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Abstract

This thesis describes the development of different bioinformatics resources and
data-mining strategies for managing and analysing the large amounts of data
produced by microarray gene expression experiments.

Initially, this involved addressing the problem of effectively capturing gene
expression microarray data and the accompanying meta-data annotations de-
scribing the experimental process. This is necessary for reasons of archiving, in-
terchange and reproducibility of datasets and comparability between them. This
was achieved by the development of meditor, a graphical computer programme
which allows the description of microarray experimental information through the
use of diagrams and ontology-driven forms. meditor adheres to the standards set
by the Microarray Gene Expression Data Society (MGED), and therefore is able
to capture all the experimental information describable within the standard in a
platform-independent manner.

Subsequently, in order to provide capabilities for the formal modelling of gene
expression analysis concepts, the concepts involved in the external validation of
gene expression clusterings were formalised and defined as an object model. This
model was developed with the implementation of data interchange file formats
in mind. This work complements the object model of the MGED Society and
attempts to cover an area that has not been formalised in a platform-independent
manner by the standard object model.

Finally, a method was developed to allow the use of knowledge on protein
functions and protein-protein interactions to identify coherent sets of co-regulated
genes suggested by the clustering of gene expression profiles. This was achieved
through the development of a gene expression clustering quality metric, which
judges the tightness and separation of gene expression clusters, thus providing
a quality measure on a clustering or a per-cluster basis. Cluster tightness and
separation are assessed by harnessing the manual annotations provided by the
Gene Ontology, enriched using integrated biological information available through
an in-house data warehouse (BioMap). The metric was tested on a human B-cell
gene expression dataset and refined on the basis of the results produced.
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Chapter 1

Introduction

1.1 Levels of abstraction in the biological sciences

1.1.1 Emergence of biological formalisation and bioinformatics

If biology is viewed as an information science, bioinformatics can be viewed as
the meta-science of organising the information produced by biology. Conceptu-
ally, biological systems (and the information about them) can be organised in a
hierarchy of increasing abstraction, which covers the molecular and protein lev-
els up to whole organisms and ecosystems (Figure 1.1). Different levels of this
hierarchy are studied by different areas of the biological sciences. Most of the
phenomena observed at the level of metabolism and below, are directly reducible
to the lower non-biological levels of study (chemistry and physics). This means
that there are no logical gaps between the metabolic level and the levels below
it, and that one can conceptually move between the levels freely. This is not to
imply that conceptual linking between the phenotype and the genotype (between
the organism and genetic levels) has not been possible, because it certainly occurs
very often, but that our understanding about the conceptual links between lower
and higher levels is not as developed as those concepts linking the lower levels
amongst themselves.

As biological theories and tools develop and evolve, there is a continuous effort
to link higher levels in a more robust way to the lower parts of the hierarchy by ab-
stracting the lower level phenomena to explain increasingly higher level systems.
This trend has been manifested in studies on the genetic basis of development,
in attempts to link genotypes to specific phenotypes (mainly diseases) and in at-

tempts to summarise genetic activity using the methodology of systems biology.

17



1.1. Levels of abstraction in the biological sciences 1. Introduction

domain subject
A ecology ecosystem
medicine, .
behavioural biology organism
endocrinology organ system
& .
g cellular biology cell )
~ \
8
g functional recent
3 genomics/proteomics genome/proteome
classical macromolecule — bionformatics
genetics/biochemistry
nucleotide/amino acid early

structural biology
(crystallography, NMR)
atom

Figure 1.1: Levels of abstraction in the biological sciences. Concepts mentioned higher
in the figure are more abstract.

Recent advancements in high-throughput techniques such as large-scale sequenc-
ing and the availability of microarrays have contributed towards the realisation
of the target of system-level understanding, which is grounded on molecular-level
information (Kitano, 2002).

What differentiates the systems biology approach to the other attempts of
macroscopic descriptions such as metabolic studies and endocrinology, is the fact
that the reductionistic systems-biological models retain the microscopic details of
the system within them. This increases the complexity and information content of
such models greatly and calls for more sophisticated data management techniques,
which has led to the development of bioinformatics approaches to help tackle those
challenges. The need for more robust data integration and interoperability in the
context of systems biology has been pointed out by Kitano (2002).

In the past, bioinformatics has aided biological studies which dealt with low
levels of biological abstraction in the form of structural modelling software (for
example ab initio and NMR-based models) and low level molecular modelling
simulations. As the community produced increasing amounts of data, bioin-
formatics became increasingly relevant to the efforts of further abstraction of
biological knowledge. An example of this was the significant increase of eluci-
dated protein structures in the Protein Data Bank (PDB) (Berman et al., 2000),
which eventually led to the creation of structural hierarchy databases like CATH
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1.1. Levels of abstraction in the biological sciences 1. Introduction

(Orengo et al., 1997) and SCOP (Murzin et al., 1995). Nowadays, apart from
just organising and classifying the data produced, bioinformatics is producing
feedback for the experimental community, for instance by aiding the structural
genomics effort of exploring the protein fold space by selecting appropriate targets
for structure determination (Burley et al., 1999).

Bioinformatics has followed the trend of increasing abstraction in biological
knowledge (Figure 1.1), so now it is being used for the construction of higher level
descriptions of biological systems. The increasing amount of information involved
imposes greater challenges, and the effort to systematise this amount of biological
knowledge requires a more principled and formal approach in comparison to the
past. This has led to the development of biological information representation
standards which in turn have produced specialised ontologies (section 1.1.2.1),

object models (section 1.1.2.2) and file formats.

1.1.2 Informatics strategies for the formalisation of biological
knowledge

Bioinformatics uses different strategies to formalise and represent biological in-
formation, depending on the complexity of the data in question. For simple data,
formalisation can be achieved by defining simple data formats, which usually are
plain text files with tab- or comma- delimited contents (such as the PDB file
format) or text files with minimal structure (such as the FASTA sequence file
format, Pearson 1990). More recently, it has been necessary to describe more
complex biological information such as meta-data concerning gene function or
gene expression, which meant that more complex formats were necessary for the
formalisation of these concepts. Also, some of the older plain file formats have
been switched to more structured formats in order to tackle data management
challenges, as exemplified by the development of PDBML (Westbrook et al., 2005)
an XML-based variant of the PDB file format.

1.1.2.1 Ontologies and controlled vocabularies

In computer science, an ontology is defined as “an explicit specification of a
conceptualization” (Gruber, 1993). The term is borrowed from philosophy, where
an ontology is a systematic description of all existence. Ontologies specify the
concepts of a particular problem domain or domain of knowledge, as well as the
relationships between the concepts.
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More specifically, ontologies contain definitions of individuals, which are the
concrete basic concepts, and definitions of classes, which are sets of individu-
als. Individuals can have and share characteristics (known as attributes) and
the relationships of individual concepts to each other are described through the
definition of relations. Domain ontologies describe a set of terms that have a par-
ticular meaning when applied to a specific knowledge domain. An upper ontology
models common objects and concepts that are generally applicable across a wide
range of domain ontologies. An example of a biological ontology is the MGED
ontology (Stoeckert and Parkinson, 2003).

It is also possible for an ontology to contain information concerning con-
straints on the relationships between the different concepts, which essentially
describe the relationships between relationships. The presence of such elaborate
constraints in an ontology allows its usage for reasoning using the described con-
cepts, for example automatic checking of the logical integrity of the ontology as
new concepts and relationships are being introduced.

A similar but distinct concept to ontologies is that of controlled vocabularies.
A controlled vocabulary is a curated collection of terms used in a specific knowl-
edge domain. Synonyms are clearly indicated in the definition of a term, and any
ambiguities are mentioned. Also, it is possible for controlled vocabularies to have
a hierarchical structure. Controlled vocabularies are simpler than ontologies in
the sense that they do not contain descriptions of complex relationships between
the terms: terms cannot have attributes, there is no distinction between classes
of concepts and their specific instances, and limited types of relations between
objects can be expressed (Williams and Andersen, 2003). Despite its name, the
characteristics of the Gene Ontology (GO) (Ashburner et al., 2000) more closely
resemble that of a controlled vocabulary. GO defines three ontological relation-
ships (is-a and part-of) and it also specifies which concepts are synonymous. The
limited types of ontological relationships present in GO could impose limitations
on the usefulness of the ontology for concept reasoning.

Various domain ontologies exist covering different aspects of biological knowl-
edge. The Open Biomedical Ontologies (OBO) directory (http://obo.source-
forge.net) lists 63 controlled vocabularies and ontologies covering diverse do-
mains such as the Animal Natural History and Life History ontology, the Cell on-
tology describing cell type, the Human Disease Ontology, the Pathway Ontology
etc. The Gene Ontology and the MGED Ontology are discussed in Sections 4.2.3

and 2.2.3 respectively, due to their special relevance to the corresponding chap-
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ters.

1.1.2.2 Object models

Another common tool used in computer science for the abstraction of real-world
concepts is that of object models. Object models define a set of concepts (called
classes) that cover a particular domain of knowledge and the relationships be-
tween them. Classes define the general properties of their instances which are
also known as objects. The main conceptual difference between object models and
ontologies is that objects can hold data and perform specific tasks. Because of
this, objects are said to have a specific behaviour. On the other hand, ontologies
can be used for reasoning about the described concepts, which is not possible with
object models. A consequence of that is that implementations of object models
are generally applied as programming tools while ontologies have a slightly dif-
ferent scope, since they are used as a means of annotation of a particular domain

and often as a means of communication between the domain specialists.

1.2 Gene expression experiments

1.2.1 Origins of microarrays

There are various methods that detect and quantify levels of gene expression.
They include northern blots (Alwine et al., 1977), S1 nuclease protection (Berk
and Sharp, 1977), sequencing of cDNA libraries (Adams et al., 1991; Okubo et al.,
1992), serial analysis of gene expression (SAGE) (Velculescu et al., 1995) and dif-
ferential display (Liang and Pardee, 1992). This range of gene expression moni-
toring technologies was augmented by cDNA and oligonucleotide arrays. These
allow the monitoring of the expression level of multiple genes in parallel, and they
can provide information on which tissue(s) particular genes are expressed, and
dynamic information about the temporal behaviour of the gene expression of the
genes involved, and eventually they can reveal potential relationships between
these patterns (Lockhart et al., 1996; Schena et al., 1995, 1996).

The methodology of gene expression microarrays is based on the method of
northern blotting (Alwine et al., 1977). Northern blotting is an experimental
technique which allows the detection of specific fragments of RNA separated by
size electrophoretically. The process involves transferring the RNA fragments
from the electrophoresis gel to a nitrocellulose strip, hybridising them with ra-
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dioactive complementary DNA or RNA, and finally detecting the RNA fragments
using autoradiography. Northern blotting is a variation of the method of South-
ern blotting (Southern, 1975), which detects DNA rather than RNA fragments.

1.2.2 Principles of operation
1.2.3 cDNA microarrays

cDNA microarrays are based on the same principles of operation as northern
blotting, but they alter the strategy in several ways (see figure 1.2). The main
difference is that the cDNA microarray protocol involves cDNA clones or poly-
merase chain reaction (PCR) products derived from the 3’ end of RNA tran-
scripts. The cDNAs are fixed on a glass, plastic or silicon substrate, in a matrix
layout. Instead of labelling the probes, the total mRNA sample being probed is
reverse-transcribed to complementary DNA (cDNA) and is then labelled using
fluorophores, and hybridised on the array. When two differently labelled samples
are co-hybridised on the same array, one sample usually acts as a control, and
it is possible to measure the relative expression of the samples. Consequently,
cDNA microarrays are sometimes referred to as two-colour arrays.

Microarrays containing probes that represent all genes of an organism are now
commonplace. The small format and high density of microarrays allows the use
of hybridisation samples of very low volumes (the first arrays allowed volumes
of 2ul), which enables the detection of rare transcripts because of the increase
in sample concentration. The extra sensitivity provided by ¢cDNA microarrays
means that expression of specific genes is not only being detected, but also that
their levels of expression can be determined by the intensity of the measured
fluorescence.

The first cDNA microarrays were manufactured by Schena et al. (1995). They
were tested by measuring the gene expression of Arabidopsis thaliana, which was
chosen as a model organism because its relatively small genome meant that the
expression of all its genes could be monitored on a single array. The arrays
constructed for this study were able to monitor the expression of 48 genes, but
array manufacture techniques at the time allowed the production of arrays with
up to 20,000 cDNA targets.

Due to the small size of the probes, a high resolution confocal microscopy
laser scanner is necessary for the measurement of fluorescence. The array is

scanned using the different frequencies of the fluorophores, and two separate
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Figure 1.2: Diagram illustrating the principles of manufacture and operation of cDNA
microarrays.

images are produced. The measurement and analysis of fluorescence of large
amounts of spots requires the use of image recognition software to recognise and
quantify the intensity of each spot. The positions of the probes are predefined and
standardised in order to allow the mapping of fluorescence intensity measurements
to specific probes and therefore to known genes.

Two colour microarrays allow the observation of the relative expressions in
two conditions with increased accuracy, because complicating factors such as chip-
to-chip variation or differences in the reaction conditions are eliminated (Schena
et al., 1998). The shortcoming of this experimental technique is that it only

provides a relative measure of expression, not absolute values.
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1.2.4 Oligonucleotide microarrays

Oligonucleotide microarrays (also known as single-channel microarrays) are de-
signed to allow an estimation of the absolute level of expression. This is possible
using control probes which are designed to hybridise with specific RNA fragments
of known amounts and which are added to the biological sample before hybridi-
sation. These fragments are known as RNA spikes, and their measurements are
used for the normalisation of the hybridisation measurements of the rest of the
probes (Lockhart et al., 1996).

Oligonucleotide arrays use synthetic DNA probes, and are manufactured by a
combination of photolithography and solid-state DNA synthesis. This approach
allows manufacture to be solely based on sequence information, without the need
of any physical intermediates of the probes (such as PCR products, cDNAs etc).
Oligonucleotide arrays contain multiple oligonucleotide probes (usually, but not
limited to the size of 25 bases) for each of the genes being monitored, which
aims to improve the signal-to-noise ratio. Those probes are designed according to
their complementarity to the selected gene, their uniqueness in relation to related
sequences, and their absence of (near-) complementarity to other RNAs that may
be present in the sample (rRNAs, tRNAs etc). The probe redundancy shields the
process from any design imperfections. As a negative control, mismatch probes
are added to the array, which are of identical sequence to their perfect match
counterparts except for of a single base difference in the central position. The
mismatch probes can be used to remove both background and cross-hybridisation
signals (Lipshutz et al., 1999).

1.2.5 Applications

Microarray experiments are relevant to various areas of biology and medicine, and
they are being used both for research and diagnostic purposes. The massively
parallel biological tests occurring on the large numbers of probes on the array
reduce experimental time significantly and make multi-gene expression compari-
son meaningful due to the uniformity of experimental conditions (Schena et al.,
1998).

1.2.5.1 Expression profiling

The measurement of mRNA abundance has been the dominant application of

microarrays. The pattern of expression of genes (expression profile) can provide
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useful information when measured across disease states, across different experi-
mental conditions (drug treatments or genetic perturbations) and across different
tissues of the same organism (Stoughton, 2005).

A lot of the applications of microarrays are possible because specific gene
expression patterns are directly linked to function. Different expression patterns
can also be indicative of various metabolic states or various stages of diseases
(DeRisi et al., 1996, 1997; Heller et al., 1997; Lashkari et al., 1997; Schena et al.,
1996).

Case versus control One of the most common uses of gene expression exper-
iments is to test two biological conditions, one of which is usually the control
(normal state) and the other the case state (usually a disease). Over- or under-
expressed genes in the case state are likely to be involved in the disease process
being studied, but obviously the likelihood of false positives has to be taken into
account (see Section 1.2.6). Differential expression is indicative of involvement
of the gene to the process being studied, but it usually has to be combined with
other evidence for it to be conclusive (Chuaqui et al., 2002; Lock et al., 2002;
Miklos and Maleszka, 2004). Such experimental designs have also proven useful
to the detection of unwanted side-effects of drugs, as it was shown in the off-target
differential expression caused by immunosuppression compound FK506 (Marton
et al., 1998).

Series experiments A more powerful technique than case versus control ex-
periments are series experiments, which monitor the gene expression response
to external perturbations over a series of time points or a series of data points
gathered at different biological conditions. The presence of multiple gene ex-
pression measurements for each of the genes decreases the dimensionality of the
data, making any conclusions more reliable. Coregulation of multiple genes over
the set of conditions can reveal functional gene groups (Stoughton, 2005). In a
study by DeRisi et al. (1997), all the genes of yeast (Saccharomyces cerevisiae)
were monitored while growing in culture. The genes known to participate in
related metabolic processes did exhibit similar expression patterns. The expres-
sion patterns of other genes, which were previously thought of as unrelated or
were uncharacterised, were used to elucidate the details of the corresponding
metabolic pathways. In a different study by White et al. (1999), gene expression

was monitored during the different phases of early metamorphosis in Drosophila
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melanogaster, and genes were grouped according to their pattern of expression
over the different phases of development.

Body Maps The study of baseline expression of genes in different tissues of a
particular species can result in a body map of normal expression levels (Schena
et al., 1995). The interest in building such a map is a result of the assumption
that the functions of overexpressed genes are linked to the specific functional-
ity of the corresponding tissues, therefore providing indications about the roles
of uncharacterised genes (Su et al., 2004). Also, body expression maps provide
information about the expression levels that should be expected in healthy indi-
viduals of the species being studied. The difficulty of creating such maps depends
on the availability of tissue samples (Del Rio and Barlow, 2002).

1.2.5.2 Genotyping

Specialised oligonucleotide microarrays can be used for genotyping purposes, to
discover DNA sequence variations. More specifically, they can be used for the
easy identification of single-nucleotide polymorphisms (SNPs) which account for
phenotypical differences between individuals and in some cases they determine the
difference between healthy and diseased states (Chakravarti, 1999; Hacia, 1999;
Wang et al., 1998). SNPs may also be indicative of predisposition to certain
diseases.

1.2.5.3 Medical applications

The maturation of microarray technology will eventually reduce the costs to the
point of making it a routine procedure in the medical context. The technology
has already been used to identify cancer sub-types to allow the appropriate choice
of treatment (Khan et al., 2001; Stoughton, 2005). Also, the miniaturisation of
the technology is important to the biomedical applications because it results in
minimisation of reagent consumption and reaction volumes, and acceleration of

reaction kinetics because of the increased sample concentration.

1.2.6 Limitations of microarrays

Despite being a powerful technique which yields large amounts of data, gene

expression microarrays have certain limitations which are imposed by the presence
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of noise in the data, the dimensionality of the data (a source of noise itself) and
certain issues in mapping probes on the array to known genes of the organism.

After the biological experiment has been completed, noise can be introduced
into a microarray analysis due to variations in the manufacturing of the chip, the
preparation of cRNAs, the hybridisation of the sample or the washing step of the
procedure. There are studies which indicate that noise due to sample preparation
is present but small, while noise generated during hybridisation and scanning of
the array is much more significant and dependent on expression level, with lower
levels of expression exhibiting more noise (Tu et al., 2002). Hybridisation noise
is partly due to cross-hybridisation of RNA fragments to probes (non-specific
binding).

Another possible source of noise is due to the normalisation process applied to
the data of multiple array studies. In such studies, the absolute probe intensity
values are usually normalised globally to allow cross-chip comparison. This is
achieved by scaling the values corresponding to each array, and this process can
generate noise especially at the extremes of the signal detection range (Mills and
Gordon, 2001). If the array containing the highest intensity value is used as
reference for the normalising scaling, the highest values of the reference array
are not scaled, therefore producing false positives. Also, signals below detection
range will not be scaled (because they have a measured value of zero).

The dimensionality problem is connected to the number of genes monitored
by a single microarray. Given that a microarray monitors 10,000-44,000 genes at
once, and that usually the differentially expressed RNAs are a few hundred, even
a 1% false positive rate will make the signal to noise ratio quite unfavourable
(Lockhart and Winzeler, 2000).

1.2.7 Ways to overcome limitations

Due to the inherent limitations of microarrays, it is necessary to employ validating
strategies that can distinguish between false and true positives (Bassett et al.,
1999; Mills and Gordon, 2001; Young, 2000).

The most widely used technique for noise filtering from microarray results
involves using only the expression profiles of probes that meet a variability re-
quirement which indicates that the RNA is differentially expressed enough to be
considered significant (Fambrough et al., 1999; Wang et al., 1999). This crite-
rion is usually defined as the requirement for a specific percentage of data points
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to be different to each other above a specific ratio (for example: 30% of the
data points should exhibit more than 2-fold change in comparison to each other).
This criterion is very appealing in an intuitive way, but the threshold is essen-
tially chosen arbitrarily. Because of that, several studies have suggested that
fold-change-based filtering may result in loss of useful biological information due
to an inappropriately high threshold. There is at least one study (Mills and Gor-
don, 2001) that has systematically come to the conclusion that results coming
from probe sets showing a higher fold-change are more likely to be replicated in
subsequent experiments.

Mills and Gordon have also developed an empirical noise filtering method
which uses look-up tables in order to predict the likelihood or reproducibility for
specific transcripts. The look-up tables were derived from comparisons between
hybridisations that used identical RNA populations: any relative increase or
decrease of expression between arrays was interpreted as a false positive and the
likelihood of that occurring was included in the relevant look-up table.

Apart from noise filtering, which is a necessary step before clustering and fur-
ther data exploration, there are techniques that assign confidence values to gene
groupings derived from microarray experiments, and they can rely on internal or

external validation of the results (see section 4.1.3.4).

1.2.8 Future developments

The general trend in microarray technology is for further miniaturisation. This
will allow the use of smaller hybridisation volumes, and the expected increase in
the number of probes will result in greater probe redundancy, which will subse-
quently lead to more reliable results. Limits imposed by the physical properties
of the diffraction of light mean that the miniaturisation can continue down to
probes of about 1um size (Stoughton, 2005).

The integration of multiple microarray studies can potentially enable the com-
plete reconstruction of biological pathways. Although software that integrates
expression data already exists (Franke et al., 2004), this integration is performed
at the level of conclusions inferred from the individual studies. In order to be
able to integrate gene expression studies in a meaningful way at the level of ex-
pression measurements, it is necessary for a more detailed history of the in vivo
experiments to be available (Stoughton, 2005). There are significant efforts be-

ing made in the direction of standardisation of detailed microarray experiment
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descriptions, which will be reviewed in section 2.2.3.

1.2.9 Flow of information in the gene expression experiments

The flow of information in a gene expression microarray experiment is not strictly
linear. The data is acquired and analysed, and the analysis feeds back to the
biological experiment, and back to itself. The amount of measurements involved
means that handling the flow of information in a gene expression experiment is
not a trivial task. Figure 1.3 shows the possible pathways of information and
feedback in the context of a gene expression experiment. It also aims to illustrate

the scope of this study by providing an overview of the processes involved.

1.2.10 Aims of the thesis

The aim of Chapter 2 of the thesis is to explore the information management
challenges that arise in the domain of microarray experiment annotation. The
main focus of the chapter is the standardised annotation of gene expression ex-
periments in order to allow the uniform archiving and sharing of gene expression
data and their accompanying descriptions. Software is designed and implemented
to this end.

Certain expressive limitations of the microarray standards were identified,
concerning the description of high level analysis of gene expression. Chapter 3
addresses some of these limitations by proposing a standardised model which
can be used as a basis for exchange formats describing high level analysis and
validation of this analysis using evidence external to the experiment.

Chapter 4 aims to develop a quality measure for the assessment of the cluster-
ing (partitioning) of gene expression data by using external evidence. The Gene

Ontology is assessed as source of such external validating evidence.
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Chapter 2

Gene expression data

annotation and storage

2.1 Overview

This chapter explores the information management challenges that arise in the
complex domain of microarray experiments. The problems are outlined, and the
community efforts to tackle them are reviewed. The capturing of microarray
experiment meta-data is recognised as a problem which the community has yet
to address in a satisfactory way. The rest of the chapter describes the design and
development of a microarray experiment annotation computer application which
improves on the existing solutions. The design considerations are explained,
and the implementation process is briefly reviewed. A usage scenario is also
presented in order to provide a clearer picture of the functionality provided by
the system. Finally, the received user feedback on the system is presented, and
overall contributions of this chapter are reviewed.

Supplementary material for this chapter can be found at http://www.biochem.

ucl.ac.uk/~sideris/meditor/general.php

2.2 Introduction

2.2.1 Diversity and challenges in data management

In recent years the usage of microarray technology has become very widespread

due to the promise of providing important insights into gene function, and by
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extension into protein interactions and metabolic processes. Although the early
years of microarrays produced only a ‘trickle’ of data, the rate has increased
extensively in recent years (Hayes, 2000). Despite the large amount of information
produced within the course of a single study, combining data from several studies
is essential to the formation of a complete picture of the workings of the biological
system being studied.

There are a number of limiting factors that block widespread access to mi-
croarray data (Brazma et al., 2001). Up until recently, the field had not reached
the level of maturity that would allow proper identification of common concepts
and their subsequent formalisation. Also, microarray data are more complex
in comparison to data produced by other high-throughput techniques (such as
genome sequence data) in that the detailed description of the context in which
the data was produced is essential to their interpretation and reproducibility. It
is important to know the exact state of the organism and any perturbations it
has been subjected to. Comparisons between microarray datasets are particularly
difficult due to the fact that microarray systems do not measure gene expression
in absolute physical units, and many different normalisation algorithms are being
used on the data. Finally, challenges arise due to the large variety of available
microarray platforms and protocols used (Toxicogenomics Research Consortium,
2005): there are one- and two- channel microarrays, diverse protocols for RNA
preparation and labelling, and a large range of software used for image processing
and enhancement and finally quantification of the spots.

2.2.2 Motivation for microarray standards

Systematic and formal description of microarray experiments will confer signif-
icant benefits to the community. Apart from facilitating reproducibility of and
comparability between datasets by providing a detailed description of the exper-
imental context, it will also pave the way to high-throughput automated analy-
sis and ease the management of large amounts of microarray datasets (Brazma
et al., 2001). There are cases where insights have come from analysis of the same
dataset by different researchers, as well as comparisons between gene expression
patterns in different systems (Lee et al., 2002; Ross et al., 2000; Scherf et al.,
2000; Spellman et al., 1998; Waddell and Kishino, 2000). Also, it will allow more
thorough peer review of microarray publications because the exact description of
the context (biological and analytical) in which the data was obtained will help
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assess the reliability of the measurements and perhaps verify them by repeating
the exact experiment.

2.2.3 History and evolution of microarray standards

The first international meeting of the Microarray Gene Expression Databases
(MGED) consortium was held in November 1999 (Hayes, 2000). This, and the
subsequent meeting on May 2000, laid down the foundation of a set of guidelines
defining the Minimum Information About Microarray Experiments (MIAME)
that must be reported to allow ‘the interpretability ... and potential independent
verification’ (Brazma et al., 2001) of microarray experiments. It was not the first
time that it had been desirable to formally define a standard of minimum infor-
mation requirements in the life sciences: similar requirements exist among the
journals of the macromolecular structure community, and a similar standardised
list of requirements is being developed by the neuroimaging community (Govern-
ing Council of the Organization for Human Brain, 2001).

MIAME focused on microarray gene-expression data but it did not define any
specific format the data should be provided in—it was defined as a starting point
for the development of further, more specific, standards. The basic requirements
for MIAME compliance are that the information provided should be enough for
comparison to other experiments and reproducibility (which implies detailed an-
notation of the sample and experimental conditions), and that the information
should be in a structured format which would allow useful queries and automated
analysis of datasets. An important aspect of MIAME in relation to public repos-
itories is that the annotations that remain constant (standard protocols, array
specifications etc) only need to be provided once, hence allowing the reuse of
annotations by submitting only the descriptions of deviations and parameters
specific to individual experiments.

The MGED consortium also published an open letter to the microarray com-
munity (Ball et al., 2002), which prompted authors, editors and referees to follow
the MIAME guidelines when publishing or dealing with publications which make
use of microarray data. The response was generally very favourable, resulting
in an increasing number of journals (such as Nature, Cell and Lancet) adding
MIAME compliance to their list of requirements.

The Life Sciences Task Force of the Object Management Group (OMG) devel-
oped the MicroArray and Gene Expression (MAGE) object model (MAGE-OM),
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which is able to express MIAME compliant information. MAGE was the re-
sult of merging and abstracting the original XML format developed by MGED,
called MicroArray Mark-up Language format and the Rosetta-developed Gene
Expression Mark-up Language (Stoeckert et al., 2002).

While the MIAME guidelines provided a set of general concepts to be in-
cluded in microarray experiment annotations, MAGE-OM provided a description
of relationships between the concepts, but neither formally defined the specific
terminology for the annotation of the domain (Whetzel et al., 2006). The need
for specific terms was recognised early in the development of the standard, but
an ontology was only developed later when the standards had reached greater
maturity. The transitional solution was to allow the users of MAGE to refer to
existing ontologies and controlled vocabularies by using the Ontology Reference
concept. This is a triplet which includes a qualifier, a value and a reference to the
source of the annotation (Brazma et al., 2001). Allowing such references acted
as a survey among users of MAGE, and informed the development process of the
MGED ontology.

The MGED ontology is a microarray experiment ontology with an open
scope to other functional genomic technologies such as array-centric comparative
genome hybridisation, chromatic immunoprecipitation on chip, or proteomics ex-
periments, and it is in fact already being used in these domains (Whetzel et al.,
2006). The focus of the included concepts is on the interpretation and analysis of
the experiment, and not on the molecular and cellular attributes of the organisms
involved (Stoeckert and Parkinson, 2003).

Some concepts concerning the experiments can be captured within the ontol-
ogy (for example details about the treatments used), but other aspects are much
more difficult to cover and are already being covered by other extensive and spe-
cialised ontologies or resources. For instance, the possible organisms that can
be used in experiments are too numerous to be included in the MGED ontology
and are beyond its scope—instead it is possible to refer to the external taxon-
omy available from the National Center for Biotechnology Information (Wheeler
et al., 2007). There have been cases where newer and more specialised ontologies
have superseded part of the MGED ontology, such as the case of the Sequence
Ontology (SO) (Eilbeck et al., 2005) in which case the default policy is to declare
the relevant MGED terms deprecated and to provide a mapping between them
and the corresponding SO terms.

The MGED ontology covers the annotational need for biomaterials, any ma-

34



2.2. Introduction 2. Gene expression data annotation and storage

nipulations that the materials undergo, experimental designs used, and the mi-
croarray platforms used, including relevant protocols. Version 1.3 of the ontology
contains 233 classes, 143 properties and 681 individuals, and is divided into the
core and extended ontologies, the former being more stable for use in production
software and the latter allowing further development. Recently (Whetzel et al.,
2006), the old DAML+OIL format (http://www.daml.org) of the ontology was
superseded by the more advanced OWL format (http://www.w3.org/2004/0WL),
which allows the definition of synonyms and other annotations on the ontology
terms.

Because of the need to support the MAGE model directly, the top-level
structure of the MGED ontology mirrors that of MAGE-OM (only the required
classes), therefore implicitly providing a mapping between the classes of MAGE-
OM and the ontological classes. This has resulted in an ontology that is tightly
coupled to the specific object model and therefore has limited application with
other object models (Whetzel et al., 2006).

Annotating microarray experiments using a common ontology can have var-
ious benefits: common terms allow human researchers to be certain about the
definitions of the terms used and avoid ambiguities, and also allow computational
inferences to be made on the data, enabling better comprehension, re-analysis and
replication of the experiments (Stoeckert et al., 2002).

2.2.4 Limitations of the MGED standards

Some doubt has been expressed on whether MGED ontological annotation will
manage to add value to published datasets, due to its failure to comply to inter-
national ontology standards defined by the Institute of Electrical and Electronics
Engineers (IEEE), which will potentially limit its usefulness in the growing fields
of biological knowledge discovery and computational inference (Soldatova and
King, 2005). It seems that this failure of compliance is very common among
biological ontologies, and the MGED ontology is specifically criticised about the
fact that it is MAGE-OM-centric, the use of ‘package’ classes, incorrect or in-
appropriate naming, incorrect or unclear definitions, unnecessary use of multiple
inheritance, over-use of properties, and unclear guidelines on the distinction be-
tween the core and extended ontologies. Soldatova and King suggested that now
that the field has matured, it would easier to develop a new, better-structured,
ontology from scratch by reusing significant parts of the MGED ontology, rather
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than trying to re-structure the original ontology. Despite these shortcomings, the
MGED ontology is the currently accepted community standard and the de facto

annotational resource.

2.2.5 Future directions of the standards

The Functional Genomics Experiment Ontology (FuGO, http://fugo.sf.net),
is an ontology that will encompass different technological and biological domains
in the area of functional genomics which is already being developed by a col-
laboration between the MGED Ontology Working Group, the MGED Reporting
Structure for biological investigations, the HUPO proteomics standards initiative
and the Metabolomic society.

The MGED Society is also developing the Minimum Information Specification
For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE).
This specification is the equivalent of MIAME for visual interpretation-based tis-
sue gene expression localisation experiments such as in situ Hybridization, im-
munohistochemistry, reporter construct genetic experiments (GFP /green fluores-
cent protein, (-galactosidase), etc. The MGED Society is planning to develop
an object model and an XML data exchange format (with similar roles as the
MAGE object model and MAGE-ML respectively, see Section 2.2.6.1) in the near
future.

2.2.6 Existing applications based on the MGED standards

In this section we briefly present software that has either been developed as a
direct consequence of the appearance of the MGED standards or software that
supports the standards in some way. Also, gene expression annotation software

is included due to its relevance to the chapter.

2.2.6.1 Middleware

MAGE-ML The primary product that came out of the MAGE specification
was MAGE-ML, the XML format for microarray information interchange. The
specification for MAGE-ML was derived from the MAGE model in an automated
manner.

MAGEStk Soon after the appearance of MAGE-ML, MAGE Software Toolkit
(MAGEStk) was developed. This toolkit allowed generation and parsing of
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MAGE-ML. There are Java, Perl and Python versions of MAGEStk and they

are all generated in a semi-automatic automatic manner from the MAGE model.

2.2.6.2 Repositories

ArrayExpress ArrayExpress is a public repository based at the European
Bioinformatics institute. MIAMExpress (see Section 2.2.6.3) is its main sub-
mission mechanism, although submissions in MAGE-ML or spreadsheet files are

also possible.

Gene Expression Omnibus (GEO) GEO is a public repository of gene ex-
pression data based at the National Center for Biotechnology Information (NCBI)
(Barrett et al., 2005, 2007). GEO currently stores approximately a billion individ-
ual gene expression measurements, derived from over 100 organisms. It features a
web-based interface for querying, and visualisation. Experiments can be submit-
ted as MAGE-ML, over the web interface or using one of the custom file formats
(MINiML, SOFTtext and SOFTmatrix). The repository can be queried in an

experiment-centric or a gene-centric manner.

Stanford MicroArray Database (SMD) The SMD is repository which holds
public and private datasets (Sherlock et al., 2001).

maxd mazd is a data warehouse and visualisation environment for genomic
expression data. It is being developed by the Microarray Bioinformatics Group of
the University of Manchester, and uses mazdLoad2 as its experimental annotation
front-end.

The Sanger Institute Microarray Facility The microarray repository pro-
vided by the Microarray Facility of the Sanger Institute uses the MADAM soft-

ware for the annotation of microarray experiments (reviewed in Table 2.1).

GeneX An open source microarray database implementation, which is web-
based but also involves stand-alone Java applications. Note that GeneX is not
a repository, it is the relevant software which can be used in order to set-up a
repository (Mangalam et al., 2001).
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RNA Abundance Database (RAD) A public repository based at the Com-
putational Biology and Informatics Laboratory of the University of Pennsylvania,
which uses the RAD Study-Annotator (see Section 2.2.6.3) as its main submis-
sion tool (Manduchi et al., 2004). It can export datasets as MAGE-ML using the
MAGE-RAD Translator.

