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Abstract

The epidemic of obesity has led to increased interest in its role in the 

pathogenesis of cardiometabolic disease. Adipose tissue, formerly regarded as 

purely an energy storage site, is now regarded as an important endocrine organ. It 

produces various peptide hormones, including the adipocytokines which are 

implicated in metabolic control and disease. Whilst some adipocytokines may 

contribute to the development of cardiovascular disease, others e.g. adiponectin, 

may protect against it.

The recently identified ligand for the G protein coupled receptor APJ, apelin, is a 

unique vasoactive adipocytokine. Both apelin and APJ mRNA are highly 

expressed in the cardiovascular system. Apelin has been found to modulate 

cardiovascular function, fluid homeostasis and inflammation. To date, however, 

apelin has not been investigated in the context of ischemia-reperfusion and its 

benefits in this clinical setting are not yet established.

APJ/apelin activates the cell survival cascades Akt/PKB and ERK-1/2 which are 

associated with the pro-survival Reperfusion Injury Salvage Kinase (RISK) 

pathway. Apelin also promotes mitogenesis, a feature commonly exhibited by 

cardioprotective agents. We, therefore, hypothesised that apelin may protect the 

heart via the RISK pathway in an ischemia/reperfusion (MR) model. We 

investigated if apelin has potential as a cardioprotective agent employing murine 

models of ischemia-reperfusion injury and rat cardiomyocytes, in which 

mitochondrial permeability transition pore (mPTP) opening was examined. Apelin- 

13 was found to produce a concentration-dependent decrease in infarct size with 

a maximal effect being observed at 1000nM. The physiologically less active 

peptide, apelin-36, also reduced infarct size but to lesser extents than seen with 

the shorter isoform. LY294002 and U0126, inhibitors of the PI3K-Akt, p44/42, 

abolished the effects of apelin-13. Further evidence for the involvement of these 

pathways in the cardioprotective actions of apelin was obtained on Western blot 

analysis. Apelin-13 delayed mPTP opening which was blocked by LY294002 and
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MEK inhibitor 1, an alternative inhibitor of p44/42. This is the first study to 

demonstrate that apelin has a direct cardioprotective action involving the PI3K- 

Akt, and p44/42 signalling pathways.
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1 INTRODUCTION

1.1 Ischaemic Heart Disease

Cardiovascular disease is the main cause of death in the United Kingdom, accounting 

for just over 216,000 deaths in 2004; 4 out of every 10 deaths. There are approximately 

87,000 myocardial infarctions a year in the UK. Data from the Oxford Myocardial 

Infarction Incidence Study (OXMIS; Volmink et al. 1998) shows that of those that die 

within 28 days of myocardial infarction, three quarters die within the first 24 hours. 

Methods to restore blood flow to ischaemic areas and protect the myocardium are vital if 

we are to prevent further damage and improve survival.

Myocardial infarction is part of the acute coronary syndrome, which describes the 

spectrum of clinical manifestations that result from coronary thrombosis (Fox et al. 

2004). The word infarction comes from the Latin infarcire meaning "to plug up, to stuff" 

or "to cram" and refers to the clogging, or plugging, of the artery. Myocardial infarction 

during a “heart attack” can be a pathophysiological process in which an atheromatous 

plaque becomes eroded or ruptures. This activates a chain of events which culminates 

in intraluminal thrombosis, causing partial or complete obstruction of the vessel (see 

Figure 1.1)

The clinical manifestations of the acute coronary syndrome caused by partial or 

complete occlusion can range from transmural myocardial infarction, in which the 

necrotic area includes the entire thickness of the ventricular wall, through to smaller 

subendocardial myocardial infarction and unstable angina, where the platelet thrombi 

form and then break up. This instability is usually the prelude to acute myocardial 

infarction, and indicates that therapy needs to be instigated urgently to avoid further 

progression.
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Figure 1-1 The Atherosclerotic process

Atherosclerosis is an inflammatory response to endothelial dysfunction. Primary risk factors lead to 

endothelial dysfunction and the formation of an atherosclerotic plaque. Endothelial permeability leads to 

infiltration of inflammatory cytokines and harmful low density lipoprotein (LDL) cholesterol. With time the 

plaque grows, fat and other inflammatory products accumulate until stress on the weak calcium cap leads 

to its rupture. This ultimately leads to luminal occlusion and ischaemia i.e. myocardial or cerebral 

infarction.

The severity of the clinical manifestation is dependent on the severity of the ischaemia 

and the amount of myocardium affected. Partial occlusion may lead to ischaemia without 

cell death, whereas complete occlusion will lead to extensive myocyte necrosis if not 

treated promptly. The lack of blood flow to the myocardium leads to dysfunction of 

normal oxidative metabolism, ending in the eventual death of the myocyte.

The magnitude of the myocardial infarction or more specifically the number of dead 

cardiomyocytes is a vital factor in determining outcome and long-term myocardial 

function (Takemura & Fujiwara 2004). Loss of cardiomyocytes during either the acute or 

chronic stage of myocardial infarction directly contributes to contractile dysfunction. The
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ultimate size of an acute infarct, which can be determined within several hours of its 

onset (Reimer et al. 1993), is the most critical determinant of subsequent heart failure. 

Large myocardial infarctions lead to severe chronic heart failure due to unfavourable 

remodelling of the left ventricle that is characterized by ventricular dilation and reduced 

cardiac performance (Pfeffer et al. 1995). The survival of the cardiomyocyte is therefore 

the key factor in reducing mortality and morbidity after myocardial infarction. The time 

frame for irreversible damage is highly variable. In experimental models of myocardial 

infarction cell death begins after 15-40 minutes of total ischaemia (Reimer et al. 1977), 

(Connelly et al. 1982). In the presence of collateral flow and low oxygen requirement, 

however, the point of irreversibility can be extended for some hours (Schaper et al. 

1987). A key question therefore is when does cell injury become irreversible? Then 

having identified this point the question to be asked is can the pathological changes 

occurring at this time be modulated so as to prevent further cell death?

1.2 Cardiac Protection

Research into the mechanisms of cell death has led to novel strategies to promote cell 

survival and reduce further necrosis (Gill et al. 2002). The time at which these 

interventions may be used, has a major influence on its extrapolation to the clinical 

setting. Therapies which can be given prior to ischaemia have the benefit of acting 

before serious damage has occurred, promoting protection and reducing the amount of 

cell death.

One of the most powerful protective treatments of this type is preconditioning (Murry et 

al. 1986). Preconditioning involves subjecting the heart to brief periods of sub-lethal 

ischaemia, rendering it more resistant to a subsequent period of lethal ischaemia 

(Sanada et al. 2004). First demonstrated in a canine model, two cycles of five minutes 

coronary occlusion with five minutes reperfusion, followed by a 40 minute sustained 

occlusion and subsequent reperfusion, resulted in smaller infarcts, equivalent to 25% of 

the infarct size obtained in the control group (Murry et al. 1986). It was shown that the 

reduction in infarct size was retained after four days of reperfusion. The caveat to this is 

that in the clinical setting prior knowledge of the exact time at which ischaemia will occur
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is not possible (i.e. knowing when someone is going to have a myocardial infarction) and 

therefore the benefit of pre-treatment is lost. Therapies which are given at the time of 

ischaemia are more likely to have a practical role in clinical medicine. This has led to the 

development of treatments which can be given after the ischaemic insult in order to 

reduce further cell death and promote cell survival.

This transition from ischaemia to reperfusion is an important time point with respect to 

cell survival. Cells which are in the ischaemic region start to swell, leading to membrane 

rupture and induction of the inflammatory response. The restoration of blood flow 

(reperfusion) following ischaemia is the ultimate goal in treating ischaemic tissue. 

Prompt revascularisation of ischaemic tissue reduces the total infarction (Reimer et al. 

1977), and improves morbidity and mortality (GUSTO 1993). Paradoxically, however, 

this process may lead to more deleterious effects, such as haemorrhagic infarction, as 

irreversibly damaged myocytes are torn apart, releasing injurious inflammatory 

cytokines. It has therefore been concluded that the development of strategies to reduce 

this so called “lethal reperfusion injury” is of vital importance.

1.3 Mechanisms of Injury

1.3.1 Ischaemic Injury

The mechanisms whereby ischaemia leads to infarction and cell death are complex. 

During the initial stages of ischaemia there is a rapid transformation in the metabolism of 

the heart in order that it may survive the ischaemic insult. The initiation of anaerobic 

glycolysis and an increase in glucose transport helps to maintain the intracellular levels 

of ATP (Young et al. 1997). As ischaemia progresses contractile function decreases; 

this is an adaptive mechanism to reduce oxygen demand and conserve the under 

perfused myocardium (Vandenberg et al. 1993).

4



1.3.1.1 Necrosis

Lack of oxygen leads to depressed mitochondrial metabolism which results in decreased 

production of ATP and the accumulation of fatty acid metabolites. As these metabolites 

increase various aspects of membrane function start to fail. Anaerobic metabolism 

causes the accumulation of lactate and CO2 (Cross et al. 1995, Guth et al. 1987) leading 

to a fall in pH and intracellular acidosis. To compensate for the increase in H \ the 

Na+/H+ exchange pump is activated leading to increased cytosolic Na+ (Klein et al.

2000). Inhibition of the Na+ K+ -  ATPase pump as a result of the depletion of intracellular 

ATP during ischaemia then leads to the activation of the Na+/Ca2+ exchanger, but in 

reverse mode (Cross et al 1995). This leads to reduced intracellular Na+ at the expense 

of an increase in intracellular and mitochondrial Ca2+. The rise in calcium causes 

damage to contractile proteins as it overstimulates actin-myosin contractile components. 

Myocardial hypercontracture ensues, causing membrane destruction, swelling of the cell 

and eventual rupture (Barry et al. 1987). This type of cell death, necrosis, was previously 

regarded as the only mode of cell death. However, it is now thought that there are other 

modes of cell death each contributing to eventual cardiomyocyte death.

1.3.1.2 Apoptosis

Apoptosis (from the Greek words apo = from and ptosis = falling) is thought to be a 

second mode of cell death and involves cellular self-destruction to facilitate the 

controlled removal of cells; programmed cell death (Walker et al. 1988). In contrast to 

necrosis, which is a form of cell death that results from acute cellular injury i.e. non

programmed cell death in which, the energy deprived cells literally explode, apoptosis is 

carried out in a systematic, controlled fashion that generally confers advantages during 

an organism's life cycle. The apoptotic process facilitates the safe dismantling of the cell 

and occurs without inflammation and scar formation (Chowdhury et al. 2006). It is 

associated with cell shrinkage, intracellular degradation of its contents and activation of 

phagocytosis by neighbouring cells (Nadal-Ginard et al. 2003). The "decision" for 

apoptosis can come from the cell itself, from its surrounding tissue or from a cell that is 

part of the immune system. The process of apoptosis is a complex cascade of signalling 

and enzymatic regulation (Chowdhury et al. 2006). This regulation allows apoptotic
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signals to either culminate in cell death, or be aborted should the cell no longer need to 

die. A major difference between apoptosis and necrosis is that apoptosis is an energy 

dependent process (Chiarugi et al. 2006). Apoptosis requires ATP whereas necrosis can 

occur without it. Particular interest in the role of apoptosis in ischaemia-reperfusion 

injury has come from observations made with cardio-protective agents which act on 

regulatory apoptotic pathways. Thus inhibition of apoptotic pathways could prevent 

further cell death and hopefully improve survival (Haunstetter et al. 2000).

1.3.1.3 Autophagy

Autophagy (the term is derived from ancient Greek and means to 'eat oneself) is a 

catabolic process involving the degradation of a cell's own components through the 

lysosomal machinery. It is characterised by the accumulation of autophagic vacuoles 

within the dying cell. These vacuoles, or autophagosomes, are double-membrane 

enclosed vesicles that direct the dismantling of cytoplasmic components, protein 

aggregates and expired intracellular organelles via lysosomal action (Clark PG 1990). It 

has been proposed that autophagy, resulting in the total destruction of the cell, 

represents another form of programmed cell death, although conclusive evidence for 

such a process has yet to be obtained (Tsujimoto Y, Shimizu S 2005). Nevertheless, 

cells possessing autophagic features have been reported to occur in areas undergoing 

programmed cell death leading to the coining of the term autophagic cell death (also 

known as cytoplasmic cell death or type II cell death) (Tsujimoto Y, Shimizu S 2005) . 

This process, in which cells undergo partial autodigestion prolong cell survival for a short 

time under starvation. Hence, this survival mechanism may result in the generation of 

nutrients that are necessary for maintaining cell viability (Tsujimoto Y, Shimizu S 2005). 

The investigation of autophagic death is still in its infancy and the development of 

specific methods for examining autophagic death in more detail, will aid in the further 

characterisation of cell death under physiological and pathological conditions.
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1.3.2 Reperfusion

Reperfusion of ischaemic myocardium in the patient can be achieved by various means. 

Thrombolytic agents, such as streptokinase or tissue plasminogen activator, may be 

employed to lyse the coronary thrombosis (GUSTO 1993). Alternatively, mechanical 

procedures can be employed to bring about reperfusion such as angioplasty or coronary 

bypass surgery. These techniques are now felt to be superior to thrombolysis (Keeley, 

Boura, & Grines 2003) and, consequently their use, especially in the form of primary 

angioplasty, is growing. Complete reperfusion of the ischaemic area is the ultimate goal 

of all methods, but it is not without its complications.

1.3.2.1 Reperfusion injury

Reperfusion, for example can lead to arrhythmias, stunning, microvascular damage and 

further cell death (Bolli et al. 1999, Brooks et al. 1995, Meissner et al. 1995). The re

supply of oxygen and metabolites to ischaemic tissue leads to a sudden revivification. 

Reoxygenation of mitochondria leads to recovery of oxidative energy production, which, 

in turn, can lead to the development of reactive oxygen species (ROS). The oxygen 

radicals are generated by injured myocytes and endothelial cells in the ischaemic zone, 

and become activated on reperfusion (Kloner et al. 2001, Hearse et al. 1975). ROS 

exacerbate membrane damage which leads to calcium loading (Zeitz et al. 2002). The 

accumulation of neutrophils in the microcirculation causes the release of inflammatory 

mediators which contribute to microvascular obstruction (Maxwell et al. 1997, Park et al. 

1999, Ross et al. 1999). This paradoxical situation in which the need to reperfuse 

ischaemic tissue in order to avoid further cell damage, and the syndrome of reperfusion 

injury (Fliss et al. 1996) has led to a considerable amount of research into methods to 

prevent the further damage associated with reperfusion (Jonassen et al. 2001).

Defining lethal reperfusion injury as a separate entity has been controversial. Some 

authors suggest that the damage that occurs during reperfusion is a magnification of the 

cellular disruption that has occurred during the ischaemic period (Zhao et al. 2000). To 

counter this argument, the fact that agents given at the time of reperfusion can protect 

the myocardium and reduce infarct size (Lipsic et al. 2006, Forman et al. 2006) suggests
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that this is a real phenomenon. Taken further, during this time of myocardial instability, 

an agent which could be given to protect the heart and reduce infarct size would have 

far reaching benefits for survival.

1.4 Cellular mechanisms of ischaemia-reperfusion injury (l/R)

The details relating to cellular damage during ischaemia and reperfusion have been well 

documented (Opie 2004). The mechanisms underlying cellular protection are also well 

described in the current literature and are fundamental to the exploration of new 

treatments (Chen Q. et al. 2007, Garcia-Dorado et al. 2006, Toledo-Pereyra et al. 2004). 

In order to understand the cellular mechanisms involved in ischaemia-reperfusion (l/R) 

injury and cardiac protection, particular attention needs to be focused on the complex 

cell signalling mechanisms associated with these processes (Hausenloy et al. 2006). 

This is because during l/R the cell can follow one of two paths, one leading to cell death 

whilst the other leads to survival.

1.4.1 Cell death

As discussed above cell death involves two principal components necrosis and

apoptosis (Gottlieb & Engler 1999). The former being a non-regulated mechanism

whereby cells are destroyed, whilst the latter is a programmed genetically-determined 

process (Chowdhury et al. 2006). The mitochondria are critically important in

determining cell death and survival. It is their failure to produce ATP and maintain

electrochemical equilibrium that ultimately leads to cell death. The mitochondria are, 

therefore, a crucial regulator of cell survival and death. Further discussion is therefore 

warranted to expand on the key role mitochondria play in cell death and their potential 

role in cell survival.

1.4.1.1 The role of mitochondria in cell death

Under normal conditions the primary function of the mitochondria in the myocardium is 

to provide ATP, through oxidative phosphorylation, to meet the energy demands of the 

beating heart (Mcfalls et al. 2003, Opie 2004 Chapter 3). This production is critical even 

in the resting state; any disruption to this balance, in the form of anoxia or ischaemia has 

an immediate effect on the ability of the heart to function (Rauch et al. 1994). This



critical role in energy production is not the only function that the mitochondria play with 

respect to cardiomyocyte function as within there organelles are also contained the 

apparatus to induce apoptotic and necrotic cell death. After prolonged myocardial 

ischaemia, a critical depletion of energy leads to the loss of ionic homeostasis with cell 

swelling, rupture, and necrotic death (Opie 2004). Over the past decade a distinctly 

different process of myocyte death has been observed that is programmed by stress- 

induced events within the mitochondria, apoptosis.

The precise molecular mechanisms that underlie apoptosis are under intense 

investigation. The process of apoptosis is controlled by a diverse range of cell signals 

that may arise either extracellularly (extrinsic pathway) or intracellularly (intrinsic 

pathway). Extracellular signals may include toxins, hormones, growth factors, nitric 

oxide or cytokines, and therefore must either cross the plasma membrane or be 

transduced to effect a response (Chowdhury et al 2006). Intracellular apoptotic 

signalling is initiated by a cell in response to stress, and may, ultimately result in cell 

suicide. The binding of nuclear receptors by glucocorticoids, heat, radiation, nutrient 

deprivation, viral infection, hypoxia and increased intracellular calcium concentration 

(e.g. by membrane damage) are all factors that can lead to the release by damaged 

cells of intracellular apoptotic signals (Opie 2004).

Before the process of apoptotic cell death can be initiated by the appropriate enzymes, 

apoptotic signals must be transmitted to the death pathway by way of regulatory proteins 

(Chowdhury et al. 2006). This step allows apoptotic signals to either culminate in cell 

death, or be aborted should it no longer be necessary for the cell to die. The principal 

mechanism through which this regulation is achieved is by way of the mitochondrion.

An important concept in the initiation of necrosis or apoptosis is the opening of a non

specific pore within the inner membrane of the mitochondria, the mitochondrial 

permeability transition pore (mPTP; Hausenloy, 2003). The opening of the mPTP leads 

to the loss of pH and ionic integrity as the mitochondrial membrane becomes permeable 

to smaller molecules (Lemasters et al. 1998). This leads to swelling and uncoupling of
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oxidative phosphorylation (Hunter et al. 1976, Haworth et al. 1979). Consequently the 

mitochondria are unable to produce ATP as oxidative phosphorylation is uncoupled. If 

this process is left unchecked rupture of the outer mitochondrial membrane occurs 

followed by irreversible damage to the cell, and necrotic death (Halestrap 2006).
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1.4.1.2 Mitochondria and Apoptosis

The breakdown in mitochondrial membrane selectivity sets in motion a cascade of 

events, which eventually leads to the breakdown of cellular integrity. Mitochondrial 

rupture not only prevents any further ATP production but also releases apoptotic 

signalling proteins into the cytosol (Halestrap 2006). Mitochondria release various pro- 

apoptotic proteins including cytochrome c, apoptosis-inducing factor, second 

mitochondria-derived activator of caspases/direct inhibitors of apoptosis protein (IAP)- 

binding protein (Smac/Diablo), and procaspases (2,3,8, and 9). Once released into the 

cytosol through the outer membrane, these proteins activate a family of proteases that 

precipitate the structural changes that occur within apoptotic myocytes (McFalls et al. 

2003), and can ultimately lead to the death of the cell.

This change in mitochondrial membrane permeability, therefore, can lead to a situation 

in which cells die in both a necrotic and/or apoptotic manner. Whether the cell follows a 

necrotic or apoptotic route is thought to be dependent on the ability of the permeability 

transition pore to open and close (Halestrap et al. 2004). What determines mPTP 

opening and closing is an adequate supply of energy. Apoptosis is an ATP-dependent 

mechanism and if the mPTP does not close, the cell will progress towards necrotic cell 

death in order to maintain integrity. If, however, an ischaemic insult is followed by 

reperfusion and the mPTP is able to close, oxidative phosphorylation can re-couple and 

ATP levels are maintained, leading to a degree of apoptotic cell death (Halestrap 2006). 

This is evidenced by the apoptotic ring which is seen around a necrotic core of a 

coronary infarction (Crompton et al. 1999). The extent of mPTP opening, therefore, has 

a direct influence on cell survival. Too much mPTP opening and the cell will progress 

towards necrosis, too little and the cell will undergo apoptosis (Halestrap et al. 2004). 

Thus, if oxidative phosphorylation is re-coupled and ATP production reinitiated, recovery 

should therefore be possible.
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Figure 1-2 The effects of mPTP opening on ischaemic-reperfusion injury

Modulation of the mPTP consequently represents a key factor in attempting to protect the heart following 

myocardial infarction (taken from Halestrap 2006).

1.4.2 Cell survival

The pathways which promote cell survival and inhibit apoptosis have been extensively 

researched as potential mechanisms for inducing cellular protection around the period of 

ischaemia reperfusion (Hausenloy et al. 2004). As mentioned before one of the most 

potent cardioprotective treatments demonstrated is preconditioning (Murray et al. 1987), 

which is thought to act via pathways which promote cell survival (Hausenloy et al. 2006). 

Drugs given at reperfusion which reduce infarct size have been shown to stimulate 

growth factors which themselves act on downstream kinases to promote growth and
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inhibit apoptosis (prosurvival) (Baines et al. 1999, Bell et al. 2003, Yellon et al. 2005, 

Zhao et al. 2006, Xu et al. 2005). The stimulation of these survival kinases seems to be 

a common target for cardio-protective agents (Hausenloy et al. 2005).

