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An integrated hydrodynamic and adsorption model of expanded
bed operation: its development and application

The expanded bed adsorption (EBA) process naturally assumes a mixed bed (MB) in
terms of particle size and displays particle dispersion. To date models have not accounted
for this simultaneously and accurately. Moreover, there has not been any work to predict
an adsorption response when the bed is in a hydrodynamic-transient state; which occurs
for example while changing feedstock. A series of MB steady state hydrodynamic EBA
models were developed which are increasingly close mimics of reality. This was achieved
by progressively considering: a single representative equivalent particle size per axial
position (MBEQD), separate particle size categories by using size-partition (MBSP)
approach and inclusion of an additional component flux due to particle dispersion.
Breakthrough predictions using the MB approach were more accurate compared to both
that of a mono-sized bed and perfectly classified bed approaches clearly demonstrating its
importance. The results of both MBEQD and MBSP were in close agreement with 40 cm
bed height breakthrough experimental data. An important weakness in an existing method
of including the particle dispersion was identified and a model for its more accurate

representation developed.

A transient hydrodynamic EBA model was developed by integrating the mono-sized
transient hydrodynamic model and adsorption model. A simulation study using this
demonstrated the possibility of loading while a bed is still expanding which may afford an

increase in an operational throughput.

The effects of various physical parameters on the performance of EBA were investigated
using simulation. Windows of operation in relation to fluid velocity and load volume
were determined which would satisfy minimum yield and throughput criteria. The model
was also used to determine optimal loading time strategies in order to maximise yield and
throughput. Finally a preliminary work explaining future potential developments in EBA

modelling was performed.
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1 Introduction

1.1 Expanded Bed Adsorption

One of the crucial procedures in the production of proteins for therapeutic and diagnostic
use is the recovery of protein from various recombinant host organisms. The initial steps
in the production process will normally be the removal of particulate materials and
concentration of the desired product. To minimize the risk of proteolytic breakdown of
the desired product, these initial steps need to be carried out rapidly. Overall the number
of steps for this should be kept minimal to minimise the product loss. Centrifugation
and/or microfiltration are the traditional techniques being employed for these initial steps.
Often the degree of clarification in an industrial centrifuge is not sufficient, it often has to
be supplemented with a microfiltration step to obtain a particle-free solution which can be
further purified by packed bed chromatography (Hjorth, 1997). These additional
operations result in a long processing time or need for comparatively large units, and the
probability of more product loss. The application of expanded bed adsorption (EBA) has
been found to be very promising to circumvent this problem. EBA allows the capture of
proteins from particulate feedstocks without prior removal of particulates, thus enabling
clarification of a cell suspension or cell homogenate and the concentration of the desired
product in a single operation. Following Fig. 1.1 demonstrates the application of EBA in
a typical bioprocess.

In the expanded bed, a particulate adsorbent in a column is allowed to rise by
applying an upward flow from its settled state. This increases the space between the
adsorbent particles, allowing cells and cell debris to pass through without blocking the
bed (Fig. 1.2).



Expanded bed process Conventional process

Culture medium Culture medium

L

Ultrafiltration

L

Heat treatment Heat treatment
Expanded bed adsorption Ultrafiltration
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Fig. 1.1 Process schemes for the recovery of recombinant human serum albumin produced
in the yeast Picia pastoris using an expanded-bed process and a conventional process

(Hjorth, 1997).

Do o’
I/

30

Crude feedstock containing cell debris

Fig. 1.2 The principle of an expanded bed. The increased and flexible space between the
adsorbent particles allows celis and cell debris to pass unhindered through the bed. The
arrows indicate the flow direction in the expanded bed mode. (Hjorth, 1997)

Compared with a conventional fluidized bed, one of the key characteristics of
expanded bed is low back mixing, which is achieved by proper design of the adsorbent
and the column. Low back mixing is a result of the formation of a segregated or stratified

bed which is achieved in expanded bed mode by the particle size distribution of the



adsorbents. This results in larger adsorbent particles remaining in the lower part of the
expanded bed and smaller particles in the upper part as shown in Fig. 2. Usually particle
sizes ranging from 50 to 400 pum are used in the expanded bed (Hjorth, 1997). Smaller
particles result in over expansion at low flow velocities while larger particles require very
high flow velocities to expand the bed sufficiently. In the first case, the overall
productivity of the process will be low as the void space becomes too large and solvent
with load will have more probability to pass though with little interaction or adsorption to
the adsorbent particles. While in the second case, protein binding is impaired due to
restricted diffusion into the adsorbent particles. To operate the expanded bed at flow
velocities that result in high productivity, densities in the 1.1-1.3 g/ml range are normally
used.

Some of the applications of expanded bed compiled by Hjorth (1997) are given
below in Table 1.1.

Table 1.1 A summary of data from selected expanded-bed adsorption processes
Abbreviations: DEAE, diethyl aminoethyl; FGF fibroblast growth factor; IL-8, interleukin 8;
NA, data not available; rHSA, recombinant human serum albumin; rhuNGF, recombinant
human nerve growth factor; SP, sulfopropyl; ZZ-M5, synthetic IgG binding domain-malaria
M5 peptide fusion protein. (Hjorth, 1997)

Feedstock Feed Product Adsorben | Adsorb | Purific | Yield Reference

vol. (1) t ligand ent vol. | ation (%)

[()) factor

E. coli cell suspension 8 7ZZ-M5 DEAE 03 NA 90 Hansson et al. 1994
E. coli homogenate 26 Annexin V DEAE 47 2 95 Barnfeld et al. 1994
E. coli homogenate 10 FGF-Saporin Sp 03 20 65 McDonald et al. 1996
E. coli periplasmic extract 180 Exotoxin . DEAE 4.7 2 79 Johansson, et al. 1996
Yeast cell suspension 2000 rHSA Sp 150 NA 87 Noda et al. 1996
Yeast cell suspension 6.4 Aprotinin SP 03 38 76 Zurek et al. 1996
Cell culture 60 Monoclonal IgG Protein A | 0.15 30 83 Thommes et al. 1996
Cell culture 100 Monoclonal IgG Protein A | 4.7 NA NA Jagersten et al. 1996
Cell culture 12000 | Monoclonal IgG Sp 154 NA 95 Zapata et al. 1996
Cell culture 36 Monoclonal IgG SP 0.17 7 85 Batt et al. 1995
Cell culture NA rhuNGF Sp NA NA 95 Beck. et al. 1996
Milk 5 Lysozyme Sp 0.8 83 89 Noppe et al. 1996
Renatured inclusion bodies 16 IL-8 Ng 03 39 100 Barnfield (Press 1997)

There are increasing large number of recent publications in expanded bed adsorption.
This would signify its even wider applications. For more optimal use and the process

design, accurate prediction of the system behaviour becomes important. For that purpose,




both modelling and novel techniques like extreme scale-downs (Willoughby et al., 2004)
are being explored. The modelling work was seriously lacking at the outset of this thesis.
Hence this thesis work was initiated to address this problem and establish a mathematical
description of an expanded bed adsorption which can be used to make more accurate and
reliable predictions in various operating conditions. The detail objectives of which are

described in the following section.

1.2 Statement of Objectives

Expanded bed adsorption (EBA) chromatography is an important technique for the
purification of macromolecules from solids-containing feedstocks. At the outset to this
work there was no any integrated model which takes into account the hydrodynamic and
adsorption behaviour of EBA simultaneously existed. As bed hydrodynamics are an
important part of EBA, treating it as a steady state mono-sized homogeneous packed bed
had been a primary source of errors in EBA predictions, thus making them unreliable to
use in many contexts. This lack of an accurate model is an obstacle in its full exploitation
of its possible benefits. Experiments are expensive and time consuming while modelling
provides for the easy study of the system in different scenarios and under range of
parameter values. This would be very useful in finding optimal operating conditions and
for establishing feasibilities. Thus this work was initiated to address the problem by
integrating hydrodynamic and adsorption models of expanded bed. To do this available
steady state and transient models of EBA hydrodynamic and adsorption models were
studied. The possible methods of their integration were devised from a simple approach to
increasing levels of sophistication with the inclusion of more details so as to make their
predictions more useful. The integrated models were then used to study their possible
applications in a series of process contexts.

Specific objectives of this work were:

e To establish appropriate expansion relationships with which to model expanded
bed behaviour.
e To establish an appropriate model or approach to describe the steady-state

hydrodynamics of EBA by considering distribution of particle sizes.



e To implement available mono-sized transient EBA hydrodynamic model and to
explore on improving upon it by adopting the model with distribution of particle
sizes.

e To implement and establish the existing model of adsorption in packed bed
chromatography for its integration with hydrodynamics in the EBA context.

e To establish a simple method of integration of a steady state hydrodynamic model
of EBA and an adsorption model of a packed bed.

e To improve such an integrated model by relaxing assumptions and making them-
more realistic, for example dropping mono-sized assumption and considering the
presence of particle size distribution (PSD) in the bed.

e To consider the variation of axial PSD in expanded bed and its effect in adsorption
behaviour of EBA along with behaviour of each size classes.

e To formulate a more realistic and advanced EBA model by incorporating particle
dispersion.

e To formulate a transient EBA model by integrating transient hydrodynamics and
adsorption models.

e To perform sensitivity analysis of the EBA model to determine parameters which
are more important to the system in terms of adsorption behaviour.

e To produce windows of operation of an EBA system in terms of yield and
throughput to find out the optimal operating conditions.

e To explore different applications of transient EBA model with a view to
maximising its utility.

e To recommend the possible next steps towards EBA modelling and their uses.

1.3 Organisation of the Chapters

Having introduced the rationale of this research, a general background and objectives,
Chapter 2 sets out the principles and methods used in this work. A general introduction to
chromatography and expanded bed and its operation are described in the first part of the
chapter. Then some relevant transport equations are reviewed briefly since the modelling
mass transfer is a major theme of this work. The formulated models developed in this

thesis need to be simulated. Suitable numerical methods will be adopted based upon the



properties and structures of these models. The principles and methods of implementing
such numerical methods are then discussed. In the last part of Chapter 2, a general
framework of model development process followed in this thesis will be briefly
described.

In Chapter 3 a comprehensive general rate model of chromatography is reviewed,
implemented and validated. This provides the basis of the adsorption element of the EBA
model. Chapters 4-8 are about formulating a series of EBA while Chapter 9 presents
some of their applications. A detailed study describing expansion phenomena at steady
state is given in Chapter 4. The results are validated against experimental data. A transient
hydrodynamic model is implemented and validated in Chapter 5 as a first step towards
formulating a transient integrated EBA model. A series of integrated models with steady
state hydrodynamics is formulated and validated against experimental data in Chapter 6.
And in that chapter the models are improved by inclusion of size partitions effects. An
appropriate model which includes the effects of particle dispersion in EBA is developed
in Chapter 7. The hydrodynamic steady state assumption of the model in Chapter 6 is
subsequently relaxed and a complete model of EBA capable of predicting the transient
hydrodynamic state is developed by integrating a transient hydrodynamic model with an
adsorption model in Chapter 8.

A study of some of the applications of the integrated EBA model is performed in
Chapter 9. Sensitivity analysis was carried out in order to determine important parameters
of an EBA system in terms of adsorption behaviour. Windows of operation are
determined in terms of yield and throughput to find out the optimal operating conditions.
Use of a model in determining optimal loading time is also demonstrated. Some of the
applications of transient EBA model are then enumerated with a view to maximising its
utility.

As a preliminary work towards further development of EBA models, additional
model establishment work is done. It includes establishing both steady state and transient
hydrodynamic models of expanded bed which considers the existence of particle size
distribution and the bed is mixed. As these are just efforts to implement the literature '
available models in view of using them in an EBA context, they are excluded from the
main body of the thesis and included as an appendix.

In the final chapter (Chapter 10) the conclusions are drawn based on the above
study in various aspects of EBA and its modelling, and recommendations made for the

possible next steps towards EBA modelling and their uses.



Before explaining the details of this thesis from the next chapter, the overall process
of model development followed in this thesis is described in the following section 1.4. It
briefly indicates what has been done for developing an increasingly realistic and useful
model in this work, why it is done and their inter-relationships. It also provides the cross-

reference to the chapter and sections where their details are explained.

1.4 Flowchart of a Model Development Process

The flowchart of the model development process followed is shown in Fig. 1.3.

The sequence of steps is as follows.

1. General Rate (GR) model of adsorption in a packed bed is established. This forms
the basis of adsorption modelling.

2. An appropriate expansion relation (ER) is established out of a number of relations
available in literature. This provides a consistent basis to represent the expansion
of a particle bed.

3. The expansion relation is based on assumption of mono-sized particles. Thus it in
itself is in fact a Mono-sized Bed (MSB) model to represent steady state
hydrodynamics of EBA. However, an experimental data and prediction are often
found to be significantly different for the purpose of its use in bed adsorption
modelling. So frequent experimental fittings of the parameters would become
necessary and such a model would be termed as MSB model.

4. Distribution of particle size is considered by an initial simplifying assumption of
perfect classification. Such a Perfectly Classified Bed (PCB) model to represent
steady state hydrodynamics is then established.

5. However, mixed bed, the presence of different particle size in each axial position,
is the reality in EBA. Thus to accommodate such a phenomenon, and tentatively
predict mixing of particle sizes and expansion of the bed, an Approximate Mixed
Bed (AMB) approach is developed.

6. To represent the transient hydrodynamic behaviour of an EBA, the Transient
Mono-sized Bed (TMSB) model is developed.

7. The first and simplest integration of adsorption and hydrodynamics of EBA is
achieved by developing a Mono-sized Bed Adsorption (MSBA) model by



10.

11.

12.

13.

14.

15.

integration of GR and MSB models. Here bed properties for adsorption part of the
model are estimated using MSB model.

The consideration of particle size distribution (PSD) in EBA is at first done by
developing Perfectly Classified Bed Adsorption (PCBA) model. This is achieved
by integrating PCB hydrodynamic model and GR model. As before, the bed
properties for an adsorption part of the model are provided by the hydrodynamic
part. Such an integration approach is followed for all models in this thesis.
Improvement on PCBA is done by considering mixed bed. This is achieved by
replacing PCB hydrodynamic model with AMB approach to describe mixed bed
hydrodynamics of EBA. However, for this initial stage, though bed is considered
mixed bed (MB) for hydrodynamic purpose, only one representative particle size
per axial position is considered for adsorption purpose. Such a model is termed as
Mixed Bed Equivalent Diameter (MBEQD) model.

As AMB approach still needs an improvement, a separate method by which to
represent mixed bed hydrodynamics in integrated EBA models developed
becomes necessary. One of the simplest ways is to directly use the experimental
data related with bed properties related with hydrodynamics when available. Thus
a method of using such an approach is described.