2.2.6.3 End-user applications

The focus of this section is MGED standards-compliant end-user applications
which offer experiment annotation functionality. Different aspects of the ap-
plications are examined: availability (software license and operating system re-
quirements), scope (functionality provided and experimental platforms covered),
usability and interoperability (conformance to standards). Some specific char-
acteristics are considered in relation to usability: whether the software allows
non-linear annotation of the experiment, whether annotations are reusable (by
the same user or among users) to prevent duplication of effort, and the extent
to which the interface is customisable. In some cases, the descriptions in this
section are based on the documentation of the software and the relevant papers,
and not on actual hands-on experience.

Table 2.1 summarises the comparison between the different microarray anno-

tation applications (not all applications in the table are reviewed here).

MIAMExpress The ArrayExpress repository offers MIAMExpress as the front-
end experiment submission tool (Sarkans et al., 2005). It is a web-based applica-
tion that allows some reuse of existing annotations and features limited sharing
between users (previously submitted array descriptions can be used by other
users). No customisation of the interface is allowed and MIAMExpress does not
use the MGED ontology.

Bloader Bloader is a stand-alone application for submitting experiments to
MIAMExpress (Schwager and Blake, 2005). Its interface has been designed to
overcome limitations exhibited by MIAMExpress when submitting datasets with
a lot (more than 10) hybridisations. It achieves higher usability by employing
a spreadsheet-like interface that allows easy duplication of entries. It does not
use the MGED ontology and it runs only on the Microsoft Windows operating
system.
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BASE The BioArray Software Environment is a web-based LIMS and microar-
ray analysis application (Saal et al., 2002). It allows non-linear editing and it
employs the concept of ‘items’ to facilitate annotation reusability. It also allows
sharing of descriptions among users, and its interface is customisable to some
extent. It does not support the MGED ontology, nor does it support bulk upload

of data but both those features have been planned for future versions.

RAD Study-Annotator An open-source web-based LIMS which features an-
notation reuse and fully supports the MGED ontology (Manduchi et al., 2004).
Also, it has been customised for specific collaborators of the developers for the
purpose of annotation validation, but it does not inherently support customisa-
tion of its interface. An important point is that RAD Study-Annotator is only
compatible with the Internet Explorer browser.

maxdLoad2 A stand-alone cross-platform experiment submission tool for mazd
(Hancock et al., 2005). It employs the MGED ontology extensively to ensure
standards compliance, takes into account the MIAME checklist and it supports
the relevant interchange formats. It also provides tools for importing data from
spreadsheets. Another important feature is that the definitions of the meta-data
captured by maxdLoad2 can be customised through a centralised configuration
file, allowing the changes in response to specific user needs or revisions to the
standards. Finally, a web-based component (mazdBrowse) allows access (but not
editing) of the submitted datasets through a browser or through web services.

Longhorn Array Database (LAD) front-end The Longhorn Array Database
is an open source version of the Standford Microarray Database (SMD) (Killion

et al., 2003). Although the source code of SMD is available, its architecture

is based on the proprietary Solaris operating system and the Oracle database,

which would both burden laboratories wishing to use it with significant costs.

The LAD port of SMD relies on the Linux operating system and the PostgreSQL

database which are both freely available and therefore significantly cheaper to

install and maintain. LAD has a very basic interface for data annotation which

is customisable to some extent by changing the relevant templates. It does not

support MAGE-ML export for the time being.

39



g
S = -
E 5 2 g _ 2z
2 % = -~ © g X
— ~ = = .> — [«b]
s @ > 3 2 B 5 4
= 8 -
g e = S £ B w E 8 @ @
i 72} g ] = oS =] =)
o Q o pt = 1 e £ 8 3 U O
& & §% £ siEifzoz
2z ) o 0o g & 8 8 8 8 =2 =
ArrayHub L1 Affy o x [O% e e e o o e
BASE o] * ° - N e e e « o0 o °
Bloader 4 * e Win B e e 0o o o o o*
GeneDirector (L) b * o % B e e ¢ 0o o o o
GEO front-end O * - )N o «€ o o o e °
LAD ) 2-colour e - )-8 o e « o o o
LIMaS o 8 o o
MADAM b * ° * B e ¢« o ¢« o o o
maxdLoad2 O * . - B o o e e °
MIAMExpress 74 * ° - X o e ¢« o o o e
uArrayDB N * o - % o
NOMAD A ° - B o
Partisan arrayLIMS b * o - X o e e 0 « o e
RAD Study Annotator [H * * - B e o « e .
Legend
general types interfaces
e yes/supported b’ analysis tool B stand-alone
o no/not supported @ LIMS ¥ web-based
« partly supported B repository
> any &  submission tool

— not applicable

* MAGE-ML export occurs indirectly through ArrayExpress.

Table 2.1: Table summarising the features of microarray experiment annotation software. The absence
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2.2. Introduction 2. Gene expression data annotation and storage

2.2.7 Limitations of existing applications

From the above discussion it is apparent that the microarray community finds
the problem of microarray experiment annotation particularly challenging. With
very few possible exceptions, the applications that set out to capture microarray
experimental meta-data exhibit shortcomings in various areas. In the area of
usability, all web based applications face the limitations of using the web as a
platform for such a complex task, unless they are developed using the AJAX
techniques (see Section 2.6.4.1) something that has not been done up to now.
The limitations of the web as platform were demonstrated in practise when it
was necessary to develop Bloader to handle the cases MIAMExpress could not
handle because of its user interface limitations.

One of the important challenges identified early in the development of mi-
croarray standards (and at the same time partly the motivation for their devel-
opment) was the significant diversity of experimental details. This resulted in
the development of complex standards that attempt to formalise the whole field.
The complete standards are not relevant to experimentalists with specific needs,
therefore presenting them with all the possible modelled concepts during the an-
notation process would be excessive and confusing. When focusing on specific
microarray platforms (e.g. ArrayHub and the Longhorn Array Database), the
existing annotation applications just provide the users with an interface specific
to those platforms. There are annotation applications though (such as MIAMEx-
press) that aim to be generic in terms of experimental platform, and therefore
they have to be quite flexible and expressive at the same time. This creates the
need for customisation capabilities of the user interface, to enhance usability and
to avoid flooding users with irrelevant options (from their point of view). As seen
in Table 2.1, very few of the available applications provide customisation capa-
bilities, and when they do, they either require re-programming (as in the case of
the RAD Study-Annotator) or significant help from a bioinformatician (as in the
case of maxdLoad2).

Another important aspect is availability. Sophisticated microarray experi-
ment annotation software seems to exist, but it is often commercial (ArrayHub
and Partisan arrayLIMS) or the source code is not available (such as in the case of
SMD up to recently). Software that succeeds in other areas, exhibits limitations
of availability through limitations related to the operating system (e.g. Bloader
only runs on Microsoft Windows), or through the inherent difficulties of devel-
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oping web applications (e.g. RAD Study-Annotator can only be used through
Microsoft Internet Explorer). This lack of cross-platform support has become
increasingly relevant in the past few years due to the growing adoption of Linux
and other non-commercial operating systems and browsers by a growing number
of academic facilities.

Finally, while most applications support handling (mainly export) of MAGE-
ML, there seems to be a general lack of support for the MGED ontology, with
the notable exceptions of RAD Study-Annotator and maxdLoad2. This is to be
expected, because the ontology is the youngest of the family of MAGE standards
and still under active development, therefore less easy to take into account when
developing a new application. However, one could claim that supporting the on-
tology is of vital importance to adhering to the MGED-defined standards due to
the relationship the ontology has to the rest of the standards: the MAGE model
(and by extension MAGE-ML) only cover the basic conceptual structure of a
microarray experiment, while the ontology provides the more specific terms for
annotation. Therefore, support for the ontology within an application would pro-
vide the user with a much more rigorous annotational tool, affect the final quality
of the annotation produced and maximise the potential added value conferred to

the dataset by the presence of annotations.

2.3 Motivation

From the review of the available software that provides gene expression anno-
tation functionality, it is evident that this is a need that the community finds
particularly challenging to cover. Limitations that we have identified include is-
sues in usability (lack of customisability), lack of support for the MGED ontology,
and limited availability either due to platform issues (even among web-based ap-
plications in some cases) or due to proprietary source code. Usability has proven
an important factor in the success of gathering experimental meta-data, since ex-
perimentalists are already reluctant to spend the extra time required to produce
those annotations.

Because of those factors, there was a clear motivation for developing a user-
friendly laboratory information management system that would allow microarray
experimentalists to annotate their experiments, and publish those annotations to
the community regardless of their experimental platform of choice. The chosen
name for this application is meditor which stands for MAGE editor.
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It is worth noting that the since the beginning of the development of med-
itor some applications (like RAD Study-Annotator and maxdLoad2) were also
developed that do address most concerns mentioned here. Those applications
were developed in parallel to meditor and each provide different solutions to the
problems of the process of annotating microarray experiments to the solutions
provided here.

2.4 Requirements

The design of the laboratory information management system was based on spe-
cific requirements laid out with the help of experimentalists.

meditor was intended to cover the microarray meta-data capturing needs of
small research groups. Although ideally any of the research scientists should be
able to use the system in order to describe their experiments, it was expected
that at least one expert user per laboratory (possibly a bioinformatician) would be
necessary. The role of the expert user would be to perform the initial installation
of the system, to provide training to the rest of the users and possibly input some
of the experimental annotations that would be reused within the research group
(see Usability paragraph below).

The expected benefits from capturing microarray meta-data using meditor
within a research group can confer a variety of benefits. In terms of internal data
handling, the usage of meditor should result in better archiving, organisation
and documentation of the data. In the context of the scientific community, the
MAGE compliance of meditor would allow the submission of the data and their
accompanying annotations to public repositories, enabling the reproduction of
the experiment by other researchers.

In the long term, and if the MAGE standards are widely adopted, it may
possible that the public gene expression repositories will contain collections of
microarray experiments for each organism which will cover a wide range of con-
ditions. In this case, the detailed annotations of the experiments could allow the
automatic data mining and re-analysis of this wealth of biological information,
possibly leading to novel insights about the organisms concerned. This would
take fuller advantage of the potential of the large amount of information pro-
duced by each gene expression experiment and it could possibly result in being
able to test hypotheses by re-using data that was originally produced for different
experimental purposes.
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The main requirements were experimental platform neutrality, extensibility,
interoperability, usability, availability, and economy during development. Below
they are described in more detail.

Experimental platform neutrality The system should be neutral as to which
experimental platform was used. This meant that it should be able to describe
gene expression microarray studies that use different protocols, are applied to

different organisms, and involve microarrays of various technologies.

Extensibility The need for experimental platform neutrality led to the require-
ment of extensibility. The standards laid out by the community are quite stable,
but due to the relative immaturity of the field extensions or modifications of the
standards are introduced from time to time. Also, it has been noted that the
standards used to describe gene expression microarray experiments are applica-
ble to other related technologies (proteomics for instance), and will be extended
towards that direction. The fact that the standards are still evolving should be
taken into account to ensure the relevance of the system in the future, and allow

for the possibility that one of its next versions may cover related technologies.

Interoperability Platform neutrality is one of the ways to increase the scope
of meditor, but this effort would not be complete without interoperability. This
means that the structure and vocabulary used to represent microarray informa-
tion should follow the standards defined by the MGED Society. It also means
that meditor has to be able to handle the standard file formats defined by the
community to allow free data exchange. The idea of interoperability could also
extend to more technical aspects of the effort, for example it would be desirable
to be able to run meditor on many different operating systems.

A specific requirement in terms of interoperability with other existing systems
in the microarray domain, was to be able to export a dialect of MAGE-ML
which would be appropriate for importing into the ArrayExpress database. Since
some scientific journals require that the relevant data of publications which use
microarrays are available in a public repository, meeting this requirement would
make the publication process simpler.

The requirement for exporting to the ArrayExpress database makes it neces-
sary to adopt Life Science Identifiers (LSIDs) for the identification of the entities
of the meta-data. LSIDs are persistent identifiers that aim to identify biological
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entities and concepts in a universal way, independently of the issuing authority
(http://1sids.sourceforge.net/). The usage of such identifiers is dictated by
the MGED standards.

Usability The knowledge domain of microarray experiments is quite complex
and modelling it has been a significant challenge. The necessarily complex model
and vocabulary that have emerged are appropriate to be used by software devel-
opers, but not by end users (the experimentalists). Some aspects of the model
have to be emphasised in the user interface of meditor, while others should be
de-emphasised or even hidden from the end user.

Some parts of the model may be more relevant to particular users in com-
parison to others, depending on their specialised needs, so some degree of user
interface customisation capabilities is desirable. The system should allow anno-
tations that are constructed in a non-linear fashion—the users should be able to
annotate experiments in the course of several sessions, building up the annota-
tion as the study progresses and by refining annotations that have already been
provided. Finally, the system should prevent the users from entering incorrect
annotations, it should inform them about incomplete ones, and it should provide
guidance for the completion of the annotations.

Another important aspect of the usability requirement is the minimisation of
effort through reuse of annotations. Because the process of annotating microarray
experiments is time consuming and complex, the users should not be expected
to have to enter the same data more that once. The means of reusing previous

annotations should be provided in order to make the system more usable.

Availability There are two points concerning the availability of meditor. The
first concerns availability of the software to the users, which can be achieved by
ensuring installation of the application is not overly complex, and by minimising
the platform constraints (such as specific operating system/browser) of the appli-
cation. The second point concerns availability of the source code to developers.
Software is an ever-evolving entity and several success stories show that open
source projects can greatly benefit from the scrutiny and the contributions of

other developers (e.g. the Linux operating system and the Firefox web browser).

Security and privacy As mentioned, meditor was intended for use within

small research groups, and in order to cover the meta-data capturing needs of the
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members of the group. Because of this intended user-base, it was assumed that
the users environment would be one of mutual trust and that data sharing would
already be cocurring. Based on that, it was decided that there was no need to
secure the data of a particular user in order to prevent the other users of the

system from accessing them.

Economy during development Due to the fact that meditor was mainly the
effort of a single developer, it was necessary to choose economical solutions during
its development (open source libraries, reuse of code etc).

2.5 Specifications

In order to satisfy the requirement for experimental platform neutrality, it was
decided to use the MAGE object model as the abstraction layer of meditor. The
MAGE object model has several implementations, the most widely used being
the Perl and the Java implementations, both called MAGEStk (discussed in Sec-
tion 2.2.6.1). Using the MAGE model implementation as the abstraction layer of
meditor will ensure maximum coverage of microarray experimental concepts.

The MAGE object model is complemented by the MGED Ontology, therefore
meditor would have to incorporate the ontology to the process of producing meta-
data annotations. The MGED ontology is less stable than the MAGE object
model, and is still in active development, therefore the design of meditor has to
allow for extra flexibility in the handling of the ontology. This approach also
satisfies the requirement of extensibility to some extent.

To ensure interoperability with other microarray software it would be neces-
sary to provide functionality for exporting the annotations produced to a com-
munity approved file format. At the time of designing meditor the most widely
used format was MAGE-ML, the XML incarnation of the MAGE model. The
original purpose of the MAGEStk toolkits was to export MAGE-ML, so using
one of them as the main abstraction layer for meditor automatically provides
MAGE-ML exporting functionality.

In order to address the multi-platform aspect of the interoperability require-
ment, it was decided to implement meditor using the Java programming language
which allows the development of multi-platform software with minimal effort.
Also, Java is particularly strong when it comes to producing software with a rich

graphical user interface, which is necessary for meditor to be user-friendly. The

46



2.6. Design decisions 2. Gene expression data annotation and storage

choice of Java also meant that the Java version of MAGEStk had to be used.

The graphical user interface of meditor was designed with the help of experi-
mentalists who use different microarray platforms, to ensure that the elements of
the interface are organised in a meaningful way. This helped with the evaluation
of importance of the different aspects of the MAGE model, and informed the
decisions on which aspects of the model would be represented more prominently
in the user interface.

Several strategies were used to achieve reuse of annotations through the user
interface. The first strategy involved dividing the experiment annotations into
logical units (like protocols or samples) that can be treated as reusable compo-
nents. For example, common protocols exist within laboratories, therefore such
an approach allows the reuse of the annotations concerning a protocol that has
already been described. In order to allow reuse between users within the same
lab, meditor had to provide a sharing mechanism of annotational components. In
some cases it is not appropriate to divide the annotations into further compo-
nents, so a different approach should be used to achieve reusability: it has to be
possible to create, store and reuse preset annotations which describe a certain
aspect of a larger annotational entity.

Finally, it was decided to base the development of meditor on freely available
open source software components whenever possible, partly to help reduce the
development time. Also, the Java programs have proven easier to develop and
debug in comparison to programs written in other languages also traditionally
used for graphical user interface applications (such as C and C++).

2.6 Design decisions

This section explains the design decisions made to satisfy the requirements and
specifications of meditor. Those decisions concerned the platform of develop-
ment, the abstraction of microarray experimental information and its storage,
mechanisms that guarantee high quality annotations and finally the export of
the information produced in a standards-compliant format.

2.6.1 Abstraction (MAGEStk-meditor classes)

The Java version of MAGEStk is used within meditor as the main way to represent

MAGE objects and concepts. The toolkit itself was initially designed to offer just
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MAGE-ML export, and its use within meditor is a different use-case, because it
involves using the objects to run a graphical application and also storing and
retrieving the same objects to and from a database. This made it necessary to
modify MAGEStk to fit the use-case of meditor better (see Section B.3.0.1).

The graphical user interface of meditor introduced extra concepts that could
not be represented just by using the classes present in MAGEStk. Therefore,
it was necessary to develop extra classes reflecting those concepts, and hold-
ing the relevant information in their instances. Those extra classes are found
mainly in the org.biomap.meditor.gui.trees and the org.biomap.meditor-
.gui.studyDesign.abstraction packages, and their persistence is handled sep-
arately (see Section B.3.0.1).

It was also necessary to augment the functionality of MAGEStk by creating
a set of helper classes that are all under the org.biomap.mage package. These

classes provide methods for:

o Easier navigation of a possible MAGE object tree (e.g. the case of the
findBioSources() method of the BioMaterialHelper class, which finds
the BioSources that a BioMaterial is derived from).

e Easier construction of parts of the MAGE object tree (e.g. in the case of
OntologyEntryHelper).

e Deep-copying of a MAGE object (e.g. in the case of MeasurementHelper).

e Printing information about a particular MAGE object instance (either for

debugging purposes or for on-screen display).

A more detailed account of the added MAGEStk-related functionality can be
found in Table B.2 and Section B.2.

2.6.2 Annotational quality

In order to ensure consistency within the annotations produced by meditor, it is
necessary to standardise the choices provided to the users as much as it is practi-
cally possible. The MGED ontology provides the controlled terms necessary for
such standardisation. The structured nature of the ontology provides groupings
of terms which can be reflected in meditor. Also, the ontology defines clearly
which aspects of the annotation should be populated by controlled terms and
which can accept free text. The decision to use the ontology affected the design
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of the user interface in a very direct manner, since whole aspects of the interface
have been directly derived dynamically from the structure and the contents of
the ontology (see Section 2.7.3.3).

The requirement for the capability of non-linear construction of annotations
creates the possibility of constructing incomplete annotations. This is because the
user is allowed to add to the annotations as the data becomes available. Because
of that, it was necessary to provide mechanisms that check the experiment anno-
tations for completeness and disallow the exporting of incomplete annotations of
studies. It was decided that the logic of those checks would be hard-coded, due
to the complexity of developing a generic solution.

2.6.3 Data storage architecture

The need to have at least some degree of intra-laboratory annotation sharing
led to the decision of using a system architecture that involves a centralised
database storage being accessed by a number of clients. This would allow sharing
of annotations within the same lab, and also provide a central repository for all
the users of a specific laboratory.

It was decided to use the ArrayExpress database schema to cover the infor-
mation storage needs of meditor. This was appropriate because both MAGEStk
and the ArrayExpress schema are directly derived from the MAGE model, there-
fore they exhibit an almost complete one-to-one correspondence of concepts, due
to the fact that both where derived directly from the MAGE object model, and
therefore it was expected that making them work together would not be overly
challenging. The fact that the schema derived directly from the model also en-
sures MAGE compliance and retains the flexibility and expressive power of the
model.

The drawback of this approach is that the resulting schema is highly nor-
malised, and as such, it is slower to query in comparison to other less normalised
schemas. Despite the querying speed disadvantage, the ArrayExpress schema
was chosen as the back-end of meditor in order to ensure maximum compatibility
with the ArrayExpress repository and full compliance to the MAGE standard.
The back-end database of meditor has the role of a repository for archiving the
annotated microarray experiments: it is not expected for it to be heavily queried,
therefore query speed was a minor factor in this decision.

Due to the numerous classes present in the MAGE model and the numerous
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tables of the ArrayExpress schema, it was necessary to employ an approach that
would automatically handle the storage and retrieval of the instances of MAGE
classes to and from the database. The open-source object-relational mapping
library Hibernate (http://www.hibernate.org) was chosen for this task due to

its success with other projects (such as JBoss, http://labs. jboss. com).

2.6.4 User interface design

meditor is an end user application that aims to tackle the difficult problem of
annotating microarray experiments, by relieving the users from as much of the
burden of this task as possible. It has been shown that the design of the user
interface and its perceived aesthetic value affects the overall usability of computer
applications. More specifically, the perceived aesthetics of a user interface affect
its acceptability (Kurosu and Kashimura, 1995; Tractinsky, 1997), its learnability
(Grabinger, 1993; Szabo and Kanuka, 1999), its comprehensibility (Tullis, 1981)
and the productivity of its users (Keister and Gallaway, 1983).

Because of the importance of the graphical user interface to the effectiveness
of meditor as an annotational tool, in the following sections (Section 2.6.4.1 to
2.6.4.4) the considerations involved in the GUI design of the system are discussed.
Specifically, it was important to decide whether the web would be used as a
platform or whether meditor would be developed as a stand-alone application.
Also, user interface metaphors are discussed as a way to make the system more

usable.

2.6.4.1 Stand-alone versus web-based applications

With the increasing popularity of the World Wide Web there has been a similarly
increasing tendency for the development of web-based applications. The web as a
platform provides the developer and the user with a set of important advantages.

The deployment of a web application is very easy, since installation is only
necessary on the server. In addition, the data that the users produce are stored
in a centralised way (on the server) and therefore can be accessed from more than
one computer.

All those factors make the web a justified choice for most applications, and
the microarray informatics community has mainly produced web-based applica-
tions for the purpose of annotating experiments. ArrayExpress has its accom-
panying experiment submission tool, MIA MEzpress which is web-based (Sarkans
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et al., 2005). The RNA Abundance Database (RAD) collects MIAME informa-
tion through the web based RAD Study-Annotator (Manduchi et al., 2004).

On the other hand, there are certain applications that require a richer or
more responsive graphical user interface. The current state of HTML and the
related technologies can provide the desired interactivity and responsiveness of
advanced graphical applications, but the cost of developing complex interfaces
using the web as the platform poses challenges that increase the cost in terms of
effort and time. These challenges partly arise due to the need for integration of
a number of interacting technologies: Javascript, HTML, CSS layers, XML, Java
applets, server side code (e.g. PHP) and the database all have to be orchestrated
to act together as a single application. On top of that, browser compatibility
should also be considered, since Microsoft’s Internet Explorer is no longer the only
widely-used browser (http://www.w3schools.com/browsers/browsers.stats.asp).
In recent years, cross-browser compatibility has improved, but it still poses a
challenge. In the cases that require more complex interfaces, the usual problems
arising by using the web as a platform become even larger, so a desktop client-
side solution can be much more convenient and effective in terms of development,
because it leaves out the factors of browser compatibility (the GUI is stand-alone)
and it reduces interactions between different technologies (the application can be
written in a single language).

It should be noted that recently a programming technique called Asynchronous
JavaScript and XML (AJAX) has gained popularity among web developers. This
technique allows the development of web-based applications with a rich and re-
sponsive interface which provide a significantly enhanced user experience in com-
parison to traditional web-based applications, with numerous successful websites
employing the technique. The method was at its infancy when meditor was being
designed, so it was not considered at all.

Slowly the microarray community is realising that the annotation of microar-
ray studies requires a platform that can deliver a richer graphical user interface
than the web. More recently developed solutions like BLoader (Schwager and
Blake, 2005) and MAXD Load (http://bioinf.man.ac.uk/microarray/maxd/
maxdLoad2/) are stand-alone desktop applications, and because of that they can
deliver a richer graphical interface which includes diagrams and spreadsheets.

Other examples of types of application that require a richer client than the
browser usually fall in the category of content creation: text document editing in

most cases is problematic and limited using a web browser and image creation and
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manipulation applications of professional specifications are currently impossible
using the web as a platform.

2.6.4.2 Data input versus content creation

Applications with a user interface can be loosely divided into two categories, de-
pending on the tasks they are expected to perform: data input applications and
content creation applications. Although the two categories are overlapping, it
is possible to provide definitions for them. The data input applications usually
involve a simple and possibly repetitive task that involves gathering data with
simple structure from the user. Such data input applications usually require
simple and minimal interaction with the user. A web-based registration form
for an online service is an example of a very simple data entry application. On
the other hand, content creation applications involve creating complex “docu-
ments”. Documents in this context can be richly formatted texts, images, sounds
or combinations of all. Such applications naturally involve much more complex
interactions with the user and therefore require a more sophisticated interface.
Examples of content creation applications involve word processors, image creation
and manipulation software, 3D modelling software etc.

MAGE is a very rich and complex language, which means that any applica-
tion that allows users to describe their experiments in MAGE, will be a content
creation application rather than a mere data input application. To some extent,
this depends on how big a part of MAGE is used—it is true that MAGE compli-
ant tools that have been designed for serving specific user groups or to work with
specific microarray platforms, can qualify as data input applications because they
only need to cover the part of MAGE that is relevant to them. meditor on the
other hand needs to be highly generic, it has to serve diverse users with diverse
needs and to take full advantage of the expressiveness and flexibility of the MAGE
model, so it has a greater scope in comparison to other applications. Because
meditor has to support the extensive features provided by the MAGE model, it
qualifies as a content creation application, and it needs a more advanced interface
in order to present the MAGE model in a meaningful and user—friendly way. It
would be possible to create such an interface using the web as a platform, but at
a significantly higher cost in terms of time and effort.

Because of the reasons explained above, it was decided that meditor should

not be developed as a web application. It was instead developed as a stand-alone
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Figure 2.1: General architecture of an meditor setup.

desktop application, with a centralised database back-end, to allow information
sharing between users. Figure 2.1 shows the outline of a hypothetical meditor
setup in a laboratory (although this is not the only possible setup).

2.6.4.3 GUI metaphors

A very common technique used to make graphical interfaces easier for the users to
learn and use is to employ metaphors that help leverage existing user knowledge
of natural objects and processes. Barr et al. (2002) have provided a taxonomy of
user-interface metaphors, according to which they can be divided in orientational
metaphors (e.g. up is more), ontological metaphors (the file is an object), and
structural metaphors (using the database system is filing). Structural metaphors
are further divided into element metaphors (the cursor is a paintbrush) and pro-
cess metaphors (using the budgeting software is real-world budgeting or using a
LIMS is writing a lab logbook). User interface metaphors can either be conven-
tional (the ones already used by the target audience without thinking) or novel
(all the remaining metaphors). Based on this taxonomy, Barr et al. propose a
set of heuristics that can be applied to user-interface design to enhance usability:

e The interface designer should be clear about the things that are not implied
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by a conventional metaphor, and should also make sure that the implica-

tions of novel metaphors are clearly presented.

e The number of implications that are left out should be minimised to prevent

confusion.

o Orientational metaphors often structure multiple objects, so the metaphor
should fit all of them.

e The number of process metaphors covering the programme functionality
should be minimised, and each element metaphor should be based on a

process metaphor.

e The ‘metaphoric world’ of the users should be understood deeply in order

to ensure that the metaphors fit their expectations.

The application of these principles on meditor is discussed in Section 2.9.1 on

page 77.

2.6.4.4 Formal GUI quality measures

There have been several attempts to develop metrics that measure the quality of
alphanumeric layouts. Ngo et al. (2000, 2003) extended these ideas to develop a
set of aesthetic criteria that were also quantified as metrics to produce a measure
of overall appropriateness of a user interface layout. The fourteen elements of the
metric measure the balance, equilibrium, symmetry, sequence, cohesion, unity,
proportion, simplicity, density, regularity, economy, homogeneity, rhythm, order
and complexity of the layout.

The extent to which meditor satisfies these criteria is discussed in Section 2.9.1.

2.6.5 Information flow

The setup of meditor within a lab involves one computer acting as the database
server, and one or more machines running the front-end (client) software. All
the clients connect to the local database and store the data produced by the
users. Since data storage is centralised, the users can connect and access from any
machine with an meditor client. The stored data can then be exported as MAGE-
ML by using the in-built capabilities of MAGEStk and be sent to other resources
(public databases such as ArrayExpress) that are able to import MAGE-ML (see
Figure 2.1).
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2.6.6 Architecture summary

The overall architecture of meditor can be divided into four components as seen in
Figure 2.2. The central component is the abstraction layer that uses the classes of
MAGEStk and additional classes specific to meditor to represent MAGE concepts
and meditor-specific entities respectively. This component is also responsible for
exporting MAGE-ML files. The MAGE objects are accessed by the forms of the
GUI component, while the meditor-specific objects drive the trees and diagrams
(see Sections 2.7.3.1 and 2.7.3.4). The forms are constructed by using the MGED
ontology (Section 2.7.3.3).

The annotations are stored to a central database with two schemas—the Ar-
rayExpress schema for the MAGEStk objects and a custom schema for the medi-
tor-specific objects. Finally, the persistence layer handles the storage and retrieval
of the Java objects to and from the database tables.

2.7 Implementation

This section contains a discussion of key aspects of the implementation of the sub-
systems of meditor. A more detailed and technical account of the implementation
can be found in Appendix B.

2.7.1 MGED Ontology

As discussed in Section 2.2.3, the annotational needs concerning specific experi-
mental platforms are covered by the hierarchical terminology of the MGED on-
tology (Stoeckert et al., 2002), while the overall experimental concepts are de-
scribed by the MAGE model. The MAGE model acts as a set of entities that
contain placeholders which are filled by ontology terms. The hierarchy of the
ontology mirrors the hierarchy of inheritance in the MAGE model, so it is ob-
vious which ontological terms should be used in different parts of the MAGE
model. Also, the ontology is organised in a consistent and logical manner. At
the time of development of meditor, the ontology was encoded as a DAML+OIL
file (http://www.daml.org).

The logical organisation of the ontological terms made it possible to support
the MGED ontology within meditor in a dynamic manner: the part of the GUI
that allows the usage of the ontology is generated directly from the ontology it-
self. When meditor starts, the ontology file is read, and based on its structure
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and content it is decided how to construct the ontology part of the GUI. Because
the GUI itself is generated in a dynamic way, meditor can keep up to date with
any changes of the ontology without any additional effort by the developers: If
the ontology changes, the fields, menus and options derived from it will change
automatically. This is a similar approach to the one used in the TAMBIS system
(Stevens et al., 2000) which uses an ontology to automatically generate a user in-
terface which can be used for transparently querying multiple and diverse sources
of biological information (Swiss-Prot, Enzyme, CATH, blast and Prosite).

One important advantage of supporting the ontology is that the free text
entries are minimised and subsequently human errors are limited. This is a
similar approach to the one used in RAD Study-Annotator (Manduchi et al.,
2004).

In order to add support for the MGED ontology to meditor, it was necessary to
extend the Java version of MAGEStk to parse and process the ontology file. The
main class responsible for this processing is called OntologyHelper, and since
its initial development it has been further extended by other developers in the
MGED community and it has become a part of the official release distribution of
MAGEStk.

The design of the classes providing support for the ontology is illustrated in
Figure 2.3. Originally, the MGED ontology was represented using the DAML+OIL
format (http://www.daml.org) but the format was switched to OWL (http:
//www.w3.0rg/2004/0WL) for the latest versions of the ontology. This was nec-
essary because of the greater expressive freedom provided by OWL, which allows
the ontology creators to provide meta-data about the ontological terms.

At the time of the implementation of meditor, the OWL format was still a
prototype, and because of that, only the DAML format is currently supported.
In anticipation of the switch to the OWL format, the architecture of the support
of ontology is easily extensible, and OWL support is planned for the future. More
details on the implementation can be found in Appendix B.

While developing the ontology support for meditor, it became apparent that
the ontology’s structure and contents where not enough on their own to con-
struct the GUIL. In some cases, in order to achieve the desired presentation, it
was necessary to provide hard-coded hints to the code that generates the GUI
(see Section 2.7.3.3). If the richer format OWL format was used, these extra hints
could have been encoded in the ontology itself because it provides the means to

annotate the ontology terms themselves with meta-information. We have re-
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Figure 2.3: UML diagram illustrating the expansion that had to be made to MAGEStk
in order to implement support for the MGED ontology. Existing MAGEStk classes are
shown in blue, classes that belong to the org.xml.sax package are shown in green.

ported our experiences during the development of meditor to the curators of the
MGED ontology (priv. comm. with Trish Whetzel), and as a result the subse-
quent versions of the MGED ontology acquired the extra information necessary
to make the hard-coded rules obsolete. It is worth noting that other applica-
tion developers have independently determined similar deficiencies of the MAGE
ontology (priv. comm. with Kjell Petersen), and have made the same requests.
Figure 2.4 illustrates the relationship between the terms of the ontology and
the forms that are derived from the ontology. The naming of the terms and
the structure of the ontology are both used to determine the layout and the
composition of the forms. Age is part of the BioMaterialCharacteristics at-

tribute of the BioMaterial class of the ontology. Age has a number of attributes
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case of the has_measurement_type attribute is simpler (being an one-of attribute) and
produces an simple drop-down menu, without sub-levels of hierarchy.
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itself, which are shown in the diagram (namely has measurement, has_initial-
-time_point and has_maximum measurement). We can easily derive user-friendly
names for the corresponding labels in the form from these attribute names. Each
of the attributes has a filler that determines its type. For example, the filler of
the has_value attribute is a Thing, therefore the corresponding field in the form
is a simple text box that allows any string to be entered.

If the filler of an attribute is a class, the class is explored in a recursive
fashion in order to determine what the most appropriate fields are. For example,
the filler of the has_units attribute is the class Unit that has a number of sub-
classes (DistanceUnit, ConcentrationUnit etc), and those sub-classes have a
number of instances. This structure is interpreted as a drop-down menu, where
the subclasses are sub-menus and the instances are the concrete options of those
sub-classes.

The units menu is also a good example of why the MGED ontology alone
is not sufficient for the generation of such GUIs: for some situations a class
with sub-classes is appropriate to be interpreted as a hierarchical menu as in
this particular case, while in other cases it was appropriate to represent the
same relationship by making the parent class the overall heading of different
parts of the form represented by the sub-classes—as in the case of the relation-
ship between BioMaterialCharacteristics and Age, where the BioMaterial-~
Characteristics class is used as the overall heading that groups different parts
of the form such as ‘Age’, ‘Test result’ etc. For cases like that, it is necessary to
use hard-coded hints to the form-generating code. There is also the case of the
‘one-of’ has measurement_type (see Figure 2.4) attribute that is interpreted as
a drop-down menu (also known as a combo-box) without any extra levels as in
the case of Unit.

Note that the fact that several fields have been placed on the same line rather
than one under the other cannot be derived in any way from the ontology, this

being another case where it was necessary to use hard-coded hints.