1.4.2.1 Survival pathways

1.4.2.1.1 PI3-Kinase/AKT

The PI-3 Kinase/Akt pathway is an important mechanism involved in cell survival, and is 

activated in response to the stimulation of various growth receptors and G-protein 

coupled receptors (Downward 1998, Cross et al. 2000). The PI3K-Akt pathway acts to 

modulate various cellular pathways by phosphorylating substrates such as GLUT-4, 

GSK-3 and apoptotic proteins (BAD, BAX, and caspases). The activation of PI3 

kinase/Akt has been shown to occur during protection induced by pre-conditioning (Tong 

et al. 2000, Mocanu et al. 2002). Various substances are cardioprotective in the 

laboratory setting when added at reperfusion following lethal ischemia, including factors 

found endogenously in the body e.g. insulin (Jonassen et al. 2001), erythropoietin 

(Bullard et al. 2005) and glucagon-like peptide-1 (Bose et al. 2005). The protection 

afforded by these substances is mediated in a manner similar to that of pre- and post

conditioning, i.e. via the activation of PI3K-Akt (Hausenloy et al. 2004, Tsang et al. 2005, 

Yellon et al. 1999, Fujio et al 2000).

1.4.2.1.2 MAPK

The mitogen-activated protein (MAP) kinases are serine/threonine-specific kinases that 

respond to extracellular stimuli (mitogens) and regulate various cellular activities, such 

as gene expression, mitosis, differentiation, and cell survival/apoptosis (Pearson et al.

2001). To date, various distinct groups of MAPKs have been identified in mammalian 

cells: extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and 

p38. The ERK pathway when activated during ischaemia-reperfusion injury has, like 

PI3K-Akt, been shown to mediate cellular protection (Darling et al. 2005, Yue et al. 

2000, Shimizu et al. 1998, Hausenloy et al. 2005).
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There is, therefore, evidence for increased activity of both PI3-K/Akt and MAP kinases 

during ischaemia/reperfusion. Consequently these cell signalling pathways were 

examined in the present study as potential targets in reducing myocardial injury.

1.4.2.2 RISK

The potential involvement of various cell signalling pathways in promoting cell survival 

and anti-apoptotic mechanisms has led to research into agents which may stimulate 

these endogenous protective pathways. A unifying term has been coined to cover these 

cell signalling mechanisms involved in tissue protection i.e. the Reperfusion Injury 

Salvage Kinase (RISK) pathway (Hausenloy & Yellon 2004). Two signalling cascades 

namely, P44/42 mitogen activated protein (MAP) kinase (also known as ERK) and 

phosphatidylinositol 3-kinase (PI3K-Akt) appear to be particularly important with respect 

to the RISK pathway.

The protection afforded by activation of the RISK pathway, involves anti-apoptotic 

mechanisms that induce cellular protection. The precise mechanisms, by which the 

components of the RISK pathway perform their anti-apoptotic effects, are, however, not 

fully elucidated, although a number of components involved in the mediation of 

protection have been identified. For example, Akt phosphorylates the Bcl-2-associated 

death promoter (BAD), which when unphosphorylated, holds one or more death- 

inhibitory proteins in an inactive state (Datta et al., 1997). Once phosphorylated BAD 

releases the inhibitory proteins, which can block apoptosis, thereby promoting cell 

survival. Subsequently BAD binds to a ubiquitous cytosolic protein called 14-3-3, 

preventing further apoptotic activity (Zha et al. 1996).
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The activation of the pro-survival PI3K-Akt and p42/44 MAPK cascade, which constitutes the RISK 

pathway, protects the heart against lethal reperfusion-induced injury.



14-3-3
protein

J
Inactivated BAD

Phosphorylation of BAD

Inhibition 
Of

ApoptosisInactive death 
inhibitory 
protein Active death 

inhibitory 
protein

Figure 1-4 A mechanism whereby PI3-Kinase promotes cell survival.

The phosphorylation of the BAD protein leads to the release of one of more death inhibitory proteins. 

Once released these proteins act to block programmed cell death, thereby promoting survival. Meanwhile, 

phosphorylated BAD binds to a ubiquitous cytosolic protein called 14-3-3, preventing further BAD action.

Bcl-2 associated X protein (BAX) is pro-apoptotic (Datta et al. 1997) and is activated 

following an apoptotic stimulus such as ischaemia-reperfusion (Crow et al. 2004). In 

healthy mammalian cells, the bulk of BAX is found in the cytosol but upon the initiation 

of an apoptotic signal BAX undergoes a conformational change (Hou et al. 2005), and 

inserts into cellular membranes, primarily the outer mitochondrial membrane (Wolter et 

al. 1997). BAX is believed to either form a pore in the outer mitochondrial membrane 

itself or induce the opening of the mitochondrial permeability transition pore (mPTP) 

(Marzo et al.1998, Crow et al. 2004, Hou et al. 2005). Activation of either of the PI3K- 

Akt or Erk 1/2 pathways inhibits BAX translocation to the mitochondria, thus preventing 

apoptosis (Yamaguchi et al. 2001, Tsuruta et al. 2002, Weston et al. 2003).

BAX induced pore formation in the mitochondria leads to the release of apoptogens 

including cytochrome c (Crow et al. 2004). These apoptogens activate caspase 9, a
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death protease, Akt-induced phosphorylation of which has been shown to decrease 

apoptosis by inhibiting protease activity directly (Cardone et al. 1998, Brunet et al.

1999).

Bell et al (Bell et al. 2003) have demonstrated that AKT activation results in the 

downstream phosphorylation of eNOS, which results in the production of nitric oxide. 

Nitric oxide in turn has been shown to prevent the opening of the mPTP. Therefore, 

activation of PI3K-AKT at the time of reperfusion protects the myocardium via an 

eNOS—>NO—►mPTP mechanism.

What is apparent is that many of the anti-apoptotic pathways activated by the RISK 

pathway converge on the mPTP (Kroemer et al. 1998), previously described as a key 

regulator of cell death and survival (see section 1.4.1.1). The opening of this pore is felt 

to determine the degree of cell death by apoptosis or necrosis (Halestrap 2005). The 

ability of the PI3K-Akt and ERK 1/2 kinase pathways during ischaemia-reperfusion injury 

to protect through actions on the mPTP was recently reported by Davidson et al. 2006. 

What is also of interest is that endogenous agents i.e. insulin, erythropoietin, leptin, may 

also act to stimulate the RISK pathway (Hausenloy et al. 2004). It can be hypothesised 

that manipulation of these agents may protect the heart during periods of anoxia via 

RISK pathway activation and mPTP opening. Over the last decade there has been great 

interest in the role adipose tissue plays in the pathogenesis of disease (Inui & Mequid 

2003, Chan & Mantzoros 2005). The discovery of signalling peptides found in adipose 

tissue called adipocytokines, that act through these pathways has resulted in 

considerable investigation into the role played by these peptides in the development of 

disease.
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From Hausenloy and Yellon 2004. The Figure portrays the important anti-apoptotic mechanisms that have 

been implicated in cellular survival associated with the recruitment of the cardioprotective kinase 

cascades. Signalling through the PI3K-Akt and ERK1/2 cascades results in phosphorylation and 

inactivation of the pro-apoptotic proteins BAD and BAX, one consequence of which is to prevent the 

release of mitochondrial cytochrome C in response to an apoptotic stimulus. Phosphorylation and 

activation of eNOS (endothelial nitric oxide synthase) resulting in the production of nitric oxide (NO) may 

also occur leading to inhibition of the opening of the mitochondrial permeability transition pore (mPTP).
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1.5 Cardiometabolic disease

1.5.1 The 21st Century Obesidemic

Obesity is a major risk factor for hypertension, raised blood cholesterol, diabetes and 

impaired glucose tolerance. WHO figures estimate that around a third of patients with 

coronary heart disease and ischaemic stroke, and almost 60% of patients with 

hypertension in developed countries, have elevated body mass index (BMI) values. It is 

calculated that by 2050 there will be approximately 300 million cases of obesity-related 

type II diabetes (Grant 2005). More recently the INTERHEART case-control study 

estimated that 63% of heart attacks in Western Europe and 28% of heart attacks in 

Central and Eastern Europe are associated with abdominal obesity (a high waist to hip 

ratio), and those with abdominal obesity are at over twice the risk of a heart attack 

compared to those without (Yusuf et al. 2004). This study also found that abdominal 

obesity was a much more significant risk factor for heart attack than simple BMI (Yusuf 

et al. 2004). Obesity and diabetes are inextricably linked. Being overweight increases 

the risk of Type 2 diabetes and 80 per cent of people with Type 2 diabetes are 

overweight at the time of diagnosis (Astrup & Finner 2000).

Thus, the epidemic of obesity-related diabetes is a major challenge facing the world in 

the 21st Century. The increased number of people developing obesity-related type II 

diabetes will lead to a massive rise in the incidence of cardiovascular disease. The 

cardiovascular mortality rate has more than doubled in men and more than quadrupled 

in women, with diabetes compared with non-diabetics (Stamler et al. 1993) (Kannel & 

Wilson 1995). By 2025 the number of adults with diabetes will rise to 300 million (King et 

al. 1998) and 80% of patients with diabetes will die from cardiovascular causes (WHO 

2005).

What is of most concern is the age at which people are developing type II diabetes. 

Hence, a disease that was unheard of in children in the 1990s is now occurring in 

children as young as eight years old. Recent statistics indicate that a child born in the 

United States in 2000 has a one in three chance of developing diabetes (Narayan et al.
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2003). This dramatic increase in the incidence of obesity related type two diabetes has 

led to many theories as to why it has become so prevalent over the past twenty years.

1.5.1.1 Theory of thrift

The reasons for an increase in obesity-related diabetes are varied. Genetic and 

environmental factors have all been implicated in the aetiology of obesity. 

Polymorphisms in various genes controlling appetite, metabolism, and adipokine release 

predispose to obesity. Various genetic abnormalities that predispose to obesity have 

been identified such as Prader-Willi syndrome and leptin receptor mutations (Mutch & 

Clement 2006). While it is thought that a large proportion of the causative genes are still 

to be identified, much of obesity is likely to be the result of interactions between multiple 

genes and non-genetic factors (Mutch & Clement 2006). One of the major factors is the 

development of a Western lifestyle, as ultimately the condition requires the availability 

and consumption of sufficient calories.

In 1962 Neel (Neel 1962) put forward a theory in which he stated that the state of 

diabetes was beneficial in certain conditions. This theory was based on the idea that in 

times of plenty insulin resistance allows for energy to be stored for later use in times of 

famine. However, whilst insulin resistance might be advantageous during periods of 

nutritional fluctuation, potentially deleterious effects may develop when food becomes 

plentiful. A state of insulin resistance would alter the threshold at which insulin produces 

its metabolic actions after food intake, transforming the body’s normal metabolism to an 

anabolic state leading to fat storage. This state of insulin resistance and 

hyperinsulinaemia, therefore, predisposes the body to the development of diabetes and 

obesity. The evolution of man in the 20th Century has led to a very different metabolic 

make-up. Man is now in a constant state of post-prandial hyperglycaemia and insulin 

sensitisation. This may explain why the adaptive mechanisms of protection have been 

lost and the development of obesity related cardiovascular disease is reaching epidemic 

proportions. The body’s adaptation during this time to conserve energy and protect, 

ultimately leads to down regulation of these systems and the development of disease 

(Scott & Grant 2006). The innate mechanisms which the body has developed in order to
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protect itself offer an intriguing insight into evolutionary metabolism. The study of these 

mechanisms has ultimately helped our understanding of the development of obesity 

related cardiovascular disease, leading to possible therapies to prevent it.

1.5.2 The Metabolic syndrome or Syndrome X

In 1988 Reaven noted that resistance to insulin-mediated glucose uptake was present in 

the majority of people with impaired glucose tolerance and type II diabetes (Reaven 

1988). Furthermore, he suggested that the compensatory hyperinsulinaemia may lead 

to hypertension, and the relationship between hypertension, insulin resistance and 

hyperinsulinaemia might be causal. He raised the possibility that insulin resistance and 

hyperinsulinaemia were involved in the aetiology and clinical course of type 2 diabetes, 

hypertension and coronary heart disease. He termed the cluster Syndrome X (later 

called Reaven's syndrome and the metabolic syndrome) to describe the epidemiological 

association between insulin resistance and several other disease states. Since then 

other risk factors, including measures of obesity (body mass index BMI) have been 

added. What has become apparent is the importance of visceral adiposity in the 

development of cardiovascular and metabolic risk (Carey et al. 1996, Larson et al. 1996, 

Vanhala et al. 1998). The mechanisms linking visceral fat with a risk for disease states is 

currently under close scrutiny and their elucidation is paramount, if we are to 

understand, and treat the obesidemic which is upon us. Research has suggested that 

the visceral tissue itself expresses moieties which may lead to disease states. Apart 

from free fatty acids (FFA) (Kissbah 1996), interleukin-1, interleukin-6, TNF-a (Tumour 

necrosis factor), (Bullo et al. 2003) resistin, leptin and adiponectin have been implicated. 

These latter substances, collectively termed adipocytokines or adipokines, regulate a 

number of biological functions including appetite and energy balance, insulin sensitivity, 

lipid metabolism, blood pressure, and inflammation (Goralski & Sinai 2007). The 

physiological importance of adipocytokines has led to the hypothesis that changes in the 

synthesis and secretion of these compounds contribute to the development of obesity 

and obesity-related disease (Goralski & Sinai 2007). Following on from this it has been 

proposed that pharmacological manipulation of adipokine levels (Gary-Bobo et al. 2007; 

Choi et al. 2005) may provide novel therapeutic strategies to treat and prevent obesity,
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type 2 diabetes, and cardiovascular disease. The following section will review the role 

adipokines play in the pathogenesis of disease and examine in more detail the actions 

of some of the key adipokines.

1.6 Adipocytokines

Adipose tissue is an anatomical term for loose connective tissue composed of 

adipocytes. Apart from its obvious role in insulation and cushioning the body, its function 

is to store energy in the form of fat (Krug & Ehrhart-Bornstein 2005). In addition to these 

functions, the cells from which adipose tissue is composed i.e. the adipocytes, display 

characteristics of endocrine cells and secrete a variety of adipocyte-specific hormones 

into the circulation (Okomoto et al. 2006). These adipokines or adipocytokines are a 

group of bioactive substances which include growth factors, complement factors and 

cytokines (Matsuzawa 2006). Adipocytokines have been shown to act in an endocrine, 

paracrine or autocrine fashion and influence processes such as energy storage, 

immunity, fluid homeostasis and glucose control (Boucher et al. 2005). More recently 

direct effects on the cardiovascular system have been found (Shibata et al 2005, 

Fruhbeck et al. 1999, Lembo et al. 2000, Correia et al. 2005).The importance of 

adipocytokines is underlined by the fact that adipose tissue is generally regarded as the 

largest endocrine organ in the body. The large size of this organ means that even small 

quantities of adipocytokines secreted by this tissue may have a strong influence on the 

body’s homeostatic state (Matsuzawa 2006). Another notable feature is the fact that 

each adipocyte is connected to the vascular network, so that adipokines are released 

into the systemic circulation (Correia et al, 2004, Matsuzawa 2006).

The important endocrine function of adipose tissue is emphasized by the adverse 

metabolic consequences that can occur from both adipose tissue excess and deficiency 

(Inui & Mequid 2003, Chan & Mantzoros 2005). An excess of adipose tissue or obesity, 

particularly in the visceral compartment, is associated with insulin resistance, 

hyperglycaemia, dyslipidaemia, hypertension and prothrombotic and pro-inflammatory 

states (review Rader 2007, Guzik et al. 2006). It has become increasingly clear that 

adipose tissue is complex and constitutes a highly active metabolic and endocrine
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organ, its role in the development of many chronic diseases possibly being pivotal 

(Matsuzawa 2006, Trujillo & Scherer 2006). The adipocyte is, therefore, becoming 

increasingly recognised as a key regulator of cardiometabolic disease.

1.6.1 Adipose tissue and inflammation

The majority of patients with type II diabetes are obese (Mokdad et al. 2000).The state 

of insulin resistance seen in obesity and type II diabetes is characterised by deranged 

adipocyte metabolism and alterations in fat deposition (Matsuzawa 2006). In both lean 

and obese type II diabetic’s persistent elevation of free fatty acids is seen, with impaired 

FFA suppression with glucose loading (Reaven 1998). Insulin controls the release of 

FFA, stored as triglycerides, for use during fasting (Groop et al 1989). In type II diabetes 

the inhibition of lipolysis (breakdown of FFA to glucose) is impaired, leading to excessive 

FFA release. This chronic elevation of FFA causes insulin resistance in muscle and liver 

(Boden 1997 and 2002, Golay et al. 1987), and can impair insulin secretion. This 

sequence of events has been referred to as lipotoxicity (McGarry et al. 2002, Unger et 

al. 1995) and is believed to play an important role in (3-cell (insulin producing cell) 

dysfunction (Bays et al. 2004) in the pancreas. The adipocyte is the storage medium for 

FFA and as such is implicated in the pathogenesis of insulin resistance in type II 

diabetes (Bays et al. 2004).

Adipocytokines which are produced by adipose tissue are altered in conditions such as 

diabetes and cardiovascular disease. Maladaptation of adipose tissue has therefore 

been postulated as the link between the developments of obesity-related type II diabetes 

and cardiovascular disease (Bays et al. 2004).The effect of fat-loading is to modify the 

levels of certain adipocytokines. In type II diabetes there is a reduction in the production 

of some factors that are normally synthesised by the adipocyte, e.g. adiponectin (Weyer 

et al. 2001, Flotta et al. 2000, Arita et al. 1999), whereas there is increased secretion of 

other adipocytokines, e.g. resistin, PAI-1 (plasminogen activator inhibitor), TNF-a, 

interleukins and leptin occurs. Some of these factors are known to be stimulatory or 

inhibitory proteins of the inflammatory system. TNF-a and IL-6 are examples of pro- 

inflammatory cytokines. TNF-a is over-expressed in models of human (Hotamisligil et al.
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1995) and mouse obesity (Hotamisligil et al. 1993). It is also found to play a pivotal role 

in the insulin resistance of sepsis and cancer (McCall et al. 1992, Van der Poll et al. 

1991). Additionally, it has been implicated in the development of atherosclerosis (Peraldi 

& Spiegelman 1998). IL-6 is an inflammatory cytokine which, like TNF-a, is highly 

expressed in adipocytes (Mohamed-Ali et al. 1997). It is the primary activator of acute 

phase proteins (Gabay et al. 1999) and has been implicated in the development of 

insulin resistance, both in skeletal muscle and liver (Kim et al. 2004), as well as 

pancreatic p cell apoptosis (Shimabukuro et al. 1998). In patients with type II diabetes 

increased levels of IL 6 are seen which correlate with the severity of glucose intolerance 

(Pradhan et al. 2001).

Examples of anti-inflammatory adipokines are adiponectin and IL-10. Adiponectin is 

produced solely by adipocytes and is known to increase tissue sensitivity to insulin (Berg 

et al. 2001), Combs et al. 2001), Yamauchi et al. 2001). Its anti- inflammatory properties 

result from its inhibition of phagocyte activity and TNFa production by macrophages 

(Pittas et al. 2004). Recent studies have shown a correlation between 

hypoadiponectinaemia and the development of diabetes (Daimon et al. 2003, Duncan et 

al. 2004) and cardiovascular disease (Rothenbacher et al. 2005).

A change in the balance of these cytokines, as obesity progresses could ultimately lead 

to the development of cardiovascular disease (Gorlaski & Sinai 2007). Evidence is 

available to link chronic inflammation, insulin resistance, type ll diabetes and 

atherosclerosis (Pickup & Crook 1998, Festa et al. 2000, Tataranni & Ortega 2005). It is 

possible to hypothesise that change in adipokine expression over time leads to 

activation of the immune system via alterations in circulating inflammatory adipokines 

(Gorlaski & Sinai 2007). Maladaptation of this balance between pro-inflammatory and 

anti-inflammatory adipokines leads to a pathological state (Matsuzawa 2006). 

Suppression of protective mechanisms and over expression of damaging pathways by 

fat loading (Grant 2005), dysfunctional fat cells and obesity may provide the link 

between the development of both insulin resistance and cardiovascular disease. 

Adipocytokines are the signals within the adipose tissue which are orchestrating these
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changes and therefore research into their actions is key to understanding the 

pathogenesis and, hopefully, treatment of obesity-related disease.

1.7 Adiponectin

1.7.1 Introduction

Adiponectin, also referred to as ACRP30, AdipoQ and GBP28 was identified by several 

groups (Kadowaki 2006), and is produced in adipocytes. It circulates at high 

concentrations (5-1 Opg ml"1), accounting for 0.01% of plasma protein (Coombs et al. 

2003; Whitehead et al. 2006; Xu et al. 2005). Interestingly, unlike other adipocytokines, 

adiponectin levels are inversely related to BMI (Arita et al. 1999). Adiponectin seems to 

have several beneficial and protective effects (Yamauchi et al. 2001; Yamauchi et al.

2003). Adiponectin has been shown to be insulin-sensitizing (Yamauchi et al. 2001), 

anti-inflammatory (Ouchi & Walsh 2007) and anti-atherogenic (Shimada et al. 2004; 

Yamauchi et al. 2003). It is reduced in the serum of both type II diabetic and obese 

individuals and is also decreased in patients with cardiovascular disease (Arita et al. 

1999, Hotta et al. 2000). Adiponectin levels are a predictor of future risk of developing 

type 2 diabetes (Spranger et al. 2003) and myocardial infarction (Pischon 2004). Its 

beneficial actions make adiponectin a potential therapeutic option in the treatment of a 

number of disease states, characterised by metabolic abnormalities and vascular 

insufficiency.

