very well-written

tutorial [135] available, and has a relatively large and active community of users.

Finally, ontology checking and reasoning services were provided by a software package
called RacerPro [136]. RacerPro can easily be integrated with Protégé, has a rich built-in
query/rule language called nRQL supporting qucries over knowledge bases, and is well-
documented. Although RacerPro is commercial software, a free educational license was

provided in support of the work described here.

Classes and class hierarchies

This section describes the structure of the ontology” for flows and flow context in terms of

the defined classes and the class-subclass hierarchies.

Top-level concepts Two main classes called DomainConcepts and LocalConcepts are

immediately defined below the built-in top-level class owl:Thing.

DomainConcepts refer to concepts that have official or generally-accepted definitions, or

7 Available at http://www.ee.ucl.ac.uk/~rocampo/flow.owl
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those that are likely to be adopted by the community. Sub-concept definitions and prop-

erties under DomainConcepts are typically based on documents such as Request for Com-

ments (RFCs) and other Internet standards, and may import or adopt concepts from

existing ontologies. Subclasses (sub-concepts) directly under DomainConcepts include:

Flow is a key concept defined in the ontology to provide a root class for a taxon-
omy of the different types of flows. Flow and its sub-concepts are linked via OWL
properties to other sections of the ontology that describe flow context concepts. The
structure and subclasses under Flow will be discussed shortly under the section on

“Flow Taxonomy” on page 72.

FlowTrafficCharacteristic, FlowTimeCharacteristic, FlowContentType, as well
as FlowContentEncoding, FlowDirectionality, FlowFanout and FlowPDU_Info are
general concepts under which the various subconcepts describing intrinsic flow con-
text are defined. These concepts will be further described shortly under the section

on “Intrinsic Flow Context” on page 74.

NetworkMedium, NetworkedEntity and User are some of the main classes that sub-
sume concepts related to extrinsic flow context. The properties of networked en-
tities are described under the class NetworkNodeCharacteristic. Classes related
to extrinsic flow context are further described under the section on “Extrinsic Flow

Context” on page 76.

The 0SI_Layer encapsulates the layers of the OSI Reference Model [137, 138], pro-
viding a means to map protocols and flows to its different layers. As a naming
convention, and only when feasible, concepts in the ontology are prefixed with tags
that identify the layers to which they are mapped. For example, the class of proto-
cols that map to OSI Layer 4 (the Transport Layer) is named L4_Protocol, and an
example of a sub-class under this is L4_UserDatagramProtocol. These prefixes are
simply for presentation purposes and do not have any semantic value (that is, to a

machine).

Protocol-related concepts such as RoutingProtocol and TransmissionProtocol pro-
vide top-level concepts for the various classes of communication protocols that gov-
ern routing and transmission, respectively. The behavior and states of protocols are
classified under ProtocolState. ProtocolDataUnit contains classes for the differ-
ent types of PDUs handled by the different protocols. For example, for network-
layer flows that are governed by IP, the L3_IPv4PDU class defines an IP version 4
packet. On the other hand, one example of an application-layer PDU might be

an HTTP_ProtocolMessage, which further subsumes HTTP request message classes
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(connect, delete, get, head, options, post, put, and trace) and HTTP response mes-
sages [26]. FlowPDU_Info provides a conceptual link between flows and their PDUs,
by describing the attributes or properties of flows that are directly encoded in the
fields of their PDUs.2 These fields, as well as other structural components of PDUs

are described under the class ProtocolDataUnit_OR_Component.’

e The Identifier class encodes concepts related to the various identifiers for entities
and resources used in networks. Subclasses under NetworkedEntityIdentifier are
organized by OSI layer and include concepts such as IP addresses, network pre-
fixes and netmasks [139, 140|; Internet DNS names [141], and uniform resource
identifiers (URIs) [127]. On the other hand the FlowIdentifier sub-class under
Identifier provides for flow identifier concepts such as the filterspec used in the
Resource Reservation Protocol (RSVP) [142], or flow labels in Multiprotocol Label
Switching (MPLS) [143] and in IPv6 [140]. Various end-applications or operating
systems provide means to identify flows through the use of filter constructs like the
u32 filter in Linux [144}], or rules such as those used in intrusion detection systems

(e.g. Snort [55]) and in various email spam filters [54].

The main classes under DomainConcepts, as edited in Protégé and displayed graphically
via the OWLViz tool are shown in Fig. 4.2. Note that all other subclasses have been

suppressed from the display for presentation purposes.

Finally, as a counterpart for DomainConcepts, LocalConcepts encapsulates classes that
would tend to have more limited scope of application or adoption since they may depend
on subjective assessments or value judgments within a local (e.g. administrative) domain.
For example, value partitions such as FlowThreatLevel (containing the subclasses Safe,

Suspicious and Malicious) arc contained in this class.

Flow taxonomy As previously mentioned, the generic Flow concept roots a tree that
provides a taxonomy of flows. The main subclasses are organized according to their map-
ping to layers in the OSI Model, resulting in the classes Layer2Flow (link-layer flows),
Layer3Flow (network-layer flows), Layer4Flow (transport-layer flows), and Layer7Flow
(application-layer flows). Based on the definition of the flow concept, each flow class de-

scribes a related sequence of PDUs that exist at that layer. Thus, a sequence of (related)

8Note that a modeling distinction is made between the fields of the PDUs and the information within
these fields. For example, the source IP address field of an IPv4 packet, and the source IP address
information encoded in that field, are considered to be two distinct entities.

°The rather curious name for this class will be explained later in this section, under “Part-Whole
Relations” on page 86
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Ethernet frames would be considered an instance of a Layer2Flow, a sequence of IP packets

an instance of a Layer3Flow, or a sequence of HT'TP messages an instance of Layer7Flow.

By relating concepts within the Flow class with concepts such as FlowDirectionality,
other subclasses such as UnidirectionalFlow or BidirectionalFlow can be formed. The
most basic flow classes are unidirectional simple flows, defined as sequences of PDUs trav-
eling in a single direction, from a single source to a single destination. An example of a
unidirectional simple flow class, L3_IPv4_OneWay_UDP_SimpleFlow, is shown in Fig. 4.3.
It describes a class of unidirectional flows of (layer-3) IP version 4 packets, with IP proto-
col type UDP, and further identified by the tuple (IPv4 source address, UDP source port,
IPv4 destination address, UDP destination port). Note that only the UDP source and
destination ports are explicitly asserted as unique identifiers for this class; the necessary
condition of having IP source and destination addresses as identifiers is inherited by virtue
of being a subclass of the L3_IPv4_OneWaySimpleFlow class. In addition, it is also a sub-
class of L3_IPv4PDU_UDP_PayloadFlow class of flows, which are IPv4 flows whose packets
carry only UDP-type payloads. This latter definition is expressed through the following

statement.:

L3 IPvaPDU_UDP_PayloadFlow = L3_IPv4_PDUFlow
M(3 hasPDU.L3_IPv4PDU_UDP _ Payload)
(Y hasPDU.L3_IPv4PDU_UDP _ Payload)

More complex flow bundles or macroflows are defined through combinations of simple
flows. For example, an L3_IPv4TwoWay_TCP_SimpleFlow is composed of exactly two
L3_IPv4_OneWay_TCP_SimpleFlows flowing in opposite directions, and might be used to
describe a full-duplex TCP connection between two hosts. Finally, more diverse subclasses
of flows and macroflows are constructed by relating existing flow types with other contex-
tual properties. For example, a MediaFlow class is defined by asserting that flows under
this class should be transporting MediaContent types of payloads. In general, these other
flow classes are formed by defining flow classes in terms of both their intrinsic or extrinsic

context, whose concepts are discussed in the next section.

Intrinsic flow context Information that may be observed, sensed or inferred directly
within or from the flow, describing the intrinsic characteristics of the flow, are classified as
intrinsic flow context. FlowTrafficCharacteristic contains concepts that describe the

QoS characteristics of flows, such as traffic rates, delay, jitter, and other metrics, under the
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Figure 4.3: A unidirectional simple flow class in Protégé
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sub-class FlowQoSDescriptor. FlowTrafficClass classifies flows along more application-
oriented and qualitative descriptions such as bulk, interactive, streaming or transactional
traffic classes. FlowContentType provides general subclasses for audio, video, mixed, and
other content types, while FlowContentEncoding provides classes that describe content
encoding schemes, such as MIME [21]. FlowFanout describes flows according to their
scope, whether these are unicast, multicast, broadcast, or anycast, or alternatively, if they
provide communication links to end-hosts on a one-to-one, one-to-many, many-to-one, or

many-to-many basis.

Several other intrinsic properties of flows, such as their identifiers, structural components
(PDUs and their fields), and the identifiers found in these components (e.g. the source
and destination IP address information found in IP packets) are treated as part of their
intrinsic context, although they often link flows to external entities. This link with various
identifiers is established in “Integrating External Ontologies” (on page 77), and a more
detailed discussion on the modeling of the structural components will be found in “Part-

Whole Relations” (on page 86).

Extrinsic flow context The ontology includes concept definitions for classes of physi-
cal, electronic or software entities that use, connect with, or form an integral part of the
network. Since entities represented by these concept definitions can influence the genera-
tion, transmission, reception, processing and use of the flow, these concepts are considered

part of its extrinsic context.

Three major classes are considered part of extrinsic context, namely NetworkedEntity,
NetworkMedium and Users. NetworkMedium and NetworkedEntity contain classes for phys-
ical, electronic or software entities that use, connect with, or form an integral part of the
network. NetworkMedium describes various classes of physical transmission media, while
NetworkedEntity contains different classes of Applications and Devices. As mentioned
in the previous section, members of the class of network Identifiers (URIs, domain
names, IP addresses, other identifiers at various protocol layers) often provide associations
between flow instances and pieces of extrinsic context. For example, a flow may be re-
lated by hasL3_IPv4EndpointAddress to a certain IPVersion4Address, which, in turn,
is associated with the NetworkInterface of a NetworkNode. The properties of networked
entities are described under the class NetworkNodeCharacteristic, and are discussed in

more detail in the next section.

The User class serves as a link to the relatively large body of concepts available from the

work (by others) in context-aware computing. Rather than define additional concepts such
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as, for instance, UserActivity or Location, these are intended to be imported from other
relevant ontologies, such as those discussed in Section 4.4. Although these are not explicitly
represented in the ontology presented in this thesis, they still form part of extrinsic flow

context.

Integrating External Ontologies

An important step in the development of the ontology in this thesis concerns integration
with external ontologies. This is a recommended approach that should be considered when
possible [119], especially if the ontology represents the result of mature and collaborative

work among experts in the domain.

There arc actually a number of different ways that ontologies may be “integrated” and
effectively reused. Pinto et al. identified three different meanings of the term, namely, (1)
the rcuse or importation of concepts from existing ontologics to supplement other concepts
in a new one, (2) the merging of existing ontologies about the same subject to form a single
unified ontology, and (3) the use of an ontology in a specific application |145]. Relationships

between ontologies may be further classified as |146):

o Ertensions between ontologies. Ontologies are extended by the inclusion of concepts

from other ontologies, or by importation of entire external ontologies

o Identity and equivalence between ontologies. Ontologies are identical if they are mirror
equivalents, except possibly for their names. Ontologies are equivalent if the share
the same vocabulary and logical axiomatization, but are expressed using different

representation languages

o Translation between ontologies. A source ontology may be translated into a des-
tination ontology by expressing the former in the representation language used by
the latter. Ontologies may be weakly translatable if there is some loss of informa-
tion during the translation process, and strongly translatable if the vocabulary and
logical axiomatization are preserved, there is no information loss, and no semantic

inconsistency is introduced.

In this section, and in the one that follows, examples of the importation or reuse of con-
cepts from external ontologies (i.e. the first case in Pinto et al. above), but which require
some degree of ontology translation, are described. An attempt to represent the concepts
developed in the IP Flow Information Export (IPFIX) Working Group of the Internet
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Engineering Task Force and the subsequent importation of these concepts into the flow
context ontology is presented. In the subsequent section on “Properties and Relations” (on
page 81) the same process is performed on concepts developed for the Composite Capabili-
ty /Preferences Profiles (CC/PP) and the User Agent Profile (UAProf) specifications of the
World Wide Web Consortium (W3C) and the Open Mobile Alliance (OMA), respectively.

The IPFIX Working Group’s goal is to “produce standards-track RFCs describing the
IPFIX information model and export protocol RFCs” for applications that require flow-
based IP traffic measurements [47]. The information model is currently under development
and exists as an Internet-Draft [147], with a detailed textual description of the elements
of the model as well as an XML-based specification of these information elements and the

abstract data types.

Although the IPFIX Internet-Draft provides textual definitions and an XML schema for
the information model, it has no formal ontological representation written in RDF /XML
or OWL. While the XML schema representation might be sufficient for the goals of the
IPFIX WG — that is, to provide a standard syntaz for describing flow information — such
a representation cannot be directly imported into an ontology written in OWL-DL such
the one developed in this thesis. In addition, the native XML schema in IPFIX cannot
represent the relationship between the information in that model and the concepts defined

in the flow ontology described here.

Thus, using the IPFIX Working Group’s (draft) model, an equivalent model in OWL-DL
was constructed.!® As will be seen in the succeeding discussion, some aspects of the IPFIX
model could not be faithfully replicated due to some weaknesses in the OWL-DL language.
However, the OWL-DL model sufficiently reflected the main concepts in IPFIX and was
successfully integrated with the flow context ontology. The implementation is discussed in
the next few paragraphs. In addition, the prefix ipfix: is to refer to the OWL-DL version
of the IPFIX model.

A root concept called ipfix:InformationElement was created and 12 subclasses were
defined under it, based on the logical groupings in the IPFIX model. Note that these
subclasses, as enumerated below, are not formal elements in the IPFIX model, but were
artificially created as classes in the ontology to provide some logical structure. The sub-

classes and their respective definitions (as taken from [147]) are:

e Identifier - this class contains identifying components of the IPFIX architecture,
of an IPFIX device, or the IPFIX protocol

10 Available at http://www.ee.ucl.ac.uk/~rocampo/ipfix.owl
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e MeteringAndExportingProcessConfig - this class contains concepts that describe

the flow metering process or the flow record exporting process

e MeteringExportingProcessStat - this class contains concepts that describe statis-

tics of the flow metering process or the flow record exporting process

e IpHeaderField - this class contains concepts that indicate values of IP header fields
or values that are derived from IP header ficld values in combination with other

information

e TransportHeaderField - this class contains concepts related to transport header
fields and length

e SubIPHeaderField - this class contains concepts related to what are called “Sub-IP
header fields” in the IPFIX model, referring to fields found in lower-layer frames such
as Ethernet source and destination MAC fields.

e DerivedPacketProperties - this class contains concepts related to values derived
from other values found in header fields. For example, the next-hop address of a
packet in a flow may or may not be directly encoded in the packet header, but it
may be derived nonetheless for instance by a router by examining the destination IP

address of the packet and looking up the appropriate address from its routing table.

e MinMaxFlowProperties - concepts in this class describe values that are obtained by
taking the minimum or maximum of certain values over packets from the entire flow,

such as the minimum and maximum packet lengths.
e FlowTimeStamp - concepts in this class describe time stamps for flow events

e PerFlowCounter - concepts in this class describe counters that contain flow properties
that potentially change each time a packet belonging to the flow is observed

e MiscFlowProperty - concepts in this class describe flow properties pertaining to the
start, duration and termination of flows, but which are not time stamps

e Padding - this class contains a single element class which is used to pad flow records.

It is included in the ontology simply for completeness.

A detailed discussion of each information element in IPFIX is beyond the scope of this
thesis. However, for further information, and for the latest version of the information
model, the reader is kindly referred to the website of the IPFIX Working Group, at

http: //www.ietf.org/html.charters/ipfix-charter.html.!!

't should be emphasized that the preliminary ipfix ontology developed here was based on work in
progress in the IPFTX WG, and thus should not be considered to be based on a stable standard.
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A snapshot of the ipfix ontology is shown in Figure 4.4. This ontology was imported into
the flow context ontology (henceforth called the “main” ontology) using an owl:imports

statement, and an ipfix: prefix was used to refer to its classes.

Classes of ipfix are subsumed as subclasses under the appropriate concepts in the flow
context ontology. For example, ipfix:FlowTimeStamp is mapped as a sub-class under
the L3_FlowTimeCharacteristics concept in the main ontology. The reason for map-
ping ipfix:FlowTimeStamp as a sub-class of L3_FlowTimeCharacteristics, rather than
an equivalent class, is to convey the idea that other types of flow time characteristics
not necessarily defined in IPFIX may later be subsumed under this broader class. Sim-
ilarly, ipfix:DerivedPacketProperties and ipfix:IpHeaderField are subsumed un-
der L3_FlowPDU_Info; ipfix:TransportHeaderField under L4_FlowPDU_Info; and fi-
nally ipfix:PerFlowCounter under L3_FlowQoSDescriptor. Figure 4.5 illustrates the
integrated ontology in Protégé, including a partial graphical view of the class hierar-
chies displayed by the OWLViz visualization tool. In the latter graphical view, the im-
ported ipfix:PerFlowCounter class and its subclasses are “attached” (subsumed) under

the L3_FlowQoSDescriptor class in the main ontology.

Properties and Relations

So far, only the classes and class hierarchy of the flow context ontology, as well as those
in the ontology developed from the IPFIX information model, have been discussed. This
section presents some approaches in modeling the properties of these classes and the rela-
tionships between them. To aid the discussion, the development and integration of another
ontology is presented, this time based on the Composite Capability/Preferences Profiles
(CC/PP) and the User Agent Profile (UAProf) specifications.

The Composite Capability /Preferences Profiles (CC/PP) is an effort by the World Wide
Web Consortium (W3C) to develop a system to describe device capabilities and user pro-
files. These capabilities and preferences are used to guide the adaptation of Web content
presented to the device, and are often referred to as the device’s delivery context. Through
the Composite Capability /Preference Profiles (CC/PP): Structure and Vocabularies Rec-
ommendation'? [123], the W3C defines both the structure and vocabulary of CC/PP, and

the rest of this discussion relies on the definitions contained in that Recommendation.

A CC/PP profile is essentially a two-level hierarchy, with each profile having at least one

or more components, with each component having at least one or more attributes. Some

12Referred 10 as “Recommendation” in the rest of this section.
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Figure 4.5: Integrating the ipfix ontology with the flow context ontology
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examples of components would be the hardware platform, the software platform, or an
application executing on a wireless device. The attributes of the hardware platform might
include the width and height of its display in pixels, the amount of memory it has, its CPU

type, and other hardware characteristics.

More formally, in CC/PP, a resource ccpp:Profile is related to a number of resources of
type ccpp:Component by the property ccpp: component, that is, the domain of the property
ccpp: component is ccpp:Profile while its range is ccpp:Component. The root class for
all properties in CC/PP is called ccpp:Property. This class has two subclasses, namely
ccpp: Structure, which is the class of all properties describing relations between structural
elements of CC/PP itself, and ccpp:Attribute, which is the class of all properties relating
components with their attribute values. The property ccpp:component is actually an
instance of ccpp:Structure, while properties such as (for example) ccpp-client:charset

or ccpp-client:deviceldentifier would be instances of ccpp:Attribute.

CC/PP attribute values arc cither RDF plain or typed litcral values, scts of values, or
sequences of values. Some recommended data types (i.e., lexical space constraints) for
plain literal values are strings, integers, and rational numbers, although the use of other

valid RDF forms is not prohibited.

The CC/PP Structure and Vocabularies document also defines a small core set of features
applicable to a range of print and display agents.!3 However, CC/PP is extended primarily
through the use of new attribute vocabularies. An example also cited in the Recommen-
dation is the User Agent Profile (UAProf) specification of the WAP Forum [148]. The
following section discusses the effort to develop two ontologies: one based on CC/PP, and
another based on the UAProf V2.0 Approved Enabler specification [149].'4

Although both the CC/PP and UAProf specifications are available as RDF Schema (hence,
in OWL Full, cf. page 248), there is no standard OWL-DL version of these specifications.
In order to integrate both models into the flow context ontology (which is in OWL-DL),
OWL-DL ontologies were constructed using a subset of selected concepts from each of these

specifications.!®

The CC/PP ontology defines only two concepts: ccpp:Profile and ccpp:Component.!®
An OWL property ccpp: component relates these two concepts, with ccpp:Profile as the

Bhttp://www.w3.org/2002/11/08-ccpp-client#

14Unless otherwise specified, subsequent mentions of “‘UAProf” in the rest of this section are in reference
to this particular version.

!5 Available at http://www.ee.ucl.ac.uk/~rocampo/ccpp.owl

'6The prefixes ccpp: and uaprof: as used in this ontology refer to internal namespaces used for ex-
perimental purposes, and not the namespaces for the standard specifications. In fact, UAProf actually
requires the use of the prefix prf: to refer to the official UAProf namespace [150].
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domain and ccpp:Component as its range. A separate UAProf ontology that imported the
CC/PP ontology was created, and the subclasses HardwarePlatform, SoftwarePlatform,
BrowserUA, NetworkCharacteristics, WapCharacteristics and PushCharacteristics

were subsumed under ccpp:Component.

The next step would have been the creation of the attributes defined in [149], such as
BitsPerPixel, and their association with their respective components by defining their
domain (i.e., HardwarePlatform in the case of BitsPerPixel). However, the UAProf
attributes, while properties themselves, also have properties of their own: each attribute
has a datatype such as “Boolean,” “Number,” “Literal” and “Dimension.” In addition, each
UAProf attribute has a property called a resolution rule that defines the appropriate action
an application should take if conflicts arise when merging an existing profile with a new
one, either by (1) Override(-ing) the old attribute value with the new values, or (2) Lock(-
ing) the old attribute and effectively ignoring the new one, or (3) Append(-ing) the new

values to the old values, typically in a list |150).

Wahile it would have been relatively simple in OWL to define an attribute that relates a
component to its value using an owl :DatatypeProperty, further describing this attribute
in terms of its resolution rule presented somewhat of a problem because properties in QWL
and RDF are binary relations (as will be discussed further in the next section). A possible
solution might have be to describe the resolution rule as an annotation to the UAProf
attribute, using an owl:AnnotationProperty [151]. However, in OWL DL, annotation
properties cannot have any restrictions such as cardinality or domain/range restrictions,
and reasoners will not use the annotation information for reasoning [152]. To avoid these
limitations, an alternative solution was adopted, by modeling UAProf attributes as n-ary

relations. This is discussed in the next section.

N-ary relations The issue of modeling properties of properties in OWL, without resort-
ing to annotation properties, falls under the scope of what are known as n-ary relations
[153]. This term generally refers to relations that link an individual to more than one

individual or value.

The problem is that in OWL and RDF, properties are binary relations linking two individ-
uals or an individual and a value [129, 151]. The issue at hand is how to describe additional
properties, such as the resolution rule of a UAProf attribute, when the attribute is also a
property in itself. This is illustrated in Figure 4.6, using the BitsPerPixel attribute as an
example. An instance of HardwarePlatform, HardwarePlatform_A, has a BitsPerPixel

value of “8.” The BitsPerPixel attribute itself has a resolution rule property with value
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Override
(Datatype = ResolutionRule)

HardwarePlatform Resol/utionRule
1 . . -an
| HardwarePlatform_A BitsPerPixel (Da o N

Figure 4.6: An n-ary relation in a UAProf attribute

Override
(Datatype = ResolutionRule)

hasResolutionRule
HardwarePlatform /

HardwarePlatform_A k- hasBitsPerPixel — BitsPerPixelRelation_1

hasBitsPerPixelValue
N\
IBI ,
(Datatype = Number)

Figure 4.7: Modeling the n-ary relation in OWL

Override.

One approach to problems of this type involves the introduction of an artificial individual
that explicitly and exclusively binds all the individuals and properties involved in the n-ary
relation [153]. Figure 4.7 illustrates this as applied to the UAProf BitsPerPixel attribute.
An individual called BitsPerPixelRelation_1 is introduced to stand for the instance of

the relation and relate the properties involved in the relation.

To reflect this approach in the ontology, for each UAProf attribute, the following were
created:

e one OWL class to hold the equivalent relation instances,
e one OWL object property relating the component with this relation instance,

e one OWL datatype property for the value of the attribute, and
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e one OWL datatype property for the attribute’s resolution rule

to represent the corresponding n-ary relation. For example, for the UAProf attribute

BitsPerPixel, the following were respectively created:

e an OWL class BitsPerPixelRelation,

e an OWL object property hasBitsPerPixel, with domain HardwarePlatform and

range BitsPerPixelRelation,
e an OWL datatype property hasBitsPerPixelValue, and

e an OWL datatype property hasResolutionRule.

Since these new OWL classes and properties are not exact equivalents of the original
UAProf attributes, they are named differently; in addition, the use of lowercase starting
letters as well as has or is prefixes for these new properties better matches the naming
conventions used in the flow context ontology. The modeling of other UAProf attributes
is shown in Figures 4.8 and 4.9.

Part-whole relations To fully integrate the concepts from the imported IPFIX and
UAProf ontologies into the main flow context ontology, and to accurately express relation-
ships between concepts that are components or parts of other concepts, it was necessary
to be able to express and encode what are called part-whole relations. Several concepts in
the ontology are actually related by hasPart and isPartOf relationships and their various
specializations. For example, each L3_IPv4_TwoWaySimpleFlow logically consists of two
L3_IPv4_OneWaySimpleFlows; in the ontology they are related by hasConstituentFlow.
Similar relationships exist, for instance, between an IP packet and its header, between
the entire IP packet header and its various fields, or between a network node and its

components.

To model this, tripartite concept encoding or modified Structure-Entity-Part (SEP) triplets
[154, 155] are used. This is illustrated using the example shown in Figure 4.10, where a
flow’s Path is said to consist of one or more Links. One cannot directly subsume Link
under Path because Link is not a subconcept of Path, that is, the relationship Link is-a
Path does not hold. However, one may say that Link is a componentOf Path; alternatively

Link is-a PathComponent.

The modified SEP triplet approach then suggests the introduction of an artificial concept

to express the union of the whole and its parts. In this example, Path_OR_PathComponent
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as well as Link_OR_LinkComponent are introduced. Path_OR_PathComponent directly sub-
sumes both Path and PathComponent, because both Path and PathComponent are sub-
concepts of the union concept — that is, from a set-theoretic perspective, any element of
these sets (concepts) would necessarily be an element of the union set (concept). Fur-
ther down, PathComponent logically subsumes Link_0OR_LinkComponent, because a link,
its components, or their logical union (the union concept Link_OR_LinkComponent), are
all path components, that is, Link_OR_LinkComponent is-a PathComponent. In turn,
Link_OR_LinkComponent directly subsumes both Link and LinkComponent, and so on

down the hierarchy.

By using the resulting concept hierarchy, inferences made on the part can then be ex-
tended to the whole. More formally, given three concepts x, y and z, where y is a part
concept, and two relations R and S, S being a subrelation of part-of, the logical im-
plication zRy A ySz = xRz holds [154]. An intuitive example of this would be: IF
VideoContent isTransportedBy SimpleFlow AND SimpleFlow isPartOf FlowBundle,
THEN VideoContent isTransportedBy FlowBundle (among others).

Another implication that holds in a part-whole relation is xRy A wRz A ySz = x is-a
w |154]. For example, one may define LinkFault as a kind of NetworkFault that has, as
scope, a Link or any of its components; and PathFault as a form of NetworkFault with

scope Path or its components. In DL (description logics) equation form:

LinkFault = NetworkFault M (3 hasScope.Link_ OR_ LinkComponent) (4.1)
PathFault = NetworkFault M (3 hasScope.Path_ OR_PathComponent) (4.2)

Although these equations formally define the concepts LinkFault and PathFault, one
can simply say that LinkFault hasScope Link_OR_LinkComponent, and that PathFault
hasScope Path_OR_PathComponent (i.c., Ry and wRz, respectively). In addition, it
was stated that Link_OR_LinkComponent isPartOf Path_OR_PathComponent (i.c. ySz).
With these definitions, a reasoner should correctly infer the subsumption of LinkFault
under PathFault (z is-a w), and Pathfault under NetworkFault. This is shown in Fig-
ure 4.10, marked in blue by the Protégé ontology editor because the subsumption was

inferred by the reasoner, rather than explicitly asserted by the user.

After resolving the remaining modeling issues using n-ary relations and part-whole rela-
tions, the concepts from both IPFIX and UAProf were integrated into the flow context
ontology, and more concise descriptions of the relationships among the concepts in the

integrated whole were provided. Figures 4.11 and 4.12 show excerpts from the integrated
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Figure 4.10: Inferred part-whole relations

ontology, visualized using the OntoViz ontology visualization application. These actually
only show small fragments of the fully-integrated ontology, as the current version now con-
tains more than 800 classes and more than 100 properties, and could not be displayed in
a manner that would show any legible detail.

4.4 Related work

The ontology for flows and flow context presented here is quite novel. Although information
models for flows such as IPFIX do exist, these have not been expressed as formal ontologies
using a standard ontology language with computational guarantees such as OWL DL.
However, flow context as a concept, and its corresponding ontology, are both meant to
be integrative in nature — that is, both are supposed to interrelate and interlink with
similar models, conceptualizations, and ontologies, rather than compete with them. Thus,
some related work that could potentially be integrated with the flow context ontology,
particularly those that deal with network-related concepts, are briefly reviewed in this

section.