2.7.2 MAGE-ML

The meta-data in meditor are represented both by MAGEStk objects and meditor-
specific objects. MAGE-ML export is therefore a two-step process that involves
the logical mapping of the meditor-specific objects to MAGEStk objects, and
then using MAGEStk functionality to produce MAGE-ML (see ‘Java’ layer in
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meditor class MAGEStk class
StudyDesign Experiment
Preparation LabeledExtract

StudyHybridization list of MeasuredBioAssays
BiologicalExperiment BioSample

LabelingEvent LabeledExtract
HybridizationEvent PhysicalBioAssay
ScanningEvent MeasuredBioAssay

Table 2.2: Logical mapping of the org.biomap.meditor.gui.study-
Design.abstraction classes to the corresponding MAGEStk classes by the Study-
DesignToMageMapper class. This mapping is used in the process of exporting
MAGE-ML.

Figure 2.2). The mapping from meditor objects to MAGEStk objects is performed
by the StudyDesignToMageMapper, and it is summarised in Table 2.2.

The MAGE-ML export functionality provided by MAGEStk is not enough for
our use-case, because it requires the use of a central object of the class MAGEJava
that contains lists that collect all the MAGEstk objects to be exported. This
reflects the structure of the MAGE-ML document. In the case of meditor, there
may be various MAGEStk objects in memory that are not all involved in the
study that is being exported, therefore they should not all be included in the same
MAGEJava object. Therefore, it is necessary to have a mechanism that determines
which objects should be included in the exported MAGE-ML. This mechanism is
implemented by the MEMAGEMLExporter class, which iterates recursively through
the objects involved in a particular study and places each of the found objects in
the appropriate list in a MAGEJava object, before exporting.

2.7.3 User interface implementation

The MAGE model is large and necessarily very complex, and its representation
through a graphical user interface (GUI) poses significant challenges. On several
occasions it was necessary to avoid following the structure of the model when
constructing the GUI, and in some other cases simplifications of the model had
to be performed in the GUI (see Section 2.4). This ensured that meditor re-
mained usable but at the same time faithful to the model. Some of the terms

used in the model were renamed in the GUI (for example, the term “Experi-
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ment” was replaced by the term “Study” which was considered clearer and more
appropriate).

The MAGE model only defines classes of objects and the relationships between
them, it does not dictate how they should be represented. Also, the object
relationships that are the result of model driven architecture are all given the
same status, without any indication of which relationships are more important
and more central in the representation of the microarray experiment information.
Because of that, part of designing the interface was to decide which relationships
in the model were more important and promote their visibility in the GUI, and
which relationships should be less prominent due to their secondary importance.

For instance, the relationship between labelled extracts and the chips they are
hybridised on, is far more important than the relationship of a contact (a person)
and the organisation they are working for. Both relationships are present in the
model, and have the same status within it. Although it is desirable to be able to
provide both pieces of information, in the minds of the users the former is far more
important than the latter. In order to reflect this asymmetry in the GUI, the
relationship between labelled extracts and chips is presented within a graph (the
‘Study Graph’, see Section 2.7.3.4), which makes the relationship highly visible.
On the other hand, the contact—organisation relationship is represented simply as
a field in the form that is used for editing ‘contact’ entities (see Section 2.7.3.2).

There are also some concepts that are implicit to the model but make a lot
of sense to the users in the way they think about a microarray study. More
specifically, most users think of the experimental steps before RNA extraction
as the biological experiment and they refer to the whole process from the initial
sampling to just before the hybridisation as a preparation. In the MAGE model
those steps are implied but not explicitly differentiated, since such a differentia-
tion would be of no benefit in terms of data representation. In order to reflect the
perception of the users and to aid them during data entry, an explicit grouping
of some of the experimental steps was introduced forming a biological experiment
and a preparation, without changing the underlying data representation (again,
see Section 2.7.3.4).

Keeping in mind that the time of experimentalists is precious, we have striven
to follow a simple but very important principle during the design of the user
interface: User effort should be minimised and where applicable, the user should
not have to provide the same piece of information twice.

The main three user interface elements of meditor are trees, forms and dia-
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grams.

2.7.3.1 Resource trees

The resource trees (Figure 2.5) contain different types of resources, the building
blocks that are later used to build the full description of an experiment. These
include contacts (both organisations and persons), biological sources, protocols,
hardware, software and labels. The resources are organised within the resource
trees, whose structure resembles that of a computer file-system: new resources
are created through the resource trees, and can be placed in folders (or sets)
that group resources together for organisational purposes. The resource trees
allow the user to select multiple resources and edit them at the same time (see
next section). Finally, it is possible to make copies of existing resources in order
to avoid duplication of effort. Resource trees address the reuse aspect of the
usability requirement for meditor.

The classes involved in the resource trees component are presented in Fig-
ure 2.6. The resource tree itself is implemented by the MEEntityTree class, which
is a descendant of the more general METree. The Node and NodeSet classes respec-
tively implement the resources and folders. The HasAttachedObject interface
provides functionality for lazy access to the underlying MAGEStk objects. When
the object has not been retrieved, only its database identifier and type are held
in the Node instance. When the user attempts to access the object, the actual
contents are retrieved from storage and a reference to the actual object is held
within the Node. The StudyNode and StudyTree classes implement the GUI for
the study trees which is slightly different to the resource tree GUI.

Global and personal The resource trees distinguish between global and per-
sonal resources. The global resources can be seen and used by all the users but
they can only be edited by the administrator users. Only administrators can
promote a resource from personal to global. This is to allow sharing of resources
that are common within the lab (like common biological sources or common pro-
tocols used by everyone), and it means that the common resources only have to
be described once.

63



2.7. Implementation 2. Gene expression data annotation and storage

MEEntityTree D METree
n

«interface» Node n NodeSet
hasAttachedObject <
Z{x n
n
StudyNode StudyTree

Figure 2.6: UML diagram showing the meditor classes used for the resource trees com-
ponent. The classes shown in green belong to the standard Java library.

2.7.3.2 Forms and the ontology

Due to its general scope, the MGED ontology covers several diverse areas, many of
which may be irrelevant to a possible user of meditor. In order to avoid cluttering
the interface with a lot of irrelevant or rarely used fields, most of the sections of
the interface that represent the ontology can be collapsed so that all the fields
underneath that particular section are hidden. In this way, each particular user
gets to see only the ontological fields that are relevant to their research, which
makes data input considerably easier (Figure 2.7).

Following the general principle that the user should have to enter annotations
only once, a mechanism was provided for allowing presets to be used to fill the
values of the fields of the ontological terms. The user only has to enter the values
once, and then the set of values for this particular part of the form can be saved as
a named preset, and recalled when annotating subsequent resources of the same
type. This applies to all the sections of the forms, therefore the average user can
ignore the details of the ontology (i.e. never expand that part of the form) and
just use one of the presets directly. An example of the usage of presets can be
found in the usage scenario (see Section 2.8.1).

The current version of meditor does not come with any predefined presets,
but subsequent versions of meditor will hopefully include a bundle of commonly
used presets for the ontology fields. This will only be possible through extensive
use of the system by biologists in diverse fields of research who will contribute
the presets that most commonly occur during their usage of the meditor.

From the early stages of the development of the MGED ontology, it was obvi-
ous to the developers that the ontology would have to refer to external ontologies
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2.7. Implementation 2. Gene expression data annotation and storage

instead of extending its scope to cover every conceivable biological aspect of mi-
croarray experiments, but the exact manner of achieving such references was not
defined or agreed on. Because of that, support for such references was not im-
plemented within meditor. Subsequently to the completion of development of the
version of meditor described here, the exact details for making such references
were clearly defined by the ontology developers, so we expect future versions of

meditor to feature direct references to external ontologies.

2.7.3.3 Form design

The dynamic forms component of meditor required probably the most complex
and challenging design and implementation in the whole project. The main classes
that participate in the forms component are presented in Figure 2.8. The com-

ponent can be divided into four subsystems:

Form-building subsystem The subsystem which iterates through the infor-
mation present in the MGED ontology and uses it to construct forms that
provide appropriate fields. The construction process is also informed by a
form customisation mechanism. This is the most complex of the subsys-
tems.

Produced graphical user interface The resulting user interface constructed
by the form-building subsystem.

Form data-holding structures The data structures that temporarily hold the
user input before processing it and passing it on to MAGEStk objects.

Preset-handling subsystem The subsystem that handles common and per-
user form presets. The presets mechanism allows the automatic completion
of big parts of the forms with a preset set of values. This subsystem handles

the persistence of such presets.

Technical details on those subsystems can be found in Appendix B.
Extensibility of forms The code that generates the forms of meditor was
designed with extensibility in mind. There are two possible future enhancements

that would be particularly useful, and the current extensible design would make
it particularly easy to implement them.
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2.7. Implementation 2. Gene expression data annotation and storage

The first enhancement would be a mechanism for the further personalisation
of forms. Currently some personalisation is possible due to the fact that parts
of the forms can be collapsed and also through the use of presets. The extra
personalisation feature would allow the reordering of the fields in the forms and
the exclusion of the ones which a particular user finds irrelevant to their research.
Also, it would allow the renaming of the fields, so that the user would be able to
choose more descriptive and helpful names in cases where the MAGE ontology
names are not descriptive enough.

The second enhancement involves the use case of having to edit multiple
resources at the same time. This of course is covered by the fact that within
meditor it is possible to make copies of any resource and then edit the copies.
Another way to handle such a use case would be to present the user with a
spreadsheet. The columns of the spreadsheet would represent the fields of the
form that have values that differ from resource to resource, making the editing
of multiple resources even easier.

None of those features was a priority during the development of meditor, but
they were considered as future use cases, so the code was developed so as to make
their addition easy.

2.7.3.4 Diagrams and the study design dialog

The actual microarray study is described through the study design dialog (Fig-
ure 2.9). The dialog covers three aspects of the study: the actual experimental
setup, a textual description of the experiment and the experimental factors that
are important to the study.

The experimental setup is described by means of a diagram that contains
boxes that represent preparations and hybridisations and the steps that those
break down into. In this context, a preparation includes all the preparatory
steps up to before the Hybridization (including the biological experiment), and a
Hybridization includes the actual Hybridization event and any number of scans
of the hybridised array. It is possible to produce copies of any element in this
diagram, so that duplication of effort is avoided. This diagram allows the user to
connect the different preparations and hybridisations in a way that reflects which
samples were hybridised on which chips—reflecting the experimental design.

The boxes of the diagram provide visual feedback on the completeness of the

annotation in the form of icons, so that the user knows which of the boxes are still
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2.8. Usage scenario 2. Gene expression data annotation and storage

incomplete. Importantly, the feedback does not just consist of a simple indication
of completeness or incompleteness, but also in most cases the diagram is able to
provide textual description of what is missing from the annotation. The concept
of completeness does not just involve completion of the all the form fields, but it
also includes logical omissions such as a preparation that is not connected to a
hybridisation.

The experimental factors and their values for each of the experiments are
presented as a spreadsheet. The factors can be numerical or textual, which
includes the time factor and the label used.

The classes participating in the study design dialog are presented in Fig-
ure 2.10, and their technical details are discussed in detail in Section B.5.1 of
Appendix B.

2.7.3.5 Special cases

Although the MAGE object model itself is flexible and expressive enough to
annotate most experimental setups, there are cases when it makes more sense to
present a more specialised interface to the user. We have tried to make meditor
as generic as possible, but for those few special cases, meditor can present tailor-
made, platform-specific parts of the GUI depending on the configuration of the
local installation.

An example of such a case is that of the scanning box of the ‘Study Design’
dialog, which is the point where the user associates the actual data files to the rest
of the experimental design. Since different array platforms use a different number
and type of files to represent scanning results and raw experimental data, there
was no choice but to provide a specialised ‘scanning’ dialog depending on the
local configuration, and a reasonable fallback dialog in case the local installation
of meditor has not been properly configured.

Such special cases are inevitable, but it was attempted to minimise them since
their coverage needs a lot of extra development and their presence makes meditor
less generic.

2.8 Usage scenario

This section presents the usage of meditor from a user’s point of view, in order to

give a clear impression of the functionality included in the system. It should be
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2.8. Usage scenario 2. Gene expression data annotation and storage

noted that, as specified under the usability requirement, meditor is usable in an
non-linear fashion, so the order of the steps described in this section is not the

only one possible.

2.8.1 Definition of experimental resources

The hypothetical user would initially encounter the login dialog (Figure 2.11)
which lists the available user accounts and prompts the user for a password. This
allows users to log-in and edit their data from any computer in the lab where
meditor has been installed.

* meditor login
Please select your username and enter ...

Sideris, Efstathios G. {Admin)
Sideris, Efstathios G.

Pnssmrd\ [ Login Cancel

Figure 2.11: The login dialog which lists the available user accounts and prompts the
user for a password.

After log-in, the main window becomes available (Figure 2.12). A collection
of resource trees is presented in the right-most part of the window, which organ-
ise the available resources relevant to the experiment in folders. The resources
include protocols and materials (biological samples, hardware and software) and
also persons and organisations.

The user can either decide to use an existing resource (shared by a previous
user), modify a shared resource (by making a personal copy first), or they can
describe a completely new resource. In a shared environment such as a laboratory,
individual users would most likely only need to describe the materials particular to
their experiments from scratch, the rest of the descriptions of resources (protocols,
hardware and software) would be reused. Thus reusability is achieved, minimising
the user effort during the annotation of the experiment.

The editing of resources is done using fill-in forms. The forms can be quite
simple as in the case of the ‘person’ resource, or they can be quite complex like
the form for biological source materials (‘BioSources’). The more complex forms
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dito 0.99
File Help
Studies l contacts ' bioSources ! protocols ' hardware ', software ', arrays |, labels ',
Hew Mty bioSources
-1y 2 preparations pged
1 hybridizations B D o I

[ Make copies

¥ Remove

Export
Make global

BioSource .
e New biosource
Type cell_lysate
Owner:Sideris, Efstathios
Identifier: KLM:meditor/org.biomap.mage. MEBioSource: 11d812ca37c¢80caa
167h9e77ccdbc4ea

Logged in as Efstathios Sideris (Admin)

Figure 2.12: The main window of meditor. The resource trees is presented in the right-
most part of the window. Also shown is the right-click menu which provides functionality
for editing, duplicating, deleting and sharing annotational resources.

are derived from the MGED ontology and can be quite long. The user has to
scroll through the forms and locate the relevant fields and either fill them in or
select from the provided options. Also, forms are divided in expandable sections
which are organised in the same logical hierarchy used by the ontology, therefore
aiding the user in locating the relevant fields.

Most of the collapsible parts of the forms can have their fields filled-in by
the use of presets. Presets define a named set of values that corresponds to a
particular part of the form and can be reused in subsequent annotations. The
usefulness of presets can be better illustrated with an example (Figure 2.7). The
‘Organism’ section of the ‘BioMaterial’ form contains a number of fields that
correspond to a NCBI taxonomy database entry. If a researcher mainly works
on human samples, they would refer to the NCBI taxonomy database, find the
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2.8. Usage scenario 2. Gene expression data annotation and storage

database record for Homo sapiens, and fill in the corresponding fields of the form.
Next they would click on the heading of the ‘Organism’ section, and select ‘Save
as preset’ from the menu that appears. The preset can be given a descriptive
name (‘Human’ in this case). The next time the user gets to that particular
section of the form, they can just click on the heading and select the preset and
the fields will be completed automatically without it being necessary to expand
the form and deal with the complexity of the fields underneath the heading.

2.8.2 Description of the Study

After the resources that participate in a microarray experiment have been de-
scribed, they can be used as components to build the description of a study. The
left side of the main meditor window (Figure 2.12) provides access to a set of
folders that can be used for the creation and filing of microarray studies. Each
study can be edited by using the study design dialog (Figure 2.13).

Initially the user would define a sample preparation which appears as a series
of boxes in the study design dialog (Figure 2.13). Because none of the details
has been filled-in yet, the interface provides feedback for the incompleteness of
the annotations in the form of warning icons. Then the user can fill in this first
representative preparation with details such as the biological sample used, the
amounts used etc, by using a number of forms that correspond to each of the
boxes. The forms link the study dialog with the resources that were described
earlier. The user can then also describe a hybridisation in a similar manner.

As this stage the user makes copies of the sample preparations and hybridi-
sations. The number of copies depends on the particular experimental design.
Also, for single-channel experiments, the number of hybridisations will equal the
number of sample preparations, but the same is not true for two channel experi-
mental setups (see Sections 1.2.3 and 1.2.4). At this stage the user may have to
link one or more sample preparations to one or more hybridisations (depending
on which sample was used on which array).

The reason for creating a representative sample preparation and a hybridisa-
tion first and the copying them is that most sample preparations (and hybridis-
ations) share the same specifics, with one or two values differing within a study.
The copying method makes the overall process easier and ensures annotational
consistency.

At any stage of the process the user can obtain a more detailed textual report
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Edt tudy

[addprep || Adahyp jl AddPrepandHyb || Addscan || Remove || Connect || Duplicate || Toggle edges | @D L]

Preparation 1 Preparation 2 Preparation 3
_BieSeurce: New @ BoSeurce: undefined ! BoSeurcezundefined
BoSource Amount: 0 M BioSource Amount:0 M BoSource Amount: 0 M
Protecok: d
g Protocek: undefined ﬁ, Protocek: undefined | Protocek: undefined
Product:

Extract amount: M Bdract ameunt:0 M
Protocok undefined Protocok undefined
Labek undefined Labekundefined
Label amount: M Label amount: 0 M
Labelled extract Labelled M
Annotation incomplete because:
@ the labeling protocol has not been defined
@ the label has not been defined
Protecol: New protocol
Array:undefined
Prep 1:Preparation 1
Scan Protecok: undefined
Feature Extraction: undefined
A
Name [Newstudy ] % WAL
Date performed [apri 10, 2007 [<ig)
Hpes———————
clinical history
ffamily history Add
Remove !
family history design l
Description [This is the free-text descriptionof & |/
the experiment. H
i
(¥ Publishable %

Figure 2.13: The study design dialog. This includes the diagrammatic representation of
the experiment in the main view, and the experimental factors table at the bottom. Also
show is an example of detailed feedback on why the description of the labelling step is
incomplete.

on what exactly is missing or wrong with a particular part of the annotation. This
includes logical inconsistencies for example hybridisations that are not linked to
any sample preparation.

When all the sample preparations are in place, the experimental factors table
(see the bottom of Figure 2.13) can be used in order to describe the factors which
differ in each of the preparations.
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2.9. Discussion 2. Gene expression data annotation and storage

2.8.3 Export of information

Finally, when description of the study is complete, the user can export the ex-
periment to a MAGE-ML file. It should be noted that exporting to MAGE-ML
is not allowed unless the study has been completely described.

2.9 Discussion

2.9.1 Conformance of user interface to recommendations

This section discusses the extent to which meditor successfully implements various
user interface design recommendations.

The resource trees of meditor closely resemble the folders and files used by
desktop metaphors to signify the file system. According to Barr et al. (2002),
this metaphor does not use all the metaphoric entailments of a real-life filing sys-
tem (for example, folders cannot be placed in a filing cabinet), and similarly, our
metaphor does applies only the entailments used by the desktop metaphor. Ac-
cording to the Barr et al taxonomy, the resource trees metaphor can be thought
of as a conventional metaphor (used by the target audience without thinking),
with a few novel elements: the visual distinction between personal and global
folders and resources, and in some cases the prevention of mixing resources of
different types. As recommended by Barr et al, these deviations from the users’
expectations are clearly indicated by design elements (e.g. different colours dis-
tinguishing between global and personal folders and resources) and by feedback
in cases where the user attempts operations that are not permitted (e.g. the
error dialog informing the user that resources of different types cannot be placed
in the same folder). Another conventional orientational metaphor used is ‘down
1s later’, and it is used in the study diagrams in which the initial steps of the
experiment are at the top, while the later stages are shown below. Truly novel
metaphors were avoided to help leverage the existing knowledge of users during
their familiarisation with meditor.

The ontology-based forms all have collapsible parts and present a limited
amount of elements on-screen at any time (providing access to the rest of the
elements through the scroll-bar) to prevent presenting an overly dense interface.
Also, the interface of these forms follows a rhythmic change of horizontal margin
size to imply the hierarchical structure of the different parts of the ontology (Ngo
et al., 2000).
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2.9. Discussion 2. Gene expression data annotation and storage

Greater visual balance could be achieved in the study design diagrams by
giving the same height to all the horizontally aligned boxes. Otherwise, the study
design diagrams satisfy the symmetry, simplicity, regularity and homogeneity
criteria set by Ngo et al. The density of the screen is left up to the user, who
can use the zoom controls to modify it. The Ngo metrics were not applied to the
mentioned layouts.

2.9.2 Ewvaluation

meditor was not subjected to any formal usability studies during development,
and the interface design was based on discussions with experimentalists and po-
tential users. The latest version of meditor was user-evaluated in order to identify
whether the necessary functionality was present, whether it was presented in a
sensible way to the users, and to assess the overall usability of the software.

The evaluation indicated that all the required functionality for describing
a microarray experiment was present. In terms of presentation, the form for
editing BioSources was perceived as slightly visually cluttered, despite efforts to
address this issue by organising the various fields in collapsible groups. This could
slow users down in detecting the relevant fields while describing BioSources. The
overall presentation of information and fields was perceived as clear and organised
according to user expectations.

Although general accessibility to the various parts of the interface was per-
ceived as satisfactory, it was requested that it should be possible to create and
edit entities (BioSources, Hardware etc) from within the Study Design dialog.
This was not anticipated when designing the interface, but it would make the
interface more flexible and it would enhance the non-linearity of the annotation
process by providing multiple ways for achieving the same usage goal.

Finally, it was made clear that a user manual is essential for meditor. This
is to be expected for programs of the complexity of meditor, and a manual is
already available.

2.9.3 Contributions

As discussed earlier in this chapter (Section 2.2.7), most existing microarray ex-
periment annotation applications lack certain characteristics that are important
to the annotation process. meditor does not have most of the limitations present in

other applications of the same scope. More specifically, meditor addresses usabil-
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ity issues by allowing non-linear editing of experimental annotations, minimises
duplication of effort by allowing reuse of annotations (by the same user or among
users), and by allowing users to customise the interface to some extent in order to
reveal only the fields relevant to them. Also, meditor ensures high standards com-
pliance by using the MGED ontology to drive the annotational process, and by
exporting annotations in the MAGE-ML format. Finally, meditor is open source,
and neutral in terms of experimental platform and cross-platform. Table 2.3
provides a point-by-point comparison of meditor to other microarray experiment
annotation software.

A by-product (and necessary step) of the development of meditor was the
enhancement of the Java MAGE Software Toolkit (MAGEStk) to add support
for the MGED ontology. This provided the community with a programming
tool which can query the MGED ontology and therefore can be used for the

development of applications which will make use of the set of terms available.

2.9.4 Future work

As discussed in Section 2.6.4.1, one of the considerations when deciding whether
to develop meditor as a stand-alone desktop application or a web-based applica-
tion was that of deployment. Web applications are inherently easier to deploy be-
cause they run on a web server. In the case of meditor, the importance of a rich in-
terface which was more easily achievable if developed as a stand-alone application
out-weighed the ease of deployment as a requirement. A future development that
would make the deployment of meditor easier, and would ensure that the users are
always running the latest version of the software, would be to deploy meditor using
the technology of WebStart (http://java.sun.com/products/javawebstart/),
which allows the latest versions of stand-alone Java applications to be launched
from a web browser.

The visual clutter identified in parts of the interface (see Section 2.9.2) can
be tackled in two ways. In Section 2.7.3.2 it was discussed that in anticipation
of the diverse range of needs of the different users of meditor, the underlying
architecture of the form component of meditor was designed with the possibility
of customisation in mind. Because of this design, providing a user interface for
the customisation of forms would be relatively easy, and it would allow users
to permanently remove any fields of the forms which are irrelevant to them,

effectively removing any visual clutter. Another feature which would allow users
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2.10. Conclusion 2. Gene expression data annotation and storage

to locate the relevant fields more easily would be to provide a search facility
which would scroll and expand the form to the field(s) whose names match the
text being entered. A combination of the two approaches would make the forms
significantly more usable.

User feedback also stressed the importance of help in the form of a man-
ual (see Section 2.9.2). In order to make help more accessible to the user, the
manual could be integrated into meditor, using the JavaHelp (http://java.sun.
com/products/javahelp/) technology. Because this need was anticipated, the
manual was written in the DocBook format (http://www.docbook.org/) which
can be easily converted to the JavaHelp file format.

Finally, new versions of MAGE-ML and the MGED ontology should be sup-
ported and integrated to meditor.

2.10 Conclusion

meditor supports the major technologies and standards produced by the MGED
community. It covers a specific need of the microarray researcher, which seems
to be one of the most challenging to address, due to the element of the human-
computer interaction. In the spirit of the efforts of the MGED community, meditor
attempts to be as generic as possible and provide for as many cases as is reasonable
in terms of experimental designs and focus of research.

Our efforts to produce a universal editor have been rewarded by the MGED
community. meditor was presented in a poster session in the MGEDS8 meeting in
Bergen, Norway and it was awarded the first poster prize (http://www.ucl.ac.
uk/medicalschool/infection-immunity/news/MEditor.htm).

Because the needs addressed by meditor involve human-computer interaction,
the system is expected to mature as it is being used. Future improvements of the
interface will rely heavily on the feedback received. Also, the more the ontology
forms are being used, the more presets are going to be produced and it is hoped
that the users will donate those presets so that they can be included in future
versions of meditor.

On the other hand, meditor covers only one aspect of the needs of the re-
searcher. With data annotation and archiving being just the first step of the
process, it is necessary to address further steps that involve de-normalisation of
the data to allow faster querying of the database and possibly cross-experiment
comparison, statistical analysis of the experimental data and finally integration
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with other data that originate from a variety of sources (sequence, metabolic,
protein—protein interaction data) to allow the exploitation of the microarray data
to their full potential.

Efforts like the data warehouse of the BioMap (Maibaum et al., 2004) project
provide integrated information from external sources, and currently work is being
done towards integrating data originating from meditor to the rest of the system

through a partly de-normalised querying schema.
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Chapter 3

Formalisation of gene

expression clustering validation

3.1 Background and motivation

The aim of this chapter is to address some of the limitations of the MGED stan-
dards in the area of high level analysis. An extendable object model is presented
which is able to describe concepts related to the validation of gene expression
clustering results using external evidence. The model addresses limitations of
the modelling of the higher level analysis aspect of the MAGE model and it
allows the description and interchange of the analytical aspects of microarray
experiments. The concrete concepts of the model mainly concern the methods
presented in the next chapter, which are used for the validation of expression data
clustering using external evidence. Those concepts have been have been included
in the model as examples of its extensibility, and not exhaustive of the domain of
high-level expression data analysis. Despite this conceptual relationship between
the two models, the model presented here is not an extension of the MAGE model
and merging the two models would require some bilateral changes, explained in
Section 3.3.3.

The work presented in this chapter expands on the theme of formal annotation
of gene expression experiments set by the previous chapter, but it also addresses
the data management needs that arise in the next chapter.

The MAGE model covers most aspects of the microarray experimental pro-
cedure up to the point of data acquisition (normally through scanning), in an

expressively flexible way. The procedure following data acquisition usually in-
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volves data normalisation, filtering and analysis. The MAGE object model does
not contain enough classes to described those processes to a level of detail that
would allow the analysis to be reproduced. There is some basic support for
description of the results of data clustering in the MAGE model. The lack of
support in the standards for data analysis is partly due to the wide range of
available analytical methods, although some of the possible data transformations
are covered by the MGED ontology. The limited support of the standards for the
description of high level analysis of microarray data sets obvious limitations on
the describability of the data and their interchange in a standardised manner.

An example of concepts that cannot be described using the current MGED
standards involves validation of clustered data. Due to the dimensionality of mi-
croarray datasets and the noise levels encountered, it is common for researchers
to try and validate their results using evidence external to the experiment (Bol-
shakova et al., 2005; Cheng et al., 2004; Eisen et al., 1998; Kustra and Zagdanski,
2006; Lee et al., 2004). This validation often occurs after having clustered the
gene expression data, and its purpose is the discovery of biologically meaningful
clusters. There is no way to explicitly formalise such external validation analysis
using terms and classes provided by the current standards. It would be possible
to describe such concepts using the non-specific property fields (PropertySets)
present in all of the classes of the MAGE object model, but following such an ap-
proach would prevent strict type checking and references to other objects. This
lack of structure would inevitably lead to incompatible and possibly free-form
descriptions of the concepts involved to be created.

Data clustering and validation concepts are extensively discussed in the next

chapter, therefore they are not described in detail here.

3.2 Requirements

3.2.1 Scope

The aim of the model is to provide a theoretical basis for modelling high-level
gene expression analysis concepts, a modelling effort driven by the modelling
of the aspects of the analysis that are relevant to this study, but also taken into
account that the basic concepts of the model should be general enough to provide
the necessary extensibility for describing other aspects of the analysis.

The first requirement concerning the object model involves its expressive
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scope. The object model has to be able to express clustering arrangements of
gene expression data. Some clustering algorithms such as k-means produce a sin-
gle clustering arrangement, but the hierarchical clustering algorithms produce a
hierarchy of clusters. The model has to be able to cater for both cases. This par-
ticular scope in modelling was selected due to its relevance to the rest of the work
presented in this thesis, but is by no means exhaustive of high level microarray
experiment analysis.

It should also be possible to attach quality values to a complete clustering
arrangement or to each of the clusters individually, since both types of quality
assessment are possible. Apart from different quality metrics, the model has
to be able to express the evidence used to express the metrics. Another point
that should be taken into account when designing the model is that it is quite
common for evidence to have to be pre-processed before it is ready to be used for
the calculation of clustering quality metrics.

To summarise, the expressive capabilities of the object model should cover the
description of the clusters (hierarchical or not) and their members, the quality
values for clustering arrangements and individual clusters, and the external evi-
dence on which these quality assessments are based along with any pre-processing
that had to be applied to the evidence.

3.2.2 Compatibility to the MAGE model

Whenever possible, the existing MGED standards should be reused to avoid
duplication of effort and to ensure compatibility. If for any technical reasons
the MGED standards cannot be extended directly, the relevant logical structure
should either be duplicated in the model being developed. This would poten-
tially allow the two models to be merged easily in the future. As discussed in
Section 2.2.4, the MGED standards follow a highly fragmented modelling ap-
proach, by creating classes for all the concepts involved and favouring references
over ownership relationships. This achieves the high flexibility that is required
from a general-purpose standard, but it also results in a quite large model. A
side-effect of those characteristics of the model is that any model-derived schemas
are highly normalised.
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3.2.3 Model usability

For reasons of conciseness, it will be necessary to follow a less fragmented ap-
proach with the present model in comparison to the MAGE model. This would
affect positively the usability of the resulting model since fewer classes would be
involved. To this end, if it proves necessary to merge any of the reused aspects of
the MAGE model, care should be taken to preserve the MAGE concepts and to
ensure that it is possible for the equivalent model concepts to be easily mapped
to the MAGE model to ensure compatibility and interoperability between the
two models.

3.2.4 Model applicability

Another important requirement for the model is that it should have a logical
structure which is possible (and preferably easy) to be expressed as both flat and
structured file formats, such as XML.

Finally, the model should be designed with openness and extensibility in mind
to allow its future users to enrich it with classes describing the specifics of their
own analytical methods.

After the model has been designed, interchange formats can be derived from
it. The formats should represent the logical structure of the model and they
should be reasonably easy to parse. Since the formats will represent analytical
results, it is expected that they should carry a significant amount of numerical
data. This should be taken into account when designing the interchange formats
and it may be necessary to limit their verbosity in order to avoid producing files
that are unnecessarily large. To some extent, this has been taken care of by the
decision to avoid an overly verbose and normalised model, a decision which will
help to design concise interchange formats and will subsequently result in files of
reasonable sizes.

In order to assess the success and applicability of the model and the corre-
sponding interchange formats, it would be desirable to develop prototype software
tools for the generation and parsing of the interchange formats. Ideally, those
format handling tools should be based on an implementation of the model that
would allow the handling of the described information in an abstract way, irre-

spective of the underlying interchange format.
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 NodeVaiue
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e Lo _QuantitationTypeDimension . QuantitationType
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CompositeSequence  Reporter Feature
Figure 3.1: UML diagram  representing  the classes of  the

org.biomage.HigherLevelAnalysis and relevant classes from other packages.

3.3 Design

3.3.1 Relationship to the MAGE model

The MAGE object model already covers some of the concepts of higher level
microarray analysis. More specifically, the model can describe clustering ar-
rangements (single or hierarchical) and the contents of the clusters. This is all
achievable through the use of the Node class which corresponds to a single clus-
ter. It is possible to express hierarchical clusterings because the Node class can
contain other instances of itself. Figure 3.1 shows the UML representation of the
org.biomage.HigherLevelAnalysis MAGE package and relevant classes from
other packages.

The Node class does also offer a very generic mechanism (the HasPropertySets
interface) for attaching “properties” to individual clusters, which could poten-
tially be used for attaching quality values to each cluster. This would not be
a satisfactory solution, since it does not explicitly model the different kinds of
possible quality metrics, and it does not allow for any further description of those
metric values, namely descriptions of how those values were arrived at.

In the MAGE model the contents of each cluster (or subcluster) are described
using the NodeContents class and its associated classes. As with most other as-
pects of the MAGE model, the contents of the cluster are modelled in a highly nor-
malised manner, which involves at least 12 different classes. The classes involved
allow the programmer to refer to specific hybridised arrays (BioAssayDimension),

various quantitation types (QuantitationTypeDimension), and finally to actual
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elements of the microarray (DesignElementDimension and its subclasses). This
approach is very flexible and it would cover most—if not all—use cases, but it is
overly normalised and complicated for the model presented here. For this reason,
it was decided to keep some of the semantics of the MAGE model, but to store
the node’s contents directly within the Node class, by referring to specific gene
reporter entries in an Eisen format dataset (Eisen et al., 1998). This is semanti-
cally equivalent to referring to a number of Reporter objects, and by implication
to all the BioAssays present in the dataset. The quantitation type dimension
is not covered explicitly by this approach, but a specific quantitation type can
be reported depending on existing information about the exact format of each
dataset.

3.3.2 Modelling of concepts

It was decided to introduce new classes to model the concepts not covered by
the MAGE model. The newly-introduced classes and their relationship to the
existing MAGE Node class are shown in Figure 3.2.

The five central classes of the model extension are NodeLevel, Quality-
Measure, QualityValue, Evidence, EvidenceDerivation. NodeLevel and Qua-
lityValue are the only concrete classes. Concrete classes are derived from the
abstract classes to cover specific applications. Here, most of the derived classes
are specific to the work covered in the next chapter, and they do not describe the
field entirely. Obviously, it is possible to extend the model to cover other types
of validation too. In order to avoid being overly complex, this model aims to
handle sets of information and evidence that are usually represented at the level
of files. For example, Gene Ontology annotations are not modelled at the level of
individual GO terms and their links to individual genes, rather they are modelled
by the GOAnnotations class which represents the a set of GO annotations for a
specific organism, which uses a specific version of the Gene Ontology (Gene-
Ontology class). The rationale of the design of the five main classes is covered
below. Appendix C contains definitions of all the classes of Figure 3.2.

The QualityValue class contains a specific value of a quality measure, and
it can be attached to a Node. The QualityValue instances are grouped together
by an instance of the QualityMeasureApplication class, which in turn is as-
sociated to a QualityMeasure, which provides bibliographic information on the

quality assessment method. The QualityMeasureApplication class represents
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Figure 3.2: UML diagram of the proposed object model to represent microarray gene
expression cluster validation. The names of abstract classes are shown in talics.

a particular ‘run’ of a quality measure, and the presence of this class ensures that
it is possible to describe multiple applications of the same quality measure, each
based on different evidence. Class Evidence represents the evidence on which
the quality assessment is based. It is quite common for such evidence to have
been derived from other sources of evidence, or to have been filtered or other-
wise pre-processed before being used for assessing the quality of gene expression
clusters. This is modelled through the EvidenceDerivation class, which allows
instances of the Evidence class to be linked together describing how evidence
was processed.