1.7.2 AMPK

The cellular mechanisms whereby adiponectin acts has led to considerable interest in 

the roles played by the adipocytokines in the development of adipose-related disease. In 

mice adiponectin has been shown to lower glucose levels independently of insulin 

(Nawrocki et al. 2006). The administration of adiponectin reduces FFA, triglycerides 

(TG) and glucose (Fruebis et al. 2001), and leads to weight loss. The insulin sensitizing 

action of adiponectin was confirmed in adiponectin knock out mice (APN-KO) which 

exhibit diet-induced insulin resistance when fed a high fat/sucrose diet (Shibata et al. 

2005). The mechanism through which adiponectin acts to regulate metabolism and 

insulin sensitivity is, in part, through AMP-activated protein kinase (AMPK), a stress
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response kinase, which has been shown to be activated under certain circumstances in 

skeletal muscle, liver (Yamauchi et al. 2002) and adipocytes (Wu et al. 2003). AMPK is 

an evolutionarily conserved sensor of the energy status of a cell, and has a crucial role 

in controlling systemic energy balance by regulating food intake, body weight, and 

glucose and lipid homeostasis (Kahn et al., 2005, Greenberg & Obin 20061).

1.7.3 Protective role

Evidence suggests that adiponectin acts as a protective agent against the effects of 

obesity and diabetes related endothelial dysfunction (Ouchi et al. 2004; Kobayashi et al.

2004). These effects seem to be mediated through AMPK which has been identified as 

a regulator of endothelial cell nitric oxide synthase (eNOS) activation (Morrow et al. 

2003; Chen H. et al. 2003; Ouchi et al. 2004) and angiogenesis (Nagata et al. 2003). 

Adiponectin stimulates nitric oxide production in endothelial cells through AMPK- 

dependent phosphorylation and activation of eNOS (Ouchi et al. 2004, Chen H. et al. 

2003). These effects suggest that adiponectin may play a critical role in endothelial 

function and vascular tone (Ritchie et al.2004). AMPK signalling has been implicated in 

the anti-apoptotic actions of adiponectin (Kobayashi et al. 2004) in human endothelial 

cells (Lin et al. 2004). Its angiogenic properties are suggested by the fact that 

adiponectin stimulates endothelial cell migration and differentiation, and blood vessel 

growth in mouse and rabbit models of angiogenesis (Ouchi et al 2004; Nagata et al. 

2003).

The protective effects of adiponectin in the setting of ischaemic heart disease have been 

shown in various models of ischaemia-reperfusion (Shibata et al. 2005). Adiponectin 

was shown to inhibit apoptosis in cardiac myocytes exposed to hypoxia-reoxygenation 

(Shibata et al. 2005) and it was concluded that this protection occurred through AMPK 

as it was not seen in animals with a dominant negative AMPK mutation. APN-KO mice 

were shown to develop larger infarcts, whilst delivery of adiponectin led to reduced 

infarct size, myocardial apoptosis and TNFa production in both KO and wild type 

animals (Shibata et al 2005). These studies indicate that several important adiponectin- 

induced effects are mediated through the activation of AMPK.
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The beneficial effects of adiponectin are enhanced by reports that it has pleiotropic 

effects on immune and vascular function (Kubota et al. 2002, Okamoto et al. 2006, Wolf 

et al. 2004, Yamamoto et al. 2005, Brakenhielm et al. 2004). These findings and those 

outlined above, therefore, strongly support the idea that adiponectin represents an 

excellent example of an adipocytokine with a potential therapeutic role in cardiovascular 

disease.

1.8 Leptin

1.8.1 Introduction

Leptin was the first adipocytokine discovered to have a role in the development of 

obesity. Leptin is produced mainly by adipocytes and plays key roles in regulating 

energy intake and energy expenditure (La Cava et al., 2004). Leptin itself was 

discovered in 1994 by Jeffrey M. Friedman and colleagues at the Rockefeller University 

through the study of mutant obese mice (Zhang Y et al. 1994). These mice were 

massively obese and hyperphagic. The Ob (Lep) gene (Ob for obese and Lep for leptin) 

is located on chromosome 7 in humans and is synthesised primarily in white adipose 

tissue (Koerner et al. 2005). Leptin itself interacts with six types of receptor i.e. LepRa, 

LepRb, LepRc, LepRd, LepRe and LepRf. Of these receptors LepRb is the only isoform 

that contains active intracellular signalling domains (Flier 2004). This receptor is present 

in a number of hypothalamic nuclei, including the ventral medial nucleus of the 

hypothalamus, known as the "satiety centre", where it exerts its effects on appetite 

regulation and energy balance (Harvey 2003, Grill & Kaplan 2002).

The activation of the leptin receptor leads to the activation of the Janus kinase (JAK)- 

signal transducer and activator of transcription (STAT) pathway (Leshan et al. 2006). 

Apart from JAK/STAT signalling, leptin receptor activation also stimulates the PI3K and 

MAPK pathways (Harvey J 2003, Niswender et al 2004, Zhao T et al., 2005). These 

pathways have already been described in relation to cardioprotection and work carried 

out in this laboratory has shown that leptin, when given at reperfusion in a murine
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ischaemia-reperfusion model, is cardioprotective via RISK pathway up regulation (Smith 

et al. 2006).

AMPK is another cell signalling target for leptin (Kahn et al. 2005) and is phosphorylated 

and activated in response to the energy deficit occurring during fasting or cellular stress, 

leading to stimulation of FFA oxidation. It is co-localized with STAT3 and hypothalamic 

peptides implicated in energy balance. Hypothalamic AMPK phosphorylation and activity 

are increased by fasting and decreased by leptin, insulin and various anorectics 

(Minokoshi et al. 2004).

1.8.2 Beneficial or detrimental?

Similar to adiponectin, leptin is produced mainly by adipocytes, however, unlike 

adiponectin, leptin is considered to be a pro-inflammatory cytokine (La Cava 2004). This 

could be detrimental in many animal models of inflammatory and autoimmune disease, 

but it might be protective in several infectious disease settings, such as during the acute 

phase of myocarditis (Takahashi et al 2006) or bacterial pneumonia (Mancuso et al

2002). With respect to the cardiovascular system little is known as to whether leptin 

serves a beneficial or detrimental role (Guzik et al. 2006).

Serum Leptin is elevated in coronary heart disease and hyperleptinaemia is associated 

with tachycardia, chronic heart failure (Leyva et al. 1998) and increased risk of 

myocardial infarction (Soderberg et al. 1999). As outlined above, recent studies have 

suggested a protective role for leptin, acute administration during cardiac ischaemia in 

mice leading to a reduction in infarct size (Smith et al. 2006). Leptin deficient ob/ob mice 

have also been shown to have impaired cardiomyocyte function (Dong et al. 2006) and 

in a cardiomyocyte model, prior treatment with leptin provided a significant protection 

against the detrimental effects of hypoxia (Erkasap et al. 2006).

The apparently conflicting findings as regards the positive and potentially detrimental 

effects of leptin have led to questions as to whether leptin may have a useful role in the 

treatment of human cardiovascular disease. There does seem to be a time-dependent
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element as regards the actions of leptin i.e. acute administration being associated with 

protection at reperfusion, whilst chronic elevation is associated with disease states such 

as obesity (Guzik et al. 2006). What is apparent is that leptin is a multi-faceted cytokine, 

particularly in the cardiovascular system, and further research is needed to clarify its role 

as a protective peptide.
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1.9 Apelin

1.9.1 Background

Apelin is the endogenous ligand for the G protein-coupled APJ receptor. The APJ 

receptor was first cloned from a human gene in 1993 and was shown to share close 

identity with the transmembrane portion of the AT-i angiotensin receptor (O’Dowd et al. 

1993). Despite its similarity to the ATi receptor, angiotensin was not found to activate 

cells expressing the APJ receptor. The APJ receptor remained an “orphan” receptor until 

1998 when Tatemoto and co-workers (Tateomoto et al. 1998) purified a protein that 

bound to it.The term apelin was derived from APJ endogenous ligand and initially was 

isolated as a 36 amino acid peptide. The human gene for the APJ receptor is encoded 

on chromosome 11, whereas the apelin gene is found on the X chromosome (Kleinz 

2005).

The apelin gene codes for a 77 amino acid prepropeptide which is thought to undergo 

post-translational modification leading to the production of shorter moieties (Tatemoto et 

al. 1998). Post-translational modification of a prepropeptide is commonly seen with 

biologically active peptides i.e. they are synthesised as inactive precursors that are 

subsequently activated under physiological conditions, thereby preventing enzymatic 

breakdown and preserving their biological activity; the signal sequence is cleaved off to 

form the more active protein or proprotein (Sykes et al. 1999, Schilling et al. 2003, 

Garden et al. 1999). Apelin 36 was the first of the apelin peptides identified, although 

subsequent studies have identified the shorter isoforms apelin-13, 15, 17 and 19 

(Tatemoto et al 1998, Kawamata et al., 2001, Cayabyab et al., 2000, Hosoya et al., 

2000). It is of interest that considerable sequence homology exists across different 

species, (Tatemoto et al., 1998, Habata et al. 1999) with a 23 amino acid segment 

occurring near the C terminal end of the peptide being completely conserved across rat, 

mouse, cattle and human apelin prepropeptide (Lee et al., 2000). Studies of shorter 

isoforms, in which the C-terminal fragments of apelin-36 are conserved, reveal a 

stronger activity then the longer isoform (Tatemoto et al. 1998).
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Figure 1-6 Apelin isoforms showing conservation of the C-terminal region.

The light blue circles indicate amino acids which are conserved throughout the endogenous apelin 

isoforms (taken from Kleinz and Davenport 2005).

It has therefore been suggested that the C-terminal region is important in apelin binding 

and biological activity (Habata et al. 1999, Tatemoto et al. 2001).This was evidenced by 

the fact that potency increases with a shortening of the peptide up to apelin-12. Apelin- 

12 is not synthesised in vivo, but is the most biologically potent isoform, whilst 

shortening the peptide further to apelin-11 renders it inactive (Tatemoto et al., 2001). A 

conclusion that has been drawn from these studies is that apelin-36 may function as a 

precursor with limited biological activity, post-translational modification of this peptide 

resulting in the formation of more potent shorter isoforms (Kleinz & Davenport 2005).
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The similarities as regards the structure of the APJ and angiotensin (AT1) receptors 

(O'Dowd et al. 1993) prompted the suggestion that apelin, like angiotensin II, may play a 

role in cardiovascular function. Further studies were, therefore, carried out to elucidate 

the localisation and functions and signalling properties of the apelin-APJ system.

1.9.2 Distribution

Apelin and its receptor, and the mRNA transcripts that encode each, are expressed 

highly in both the brain (Matsumoto et al. 1996, Edinger et al. 1998, O’Carroll et al.

2000) and the periphery, particularly in regions of the cerebellum, hypothalamus, 

vascular endothelium, heart (Kleinz et al. 2004), lung, stomach and kidney (Hosoya et 

al. 2000, Susaki et al. 2005). Apelin is also produced and secreted by human and 

mouse isolated mature adipocytes (Boucher et al 2005), thereby defining apelin as an 

adipocytokine.

The presence of apelin in areas of the brain which are known to modulate fluid 

homeostasis and blood pressure has led to further investigation into apelin’s role in 

these regulatory mechanisms (Reaux et al. 2002). Neurons synthesising apelin have 

been found in the hippocampus, striatum, cerebellum and paraventricular nucleus 

(O’Carroll et al. 2000). Cells in the paraventricular nucleus (PVN) also produce 

vasopressin which a hormone released when the body is low in water; it causes the 

kidneys to conserve water by concentrating the urine and reducing urine volume. 

Vasopressin is also a potent vasoconstrictor; its pharmacological analogue can be used 

in the treatment of shock (Barrett et al. 2007). The discovery of apelin receptors (APJ) in 

the human and rat heart and the surrounding vasculature (Katugampola et al. 2001), 

together with evidence of high levels of apelin expression in endothelial cells from 

human large conduit vessels, has furthered the case made for the involvement of the 

apelin-APJ system in cardiovascular regulation and fluid homeostasis.
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1.9.3 Function

On the basis of APJ receptor structure and tissue distribution, potential functional roles 

for apelin were considered. The first evidence for the cardiovascular actions of apelin 

was provided by Lee et al 2000 (Lee et al. 2000), who reported a significant transient 

drop in systolic and diastolic blood pressure ( - 1 0  mm Hg) after intravenous infusion of 

apelin-13 in anaesthetized male Wistar rats. In similar experiments, another group 

observed hypotensive actions for 3 different apelin peptides (apelin-12, apelin-13, and 

apelin-36), with a potency inversely related to the molecular weight of the peptides 

(Tatemoto et al 2001). The mechanism underlying this blood pressure lowering effect 

was found to be nitric oxide dependent. Thus, the hypotensive effect of the most potent 

apelin isoform, apelin-12, was dose-dependent and could be abolished by pre-treatment 

of rats with the nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-L-arginine methyl

ester (l-NAME; Tatemoto et al 2001). Further experiments in which intravenous

administration of apelin-13 resulted in a significant drop in mean arterial blood pressure 

(MABP), coupled with an increase in heart rate, seemed to confirm that apelin had a 

potent hypotensive action (Reaux et al. 2001). A similar drop in MABP, combined with 

an increase in heart rate, was observed after intravenous infusion of apelin-12.

Pharmacological ganglionic block abolished the compensatory increase in heart rate

and a more significant drop in MABP was seen (Cheng et al 2003), suggesting the 

reciprocal heart rate change was most likely baroreflex mediated.

In view of the strong expression of the APJ receptor (Devic et al., 1999, Hosoya et al., 

2000, O’Carroll et al. 2000) and preproapelin mRNA in the heart (Lee et al. 2000) it 

could be predicted that apelin would regulate certain cardiac functions (Masri et al.,

2005). In isolated perfused rat hearts paced at a constant rate and contracting 

isovolumetrically, the peptide caused a dose-dependent increase in developed tension 

(Szokodi et al 2002). In anaesthetized rats, apelin caused an increase in left ventricular 

systolic pressure, dP/dtmax, and stroke volume (Berry et al. 2004). Since the increase in 

stroke volume was not accompanied by changes in end-diastolic ventricular volume, it 

was concluded that this provided evidence of a positive inotropic effect. Infusion of
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apelin also improved ventricular diastolic relaxation as indicated by a reduction of

d P / d t m j n .

Conclusive evidence that apelin-induced cardiovascular actions are mediated by APJ 

was provided by a study showing that a decrease in MABP induced by intravenous 

infusion of (Pyr1)apelin-13 into wild-type mice was not replicated in APJ-KO mice (Ishida 

et al 2004). In agreement with previous findings the hypotensive actions observed in 

wild-type mice were completely abolished by nitric oxide synthase inhibitor pretreatment, 

suggesting that the hypotensive effect of apelin involves an endothelium-dependent 

mechanism (Ishida et al. 2004). It has already been mentioned that the APJ receptor 

has similarities with the ATi receptor and that the hypertensive actions of angiotensin II 

were found to be more potent in APJ-deficient mice, suggesting that the apelin-APJ 

system may play a role in counteracting angiotensin ll-induced vasoconstriction (Ishida 

et al. 2004; Lee et al 2006). Work in human tissue is scanty; the only functional study of 

apelin to date described the effects of apelin-13 on human endothelium-denuded 

saphenous veins. Studies in which the effects of increasing doses of apelin-13 (0.1 to 

300 nM) on isometric contraction were assessed, indicated that apelin-13 potently 

contracted human saphenous veins (Katugampola et al. 2001).

The apparent contradictory effects of apelin on the vasculature have yet to be explained. 

In some cases the model used may explain the discrepancy of results. The use of 

denuded endothelium may explain the vasoconstrictor responses to apelin. Apelin has 

been shown to produce vasodilatation via the nitric oxide pathway (Ishida et al. 2004). In 

the absence of a functioning endothelium, apelin may directly activate APJ on vascular 

smooth muscle to cause vasoconstriction. Differences in the vasoactive response may 

not only be dependent on the type of apelin used, but also on the vascular bed it is 

applied to. In the review by Kleinz & Davenport attention was drawn to the wide variation 

in EC50/IC50 (nM) values obtained with different apelin isoforms. In subsequent work 

carried out to investigate the mechanisms underlying apelin-mediated vasoconstriction, 

apelin was found to induce the phosphorylation of myosin light chains in vascular 

smooth muscle cells (VSMC) (Hashimoto et al. 2006). Thus, the theory was put forward
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that apelin produces a biphasic effect on blood vessels involving endothelium-mediated 

vasodilatation and VSMC-dependent vasoconstriction. In the context of vascular 

disease, hypertension has been shown to be associated with endothelial dysfunction 

and reduced expression of apelin and APJ in heart and aorta (Zhong JC et al. 2007). 

Thus, it is possible to postulate a pathophysiological role for the apelin-APJ system in 

vascular disease (Ishida et al. 2004) in which apelin may function as a vasopressor in 

damaged vasculature (hypertension; atherosclerosis), but performs an antagonistic role 

to angiotensin under basal conditions.

1.9.4 Action

The APJ receptor mediates p44/42, Akt and p70S6K phosphorylation via protein kinase 

C (PKC) activation, the phosphorylation of all three kinases being sensitive to pertussis 

toxin (Masri et al. 2004; Masri et al. 2005).The actions of apelin have also been shown 

to reduce cAMP in cells transfected with human APJ receptor (Habata et al. 1999; 

Kawamata et al. 2001), an action that was inhibited again by pertussis toxin, suggesting 

that APJ receptor action is translated through an inhibitory Gj-protein complex (Reaux 

et al. 2001; Reaux et al. 2002; Medhurst et al., 2003).

1.9.4.1 Mitogenic action

The activation of the APJ receptor by apelin has revealed that it is capable of stimulating 

the growth of various cells types, including gastric cells, (Wang G et al. 2004) human 

umbilical vein endothelial cells (HUVECS) (Masri et al. 2004) and retinal endothelial 

cells (Kasai et al 2004). These actions, in part, occur through activation of both the PI3K 

and MAPK (ERK-1/2) pathways (Masri et al. 2002, Masri et al. 2004). In APJ-expressing 

human osteoblasts phosphorylation and activation of Akt, but not ERK-1/2, occurs in 

response to apelin (Xie et al. 2006). In a model of neuronal excitotoxic injury O’Donnell 

et al have obtained evidence that activation of neuronal APJ by apelin protects neurons. 

Furthermore, this protection was mediated by the stimulation of AKT and ERK-1/2 

(O’Donnell et al. 2007). Together, these studies suggest that APJ signalling activates 

kinases (Akt, ERK-1/2) that are associated with cell survival.
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1.9.4.2 Vascular Tone

As previously mentioned apelin peptides cause endothelium-dependent vasorelaxation 

by triggering the release of nitric oxide (NO), an effect that is almost completely 

abolished by the presence of the endothelial NO synthase (eNOS) inhibitor, NG-nitro-l- 

arginine methyl ester (L-NAME) (Tatemoto et al. 2001, Zhong et al. 2007). Work carried 

out in diabetic mice has shown that the beneficial effects of apelin on aortic vascular 

tone occur through the activation of Akt and eNOS (Zhong et al. 2007).

Apelin

Vasodilatation

Endothelial Cells

Vascular Smooth 
Muscle Cell

Vasoconstriction

Figure 1-7 Vascular effects of apelin.

Apelin has been shown to produce vasodilatation via a nitric oxide (NO) pathway. In the absence of a 

functioning endothelium, apelin may directly activate APJ on vascular smooth muscle to cause 

vasoconstriction
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1.9.4.3 Anti-apoptotic action

The anti-apoptotic effects of apelin have only recently become apparent. Inhibition by 

apelin of the release of cytochrome c, a critical protein in the apoptotic pathway, has 

been shown in an isolated cell model (Tang et al. 2006). Cytochrome c is released by 

the mitochondria in response to pro-apoptotic stimuli, as previously described. This 

release in turn activates caspase 9, a cysteine protease, stimulating the apoptotic 

cascade. Apelin was shown to inhibit the release of cytochrome c and activation of the 

apoptotic caspases (Tang et al. 2006). The use of inhibitors of JNK and PI3K led to the 

conclusion that this anti-apoptotic effect was mediated through these pathways.

1.9.5 Heart Failure

Interest in a protective role for apelin in clinical medicine is based on its unique 

properties. The triad of clinical sequelae that depict congestive cardiac failure i.e. fluid 

overload, vasoconstriction and pump failure are all potentially modifiable by apelin. 

Apelin’s direct effect on cardiac contractility (Szokodi et al. 2002; Ashley et al. 2005) and 

its inhibitory action on vasopressin (Reaux et al. 2001; De Mota 2004) make it an ideal 

candidate for modulating the neurohumoral response which accompanies congestive 

cardiac failure (CCF). Apart from having actions on cardiovascular regulation, increasing 

evidence suggests a role for the apelin-APJ receptor system in the development of 

pathophysiological conditions relating to the cardiovascular system. The downregulation 

of cardiac APJ receptor expression seen in dilated cardiomyopathy (Foldes et al. 2003) 

may result in an attenuated cardiac response to apelin, leading to impaired contractility 

which is frequently seen in advanced heart failure. Decreased APJ receptor expression 

may also be a “down-regulation” phenomenon induced by an excess of ligand as apelin 

synthesis is up-regulated in the early stages of heart failure (Foldes et al. 2003). 

Analysis of cardiac gene expression in 11 heart failure patients before and after the 

implantation of a left ventricular assist device (LVAD) identified the APJ gene as being 

the most significantly and consistently up-regulated after the treatment (Chen M. et al. 

2003). Apelin is not synthesised by adult cardiomyocytes, but in decompensated heart 

failure myocardial apelin synthesis is reactivated (Ashley et al. 2005). Taken together 

with the observed increases in the cardiac levels of the apelin peptide, these data
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suggest that myocardial apelin synthesis is up-regulated in the early stages of heart 

failure, possibly reflecting an attempt by the myocardium to improve function (Chen et al.

2003). Subsequent down-regulation and desensitisation, which are common sequelae of 

chronic disease, leads to the loss of this amelioration by apelin.