MBEQD model developed earlier in step 9 is simulated using experimental
hydrodynamic data as explained in step 10.

The existence of different particle sizes in an axial position also for the adsorption
part of the model is considered by adopting size partition approach in Mixed Bed
Size Partition (MBSP) model. Here an EBA column is, in theory, vertically
partitioned into multiple columns each having only one particle size. The net
adsorption effect at any given axial position of the bed is determined by
cumulative effect of each partition at that axial position.

As done in step 11, the MBSP model is simulated using experimental
hydrodynamic data.

So far the effect of particle dispersion in adsorption has been ignored. Thus as a
first step towards including particle dispersion effect in EBA, Mixed Bed Particle
Dispersion (MBPD) model is developed by including such an effect based on
Wright and Glasser (2001) approach in MBSP model.

As there is an important weakness in the approach followed to include particle

dispersion effect in adsorption as done in MBPD model, a new more appropriate
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method is developed. The model developed based on this is termed as Simulated
Particle Dispersion (SPD) model.

16. Finally, to predict the adsorption behaviour of EBA when the bed is still at a
hydrodynamic transient state, the Transient Mono-sized Bed Adsorption
(TMSBA) model is developed by integrating GR model of adsorption and
transient hydrodynamic model, TMSB.

Once models are developed, some of their applications are explored. Before beginning a
model development process as mapped in the flowchart (Fig. 1.3), the principles and

methods involved in such a modelling process will be described in the next chapter.
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2 Principles and Methods

2.1 Introduction

Before modelling it is important to know the essential aspects of the physical phenomena
of interest. Thus in this chapter principles involved in chromatography and EBA are
explained. Transport phenomenon dominates the EBA process. A brief review of some
transport equations relevant to this work is first presented. This will provide the basis of
modelling and also continuity from the underlying physics to models. Once the models
are developed, they have to be solved or simulated. As most of the models are non-linear
and complex, the analytical solutions are not possible. Thus the only possibility is
numerical solutions. The second element of the chapter will present the basic numerical
methods to be used. Finally how the modelling problems have been approached in this
thesis has been presented in the last section.

Thus in this chapter following areas will be briefly reviewed:

e Principles of chromatography and EBA
e Relevant transport equations
¢ Numerical methods applied in this work

¢ Model development process.

2.2 Principles of Chromatography and EBA

2.2.1 Chromatography

Chromatography is a separation process whereby different chemical species are separated
based upon their differential adsorptive affinity to different media or phases. The general

mechanism is (Schulte and Epping, 2005; Subramanian, 1995):

e A homogeneous mixture phase consisting of chemical species to be separated is
brought into contact with a new phase.
e Molecules exchanges between two phases to bring the system into thermodynamic

equilibrium. The rate and quantity of exchange of chemical species between the
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phases depends upon the specific thermodynamic imbalances. This can be
observed as a specific partition coefficient of the chemical species between the
phases in relation to the presence of other species and their concentrations.

e The phases will now have a different concentration of chemical species than that
at the initial stage. The separation of phases will now result into a partial

separation of chemical species.

Each chemical species will have a defined affinity to certain media or phase relative
to other species. This difference in adsorptive affinity is the basis of separation.

Adsorption is the accumulation of molecules on the surfaces. The process of adsorption is

as follows.
O solvent

A component 1
component 2

0,0 A H
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Fig. 2.1 An adsorption process. Solvent or mobile carries the components and brings in
contact with stationary adsorbent phase. Components bind to the adsorbent phase to
various degrees based on their mutual affinities or binding nature. In the figure, based upon
the number, component 2 (o) seems to have more affinity to bind to the adsorbent phase
than component 1 (A).

In an adsorption process the binding forces are formed between the molecules of one
phase (fluid) to the surfaces of another phase (adsorbent) as shown in Fig. 2.1. The
strength of binding depends upon the nature of binding. There are basically two different
types of binding forces: physisorption (physical adsorption) and chemisorption (chemical
adsorption). Physisorption is a weak binding based on van der Waals forces e.g. dipole,
dispersion or induction forces. This is weaker than intramolecular binding forces of
molecular species and thus the molecules will maintain their chemical identity.
Chemisorption provides for strong binding and is due to valence forces similar to

covalent binding. The energy involved in such a binding is strong enough to break the

12



intramolecular forces of adsorbed materials and adsorbent. Due to the complete
reversibility requirement of a chromatographic process only adsorption based on

physisorption can be used.

2.2.2 A Chromatographic Process

In a chromatographic process normally a solid (adsorbent) stationary phase is packed in a
column. The other phase is a fluid. It is mobile and is composed of mixture of different
chemical species. As the fluid phase passes through the stationary adsorbent phase, the
chemical species in the fluid tend to become adsorbed to the adsorbent. The higher the
affinity of the particular molecular species to the adsorbent, the more time they will spend
in the adsorbent phase. This results in a differential migration rate for different species
(Fig. 2.2). Thus at the outlet of the column the components having less affinity will elute
earlier than the ones having a higher affinity. With appropriate operating conditions this

can result in a complete separation of different chemical species.

A component 1
[] component2

stationary phase
Inlet Outlet
A A
Direction of DAE: g A o A
flow ?A zﬂ O A I:P A
A A A
g o9 A ! g o a
A I h @ = =0 I:P A

Fig. 2.2 Differential migrations of component species in a chromatographic process. Higher
affinity of component 2 (o) to the adsorbent phase compared to the component 1 (a) will
cause the slower elution of the component 2 from the column. (Fig. based on Schulte and
Epping, 2005)

If the mobile fluid phase is gas, the process is called gas chromatography (GC). If
the mobile phase is liquid, it is called liquid chromatography (LC). When a column is
packed with small particles for higher separation efficiency in LC, it is called high
performance liquid chromatography (HPLC).
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2.2.3 Expanded Bed Adsorption

The adsorption behaviour in expanded bed adsorption (EBA) is the same as in normal
chromatography. The only difference is the way in which the solid stationary phase is
configured. Instead of a compact static packing in a column as achieved in normal
chromatography, the adsorbent (solid) phase floats freely or is “expanded” using upward

fluid pressure as can be seen in Fig. 2.3.

VAN

Crude feedstock containing cell debris

Fig. 2.3 Expanded bed adsorption

The bed stability, i.e. relative constancy in the position of the adsorbent particles, is
achieved by employing a distribution of particle sizes and density. The bigger and heavier
particles tend to stay at the bottom of the column while smaller and lighter particles stay
at the top. A particle is subjected to many different forces: drag, gravity, buoyancy, etc.
These forces in relation to its physical properties like density, size and fluid’s physical
properties like density and viscosity determine the expansion behaviour of the bed and a
bead’s relative position within the bed. This behaviour is the subject of bed
hydrodynamics.

The main advantage of EBA comes from this free floating configuration of the
adsorbent phase as crude feedstock containing cell debris and other solids can be fed
directly into the column. This would have been impossible in a normal chromatography
column as the presence of solids would clog up the column. EBA is normally operated at
average bed voidage of about 0.7-0.8 (Amersham Pharmacia Biotech). As the bed

voidage is large and flexible (local voidage can easily and temporarily change if need be
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to adjust for large solids), the cell debris and other materials just pass through the column
without clogging while the desired chemical species in the fluid are adsorbed to the
adsorbent phase. Thus it obviates the need for micro-filtration or similar unit operation to
remove the cell debris first.

Some basic steps of operation for preparative EBA (Fig. 2.4) are (Amersham

Pharmacia Biotech):

1. Expansion
2. Equilibration
3. Loading

4. Washing

5. Elution

6

Regeneration

T & i

Expansion Equilibration Loading Washing Elution Regeneration

Fig. 2.4 Operation steps of expanded bed

The bed is First expanded and equilibrated using a buffer at a certain fluid velocity.
The fluid velocity applied and the resulting expansion depends primarily upon matrix
used besides physical properties of the fluid. In a typical operation using Streamline
matrix, the bed would expand 1.7-3 times the settled bed height when fluid velocity of
100-300 cm/h is applied (Amersham Pharmacia Biotech). Once equilibrated, the
feedstock is then fed into the column. As described above at this loading stage, the

desired chemical species are adsorbed to the adsorbent phase while other materials pass
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through. As the adsorbent becomes saturated with the component species of interest, the
concentration of the component at the outlet will start to rise. When this reaches a
particular point in terms of breakthrough (for example 1% or 5% of feed concentration),
the loading or feeding of the feedstock is stopped as the bed does not have sufficient
economic capacity to adsorb further. Then the washing step is performed whereby all
molecular species of the original feed or fluid phase are washed out of the column while
the component species of interest is retained adsorbed on the adsorbent. The final stage is
elution. At this stage by changing the environmental conditions (pH or concentration of
salt, etc.) the binding of the component species to the adsorbent is weakened and thus the
species of interest are eluted from the column. In this way separation and preliminary
stage purification of the species from the crude feedstock is achieved. After elution the
column is regenerated by cleaning with reagents like NaOH solution and by washing with

washing-buffer.

2.2.4 An expanded bed

As the objective in this work is to model expanded bed behaviour, it is important to have
knowledge of the domain and in particular boundary conditions of the system. Not all the
details of the expanded bed as seen in the Fig. 2.5 are required. The bottom net (5) defines
the lower boundary and keeps the particles/matrix from falling below it. The distributor
plate (3) minimises any radial variation in flow velocity so that will be considered
constant. The upper adaptor net (13) keeps the particles from flowing out of the column
and thus defines the maximum possible upper boundary. Since EBA is operated well
below elutriation velocity of its particles so the actual upper boundary is defined by the
maximum height that the particles can take in a given operating condition. Elutriation
velocity is the fluid velocity at which upward component of a particle velocity becomes
larger than the downward component which results into the exit of such particles from the
bed. For a transient condition when the upper particle-bed surface is moving, it will be

defined as a moving boundary.
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Column and Stand Adaptor

Fig. 2.5 An exploded diagram of the principal components of the 0.05m diameter
STREAMLINE column (ST-50): 1,14,19,22,25 O-rings; 2 connector; 3 distributor plate, 5
bottom net; 6 stand feet; 7 washer; 8 nut; 9 stand; 10 bottom flange; 11 adaptor plate; 12
adaptor distributor plate; 13 adaptor net; 15 adaptor; 16 rod piston; 17 column tube; 18

gasket; 20 upper flange; 21 rod sealing; 23 lid, 24 domed nut (source: Willoughby, N.,
2000)

General principles and properties related to an expanded bed operation have been
described here. Some relevant transport equations which will form the basis of modelling

an expanded bed process will be discussed in the next section.

2.3 A Brief Review of Some Relevant Transport Equations

2.3.1 Introduction

As most of the models developed in this work fall into the area of transport problems,

some relevant transport equations will be reviewed here briefly. These will then be
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adapted directly to the particular situations as they arise. The brief inclusion of this part is
aimed at providing a convenient starting point for the modelling works here.

Typical transport models have two parts:

e Conservation equation — universal form based on first principles

e Constitutive equation — material-specific

Conservation equations are derived using the control volume concept. The control
volume is defined as a closed region in space (as shown in Fig. 2.6) whose boundary is
chosen to ease formulating balance equations. The size and shape of the control volume
can change with time and its boundary may not correspond to physical interfaces. In the
control volume the rate of accumulation of a certain quantity is equated to the net rate at
which it enters the region by crossing the boundaries and the net rate at which it is
generated internally. That is:

the rate of accumulation = rate of (In — Out) + rate of (Production — Consumption)

14
s v,

S(t)

Fig. 2.6 A control volume

In this section 2.3, a general conservation equation at a point will be established,
particularly in relation to the mass conservation of a component in a medium having
multi-components. For the purpose, a control volume approach will be applied which will
be used to generate conservation at a point. The component flux will be expanded in
terms of convective and diffusive fluxes. The resulting relation will be used as the basis
of modelling in other chapters. The conservation at the interface between two phases will
also be established which can later be taken as the starting point to establish boundary
conditions.

As described by Deen (1995) in his book, Analysis of Transport Phenomena, let u

be the concentration of the quantity of interest in the control volume.
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4 udv=-[ F-ndv+| R,dV+ [ wv, -ndS 2.1)
(1) Q) )

dt ¥®
where

F -n = flux of the quantity in the control volume
R, = net rate of production of quantity internally
u(r,t) dV = amount of quantity contained in the differential volume element dV

about the point r

v, -n dS = rate at which volume is swept out by element of the control volume
V refers to volume and S refers to surface area of the control volume. r is the

position vector.

Liebnitz’ formula for the differentiation of the volume integral yields:

= 2
L udv = L’) =4V + _L v, -nds (2.2)
Substituting this into Eq. (2.1)
du
Lngdv = L”F -ndS + ‘[(I)RVdV (2.3)

This is a general conservation equation which requires only u(r,t) be continuous within
V(t).
When the interior of the control volume contains a moving interface at which the

concentration is discontinuous and if there is a source/sink term at the interface, it

becomes: (derivation in Appendix: Eq. A.5)

_[maal: V+I (uy —ug)y, - ndS——L F- ndS+L RdV+L R,dS (2.4)

where

I refers to interface between phases A and B

n; is normal to the interface

vy is velocity of the interface

As most of the time, the interest would be the point value of a property at a spatial
position than a volumetric average value; the general conservation equation derived here

will be used to derive the conservation equation at a point in the next section.
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2.3.2 Conservation equation at a point:

Using Gauss’ divergence theorem to the first term at right hand side (R.H.S.) of Eq. (2.3),

[F-nds = [v-Fav 2.5)
Thus Eq.
(2.3) gives:
ou
Zav=-— . 2.
Lm v Lmv Fdv + _[M)Rvdv (2.6)
L [a—u+V-F-RV}dV=O Q2.7
| ot
Integral being equal to the product of mean value of the integrand and magnitude of
region,
ou
—+V.-F-R, )V=0
(5ie e )
ou
Z_—_V-F+R (2.8)
ot Y

Similarly at interfaces, neglecting accumulation and transport within the interfaces:
(derivation in Appendix: Eq. A.13)

[(F-w,), —(F -uv,),]'n, =R (2.9)
where (F —uv,) is flux in relation to the interface, I refers to interface between phases A

and B, and n; is normal to the interface.
Having established the conservation equation at a point, both inside a domain and at

an interface, the specific components of flux will be expanded in the next section.