The ReporterAnnotation and EvidenceMatrix are both subclasses of the
Evidence class. The ReporterAnnotation class describes annotations that con-
cern specific reporters of the microarray. The annotations can refer to the gene

whose expression is monitored by the microarray reporter (see GOAnnotations
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class) or it can be a description about the properties of the protein correspond-
ing to the gene ProteinInteractionAnnotations. ReporterAnnotations de-
scribe these kinds of ‘primary’ annotations that are directly linked to reporters
of the array. On the other hand, it is expected that subclasses of the Evidence-
Matrix class would describe evidence that has been derived from the primary
ReporterAnnotation instances, and they are represented in matrix form (simi-
larity, distance or binary matrices). It was necessary to model the GeneOntology
separately, because the Gene Ontology terms and the Gene Ontology annota-
tions are published by separate organisations, with different versioning systems
(see Section 4.2.3).

There are cases where an instance of EvidenceDerivation can only be ap-
plied to a certain type of Evidence. It can be claimed that it would be useful
to model this constraint, but this would require a much more detailed modelling
of both Evidence and EvidenceDerivation subclasses, in order to express all
the constraints applied to possible combinations of the two concepts. This would
increase the number of classes significantly, and it would require a lot of complex
relationships between them. For the sake of brevity, it was chosen not model the
allowed Evidence/EvidenceDerivation combinations, and to leave the reason-
able use of those two classes up to the user.

The NodeLevel class was introduced to allow the modelling of validation cases
that are not describable solely by the use of the Node class. More specifically,
it allows the attachment of a quality value to a specific level of a hierarchical
clustering by grouping together the Nodes (clusters) present at that particular
level. For non-hierarchical clusterings (such as the ones produced by the K-means
algorithm), the overall quality value can be attached to the clustering through a
single instance of NodeLevel, which would group all the clusters together.

Figure 3.3 represents a use case of the model schematically. The use case
involves the results of a hierarchical clustering, of which only the 3 top levels
are shown. A QualityMetric has been applied to each level of the clustering
(SemanticMeasureApplicationl), based on a semantic similarity matrix derived
from Gene Ontology annotations and the Gene Ontology itself, using the Resnik
semantic similarity measure. The same quality measure, based on the same
evidence, was also applied to each of the clusters in the third level (rank 2) of
the hierarchical clustering, through SemanticMeasureApplication 2, providing
per-cluster quality values.

As discussed before, the concrete classes of the model presented here do not
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NodeLevel Node
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Homogeneity 4\

QualityMeasureApplication 1 i | QualityMeasureApplication 2 ]
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Figure 3.3: Diagram of a use case of the validation object model. The boxes represent in-
stances of classes of the model. The arrows represent references (directional associations)
between the instances. I[talics indicate names of abstract superclasses. The NodeLevel
instances are associated to the Node instances whose boxes they contain—those associa-
tions are not represented by arrows to avoid visual clutter.

cover the complete domain of gene expression clustering validation, and they are
presented here as significant representative examples and due to the relevance
of some to the next chapter. The present model acts as a starting point to the
modelling of this diverse area. In order to describe other types of methodology,
it would be necessary to expand the model, by creating more subclasses of the
QualityMeasure, Evidence and EvidenceDerivation classes.

An alternative solution to the need for extensibility would be to migrate the
abstract classes of the object model to an ontology. Ontologies are easier to extend
due to the existence of specialised tools for their development, and the biolog-
ical research community seems to have a better understanding for them. Also,
the MGED community has used this combined approach successfully, defining

the core concepts through an object model, and leaving more rapidly evolving
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concepts for the ontology, which is easier to modify. Therefore, the combined
approach is preferable, but this study handles all concepts through the object
model in order to avoid the extra complexity introduced by ontology-handling
technologies. Also, if part of the model is eventually migrated to an ontology, the
resulting ontological terms should be introduced as part of the MGED Ontology,
and not as a new separate ontology. This would require the merging of the object
model presented here to the MAGE model, a proposal which has not been put
forward within the community yet.

3.3.3 Changes in case of merging to the MGED model

It should be noted that if the present model was to be merged with the MAGE
model, some changes would be necessary. The classes would have to be given
more specific names. For example, in the context of this cluster validation-specific
model, the name of the class Evidence is self-descriptive, and indicative of its
role in the model. The same would not be true in the context of the MAGE
model, where the class would have to be given a more descriptive name such as
AnalysisValidationEvidence to make the role of the class more explicit.
Also, an association between the ReporterAnnotations class and the org.bio-

mage.DesignElement.Reporter MAGE class would have to be created in order
to reflect the mapping between the evidence and the elements of the array.

3.4 Future work

The model presented in this chapter represents a first proposal for the descrip-
tion of the domain of high level analysis of microarrays. As such, it is limited
to modelling a specific subset of the domain, and it is expected that the model
would be extended if it was to be used widely. More specifically, it would be nec-
essary to provide some way of describing the clustering methods used to produce
the clustering arrangements described by the Node and NodeLevel classes. This
would involve parts of the model presented here. Some studies utilise external
evidence (see Evidence class) in order to cluster gene expression data more effec-
tively (Cheng et al., 2004; Kustra and Zagdariski, 2006). In other cases, external
evidence has been used for the determination of the optimal number of clusters
(see NodeLevel class) in a hierarchical clustering arrangement (see Bolshakova
et al. 2005 and Chapter 4).
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3.5 Conclusion

In this chapter some of the limitations of the MAGE model in the areas of high
level analysis have been addressed through the development of an extendable
object model which is able to describe concepts related to the validation of gene
expression clustering results using external evidence. The core concepts of this
procedure were modelled, and examples of concrete classes that were relevant to
the analysis work of this study were provided.
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Chapter 4

Gene expression clustering

validation through data mining

4.1 Introduction

4.1.1 Chapter overview

This chapter examines more closely the problems faced when trying to interpret
gene expression experiment results, and the data mining approaches used to tackle
these problems. More specifically, the different uses of the Gene Ontology in the
context of gene expression experiment interpretation are reviewed. After some
assessment work to explore possible biases in the Gene Ontology, an information
content based semantic similarity measure is used to develop a Gene Ontology-
based quality measure for the assessment of the partitioning of gene expression
datasets, using clustering algorithms. This quality measure can be applied to an
overall clustering arrangement or to individual clusters.

Cluster deterioration simulations were then applied to a well-known pre-
clustered yeast gene expression dataset in order to test the effectiveness of the
newly developed quality measure. The measure was then applied to the clustering
of a human B-cell gene expression dataset, and a number of variations were also
considered in an effort to optimise the measure. Finally, based on the findings of
this chapter, future optimisations to the measure are proposed.
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4.1.2 Data Mining

Data mining is defined as the process of identifying, extracting and analyzing po-
tentially useful information from very large amounts of information which would
otherwise remain hidden. In the context of data mining, a model is a high level
description, summarising a large collection of data and describing its important
characteristics (Hand et al., 2001). Models can be global in the sense that they
apply to all the data points of the dataset. Models are divided into predictive
models and descriptive models. Descriptive models present the main characteris-
tics of the data in a convenient form, and they are useful in the cases that handle
large datasets. Predictive models on the other hand attempt to make a statement
about the general population from which the data sample was drawn, or to make
predictions about likely future data values.

4.1.3 Cluster analysis

Cluster analysis (also referred to as “clustering”) is a particular kind of descriptive
modelling which aims to partition datasets into groups containing data points
which are as similar as possible to each other and as dissimilar as possible to
data points in other groups.

The main aim of clustering is the discovery of naturally-occurring distinct
groups in the dataset. It is also possible to use clustering techniques to partition
a dataset into an arbitrary set of groups that is somehow convenient to the
researcher, and although this is not the main aim of cluster analysis, this usage
is sometimes also referred to as clustering. Clustering has been the subject of
research for many years, resulting in numerous algorithms, which in some cases
are very similar to each other (Everitt et al., 2001). The bibliography is vast and
scattered and a serious problem with clustering analysis is that it is often difficult
to evaluate the merit of each particular algorithm (Hand et al., 2001).

Due to the large amounts of data produced by microarray gene expression
experiments and because genes operate in functional groups (see Section 1.2.5.1),
cluster analysis is a very popular and useful tool for the elucidation of gene
expression datasets (Ben-Dor et al., 1999; Cheng et al., 2004; Eisen et al., 1998;
Gasch and Eisen, 2002; Goldstein et al., 2002; Swift et al., 2004).
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4.1.3.1 Distance measures

The concept of distance is very central to the task of clustering a dataset. The
definition of distance is fundamental to the way a dataset is going to be clustered,
since it determines which data points are similar to each other and therefore
should be clustered together. Different distance scores with the same clustering
algorithm can result in very different clustering arrangements. Clustering of a
dataset is in some cases possible without knowledge of the actual data point
values, just the inter-point distances are sufficient.

The distances between the members of a dataset may be already available,
but in most cases the distance matrix has to be calculated from the raw data.
Depending on the nature of the data, there are various ways to calculate the
distance between members of a dataset. Common distance measures include
the Euclidean distance, the city block distance (also called Manhattan distance),
which are both special cases of the Minkowski distance, the Canberra distance,
the angular separation and finally Pearson correlation. Euclidean distance is the
most commonly used. For p parameters and given a 2-dimensional data matrix,
the distance between the data elements represented by rows ¢ and j, Euclidean
distance can be calculated as:

)
dij = \] > (wik — zjr)? (4.1)
k=1

The Pearson correlation distance measure (Everitt et al., 2001) is used for
clustering in this study, therefore it is presented here in more detail. The Pearson

correlation coefficient between two data elements, is calculated as:

b5 = =1 (Tik — Tia) (Tt — T0) (4.2)
Vb @ik — Fa)? Yooy (e — T)?
where
1P

Tie = > >z (4.3)

k=1

For correlation coefficients it is true that
-1<¢i;<1 (4.4)
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where a value of 1 represents the strongest positive relationship and -1 represents
the strongest negative relationship. Distance matrices for clustering algorithms
have to be in the [0, 1] interval, so the Pearson correlation coeflicient values can
be transformed into a distance matrix by using

6ij = (1 — ¢i;)/2 (4.5)

Pearson correlation coefficient does not take into account the absolute values
of the measurement, and is not sensitive to absolute differences in size between
data measurements. For example, the two data points z; = (1,2,3) and z; =
(3,6,9) have a correlation of ¢;; = 1 despite the 3-fold difference. This may
be inappropriate for some applications, but it is appropriate in the context of
microarrays, where the changes in the pattern of gene expression over different
conditions (or over time) are more important than the absolute expression values,
although in general, the choice of distance measure depends on the questions
being asked in the particular study (Brazma and Vilo, 2000).

4.1.3.2 Clustering algorithms and variability in performance

There are three different general categories of clustering algorithms: those that
attempt to find the optimal partitioning of a dataset into a predefined number of
clusters, those that use a hierarchical approach to discover the cluster structure

and those using a probabilistic model.

Partition-based clustering Partition-based clustering algorithms attempt to
find the optimal clustering arrangement of a dataset so that the resulting clusters
are as homogeneous as possible. The homogeneity of each cluster is calculated
according to a score function and the minimisation (or maximisation) of the score
results in the optimal clustering arrangement. The score function can be based
on the distance of each point to the centroid (usually the average point) of the
cluster to which it has been assigned. The k-means algorithm is an example of a
partition-based clustering algorithm (Hartigan and Wong, 1979).

Probabilistic clustering In probabilistic clustering each cluster is represented
by a parametric distribution, such as a Gaussian (continuous) or a Poisson (dis-
crete) distribution, and each individual distribution is referred to as a component

distribution. The clustering is modelled as a mixture of such distributions and
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the parameters of the distributions are determined from the data. The number
of component distributions may be part of the input of probabilistic clustering
algorithms, but this is not necessary in all cases. Probabilistic clustering can also
provide ‘soft-partitioning’ of the data where data points are given a probability
of cluster membership, rather than discrete membership.

Hierarchical clustering Hierarchical clustering algorithms gradually merge
clusters or divide super-clusters in order to construct a hierarchy of clusters. The
merging approach is also referred to as the agglomerative method, as opposed
to the divisive method. The hierarchical approaches use multiple comparisons
between clusters to determine which clusters should be merged or how a super-
cluster should be divided, at each step of the clustering process.

The agglomerative hierarchical clustering algorithms begin with single mem-
ber clusters—each data point is a cluster. The two nearest point-clusters (ac-
cording to the cluster comparison score) are then merged into a two-member
cluster. At each subsequent step of the clustering, two clusters are merged and
this continues until the whole dataset has been merged into a single large cluster.
Therefore hierarchical clustering requires the distance between data points for
the initial step of the clustering and a function which measures distance between
clusters for the subsequent steps (Hand et al., 2001).

There are many proposed methods for the calculation of distance between
clusters. The single linkage method is the earliest such method and it defines the
distance between two clusters as the distance as the distance between the two
closest points, one from each cluster. According to the single linkage method the

distance between clusters C; and C; would be:
Dy (C;, C;) = ming y{d(z,y) | z € Cs,y € Cj} (4.6)

The single linkage method is susceptible to the phenomenon of “chaining”, in
which long strings of points are assigned to the same cluster. In agglomerative
clustering, this can occur by bringing into a cluster a point that is close to just
one of the members of the cluster, since the other members of the cluster are not
considered at all. This relatively distant data point will in turn contaminate the
cluster with other distantly related points—a process which eventually forms a
“chain” of points.

An alternative to the single linkage method is the complete linkage approach
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(also known as the furthest neighbour method), which defines the distance between
two clusters are the distance between the most distant points, one from each

cluster:
Du(Ci, C;) = maz y{d(z,y) | € Ciy € Cj) (4.7)

This approach usually results in clusters that are equal in terms of the space
occupied by their members (and not in terms of the amount of points per cluster),
and therefore they are appropriate for segmentation problems.

Another method for the calculation of distance between clusters is the aver-
age linkage method. This method takes into account all the possible distances
between data points each belonging to a different cluster, and defines the distance
as the average of those distances. If n; and n; are the sizes of clusters C; and C;
respectively, and dist(z;, x;) is the known distance between points z; and z;, the
average linkage distance between clusters would be:

ng

1 &
Dal(Ci,Cj) = - Z dist(xi,xj) l x; € C'i,yj S Cj (4.8)

iNj 3=

Divisive hierarchical clustering algorithms use an approach inverse to the
one employed by agglomerative algorithms. The algorithm starts with a single
cluster containing all the data points and attempts to split it into its components.
The components are also split in a recursive manner, down to the point where
each of the clusters contains a single data point. Divisive methods are more
computationally intensive and tend to be used less than agglomerative algorithms.

One disadvantage of agglomerative hierarchical clustering algorithms is that
once two clusters have been merged they cannot be split again in a subsequent
step of the clustering, even if such a reversal would result in a better overall
clustering outcome. Similarly, divisive algorithms are unable to merge back two
clusters that were separated at an earlier stage.

The resulting hierarchy produced by hierarchical clustering algorithms can be
presented as a tree-like diagram known as a dendrogram. The branching in the
dendrogram represents splits or fusions (depending on whether an agglomerative
or divisive method was used) and the lengths of the branches represent the dis-
tances between clusters. In many cases, the researcher is not interested in the
whole of the resulting hierarchy, and only one or two partitionings are of inter-
est. In such cases, it is desirable to stop agglomerative algorithms before they

merge all the points into one cluster and, similarly, to stop divisive algorithms
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before they divide all points into their own clusters. This is equivalent to cut-
ting the dendrogram at a specific height, and because of that the corresponding
partitioning is sometimes referred to as the best cut (Everitt et al., 2001).

It is not always obvious which partitioning of a hierarchical clustering is the
optimal partitioning. In some cases the appearance of the dendrogram of the
clustering informally suggests an optimal height at which the hierarchy can be cut
to produce a single partitioning. There are also formal approaches for determining
the optimal number of clusters (Everitt et al. 2001, also see next section).

4.1.3.3 Clustering analysis in the context of expression microarrays

The amount of data produced by gene expression experiments means that direct
interpretation of the raw measurements is impossible. Because of this, it is usually
necessary to perform further analysis of the produced results in order to draw
useful biological conclusions.

In the cases where the aim of the experiment is the discovery of a limited
number of genes participating in a process, those genes can be selected using
certain statistical criteria. For example, Spellman et al. (1998) used correlation
to the gene expression profiles of certain genes known to participate in the cell
cycle of yeast Saccharomyces cerevisiae as a criterion for the identification of more
genes participating in the same process.

Clustering analysis of gene expression experiment results can organise the
participating genes into a manageable number of clusters which contain genes
with similar expression profiles. It is well-established that the application of
clustering analysis on gene expression profiles results in clusters which contain
genes of similar function and which reflect known cellular processes (Eisen et al.,
1998). The fact that an uncharacterised gene is a member of an otherwise well-
understood gene expression cluster can be indicative of the potential role of the
gene, according to the principle of guilt by association (Quackenbush, 2003).

Many different clustering methods have been applied to gene expression data.
These include hierarchical methods (Eisen et al., 1998), k-means (Tavazoie et al.,
1999), fuzzy k-means (Gasch and Eisen, 2002) and self organising maps (SOMs)
(Tamayo et al., 1999).

Although the general-purpose clustering algorithms are still being widely
used, a number of problems have been identified with this approach. It has

been found that the results of clustering genes expression profiles highly depend
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on the choice of clustering algorithm, and on the selection of genes to be included
in the clustering (Goldstein et al., 2002). In the same study, a number of methods
for the determination of the optimal number of clusters were applied (Calinski
and Harabasz, 1974; Hartigan, 1975; Krzanowski and Lai, 1988), each producing
a different answer. The number of clusters is very important, since the clusters
should reflect underlying biological processes (Goldstein et al., 2002). The incon-
sistency between the results of clustering algorithms as applied to gene expression
data has been confirmed by (Swift et al., 2004).

In order to deal directly with the challenges posed by gene expression data, a
number of specialised clustering techniques have been developed. These include
the cluster affinity search technique (CAST) (Ben-Dor et al., 1999), gene shaving
(Hastie et al., 2000) and bi-clustering techniques (Madeira and Oliveira, 04). Also,
Wu et al. (2002) developed a method which involved applying a range of different
clustering algorithms to the same dataset, and selecting the most biologically
relevant clusters by assigning confidence values by using the MIPS (Martinsried
Institute of Protein Sciences) database annotations (Pagel et al., 2005) and the
hypergeometric distribution. Another approach was used by Swift et al. (2004),
who developed a consensus clustering method which allows the combination of

clustering results of multiple clustering algorithms.

4.1.3.4 Clustering analysis validation

A number of studies attempt to compare the consistency of the results of cluster-
ing methods, and to analyse the validity of the produced clusters in the context
of the corresponding knowledge domain. Such validation can be performed using
the given dataset for the assessment of the clusters (internal validation), or it can
be performed based on an external data source (external validation). An example
of internal cluster validation is the figure of merit (FOM) metric, which uses the
leave-one-out technique to assess the predictive power of the clustering algorithm
(Yeung et al., 2001).

A number of studies provide statistical measures for cluster reliability of gene
expression based clusterings (Horimoto and Toh, 2001; Kerr and Churchill). One
such method, calculates the confidence of hierarchical clusters by perturbing the
data with Gaussian noise, and subsequently re-clustering the data (McShane
et al., 2002).

Some studies that use the annotations of the Gene Ontology as a data source
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for the external validation of gene expression clusters. These are discussed in
detail in Section 4.1.4.6 on page 111.

4.1.3.5 Comparison of clustering arrangements

In some cases it is desirable to compare two partitionings or clustering arrange-
ments. This may be useful for purposes of evaluating the consistency of different
clustering algorithms, or for cross-comparison of their results. Such compar-
isons are also useful in a medical context, for the assessment of consistency of
patient categorisation (mainly through diagnosis) by different clinicians. The
kappa measure (written as k) is used in this study for the comparison of clus-
tering arrangements, therefore it is going to be presented here in detail (Altman,
1991; Cohen, 1960).

The s measure is calculated based on an agreement matrix, which reflects the
agreement between the two categorisations being compared. For g categories,
the agreement frequency matrix f is a square matrix of g x g dimensions. The
diagonal of this matrix contains counts of instances of agreement of the two
categorisations, while the rest of the matrix contains the counts of instances
when the two categorisations disagree. The proportion of agreement observed is
the calculated as

1 g
Po = ; ; fii (4-9)

where n is the total number of observations, given by the sum of elements of the
matrix.

It is expected that some of the agreements are because of chance. For a given
element of the agreement frequency matrix, the expected frequency of agreement
because of chance is calculated as the sum of the elements of the corresponding
row r;, multiplied by the sum of the elements of the corresponding column ¢; and
divided the squared overall sum of the matrix elements. Therefore, the overall

expected agreement due to chance p. is calculated as:

1 g
Pe=—5 > _TiC; (4.10)
=
where 0
=Y fu (4.11)
k=1
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and .
ri= Y fui (4.12)
k=1
The value of « is then given by:
Po — De
K= — 4.13
1-pe ( )

The values of k vary from 1 (identical categorisations) to —1 (completely
different categorisations). A value of 0 indicates agreement that is no better than
chance. The k measure is used in Section 4.2.3.4 (page 137) where it is also

explained how it was applied to compare clustering arrangements.

4.1.4 Gene ontology (GO)

4.1.4.1 The need for a controlled vocabulary for the description of
genes

The availability of genetic sequences of entire genomes has transformed the theory
of molecular biology. In the past the focus was on the diverse functional possi-
bilities of proteins and genes where seen as able to produce countless protein
structures (and function) through various combinations of mutations. As fully-
sequenced eukaryotic genomes started becoming available, it became apparent
that the realm of proteins and domains was limited and that sequence, struc-
ture and function were conserved between species. The conservation of biological
sequences is called homology. The different types of homologous genes include
orthologous genes, which are genes originating from the same ancestor and are
more likely to have a conserved function, as opposed to paralogous genes, which
are homologues resulting from a gene duplication event, and are more likely to
have divergent functions. Orthologs are mainly found participating in core bio-
logical processes such as DNA replication, transcription and metabolism, which
are common to all eukaryotic cells (Ashburner et al., 2000).

Despite these advances in sequencing and the resulting changes in the theory
of molecular biology, biologists continued using divergent nomenclature for the
genes, despite appreciating the underlying similarities, therefore hindering inter-
operability. The Gene Ontology (GO) Consortium, a project that was jointly
founded by FlyBase (FlyBase Consortium, 1998), Mouse Genome Informatics
(MGI) (Blake et al., 2003) and the Saccharomyces Genome Database (SGD)

103



4.1. Introduction 4. Gene expression clustering validation through data mining

(Cherry et al., 1998), aims to address this problem. The main goal of the con-
sortium is to ‘produce a structured, precisely defined, common, controlled vo-

cabulary for describing the roles of genes and gene products in any organism’
(Ashburner et al., 2000).

4.1.4.2 Structure of the Gene Ontology

The resulting controlled vocabulary produced by the consortium is the Gene
Ontology (GO). Despite its name, it is not an ontology because it does not meet
the criteria discussed in Section 1.1.2.1. The Gene Ontology is divided into three
distinct parts, each describing a different aspect of genes: the biological process,
molecular function and cellular component sub-ontologies. In this document those
three sub-ontologies will be referred to as aspects of the Gene Ontology.

The biological process aspect of the ontology refers to the general biological
objective to which the gene or gene product contributes. An example of a general
term belonging to this aspect is ‘cell growth and maintenance’, while ‘pyrimidine
metabolism’ is a more specific term.

The molecular function aspect of the ontology describes the biochemical ac-
tivity of a gene product, including binding to ligands or protein structures. The
temporal or spatial aspects of the activity are not defined by this aspect of the
ontology. Examples of general molecular function terms are ‘enzyme’ and ‘trans-
porter’. An example of a more specific term is ‘adenylate cyclase’.

Finally, the cellular component aspect refers to the location within the cell
where a gene product is active. This aspect contains terms that may not be
applicable to all species, and it is meant to be inclusive. This aspect contains
terms such as ‘proteasome’ and ‘nuclear membrane’.

An important rule that applies to annotations made using GO is the true
path rule: Each child term inherits the meaning of all its parent terms, and
because of that, all annotations using the particular term should be true for
every parent of the term, all the way up to the root. Because of that, the
relationship between terms is called an ‘is a’ relationship. A significant difference
of the cellular component aspect to the other two is that the relationship between
its terms is a part-of relationship, therefore cellular component terms deep in the
ontological structure represent cellular components that are parts of components
represented by terms found higher in the ontology.

The terms of the ontology are organised in an almost tree-like hierarchy known
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Figure 4.1: Part of the molecular function aspect of the Gene Ontology. Non-specific
terms are near the root, and specificity increases deeper in the structure. Also, some
terms, such as two-component response regulator activity, can have multiple parents.
Not all children of each term are shown here.

as a directed acyclic graph. The main difference to true trees is that directed
acyclic graphs allow terms to have more than one parents. The root of the
tree is the most general term of the particular ontological aspect, with its direct
descendants being the most general terms of the ontology, and the more specific

terms residing further down the hierarchy (see figure 4.1).

4.1.4.3 Gene Ontology annotations

Organisations responsible for the sequencing and subsequent annotation of genomes
of different organisms use the Gene Ontology to systematically characterise the
newly discovered genes. Apart from the original FlyBase, MGI and SGD, the par-
ticipating database list has been expanded to include the Arabidopsis Information
Resource (TAIR) (Huala et al., 2001; Rhee et al., 2003), the Institute for Genomic
Research (TIGR) contributing annotations for genomes of 16 species, Worm-
Base (Caenorhabditis elegans), the Gramene database (Oryza sativa), the Sanger
GeneDB (annotations for 4 species), and others. The fact that all databases are
using the common vocabulary to annotate the genes of each species essentially
unifies them conceptually and provides a mapping between them.

The Gene Ontology Annotation (GOA) database (Camon et al., 2004) is
provided by the European Bioinformatics institute, and it contains GO annota-
tions for the Universal Protein (UniProt) Knowledgebase (Apweiler et al., 2004).
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UniProt is a centralised resource for protein sequences and functional information
which unifies the Swiss-Prot (Bairoch and Boeckmann, 1991), TTEMBL (Boeck-
mann et al., 2003) and PIR (Wu et al., 2003) databases. The GOA and SGD
GO annotations are particularly relevant to this chapter and will be discussed
further.

The GOA annotations are generated using a combination of automatic and
manual techniques. One of the techniques involves automatic assignment of GO
terms to UniProt entries according to the Enzyme Commission (EC) numbers
(Bairoch, 2000) that may be contained in the UniProt file. EC codes are a nu-
merical classification scheme for enzymes, based on the chemical reactions they
catalyse, with each code consisting of four numbers separated by periods, each
representing a progressively more specific classification of the enzyme. This is
made possible by using a mapping between EC and the GO molecular function
terms which is maintained by the GOA group. Similarly, a Swiss-Prot keyword
to GO term mapping is maintained, which is also used to generate large numbers
of annotations using all three aspects of the ontology. UniProt contains database
cross-references to InterPro (Apweiler et al., 2001) which provides integrated in-
formation for proteins families and domains, and also contains manually curated
GO annotations. The cross-references from UniProt to InterPro, allow the GOA
group to infer annotations for UniProt entries automatically. This technique has
produced the most coverage for the GOA dataset (Camon et al., 2004). The
GOA group also assigns annotations manually based on the relevant literature
and reviewed by a group of skilled biologists. The manual annotation process is
obviously slower than the automatic techniques. Priority is given to the annota-
tion of human proteins.

The SGD does not rely on automatically inferred GO annotations. Its cu-
rators read the relevant literature and assign the appropriate GO terms to the
gene product being reviewed. The assigned terms may be general or specific,
depending on the level of understanding of the particular product. In most cases
the gene ontology already contains an appropriate term, but in some cases the
curators may suggest the introduction of new terms or even the local restructur-
ing of the ontology. If no information is available on a specific gene product, this
is indicated by assigning the corresponding root ontological term to the product
(‘biological_process’, ‘molecular_function’ or ‘cellular_component’) (Dwight et al.,
2002).

Each GO annotation entry includes information about the type of evidence
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Code Evidence type GOA SGD
IC Inferred by Curator 1 0.3
IDA  Inferred from Direct Assay 68 10.0
IEA Inferred from Electronic Annotation 9,169 0.0
IEP Inferred from Expression Pattern 2 0.2
IGC Inferred from Genomic Context 0 0.0
I1GI Inferred from Genetic Interaction 6 1.0
IMP  Inferred from Mutant Phenotype 40 6.0
IPI Inferred from Physical Interaction 40 2.0
ISS Inferred from Sequence or Structural Similarity 28 2.0
NAS Non-traceable Author Statement 20 0.6
ND No biological Data available 4 4.0
RCA Inferred from Reviewed Computational Analysis 46 0.3
TAS  Traceable Author Statement 62 4.0
NR Not Recorded 2 0.0

Total 9488 35.0

Table 4.1: The GO annotation evidence types and their codes. Also shown is the relative
usage of terms with particular evidence codes within GOA and SGD annotations (as of
25/03/2007). All numbers represent thousands of terms. Please note that the bars for
GOA and for SGD are on different scales, and that the bar for JEA GOA annotations is
not fully shown.

used when making the association between the particular GO term and the
particular gene. There are 14 types of annotation evidence, which are sum-
marised with their respective codes in Table 4.1. The GO documentation (http:
//www.geneontology.org/G0.evidence.shtml) contains detailed definitions of
the evidence types and guidelines on their use. Annotations that are Traceable
Author Statements seem to reflect well established biological phenomena that
have become common knowledge, since they include ‘anything in a review article
where the original experiments are traceable through that article’ and ‘anything
found in a text book or dictionary’. On the other hand, other types of evidence
could also be considered as conferring reliable biological knowledge, especially
the ones that are associated to experiments, such as Inferred from Direct Assay,
Inferred from Genetic Interaction, Inferred from Mutant Phenotype and Inferred
from Physical Interaction.

As it is evident in Table 4.1, the electronically inferred GOA annotations
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exceed all the other types by two orders of magnitude. Traceable Author State-
ments and annotations inferred from Direct Assay are also popular, but signif-
icantly lower in numbers. As discussed before, the electronically inferred GOA
annotations are be partly attributable to the semi-automatic process of auto-
matically retrieving manual annotations from InterPro and also to the process of
inferring GO annotations based on the manually-created mapping between GO
terms and EC numbers. The fact that the electronically inferred annotations of
GOA are generated in a partially manual manner implies that their abundance
may not have as much impact to the impact on the quality of annotations as
initially expected. On the other hand, the SGD annotations seem have an ad-
vantage over GOA, conferred by the complete absence of electronically inferred
annotations. Instead, the SGD uses more direct evidence such as Direct Assays,
Mutant Phenotype observations, or it draws on the rich knowledge about yeast
in the form of Traceable Author Statements. Unsurprisingly, the fact that yeast
is a very well-characterised organism is reflected in its GO annotations. Despite
the indications of better quality of the yeast annotations, roughly 4,000 out of
35,000 annotations have the No biological Data available (ND) evidence code.

4.1.4.4 Applications of GO and GO annotations

An application of the Gene Ontology is the automatic characterisation of newly
sequenced genomes, as exemplified by the almost fully automatic annotation of
50% of the Drosophila genome by GO terms belonging to the biological process
and molecular process aspects (Ashburner et al., 2000). GO has also found ap-
plication in aiding the identification of the role of genes that have been clustered
together based on gene expression experiments (Eisen et al., 1998; Spellman et al.,
1998) and in reclassifying and modelling relationships between known proteins
(Laegreid et al., 2003; Schug et al., 2002). Also, combined with statistical analysis,
the GOA dataset has proven useful for building pathways (Zhong et al., 2003).
Finally, GOA has been used in evolutionary studies to look at the correlation
between structure and function (Shakhnovich et al., 2003).

4.1.4.5 Studies on the automated data mining of GO

GO addresses the need of a consistent vocabulary for the descriptions of genes
and gene products, and the availability of GO annotations has helped researchers

discover functional correlations between genes by manually examining the terms
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attached to their genes of interest. This approach has proven useful for small
datasets, but it is too time consuming to be applied to the evaluation of data
produced from high-throughput techniques such as gene expression arrays.

Several techniques have been developed in order to address the problem of elu-
cidating the functional similarity of genes en masse using the similarity between
the attached Gene Ontology terms.

Lord et al. (2003a,b) proposed the use of semantic similarity measures origi-
nally developed for natural language processing. Specifically, the information con-
tent of each of the ontological terms was used to calculate semantic similarity—an
approach originally used in Wordnet (Fellbaum, 1998). The information content
of each term is determined based on its occurrence within a body of annotated
information. Three different measures were used for the calculation of semantic
similarity between GO terms (Jiang and Conrath, 1997; Lin, 1998; Resnik, 1995).
The mechanics of those measures are discussed in detail in Section 4.2.3 because
of their relevance to the work in this chapter. The similarity between two pro-
teins is defined as the average similarity between all GO terms annotating the
proteins. The annotations of the human proteins in SWISS-PROT (Bairoch and
Boeckmann, 1991) were used as an annotated body to determine the information
content of each GO term. It was found that the GO semantic similarities cor-
related with the bit score sequence similarity measure produced by the BLAST
sequence comparison algorithm (Worley et al., 1995). The Resnik measure ex-
hibited higher correlation to sequence similarity in comparison to the other two
measures. The same studies also concluded that the correlation was much greater
when using only Traceable Author Statement (TAS) GO terms, presumably due
to the higher quality of such annotations. Any outliers with low sequence simi-
larity but high semantic similarity, were due to groups were two or more classes
of protein are involved in the same process, or mis-annotations. The other type
of outliers, exhibiting high sequence similarity and low semantic similarity was
mainly due to under-annotation.

The Resnik measure considers how specific the most informative ancestor of
the two terms being compared is, but it does not take into account how far the
ancestor is from the terms. Lin on the other hand does not reflect the speci-
ficity of the common ancestor, but it does assess the distance of the terms being
compared to the common ancestor. These possibly problematic characteristics
of the measures were addressed by Schlicker et al. (2006), who developed a mea-

sure for the comparison of GO terms (simpge;) which combines the Resnik and
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Lin measures. The gene product semantic similarity measure (funSim) is based
on simpge; and takes into account the semantic similarity of GO terms from both
the molecular function and biological process aspects of the ontology. The results
were compared to the results of Lord et al. (2003b) and they differed significantly,
but it was unclear which approach is more effective due to the lack of a “golden
standard”. Also the method was found to be especially sensitive to the quality
of the annotations being used.

The work of Lord et al. (2003b) was extended in the study of Popescu et al.
(2006). This study addresses inconsistencies that appear when using the aver-
age GO term similarity to calculate the gene product similarity (the fact that
self-similarity is not 1 when a product has multiple terms), and when using max-
imum GO term similarity to calculate the gene product similarity (the fact that
similarity between gene products that share one term is 1, regardless of the rest
of the annotations). Popescu et. al. developed a number of similarity scores for
gene products based on fuzzy densities calculated using the information theoretic
approach. A similar evaluation to Lord et al. (2003b) was performed, and it was
shown that the proposed measures correlate better to sequence similarity than
the averaging approach used by Lord et al. (2003b) and the maximum similarity
approach used by Speer et al. (2004), although the differences were not striking.
It was also found that the maximum similarity approach correlated better to
sequence similarity than the averaging approach.

The eGOn tool (Beisvag et al., 2006) is able compare and analyse anno-
tated genes by statistically calculating the degree of GO category representation
similarity between the sets of genes. eGOn is part of the GeneTools website
(www.genetools.no).