1.9.6 Cardioprotection

The characterisation of the apelin-APJ system has allowed for conjecture as regards 

potential therapeutic strategies. This has followed the lines of the role apelin might play 

in blood pressure regulation and cardiac contractility. The effects of apelin in vivo have 

been studied and indicate a beneficial role in reducing left ventricular preload and 

afterload (Ashley et al. 2005). This finding taken together with apelin’s observed 

propensity to decrease vasopressin output indicates that apelin may offer a unique 

alternative treatment for heart failure. The protective action of apelin on injured 

myocardium in vivo was first examined by Jia et al. 2005. Rat myocardial injury was 

induced by the administration of isoproterenol (ISO), a (3-adrenergic agonist and well 

known inducer of myocardial hypertrophy. Apelin was subsequently administered and its 

effect on function and myocardial damage measured. The results suggested that apelin 

improved not only cardiac function but also myocardial injury in ISO-damaged hearts, 

myocardial damage being assessed by lactate dehydrogenase (LDH) leakage and the 

formation of lipid peroxides (elevated malondialdehyde formation). It was concluded that 

apelin may have cardioprotective properties and it could offer a new therapeutic target 

for cardiovascular disease (Jia et al 2005). This paper further supports the principle of 

the current study that apelin is cardioprotective.

1.9.7 Apelin as a cardiac biomarker

Further investigation into the possible clinical benefits of apelin has suggested a role for 

the peptide as a screening tool in atrial fibrillation (AF). Atrial fibrillation is a major 

independent risk factor for the subsequent development of left ventricular dysfunction, 

one third of affected patients going on to develop congestive cardiac failure within ten 

years (Wang et al, 2003). In a study in which an attempt was made to identify
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biomarkers that might render individuals at risk of developing AF, it was found that in a 

homogenous group of patients with lone atrial fibrillation plasma apelin was significantly 

reduced compared with matched controls (Ellinor et al. 2006). This finding increased 

interest in the role abnormal biomarker profiles play in the screening, diagnosis, 

monitoring and prognosis of chronic heart failure (Tinenburg et al 1998), and indicated 

that apelin might be used as a discriminatory tool for the subsequent development of AF 

(Ellinor et al 2006).

The studies described have taken our knowledge regarding apelin from the point of its 

identification as a unique vasoactive peptide to the present stage where it is being 

suggested as a potential therapeutic tool. Further studies into the part played by apelin 

in the setting of myocardial infarction, i.e. ischaemia/reperfusion, are now urgently 

needed and form the basis of the investigation presented in this thesis.
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2 AIMS
As discussed in chapter 1 the novel peptide apelin appears to have various functions, its 

actions on the cardiovascular system probably being the most important. The ability of 

apelin to stimulate kinases associated with the RISK pathway (Masri et al, 2004) and to 

act as an anti-apoptotic agent (Tang et al., 2007) and promoter of cell growth (Wang G 

et al., 2004; Masri et al. 2004, Kasai et al 2004) suggest that this peptide may play a role 

in tissue preservation as its features are characteristic of potential cardio-protective 

agents. Recently apelin was shown to act as a neuroprotective agent (O’Connell et al. 

2007) and to reduce markers of ischaemic damage in ISO injured hearts (Jia et al 2005). 

Thus, it was hypothesised that apelin may protect the myocardium against ischaemia- 

reperfusion injury. This study, therefore, set out to examine if apelin is cardioprotective 

when given at reperfusion and whether any cardioprotective actions are mediated by the 

RISK pathway and modulation of the mPTP. Ultimately, the aim of the present study 

was to establish if apelin might find application as a therapeutic agent in the context of 

myocardial ischaemia/reperfusion injury.
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3 METHODS

3.1 General

All the experimental procedures undertaken and described below were performed in the 

Laboratory of the Hatter Cardiovascular Institute and Biological Services Units, 

University College London Medical School, University College Hospitals. Animal 

experimentation was performed in accordance with the United Kingdom Home office 

‘Guidance on the operation of the Animals (Scientific Procedures) Act 1986, published 

by Her Majesty’s Stationary Office, London.

3.2 Choice of animal model

The use of rodent models of myocardial ischaemia-reperfusion injury is well established. 

The characteristics of these models have been described by various groups, (Headrick 

et al. 2001) including our own, and have been proven to yield reproducible data (Awan 

et al 1999, Marber et al. 1995, Efthymiou et al. 2006, Smith et al., 2006., Sumeray & 

Yellon 1998). A murine model offers the advantage of being amenable to genetic 

manipulation and various transgenic knock-out and knock-in animals have been 

developed. This has permitted detailed examination of subcellular mechanisms which 

may have relevance to cardioprotection. In light of these facts a murine Langendorff 

model was chosen for this study.

Male Swiss White mice obtained from Charles River UK (Margate UK) were used initially 

to establish and characterise the ischaemic reperfusion model. C57 BL/6J mice were 

subsequently (Charles River) used to investigate the effects of ischaemic 

preconditioning and the administration of apelin as future investigations were planned in 

which genetically manipulated forms of this species where to be used.

3.3 Chemicals and drugs

All constituents of the Krebs Henseleit buffer were purchased from BDH Laboratory 

supplies (Merck Eurolab, Dorset England). Apelin-13, Apelin-36 and 2,3,5- Triphenyl-
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Tetrazolium Chloride (TTC) were purchased from Sigma-Aldrich Company Ltd (Dorset, 

England). Apelin F13 was purchased from Phoenix pharmaceuticals USA.

3.4 Preparation of hearts for perfusion

3.4.1 Anticoagulation

Prior to removal of the heart, heparin was administered via an intra-peritoneal (i.p.) 

injection. This was in order to prevent the development of thrombus within the coronary 

vasculature or ventricular chambers. Animals were then killed by cervical dislocation 

which was carried out under the guidelines of Schedule 1 of the Scientific Procedures 

Act 1986.

3.4.2 Dissection

A bilateral transverse thoracosternotomy (“clam shell” incision) was used to expose the 

visceral surface of the thoracic cavity. The incision was made below the xiphoid sternum 

and extended laterally to the ends of the left and right costal margins. The anterior chest 

wall was reflected providing an optimal operating field. The thoracic organs were then 

removed en-bloc by transecting the descending aorta and inferior vena cava, followed 

by the ascending aorta and superior vena cava. The heart was dissected free from the 

lungs, thymus and fatty tissue and placed in Krebs-Henseleit buffer (at 4 °C). The 

ascending aorta and its root were then visualised and a 21 gauge flanged stainless steel 

murine cannula was inserted into the aorta (Figure 3-1). This was carried out under 

Krebs solution to avoid any risk of air embolism (Figure 3-2). The aorta was then 

secured with a 5-0 silk suture to the cannula, taking care that the flange sat above the 

aortic root, and the heart then transferred to the Langendorff perfusion apparatus. Once 

attached to the perfusion apparatus retrograde perfusion began. The time taken to the 

onset of Langendorff perfusion was kept to three minutes to reduce the potential effect 

of ischaemic preconditioning due to delayed perfusion (Minhaz et al. 1995, Awan et al. 

1999).
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Figure 3-1 Aortic cannulation

This figure shows the placement of the murine cannula into the aorta and the application of the 5/0 silk 

suture. The cannula was inserted in such a manner that the flange sat above the aortic root to ensure 

perfusion of the coronary circulation.
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Figure 3-2 Cannulation under Krebs solution

Cannulation was carried out in ice-cold Krebs solution. This was to avoid any risk of air embolism and to 

reduce the potential effect of ischaemic preconditioning due to delayed perfusion. (Minhaz et al 1995, 

Awan et al 1999)

3.5 Langendorff perfusion

The methodology for the retrograde perfusion of isolated hearts was developed 

originally by Oscar Langendorff in 1895 and is recognised as a suitable experimental 

model for studying myocardial function and metabolism. (Langendorff, O. 

Untersuchungen am uberlebenden Saugethierherzen. Pflugers Arch. 61: 291-332, 

1895). The basic goal of the Langendorff model is to keep an isolated heart supplied 

with oxygen and metabolites via a single cannula placed into the ascending aorta. This 

constant retrograde perfusion keeps the aortic valve closed and allows oxygenated 

buffer to flow through the coronary vessels. The fluid then flows through the arterial 

branches to the arterioles, capillaries and coronary veins. It eventually passes via the 

coronary sinus into the right atrium. It leaves the heart via the excised ends of the
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pulmonary artery. The Langendorff murine model used in these experiments has been 

characterised in detail by Headrick et al. (2001).

3.5.1 Langendorff system

The Langendorff system (ML 176) used was supplied by ADinstruments Ltd Oxfordshire, 

UK and allowed us to perfuse isolated mouse hearts in a thermostatically controlled 

environment (Figure 3-3).

Figure 3-3 The Langendorff system

The perfusate reservoirs consisted of two self-contained compartments which were 

oxygenated individually with 95% O2 and 5% CO2 (BOC Gases, Manchester). 

Surrounding these two reservoirs was a thermostatically-controlled water jacket. This
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allowed the perfusate temperature to be adjusted to reduce the loss of heat which 

occurs as fluid travels through the system, thus allowing the hearts to be maintained at 

37°C. Heart temperature was monitored with a T-type thermocouple probe placed in the 

pulmonary vascular trunk. A separate thermostatically controlled water jacket was used 

to surround the heart and permitted fine tuning of the temperature during stabilisation, 

ischaemia and reperfusion. A constant myocardial temperature of 37°C (range 36.5- 

37.5°C) was maintained throughout the experimental protocol. Constant flow or pressure 

was achieved with a Minipuls 3 Peristaltic pump and the STH pump controller. Heart 

rate was measured using pressure transducer connected to an intra-ventricular balloon. 

The balloon was constructed from a readily available, pliable polyvinyl chloride plastic 

film (Saran wrap). Each balloon was mounted on a 21-gauge flanged stainless steel 

tube. Deflated balloons were connected to a pressure transducer (MLT 884) by a fluid- 

filled non compliant polyethylene tube. The balloon was inserted into the left ventricle via 

the left atrium and inflated to an end diastolic pressure of 5-10 mmHg (Figure 3-4).
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Figure 3-4 Left ventricular balloon transducer

This shows the placement of the transducer into the left ventricular cavity and the thermocouple into the 

right side of the heart.

47



3.5.2 Perfusion

The perfusion buffer used was modified Krebs-Henseleit buffer consisting of NaCI 

118mM, NaHCOs 24 mM, KCI 4 mM, NaH2P 04 1 mM, CaCI2 2.5mM, MgCI2 1.2 mM, 

and glucose 10mM. The buffer was gassed with 95% 0 2 and 5% C 0 2 at 37°C in order 

to yield a pH of 7.4. Buffer was initially passed through a 5 pm filter to remove 

mircoparticulates before being placed in the reservoir chambers (Headrick et al. 2001). 

Hearts were perfused at a constant pressure, this being the mean arterial pressure of 

the conscious mouse i.e. 110 mmHg.

3.5.3 Inclusion/exclusion criteria

Stabilised hearts in which coronary flow was greater than 6.0 ml/min (normally due to an 

aortic tear), were bradycardic (bpm less than 300) or were unacceptably arrhythmogenic 

were excluded from the study. These criteria were arrived at after conducting a series of 

experiments to assess the baseline characteristics of the murine model and its response 

to ischaemia-reperfusion.

3.5.4 Temperature

Controlling the temperature of the mouse heart is difficult owing to its large surface area 

to volume ratio, which makes it susceptible to heat loss and rapid changes in 

temperature. This was minimised by the use of a jacketed water bath which allowed 

submersion of hearts in warmed Krebs buffer at a constant temperature of 37°C. 

Contractile function is extremely sensitive to temperature and hypothermia has been 

shown to reduce infarct size resulting from ischaemia-reperfusion (Hale & Kloner 1999). 

Temperature-dependent changes in heart rate can also explain some of the changes 

seen in contractile function. Model characterisation has shown that stepwise increments 

in contractile function occur as heart rate is increased up to 450 bpm, beyond which 

function declines (Headrick et al. 2001).
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3.5.5 Standard Protocol

After hearts were mounted and the balloon and temperature probes inserted, an 

equilibration/stabilisation period followed in which hearts were assessed for their 

suitability for experimentation. The inclusion criteria described in 3.5.3 were applied 

during this period. No-flow ischaemia was then induced by switching off the perfusion 

pump for 35 minutes. Reperfusion was commenced by switching the pump back on so 

leading to re-flow throughout the Langendorff system, and was continued for 35 

minutes.

3.6 Measurement of infarct size

3.6.1 TTC staining

For the histochemical determination of infarct size, hearts were injected with 5 ml of 1% 

Triphenyl-Tetrazolium chloride (TTC) solution (w/v) in phosphate buffer (Na2HP0 4  45.1 

mM, NahhPCU 3.3 mM, pH 7.8, 37°C) at the end of reperfusion. The hearts were then 

immersed in a 10 ml Falcon tube containing 1% TTC (w/v) at 37°C for 10 minutes. TTC 

is reduced by NADH and dehydogenase enzymes and causes all tissue with retained 

enzymes and co-factors to stain a brick red colour. Infarcted areas do not react with the 

TTC and therefore do not stain (Ytrehus et al. 1994) (Fishbein et al. 1981). Following 

incubation hearts were dried, weighed and frozen at -20°C. The frozen hearts were then 

sliced parallel to the atrio-ventricular groove into 5-8 slices. These were then placed in 

10% Formalin in order to enhance the contrast between infarcted and non-infarcted 

areas.
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Figure 3-5 Sliced murine hearts.

Formalin allows for the enhancement of the contrast between infarcted and non-infarcted areas. The non- 

infarcted area stains red and the infarcted areas which have not reacted with TTC, and therefore do not 

stain, appear white.

3.6.2 Digitising TTC stained hearts

On analysis the sliced hearts were mounted between two plexiglass plates, separated 

by spacers. The mounted slices were then photographed using a high resolution 

megapixel camera. Individually photographed slices were then analysed with the 

National Institutes of Health freeshare image analysis programme (NIH version 1.63).

fe $  # & m
Figure 3-6 Sliced hearts prior to planimetry

Hearts are aligned and are mounted between two plexiglass plates. They are photographed and the 

images digitised.
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3.6.3 Planimetry of TTC stained heart slices

The digitised image for each slice was opened using the NIH image analysis programme 

and converted into a grey-scale image. This image was then edited by demarcating the 

outline of the heart and removing the ventricular cavities. The final image corresponds to 

the area at risk and is then analysed using the infarct area macro. During these stages 

the images were saved onto the hard drive to provide a permanent record of the slices 

through the editing process. Calibration for each heart was carried out prior to analysis. 

A known area of graph paper i.e. 25 mm2 was also converted into greyscale and the 

number of pixels for 25 mm2 established. Subsequently this value was used as a 

reference when calculating the area for heart slices. The infarct area macro was then 

used to calculate the number of pixels which are white and therefore infarcted relative to 

the number which are grey and hence not infarcted. The results were then calculated as 

the total number of pixels infarcted against the total area of the slice, ultimately being 

expressed in mm2 with the infarcted area expressed as a percentage of the area at risk. 

All analysis and measurements were carried out in a randomised blinded manner.
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3.7 Isolated cardiomyocyte model

3.7.1 Introduction

Mitochondria are the key organelles responsible for cellular respiration and energy 

generation. Their production of ATP which powers virtually every biochemical reaction in 

the body is fundamental to the survival of cellular organisms. More recently it has 

become evident that they play an important role in apoptosis and the development of 

techniques for assessing mitochondrial function has allowed cellular-based modelling of 

ischaemia/reperfusion. Oxidative stress caused by the production of reactive oxygen 

species (ROS), is important in many disease processes and is part of the 

ischaemic/reperfusion cascade which leads to cellular death. Mitochondria are a major 

source of ROS and offer, therefore, a controlled model of mitochondrial stimulation and 

ROS release. ROS can trigger a transient increase in mitochondrial ROS production via 

the activation of the mitochondrial permeability transition pore, a phenomenon termed 

ROS-induced ROS release (RIRR) (Zorov et al. 2000). The mitochondrial permeability 

transition pore, or mPTP, is a protein pore that is formed in the membranes of 

mitochondria under ischaemic conditions such as myocardial infarction and stroke. An 

increase in the permeability of the mitochondrial membrane, referred to as mitochondrial 

permeability transition (mPT), results from opening of the permeability transition pore. 

Opening of the pore can lead to mitochondrial swelling and cell death. Using a model of 

oxidative stress involving mPTP opening in isolated cardiomyocytes would, therefore, 

simulate the events associated with reperfusion-induced cell injury (Jacobson & Duchen 

2002); (Hausenloy, Duchen, & Yellon 2003), (Hausenloy & Yellon 2004).

3.7.2 Preparation of adult rat cardiomyocytes

Adult rat cardiomyocytes were used in preference to C57 BI/6J mice cardiomyocytes as 

the latter can prove difficult to obtain in sufficient numbers due to their fragility. 

Ventricular cardiomyocytes were, therefore, isolated from adult male Sprague-Dawley 

rats (Charles River). Induction of anaesthesia was performed with sodium pentobarbital 

(55 mg/kg i.p) which was administered together with heparin sodium (300 IU) to reduce 

clotting. Hearts were rapidly excised, placed in ice-cold buffer, and mounted on a non
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recirculating perfusion apparatus. All solutions used were based on a modified calcium- 

free Krebs-Ringer-HEPES (KRH) buffer (in mM): 116.0 NaCI, 5.4 KCI, 0.4 MgS04, 20.0 

Taurine, 25 NaHCC>3 , 1.2 KH2PO4 , and 10 glucose (pH 7.4). The perfusate was bubbled 

with 95% O2 and 5% CO2 and maintained at 37°C. The hearts were first perfused with 

KRH buffer. After 5 min, the hearts were then perfused with KRH buffer containing 1 

mg/ml collagenase (Worthington type II) and 44 pM calcium for 10-15 min. After 

perfusion, the hearts were removed from the perfusion apparatus and the atria were 

trimmed away. The ventricles were sliced into longitudinal strips and underwent further 

digestion with collagenase in a process which involved mechanical agitation of the strips 

for 10 minutes at 37°C after which the solution containing cellular debris was discarded. 

Fresh KRH Buffer (15ml) containing 1 mg/ml collagenase and 44pM calcium was then 

added and the suspension agitated for a further 20 minutes whereupon the cells in 

solution were transferred to a fresh Falcon tube and centrifuged. The cells were then re

suspended in KRH Buffer (44pM calcium) and seeded onto sterilized laminin-coated 25- 

mm-diameter round coverslips and incubated at 37°C in an atmosphere of 95% air-5% 

CO2 in M-199 medium (M7653, Sigma) containing 10% fetal calf serum and 1% 

penicillin-streptomycin (Sigma). After approximately one hour the cells were washed 

with 1 ml of plating medium (PM) which was then replaced with a further 1ml of PM.
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3.7.3 Model for induction and detection of the mPT in intact cells

Isolated adult ventricular myocytes were incubated with the fluorescent dye 

Tetramethylrhodamine methyl ester (TMRM) (3 pM) for 15 min at 37°C, washed, and 

visualized using confocal fluorescence microscopy. TMRM is a cell-permeable 

fluorescent dye that accumulates selectively into mitochondria according to the 

membrane potential. Laser scanning confocal microscopy (LSCM) was used to generate 

mitochondrial ROS within a defined region of a cardiomyocyte.

3.7.3.1 Confocal fluorescence imaging

The coverslip containing the myocytes was placed in a chamber and mounted on the 

stage of a Zeiss 510 CLSM confocal microscope equipped with x40 oil immersion, 

quartz objective lens (numerical aperture 1.3). For TMRM fluorescence, the cells were 

illuminated by use of the 543-nm emission line of a HeNe laser.

Figure 3-7 Isolated cardiomyocytes imaged under confocal microscopy.

Two images taken before laser stimulation.

For all photosensitization experiments, the settings for the confocal imaging system were 

identical to ensure comparability between experiments. TMRM fluorescence was 

collected using a 585-nm long-pass filter and images analyzed by use of Zeiss software 

(LSM 2.8).
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Laser photoexcitation of TMRM generates sufficient levels of ROS from within the 

mitochondria to activate the mPTP. Reperfusion of ischaemic myocardium also involves 

excess production of ROS from within the mitochondria. Mitochondrial permeability 

transition increases as the pore forms. Increasing membrane permeability causes 

mitochondria to become depolarized i.e. the mitochondrial membrane potential or 

difference in voltage between the inside and outside of the mitochondrial membrane 

(known as A ijj), is lost. TMRM accumulates in mitochondria because of the negative 

potential of the mitochondrial matrix (about -150 mV relative to the cytoplasm) (Duchen 

et al. 1998). Depolarization leads to a redistribution of TMRM from the mitochondria to 

the cytoplasm with a resulting decrease in quenching (dequenching) and increase in the 

fluorescence generated by the whole cell. Mitochondrial membrane depolarization, 

therefore, results in the loss of dye to the cytosol where the signal increases 

(autoquenching) (Duchen & Biscoe 1992). Laser-induced oxidative stress was applied 

until the mPTP had been provoked (indicated by the collapse of the mitochondrial 

membrane potential A ijj) and continued until irreversible cellular damage had occurred, 

as indicated by myocyte shortening to a 'hyper-contracted' state with the loss of 

striations and a change from a rectangular to a more rounded cellular morphology 

(Silverman et al. 1994). The times taken to induce mitochondrial membrane potential 

collapse and hypercontracture (signalling ATP depletion) were measured and the values 

obtained under control (untreated) conditions compared with those observed following 

drug treatment.
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3.8 Western Blotting

3.8.1 Tissue preparation

Mouse hearts were isolated and Langendorff perfused as previously described (Chapter 

3.4) except that the period of reperfusion was shortened. Thus, hearts underwent 30 

minutes of stabilization followed by 35 minutes of global ischaemia and 5 or 10 minutes 

of reperfusion. After the termination of reperfusion, the hearts were removed from the 

Langendorff apparatus and immediately freeze-crushed in liquid nitrogen using a pre

chilled Wollenberger clamp. The hearts were then stored at -80°C for later analysis.