2.3.3 Component of fluxes:

In the modelling work here the flux is basically a result of convection or diffusion. Thus,
Total flux F = Feonvection + Fdiffusion (2.10)
=uv+f (2.11)
where v = mass average velocity (of the mixture)
Thus Eq (2.8) becomes

%:-V-(uv+f)+Rv (2.12)
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du

5;=—V-(uv)+V-f+RV (2.13)
Similarly at interfaces: (from Eq. (2.9))

[+ f —uv,), —v + f -uv,),]-n, =R (2.14)

[(f +u@ =v,), —(f +u@v-v,),]n, =Ry (2.15)

For general application, u has been taken as any general quantity of interest e.g.
mass, energy, etc. The conservation of the quantity would remain valid. As this thesis
would focus on mass conservation, that will be established in the next section.
Establishing the relation specific to mass is useful especially when the medium is
incompressible which will result into an additional constraint in the system and thus

simplify the model by reducing a degree of freedom.

2.3.4 Conservation of mass

Let u denotes density (p) of the material in the control volume.
From Eq. (2.12)

_alz—v.(pv+f)+RV
ot

There is not net mass flow in relation to mass average velocity, v, and if there are no

source and sinks:

%?:—V-(m):—pV-v—v-Vp (2.16)
For incompressible flow: p = constant
V-v=0 (2.17)

Finally as the main focus of this thesis is modelling the conservation of a
component in a multi-component medium, the general conservation equation of a
component will be established in the following section which will form the basis of

modelling in other chapters.

2.3.5 Conservation of a Component

As most of the time, our interest in this work is to performs a mass balance of a
component or chemical species, let u; be the concentration of component i. So u in the

above equations will refer to »;. From Eq. (2.8)
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i=-V-F+R,

Let n; = mass flux w.r.t. fixed coordinates = F
ou,
—a—L =-V- n, + RVi
t

(2.18)
n; is given by:
n,=uy+j, (2.19)
v = mass average velocity
total mass flux = pv = Z”.-" (2.20)

Ji = mass flux w.r.t. mass average velocity (v)
= diffusive flux

For relatively dilute concentrations where one component or solvent/medium accounts for
most of the mass:

Ji=—D\Vu, (2.21)
where

D; = diffusivity of component species I in the abundant medium

n,=uy-—DVu, (2.22)
Substituting into Eq. (2.18)
% V.(uy-DVu)+R,
ot
ou,
~5t—’— =-V-(uy)+V-(D,Vu,)+R, (2.23)
for constant D; or D; independent of space (x)
dy, 2
? =-uV-v-v-Vu,+DV-u, + R, 2.24)
In the material derivative form:
% =—uV-v+DVu,+R, (2.25)

For incompressible flow and dilute concentration of components especially when

density of the components are not much different to the abundant medium in which they

exist, the average density (p) is relatively constant (for practical purpose).

Vov=0

Du,

i =DV, +R,
Dt

(2.26)
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%‘i =-v-Vu,+DV’u,+R, (2.27)

t

This general equation of continuity will be used for derivations relevant to specific
situations in following chapters. The next section of this chapter will discuss the

numerical methods that can be applied to solve the equations of this form.

2.4 Numerical Methods

2.4.1 Introduction

Model equations that are developed in this work are generally convective-dispersive
equations which fall into the category of second order partial differential equations.
Depending upon whether the problem to be solved is steady state or transient, dispersion
dominant or strongly convection dominant, the resulting equations can be effectively
elliptic, parabolic or hyperbolic. As most of the equation sets are nonlinear, it is not
possible to solve them analytically. So a numerical solution is the only possibility for any
practical applications.

At present there are lots of PDE tools available off-the-shelf. So in most of the
cases, specifying the model equations or mostly graphically specifying the geometry,
boundary conditions and physical properties of the domain and physics of interest is more
than sufficient to solve or to simulate. This has a very huge advantage in terms of
productivity. There can be two drawbacks. The first, there can be the possibility of using
the tools without completely understanding its outputs and limitations. For example for a
convection dominant flow, the Galerkin method would start to become inaccurate and
unstable as the magnitude of fluid velocity or resulting Peclet number increases above a
certain critical value. For such flow Petrov-Galerkin or other upwind schemes will have
to be adopted. If the appropriate method is not applied, in spite of the physics remaining
same and correct, the solution becomes incorrect. Most of such well established problems
are automatically handled by available tools. However in research, new problems
generate their own new requirements. So the inability to handle such problems and
requirements means-that in spite of developing a good and correct model, its verification
can be difficult. The second problem is that the tools come with their own intrinsic

limitations to make them easy to use and avoid introducing errors by users. In most of the
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cases, this should not be a problem, but in some cases, this can be a limitation. In spite of
explaining some of the possible drawbacks in solely relying on available tools, use of
such tools to solve the kind of problems generated in this work will be important, and in
fact in many involved modelling works will probably represent almost the only way to
complete the works accurately and within a stipulated time.

In this work in order to keep the fréedom of being able to handle an innovative and
complex research problem if that arises, and as most of the model equations are one-
dimensional and relatively easy to apply, appropriate numerical methods will be used.
There are a number of methods that can be employed for the purposes of solution.
Different methods have their own advantages and disadvantages. Finite difference is the
simplest method, while the finite -element method, though more involved, has its
advantages in engineering applications especially when the developed methods have to be
made generic so that they can handle more complicated situations and boundary
conditions easily.

For this work though finite difference method alone could have solved the problem,
a finite element method has been used in the adsorption part of the model so as to make it
more easily amenable to multi-dimensional applications in future if desired, for example
when wall effect becomes significant in very small diameter scale-down columns, etc.
Orthogonal collocation has also been used for its efficiency in diffusion dominant
equations which is especially important when working with multi-component models
which can demand enormous computational resources. In this part of the chapter the
particular methods employed within a given class of methods for a generic equation of the
model are described or reviewed in sufficient depth for their use in other chapters. The
generic derivations from this chapter are applied to specific situations in subsequent
chapters.

Eq. (2.27), a convective-dispersive equation, is a basis equation which will be used
for modelling in this thesis. For establishing generic numerical schemes which would be
applicable to Eq. (2.27) and its general variations, the following generalised form of the
same, Eq. (2.28), will be used in its place. The general derivations of numerical methods
established in this section 2.4 can then be easily applied in specialised equations
developed during the modelling process in other chapters for the purpose of simulation.

For a time (t) dependent variable u (conservation quantity of interest, e.g. a

component) in domain x,
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Ju

—é-t-—V-a1Vu+a2Vu+a3u=f(x,t), 0<x<l1 (2.28)
with boundary conditions:

x=0: b Vu+b,u=g (x,t) (2.29)

x=1: b, Vu+b,u=_g,(x,t) (2.30)

with initial conditions:
t=0: u(x,0)=u’(x) (2.31)
where a; and by are parameters, and f and g; are functions.

In one-dimension and simplified form, the Eqs (2.28)-(2.31) would become:

ou  0%u ou
——a,—+a,—+a,u= f(xt), 0<x<1 2.32
o lox? Cox fet) (2.32)
with boundary conditions:
x=0: b, u +b,u = g,(x,t) (2.33)
ox
Ju
x=1: b, a—+b12u =g,(x1) (2.34)
X

with initial conditions:

t=0: u(x,0)=u’(x) (2.35)

This set of equations (2.32)-(2.35) for one-dimension [or Eqs (2.28)-(2.31) for multi-
dimension] will be used to establish generic numeric schemes in this section 2.4.

Initially the finite difference method (section 2.4.2) will be described. This is used
in solving the hydrodynamic models. Both the orthogonal collocation and finite element
methods are based on variational principles and this will be described next (section 2.4.3).
This is followed by particular methods like orthogonal collocation and Galerkin method
which will be described in section 2.4.4. The finite element method (section 2.4.5), which
is developed for more versatile applications, is described at the end. Numerical error,
stability and convergence are all important factors, and have also been explained briefly.
Many of these are active research areas. Numerous books and publications exist in the
area. Most of the methods used here are standard methods and have been established and
in use for several decades. So this part of the chapter judiciously and systematically
chooses and elaborates the relevant and essential parts of such methods. It is hoped that

this will provide a sound basis, some theoretical insights in the development and
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application of such methods and make the thesis self-sufficient in terms of the capacity to

handle problems arising in this work.

2.4.2 Finite Difference

2.4.2.1 Introduction

In the finite difference method, the continuous PDE problem is replaced by its
corresponding difference form and the resulting discrete algebraic equations are solved to
predict the state of variable () at a given time and spatial position.

A Taylor series expansion of a vector in terms of position vector (r) is given by

(Deen, 1998):
u(r+r)=u(r)+r’-Vu +-;—r'r':VVu+... (2.36)

For a simplified form for a scalar quantity, it can be written as (Kreyszig, 1999):

2 n
u(x+Ax,y)=u(x,y)+%{ Ax+L9 = A e LOH A +E(E) (2.37)
x|, 2lox| nlox”|
where
1 anﬂu il
E()=7— (Ax)™,  E<Ax (2.38)

(n+l)! axn+l ‘)

A\ %4

H—k 1

Fig. 2.7 Discretisation of domain into the grids of space (x) and time (1).
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VIR

Ax

Fig. 2.8 A discretisation unit. Ax is a discrete unit of space (x) and At is that of time (1).

When Ax is small, higher order terms become negligible. Neglecting second and

higher order terms of Eq. (2.37):

u(x+Ax,y)=u(x, y)+ %‘i Ax  (+truncation error = O(Ax)) (2.39)
X X,y
ou|  _ u(x+Ax,y)—u(x,y) (2.40)
ox|,., Ax
This is same as definition of derivatives:
oul _ lim u(x+Ax,y)—u(x,y) 2.41)
ox|,, a0 Ax

Similarly Taylor series can also be expanded in different direction: (backward difference)

2! 9x? n! ox”

xy Xy

2 n
u(x—Ax,y)=u(x,y)—%‘ AL OH A L A" —E)  (2.42)

Adding Egs (2.37) and (2.42), and neglecting 3™ and higher order terms:
0%u 5
u(x+Ax,y) +u(x—Ax,y)=2u(x,y)+ % Ax (2.43)
x
X,y

(+ truncation error O(Ax?))

82u, =u(x+Ax,y)—-2u(x,y)+u(x_Ax’ y)
ax2 AxZ

(2.44)

xy
Different variations of the differencing scheme can be followed and will result in
different levels of accuracy. The first derivative Eq. (2.40) is in forward difference form
and has O(Ax) truncation error. Centered difference can be applied as used to derive 2™
derivative in Eq. (2.44). This can be done by subtracting Eq. (2.42) ffom Eq. (2.37) and

discarding 3" and higher order terms.

u(x+Ax,y)—u(x—Ax,y)=23—u Ax + O(sz))
x|, ,
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du _ u(x+Ax,y)—u(x—Ax,y)

= (2.45)
ox|,, 2Ax

This centered difference first derivative is more accurate since it only has a truncation
error of O(AX).
Thus applying forward difference to time and centered difference to space, Eq.
(2.32) can be discretised as: |
u(x,t + At)—u(x,t) —a u(x+Ax,t)— 2u(x,t)+ u(x - Ax,t) +
Ar l ax’ (2.46)

Ax,t)— —Ax,
a, wlx+ t;A;:(x t) +a3u(x,t)= f(x,t)

u(x,t + At)= u(x,t)+ AtF(u(x+ Ax, 1), u(x,t),u(x— Ax,t).Ax,a,,a,,a,, (x.1) (2.47)

Similarly boundary conditions, Eqs (2.33 and (2.34), can be discretised as:
u(x+Ax,t) - u(x — Ax,t)

b, & +b,u(x,t)=g,(x,1) (2.48)
b,, ux+ Ax,t)A-—xu(x ~Axr) +by,u(x,1)=g,(x.1) (2.49)

Given the known values of u, its value at the next time step can be determined using Eq.
(2.47) and given boundary conditions discretised in the similar form (Eqgs. (2.48) and
(2.49)). As initial values at t = 0 are known from initial conditions, all values can be
determined by marching in time. This is first order accurate in time and second order
accurate in space.

This kind of method is called an explicit method. But it has a serious limitation. For
the method to converge, it has to satisfy a crucial criterion (Kreyszig, 1999):

52 s% (2.50)

This means that the time step should be very small compared to spatial discretisation size.
This requirement can make it unfit for many practical applications. To avoid this
limitation, an implicit method or one of its variants like Crank-Nicholson method or other

f-family of approximation methods have to be applied.
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2.4.2.2 Time Discretisation

In f-family approximation, the weighted average of time derivatives of dependent
variable at two consecutive time steps using their linear interpolation values are used as

follows (Reddy, 1986).

+(1—ea“ (1-0)| +(1-6)i 0<6<1 (2.51)

ou du
9 _(1-9)Z
1-0) 0t |1

ot ot

t

D
G/
oD
&
PRy
N/

t+At
At
> t

—t

Ax

Fig. 2.9 Grid of 6 points used in 6-family approximation

66 1 I

Representing dot (* * ) for time derivative and apostrophe (“ ' ) for a spatial derivative:

u—au’ +au’ +au=f(xr) (2.52)

u=au" —au’ —au+ f(x,t)=F(u,x,t,a,) i=1,2,3 (2.53)
Applying weighted average approximation of # using two consecutive time steps:

i=(1-0)| +64|,,

i=(1-6)F| +6F|,, (2.54)

u(x,t+At)—u(x,1)
At

Values of u (u, u’, u”) in F are evaluated based on its time step, either ¢ or 7+At.

=(1-0)F(u,x,t,a,)+0F (u,x,t +At,a,) (2.55)

Cases:

6=0: _ Explicit method, conditionally stable, accuracy O(Ar)

0=1/2: Crank-Nicholson method, unconditionally stable, accuracy O(Atz)
6=2/3:  Galerkin method, unconditionally stable, accuracy O(A7)

0=1: Implicit method, unconditionally stable, accuracy O(At)

Details for the example equation, Eq. (2.32), would be:
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iu(x,tm)-iu(x,t):(1_9)§{u<x+m,t>-zu(x,t)+u(x_Ax,;)}

_(1_g)z%{u(ﬂAx,z)—u(x—Ax,t)}—(l‘g)"a"(x”)+(1_ ) e) (2.56)

+9Xa;7{u(x+Ax,t+At)—2u(x,t+At)+u(x—Ax,t+At)}
—H%{u(x+Ax,t + A1) —u(x— Ax,t +At)}— Gau(x,t + M)+ G (x,t + Ar)

Keeping all unknown or to be determined values of the new time step on the left of the

equation and all known on the right result in:

a, a, 1 264
-0—+0—— +Ax,t+ A1) +—+ +6a, ulx,r+ At
{ Ax? 2Ax}u(x ) {At Ax? } ( )

94 _9 % Ly “d1-0-" —(1-0)-2
{ 0 02Ax}u(x Ax,t+Ar) {(1 e)Ax2 (1 G)ZAx}u(x+Ax,t)

Ax? (2.57)

At AP
+{(1-0)f(x,1)+ G (x,t +Ar)}

Thus resulting simultaneous equations of unknown variable (u at t+Af) can be

+{i —M)a—‘—(1—9)ag}u(x,t)+{(1——l9)-fxl—z+(l—9)5%}u(X—AX,1)

represented in the matrix form as:
Au* =Bu' + f =b (2.58)

't =A"p (after applying boundary conditions) (2.59)
Thus u of new time step is calculated as above from known u value of previous time step
and so on.