The Resnik, Lin and Jiang semantic similarity measures use the most informa-
tive ancestor of the GO terms being compared and discard other ancestors even if
there are independent paths from the ancestors to the term (which suggests that
the extra ancestor contributes to the meaning of the term independently). The
GraSM measure was developed to address this limitation (Couto et al., 2005).
The measure selects all the ancestors with independent paths (termed disjunc-
tive ancestors) and bases the comparison on the average semantic content of those
ancestors. Similarly to Lord et al. (2003b), assessment of the three modified simi-
larity measures was performed by examining their correlation to protein sequence
similarity, and it was found that the correlation to sequence similarity increased

in comparison to the original versions of the measures.
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The very recent study of Wang et al. (2007) follows an approach that only
relies on the structure of the ontology itself rather than using a body of annotated
information to calculate distances between GO terms. This method first calcu-
lates the information content of each term based on the amount of ancestors each
term has, and on how many ontological connections separate each ancestor and
the term. The ‘part-of’ relationships are assigned a smaller semantic contribu-
tion factor in comparison to the ‘is-a’ relationships, which the method considers
semantically more important. The exact contribution factors were calibrated to
produce results that best match human perception for each of the three aspects
of the Gene Ontology. The semantic similarity between two GO terms A and B is
then defined as the sum of semantic contributions of the common ancestors of A
and B to each of the terms, divided by the sum of information contents of A and
B. The same study the defines the distance between two GO-annotated genes,
in terms of the average value of semantic distances between all the combinations
of GO terms annotating the two genes. The measures developed were manually
evaluated by comparing the results produced to the curated pathway informa-
tion of the SGD database (Cherry et al., 1998). The developed similarity measure
was also compared to the performance of the Resnik measure. Genes belonging
to the same pathway where independently clustered using the similarity values
produced by the Wang Wang et al. metric and the corresponding Resnik values,
and it was found that the clustering results obtained using the Wang metric were

consistent to human perception, in contrast to the Resnik-derived results.

4.1.4.6 GO applied to gene expression data

The automatic identification of functionally related genes using the Gene On-
tology, has also been used to produce summaries of gene expression results, to
validate gene expression clusters, and also to guide the clustering of gene expres-
sion data.

It has been shown that the semantic similarity between Gene Ontology terms
to some extent correlates with the gene expression patterns of the corresponding
genes. The study of Azuaje and Bodenreider (2004) produced some indications
of this correlation by applying the Resnik, Lin and Jiang similarity measures to
a yeast dataset (Cho et al., 1998).

In a subsequent study, Sevilla et al. (2005) set out to explore any correlation

between the semantic similarity as calculated using the Resnik, Lin and Jiang
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measures and the Pearson correlation between individual gene expression profiles.
The two gene expression datasets used came from a study of murine airway
hyper-responsiveness (Wills-Karp and Ewart, 2004) and a large-scale analysis
of the human and mouse transcriptomes (Su et al., 2002). They found that
considering all the individual gene expression/semantic similarity pairs displays
a great dispersion of data, which results in very low correlation values. When
the gene expression similarity values are averaged at uniform semantic similarity
intervals, a clearer trend emerges: for the Resnik measure, the correlation is
negligible up to a semantic similarity value of about 6, and then; for higher
similarity values the correlation becomes almost linear.

The three aspects of the ontology were considered separately by Sevilla et al.,
and it was found that all three performed equally well. The Lin and Jiang mea-
sures produced much poorer results. Sevilla et al. confirmed their results by
comparing real expression data with simulated and randomised GO terms, by
performing a random permutation of the GO terms assigned to each gene. They
also performed the inverse study, by producing randomised gene expression data
and looking at its correlation to actual GO annotations. Both studies produced
correlation values close to zero, thus confirming the previous results.

When Sevilla et al. attempted to filter the GO terms so that only the TAS
terms were used, they found that the correlation results were significantly poorer
than when all the terms were considered, leading to the conclusion that as the
number of annotations becomes smaller, the correlation becomes poorer.

The Gene Ontology has been successfully used in the past as a means of deter-
mining the optimal number of clusters for gene expression datasets, through the
development of a GO-based validation for clusterings containing various numbers
of clusters (Bolshakova et al., 2005). The C-index validation metric (Hubert and
Schultz, 1976) was used, based on values produced by the Lin semantic similarity
measure as applied to Gene Ontology terms. In the subsequent study of Bol-
shakova et al. (2005), clustering validation measures (Dunn’s index, Dunn, 1974;
and the Silhouette index Rousseeuw, 1987) were used to calculate the validity
of gene expression clusters based both on the gene expression values and the se-
mantic similarity of GO terms (Wu and Palmer, 1994; and Resnik similarity).
The quality scores produced by the GO-based validity indices were found to be
strongly correlated to each other and to the data-based quality scores.

The purpose of the study of Gibbons and Roth (2002) was to compare the
performance of difference clustering methods and distance metrics through the
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application of the Gene Ontology to the assessment of gene expression clusters.
The clustering assessment was achieved by a figure of merit which measures the
amount of information shared between a clustering result and gene annotations.
This figure of merit was applied to a range of clusterings of four gene expres-
sion dataset, each range containing a different number of clusters (from 2 to 100
clusters). It was found that Pearson correlation performed better than the Man-
hattan distance. Single linkage was also found to perform poorly, and surprisingly,
average linkage was found to perform worse than complete linkage.

The study of Azuaje and Bodenreider (2004) suggested the use of semantic
measures in conjunction with the Gene Ontology for the validation of gene clusters
through the calculation of cluster homogeneity and separation. A variation of
this approach was implemented by Lee et al. (2004). The semantic similarity
measure of method of Lee et al. involves deriving a tree from the GO directed
acyclic graph by eliminating any multiple inheritance of terms by always keeping
the longest path between terms. The principal distance between GO terms is
defined as the level of their lowest common ancestor. Based on this distance, two
measures of cluster validity are defined. The first measure involves assessing the
validity of the cluster based on the level of the lowest common ancestor, with
levels near the root indicating low quality clusters containing false positives, and
deeper levels indicating high quality clusters. This scoring scheme is based on the
assumption that same-level terms have the same information specificity, which
does not always hold for the Gene Ontology and for other hierarchies (Ganesan
et al., 2003). The other measure is based on the average principal distance and
it attempts to detect the most frequently occurring terms for the purpose of
characterising the cluster. The two measures were manually evaluated against
the Eisen dataset (Eisen et al., 1998), and it was possible to characterise the
clusters by informative GO terms, and to provide quality scores for each for the
ten clusters of the dataset that were better than random.

The biological process aspect of GO has also been incorporated into the clus-
tering process by Kustra and Zagdariski (2006). In their study they used GO
term semantic similarity as defined by Lin (Lin, 1998) to calculate the distances
between annotated genes by weighting the semantic similarities of participat-
ing terms. The obtained dissimilarity matrix is then combined with a gene
expression-derived matrix to guide the data clustering. A linear factor determines
the extent at which each of the matrices is taken into account. The clustering was
performed using the Partitioning Around Medoids (PAM) method on the data
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of (Wu et al., 2002). The clustering results were assessed against the Protein-
Protein Interaction (PPI) database (Breitkreutz et al., 2003), by determining the
percentage of interacting gene pairs against the total gene pairs in a cluster. The
PPI-based validation provided an indication that the use of GO annotations does
improve the clustering results, but no definitive conclusions were drawn.

A similar approach for integrating Gene Ontology annotations in the clus-
tering process was used by Cheng et al. (2004), in the GO-Guided Clustering
Algorithm (GO-GCA). Instead of an information content-based method, their
study uses an edge-based approach to quantify the similarity between GO terms.
The score between two terms is calculated based on the number of edges com-
mon to the two paths connecting the two terms to the root. The edges closer to
the root are weighed-down to reflect the lower specificity of terms at shallower
levels. The GO-based matrix was added to Euclidean distances of expression
profiles and the resulting matrix was used to derive a hierarchical clustering of
gene expression data derived during the maturation of Transgenic Myeloid Pro-
genitor (MPRO) cells into neutrophils. The results of the combined clustering
were compared to standard expression-based clustering and it was found that the
GO-Guided algorithm pulled together genes that were at the borderline of being
clustered together by standard clustering.

Azuaje et al. (2005) also integrated the Lin semantic similarities of biological
process GO terms and gene expression values from the Eisen et al. (1998) dataset
to perform hierarchical clustering on yeast genes. They found their results to be
consistent to the original clustering, which was based solely on gene expression
similarity values.

GO has also been used in the development of a systematic supervised learning
method to predicting biological process from time series (Hvidsten et al., 2003).

4.1.4.7 Problems of the Gene Ontology

Although it is widely accepted that the Gene Ontology is a useful resource, and
despite its numerous applications, it is also widely accepted that there is room for
improvement. It has been discovered that although the usage of the three aspects
of GO is largely independent, there is some correlation between them (Lord et al.,
2003b). This may have implications for the design of the ontology, since there
are no formal links between the terms belonging to different GO aspects, while

semantically this is not strictly true. For example, it may have been useful to
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have a formal link between the biological process term of “taste” (GO:0007607)
and the molecular function “taste receptor” term (GO:0008527).

Also, in some cases methods are based on the assumption that terms of the
same level are of the same specificity, such as in the case of Lee et al. (2004), but
in most cases this is not true (Schlicker et al., 2006).

The necessarily subjective nature of the annotations made using GO terms
affects the quality of annotations. Also, the fact that a considerable percentage of
gene products is still not annotated imposes limits to the applicability of methods
that rely on GO annotations.

4.1.5 Data warehousing approaches for the integration of dis-
parate biological resources

Apart from availability, the motivation for integrating biological data resources
is the extra knowledge that can be inferred from the inheritance of functional,
structural, and other biological information from the evolutionary relatives of
proteins and genes.

The integration of existing biological datasets is considered an extremely dif-
ficult task. This is due to lack of consistency of the data identifiers used in
different biological data resources, which means that several identifiers may refer
to the same object. In some cases, a single resource lacks internal consistency of
identifiers. Another difficulty arises from the fact that each biological data source
uses its own database schema to model possibly overlapping problems, making

the mapping between resources more challenging.

4.1.5.1 BioMap

BioMap is an integrated biological information database resource (Maibaum
et al,, 2004). It integrates information from a number of domain structure
and protein sequence, protein—protein interaction, and functional information
databases. The data sources include sequence databases (UniProt, Apweiler
et al. 2004; Integr8, Pruess 2005; and RefSeq, Pruitt et al. 2005), the EBI-MSD
structural resource (Boutselakis et al., 2003), the CATH structural classification
database (Orengo et al., 1997), the KEGG pathway database (Kanehisa and Goto,
2000), interaction resources (the MIPS Mammalian Protein-Protein Interaction
Database, Pagel et al. 2005; IntAct, Hermjakob et al. 2004; MINT, Zanzoni et al.
2002), the InterPro database (Apweiler et al., 2001), and the Gene Ontology.

115



4.1. Introduction 4. Gene expression clustering validation through data mining

BioMap organises proteins into sequence families which are formed using the
PFScape (Grant et al., 2004) protocol which is in turn based on the TribeMCL
clustering algorithm (Enright et al., 2002). The families are then sub-clustered
to generate sequence clusters using the BLAST sequence similarity algorithm
(Altschul et al., 1990) and multi-linkage clustering. Clustering of relatives at 30,
40, 50, 60, 70, 80 and 90% sequence similarity is performed and the clustering
information for all similarity levels is retained within the family, therefore produc-
ing various possible sub-clusterings depending on the chosen level. This hierar-
chical organisation of annotated sequences and proteins allows the inheritance of
functional information from members of the same subcluster, thus providing func-
tional information for uncharacterised genes and proteins or enriching the existing
annotations. It is worth noting that in some cases it was necessary to manually
merge protein families in BioMap—the process is not fully automated. The exis-
tence of multiple levels of clustering allows the usage of integrated datasets at a
level of similarity appropriate for the particular application.

Specifically in this study, the sequence clusters of BioMap are used for in-
heriting GO functional annotations from relatives of the same sequence family
(see Section 4.2.5.3). According to studies by Todd et al. (2001) and Devos and
Valencia (2000), function is conserved for levels of sequence identity above 30—
40%. The study of Todd et al. showed that EC numbers vary rarely for sequence
identity above 40%, and that for sequence identity above 30% the first three
digits of the EC number can be predicted with 90% accuracy. The more recent
study of Rost (2002) suggests that sequence identity threshold of 30% is based
on datasets that are too small or biased and that it may be too low for enzy-
matic functional conservation. A more stringent sequence identity level of over
60-70% was proposed. A study by Tian and Skolnick (2003) addressed the same
database size and bias problems pointed out by the Rost study, but by using
both sequence-based and functional classification of proteins and by removing
identified unfavourable bias from the Rost dataset, it was shown that sequence
similarity above 40% could still be used as a confident threshold for the transfer
of the first digits of the EC numbers.
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4.1.6 Experimental datasets used to test the data mining meth-
ods

The data mining methods presented later in this chapter were tested on hu-
man B-cell (Section 4.2.5) and a yeast (Section 4.2.3.4) gene expression datasets,

therefore some background on the original studies is presented here.

4.1.6.1 B-cell dataset

B-cells are small lymphocytes that play a important role in the humoral immune
response which is part of the adaptive immune system. B-cells produce antibodies
that cover the surface of antigens to flag them for destruction. In humans, B-
cells develop in the bone marrow as part of the process of haematopoiesis—the
formation of cellular components of the blood. The maturation of B-cells involves
several stages, each involving changes in the genomic areas that encode for the
parts of the antibodies the determine their specificity, known as loci.

In the study by Jenner et al. (2003) a range of human B-cell tumours were
ordered by stage of development using gene expression profiling, for the purpose of
discovering the stage most resembling the expression pattern of primary effusion
lymphoma (PEL), a type of tumour associated to Kaposi’s sarcoma-associated
herpesvirus.

The study involved 26 arrays, each corresponding to a stage in the develop-
ment of B-cells from which each type of tumor is thought to originate. The data
was filtered by removing all data for which the the signal was 1.5 times the back-
ground in the case of the Cy3 channel, and 2 times the background in the case
of the Cy5 channel. Median centering was performed for both genes and arrays.

It was found that the PEL expression pattern closely resembles the expression
pattern of malignant plasma cells, a form of mature B-cell. The gene expression
data from the range of human B-cell tumors were used in this study, and they

are available at www.biochem.ucl.ac.uk/bsm/virus_database/PEL.html.

4.1.6.2 Yeast dataset

The yeast dataset was produced in a study by Cho et al. (1998), which used
Affymetrix microarrays to monitor gene expression of 6,220 mRNA species in
synchronised Saccharomyces cerevisia batch cultures, for the purpose of analysis
the mitotic cell cycle. The dataset contains 15 time points across two cell cycles.
Tavazoie et al. (1999) clustered the 3,000 most variable expression profiles of
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the dataset into 30 clusters using the k-means clustering method for the purpose
of identifying transcriptional regulatory sub-networks. The members of each
cluster were found to be significantly functionally enriched, according to the 199
categories of the MIPS database classification scheme. This clustering was used

in the random clustering simulations in Section 4.2.3.4.

4.2 Analysis

This section describes the development of a clustering quality measure which
uses a priori biological knowledge to validate the clustering of gene expression
data, the results obtained from its application to a human B-cell development
gene expression dataset, and refinements to the quality measure based on the
obtained results. The whole process is summarised in Figure 4.2.

4.2.1 Overview

The measure developed in this chapter involves assessing the coherence of gene
expression clusters and the inter-cluster separation using the well-established ho-
mogeneity and separation clustering quality measures. The two measures can
assess the overall quality of the clustering based on a matrix that contains dis-
tance measures between the items being clustered. These measures are relatively
straightforward to implement, and they are quite flexible in the sense that they
allow any distance matrix to be used for their calculation, opening the possibil-
ity of usage of any quantifiable a priori biological knowledge. The specifics of
homogeneity and separation are discussed in Section 4.2.2.

The approach was to investigate the Gene Ontology as a source of biological
knowledge that could be used for the calculation of the homogeneity and separa-
tion values of the gene expression clusters. GO annotations have the advantage
of being partly manually curated. Also, as discussed in Section 4.1.4.5 the struc-
tured nature of the Gene Ontology makes the quantification of semantic distance
between ontology terms possible, and three pre-existing measures have been im-
plemented to this end (discussed in Section 4.2.3). Before applying the clustering
quality measure to any dataset, the Gene Ontology was investigated in order to
ensure that the semantic distance measures were not biased (Section 4.2.3.1) and
that the GO-based homogeneity and similarity values were indeed reflective of
the overall clustering quality (Section 4.2.3.4).
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luster 1
custer cluster 2

cluster 3

Figure 4.3: The distances used in the calculation of the homogeneity of a hypothetical
clustering (shown as lines connecting individual cluster elements).

The GO-based homogeneity and separation clustering quality measure was
then applied to a human gene expression dataset concerning the maturation of
B-cells (a process discussed in Section 4.1.6.1). This revealed certain limitations
of the quality measure, and attempts to resolve these problems are discussed in
Sections 4.2.5.2 to 4.2.5.4.

4.2.2 Homogeneity and separation measures
4.2.2.1 Overall clustering quality measurement

One way to assess the performance of a clustering algorithm is to calculate the
homogeneity and separation of the produced clustering arrangement.

The homogeneity of a clustering arrangement is an overall measure of how
tight the clusters are, and is calculated using the distances between members
of the same cluster (intra-cluster distances). Low values of homogeneity reflect
shorter intra-cluster distances and therefore tighter clusters. Similarly, separation
is an overall measure of how well separated the clusters are, and it is calculated
using the distances between members of different clusters (inter-cluster distances).
High values of separation reflect longer inter-cluster distances which characterise
a well separated clustering.
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cluster 1

cluster 2

cluster 3

Figure 4.4: The distances used in the calculation of the separation of a hypothetical
clustering (shown as lines connecting individual cluster elements).

More formally, for a clustering arrangement, we define homogeneity as:

H=—— S Y d(, M) (4.14)
n(n-1) 535

where M is the matrix containing all the cluster mates (any two elements that
belong to the same cluster) and the overall clustering arrangement contains n
mates. The distance between two mates d(M;, M;) can be calculated in various
ways, depending on the information used for the validation of the clustering,
but the most usual approach is to use the same distance matrix that was used
to perform the clustering originally. Figure 4.3 illustrates the distances that
would be taken into account in the calculation of homogeneity in a hypothetical
clustering.

Similarly, the separation of a clustering is defined as:

1 m m
S=——= 3" > dN;,N) (4.15)

m(m—1) ;55 i
where N is the matrix containing all the cluster non-mates (any two elements
that belong to different clusters) and the overall clustering arrangement contains
m non-mates. Similarly to the M matrix used for the homogeneity measure, the

values in N are a subset of the values of matrix D defined by equation 4.24.
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Again, the distance between non-mates d(/NV;, N;) depends on the information
used for cluster validation. Figure 4.4 shows the distances that are taken into
account in the calculation of separation in a hypothetical clustering (Hand et al.,
2001; Handl et al., 2005).

The overall quality of the cluster is then given by:

H

Q=3 (4.16)

Ideally, a clustering arrangement would exhibit low H, which would mean
that the average distance of cluster mates is low. Also, a high quality clustering
arrangement would exhibit high S—a high average distance of non-mates. Under
those circumstances, the value of Q would be low, which is indicative of high
quality clustering.

The most frequent way to utilise the homogeneity and separation measures
is to perform a clustering based on a distance matrix of the elements, and then
calculate the Q value of the clustering based on the very same distances. Be-
cause of that, this process is called internal validation. In this study, the gene
expression distance matrix is only used for clustering the genes participating in
the experiment and the semantic distance of the Gene Ontology terms annotating
the genes is used for validation purposes. This makes the method described in

this chapter a form of validation using external evidence.

Limitation of cluster centre based calculations According to Hand et al.
(2001) another approach for calculating the homogeneity and separation of a
clustering would be to find the centres of each of the clusters and to define
homogeneity as the average distance of all members to the centre of the cluster
that they belong to, and separation as the average distance of all pairs of cluster
centres.

The cluster centre would be defined as the member with the least average
distance to all the other members.

When this particular approach was attempted on a Gene Ontology annotated
dataset (discussed in detail in Section 4.2.5), it was found that for many clusters
it was impossible to find a centre due to lack of annotations. It was decided
to use the averaging approach described in the previous section (4.2.2), which
would always yield a result for the separation of a cluster, even when only one
annotation term existed within the cluster.
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1 1 ]
cluster cluster 2 cluster 1

cluster 2

(a) cluster 3 (b) cluster 3

Figure 4.5: The distances used in the calculation of the homogeneity (a) and the sepa-
ration (b) of cluster 1 in a hypothetical clustering (shown as lines connecting individual
cluster elements). Please note the differences of this figure to Figures 4.3 and 4.4.

It is worth noting that the two approaches differ in specifics of the calculations
but are conceptually equivalent.

4.2.2.2 Individual cluster quality

Homogeneity and separation values can also be calculated on a per-cluster basis
in order to assess the quality of individual clusters. The definitions of per-cluster
homogeneity and separation are exactly the same as the corresponding measures
for the overall clustering (see equations 4.14 and 4.15): only the distance matrices

differ. For a cluster with n elements, its homogeneity is defined as:

1 n n
H = ——— Y > d(Mj, Mj) (4.17)
n(n—1) ;5713 Y

but in this case matrix M’ contains the distances of one cluster only. Similarly,

separation of the cluster is calculated as:

1 m m
S=——7— d(N;, N; 4.18

with matrix N’ representing the distances of all the elements of the cluster to all
the elements of all the other clusters in the clustering. The contents of both M’
and N’ are shown graphically in figure 4.5.
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4.2.3 GO semantic distance measure implementation

In order to be able to assess the quality of clustering methods using the homo-
geneity and separation quality measure, it is necessary to have a quantitative view
of any priori biological knowledge that annotates the examined dataset and that
is going to be used for this assessment. In the case of the Gene Ontology (GO),
there are a number of different methods that attempt to quantify the semantic
similarity between individual ontology terms (see Section 4.1.4.5).

As mentioned in Lord et al. (2003b), there are three different methods that
can be used as semantic distance/similarity measures between GO terms—all
three sharing a common underlying procedure. The three measures are after
Resnik (Resnik, 1995), Lin (Lin, 1998) and Jiang (Jiang and Conrath, 1997).
As discussed, all three measures have been shown to exhibit some correlation
to sequence similarity. Also the Resnik measure specifically has been shown to
exhibit correlation to gene expression (Sevilla et al., 2005).

According to information theory (Resnik, 1995) the terms that occur more
often are less informative, while the rarer terms are more informative. The occur-
rence of individual GO terms is the basis of all three semantic similarity measures.
Initially, a body of annotated information (for example a large set of GO anno-
tated proteins) is used in order to determine the probability of occurrence of
individual GO terms by performing a straight count of the occurrence of each
individual term (see figure 4.6 (a)). The structure of the GO ontology is hierar-
chical, and (as mentioned in Section ) the relationships between terms and their
parents are ‘s a’ relationships. Because of that, when a particular GO term
is applied in an annotation, all the hierarchical ancestors of the terms are also
applied by implication. Therefore, after performing the count of occurrence of
individual GO terms, the occurrence of each child term is applied to its parent
term and all subsequent ancestral terms all the way up to the root of the ontol-
ogy (see figure 4.6 (b)). Because of the additive nature of this calculation, the
general tendency is for the higher occurrence counts to occur near to the root of
the ontology.

There are two complications in the calculation of the occurrence of ancestors
of GO terms. The structure of the GO ontology is not that of a tree, but rather
that of a directed acyclic graph (DAG) (Robinson, 1976), which means that
it is possible for the same node (term) to have multiple parents and for the

structure to converge again to a common parent further up in the hierarchy, as
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Figure 4.6: The process of calculating the probability of occurrence of Gene Ontology
terms within an annotated dataset. The trees shown here represent hypothetical GO
structures. (a) Initial GO term counts of occurrence derived directly from the annotated
dataset. (b) Derived GO term counts after taking into account the hierarchical relation-
ships of the ontology. Terms with multiple parents (indicated in red) are counted only
once. (c) Probability of occurrence calculated by dividing the occurrence count of each
term from the previous step with the occurrence count of the root of the ontology (23 in
this case). Also see equation 4.19 on page 126.
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demonstrated in figure 4.6. In this particular case, the contribution of the red
term in figure 4.6 (b) should be calculated only once towards the occurrence count
of the root term, despite the fact that there multiple routes connecting the two
terms.

The second complication arises due to the existence of another type of rela-
tionship present in the Gene Ontology. Lord et al do not clarify how the ‘part
of’ relationship should be handled. Semantically ‘is a’ and ‘part of’ are not
equivalent, but one can claim that if a protein is localised in a particular com-
partment of the cell, it should logically at the same time be contained in the
(super-) compartments that contain this compartment. For example, Histone H1
is a part of the nucleus, and at the same time RNA polymerase II is part of the
transcription initiation complex. Therefore, it was decided to include the ‘part
of’ relationships in the calculations of term occurrence, and treat them in the
same way as the ‘is a’ relationships.

Because of the hierarchical nature of the Gene Ontology, the occurrence count
of the root of the ontology is essentially equal to the total number of occurrences
of all the terms in the whole ontology. Therefore the probability of a particular
term ¢ to occur in an ontology with root R, is equal to:

Oc

P(c) = On (4.19)
where O, and Op are the occurrence counts of term ¢ and the root term respec-
tively (also see figure 4.6 (c)). According to this equation, the root term is certain
to occur (since in its case O, = Og) and the probabilities decrease the further one
moves down the ontological tree, so the general terms near the root are deemed
less informative, in contrast to the more specific terms near the leaves. Therefore,
the method takes into account both the occurrence of a term within a body of
annotated proteins, and the actual structure of the Gene Ontology.

All three of the similarity measures use the information content of the an-
cestral terms in order to calculate the similarity of the two terms. Because it
is possible for two terms to have multiple common ancestors, according to Lord
et al. the ancestor with the lowest probability (and therefore the highest infor-
mation content) is used. Figure 4.7 exemplifies the selection of the appropriate
common ancestor in the semantic similarity comparison between two terms. If
S(cl, c2) is the set of common parents for terms ¢l and ¢2, the parent with the
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Figure 4.7: Calculation of similarity between two GO terms (shown in green), based on
the hypothetical structure and occurrence probabilities of figure 4.19 and according to
the Resnik, Lin and Jiang measures. The common parent with the minimum probability
of occurrence (pm,s(cl,c2)) is indicated in red (see equation 4.20).

minimum probability is:

Pms = minceS(cl,c2) {pr(c)} (4.20)

The first of the similarity measures is after Resnik and as seen in equation
4.21, it uses only the information content of the parent with the lowest probability
of occurrence. Theoretically the measure can vary between 0 (no similarity) and
infinity. In practise, the maximum value of this measure is defined by —In1/t =
Int where t is the number of occurrences of any term in the body of annotated
proteins.

sim(cl,c2) = —Inpps(cl, c2) (4.21)
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The next similarity measure, after Lin, utilises the information content of
both the lowest occurring common parent and the two terms which are being
compared (equation 4.22). The values of this measure vary between 0 and 1,

because pms > p(cl) and pps > p(c2).

, 21n pms(cl, ¢2)
1,¢2) =
stm(cl, ¢2) Inp(cl) + Inp(c2)

The third measure is after Jiang and it is of semantic distance rather than

(4.22)

semantic similarity (equation 4.23). Its maximum value is 2In(t).

dist(cl,c2) = —21Inpps(cl, c2) — (Inp(cl) + Inp(c2)) (4.23)

Because the three aspects of the Gene Ontology have completely separate
structures, an all-against-all comparison of GO terms yields three separate simi-

larity matrices, one for each sub-ontology.

Problems in comparing terms Some pairs of GO terms cannot be com-
pared using the presented measures. One case where this could happen is when
Pms(cl, c2) equals 0, since the natural logarithm of 0 (In0) is not computable. In
other words, when the probability of occurrence of the parent with the minimum
probability is 0, the comparison of the terms is impossible. This occurs when the
comparison is attempted on a part of the ontological tree that has not been used

in the body of annotated proteins that are being examined.

4.2.3.1 Annotational bias in the use of the Gene Ontology

As part of the investigation of possible sources of bias that may be introduced
in the calculation of the quality of the B-cell clusters based on GO (as presented
later in Section 4.2.5), the Gene Ontology annotations were examined for any
preferential use of terms of a particular level. In this context, the level of the term
is defined as the distance of the particular term from its root term. Quantitatively,
the terms that are direct descendants of the root, are assigned a level value of 1,
their direct descendants are assigned the value of 2, and so forth.

Because the Gene Ontology is an acyclic graph and not a tree, it is possible
to have multiple paths connecting a particular term and the root of the ontology.
In other words, a term can appear at multiple levels within the structure of the
ontology.
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Figure 4.8: Histogram of the occurrence of GO term level range (maximum level —
minimum level) for the three different aspects of the Gene Ontology. The inset shows
the occurrence of ranges over 7 on a different scale for readability.

It would be desirable to be able to summarise the different levels in which a
term appears into a single figure, to make the relative levels readily comparable.
The obvious approach for that would be to define the overall level of a term as
the numerical average of the individuals levels it appears in. This would only be
valid if the range of levels for an individual term is generally small, which would
mean that the average of the term levels would be indicative of its overall depth
in the Gene Ontology.

In order to investigate the term levels range, the maximum and minimum
levels where found for each of the terms of the ontology and their difference (the
level range) was plotted as a histogram in figure 4.8. It is evident that for the
biological process and molecular function aspects, most of the terms have a level
range below or equal to 4. The cellular component aspect on the other hand does
not exhibit such a trend. This difference in the organisation of the structure of
the cellular component aspect of the ontology might be due to that fact that it
represents structural rather than functional information. While terms with a very
high level range do not occur very often in the biological process and molecular
function aspects (as summarised in Table 4.2), a significant amount of terms seem
to occur above levels 3 and 4, which means that averaging the levels in which
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terms with
aspect range over 7 total terms percentage
biological process 166 8608 1.9%
cellular component 314 1774 17.7%
molecular function 59 1123 5.2%
total 539 11505  4.7%

Table 4.2: Occurrence of terms exhibiting a high level range (over 7) in the Gene Ontol-
ogy.

a term occurs is potentially non-reflective of how specific the term is. Because
of that, it was decided to also look into the deepest level of each term when
investigating the per-level term and annotation occurrence.

Figure 4.9 shows the distribution of occurrence of term (average) levels in
the Gene Ontology. Each of the aspects of the ontology have been treated sep-
arately. This histogram shows how many terms exist at each level of the Gene
Ontology: level ranges 4-5 and 56 are evidently the most populated, with range
4-5 containing the most terms for the molecular function aspect of the ontology.
Fewer terms exist near the root (the most general terms) and a very few terms
are specific enough to appear beyond level 9.

Figure 4.10 also shows the distributions of term level, but this time the oc-
currence of each particular term in the Gene Ontology Annotations (GOA) is
plotted for the whole of UniProt for all the GOA annotations and for the GOA
annotations of the B-cell dataset. This was necessary because this dataset is used
later in this chapter for testing the method being developed (see Section 4.2.5).
If the same GO term appears more than once in GOA, its level is counted more
than once—the histogram reflects term usage rather than term ezistence. GO
contains 19,292 terms, and GOA contains 9,493,023 annotations (the applica-
tion of GO terms to proteins), and this is why the scale of the y axis of the
two histograms differs dramatically. Despite the fact that most terms seem to
concentrate at deeper levels (as seen in figure 4.9), figure 4.10 reveals preferential
use of terms at level range 1-2 for the cellular component and molecular func-
tion aspects of the ontology. This same trend is also apparent when only the
annotations applied to the B-cell dataset are considered. The preferential use
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Figure 4.9: Histogram of the occurrence of GO terms at various average levels, for the
three different aspects of the gene ontology.

of general annotations is less pronounced for the TAS annotations (for both the
complete set of annotations and for the B-cell annotations), therefore we have
used only TAS annotations because apart from being more reliable, they also are,
predictably, more specific.

As discussed in the earlier in this section, the average per-term level is not
fully reflective of the specificity of a GO term, due to the numerous cases where
the range of levels corresponding to a particular term is quite large (more than
3). Because of that, it was necessary to also look at the distribution of the
maximum (most specific) level at which each term appears. Figure 4.11 presents
distributions that correspond to the distributions of figure 4.10, but this time
only the maximum level was taken into account for each of the terms. According
to the conventions used in GO, the annotations that use terms with a maximum
level of 0 (root terms), correspond to genes that have been looked at but it
was impossible for them to be characterised using existing biological knowledge
(Dwight et al., 2002).

Figure 4.11 reveals that some terms occur as deep as level 15 in the case of the
complete GOA annotations, but the most specific terms used in the annotations
of the B-cell dataset only reach down to level 11. Apart from that, the overall
patterns exhibited by the maximum per-term level distributions are very similar
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Figure 4.10: Histograms of the occurrence of GOA annotations average levels (TAS and
non-TAS), in the whole of GOA and in the B-cell dataset.

to the patterns seen in figure 4.10.

Because the preferential use of the more general terms was still present even
when considering TAS annotations only, it was essential to examine the possibility
that the GO similarity measures are biased by the level of the terms participating
in the comparisons, in which case the preferential use of terms near the root will
affect the distribution of similarity values.

4.2.3.2 Investigating the systematic bias of GO semantic similarity
measures

After finding that there is annotational preference to levels 1 to 2 in the case
of the molecular aspect part of the ontology, it was desirable to explore the
possibility that the GO similarity measures may introduce some systematic bias
if used as part of cluster validating method. It is worth noting that some degree
of dependence of the similarity measure values on the term level is desirable in the

sense that very general terms are perceived as being semantically distant to each
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Figure 4.11: Histograms of the occurrence of GOA annotations maximum levels (TAS
and non-TAS), in the whole of GOA and in the B-cell dataset.

other, but a high correlation between average term level and its average distance
to all the other terms would be undesirable in a semantic similarity measure.

More specifically, it is important to explore the possibility that the semantic
similarity values are somehow affected by the distance of a particular term from
the root. Each point of the scatter plots in figure 4.12 (a) represents a GO term.
The z axis represents the average level of the term (as defined in Section 4.2.3.1)
and the y axis represents the average similarity of the particular term to all the
other (comparable) terms of the ontology. All the UniProt annotations from GOA
were used as a body of annotated information for the calculation of similarities
in this case. Equivalent scatter plots where produced for the Lin and Jiang
measures (Figure 4.12 (b) and (c) respectively), and the correlation coefficients
between average level and average semantic similarity/distance where calculated
for all three measures.

The correlation coefficient between the average level and the average similar-
ity /distance to all comparable terms was 0.35 for the Resnik measure, 0.25 for

the Lin measure, and 0.26 for the Jiang measure. From these values and the
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Figure 4.12: Scatter plots to explore the possibility of systematic bias in the three GO
similarity measures: Resnik (a), Lin (b) and Jiang (c). The average level of each GO
term was plotted against the average similarity or distance of the term to all other
(comparable) terms of the ontology.
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appearance of the scatter plots, it was deduced that the three measures do not
exhibit any obvious systematic bias produced by the average level of each term.

The correlation scatter plots of figure 4.12 contain obvious horizontal and
vertical ‘lines’ formed by a higher concentration of points. The horizontal lines
are easily explained by the fact that the y axis of the plots represents the ontology
level of terms. According to the definition of term level in Section 4.2.3.1, the
level of a term that has more than one path leading to its root, equals to the
average distance from the term to the root. The horizontal lines are formed
by the terms for which there is only one path to the root and therefore have an
integer level, while all the points between the horizontal lines correspond to terms
with multiple possible paths to the root, whose level is a decimal value.

The horizontal axis of the plots represents semantic similarity or distance.
In the case of the Resnik measure, the similarity between two terms is directly
derived from the probability of occurrence of one of their common parents (see
equations 4.20 and 4.21 on page 127). The selected common parent is the one
that occurs least often, which—because of the structure of the ontology—would
be the closest common parent in most cases. From this definition, it is clear that
if a particular parent term has two distinct sub-trees of children, any comparison
of terms of one of the sub-trees to any term from the other sub-tree will produce
the same similarity value. This means that within the ontology there exist sets
of pairs of terms with the same similarity value, producing the discrete values
observed as vertical lines in the scatter plots. This is much less apparent in the
values the Lin and Jiang measures, because they incorporate the possibility of
occurrence of the terms that are being compared (see equations 4.22 and 4.23),

thus increasing the number of possible values.