3.8.2 Protein extraction

Each heart was homogenized on ice in 0.6ml of suspension buffer using a Polytron T25 

homogeniser. The suspension buffer consisted of NaCI 100 mM, TRIS 10 mM (pH 7.6), 

EDTA 1 mM (pH 8.0), sodium pyrophosphate 2 mM, sodium fluoride 2 mM, 

glycerophosphate 2 mM; 4-(2-aminoethyl)benzenesulfonylfluoride hydrochloride 

(AEBSF HCI) 0.1 mg/ml, and Sigma proteases inhibitor cocktail. The homogenate was 

then centrifuged for 10 minutes at 10,000 rpm at 4°C and three aliquots of 160 pi of the 

protein-rich supernatant transferred to lockable 2ml Eppendorff tubes. Two of these 

aliquots were frozen at -80°C for future analysis. Two x 5 pi aliquots were removed from 

the final aliquot and used for protein quantification, whilst the remaining 150pl went for 

SDS gel electrophoresis.

The 150 pi samples were diluted with an equal volume of sample buffer consisting of 

100mM TRIS (pH 6.8), 10 % SDS, bromophenol blue 0.2%, glycerol 20% and 200mM 

dithiothreitol (DTT) and then placed in a heating block for 10 minutes at 100°C to 

denature the proteins. The denatured samples were stored at -80°C for subsequent 

electrophoresis.
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3.8.3 Protein Estimation

The protein contents of extracted tissue samples were estimated using a Bicinchoninic 

acid based (BCA™) protein assay reagent system (Pierce, Rockford, USA). The assay 

relies on the reduction of ionised copper and the formation of a BCA-Cu+ complex. In 

this assay the BCA-Cu+ complex turns purple after 30 minutes of incubation, the optical 

density then being measured at a wavelength of 562 nm using a spectrophotometer 

(Janway model 6405 UVA/is, Dunmow, UK). Using this assay the relationship between 

protein content and the absorbance at 562 nm is linear over a wide concentration range 

(20 - 2000 pg/ml). Duplicate samples of increasing concentrations of bovine serum 

albumin (BSA) in suspension buffer 0, 20, 40, 60, 80, pg were used to generate the 

standard curve. Duplicate extracted 5pl protein samples were then quantified using this 

method, and a mean value for each sample recorded. This was compared against the 

standard curve to provide an estimate of the protein concentration (pg/l) and to ensure 

that equal protein loading onto polyacrylamide gels occurred.

3.8.4 Polyacrylamide gel electrophoresis

3.8.4.1 Gel Electrophoresis

The constituent proteins of sample extracts were separated according to molecular 

weight by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The 

samples were loaded side by side into “wells” formed in the gel, the proteins travelling in 

one dimension along the gel.

3.8.4.2 Gel Preparation

SDS gels were formed between two glass plates that had been thoroughly cleaned with 

70% ethanol. The running gel consisted of 24 ml of dH20, 18ml running gel base (1.5M 

Tris, 0.4% SDS in distilled H20 , pH 8.8), 30ml 30% acrylamide, 80 pL TEMED (NNN- 

tetraethylethalinediamine) and 400 pL 10% ammonium persulphate (APS), and after 

pouring were left to set for 30 minutes.
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Plastic combs were used to create the wells into which protein samples were loaded. A 

stacking gel consisting of 7 ml distilled water, 3ml stacking gel base (0.5 M TRIS, 0.4% 

SDS in dh^O, pH 6.8 with HCL acid), 2ml 30% acrylamide, 20 pi 8% bromophenol blue, 

24 pi TMED and 120 pi 10% APS was pipetted above the running gel to fill the area 

around the combs. It took 10 minutes for the stacking gel to set and after this time the 

combs were removed and the gels placed in the electrophoresis apparatus. Running 

buffer was then poured into the top half of the rig (comprising glycine 14.42 g/l, SDS 1.0 

g/l, Tris 3.0 g/l, distilled H20  1.0 L).

The first lane was loaded with a standard reference mixture of proteins (Precision plus 

protein dual colour standards, Bio Rad) with defined molecular weights. Subsequent 

wells were then loaded with 60 pg of cardiac protein extracts. The gel was then placed 

into a vertical electrophoresis tank connected to a water cooling circuit and the tank 

topped up with running buffer. The gels were then run at 200 V for 3-4 hours. The 

electric current applied across the gel, caused the negatively-charged proteins to 

migrate down the gel. Depending on their size, each protein moved differently through 

the gel matrix: short proteins pass more easily through the pores in the gel, while larger 

ones have more difficulty and remain closer to the point of origin. Satisfactory 

electrophoresis was confirmed by migration of the bromophenol blue maker.

3.8.4.3 Protein Transfer

The gels were placed in a protein transfer tank containing transfer buffer: transfer buffer 

stock solution (glycine 144.2 g, Tris 30.3 g, distilled water 1 litre) 100mls, methanol 

200ml and 700ml of distilled water. In order to render the proteins accessible to 

antibody detection it is necessary to transfer them from the gel onto a nitrocellulose 

membrane (Hybond ECL membrane (Amersham)). To achieve this, membranes were 

placed on top of the gels, through which a current was applied. The charged proteins 

then moved from within the gel onto the membrane whilst maintaining the position they 

had on the gel. Transfer was allowed to occur overnight (12-16 hours) whilst maintaining 

the current at 140mA.
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3.8.4.4 Antibody Probing

Following protein transfer nitrocellulose membranes were placed in plastic containers on 

a mechanical shaker and washed with a washing buffer (50 ml 10 x TBS, 450 ml 

deionised water and 0.5 ml Tween-20 (Sigma). To prevent non-specific interactions 

between the proteins on the membrane and the antibodies used for detection of the 

target protein, a blocking buffer was applied (TBS and Tween with 5% Marvel (dried 

skimmed milk powder)) and the membranes rocked gently on a rocking platform for 5 

minutes. Membranes were then washed three times with TBS+Tween.

The primary antibody solution (5% BSA in TBS+Tween plus the antibody at a 1:250 

dilution) was applied to the membranes which were placed on the rocking platform for at 

least 3 hours. The primary antibody was then removed and the membranes washed 

three times for five minutes with TBS+Tween.

Secondary antibody solution was then used to detect the primary antibody and allowed 

to wash over the membranes for at least 1 hour. The secondary antibody used was 

affinity purified goat anti-rabbit IgG (H&L) conjugated to horseradish peroxidase (Cell 

Signalling); for P-Actin a rabbit polyclonal to mouse IgG (H&L) conjugated to horseradish 

peroxidase (Abeam Ltd. Cambridge) was employed. P-Actin is one of the most abundant 

proteins in eukaryotic cells and was used as an internal standard for the correction of 

sample protein densitometry readings i.e. differences regarding gel protein loading. A 

final set of three five minute washes was then performed before applying an enhanced 

chemi-luminescent (ECL) Western blotting detection reagent. This allowed visualisation 

of the protein bands on exposure of the membrane to Kodak Omat XR photographic 

film. The film was developed using a Kodak XOMAT 1000 Film Developer (Serial No. 

2225; Kodak House, Hemel Hempstead, HP11JU).

3.8.4.5 Stripping and re-probing

To allow analysis of phosphorylated, total and p actin proteins, membranes were 

stripped of the previous antibody before re-probing. The membranes were stripped 

using a 0.2M solution of NaOH which was poured onto the membrane whilst on the 

rocking platform and then washed off using distilled water after five minutes. Membranes 

were not stripped more than twice to prevent excessive loss of bound proteins which
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can occur as a result of the stripping process and lead to a slight degradation in signal 

quality on probing and development. After washing with three-four changes of distilled 

H20  the process described above in Antibody Probing 2.8.4.4 was followed.

3.8.4.6 Densitometry of protein bands

The quantification of protein bands was carried out using The National Institutes of 

Health (NIH) Shareware programme; NIH Image (version 1.63).The photographic films 

were scanned onto a computer using a flatbed document scanner. These images were 

converted to greyscale images and using a specific gel-plotting programme the relative 

densities for the individual protein bands calculated.
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3.8.5 Statistical Analysis

All results are presented as group means ± standard error of the mean (SEM). For 

comparison between two groups, data were compared with Student’s unpaired t-test. 

For comparison between more than two groups, factorial one way analysis of variance 

(ANOVA) was employed. Where a significant F-value was obtained, the Fishers 

protected least significance difference (PLSD) post hoc test was applied for between 

group comparisons. Results were considered significant when P<0.05. All statistical 

analysis was carried out on a Power Macintosh computer, using Statview statistical 

software (Version 4.5, Abacus Concepts Inc.).
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4 MODEL CHARACTERISATION

4.1 Ischaemic reperfusion model

The use of an accurate reproducible model is fundamental to the investigation of the 

mechanisms involved in ischaemic reperfusion injury. In order to validate the 

methodology a series of characterisation experiments were carried out to establish the 

optimal durations for ischaemia and reperfusion. As infarct size was to be used as the 

primary end-point in all studies the protocol used needed to be easily reproducible thus 

allowing accurate assessment of changes in infarct size. From this we were able to 

ascertain the optimal ischaemia/reperfusion period for consistent and accurate results 

within a practical time-frame.

4.2 The effects of global ischaemia

A murine model was chosen for these studies because of the possibility of using 

transgenic mice for further investigations. Male Swiss White mice aged between 12-16 

weeks and weighed between 20-30g were used in all experiments. The challenging 

nature of the murine Langendorff model meant in order to reduce the losses of a more 

expensive mouse strain i.e. C57 BI/6J, Swiss White mice were employed in the initial 

learning phase of the technique.

Due to the technically demanding nature of using a mouse Langendorff model, global 

ischaemia was applied as opposed to regional ischaemia In larger rodent and animal 

models regional ischaemia is used due to the obvious ease of identifying and ligating an 

arterial vessel. This is not possible with any degree of accuracy when using an isolated, 

contracting murine heart. Initially, the effect of varying global ischaemic time was 

investigated, so that a time period which yielded reproducible infarct sizes could be 

established. The infarct size also had to be sufficiently large that the effects of a 

mediator of reperfusion injury could be accurately assessed.

Three ischaemic time periods were studied, with the addition of a sham treatment in 

which hearts were followed through the total time course of the experiment without 

undergoing infarction. The experimental protocol consisted of a stabilisation period of 30
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minutes 35, 40 or 60 minutes ischaemia and 35 minutes reperfusion. This protocol was 

in keeping with previous characterisation studies from this laboratory (Sumeray & 

Yellon 1998), Figure 4-1. The operative mortality rate in the Langendorff model was 15% 

and was evenly distributed between the groups.

ReperfusionIschaemiaStabilisation

30 minutes 35- 60 minutes 35 minutes

V
Heart Isolation and the onset 

of perfusion
Determination of Infarct size 

by TTC staining

Figure 4-1 Protocol for global ischaemia and reperfusion.

The timeline illustrates the experimental protocol used for the characterisation of the effects of global 

ischaemia and reperfusion on infarct size in isolated mouse hearts. Hearts were randomised to 35 

minutes, 40 minutes and 60 minutes of ischaemia after 30 minutes of stabilisation, followed by 35 minutes 

reperfusion.

Infarct size at 35 minutes of index ischaemia was 35.91% ± 2.52 (mean ± SEM) , whilst 

at 40 minutes and 60 minutes infarct sizes were 49.63% ± 4.38 and 73.18% ± 2.72, 

respectively (n=5-7), see Figure 4-1.
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0 35 40 60

Ischaemic time (min)

Figure 4-2 Effects of increasing index ischaemia time on infarct size

Infarct size, as a percentage of the risk zone (l/R %), in isolated mouse hearts following 35, 40 and 60 

minutes of index ischaemia (n=5-7).

The sham protocol Figure 4-3 in which hearts were taken through the complete 

experimental period without the induction of ischaemia (0 minutes ischaemia) revealed 

an infarct size of 6.5% ±4.14 (n=4)(see Figure 4-2)
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Stabilisation Perfusion

30 minutes 70 minutes

Heart Isolation and the onset 
of perfusion

Determination of Infarct size 
by T T C  staining

Figure 4-3 Sham protocol

The timeline illustrates the protocol used to assess the effects of continuous perfusion on infarct size.

These data demonstrated one of the fundamental properties of the model employed i.e. 

that hearts subjected to a Langendorff protocol are in a slow but constant state of 

deterioration. The reasons for this deterioration are multifactorial, but it is primarily due 

to a deficiency of key blood-borne elements and progressive tissue oedema (Headrick et 

al. 2001).

4.3 Mouse strain and myocardial ischaemic injury

The initial characterisation experiments utilised the Swiss White strain of mouse. 

Subsequent studies were however carried out using C57 BI/6J inbred mouse. The C57 

BI/6J is used as the basis for many genetic variants and it was felt that given the 

potential influence of genetic and environmental factors on infarct size it too should be 

characterised before use. Hence isolated hearts from both types of animal (i.e. Swiss 

white and C57 BI/6J) were compared with respect to susceptibility to infarction following 

the standardised ischaemia/reperfusion regime.

Five adult male mice aged 2-3 months from each group were subjected to 35 minutes 

global ischaemia and 35 minutes reperfusion prior to infarct size determination (for 

protocol see Figure 4-1.) Significantly, Swiss White and C57 BI/6J appeared to posses 

different sensitivities to lethal ischaemic injury. Hearts from Swiss White mice had a 

mean infarct size of 35.91% ± 2.52, whereas the C57 BI/6J strain had a significantly
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larger mean infarct size of 52.03% ± 4.38 (p<0.01 n=5) see Figure 4-4. Differences 

between strains of rodents as regards infarct size have been reported previously (Baker 

et al. 2000), however possible mechanisms underlying these differences were not 

discussed. In the light of this, further studies were carried out into the effects of pre - 

conditioning in the two strains
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Figure 4-4 Susceptibility of mice strains to infarct size.

Hearts from C57 BI/6J and Swiss White were subjected to an identical standardised 

ischaemia/reperfusion regime as previously described. In brief, hearts were perfused on the Langendorff 

rig and allowed to stabilise for 30 minutes. The hearts were then subjected to a 35 minute, normothermic, 

global ischaemic insult prior to reperfusion for 35 minutes. At this point the experiment was terminated and 

the hearts stained with TTC to determine infarct size (**p<0.01 n=5).
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4.4 The effects of preconditioning

Ischaemic preconditioning of the myocardium is one of the most powerful protective 

strategies that can be applied in mammalian species (Bell & Yellon 1998). Therefore, in 

order to fully characterise hearts from both the Swiss White and C57 BI/6J strains, their 

susceptibility to preconditioning was examined. The preconditioning protocol hearts 

were subjected to consisted of 4 cycles of 5 minutes of ischaemia and 5 minutes of 

reperfusion whilst control treated hearts underwent a time-matched perfusion period 

Figure 4-6 (Sumeray & Yellon 1998).

The results are summarised in Figure 4-7 and Figure 4-8. Significant protection was 

observed in both experimental groups. Preconditioning in hearts from Swiss White mice 

resulted in a 39.9% reduction in infarct size (49.52 ±7.11 and 29.77 ± 3.32 in controls 

and preconditioned hearts, respectively, p<0.05).

I Infarction 
Control heart slices /

•  •  •  •  •
Preconditioned heart slices 25mm2

Figure 4-5 Swiss White heart slices.

Comparison of control vs. preconditioned hearts after slicing and TTC staining. The slices show the areas 

of white, non- stained, infarcted tissue, and red stained, non-infarcted tissue.
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Stabilisation Preconditioning
4 cycles of 5 minutes 

ischaemia and 
reperfusion

Ischaemia Reperfusion

20 minutes 40 minutes 40 minutes 35 minutes

V
Heart Isolation and the onset 

of perfusion
Determination of 
Infarct with TTC

Stabilisation Control Ischaemia Reperfusion

20 minutes 40 minutes 40 minutes 35 minutes

Heart Isolation and the onset 
of perfusion

Figure 4-6 Preconditioning and control protocol

The timeline illustrates the control and preconditioning protocols used in hearts from Swiss White and C57 

BL/6J mice. Hearts were randomly assigned to control or ischaemic preconditioning (IPC) groups. 

Ischaemic preconditioning consisted of 4 cycles of 5 minute ischaemia and 5 minutes reperfusion. In 

controls, in place of the ischaemia preconditioning protocol, the hearts were instead perfused for a further 

40 minutes prior to index ischaemia. All hearts were reperfused for 35 minutes prior to determination of 

infarct size by TTC staining.
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preconditioned Control

Figure 4-7 Preconditioning of hearts from Swiss White mice

Preconditioning in hearts from Swiss White mice resulted in a 39.9% reduction in infarct size (*p<0.05 

n=5).

Significant protection was also observed with hearts from C57 BI/6J mice, a 59.9% 

reduction in infarct size being observed (52.02% ± 4.38 to 20.85% ± 1.55 in controls and 

preconditioned respectively, p<0.001) Figure 4-8 . These experiments revealed that 

hearts from Swiss White mice were more resistant to ischaemia then hearts from the 

C57 BI/6J, Figure 4 6.
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preconditioned control

Figure 4-8 The effects of preconditioning on hearts from C57 BL mice

The graph shows the effects of preconditioning on infarct size using C57 BI/6J strain of mouse when 

compared to control (***p<0.001 n=5).

4.5 Determination of the optimal reperfusion period

The final set of characterisation experiments entailed an examination of the effects of 

varying the reperfusion time on infarct size. Previous studies in mouse hearts have 

shown that 30 minutes of reperfusion is adequate for accurate determination of infarct 

size by TTC following an injurious 30 minute ischaemic insult. Prolonging the 

reperfusion period was found to have minimal influence upon measurable infarction 

(Marber et al. 1995; Sumeray et al. 1998). However, in animal models other than 

mouse, a minimum reperfusion reperfusion period of 2 hours was found to be required 

for accurate assessment of infarct size (Ytrehus et al. 2000). This probably relates to the 

fact that in some models longer periods of time are necessary for efficient washing out
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of dehydrogenase enzymes from necrotic cells with incompetent sarcolemmal 

membranes. The apparent discrepancy between the required reperfusion times in the 

mouse compared to other animal models may also, in part, be explained by the 

comparatively high flow rate per unit mass of myocardium in the mouse (25 ml/g heart 

weight/minute in mouse versus 4 ml/g heart weight/minute in rabbit heart). Therefore to 

ensure that under our conditions infarct size was not influenced by reperfusion time and 

that a short reperfusion time is adequate for the purposes of subsequent experiments, 

hearts were reperfused for 35 minutes or 120 minutes. Isolated hearts from adult male 

C57 BI/6J mice were used and subjected to the protocols shown in Figure 4-9.

Stabilisation Ischaemia Reperfusion

30  minutes

Heart Isolation and the onset 
of perfusion

35 minutes 3 0 -  120 minutes

Determ ination of Infarct size 
by T T C  staining

Figure 4-9 Perfusion protocol with increasing reperfusion time

The timeline illustrates the experimental protocol used to investigate the effects of increasing reperfusion 

time on infarct size. Hearts were randomised to either the shorter or longer reperfusion period after 30 

minutes of stabilisation, and 35 minutes of normothermic ischaemia.

The infarct data is summarised in Figure 4-10. Prolonging the reperfusion period had no 

influence upon infarct size, infarct size at 35 minutes being 52.03% ± 4.38 and at120 

minutes 50.7% ± 7.13 (p=0.868). The absence of any statistical difference between the 

results obtained for the two reperfusion times suggests that the injury sustained during 

ischaemia/reperfusion occurs early on and is resolved by 35 minutes reperfusion. 

Consequently, subsequent studies did not employ the longer reperfusion protocol, 35 

minutes reperfusion being used as standard.
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Figure 4-10 the effects of reperfusion time on infarct size

No significant difference in infarct size was observed between hearts reperfused for 35 or 120 minutes 

(p=0.868, n=6-9).
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4.6 Discussion

4.6.1 Characterisation of the study model

Characterisation of the ischaemia/reperfusion model enabled an accurate and 

reproducible protocol to be established. Hence, the times for ischaemia and reperfusion 

finally selected corresponded to the time points found to yield the most consistent data.

Functional data (heart rate and left ventricular developed pressure) for recovery, 

although recorded, were not found to be valid parameters for the establishment of the 

optimal duration for ischaemia, owing to the susceptibility of the mouse heart to 

“stunning”. Post-ischaemic dysfunction occurs following a severe but brief ischaemic 

insult, despite the absence of irreversible tissue damage and the restoration of adequate 

blood flow, and is thought to occur due to the slow recovery of intracellular ATP 

concentrations (Kloner et al. 2001). Since permanent damage has not occurred to the 

myocardium contractile function will be restored with time. This recovery, however, may 

take hours or even days (Brunwald and Kloner 1982), therefore diminishing the reliability 

of post-ischaemic functional analysis in the context of the Langendorff perfused heart.

4.6.2 Final Protocol

As hearts from C57 BI/6J mice exhibited larger infarcts than hearts from Swiss White 

animals, coupled with the fact that future investigations are planned in genetic variants 

of the C57 BI/6J mouse, all apelin studies were conducted using this breed. The 

standard protocol adopted for infarct studies involved subjecting hearts to 30 minutes 

stabilisation followed by 35 minutes global ischaemia and 35 minutes reperfusion.

73



5 EFFECTS OF APELIN ON REPERFUSION INJURY

5.1 Aims

Apelin has been shown to have a direct effect on cardiac contractility in the isolated rat 

heart model (Szokodi et al. 2002). Apelin also improves cardiac function and reduces 

myocardial injury in hearts treated with isoproterenol (Jia et al. 2006). In addition, apelin 

has been shown to activate PI3K/AKT and P42/44/ERK (Masri et al. 2002, Masri et al. 

2004, El Massari et al. 2004, Wang G et al. 2004, Llorens-Cortes et al. 2005), key 

kinases involved in anti-apoptotic processes and cell growth. The actions of apelin, 

however, have not been investigated with respect to myocardial ischaemia/reperfusion. 

Based on these findings it was hypothesised, therefore, that apelin may prove to be 

cardioprotective via the induction of the RISK pathway.