In many situations, instead of discretising time by the method established here, it
will be much easier to apply method of line technique and not to discretise time at all.

Such method and its requirement will be discussed in the following section.

2.4.2.3 Method of Line

In many situations when there are readily available powerful ordinary differential
equation solvers available on hand, it would be easy to apply only spatial discretisation.
This will convert partial differential equations into ordinary differential equation which
are easily solved by using ODE-solver software tools. Such techniques are especially
useful for stiff-equations having more than one and very different time scales where more
elaborate time stepping algorithms including adaptive time steps have to be employed for

simulations.
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Applying this method to Eq. (2.32):

u= alz {u(x+Ax,t)-—2u(x,t)+ u(x—Ax,t)}+

Ax : (2.60)
ZaAzx {u(x+Ax,t) —u(x — Ax,t)} - au(x,t)+ f(x,1)

i = F(u(x+Ax,t),u(x,t)u(x - Ax,t), Ax,a,,a,,a;, f(x,t)) (2.61)
The ODE is solved using available software tools after applying boundary and initial
conditions. In this work while applying this method, due to the stiffness of the model
equations, MATLAB ODE-solver routine ode15s will be used.

Simulation of convective-dispersive equation poses a special problem in some
circumstances. Thus circumstance at which it becomes problematic and how to solve it

will be discussed in the following section.

2.4.2.4 Upwind Scheme

In the convective-dispersive equation, which is the basic equation of most of the work
performed here, when flow becomes convection-dominated, the discretisation adopted as
in the previous section becomes unstable after exceeding a certain critical value of Peclet
no (Pe, ratio of convection to dispersion terms). The reason for this is the fact that the use
of centred difference in a convective term implicitly gives equal weighting in both the
upward and downward values in order to estimate the value in the middle. But physically
when convection is strong, only backward influences will really exists from the origin.
Use of a forward value approach is not physically realistic. Thus backward difference or
upwind scheme in terms of direction of flow instead of centred difference for convective
term has to be applied. This will represent the physics more appropriately in a numerical
scheme, and the method becomes stable.

Hence considering direction of flow to be from x to x+Ax, the convective term is

discretised as:

ou|  ulx,t)—u(x-Ax,rz)
pw Ar (2.62)

Xt
With the exception of this modification all other parts of the discretisation are the same as

described in the previous section.
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Before going to another numerical method which is also one of the basic methods
applied in this thesis, some of the important aspects which need to be considered before

applying a numerical scheme will be discussed briefly in the context of finite difference.

2.4.2.5 Numerical Errors and Convergence

While applying any numerical scheme, it is important to analyse its errors and
convergence. Some of the areas which need to be considered are given below. More

details can be found in Anderson et al. (1984).

2.4.2.5.1 Truncation error

While representing the derivatives with its finite difference form, higher order terms from
Taylor’s series are truncated and thus truncation errors (TE) are automatically introduced
as can be seen in Eqs (2.37), (2.39), (2.43), etc.

PDE=FDE + TE (2.63)
TE is expressed in order of magnitude of discretisation units. For example:

TE= O(At, (Ax))
Thus the resulting solution of FDE gives an approximate solution to the original PDE.
Given TE is small, the solution can be acceptable. But in any marching problem
(parabolic equations) and nonlinear problems (where solution has to be determined
iteratively by contraction mapping), this error term can propagate during the progression
of time or iteration. This makes the numerical scheme unstable. Thus to ascertain whether
a particular numerical scheme or finite difference representation is acceptable, it will have

to meet conditions of consistency and stability.

2.4.2.5.2 Consistency

Consistency indicates the extent to which the finite difference (FD) equations
approximates the partial differential equations. The difference, as seen above, is the
truncation error. For FD representation to be consistent, the TE should vanish as the mesh
size is refined, i.e. as discretisation size (At, Ax) approaches zero.

limO(PDE —-FDE)=0 (2.64)

mesh—

In cases where TE is O(At/Ax), the scheme should if necessary be modified so that
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lim —=0 (2.65)

2.4.2.5.3 Stability

A numerical scheme can be considered stable if the errors introduced into the system does
not grow as the calculation proceeds. The source of errors can be anything e.g. truncation,
round off, small perturbations, etc. This is particularly an important criterion for marching
problems and non-linear problems where the sequence of operations is based on the value
of the previous step. A stable numerical scheme restricts the propagation of errors. Von-
Neumann or Fourier analysis can be performed to check stability of a numerical scheme

for linear problems.

2.4.2.5.4 Convergence

Convergence means that as the mesh is refined the solution of the finite difference
approaches the true solution to the PDE. Generally, consistent and stable numerical
scheme is convergent.

Having established the finite difference method in section 2.4.2 which has been
applied in this thesis at a number of places, the principles of one of the basic numerical

methods applied this thesis will be discussed and established in the next section.

2.4.3 Variational Principles

Both orthogonal collocation and finite element method, which are used in this thesis, fall
into the family of method called weighted residual method (WRM) which is at even much
broader sense is termed a variational method. The variational principle is the basis of such
methods. Thus in this section variational principle and WRM are briefly explained before
going into particular methods in detail. The general derivations made in these sections
will then be applied directly for simulation in the subsequent chapters. All the sections

related to the variational methods are organised and described as follows.

Organisation of Sections: This section 2.4.3 and the rest of the sections, 2.4.4 and 2.4.5,

in the numerical methods discussed in this chapter are organised as follows. Variational
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formulation (section 2.4.3.1) of a given operator equation or a physical problem is
described first. A number of methods can be applied to get an approximate solution of the
problem thus formulated. The Rayleigh-Ritz method is one of them. Though the Galerkin
method is used in this thesis, for simplicity in choosing a basis function, an approach used
in the Rayleigh-Ritz method which incorporates natural boundary condition into the
variation form will be applied. This enables possibility of using C' continuous basis
function instead of C? continuity required otherwise. Therefore the Rayleigh-Ritz method
(section 2.4.3.2) will be explained next. Using this method, the criteria for convergence
and stability of a variational method (section 2.4.3.3) will be presented. Both the Galerkin
method and Orthogonal Collocation (OC) method fall into a class of method called
Weighted Residual Method. Thus general property and principles of such method will be
described first in the section 2.4.4 before going to specific details in sections 2.4.4.1 for
the Galerkin method and 2.4.4.3 for OC method. As OC is a type of collocation method,
that will be described before OC in section 2.4.4.2. For possibility of using complex
domains and boundary conditions, finite element method (FEM) is used in this thesis. In
this method variational approximation (here the Galerkin method) is applied element-wise
instead of the whole domain. Hence FEM and the procedure to apply it are described in
section 2.4.5. Many of the explanations and derivations are based on Thommaset (1981),
Bathe (1996), Reddy (1986), Reddy (1993), Zienkiewicz and Taylor (2000a, 2000b), and
Finlayson (1972).

2.4.3.1 Variational Formulation

The Eq. (2.28) or other field equations can be represented in an abstract form as operator
equation as follows.

Au=f indomain (Q) Bu=g onboundary (I') (2.66)
Where A is linear or nonlinear operator from an inner product space U into another inner

product space V. For Eq. (2.28)

d
A=§—v-a,V+an+a3 in Qc R’ (2.67)
f=f(x1)
boundary conditions
B=bV+b, onI
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Q=Q+TI (closed domain)

In the classical solution u(x,?) is continuous in Q and satisfies A and Bin Q and T
respectively. Assuming f € C(ﬁ), u(x,t) should be a continuous function with partial

derivatives of second order continuous, u€ C 2(ﬁ) and should satisfy boundary
conditions B on I'. The set of such admissible functions (D,) is given by:

D, ={u(x,ne C*(Q) xe Qc R®, B(w) = g(x,t)on T’} (2.68)
Thus the solution of the problem is:

u€ D, which satisfies Au= f (2.69)
For a simple equation (a simple operator A) and simple domain (£2), u can be determined
in closed form using several analytical methods like separation of variables, Finite
Fourier Transform, etc. Different methods and different functions used within the same
method yield different forms of solutions. But the value of u would remain practically the
same as required. For more complex operators and domains, approximate methods will
have to be applied. Variational formulation is one of them.

Here the variational method will be applied to seek an approximate solution to an
example case. It can be observed that it also has an immediate physical meaning.

The general operator equation is: (from Eq. (2.66))

Au=f inQ

Bu=g onl

For a simple one-dimension (1D) case let boundary conditions (BC) be as follows

ul . =u’ Dirichlet BC , (2.70)
ou =0 Neumann BC 2.71)
ox|r.

While A and f are as in Eq. (2.67) (but for 1D).

From Eq. (2.66):

Au—-f =0 in Q (2.72)
Thus the value of  in a given domain of x should be such that it should satisfy Eq. (2.72)
(or Eq. (2.66)) and boundary conditions (at any given time).

For approximation purposes if there are n values of u chosen to be determined from
n positions in the x domain, those values has to satisfy Eq. (2.72). As it is, this would

result in only one equation (excluding BC) for n unknowns. For a determinate solution of
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this, thus a method of setting n equations becomes important. Variational approach is one
of them which is explained as follows.

Let du(x) be an arbitrary variation on u (or an arbitrary continuous function) with

&AL _, =0 (for a Dirichlet BC as in Eq. (2.70)). Then

L(Au ~ f)éudx=0 (2.73)

This corresponds to the requirement that the residual, (Au — f), should be orthogonal to the
arbitrary variations, providing both of them are taken from same vector space. This can be
represented as

(Au— f,0u)=0 VoueV (2.74)
when V is taken to be an inner product space with L; norm.

(-,7) = L scalar product over the domain of integration
(u,0u) = Lu&t dx

Those conditions allow us to utilize theories developed in such spaces, viz. Sobolev and
Hilbert spaces, for their generic application and to test and prove the existence,
uniqueness and convergence of the solution.

As both u and Ju are taken from the same space, their dimensions are also the same,
and thus Eq. (2.73) will provide n equations for n unknowns. Therefore the unknown
spatial values of u can be determined.

The expanded form of Eq. (2.73):

du 0 Ju Ju
L(E?—g;( ax)+a28 +a3u—fJ&4dx=0 (2.75)

Applying variational principles, du, a variation, can be treated analogously as normal

differential operator.

du ou ou
= duedx— Lax(a‘ ax)&tdx+La2$&4dx+ [audiax= [ faeax  (2.76)
Integrating by parts
ou d( ou au 8(&4)
—dudx— —u |dx
ot -[2 ox ( ' ox ) ax ox

2.77)
+La2 5udx+La3uc5udx [ féiudx

Applying Gauss’ divergence theorem
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du a(&)

ou ou
L—&zdx— I_n(algc‘fujdx+ '3 ox

+La2 &dx+La3ua4dx [ féedx

9 du 9(du
a’t‘&dx [a az (ax) L &dx+La3u&dx

= Lfc‘fudx+'[_nq’&4dx

(2.78)

We have
Total surface: I'=I, +I,, and I, NI, =0 (2.79)

And,
u=0 onT’ (2.80)

u

Thus

L& La(‘s") dx+L&4 & dx+ [ Suayud

= [ duf dx+ Ié‘uq; dx

(2.81)
where

q,=n-q’
(Note: Depending upon the context or the physical property represented by u, the above
formulation can also be termed as derivation from principle of virtual concentration,
virtual temperature or virtual work in field problems of engineering.)

The variation, du(x), can be represented by a test function, v(x) of the same space.

This will result Eq. (2.73) as:
L(Au — fvdx=0 (2.82)

Thus Eq. (2.81) will become:
audx+.[2 dx L az——dx+ va,u dx
(2.83)

= vadx+ I_vq: dx
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Thus the variational formulation of the original problem Eq. (2.28), also called a
weak formulation, will be as follows:

Find u such that:

u(0)=u’ essential BC
alv,u)=, f) Vvsuch that v(0)=0 (2.84)
where
0 ov d d
a(v,u) = Lva—:dx+La—:al a—de+ LvaZB—zdx+ Lva3udx

w,f)= [ vf de+ [vg;ax
a(v,u) is a bilinear functional and (v,f) is a linear functional as they are linear functions of
corresponding functions in appropriate inner product space with appropriate norm.

The condition under which the above variational formulation will have a unique

solution is given by the Lax-Milgram theorem (Reddy, 1986) which is as follows:

The Lax-Milgram theorem: Let H be a Hilbert space, and let B(-,-): HXH — R be
a bilinear form on H x H , with following properties:

a) continuity of B(-, -):[Bv,u)| < M|v| || 0<M <eo
b) positive definiteness of B(-, -): |B(u,u)| < a‘"v"2 a>0

for all u,ve H . Then for any continuous linear functional /: H — R on H, there
exists a unique vector up in H such that
B(v,u,) =1(v) VYve H (2.85)

From Eq. 11, for integrals involved to be finite,

vadx<+oo

L(%)z dx < +oo (2.86)
L ov

v_

dx < +oo
ox

Therefore applying conditions based on the Lax-Milgram theorem, for a unique solution,
the final problem (or the variational formulation of the original problem) is expressed as:

Find u such that:
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av,u)=, f) YveV (2.87)
where space V is defined as

V=lvive L@, Ve L@y, =0|

Ly(QQ): space of square integrable functions over the domain Q.

L(Q)= {w: wis defined over 0< x < Qand [ (w)* dx=|w{; < oo} (2.88)

A method to determine approximate solution of the above formulation, the

Rayleigh-Ritz method, is described next.

2.4.3.2 Rayleigh-Ritz Method

In Rayleigh-Ritz method, the basis of the solution space (separable Hilber space, Hy):
X8 O S
For approximation only the finite basis will be taken. If N be the number of basis taken,

the approximation uy of the solution u is:
N
Uy =Y. ¢,8, (2.89)
=

As ¢e C; () or function with compact support, it does not satisfy the boundary
conditions if they are not homogeneous. Thus for equations having non-homogeneous

essential boundary condition either the equation is modified to form homogeneous BC or

following form of approximation of u will have to be used to satisfy such BC.
N
Uy =Y .C,0,+8 (2.90)
j=1

where c¢; are unknown constants which have to be determined. ¢ is chosen to satisfy
essential BC.

This up has to satisfy the variational form of equation (2.87):

a(v,u)=(, f) (2.91)
This will result in the determination of coefficients ¢; which correspond to the unique
vector v from the same space. In Rayleigh-Ritz method the v are taken to be the basis ¢
of the space.