4.2.3.3 Conversion of GO term similarity to protein similarity

In order to be able to use the calculated semantic similarity of GO terms for the
validation of gene expression clusters, it was necessary for them to be converted
to protein distances, since proteins are the entities that have been chosen as a
common abstraction for all our mappings.

Quite often a protein will be annotated with more than one GO term, ei-
ther because annotators attach one term from each GO sub-ontology, or because
that particular protein can be described by more than one GO term from the

same sub-ontology, which happens when the protein is involved in multiple pro-
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cess, or has multiple functions. One such example is Leptin, which has been
annotated with 5 biological process GO terms (glucose metabolic process, energy
reserve metabolic process, lipid metabolic process, signal transduction and ell-cell
signalling). Because of this, it is not immediately obvious how to calculate the
similarity of two proteins each of which is annotated by multiple GO terms.

1 2 3

(\ - .0 Oj protein A

O O J protein B

4 5 6

Figure 4.13: Two hypothetical proteins (A and B) annotated by 3 GO terms each (1 to
6). The lines connect terms that are comparable, and the lengths of the lines represent
their semantic distance. The solid line indicates the minimum GO term semantic distance
selected as the gene product distance.

The problem and the possible solutions are thus: Supposing that two proteins
were annotated by three terms each and that only three of the nine term cross-
comparisons where possible according to the structure of the ontology and the
occurrence of terms. Figure 4.13 shows the two proteins (A and B) and the 6
terms (1 to 6). The semantic distances of the three pairs are shown as lines—the
longer the line, the more distant the terms are, and in this particular case, two
pairs of terms are distant, while the remaining pair is more proximate.

In this study the minimum cross-term distance was used as the gene product
distance (also used by Bolshakova et al. 2006; Couto et al. 2005; Shalgi et al. 2005;
Speer et al. 2004) because in situations like the one presented in figure 4.13 using
the average distance could mask the very similar pair of terms (A and B). It is
possible for that to occur either due to imperfections in the annotation, or some
bias could be introduced due to distant terms from the cellular component sub-
ontology (terms from different cellular parts applied to otherwise highly similar
proteins). It is desirable to consider only the highest similarity between terms
to rule out such biases. Also, as discussed by Popescu et al. (2006), using the
average GO term similarity to calculate the gene product similarity leads to a
self-similarity of less than 1 when a product has multiple terms.

On the other hand, the use of maximum GO term similarity to calculate

136



4.2. Analysis 4. Gene expression clustering validation through data mining

the gene product similarity does introduce the inconsistency of the similarity
between gene products that share one term being 1, regardless of the rest of the
annotations of the gene products. Despite this inconsistency, Popescu et al. found
that the maximum similarity approach correlates better to sequence similarity
than the averaging approach.

Conversion of the Resnik and Lin matrices Both Resnik and Lin GO mea-
sures produce semantic similarity matrices. In order to calculate the homogeneity
and separation values distance matrices are needed, therefore it is necessary to
transform the values produced by the Resnik and Lin measures accordingly. This
was achieved by finding the highest similarity value Sy,4, in matrix S and by

producing the new distance matrix D in which each of the elements is:
D; j = Smaz — Sij (4.24)

4.2.3.4 Random clustering simulations to evaluate the quality mea-
sure

In this section it was attempted to establish the validity of GO-term semantic dis-
tance as a clustering quality measure by comparing the GO-based H/S quality
measure to a well established measure of cluster quality. From this point on-
wards, the GO-based H/S quality measure is going to be referred to as H/Sgo
to indicate the source of validating evidence.

The evaluation involves a grouping of genes that has been shown to be func-
tionally enriched which was treated as the ‘perfect clustering’ in the context of
the evaluation, and a set of progressively worse clusterings that were derived by
gradually deteriorating the quality of the initial ‘perfect’ clustering by randomly
moving cluster elements from cluster to cluster.

As discussed in Section 4.1.3.5, the k measure is a well-established method
for the comparison of groupings. The measure requires an agreement frequency
matrix that contains counts of instances of agreement and disagreement between
the two categorisations. For the purpose of comparing two clustering arrange-
ments, all the pairs of clustered elements were considered, and a 2 x 2 agreement

frequency matrix was constructed, with the following contents:
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Amount of pairs which are
in different clusters in both
clusterings.

Amount of pairs which are in
the same cluster in cluster-
ing 1, but in different clus-
ters in clustering 2.

Amount of pairs which are in
the same cluster in cluster-
ing 2, but in different clus-

Amount of pairs which are
in the same cluster in both
clusterings.

ters in clustering 1.

Using this frequency agreement matrix, the « values can be calculated ac-
cording to the equations discussed in Section 4.1.3.5.

The values of « vary from 1 (identical groupings) to —1 (completely differ-
ent groupings). A value of 0 indicates agreement that is no better than chance.
Because the simulation involves gradual destruction of the initial clustering, we
expect the x value to decrease when comparing the initial clustering to progres-
sively worse clusterings, so it could act as a measure of quality of the clusters. If it
is found that the values of the H/Sgo measure correlate negatively (the H/Sgo
value should increase for worse clusterings) with the x values of the progressively
worse clusters, this would be a very strong indication that the H/Sgo value is
a good measure of clustering quality. On the other hand, if there is no or little
correlation, this would indicate that GO is not appropriate for the validation of
gene expression clusters.

During the course of the simulation, the initial clustering is slowly deteriorated
in a random manner. For each simulation step, a random element of the clustering
is re-assigned randomly to another cluster. Due to this random re-arrangement,
it is possible for some clusters to be deprived of all their elements—effectively
reducing the total number of clusters at particular step of the simulation—but
since the cluster to which the element is re-assigned is randomly selected from
the original set of clusters, it is possible for empty clusters to be repopulated,
so effectively, the number of clusters is expected to remain close to the original
number throughout the simulation. The re-assignment of elements is applied in
a cumulative manner, therefore resulting in progressively worse clusters.

The Tavazoie yeast dataset was used for the H/Sgo evaluation, because its
clustering has been shown to be functionally enriched (Tavazoie et al., 1999).
This is relevant because functionally enriched clusters are expected to score highly
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Figure 4.14: Histograms of the occurrence of SGD annotations levels (TAS and non-
TAS), in the whole of SGD and in the Tavazoie dataset.

at the beginning of the evaluation simulation, therefore indicating whether the
deterioration is detected by the H/Sgo value. We would expect that a clustering
of low initial quality would show little or no decay of the H/Sgo value, and
therefore would be inappropriate for this evaluation.

Since a yeast dataset is being used, the semantic distance of GO terms was
calculated based on the SGD annotations (Dwight et al., 2002). Because of
that, the simulation does not confirm the validity of using the semantic distance
measure specifically in conjunction to the GOA annotations as a quality measure
of gene expression clusterings, rather it serves as an evaluation of the general
approach of using the publicly available GO annotations with the term semantic
distance measure. As discussed in Section 4.1.4.3, there are indications that the
SGD annotations are of high quality, possibly higher quality in comparison to the
GOA annotations. This is supported by the average level distributions of SGD
annotations (Figure 4.14) which reveal a preference of more specific (deeper)
terms when compared to the corresponding distributions of GOA annotations
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Figure 4.15: Results of the Resnik deterioration simulation. The s value is shown at
increasing iterations of the simulation in (a), while (b) shows the corresponding H/Sgo
values of the same clusterings. The Pearson correlation coefficient of the two measures
is —0.968.

(Figure 4.10). Especially for the TAS annotations, the most used terms have an
average level of 6 to 8, which is highly specific, considering that very few terms
exist beyond level 10 (see Figure 4.9). Also, the SGD term usage distributions
resemble more closely the GO distribution level (see Figure 4.9 on page 131) in
comparison to the usage distributions of GOA (see Figure 4.10 on page 132).
Therefore, the annotational bias towards more general terms exhibited by GOA
is not observed in SGD.

The evaluation was ran on the Tavazoie yeast dataset, using the Resnik-
, Jiang- and Lin-derived gene distance matrices to calculate the H/Sgo value
of the initial 30-cluster clustering, and 50 subsequent progressively deteriorated
clusterings. Each of the 50 sampled clusterings was derived from the previous
clustering by applying 40 deterioration steps to it (moving elements from cluster
to cluster randomly 40 times), therefore cluster elements have been rearranged
2000 times throughout the duration of the clustering.

The results of the evaluation are presented in figures 4.15, 4.16 and 4.17. In all
three cases, progressively worse clusterings (diminishing ), resulted in increasing
values of the H/Sgo value, indicating that the deterioration of the clusterings
was detected by the ontology-based quality measures. The correlation coefficient
between k and the H/Sgo value was —0.968 for the Resnik simulation, —0.989
for the Jiang simulation and —0.984 for the Lin simulation. Those values show
strong (anti-) correlation between the x value and the H/Sgo clustering quality
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Figure 4.16: Results of the Jiang deterioration simulation. (a) and (b) as in figure 4.15.
The correlation coefficient of the two measures is —0.989.

1 g T

0.975 T T T T
g 08 1
E- 0.95 <
g 06 | @
_‘5) =]
K 0.925 I,
5 04 |
0.2 N 1 n n N 0.9 1 2 1 N " N
0 10 20 30 40 50 0 10 20 30 40 50
simulation step simulation step
(a) (b)

Figure 4.17: Results of the Lin deterioration simulation. (a) and (b) as in figure 4.15.
The correlation coefficient of the two measures is —0.984.

measure, and are indicative of the validity of using the Gene Ontology terms
semantic distances for the validation of gene expression clusters. Despite the fact
that the k values drop from nearly 1 to below 0.3, indicating very significant
drop in cluster quality (in comparison to the original clustering), the absolute
values of the H/Sgo score exhibit smaller variations (in the range of 0.02-0.06),
which suggests that small changes in the H/Sgo score value are indicative of big
differences in clustering quality.

A side effect of the necessarily random nature of the evaluation is that it
will produce slightly different clusterings every time it is run, and subsequently,
slightly different values for the correlation coeflicient between the two quality

measures. In order to eliminate this random variation, it would be necessary to
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run many iterations of the evaluation, and create a distribution of correlation
coefficients, which would reveal which values occur more often. This would only
be possible with a considerably faster implementation of the evaluation, possibly
in the C++ programming language (the current implementation is written in the
Perl programming language).

An interesting application of this type of evaluation would be for the com-
parison of validative performance of matrices derived from different sources of
information, such as binary protein—protein interaction matrices or metabolic
pathway data.

4.2.4 Automated pipeline for mapping the B-cell genes to GO
terms

The B-cell dataset comes with several annotations for each of the genes. The task
of the mapping pipeline is to use the annotations to map each of the genes to
the corresponding GO terms, allowing the use of the Gene Ontology as a quality
measure of the clustering. Also, it would be desirable to map the genes of the
dataset to the BioMap data-warehouse which integrates various bioinformatics
resources and therefore mapping to it would automatically map the dataset to
all these resources. Also, BioMap organises proteins into families of evolutionary
related proteins (see Section 4.1.5.1), which can be used to inherit annotations
from related proteins in the same family and thus increase the proportion of genes
with GO annotations in the dataset. _
Before the mapping was possible, some pre-processing of the B-cell dataset
files was necessary. The original B-cell data were provided as a Microsoft Excel
spreadsheet format. Before proceeding with the analysis, this file was converted
to the Eisen microarray file format (de Hoon et al., 2004) which is a standard in

the area of microarray analysis.

4.2.4.1 Mapping to protein sequences

The most convenient type of annotation present in the B-cell microarray data were
the GenBank identifiers, each of which corresponds to a GenBank record (Benson
et al., 2006) that contains information on the gene monitored by the particular
reporter. Each GenBank record contains several annotations, the DNA sequence
of the gene and—optionally—a protein sequence.

Some microarray reporters have the same GenBank identifier, so the first step

142



4.2. Analysis 4. Gene expression clustering validation through data mining

of the mapping process was to extract a list of the unique GenBank identifiers
from the data file.

BioMap uses the MD5 digest (Rivest, 1992) of the textual representation of
protein sequences as the primary object identifier in the database. The MD5 di-
gest is a widely used cryptographic hash function, which can produce a numerical
digital “fingerprint” that corresponds to any kind of data. The algorithm substi-
tutes or transposes the data to create the fingerprint, also called hash value. The
MD?5 hash value acts as a real fingerprint of the original data, which means that
two different sets of data will generally have different MD5 hash values, although
there are very rare cases where they may have the same hash value—producing a
so called collision. Because in most cases there is an one-to-one correspondence
between a unique dataset and a unique MD5 hash, the MD5 hash of a dataset can
be used as a unique identifier for the data. This is the approach used in BioMap,
which uses MD5 digests as a summarisation and unique identifier of protein se-
quences. As mentioned, the digest is computed using the textual representation
of a protein sequence, so the next step of the mapping process involved retrieving
the sequences of the proteins that are products of the genes monitored by the
B-cell microarray and computing the MD5 hash values for them. Obviously, not
all DNA sequences in the microarray are encoding genes, so it was expected that
the retrieval of protein sequences would be possible only for a part of the Gen-
Bank ids. If no proteins are found in the GenBank record present there, UniGene
(Pontius et al., 2003) is used to identify a related protein and retrieve its exact
sequence from the protein records. Out of the 1372 unique GenBank ids, 1361
were mapped to protein sequences.

4.2.4.2 Mapping to BioMap and UniProt identifiers

For the next step of the mapping process the MD5 digest of each of the protein
sequences is calculated, and BioMap is queried with it in order to retrieve the
UniProt identifier that corresponds to the particular protein. Out of the 1361
protein sequences, 875 were mapped to BioMap MD5s, and out of these, 790 had
UniProt identifiers.

It is worth noting that the particular method of querying BioMap is very
stringent: if two strings of characters differ only slightly (one is shorter by one
character, or they are the same length and only one character differs), then their
MD5 digests will be different, which means that proteins of very high sequence
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similarity will have different MD5 digests and therefore will not be detected. If
a similar query was executed using a method that imposes less stringent cri-

teria, coverage would be likely to increase. Such an approach is discussed in
Section 4.2.5.3.

4.2.4.3 Mapping to GO terms

The next stage of mapping uses the previously retrieved UniProt identifiers to
locate terms of the Gene Ontology that annotate a particular protein. This step of
the mapping process was based on the 8/12/2006 version of the GOA annotations,
and it was optimised using a temporary relational database table. Out of the 790
proteins with UniProt identifiers, 760 had GO terms assigned to them. Out of 760
proteins with GO annotations, 550 proteins had GO traceable-author statement
(TAS) annotations attached to them.

4.2.4.4 Loss of coverage

As it is evident from the above description, there is a gradual loss of coverage
in the stages of the mapping process for various reasons. In order to provide a
clearer idea of this loss of coverage, the loss occurring at each of the mapping
steps is summarised in figure 4.18.

4.2.5 Application of the H/S;o measure to the B-cell dataset

The homogeneity and separation measures described in Section 4.2.2 were used
for the validation of the hierarchical clustering of a dataset involving B-cells.
The GO semantic distance matrices where used for the purposes of this valida-
tion, calculated according to the Resnik measure described in Section 4.2.3. The
Resnik measure was used because it exhibits the highest correlation to sequence
similarity (Lord et al., 2003b) in comparison to the two other measures, but
more importantly, it has been shown to exhibit correlation to gene expression,
a behaviour not observed with the Jiang and Lin semantic similarity measures
(Sevilla et al., 2005, also see Section 4.1.4.6).

Initially, the B-cell dataset was clustered using average linkage hierarchical
clustering (Section 4.1.3.2) without filtering of the original data to rule out genes
with expression patterns which do not change significantly across the dataset.
Gene expression profiles were median centered (normalised), using the Cluster
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Figure 4.18: Loss of coverage during the process of mapping the B-cell dataset identifiers
to GO terms.

software (Eisen et al., 1998). Distances between the normalised gene expres-
sion profiles were derived by calculating the all-against-all Pearson correlation
(see Section 4.1.3.1). The resulting hierarchy of clusters was then cut at var-
ious levels, producing a series of clustering arrangements, each containing an
increasing number of clusters from 2 to 800 clusters. The R statistical package
(http://wuw.r-project.org) was used during the whole process.

4.2.5.1 Clustering quality of average linkage clustering

Initially, the quality of the range of gene expression clusterings derived from hier-
archical clustering was assessed at each particular clustering level, by calculating
the overall homogeneity and separation for each of the clusterings. As a control
for the implementation of the homogeneity and separation measurements, the
Pearson correlation matrix of the gene expression profiles was also used for a
separate calculation run of the quality measures.

It is worth noting that since it was possible to map only 55% of the original B-
cell genes to GO terms (see Section 4.2.4.4 and figure 4.18), the GO-based distance
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matrix used for validation is not complete: it does not contain distance values
for all the pairs of genes. Some clusters do not contribute to the calculations of
the quality measures, either because the distance between some of the GO terms
attached to their members is not computable (as discussed in Section 4.2.3), or,
mainly in the case of small clusters, there are no annotations present.

The results of the quality assessment are presented in figure 4.19. The Hgo,
Sco and H/Sgo values are presented in the separate columns of the figure, while
the first three rows contain the validation runs for the three aspects of the gene
ontology, the 4th row contains the expression profile-based validation run, and
the 5th row contains three identical graphs of the number of clusters containing
only one member (singletons), against the overall number of clusters.

The validation run that was based on the expression profile correlation matrix
exhibits a downwards trend for the Hgo, Sgo and H/Sgo values. Lower values
of Hgo indicate increase in the overall homogeneity of the clusterings as one
moves to more and smaller clusters which was expected, since smaller clusters are
more homogeneous. Predictably, the overall separation also decreases, because
the Hgoo and Sgo values are naturally antagonistic (Hand et al., 2001). The
overall quality of the clustering increases (smaller values of H/Sgo) for more
and smaller clusters, because the Hgo value decreases faster than the Sgo value.
This gradual quality improvement of the clustering when the expression profile-
based matrix is used, is to be expected and the fact that it was observed is a
confirmation that the implementation of the quality measures in this study is in
fact correct.

When the gene expression distance matrix was replaced with the GO-based
distance matrix, the validation run did not produce equally good results. Al-
though the validation run that uses the biological process aspect of the GO on-
tology (first row of figure 4.19) does exhibit a general downwards trend, the other
two aspects do not exhibit a similar trend. Also all three validation runs produced
graphs with a much less smooth curve in comparison to the expression-based val-
idation run.

It seems that all three measures do exhibit a consistent downwards trend
at least for the clusterings that contain very few or no singletons. Singletons
start appearing at the level of 85 clusters, a level marked in the graphs by a
vertical line. As discussed previously in this section, the GO-based validation
matrix is not complete and this causes some clusters to be left out of the quality
calculations. Also, the original data has not been filtered to exclude any non-
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Figure 4.19: Results of B-cell validation using the Gene Ontology-based gene distance
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tering levels 2-800. Also shown are Hgo, Sco and H/Sgo values calculated based on
the gene expression distance matrix, and also the increasing number of single-member
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significantly differentially expressed genes before clustering, which may cause a lot
of noisy and non-significant expression profiles to cluster together into low quality
clusters. It is likely that the GO-based validation runs do not exhibit a consistent
downwards trend because at a sufficiently high level of clusters (where the clusters
are small enough) most of the high quality clusters do not participate in the
quality assessment due to lack of annotations (caused by their small size), and
the low quality noise-derived clusters contribute much more to the overall quality
measure. One approach to remove any bias introduced by the presence of noisy
data, would involve filtering some of the original data based on the change that
occurs in each expression profile. This approach is explored in Section 4.2.5.3.
Another factor that may be reducing the effectiveness of GO annotations as
a means of cluster validation is the abundance of low quality annotations which
use overly general ontological terms. The most general terms in the GO ontology
are the direct or very close descendants of the root term of the ontology, or,
according to the definition in Section 4.2.3.1, the terms with a level of 1, 2 or
even 3. As shown in that section, the current annotations made using the Gene
Ontology seem to disproportionally favour the use of terms at the general levels,
a trend also present in the annotations of the B-cell dataset. The abundance of
the more general terms can be problematic since the comparison of any specific
term (deeper in the GO hierarchy) with a general term will result in a very
high distance value and therefore clusters that contain a mixture of general and
specific terms will contribute to a fall of the overall clustering quality because
of a high Hgo value. The distance between a general and a specific term would
be calculated based on the probability of a highly-occurring common parent: for
example, if the general term is of level 1, the common parent would be the root
of the ontology, which is the most highly-occurring term overall. This would
make the p,,s value (see equation 4.20) equal to 1, in which case the Resnik
similarity value would equal 0 (—In1 = 0, see equation 4.21). This would result
in a high distance between the terms after the matrix has been converted using
equation 4.24, and therefore a reduction of the quality of the cluster that contains
genes annotated by the terms. This problem can be tackled by leaving out the
low-quality annotations, and this approach is discussed in Section 4.2.5.2.
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4.2.5.2 Filtering annotations near the GO root prior to validation

As discussed in Section 4.2.5.1, it was necessary to test the assumption that the
overly general terms present in the GO annotations of the B-cell where responsible
for the low effectiveness of the H/Sgo value as a clustering quality measurement.

The average level for each pair of terms was calculated, and if one of the terms
had an average level equal or lower than the defined cutoff level, the measurement
of the terms’ distance/similarity was left out. The filter was applied to the original
GO distance/similarity matrices prior to validation, using two different cutoff
values (2 and 3), thus producing GO similarity matrices that exclude increasingly
specific terms. These matrices were then converted to gene distance matrices (see
Sections 4.2.3.3 and 4.2.3.3) which were then used for validation of the B-cell
average linkage clustering arrangements.

The results of the validation runs using filtering of overly general annotations
are presented in figures 4.19, 4.20 and 4.21.

The validation runs which exclude the overly general annotations seem to ex-
hibit more noise in the form of more extreme fluctuations of the score at clustering
levels over 85. In levels below 85, the H/Sgo values behave in the expected way,
exhibiting a downwards trend. As seen in figure 4.19, level 85 is were the singleton
clusters start appearing, causing the overall score to depend on the assessment
of fewer and smaller clusters which seems to be affecting the reliability of the
calculated quality values. This suggests that the abundance of terms affects the
effectiveness of the H/Sgo scores much more than the quality of the annotations.

4.2.5.3 Enrichment of GO annotations using BioMap

It was found that using fewer GO annotations in the calculation of the H/Sgo
score resulted in worse results, even when the annotations were more specific
which implies that they may have been of higher quality. In an attempt to
increase the annotational coverage of the B-cell dataset, the BioMap database
(see Section 4.1.5.1) was used to enrich the mapping between GO terms and the
B-cell genes. Figure 4.2 shows the enrichment process in relation to the rest of
the protocol.

During the enrichment process, each gene was assigned the annotations that
belong to the genes that correspond to the proteins of the same BioMap superfam-
ily. A sequence identity cutoff of 30% was used—any proteins with less sequence
similarity were rejected. As discussed in Section 4.1.5.1, it has been shown in
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the past that inheriting functional information based on such sequence similarity
levels is justified (Devos and Valencia, 2000; Todd et al., 2001). More specifi-
cally, Todd et al. (2001) have shown that for enzymes with sequence similarity
over 30%, it is possible to predict the first three digits of the EC number with
an accuracy of at least 90%, which indicates that this level of sequence similarity
is sufficient for inheriting function. Although there is some evidence indicating
that a threshold of 30% may be too low (Rost, 2002), it was decided to use it be-
cause annotational coverage appeared to be an important limiting factor for the
method, and a lower threshold would result in higher coverage. The enrichment
process increased the annotational coverage of the B-cell genes. Not only more
genes had annotations (84.3% as opposed to 55.4%), but there were more GO
terms per gene on average (18.7 as opposed to 11.1). Table 4.3 summarises the
impact of the enrichment on coverage.

not enriched enriched total

GenBank IDs covered 760 1157 1372
55.39% 84.33%  100%
Average terms per gene 11.1 18.7 —

Table 4.3: Table showing the impact of enrichment of GO annotations of the B-cell
dataset by inheriting annotations from the homology-based protein families of BioMap.

In an effort to obtain better results from the hierarchical clustering of the
B-cell data, a simple data filtering process was applied to the gene expression
data, to remove noisy gene expression profiles (see Sections 1.2.6 and 1.2.7). The
absolute value filter of the Cluster software (Eisen et al., 1998) was applied to
the the logy ratio values of B-cell gene expression data, which filtered-out gene
expression profiles with an absolute value difference less than 2 (mazimum —
minimum). This is one of the very simple noise filtering methods, and it was not
expected that it would remove all the noise present in the dataset. The clustering
was then performed again using the filtered expression profiles.

Figure 4.22 shows the H/Sgo validation scores over a series of clustering
levels, based on the 3 aspects of the GO ontology. The curves exhibit some noise,
and the biological process and cellular component scores exhibit a downwards

trend. The molecular function curve does not exhibit the same trend. Overall,
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Figure 4.22: Plot showing the H/Sgo score of based on the three aspects of the gene
ontology, as calculated based on BioMap-enriched GO terms, and applied on the filtered
B-cell dataset, over a series of clustering levels.

the enrichment process results in smoother curves. All 3 curves seem to contain
a local minimum at the level of 40 clusters, which is more pronounced for the
biological process and cellular component scores. Based on this observation, it
was decided to look at the clustering arrangement at the 40 cluster level, and to
also calculate the scores of individual clusters at this level.

In the case of molecular function, it is possible that the enrichment process
contaminated the annotations with inappropriate terms, therefore making the
H/Sgo score less sensitive to changes in clustering quality. On the other hand,
according to Swift et al. (2004), the optimal number of clusters for the B-cell
dataset is 40, and the behaviour of the molecular function-based quality score
may be reflecting the fact that subdivisions beyond 40 clusters do not confer any
improvement in clustering quality.

Figure 4.23 shows the individual H/Sgo scores of the clusters at level 40 of
the hierarchical clustering along with the sizes of each of the clusters. Heatmaps
that correspond to the subset of the 40 clusters that exhibit expression patterns
indicative of differential expression can be found at http://www.biochem.ucl.
ac.uk/~sideris/bcell/

Cluster 9 is the largest cluster and its heatmap (not shown here due to its
size) shows very little differential expression, with its largest part being comprised
of noisy expression profiles. The presence of noise was expected, due to the

simplicity of the noise filtering algorithm used. Cluster 9 has exactly the same
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Figure 4.23: (a) Individual H/Sgo cluster scores based on the BioMap-enriched biological
process GO terms, for clustering level 40 of the filtered B-cell dataset. Lower score
values indicate higher-quality clusters. Clusters 9 and 28 have the same score, and it was
impossible to calculate a score for cluster 39. (b) Individual cluster sizes for the same
set of clusters.

score as cluster 28, whose heatmap exhibits clearer differential expression. This
may be due to the fact that about half of the genes participating in cluster 28 are
not related with what seems to be the core function of this cluster, which could
worsen the overall quality score of the cluster. Cluster 28 is discussed in more
detail in Section 4.2.5.5.
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Figure 4.24: Plots of the Resnik H/Sgo score of the hierarchical clustering of the filtered
B-cell dataset, based on the biological process annotations. Only GO term pairs with high
semantic similarity values were used. Plot (a) shows the results for scores over 5, (b)
shows the results for scores over 6.

4.2.5.4 Validation using only high values of GO similarity

According to Sevilla et al. (2005), the gene expression similarity of two genes
(calculated by Pearson correlation), correlates to the semantic similarity of the
GO terms annotating the two genes, for high values of the Resnik measure (over
5-6). In an effort to refine the H/Sgo quality measure, it was recalculated for
the B-cell clusterings using the enriched set of GO annotations. H/Sgo values
were calculated for the molecular aspect and biological process of the ontology,
by filtering the Resnik GO semantic similarity matrices to include values over
5 and values over 6 (in two separate instances). Figure 4.2 shows this filtering
process in relation to the rest of the protocol.

Figures 4.24 shows the validation results using the semantic similarity of bio-
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Figure 4.25: Plots of the Resnik H/Sgo score of the hierarchical clustering of the filtered
B-cell dataset, based on the molecular function annotations. Only GO term pairs with
high semantic similarity values were used. Figure (a) shows the results for scores over 5,
(b) shows the results for scores over 6.

logical process GO terms of over 5 and 6 respectively. Again, it is observed that
any attempt to decrease the annotational coverage of the dataset, by filtering
GO annotations, dramatically affects the behaviour of the quality measure. The
quality abruptly worsens at clustering level 40, and it recovers again at level 130.

Figures 4.25 shows the validation results using the semantic similarity of
molecular function GO terms of over 5 and 6 respectively. Although also noisy,
the molecular function-based validation seems to behave in a better way, exhibit-
ing a clear minimum at 110 clusters. The quality remains more or less the same
up to clustering level 135, where it abruptly gets worse again.

Once again, it is found that the availability of external evidence is a limiting

factor in the use of H/Sgo as a cluster validation measure.
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4.2.5.5 Detailed evaluation of the validation of a single gene expres-
sion cluster

It is not uncommon to use conformance to human expectations as a measure for
the evaluation of clustering algorithms (Wang et al., 2007). This section contains
a more detailed analysis of cluster 28 of level 40 of the hierarchical clustering
of the B-cell dataset in order to provide some insight to the Resnik semantic
similarity measure as applied to GO terms to assess individual cluster quality.
This particular cluster (shown in Figure 4.26) was chosen due to its manage-
able size of 18 genes. Most of the genes contained within the cluster participate in
the interferon immune response, but three of the genes are apparently unrelated
to this process and are involved in a number of other processes. Table 4.4 contains
the full list of genes of cluster 28, with descriptions and literature references.
The genes that are not related to the interferon mechanism seem to have
been mistakenly included in the cluster—possibly due to the chaining effect of
distantly similar expression profiles bringing in unrelated genes, which is a well
known problem of clustering algorithms (see Section 4.1.3.2), although single-
linkage clustering is more susceptible to it. This arrangement results in a cluster
that makes sense only partially, and it provides an opportunity to explore the
behaviour of the quality scores at level 40 and at higher levels, where the cluster
is subdivided, and to look more closely at the factors affecting the score values.
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Figure 4.26: Heatmap of B-cell cluster 28 at level 40. The names of the genes and the
most specific molecular function for each gene are shown on the right.

As seen in Figure 4.27, cluster 28 is subdivided at levels 52, 84 and 101. At
level 101, various genes that are related to the interferon immune responce have
been removed from the cluster. The H/Sgo scores where calculated based on
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the cluster identifiers at various levels. Detailed information on cluster size, GO coverage
and H/Sgo scores is also provided. It was impossible to calculate some of the H/Sgo
scores due to lack of annotations.
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4. Gene expression clustering validation through data mining

Interferon-related genes of cluster 28 at level 40

GenBank ID  Description Reference
X84958 Interferon-inducible protein 9-27 Gutterman 1994
U36500 Lymphoid-specific SP100 homolog (LYSP100) Grétzinger et al. 2004
M33882 Myxovirus (influenza) resistance 1, MxA Pavlovic et al. 1990
U50648 Interferon-induced, double-stranded RN A-activated protein kinase Polyak et al. 1996
M97935 Signal transducer and activator of transcription 1-a/3 Schindler et al. 1992
AF006085 ARP2/3 protein complex subunit p34-arc Welch et al. 1997
L22474 BAX o Oltvai et al. 1993
217227 Cytokine receptor family II, member 4 Kotenko et al. 1997
U75503 Double-stranded RNA adenosine deaminase Kim et al. 1994
L05624 Dual specificity mitogen-activated protein Rampoldi et al. 1997
L36719 Dual specificity mitogen-activated protein Rampoldi et al. 1997
BC015513 Glutathione S-transferase M4 Comstock et al. 1993
AF113003 Nuclear receptor co-repressor 2 (N-CoR2) Yoon and Wong 2005
MT77693 Spermidine/spermine N1-acetyltransferase Xiao et al. 1992

The rest of the genes of cluster 28 at level 40
GenBank ID  Description Reference
BC001338 DNA for Rhohpl Shimizu et al. 1997
X52541 Early growth response protein 1 McKay et al. 1998
BC010441 HNK-1 sulfotransferase Ong et al. 1998

Table 4.4: Tables showing the contents of cluster 28 at level 40 of the B-cell hierachical
clustering, grouped by whether they are related to the interferon response or not.

biological process GO terms. Due to insufficient annotations, it was impossible
to calculate the H/Sgo value for the smaller 2-gene clusters at intermediate
levels, but at level 101 both clusters have a score. The larger clusters containing
interferon-related genes seem to score progressively worse as the genes are being
removed, and at level 101, the smaller cluster (81) has a marginally better score
than the main interferon cluster (41). This is the desired result, but it is very
important to point out that the scores at progressively higher levels are based
on less and less information as reflected by the decreasing number of annotated

genes per cluster and by the decreasing numbers of comparable pairs of GO terms
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Figure 4.28: Figure illustrating how some GO term distances contribute more to the
overall cluster quality score—the distance between terms 3 and 6 in this case. Four
hypothetical proteins annotated by several GO terms each are shown. The lines connect
terms that are comparable, and the lengths of the lines represent their semantic distance.
The solid lines indicate the minimum GO term semantic distance selected as the gene
product distance (see Section 4.2.3.3).

(see the relevant rows of Figure 4.27).

The H/Sgo score of cluster 28 was also calculated at level 40 using Resnik
semantic similarity values over 5 (as calculated in Section 4.2.5.4), but the cov-
erage dropped dramatically, therefore making it impossible to calculate quality
scores for the smaller clusters within cluster 28, which would also make impos-
sible any comparison between the perceived high quality cluster and the lower
quality clusters.

In order to investigate the way the quality score of cluster 28 was calculated
in more detail, it was necessary to examine the semantic distances between GO
terms. This is not equivalent to examining the distances between proteins, be-
cause, as explained in Section 4.2.3.3, the gene product distance is defined as the
minimum distance between GO terms annotating the two gene products. This
means that particularly proximal GO terms may contribute more to the overall
cluster quality score, as illustrated in Figure 4.28.

Figure 4.29 shows the intra-cluster semantic GO term distances for cluster 28
at level 40. The individual GO terms have been colour-coded to show which terms
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® ©

Figure 4.29: Graph showing the intra-cluster semantic distances between GO terms for
cluster 28 at level 40. Yellow terms map to cluster 41 at level 101, while blue terms map
to cluster 81 at level 101. Red terms map to both clusters. Grey lines indicate distances
between GO terms that are computable but do not participate in the calculation of
homogeneity (see Section 4.2.3.3). Thicker lines indicate pairs of terms that map to
more genes, and therefore their semantic distance contributes more to the homogeneity
score of the cluster.

map to which of the two clusters (41 and 81) at level 101, with some of the terms
mapping to both clusters. As explained above, the terms which map to more
than one of the genes of the cluster, contribute more to the homogeneity value.
The contribution of an inter-term semantic distance to the overall quality value
is reflected by the thickness of the lines, with thicker lines indicating distances
that contribute more.

It is evident that although a lot of the comparisons between terms are com-
putable, most of the resulting distances (grey lines) do not contribute to the

homogeneity score of the cluster because only the minimum distance between
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Figure 4.30: Graph showing the intra-cluster semantic distances between GO terms for
cluster 41 at level 101. Yellow terms map to cluster 41 only, while red terms also map
to cluster 81 at the same level. The original GO term distance arrangement of cluster
28 at level 40 is shown faded in the background (see figure 4.29). Thicker lines indicate
pairs of terms that map to more genes, and therefore their semantic distance contributes
more to the homogeneity score of the cluster. The distance between terms GO:0006355
and GO:0006955 is shown separately for clarity.

two gene products is considered (black lines). Consequently, some highly con-
nected GO terms (thicker lines) dominate the overall score of the cluster. Some
of those central terms seem to be shared by clusters 41 and 81 at level 101 (in-
dicated in red). This indicates that the process of using only the minimum GO
term distance to calculate the distance between proteins (Section 4.2.3.3) focuses
the calculation of the validation measure to a few terms only, and that using an
averaging approach instead would allow a more diverse set of terms to contribute

to the score.
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Figure 4.31: Directed acyclic sub-graph showing the sensory perception and immune
response terms and their common parents. Based on the 2/4/2007 version of the ontology.