5.1.1 Apelin isoforms

In order to assess the potency of apelin-13 in our experimental system experiments 

were conducted in which the effects of varying concentrations of the peptide on the 

primary end-point of infarct size were examined. Consequently, a concentration 

response curve was constructed to identify the most appropriate dose for subsequent 

studies. Thus, using this dose possible mechanisms underlying protection against 

myocardial injury were investigated using inhibitors of RISK pathway signalling and 

Western blot analysis. Apelin is found in various isoforms, which are cleaved from a 77 

amino acid preproapelin peptide. Of these smaller isoforms, i.e. apelins 11, 12, 13, and 

36, the latter two have been studied in most detail. Apelin 36 is the commonest isoform 

and previous studies have indicated that it differs from the smaller peptide, apelin-13, in 

its biological potency (Hosoya et al. 2000). The decision was, therefore, made to 

investigate if differences also existed between apelin-13 and apelin-36 in the context of 

l/R injury.

Potential, differences were additionally investigated by examining the effects of the 

apelin analogue apelin-13 (F13). Work carried out by Lee et al. (2005) focused on the 

influence that modification of the carboxyl- terminal phenylalanine group of apelin-13 

had on its physiological activity.
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Apelin 13

N~ ( Gin XArg X Pro X Arg XLeuXSerXHis X Lys X Gly X Pro X Met Y Pro Phej --CO O H

Apelin 36

Arg

Ser

Apelin-13(F13)

Figure 5-1 Sequence of apelin-13 and 36 and the analogue apelin-13(F13).

The light blue circles indicate the conservation of sequences seen across species and isoforms. The light 

green circle indicates the substitution reported to antagonise the hypotensive effects of apelin-13

Previously it had been shown that a similar modification to angiotensin II yielded the 

angiotensin II antagonist Saralasin (Pals et al. 1986). Apelin-13(F13) was, therefore, 

synthesised by substituting alanine for phenylalanine on the carboxyl-terminal of the 

peptide. This modification was found to result in blunting of the hypotensive response to 

apelin-13, indicating that apelin-13 (F13) functioned as a pharmacological antagonist for 

apelin-13 (Lee et al. 2005). In light of these previous findings, experiments were carried 

out to investigate the hypothesis that apelin-13 (F13) may antagonise any 

cardioprotective effects induced by apelin-13.
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5.2 Methods

5.2.1 Langendorff Model

5.2.1.1 Apelin-13 concentration response

The concentrations of apelin used in various cellular and animal models have been wide 

ranging (Tatemoto et al. 1998, Reaux et al. 2001, Tatemoto et al. 2001, Xie et al. 2006). 

No experiments using the mouse isolated Langendorff model, however, have been 

carried out previously, so in order to establish the optimal apelin-13 concentration for 

experimental use, varying concentrations of peptide were given at reperfusion and the 

effects on infarct size assessed. A standard control protocol was used as described in 

Chapter 4.2 for comparison with the apelin-13 test group. Thus 30 minutes of 

stabilisation was followed by 35 minutes of ischaemia whereupon apelin was 

administered at the point of reperfusion which was continued for 35 minutes (see Figure 

5-2). Apelin concentrations of 10 nM, 50 nM, 100 nM and 1000 nM were tested.

Stabilisation Ischaemia Reperfusion

30 minutes

Heart Isolation and the onset 
of perfusion

35 minutes A 35 minutes

Reperfusion Apelin 13 

10-1000nM

V
Determination of Infarct size 

by TTC  staining

Figure 5-2 Protocol for apelin dose response

The timeline shows the experimental protocol used for the assessment of the dose response to apelin-13 

(10-1000nM). Apelin was given at the point of reperfusion after 35 minutes of ischaemia.

5.2.1.2 Inhibition of PI3K/AKT and p42/44 MAPK

Once the optimal cardioprotective dose for apelin had been established, potential 

mechanisms underlying the apelin-induced reduction in infarct size were investigated. 

Thus, specific inhibitors of kinases suspected of being involved were employed.
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LY294002 (15pM) a specific PI3K/AKT inhibitor, and U0126 (10pM), an inhibitor of the 

p42/44/ERK pathway, were utilised in order to see whether the level of protection was 

affected. The dose of each inhibitor was selected on the basis of previous studies (Smith 

et al. 2007, Hausenloy et al. 2004, Mocanu et al.2002). Each inhibitor was used with or 

without apelin and the effects on infarct size assessed. The protocol used was identical 

to that for the apelin concentration experiments, with changes only being made to the 

composition of the reperfusion buffer (see Figure 5-3).

Stabilisation ReperfusionIschaemia

30  m inutes 35 m inutes A 3 5  minutes

V
Heart Isolation and the onset 

of perfusion

Reperfusion LY 294002  /  U 0 1 2 6  

with or without A pelin-13 1 microM

Determ ination of Infarct size  
by T T C  staining

Figure 5-3 Protocol investigating the effects of inhibitors of the RISK pathway on infarct size

The timeline illustrates the experimental protocol for investigating the effects of the inhibitors LY294002 

(15pM) and U0126 (10pM) with or without apelin-13 (1pM) on infarct size. All hearts were Langendorff 

perfused for a 30 minute stabilisation period prior to index ischaemia. Hearts were then subjected to 35 

minutes ischaemia. After index ischaemia hearts were randomly assigned to 35 minutes reperfusion with 

LY294002 (15pM) or U0126 (10pM) with or without apelin-13 (1pM), prior to determination of infarct size 

by TTC staining.

Both LY294002 (15pM) and U0126 (10pM) were dissolved in dimethylsulphoxide 

(DMSO; final concentration 0.02%) prior to use and to exclude any possible effect of the 

vehicle alone, a further experimental group was examined in which DMSO (0.02%) was 

applied.
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5.2.1.3 Apelin-36

In order to study the effects of apelin-36 a protocol identical to that used in apelin-13 

concentration response experiments was used. Mouse hearts underwent a standard l/R 

protocol with or without apelin-36 (1pM).

IschaemiaStabilisation Reperfusion

30 minutes 35 minutes A 35 minutes

Heart Isolation and the onset 
of perfusion

Reperfusion Apelin 36 Determination of Infarct size  
by T T C  staining

Figure 5-4 Protocol for reperfusion with apelin-36

The timeline illustrates the experimental protocol for investigating the effects of apelin-36 on ischaemia- 

reperfusion injury. All hearts were Langendorff perfused for a 30 minute stabilisation period prior to index 

ischaemia. Hearts were then subjected to 35 minutes ischaemia. After index ischaemia hearts were 

subjected to 35 minutes reperfusion with or without apelin-36 (1pM), prior to determination of infarct size 

by TTC staining.

To investigate the effects of apelin-F13 (1pM) hearts were perfused with the antagonist 

prior to perfusion with apelin-13 (1pM). The modifications made to the standard protocol 

are shown in Figure 5-5. Apelin-13 (F13A) (1pM) was given prior to the onset of 

ischaemia in order to ensure that full occupancy of the APJ receptor occurred prior to 

ischaemia with subsequent reperfusion with apelin-13 (1pM), therefore, being 

antagonised.
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Apelin F13 Ischaemia Apelin 13 Reperfusion

20minutes 35 minutes A 35 minutes

Heart Isolation and the 
onset of perfusion

Stabilised 10mins

Reperfusion Apelin 13 

1000nM

Determination of 
Infarct size by TTC 

staining

Figure 5-5 Perfusion with apelin-F13 prior to reperfusion with apelin-13

The timeline illustrates the experimental protocol used to investigate the effects of perfusion with apelin- 

13(F13) (1pM) prior to ischaemia and reperfusion with apelin-13 (1pM). 10 minutes of stabilisation was 

followed by perfusion with apelin-13 (F13) (1pM). This continued for 20 minutes before the induction of 

global ischaemia for 35 minutes. Apelin-13 (1pM) was then administered at reperfusion and throughout 

the whole of this period and infarct size determined by TTC staining. In controls, in place of apelin, hearts 

were perfused with normal Krebs buffer.

5.2.2 Western Blot Analysis

The effects of apelin-13 on the activation of the protective kinases PI3-K-Akt and 

p42/44ERK were studied. To establish the point at which maximal phosphorylation of 

these kinases occurred hearts were reperfused for 5 or 10 minutes before being frozen 

for subsequent analysis (Xie et al. 2006). The protocol employed is shown in Figure 5-6. 

Once collected cardiac samples were subjected to Western blot analysis, as described 

in Chapter 3.8.
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Stabilisation Ischaemia Reperfusion

5 or 10 minutes

30 minutes 35 minutes

Removed and snap frozen

Heart Isolation and the onset 
of perfusion

Figure 5-6 Protocol for the collection of samples for Western blot analysis

The timeline shows the protocol used for the collection of samples for Western blot analysis. Hearts were 

subjected to either a 5 minute or 10 minute reperfusion period.
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5.3 Results

5.3.1 The effect of apelin administered at reperfusion on infarct size

5.3.1.1 Concentration response to apelin-13

The concentration dependent effect of apelin-13 (10nM, 50nM, 100nM and 1000nM), 

administered at reperfusion, on infarct size is shown in Figure 5-7 .

60 -i

T

Control apelin-13 10nM apelin-13 50nM apelin-13 100nM apelin-13 1000nM
Concentration

Figure 5-7 Dose response to apelin-13 (10-1000nM)

Infarct size, as a percentage of the risk zone (% l/R), in isolated mouse hearts perfused with apelin-13 (10 

nM-1000nM) during reperfusion (35 min) (*p<0.05, n=8-10).

It can be seen that at the lower concentrations apelin did not statistically alter infarct size 

compared to control, although a slight trend towards reduced infarction occurred as the 

peptide concentration was increased. At the highest concentration, i.e. 1000nM (1pM), 

apelin afforded significant protection with an infarct size of 31.4% ± 4.03 for apelin-13 

versus 52.93% ± 4.79 for control *p<0.05. The effect of apelin-13, therefore, was to 

reduce infarct size by 40% compared with control. Given this result apelin-13 was used 

at a concentration of 1 pM for all subsequent experiments.
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5.3.1.2 The effect of apelin-36 on infarct size

The results of experiments with apelin-36 are shown in Figure 5-8 and reveal that 

apelin-36, like apelin-13, also reduced infarct size compared to control, although not to 

the extents seen with the shorter isoform (apelin-36, 38.4%± 3.02, p<0.05, apelin-13, 

31.4± 4.03, vs. control 52.93% ± 4.79, p<0.01).

apelin-36 1000nM apelin -13 1000nMControl

Figure 5-8 The influence of apelin-36 and 13 on infarct size.

The graph shows the effects of apelin-13 (1000nM) and apelin-36 (1000nM) on infarct size. Both isoforms 

provide significant protection when compared to control (**p<0.01 and *p<0.05 respectively, n=6-9)

Mean infarct sizes obtained on application of apelin-36 and apelin-13, were, however, 

not significantly different (38.4% ± 3.02 vs. 31.40% ± 4.03 p=0.17).
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5.3.1.3 The effects of inhibitors of PI3K and ERK on apelin-13 induced protection

In order that the mechanisms underlying the protective effects of apelin-13 might be 

investigated, inhibitors of PI3-K and ERK were used with the aim of establishing if the 

RISK pathway played a role. LY294002 (15 pM) and U0126 (10pM) were administered 

separately or concomitantly with apelin-13 during reperfusion. Both inhibitors were 

dissolved in DMSO (0.02% final concentration), so a separate group consisting of hearts 

perfused with the vehicle was examined. The data obtained with the RISK pathway 

inhibitors are shown in Figure 5-9.
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Figure 5-9 The influence of inhibitors of the RISK pathway on apelin-induced infarct size reduction

The graph shows the effects of the inhibitors U0126 (10pM) and LY249002 (15pM) administered with or 

without apelin-13 (1pM) on infarct size. (*p<0.05 n=6-9).

The kinase inhibitors alone did not influence infarct size, values for LY294002, U0126 

and control of 46.5% ± 2.84, 53.7% ± 3.85 and 52.93% ± 4.79 respectively being 

obtained. Similarly, the vehicle for both inhibitors, DMSO, had no effect on infarct size 

(45.9% ± 3.80, DMSO vs 52.93% ± 4.79, control). When, however, LY294002 was
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administered together with apelin-13 at reperfusion the protective effect of apelin-13 was 

lost (43.4% ±1.41, LY294002 + apelin-13 vs. 31.40% ± 4.03, apelin-13). U0126 when 

administered together with apelin-13 also blocked the cardioprotective effect of apelin- 

13 (46.3% ± 3.08, U0126 + apelin-13 vs. 31.4 ± 4.03%, apelin-13)

5.3.1.4 The effect of apelin-F13 on apelin-13 induced cardioprotection

The effect of the modified peptide, apelin-F13, on infarct size when administered prior to 

apelin-13 was also examined (see Figure 5-10). Interestingly, an effect opposite to that 

which might have been expected was obtained i.e. apelin-F13 pre-treatment of hearts 

did not prevent the cardioprotective action of apelin-13 compared to controls (22.27% ± 

3.97 vs. 52.93% ± 4.79 p<0.001). In fact, mean infarct size was less in apelin-F13 

treated hearts than that seen with hearts treated with apelin-13 alone, although the 

difference was not statistically significant (22.27% ± 3.97 vs. 31.40% ± 4.03 p=0.162).

Control apelin-13 1000nM apelin-F13+apelin-13 1000nM

Figure 5-10 The effect of apelin-F13 pre-treatment on apelin-13 induced protection.

The graph shows the effects of apelin-13 (1pM) in the absence and presence of apelin-F13 (1pM) on 

infarct size compared to control (**p<0.01 and ***p<0.001 n=7-9).
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5.3.2 Western blot analysis

The results of experiments in which the influence of apelin-13 on the phosphorylation of 

kinases implicated in cardioprotection are described in this section. The data are 

presented as relative densities which have been normalised against (3-actin. The general 

equation used when calculating data was: (relative density [antibody bound kinase]) / 

(relative density P-Actin). Cardiac samples were taken at two points during reperfusion, 

i.e. 5 minutes and 10 minutes, to establish when maximal phosphorylation occurred.

5.3.2.1 PI3K/Akt phosphorylation

5.3.2.1.1 5 minute reperfusion

The administration of apelin-13 increased Akt phosphorylation significantly (apelin-13 

3.95 ± 0.49 vs. control 2.29 ± 0.32 relative density (RD), p<0.05 n=4). This increase was 

lost when the PI3K inhibitor LY294002 was present, pAkt relative densities being 

significantly reduced in both the LY294002 and LY294002+apelin-13 groups when 

compared with control (0.255 ± 0.085, p<0.001 and 0.573 ± 0.132, p<0.001 respectively 

vs. 2.29 ± 0.32 control). The results are shown in Figure 5-11 kDa
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Figure 5-11 Effect of apelin-13 (1pM) on Akt phosphorylation at 5 minutes reperfusion.

Data are presented as relative densitometry (RD) values in a.u. normalised for /3-actin. Values are 

expressed as means ± s.e.m. (**p<0.01 ***p<0.001; n=4)
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5.3.2.1.2 10 minute reperfusion

The relative density data obtained for Akt phosphorylation at 10 minutes reperfusion in 

the presence and absence of apelin-13 revealed no significant difference from control 

(1.26 ±0.104 vs. 1.17 ± 0.141, apelin-13 vs. control, p=0.66). LY294002 treatment, 

however, resulted in a significant decrease in Akt phosphorylation for both the 

LY294002 and LY294002+apelin-13 groups compared with control (0.35 ± 0.050, 

p<0.01 and 0.67 ± 0.099, p<0.05 vs. control 1.26 ± 0.141). The results are shown in 

Figure 5-12
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Figure 5-12 Akt phosphorylation in the presence of apelin-13 (1pM) reperfused for 10 minutes.

Data are presented as relative densitometry (RD) values in a.u. normalised for /3-actin. Values are 

expressed as means ± s.e.m. (*p<0.05 **p<0.01;n=4-7)
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The data obtained for total Akt are shown below (Figure 5-13). Total Akt levels were 

unaffected by any the treatments examined.

Total Akt
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Figure 5-13 Total Akt in the presence or absence of apelin-13 (1pM) reperfused for 10 minutes with 

or without LY294002

Data are presented as relative densitometry (RD) values in a.u. normalised for /3-actin. Values are 

expressed as means ± s.e.m (n=4-7).
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5.3.2.2 P42/44 MAPK phosphorylation

5.3.2.2.1 5 m inutes reperfusion

As for Akt, a significant increase in p42/44 MAPK phosphorylation was observed on 

treatment with apelin-13 for 5 minutes reperfusion (1.29 ± 0.124 vs. 0.78 ± 0.07 apelin 

vs control, p<0.05). The addition of the inhibitor U0126 reduced p42/44 MAPK 

phosphorylation significantly in the absence of apelin-13 (see Figure 5-14).
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Figure 5-14 The effect of apelin-13 (1pM) on p42/44 phosphorylation at 5 minutes o f reperfusion  

with or w ithout U 0126

A smaller relative density was seen with apelin-13 (1 pM) + U 0126 but this was not significantly different 

from control (Apelin-13 + U0126, 0.637 ± 0.11 vs. control, 0.78 ± 0.07 p=0.32) (*p<0.05 **p<0.01, n=4).



5.3.2.2.2 10 m inutes reperfusion

No significant difference occurred between control and apelin-13 treated hearts with 

regard to p42/44 phosphorylation at 10 minutes reperfusion (4.77± 1.23 vs. 3.48± 0.54). 

U0126 blocked p42/44 phosphorylation both in the absence and presence of apelin-13 

(1pM): 2.27± 0.52 vs. 4.77 ±1.23, U0126 vs. control, p<0.05; 0.64 ± 0.23 vs. 4.77 ±1.23 

U0126+apelin-13 vs. control, p<0.05. The results are shown in Figure 5-15.
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Figure 5-15 Effect of apelin-13 (1pM) on p42/44 phosphorylation at 10 minutes reperfusion.

Data are shown as relative density values (a.u.) normalised for /3-actin loading and indicate that U0126 

blocked p42/44 phosphorylation both in the absence and presence of apelin-13 (*p<0.05, n=4-7).
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Total p42/44 MAPK levels were unaffected by any of the treatments applied (see Figure 

5-16).
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Figure 5-16 Total p42/44 M APK in the presence or absence of apelin-13 (1pM) reperfused for 10 

minutes with or w ithout U 0 1 2 6

Data are presented as relative densitometry (RD) values in a.u. normalised for /3-actin. Values are 

expressed as means ± s.e.m (n=4-7).
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5.3.2.3 pAMPK

5.3.2.3.1 5 minutes reperfusion

AMPKa phosphorylation showed a significant decrease on apelin-13 treatment 

compared with control at 5 minutes of reperfusion (4.0 ± 0.227 vs. 1.9± 0.389, p<0.01). 

No significant differences were seen between the values obtained for control samples 

and samples treated with the inhibitors LY294002 and U0126 with or without apelin-13 

(1pM). The results are shown in Figure 5-17.
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Figure 5-17 The influence of apelin-13 (1pM) on AMPK phosphorylation at 5 minutes reperfusion.

Data are shown as RD values (a.u.) normalised for /3-actin loading and indicate that apelin induces 

downregulation of AMPK phosphorylation. Values are presented as mean ± s.e.m. (**p<0.01, n=4).
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5.3.2.3.2 10 minutes reperfusion

The results obtained for the phosphorylation of AMPK in the absence and presence of 

apelin-13 reperfused for 10 minutes are shown in Figure 5-18 and Figure 5-19. Even 

though 17% and 39% reductions in AMPKa phosphorylation were seen with apelin-13 

(1pM) this did not reach statistical significance. There were also no significant 

differences between control values and the values obtained with the inhibitors LY294002 

and U0126 with or without apelin-13 (1pM).
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Figure 5-18 The influence of apelin-13 (1pM) on AMPK phosphorylation at 10 minutes of 

reperfusion in the absence and presence of the PI3K-Akt inhibitor LY294002 (n=4-7).
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Figure 5-19 The influence of apelin-13 (1pM) on AMPK phosphorylation at 10 minutes reperfusion  

in the absence and presence of the p42/44 inhibitor U 0126 (n=4-7).

Total AMPK levels were unaltered by any of the treatments applied (see Figure 5-20 and 

Figure 5-21)
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Figure 5-20 Total AMPK levels following 10 minutes reperfusion with apelin-13 in the absence and 

presence of the PI3K-Akt inhibitor LY294002 (n=4-7).
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Figure 5-21 Total AMPK levels following 10 minutes reperfusion with apelin-13 with or without the 

p42/44 inhibitor U0126 (n=4-7).

Crosstalk between the PI3K-Akt and P44/42 pathways

Further analysis of the Western blot data obtained at 5 minutes reperfusion revealed 

that inhibiting PI3K at the time of reperfusion resulted in the activation of the p42/44 

MAPK pathway (Figure 5-22). A similar picture was seen with the phosphorylation of Akt 

which was increased when the p42/44 blocker U0126 was applied (Figure 5-23). Thus, 

crosstalk appeared to be occurring between p42/44 MAPK and PI3K-Akt.
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Figure 5-22 The effect of apelin-13 (1pM) on p42/44 MAPK phosphorylation in the presence of 

LY294002 or U0126.

Data are shown as relative density values (a.u.) normalised for /3-actin loading and 

indicate that not only is there a significant increase in phosphorylated p42/44 with apelin- 

13 (1 pM) when compared to control, but there is also a significant increase when the 

PI3K-Akt inhibitor, LY294002 is administered in the presence or absence of apelin 

(*p<0.05, n=4)
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Data are shown as RD values (a.u.) normalised for /3-actin loading and demonstrate that apelin-13 (1pM) 

+U0126 significantly increases the phosphorylation of PI3K-Akt (**p<0.01 *p<0.05, n=4).
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5.4 Discussion

5.4.1 Concentration-dependent protection

It was hypothesised that the adipocytokine apelin would protect the myocardium against 

ischaemia-reperfusion injury. The first phase of the study, therefore, was to establish if 

apelin-13 was, indeed, cardioprotective and at what concentration maximal protection 

occurred. The concentration response curve constructed revealed that although a slight 

trend was seen towards reduced infarction with lower apelin concentrations it was the 

highest concentration, i.e. 1pM (1000nM), that provided the most significant protection. 