Thus for the finite basis N:

ay,uy) =Wy, f) Vv, €V (2.92)
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a(@,iﬁ% +¢0J=(¢,-,f) i=12,....N (2.93)

These N equations will determine the values of N unknown c¢; which thus gives the
approximate solution uy. The existence and uniqueness of the solution is guaranteed for a
linear case by Lax-Milgram theorem as given in the previous section providing the space
defined by the basis ¢ satisfies the required properties which means it is a separable

Hilbert space with L, norms. The properties which arbitrary ¢ has to satisfy are:

1. {g)cCH,
2. @,,0,,....0y are linearly independent for any N.

3. {¢} is complete in Hy.

For bilinear a, the summation and constants ¢; can be taken outside the operator:

al¢.¢,)c, +als.9,)= .. )

M=

J

il

Za(¢i 9, )cj =(¢.f)- a(¢i‘¢0) (2.94)
Bec=F (2.95)
¢=B"'F (2.96)

This gives the approximate solution (uy) of the problem. The convergence and
stability of the solution is an important aspect and therefore described briefly in the

following section.

2.4.3.3 Convergence and Stability

Some of the important concepts to be derived for numerical solutions are convergence,

stability and conditioning of equations. They are as follows.

2.4.3.3.1 Convergence

As seen above u is approximated as:
N
uy =.c;0, (2.97)
j=1

when N — o
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u=cg, (2.98)

By applying Gram-Schmidt orthogonalisation procedure, it can be represented in a

resulting set of orthonormal basis ¢, or a Fourier series as:

U= Zcﬂ;j (2.99)
j=1
It has been proved for ¢; space as used in the previous section
Ilvim Uy =u in Hy (2.100)
ie. |u,-u,|<e Vm,n> N (2.101)

The solution u converges to the true solution as N increases.

2.4.3.3.2 Stability

As seen above increase in N will converge u to its true solution providing all
computations are done exactly. But during computation only finite word length can be
used which will automatically introduce some numerical errors. So increase in N can
increase in such numerical errors. In some conditions such numerical errors can propagate

and can make the solution unstable. In the following Eqgs. (2.102)-(2.103), AB,Ac and

AF are numerical errors introduced during the computation.
Bc=F (2.102)
(B+AB)(c+Ac)=(F +AF) (2.103)
In Ritz approximation for the solution to numerically stable, it has to satisfy following
stability criterion:
[ac] < Alas|+ aF] (2.104)
where a, f, y are independent of N.

|AB| < (2.105)

|| . " Euclidian norm

2.4.3.3.3 Conditioning of the equations

Among the different sources of numerical error, round-off error is important error. It can

become significant under particular situations. So it is important to know when such
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situations may occur and to remedy it. Round-off errors introduced during the solution of
an equation system is proportional to the condition number of its coefficient matrix. In the

above case, for a positive definite matrix (B), condition number is given by:

(N)
}'N

K(B):W (2.106)
where
AM = smallest eigenvalue of matrix B
AW = largest eigenvalue of matrix B
For well conditioning of the system K(B) remains bounded as N increases.
ie. a<KB)<pf (2.107)

where

B>a>0 and o, # f(N)

As described in the section organisation part of the section 2.4.3, the weighted
residual method is described next before going into details of Galerkin and OC methods

which are the main variational methods applied in this thesis.

2.4.4 Weighted Residual Method

The main principle of weighted residual method (WRM) is: if a vector is orthogonal to all
basis in a given inner product space, its value is zero. So the function value of u which
makes the residual, Au-f, orthogonal to all the basis in the same space is the solution as it
means it satisfies the given operator equation or residual is zero. The basis function can
be of different type but should cover all. As this basis can be considered as weights whose
inner product with residual result into zero, the method is called weighted residual
method. In more detail the approach is as follows.
Let H be a separable Hilbert space with S its dense subspace.

If for some ue H

u,v)=0 YveS=>u=0 inH (2.108)
If y; is basis of S,
(w,)=0 Vi =u=0 inH (2.109)

A given operator equation
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Au=f in Q (2.110)
where domain of Ais Ds: D, c H > H
D, consists of elements or functions which satisfy both differential equations (A) and
associated appropriate homogeneous boundary conditions.

Thus if ue D, C H is such that

(Au-f.p,)=0 Vi = Au-f=0 inH (2.111)

where yj; is basis in H.

u can be represented by any basis and not necessarily by y;

uzichij (2.112)
j=1
Taking a finite N basis for an approximate solution
uy = ic,-fﬁ,» (2.113)
j=1
This gives,
(Auy - f,)=0 j=12,...,N (2.114)

For a linear operator A:

N

Z(A(I)i’y/j)cj '_‘(f’Wj) Jj=12,...,N (2.115)

=]
Bc=F (2.116)
Because of the requirement that ¢, C D,, @& need be 2m times differentiable if A is
differential order of 2m, and must satisfy the boundary conditions.
According to the types of basis y; (or weighed function) used, there are different

kinds of weighted residual methods. For a general case, ¢, # ¢ i and is known as Petrov-

Galerkin method. Some of the different types are:

e Galerkin method

e Collocation method

e Petrov-Galerkin method
¢ Subdomain method

e I east Square method

The first two will be used in this work and will be explained briefly. For higher Peclet no

flow which is highly dominated by convection, the basis might have to be modified. For
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example an exponential upwinding scheme would be necessary for stability of the
numerical solution in such flow simulations. Thus a Petrov-Galerkin method could be

necessary.

2.4.4.1 The Galerkin Method

When basis of S or H, y;, is also used as a basis to represent u, ¢, it is known as Galerkin

method.
N
Uy =D ¥, (2.117)
j=
and (Auy - f.¥,)=0 Vj (2.118)

For a linear operator A

N

Savow,)e, =(fw;,)  j=12...N (2.119)

jal
For a linear positive definite operator A when natural boundary conditions are
incorporated within the formulation by transferring a one differentiation to the basis
function, y;, this is equivalent to Ritz formulation as described in the previous section. In
such a case y; can be m order differentiable for a differential operator of 2m as in Ritz
formulation. This is a huge benefit in terms of choosing simple y;. If the natural boundary
conditions could not have been incorporated, they will have to be satisfied by the trial
function or basis y; and a higher order function like Hermite cubic polynomial will have
to be employed.

Before explaining and making derivations to apply orthogonal collocation method,
the generic collocation method will be described first and establish its major principles as

follows.

2.4.4.2 Collocation Method

In the collocation method Dirac delta function is used as the basis (y;) or weighting

function.
I//j(x)=§(x—xj) (2.120)

This has the property that

L://j(Au—f)dx=(Au—f)Lj | (2.121)



Thus _
(AuN _f’l//j)
(Auy - £), =0 j=12,...N (2.122)

0

For a linear operator A:

iA[(bi(xj)]c,. = f(x,) j=12,...N (2.123)

i=1

Bc=F (2.124)
The principle of collocation method is to determine parameters c; used to
N
approximate u, = Zc,¢i by forcing the residual Au— f to vanish as N selected points x;
i=1
(j=12,...,N) in the domain. As N increases, the point where u exactly satisfies the
operator equation increases, and thus the solution is expected to converge. To avoid ill-
conditioning, the collocation points should be evenly spaced.
After establishing basic principle of collocation method here, orthogonal
collocation method will be explained and important derivations, for their direct

applications, will be made in the next section.

2.4.4.3 Orthogonal Collocation

The explanation here is based on that of Finlayson (1972). In higher order approximations
the choice of method or weighing function in WRM is not important. The choice will thus
be based on ease of computation. If the collocation method is applied the position of
collocation points would not become important either. Improvements in the method can
be achieved when the collocation points are chosen to be roots of a set of orthogonal
polynomial trial functions which satisfy the equation and the boundary conditions. The
resulting solution is more reliable even for low order approximations.

As in collocation method, in general, for a linear operator A, the solution is given

by Eq. (2.123):
N
ZA[@(xj)]ci = f(x,) j=12,...,N (2.125)
where

U=uy = Zci¢i

i=1
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Bc=F ‘ (2.126)
As x; is determinate (being roots of polynomials), A[(z)i (x;) J or B is also determinate. So

the computation of the unknown nodal values ¢; becomes straightforward. Some standard
general trial functions, x; values are available in the literature along with matrix
equivalents of some operators (gradient, Laplacian). So their use for general problems
becomes almost routine. An example case including the construction of a trial function
for a 1D case which is relevant to this work is shown here.

A trial function: with a requirement of satisfying a boundary condition, a solution

can be expressed as:

u(x)= gy (1) + . c.0,(x) (2.127)

i=1

where

Yy

(¢i .@; )w =0, (Orthogonal basis with respect to w)

A common form of basis can be a polynomial:
¢, (x)=P,(x)=) a;x' (2.128)
i=0

Polynomial coefficients, a;, can be defined by requiring the successive polynomials to be

orthogonal to all polynomials of order less than m; w.r.t. some weighting function w(x)>0:
[W@P,@P,®dx=0  n=0L..m-1 (2.129)
For example whena =-1,b=1,w =1 and P, (x) =1, P(x)=a, +a,x is given by:
L (a, +a,x)dx =0 (2.130)

This gives ap = 0 and a; arbitrary. Choosing a; = 1 gives P, (x)=1.

Similarly P,(x)=a, +a,x+a,x will be determined by:

[1-Pmar=0 and [ x P,(x)dx=0 (2.131)
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The resulting set is called Legendre polynomial.

Table 2.1 Roots of Legendre polynomial (Finlayson, 1972)

Legendre polynomial Roots
P, =1
P =x x, =0

J

P, =1-3x xj=¢)</§=1ro.577

These m roots of polynomials P,(x) can serve as the collocation points in the interval of
a<x<b.

Polynomials can be constructed with additional convenient properties. When
solution is sought on the domain 0 < x <1 and it is required to be symmetric about x=0, it
can be expanded in terms of powers of x°. Along with satisfying the Dirichlet boundary

condition, a possible trial function can be:
N
Uy (X) =@y (x)+ D .0, (x) (2.132)
i=l

where
¢, =(1-x")P_(x*)
and N = number of interior collocation points.

The polynomials are determined by the orthogonality condition like:
[WOOP ORI dr=kys,  j=12..i-1 (2.133)

where
a =1, 2, 3 for planar, cylindrical or spherical geometries

For ease in computation, Eq. (2.132) can be written in the form of

N+1
uy(x)=) dx*? (2.134)
i=1
where
x =1 for (N+1)™ collocation point.
Taking gradient and Laplacian of it and evaluating them at collocation points (as

given by roots of the used orthogonal polynomial) results in:
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N+l

u(x;)=Y» xid, (2.135)
i=1
du & dx*?
v, = - zljx—{d (2.136)
VzuL = Nzﬂvz(xm)x d, (2.137)
A J
In the matrix form:
u=0d (2.138)
Vu=0Cd (2.139)
Viu=Dd (2.140)
Solving for d:
d=Q7'u : (2.141)
Using the value of d in the gradient and Laplacian of u, results in:
Vu=CQ 'u=Au (2.142)
Vu=DQ 'u=Bu (2.143)

Thus derivatives here are expressed as value of the function u at collocation points.

Quadrature formulae may be used to evaluate integrals as follows:

N+1

[rl)tax= w,r(x,) (2.144)

=
For f, = x>, weight (w;) is given by
_ N+l _

£x2l-2xa-l dx = ZWjX?‘_Z (2145)
=

LHS——1—=f (2.146)

T 2i-2+4a '

RHS. = wQ (2.147)

Thus

wQ = f (2.148)

w=fQ (2.149)

Thus in this method, the operator equation and its boundary conditions are
discretised using appropriate orthogonal polynomial as shown above. This results into an

equivalent matrix form or a simultaneous equation set on unknown nodal values.
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Some computed value for such matrices for some standard conditions for certain
number of collocation points using general orthogonal polynomial are given in Finlayson
(1972). The finite element method, which will be applied in conjunction with the
orthogonal collocation method to simulate adsorption parts of the models developed in

this thesis, will be discussed and established in the following section.

2.4.5 Finite Element Method

When the geometry is complex or there is discontinuity in material properties or forcing
term, finding an approximate function (or trial function) which satisfies the whole domain
becomes difficult in a normal variational method. To overcome this problem, such a
complex domain is divided into geometrically simple subdomains which permit
systematic construction of simple approximation functions to apply variational methods
in each. These subdomains are called finite elements. Algebraic polynomials derived
from using an interpolation theory are used for approximation functions. The
undetermined parameters represent the value of u at nodes of the approximating functions
including essential boundary conditions. Due to continuity requirements, values at shared
boundaries of adjacent elements are naturally considered as same for all such elements.
The assembly of all elements gives the whole domain. Applying domain boundary
conditions, will result in N equations for N unknown parameters. This is a finite element
method (FEM) and is especially suitable for automated computer procedures.

The basic procedure of applying FEM is:

¢ mesh generation or division of whole domain into simple parts/elements
e derivation of approximating functions

e variational approximation of the operator equation

e assembly of elements

e imposition of boundary conditions

e solution of equation

e post-processing: further computation of other dependent quantities if required.
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2.4.5.1 Mesh Generation

The whole domain (Q) of problem is divided into small parts (Q°) with simple

geometries.
Q=QuT
— — N —
Q=9,=JQ°

— —t—

Fig. 2.10 Mesh generation

2.4.5.2 Derivation of approximation function

(2.150)

(2.151)

Appropriate interpolation functions are used as approximation functions because of their

simplicity, ease of computation and relative ease in studying convergence and other

theoretical aspects.

n
e _ e _ e, e
u ~uh_§:uil//i
~

(2.152)

(This is similar to u = c,¢, in previous section but its domain is just an element, Q°.)

i=1
For example for 1D element of length A:

For a linear element (or a linear function u; )

w"=[( —%) ﬂ 0<E&<h

For a quadratic element (or a quadratic function u; )

o 05) $5) 55 s

u‘ has to satisfy continuity requirement between adjacent elements.

u‘e Pl(Q“)cH

(2.153)

(2.154)

(2.155)
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2.4.5.3 Variational approximation

The operator equation is approximated by its variational or weak form for each element
using one of the methods discussed in the previous section. The Weighted Residual
Method is more versatile but the variational method based on the Rayleigh-Ritz method is
more useful if it can be applied as it allows a lesser degree of continuity requirement in
approximation function (y°) (e.g. C' compared to C required for differential operator A
of second order) due to incorporation of the natural boundary condition within the
variational form. This makes solution easier.