Figure 4.30 is similar to figure 4.29, but it represents cluster 41 at clustering
level 101. There are 3 readily recognisable groups of GO terms that annotate
this cluster: the cell cycle-related terms, the terms related to signalling, and the
terms connected to the immune system. These groups exhibit lower distances
between terms of the same group in comparison to the distances of the terms be-
tween groups, which shows that the Resnik semantic similarity measure behaves
in accordance to expectations. The sensory perception term (GO:0007600) was
brought into the annotations through the enrichment process described in Sec-
tion 4.2.5.3. Since this term is not related to the rest of the cluster, its presence is
an indication that the 30% sequence similarity cut-off used during the enrichment
process may be too low. One would expect sensory perception to have a very high
semantic distance to the only term that it is comparable to (GO:0006955, im-
mune response), but it seems that the two terms have a medium distance of 8.71.
For comparison, the longest distance in the cluster (12.92) is that between the
immune response and regulation of transcription, DNA-dependent (GO:0006355)
terms. Maybe one would expect immune response and sensory perception to
have a semantic similarity of 0, but a look at the semantic similarity matrix
(from which the semantic distances are derived—see Section 4.24), reveals that

they actually have a semantic similarity of 3.90.
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Figure 4.32: Directed acyclic sub-graph showing the revised structure of the sensory per-
ception and immune response terms and their common parents. Based on the 8/12/2006
version of the ontology.

The minimum directed acyclic subgraph of the ontology which contains both
terms is shown in Figure 4.31. This figure has been constructed from the 8/12/2006
version of the ontology and, perhaps surprisingly, it shows that the two terms have
common parents, which explains why the pair has been assigned a semantic sim-
ilarity value over 0. Term physiological response to stimulus (GO:00051869) is
being used to calculate the semantic similarity between the two terms.

The equivalent subgraph in Figure 4.32 is based on the 2/4/2007 version of
the ontology, and it shows that the ontology has been restructured so that the
only common parent of the two terms is the root. Based on this more recent
version of the ontology, the two terms would have a Resnik semantic similarity of
0, because the root is their only common parent. This is probably closer to the
human expectation about how semantically similar the two terms are.

Figure 4.33 is similar to Figure 4.30, but the GO terms determining the
homogeneity of cluster 81 at level 101 have been highlighted, and the rest of
the graph has been faded out. Four of the GO terms annotating cluster 81 are
related to the regulation of transcription, positive or negative, and the computable
semantic distances between those four terms mostly determine the quality score
of this cluster. On the other hand, there are two other terms which contribute
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Figure 4.33: Graph showing the intra-cluster semantic distances between GO terms for
cluster 81 at level 101. Blue terms map to cluster 81 only, while red terms also map to
cluster 41 at the same level. The original GO term distance arrangement of cluster 28 at
level 40 is shown faded in the background (see figure 4.29). Thicker lines indicate pairs
of terms that map to more genes, and therefore their semantic distance contributes more
to the homogeneity score of the cluster.

only one semantic similarity value to the final score, but it is surprising that
they are present because they are unrelated to the B-cell biology. The terms are
GO:0001703 gastrulation with mouth forming first and GO:0009792 embryonic
development ending in birth or egg hatching, and they are present due to the
process of enrichment described in Section 4.2.5.3. This is another example of
annotational pollution caused by the enrichment, and it possibly indicates that
a sequence similarity threshold of 30 during enrichment may be too low for this
particular application. The particular pair may contribute only one measurement
to the overall cluster score, but its semantic distance is the second lowest of all
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the measurements.

Cluster 81 should have a worse score than cluster 41, but this is not the
case. It seems that this happens because of the low GO coverage and some
annotational pollution of cluster 81, which results in a quality score based on

very little evidence and some of it inappropriate.

4.3 Discussion

4.3.1 Contributions

After the initial assessment of the Gene Ontology as a source of external evi-
dence for the validation of gene expression clusters, it was found that although
sufficiently specific terms are defined in the ontology, the GOA annotations ex-
hibit a preferential use of the more general terms. The SGD annotations do not
exhibit such a trend which implies that they are of higher quality. This possible
difference in quality was supported by the finding that more SGD annotations
are based on reliable evidence, as reflected by their evidence codes.

Based on clustering deterioration simulations, the three semantic similarity
measures used in conjunction with the homogeneity and separation quality mea-
sure in order to calculate the similarity between GO terms, were all found reflec-
tive of clustering quality.

After applying the H/S measure to the hierarchical clustering of the human
B-cell dataset it was found that the resulting curves did not exhibit an overall
downwards trend or obvious minima as expected. Attempts to exclude overly
general terms produced worse results, suggesting that annotational coverage of
the dataset was the important limiting factor. The BioMap-based enrichment
process produced smoother curves. Also, the exclusion of overly distant terms
produced curves with obvious minima, implying better performance of the H/S
measure, a finding consistent to a study (Sevilla et al., 2005).

Detailed analysis of a particular cluster helped identify ways to improve the
method, such as limitation of the annotational contamination due to enrichment.
Structural imperfections of the Gene Ontology resulting in inappropriate seman-
tic similarity values also affected the performance of the measure. Finally, the
analysis emphasised the importance of annotational coverage since it revealed
low quality clusters can be assigned good quality scores because of the lack of
annotations.
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It is evident that the Gene Ontology at its current state cannot be used
for the validation of gene expression clusters. This is reflective of the inevitable
inconsistencies in the application of the terms because of the necessarily subjective
nature of manual annotations. This, combined with the lack of annotations due to
limited understanding of the underlying biology, and structural imperfections of
the ontology, renders it problematic for the validation of gene expression clusters,
at least when derived from human datasets. This simply means that the biological
knowledge currently captured by the Gene Ontology is not enough in terms of
quantity and is also not refined enough to be able to validate gene expression
experimental data. At this stage, and in this methodological context, the Gene
Ontology can benefit from being refined using experimental information, and not

vice versa.

4.3.2 Future work
4.3.2.1 Suggested H/S quality measure refinements

Filtering of GO annotations used in the validation of the B-cell dataset was
performed on several occasions in an attempt to increase the reliability of the H/S
clustering quality measure. Such filtering was used to rule out terms that were
overly general in order to increase the quality of annotations (Section 4.2.5.2), and
to remove GO term pairs that were too dissimilar to each other because highly
similar pairs correlate better to gene expression (see Section 4.2.5.4). Every
occasion of filtering affected the H/S score dramatically, seemingly increasing
the noise and making the behaviour of the score less predictable and harder to
interpret. This leads to the conclusion that availability of annotations outweighs
the importance of quality of the existing annotations for H/S. In other words,
scores that have been calculated based on less evidence should be considered as
much less reliable.

A possible optimisation of the method would be to quantify the concept of
evidence (coverage) used in the single cluster quality score calculation, in order
to provide a confidence value along with the score. At present, the H/S score
is calculated by averaging all the relevant distances in an one step process (see
Section 4.2.2). If this were to be divided into a two-step process where the
individual cluster quality scores were calculated first, and the overall clustering
score was subsequently calculated as the average quality of the individual clusters,

it would be possible to down-weight the scores corresponding to clusters with low
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annotational coverage. Formalising the concept of cluster coverage is not trivial,
and it is discussed here.

The amount of information used in the calculation of the quality score for an
individual cluster is determined by two factors. The first factor involves the anno-
tational coverage of individual genes, since not all genes have been characterised
using GO. Also, not all semantic distances between GO terms are computable
(see section 4.2.3), so the homogeneity of an individual cluster may be determined
by the semantic similarity values between a subset of the present terms. Please
note that the amount those factors differ depending on the aspect of GO being
considered. Therefore, the GO homogeneity coverage could be defined to reflect
those two aspects of GO coverage when calculating the homogeneity:

Oy =2 x 2

t(t—1
g -l

(4.25)

where in the context of a GO aspect, g is the total number of genes within
the cluster, g, is the number of genes with GO annotations coming from the
GO aspect being considered, ¢ is the total number of GO terms that map to

the genes of the cluster, and c¢; is the actual number of possible comparisons
t(t—1)
2

between GO terms. The term reflects the theoretical total number of
possible comparisons between all GO terms annotating the cluster.

Another point of refinement of the H/S measure would involve using one of
the variations of the Resnik GO semantic similarity measure. The semantic simi-
larity measure proposed by Wang et al. (2007) takes into account the structure of
GO, and does not rely on a body of annotated information to produce similarity
values for the terms. This has the advantage of consistent similarity values (at
least for the same version of the ontology), but there are also arguments against
this type of similarity measure. More specifically, it may be appropriate to get
different answers about the similarity of two GO terms depending on the or-
ganismal context of the analysis. Terms that co-occur very rarely in a specific
organism are more likely to be highly informative (with the exception of mis-
annotations). Also, the semantic similarity measure developed by Schlicker et al.
(2006) combines the ideas of the Lin and Resnik measures in order to overcome
the limitations of both. This could be used instead of the Resnik measure, al-
though the study of Schlicker et. al. does not provide a conclusive comparison
between the two, apart from the observation that the results are significantly
different.
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4.3.2.2 Variations of the overall method

Other variations of the validation methodology would involve using a different
way to calculate the distance between two gene products to the one described in
Section 4.2.3.3. The study of Schlicker et al. (2006) uses the maximum similarity
of the combined molecular function and biological process terms annotating the
two products, while Wang et al. (2007) and Lord et al. (2003b) use an averaging
approach of their respective term semantic similarity scores. On the other hand,
Kustra and Zagdariski (2006) use a weighted approach.

An approach for the exploration of the effectiveness of the H/S quality mea-
sure, which would remove all coverage problems would be to cluster only the
genes that have a GO annotation. For the B-cell dataset, which has a coverage
of 55%, this would effectively exclude half of the dataset, but—given the impor-
tance of annotational coverage—this would be the only option for removing it as
a limiting factor. This is a solution also employed by other studies (Lord et al.,
2003a,b; Schlicker et al., 2006; Wang et al., 2007) and it possibly explains why
annotational coverage has not been highlighted as an important limiting factor.

Finally, different types of external evidence could be tested for the validation
of clustering. Such evidence would include protein-protein interaction informa-
tion (such as the MIPS database; Pagel et al., 2005) or pathway information (such
as the KEGG database; Kanehisa and Goto, 2000). These other types of external
evidence would be readily applicable to the current methodological framework,
since the GO semantic distance matrix could be easily replaced by a binary ma-
trix indicating whether two proteins interact with each other or whether they
participate to the same biochemical pathway.

4.4 Conclusion

The use of the Gene Ontology for automatic characterisation and validation of
gene expression carries the promise of overcoming limitations of sequence and
even structure based methods which have inherent predictive limitations. On
the other hand, the ontology and the accompanying annotations are still very
much a work in progress. This has implications on the analytical side too, since
there is still no widely accepted methodology computationally using the Gene
Ontology for gene expression analysis and other applications. The assessment

and comparison of methods that use semantic similarity of GO terms is limited
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by the lack of a gold standard for both true positives and true negatives (Schlicker
et al., 2006).

As observed by Lee et al. (2004), the fact that the Gene Ontology is con-
stantly being updated with new information and restructured to reflect the latest
biological views is positive, but is also poses significant challenges when trying to
develop robust algorithms that automatically use the GO terms and annotations.
This is due to fact that characteristics of the ontology such as information content
and distribution of terms within the different levels may change over time, and
current assumptions on those characteristics used to design the algorithm may
not hold in the future. On the other hand, the maturation of GO and the con-
tinuing increase of the GO annotations means that the coverage problems faced

in this study will eventually be eliminated.
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Chapter 5

Conclusion

5.1 Summary of contributions

The aim of this thesis was to address problems that arise during the different
aspects of handling of gene expression microarray data. For the problem of
annotation of microarray gene expression data, a review of the existing software
solutions and discussions with experimentalists led to the construction of a list
of desirable features and helped in the identification of requirements which were
not met at the time by any of the relevant software. The requirements focused on
the areas of experimental platform neutrality, extensibility, interoperability and
usability. Emphasis was given to compliance to the relevant standards defined
by the MGED consortium. These requirements were satisfied with the design
and development of meditor, an MGED-compliant, stand-alone Java software for
the description and annotation of microarray experiments. This application has
matured into a usable version and in preparation for its public release it is being
actively tested by the users working with microarray technology.

During the development of meditor, it became apparent that the existing
standards are unable to describe some of the aspects of the gene expression data
processing pipeline. Specifically, it was found that it was impossible to model
external validation of clustered gene expression using the current MAGE model.
Because of the relevance of this particular process to the rest of the thesis, an
object model was proposed for the description of gene expression cluster valida-
tion. The model was designed to be small and easily manageable and could be
used for the implementation of independent interchange file formats. Also, the
possibility of integrating the model to MAGE was taken into account so that such
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integration would be achievable with minimal effort.

The problem of interpretation and validation of gene expression results was
addressed by the development of a quality measure for the validation of clustered
gene expression data using external evidence. The gene ontology was assessed as
external evidence for such validation, and it was found that the SGD annotations
were of higher quality in comparison to the GOA annotations, and possibly more
appropriate for the purposes of validation. The quality measure was then tested
on a human B-cell gene expression dataset, and it was found that annotational
coverage was a determining factor. Also, it was found that excluding too distant
GO terms improved the quality measure performance, which is consistent to the
findings of a previous study (Sevilla et al., 2005). Finally, a detailed analysis of
the behaviour of the quality measure at the cluster level revealed factors which
affect its performance, such as annotational contamination due to enrichment;
structural imperfections of the Gene Ontology resulting in inappropriate semantic

similarity values; and, once again, lack of annotations.

5.2 Future work

Future work would obviously involve the continuing support of meditor in order
to improve its usability, to implement requested features, and for it to be kept
up to date with the evolving standards. An feature which is clearly necessary for
meditor is support for the OWL representation of the MGED Ontology, which
will eventually replace the DAML+OIL format (see Section 2.7.1).

Software for the formal annotation of gene expression experiments addresses
the archiving and organisational needs of the experimental end user, but at the
same time it is producing an important body of annotated experiments. The
formal nature of gene expression standards paves the way for significant data
mining possibilities. For example, given a sufficiently large and diverse set of
MAGE-ML annotated gene expression experiments, it would be possible to de-
velop algorithms that would be able to automatically classify the experiments by
a number of criteria, that could include similar experimental conditions, common
methodologies, or even similar experimental designs. This would allow the au-
tomatic discovery of sets of studies which could be used together for integrated
gene expression analysis, provided that they are selected using the appropriate
criteria. This kind of analysis is becoming more relevant as increasing amounts of

experiments are being submitted to MAGE-compliant public repositories. Such
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analysis would possibly involve a survey of the different MAGE-ML ‘dialects’
produced by the diverse range of software which exports MAGE-ML files, and
the construction of semantic mappings between the different ways of expressing
similar concepts using the MAGE model.

In the area of gene expression cluster validation, there are several ways to
refine the method presented here, as described in Section 4.3.2.1. These include
using different semantic similarity metrics for the calculation of GO terms, dif-
ferent approaches for the calculation of gene product distance, and also different
external evidence, other than GO. These methodological parameters can be com-
bined in a number of ways to produce several variants of the H/S cluster quality
measure. In order to determine the best combination of methodological param-
eters (semantic metric, gene product distance definition, external evidence), all
the variants of the quality measure could be evaluated using the random cluster
simulation approach discussed in Section 4.2.3.4. This comprehensive study of
the contributing methods and evidence would provide insight into the relative
merits of the different variants of the method. Another parameter worth explor-
ing would be the type of dataset being validated. For example, it is possible
that a certain variant of the quality metric will prove better for validating gene
expression clusters corresponding to a particular organism, and not as good for
another.
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Glossary

AJAX stands for Asynchronous JavaScript and XML, is a programming tech-

nique for creating interactive and responsive web applications.

CATH A hierarchical classification of protein domain structures, which clusters
proteins at four major levels, Class (C), Architecture (A), Topology (T)
and Homologous superfamily (H).

Castor a programming library used for storing the information within program-

ming objects into a relational database.

class (programming) a blueprint for instances of programming objects. Classes
are used in object-oriented programming for dividing the task of program-

ming into logical units.

CSS stands for Cascading Style Sheets. CSS is a language that can be used to
define the visual style of a website, such as fonts, colour scheme, layout etc.

Useful for maintaining visual consistency within a website.

DAML The DARPA agent markup language (DAML) provides a rich set of
constructs with which to create ontologies and to markup information so
that it is machine readable and understandable. The latest version of the
technology is called DAML+OIL. It builds on RDF and XML technologies.
DAML has been superseded by the Web Ontology Language (OWL).

graphical user interface a set of screen presentations and metaphors that uti-
lize graphic elements such as icons, windows, lists etc in an attempt to make

a computer programme easier to learn and to use.
GUI see graphical user interface.

Hibernate a programming library used for storing the information within pro-

gramming objects into a relational database.
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HTML stands for HyperText Markup Language. The predominant markup
language for the creation of web pages.

Java a versatile object-oriented programming language.

JavaScript a versatile object-oriented programming language which is primarily
used on the World Wide Web, and runs in web browsers.

Java applet a component of a web page that is written in Java, and therefore

can use all the features of the language.

JGraph a Java programming library that is used for creating interactive dia-
grams. Used in meditor.

MAGE-ML MAGE Markup Language. The XML representation of MAGE-
OM.

MAGE-OM Microarray Gene Expression Object Model. An object model de-
fined by the MGED society for the modelling of gene expression experi-

ments.

MAGEstk The MAGE software toolkit. An open source software library which
allows to parse and generate MAGE-ML documents.

MGED stands for Microarray Gene Expression Data Society, is an international
organisation of biologists, computer scientists, and data analysts that aims
to facilitate the sharing of microarray data generated by functional genomics

and proteomics experiments.

object (programming) part of a computer programme with specific respon-
sibilities and function, which can also hold data. Instances of objects are

constructed according to the instructions found in classes.

object-oriented programming a programming paradigm that uses the con-

cept "classes” (see class) to construct computer programs and systems.

ortholog Orthologs are genes in different species that evolved from a common
ancestral gene by speciation. Normally, orthologs retain the same function

in the course of evolution.



OWL The Web Ontology Language (OWL) is a language for defining and in-
stantiating Web ontologies. It is based on DAML+OIL and the differences

in syntax are very small.

paralog Paralogs are genes related by duplication within a genome. Normally,

paralogs evolve new functions, even if these are related to the original one.

Perl a general-purpose programming language which is particularly strong in
text processing, and which allows rapid development of computer pro-

grammes.

PHP stands for PHP Hypertext Preprocessor. It is a programming language

mainly used for the creation of web pages with dynamic content.

programming library a reusable computer programme designed for a specific

task (such as making graphics, connecting to databases etc).

RDF The Resource Description Framework is a general-purpose language for

representing information in the Web.

SCOP stands for Structural Classification of Proteins. A protein structural

classification database.

Swing a Java programming library that is used for making graphical user inter-
faces (GUIs). Used in meditor.

tab-delimited file

UML stands for Unified Modeling Language. It is a specification language used

for designing object models. The language makes heavy use of diagrams.

XMI stands for XML Metadata Interchange. IT is a standard defined by the
Object Management Group for exchanging metadata. Its most common
use is as an interchange format for UML models.

XML stands for Extensible Markup Language, and is a markup language pro-
posed by the World Wide Web Consortium that supports a variety of ap-

plications.
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Appendix A

Definitions of MAGE terms

This appendix contains definitions MAGE terms organised by package. The def-
initions were extracted verbatim from the MAGE documentation. Each MAGE
package covers a separate conceptual area of the MAGE model. The BioSequence
and DesignElement packages have been left out because the concepts they define
are not particularly relevant to this thesis. Also, the Measurement package has

been left out because the concepts it covers have obvious definitions.

A.1 Array package

ArrayGroup An array package is a physical platform that contains one or more
arrays that are separately addressable (e.g. several arrays that can be
hybridized on a single microscope slide) or a virtual grouping together of
arrays. The array package that has been manufactured has information
about where certain artifacts about the array are located for scanning and

feature extraction purposes.

OrientationMarkPosition Inner class for the enumeration values that the at-

tribute orientationMarkPosition can assume.
Array The physical substrate along with its features and their annotation

ArrayGroup An array package is a physical platform that contains one or more
arrays that are separately addressable (e.g. several arrays that can be
hybridized on a single microscope slide) or a virtual grouping together of
arrays. The array package that has been manufactured has information
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about where certain artifacts about the array are located for scanning and

feature extraction purposes.

OrientationMarkPosition Inner class for the enumeration values that the at-

tribute orientationMarkPosition can assume.
ArrayManufacture Describes the process by which arrays are produced.

ArrayManufactureDeviation Stores information of the potential difference
between an array design and arrays that have been manufactured using

that design (e.g. a tip failed to print several spots).
FeatureDefect Stores the defect information for a feature.

Fiducial A marking on the surface of the array that can be used to identify the

array’s origin, the coordinates of which are the fiducial’s centroid.

ManufactureLIMS Information on the physical production of arrays within
the laboratory.

ManufactureLIMSBiomaterial Stores the location from which a biomaterial
was obtained.

PositionDelta The delta the feature was actually printed on the array from the
position specified for the feature in the array design.

ZoneDefect Stores the defect information for a zone.

A.2 ArrayDesign package

ArrayDesign Describes the design of an gene expression layout. In some cases
this might be virtual and, for instance, represent the output from analysis

software at the composite level without reporters or features.

CompositeGroup Allows specification of the type of Composite Design Ele-
ment.

DesignElementGroup The DesignElementGroup holds information on either
features, reporters, or compositeSequences, particularly that information

that is common between all of the DesignElements contained.

FeatureGroup A collection of like features.



PhysicalArrayDesign A design that is expected to be used to manufacture
physical arrays.

ReporterGroup Allows specification of the type of Reporter Design Element.
Zone Specifies the location of a zone on an array.

ZoneGroup Specifies a repeating area on an array. This is useful for printing

when the same pattern is repeated in a regular fashion.

ZoneLayout Specifies the layout of features in a rectangular grid.

A.3 AuditAndSecurity package

Audit Tracks information on the contact that creates or modifies an object.

Action Inner class for the enumeration values that the attribute action can

assume.
Audit Tracks information on the contact that creates or modifies an object.

Action Inner class for the enumeration values that the attribute action can

assume.
Contact A contact is either a person or an organization.

Organization Organizations are entities like companies, universities, govern-

ment agencies for which the attributes are self describing.
Person A person for which the attributes are self describing.

Security Permission information for an object as to ownership, write and read

permissions.

SecurityGroup Groups contacts together based on their security privileges.

A.4 BQS package

BibliographicReference Attributes for the most common criteria and associ-
ation with OntologyEntry allows criteria to be specified for searching for a
Bibliographic reference.



A.5 BioAssay package

BioAssay An abstract class which represents both physical and computational
groupings of arrays and biomaterials.

BioAssayCreation The process by which an array and one or more biomaterials

are combined to create a bioAssayCreation.

BioAssayTreatment The event which records the process by which Physical-
BioAssays are processed (typically washing, blocking, etc...).

Channel A channel represents an independent acquisition scheme for the Im-
ageAcquisition event, typically a wavelength.

DerivedBioAssay A BioAssay that is created by the Transformation BioEvent

from one or more MeasuredBioAssays or DerivedBioAssays.

FeatureExtraction The process by which data is extracted from an image pro-

ducing a measuredBioAssayData and a measuredBioAssay.

Hybridization The archetypal bioAssayCreation event, whereby biomaterials
are hybridized to an array.

Image An image is created by an imageAcquisition event, typically by scanning
the hybridized array (the PhysicalBioAssay).

ImageAcquisition The process by which an image is generated (typically scan-
ning).

MeasuredBioAssay A measured bioAssay is the direct processing of informa-
tion in a physical bioAssay by the featureExtraction event. Often uses
images which are referenced through the physical bioAssay.

PhysicalBioAssay A bioAssay created by the bioAssayCreation event (e.g.
in gene expression analysis this event is represented by the hybridization
event).

A.6 BioAssayData package

BioDataCube A three-dimensional cube representation of the data.



Order Inner class for the enumeration values that the attribute order can as-

sume.

BioAssayData Represents the dataset created when the BioAssays are created.
BioAssayData is the entry point to the values. Because the actual values
are represented by a different object, BioDataValues, which can be memory
intensive, the annotation of the transformation can be gotten separate from
the data.

BioAssayDimension An ordered list of bioAssays.

BioAssayMap The BioAssayMap is the description of how source Measured-
BioAssays andor DerivedBioAssays are manipulated (mathematically) to
produce DerivedBioAssays.

BioAssayMapping Container of the mappings of the input BioAssay dimen-
sions to the output BioAssay dimension.

BioAssayTuple Transformed container to specify a BioAssay and the Design
Elements and their data for that BioAssay.

BioDataCube A three-dimensional cube representation of the data.

Order Inner class for the enumeration values that the attribute order can as-

sume.
BioDataTuples A relational, tuple representation of the data.
BioDataValues The actual values for the BioAssayCube.

CompositeSequenceDimension Specialized DesignElementDimension to hold
CompositeSequences.

DataExternal Transformed class to associate external data to the BioAssay-
DataCube

Datalnternal Transformed class to associate whitespaced delimited data to the
BioAssayDataCube

Datum Transformed container to hold a value. QuantitationType will determine

the type of this value.

DerivedBioAssayData The output of a transformation event.



DesignElementDimension An ordered list of designElements. It will be real-

ized as one of its three subclasses.

DesignElementMap A DesignElementMap is the description of how source

DesignElements are transformed into a target DesignElement.

DesignElementMapping Container of the mappings of the input DesignEle-
ment dimensions to the output DesignElement dimension.

DesignElementTuple Transformed container to specify a DesignElement and
QuantitationTypes for that Element.

FeatureDimension Specialized DesignElementDimension to hold Features.

MeasuredBioAssayData The data associated with the MeasuredBioAssay pro-
duced by FeatureExtraction.

QuantitationTypeDimension An ordered list of quantitationTypes.

QuantitationTypeMap A QuantitationTypeMap is the description of how source
QuantitationTypes are mathematically transformed into a target Quanti-
tationType.

QuantitationTypeMapping Container of the mappings of the input Quanti-

tationType dimensions to the output QuantitationType dimension.

QuantitationTypeTuple Transformed container to specify a Quantitation Type
and the value for that Type.

ReporterDimension Specialized DesignElementDimension to hold Reporters.

Transformation The process by which derivedBioAssays are created from mea-
suredBioAssays andor derivedBioAssays. It uses mappings to indicate the

input and output dimensions.

A.7 BioEvent package

BioEvent An abstract class to capture the concept of an event (either in the

laboratory or a computational analysis).

Map A Map is the description of how sources are transformed into a target.
Provides an abstarct base class that separates the mapping BioEvents from
the transforming.



A.8 BioMaterial package

BioMaterial BioMaterial is an abstract class that represents the important sub-
stances such as cells, tissues, DNA, proteins, etc... Biomaterials can be
related to other biomaterial through a directed acyclic graph (represented
by treatment(s)).

BioMaterialMeasurement A BioMaterialMeasurement is a pairing of a source

BioMaterial and an amount (Measurement) of that BioMaterial.

BioSample BioSamples are products of treatments that are of interest. BioSam-
ples are often used as the sources for other biosamples. The Type attribute
describes the role the BioSample holds in the treatment hierarchy. This
type can be an extract.

BioSource The BioSource is the original source material before any treatment
events. It is also a top node of the directed acyclic graph generated by
treatments. The association to OntologyEntry allows enumeration of a
BioSource’s inherent properties.

Compound A Compound can be a simple compound such as SDS (sodium dode-
cyl sulfate). It may also be made of other Compounds in proportions using
CompoundMeasurements to enumerate the Compounds and their amounts
such as LB (Luria Broth) Media.

CompoundMeasurement A CompoundMeasurement is a pairing of a source

Compound and an amount (Measurement) of that Compound.

LabeledExtract LabeledExtracts are special BioSamples that have Compounds

which are detectable (these are often fluorescent or reactive moieties).

Treatment The process by which a biomaterial is created (from source bioma-

terials). Treatments have an order and an action.

A.9 Common package

Describable Abstract class that allows subclasses to inherit the association to
Description, for detailed annotations such as Ontology entries and Database
references, the association to Audit, for tracking changes, and the associa-

tion to Security for indicating permissions.



Extendable Abstract class that specifies for subclasses an association to NameVal-
ueTypes. These can be used, for instance, to specify proprietary properties
and in-house processing hints.

Identifiable An Identifiable class is one that has an unambiguous reference

within the scope. It also has a potentially ambiguous name.
MAGEJava Top-level object that represents the model. Contains the packages.

NameValueType A tuple designed to store data, keyed by a name and type.

A.10 Description package

Database An address to a repository.

DatabaseEntry A reference to a record in a database.

Description A free text description of an object.

ExternalReference A reference to the originating source for the object.

OntologyEntry A single entry from an ontology or a controlled vocabulary. For
instance, category could be ’species name’, value could be ’homo sapiens’
and ontology would be taxonomy database, NCBI.

A.11 Experiment package

Experiment The Experiment is the collection of all the BioAssays that are
related by the ExperimentDesign.

ExperimentDesign The ExperimentDesign is the description and collection of

ExperimentalFactors and the hierarchy of BioAssays to which they pertain.
FactorValue The value for a ExperimentalFactor

ExperimentalFactor ExperimentFactors are the dependent variables of an ex-

periment (e.g. time, glucose concentration, ...).



A.12 HigherLevelAnalysis package

BioAssayDataCluster A mathematical method of higher level analysis whereby
BioAssayData are grouped together into nodes.

Node An individual component of a clustering. May contain other nodes.

NodeContents The contents of a node for any or all of the three Dimensions.

If a node only contained genes just the DesignElementDimension would be
defined.

NodeValue A value associated with the Node that can rank it in relation to the

other nodes produced by the clustering algorithm.

A.13 Protocol package

HardwareApplication The use of a piece of hardware with the requisite Pa-
rameters and ParameterValues.

Hardware Hardware represents the hardware used. Examples of Hardware in-

clude: computers, scanners, wash stations etc...

Parameter A Parameter is a replaceable value in a Parameterizable class. Ex-
amples of Parameters include: scanning wavelength, laser power, centrifuge
speed, multiplicative errors, the number of input nodes to a SOM, and PCR
temperatures.

ParameterValue The value of a Parameter.

Parameterizable The Parameterizable interface encapsulates the association of

Parameters with ParameterValues.

ParameterizableApplication The interface that is the use of a Parameteriz-
able class.

Protocol A Protocol is a parameterizable description of a method. ProtocolAp-
plication is used to specify the ParameterValues of it’s Protocol’s Parame-
ters.

ProtocolApplication The use of a protocol with the requisite Parameters and
ParameterValues.



Software Software represents the software used. Examples of Software include:

feature extraction software, clustering software, etc...

SoftwareApplication The use of a piece of software with the requisite Param-
eters and ParameterValues.

A.14 QuantitationType package

Confidencelndicator Indication of some measure of confidence for a standard

quantitation type.

DerivedSignal A calculated measurement of the intensity of a signal, for ex-
ample, after a transformation involving normalization andor replicate De-
signElements. Of type float.

Error Error measurement of a quantitation. Of type float.

ExpectedValue Indication of what value is expected of the associated standard

quantitation type.

Failed Values associated with this QuantitationType indicate a failure of some

kind for a particular DesignElement for a BioAssay. Of type boolean.

MeasuredSignal Best measure from feature extraction as to the presence and

intensity of the signal. Of type float.
PValue Measurement of the accuracy of a quantitation. Of type float.

PresentAbsent Indicates relative presence or absence. From the enumeration
AbsoluteCallTypeEnum (Present — Absent — Marginal — No call) or
ComparisonCallTypeEnum (Increase — Marginal Increase — Decrease —
Marginal Decrease — No change — No Call — Unknown), as specified by
the dataType.

QuantitationType A method for calculating a single datum of the matrix (e.g.

raw intensity, background, error).

Ratio The ratio of two or more signals, typically between two channels. Of type
float.

SpecializedQuantitationType User defined quantitation type.



StandardQuantitationType Superclass for the named quantitation type. Use-
ful for mapping to those languages that can use a fly-weight for processing

the subclasses.



Appendix B

meditor implementation details

B.1 Implementation overview

The implementation of meditor developed through a series of prototype versions.
An important reason for that, was that it was necessary to construct a number
of prototypes in order to obtain feedback from the users and arrive to an user
interface that covered their needs. Another reason was the fact that meditor had
to be compatible with the MAGE standards as much as possible. The MAGE
standards themselves were a work in progress during the development of meditor
and they are still evolving now, which meant that some of the meditor’s basic
specifications were by definition a moving target. Finally, there were purely tech-
nological reasons for some of the changes during implementation. For example,
the initial implementation of the persistence component was based on the open
source Castor persistence library cas, but soon it became apparent that Castor
lacked the necessary functionality. Castor was replaced by Hibernate, a change
which required some refactoring (see Section B.3.0.1).

This appendix focuses on the final implementation details and it does not
fully describe the necessary changes in implementation strategies that led to the
solutions presented here. The implementation details are organised by architec-
ture layer as in Figure 2.1). Also see Table B.1, which outlines the Java package
organisation of meditor. The abstraction layer implementation details are pro-
vided in the B.2 section, persistence and storage implementation are looked at in
the B.3.0.1 section, followed by a short section on the implementation details on
the MGED ontology support, before discussing the specifics of the user interface

implementation in Section B.5.
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org.biomap

MAZE « o evvrerrncnncncensans MAGEStk-extending functionality
meditor..........cooiveinnn meditor package
L _build.............ool Build-time code
| COMMON . cvvvvueennrnnss Initialisation code and common interfaces
R -4 | & General GUI components

| _diagrams............. Deprecated

. forms................ Form components and registry, form-

generation code.

L _layout................ Specialised GUI layout
| _studyDesign.......... Study design dialogs and diagrams
Labstraction ........ Abstraction study design concepts
| _tables.........o000uen Table-based GUI components
| trees......cevuenvnnns Entity trees
S e Unused
L _logic...coviiiiiiiiiian, Code for building MAGE object trees and

converting MAGE-specific object trees to
MAGE object trees.

__persistence.............. Database driver

L_reflection............... Reflection functionality for access to
private class fields.

S {5 1 P Various utility classes for string manip-
ulation, generation of various formats
(HTML, dot), checksum handling etc.

Table B.1: The package hierarchy of meditor with descriptions of the role of each package.



B.2 Abstraction

B.2.1 MAGEStk extension

As discussed in Section 2.6.1, MAGEStk had to be extended in order to provide
extra functionality not present in the original toolkit. The added functionality
concerned the navigation and building of the MAGE object tree, and the easy

printing of debugging information. This functionality is summarised in Table B.2.

B.3 Persistence implementation

B.3.0.1 Object persistence

In order to make the persistence mechanisms of meditor extensible, the necessary
functionality has been concentrated in the abstracted class MEStorageDriver
of the org.biomap.meditor.persistence package. This allows different pos-
sible underlying persistence mechanisms accessible through the same interface,
something that during the course of development has proven useful in the test-
ing stages, for the prototyping of persistence. More specifically, persistence
was initially developed as a prototype in the MEFileStorageDriver subclass of
MEStorageDriver and later the MEDatabaseStorageDriver class implemented
full persistence.