This concentration of apelin was higher than that reported by other workers to be 

effective in alternative systems (Mitra et al. 2006). The reason for this is unclear but may 

relate to the species used and the apelin isoform administered. Previous studies have 

employed varying concentrations of apelin and in the review by Kleinz and Davenport 

(2005) information relating to the potencies of various apelin peptides in both in vitro and 

in vivo functional assays is presented and indicates wide ranging EC50/IC50 values. In 

the present study it is possible that effects were missed, i.e. peptide concentrations 

between 100nM and 1000nM were not tested and apelin-induced infarct size reductions 

might have occurred over this range. Alternatively, it is possible that higher 

concentrations (>1000nM) of peptide might have produced more marked effects on 

infarct size. Whatever the reasons for the observations made the fact remains that 

effects were seen, albeit with an apelin concentration orders of magnitude greater than 

physiological/pathophysiological levels (Foldes et al. 2003), and equivalent to a 

pharmacological dose.

5.4.2 Isoform-dependent protection

The Langendorff perfused mouse heart model demonstrated that both apelin-13 and 

apelin-36 protected the heart when given at reperfusion. Apelin-13 treatment appeared 

to result in smaller infarct sizes when compared to apelin-36, although the values 

obtained were not statistically different. These data may, however, be consistent with 

previous reports that the biological potency of apelin-13 exceeds that of apelin-36 (Masri 

et al. 2004). It has been shown that apelin is produced as a large prepropeptide (Lee et 

al. 2000) which is processed to yield shorter more biologically active forms. Enzymatic
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cleavage of large precursor molecules leading to the generation of a shorter more active 

peptide is commonly seen in endocrine systems (Rehfeld, 1998; Garden et al. 1999). 

Hence, the data obtained in the current study are in keeping with the consensus that the 

potency of apelin is inversely proportional to its peptide length (Tatemoto et al. 1998, 

Kawamata et al., 2001, Medhurst et al. 2003, Reaux et al., 2001, Beltowski 2006).

5.4.3 The involvement of the pro-survival (RISK) pathways

The study clearly demonstrated that the reductions in infarct size seen with apelin-13 

were associated with PI3K-Akt and p44/42 activation. The inhibition, with appropriate 

chemical inhibitors, of both PI3K-Akt and P42/44 MAPK during Langendorff perfusion 

abrogated the protection afforded by apelin-13. These findings were substantiated by 

Western blot analysis, although, interestingly, the time of sample collection during 

reperfusion influenced the magnitude and statistical significance of the effects observed. 

Samples taken at 5 minute reperfusion revealed that significant phosphorylation of the 

pro-survival kinases had occurred, whilst, by 10 minutes of reperfusion statistical 

significance had been lost. These data suggest that a time window exists during which 

phosphorylation of the pro-survival kinases occurs. When phosphorylation/activation of 

these kinases is maximal during the reperfusion phase is, however, open to conjecture. 

Previous studies have examined the phosphorylation of pro-survival kinases at various 

time points (Masri et al., 2002, Xie et al., 2006, Hashimoto et al., 2006). Apelin treatment 

in osteoblasts has been shown to increase the phosphorylation of Akt after 5 minutes of 

incubation, with maximal activation occurring at 15 minutes (Xie et al 2006). Apelin 

promoted a transient and concentration-dependent phosphorylation of ERK in Chinese 

hamster ovary cells expressing the APJ receptor which peaked at 5 minutes, the signal 

being lost by 60 minutes. Apelin also stimulated myosin light chain kinase 

phosphorylation in vascular smooth muscle cells; peak phosphorylation was seen at 2 

minutes and lost by 10 minutes (Hashimoto et al., 2006).

In the current study it is possible that peak phosphorylation/activation of the pro-survival 

kinases occurred before 5 minutes, and that the window of maximal phosphorylation 

was missed. It is also conceivable that increased kinase phosphorylation is not 

necessarily accompanied by increased kinase activity. In a recent paper from our 

laboratory (Smith et al 2007) the temporal nature of the activation of the RISK pathway
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components was examined. An Enzyme Linked ImmunoSorbent Assay (ELISA) was 

employed to investigate if Akt activity reflected the Akt phosphorylation state. The study 

concluded that under basal conditions of l/R (i.e. in the absence of the cardioprotective 

agent apelin) phosphorylation of the RISK pathway components, Akt and p44/42, 

increased in a time-dependent fashion in the early minutes of reperfusion. These 

increases in phosphorylation were, however not accompanied by increased kinase (i.e. 

Akt) activity. Contrasting with the results obtained under basal conditions, the application 

of apelin not only increased Akt phosphorylation at 5 and 10 min reperfusion but also 

increased Akt activity. It was concluded that maximal phosphorylation of the RISK 

pathway components, and specifically Akt, does not necessarily coincide with maximal 

kinase activity (i.e. Akt) activity. In addition, it was concluded that under basal 

conditions, i.e. in the absence of a cardioprotective agent such as apelin, kinase 

phosphorylation may occur as a result of the heart attempting to protect itself during 

ischaemia, (Smith et al., 2007). Thus, it is only with the addition of cardioprotective 

agents, such as apelin, which stimulate components of the RISK pathway to a sufficient 

extent that protection is observed. An extension of this study would be to carry out 

measurements of p44/42 kinase activity, as well as Akt activity. The recent availability of 

p44/42 ELISA assays will enable these investigations to be conducted and will resolve 

the situation with respect to the relationship between phosphorylation and activation of 

RISK pathway components and cardioprotection.

The influence of the PI3K-Akt and p42/44 kinase inhibitors LY294002 and U0126 on 

apelin-36 induced reductions in infarct size and kinase expression were not investigated. 

The main reason for this was that apelin-13 was more potent than the longer isoform 

with respect to cardioprotection, and therefore further investigation was deemed not 

necessary.
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5.4.4 Apelin-F13

Previous work has suggested that manipulation of the N-terminal end of apelin 

influences its binding affinity to the APJ receptor and therefore its biological potency 

(Lee et al 2005). Thus, modification of this group was found to blunt the hypotensive 

response to apelin-13, leading to the conclusion that apelin-F13 was acting as an 

antagonist to apelin-13 (Lee et al. 2005). In the light of this work, a set of experiments 

was carried out to investigate the hypothesis that apelin-F13 may antagonise the 

cardioprotective effects of apelin-13. Interestingly, however, rather than blocking 

protection, apelin-F13 when given during stabilisation and prior to apelin-13, resulted in 

a greater reduction in mean infarct size compared to apelin-13 alone. This finding may 

have a number of explanations. The study by Lee et al. (2005), for example, focused on 

the actions of apelin-F13 on blood pressure with no data for binding affinities and 

receptor activation being presented. Thus, it is possible that the antagonistic action of 

apelin-F13 on apelin-13 induced hypotension does not involve the same signalling 

pathways that mediate apelin-13’s mitogenic and anti-apoptotic effects. It may also be 

the case that apelin-F13 acts through partial inhibition of the APJ receptor whilst 

allowing stimulation of the pro-survival RISK pathways to occur. Due to limitations of 

time the actions of apelin-F13 were not fully characterised. Such experiments would 

have established whether or not apelin-F13 was itself cardio protective and if co

administration with apelin-13 influenced protection.

5.4.5 Nitric Oxide

Apelin exerts its haemodynamic actions via NO generation. Thus, the hypotensive 

effects of apelin were found to involve endothelial NO release and eNOS 

phosphorylation, and were blocked by L-NAME (Tatomoto et al. 2001, Ishida et al 2004). 

The data obtained in this study, were, however, not consistent with apelin having 

produced its cardioprotective actions through the modulation eNOS activity, i.e. Western 

blot analysis did not indicate that eNOS phosphorylation was increased following apelin 

treatment. Further studies using the inhibitor L-NAME would have clarified the situation 

as to whether NO played a role in the cardioprotective actions of apelin during l/R injury. 

Interestingly, studies carried out in this laboratory on the effects of the adipocytokine
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leptin in l/R injury showed that L-NAME blocked protection (Smith et al. 2006). Leptin, 

like apelin, has been reported to cause activation of NOS in a number of tissues, 

including the heart (Nickola et al., 2000). In the study by Smith et al. (2006), however, a 

similar problem to that encountered with apelin occurred as regards the detection of 

significant leptin-stimulated changes in eNOS phosphorylation. It is possible that in this 

study and the present investigation that the eNOS signal had been dissipated by the 

time the hearts had been removed from the Langendorff apparatus. Further 

experimentation with apelin and L-NAME, however, will establish whether apelin’s 

influence on NO generation has purely haemodynamic consequences or is involved in 

cardioprotection.

5.4.6 AMPK

The metabolic actions of the adipocytokines involve upregulation of AMPK activity 

(Kershaw et al. 2004, Fruhbeck et al 2006). Shibata et al. (2005) have reported that the 

cardioprotective actions of adiponectin involve AMPK activation. The importance of 

AMPK with respect to the cellular actions of apelin has yet to be established. However, it 

is intriguing that in the present study apelin treatment, rather than resulting in increased 

AMPK activity, was found to cause significant reductions in phosphorylated AMPK 

levels. Total AMPK levels were also reduced but not to a significant extent. These 

observations are reminiscent of previous findings from this laboratory regarding leptin; it 

was found that leptin-induced myocardial protection was associated with decreased total 

AMPK tissue contents (Smith et al., 2006). One explanation put forward for these 

reductions was that downregulation of total AMPK had occurred as a consequence of 

cross-talk between AMPK and p44/42, based on the observation that the leptin-induced 

decrease in total AMPK was abrogated in the presence of the p44/42 inhibitor U0126. A 

substantial body of evidence now exists for cross-talk between AMPK and various cell- 

signalling pathways. Kovacic et al. (2003) obtained evidence for cross-talk between the 

AMPK and Akt pathways and demonstrated that Akt activation led to decreased AMPK 

activity (Kovacic et al 2003). Meanwhile, in vascular smooth muscle evidence for cross

talk between p44/42 MAPK and AMPK was obtained (Rubin et al 2005). The results of 

the present study are in agreement with this finding i.e. decreased AMPK 

phosphorylation being coupled with Akt activation and probably occurring as a result of
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cross-talk between Akt and AMPK pathways a phenomenon previously reported for Akt 

and p44/42 (see section below).

5.4.7 Crosstalk between PI3K and P42/44

The phenomenon of cross-talk between the RISK pathway components in which 

inhibition of one kinase results in the activation of another and vice versa, has been 

observed in tissues other than the heart, including the lens (Harada et al 2001) and 

neuronal cells (Van Der Heide et al 2003). The results of the present study confirmed 

that inhibiting PI3K, using LY 294002, at the time of reperfusion resulted in the activation 

of the p42/44 MAPK pathway. Interestingly, this cross-talk between the kinase cascades 

was not associated with cardioprotection, which suggests that the phosphorylation of 

both kinase cascades may be required at the time of reperfusion to mediate 

cardioprotection. In addition, it did not appear to be equal in that inhibition of MAPK 

p42/44 with U0126 did not significantly increase the phosphorylation of PI3K-Akt whilst, 

by contrast, inhibition of PI3-Akt with LY294002 at the time of reperfusion resulted in 

significant p42/44 phosphorylation. These findings suggest that crosstalk between 

kinase cascades are not balanced and that in the scenario of cellular survival, the PI3K/- 

Akt pathway is the more dominant cascade. Similar findings were reported by 

Hausenloy et al. (2004) and it was suggested that the MAPK p42/44 cascade may play 

a greater role in mediating growth and hypertrophy, whereas PI3K-Akt is more involved 

in cell survival (Hausenloy et al 2004).

5.4.8 Study limitations

The present study has a number of limitations which should be considered when 

interpreting the data obtained. First, whilst the Langendorff model allows study of apelin 

to the exclusion of other humoural influences, by the same token influences/factors 

which may be important in modulating the actions of apelin, e.g. its paracrine effects, are 

absent. Second, limitations exist as regards the technique of Western blotting, 

particularly in relation to the phosphorylation and activation of the RISK pathway 

kinases. Each blot represents one heart and in some cases large variations in the 

relative density values obtained contributed to non-significant differences between 

groups. Increasing the numbers of heart samples per group might, therefore, have
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reduced this variability and altered the levels of significance obtained. Finally, the study 

relied heavily on the supposed specificity of the pharmacological inhibitors used. Thus, 

the concentrations employed being were the same as previously used in this laboratory 

(Efthymiou et al. 2006) and were well within the concentration ranges reported to 

produce specific kinase inhibition (Vlahos et al. 1994). It cannot, however, be 

categorically stated that these agents do not influence kinase pathways other than RISK 

pathway components.

5.5 Conclusion

In this study it has been demonstrated that apelin-13 and apelin-36, when given during 

reperfusion, protects the heart from l/R injury. These findings are in agreement with data 

obtained previously which indicated that other adipocytokines protected against l/R 

induced injury (Smith et al., 2006, Shibata et al., 2005). In the case of the more 

biologically potent isoform, apelin-13, protection was, importantly, associated with the 

activation of the RISK pathway.

In addition to demonstrating that apelin was cardioprotective, data were obtained which 

provide further evidence for cross-talk between p44/42 and AMPK in the myocardium, 

as well as between Akt and AMPK. It can, therefore, be concluded that the effects 

produced by apelin (and leptin) could indicate that some of the adipocytokines share 

common mechanisms of action, for example, in relation to the modulation of AMPK 

activity.
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6 EFFECT OF APELIN ON MPTP OPENING IN ISOLATED 

ADULT RAT CARDIOMYOCYTES

6.1 Aims

The aim of the studies described in this chapter was to establish whether apelin 

influences the opening of the mPTP and the time to cardiomyocyte contracture. The 

mPTP may constitute an integral part of the machinery of the cell for reducing damage 

and promoting protection (Hausenloy et al., 2004). Recently the link between activation 

of the RISK pathway and prevention of mPTP opening was established with respect to 

cardioprotection (Davidson et al., 2006). Hence, it was hypothesised that apelin has 

direct effects on the mPTP delaying its opening and the time to myocyte 

hypercontracture. Evidence for possible mechanisms of protection was sought using 

inhibitors of the RISK pathway.

6.2 Methods

Rat ventricular cardiomyocytes were used to examine the effects of apelin on mPTP 

opening induced by oxidative stress. The model employed has been used extensively in 

this and other laboratories (Davidson et al. 2006, Jacobson & Duchen 2002) and is 

described in the review by Duchen (2000). Myocytes were isolated as described in 

chapter 3.7. and subjected to laser stimulation leading to mitochondrial reactive oxygen 

species (ROS) production, simulating the ROS production which occurs during 

reperfusion. The fluorescent dye, TMRM, was used to assess mitochondrial 

depolarisation and calculation of the times taken to depolarisation and subsequent rigor 

allowed for comparison between different treatments.

6.3 Protocol

The effect of apelin-13 (1pM) on the times to depolarisation and rigor in the absence and 

presence of the kinase inhibitors MEK 1 and LY294002 was examined. Experiments 

with U0126 were not carried out as it is highly light sensitive and prone to degradation 

as a consequence of laser stimulation. Hence, a selective inhibitor of MEK (MEK 

inhibitor 1), which is upstream of p42/44 MAPK and chemically related to U0126 but
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more stable, was used (Wityak et al., 2004). Pre-incubation with apelin (1pM), with or 

without LY294002 (15pM) or MEK1 (1pM) inhibitor was followed by laser stimulation. 

Pre-incubation with LY294002 or MEK1 alone was carried out to ensure that the 

inhibitors did not influence mPTP opening themselves, and with cyclosporin A (CSA) 

(200nM), a recognised inhibitor of mPTP opening, which was used as a positive control 

(see Figure 6-1 ). Experiments were conducted with a total of 100 rat myocytes isolated 

from at least three hearts.

Laser Stimulation

Incubation TMRM Incubation

Apelin-13

Time to depolarisation 
\y  and rigor

MEK 1 or LY294002 
+/- Apelin-13

Cyclosporin A

Apelin-36

TMRM control

15 minutes 15 minutes

Figure 6-1 Protocols used to study the effects of apelin on mPTP pore opening induced by 

oxidative stress

The timeline of the experimental protocols used to examine mPTP opening under various conditions is 

shown above. All samples were pre-incubated with TMRM for 15 min, followed by 15 minutes incubation 

with the test reagent.
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Figure 6-2 Cardiac myocyte depolarisation signifying mPTP opening and subsequent rigor

This figure shows the wave of depolarisation (1-6) occurring along the myocyte on laser stimulation and 

subsequent hypercontracture.



Figure 6-3 Depolarisation and rigor in an isolated cardiomyocyte.

This figure shows the process of depolarisation and mPTP opening in a single myocyte. The wave of 

depolarisation as it progresses along the myocyte can be clearly seen, along with the shortening of the 

myocyte as ATP becomes depleted and hypercontracture ensues. The times until depolarisation and rigor 

were recorded to allow comparison between treatment groups.

107



6.4 Results

6.4.1 Time to Depolarisation

Under control conditions (i.e. in the absence of drug.) the time that elapsed until the 

onset of complete mitochondrial depolarisation, which corresponds to mPTP opening 

and is indicated by TMRM dequenching (i.e. an increase in cytosolic TMRM 

fluorescence), was 101.2 ± 7.1s (see Figure 6-4). Both Apelin-13 and apelin-36 

significantly delayed the time to mPTP opening (229.9 ± 17.4 s and 195.4 ± 9.6s 

respectively vs. control 101.2 ± 7.1 p<0.001). The involvement of PI3K-Akt and p42/44 

MAPK (components of the RISK pathway) in the effects induced by apelin-13 was 

established in experiments in which cells were incubated with the inhibitors LY-294002 

and MEK1. Thus, the addition of LY249002 and MEK abolished the delay in 

depolarisation such that no significant differences between the results obtained with 

apelin-13 + LY294002, apelin-13 + MEK and control were seen. Experiments with 

cyclosporin A, which acted as a positive control, significantly delayed the time to mPTP 

opening (188.1 ± 18.4 vs control 101.2 ± 7.1, p<0.01)( Figure 6-4)

300 -

control apelin-13 CsA LY LY+apelin-13 MEK MEK+apelin Apelin-36

Figure 6-4 Time to the initiation of mitochondrial depolarization and mPTP opening

Apelin-13, Apelin-36 and cyclosporin all delayed mPTP opening significantly when compared to control 

(**p<0.01, n=6-16)

108



6.4.2 Time to Rigor

The time taken to rigor was significantly extended by apelin-13, apelin-36 and CsA 

compared to control (519.7 ± 38.7s, 502 ± 61.3s and 456.2 ± 33.8s, respectively, vs. 

control 285.8 ± 23.3s p<0.01) (Figure 6-5). Both LY294002 and MEK 1 blocked the 

delaying effects of apelin on mPTP opening, providing further evidence that the actions 

of apelin involve the PI3-K/AKT and p42/44 MAPK signalling pathways (see Figure 6-5). 

None of the inhibitors by themselves influenced the times taken to induce cardiomyocyte 

contracture or mPTP opening as compared to controls (Figure 6-4 and Figure 6-5).

control apelin-13 CsA LY LY+apelir>-13 MEK rigor MEK+apelin-13 Apelin-36

Figure 6-5 Time to the initiation of mitochondrial hypercontracture

The results show that apelin-13, apelin-36 and cyclosporin A all delayed the time to rigor significantly 

when compared to control (**p<0.01, n=6-16)
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6.5 Discussion

Cardioprotection whether induced by ischaemic preconditioning or pharmacological 

agents involves activation of the RISK pathway and appears, ultimately, to be mediated 

through inhibition of mPTP opening (Hausenloy et al. 2003, Schinzel et al. 2005). The 

data presented in this chapter confirm the hypothesis that apelin-induced 

cardioprotection through activation of the RISK pathway occurs via inhibition of mPTP 

opening. This is in concordance with previous studies from this laboratory in which other 

cardioprotective strategies were used (Davidson et al 2006; Smith et al 2006). As seen 

with Langendorff experiments apelin-13 and apelin-36 produced effects in 

cardiomyocytes, both isoforms delaying pore opening. The delay with apelin-36, 

however, was not as prolonged as that seen with apelin-13, therefore lending further 

support for the theory that the shorter isoforms are more biologically active. The 

mechanism, by which RISK pathway activation mediates the inhibition of mPTP 

opening, is not fully understood. Akt may reduce pore opening via the phosphorylation of 

eNOS, which is known to inhibit mPTP opening (Kim et al. 2004). The anti-apoptotic 

action of Akt on the Bcl-2-associated death promoter (BAD) has previously been 

described (Chapter 1.4.2.2), and offers an alternative mechanism by which the mPTP 

may be inhibited (Jonassen et al. 2001). Whatever the pathways operating in cell death, 

pharmacological interventions that can inhibit mPTP opening, such as apelin, provide 

protection from reperfusion injury.

Previous findings from this laboratory have indicated that mice lacking the cyclophilin D 

component of the mPTP exhibit increased resistance to cardiomyocyte mPTP opening 

and reduced myocardial infarcts (Lim et al. 2007). From this we can postulate that the 

suppression induced by apelin and IPC of pathological mPTP opening occurring on 

reperfusion of the ischaemic myocardium is a likely target for cardioprotection.

In this study, apelin-13 and apelin 36, as well as cyclosporin-A, were given at the time of 

reoxygenation, immediately following hypoxia, to target the opening of the mPTP which 

occurs during the first few minutes of reoxygenation/reperfusion. These findings have 

implications for myocardial protection in the clinical setting, as a cardioprotective
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strategy that can be applied during the reperfusion phase is clearly easier to implement 

given the unpredictable nature of acute myocardial infarction. Therefore, in the clinical 

setting of ischemia-reperfusion injury, such as after an acute myocardial infarction or at 

the time of cardiac surgery, intervening at the time of reperfusion offers a 

cardioprotective strategy can be more easily controlled by the clinician 

(Shanmuganathan et al. 2005).

6.5.1 Limitations

It has already been mentioned that a potential mechanism whereby Akt may delay 

mPTP opening is via the modulation of eNOS production. This mechanism could have 

been explored further in the present study using the eNOS inhibitor, L-NAME. 

Employing two additional treatment groups, i.e. L-NAME, and apelin-13+L-NAME, the 

potential role played by eNOS in apelin’s actions on pore opening could have been 

investigated.