The Context Ontology (CONON) developed by Wang et al. for pervasive computing
applications is structured into two levels, namely an upper-level ontology that captures
general concepts about context, and lower domain-specific ontologies tailored to specific

application areas [91]. Some of the concepts enumerated in CONON’s upper-level ontology
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include Location, Person, Activity and CompEntity. Under CompEntity one may find the
subconcepts Service, Application, Device, Network and Agent. On the other hand, the
Context-Aware Middleware for Ubiquitous Computing Systems (CAMUS) architecture by
Shehzad et al. provides the following domain concepts in its ontology: Agent, Environment,

Device, Location, and Time [107].

The Standard Ontology for Ubiquitous and Pervasive Applications (SOUPA) developed
by Chen and his colleagues at the University of Maryland is designed to model and pro-
vide support for pervasive computing applications [156]. This ontology includes vocabu-
laries to express concepts associated with persons, agents, belief-desire-intention (BDI),
actions, policies, time, spaces and events. An interesting approach taken in SOUPA is
to borrow terms from other ontologies rather than importing them directly in order to
limit the overhead associated with wholesale importation and avoid importing concepts
that might be irrelevant to the application at hand. The borrowed terms in SOUPA are
mapped to the foreign ontology terms using the constructs owl:equivalentClass and

owl:equivalentProperty. The external ontologies referenced by SOUPA include the:

e Friend-Of-A-Friend Ontology (FOAF) [157] for personal information and relation-
ships

e DAML-Time [158| to express temporal concepts

e OpenCyC Spatial Ontologies [159] and Regional Connection Calculus [160] to sym-

bolically represent space and spatial relations
e COBRA-ONT |118] to model context in smart meeting rooms

e MoGATU BDI [161] to model the beliefs, desire and intention of humans and software

agents, and the

e Rei Policy Ontology [162] to specify security access control rules.

CONON, CAMUS and SOUPA typify the efforts to develop ontologies in the area of
context-aware and pervasive computing applications, in that they do not focus nor provide
much detail on network-related concepts, much less flow-based context. This indicates that
the flow context ontology developed in this thesis fills a necessary gap in the development
of pervasive and ubiquitous computing systems that include context-aware applications

and networks.

On the other hand, the work by Laukkanen, Helin and Laamanen [163, 164], Helin and
Luakkanen [122], and Helin [165] aim to develop an ontology for wireless networks, par-

ticularly to support nomadic applications. In [165], Helin focused on the development of
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a QoS ontology for this purpose, defining a vocabulary for QoS that includes concepts
such as Line-rate, Throughput, Delay, Round-Trip Time, Bit-error-rate, Omission
Rate, Frame Error Rate, Mean Up Time, Connection Setup Delay, Connection Setup
Failure Probability, Status, and Availability. The work was further expanded in
the EU-IST Ambient Networks (AN) project to include generic network-related concepts
such as Network and WirelessNetwork classes [122, 164], concepts related to AN nodes
and networks, and even cost and charging {164, 166]. Although their work did not focus on
flows per se, concepts such as these would prove very useful in characterizing flows in terms
of QoS metrics other than those defined in IPFIX. The cost ontology on the other hand
would be valuable for per-flow billing and charging, or to adapt or influence the routing of

flows based on path costs.

Khedr and Karmouch [89, 167], as well as Khedr, Karmouch, Ganna and Horlait [168] pre-
sented ontologies for pervasive environments. A ContextFeature subsumed classes that
describe concepts related to locations, actors, networks, services and actions |89]. These
were further developed and expanded in |167] to include network topologies, network pro-
files, social situations and roles. In [168]| they expanded this further to provide support
for policies. Their work is also very much similar the ontology described in this thesis and
overlaps in several areas, but like the work by Helin et al., fail to provide conceptualiza-
tions specific to flows. Nonetheless, the detailed development and “balanced” treatment
provided to network-related concepts in their ontology is an important and useful aspect.
Other interesting aspects they planned to explore included ontology extensions that would
support fuzzy inference constructs to let agents reason about context with a degree of

uncertainty [167].

Vergara et. al used ontologies to express various network management models to achieve
interoperability and integration of information definitions specified by different manage-
ment languages such as Structure of Management Information (SMI), Guidelines for the
Definition of Managed Objects (GDMO), Managed Object Format (MOF), and others
[169, 170, 171]. They argued that this was necessary because existing interoperability
approaches such as IIMC (ISO-Internet Management Coexistence), JIDM (Joint Inter-
Domain Management), and CIM (Common Information Model) only provide syntactic
transformations between models [169]. To translate management specifications, they used
a Protégé plug-in to load Internet MIBs and CIM schemas as ontologies [171]. Since inte-
gration with ontologies outside the domain of network management was not their primary
goal, the flow and flow context ontology can provide the framework for the integration of
their work with concepts outside the scope of their domain. For example, an ontological
link could be established between their classes that deal with networked devices and the
NetworkNodeCharacteristic class in the flow context ontology.
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A substantial and detailed amount of related ontology work is being undertaken by the
Foundation for Intelligent Physical Agents (FIPA),!” an IEEE Computer Society stan-
dards organization that promotes agent-based technology and their interoperability with
other technologies. FIPA has published some standards specifying ontologies that software
agents can use when communicating about, among others, devices [120] and QoS [121], and
to support nomadic applications [172]. The device ontology, for instance, provides descrip-
tions for the properties of devices, product information, hardware, connection information,
user interfaces (including further details on display screen properties), memory and soft-
ware. FIPA’s device ontology specification document recognizes that there is an overlap
between FIPA’s definitions and the work in CC/PP and UAProf, and provides an informa-
tive example on how to use the fipa-device ontology via CC/PP descriptions [120]. In
addition to those specifications that have attained “Standard” status within FIPA, there
arc also a number of interesting ontologies that can be found in specifications that they
currently classify as “Experimental.” Some examples of ontologies found in experimental-
status specifications deal with diverse agent applications such as in travel-related services,
audio/video entertainment and broadcasting, virtual private network (VPN) provisioning,
and personal assistants.'® There is also a standard specification, including an ontology,
for ontology services, that is, for services that provide ontology access and related services
to agent communities. More recent on-going work by the P2P Nomadic Agents Working
Group!? is aimed at defining a specification for P2P Nomadic Agents, capable of running
on small or embedded devices, and to support distributed implementation of applications
for consumer devices, cellular communications and robots, and others, over a pure P2P
network. However, FIPA has not yet released a specification and ontology dealing with
flows, although numerous potential areas for integration exist. For example, fipa-qos
[121] may be used to describe the QoS of communication channels transporting flows,
while fipa-device [120] can be used as a vocabulary describing devices that generate, pro-
cess, forward, or consume flows. Conversely, it would also be beneficial if FIPA-compliant
agents could have a standardized vocabulary about flows and the framework to relate this
vocabulary with the other FIPA ontologies.

It is possible to envisage flows at various levels of abstraction, and in fact this has been
reflected in the flow ontology in this thesis. Therefore, ontologies that can be used to
describe “higher-layer” flows such as application-level flows, or perhaps multimedia flows,
or other types of flow content, can be reused an linked to the flow ontology in this chapter.
For example, the MPEG-7 “Multimedia Content Description Interface” ISO/IEC standard

http:/ /www.fipa.org/

'8The full set of experimental FIPA specifications, including those mentioned here, may be obtained at
http://www fipa.org/repository/experimentalspecs.php3

http://www.fipa.org/subgroups/P2PNA-WG.html
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developed by the Moving Pictures Experts Group allows the description of multimedia con-
tent in a form understandable by both humans and machines [173]. In particular, MPEG-7
Multimedia Description Schemes (DSs) provide a standardized way of describing, in XML,
concepts related to audio-visual content description and content management for search-
ing, indexing, filtering, and access. These span a wide range of information about the
content, including information about its creation, use, its storage features, its spatial and
temporal structure, its low-level features, and conceptual information about the reality
it captures. For example, the MediaFormat descriptor might contain descriptions about
the coding format of the media, while MediaTranscodingHints might specify transcod-
ing schemes supported by the associated media. Information such as these would enable
other types of flow context information to be inferred, such as its QoS characteristics and
requirements, or the types of adaptation that may be done in the event of QoS contract
violations cither by the flow or by the underlying network. Additionally, some work has
also been done by Tsinaraki and colleagues at the Technical University of Crete on coupling
MPEG-7 and TV-Aunytime Forum?° compliant-descriptions with domain-specific multime-
dia descriptions written in OWL, and vice-versa [174, 175]. Such work is significant as
it points to the possibility of linking the ontology work from MPEG-7 TV-Anytime work
with an OWL ontology such as the one developed in this thesis.

4.5 Chapter summary and recommendations

In this chapter a semantic model for flows and flow context was developed by constructing
an ontology that defines some of its major concepts, their properties, and their interrela-
tionships. The OWL DL ontology language, a part of the technology recommendations
for the Semantic Web, was used to construct the ontology. The implementation of the
ontology, including its major classes, the class hicrarchy structure, and the properties of

these classes, was discussed.

To illustrate and give emphasis to the importance of reusing concepts from external models
and ontologies, concepts from at least three existing and ongoing standardization efforts,
namely IPFIX, CC/PP and UAProf were integrated into the flow context ontology. Some
relatively new approaches suggested in the literature to model special relations such as
n-ary relations and part-whole relations were likewise applied. These approaches have not
been applied extensively to ontologies related to context-awareness and pervasive comput-

ing, nor in context-aware networking.

Ohttp://www.tv-anytime.org
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The experience with the integration of concepts from IPFIX, CC/PP and UAProf showed
that the process can potentially result in loss of information or introduce some artifacts.
While creative approaches in the definition of new datatypes, in modeling n-ary relations,
and in modeling part-whole relations were creatively applied, these modeling approaches
required the definition of artificial classes and relations that otherwise did not exist in the

original models. This leads to the following recommendations:

First, ontology languages such as OWL DL should be continuously evolved to improve
the richness of their vocabulary, while maintaining maintaining computational guarantees.
Although some recommended approaches in modeling special cases such as n-ary relations
and part-whole relations were used, these can potentially introduce some unwanted artifacts
during the modeling process and sometimes even lead to loss of information. This can
lead to difficulties in translating, integrating or interworking different ontologies with each
other — an activity which is expected to become more common in pervasive and ubiquitous

computing systems and in context-aware networks.

Conversely, ongoing and future standardization work (such as in the Internet Engineering
Task Force and in FIPA) should also consider the use of languages such as OWL DL to
express models or specifications.  Although models such as IPFIX tend to focus on the
textual definition, formats and syntax of their information elements (which is perfectly un-
derstandable, given the target application), it would be useful for the “semantic future” if
the standardization bodies, even on an informative (if not normative) basis, would capture,
express and publish the intended semantics using standard (and arguably more popular)
ontology languages like OWL-DL, for possible use in other applications. This would help
avoid any loss or distortion when porting from the original information model in the speci-
fication to another standard language like OWL. It should be stated though, that the mere
use of a common language such as OWL-DL would not necessarily guarantee ontology in-
tegration: modeling errors such as ontology “misalignment” can still occur [176]. The key
to interoperability would still be correct, collaborative, consistent and compatible ontology

design and implementation.

Finally, there are system and operational issues associated with the use of ontologies. These
are discussed in Section 7.1.4.



Chapter 5
Sensing Flow Context

The previous chapters mentioned that flow context has both intrinsic and extrinsic aspects,
and involves information concerning the flow itself and entities that are related to, or even

external to it. The next logical question now is: how is this information obtained?

This chapter deals with the issue of sensing flow context, which may be considered the
first stage in its notional life cycle. Before a context-aware network can use flow context,
the information has to be sensed, thus, there should be an infrastructure of sensors to do
this task.

Context sensors are defined as any software or hardware that can perform context sensing.
The term “sensors” is used here in a more general and abstract sense, than, for example
the largely hardware-based sensors used in ubiquitous computing applications, or say in
process control and instrumentation. Broadly defined, a sensor might be any hardware or

software that can “sense” either explicit context or implicit context.

Because there may be a need to develop, integrate or otherwise deploy new context sensing
functionalities, it is essential to know how they may be implemented. In the next few
sections, three archetypal sensing mechanisms that deal with a few subtypes from the wide
spectrum of flow context classes are considered. The design and implementation of sensors
for intrinsic flow context, and for two examples of extrinsic context: node and device
characteristics, and node location are discussed, and some insights into the requirements

for the implementation of similar sensing infrastructures are provided.

98
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5.1 Sensing intrinsic flow context

Flow context may be sensed within the network itself, using existing devices such as network
nodes. Routers often keep local, per-flow or per-interface information such as flow rates,
flow volumes, and packet loss rates, made available by embedded instrumentation like
Cisco System’s NetFlow [177] or sFlow [178]. In the Linux operating system, a subset
of this information may be derived via the iptables facility [144]. However, routers
often have a very restricted global view of the state of the network, often limited to the
network’s topological state as inferred from routing exchanges, as well as the bare minimum
of information about the flows that traverse them, perhaps partly due to the end-to-end

design principle [179)].

The SNMP Management Information Base in most routers may also provide a wealth
of information about the router itself, including its capabilities and resources, system
information, network interfaces, and intcrface-related statistics [180, 181]. Other network
devices, including middleboxes such as network firewalls and intrusion detection devices,
may sense other types of flow context, such as the flow’s content, and implicitly, the activity

or intention of the user generating that flow.

As will be seen in Section 5.4.1, the embedded sensing functionalities in most network de-
vices however either have limited capability, or have limited dimensionality |182], logically
resulting in limited flow context being made readily available to prospective consumers of
the information. As an alternative, an implementation that attempts to combine different
flow context sensing functionalities into one package is presented, with the view that the
richer information made available can be combined in a synergistic way to infer or uncover
more information about the flow. The resulting information would then be potentially

more useful to a prospective consumer.

5.1.1 A prototype flow sensor

The prototype application developed in this thesis is called FlowSensor, with functional
components as shown in Figure 5.1. In implementing this application, an object-oriented
approach was adopted, building on the jpcap! packet capture classes. FlowSensor captures
IP packets from the wire, demultiplexes them according to their IP protocol type (TCP,
UDP, ICMP, IGMP, etc) and passes them on to their respective per-protocol flow table
manager objects. Although the packets are classified according to protocol, flow table
managers at this point still basically deal with layer-3 (L3) flows, since the protocol data

Thttp://jpcap.sourceforge.net/
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units are still full layer-3 PDUs.

Each L3 flow table manager maintains a hash table of active unidirectional flows. The hash
key used by each table depends on a tuple that uniquely identifies a basic unidirectional
flow in that protocol, as specified by the ontology. For example, for the case of basic
unidirectional UDP flows, the hash key is formed from the tuple (source IP address, source
UDP port, destination IP address, destination UDP port). The L3 flow table manager
checks the incoming packet if it matches any of the existing flows; if it does, it is passed
to an L3 flow object that corresponds to that flow. Otherwise, if a match is not found,
the manager creates a new layer-3 flow object, creates a corresponding record in the flow
table, and passes the packet to the new flow object. This process is implemented by the

following code fragment in Java:

String hashKey = getHashKey(ipPacket);
L30neWayIPPacketFlow oneWayFlow = null;

if (!(flowTable.containsKey(hashKey))) {
//No match found, create new flow object and table entry
oneWayFlow = createOneWayFlowObject (ipPacket, hashKey) ;
flowTable.put(hashKey, oneWayFlow);

}
else {
//Match found, retrieving existing entry in flow table
oneWayFlow = (L30OneWayIPPacketFlow) flowTable.get (hashKey) ;
}

// Dispatch packet to appropriate flow object
oneWayFlow.processPacket (ipPacket) ;

Each L3 flow object senses multiple forms of flow context such as the flow’s statistics,
traffic characteristics, the protocol or application class of the higher-layer flow that it is
transporting, the type of content in its payload, and other information. This encapsulates
the philosophy of multi-dimensionality: different and sometimes independent aspects of

the flow are simultaneously sensed, whenever possible.

Signature scanning

FlowSensor senses information about the flow’s payload through signature scanning, a
technique typically used in intrusion detection systems (IDS) to determine if a flow presents

a threat [55, 183], or in other systems to determine the application class of the payload
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Figure 5.1: FlowSensor functional components

PDU (e.g. peer-to-peer, WWW, FTP) or its content type (e.g. audio, video) [184]. The
main idea behind signature scanning is to look for patterns or byte sequences — signatures
— within the flow that tend to indicate, to a certain degree of accuracy, the nature or

properties of the flow.

Signature scanning is provided in FlowSensor as a common service to L3 flow objects of
the same protocol class by their respective L3 flow table managers. This avoids a costly
replication of the set of signatures of interest, which tends to be common across flows of

the same protocol, on each flow object.

Signature formats The specifiers for the patterns used in FlowSensor to search for sig-
natures are based on formats (filter rules) used in other existing experimental and deployed
applications. The argument for supporting existing formats is that there is bound to be
a large and substantial set of signatures developed for each application, that are already
available and in use in the community. Unless there are compelling reasons to invent a new
format, it would be advantageous just to reuse these existing ones. In addition, while the
existing filter specifications by themselves are quite flexible and powerful, one main advan-
tage presented in this work is that it is explicitly intended to interoperate with multiple
formats, enabling a larger base of signatures to be reused. Some of these existing filter

formats are now briefly reviewed:
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e BLINC (“blind classification”) is from the work by Karagiannis, Papagiannaki and
Faloutsos on multilevel traffic classification [184]. Signatures in BLINC are specified
as comma-separated byte sequences, either in hexademical (delimited by ’\’) or as
character strings enclosed in quotation marks. Numbers in parenthesis, if present,
denote the starting byte in the payload where the sequence is found; otherwise the
sequence is assumed to be found at the start of the payload. The keyword plen, if
present, denotes the size of the payload. Operators for AND (’&&’) and OR (’||)

are supported. For example, the BLINC signature specification:
\x47\x4e\x44, \x00\x01\x00\x00\x00\x00\x00(16,plen=23), "LIME"(23)

contains patterns that might indicate the payload of the Gnutella? peer-to-peer pro-

tocol.

e u32 is a filter available for IP packet classification and filtering in the Linux operating
system [144]. A u32 selector specifies bit patterns that can be used to match with a
packet being processed. The general selector syntax is as follows:

match [u32|u16|u8] PATTERN MASK [at OFFSET|nexthdr+0FFSET]

where PATTERN and MASK together specify a bit pattern to be matched, OFFSET speci-
fies an offset from the start of an IP header, nexthdr+0FFSET specifies an offset from
the start of an upper-layer protocol header, and u32, u16 or u8 specify the size of
the mask in bits. For example, the u32 selector

match u8 64 Oxff at 8

matches IP packets with a time-to-live (TTL) value of 64, since the TTL field is the
8th byte in the IP header.

e Snort [55] is an open-source network intrusion detection system originally written by
Martin Roesch. It is basically a packet sniffer coupled to a real-time packet decoder
and a detection engine that performs content matching and protocol analysis to
detect a variety of attacks and probes. The detection engine is programmed using
rules that describe per-packet tests and actions. Although a full discussion on rule
construction in Snort is beyond the scope of this document3, some of the essential

features are described below.

Snort rules consist of two logical parts: the header and options. The header is
structured as follows:

?http://www.the-gdf.org/
3The interested reader may refer to [185] for a tutorial on constructing Snort rules
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action protocol address port direction address port

where

— action specifies what actions should be taken when the rule is met, such as to
pass the packet, log it, send an alert message, activate another rule, and other

actions,

— protocol specifies whether the rule should apply to IP, TCP, UDP or ICMP
packets,

— addresses specify source and destination IP addresses or address ranges, or to

any address, and

— ports specify port numbers or port number ranges.

The option part of the rule is enclosed in parentheses and consists of one or more
keywords and any applicable arguments. Multiple options are separated by semi-
colons, forming a logical AND between them. Among the keywords recognized by
Snort, one interesting example is the content keyword which allows a pattern to be

searched inside a packet. For example, the following Snort rule?

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any

(msg: "COMMUNITY INAPPROPRIATE girls gone wild"; content:'"girls";
nocase; content:"gone"; nocase; content:"wild"; nocase;
flow:to_client,established; classtype:kickass-porn; sid:100000124;
rev:1;)

issues an alert when a packet with a TCP payload and with a TCP port number
corresponding to the HTTP well-known port, originating from the external network,
going into any port on any host within the local (home) network, on an active TCP
connection, contains (among others) the case-insensitive strings “girls” and “gone”
and “wild.”

e SpamAssassin®

is an open-source mail filter used to identify spam, or unsolicited com-
mercial email messages. SpamAssassin supports a variety of mechanisms including
header and text analysis using hand-coded rules, statistical (Bayesian) filtering and

learning, blocklists based on domain names, and collaborative filtering databases.

SpamAssassin rules have three parts, including (1) a type and regex, (2) the score,

and (3) the description. The type and regex part specifies a regular expression (regex)

‘From http://www.snort.org/pub-bin/downloads.cgi/Download /comm _rules/Community-
Rules-2.4.tar.gz
Shttp:/ /spamassassin.apache.org/
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[186] that can be used to match a pattern within a specific portion or segment of the
email specified by the type. The score represents a value given for a match to that
rule, while the description contains some notation about the rule. As an example,

the following SpamAssassin rule fragment
body _DRUGS_ERECTILE2 /\bV(?:agiraligaraliaggraliaegra)\b/i

attempts to search for exact, misspelled, or deliberately obfuscated representations

of “Viagra” within the body of an email.

As previously mentioned, the idea is to support a number of these representative formats
in order to leverage any existing patterns (filters) developed or used by its user community.
At start-up, FlowSensor can be instructed to read in a file containing signatures specified

in a number of formats. Each entry in this file contains the following fields:

targetClass exprFormat expr backReference

where

e targetClass represents the class(es) and their subclasses to which this search ex-
pression applies, that is, flow objects of this class are supposed to scan the flows they

monitor for occurrences of this signature,

e exprFormat represents the format used by the signature’s filter expression, such as
BLINC, u32, and others,

e expr contains the actual filter expression for the signature

e backReference is a string that can be used for comments, or for a message that can
be sent to a human operator, or to another program. In the current version, backRef-
erence contains an assertion that is sent to the reasoner component of FlowSensor.

(This will be discussed in more detail in Chapter 6.)

FlowSensor currently recognizes the following format types: blinc, u32, snort, and sa
(SpamAssassin). However, only the blinc and u32 modules have been fully implemented

in the current version.

Both blinc and u32 only require exact matching between a pattern and a substring of the

PDU being searched. In cases where the signature is known to occur at a particular position
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within the PDU, a simple sequential byte-by-byte comparison starting at that position is
sufficient. When a signature needs to be searched throughout the entire payload, the Boyer-
Moore-Horspool (BMH) exact string matching algorithm [187] is used. A discussion of this

algorithm, including some of the code used to implement it, is presented in Appendix B.

5.1.2 A visualization tool

The object-oriented approach in implementing FlowSensor probably trades off some de-
gree of performance in favor of modularity, ease of design, and implementation speed. This
approach has also made it possible in this work to quickly assemble and integrate a visu-
alization tool. This tool is useful as it allows the state of the flow table managers, flow
objects, and signature scanning engines, shown in Figure 5.2 to be monitored. It may
be of potential use in flow-based network management and other applications, as will be

explained in Chapter 7.

5.2 Sensing node and device characteristics

Context sensing functionality can also be performed at end-hosts, where there is rich con-
text information such as the characteristics and capabilities of end-devices, the state and
nature of the applications generating the traffic, the content-type and characteristics of
the application flows themselves, and the identities and activities of users such as their
movement and location. Some forms of context may be obtained using existing host ap-
plications, services or resources; a simple example might be the ps and finger commands
in Unix providing some information about process status and user activity and location,

respectively.

If some necessary context sensing capabilities are not present, they may be added-on,
as experimentally illustrated for some wearable computers [14] and mobile phones [37].
If the context sensing functionality cannot be directly integrated into the end-host or
network device, then there may be a need to deploy dedicated context sensing devices and
infrastructures. This however assumes that all types of context sensing functionality can
be known in advance and either integrated or pre-deployed. Considering the heterogeneity
of today’s networks and their rapid technological evolution, having fixed and pre-defined

context sensing functionality might not always be adequate to the task.

This section discusses the implementation of a sensor that obtains the characteristics of
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Figure 5.2: A flow visualization tool based on FlowSensor. The top two windows show the
entries in the TCP and UDP flow tables. A flow entry in the UDP flow table is
selected (shown highlighted), opening a window showing its traffic graph. The
bottom window shows the status of signature scanning on this flow.
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network nodes and end-devices. As will be recalled, in Chapter 3 these types of informa-
tion were classified under extrinsic flow context, and in Chapter 4 these were modeled and
included in the flow context ontology. While the sensor presented uses a simple mechanism
to obtain the context information it provides — it essentially relies on the Simple Network
Management Protocol (SNMP) [39] — the novelty introduced here is the ability to dynam-
ically deploy this sensor along the current or future path of a flow, using the active and

programmable networks paradigm.

The next section provides a very brief overview of active and programmable networks. A
specific active network platform called DINA is then discussed, followed by a presentation

on the design and implementation of the sensor itself.

5.2.1 Active and programmable networks

The term “programmable networks” refers to a broad class of networks characterized by the
availability of open programmable network interfaces, a visible separation between trans-
mission and control software, and a virtualization of the underlying network infrastructure
[188]. The main novelty offered by programmable uetworks is that the network clements
may provide computational services in addition to the usual communication (e.g. packet
forwarding) services. The mode of programmability and degree of “openness” of such nodes
varies widely from one architecture to the next, ranging from having a set of open network
APIs that can be used by third-party developers, to the ability to inject and execute code
while the node is “live.” Active networks, whose origins may be traced to a program funded
by the Defense Advanced Research Projects Agency (DARPA) of the U.S. Department of
Defense [189], may be considered a subclass of programmable networks where users may
inject customized programs into the nodes of the network, and where these nodes, in addi-
tion to forwarding, may also perform computations on the user data flowing through them
[190].

The general interest in active and programmable networks stems from the potential ability
of these architectures to flexibly and rapidly create and deploy new network protocols,
services, overlays and even new network architectures [188]. While pre-deployed overlay
networks provide the ability to build new services over existing network infrastructures,
network programmability in turn offers the ability to dynamically build these new over-
lays on demand. Services may be flexibly composed from basic component modules in
response to the specific flow requirements as inferred from their context: for example,
a compressible flow with privacy requirements (e.g. a voice conversation) traversing a

low-bandwidth, wireless link may require the combination of encryption and compression
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Active Engine

Adjunct or
software router

Figure 5.3: Architecture of the DINA active platform [195]

adaptation modules; when the same flow traverses another wireless link with higher band-
width capacity then only the encryption module will be deployed and executed. In this
case, programmability provides the ability to dynamically deploy these service components
at relevant points within the network on demand. For example, some application overlays
that have been demonstrated using the FunnelWeb active networking platform include
content caching, transcoding, multi-metric routing and multicast overlays [191], fault sig-
nalling and congestion control overlays [192, 193], and peer-to-peer traffic management

overlays [194].

5.2.2 The DINA platform

DINAS [195] is an active networking platform developed in the EU IST CONTEXT?
project, based on concepts and ideas from the Active Bell Labs Engine (ABLE) [196].
A DINA node (Figure 5.3) typically consists of two logically distinct components, namely
a Forwarding Element such as a router, and an Active Engine. DINA active packets are
encapsulated in UDP with an ANEP header [197], and carry active code payloads written
in Java. These active packets are intercepted by a diverter and sent to the Active Engine

for execution.

“The choice of DINA for prototyping and proof-of-concept work in this thesis was primarily a matter
of convenience for the author, given his previous work that uses the platform. As the platform’s role was
merely to demonstrate functionality rather than to achieve the most optimal solution, it was decided that
DINA would be sufficient for this purpose, rather than the numerous other platforms available elsewhere.

“http:/ /context.upc.es/
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DINA employs a number of software modules called Brokers which are used to provide
active packets restricted access to local node resources and to perform node-local opera-
tions. Active packets invoke the services of these brokers by instantiating Broker Interface
objects and using the predefined APIs of these broker interfaces. Some of its brokers are
briefly described below (and fully described in [195]):

e Session Broker A filter installed in the Forwarding Element intercepts active packets
and sends them to the Session Broker, which in turn forwards them for execution in
specified active sessions running within Java Virtual Machines (JVM). The Session
Broker maintains a database of sessions, keeping information on their state (pending
or alive), age, sequence numbers and IDs, IP addresses and UDP ports used, the
JVMs used, and security and authorization information. Aging information in the

database allows the Session Broker to terminate sessions that are old and unused.

e Information Broker The Information Broker provides access to node-related infor-
mation from the SNMP MIB [198] of the active host. Although it has some built-in
primitives for obtaining specific information such as the router’s name, the number
of its interfaces, the status of these interfaces (up, down), their IP addresses, and
others, it has a more general primitive that provides access one or more MIB objects
simply by supplying their object IDs (OID) [198].

e (Control Broker The Control Broker enables active services to configure routing tables
and install either temporary or permanent routes in the Forwarding Element. It is

also used to configure virtual private network (VPN) connections.

e Network Broker The Network Broker provides sessions with the capability to estab-
lish communication services such as sending out UDP datagrams, establishing TCP

connections, or setting up server sockets.

e Filter Broker The Filter Broker provides a means to control the underlying (platform-
dependent) packet filtering mechanisms of the router. For example, for a Linux-based
active router, Filter Broker provides an interface to control the rules in iptables
[144].

e QoS Broker The QoS Broker provides a facility to configure and manage an active
router’s support for QoS functionality through the DiffServ architecture [199]. For
example, it provides methods to set up DiffServ classifiers, policers, markers, and
other components.

e SIP Broker The SIP Broker provides access to a hosted Session Initiation Protocol

(SIP) [90] application, allowing SIP control and management of SIP entities such as
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SIP softswitchies, proxies, and user agents.

o WLAN Broker The WLAN broker provides the ability to control and manage at-

tached wireless LAN access points and configure associated wireless networks.