File-based persistence prototype The abstraction of object persistence by
the MEStorageDriver class proved valuable at the early stages of development,
when more emphasis was put to the development of the GUI. At this stage,
it was necessary to have a prototype persistence mechanism that would allow
the testing of the GUI and other aspects of meditor. For this purpose, the
MEFileStorageDriver class was implemented, a subclass of MEStorageDriver
which implemented part of the persistence mechanism by using Java serialisation
to files. Not all the functionality was implemented, in some cases the concrete
methods of MEFileStorageDriver were just dummy methods that did not per-
form any operation. This was sufficient for testing purposes, and was replaced as

soon as the graphical user interface was mature enough.

Database persistence Given that MAGEStk and the ArrayExpress schema
are both generated from the MAGE object model, the logical mapping between



class

functionality provided

BioMaterialHelper

ExperimentDesignHelper

MeasurementHelper
MEProtocolApplication

METreatment

OntologyEntryHelper

ProtocolHelper

TreatmentHelper

Discovery of previous BioMaterials from which a
BioMaterial was derived.

Debugging output for BioMaterials.
Discovery of BioAssay a FactorValue belongs to.

Discovery of a FactorValue given a BioAssay and the
corrensponding ExperimentalFactor.

Exporting of an Experiment instance in the dot format.
Deep copying of Measurement instances.

Extends org.biomage.Protocol.ProtocolApplication.
Constructor that creates a MEProtocolApplication
instance from a Protocol instance. For each
of the Hardware and Software instances of the
Protocol, the constructor creates the corresponding

HardwareApplications and SoftwareApplications.
Extends org.biomage.Protocol.Treatment.

Constructor that uses the functionality of
MEProtocolApplication to contruct an METreatment
from a Protocol instance.

Discovery of BioMaterials that were used in this
treatment.

Removal of the BioMaterialMeasurement of a particular

passed BioMaterial.
Methods for summarisation of OntologyEntry instances,

and for the reversal of this (see Section B.5.1).

Methods for navigation of OntologyEntry trees, includ-
ing path-based navigation.

Reflection-based methods for access to OntologyEntry
instances from fields of classes.

Methods for the conversion of the category and value of
an OntologyEntry to screen-friendly names.

Debugging output for OntologyEntry instances.
Textual description of a Protocol and its steps for screen

display.

Discovery of BioSources that were used in the original
Treatment from which a passed Treatment was derived.
Discovery of BioMaterials that were used in a
Treatment.

Discovery of the BioMaterialMeasurement of a particu-
lar passed BioMaterial in a Treatment.

Removal of the BioMaterialMeasurement of a particular
passed BioMaterial.

Table B.2: Classes in the org.biomap.meditor.mage package and the functionality
they provide. Classes MEBioSample, MEBioSource, MELabeledExtract, MEHardware and
MESoftware all extend the corresponding MAGEStk classes by providing deep copying
methods for the base class so they are not mentioned in this table. Please note that most

of the names of MAGE classes are not fully qualified for brevity.



the two is mostly a straightforward one-to-one relationship. A mechanism is
required to allow the storage and retrieval of the MAGEStk objects to and from
the ArrayExpress-based local database. MAGEStk contains 335 classes, so it is
obvious that the mechanism for the handling of this type of persistence should
be able to deal with the objects in bulk. Of course, it would be possible to write
persistence code for each of the MAGEStk classes, but that would be tedious,
very time-consuming, error-prone and unmaintainable. Instead, the solution of
using an object-relational mapping library was investigated.

Object-relational libraries usually require a logical mapping between the ob-
ject model and the relational schema which is the case for MAGEStk and the
ArrayExpress schema. This logical mapping is usually expressed as an XML doc-
ument that conforms to the format required by each library, and this mapping
file is used by the library to perform the storage and retrieval of the objects to
and from the underlying database. With the maturing of the meditor GUI, the
file-based persistence prototype was replaced by the object-relational persistence
mechanism. This was implemented by the MEDatabaseStorageDriver class, a
subclass of MEFileStorageDriver.

Initially the Castor object-relational persistence library was used in order to
implement the persistence mechanism underlying the MEDatabaseStorageDriver
class. The logical mapping can be largely derived from the MAGE object model,
and for this purpose the make_mapping.pl Perl script was written. This script
uses the MAGE XMI as input and generates a Castor XML mapping file. The
generation of the mapping file occurs at the build-time of meditor. The make_
mapping.pl script uses the XML: :Parser module to parse the relevant parts of
the MAGE model XMI document, and stores the results in three data struc-
tures, each covering a different aspect of the model: classes, associations and
attributes. At this point, the data structures are read by the printCastor-
Mapping subroutine, which exports the Castor mapping XML file, according to
their contents.

After several tests and fine-tuning, it became obvious that Castor was not
mature enough as an implementation to cover the needs of the project. More
specifically, it was found that the particular version of Castor (0.8) did not per-
form recursive retrieval and deletion of trees of object instances. In some cases
the generated SQL statements contained bugs, and Castor was unable to handle
classes that just extend the behaviour of their superclasses with new methods

without introducing new class members. Finally, the mapping file required a



very specific syntax (for example, forward class references are not allowed) that
was poorly documented, and any deviations from this syntax produced uninfor-
mative error messages, therefore making debugging very hard. It was attempted
to work around these limitations and bugs: trial and error had to be used in the
case of the mapping file, custom code was written to allow recursive retrieval and
deletion of object trees from the database, and dummy class members were in-
troduced in the cases of subclasses that did not contain any extra class members
in relation to their super-classes.

These workarounds did fix some of the limitations of Castor, but the function-
ality that had to be implemented as an extra should have been already present as
part of Castor. Also, even when all the workarounds had been implemented, other
problems kept appearing and at this point it was decided to try and use the Hiber-
nate object-relational mapping library instead. The make_mapping.pl script had
to be modified to produce a mapping XML file which conforms to the Hibernate
format instead. More specifically, the printCastorMapping subroutine was re-
placed by the printHibernateMapping and the printHibernateClassMapping
subroutines. printHibernateMapping initialises the export, and passes all the
root classes of the MAGE class hierarchy to printHibernateClassMapping,
which calls itself recursively on subsequent subclasses until the leaf classes are
reached. For each class, printHibernateClassMapping first generates mappings
for any primitive members (strings, integers etc) and then mappings for all the
associations of the current class to other classes—naturally using different Hiber-
nate mapping file syntax for simple references, one-to-many and many-to-many
associations. There is a disparity between the primitive type identifiers used in
the XMI syntax and those used in the Hibernate mapping file syntax, because
XMI defines primitives in abstract terms while Hibernate deals with SQL primi-
tive types. To deal with this disparity, a hard-coded mapping of these identifiers
was included and used within the script and this mapping is summarised in Ta-
ble B.3.

The generation of the Hibernate mapping file is a process that could not rely
solely on the MAGE XMI file, and for various reasons had to allow for specific
customisations. The purpose of the mapping file is to provide persistence of
instances of MAGEStk classes in a database that uses the ArrayExpress database
schema. All three (the mapping file, the toolkit and the database schema) are
generated from the MAGE model XMI, but for various reasons, the creators of

MAGEStk and ArrayExpress have introduced customisations to their respective



XMI type  Hibernate type

string varchar(255)
int decimal(18,0)
float decimal(126,0)
boolean char(5)

any(] (][] text

any text

date varchar(20)
any varchar(25)
blob blob

clob clob

long int(11)

Table B.3: The mapping between the abstract types mentioned in the MAGE XMI doc-
uments and the corresponding SQL types in the Hibernate mapping file. This mapping
is used by the make mapping.pl script.

generated products which led to the need for customisation of the process of
generating the mapping file.

The changes in many cases involved using slightly different names for class
members or classes in respect to the model, but in some cases (particularly in
the case of the database schema) some classes or class members are completely
omitted. These omissions are generally due to the fact that ArrayExpress stores
the annotations of microarray experiments in tables but uses files to store the
actual numerical results of each experiment. This policy was also appropriate
for meditor, so the classes that do not have an ArrayExpress table counterpart
should also be omitted from the mapping file.

Hibernate allows recursive storage, retrieval and deletion of object trees through
the ‘cascade’ feature, but the developer has to define which associations should
be followed in order for a persistence-related operation on a particular instance to
cascade to dependent objects. This feature is essential to meditor since it allows
the handling of the persistence of trees of objects as a logical unit, and it is an
additional case when mapping file generation has to be customised.

In order to cater for the different cases for customisation mentioned above,

make_mapping.pl reads the make_mapping.conf.xml file on initialisation. This



XML file uses a simple syntax to define which classes should be omitted, which
class or class members names should be renamed (and to what) and which class
associations should be subject to cascading persistence-related operations. A
shortened version of the make_mapping.conf.xml file is shown here in order to

demonstrate the syntax:

<mapping-configuration>

<class name="org.biomage.Common.Extendable">
<cascade property="propertySets" type="all" />

</class>

<class name="org.biomage.BioAssayData.DesignElementDimension">
<omit property="elementList" />
<omit property="elementCount" />
<omit property="dEProperties" />

</class>

<class name="org.biomage.BioAssayData.BioAssayDatum">
<rename to="Datum" in="java"/>

</class>

</mapping-configuration>

Some or the class member names used in the MAGE XMI (like DATE, OR-
DER, ROW, COLUMN etc) are also reserved SQL keywords, and would cause
problems during the usage of Hibernate, most likely resulting in the generation of
invalid SQL statements. To avoid this problem, make_mapping.pl adds an under-
score character to reserved SQL keywords (DATE_, ORDER_, ROW_, COLUMN._
etc).

Hibernate was found more than satisfactory for the purposes of meditor,
and the Castor-related workarounds were removed from the Java code and the
database since they were no longer necessary.

Because of certain requirements that Hibernate has for the classes it operates
on, it was necessary to make a number of modifications to MAGEStk. This was
achieved by writing a number of Perl filters that operate directly on the source
code of MAGEStk. The changes included the addition of the id field to the
Extendable class (the root of the MAGE hierarchy). Also, it was necessary to
re-declare all the Vectors as the interface java.util.List, because Hibernate
internally replaces the Vector implementation of the Java SDK with its own

persistent equivalents, that also implement the java.util.List interface.



Attribute-oriented persistence of application-specific classes The attribute-
oriented programming (Walls and Richards (2003)) approach was used in order
to speed up the development of persistence support for the application-specific
classes of meditor. In this particular case, this approach allowed the development
to focus on a single file per class, instead of having to deal with the Java code,
the mapping file and the database schema separately. In order to achieve this,
the XDoclet2 tool was used to generate the Hibernate mapping file from the Java
classes and their accompanying JavaDoc comments, and then the hbm2dd! tool
was applied to derive the schema from the generated mapping (see Figure 2.2a and
2.2b). The process was driven using the Apache Ant (http://ant.apache.org)
build tool. The obvious advantage of the attribute-oriented approach is that de-
velopment becomes less time consuming, less error-prone and the code is more
maintainable since any necessary changes need to be made to a single file per
class.

This approach is similar to model driven architecture in the sense that in both
cases the development is concentrated in one place (either the UML model or the
Java classes), and the rest of the relevant files are derived automatically, but the
main difference is that in this particular use of attribute-oriented programming
(meditor-specific classes) one derived file depends on the previous (Figure 2.2b),
while in the case of model-driven architecture (MAGEStk and its persistence) all
files are derived directly from the model (Figure 2.2c). This was mainly due to
the software tools that were available at the time of development and is not an

inherent difference between the two approaches.

B.4 Ontology support implementation

At the time of the implementation of meditor, the OWL format was still a pro-
totype, and because of that, the only implementation of the OntologyParser
was the OntologyDAMLHandler class, and the OntologyOWLHandler was cre-
ated only as a placeholder in anticipation of the maturing of the OWL inter-
face. The ontological information is held in instances of the ClassInformation,
InstanceInformation and PropertyInformation classes, which are used by the
OntologyHelper to answer to queries originating from client code. Such queries
can be done directly (as it happens in the case of the dynamic forms component
in meditor, see Section 2.7.3.2), or by the MGEDOntologyEntry class and its de-
rived classes during the construction of their instances. The MGEDOntologyEntry



class and its derived classes were developed as part of the MAGEStk support for
the ontology, and they have been useful to other users of MAGEStk, but are not
used by meditor.

B.5 User interface implementation

B.5.1 Implementation of ontology-driven forms

The class FormBuilder of package org.biomap.meditor.gui.forms performs
the actual generation of the interface. This happens through the constructor of
OntologyEditor, which constitutes the dynamic part of MEForms within meditor.
The name OntologyEditor implies a GUI component that is used for editing the
ontology-populated entries of the MAGE objects, not a component that is used
for editing the ontology itself.

FormBuilder generates each form by querying the MAGEStk OntologyHelper
about various aspects of the ontology, while taking into account the various cus-
tomisations provided by a FormCustomiser. This interface provides functionality
for sorting the various ontological terms used in form generation, renaming them
to make them more user friendly, removing the unwanted ones and adding new
ones. Also, it covers whether terms should be grouped together in expandable
panels (see Section 2.7.1), whether they should be arranged horizontally, whether
they should be presented as a hierarchical menu, and various other presentation
customisations.

The main aspects of form-generation process is described in algorithms 1 and
2. Also, Figure B.1 illustrates the main methods participating in the process (not
all methods are covered in the pseudo-code). In the current version of meditor,
the only class that implements the FormCustomiser interface is StaticForm-
Customiser. The form customisations are hard-coded in this class and include
some minor customisations that were considered necessary for generation of the
forms. The fact that the form customisation functionality is abstracted by the
FormCustomiser interface means that future versions of meditor may include a
class that implements this interface dynamically, allowing the users full control
over the presentation of ontology-derived forms.

The initialisation of the instances of OntologyEditor is an expensive process
that introduces a significant overhead, so the MEForm instances are generated once
at startup. They are then held in the only instance of FormHolder, which acts



buildFormForClass()

buildFormForClassWithProperties() [ )
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buildFormForAbstractClass() > buildMEMenuButtonForAbstractClass()
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buildMEMenuForAbstractClass() | )

Figure B.1: Simplified call graph of the form generation process as implemented in
the FormBuilder class. The entry point is the buildFormForClass() method, and
the process continues recursively until the MGED ontology tree is exhausted. Also see
algorithms 1 and 2.

as a form registry providing the prepared forms every time they are required.

FormBuilder creates instances of the FormBuilderResult class, which in-
cludes an instance of javax.swing.JPanel (the resulting GUI) and an instance
of FormDataTree, which is the data structure that temporarily holds the form-
inputted data before populating the MAGEStk objects with it. The tree holds
a reference to the root FormDataBranch but it also keeps a list of all the leaves
that appear in the form (to allow easy update of the GUI) and a list of all the
nodes that correspond to members of MAGEStk objects (to allow easy update
of these objects). The actual values are of the form are stored in the values
ArrayList field of the FormDataLeaf class. It is necessary to keep a list of val-
ues for each leaf of the FormDataTree because meditor allows editing of multiple
objects through the same form, so each FormDataLeaf holds all the values that
each field can take depending on which object is currently being edited. This list
holds instances of java.lang.0Object to allow storage of diverse types of values
that correspond to a variety of FormFields.

When a MEForm needs to update the contents of its GUI or the contents
of the underlying object being edited, it notifies its OntologyEditor, which in
turn passes its FormDataTree to the FormDataHandler. The FormDataHandler
uses reflection (from the org.biomap.meditor.reflection package) and the



OntologyEntryHelper (from package org.biomap.mage) to update the MAGEStk
objects based on the contents of the form or vice versa.

While developing meditor and working with the MGED ontology, there were
numerous cases where it was necessary to produce a deeply nested OntologyEntry
tree, which was completely linear. That is, every node of the tree had only one
descendant, without any further branching. Ontology trees of that kind occur
when encoding fully qualified ontological terms according to the MGED guidelines
on the ontology.

MGEDOntology 1 MGEDCoreOntology > M Package Unit QuantityUnit mol

Figure B.2: A tree of MGED Ontology Entries which can be summarised as a single
string. The arrows show associations between terms.

Figure B.2 shows such a tree. It is immediately apparent that such trees
can be easily summarised as filesystem-like paths: the tree of Figure B.2 can be
summarised by the following string:

MGEDOntology/MGEDCoreOntology/MeasurementPackage/Unit/
QuantityUnit/mol

This is a reversible process which means that the summary can be turned back
into a tree. In order to allow easier handling of this often occurring structure,
summarisation and its reversal were implemented as part of the org.biomap.
mage.OntologyEntryHelper, which allowed for the compact encoding of presets
in the meditor forms (see below).

The FormField interface is very central to the implementation of the forms
component. It abstracts the minimum functionality that all components which
are part of a dynamic form should implement. The functionality includes methods
for getting and setting the displayed value of the field, and for checking whether
a field has been edited (so that the FormDataTree is kept up to date). The value
of a FormField is of type Object: any Java object can be returned or passed to
a FormField. This has the disadvantage of bypassing the strict type checking
provided by Java, but is necessary due to the diversity of objects that can be
handled by the various components that implement the FormField interface. The
type checking is partly covered by the canHandleType () method of the interface,
which can be used for type checking before setting the value, but this does not
enforce type checking, it merely provides a mechanism to achieve it.

As discussed previously, in order to allow the effective use of forms, a sub-



system of presets has been implemented. This is implemented by two classes
that hold the preset information. The FormDataPreset class holds the path that
corresponds to the value of the preset and points to the FormDataBranch that
acts as the root of the preset. It is necessary to express the value of the pre-
set as slash-delimited path (similar to a filesystem path) in order to cover cases
where the preset has to describe an option of a hierarchical menu. Of source,
the simplest case of the preset ‘path’ contains only one level, and this is the case
where the preset describes the value of a simple text field or combo-box. It is
worth noting that the idea of a preset value represented as a path is analogous to
the idea of summaries for ontology entries and in fact the two functionalities are
indirectly related. That is, a FormDataPreset can cause a value to be selected in
a hierarchical menu (MEMenuButton), which in turn will cause the corresponding
FormDataLeaf to obtain the value equal to the path representation of the preset,
which later will be converted to a number of linked instances of OntologyEntry
in the corresponding MAGEStk object.

Each instance of FormDataPreset covers one field of the form, so preset val-
ues for a part of the form including multiple fields are grouped together by the
FormDataPresetGroup. This class corresponds to the concept of ‘preset’ in the
eyes of the user, so it holds the name of the whole preset and information on the
user that defined the preset.

B.5.2 Implementation details of diagrams and the study design
dialog

The library JGraph and standard Swing components were used for the imple-
mentation of the study design dialog. The MAGEStk classes were not used for
the back-end, due to the difficulties posed by the highly normalised nature of the
MAGE model. This proves problematic when having to handle a large number
of objects because of the complexity of the relationships between them. In or-
der to simplify the problem of study design representation, a set of classes was
designed, all in the org.biomap.meditor.gui.studyDesign.abstraction. The
classes and the relationships between them are presented in Figure 2.10. This
abstraction model follows the graphical presentation of the study design dialog,
but at the same time it is possible to be mapped to the corresponding MAGE
classes. In fact, the model does make direct use of some MAGE classes (shown
in blue in the UML diagram).



The study design abstraction classes provide some important functionality
that contributes both to the graphical part of meditor and to the logic of handling
the annotations. Most classes in the package implement the CanBeTestedFor-
Completeness for completeness interface. This interface provides a single method
that tests whether the annotations contained in an instance are complete or not.
This essentially is the implementation of the MIAME guidelines within meditor.
Completeness tests can be performed on instances that hold a small part of the
experiment annotations (e.g. on a ScanningEvent) and thus be used to provide
the user with visual feedback concerning which part of the annotations is missing.
Instances of classes that encompass a larger part of (or all) the annotations, like
StudyDesign can also be tested for completeness in order to decide whether a
study will be allowed to be exported as MAGE-ML or to be forwarded to a central
repository.

In order to assist the users with the annotation of their experiments, a lot
of classes implement the related CanExplainIncompleteness interface. This
interface provides functionality for natural language feedback on all the reasons
for the incompleteness of an annotational instance, which is used to produce a
list of missing annotations when the user moves the mouse over the various boxes
of the study design dialog.

It is worth noting that the concept of incompleteness in this context extends
to missing logical gaps in the annotations. For example, a StudyHybridization
that has not been associated to at least one Preparation instance, will be con-

sidered as incomplete despite containing otherwise complete annotations.



input : MGED ontology class name className, FormCustomiser instance (©)
fc, OntologyHelper instance oh
output: FormBuilderResult instance

1 if className not recognised by oh ® then

|_ return null;

classInfo — class information from oh ®;

4 if classinfo has subclasses or classinfo has no properties ® then

l_ return null;

ccc « current containing Class ®; /* The fully qualified name of the
ontology class is used to derive the MAGEStk class which is going to
be populated */

7 fdtree «— new FormDataTree;
8 add FormDataBranch root to fdtree;

10
11
12
13
14
15

16
17
18
19

20
21

22
23

call buildFormForClassWithProperties(root) (see algorithm 2) ; // initiate
the form generating cascade

/* Create a java field name — list of FormDataTree nodes hashmap */
new fieldNamelndex HashMap;
foreach field node of generated FormDataTree do

get name of ancestral node that corresponds to MAGE class field;

convert node name to MAGE class field name;

javaFieldName < use (© fc to filter derived name;

add javaFieldName to list in fieldNamelndex() javaFieldName();

/* Create PrivateCollectionFields and assign them to the nodes */
foreach javaFieldName in fieldNamelndex do

nodeList « fieldNamelndex() javaFieldName();

if list nodeList has more than 1 element then

field — PrivateCollectionField ; // field contains multiple
ontology entries

else

|_ field — PrivateField; // field contains single ontology entry

foreach node in nodeList do

I_ assign field to node;

Algorithm 1: The initial stages of generating a form from the MGED ontology
using the FormBuilder class, and the postprocessing of the nodes of the gener-

ated FormDataTree. The (©) symbol signifies points where the FormCustomiser

is being consulted and ® indicates use of OntologyHelper. Also see algorithm

1

and Figure B.1.



input : MGED ontology class name className, FormCustomiser instance (©
fc, OntologyHelper instance oh
output: FormBuilderResult instance

1 foreach property of classinfo @ do
new FormDataBranch,;
add FormDataBranch to branch;
if property has a filler ® then

' derive a label from filler name;
else

N ovs N

I_ derive a label from property name;

use © fc to filter children of branch;
new JPanel (or FormWidePanel) based on recommendations of (©) fc

o

concerning: horizontal/vertical arrangement, panel expandability and whether
presets are allowed;

10 foreach child of branch do

11 get property information of child ®;

12 pass label of child to (© fc for potential customisation;

13 if property is an enumeration or property is class with instances ® then

14 new FormDatalLeaf;

15 add FormDataLeaf to branch;

16 use (© fc to filter possible enumeration values;

17 new MEComboBox;

18 add MEComboBox to panel;

19 else if property has an abstract class as a filler ® then

20 if ask © fc whether a menu should be used then

21 ® create MEMenuButton for abstract class by recursively visiting
its children (buildMEMenuButtonForAbstractClass());

22 add result to panel;

23 else

24 create JPanel for abstract class (buildFormForAbstractClass());

25 L add result to panel;

26 add produced component to panel;

27 else if property has a class with properties as a filler ® then

28 ® call buildFormForClassWithProperties on filler class;

29 add result to panel;

30 else if property’s filler is of type Thing ® then

31 new FormDataLeaf;

32 add FormDataLeaf to branch;

33 new METextField;

34 add METextField to panel;

Algorithm 2: The buildFormForClassWithProperties method of the
FormBuilder class, used to generate the form GUI from the MGED ontology.
The (© symbol signifies points where the FormCustomiser is being consulted.
The ® symbol indicates points of recursion (direct and indirect) and ® indi-

cates use of OntologyHelper. Also see algorithm 1 and Figure B.1.



Appendix C

Class definitions for the
formalisation of gene

expression clustering validation

This appendix contains detailed definitions of the classes of the object model
presented in Chapter 3 and more specifically in the UML diagram of Figure 3.1.
The names of abstract classes are shown in italics:

Algorithm An algorithm which is used to derive Evidence.

Evidence Any piece of evidence used for the validation of gene expression clus-
ters.

EvidenceDerivation Any analytical or other processing of Evidence for the
purpose of producing further Evidence. Instances of this class can also
be used to express processes that combine two sources of evidence. The
attributes of this class include a free-text name, description and biblio-

graphical reference, and also a list of parameters as a hash-map.

EvidenceMatriz Any Evidence expressed in the form of a matrix, usually de-
rived from the primary Reporterdnnotations. The URI attribute should
point to the file representing the matrix contents.

Filtering An Algorithm which results in filtering or selection of part of the

Fvidence .
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GeneOntology Class representing a specific version of the Gene Ontology.

GOAnnotations A set of Gene Ontology annotations applied to the genes or pro-
teins of a specific organism, as provided by the relevant organisation, and us-

ing a specific version of the Gene Ontology (modelled in the GeneOntology
class.

GOSemanticMatrix An EvidenceMatriz that represents the semantic similarity
or semantic distance between Gene Ontology terms, depending on which
SemanticSimilarityMeasure was used to derive the matrix. The matrix
can express distance or similarity (or none of the two) and it can contain

continuous or binary values.

Homogeneity A QualityMeasure that measures the internal coherence of a clus-
ter or clustering arrangement. Defined in Section 4.2.2.

HS A QualityMeasure that is defined as homogeneity divided by separation.
Defined in Section 4.2.2.

Jiang The Jiang semantic similarity metric. See Section 4.2.3.
Lin The Lin semantic similarity metric. See Section 4.2.3.

Mapping An Algorithm which maps two or more instances of Evidence to each

other, and discovers the connections between them.
MatrixOperation A simple mathematical matrix operation applied to an
EvidenceMatriz in order to derive another matrix.

Node A gene expression cluster. In the case of hierarchical clustering, it may
contain other clusters.

NodeLevel A set of gene expression clusters (Nodes) corresponding to the clus-
tering arrangement that is derived by partitioning a hierarchical clustering
at particular level.

PPInteractionMatrix From “Protein-protein interaction matrix”. A binary

EvidenceMatriz which indicates interactions between proteins.

QualityMeasure A measure which uses pre-existing evidence (see Evidence

class) to evaluate the quality of gene expression clusters (see Nodes or
NodeLevel classes).



QualityMeasureApplication A particular instance of application of a Quality-
Measure for the derivation of a QualityValue for a particular clustering
Node or NodeLevel. This class is necessary to allow the users to describe
the case where the same QualityMeasure is being applied to a number
of Nodes or NodeLevels and the case where the same QualityMeasure is
applied using different Evidence in each occasion.

QualityValue The valueof a QualityMeasure for a particular Node or NodeLevel,
as applied in the context of the particular QualityMeasureApplication.

ReporterAnnotations Any annotation that provides information on the gene
expression reporters of the microarray. This class should be used mainly

to describe primary evidence that are already available at the beginning of
the analysis.

Resnik The Resnik semantic similarity metric. See Section 4.2.3.

Separation A QualityMeasure that measures the how separated a cluster is
from the rest of the clusters in a clustering arrangement. Can also be

applied to a clustering arrangement. Defined in Section 4.2.2.

StatisticalDerivation An statistical 41gorithm which is applied to Evidence.



Appendix D

Clustering analysis

implementation details

D.1 Implementation overview

Different technologies were used in the analysis of B-cell data. In every occasion
the path of least resistance was chosen, by always using the technology that
would provide the required part of the analysis most readily and with the least
effort. This led to the use of a range of technologies which include the Perl
programming language as a general connecting language, the R statistics package,
various GNU command line tools (grep, awk, sort, uniq, wc) for simple tasks,
and the Python programming language in conjunction with the PyX library for
plotting and visualisation. Also, bash shell scripting and command line one-liners

were used for simpler tasks.

D.2 H/S implementation details

The calculation of clustering homogeneity and separation is implemented in the
overall hs2.pl Perl script. The parameters of this script are a distance matrix
and a clustering arrangement. The distance matrix has to conform to what was
defined as a ‘trilist’—a flattened matrix format which uses the tab character as
the delimiter of three columns: the first two identifying a cell of the matrix and
the third containing the actual value of the cell. Cells without a value can be
omitted completely. So a fragment from a hypothetical trilist matrix file would
look like the following:

228



proteinl (TAB) protein2 (TAB) 5
proteinl (TAB) protein3 (TAB) 2.2
proteinl (TAB) proteind (TAB) 6.4

The clustering arrangement should be described as a two-column tab delim-
ited file, the fist column containing the identifier of the cluster member (in this
case protein identifiers) and the second column containing the identifier of the
cluster the member belongs to (in our case integer identifiers).

Optionally, the user can pass a valid Perl expression to the script from the
command line, which is going to be used for transforming the values found in the
distance matrix file after it is loaded into memory. The expression is applied to
each individual value, and the value itself can be referred to in the expression as
$v.

The script appends the calculated H, S and @ values to the requested output
file.

The per-cluster homogeneity and separation values are calculated by the
cluster_hs.pl Perl script which accepts the same parameters as overall hs2.pl
(see page 228), but the output differs in that it contains H, S and H/S values

for each individual cluster.

D.3 GO semantic similarity measure implementation
details

All three GO semantic similarity measures have been implemented in the go_sim.pl
Perl script. The main parameters of the script are a file containing occurrence
counts of terms and a file describing the structure of the ontology. The counts
file must be a tab delimited file with two columns, one containing the identifier
of the GO term, and the other containing the occurrence count of the term, like
below:

GO:0000001 (TAB) 25
G0:0000046 (TAB) 3



Note that the contents of this file reflect the counts of occurrence in the body
of annotated proteins—the counts that result from parent—child relationships in
the ontology are calculated by the script. The ontology structure file has to
conform to the OBO file format, described at http://www.geneontology.org/
GO.format.shtml. Without any extra parameters the script will perform an
all-against-all comparison for each of the three sub-ontologies, but it is possible
to request comparisons only between specific pairs of terms. The all-against-all
comparison takes 18 hours on an Athlon XP 1800+ machine with 512MB of RAM.
Consequently, that particular part of the pipeline would be a good candidate for

optimisation.

D.3.1 Visualisation of results

In a lot of cases the visualisation of the results was possible in a straightforward
manner, by using the plotting abilities of the R statistical package. There were
some cases however that required specialised graphs achievable through the use
of the PyX plotting and graphing library.

PyX is a library of the Python programming language and it allows the com-
bination of sophisticated plots with complicated diagrams and other graphics.
Also, it allows the use of KTEX for any typesetting needs, including typeset-
ting of mathematical text. Finally, because it is used from within the Python
programming language, it allows easy automation for production of graphs in
bulk.

The comparative histogram plots appearing in Section 4.2.3.1 were also pro-
duced using PyX scripting. The relevant script (multi hist.py) decides on the
amount and size of bins which are then fine-tuned to the nearest power of 2, in
order to make the bin stops more readable. The calculation of the bins takes all
the passed datasets into account, and then the histograms are plotted.

Finally, the loss of coverage plot (Figure 4.18) which is discussed in Section
4.2.4.4 was produced by a PyX Python script (trans_graph.py). This script was
written in such a way so that its input file contains the numbers for the various
steps of the mapping process, their labels and the text describing the intermediate
steps. The plotting of the bar graph and the positioning of text are automatically

handled by the script. The benefit in this case is not in producing a large amount



of similar graphs (only one is included here), but rather the production of the
same graph again and again during development: it is a relatively trivial task
to automatically extract the trans_graph.py input file from the intermediate
files produced by the mapping process, so the loss of coverage graph serves as an
effective way to assess the impact of refinements and improvements made to the

mapping process.

D.4 Full list of programmes

All the programmes used in the analysis are listed here as an implementation

reference:

count_clustering_singletons.pl Reads in a clustering file and counts the num-
ber of clusters with only one member. The results are appended to the
specified output file.

fasta2columns.pl Reads in a fasta file and produces a tab delimited file where
the first column is the sequence identifier and the second column is the

sequence itself. Necessary for the yeast cell cycle dataset analysis.

fetch_unigene_u.pl Reads in a series of genbank IDs and, using the NCBI ‘web-
services’, it maps each GenBank ID to a protein uniprot ID. If no direct
link is possible, it is attempted to establish one using UniGene.

fetch2mapu.pl Reads a file of the ‘fetch’ format, and queries BioMap to find the
UniProt IDs that correnspond to the MD5 digests of the input sequences,
outputing the result to a ‘map-u’ format file.

filter_go_level.pl Given an matrix and the Gene Ontology, it excludes the pairs
of the trilist that contain terms above a certain level (the level can be
defined). The level has to be equal to or greater than 1. For example, a
level of 1 means that the terms directly descended from the root are flitered

out.

go_subset_level occurrence.pl Calculates the distribution of terms in different
levels of the GO hierarchy, given a file containing a subset of terms of the
ontology. If the term is found in more than one levels, the average level is
reported. If a term is mentioned more than once in the file, the particular

level is reported more than once.



go_term_avg_dist_level.pl This script takes a number of GO-GO distance ma-
trices (trilists) and for each of them it calculates the average distance of
each term to all the other terms. It also prints the average level of the term
in the GO hierarchy. The purpose of this is to see if the various metrics in-
troduce any depth-dependent bias. It’s optimised for memory consumption,
so it can handle the whole of GO.

goa_level_occurrence.pl Calculates the distribution of terms in different levels
of the GO hierarchy, all the GOA annotations. If the term is found in more
than one levels, the average level is reported. If a term is mentioned more
than once in the file, the particular level is reported more than once. The
results are split into 3 seperate files according to the which aspect of the

ontology the term belongs to.

mapu2mapu-go.pl Uses the database-stored GOA file to add GO terms to a
‘mapu’ file based on the GenBank ID. The resulting file is of the ‘mapu-go’

file formar.

extract_submatrix.pl Given an associative matrix in the trilist format and a
collection of keys, it extracts the submatrix resulting from all the possible
combinations of the provided keys.

go_matrix2gene_matrix.pl Uses the GenBank ID — GO term mapping given
in a file of ‘mapu-go’ format and a GO terms similarity matrix, to produce
a gene similarity matrix. Note that it is possible to have multiple similarity
values for a particular pair of genes, because of multiple GO terms being

attached to the same gene. All possible similarity values are reported.

go_sim.pl The script used to calculate semantic similarity between Gene Ontol-
ogy terms, using the Resnik, Lin and Jiang metrics.

gene_matrix_max filter.pl More memory- and performance-efficient variant of
the gene_matrix_minmax filter.pl script. It only performs maximum value

filtering. Necessary for the yeast cell cycle dataset analysis.

gene_matrix_minmax_filter.pl Looks at a gene similarity/distance matrix and
for each particular pair of genes it selects the minimum or maximum possible
similarity value (depending on the command line options). The result is

output as a matrix in trilist format.



gene_matrix_avg_filter.pl Looks at a gene similarity/distance matrix and for
each particular pair of genes it calculates the average similarity value (if
more that one values are present). The result is output as a matrix in

trilist format.

overall_hs2.pl Calculates the overall homogeneity and separation values of a
clustering, given a distance matrix. The results are appended to a text file
(the H/S value is also calculated).

cluster_hs.pl Given a clustering and a distance matrix, it calculates the homo-
geneity and separation values for each individual cluster. The results are
appended to a text file. Optionally, the raw distances (without identifiers)
of mates and non-mates can be exported to separate files.

multi_hist.py Reads multiple sets of values, and plots overlapping histograms
(on the same graph) for all the sets. The calculation of histogram bins and

the occurrence of values are handled by the script.

cluster_mates_dist.pl Given a clustering and a distance matrix, it produces
multiple files, each containing the mates distances for each cluster in the

clustering.

step_graph.pl Given a clustering and a number of distance matrices, it produces
a step function plot for each combination of cluster/distance matrix, and
saves them all as EPS diagrams. The produced graphs can then be arranged
in a IXTEXtable using the step_graph_page.pl script.