As described earlier cardiomyocytes from Sprague-Dawley rat hearts were used for 

these studies. Ideally, cells from C57/BI6J mice should have been used, given that 

Langendorff and in vivo studies with apelin employed this species. In this laboratory the 

development of methods for the efficient preparation of cardiomyocytes from the murine 

heart is currently underway and hopefully in the near future studies with these cells will 

be possible, thus allowing species continuity. The preparation of murine cardiomyocytes 

is, however, technically difficult as these cells are less robust than those from rat heart 

and yields can be poor.

6.6 Conclusion

The mPTP represents a vital element of the intracellular machinery for limiting tissue 

damage (Hausenloy et al., 2004, Argaud et al.2005). Both apelin-13 and apelin-36 were 

shown to delay mPTP opening and cardiomyocyte contracture, the PI3K-Akt and p42/44 

pathways appearing to be involved. In this respect apelin has similarities with leptin 

(Smith et al., 2006) which was shown to produce comparable actions on the mPTP, as 

well as reducing infarct size. The results of the present study, therefore, lend further 

credence to the theory that RISK pathway mobilisation and suppression of mPTP
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opening are key mediators of cardioprotection (Hausenloy et al., 2004, Javadov et al., 

2003, Argaud et al., 2005, Bopassa et al., 2006).

In the future the administration of pharmacological agents which activate these kinases 

and inhibit mPTP opening may prove valuable as adjuvant therapy to current myocardial 

reperfusion strategies such as thrombolysis and primary percutaneous coronary 

intervention, thereby offering further cardioprotection over and above that provided by 

reperfusion itself.

112



7 THE INFLUENCE OF APELIN ON INFARCT SIZE IN VIVO

7.1 Aims

The initial part of this study entailed examining if apelin, when administered 

intravenously, produced any haemodynamic effects. Thus, the aim of these preliminary 

experiments was to establish if apelin could be safely employed in a protocol designed 

to investigate if apelin protects against ischaemia/reperfusion injury in vivo. This work 

was intended to compliment the studies undertaken in the Langendorff heart but also to 

examine the effects of apelin in a more physiological model. The experiments were 

carried out in this laboratory in collaboration with Dr S. Lim, an expert in murine in vivo 

ischaemia/reperfusion modelling.

The in vivo actions of apelin in the mouse have, until now, not been described, although 

the results of infarct studies in other rodent models and, more recently, a sheep model 

have been reported (Lee et al, Tatemoto et al, Charles et al. 2006). Thus, a series of 

experiments were carried out in which the effects of increasing concentrations of apelin- 

13 on mean arterial blood pressure (MABP) and heart rate (HR) were investigated. The 

concentrations of apelin used in previous studies have varied widely, with doses ranging 

between 3 and 15 pg/kg (Lee et al. 2000, 2005, Tatemoto et al 2001, El Massari et al 

2004) producing a fall in MABP. Higher doses of apelin (100-250 pg/kg) administered 

intravenously have been reported to increase MABP, although information on the time- 

course of the effects observed were not presented. Thus, it is unclear whether the 

hypertensive response to apelin preceded a decrease in MABP.

7.2 Methods

C57 BI/6J were anaesthetised by intraperitoneal injection with a combination of 

ketamine, xylazine and atropine (final concentrations of ketamine, xylazine and atropine 

were 10 mg/ml, 2 mg/ml and 0.06 mg/ml, respectively) and body temperature 

maintained at 37°C. The external jugular vein and carotid artery were then isolated and 

cannulated with polyethylene tubing containing heparinised saline (15 U heparin/ml 

0.9% saline) these vessels being used for drug administration and mean arterial blood 

pressure (MABP) measurement, respectively. A tracheotomy was performed for artificial 

respiration which was maintained at 120 strokes/min and a 220 pi stroke volume using a
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rodent Minivent (type 845, Harvard Apparatus, Kent, UK), and supplemental oxygen was 

supplied. A limb lead I electrocardiogram (ECG) was recorded. A left anterior 

thoracotomy and a chest retractor were used to expose the heart. Ligation of the left 

anterior descending (LAD) coronary artery was performed ~2 mm below the tip of the 

left auricle using 8/0 prolene monofilament polypropylene suture. Successful LAD 

coronary artery occlusion was confirmed by the presence of ST elevation and a 

decrease in arterial blood pressure. At the end of reperfusion the heart was isolated and 

the aortic root cannulated and used to inject 2,3,5-triphenyltetrazolium chloride (TTC, 5 

ml of 1%) in order to demarcate the infarcted tissue. The LAD coronary artery was then 

re-ligated and Evans blue dye (2 ml of 0.5%) was perfused to delineate the area at risk 

(AAR). The heart was frozen and sectioned perpendicular to the long axis (1-2 mm 

thick). The slices were then transferred to 10% neutral-buffered formalin for 2 hours at 

room temperature to stabilize the staining. The area at risk (AAR) and infarct size were 

determined by planimetry as described in Chapter 3.6 with the AAR being expressed as 

a percentage of the left ventricle and infarct size as a percentage of the AAR.

7.3 Protocol

In order to assess apelin potency in vivo with regard to haemodynamic parameters the 

peptide was administered at varying concentrations according to the protocol illustrated 

in Figure 7-1

Stabilisation

0 15min 30min 45min 60min
t  t  f t

Saline Apelin-13 Apelin-13 Apelin-13
0.1 mg/kg 0.5 mg/kg 1 mg/kg

Figure 7-1 Experimental protocol for examination of the effects of apelin on haemodynamic  

parameters.

C57BI/6J mice 8-10 weeks old, were administered apelin or saline in an injection volume of 0.05 ml/25 g 

via the jugular vein.
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To investigate the effects of apelin on infarct size in vivo a series of experiments was 

conducted in which the heart was allowed to stabilise for 5-10 min prior to ligation. The 

suture was then tightened for 30 min to induce ischemia. After the ischemic period the 

ligature was released and a 120 min period of reperfusion followed. Apelin was 

administered via the external jugular line at the onset of reperfusion: in control 

experiments 0.9% saline was substituted for peptide (see Figure 7-2 for protocol).

Stabilisation Occlusion Reperfusion 3
-15min 30min

t
• Saline

• Apelin-13; 0.1 mg/kg

• Apelin-13; 0.5 mg/kg 

Apelin-36; 0.27 mg/kg

150min

Figure 7-2 Experimental protocol for the examination of the effects of apelin on infarct size.

C57 BI/6J mice, 8-10 weeks old, were given saline or apelin in an injection volume of 0.05 ml/25g via the 

jugular vein.
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7.4 Results

7.4.1 Apelin haemodynamic dose response

The haemodynamic effects of apelin as reflected by changes in mean arterial blood 

pressure are shown in Figure 7-3 A typical response, with respect to mean arterial blood 

pressure (MABP), elicited by the administration of apelin Thus, after the injection of 

apelin a transient fall in MABP was observed followed by a rise. To quantify treatment- 

induced changes readings were taken at the trough and peak points indicated by 1 and 

2 (Figure 7-3).

Apelin

Peak 1 Peak 2

5 min

Figure 7-3 A typical response, with respect to mean arterial blood pressure (MABP), elicited by the 

administration of apelin

The effects seen were short-lived with pressures returning to control levels by 15 min 

post-bolus. The mean changes in MABP (i.e. the differences between peak 1 and peak 

2 values) following control and apelin-13 (0.1-1 mg/kg) treatments are shown in Figure 

7-4. A transient drop in MABP is seen under control conditions i.e. after saline 

administration (peak 1), which returns to baseline values (peak 2). Apelin-13 (0.1- 

1 mg/kg) caused a more pronounced drop in MABP but this was not statistically different 

from control. At higher doses apelin-13 (0.5mg/kg-1 mg/kg) induced a biphasic response 

with an elevation in MABP (peak 2).
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Figure 7-4 The influence of apelin on MABP.

The changes occurring in MABP following the administration of saline or apelin 0.1-1 mg/kg (n=3).

It was noticed that during the course of experiments that higher doses of apelin (i.e. 

0.5mg/kg and 1 mg/kg) that the underlying heart rhythm was affected. In particular, 

higher peptide doses were found to increase the number of ventricular premature beats 

(VPB). By contrast, lower doses of apelin-13 (0.1 mg/kg) did not influence VPB 

frequency during the reperfusion period.

80

0.1 0.5 1

Apelin-13 (mg/kg)

Figure 7-5 Frequency of ventricular premature beats with apelin-13.
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In the light of the arrhythmogenic actions seen with the highest dose of apelin-13 

(1 mg/kg) tested, its effects on infarct size in vivo were not investigated. Rather, the 

effects of the lower doses, i.e. 0.1 mg/kg and 0.5mg/kg, were examined.

7.4.2 Effects on infarct size

The effects of apelin on infarct size in vivo were comparable to those seen in the 

Langendorff model. Thus, apelin-13 administered at a dose of 0.1 mg/kg reduced infarct 

size from 48.92 ± 4.44% (control) to 27.82 ± 5.15% (apelin, p<0.01, n=8-12; see Figure 

7-6). Whilst increasing the dose of apelin-13 to 0.5mg/kg was also associated with 

reductions in infarct size, it did not result in further decreases as compared with the 

0.1 mg/kg dose, rather apelin-13-induced responses were marginally attenuated (control, 

48.92 ± 4.44% vs. 0.5mg/kg apelin-13, 31.59 ± 5.01%, p<0.05, n=10-12; see Figure 

7-6). This observation perhaps indicates that the infarct reducing effects of apelin-13 

had reached their apogee and that with the higher concentration (0.5mg/kg) the dose- 

response curve had now entered the lag phase. As observed with Langendorff perfused 

heart experiments, treatment with apelin-36 (0.27mg/kg) resulted in reduced infarcts in 

the in vivo model also (control, 48.92 ± 4.44% vs. apelin-36, 32.94 ± 4.36%, p<0.05, 

n=8-12).
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Control Apelin-13 (0.1 mg/kg) Apelin-13 (0.5mg/kg) Apelin-36 (0.27mg/kg)

Figure 7-6 The effects of apelin-13 and apelin 36 on infarct size in vivo.

Infarct size (IS) expressed as a % of the area at risk (AAR) in hearts from C57 BI/6J mice subjected to 15 

minutes stabilisation prior to 30 minutes ischaemia followed by 120 minutes reperfusion. Apelin or saline 

(control) were administered as a bolus at reperfusion. (n=8-12; *p<0.05, **p<0.01)

The mortality rate for in vivo experiments was 20% and was evenly distributed between 

the groups.
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7.5 Discussion

7.5.1 Haemodynamic effects

The first phase of the study focused on the haemodynamic responses elicited by 

increasing concentrations of apelin-13. The actions of apelin were found to be biphasic 

in nature, and were characterised by an initial fall in MABP followed by a compensatory 

increase. The effects were short-lived returning to baseline levels within 5-10 minutes. 

These data confirm the haemodynamic effects reported by Charles et al 2006 who 

reported a similar biphasic response to the bolus administration of apelin-13. The results 

are also in keeping with other studies in which similar biphasic haemodynamic 

responses (hypotension followed by hypertension) were seen with other vasoactive 

peptides, including endothelin (King et al. 1990, Rohmeiss et al 1990) and urotensin II 

(Gardiner et al. 2004). The mechanism(s) underlying this biphasic response may involve 

the generation of nitric oxide, as it is known to play a role in apelin-induced hypotension. 

As regards the subsequent hypertension, this may as suggested by Charles et al. 

(2006), be baroreceptor mediated. The initial investigation was carried out, primarily to 

identify any potential detrimental effects occurring as a result of the intravenous 

administration of apelin to mice. Interestingly, it revealed that at higher doses apelin 

induced VPB, a potential sign of myocardial irritability. This effect may indicate that a 

therapeutic window exists for apelin, with higher doses given i.v. producing negative 

effects on the conducting system of the heart.

The next logical step in these investigations would be to utilise animals that have been 

genetically modified, mice that are apelin deficient and apelin receptor deficient. This 

would allow for more detailed examinations of the mechanisms underlying the 

haemodynamic actions of apelin and its role as a modulator of vascular function. In this 

way characterisation of the short and long-term effects of the apelin-APJ system will be 

made possible. The evidence that apelin acts as a vasodilator, and that the sensitivity to 

apelin may be altered in disease states, makes apelin a promising target for the 

development of drugs for regulating blood pressure. The use of the novel APJ receptor 

antagonist apelin-13(F1A) could be employed in this model to assess its antagonistic 

effects on blood pressure.
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It has already been mentioned that the APJ receptor homology with the transmembrane 

portion of the ATi angiotensin receptor (O’Dowd et al. 1993). Recent studies have 

suggested that apelin possibly induces a compensatory vasorelaxation to counter 

angiotensin ll-mediated vasoconstriction (Ishida et al. 2004).Given that angiotensin II 

plays a central role in the development of atherosclerosis, further studies investigating 

the role played by the apelin-APJ pathway in this disease setting could prove important 

(Ashley et al 2006).

7.5.2 Effects on infarction

The primary goal of this study was to assess whether apelin was cardioprotective in vivo 

in the setting of ischaemia/reperfusion injury. Apelin-13 administered at a dose of

0.1 mg/kg reduced infarct size significantly. This observation is in keeping with other 

studies which have investigated the in vitro therapeutic effects of apelin in myocardial 

injury (Jia et al. 2005). The present study, however, is the first to investigate the acute 

effects of apelin in vivo when given at reperfusion. Current evidence suggests that 

apelin and APJ receptor gene expression are down-regulated in the injured myocardium 

(Jia et al. 2005). Studies which have employed apelin as a therapeutic agent in the 

setting of heart failure and ISO-induced myocardial ischaemia (Ashley et al. 2004, Berry 

et al. 2004 and Jia et al. 2005) have all shown exogenously administered apelin to be 

beneficial. These findings suggest that the signalling capacity of cardiac APJ receptors 

is not exhausted even when endogenous apelin levels are increases or when APJ 

receptor expression is diminished (Japp et al. 2008)

7.5.3 Future Studies

Future studies involving the use of inhibitors of the RISK pathway and the APJ receptor 

antagonist, apelin-F13, will provide further information concerning the mechanisms 

underlying apelin’s cardioprotective actions in vivo. The actions of apelin-F13 in l/R 

injury have not been fully investigated, including its potential role as a blocker of apelin 

induced cardioprotection. The use of genetically modified mouse models lacking apelin 

and the APJ receptor would allow for a thorough investigation of the role apelin-APJ
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pathway plays in l/R injury. The use of inhibitors of the RISK pathway and NO would be 

important in determining whether the cardioprotective actions of the apelin-APJ system 

in vivo are mediated solely through the RISK pathway, or via direct actions on smooth 

muscle cells in the vascular wall.

The clinical use of apelin as adjunct therapy in minimising reperfusion injury is 

suggested by this study. The results of both Langendorff and in vivo studies indicate that 

apelin when given at reperfusion is cardioprotective. Extrapolation to the clinical 

situation can be envisaged when considered as a treatment for reperfusion injury during 

revascularisation following myocardial infarction.
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8 CONCLUSIONS

8.1 Summary of findings: -

1. Apelin administered at reperfusion reduced infarct size both in vitro and in vivo

2. Apelin delayed the opening of the mPTP

3. The effects induced by apelin were associated with the activation of components of 

the RISK pathway i.e. PI3K-Akt and p44/42.

8.2 Conclusions

In this study the cardioprotective effects of apelin have been demonstrated. This leads 

one to suggest that the administration of apelin at the time of reperfusion during an 

acute coronary event may represent a novel form of adjunctive treatment that could lead 

to reduced ischaemic damage and improved myocardial function. These findings are in 

keeping with other studies which have reported that apelin protects from both ISO 

induced myocardial injury and ischaemic coronary occlusion (Jia et al. 2005, Kleinz and 

Baxter 2007). Reperfusion is essential in salvaging viable myocardium from infarction. 

Paradoxically, however, reperfusion itself can cause myocardial cell death via a lethal 

reperfusion-induced injury pathway that involves the opening of the mPTP and 

subsequent apoptosis (Kleinz and Baxter 2007). The results of the present study clearly 

show that reperfusion with apelin following a period of lethal ischaemia does, indeed, 

attenuate infarction via PI3-AKT and P44/42-dependent mechanisms, and delayed 

mPTP opening.

In recent years a number of adipocytokines, including apelin, have been discovered and 

many of their functions elucidated. More recently the discovery that some of these 

adipocytokines are upregulated in obesity and exert potentially beneficial effects has 

prompted the suggestion that these agents may play a role in tissue preservation. 

Indeed, the present study provides further support for the proposition that the 

adipocytokines may represent a class of endogenous substances that, apart from 

having potential in the treatment of metabolic disorders and, in the case of apelin, heart
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failure could prove useful in limiting myocardial damage when administered following 

infarction.

Evidence for a protective role for the adipocytokines has come mainly from animal 

experiments and not studies conducted in patients (Shibata et al. 2005, Jia et al. 2005, 

Kleinz and Baxter 2007). Interestingly, however, certain circumstances obesity would 

appear to confer some protection in humans (Gruberg et al., 2002. It is known that 

obesity is an independent risk factor for the development of cardiovascular disease 

(Yusuf et al. 2004). However, data have been reported indicating that high BMI is 

associated with reduced short-term cardiovascular mortality; an observation termed the 

“obesity paradox” (Gruberg et al., 2002). In fact, in some cases obesity actually confers 

a mortality benefit (Fonarow et al., 2007). It is likely that these findings are dependent on 

many factors particularly that more aggressive management is likely to have been 

employed in this subgroup of patients (Steinberg et al., 2007). Another potential 

explanation might be that patients with coronary artery disease who are underweight or 

of normal weight may not have enough metabolic reserve to overcome the catabolic 

stress resulting from an acute coronary event and/or revascularisation procedure. The 

possibility that the pathophysiology of acute coronary syndrome may vary between 

patients with differing BMI cannot be excluded. Further research is therefore needed to 

investigate the true nature of the “obesity paradox” and the role played by the 

adipocytokines in cardiovascular pathogenesis.

The role of the apelin-APJ system in cardiovascular control is now considered to be an 

important area for further research and preliminary studies indicate that apelin may play 

an important role in blood pressure control. In keeping with previous studies the present 

investigation has yielded additional evidence for apelin’s action on blood pressure 

control and cardioprotection. The development of non-peptide agonists of the apelin 

receptor may provide new therapeutic tools for treating cardiovascular diseases.
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8.3 Clinical implications

The administration of apelin at the time of cardiac reperfusion in order to recruit innate 

cellular anti-apoptotic mechanisms and protect the heart from reperfusion-induced cell 

death offers an intriguing treatment option with regard to the management of acute 

coronary syndromes. Thus, it could be suggested that apelin could be given as an 

adjunct to thrombolysis, post-stenting and at the point of reperfusion during coronary 

artery bypass procedures. Further studies are required to quantify apelin levels during 

acute ischaemic events together with longitudinal studies to establish apelin profiles 

under pathological and non-pathological conditions. This will then open the way for 

clinical trials to establish whether modulation and enhancement of the apelin-APJ 

system has a therapeutic benefit in patients with ischaemic heart disease.

Previously, apelin has been associated with a positive haemodynamic profile in both 

normal and diseased hearts. Clinical medicine is lacking new pharmacological therapies 

for the treatment of heart failure. Many new interventions utilise mechanical or 

resynchronisation therapy as a modality for treating the disease. The vasodilatory, 

diuretic and cardioprotective effects of apelin raise the possibility that the apelin-APJ 

pathway might represent a novel endogenous “compensatory” system in heart failure. 

Further studies involving the manipulation of the apelin-APJ system may offer benefit 

with respect to heart failure ultimately leading to clinical applications in humans.

A role for apelin as a biomarker of heart failure and atrial fibrillation has recently been 

suggested. Depressed apelin levels in lone atrial fibrillation suggest that it may be 

possible to identify those individuals with a predisposition to arrhythmia even when they 

are not in atrial fibrillation (Ellinor et al. 2006). More recent studies, however, have failed 

to provide evidence that apelin represents a useful biomarker for diagnostic and 

prognostic purposes (Von Kimmenade et al. 2006).
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8.4 Future directions

In future studies, hearts from animals that have been genetically modified, that is, mice 

that are APJ receptor deficient, should be examined. This would allow for a more 

detailed examination of the mechanisms by which apelin protects the myocardium 

against l/R injury.

The cardiovascular effects of acute apelin administration in rodents are now relatively 

well characterised but the impact of chronic administration requires further investigation. 

Studies are needed to confirm whether longer periods of treatment are cardioprotective 

and whether any apparent extra benefit, i.e. enhancement of cardiac performance, 

occurs without deleterious effects on cardiac remodelling e.g. left ventricular 

hypertrophy.

Greater understanding is also needed of the molecular mechanisms governing apelin 

and APJ gene expression and the effect disease states have on these processes. 

Alternative strategies that enhance endogenous apelin synthesis and secretion or 

preserve biological activity by inhibiting peptide breakdown need to be investigated 

(Japp et al. 2008). It is intriguing that treatment with the new anti-obesity drug 

Rimonabant has been found to be associated with increase plasma levels of the 

cardioprotective adipocytokine adiponectin. Studies to investigate if Rimonabant also 

modulates plasma apelin levels may yield a novel approach to a therapeutic 

intervention.

Although the cardiovascular profile of apelin in rodents suggests a potential therapeutic 

application, the relevance of the apelin-APJ pathway in human cardiovascular 

physiology and pathophysiology has yet to be established. In the first report of in vivo 

apelin administration to humans, a group from Edinburgh have confirmed that apelin has 

direct vasodilatory properties in man. This preliminary study will allow further 

characterisation of apelin’s properties in humans and further clinical investigation to 

determine its role in cardiovascular homeostasis and disease (Japp et al. 2008).
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In conclusion, it is now apparent that adipose tissue is not simply a storage reservoir of 

fat, but, in fact, constitutes the largest endocrine organ in the body, releasing factors that 

exert multiple effects on metabolism and cellular protection. Increased understanding of 

the adipocytokines and the intracellular pathways by which they may influence 

myocardial integrity could lead to the development of novel therapies.
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