5.2.3 Sensor implementation

To implement the sensor, a Java class that extended the activeCode class included in the
DINA package was written. activeCode essentially instantiates a Session Broker Interface

object and causes a session to be created in the Session Broker for the sensor.

The design and functionality of the sensor itself are actually very simple. The basic idea
is to inject the sensor as an active packet, and once it is up and running within the active
node, for it to (1) install itself as a persistent service, (2) propagate a copy or copies of
itself over the network, and (3) listen for and service requests for context information. The
main implementing functions are shown in the following (quite intuitive and readable) Java

code fragment:

public void run()
{
if (trefreshThreadLaunched) {

//Execute this block only if we’re not
//the refresher thread
createBrokers();
spawnRefresherThread() ;
sendSensor() ;
createServerSocket () ;
processRequests() ;

}
else {
doRefreshes() ;

These method calls are further elaborated below:

e createBrokers() - when the sensor is received, the first thing it does is to instantiate
broker objects for the Information Broker and the Network Broker. The Information
Broker interface will provide facilities to access the underlying SNMP MIB. (The role

of the Network Broker interface will be discussed in the other method calls.)
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e spawnRefresherThread() - as previously mentioned, active sessions are aged and
subjected to timeout if they are idle. This method spawns off a thread whose only job
is to execute its doRefreshes () method. In a refresher thread, doRefreshes () loops
continuously, executing a Thread.sleep() most of the time and periodically “waking

up” to invoke the refresh() method of its sessionBrokerInterface superclass.

e sendSensor () - this method sends out a copy of the sensor out to the network, where
it will be intercepted and executed if it encounters another DINA node. A number
of models for propagating the sensor are possible: (a) it can be propagated along
the path of a flow, (b) it can be propagated to a specified next host (not necessarily
along a flow path, or (c) it can be broadcast in a directed and structured way to

neighboring hosts using the appropriate interfaces.

e createServerSocket () - this method uses the Network Broker interface® to create
a UDP socket that waits for requests from clients and control commands from a

management entity.

e processRequests() - this method waits for messages on the server socket created by
createServerSocket (), parses them, and processes them accordingly. It currently

supports four main commands by invoking the following methods as appropriate:

— getContext (InetAddress addr, int port, String funcArgs), which further
parses funcArgs to obtain an SNMP MIB OID to be passed on to the Informa-
tion Broker interface object. The returned value is sent back to the requesting
client at IP address addr on UDP port port.

— subscribeRequest(InetAddress addr, int port, String funcArgs), which
allows clients to request to be subscribed or unsubscribed to continuous streams
of context values. For example, a client might want to regularly receive infor-
mation on the location of the node, the amount of traffic on an interface, or

perhaps the processor load.

— notifyRequest(InetAddress addr, int port, String funcArgs), which al-
lows clients to request to be notified in response to changes in context values.
For example, a client may wish to be notified if an additional network interface
changes in status from “down” to “up,” possibly to evaluate an option to re-route

a flow.

— killSensor() terminates the operation of the sensor.

8 Although the author was not involved in the development of the DINA platform, he had to make some
modifications to DINA’s Network Broker interface code during the development of this sensor.
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Figure 5.4: The output of a node context sensor

In the first three commands, an argument in funcArgs additionally specifies if the
returned information should be serialized in XML (preferred) or in a predetermined
text format. Figure 5.4 shows a view from a client application that was written® to

test the functionality of this sensor class.

Node context sensors can either persist indefinitely, or be manually terminated by sending
them a Kill message. A useful compromise between these two modes would be to specify
their lifespan upon creation and to provide support for extensions of these lifespan (similar
to refreshes in the Session Broker). These however are not implemented in the current

version of the prototype.

5.3 Sensing location

In the previous section a technique for constructing dynamically-deployable sensors for
SNMP-derived node-related extrinsic flow context was discussed. One of the objects defined
in the SNMP MIB, sysLocation, in fact holds information about the location of the node
[198]. Although this is more likely intended to describe the relatively static location of a
network node such as a router, it could conceivably be updated dynamically to reflect the

location of a mobile host as well (using the Net-SNMP'? command snmpset, for instance).

9The development of this sensor and the client application shown here preceded the full development
of the flow context ontology, so the naming and structure of the context information shown in Figure 5.4
does not necessarily conform to the model in Chapter 4

http://net-snmp.sourceforge.net
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This section focuses on how a node’s location — a type of extrinsic flow context — may
be sensed. A novel technique for fine-grained location sensing based on acoustic spread-
spectrum techniques is presented. Although the system described here was developed
primarily for a controlled, experimental environment, the design principles and results

may be further extended to create versions for real-world deployment.

5.3.1 Flow context and location

Before proceeding to the discussion of the technique, it would be useful to try and answer

the question: Is location information relevant?

Location information has played an important role in the emergence of context-aware com-
puting itself, with many experimental efforts centered on the use of user location to trigger
or offer services [200]. This in turn has spurred research focusing on the development of

location techniques primarily for context-aware computing and for location-based services.

In mobile and ad-hoc networks, location information is used by geographic routing pro-
tocols such as GeoCast |201|, Distance Routing Effect Algorithm for Mobility (DREAM)
[202], Location-Aided Routing (LAR) |203] and Greedy Perimeter Stateless Routing (GPSR)
[204]. For instance, GPSR tags cach packet with a 12-byte position identifier.

In Section 7.2 an example illustrating the application of location information in aiding the
handoff process in a mobile network through flow routing and adaptation is presented,
emphasizing the usefulness of having a means to sense location information, similar to

what is discussed in this section.

5.3.2 An experimental location sensor

This section discusses the implementation of an experimental location sensing scheme that
would be compatible with commercially-available off-the-shelf devices such as a personal
digital assistant (PDA). To roughly estimate the position of users within a relatively large
area, such as within a 34 meter radius, techniques such RADAR [205] and its variants may
be used with a PDA outfitted with an IEEE 802.11 interface. For fine-grained positioning,
such as within 10-20 cm., while a number of systems such as the Active Bat Location
System [206] and Cricket [207] have been discussed in the literature, most of these systems
usually use ultrasonic transducers and a channel for transmitter-receiver synchronization
such as an RF or infrared channel. However, it would be advantageous to have a position

sensing scheme that would use available interfaces and require only a bare minimum of
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hardware interfacing, if any at all. An assumption is made here that the located object
would operate asynchronously with respect to the positioning system, thus, no separate
synchronization channel should be required between the positioning system and the node

whose position is being sensed.

Hyperbolic multilateration

A location estimation technique known as hyperbolic multilateration [208] does not require
the tracked object to be synchronized with the positioning system. In hyperbolic multilat-
eration, time-synchronized signals are emitted from pairs of signal sources (called beacons)
and are detected by a receiver. Assuming that signals simultaneously emitted from a pair of
beacons ¢ and j arrive at a receiver times t; and ¢; respectively, referenced to the receiver’s
clock, then the time-difference-of-arrival (TDOA) is defined as t; — t;. Since all of these
time measurements are referenced to the receiver’s own clock, no synchronization between
the beacons and the receiver are necessary. The mathernatical details of this technique are

provided for the interested reader in Appendix C.

Obtaining TDOASs using spread-spectrum techniques

To obtain time-of-arrivals, and consequently time-difference-of-arrivals, direct sequence
spread spectrum (DSSS) [209] modulated acoustic signals were used in this work as beacon
signals. In spread spectrum modulation, a digital pseudorandom sequence called a PN
(pseudonoise) code is used as a modulation waveform. Each pulse in the PN code is called
a chip, and the inverse of their time period is called the chip rate. Since the chip rate
is typically much higher than the bit rate of the original information, the signal energy
gets distributed over a bandwidth much greater than the original information bandwidth,

effectively “spreading” its spectrum.

The PN codes used in spread spectrum modulation have a number of interesting properties,
particularly in terms of cross-correlation and autocorrelation. Cross-correlation in signal
processing refers to a measure of similarity between two signals. In the case of two complex-
valued discrete-time sequences f and g, it is defined as a function of the relative time m

between them and is given by

$rolml = > flnlg*[n+m] (5.1)

n=—o0



CHAPTER 5. SENSING FLOW CONTEXT 115

where the asterisk indicates the complex conjugate. The function ¢¢4[m| has a maximum
value when the two sequences are aligned in such a way that they are most similar to each
other. Autocorrelation on the other hand simply refers to the process of cross-correlating
a signal with itself; it can be considered a measure of the similarity of a signal with
time-shifted versions of itself. The PN codes used in spread spectrum exhibit very sharp
autocorrelation functions, that is, the autocorrelation function of a single code sharply
peaks at m=0 and has a small value elsewhere. This means that if one correlates an
incoming signal modulated with a known PN code with a local copy of the same signal,
the correlation function would give a sharp peak when the two signals are perfectly aligned
(synchronized) in time. This ability to synchronize an incoming (known) spread-spectrum
signal with a local reference copy works reasonably well even in the presence of either
narrowband or wideband noise [209], as well as environmental scattering [210]. These
properties give sprcad-spectrum signals a distinct advantage over narrowband signals when

used for synchronization.

Since spread-spectrum signals can be used for synchronization, it follows that they can
be used to detect when a known signal emanating from a source impinges on a receiver,
that is, they can be used to determine a signal’s time-of-arrival. However, hyperbolic
multilateration also requires that the receiver be able to distinguish the arrivals from two
different sources ¢ and j in order to compute the TDOA. To achieve this, ¢ and j should use
different reference signals whose cross-correlation values are typically much lower than their
autocorrelation values. The PN codes used for spread-spectrum modulation are designed
to exhibit good cross-correlation properties, that is, codes are selected such that they have
very sharp autocorrelation peaks and nominally low (and bounded) cross-correlation values

between them.

To generate spread-spectrum beacon signals, Gold codes were used in this thesis as PN
codes because of their excellent autocorrelation and cross-correlation properties [211, 212].
The Gold codes used had a sequence length of 127 bits, a chip rate of 10 Kchips/s, and
were used in a binary phase-shift keying (BPSK) modulation scheme. Figure 5.5 shows
two such beacon signals, generated from distinct Gold codes, impinging on a receiver (an
ordinary PC microphone) after being emitted from two PC speakers acting as beacons. The
unprocessed composite signal received by the microphone is shown by the waveform on top.
The bottom graph shows the result of cross-correlating the composite signal individually
with reference copies of the signals from beacon 1 (blue) and beacon 2 (green), plotted
on the same time axis. The sharp correlation peaks in the bottom waveform indicate the
instances when each beacon arrived at the microphone, and the TDOA is consequently

computed as the time distance between these correlation peaks.



CHAPTER 5. SENSING FLOW CONTEXT 116

1 T T =T T
05 n
0 e prrl e -
-05 .
1 1 L 1 1 1 =t
0 1000 2000 3000 4000 5000 6000 7000 8000
Arrival of beacon signal 1 Arrival of beacon signal 2 Time difference of arrival = 52 samples / 48000 samples/s = 1.083 ms
¥ This is equivalert to 1.083ms x 340 meters/s = 0.368 meter distance
100 — T T T T T T
Cross-correlation with beacon 1
50 Cross-correlation with beacon 2 I

0 e . -
-50 ]
-100 1 1 | 1 1 1 1 L
0.145 0.15 0.156 0.16 0.165 017 0175 0.18

Figure 5.5: Two spread spectrum signals impinging on a receiver. The z-axis of the top
graph denotes the index of the audio sample, while its y-axis is its normalized
magnitude. The z-axis of the bottom graph denotes relative time in seconds,
while the y-axis is the magnitude of the correlation function ¢ s4[m).
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Results

The experimental set up for this work consisted of four PC speakers, each with a single
3.5-inch driver, positioned in a room. Three were mounted on the ceiling, approximately
2.2m above the floor on average, while one was mounted on a wall, approximately 80.5 cm
above the floor level. Acoustic beacon signals, consisting of 127-bit Gold codes with a chip
rate of 10 kchips/s and BPSK-modulated with a 10 kHz sine wave, were simultancously
transmitted through the speakers. A microphone (simulating a PDA in the test scenario)
recorded the received signal every 10 cm on a 130 ¢cm x 110 ¢cm grid. The recorded signal
was then successively correlated with each of the transmitted Gold codes. A correlation
peak indicated the instant a beacon signal arrives at the microphone. The speed of sound

was approximated to the first order using the formula

¢ ~ 331.5 + 0.610t5 (5.2)

where t,;; is the air temperature in degrees Celsius and c is in meters/second. In the
experiments, the temperature was recorded from a digital thermometer. In an actual
implementation, the ambient temperature may be supplied by an online sensor.!l Alter-
natively, a fixed approximate valuc may be used in environments where the temperature

is regulated or typically does not vary to a large degree.

The results of one of the trials of the acoustic position sensing scheme is shown in Fig-
ure 5.6. The positions marked with “x” indicate the actual microphone positions, while
positions marked with “0” indicate the position estimates computed through hyperbolic
multilateration. Lines interconnect pairs of actual and computed positions. The gaps in
the grid where there are no “x” marks represent points where the computations did not
converge within the maximum number of iterations, or the resulting computed position
was outside the coordinate system. For the data shown in the figure, the computed po-
sition deviated from the actual position by 7.0 cm on average, and 80% of all computed
positions deviated by less than 9.4 cm from their actual positions. In sensing the location
of people and objects, one is normally more interested in their (z,y) position rather than
their elevation above the floor. For the data represented in Figure 5.6, the deviation from
the actual positions along the xy—plane was around 4.6 cm on average, and less than 7.5

cm for 90% of all computed positions. The cumulative distribution of errors along the

1Gerald Maguire of KTH, in a private communication, also suggested that the propagation speed may
be derived from time measurements using a receiver with a priori known position. The author later derived
the formula ¢ = (r; — r)/(t: — tx), which only requires position and TDOA information, which in turn
could be obtained using the existing acoustic beacons and a fixed receiver — eliminating the need for a
conventional temperature sensor.
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horizontal plane is shown in Figure 5.7.

In an actual implementation the position may be computed on the mobile node itself, by
performing the hyperbolic multilateration computations using the sensed beacon signals
and a preloaded database of beacon codes and the corresponding (z,y, z) coordinates of
the speakers transmitting them. Alternatively, the position information of the speakers
may be contained within the beacon signals, although this would require more processing
on the part of the mobile device and the use of longer code sequences. Either way, the
mobile device’s location would not be known to the network, so this may be considered
a mode of operation that preserves the privacy of the user. A non-privacy or tracking
mode would have the mobile device transmit the recorded beacon signals back to the
sensing infrastructure, using a wireless channel such as 802.11 or Bluetooth, for the location
computations. This mode sacrifices privacy in favor of hardware simplicity, as it shifts the

computational burden from the tracked object to the sensing infrastructure.

The system described here can be rapidly deployed and used, as no additional hardwarc
construction is needed. The technique does not require any synchronization between the
beacons and the located object, and allows very simple commercial devices with little or
no computational power, such as an analog wircless microphone, to be tracked. Even
an ordinary audio recorder, for example, may continuously record acoustic beacons as it
moves within an area, and its traversed path may later be post-processed and reconstructed.
However, in an actual working deployment, the use of audio beacons in the audible range
might be annoying to users. In such cases, it would be necessary to shift the working
frequencies to the ultrasonic range, and although this would require some simple hardware
modifications, the basic principles would remain the same.

5.4 Related work

This section provides a brief review of some related work in sensing flow context. However,
to put this review in perspective, although threc representative models of flow context
sensing techniques and their respective implementations were presented, these should be
viewed as example components of a larger, integrated conceptual whole. Nonetheless, in
the next few sections an attempt is made to compare these individual implementations to

existing, related work.



CHAPTER 5. SENSING FLOW CONTEXT 119

250 —
hy % el
200 | LRI A C U L e
’ ’ . .g‘ b :‘\:\\ N\\\ 0
150 — % oy w0
A
100
50 —
07
300
20
30}
a0t
60 [~ *o o x \" \ o« %  o—x ,—-\‘\.\w
70+ O O o—x ox % g% O—n M /
80 %, koS ogy S e BB "*/o\' o—
100} . W S S
110} b SN NN e S SN S S T
120 - o % o % NN e ot \\ L AL
130 F NS, TN, FONIN. SNOUIN . SR AL R S SO
140 % \ N om N \ \ Ny o O
150 - b P TR T TR T R SRR e NQ
160 I % \ 1N S NN~ % RN
170}
180 1 1 1t 1 1 1 1 1 1 1 1 1 1 J

L
150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

(b)

Figure 5.6: Positioning results showing actual (x) and computed (o) positions. Axes in
centimeters. (a) 3D plot showing beacon locations (Q). (b) Top view.
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5.4.1 Intrinsic flow context sensing

The concept of “intrinsic low context sensing” in this thesis may be traced to the work
on Internet traffic classification, as the problem of classifying traffic into flows usually in-
volves an examination of the individual PDUs (packets) in the aggregate, the extraction
of common features, and their subsequent mapping to sets called flows. Early work by
the network measurement community focused on classifying packets into flows for mea-
surement purposes, thus the flow context information of interest was usually limited to
the (1) classification parameters, typically based on packet header information, and (2)
the metrics, such as flow rates, flow volumes, or packet distributions. Flows were typically
classified based on IP protocol, source IP address, source port, destination IP address, and
destination port information found in packets [42], or on pairs or lists of netblocks [43] or
on other more general parameterized definitions [42]. Sensing traffic characteristics using
these parameters, or using clusters and combinations of these parameters called dimensions
[182] was the focus of metering architectures such as NeTraMet [48] (which in turn used the
IETF’s RTFM architecture [49]), and still remains the main task of present-day metering
systems such as NetFlow from Cisco Systems. The EU-IST MOME Project (Cluster of
European Projects aimed at Monitoring and Measurement) maintains a database of similar

traffic measurement tools at http://www.ist-mome.org/database/.

More recent work however points out that much more information about flows may be
inferred (thereby achieving more accurate traffic classification) by further processing col-
lected traffic data, particularly by applying statistical techniques. For instance, Roughan
et al. used statistical signatures to map flows into different classes of service (interac-
tive, bulk, streaming and transactional) [213], Moore and Zuev used Bayesian analysis
techniques [64], while Zander, Nguyen and Armitage used stochastic machine learning
techniques [214]. The work described in this thesis does not use any of these techniques in
processing per-flow traffic data, although the modular nature of FlowSensor and the mul-
tidimensional sensing philosophy advocated in this thesis suggest that these be investigated

in the future for potential integration into FlowSensor.

Another trend in recent work is to go beyond the information in the headers and look at
the flow’s content. This includes work that employs signature scanning on flows to detect
a particular application, such as peer-to-peer traffic [52, 53|, or to discriminate within a
specific application class, such as in spam email filtering [54]. There are also applications
that examine flows using signatures, but focus on a particular purpose, such as network
intrusion detection [55, 56|, or network protection through traffic filtering and shaping
[51]. The work by Moore and Papagiannaki on content-based classification dealt with the
issue of classification itself, rather than on any particular application of it [215]. None
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of these existing works however attempt to leverage the work done in other application
communities in defining signatures. In contrast, the reuse of existing signatures from
different application communities is advocated by the work in this thesis, and is reflected

in FlowSensor’s design.

Other related work on signatures focus on their automatic generation from suspicious
traffic [183, 216, 217, 218]. While this was not examined in this thesis, it does suggest
the possibility of using ontology-based reasoning (to be discussed in Section 6.3.2) for

automatic signature generation in future work.

While the focused and detailed work outlined in the literature have contributed numerous
useful techniques for intrinsic context sensing, the work in this thesis is different in the sense
that it tries to look at a “bigger picture” that attempts to integrate all of these different
techniques and different types of context information in a “cross-layer, cross entity” way.
On the other hand, the work in this thesis shares a common philosophy with the approach
adopted by Karagiannis, Papagiannaki and Faloutsos, who adopted a “multilevel approach
to looking at flows” [184] by correlating flow content (inferred from signatures) to the
inferred social and functional activities of the end-hosts with which they are associated.
However, Karagiannis et al. relied totally on information observed from the flow itself and

did not use sensors that can obtain information directly from extrinsic entities.

In fact, there do not seem to be other existing flow contert sensing infrastructures designed
to sense a wide variety of contextual information as part of an integrated whole. While
the existing work in sensor fusion (e.g. [219, 220]) and in context-aware applications
[11, 10, 12, 13] certainly made use of multiple types of sensors to obtain context information,
the intended consumer of the sensed context information is different in this thesis. The
approach taken here is quite forward-looking, as it anticipates a future where different
types of sensors embedded in the landscape can be put to effective use, not only by end-

applications, but also by context-aware networks.

5.4.2 Location sensing

For location sensing, Girod and Estrin used acoustic spread-spectrum techniques in a
ranging system that used frequencies in the audible range [210]. Although their system only
produced range (distance) information rather than location, it may be extended through
multilateration in order to estimate location. This has in fact served as one of the technical
bases for the acoustic location sensing scheme presented here. In addition, their philosophy

of using common off-the-shelf hardware inspired the effort in this thesis to design a sensing
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system that only uses off-the-shelf devices.

Hazas and Ward presented a privacy-oriented location system based on ultrasonic spread-
spectrum and pseudoranging techniques [221]. Although the physical sensing base is similar
to the work described in this thesis, their use of pseudoranging has some implications in the
overall design of the location system, particularly in the need for synchronization within
the system. A pseudoranging system typically requires beacons to be tightly synchronized
with each other, and there is likewise some benefit in synchronizing the located object
with the beacons as well, as this minimizes the magnitude of the clock bias that needs to
be estimated. In a hyperbolic multilateration system similar to the work described here,
tight synchronization is required only among pairs of beacons to provide accurate TDOAs,
and to a lesser extent, across different pairs. While synchronization between the beacons
and the located object may minimize the number of acoustic data samples that need to be

processed, the algorithm itself does not require it.

In some cases existing network devices may be used to sense location using data from
their associated communication channels. For example, RADAR uses the received signal
strength (RSS) data of wireless access points (APs) in order to estimate the location of
a wircless mobile device |205]. Cellocate uses the difference in arrival times of a mobile
phone’s signal at nearby cell sites in order to estimate the phone’s location [208]. These
systems however are only able to offer coarse-grained localization, that is, they are not
able to resolve locations to a fine degree of precision [205, 208]. Thus, unlike the system
presented in this thesis, it would be difficult to use such coarse-grained systems to sense

and resolve locations within small spaces such as rooms.

Other examples of systems used for sensing location in context-aware systems include the
Global Positioning System (GPS) [222], the Active Bat Location System [206] and Cricket

[207]. Various other location context sensing-systems are surveyed in [200].

5.5 Chapter summary

A basic functionality needed in a context-aware network is a mechanism by which context
information, such as flow context, may be obtained. This chapter presented the design
and implementation of three different sensors for flow context: a sensor for intrinsic flow
context called FlowSensor, a sensor for node and device characteristics (a form of extrinsic
flow context), and a sensor for node location (another form of extrinsic flow context). The
design of each of these sensors contributes functionality and sensing techniques that may

be useful in future context-aware networks. In addition, the design of each one provides
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some unique insights in terms of approaches and philosophies that may be adopted in
the implementation and deployment of other sensors in the future. These approaches and
solutions include multi-dimensional sensing, resource reuse, and rapid deployment, which

are explained further in the next few paragraphs.

A multi-dimensional approach to sensing context, taking into account the multi-faceted
nature of flow context, is advocated in this thesis. This was demonstrated in the design
of FlowSensor, a modular application that combines some of the basic functions found in
conventional flow metering architectures, as well as a signature-scanning functionality often
found only in specialized applications such as intrusion detection systems and spam email
filters. In addition, a design approach that intends to reuse the significant body of tested
signatures available within different communities was adopted. FlowSensor’s modularity
and potential for reuse in other applications was demonstrated by quickly assembling a

flow context visualization tool, which may be used in network management.

The location sensor presented in this chapter offers a novel approach to scensing location,
using acoustic spread-spectrum techniques. To implement this sensor, only off-the-shelf
components were used. In terms of the “bigger picture,” this reflects what would be a good
approach to building new sensing functionality: try to reuse available resources, possibly
in a creative way. This philosophy has been inspired by similar approaches to building
location systems in the literature, such as in RADAR [205] and Cellocate [208].

In some cases however, the flexible and rapid deployment of sensors may be a major issue,
especially with heterogeneous and dynamically-evolving networks. In this regard the device
sensor described in this thesis contributes a potential solution for rapid deployment, using
the active networks paradigm. The application of this deployment technique to the other

sensor designs presented in this chapter is planned for future work.



Chapter 6

Aggregating and Disseminating Flow

Context

The preceding chapter tackled the issue of sensing flow context within the network and
in other relevant entities. As in the previous one, this chapter attempts to answer some
questions, but instead of one, it presents three: If sensors can provide flow context, how
can they be found? How can the information be disseminated to the entities that need
it? What kind of processing has to be done on the information so that it is useful to
these entities? These are the issues of locating, disseminating and processing flow context

information, first introduced in Section 3.4.2, and discussed in the rest of this chapter.

It is sometimes difficult to cleanly separate the sensing, dissemination, processing and
aggregating functionalities from one another, as one stage is often intimately related to
or dependent on the next. For example, a sensor that provides per-flow bandwidth con-
sumption information would actually need to sense information on a per-packet level (such
as what is done in FlowSensor in Section 5.1) and process this sensed information over
a certain period of time to provide both instantaneous and average bandwidth figures.
Similarly, the dissemination model may also be tied to the aggregation model: an archi-
tecture that has a centralized context processing or aggregation function would logically
have to disseminate the aggregated, “higher-level” context from that centralized aggrega-
tor, leading to a centralized dissemination model, at least for the post-processed context.
Nonetheless, in the following sections an attempt is made to discuss each aspect separately.
When applicable, frameworks for classifying the different approaches, which can be used

to analyze existing approaches in the literature, are provided. More importantly however,
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these frameworks may also be used to describe some of the approaches developed and eval-
uated in this thesis for the problems of location, dissemination and aggregation. These are

presented in detail in the next few sections.

6.1 Discovery and location

Before flow context can be disseminated, processed or used, sometimes it has to be located
first. The issue of knowing where to obtain flow context can equated to the issue of
locating the entities that provide context information, such as the sensors themselves,
or other entities that process it into a useful format, or entities whose role is primarily to

disseminate and make the information available. This is the issue of discovery and location.

If the provisioning of flow context information within a network are considered as a service,
then one may evaluate and use some of the existing service discovery protocols such as those
described or supported by the IETF Service Location Protocol (SLP) [223], Jini [224],
Universal Plug and Play (UPnP) [225], Universal Description Discovery and Integration
(UDDI) [226], the Salutation Protocol! [227], and a host of other frameworks, for this
purpose. However, the objective in this section is not to evaluate these — the reader may
refer instead to (228, 229, 230, 231, 232] for some comprehensive reviews — but rather,
to focus on and evaluate a specific approach to locating context sensors that had been
suggested in [109, 233].

6.1.1 A distributed approach to locating context sources

Some of the existing service discovery protocols, such as Jini and UDDI, rely on centralized
directories or registries to store service information [229, 232]. On one hand this approach
offers a relatively simple solution that may work for small-scale implementations. However,
as the number of clients increases, such architectures, if they do not resort to strategies
such as replication, may start to become bottlenecks and single points of failure [234]. For
large-scale, heterogeneous, mobile and highly dynamic networks, it is difficult rely on the
presence of fixed, centralized structures for such service directories or registries. On the

other hand, a scalable, distributed and self-organizing mechanism would be preferable.

In the Ambient Networks (AN) project (cf. Section 2.3.2), the need for a mechanism

with scalable and distributed properties for the purpose of locating context sources was

!The Salutation Consortium, which was in charge of developing this protocol, was dissolved on June
30, 2005.
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likewise identified, and a solution based on the use of distributed hash tables (DHTs) was
suggested [109, 233] but not thoroughly investigated. The next few sections describe a
way to implement this mechanism, not only as it applies to ambient networks, but as it
may apply to other context-aware networks as well. The design of a simulator developed

to evaluate this approach, as well as some experimental results are discussed.

The Context Coordinator (ConCoord) in ContextWare

In ANs, the infrastructure that provides for context management, mediating between infor-
mation sources such as context sensors and context clients is called ContextWare [109, 31].
The two main functional entities within ContextWare are called the Context Management
(CM) Functional Entity, which performs internal management of context information, as
well as the associations between context sources and sinks; and the Context Coordination
(ConCoord) Functional Entity, which deals with indexing, registering, authorizing and

resolving context object identifiers into locators.

The ConCoord supports a number of operational primitives to realize its basic functions.
A REGISTER primitive allows a context sensor to register context object identifiers, called
Uniform Context Identifiers or UCIs [233]. A RESOLVE on the other hand requests a list
of sensor addresses corresponding to a UCI, which are returned to the entity issuing the
request through a RESOLVEACK. A context consumer then obtains information directly and

synchronously? from the sensor using the latter’s resolved address through a GET.

A SUBSCRIBE refers to a request for the asynchronous delivery of a certain piece of context
information (data or an event) in the future, when it becomes available. NOTIFY refers to

the actual asynchronous delivery of information, particularly about an event.