Thus
(Au - £.9%)=0, j=12,...n (2.156)

For a linear operator A:

i(AWf"/’f)"f=(fﬂ//f)’ j=12,...n (2.157)

i=1
or in the form of Eq. (2.84)

as(ve,ut)= (v, £¢) (2.158)
From Eq. (2.157)

n

Salywut =l f),  i=12...n (2.159)

i=1

|k fuc}={F} (2.160)
where

e

k5= a(wjl,t//,. ) (in solid mechanics — stiffness matrix)
F;f (l//j f e) (in solid mechanics - forcing vector)
As y; are algebraic polynomials, K* and F* can be numerically evaluated but as F*

contains inter-element fluxes, Eq. (2.160) can not be solved at elemental level. Boundary

conditions are available only for a full (or global) domain.

2.4.5.4 Assembly of elements

As seen above the whole problem domain is divided into elemental parts. The

connectivity of elements is established by requiring all the nodal values of the elements

51



are same for the nodes common to adjacent elements. Thus a global interpolation can be
defined covering all assembled elements and their nodal values as follows. It will be

linearly independent, continuous and within compact support.
N
u=u,=yU,®, (2.161)
J=1

As shown below @, is defined by disjoint local function ;™ (x) and ¥, (x).

Fig. 2.11 A global coordinate for element assembly

The space spanned by the linearly independent set {<I> ,}IJLI is called a finite element

space, and can be denoted as S*(Q,, ).

2.4.5.5 Imposition of Boundary Conditions

After assembly, the global boundary conditions are applied which can be either essential
or natural boundary conditions. If natural boundary conditions are incorporated within the
variation form, it may appear as inter-element flux (P°). The sum of this secondary degree

of freedom at the element boundary is know if the nodal u value (i.e. primary degree of
freedom) is not known. For example if there is no nodal source, P; +F° =0. This

information will be applied in assembly (to compute F*) before solution.

2.4.5.6 Solution of Equation

[k{vu}={F} (2.162)
{vl=Ik]'{F} (2.163)
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Any direct or indirect method can be employed to solve the resulting simultaneous
equation systems. For transient problems the time discretisation will have to be applied
using Wilson O-family approximation (section 2.4.2.2). If a powerful ODE-solver

available, it can be directly employed as in method of line solution.

2.4.5.7 Post-processing

If secondary variables are also of interest, they can also be computed by the interpolation
using the same basis function (y°) which was used for an approximate solution of the
variational form of the elements.

With this, the basis equations of the modelling along with the generic derivations of
all the numerical methods applied in this thesis have been established. The next section

will briefly describe the systematic approach followed for modelling in this thesis.

2.5 Model Development Process

In general the model development process has been performed and presented in a
tentative standard format. Usually models have been developed stage-wise from simple
independent units to increasingly complex and more realistic models and their integration
when applicable. For each model, an introduction is presented at first along with literature
review. Once established the objective, reason, past work and scope, the model
development is performed. Each model comes with a number of essential parameters. The
methods employed in estimating such parameters are described next. The simulation of
the model is then done by applying appropriate numerical methods. Convergence analysis
is done when required. The simulation results are then collected by using the data from
the experimental system of interest. The interpretation of the results in relation to the
experimental data, the significance of the model and further developments are then

discussed and conclusions drawn in the final section.
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2.6 Summary

This chapter explains the principles and methods applied in analysing the problems,
formulating the models and simulating their results in this thesis. Specifically principles
of chromatography and EBA have been described. Some relevant transport equations
have been reviewed which will be a basis of modelling in this work. Out of the large
number of numerical methods available, some important ones which were relevant and
more appropriate for the simulation of models developed in this work have been reviewed
and presented systematically. Derivations were also done for relevant generic sets of
equations here so when such equations were encountered during the later part of this
work, their solutions could be used directly. This avoids repeated derivation every time
such situations arise. Finally a systematic method applied to approach modelling
problems has been described. Prepared with these tools and methods, the modelling of

EBA was attempted from the next chapter onwards.
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3 Chromatography Modelling

3.1 Introduction

From a modelling perspective expanded bed adsorption (EBA) is essentially treated like
any general liquid chromatography problem apart from the existence of axial variations in
particle size and voidage which arise as a result of EBA hydrodynamics. Thus in its
simplest form if such variation is neglected and a steady state hydrodynamic bed is
considered, EBA becomes equivalent to a normal liquid chromatography packed bed.
Besides, even when such variations are considered, the basic adsorption of any
component along the bed is still represented by the same model as used in a liquid
chromatography. Thus in this chapter a comprehensive model of a liquid chromatography
is established which will provide the basis for modelling EBA in the subsequent chapters.

The specific objectives of this chapter are to:

e establish a comprehensive model of liquid chromatography
e simulate it using an appropriate numerical method

e validate the model and its method of implementation against literature data.

3.2 Literature Review

Chromatography has been modelled with different approaches and with various degrees
of complexity. A quite comprehensive summary of which can be found in monographs by
Guiochon et al. (1994), Michel et al. (2005), a review by Spieker et al. (1998), etc. Over
decades the chromatography model seems to have matured and reached the stage where it
covers most of the essential aspects of the phenomena. Models now produce results which
are fairly accurate for many applications. However new materials to separate bring with
them new challenges along with their different thermodynamic and physical properties.
So the research for better chromatography models continues. From the mass balance
perspective, the phenomenon that occurs within a general chromatography can be fairly
well captured by a structure which in the literature is termed the general rate model. This

is also one the most comprehensive models available (Michel et al., 2005).
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Thus in this chapter a comprehensive general rate model as developed by Gu (1995)
and Spieker et al. (1998) is established. The reason for deriving the model equations here
from first principles is in order to adapt and modify them as necessary when the EBA

model is developed in subsequent chapters.

3.3 The Model

A Mass balance of a chemical species or component in a chromatography column can be
analysed as follows. The chemical species to be separated enter the column at the inlet
(Fig. 3.1). Part of it is carried along the column by convective transfer and some portion
is diffused into the interstitial space while part diffuses inside the pore space of the

chromatography matrix or particles (Fig. 3.2).

Inlet Outlet

=) =

Fig. 3.1 A differential volume in a chromatography column. A Component of interest mixed
with other components or chemical species in bulk liquid phase will enter at inlet, pass
through the column where adsorption takes place and comes out of outlet with the liquid
phase which are not adsorbed inside the column.

Fig. 3.2 A diffusion of component species inside a chromatography matrix particle.

Inside such particles the chemical species is distributed between the pore liquid phase and
adsorption phase or particle surface. Such partitioning is a result of thermodynamic

equilibrium which can be observed via an adsorption isotherm. The chemical species
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passes through each differential volume as shown in Fig. 3.1 subject to all these situations

and finally exits from the column outlet.

Following assumptions are taken for the modelling.

Mass transfer of a chemical species is considered to be in 3 phases: bulk liquid
phase, pore liquid phase and adsorbent phase.

Mass transfer in the bulk phase is due to convection and dispersion.

Chemical species transfer from the bulk liquid phase to the particle is governed by
film mass transfer.

Mass is transported in the pore liquid phase of the particle only by diffusion.
Adsorption equilibrium is considered to be instantaneous on the pore surface of
the particles in comparison to mass transfer rates, especially diffusion, which
occurs inside the particle.

For simplification only one axial dimension is used to describe the bulk phase and
due to the symmetry of a spherical particle only one radial dimension is
considered for the particle phase.

Mass concentrations of different chemical component species are considered to be
very low compared to the carrier solvent/medium. The weighted average density
(p) of the liquid phase including all component species is considered to be

constant.

The mass balance of a component i in each phases are derived as follows.

3.3.1

Bulk phase

Applying a mass balance for a chemical species in a differential volume element (Fig.

3.3) of a column, from Eq. (2.27)

where

du,

L=—y.Vu,+V-DVu +R, (3.1)

ot

v = mass average velocity

and V-vy=0 asp=constant

Source/sink term (Ry;) is the rate at which the chemical species is transferred into the

particle phase from the bulk liquid phase. It is given by:

R, =-wn, ~ (3.2)
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ng; = film mass flux of a component species i

w = outer surface area per unit volume of adsorbent particle

Considering v as a superficial (mass average) velocity and ez be bulk phase porosity
inside the column.

volumetric flow rate
y= - (3.3)
cross - sectional area of the column

Only €3 is available for bulk phase mass transport. Thus

£, %" =—£,v-Vu, +£,V-DVu, +R, (.4)

where Ry; is taken to be in relation to total volume of differential element, as sink term is
related to the total differential volume element (including counter part of €g). This can be

visualized as follows:

EB

Fig. 3.3 Differential volume element of a chromatography column

ns; can be adequately represented by film mass transfer mechanism in the stationary liquid
film surrounding the adsorbent which the chemical species has to pass through to get

transported from the bulk liquid phase to the pore liquid phase. It is given by:
np=kpG—u,| ) (3.5)

where
kg = film mass transfer coefficient
up; = concentration of chemical species in pore phase immediately next to film or

its outer boundary
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Representing the concentration of a chemical species in the bulk liquid phase as us;
and E as the dispersion coefficient of the bulk liquid in the column, the bulk phase mass

balance for the component i becomes:

auBi
LY

E will be relatively constant for all components as in the bulk phase the diffusion of

=—EyV Vg + €V -EVuy, —wn, (3.6)

component species is dominated by bulk dispersion of average fluid element. Considering

E to be independent of spatial position:

=y 2y, 2 -
= v-Vug + EVoug gBkﬁ(uB‘ Upi|

) 3.7

The Eq. (3.7) describes the mass balance of a component in bulk phase.

Boundary conditions for bulk phase (¢ > 0) are derived as follows.
Atinlet (x =0) :
From Eq. (2.15), mass balance at interface:

[, +un0=v) o =G +ugv=v ), ]-n, =R (3.8)
Boundary interface being stationary, v; = 0, n; = 1 and no surface source (Rs; = 0)

U tugv), o = tugv), 3.9
where equivalent phase B is at (x = 0)* - in-column

equivalent phase A is at “in” or (x = 0) - out-column

There is only convective flux in the incoming flux at the inlet interface while both
convection and dispersion flux exist in outgoing flux at the inlet interface.

U, tugv)y =ugv),,

Ji =—EVu,, from Eq. (2.21) with E replacing D;

(g, —uy|,)+ EVug|, =0 (3.10)
At oulet (x = L):

Vug| , =0 (3.11)

x=L

3.3.2 Particle phase

Applying the mass balance to a differential volume element of particle phase (Fig. 3.4),
from Eq. (2.27)

ou Pi

ot

=V, -Vu, +V-(D,Vu,)+R, (3.12)
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solid phase with
ﬂ adsorbed phase

g pore liquid phase

"""""" ]d,llr ’:D ‘:> jd7i|r+dr

r| | redr

Fig. 3.4 Differential volume element of a particle. (Figure based on Spieker et al., 1998)

Inside the pore phase the only flux is due to diffusion as the convective flux is negligible.
There is no source/sink considered. The above relationship would be valid if there is no
adsorption. If there is adsorption where the rate is slow and it is in the time scale of
diffusion, it can be incorporated as a separate term. Since, however the adsorption
phenomena that are being studied in chromatography are considered instantaneous in
relation to the diffusion, it is expressed in the accumulation term. The component in the
pore liquid phase is instantaneously distributed between the pore liquid phase and the
adsorption phase (i.e. proximate surface of solid phase) to maintain thermodynamic
equilibrium. .

Let uy; be the total mass of component species distributed between the pore liquid
phase and the adsorbent phase.

Uy, =Eplp +(1—Epdu (3.13)
where ¢p is the pore space in the particle phase and up; and u,; are the concentration of
component in the pore liquid phase and adsorbent phase respectively.

The mass balance of Eq. (3.12) becomes:

Juy

ot

Only the ¢p part of the differential volume is available for diffusive flux while ug; is

=£,V-(D,Vu,) (3.14)

related to the total differential volume element.

As the diffusivity of component i (D;) is independent of spatial position:
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= £,DVu,, (3.15)

The instantaneous equilibrium partition of up; into up; and wuy; is represented by the

adsorption isotherm:
Fi@apseestbgy s Upysestipy) =0 j=12,... N (3.16)

where N = no. of component species present or considered of relevance

Boundary conditions of the particle phase (for # > 0) are derived as follows.

solid phase with adsorbed phase liquid film

pore liquid phase

- bulk liquid
: ) jdi|0+dr phase
jd,j |R-dr =) . C: jfi
0 O+dr Rdr R
element at particle element at particle
center suface

Fig. 3.5 Differential volume elements at particle centre and particle surface. (Figure based
on Spieker et al., 1998)

At the particle centre, r = 0 (Fig. 3.5), due to radial symmetry in a spherical particle,

there will not be any diffusive mass flux.

jdilo = _EPD:'V”P:'IO =0

Vu|, =0 (3.17)

At the particle surface, r = R, the molecular species transfers from bulk liquid phase
into the pore liquid phase of particle through stationary film around the particle. This can
be modelled as a convective boundary condition where component specific rate is
characterised by a mass transfer coefficient (k). Such flux is given by:

Jp =k g ~upl,) (3.18)
Applying mass balance at the interface or particle surface (using eq. A.13)

[(F, —u,v,)p —(F,—upv,),]-n, =R,
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F,=-Fy
Ja="Jg (Orientation of r is taken as a positive direction)
EPDivuPilo =kﬁ(u8i _uPiIR) (3.19)

The initial conditions (¢ = 0) of the system are given by:

For0<r<Rand0<x<L

g, =up (3.20)
Up|,_ = Up 3.21)
| = U (3.22)

The developed model is summarised in the following section.

3.3.3 The model summary

The summary of the chromatography model is as given below.

%"tﬂ_—.—v Vu,, +EViu, —%kﬁ (up—u,| ) (3.23)
Juty £,D,V’u,, (3.24)
ot
Uy, = Epthp + (1= Ep)uy, (3.25)
FiQ@apse sty stipysesttpy) =0 j=12,..,,N (3.26)
With boundary conditions:
ugi: vQug| —ugl)+EVuy| =0 (3.27)
Vug| _, =0 (3.28)
upi: Vup| =0 (3.29)
£pDVuy|, =k, (ug —upl,) (3.30)

With initial conditions: (z = 0)
— 1,0 _,,0 _ .0
uBil,:o =Upgi» “Pi|,=0 SUp;i, Upilo = Rai (3.31)
In normal chromatography, use only of the axial dimension of the column is
sufficient to capture most of its essential behaviour. If two or three dimensional analysis

is sought, relevant additional boundary conditions can be included in the system.

Similarly due to radial symmetry of spherical particle (shape and homogeneity of
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structure is reasonably valid for practical purposes), only the radial dimension is used to
describe the particle phase. The model is simplified to 1-axial dimension and 1-radial
dimension, and used from this point onwards in this thesis.