Locating context sources through DHTs

A distributed hash table (DHT) is a large hash table cooperatively maintained by mul-
tiple nodes in a decentralized and autonomous fashion [235]. Each node manages one
or more partitions of the hash table’s key space K called zones and maintains direct
connections with other nodes called neighbors. An example of a DHT protocol is the
Content-Addressable Networks (CAN) design, which uses a d-dimensional Cartesian coor-
dinate system on a d-torus to map out the key space K for all <key, value> pairs to nodes
in the overlay [236]. In CAN, a new node joins the DHT overlay by contacting a nearby

2The terms “synchronous” and “asynchronous” are defined in Section 6.2.1 on page 134.
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node already in the overlay, and obtains a chunk of the key space by randomly selecting an
existing node and requesting half of that node’s zone. The new node also builds up its list
of neighbors, which are nodes that have zones that are logically adjacent to its zone. When
the new node and its neighbors have updated their respective neighbor lists, routing within
the DHT overlay now includes the new node. Routing typically uses a greedy algorithm
on a hop-by-hop basis. Further details of the operation and maintenance of a CAN may
be found in [236].

Preliminary evaluation

The functionality of a context sensor registry (e.g. ConCoord) may be realized by imple-
menting a basic CAN-based DHT and mapping the defined ConCoord primitives REGISTER
and RESOLVE to the counterpart operational primitives get and put within the DHT.3
A REGISTER may be implemented as a put(contextID,srcAddr) in the DHT, while a
RESOLVE may be implemented as a get (contextID).

With this mapping, the performance of the ConCoord primitives REGISTER and RESOLVE
would ultimately depend on the performance of the get and put primitives in the under-
lying DHT. Both the get and put operations in the DHT require the requesting node to
contact a known node in the overlay and have the overlay internally route the requested
operation to the node that owns the zone to which the hashed key of the <key, value>
pair maps. This is done by message passing on a hop-by-hop basis within the DHT, using

its own routing mechanism.

Figure 6.1 illustrates the steps needed to REGISTER a context source (e.g. a sensor) located
at address srcAddr, providing context information with unique identifier contextID. The
source first contacts a node in the DHT and issues a put, supplying its own address and
the identifier of the context information it can provide. The DHT node then applies a hash
function to contextID, the result of which maps to a unique node within the DHT. It then
forms a message addressed to that DHT node containing the information to be stored (the
srcAddr of the context source). The message is then routed on a hop-by-hop basis within
the DHT until it reaches the target destination node, which then stores srcAddr.

To find context sources that can provide information of type contextID, a prospective
client needs to RESOLVE their addresses via the DHT. The source issues a get to a nearby
DHT node, supplying contextID as parameter. The DHT node applies the hash function
to contextID, yielding the identifier of the DHT node that stores the information. The

3In this section ConCoord primitives use uppercase letters (e.g. RESOLVE), while primitives in the
underlying DHT use lowercase letters (e.g. get)
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Figure 6.1: Storing context source locations in a DHT

get message is then routed to that node, which ultimately retrieves the stored srcAddr(es)

and sends it to the client that originally made the request.

Based on the foregoing, the performance of the context primitives REGISTER and RESOLVE
would very much depend on the performance of the get and put primitives in the underly-
ing DHT. One major factor that impacts the performance of the latter two DHT primitives
is the number of overlay hops a message would have to traverse from the first DHT node
contacted to the target DHT node storing the data. The more hops a message traverses,
(1) the greater the latency between request and reply, and (2) the greater the bandwidth

it consumes.

The path length in a DHT is therefore a metric worth investigating. In CAN the path
length depends on two variables (among others): the total number of DHT nodes, and
the number of routing neighbors per node |236]. With an increase in the total number of
nodes, there should be an increase in both the maximum and average path length between
any two nodes. On the other hand, to increase the number of routing neighbors per node,
the number of dimensions d used in constructing CAN’s d-torus should be increased as
neighbor relations are built on the basis of zone adjacency along a dimension: in other

words, more dimensions means more chances of gaining neighbors.

CAN simulator

To validate these claims experimentally with a reasonably large number of nodes, and
to facilitate the collection of statistics, software simulator for a DHT that uses the CAN

protocol was developed.
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Figure 6.2: Screen capture showing DHTBrowser’s user interface

DHTSim is written for Java 1.5 and serves as the main class for the simulator. It operates in
two modes: an interactive mode and a batch mode. Interactive mode, shown in Figure 6.2,
provides a graphical view of the CAN DHT and allows the user to interactively add or
delete nodes, view per-node zone and neighbor information, and trace message routes
within the DHT. Interactive mode can only be invoked when the CAN is 2-dimensional,
and is intended more as a tool to visualize the topology and check the correctness of the

underlying processes. Interactive mode functionality is provided by the DHTBrowser class.

DHTSim’s batch mode bypasses the creation of the interactive GUI and automatically builds
a DHT based on user-specified parameters such as the number of bits per dimension, an
initial number of dimensions, and an initial number of nodes. The software then computes
the pairwise routing lengths between all node combinations, logs the output statistics,

increments the parameters, and repeats the process.

Figure 6.3 illustrates the functional blocks of the DHT simulator. The DHTBrowser inter-
active mode graphical user interface draws the topology and zone distribution of the 2-d

CAN by accessing an internal node table. Creation and deletion of new nodes are also
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Figure 6.3: DHTSim’s functional components

done through this node table. When a user requests to display the properties of a specific
node, DHTBrowser calls the method within the Node object itself. Each Node object also
has internal methods for storage, routing, neighbor maintenance and inter-node messaging,
and maintains a set of Zone objects. Zone objects in turn have their own internal methods
to maintain their own boundaries and the ability to split their respective zones in order
to allocate portions to newly-created nodes. Zones are internally represented through an
ordered pair of boundaries <le ft Boundary, right Boundary> along each coordinate axis.
The “left-ness” and “right-ness” of these boundaries are significant as spaces may wrap
around the maximum numerical values of the axes (recall that the CAN keyspace K is a

d-torus).

In addition to zone maintenance and zone-splitting methods, Zone objects also contain
methods to determine adjacency with and distance to other zones. The adjacency method
is a service used by nodes to determine if another node is to be included in or excluded
from its list of neighbors. The distance computation service allows a node to determine,
for routing purposes, which of its neighbors has the least distance (and would thus be the
next message hop) to a target zone. The current implementation has a number of “plug-
in” methods for computing distances between zones, each employing a different heuristic.
These include the various norms of the Minkowski distance of order p (p-norm distance)
[237], given by
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n 1/p
Sp(x,y) = (Z |z; — yi|p) (6.1)

such as the Manhattan distance (p = 1), Euclidean distance (p = 2) and the Chebyshev
distance (p = 00). These different methods were written to support future studies on

routing performance as a function of the different next-hop selection heuristics.

Simulation results and outlook

The simulation was conducted by running DHTSim in batch mode. The first iteration started
by creating a CAN with two dimensions and four initial nodes, and the number of hops
between all pairs of nodes were calculated. The next iteration incremented the number
of nodes, created a new CAN, and performed the same calculations. When a CAN size
of 128 nodes was reached, the number of dimensions was increased, and process repeated,
starting with four initial nodes, and progressively incrementing the number of nodes until
a maximum of 128 nodes was reached. An upper limit of six dimensions was used in the

sinulation.

The simulation results indicate that a CAN DHT would perform reasonably well as a
distributed repository of context source locations for a moderately-sized network of up to
128 nodes. Figure 6.4 shows both the average and worst-case latency of the get operation
in terms of the number of application-level hops (i.e., routing path length) within the
DHT overlay. At the maximum simulated size of 128 nodes, the routing path length for
a 4-dimensional CAN is 2.88 hops on average and 6 hops maximum. As with the basic
CAN design, the routing path length is influenced by the number of dimensions d used in
setting up the key space, since for a given number of nodes n in an overlay, a key space
set up with more dimensions would result in a larger number of neighbors per node than
a space having fewer dimensions. A larger number of neighbors per node would result in
a shorter path length on average, but would require each node to maintain more state. In
the results shown, there seems to be a significant improvement both in the average and
worst-case RESOLVE latency with an increase in the number of dimensions from d = 2 to
d = 4. On the other hand, no significant improvement was observed when the number of
dimensions was increased from d = 4 to d = 5 for networks up to this maximum size. Both
of these are consistent with the average path length growth O(dn'/?) predicted in [236].

This initial experimental attempt to evaluate the use of a CAN DHT in context dissemina-

tion validates the basic CAN performance claims in [236], and demonstrates the feasibility
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cated by the z-axis. The continuous graphs indicate the average path lengths
obtained for the same set of parameters d and n.
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of using CAN-based DHTs as a distributed and scalable mechanism to store and resolve
context sensor locations. Further enhancements to the work described here are outlined in
Section 8.3.2.

6.2 Context dissemination

Once context sources have been discovered and located, or if their locations are known a
priori, the next step in the life cycle consists of disseminating context information. Note
that the dissemination process may encompass both raw and processed (aggregated) flow
context, so in some cases it may be intimately tied to both the sensor deployment and

aggregation schemes used.

This section focuses on the dissemination mechanism, and discusses a mechanism tailored
particularly for the dissemination of flow context: path-coupled dissemination. It also
revisits the work on DHTS in the previous section, and reuses it for path-decoupled dissem-
ination. Before discussing these specific approaches, next section first presents a general

framework for classifying dissemination mechanisms.

6.2.1 Alternatives for dissemination

This section provides a brief overview of alternatives in implementing flow context dis-
semination. Looking at some specific examples of dissemination schemes, as well as some
attempts in the literature to classify dissemination approaches [6, 86, 89, 72, 93, 233, 238],
it can be seen that most of these either implicitly describe the classification parameters
by citing examples, or do not characterize the approaches using a general classification

framework.

The following framework for classifying or characterizing context dissemination schemes
based on a more generic description of each axis of classification was thus devised. Although
it has been made as broad as possible, it is by no means exhaustive. However, it can be
used to classify most of the existing dissemination schemes. More importantly, it provides

a framework for describing some dissemination schemes presented later in this section.

Axes of classification The various dissemination schemes may be classified according

to:
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e Initiating entity - this axis of classification refers to the entity that initiates the
transfer of context information. If the context consumer initiates the transfer, it
is called a pull, otherwise if the context source initiates the transfer, it is called
a push. It is also possible for a consumer to initiate a request for information in
advance, or subscribe to information that a context source may later asynchronously
publish, or provide via a mechanism called callback. The term usually used for a
similar mechanism that involves information about the occurrence of events is called

notification.

e Level of temporal coupling - this refers to the time relationship between the context
sources and context consumers. If a source makes a request for context information
and normally expects a response within a predetermined maximum amount of time,
or blocks other transactions until that particular transaction is fulfilled, the sources
and consumers are closely coupled in a temporal sense, and the transactions are said
to occur in a synchronous way. This definition may also apply if transactions occur
with reference to some global timing scheme, since although the coupling is now

indirect, the temporal relationship still exists.

Conversely, if context sources provide information without taking into account any
timing relationship or dependency with the consumers (or potential consumers), or,
if consumers can reccive information at any time, the dissemination scheme is called
asynchronous. Message queuing systems may be considered forms of asynchronous
dissemination; storage may be considered a rather extreme form of asynchronous

dissemination.

o Level of spatial coupling - this refers to whether the context sources and consumers
communicate in a direct manner, or if there are one or more intermediaries, result-
ing in indirect communication. Some architectures are called indirection infrastruc-
tures as they are purposely designed to indirectly link communicating parties via
rendezvous-based communication [239]. Mechanisms that employ shared spaces for
communication rather than direct communication, such as tuple spaces [238, 240]
and blackboard systems [241] may also be considered forms of indirect communica-
tion, although it should be noted that the latter two examples refer not only to

communication schemes but also to specific distributed computing paradigms.

o Level of control coupling - if the dissemination scheme predominantly employs mes-
sage exchanges that involve data, and the entities do not exercise a large degree
of control over each other, the entities are said to be weakly coupled from a control
standpoint. On the other hand, it may be possible for one entity to be directly invok-
ing methods within another entity as part of the dissemination scheme (e.g. remote
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method invocation or RMI), or for some code functionality from the dissemination
architecture to be directly embedded into the sources and consumers of information
(e.g. Jini). In this case there is a significant degree of control coupling used within
the dissemination architecture. Perhaps an intermediate degree of control coupling
is represented by object sharing and passing, as this involves not only the passing of
data but also methods (via embedded code).

e Service roles of disseminating entities - if an entity’s primary role is to fulfill service
requests related to the dissemination mechanisin, then it is acting as a server. Con-
versely, if an entity’s primary role is to make such service requests and benefit from
the fulfillment of those requests, then it is a client. A dissemination architecture that

predominantly uses server and client entity roles is called a client-server architecture.

On the other hand, if the entities involved in the dissemination mechanism have both
client and server functionalities, and are intended to play both roles (more or less)
equally and uniformly, then the dissemination scheme employs a peer-to-peer [242]

mechanism.

e Level of decentralization - dissemination schemes may also be classified in terms of
the level of centralization or decentralization of functionality, entities or resources. If
the architecture relies only on a few (or perhaps one) entity to perform functions or
services that are necessary for dissemination, then it is centralized; if these function-
alities, services, resources or active entities are distributed throughout the network

then it employs a decentralized approach.

e Message scope and routing - if a single transmission from a source can be simultane-
ously received by a multiple number of context consumers, the dissemination scheme
employs multicast. A broadcast is a special type of multicast where the message
is sent to all nodes. Otherwise, if a source can only transmit to one consumer, it
employs unicast. In large and highly decentralized dissemination architectures, the
routing protocol used to forward messages from one dissemination entity to the next

may also be used as a basis for classification.

6.2.2 Path-coupled and path-decoupled dissemination

The classification framework presented in the previous section depended largely on existing
dissemination and communication schemes found in context-aware computing, distributed
computing and mobile networking. However, due to the novelty of flow context, a new
axis is introduced for characterizing the dissemination of flow context: whether a scheme

uses a path-coupled or a path-decoupled approach. The terminology comes from the work
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by the IETF Next Steps in Signaling working group [243], and although the equivalent
concepts presented in this thesis were developed independently from the NSIS’ work*, the

NSIS terminology was adopted in anticipation of its recognition as a standard.

Path-decoupled flow context dissemination is defined as the distribution of flow context
independently of the path traversed by the flow. This means that the flow of context
information either does not follow the same path as the flow itself, or if it does, the traversal
of that same path is unintentional. Conversely, path-coupled flow context dissemination
refers to the distribution of flow context information along the flow path. Like path-coupled
signaling in NSIS, path-coupled flow context dissemination is inspired by the Resource
Reservation Protocol signaling model, where messages request QoS for a data flow from
the routers on the path [45, 243]. It likewise aims to signal information about a data flow
along its path for more than just QoS purposes, and for use by different entities within the
network [243]. However, unlike the work in NSIS, which focuses more on the architectural
framnework and protocols for the signaling process itself, this work develops and models
the information about the flow itsclf that may ultimately be transported using the NSIS

signaling framework.

The next few sections further discusses why these dissemination methods are suitable for

flow context.

Path-coupled flow context dissemination

Why use path-coupled dissemination? Handling flow context poses some challenges,
because flows are not permanent entities or structures within the network. Flows are
ephemeral, that is, they may simply appear and disappear within the network. In some
cases, the flows may be short-lived, such as in the case of transfers of small amounts of
data, or when mobile hosts briefly transit through an access point’s coverage region. Thus,
like the flows they describe, a specific flow’s context would technically exist only while the
flow itself exists (although such context may of course be recorded and stored for future
use). It would be impossible therefore for a node within the network to pre-subscribe to a

specific flow’s context, if the existence of that flow cannot be known in advance.

It may of course be possible for some network nodes to pre-subscribe to context information

describing all or some flows generated by a particular end-host, or flows that traverse a

4The author of this thesis published a concept for flow contexti dissemination similar to path-coupled
signaling in a paper for APGAC’05 in May 2005 [74]. RFC 4080, which discusses the NSIS framework,
was published in June 2005, although the requirement for path-coupled signaling appeared earlier in April
2004 [244]. The author had been unaware of the NSIS’ work until after the APGAC’05 paper.
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specific context-sensing middlebox. However, in the case of mobile hosts or ad-hoc wireless
networks, this may again pose some complications: since end-hosts or nodes also appear
and disappear within the network, it would difficult for another node deep within the
network to pre-subscribe to context information generated by a mobile or ad-hoc node
that has not yet joined the network. In wired networks, although the location of the nodes
within the topology may more or less be fixed, dynamic packet and flow routing may also
imply that network nodes cannot predict with certainty if flows generated by or transiting
through other nodes will traverse a context-“interested” node. Thus, except in very simple
network topologies, network nodes generally would not know in advance where they might

obtain context information about flows.

In [74], Ocampo et al. proposed the use of a push-based method called flow context
tagging. The use of the term in that work is significantly different from the way it is
defined in Section 3.3.4 and in the rest of this thesis. In [74] “flow context tagging” referred
to a path-coupled, push-based, asynchronous, spatially direct or indirect, multicast mode
of flow context dissemination from context sensors to context consumers.® In Section 3.3.4
however, and in the rest of this thesis, low context tagging refers to the act of explicitly

encoding the context of a flow and associating it with the flow being described.

With path-coupled dissemination, the sensed context information is injected along with
the flow, where it is generally expected, but not necessarily guaranteed (due to possible
changes in routing), to traverse the same path as the flow. The context tag is associated
with the flow through a fragment of the contextual description that defines the set of PDUs
constituting the flow described by the tag, such as through the filterspec in RSVP [142],
or a subclass of the Identifier context information (cf. “Classes and class hierarchies”
on page 70), or perhaps through signature specifications (cf. “Signature scanning” on
page 100). Path-coupled dissemination provides the following advantages:

1. The push-based approach takes into account the ephemeral and possibly short-lived
nature of flows. It does not require context-interested or context-sensitive nodes
within the network to know in advance the specific end-host, device or peer node

within the network where flow context must be obtained or subscribed.

2. Path coupling offers a focused distribution of flow context: the information accom-
panies the flow itself along the downstream path, where it is most likely to be used,
because that is also where flow impacts the network resources such as link capacity,
node processing and computation, and node buffers. Ultimately, the context tags are

received at the destination of the flow, where they may also be processed and used.

5These terms are defined in Section 6.2.1 on page 134.
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Figure 6.5: Typical deployment of components for flow context tagging

3. The source of the context can inject tags at a rate consistent with the frequency of
change in information. In contrast, a client polling information from a context server
may not be doing it at an appropriate rate, resulting in under-sampling leading to a

loss of information.

The use of path-coupled dissemination can be made compatible with persistent context
storage, when necessary. If the location of context repositories are known, then end-hosts
and context sensors may upload flow context to these repositories. The corresponding
context tags could then contain references (pointers) to these context repositories. This
provides two useful functions: (1) flow context information may be archived for future use,
for whatever purpose it may serve and (2) large chunks of context details may be uploaded
to the repository instead of being contained within the tag itself, reducing their size and

impact on network traffic.

Mechanics The mechanics of this approach, illustrated in Figures 6.5 and 6.6, are de-

scribed in this section.

After context information is sensed within an end-host or middlebox, it is passed down
to a marshalling and encapsulation function, where it is serialized in XML [100]. At this
point the filterspec or the relevant flow identifier or descriptor is also included in the XML-
formatted context tag. The vocabulary used in these tags conforms to the terms defined

in the ontology in Section 4.3.

The tag is then packaged in a User Datagram Protocol (UDP) transport-layer datagram
[245]. The use of UDP allows other context-interested hosts, including the end-destination
of the flow, to detect or demultiplex out the context tag packet from the rest of the flow.
Further down the processing stack, a tag injection and detection stage encapsulates the

UDP datagram in an IP packet whose header contains the IP Router Alert Option as
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Figure 6.6: Functional components in context tag processing stack

described in RFC 2113 for IPv4 [246], and RFC 2711 for IPv6 [247]. This option has the

semantic “routers should examine this packet more closely.”

Nodes and devices within the network, particularly routers, detect the context tag by
virtue of the Router Alert option in the IP header. Routers that either do not support
the option, or do not recognize the context payload simply forward the packet to the next
hop. At end-hosts, the context tag may be demultiplexed out of the flow by virtue of the
UDP port number. If no equivalent context-processing process exists at the destination

host the tag is either silently dropped, or an error message may be returned.

At this point, the node may either re-inject the unmodified tag back into the stream, or
process and aggregate the received information (discussed in Section 6.3) before (option-
ally) re-injecting a new tag. It may also use the context information for flow adaptation,
or to trigger or influence the execution of a service, control, or management function.
By re-injecting processed context back into the flow, new knowledge may be shared with
downstream nodes. Tags like these may also contain information about any adaptation

that was performed by upstream nodes on the flow.

A path-decoupled approach using ContextWare

This section provides an example of a path-decoupled approach to flow context dissemina-
tion, using components from the ContextWare architecture (cf. Section 2.3.2 on page 30).
Section 6.1.1 of this chapter described the role of the ConCoord in locating context sources
and evaluated its possible implementation using distributed hash tables (DHTs). In this
section the DHT-based ConCoord is revisited, and its functionality is extended for use in

path-decoupled dissemination of context events.

As described in Section 6.1.1, ContextWare also has the following defined primitives: GET,
SUBSCRIBE and NOTIFY. An entity is needed where subscription requests should be regis-
tered; otherwise, all clients that require notification would have no choice but to register

subscription requests to all potential context sensors that may provide such notifications
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- an option which is clearly impractical, and not scalable. To provide notification support
in a scalable and distributed manner, the DHT is used as an indirection infrastructure
for rendezvous-based communication [239]. A context client that wishes to SUBSCRIBE to
an event is mapped to a put (event,client-address) in the underlying DHT, where the
event descriptor is hashed and mapped to a point in key space K’. For notifications,
two implementation options are possible: either (1) the sensor can request a get (event),
which returns the addresses of clients subscribed to that event, allowing the sensor to
send detailed information about the event to these clients, or (2) a new DHT primitive
send (event ,data) that would cause the DHT itself to send data to the clients subscribed
to that event notification could be introduced. Note that data may either contain the
notifying sensor’s address, or detailed event information, or both. Option (2) obviously
shifts the actual notification burden from the sensors to the DHT overlay, but in doing
s0, saves the additional step needed in option (1) for the notifying sensor to retricve the
list of subscribed clients from the DHT. Since the primitives put (contextID, srcAddr)
and put(event,client-address) are used with different semantics, it is proposed that
the key spaces K (used for the REGISTER, RESOLVE, and GET primitives) and K’ (used for
SUBSCRIBE and NOTIFY) be maintained as separate and distinct spaces to avoid collisions.
This can be accomplished by considering them to be separate realities in CAN terminology
[236].

6.3 Processing and aggregating flow context

Raw context information obtained by sensors and disseminated through the network may
have to be further processed and aggregated to transform it into a form useful or relevant to
the consumers of the information. Processing and aggregation both refer to the wide variety
of functions summarized in Section 3.4.1, including data formatting, range checking and
data validation, algorithmic computation and normalization, data fusion, augmentation,
or the interpretation or abstraction of low-level data into higher-level information. Various
techniques may be applied in order to achieve these functions, such as statistical methods,
time-domain analysis, neural networks and rule-based logic [11], or the use of artificial

intelligence and machine learning techniques |78, 79).

The process of aggregation may transform context information into a form more useful
or appropriate to a consumer. Considering that the usefulness, desirability or relevance
of context information might actually be modified by changing its accuracy, precision,
timeliness, scope and other measures of its quality, then it can be argued that context

aggregation may also have an impact on the QoC or quality of context (discussed in
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Section 3.3.3). In addition, context aggregation may help minimize the network overhead
during context distribution, and help avoid information overload at the consumer. If several
pieces of context may be aggregated into a more compact and summarized (or abstracted)
form that is useful or acceptable to a consumer, then this would mean that the original
multiple pieces of context would not have to be transmitted and processed at the other

end.

If aggregation is performed without any concurrent processing or computation, this could
be considered simple storage. However, even the storage of context information may re-
quire the data to be formatted or processed prior to or during storage, or during retrieval.
For example, flow records might be compressed to minimize memory requirements in flow
context sensors, or use formats that minimize their bandwidth overhead during transmis-
sion. Caching might be considered a special type of storage, where an item is temporarily
stored to exploit temporal and spatial locality properties. For example, a piece of flow
context information, plus perhaps some semantically related ones, might be cached at a
node topologically close to a context consumer, because there may be a high probability
that it would be accessed again soon (temporal locality), or that the consumer might also
need the semantically-related ones.® For example, if a flow context consumer requests
information on the current utilization of a network interface, it would be reasonable to
hypothesize” that it would also need related information such as the type of that interface
and the maximum bandwidth it can support.

This section focuses on the high-level semantic processing and aggregation of flow context,
rather than either the relatively low-level functions of data formatting and validation, or
on storage. The different aggregation modes based on their scope are first defined. The
novel use of logical inference and reasoning in the semantic processing and aggregation of
flow context, including the use of rules and queries, is then explored, and its computational

performance is examined.

6.3.1 Aggregation modes

This thesis defines three main modes of flow context aggregation: temporal aggregation,
cross-flow aggregation, and cross-type aggregation.

e Temporal aggregation involves the observation of a single flow (at any flow abstraction

8 Although this is quite different from the classical notion of spatial locality in traditional memory caching
systems, one could argue that the spatial locality is in the form of some notion of semantic distance such
as similarity, logical subsumption, or relatedness.

"This has not been investigated in this thesis and might be an interesting topic for future work.
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level) or macroflow over time to derive relevant context information. For example,
the collection of per-packet statistics to generate information such as flow bandwidth
(both instantaneous and average), packet loss, jitter, and related statistical informa-
tion would require the aggregation of flow-related context over time. Storage and

provisioning of historical data would also require temporal aggregation.

e Cross-flow aggregation involves the observation of multiple flows or macroflows to
form new flow context information. For example, the computation of the total band-
width consumed by all flows on a link to infer the level of availability or congestion
of that link might be considered a form of cross-flow aggregation. Another example
might be the examination of the common properties of multiple flows to form new
logical macroflows, such as when multiple flows to a single end-host are inferred to be

part of a bundle of client-server flows, with the common end-host acting as a server.

e Cross-type aggregation involves the observation and processing of multiple, different
types of context information to produce new information. A concept very much re-
lated to this type of aggregation is sensor fusion, which pertains to the combination
of data from multiple information sources (sensors) [219, 220]. Other than the dis-
tinction that the former concept refers primarily to the combination of multiple data
types which may or may not come from multiple sources, the two may be considered
equivalent enough such that their principles, processes and techniques may held in

common.

These aggregation modes are not mutually exclusive, as one may find instances where they
are used in combination. It is possible for instance to have temporal aggregation of a single
type of context information across multiple flows, from multiple sensors — a simple example
of this might be a sensor that collects per-flow bandwidth information, over time, from
multiple upstream sources. Similarly, it may be possible (or sometimes even necessary)
to aggregate and process different types of context across multiple flows to infer new
information. For example, if an active flow flow, is known to belong to user,, and flowy,
containing streaming video, is terminating at the same host where flow, originates, then
it might be reasonable to believe (correctly or otherwise, as it may turn out) that one of

the current activities of user, is WatchingVideo.

In order to support inferences of the latter type, it is useful to have an explicit semantic
model of the concepts and relationships that define flows and their context, or an ontology,
as previously discussed in Chapter 4. In addition, it would also be useful to be able to
process not only these abstract concepts and relationships, but assertions or descriptions
about specific individuals based on the vocabulary defined in the ontology. The ability to
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derive inferences from ontologies and assertions about individuals is the role of a reasoner,

which is discussed in the next section.

6.3.2 Reasoner-based context processing and aggregation

An automated reasoner in description logics (DL) is a software program that provides a
number of reasoning services based on logic inference. These services include checks for
satisfiability, subsumption, equivalence and disjointness for concepts in a TBox® through
the application of logical inference [248]. Satisfiability may be qualitatively described by
the question: “Is the set of objects described by a concept empty?”’ while subsumption
may be described by “Is there a subset relationship between the set of objects described
by two concepts?”’ [249]. Equivalence pertains to whether two concepts describe the same
set of objects, while disjointness means that two concepts do not describe any objects in
common. A TBox may also be checked for coherence or consistency by checking if it has
any unsatisfiable concepts [176]. In addition, a TBox may be classified, that is, the entire

subsumption hierarchy or tazonomy of concept names may be computed by a reasoner.

C . .
Y The following inference

A reasoner may also provide inference services for an ABox.
services may be provided: consistency, instance checking, instance retrieval, realization,
and role filler computation, all with respect to a TBox [249]. Qualitatively, checking the
consistency of an ABox entails checking if all of the assertions in the ABox are satisfiable
with respect to the TBox. Instance checking poses the question, “Is the specified individual
an instance of the query concept?” Instance retrieval on the other hand finds all such

individuals from the ABox that can be proven to be instances of the the query concept.

In ABox realization, the most specific concept names in the TBox that apply to an instance
are computed. Finally, role filler computation refers to the retrieval of individuals that are

related to a specified query individual by a certain property or relation.

Flow context assertions

This section reuses the same RacerPro [136] reasoner, used for ontology checking in Sec-
tion 4.3.2, for reasoner-based flow context aggregation. The initial step involves loading
RacerPro with the flow context ontology (and its associated imported ontologies). Context

information about flows and other entities are then sent to the reasoner as assertions. A

8A TBoz contains the set of axioms that define concepts, properties and their various relationships in
a knowledge base or KB.
9An ABoz contains assertions about specific individuals in a knowledge base.
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subset of the supported ABox assertions in RacerPro, are used in this thesis, including:

e Concept assertions, using the instance keyword, which state that the individual is

an instance of a specified concept

e Role assertions, using the related keyword, which state that an individual is related

via a specified role!® (“property”) to another specified individual, and
o Attribute assertions, using the constrained keyword, which state that an individual
is related via a specified role to an object in the concrete domain [250].

tll

For example, the following assertion, which follows the general format'® of FlowSensor’s

output (cf. Section 5.1)

(instance |f6-fe92| |L3_IPv4_0OneWay_UDP_SimpleFlow|)

(related |f6-fe92| [10.0.1.65| |hasL3_IPv4SourceAddress|)
(related |f6-fe92| [10.0.1.36| [hasL3_IPv4DestinationAddress|)
(related |f6-fe92| 1563| |hasL4_UDP_SourcePortl)

(related |f6-fe92| [32776| |hasL4_UDP_DestinationPort|)

states that the individual f6-fe92 is an instance of L3_IPv4_OneWay_UDP_SimpleFlow,
which in the flow context ontology represents the class of layer-3 unidirectional flows of
IPv4 packets with UDP payloads, originating from a single source and terminating at a
single destination. Such flows are completely described by the tuple (source IP address,
source UDP port, destination IP address, destination UDP port). These values are likewise
specified in the given example through the use of the related keyword. A similar assertion
for another flow instance is shown in Figure 6.7, as viewed through the reasoner’s graphical

user interface.

Rules and queries

Once context information has been fed into the reasoner, inferences can be drawn on the
individuals (flows and other entities) modeled in the ABox. As previously mentioned, the
inference services typically offered for ABox individuals include consistency checking, in-

stance checking, instance retrieval, realization, and role filler computation, all with respect

19The term “role” is a RacerPro-specific term synonymous with property or relation.

'The unique flow IDs used by FlowSensor are actually 128 bits long. In addition, the RacerPorter
graphical interface allows names to be displayed in abbreviated form, that is, for the full namespace URI
to be omitted. Both abbreviated forms will be used in subsequent examples for ease of presentation
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Figure 6.7: A flow context assertion in the RacerPro reasoner
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to the flow context ontology. Two facilities provided in the RacerPro reasoner to access

these services: queries and rules.

Queries in RacerPro are supported by an expressive query language called nRQL [136, 251].
Each query consists of a query head and a query body. Basic query expressions are called

query atoms, and the following types of query atoms are supported:

e Concept query atoms retrieve the individuals (members) of a concept. Concept query
atoms are unary, that is, they reference either one individual or one variable. For

example, the simple query
(retrieve (?7x) (?x |L3_IPv4_OneWay_UDP_SimpleFlow|))

retrieves all individuals that are members of the class of unidirectional flows of IPv4
UDP packets from a single source to a single destination (as defined in the flow

ontology), and successively binds these individuals to the variable ?x.

e Role query atoms retrieve pairs of individuals related to each other through a cer-
tain property or role. Since role query atoms reference two objects (individuals or

variables), they are considered binary atoms. For example, the query

(retrieve (?x ?y) (7x ?y |terminatesAtNodel)

would return flow and node instance pairs related by terminatesAtNode. Roles may
be inverted through the inv role term constructor, such that the inverse relationship
may be represented by (inv |terminatesAtNodel|). Roles may also be negated,
such that (not |terminatesAtNode|) would refer to flows that have either been
explicitly asserted to or proved by the reasoner not to terminate at the specified

node.

e Constraint query atoms address the concrete domain part (i.e., the domain of inte-
gers, reals, strings, and others [250]) of a KB. Query atoms of this type are used to
retrieve individuals whose fillers satisfy a specified concrete domain predicate, called
a constraint. These are useful especially when reasoning over quantitative assertions,

such as querying which flows exceed a certain QoS parameter.

e SAME-AS query atoms enforce the binding of a variable to an individual. Query atoms

of this type are binary.
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e HAS-KNOWN-SUCCESSOR query atoms belong to a class called auziliary query atoms.
HAS-KNOWN-SUCCESSOR retrieves individuals that have explicitly modeled successors

on a certain property or role, without returning the actual successor. If the previous

example is rewritten as

(retrieve (7x) (?x (has-known-successor |terminatesAtNodel)))

the reasoner will return all flows whose termination nodes have been explicitly as-
serted in the ABox.

Query atoms can be combined using constructors such as (among others) and, union, and

neg. The neg constructor has negation-as-failure (NAF) semantics, where a statement that

cannot be proved true is taken as false. This is different from classical negation, where a

statement is taken to be false if and only if it can be proved to be false.

As an example, the following complex query (called SearchForPairs) formed from the

conjunction of multiple query atoms, returns TCP flows that form counterpart pairs, where

the destination (address, port) of one flow is the source (address, port) of the other, and

vice-versa (i.e. bidirectional “streams” [43]).

(RETRIEVE
(?X1 7X2)
(AND (7X1

(7X2
(7X1
(7X2
(?7X2
(7X1
(?x1
(7Xx2
(7Xx2
(?x1

IL3_
L3_

7A1
7A1
7A2
7A2
7P1
7P1
P2
7P2

IPv4_OneWay_TCP_SimpleFlowl)
IPv4_0OneWay_TCP_SimpleFlow|)
|hasL3_IPv4SourceAddress|)
|hasL3_IPv4DestinationAddress|)
|hasL3_IPv4SourceAddress|)
|hasL3_IPv4DestinationAddress]|)
|hasL4_TCP_SourcePort|)
|hasL4_TCP_DestinationPort|)
|hasL4_TCP_SourcePort|)
|hasL4_TCP_DestinationPort|)

Rules A rule may generally be defined as a principle or condition that customarily gov-

erns behavior.'? In the context of the Semantic Web, rules may be defined as axioms that

2http://wordnet.princeton.edu/
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form an implication between an antecedent (head) and a consequent (body), that is, they
form an if-then relationship between the antecedent and the consequent. Whenever the
conditions specified in the consequent hold, the conditions specified in the consequent must
also hold [252].

The inclusion or “layering” of rules on top of ontologies in the Semantic Web has been
proposed due to the relative weakness of the OWL language by itself in talking about
properties [253]. A often-cited classic example is its inability to represent the “uncle”
relationship in terms of the “brother” and “parent” relations in terms of other built-in
relations such as subsumption, disjointness, equivalence and others, without resorting to
an operation like property composition [253]. On the other hand, it would be easier to

express the “uncle” concept in the following form:

IF hasParent(x,y) AND hasBrother(y,z) THEN hasUncle(x,z)

The current proposal in the W3C for a Semantic Web rule language is SWRL (Semantic
Web Rule Language) [252]. SWRL rules are of the form (using an equivalent human-

readable syntax)

antecedent = consequent

where both antecedent and consequent are conjunctions (ANDed combinations) of atoms,
expressed as aj A---Aay. Variables are prefixed with a question mark (e.g., ?x). For

example, the “uncle rule” would be expressed in SWRL as

hasParent(?x, ?y) A hasBrother(?y,?z) = hasUncle(?x, ?z)

Atoms are of the form C(x), P(x,y), sameAs(x,y), differentFrom(x,y), or builtIn(r,x,...),
where C is an OWL description or data range, P is an OWL property, r is a built-in relation,
x and y are either variables, OWL individuals or OWL data values.

Although RacerPro supports SWRL on an experimental basis, the built-in facilities for rules

in the query language nRQL are used in this thesis. In nRQL the antecedent is simply

3

an nRQL query body; the consequence!3 consists of a set of ABox assertions. nRQL rules

therefore allow the ABox to be augmented based on the results of queries.

13This is the term used in RacerPro, rather than “consequent”
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As an example, the following rule (called ConsolidatePairsRule) also looks for counter-
part inverse flows as in the previous query example. However, it allows new information
to be added to the ABox by defining the two flows to be symmetrically related by a

hasCounterpartInverseFlow relation if the antecedent is satisfied:

(FIRERULE

(AND (NEG (?X1 (HAS-KNOWN-SUCCESSOR |hasCounterpartInverseFlowl)))
(NEG (7X2 (HAS-KNOWN-SUCCESSOR |hasCounterpartInverseFlowl)))
(?X1 |L3_IPv4_0OneWay_TCP_SimpleFlowl)
(7X2 |L3_IPv4_OneWay_TCP_SimpleFlowl)
(?X1 7A1 |hasL3_IPv4SourceAddress|)
(7X2 ?A1 |hasL3_IPv4DestinationAddress|)
(?X2 ?7A2 |hasL3_IPv4SourceAddress|)
(?X1 7A2 |hasL3_IPv4DestinationAddress|)
(7X1 7?P1 |hasL4_TCP_SourcePort]|)
(7X2 ?P1 |hasL4_TCP_DestinationPort|)
(7X2 7P2 |hasL4_TCP_SourcePort|)
(?X1 ?P2 |hasL4_TCP_DestinationPort|)

)
(
(RELATED 7X1 ?X2 |hasCounterpartInverseFlow|)
)
)
Performance

The previous section illustrated how ontologies and flow context assertions may be pro-
cessed by a reasoner in order to create new context information. While the previous section
demonstrates that it works, it is also important to determine if it can used in real-world
scenarios on platforms that might have limited amounts of processing power and memory,

and which have to deal with a large number of flow instances being detected at a high rate.

This section describes a series of experiments that were aimed at studying the perfor-
mance of reasoner-based context processing and aggregation. To simulate an operational
scenario as realistically as possible, actual packet header traces were used and transformed
into flow instances. Packet header traces are records of actual network traffic, typically
collected from a single link or set of router interfaces, containing anonymized header in-
formation. The process of anonymization either removes or obfuscates some information

inside these headers, while trying to preserve the relationships between them, for privacy
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and security purposes [254]. A trace available from the National Laboratory for Applied
Network Research (NLANR), specifically trace PSC-1144705892-1.tar.gz, dated 10 April
2006, collected from an OC48c link at the Pittsburgh Supercomputing Center was used in

the experiments described here.!4

In order to decouple the performance of the context reasoning component from that of
the flow sensing component, and since the traces do not contain packet payloads anyway,
FlowSensor (cf. Section 5.1) was not used in these experiments. Instead, a small program
using some of FlowSensor’s components was assembled and used to transform the trace
information into flow instance assertions and basic assertions about their intrinsic context,
such as their protocol type, source and destination addresses, and source and destination
ports (when applicable). These assertions were stored in a file. A sample assertion (which

was also used as an example in the previous section) is shown below.

(instance |f6-fe92| |L3_IPv4_OneWay_UDP_SimpleFlowl|)

(related |f6-fe92| [10.0.1.65| |hasL3_IPv4SourceAddressl|)
(related |f6-fe92| [10.0.1.36| |hasL3_IPv4DestinationAddress|)
(related [f6-fe92| |53| |hasL4_UDP_SourcePort|)

(related |f6-fe92| 132776| |hasL4_UDP_DestinationPort|)

A starting point in the file was selected and flow context assertions were fed sequentially
into the reasoner. The file reader and the reasoner communicated via UDP, but ran on the
same physical machine to avoid network latencies. The rate at which the assertions were
fed into the reasoner was dictated by the rate at which the latter processed the assertions,
including those already in its ABox, with the reasoner signaling back when it was ready
to receive a new assertion. Query and rule evaluation response times were then measured
as the number of assertions increased. In all trials, the test platform consisted of an IBM
Thinkpad T42p with an Intel Pentium M processor 1.70GHz and 1GB memory, running

RacerPro 1.9.0 x86 Linux version, on a Linux 2.6 / Fedora Core 4 operating system.

Query performance was evaluated using the SearchForPairs query previously given (cf.
page 148). Figure 6.8 plots the response time to this query as a function of the number
of flow instance assertions. From the data, it can be seen that the query response time is
quite poor for applications that require real-time flow context aggregation. For example, in
Figure 6.8a, when the reasoner had around 200 flow instance assertions (with the associated
context assertions), the response time was around 2868 milliseconds — almost 3 seconds.
With this kind of performance it would be reasonable to suggest that this reasoner would

be overwhelmed on a moderately-sized network with 40 active users, each maintaining five

http://pma.nlanr.net/Traces/ Traces/daily /20060410/
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active flows on average, if new flows are being created at intervals less than three seconds

apart.

The response times between the first time the reasoner processes a query and any sub-
sequent repetitions of that query, assuming no changes in the ABox in that interval, are
likewise compared. Figure 6.8a shows that the response time of subsequent queries is sig-
nificantly lower, suggesting some computational overhead associated with the initial query
processing. This appears to be a platform-specific artifact resulting from the reasoner
computing what it calls a substrate structure for the ABox when it encounters a query
for the first time [255]. Although this cannot be generalized to all reasoners, the finding
is nonetheless useful as it suggests that in cases where such initial processing overheads
do exist, the average response time would depend on the ratio of initial to subsequent

repetitions of the query, assuming no intermediate changes in the ABox.

It can also be observed that when the number of flow instances in the ABox starts to
exceed 800, oscillations in the response time, followed by a sharp increcase at around 860
flows can be seen. This performance degradation was traced to insufficient memory (heap)

in the test platform, as shown in the log files.

To verify if this behavior would be found in other queries, PointToMultipoint, listed

below, was formulated:

(RETRIEVE
(7X 7A 7P)
(AND
(?A (AT-LEAST 2
(INV |hasL3_IPv4SourceAddress|) {L3_IPv4_0OneWay_TCP_SimpleFlowl))
(7P (AT-LEAST 2
(INV |hasL4_TCP_SourcePort{) |L3_IPv4_OneWay_TCP_SimpleFlow|))
(?X ?7A |hasL3_IPv4SourceAddress|)
(?X 7P |hasL4_TCP_SourcePort|)

This query attempts to find multiple unidirectional TCP flows that originate from the
same IP address and TCP port, forming point-to-multipoint flow aggregates, and possibly
suggesting server activity on the end-host. A comparison between PointToMultipoint

and SearchForPairs in terms of response times is shown in Figure 6.9.

As can be seen, PointToMultipoint performs even worse than SearchForPairs. The
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graph illustrates that query performance is (obviously) influenced by the implicit complex-
ity of the query itself, which in turn is dictated by the operations implemented by each
of the constituent query atoms. In addition, each query atom yields an answer set which
is subsequently processed with the other answer sets, in this case using the AND operator.
The size of each intermediate answer set would have a combinatorial impact on the total

processing time of the entire query.

The raw data for PointToMultipoint also indicates a very large difference between initial
and subsequent queries, consistent with the behavior of SearchForPairs. Interestingly
enough, a similar sharp increase in the response time around z = 860 flow instances
is observed, which is exactly the same point where the performance of SearchForPairs
rapidly degrades. This was previously attributed to lack of memory, but the detailed

determination of the root cause and its underlying mechanics are left for future work.

Queries vs. rules As previously mentioned, the consequent part in a rule allows the
ABox to be modified when the conditions in the antecedent are satisfied. The hypothesis
to be tested was that modifications in the ABox might help simplify some aspects of ABox
processing, for example by reducing the search space for subsequent queries. To test this

hypothesis, the ConsolidatePairsRule previously defined (cf. page 150) was reused. The
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antecedent of this rule is almost identical to the SearchForPairs query, except for two
additional atoms at the beginning that qualify the search space only to flows without
any known counterparts, that is, they are not known to be related to other flows via the
hasCounterpartInverseFlow relation. The rule consequent asserts this relationship when
the antecedent conditions are satisfied. Note that hasCounterpartInverseFlow is not part
of the assertions sent to the reasoner by the module that processes the packet traces; thus,
the NEG operator with negation as failure (NAF) semantics is appropriate for this purpose.

Figure 6.10 plots the response time of ConsolidatePairsRule as a function of the number
of flow instance assertions. Compared to SearchForPairs, its performance is generally
better: at x = 200 flow instances, the response time is 2077 milliseconds (compared to 2868
for SearchForPairs); at = 800 flows, the response time is 7552 milliseconds (compared
to 8954 for SearchForPairs). While these still seem to be unacceptable for real-time flow

processing, the performance improvement is quite noteworthy.

Two more observations may be drawn from Figure 6.10: first, the difference in response
times between the successive rule “firings” is not as pronounced as in SearchForPairs (cf.
Figure 6.8); and second, there is no sharp performance degradation (increase in response
time) throughout the entire plot. These lead one to believe that the use of rules to modify
the ABox may have either simplified the substrate structure, or reduced the memory re-
quirements, or as previously hypothesized, reduced the search space for the query part of
the antecedent.
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Finally, a RacerPro-specific optimization called told information querying, which is one
of the incomplete reasoning modes in nRQL, was explored. This mode uses only the
information explicitly asserted in the ABox and relies only its relational structure for
reasoning — in fact, it does not significantly use the TBox for reasoning [255]. The response

time for the SearchForPairs query using this mode is shown in Figure 6.11.

Figures 6.11 and 6.12 show a more substantial improvement when incomplete reasoning
is used, compared with the previous cases for queries that use complete reasoning and
rule-based ABox modification. The first and subsequent queries in Figure 6.11 also track
each other quite closely as in the ConsolidatePairsRule case in Figure 6.10. Except for
the oscillations in the response time starting from approximately z = 700 flows, there is no
singular sharp increase in response time anywhere within the graph. Although incomplete
reasoning mode performs much better on average, it should be noted that it can only be
applied for special cases where the scope of the query is limited to facts explicitly asserted
in the ABox, rather than queries that would rely significantly on relations modeled in the
TBox.

Summary

The results presented in the previous section show that the designer of a system that
intends to use reasoner-based flow context aggregation would be faced with a number of

design options and challenges, especially if the system is envisaged to operate in real time.
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The results in the preceding chapter point to serious limitations in the total number of
simultaneous flows that can be processed in real-time. This implies that in applications
where real-time semantic aggregation of flow context is performed by a reasoner, there
should be a small number of flows — implying applicability only to small networks, or to
applications where the latency in reasoner-based aggregation might be acceptable within
certain limits. An example of the latter might be in the case of adaptation to long-term
flows, such as in video-on-demand or IP television. For short-term flows, the aggregation
latency might be larger than a significant proportion of the flow lifetime (or it may exceed
the entire flow lifetime), so reasoner-based aggregation might be applicable more for an

offline analysis of the flow context information, rather than for real-time adaptation.

In the case of large networks, the reasoner should only deal with a small number of context
tags, each describing a large bundle of flows (macroflows). These scenarios however are
not too unrealistic: for example, large service providers that peer with each other may
prefer to exchange a relatively small number of context tags, each describing large bundles
of flows. As another example, a single Internet provider may distribute the aggregation
process and push it near the subscriber access points, so that upstream aggregation would

now deal with fewer, more high-level pieces of context information.

One obvious requirement would be the use of the appropriate hardware with sufficient
processing power and memory. The limited capabilities of the hardware platform used for

the experiments in this thesis certainly had a negative effect on the performance figures, and
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thus places limits on the scenarios where real-time reasoner-based flow context aggregation
may be used. Future work should study the performance of such a system using a platform
with processing capabilities and memory capacity that might better reflect the class of

hardware that may be deployed in real-life scenarios.

From a software standpoint, architectural decisions should be made regarding the division
of processing tasks between sensors, other algorithmic pre-processors and aggregators (if
any), and reasoners, in order to avoid performance bottlenecks, particularly in the reasoning
component. In addition, the designer has to be aware of any platform-specific optimizations
that may be available, and which of these, if any, would be appropriate for the context

being processed.

Even as further advances in reasoning architectures and technologies are anticipated, the
use of reasoners for flow context processing and aggregation has to be continuously and
thoroughly evaluated. Some of the limitations of the methodology used in this section, as

well as potential arcas for its improvement, are described in Section 8.3.4.

6.4 Chapter summary

This chapter discussed the functions that serve as a bridge between sensing and using flow
context: the discovery and location of context sources, the processing and aggregation of

the information, and its subsequent dissemination within the network.

The first step in using context involves locating it: this thesis approaches that problem by
equating it with the issue of locating flow context sensors. Through the use of a simulator,
an approach to locating flow context sensors based on distributed hash tables was evaluated.
The results of the evaluation seem to indicate that DHTs — and consequently many peer-
to-peer network architectures based on DHTs [242] — may be used as a scalable, distributed

mechanism for locating flow context sensors.

Once flow context sensors have been located, their information needs to be transmitted
either directly to consumers, or to intermediate processors or aggregators. To serve as an
aid in characterizing the approach in this thesis and classifying those presented by others, a
generic framework for classifying dissemination schemes was developed. Two mechanisms
for disseminating flow context, namely path-decoupled flow context dissemination, as well
as a novel approach for context dissemination called path-coupled dissemination, were
presented. Some approaches for their implementation were outlined, including a DHT-

based approach for path-decoupled dissemination.
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In some cases there is a need to process or aggregate flow context to transform it into some-
thing suitable for a consumer. The use of an automated reasoner for semantic processing
and aggregation of flow context was discussed. The use of the flow context ontology in
conjunction with reasoning actually demonstrates the dual uses of ontologies. While in
Chapter 4 the process of ontology-building was used for design-time, abstract and concep-
tual flow context modeling, in this chapter the process artifact itself was used as a runtime
component of a knowledge base supporting dynamic reasoning and semantic queries on

flows and their associated context.

The experiments with semantic processing and aggregation presented here however showed
that the process has significant computational costs. The results from the experiments
with various platform-specific optimizations suggest that, in order to form generalizations
about the use of reasoning-based semantic processing and aggregation, similar experiments
be made using different reasoning platforms and hardware configurations. In addition, as
will be explained in Section 8.3.4, a more realistic testing protocol, either involving a real-
time replay of full packet traces, or testing on a live operational network, would provide a

better testing environment.



Chapter 7
Using Flow Context: Applications

This chapter examines some application scenarios for flow context, particularly in mobil-
ity, quality of service (QoS), flow classification, in controlling or mitigating the effects of
malicious or wasteful flows, and in network management. Except for the QoS application
scenario, these applications were selected primarily to illustrate applications that had not
been enabled by the early, QoS-centered prior work on network adaptation (cf. Section 2.2).
The QoS application on the other hand is quite novel in the sense that it shows that the
broad conceptualization of flow context allows QoS requirements to be signaled implicitly

rather than explicitly.

These applications provide a sampling of the potential uses of context-awareness in net-
works, enabled by the flow context concept, in today’s highly dynamic, heterogeneous,
and mobile networks. The advent of user, host and network mobility for instance, espe-
cially in future wireless, ubiquitous and “ambient” networking scenarios (cf. Section 2.3.2
for example), requires networks to be able to deal with frequent changes in user location,

connectivity, resources and activity as a result of her mobility.

On the other hand, the ability of service providers and network operators to identify
and classify flows within their networks would allow them to cope better with the rapid
emergence of new applications and the heterogeneity of existing ones. Additionally, as
networks expand and more users become online, the number and diversity of threats to
their operation correspondingly increase, pointing to a need not only to be able to identify
and classify malicious or wasteful flows, but also to control or mitigate their effects. Finally,
these new dynamic, heterogeneous and mobile networks ultimately have to be managed,
either by a human or by machines: this section also shows some potential applications in

this area, and discusses other potential applications in network management.

160
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Before going into specific applications however, it is useful to examine common system
issues in the design and implementation of networks that are “flow context-aware.” These

issues are presented in the next section, followed by the discussion on specific applications.

7.1 System issues

This section discusses some common issues that may be faced in the design, implementa-
tion and operation of a network that senses, distributes, aggregates or uses flow context.
These issues are the result of an evaluation of the components and processes developed
in the preceding chapters regarding the sensing, dissemination, aggregation and use of
flow context. In addition, particular issues that arose during the implementation of the

proof-of-concept application scenarios are mentioned where applicable.

7.1.1 Sensor deployment issues

The use of dedicated hardware infrastructures for sensing, such as in the case of many
ubiquitous computing applications [12], in itself presents the problem of the associated
costs of development or acquisition, operation, maintenance and future expansion. On
the other hand, software sensors embedded into user and network devices may require a
certain amount of overhead in terms of processing cycles and memory, depending on the
nature of the context to be sensed, and the characteristics of the source of the context. For
example, sensing the context of large numbers of high-speed flows might require specialized
embedded software [177, 178], and in some cases, dedicated hardware support. Signature
scanning, as described in Section 5.1.1, is often done in real-world scenarios by “boxes”
dedicated for that purpose, such as in intrusion detection systems [55]. A designer thus has
to decide whether the resources required by the planned sensing infrastructure — hardware
or softwarc — does not adversely impact the core functionality of the network and offers

benefits that outweigh these costs.

Software-based flow context sensors (sources) may be deployed statically by providing
either the necessary hardware infrastructure or by pre-deploying the necessary code or
middleware. However, this often requires knowing in advance the types of context that
would be used in a system, where they could be obtained, and the functionality needed to
obtain it. In some cases this may be determined by the target application: for example,
if an Internet service provider needs to obtain context information particularly about user

flows (perhaps for traffic management purposes), then it would be logical to place sensors
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at the point where subscribers access the ISP’s network. On the other hand, if a company
needs to protect its network from external attacks, the logical placement of the sensors
would be at the gateways into the network. In a ubiquitous computing application where
the types of flow context to be dealt with might be more diverse (e.g. including user device
location), the sensing infrastructure might be more distributed and may involve devices

outside the network itself.

An alternative would be the dynamic, on-demand deployment of (software) sensors within
the system, using an active or programmable networking paradigm, as explored in Sec-
tion 5.2.3. Although this offers a great deal of flexibility, there would be significant over-
head involved in making the sensors nodes active or programmable, as they would need
the necessary host platform for programmability (e.g. such as DINA in Section 5.2.3). For
DINA in particular, there are also some practical limits on the level of flexibility that can
be achieved: for example, access to low-level resources on the active node are provided by
brokers that have to be programmed in advance. In this particular case, the programma-
bility offered by DINA and the promise of flexibility is moderated somewhat by the need

to write low-level resource brokers if the sensing function requires access to these resources.

Regardless of the method used in deploying sensors, once they are in place, these have to
be brought on-line and made accessible to the other context components, such as context
aggregators, as well the context consumers. Some of the methods available for resolving
the location of sensors range from centralized directories or registries, to fully distributed
approaches based on distributed hash tables (DHTs). As discussed in Section 6.1, there are
trade-offs in terms of complexity and scalability when selecting any of these approaches.
Typically, centralized approaches tend to be simple to implement but difficult to scale,
while fully distributed approaches involve some complexity but scale quite well. The DHT-
based distributed registry for flow context sensors evaluated in Section 6.1.1 offers low
latency in resolving the location of context sensors and scales quite well; however, a full
implementation along with the enhancements suggested in Section 8.3.2 would require
additional computational and memory resources on each node participating in the DHT.

Another issue in locating sensors, which was not examined in this thesis, concerns the
issue of searching for ranges or classes of sensors that might be able to provide a required
type of context information. While it might be possible in some applications for context
consumers to know in advance (i.e. in a pre-programmed or pre-configured way) the exact
types of sensors needed for a certain task, in other cases a less exact, “closest-match” type
of search (for some given criteria for similarity) might be useful. This was not examined

in this thesis and is suggested for future work.
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Finally, a standard interface and protocol is needed in order to communicate with context
sensors. In the experiments in this section, the sensors used a simplified implementation
of the ContextWare primitives mentioned in Section 6.1.1, developed by others. A full
discussion of the implementation of these primitives is beyond the scope of this thesis;

more information may be found in [109, 233].

7.1.2 Flow context dissemination

The dissemination of flow context tags within the network also consumes bandwidth in
itself, so another issue concerns striking a balance between the network overhead and
the expected level of optimization or benefit that the use of the information (e.g. for
adaptation) can provide. A flow context tag may contain a very brief and simple descriptor
for the associated flow, such as its QoS flowspec [142], or the coordinates of the sending
host, or perhaps a specification of the media encoding of the payload. Conversely, it
would also be possible to construct a rather complex description of the flow that includes
descriptions about the user’s activities, the capabilities of the sending or receiving hosts,

the QoS description of the flow and its associated payloads, and so on.

Determining the best mode of disseminating flow context is another system issue that de-
signers must address. Section 6.2.2 describes path-decoupled and path-coupled approaches
in dissemination, and discusses their advantages and disadvantages. The method devel-
oped and used in this thesis, the path-coupled approach, disseminates flow context along
the flow’s path, where it is likely to be needed. However, interested consumers that are not
directly along the flow path would probably need special mechanisms to ensure that they
are also able to receive such context information, perhaps by sending out notifications to
neighbors that they are interested parties (this was not investigated in this thesis). An-
other potential issue with path-coupled dissemination concerns the ability to ensure that
the context tag stays “coupled” with the flow, that is, that the tags and the flow in fact
traverse the same path through the network. In the case of the experimental work done in
the next few sections, the tags were transmitted as a separate UDP stream, so there were

no guarantees that the tags would not be misrouted or dropped within the network.

Another issue not addressed in this thesis concerns maintaining the integrity of the trans-

mitted flow context from a security viewpoint. This is suggested for future work.
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7.1.3 Context aggregation

A major issue that a system designer must face concerns the performance of reasoner-based
semantic aggregation, discussed in Section 6.3.2. As shown in that section, for the specific
hardware platform used in experimentation (with an Intel Pentium M 1.7GHz processor
and 1GB memory), the performance of reasoner-based aggregation was quite poor and
unsuitable for applications that required real-time semantic aggregation of large numbers
of flow context tags. In that section a recommendation was made to either use that mode
only in small networks, or to ensure that the number of tags to be aggregated at each stage
would be relatively low, perhaps by employing a multi-stage approach to aggregation. For
cxample, a certain amount of aggregation might be performed at the edge, followed by

successive aggregation towards the core.