Thus the 1D-axial (z) and 1D-radial () model of adsorption becomes:

Ouy, Ou,,  0%u, w
L=— L+ E—2 ——k (uy —u,, 3.32
o o Pz g e o) (3-32)
auK- D. a 2 aup)
L=g,——|r —= (3.33)
ot Pt ar( or )
Uy, =Eplhp, +(1—Ep)u (3.34)
With boundary conditions:
up;: V(uBil, —uBilo)-l-EauBi =0 (3.35)
in az 0
Ful g (3.36)
9z |,
LT (3.37)
or |,
ou,,
epDiﬁl =k (g — 1y ,) (3.38)
or |,
With initial conditions: (¢ = 0)
uBi|,=0 =ugi’ upi|,=0 =ugi ) uAi|,=o =u2i (3.39)
The isotherm relation is given by
FiQarseslpystppse.stipy) =0 j=12,.. N (3.40)

For components showing a multi-component competitive Langmuir isotherm behaviour
the following relation can be used to describe an equilibrium relation Eq. (3.3.32)
between component concentration at pore liquid phase and adsorbent or solid phase.

byup;

= N
1+iju,,j
j=1

U,

1

(3.41)

Before simulation, this model is normalised in the following section.
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3.4 Normalisation of the adsorption model

The direct use of the above model for simulation is adequate. Normalisation or non-

dimensionalisation helps reduce number of variables and parameters and ease in solution.

Thus the above chromatography model has been normalised as follows.

Normalising the adsorption model by using following dimensionless variables:

i, =28 i, =20 i, =24 (3.42)
Uy, Wy; Uy,
where up; is defined as: Uy = max{u Bi- feed (T)} —0 < T+oo (3.43)
r=2 7=2, F=a (3.44)
L L R
This gives
a7t v 07 1 or 1 .
— ==, === - = 3.45
Jgr L Jdz L dr R (345)
Now
ug (z,t) > uy(Z,7) (3.46)
up (z,r,t) > up (Z,7,7) (3.47)
Partial derivatives w.r.t. 7 :
Ou g, (z,t) _ 8u8,.£z,t)£+ augi(z,t)ﬂz_l_a“m(z”) (3.48)
0z 07 dz ot dz L 07
O uy(z1) _ 9 ( 1 aum(i,t)j _10(duy @OV _ L Fup@) g 40
97> az\L 97 Loz 07 dz I[* 093 .
dug (2,1) _ duy, (~z,t)£+ Oup, (Z,1) dt _ dug (Z,1) (3.50)
ot 07 dt ot dt ot
Transformation for t:
auB,.Ez,t) _ auBi(f,1)£+ auB‘.(z,Z)£= ouy, (Z,7) (3.51)
0z 7 dZ 07  dz 0z
Pug(Z,H) _ 9 (aum(z,r) _%uy(Z,7) (3.52)
07 * AR 4 07> '
ou, (Z,t) _ auB,-(fZ',T)E_’_ auBi(ZaT)éz =iauBi(Z’7) (3.53)
ot 07 dt or dt L ot
Final transformed variables:
Ju, (z,t) 1 du,(Z, - ou,.(Z,
Up (D) _ 1 0up(2,7) _ ty 0y (Z,7) (3.54)

0z L 07 L 7
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O’up(z.1) _ 1 9%uy(Z,7) _ uy, 0%ii5(Z,7)

= 3.55
922 I 972 L 97 359
auBi (Z’t) zlau&-(z,f) =lu0i auBi(Z’T) (356)
ot L or L o7
Similarly for particle phase:
up, (z,r,1) Zﬁiaupi(z.:r,f) (3.57)
or R or
0%u, (z,r,t)  uy 0%, (Z,7,7)
i sFy — Z0i i L 358
or? R? or? 339
up(z,r,t) v 9, (Z,F,7)
ke A S M APPSRl AL M AA 3.59
ot Luo‘ or 59
du, (z,r,t) v i, (Z,7,7)
ket ASOLALL AR AVt A S M A 3.60
o7 LY or (360
duy(z,r,t) v 0u(Z,7,7)
or L or Gob

Thus substituting the original variable in the equations by the transformed variables and
dropping the over-tilde (") for notational ease of the transformed variables yields:
For bulk phase:

v Oup _ Uy O Uy O'up _ W
“Lar L e TT e g el GO
du, duy, E d’u,, w, L
[ 1 —_ L k U..
aT az Lv az2 gB fi v( Bi ul‘" r=R)
Thus
du, duy 1 0%uy,
i i LI - . 3.63
a7 dz Pe, 07° Flen uml’:') 69
where,
vL
PeL =E (364)
1-g,)47R*  3(1-
B R
3
L 3(-¢gp)k, L
g=2y L 308 L (3.66)
Eg TV R &, v
For particle phase:
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v Juy, 2 uy Oup, Uy 0°up,
——K e D} LRy O : 3.67
%L 9 d '(rR R or R* or’ (3-67)
Oy, L 1(20u, 0%, 20u, 0%u,
=g . D —— Z AL, TR pn ___H+__I’1
or 7 'sz(r or or’ g r or or’
duy, 1 d( ,0u,
K gy = | G2 R 3.68
or T ar(r or (3.68)
gD, L
where =t i 3.69
= e (3.69)
Similarly boundary conditions would become:
For bulk phase:
at z=0: _
Uy Ol
vity, (U, -uB,»IO)+E—£—TZ"10 =0 (3.70)
vL duy,
—(ug| —ugl )+——- =0
E ( Bilin 3‘|0) a—ZL
Ou,
a:' + Pe, (ug| —upl,)=0 (3.71)
0
atz=1:
Uy, Oy du,
_‘i =0 4{' =0 3.72
L oz, 0z |, (3.72)
For particle phase:
at r=0:
dup, oup,
U, — =0 —£ =0 3.73
“or|, or |, (3.73)
atr=1:
e, D el —u,] ) (3.74)
| - i\Upgi —Up;| _ :
R or » f%0i\Mp Pil o
dup, R
— =k;——ug —uy| )
or » fi D, B Pil
ou,, .
a_:l = Bl,‘ (ugi —Up r=l) (3.75)
r=1

where



R

Bi, =k, (3.76)
E,D,
This gives  as:
Rk _ - -
P, 5,,?, L3(1-¢p) - Bin, 3A-¢;) 3.77)
ED;, R* v & 5
Initial conditions will transform into:
Ug -~
uOiuBiL:g =up = uBi|,=0 = 'u—Bl =iy, (3.78)

0i
Dropping the over-tilde from the initial condition as before for notational ease, but

keeping the new meaning

u8i|,=o =ugi (3.79)
Applying similar transformations for particle phase and adsorption phase initial
conditions,

0 0 0 .

uPi|,=0 SUp;s uAi',=0 SUys uKi|,=0 U (3.80)

Transformation of an isotherm using dimensionless variables
The multi-component Langmuir isotherm of Eq. (3.117) when transformed using

dimensionless variables yields: (as before over-tilde is dropped for notational ease)

by gl
Uit = ——o 0 (3.81)
1+iju0iupj
Jj=1
by,
Uy = — (3.82)
1+iju0,.u,,j
j=l

As the model comprises a relatively large set of equations, which will be referenced

in this thesis repeatedly in various chapters, a summary of this is presented below.

Oug _ Juy, L] 0’uy,

ot dz Pe, 97’ —f(“ai_up,"r:l) (3.83)
%-— i_i_’_ 2_a_y_1_>,-_

ar 2 ar(r or J (3.84)
uKizé‘PuP,.+(l—8P)uAi (385)

With boundary conditions:
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up o +Pe, (uy). —uy|,)=0 (3.86)
aZ 0 in
Sum| g (3.87)
aZ z=1
upi Uunl _y (3.88)
ar |,
%nl  _ Biu, —u, D) (3.89)
ar r=1 =

With initial conditions:
_ 0 _.0 .0 .0
uBil::o =Upis uPi|x=o =Upis uAil::o Uy Uilieo = Uki (3.90)

Isotherm relation:

SiQUapseestgy s tppseasttpy) =0 j=12,.,N (3.91)
or for a multi-component competitive Langmuir:
Uy = —f,’ — (3.92)
1+ Zb Hoill pj
j=l

Feed concentration:

Uy =Max{uy,_ 4, (T)] —eo<T+eo (3.93)

Constants of the system:

vL
Pe, = (3.94)
£ = Big, 20— %8) (3.95)
85

ED; L
_&D L 3.96
n; RT v (3.96)

R
Bi =k 3.97
i fi EPD,» ( )

There are several parameters used in this model. To be able to solve or simulate the
model, determining the values of those parameters becomes important. Hence, methods of

estimating the values of such parameters are explained in the following section.
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3.5 Parameters Estimation

There are number of parameters involved in the chromatography model. These
parameters are specific to the materials and flow (operating conditions). Parameters
employed in the model include: bulk fluid phase dispersion (E), diffusivity of a
component species (D), film mass transfer coefficient of a component species (),
isotherm parameters and axial dispersion coefficient of particle phase. Some of these have
to be determined experimentally. Whenever possible in this thesis, appropriate literature-
available correlations were employed to estimate their values. Some theoretical
approaches are available from which to estimate the values of some of the parameters.
However they have limitations on their valid range and operating conditions.

The following sections detail the approaches applied in this thesis to estimate the
values of these parameters. The same approach will be applied throughout this work
unless otherwise specifically mentioned. There are a number of methods and correlations
available in the literature for some of the parameters. Here only one which seems to be

fairly generic and robust is used for each case.

3.5.1 Bulk liquid phase dispersion coefficient (E)

The dispersion of the bulk fluid is difficult to measure experimentally. In dimensionless
form, it is used to calculate the Peclet number (Pe;).

vL
Pe, = -E (3.98)

where

v = superficial fluid velocity

L = length of a column

E = dispersion coefficient
In this work Pe is directly estimated by correlation given by Chung and Wen (1968):
_dpvp,
= _,u_

Re (Reynolds no) (3.99)

where
dp = diameter of adsorption particle
pr= fluid density

u = fluid viscosity
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L

Pe, = (0.2+0.011Re**) 10~ <Re <10’ (3.100)

r€s
where

ep = bulk voidage or porosity

3.5.2 Diffusion coefficient of component species (D)

The diffusivity of a component species is estimated based on the procedure as outlined in
the paper by Li et al. (1998). For systems having adsorbent particle pore diameters
sufficiently larger than the diameter of solute component, the molecular diffusivity (D)
as such is used in the calculation as there will not be a size-related entry barrier. When the
diameters are closer, the entry barrier effect becomes important and an effective
diffusivity has to be calculated. This is especially true for size exclusion systems.

As given by Deen (1998), the molecular diffusivity (D) of a spherical molecule
can be given by Stokes-Einstein equation:

KT

D =
6mur,

m

(3.101)

where

x = Boltzmann constant = 1.38*10° J/K

T = absolute temperature (°K)

u = viscosity of solvent

rn, = radius of solute molecule
The radius of the solute molecule can be estimated from its specific volume (V) and
molecular weight (Mw) assuming it is spherical:

1/3

MWV

ro=| s (3.102)
47,

where
N4 = Avogardo’s number = 6.0221367*10% molecules/mole
For proteins the V; value lies in a narrow range of 0.728~0.751. So using average value of
0.7384; rm is given by
r, (A°) = 0.66(Mw)" (3.103)
But as a protein is normally in solution and is in hydrated form, there is an increase in

size. The hydrodynamic radius is assumed to be proportion to (Mw)">.
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r =a (Mw)" (3.104)

where
a, = proportionality constant
Substituting this into Eq. (3.5.4):
D = KT 1 __ C
m 67[/1(1’ (Mw)1/3 (Mw)l/3

Using Eq. (3.105), Polson (1950) performed an experimental investigation for a number

(m%/s) (3.105)

of organic substances including proteins like BSA, myoglobulin, haemoglobulin and
determined their C values. This was found to be in average 2.74*10”° sm™ little variations
when the molecular weight of the organic substances exceeds 1000 (Li, 1998). Thus

molecular diffusivity (D) is estimated as:

* -9
D, (m*/s) _2.74710 7 (3.106)

( Mw)l/3
When the diameter of the solute component comes closer to that of the pore diameter as

in the case of gel filtration, the diffusivity has to be corrected as an effective diffusivity

(D.) taking into account the resulting entry barrier. This is given by:

D
D, === (1-2.1044+2.094° ~0.954°) (3.107)
(4

tor
where
Tyor = pOTE tortuosity

1= solute molec'ular diameter (3.108)
pore diameter

The pore diameter can be approximated by the upper size exclusion limit. A can be

estimated by:

1/3
1= /10( MW of solute molecule J (3.109)

MW of upper size exclusion limit

where 4y is found to be 0.35 by Stegeman et al. (1991) implying that when the solute
diameter reaches 35% of the pore diameter, the entry of solute inside the pore becomes
negligible. Pore tortuosity (t,,) has to be estimated experimentally. For example: Li et al.
(1998) found 1, to be 2 for Bio-Rad P60 gel.
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3.5.3 Film mass transfer coefficient of a component species (ki)

There are a number of correlations available to estimate k. Wilson and Geankoplis (1966)

developed the following correlation in terms of Sherwood number (Sk) and Reynolds

number (Re) for small Re flow.

;= ShDy (m/s) (3.110)
dP

k

where
dp = diameter of (adsorbent) particle

D,, = molecular diffusivity of solute component

1/3
sh=20 (Reseyr =137 (V%PDL) 0.0015<Re<55  (3.111)
53 Ep m

where

ep = bulk voidage

Se=—* - Schmidt’s number (3.112)
D,p,

U = viscosity of fluid
pr= density of fluid
d,v
Re = Le¥Pr = Reynolds number (3.113)
Y7,
Another correlation to estimate Sh number, developed by Wright and Li (Andreas,
1998), which seems to be also widely used is given below for reference purpose only.
Sh=2+1.4501-¢,)Re"? Sc"? (3.114)
Wilson and Geankoplis’ correlation (Eq. (3.111)) described earlier will be used in this
thesis instead of Wright and Li’s correlation (Eq. (3.114)) as done by Li et al. (1998).
This will make the estimation method consistent with the approach of Li et al. which was

also used for estimating diffusivity earlier.

3.5.4 Isotherm parameters

The proportion or partition of a component species between the adsorbent phase and fluid

or solvent is given by isotherm parameters. In the time scale of molecular diffusivity of a
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component, it is almost instantaneous. Hence, an instantaneous equilibrium partition can
be fairly assumed for most cases.