It should be pointed out that there are other possible modes of aggregation that do not
involve reasoning. As enumerated in Section 6.3, aggregation may also be in the form of
data formatting, range checking and data validation, algorithmic computation and nor-
malization, data fusion, and augmentation. Thus, the performance impact of flow context
aggregation is determined by the complexity of the aggregation required. In some cases, as
in the proof-of-concept experiments done later in this chapter, simple forms of aggregation
were employed (and required, because the examples were purposely kept simple), so the the

computational and storage overheads, as encountered in these experiments, were minimal.

The requirements for storage and state information associated with flow context tags is
another crucial issue. The potential issues with state and storage are similar to the concerns
raised with the RSVP-IntServ model, which provides QoS to individual flows through per-
flow queuing and scheduling in the data plane, and per-flow reservation state management
in the control plane [142]. However, it has been pointed out that much of the negative
impact on RSVP-capable routers stems from the per-flow queuing and scheduling (the
per-flow data plane operations), since the per-flow reservation messaging overheads are
somewhat controllable [256]. Analogously, it could said that the state and storage impact
of the use of flow context is an application-specific issue that can be subdivided into
two parts: the number and size of flow context tags, and the resulting state based on
the control-plane actions taken by the node in response to this context. As discussed in
Section 6.3.2, the amount of context state that needs to be stored depends on the amount
and type of context information required by the context-“interested” node, the granularity
of the information (i.e., whether the context describes individual flows or bundles of flows),
and the lifetimes of the flows of interest (whether these are short-lived or long-duration
flows). For example, consider an Internet service provider that wishes only to collect per-

user flow context near access nodes and concentrators, such as per-user usage statistics.
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The storage requirements for this simple example would probably not exceed the typical
storage requirements of most billing and traffic monitoring systems in current Internet
service providers. At the other extreme, a network where all nodes are context-aware and
which collect and process flow context in a fine-grained way would certainly feel the impact

of the storage and state requirements of flow context.

The aggregation of flow context information may also be a potential way of keeping the
amount of flow context (and thus context state) in a network within reasonable limits. As
mentioned in Section 6.3.1, aggregation may be done across flows, across time, or across
different sensors. The aggregation of flow context across flows would effectively decrease
the granularity of the flow context descriptions, and thus require less state for the same
total number of flows. Some types of temporal aggregation on the other hand could at
least prevent the amount of state per flow from increasing with time: for example, storing
the moving average of the current flow rate would take up significantly less space than,

say, storing the instantancous flow rates gathered at regular intervals.

One technique employed in RSVP is the use of soft state in order to maintain reservation
state in routers |142]. Reservations disappear by themselves if not refreshed periodically,
avoiding orphan reservations and allowing quick response to routing changes |257|. Al-
though not explored in this thesis, a similar technique might be applied to flow context
stored in nodes: if not refreshed, these could be aged out. In addition, a quality of context
(QoC) parameter associated with the tag may also be used to describe its validity; beyond

the specified amount of time, the context information expires, freeing up storage space.

7.1.4 Operational aspects of the ontology

Once the ontology has been set up, it can be used in a variety of ways as described in
Section 4.2. These use patterns may either be “offline” design-time uses for the ontology,
as well as “online” runtime uses. Some examples of design-time uses include the use of
ontologies as common implementation-neutral languages for the authoring and translation
of domain artifacts (such as contextual descriptions), and as specifications for modeling
and requirements analysis during the design and implementation of systems and their
components [125]. Runtime uses for the ontology might include the use of ontologies
as vocabularies for online translators between network or application domains that use
different representations or implementations for objects [125], or as input to reasoners for

inference and semantic aggregation of context (cf. Section 6.3.2).

To ensure broad acceptance and use, ontologies need to be stored and made available to
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other domain experts and users. Publication of the ontology (such as through the World
Wide Web) encourages collaborative review, revision, adoption and extension by wider
communities. In this regard, standardization, such as through the efforts of the Foundation
for Intelligent Physical Agents (FIPA) as mentioned in Section 4.4, is invaluable.

From a more operational viewpoint, when not directly embedded into software components
or stored locally, entire ontologies might be made available within and across domains
through shared ontology services. Ontology servers might serve as ontology repositories,
accessed in behalf of clients by ontology agents [167]. As likewise mentioned in Section 4.4,
FIPA even provides a specification, including an ontology, for ontology services that provide

ontology access and related services to agent communities.

The size and complexity of the ontology may be an important issue in determining its
potential application area, particularly if it is to be used in a runtime fashion. For example,
the results in Section 6.3.2 suggest that the slow performance of reasoner-based flow context
aggregation make it more suitable either for small networks, or perhaps in larger networks
where the pre-processing and hierarchical aggregation of context results in fewer context
tags to be processed, or in applications where the flows are long-lived, such as in video
strcaming applications. Conversely, it is possible (although it has not been exhaustively
verified in this thesis) that for applications where flows tend to be short-lived, the ontologies
should be smaller or less complex, or perhaps only a relevant subset of a larger ontology
must be used. This is left for future investigation.

As the ontology is progressively used, it is expected to evolve, either as a result of its
continuing validation, or in order to deal with changes in the underlying domain, or to cope
with heterogeneities. The evolutionary process may involve updates and modifications,
as well as the integration and reuse of other ontologies. Section 4.3.2 mentions several
approaches to ontology integration and reuse, including ontology extension, translation,
and determining equivalences [145, 146]. Other approaches to integration might include
polymorphic refinement (where a definition is extended and included so that it can be
used with other arguments), restriction (simplifying assumptions are made that restrict
the included axioms), or a merger of commonalities [258]. From a systems point of view, in
the case of runtime ontology services, there should be management mechanisms by which
the shared online ontologies — which might even be distributed in multiple servers — are
likewise updated to reflect these changes. These management mechanisms should include
provisions for notifying ontology clients so that they may either download new versions or

incrementally update their current ones if feasible.
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7.1.5 Adaptation

Finally, some system issues that need to be considered when using flow context to perform
adaptation within the network also include their performance and resource impact on

network nodes, the location and deployment of adaptor components.

Locating even the most basic adaptor components within network nodes should be care-
fully considered, as these may consume significant amounts of resources and negatively
impact the basic forwarding performance. As shown in studies with RSVP, a significant
amount of overhead was contributed by the per-flow QoS treatment rather than the RSVP
signaling overhead. Similarly, it may be possible for the per-flow adaptation (QoS-related
or otherwise) to consume significant amounts of resources, rather than the flow context
tags per se. Again, this means that the amount of overhead would be application-specific,
that is, it would depend on the type of adaptation required on each node, as demanded
by the application in mind. In the experiments in this chapter, many of the adaptation
mechanisms used the traffic control techniques in Linux [144]; again, as the intention was to
demonstrate proof-of-concept, the examples were kept simple. How these examples would

perform under conditions of increasing loads was not tested, and is left for future work.

One way of dealing with the impact of adaptor overhead would be to offload the adaptation
process to an overlay. This would ensure that flows that would need to be adapted would
be diverted away from the default “fast path” and that the adaptor components would
consume resources independently of the forwarding nodes. The use of separate adaptor

overlays, however, was not investigated in this thesis.

Finally, in contrast with the static deployment of adaptor components (such as in dedicated,
pre-configured overlays), it is also possible to dynamically deploy adaptors using active and
programmable networking approaches. The issues involved in this case are similar to those
discussed in Section 7.1.1 concerning the use of active networks in dynamically deploying

sensing functionality.

The next few sections now discuss some potential application scenarios for flow context.

7.2 Mobility and moving networks

This section explores the use of context tags containing location and mobility information
in aiding the handoff process, by enabling networks to institute proactive measures in

anticipation of handovers, rather than react after a handover has taken place. A simple
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proof-of-concept experiment that demonstrates its usefulness in handing over real-time

UDP streams, such as audio and video streams, is presented.

7.2.1 Background

In Mobile IP [259], packets sent by a corresponding node (CN) to a mobile node (MN) are
routed first to the MN’s home network using the MN’s permanent home address. At the
home network, the mobile node’s home agent (HA) intercepts such packets and tunnels
them to the mobile node’s most recently reported care-of address (COA), the temporary
address assigned to it on the foreign subnet. At the endpoint of the tunnel, the inner
packets are decapsulated and delivered to the MN. In the reverse direction, packets sourced

by mobile nodes are routed to their destination using standard IP routing mechanisms.

The fact that packets have to be sent first to the HA and tunneled to the FA is called the
triangle routing problem, and raises concerns that this causes packets to traverse paths that
are longer than optimal. A technique called route optimization [260] enables CNs to receive
binding updates containing the MN’s COA, so that the CN can tunnel packets directly to
the MN without passing through the MN’s HA. However, even with route optimization,
the handoff process may introduce sufficient latency and packet loss as to adversely affect

real-time flows, such as audio and video flows.

7.2.2 Approach

Previous work by Stemm and Katz [261] showed that handoff latency is dominated by
the discovery time, the amount of time before a mobile discovers that it has moved into
or out of a new wireless overlay. This experiment attempts to minimize the effects of
the discovery time through a technique called speculative multicast. In this technique,
multimedia streams are multicast to base stations where the mobile node is likely to be
handed off. Figure 7.1 shows a mobile node MN requesting a multimedia UDP stream
from server CN. The stream is sent by CN to MN, the latter accessing the network via
access point AP4. MN then moves from the coverage area A of AP, to coverage area
B of APg. As the MN moves, it provides updates of its location through context tags.
The mobile node may obtain its location using any number of means, including the Global
Positioning System (GPS) [222] outdoors, or indoors using techniques such as RADAR
[205] and its variants. Other techniques [206, 207, 221], including the one developed in
this thesis (discussed in Section 5.3 on page 112) may provide more high-resolution indoor

location estimates, accurate to within 10-20 centimeters.
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Figure 7.1: Network diagram for mobility experiment

As MN moves into coverage area B, router Rap detects through the MN’s context tags
that it is starting to move within proximity of the coverage area of APg. It then starts
to multicast the return stream to APg. While MN has not yet formally handed over
to APpg, is up to APg whether the received speculative multicast packets will actually be
transmitted over its radio interface, or simply cached. When MN has formally been handed
off, the new AP notifies the upstream router.

The context tag within the return stream also indicates the type and characteristics of
the flow content, and whether it can be further distilled [20] through lossy compression or
transcoding, or by dropping layers [262, 263, 264, 265] in order to reduce its bitrate. If the
bitrate of the inbound stream can be modified, it is reduced according to an adaptation
profile such as the one shown in Figure 7.2a. Conceptually, the current distance of the
mobile node from the prospective next access point serves as a rough measure of the
likelihood that it will indeed be handed off to that access point: the closer it gets to the
access point, the higher the probability that it will in fact join that access point. The
adaptation profile therefore reflects this by speculatively multicasting in proportion to
this probability. When the likelihood of joining an access point is small, the bitrate of
the stream sent to the access point is proportionately small. The idea behind this is to
minimize the miss-penalty, or the number of bits speculatively multicast to an access point
that are not actually received by the mobile host because it has not joined the access point.
It is up to the access point whether streams received via speculative multicast are actually

sent over the radio interface, or simply cached within the access point.

The adaptation profile may also reflect whether the network is adopting either a conser-
vative or aggressive policy towards speculative multicast. In Figure 7.2a the profile with
the steeper slope Pp reflects a more conservative policy than Py, as it allows a high bit
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Figure 7.2: (a) Adaptation profiles. (b) Traffic response on router.

rate for the multicast stream only when a mobile node has a high probability of joining the
access point. An obvious advantage of a conservative policy is that it has a lower expected
miss-penalty. One potential disadvantage is that it requires the router to be agile enough
to respond to a mobile node traveling at high speed. The degenerate case would be to have
an adaptation profile Po that corresponds to a policy that only allows streams to actually

be sent to a mobile node that is actually within the coverage area of an access point.

While P4 and Pp represent somewhat idealized adaptation profiles that exhibit linear
variations in the bit rate as a function of distance, Pp represents a more realistic profile that
implements a stepwise adaptation. An adaptation profile may also be dynamically modified
by the router, primarily for two reasons: first, to implement hysteresis, as shown in Pp,
thereby preventing oscillations in the bitrate as a result of noise in the location estimates
or small actual changes in location; and second, to account for resource availability within
an access point. In instances where there are many MNs that may be potentially sharing
a particular access point, the router may shift to more conservative profiles in order to
assure the availability of resources such as memory in the case of caching, or bandwidth if

access points transmit speculatively multicast packets over the radio interface.

7.2.3 Proof-of-concept experiment

To demonstrate the use of context tags in mobility, a simple proof-of-concept experiment
was conducted. The movement of a mobile node receiving a video stream was simulated
by injecting context tags that specified the position of the mobile node. The mobile node
started from the center of an access point/router’s wireless coverage area, moving radially
away in a linear fashion, at a constant and relatively slow rate. The router used a three-step

adaptation profile similar to Pp in Figure 7.2a, without hysteresis.
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Figure 7.2b shows the inbound bandwidth on the access point servicing the mobile node.
The maximum bandwidth received by the access point is when the mobile node is within
the coverage area. Even as the mobile node leaves the coverage area, the access point
still receives the video stream from the router, although the bandwidth has been reduced
by transcoding. The discontinuities in the bandwidth response (narrow areas where the
bandwidth dips to zero) of the router are the result of the transcoder restarting when
it goes to a different target bandwidth setting; these discontinuities can be minimized
by either improving the response of the transcoder or by adopting a layered instead of
distillation-based approach to video stream adaptation.

7.2.4 Related work

One mechanism proposed by Stemm and Katz [261] to reduce handoff latency is the use
of doublecasting, whereby packets within a specific wireless overlay are also simultaneously
sent to another base station belonging to the next higher overlay in the network’s hierarchy.
This technique however assumes that the mobile host simultaneously receives from the two
overlays on different network interfaces, and is thus applicable for what they called vertical
handoffs between overlays that use different network technologies.

Helmy, Jaseemuddin and Bhaskara [266] proposed multicast-based mobility (M&M) as a
mechanism to improve handoff performance. Within a domain, a mobile node is assigned
a multicast address and throughout its movement, joins this multicast address through
locations it visits. Correspondent nodes wishing to send to the MN send to this multicast
address. Due to geographic proximity, it is likely that the join from a new location will be
a few hops away from an already-established multicast distribution tree. In their approach,
the mobile host (re-)joins the multicast tree only after it has actually moved to the new
location. This is different from the approach in this thesis, where the inbound stream may
actually be sent to the base station or access point covering the possible next location for

the mobile host, even before it has actually moved there.

7.2.5 Summary

This proof-of-concept scenario illustrates the interplay between two different types of flow
context: node location, which is extrinsic, and content type, which is intrinsic. The adapta-

tion proposed would not have been possible without having both types of context available.

The technique described is geared towards environments and applications where handover
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performance is more critical than bandwidth efficiency, thereby making speculative multi-
cast a viable proposition. For example, in a residential network, one might have relatively
few users sharing wireless access points that deliver modest-to-high amounts of bandwidth,
with a fairly low utilization rate. Another environment where this scenario may be appli-
cable might be one where you have a relatively large number of picocells, each providing a
large amount of bandwidth over a small area, with a low density of mobile devices at any
given instant. In this case, users would tend to experience a larger frequency of handoffs
as they roam, since they would tend to move quickly from the small geographical coverage
of one picocell to the next. Furthermore, conservative adaptation profiles may be used
in situations where bandwidth efficiency is also a consideration, thus making speculative

multicast a general mechanism that may be considered for most mobile environments.

Flow context tags may also be used in conjunction with better mobility prediction tech-
niques; the use of distance as a predictor in this experiment is merely illustrative rather
than prescriptive in nature. Adaptation profiles could use a more general “join probability”

rather than distance as a dependent variable in determining the multicast bitrate.

7.3 Implicit QoS signaling

Mechanisms for providing Quality of Service in networks described in the literature often
expect end-hosts to either explicitly signal their QoS requirements and undertake resource
reservation, or for them to have sufficient knowledge about the underlying QoS model in
order to map application flows to existing QoS classes. For example, signaling messages in
the Resource Reservation Protocol (RSVP) [142] and the draft IPFIX model [147] contain
traffic descriptors such as bandwidth or token bucket parameters, QoS class parameters
such as the Differentiated Services (DiffServ) code point (DSCP) [199|, and other QoS
characteristics such as transfer delay, delay variation, packet loss and bit error rate. While
these parameters indeed provide a detailed description of QoS characteristics, they may not
be sufficient to paint a “big picture” that better describes the desired interaction between
the user and the network.

This section explores the use of context tags in implicitly signaling the QoS characteristics
and requirements of network flows. The mechanisms are first discussed, then demonstrated
through a simple experimental scenario. Similar efforts in this application area are then

discussed.
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7.3.1 Mechanisms

Context tags may be used for implicit QoS signaling in any of the following ways:

e To decouple end-hosts and applications from the underlying domain-specific QoS
model. In this case, it would be up to the network to derive the QoS requirements
from a high-level contextual description of the flow, and to map them to the specific
QoS mechanics within the domain. This is also useful as a mechanism for assuring
QoS on a flow as it traverses two domains with different QoS implementations, such as
when two domains use different DiffServ Codepoint-to-Per Domain Behavior (DSCP-
to-PDB) mappings [199, 267]; or between heterogeneous frameworks, such as between
a domain that uses Diffserv and another that uses Multiprotocol Label Switching
(MPLS) [143].

e To provide or expose additional information about the flow to the network in an
explicit way to facilitate flow classification for QoS purposes. For example, infor-
mation about the multimedia capabilitics of a mobile terminal may be embedded
within the application flow. This information would not be normally available to
network devices without computationally expensive stateful application-laycer flow
inspection. Context sensing functionality could instead be deployed within end-hosts
or dedicated network middleboxes could perform flow inspection or extract context
from higher layers and share this information via context tags to multiple adaptors

downstream.

e To trigger QoS adaptation on the flow. For example, the content of a flow may be
compressed or transcoded in response to QoS constraints, device capabilities, user

activity or application requirements.

e To tag and help identify suspicious and malicious flows, or those that are in violation
of QoS contracts, in order to keep the network within engineered QoS limits as much
as possible

7.3.2 Simple proof of concept

The following provides a simple demonstration on the use of context tags to implicitly
signal the QoS characteristics and requirements of network flows.

A video stream with a natural bit rate of approximately 850 kbps was transmitted over the

network, resulting in video with typical quality shown in Figure 7.3a. Assume that for some
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Figure 7.4: QoS adaptation using a combination of transcoding and rate-limiting strate-
gies. (a) Traffic profile. (b) Resulting video quality.

reason, the network has to reduce the average bitrate of this flow to a target 500 kbps, for
example to execute an adaptation profile similar to those discussed in Section 7.2, as shown
in Figure 7.2a. A simple (and perhaps default) way for this network to achieve this would
be to impose a hard limit on the allowable bit rate of this flow, as shown in Figure 7.3b.
While this would be suitable for elastic flows (i.e., flows that can adapt to changes in traffic
characteristics such as available bandwidth and delay), this can be unsuitable for packet
loss- or delay-sensitive traffic such as video. Figure 7.3c shows the qualitative effect of
context-unaware QoS adaptation on the video stream resulting from the absence of the
appropriate flow context. The packet losses and delays resulting from the bandwidth hard
limiting degrades the video quality to an extent that may be annoying to users. On the
other hand, injecting the appropriate context tags into the flow informs the downstream
adaptor that the flow contains video whose current encoding allows further transcoding.
The adaptor uses this information to trigger a transcoding function, setting the output
bitrate parameter corresponding to the 500 kbps target traffic rate. The traffic profile of this
adaptation strategy and the corresponding video quality are shown in Figs. 7.3d and 7.3e,
respectively. The traffic profile shows some “spikes” which are artifacts of the transcoding
scheme used. In order to prevent these, a combination of the bandwidth limiting and
transcoding adaptation strategies were used, resulting in the traffic profile and video quality
shown in Figs. 7.4a and 7.4b, respectively. Occasional and minor degradation of video
quality was observed in this case, but the overall quality experienced was subjectively

acceptable.

Figure 7.4 also demonstrates adaptor composition, where a complex adaptation function is
built (composed) from more basic adaptation modules. It is likely, although not demon-
strated here, that the function would not be realized properly if band-limiting the flow

preceded transcoding its content. This problem may be handled by explicitly stating the



CHAPTER 7. USING FLOW CONTEXT: APPLICATIONS 176

interoperability parameters of each adaptor (or service module as a generalization), speci-

fying the input and output conditions necessary to cascade or compose them [23].

This simple experiment shows how context tags may be used to signal QoS requirements
and acceptable QoS adaptation strategies. The example demonstrates implicit signaling,
as the sending host had no prior knowledge of the QoS adaptation model existing within
the network. In this case it was up to the network to decide which adaptation strategies
were appropriate, given the flow’s context and the network’s QoS goals.

7.3.3 Related work

HQML is an XML-based hierarchical QoS markup language targeted for World Wide Web
applications [101]. One of its useful features is that it allows applications to signal QoS
characteristics and requirements not only to end-applications, but also to network elements
called QoS proxics. However, it is focused specifically on QoS and on Web applications,
and is not designed as a general mechanism for making other types of context information

available to network nodes.

The Session Description Protocol (SDP) [94] describes multimedia sessions using a short
textual description that includes information on media, protocols, codec formats, timing
and transport information, while Multipurpose Internet Mail Extensions (MIME) [21] pro-
vide high-level type descriptions for different content types such as text, images, video,
audio or application-specific data in message streams. Unlike context tags, these schemes
deliver flow or session context to end-hosts rather than network nodes, and are limited to
very specific application domains. However, the formats and types used in SDP and MIME
messages may be used to describe flows in a high-level way within context tags; these could
have also been used in the example application to signal an adaptor that transcoding would
be a viable QoS adaptation strategy.

7.3.4 Summary

The ability to provide QoS to flows will be an important feature of future context-aware
and adaptive networks.This section demonstrated, using a simple experimental scenario,
how context tags may implicitly signal QoS requirements. In implicit signaling, flows
express their QoS requirements implicitly and trigger QoS adaptation services without
being aware of the details of the network’s QoS mechanisms. Proxies or other devices

within the network may use this context information and perform explicit QoS signaling in



CHAPTER 7. USING FLOW CONTEXT: APPLICATIONS 177

behalf of the flow (and end-host). Alternatively, network elements themselves may perform

the necessary QoS adaptation based directly on the flow’s context, without the need for
low-level QoS signaling.

7.4 Intelligent flow classification and management

There are instances where information needed for flow classification such as network ad-
dresses or transport-layer port numbers are modified, such as when network- or port address
translation (NAT/PAT) are used, or when traffic is tunneled within well-known protocols
such as the Hypertext Transfer Protocol (HTTP) as a stealth technique or as a means
to bypass firewalls (64, 183, 184, 215]. Although it is possible to obtain information on
the nature of the application generating the flow and its high-level content either through
stateful inspection on the application-layer payload of each packet, or by application-layer
flow termination, this would undoubtedly be computationally expensive and impact the
performance of network nodes such as routers, if each downstream node had to perform
its own stateful inspection. As an alternative, the flow’s context may be sensed either
at end-hosts or by dedicated sensors, such as FlowSensor (cf. Section 5.1 on page 99),
and this information could be shared throughout the flow path, so that the network may
properly classify the flow.

This section presents a simple experiment that demonstrates the use of context tags in
aiding flow classification. It shows that context tags allow flows that would normally
appcar identical to the network to be further classified and given differential treatment

within the network when necessary.

7.4.1 Proof of concept experiment

This experiment assumes a scenario where a user wishes to view two video streams simul-
tancously over a link with limited bandwidth. Both streams are encapsulated in UDP and
use the same type of video encoding, so for all intents and purposes they are virtually
identical from the network’s point of view. They only differ in terms of their content, and
the subjective notion of importance applied by the user on that particular type of content,
based on the user’s current activity. For example, if the user is relaxing at home, then
she might consider work-related video content to be of secondary importance compared to
entertainment-related video content, and vice-versa. In this experiment these user activi-

ties are not sensed, but set manually (i.e. simulated). Additionally, the subjective priority
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or importance level assigned to each video stream are likewise manually assigned.

The experiment was started by requesting a video stream over a link initially allocated 500
kbps bandwidth. This video stream had a natural (uncompressed) rate of approximately
850 kbps, and the network was configured to initially adapt by allocating at least 1.5 Mbps
to the link whenever video was transmitted over it. The user then requests an additional
copy of the same video stream, however, the context tag of this stream gives it higher
priority, i.e., it is subjectively the “more important” stream as far as the user is concerned,
at that point in time. Both video streams were fairly constant bit-rate (CBR) streams
in their uncompressed state, so the statistical sum of their offered traffic rates would, on
average, exceeded the 1.5 Mbps bandwidth allocated to the link. The network’s adaptation
policy was configured to allow the flow with the “high-priority” tag to be transmitted
without constraint, while the lower priority flow was adapted by transcoding it down to a
lower bit rate. This kept the total traffic within the 1.5 Mbps limit.

Figurc 7.5 shows the result of this simple experiment. The user, initially allocated 500
kbps, views the video stream as shown in point (A) on the graph. The context tag within
the stream results in a new bandwidth allocation of 1.5 Mbps, allowing the video stream
to rise to its characteristic level of around 850 kbps as shown in (B). The user requests
the additional video stream, and commences viewing the stream in (C). The combined
traffic saturates the bandwidth allocation as shown in (D), resulting in degraded video for
both streams. The network receives the new context tag for the higher-priority video flow
and aggregates this with the context tag of the lower-priority flow, allowing the streams
to be prioritized with respect to each other in (E). Although the flows have now been
prioritized, the total offered traffic still exceeds the allocated 1.5 Mbps bandwidth, so
the network further adapts by applying transcoding on the lower-priority stream. The
lower priority stream now operates at a lower average bitrate after transcoding (F), while
the higher priority stream occupies its natural traffic level (G). At this point the total
bandwidth consumed stays well within the 1.5 Mbps allocation as shown in (H).

7.4.2 Summary

Flow context tags may be used to provide information that may aid the classification,
and if necessary, differential treatment or adaptation of flows within networks. This is
especially useful in encoding information that cannot be expressed in packet headers, or
that cannot be reliably or economically obtained through packet or flow inspection. The
scenario presented demonstrated an extreme case, where two identical flows were classified

and given differential, context-aware treatment by the network.
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7.5 Mitigating attacks and controlling malicious flows

Equipped with sensors that can detect distributed denial of service (DDoS) attacks or
worms propagating through the network (e.g. [268]), a node may inject a context tag in
the reverse path so that upstream nodes may suppress the inbound flows. The tag may
contain a general description (filterspec) of the malicious flow that upstream nodes may use
as a pattern to detect and suppress subsequent attacks, ultimately at or near their sources.
This technique would have better prospects of working across administrative domains,
rather than low-level traffic suppression mechanisms such as ICMP quench [269], because
(a) context tags are designed to be interpreted by the routers along the path and not just
by end-hosts, and (b) more detailed information (possibly readable by a human operator)
is provided regarding the request to suppress the traffic.

Similarly, this technique may also be explored as a means of controlling spam email and
mitigating its impact on the network. Spam is typically marked, classified or discarded
at the receiving end; by the time it has reached its destination, it has already wasted
a portion of the network’s bandwidth and has considerably taxed the resources of the
recipient server |270]. Context sensors deployed within the network could allow the carly,
in-network detection of spam and possibly enable a network-level response that may also
propagate all the way ncar the source of the spam traffic. This is especially significant
in suppressing spam traffic that may be originating at a high rate from hosts hijacked by
mass-mailing malware.

Network-level responses to spam would involve some form of blocking, rate-limiting, or
rerouting. Blocking would be an extreme form of response where a network refuses to
transport traffic previously sensed and classified as spam. However, this may be rather
dangerous, given that there is always a certain level of inaccuracy in sensing and classify-
ing spam [54]. Rate-limiting schemes, such as teergrubing [271], involve slowing down the
SMTP conversation in order to limit the rate of the inbound spam, thereby taxing the re-
sources of the spammer as well. Li et al. on the other hand suggested TCP damping, where
a recipient makes a TCP connection appear inefficient to a suspected spam sender either
by delaying acknowledgments, closing or minimizing the advertised window, or faking con-
gestion [272]. While these are typically done by the recipient SMTP server, a network-level
response could mimic these by dropping selected packets from the spam flow, or replicating
acknowledgments, or some other means, thereby inducing TCP congestion avoidance mech-
anisms [273, 274] (which however may unfortunately also cause retransmission and waste
more bandwidth), or better yet, by dropping or delaying selected application-level mes-
sages. Another form of network-level rate-limiting would involve bandwidth-limiting the
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suspected spam flow. Finally, rerouting the network flow to less-critical or less-expensive
paths or links would allow the network provider to mitigate its effects on the network

without unduly penalizing the intended recipient in the event that the email flow was
misclassified as spam.

Flow context can be used as a means of promoting a cooperative approach to mitigating
malicious or unwanted flows. Clayton for example proposed eztrusion detection, that is,
the examination of outbound flows, rather than the usual examination of inbound flows, to
detect spam [275]. Although it might not be feasible for a provider to block the outbound
transmission of suspected spam due to regulatory or contractual issues [275], it might be
feasible for a provider to tag such outbound flows with the appropriate contextual de-
scription so that a peer cooperating provider could apply an appropriate response, such as
those outlined earlier. The tagging of outbound flows may also be considered for classes
of suspicious traffic other than spam. Finally, in some extreme cases where a provider
internally verifies that an outbound flow has a malicious (rather than just suspicious) na-
ture, it may decide to entirely block its transmission. While this might involve the manual
examination, decision-making and intervention by a human operator, the mechanism that

could alert the decision-maker in the first place could be flow context.

7.6 Network management

Flow context may be used in network management and engineering is another area. For
example, the flow visualization tool presented in Section 5.1.2 presents an interface similar
to the popular open-source Multi Router Traffic Grapher (MRTG)! application used for
network traffic monitoring and management. The main difference between the flow visual-
ization tool presented in this thesis and in MRTG is that in the former, the traffic graphs

are on a per-flow basis; in the latter, the traffic graphs are typically for router interfaces.?

From a wider management perspective, such as from the “classical” FCAPS management
framework — fault, configuration, accountin erformance and security — it is also possible
9 b b

to envisage applications of flow context.

In fault management, flow context sensors detecting PDU errors or losses beyond a certain
threshold, or the unexpected (from a stateful point of view) disappearance of a flow, might
trigger an immediate adaptation within the network to reroute the flow around a fault.

At the same time, as these events would indicate the presence of the fault, the network

Thttp://oss.oetiker.ch/mrtg/
?Technically, for any MIB object in an SNMP-managed device.
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operator or manager could be alerted about the fault event. Assuming that information
from flow context sensors is disseminated in a path-decoupled manner (cf. Section 6.2) over
a network with sufficiently redundant paths, then it may still be possible for a management
entity to receive feedback from multiple flow context sensors about such an event, which

could be aggregated in a way that could help determine the fault’s cause and location.

Configuration management deals with provisioning, initialization, and configuration of
physical and virtual elements within the network. Extrinsic flow context sensors, including
those that can be dynamically deployed to collect device configuration information and
even to reconfigure devices (cf. Section 5.2) can be employed for this purpose. Intrinsic
flow context can serve as a feedback mechanism to an operator or a management entity,
enabling the latter to determine if the current network configuration optimally matches the
nature and characteristics of the flows being transported. Additionally, the provisioning of
paths, circuits and overlays — also part of configuration management — can be triggered by
flow context, either through manual means or as an automatic response to the information

contained within flow context tags.

Flow context can be used in accounting management by providing a framework by which
numerical flow statistics may be collected and combined with more detailed information
regarding the flow, such as the nature of its contents or its anticipated traffic characteristics,
to enable a provider to apply an appropriate pricing scheme and to better account for its
operational costs. (Such a functionality is provided for instance by FlowSensor, described
in Section 5.1.) An Internet service provider might want to implement a scheme that
applies different prices, costs and markup for ordinary Web browsing, real-time media
streaming, peer-to-peer traffic, commercial use, and other traffic classes. Conversely, the
information may also be used by a provider to alert users about the potential costs of
transmitting these types of traffic, or to offer users various transmission alternatives based

on price and performance.

Performance management typically entails gathering network statistics to enable a network
manager to determine the network’s efficiency, utilization, throughput, error, response
times, reliability, capacity, and other performance metrics. While intrinsic flow context
conceptually includes the conventional numerical information collected for management
purposes (cf. the IPFIX model in Section 4.3.2), the richer amount information available
from flow context can be used for more forward-looking and proactive performance man-
agement. For example, flow context sensors could be used to sense specific types of traffic,
such as peer-to-peer traffic, worm outbreaks, and real-time media flows — all of which may

have a different impact on long-term network performance than, for instance, ordinary Web
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browsing. The ability to classify flows along these lines and look at their statistics differen-
tially may allow network managers to assess, estimate and plan for capacities appropriate

to the growth rates of each of these traffic types, or to plan for and deploy appropriate
measures for mitigation {50].

Security management involves the creation and application of security-related policies and
the reporting of security-related events. Typically these policies restrict the access to
network elements to authorized individuals. Flow context sensors can be used to alert
network managers about suspicious flows that might indicate attempts to breach network
security, either through unauthorized access, by denial-of-service, or though some other
means. A strategic and distributed placement of sensors at vantage points within the
network can either facilitate early detection (e.g. by getting an alert from a point upstream
or from the network periphery), or ensure that the sensors would not be in the direct line of
attack. One interesting complementary approach would be to deploy flow context sensors
away from the monitored network elements, such as in unused segments of the network’s
address space, similar to the strategy used in network telescopes, since traffic sent to this
space would tend to be spurious as they would be addressed to non-existent hosts on the
network [276].

7.7 Chapter summary

This chapter explored some of the potential applications of flow context. It was shown, us-
ing simple experiments, how the scheme may be used in implicit QoS signaling, intelligent
flow classification and management, and in host mobility and moving networks. Other
applications such as in the control and mitigation of malicious or wasteful traffic, and in
the various arcas of network management, including, fault, configuration, accounting, per-
formance and sccurity management, were examined. Other potential areas to be explored

in future work arc described in Section 8.3.6.



Chapter 8

Conclusion and Future Work

8.1 Summary and contributions

The convergence of concepts from context-aware computing with adaptive networking has
raised the possibility of embedding context-awarcness within networks, enabling the re-
alization of context-aware networks. Such networks would be equal partners in human-
computer interactions rather than simple packet carriers, offering autonomic properties

capable of optimizations not found in current networks [8].

To contribute to the realization of context-aware networks, a number of research objectives

were set forth in Section 1.1. These were:

1. Define and develop concepts that may be useful in understanding, designing, imple-

menting, operating and managing context-aware networks;

2. Identify specific entitics within the network whose context could be sensed, processed

and used;
3. Develop models for the context information describing these network entities;

4. Develop architectural and software components that would allow such context in-
formation to be obtained, processed, distributed and used within the network and

end-applications; and

ot

. Investigate illustrative application scenarios for the use of context information within

networks.

184
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A major motivation for the work in this thesis is the apparent lack of a strong conceptual
foundation in current research efforts to build context-aware networks. The approach in
this thesis, and its contribution to the effort, is based on a concept called flow context,
defined as any information that can be used to characterize the situation of a flow. Flow
context considers flows within the network as entities that represent the interaction between
users and networks. A multi-dimensional and integrative approach to its conceptualization
was adopted, and as a result, the definition of flow context not only includes properties
intrinsic to the flow, but also encompasses matters that are extrinsic to the flow. To further
understand and appreciate the concept of flow context, some of its characteristics, such
as its dynamism, imperfectness, its multiple representations, and relationships with other

types of context, were described.

Since flow context is a novel concept, a formal semantic model was developed, allow-
ing it to be represented, communicated and understood in an unambiguous way to other
researchers in the field. This addressed the stated rescarch objective of developing mod-
els for information describing entities of contextual interest. An important advantage of
the ontological approach adopted in modeling flow context was that the model itself is a
machine-processable artifact that could be used during runtime by context-awarc networks

to handle, interpret, manage or manipulate flow context.

The idea that flow context may exist implicitly, and that it might require some form of
sensing, interpretation, processing or sharing within the network led to the definition of
the various stages of its notional life cycle.

Both the flow context and flow context lifecycle concepts are seen as contributions towards
the objective of developing the conceptual foundations of context-aware networks. The
identification of the flow as the main entity whose context should be sensed, processed
and used, as well as the development of the idea that its context could be linked to the
context of users, networked devices and applications, both address the research objective

of identifying specific entities within the network whose context should be sensed and used.

On the other hand, the development and evaluation of various components that implement
the various stages of the flow context lifecycle addresses the research objective of developing
architectural and software components for context-aware networks. These stages were
defined as flow context sensing, discovery, aggregation, dissemination, and use, and the
remainder of the thesis was devoted to the discussion on each of these stages, as well as

some components designed to implement them.

The design and implementation of three different types of sensors that obtain intrinsic and

extrinsic flow context was described. The design and implementation of FlowSensor, a
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modular application that combines flow metering and signature-scanning functionalities,
was described. The design and implementation of extrinsic context sensors that allow
the location and characteristics of devices and network nodes to be obtained were also
described. Aside from the functionality, some design approaches and solutions were con-

tributed, including multi-dimensional sensing, resource reuse, and rapid deployment.

An approach to locating flow context sensors based on distributed hash tables was also
evaluated. The results of the evaluation of one class of DHTs called Content-Addressable
Networks suggests the possibility of using other DHT protocols, as well as peer-to-peer
network architectures based on DHTS, as a scalable, distributed mechanism for locating flow

context sensors. Several caching approaches intended to minimize the overhead associated

with the use of DHTs were also suggested.

The use of a reasoner for the semantic processing and aggregation of flow context was also
investigated. Reasoner-based processing complements the use of ontologies for flow con-
text modcling, as it allows inferences to be made on flow context assertions, based on the
domain’s semantic model. The performance evaluation of reasoner-based flow context ag-
gregation however yielded some concerns about its computational overhead, and suggested

the need to further investigate solutions for optimization and improvement.

To address the final research objective, which was the investigation of application scenarios,
this thesis also presented the applications of flow context in mobility, quality of service,
flow classification, in controlling or mitigating the effects of malicious or wasteful flows, and
in network management. The wide variety of applications demonstrated tends to suggest
that the flow context concept may be feasible, useful and potentially powerful mechanism

for future context-aware networks.

Despite making some modest contributions and generally addressing all of its stated re-
search objectives, several shortcomings and limitations of the work in this thesis have been
identified. In addition, the research also raises new questions and issues that remain open.
Section 8.2 discusses some of these issues, while Section 8.3 makes some recommendations
for future work, based on both the shortcomings identified during the course of the work,

as well as the exciting new possibilities it has uncovered.
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8.2 Questions and issues for further consideration

8.2.1 Who benefits from this research?

In Chapter 1 one of the general aims of this work was to enable the creation of context-aware

networks, which in turn would contribute to the overall vision of “minimally-distracting

”»

networks.” The initial vision of “minimal distraction” seems to be a user-centered view,

and implies that ultimately the beneficiary of context-aware networking would be the user.

In reality however, network operators and individual users may have different perceptions
of what might bc best, with the needs of individual users in some cases coming into
conflict with those of other users, or with the interests of operators. For example, while
users might demand more and more bandwidth for their applications (such as peer-to-peer
applications), network operators may tend to regulate their use (or impose a premium) to

avoid congesting their links or to accommodate more paying subscribers.

The results from the work in this thesis suggest is that it is possible to construct context-
aware networks, that is, networks with architectural support for the sensing, dissemination,
aggregation and use of context, in a manner that is agnostic to the intended application.
In other words, from a conceptual viewpoint, it is not the provisioning of context-aware
components per se that determines who benefits from context-awareness; it is the intended
application that determines it. For example, the mobility application demonstrated in
Section 7.2 provides some benefit for the user by reducing handoff latency; however, the
network operator might not appreciate the significant traffic overhead. On the other hand,
the flow classification application presented in Section 7.4 may be beneficial to the network
operator who is trying to cope with the onslaught of peer-to-peer traffic for instance, but it
may go directly against the interests of the users trying to run them. Achieving a balance
between the needs of the various entities within the network, such as individual users,
the larger community of users, and the network operator, is a crucial and interesting yet

complex question that has not been addressed in this thesis.

Beyond the rather theoretical view that the ultimate beneficiary of context-awareness de-
pends on its particular application, a more practical aspect still remains: are the architec-
tural and operational overheads worth it? Do the additional components, protocols and
resources justify the range of optimizations that are enabled? Can this be quantitatively
determined or proven? This has not been addressed in this thesis and is left for future
work.
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8.2.2 Does it violate the end-to-end argument?

In the early 1980s, Saltzer, Reed and Clark of the M.I.T. Laboratory for Computer Sci-
ence published a paper entitled “End-to-End Arguments in System Design” [179]. They
presented what is now a generally-accepted design principle, suggesting that functions or
services should not be placed at the lower layers of a system unless these functions or ser-
vices are needed by all clients of that layer, and that they can be completely implemented
in that layer. The end-to-end principle leads to two design goals within the network: (1)
application autonomy, where higher-level layers are free to organize lower-level network re-
sources to achieve application-specific goals efficiently, and (2) network transparency, where
lower-level layers should only provide resources of broad utility across applications, while

providing to applications usable means for effective sharing of resources and resolution of
resource conflicts [277].

This leads to the following question: does context-awareness within the network violate the
end-to-end principle? In other words, does it either lead to a lesser degree of application
autonomy, or less network transparency? A related question might be: should the func-
tionality in networks be kept to the bare minimum of transporting traffic, leaving other
functions to the edges?

Similar to the view in the previous section, sensing and distributing context per se do not
violate the end-to-end principle. However, certain types of adaptation or other services
or actions within the network may be a threat to network transparency, because these
may result in unintended or unwanted changes in the flow. Perhaps context tags could
selectively specify which adaptation services or functions should apply, or even specify if
none should be performed, in order to ensure full network transparency and to preserve
end-to-end semantics. For example, the context tag of a media stream could specify if
it should not be subjected to lossy compression. On the other hand, certain types of
adaptation, such as the rerouting or suppression of excessive, wasteful or malicious traffic
(cf. Section 7.5), while causing unintended changes to the flow, may arguably be acceptable
to the larger community of users in a network. Although the end-to-end argument certainly
had in mind the “effective sharing of resources and resolution of resource conflicts” by end-
applications [277], perhaps it did not contemplate the emergence of applications that would
not be cooperative in this respect, or worse, those with hostile intentions. As argued in
Section 7.5, the failure in some cases by end-systems to effectively deal with these types of

flows suggests the need for network-based solutions to address these problems.

It may also be recalled that that one of the arguments presented in early work on network-

based adaptation (e.g. |20]) was that it would be more economical in some cases to deploy
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adaptation components within the network (which is common to users) than to modify
end-applications on (possibly all) users to achieve the same effect. The end-to-end argu-
ments do not prohibit this; they only suggest that the functionality should be implemented
completely (i.e. correctly) within that layer or entity. However, network-based adaptation
may be implemented correctly only if the information needed to perform the function and
to preserve end-to-end semantics (when necessary) can be provided. For example, a net-
work may correctly perform adaptation such as compression on a media flow only if it
knows the characteristics of the media payload, and perhaps the media quality levels ac-
ceptable to the user — in other words, if the network is fully aware of the context of the
flow. Thus, it may be argued that an infrastructure for context-awareness in fact enables
network-based adaptation to follow the spirit of the end-to-end arguments, by providing

the information necessary for the adaptation to be executed correctly and completely.

8.3 Future work

Because of the novel nature of flow context, much work still has to be done to progress
the work described in this thesis. This may involve the development and introduction of
new concepts, or a refinement of those that were introduced in this work. Many of the
novel concepts and mechanisms introduced here would either still have to be validated
further, or transformed into detailed architectural models and implementations for future

context-aware networks.

In addition to these, this section discusses some of the gaps identified during the course of

this work, and the related issues and approaches that may be investigated in the future.

8.3.1 Sensing

The techniques employed for signature scanning in FlowSensor (cf. Section 5.1) were
tested only up to a proof-of-concept level. Although the complexity of the BM and BMH
algorithms are known [187, 278], it would still be useful to verify their performance on real
flows, or at least on packet traces that reasonably replicate the actual packet distributions
and content mixes in real flows. An important parameter to consider and evaluate in
FlowSensor’s performance, aside from its speed, would be its accuracy (correctly classifying
flows based on detected signatures) as well as its inaccuracy (misclassification rate). Such
levels of characterization would be useful to system designers who would need to match the

resulting performance parameters and resource requirements to their particular application
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and deployment scenarios.

In addition, the signature scanning techniques employed may be improved in light of newer
and possibly better algorithms. For example, [56] introduces a variant of the BMH algo-
rithm called the Set-wise Boyer Moore Horspool (SBMH) algorithm that can be used in
order to search for multiple patterns in parallel, which is something that may enhance the
performance of the sensor. Recent work also introduces a new representation for regu-

lar expressions called delayed input deterministic finite automata (D?*FA) which may be

considered for future regex support

Aside from signature scanning, other methods for intrinsic context detection may be in-
tegrated into FlowSensor. These include various statistical methods, such as the use of
statistical (rather than byte pattern) signatures [213], Bayesian analysis techniques [64],
and stochastic machine learning techniques [214], for example.

8.3.2 Location

In Scction 6.1.1 the use of distributed hash tables in locating flow context sensors was
investigated. However, the work in this thesis did not investigate the resource impact (e.g.
processing and memory requirements) of using DHTs as well as the practical considerations
in deploying such a solution. Although from a performance viewpoint, the use of DHTs
seems to be a scalable, decentralized solution, the method does present some overhead in
terms of actual network-layer routing delay, as one hop in the DHT overlay may translate
to multiple hops within the physical network. The actual delay at the level of the network
(rather than the overlay) was not characterized in this thesis.

To mitigate some of the effects of routing overhead, the use of various caching mechanisms
and strategies may be investigated in the future. Since the ConCoord-DHT model stores
either sensor addresses or context client addresses rather than the context information
itself, the relatively static nature of the <key, value> pairs would lead well to caching, even
in the face of numerous changes within the overlay topology. Caching recently-obtained
<key,value> pairs by overlay nodes has been suggested in [236], resulting in what might
be analogous to “non-authoritative replies,” and local caching may also be done by context
clients themselves. A time-to-live (TTL) parameter could be specified by context sources
during registration to provide a metric for the expiration of cache entries. A get may
also be simultaneously routed within the overlay, even in the event of a cache hit, for the
purpose of validating or invalidating a cached entry. Various cache coherency protocols

may also be investigated.
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Another approach worth investigating would involve the use of cached source addresses of
overlay nodes obtained from transaction replies or acknowledgments sent from the overlay
to a client. For example, a successful RESOLVE request should be followed by a RESOLVEACK
reply from the overlay node to the requesting client. If the client needs to contact the
overlay again because its cached data has already expired, it could now use the cached
address of the overlay node as the initial known node. The hypothesis is that even in the
event that the cached address of an overlay node no longer validly maps to a key (e.g.
perhaps because that portion of its zone has already been assigned to another node), that
node may, with high probability, be located in within the immediate vicinity of the new
owner of the target zone. Thus there would be a performance advantage if an external

node would issue the put or a get request using the cached node’s address as the known

node.

Further functional enhancements to CAN, as suggested in [236] such as replication, mul-
tiple realities, zone overloading, and others, may be investigated in future versions of the

simulator.

8.3.3 Flow context modeling

The ontology-based modeling work for flow context in this thesis should have ideally been
done in a collaborative manner with domain experts, so that the model may gain acceptance
within the wider research community. Since the ontology developed in this thesis was solely
developed by the author (although effort was made to reuse other relevant ontologies that
have been or are being standardized), the next step should be for other researchers in the
domain to examine, critique, modify, or contribute to it. In addition, there is a need to
validate the model — in other words, to answer the question, “How well does the model
reflect reality?’ The solution to the issue of validation also partly lies within the peer-review
and collaborative process: the more the ontology becomes a shared conceptualization of

the domain, the better the chance that it accurately reflects the real world.

Practical and system-related issues related to the management and use of ontologies in
future context-aware networks, while discussed in Section 7.1.4, were not thoroughly nor
experimentally investigated in this thesis. For example, while the flow context ontology
was fully used in an online mode to test the performance of flow context aggregation in
Section 6.3.2, it was not used in an online mode for the demonstrations in Chapter 7.
As a result, the latter demonstrations did not reflect the potential performance impacts
of using the ontology in an online mode in those application scenarios. This would have

helped identify those applications where the online use of the ontology-based model would
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be practical. Aside from performance issues, the deployment of knowledge-based solutions,
such as in future context-aware networks, should take into consideration important prac-
tical issues regarding the size and complexity of ontologies and their storage; transmission
overhead; mechanisms for updating and managing them; components for discovering them
and making them accessible (ontology services); dealing with different domain-specific on-

tologies; and others. These issues were not experimentally investigated in this thesis.

Another shortcoming of the work in this thesis concerns the linkage of user-related context
with the ontology developed for flow context. It may be recalled that a high-level aim of
the work was to enable the creation of “minimally-distracting networks” which somewhat
implies network optimization that takes into account the situation (context) or even the
experience of the user. Although Chapter 4 argues that the focus of the work in this thesis
would be on developing the flow-related terms in the ontology, a more explicit linkage
to and reuse of ontologies describing user-related context would have been useful, and is

therefore strongly recomnmended for future work.

8.3.4 Aggregation

In Section 6.3.2, the use of a reasoner for flow context processing and aggregation was
evaluated, and its performance was found to be inadequate for real-time flow context
aggregation. As discussed in Section 6.3.2, this severely limits the applicability of reasoner-
based aggregation to certain scenarios, such as for small networks, or where the context has
been pre-aggregated, or where the flows are relatively long-lived. Despite these less-than-
encouraging results, or perhaps in view of these, there is a need to continuously improve
the techniques involved in this approach as well as the methods used to evaluate it. The

following may be considered to improve the evaluation methodology for future work:

1. The queries tested in Section 6.3.2 were very simple, and did not demonstrate other
more “creative” kinds of inferences that are possible with the reasoner. While it was
partly due to circumstance (limited information from traces), it was also a matter of
design: it would be easy for others to compare the performance of other algorithms
that performed the same type of (simple) aggregation. Nonetheless, it would be

interesting to experiment with other classes of context assertions in the future

2. Since the evaluation methodology only used some of the platform-specific mechanisms
and optimizations, further experimentation with other modes of query optimization
are suggested. However, even with a set of comprehensive tests on one platform,

it would be incorrect to form conclusions about the performance of reasoners in
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general. Thus, there is a need to perform similar tests on other reasoner architectures
and platforms. In general, there is also an obvious need to experiment with other

hardware and operating system configurations as well.

3. The tests only portrayed a monotonically increasing number of flows. In reality,
as new flow assertions are added, other flow assertions need to be removed (using
nRQL forget statements) to model flows disappearing or timing out. It would also
useful to observe “quasi-steady states” where there may be a short-term equilibrium
in the number of new and expiring flows, where, even with a constant number of flow
instances (and approximately uniform memory utilization), there are still constant

changes within in the ABox because of the replacement of old assertions by new ones.

4. Timestamp information in packet traces can be used to create more realistic simu-
lations of packet arrival rates, which in turn would better simulate actual rates of
flow instance creation and flow context assertions. Different traces from networks of

different sizes may be used to simulate a wider range of conditions.

5. A more comprehensive evaluation of reasoning-based flow context aggregation should
at least use full traces (non-anonymized headers + full packet payloads). This would
also provide an environment to test the performance of FlowSensor as well. The
best form of testing and evaluation, of course, would be on a live network, with real

flows.

In addition to improving the evaluation of reasoner-based flow context aggregation, other
modes of aggregation could be explored in future work. These could include:

e The use of persistent storage for flow context. The mechanisms and protocols for the
distributed and scalable storage of flow context could be investigated. For instance,
distributed hash tables could be considered for this purpose. It should be recalled
however that the storage of flow context is a critical issue in system design (discussed

briefly in Section 7.1.3) that deserves detailed examination in future work.

e Topology-based aggregation. Context could be aggregated based on the network topol-
ogy. For example, Lim and Stadler [279] transformed the topology of the network into
an execution graph and propagated management queries on network nodes along this
graph. The results of these queries were then back-propagated, in a process called
contraction, and aggregated along the same graph. This could also be explored for

the aggregation of flow context information from sensors.
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e Process flow-based aggregation The aggregation of flow context could be specified
on the basis of logical workflows or process flows. For example, Reichert, Kleis
and Giaffreda [233] proposed the use of multi-pipes, which were directed acyclic
graphs specifying a sequence of aggregation and processing operations for context
information. This mode of specifying composition and aggregation can be explored
for application to flow context as well.

8.3.5 The need for validation

Aside from the need to validate the ontology model (as mentioned in Section 8.3.3), there
is a need to further validate the architectural and software components presented in this
thesis, especially in practical and real deployment scenarios. The approach taken in this
thesis was to develop and examine the components in detail, often in isolation from each
other. To demonstrate the application of the flow context concepts, a limited subset of the
functionalitics were used in an integrated manner. There is a need therefore to further test
the full components in an integrated fashion (formally defining the inter-component inter-
faces and protocols in the process) and subject them to experimental scenarios that reflect
real-life application loads, usage, issues and problems. For example, the flow classification
experimental scenario discussed in Section 7.4 could be validated in a more realistic way
by (1) integrating a full version of FlowSensor developed in Section 5.1, (2) using a rele-
vant subset of the ontology in an online manner, (3) performing flow context aggregation
simultaneously (taking into account the improvements suggested in Section 8.3.4, and (3)
deploying it on a live network with real user traffic. Additionally, sensors for user-level
context could be deployed to try to provide further contextual input for the aggregation
process.

Although the work in this thesis was aimed at making a contribution to the study of
context-aware networks, one of the assumptions made was that context-aware networks
would help create “minimally-distracting” or “invisible” networks. The discussion in Sec-
tion 8.2.1 however points out that context-awareness within the network may either benefit
users, or network operators, or other entities, based on the way the context is used. There-
fore, there may be cases where context-awareness may result in network behavior that is
not “invisible” nor “minimally-distracting.” Nonetheless, it would still be useful to validate
in a rigorous way whether context-aware networks can indeed help build invisible networks.
Such a validation would perhaps require user context to be more explicitly modeled (as
stated in Section 8.3.3), and an experimental method be developed to gauge the quality
of the user’s (subjective) experience, or to quantify the usefulness of the optimization or

adaptation received by the user’s flow.
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8.3.6 Applications

While the application areas described in Chapter 7 could be further developed and validated

in future work, other applications areas should also be explored.

For example, flow context may potentially be used for overlay routing and content delivery.
Requests for content streams and the corresponding delivered content may be classified and
routed through a network based on flow context tags. In the case of multimedia or real-
time streams, the flow that contains the content request may contain a description of QoS
requirecments that the underlying network may use as a basis for a routing decision or to
map the flow to an appropriate overlay. In the reverse direction, the flow containing the
content to be delivered may contain a description of both the requirements of the requestor

and the characteristics of the content, again for routing or overlay mapping purposes.

Flow context might also be used in overlays, particularly in structured peer-to-peer net-
works, to match flow requirements (e.g. the geographic location of a flow’s destination)
with sensed knowledge about the relative proximity of peer nodes or information about

the topology of the underlying physical network, such as in topology-aware routing [280]
and topology-aware server selection [281].

8.3.7 Security, privacy and trust

Section 7.6 briefly mentioned some applications of context tags in enhancing network secu-
rity. While flow context might be useful in this respect, it can potentially be a double-edged
sword. There is also the possibility that flow context may be misused, deliberately or oth-
erwise, to compromise network security, disrupt the network’s proper operation, or for
other malicious purposes. The emergence of new modes of context sensing and processing
may also spawn new modes of attack: perhaps instead of simple buffer exploits and over-
load attacks, these new modes would consist more of algorithmic attacks [56] or malicious
training [282] deliberately targeted at the sensing infrastructure. In the future, “semantic
exploits” that take advantage of ontological inaccuracies or flawed reasoner architectures,
and that intend to induce unintended inferences or to degrade reasoner performance, might

even appear on the horizon.

There may be a need to protect communication between context sensors and context-
sensitive nodes and to develop mechanisms for this purpose. This might include mecha-
nisms that would prevent context tags from being forged, or for existing tags in a flow to

be altered in a malicious way. Even in absence of malicious intent, the issue of safety is
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a concern: can corrupted tags, or even well-formed ones, produce unwanted or undesired

effects within the network? How can this be prevented or mitigated?

Privacy is still a wide-open issue in pervasive and ubiquitous computing in general, and any
system that senses and uses context is faced with the same challenge of safeguarding user
privacy. As this feature was identified as one of the key features of minimally-distracting
and invisible networks, it would be desirable to explore some mechanisms to assure this.
Such mechanisms might include, among others, the use of encryption, an authorization
framework [283], or the use of obfuscation [284] to control the level of information made
available within a context-aware network. Another mechanism might be the introduction
of incentives that might encourage users to sacrifice some level of privacy in exchange for

preferential treatment or service levels within the network.

8.3.8 Quality of context

Section 3.3.3 mentioned that one of the characteristics of flow context is its (potential)
imperfectness, which some authors attempt to express in terms of quality of context (QoC).
Although quality of context may be used to model some objective and subjective quality
attributes of context information, such as its fidelity, precision, accuracy, trustworthiness,
resolution, frequency, and timeliness, it had not been modeled in the flow context ontology
nor used in the applications of flow context in this thesis. This is an important issue that

has to be addressed in future work.

Quality of context was also briefly mentioned in Section 2.3.2 within the framework of
context-level agreements (CLAs), where entities pre-negotiate QoC levels before exchanging
context information. An alternative would be to consider QoC as a mechanism to signal the
utility perceived or assigned by a user or receiver of flow context information, after it had
started to receive the information. This would be important in determining the amount
and quality of context a sensor should provide, and could be viewed as a feedback loop
from context user to context provider. In such a context signaling protocol, for instance,
the absence of positive feedback from context users could be construed as a signal to a
context source to decrease or even terminate the transmission of flow context information,

especially in context push or event notification scenarios.
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Appendix B

The Boyer-Moore-Horspool
Algorithm

The Boyer-Moore-Horspool (BMH) algorithm is a simplification by Horspool of the Boyer-
Moore ezact string matching algorithm [187, 278§].

Assume that the payload of a PDU, payload, of length payloadLength, will be searched for
the occurrence of a byte sequence pattern, of length patternLength. As is the case with
most string search algorithms, a section of payload is compared character-by-character
(bytewise in this case) with pattern. However, BMH does this by starting with the
rightmost byte in pattern and comparing it with a corresponding byte position in payload,
and progressively comparing each byte in pattern with the corresponding byte in payload.

When a mismatch occurs during the byte comparisons between pattern and payload,
BMH shifts the entire pattern to the right to continue to search for an occurrence of
pattern at another location within payload. However, while a “brute force” (BF) algo-
rithm might simply shift pattern to the right by one position, BMH gets its performance
advantage over BF by carefully computing the number of positions to the right it may shift,
and may often end up shifting by more than one position. As illustrated in Figure B.1(a),
pattern is compared byte-by-byte with a substring of payload, starting from the right-
most byte of pattern. Assume that after a series of matches, a mismatch is found at the
position where pattern contains y and payload contains z. If pattern also contains z,
then it is shifted such that the rightmost occurrence of  in pattern aligns with the cor-
responding z in payload (which caused the earlier mismatch), as shown in Figure B.1(b).
Otherwise, if pattern does not contain any z, then it is shifted one position beyond the

occurrence of z in payload, as in Figure B.1(c). It is easy to see the logic behind this
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Figure B.1: The Boyer-Moore-Horspool algorithm.

latter case because if x is not contained in pattern, then it would be useless to try and
find a bytewise match between pattern and any contiguous subset of bytes in payload

that contains z.

Rather than dynamically compute the number of steps pattern has to be shifted in the
event of a mismatch, BMH uses a “pre-compiled” lookup table (called delta;s in [187]) that
provides a precomputed shift value for each character in the search alphabet (or for each
byte value in this case). Most of the entries in deltal2 are likely to have values equal to
patternLength, and the only entries that would have values less than this would correspond
to the individual characters (bytes) in pattern. The following Java code fragment from

FlowSensor illustrates how deltal2 is pre-compiled:

private void precompile(byte[] pattern, int[] deltal2) {

int patternLength=pattern.length;

//Initialize with default shift amount

for(int i=0; i<deltal2.length; i++) {
deltal2[i]=patternLength;

}

//Compute shift amount for each pattern symbol

for(int i=0; i<patternLength-1; i++) {
deltal2[((int) pattern[i]) & OxFF] = patternLength-i-1;
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Raita’s variation After pre-compilation of the lookup table, the main part of BMH is
executed using the Java code fragment below. Note that after the rightmost position in
pattern has been matched, the algorithm continues instead with the rest of the bytewise
comparisons from left to right. This is a partial implementation of a BMH variant by
Raita, who argues that since strong dependencies are likely to exist between successive
symbols, then it would be best to initially test the rightmost element in pattern (as in the

usual case), then the leftmost element, rather than proceed from right to left as is normally
done [285].

byte b;
int j = fromPosition;
while (j <= toPosition) {
//Check if rightmost byte in pattern is matched
b = payload[j+patternLength-1];
if (pattern[patternLength-1} == b) {
//Byte in payload matches last byte of pattern
//Scan for matches in rest of pattern, from left to right
for(int i=0; (i<patternlLength-1) &&
(pattern[i]l==payload[i+jl); i++) {
if (i >= patternLength-2) { //Matched all?

return(j); //Yes, return position

}
// Found a mismatch. Use the deltal2 table
// to determine the shift amount
j = j + deltal2[(int)b & OxFF];
}

return(-1);

deltal? is used in the penultimate line of the code fragment to determine the amount of
shift (represented by the increment in the variable j) in the event of a mismatch. The
fragment returns either -1 if no match was found in the entire payload, or the value of j

representing the position in the payload where a match was found.



Appendix C

Hyperbolic Multilateration

For a receiver located at coordinates (z,y, z), and any pair k = {4, j} of beacons i and 7,
located at (z;,¥:, 2;) and (x;,y;, 2;) respectively, the equation describing the range differ-
ence 7 corresponding to the time-difference-of-arrival (TDOA) t; —t; for this pair is given
by:

re(z,y,2) = c(t; —t;)
= \/(wZ —z)’ + (i —y)* + (2 — 2)?
~V(z; —2)* + (4 — ¥)> + (2 — 2)? (C.1)

where ¢ is the propagation speed of the beacon signal used. Equation (C.1) is a hyper-
boloid with foci at the beacon positions (z;,y;, 2;) and (x;,yj, 2;), with points on its graph
specifying possible locations of the receiver. This is illustrated for the two-dimensional

case in Figure C.1.

With four beacon signals, three independent TDOA values may be obtained, producing
three independent equations in the form of Equation (C.1). The solution to these three
simultaneous equations yields a (z, y, z) position estimate of the receiver. Graphically, this
corresponds to the intersection between the hyperboloids generated using Equation (C.1)
for any set of three TDOA values.

The three simultaneous nonlinear equations in the form of Equation (C.1) can be solved
by first linearizing them using their Taylor series approximations, and then by iteratively

computing for estimates of the solution until some error criterion is met [286]. Performing
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Figure C.1: Hyperbolic multilateration with two beacons

a Taylor series expansion on Equation (C.1) evaluated at point (zg, %o, 29), and retaining

the first two terms to obtain its first-order approximation 7% (z,y, 2),

Ork(zo, Yo, 20)

%(2, y, 2) = ri(T0, Yo, 20) + (T — ) 5=
Ori(zo, Yo, z0) + (2 — 20) 3Tk($gzy0, 2p)

= Tk(Z0, Y0, 20) + Qkalz + Aydy + g6,

where

re(2o,y0,20) = V(mi —m0)® + (% — y0)* + (2 — 20)?
~V/ (2 — 20)? + (45 — %) + (2} — 20)°
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_ Ori(xo, Y0, 20)
g = ———F——=

ozr
_ T — To
V(@i — 20)% + (4 — 0)2 + (2 — 2)?
_ I; — o
V(®; — 20)? + (y; — 90)? + (2 — 20)?
_ Org(=o, yo, 20)
S ey
_ Yi — Yo
V(@i — 20)? + (i — ¥0)? + (2 — 20)?
_ Yi — Y
V(@i —20)2 + (y; — %)% + (2 — 20)°
_ Org(z0, Yo, 20)
e =
. Z; — 20
V(@i — 20)? + (¥ — y0)? + (2 — 2)?
Zj — R0

- V(@5 — 20)2 + (yj — y0)? + (25 — 20)?

and 6; = = — x9, 6y = ¥y — Yo, 0. = z — zo. Noting that each k = 1,2,3... denotes a
beacon-pair {i,j}, only three beacon pairs are selected to form three independent TDOA
cquations. Transposing the terms in Equation (C.2) and writing out the three simultaneous
TDOA equations yields

al:x:(s.'z: + aly(sy + alzéz = 7?1 (il?, Y, Z) —T (11}0, Yo, ZO) (C3)
a2:05 + a0y + a2,0, = 72(z,y,z) — r2(xo, Yo, 20) (C4)
a3g0z + a3y5y +a3;0, = ":\3(33’ v, Z) - 7‘3(.’1)0, Yo, Z()) (05)

The three simultancous equations may then be conveniently expressed in matrix form as

Aj=r (C.6)

where
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a1z Ay a1 0z 71(z,y, z) — r1(zo, Yo, 20)
A= layg agy az|, 6= (6|, r= |r(z,vy,z)— r2(z0,Y0, 20)
azz Gy Q2 J, 73(z,y, z) — r3(Z0, Yo, 20)

A least squares solution to Equation (C.6) is given by [287]:

6= (ATA)'ATr (C.7)

where
N
5= |4,
8

This is then used to produce new estimates from the initial guess (zo, yo, 20):
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The process iterates until it either converges, i.e. changes in successive estimates are
below a certain tolerance ¢, or a maximum number of allowed iterations is exceeded. Note
that 7(z,y, 2) is an approximation to r¢(z,y, z), the actual position of the object being
tracked. In Equation (C.7) the values for (zo, yo, 20), representing the range difference
between the guess point (zo, yo, 20) and a pair of beacons k& = {i,j}, are obtained in a
straightforward way by evaluating Equation (C.1) at (xo,¥o0, 20). On the other hand, the
values for 7x(z,y, z) = r(z,y, z) are obtained from the TDOA readings using signals from
the beacon pair k = {4, j}.
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Overview of Semantic Web

Technologies

This section provides an overview of the following technologies for the Semantic Web:

e XML, which provides a basic syntax for structured documents, but which provides

no facility to encode the meaning of these documents.

e XML Schema, a language which specifies restrictions on the structure of XML doc-

uments

e RDF, which provides a data model for objects (“resources”) and relations between
them

o RDF Schema, a vocabulary for describing properties and classes of RDF resources,

as well as support for hierarchies of such properties and classes, and

e OWL, which adds a richer vocabulary and formal semantics for describing properties,

classes, and their relations.

Extensible Markup Language (XML)

The Extensible Markup Language, or XML [100], is a markup language that defines a
scheme for logically structuring information within documents, allowing their exchange
between applications. Each XML document contains one or more elements delimited by

tags, which are either start-tags, end-tags, or, for empty elements, empty-element tags.
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Each element has a type, identified by name, and may have a set of attribute specifications,

each containing a name and a value.

Tags typically consist of data delimited by ‘<’ and ‘>.” A simple example of a fragment
of an XML document might be as follows:

<?xml version="1.0"7>
<hardwarePlatform>
<cpu>Pentium III</cpu>
<memory size="1024" unit="Mbytes">
</memory>
<screen>
<color>yes</color>
<screenSize>640x480</screenSize>
<bitsPerPixel>24</bitsPerPixel>
</screen>
<soundOutputCapable>yes</soundOutputCapable>
</bhardwarePlatform>

It is easy to see how XML provides structure to the information contained in the previous
example, by providing nested sets of named elements. In the example, the document
provides a description for some hardware platform, listing some information about its
CPU, memory, screen and audio system. Within the screen element, one is able to see

further detail about its size, color characteristics, and bit-resolution.

XML’s syntax (refer [100] for the full and formal specification) is a subset of existing,
widely used international text processing standard called the Standard Generalized Markup
Language (SGML) [288], and documents that comply with XML’s syntax are called well-

formed.

XML Namespaces XML documents being used by multiple applications may face prob-
lems of having the same markup recognized by different applications, or for the same el-
ement types or attribute names in different documents to “collide” (be in conflict) when
being processed by the same software module. A simple example of such a conflict is illus-
trated by the two examples below. While the flow element on the left seems to refer to a

network flow, the one on the right seems to refer to a fluid flow.

<flow> <flow>
<rate>10 Mbps</rate> <rate>10 lbs/min</rate>
</flow> </flow>
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To resolve this, XML namespaces provide document constructs with universal names whose
scope extend beyond the documents themselves [128]. The W3C defines an XML names-
pace as a collection of names, identified by a URI reference [127], which are used in XML
documents as element types and attribute names. This URI reference is called the names-
pace name. The URI should have the characteristics of uniqueness and persistence, as its

goal is to give the namespace a unique name.

An XML namespace attribute allows namespace prefizes to be defined and associated with
namespace names. A prefix functions only as a placeholder for the namespace name (the
URI) and is fully expanded by applications when parsing and constructing names within

documents. Using the previous example,

<h:flow xmlns:h="http://ee.ucl.ac.uk/ComputerNetworks/">
<h:rate>10 Mbps</h:rate>
</h:flow>

uses the flow and rate terms found in the http://ee.ucl.ac.uk/ComputerNetworks/

namespace, while

<f:flow xmlns:f="http://ee.ucl.ac.uk/Hydraulics/">
<f:rate>10 lbs/min</f:rate>
</f:flow>

refers to terms in the http://ee.ucl.ac.uk/Hydraulics/ namespace.

XML Schema The XML Schema definition language [289] enables one to predefine the
structure and vocabulary of a set of XML documents, allowing applications to define as
valid those documents that conform to the specified syntax and structure. For example,

the schema fragment below

<xsd:complexType name="flow">
<xsd:sequence>
<xsd:element name="flowID" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="currentRate" type="xsd:double"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="hop" type="xsd:string"

minOccurs="0" maxOccurs="unbounded"/>
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</xsd:sequence>

</xsd:complexType>

specifies an element flow, which is a complexType, that is, it contains other elements. The
subelements are flowID, of type string that occurs exactly once; currentRate, of type

double, which may or may not be present; and zero or more occurrences of the string hop.

Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a language for representing information
about resources in the World Wide Web [129]. The underlying structure in RDF is the
triple, which consists of a subject, a predicate or property, and an object. Each triple may
be graphically depicted by two nodes (the subject and the object) linked by a directed arc
(the predicate or property) between the two. The idea is that the triple asserts or expresses
that the relationship exists between the things denoted by the subject and the object. A
node may be a URI reference which is basically a URI with an optional “#” and fragment
identifier at the end, a literal, or blank; while properties are URI references. A set of triples
is an RDF graph, and the meaning of an RDF graph is the logical conjunction (logical
AND) of all of the statements corresponding to its triples [290]. Although the conceptual
model for RDF is a graph, to represent statements in a machine-processable way, RDF
provides an XML syntax for representing and exchanging graphs, called RDF/XML [104].

RDF Schema Although RDF can specify properties either as attributes of resources,
or relationships between resources, by itself it has no mechanisms for describing these
properties or relationships [130]. RDF Schema, RDF’s vocabulary description language,

defines classes and properties that may be used to describe classes, properties and resources.

e Classes denote groups of resources, and rdfs:Class pertains to groups of resources
that fall under RDF Schema classes. Members or instances of rdfs:Class include
rdfs:Resource, which pertains to the class of all things described by RDF, and
rdf :Property, the class of all RDF properties. A full list of RDF classes is given in
Table D.1.

e Properties are defined as relations between subject and object resources [290]. In-
stances of rdf :Property include rdfs:domain, rdfs:range, rdfs:subClass0f, and
rdfs:subProperty0f. Resources that have a given property are said to belong to
its rdfs:domain, while the values of the property belong to its rdfs:range. If all
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Class name Comment
rdfs:Resource The class resource, everything.
rdfs:Literal The class of literal values, e.g. textual strings and integers.
rdf:XMLLiteral The class of XML literals values.
rdfs:Class The class of classes.
rdf:Property The class of RDF properties.
rdfs:Datatype The class of RDF datatypes.
rdf:Statement The class of RDF statements.
rdf:Bag The class of unordered containers.
rdf:Seq The class of ordered containers.
rdf:Alt The class of containers of alternatives.
rdfs:Container The class of RDF containers.
rdfs:ContainerMembershipProperty | The class of container membership properties, rdf: 1, rdf: 2, ..., all
of which are sub-properties of 'member’.
rdf:List The class of RDF Lists.
Table D.1: RDF classes. From [130].
Property name Comment Domain Range
rdf:type The subject is an instance of a class. rdfs:Resource | rdfs:Class
rdfs:subClassOf The subject is a subclass of a class. rdfs:Class rdfs:Class
rdfs:subPropertyOf | The subject is a subproperty of a property. rdf:Property rdf:Property
rdfs:domain A domain of the subject property. rdf:Property rdfs:Class
rdfs:range A range of the subject property. rdf:Property rdfs:Class
rdfs:label A human-readable name for the subject. rdfs:Resource | rdfs:Literal

rdfs:comment
rdfs:member
rdf:first

rdf:rest
rdfs:seeAlso
rdfs:isDefined By
rdf:value
rdf:subject
rdf:predicate
rdf:object

A description of the subject resource.

A member of the subject resource.

The first item in the subject RDF list.

The rest of the subject RDF list after the first item.
Further information about the subject resource.
The definition of the subject resource.

Idiomatic property used for structured values.

The subject of the subject RDF statement.

The predicate of the subject RDF statement.

The object of the subject RDF statement.

rdfs:Resource
rdfs:Resource
rdf:List

rdf:List

rdfs:Resource
rdfs:Resource
rdfs:Resource
rdf:Statement
rdf:Statement,
rdf:Statement

rdfs:Literal
rdfs:Resource
rdfs:Resource
rdf:List
rdfs:Resource
rdfs:Resource
rdfs:Resource
rdfs:Resource
rdfs:Resource
rdfs:Resource

Table D.2: RDF properties. From [130].

resources related by one property are related by another property, then these two
properties are themselves hierarchically related by the rdfs:subProperty0f prop-
erty. On the other hand, if all members of a class are members of another, then
these two classes are related by the rdfs:subClass0f property. A full list of RDF

properties is given in Table D.2.

OWL Web Ontology Language

The OWL Web Ontology Language is a W3C Recommendation designed to provide an
ontology language for the Web, that is, a means for explicitly representing terms in vo-
cabularies and the relationship between those terms [291]. While RDF and RDFS allow
the representation of some ontological knowledge, these are mainly concerned with orga-
nization of vocabularies in typed hierarchies [292]. On the other hand, OWL facilitates
greater machine interpretability of Web content than that supported by XML, RDF, and
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RDF Schema, through a richer vocabulary that is able to further describe classes, relations
between classes, and property types and characteristics [291]. Some examples of OWL

constructs are described below.

Classes, class relations and individuals A class defines a group of individuals that
belong together because they share some common properties [291]. Such classes are de-
fined in OWL using the owl:Class element. If membership in one class automatically
implies membership in another, then they are related via the rdfs:subClass0Of relation-
ship previously defined in RDFS. For example, assume a concept called ProtocolDataUnit
exists. To define the subset (subclass) of application-layer PDUs (which might be called
Layer7_PDU, with the use of the prefix “Layer7” to denote the application layer of the OSI
model), the OWL representation would be as follows:

<owl:Class rdf:ID="Layer7_PDU">
<rdfs:subClass0f>
<owl:Class rdf:ID="ProtocolDataUnit"/>
</rdfs:subClass0f>
</owl:Class>

The syntax rdf:ID="Layer7_PDU" specifies the name of the class, and within the same
XML document, the defined class can be referred to as rdf :Resource="#Layer7_PDU".

Unlike in RDF Schema, it is possible in OWL to define classes in terms of Boolean
combinations of other classes, through the use of owl:unionOf, owl:complementOf, or
owl:intersectionOf. In addition, it is possible to state if classes are disjoint, that is
they do not have an intersection (owl:disjointWith); or if they are equivalent classes
(owl:equivalentClass). For example, suppose that a concept called UnidirectionalFlow,
a subclass of Flow, is defined. Additionally (for the purposes of this example), all unidi-
rectional flows either come in pairs (e.g. such as in TCP client-server flow pairs), or are

unpaired. The following OWL statements:

<owl:Class rdf:about="#UnidirectionalFlow">
<rdfs:subClass0f rdf:resource="#Flow"/>
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#PairedFlow"/>
<owl:Class rdf:about="#UnpairedFlow"/>
</owl:union0f>
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</owl:Class>
</owl:equivalentClass>
</owl:Class>

thus define UnidirectionalFlow, a rdfs:subClassOf Flow, and further state that it is
equivalent to the union of PairedFlow and UnpairedFlow — that is, any unidirectional

flow is either a PairedFlow, or an UnpairedFlow, or both.!

OWL also has a predefined class called owl:Thing, which encompasses all classes and all
individuals in the OWL world, that is, all classes are subclasses of owl:Thing, and all
individuals are members of owl:Thing. The predefined class owl:Nothing, on the other
hand, is the empty class.

Individuals (members of classes) are introduced by declaring them to be members of a

class, using the rdf :type property, as in below:

<owl:Thing rdf:ID="FedoraCoreLinux"/>

<owl:Thing rdf:about="#FedoraCoreLinux">
<rdf:type rdf:resource="#0peratingSystem"/>
</owl:Thing>

These statements declare that FedoraCoreLinux is a member of the class OperatingSystem.

Equivalently, this may be stated by:
<OperatingSystem rdf:ID="FedoraCoreLinux"/>

Finally, classes may also be specified by enumerating all its members, using the owl : one0f
construct. For example, a class whose members are the different fields of the IPv6 packet

header may be defined as:

<owl:Class rdf:ID="IPv6PacketHeaderFields">
<rdfs:subClass0f rdf:resource="#Layer3PDU_HeaderFields"/>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#VersionField"/>
<owl:Thing rdf:about="#TrafficClassField"/>

1t would be reasonable to expect that a flow could not be both paired and unpaired at the same time,
or in other words, that PairedFlow and UnpairedFlow are disjoint, but this has not asserted to keep the
example simple. In addition, any other “bundling” of unidirectional flows has been disregarded.
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<owl:Thing rdf:about="#FlowLabelField"/>
<owl:Thing rdf:about="#PayloadLengthField"/>
<owl:Thing rdf:about="#NextHeaderField"/>
<owl:Thing rdf:about="#HopLimitField"/>
<owl:Thing rdf:about="#SourceAddressField"/>
<owl:Thing rdf:about="#DestinationAddressField"/>
</owl:oneQf>
</owl:Class>

Properties, property characteristics and property restrictions Propertiesin OWL
define binary relations, either between individuals, or between individuals on one hand and
RDF literals or XML Schema datatypes on the other. Properties that relate individuals are
called object properties while those that relate individuals to datatypes are called datatype
properties. One may use the rdfs:domain and rdfs:range constructs from RDFS to spec-
ify the domain and range to which a property applies. In addition, hierarchies of properties
may also be defined, with one property being defined as as a specialization, or subproperty
of another, using rdfs: subProperty0f from RDFS.

As an example, assume that a property called has_IPv4EndpointAddress describes a re-
lationship between a flow on one hand, and an IPv4 address on the other. In this case
the flow could have either originated or terminated at the specified IPv4 address. One
could further define a property has_IPv4DestinationAddress that specifies that the [Pv4
address is the flow’s destination address, rather than its source address. As flows and IPv4
addresses related by has_IPv4DestinationAddress would also necessarily be related by
the property has_IPv4EndpointAddress, the former property is thus a subproperty of the
latter. This is expressed in OWL by:

<owl:0ObjectProperty rdf:about="#has_IPv4DestinationAddress">
<rdfs:subProperty0f rdf:resource="#has_IPv4EndpointAddress"/>
</owl:0bjectProperty>

Properties can have certain characteristics: they may be transitive, symmetric, functional,

inverse, or inverse functional. These characteristics are defined in [110] as follows :

o Transitive property If a property P is transitive, then for any z, y, and z:
P(z,y) and P(y, z) implies P(z, z)

This simply means that if x and y are related by some property P, and y and z are
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also related by the same property, then z and z would be related by that property.

Symmetric property If a property P is symmetric, then for any x and y:

P(z,y) iff P(y,x)

Functional property If a property P is functional, then for all z, y, and z:
P(z,y) and P(z, z) implies y = 2

Functional properties are also called single-valued properties or features.

Inverse property If a property P; is the inverse of Ps, then for all x and y:

Py(x,y) iff Py(y,x)

Inverse functional property If a property P is inverse functional, then for all z, y and
z:

P(y,z) and P(z,x) implies y = z

This example defines a relationship between flows occurring at different levels of abstrac-
tion, for instance, where a flow of IP packets transport a sequence of TCP segments, which
in turn transport HTTP messages containing pages marked up in HTML. A property
transports could be defined as follows:

<owl:TransitiveProperty rdf:about="#transports">
<rdf :type rdf:resource="http://www.u3.org/2002/07/owl#0bjectProperty"/>
<owl:inverseOf rdf:resource="#isTransportedBy"/>

</owl:TransitiveProperty>

This object property is defined to be transitive, that is, if a flow of IP packets transports
a flow of TCP segments, and that flow of TCP segments transports an HTTP flow, then
this implies that the IP flow transports the HTTP flow. While this would seem like a
perfectly logical conclusion for humans, the important thing to note is that OWL provides
the capability for machines to draw such inferences through the use of this explicit property
specification, rather than relying on a programmer to embed this logic in program code.
Finally, transports is defined to be the inverse of the property isTransportedBy, which
allows one to infer for instance that if a flow of IP packets transports a TCP flow, then
the TCP flow isTransportedBy the IP flow.
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In addition to property characteristics, OWL can also express property restrictions, which

include value constraints and cardinality constraints.

o Value constraints include the OWL construct owl:allValuesFrom which constrains
the relationship of individuals along a certain property, if the relationship exists,
ezclusively to members of a given class. For example, in defining a class called called
IPvA_UDP_Flow?, which describes flows of IPv4 packets carrying only UDP payloads,

the section in the following OWL statements

<owl:Class rdf:about="#IPv4_UDP_Flow">
<rdfs:subClass0f rdf:resource="#IPv4_Flow"/>

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:InverseFunctionalProperty rdf:about="#hasPDU"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:about="#IPv4_PDU_UDP_Payload"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:InverseFunctionalProperty rdf:about="#hasPDU"/>
</owl:onProperty>
<owl:someValuesFrom>
<owl:Class rdf:about="#IPv4_PDU_UDP_Payload"/>
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>

</owl:Class>

covering the scope of the owl:allValuesFrom element stipulate that individuals be-
longing to this class of flows should only have protocol data units (i.e. IPv4 packets)

that contain UDP payloads. The element rdfs:subClassOf actually specifies that

2The names of the classes and properties used here are not exactly the same as those used in the
ontology presented in Section 4.3.2. They have been simplified to improve readability.
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the class IPv4_UDP_Flow is only a subset of a conceptually “larger” anonymous class

of individuals that are described by this property restriction [135].

It should be noted that since the owl:allValuesFrom restriction does not specify
the existence of the relationship, the anonymous class defined by the restriction also
includes those individuals that do not participate at all in the specified relationship
[135]. If this is the case, then the definition for class IPv4_UDP_Flow in the previous
example is conceptually incorrect, since it would seem to include “flows” that do not
have PDUs. To correct this, the owl:someValuesFrom property restriction, which
specifies the existence of a (i.e. at least one) relationship along a given property to
an individual that is a member of a given class, is used. If the intersection of the
owl :someValuesFrom and owl:allValuesFrom restrictions is taken, one would obtain
an anonymous class that describes individuals satisfying two criteria: they have at
least one relationship along the specified property, and the relationship is exclusively
to members of the specified class. This intersection is achieved in the example simply
by conjoining the owl: someValuesFrom and owl:allValuesFrom property restriction
statements in OWL.

A third type of value restriction is owl :hasValue, which describes a class of individu-
als for which the property is semantically equal in at least one instance to a specified
data value or individual. The term “semantically equal” for datatypes means that
the lexical representation of the literals maps to the same value, while for individuals
it means that they either have the same URI reference or are defined as being the
same individual [151].

o Cardinality constraints specify the number of elements in a relation. The OWL
vocabulary term owl :maxCardinality describes a class of all individuals that have
at most N semantically distinct values (individuals or data values) for the property
concerned, where N is the value of the cardinality constraint [151]. One the other
hand, owl :minCardinality describes a class where individuals are related by at least

N distinct values.

As an example, to describe a class of SMTP (email) application-layer flows where the
number of email recipients are between 30 and 100 (perhaps because the administra-
tor would like to flag them as possible spam), the OWL description might contain
the following fragment:

<owl:Class rdf:about="PossibleSpamFlow">
<rdfs:subClassO0f>
<owl:Restriction>

<owl:onProperty rdf:resource="#has_SMTP_RcptTo" />
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<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
100
</owl:maxCardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#has_SMTP_RcptTo" />
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">
30
</owl:minCardinality>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>

OWL also has a built-in property owl:cardinality that describes a class of indi-
viduals with relationships along the property concerned with eractly N semantically
distinct individuals or data values. This construct is however redundant and is in-
cluded for convenience, as the same effect can be achieved through a pair of pair of
matching owl:minCardinality and owl:maxCardinality constraints with the same
value [151].

OWL sublanguages OWL provides three sublanguages, or “species” that have different

levels of expressiveness [110].

e OWL Full is not really a sublanguage, but the OWL language in its entirety, al-
lowing the use of all of its constructs as well as the unconstrained use of RDF con-
structs [151). Furthermore, in OWL Full, owl:Class is equivalent to rdfs:Class,
owl:Thing is equivalent to rdfs:Resource, and owl:0ObjectProperty is equivalent
to rdf :Property. Valid RDF documents may generally be considered to be in OWL
Full, unless they comply with the constraints of OWL DL and OWL Lite, as will be
described later.

OWL Full is meant for applications that require both the full vocabulary of OWL
and the flexibility of RDF. However, one consequence of this is that OWL Full is
undecidable, that is, there is no guarantee that a reasoner may derive valid conclusions

from statements written in OWL Full in a finite number of steps [151].

e OWL DL is a sublanguage of OWL that derives its name from its correspondence
with description logics, a decidable fragment of first-order logic [110]. It includes all
of OWL’s language constructs, but with several constraints, including the following
[151]:
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— a pairwise separation between classes, datatypes, datatype properties, object
properties, annotation properties, ontology properties, individuals, data values

and the built-in vocabulary;

— no cardinality properties allowed on transitive properties or their inverses or

their subproperties;

— well-formed axioms (facts), for instance, all classes and properties referred to
within an ontology should be explicitly typed and defined as OWL classes and
properties within the ontology, or within an imported ontology); and

— axioms about individual equality and difference should be about named indi-

viduals.

These constraints ensure that OWL DL remains decidable as previously defined, and

also ensures that the language supports the use of reasoners by ontology builders or
users [151].

e OWL Lite satisfies all the constraints of OWL DL and imposes some additional ones.
For example, it excludes the use of owl:oneOf, owl:unionOf, owl:complementOf,

owl:hasValue, owl:disjointWith and owl:DataRange. In addition:

— owl:equivalentClass and rdfs:subClass0f can only have subjects and ob-

jects that are classes or restrictions;

— owl:allValuesFrom, owl:someValuesFrom and rdfs:range can only have ob-

jects that are either class names or datatypes;
— rdf:type can only have objects that are class names or restrictions;
— only cardinality values of 0 and 1 are allowed; and

— rdf:domain can only have objects that are class names.

The introduction of additional restrictions in OWL Lite results in a language of lower
complexity, supporting the construction of basic subclass hierarchies [151]. This is
ideal for the rapid development of ontology tools, and to provide a quick migration

path for simple ontologies such as thesauri and other taxonomies [110].