Parameters are usually estimated from batch experimental data. The objective is to
estimate the parameter values which best fit the given set of data and which satisfies
certain theoretical expectations. Based upon the type of adsorption system used an
appropriate empirical/semi-empirical isotherm model is chosen. A range of isotherm

models exists:

1. Langmuir isotherm

i - 9Cn (3.115)
k, +C,

parameters: Q, K,

2. Langmuir isotherm for transient condition

aC

atAl = klch (Q_CAi)_k2CAi (3116)
parameters: Q, dissociation constant (k)
(ke

k2
3. Competitive Langmuir isotherm for multi-component systems
Cy= ,f) uCr (3.117)
1+)°b,C,.Cy,
j=1

parameters: by, b; (=12, ..., N)
4. Langmuir-Freundlich
C, =bCp (3.118)

parameters: b, m

In this work, a competitive Langmuir isotherm will bed used as instaneous
equilibrium is assumed and this will automatically result into a simple Langmuir isotherm
when mono-component system is investigated. This will also be used for simulation in
other chapters for Lysozyme-Streamline-SP system as done by Bruce and Chase (2001)
and Wright and Glaser (2001). In those cases of Lysozyme-Streamline-SP system
assumption of an instaneous equilibrium was also found to be valid which was

demonstrated by Wright (2000) using a transient experimental study.
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3.6 Simulation

The normalised chromatography model [Egs. (3.83)-(3.97)] is simulated using an
Orthogonal Collocation-Finite Element Method (OCFE). This is the method of choice in
the literature (Gu, 1995; Lazo, 1999) as it provides a stable solution of multi-component
chromatography models without requiring a large extent of discretisation. The bulk phase
is discretised using finite element method in section 3.6.1. And the particle phase is
discretised using orthogonal collocation for its efficiency in diffusion dominant equations
in section 3.6.2. The resulting system of ordinary differential equations (ODE) was solved
using Matlab’s ODE-solver. The algorithm employed for the purpose is described in

section 3.6.3.

3.6.1 Discretisation of bulk phase

Applying the Galerkin method (section 2.4.4.1) based finite element method (section
2.4.5) to discretise Eq. (3.83) and incorporating the natural boundary conditions by
transferring one differential order from variable to trial function as in the Ritz method

(section 2.4.3.2), we obtain:

Aug —f, =0 (3.119)
where
L9123 a
' Ot Pe 03z 9z
-fi =§iupi r=1
Approximating ug; by ug;,, a quadratic element or approximation function
3
gy = D UGV (3.120)
j=1
Applying Galerkin method (based on Eq. (2.118)):
(Aus = fowt)=0  fork=1,2,3 (3.121)
This gives
dup, 1 J%uj, ou
e P l+ z+'eA_.e‘ d=0 .
[ m{ 3r Pe ar P g o dmhl 2 (3.122)
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Reducing one differential order of second derivative term by transferring to the basis

function using integration by parts:

duj, o . 1 duy oy, 1 duy,
e "B 4, _ il iy L dz
fvimgy e L’Bz( “Pe, o J T Pe,

dz=0

+Lm%%ﬁ+LM@%ﬂ—Lm&&

Applying Gauss’ divergence theorem

L.W: duz dZ—L"(W:PLaudeS'*‘ ,aWk __l__auBi dz

e, 0z dz Pe, 0z

+Ll//k b"dz+.[)‘//k§u3,dz Ll//kfu,,, le 0

Integrating from z; and z; of an element

: . Ouy 21784 lau,
E’/’ Bd f kPeL a;

1 0
dz +(y/k > gzg’){
=t 5 )

Substituting the value of the approximating function

2 ,aue,.
Z+ j: l//ka—B'dZ

+_[ ka“mdz—_['//k‘fum

Pe, 0z 0dz =

In matrix form for a component i:
e - e _
Miu, +K u, =Ff

[

where

=[vivja

m=[21am8,d fwk  dz

Pe, 0z 0z

ff!// dz+q,

. 1 auB,,
g = [PeLw L j

2

4

[M%&+Z%uzla% ’d+Zm{wk

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)
(3.129)

(3.130)

(3.131)
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Each matrix M;,K/,F/ is evaluated element-wise and component-wise. During

global assembly (as described in section 2.4.5.4-2.4.5.6), the outflux ¢; from one element
cancels out the influx ¢; into the following elements. Incoming g, at the first element
and outgoing g; at the last element are given by the natural boundary conditions (Eqgs

(3.86)-(3.87)). That is:
(3.132)

in -uBi|z=0

e _
qu SUp

z=0

(4

g:| =0 (3.133)

z=1

3.6.2 Discretisation of Particle Phase

As the particle phase (Eq. (3.84)) is diffusion dominated, orthogonal collocation as
described in chapter 2.4.3.3 is applied for its discretisation due to its computational

efficiency.

Wi _ vy, (3.134)

Uy =8PuPi +(1—8p)u,41 =f(uPi)

ACTY R (3.135)

Y iV Up

Applying orthogonal collocation (Eq. (2.143)) on Eq. (3.135):

of (uy,)
____aTP =7,Bu,, (3.136)
df (up,) oup,
P 7PP —p Bu .
o, or n,Buy, (3.137)
In matrix form:
M u, =mn,Bup, (3.138)
where
MP‘- — af(uP,)
oup,

In the case of multi-components, i > 1, up will be represented by a series of radial
up;i. The mass matrix, Mp will represent the interaction between components as given by

the isotherm relation.
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M_.u, =nBu, : (3.139)
where B and # are adjusted in relation to multi-component up vector.

The boundary conditions (Egs. (3.88)-(3.89)) are also discretised in the similar way.
Atr=0:

Vup| =0 (3.140)
Atr=I:
Vit L = BiiGug —up, ) (3.141)
Applying orthogonal collocation (Eq. (2.142)) on Eq. (3.141):
AuPi|,=1 =Bi(ug —up ,=1) (3.142)
N+l
ZANH,jtu,i =Bi,(ug —Upy.,) (3.143)
=1
N .
ZANH,jtu.i + Ayunnlpyi, = Bitg —Biupy,,; (3.144)
=1
N
Avannlpye T Bittpy,; = Bitg — ZANH.jtu,i (3.145)
=1
N
Biuy, - Z Ay U
=1
Upnopi = 3.146
e Ayana T B, ( )

The discretised equations of bulk phase and particle phase along with their
boundary conditions result into a system of ordindary differential equation which was
solved simultaneously using a stiff ODE solver, odelSs, routine of MATLAB. The

following algorithm was employed.

3.6.3 Algorithm

The computational method for the above simulation is structured as follows.

Pre-processor:
e parameter specification
® equipment, operation, computational
¢ mesh parameters and mesh generation
e system parameters

e general, element-specific, components

77



Processor:
e preliminary computation
e clement specific parameter values
e eclement matrices and vector computation
e computation of element matrices (bulk phase)
e computation of matrices resulting from OC (particle phase)
e global assembly of elements
e computation of model parameter values
e particle boundary effect update
¢ solution of ODE by ODE-solver (time progression) (My = f(y))
o fort=0:T
o evaluation of time derivative function (f = dy/dt)
o update data structure matrices from solution vectors
o fori=1:Nc (component specific computation)
o evaluation of boundary node of particle phase

o imposing boundary conditions in the bulk phase

o

evaluating time derivative function of bulk phase

evaluating time derivative function of particle phase

update solution vector from the data structure with updated elements.
evaluation of mass matrix (M)

retrieve particle phase data from solution vector

o O o o o

evaluate particle phase mass matrix (Jacobian) for each particle node along
the bulk phase nodes

assemble particle phase mass matrix

(o]

o assemble the system mass matrix (combining bulk phase and particle
phase mass matrix)
o compute value or state of y (solution vector) at this new time step (using
ODE-solver)
Post processor:
e visualisation and further processing of the output/result set

The results of the simulations and their discussion are as follows.
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3.7 Results and Discussion

To test the validity of the model and its implementation simulations were performed
using parameter values as given in the literature and outputs were compared with the
literature data. Data from Gu (1995) was used to test the model as given below. As
derived parameter values, for example pe, Bi, 7, etc., were readily available in the
literature along with their associated results, in this part of the work, deriving them from
primary variables like v, u, p, etc was not done. Instead such derived parameters were
directly used to get the simulation results and compared with the literature results.

Here two tests were done. The first is based upon single component breakthrough
for frontal chromatography and the second is multi-component breakthrough result for a

pulse injection.

1. System 1: single component

Following system parameters and variables are used from Gu (1995, p. 29) for a mono-
component simulation for frontal operation.

Pe=200,n7,=2,Bi;=10,bp=8,b; =7, up;=0.2,

eg=04,ep=04

The simulated result compared with the published data is shown in Fig. 3.6.
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Fig. 3.6 A breakthrough curve: a comparison of simulated result with literature published
data (Gu, 1995). —, simulation result; o, literature published data
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The result simulation result matched with the published data very well. Similarly, a
second test of multi-component simulation using pulse injection was performed as

follows.

2. System 2: multi-component

Following system parameters and variables are used from Gu (1995, p. 29) for a multi-
component simulation with pulse injection.
Component 1: Pe =50, 7;=10, Bi;=4,bp=4,b;=3.5, up; =0.2
Component 1: Pe =50, n; =10, Bi;=4,bp=8,b1 =17, upi=0.2
eg=04,ep=04
Dimensionless sample loading time (i) = 0.2

The simulated result compared with the published data is shown in Fig. 3.7.
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Fig. 3.7 A chromatogram of pulse injection (2 components): a comparison with literature
published model (Gu, 1995) and simulation result. —, simulation results, o, literature
published data for component 1, + literature published data for component 2

The simulated result almost exactly matched the published data for pulse injection multi-
component chromatography. As observed above in both cases, since the simulation
results and the published data/results matched very well, it can be concluded that the
model and its implementation (code) is correct and valid for the general purpose as

relevant to this work.
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3.8 Conclusion

This completes the general chromatography modelling and its validation work. It was
found that the model and its implementation are accurate. This will provide a basis for
modelling adsorption part of an EBA model, and also its verification in the other parts of
this thesis. Now, before attempting to develop a complete integrated model of EBA,
hydrodynamic aspects of expanded bed will be investigated in detail and appropriate
models will be established in the chapters 4 and 5 for steady state and transient state

respectively.
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4 Steady State EBA Hydrodynamics

4.1 Introduction

Modelling of an expanded bed can be separated into two relatively independent parts:
distribution of matrix particles in a column and adsorption by such almost stationary
particles behaving as an ordinary chromatography system. The second part has been
essentially dealt with in the previous chapter. The first part will be dealt here as expanded
bed adsorption (EBA) hydrodynamics. Deriving a hydrodynamic model of EBA from
first principles is challenging. Here a semi-empirical model/correlation is sought to
describe this phenomena for practical applications.

The expansion and configuration of particles in the bed at a given fluid velocity is
the subject matter of EBA hydrodynamics. When fluid is passed through a settled bed, the
particles will be subjected to upward drag along the direction of fluid flow while gravity
will try to bring it down. Besides these, the particles will be subject to other forces like
buoyancy, inter-particle interactions, etc. The net effect of these forces in relation to
particle properties like size, density, etc. will cause the particles to lift and stabilize at
certain unique axial positions of the bed. Once the bed reaches its equilibrium or steady
state, the axial position of a particular particle category will remain constant. There will
still be dispersion of particles but the net change in concentration of a particle category in
a given axial position will be null. Similarly if there is a change in the fluid velocity, the
bed will further expand or compact based upon whether the velocity is raised or reduced
and the particles will settle into new axial positions. The study of the response of EBA
systems in terms of its steady state values at a given fluid velocity is considered here as
steady state EBA hydrodynamics. The model to predict the steady state response of EBA
will be established in this chapter. The response of the bed when the fluid velocity is
changed before it reaches to steady state will be considered as the basis of a transient
EBA hydrodynamic model and will be studied in the next chapter.

In formulating a complete EBA model, it is necessary to know the composition of
the bed in terms of voidage and particle sizes and their concentration if there is a particle
size distribution (PSD). EBA hydrodynamics will provide the information on such bed
composition. In many cases, EBA is operated after it reaches to its hydrodynamic

equilibrium value, that is, the bed composition will not change further or such changes are
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negligibly small. For such purposes, the model to represent the steady state EBA

hydrodynamics becomes important. This part of the work will try to formulate and

establish such a model.

4.2 Literature Review

One of the earliest works to predict expansion in a liquid fluidised bed was that by
Richardson and Zaki (1954). It is a semi-empirical method and establishes a relationship
between the superficial bed fluid velocity and bed voidage in a mono-sized homogeneous
bed. The parameter in the relationship, also termed the Richardson-Zaki correlation
parameter (n), is estimated by a correlation based on Reynold’s number (Re) with respect
to particle terminal velocity (v;). Al-Dibouni and Garside (1979) used a different
correlation to estimate the parameter n though still based on Re. Anspach et al. (1999),
Fenneteak et al. (2003), Yun et al. (2003), etc. used a Galileo number (Ga) based
correlation to estimated the parameter n. As such correlations are based on mono-sized
bed, they do not accurately represent EBA as there is in reality a distribution of particle
sizes. So frequently experimental fitting of the parameter n along with even effective
average terminal velocity (v,) has been employed as done by Thelen and Ramirez (1997)
for accuracy.

The work of Kennedy and Bretton (1966) is one of the earliest in the area of liquid
fluidised beds which considers the existence of more than one particle categories (based
on size and density). They considered two particle size categories and predicted their
segregation and mixing due to dispersion. The segregation is due to differences in the
upward particle velocity. The particle velocity is represented by the Richardson-Zaki
correlation as a function of voidage. Al-Dibouni and Garside (1979) developed a model
where an arbitrary particle size distribution is considered. The model was simplified by
assuming the bed to be perfectly classified, i.e. no particle dispersion, and thus termed
perfectly classified bed (PCB). Here also the particle velocity is estimated by the
Richardson-Zaki correlation or the expansion relationship. Yun et al. (2004) implemented
this PCB approach for EBA.

In this context, it seems pertinent to enumerate what some of the important
weaknesses in the current models are and where the effort should be so as to lay a

background for this work. They are as follows.
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e Even after half a century, there is no good theoretical model which can replace the
semi-empirical Richardson-Zaki correlation.

e The Richardson-Zaki correlation is based on mono-sized bed in a certain interval
of operational conditions. EBA has a PSD and the correlation does not accurately
predict the expansion.

e Though PCB is an improvement over mono-sized bed because it considers PSD,
since the reality is a mixed bed, there still exists error. The magnitude of this error
can be high especially when there is a wide variation in the particle size as small
particles exist which will have tendency to expand disproportionately.

e The mixed bed model of Kennedy and Bretton (1966), considered PSD, would be
a better approach to apply in EBA to predict its steady state hydrodynamics. But it

has not been implemented for EBA yet.

4.3 Plan and Objectives

The main objective of this chapter is to establish or formulate a steady state EBA
hydrodynamic model. The Richardson-Zaki correlation is the main basis used for
representing bed expansion and has at its heart the Richardson-Zaki correlation parameter
(n). There are a number of correlations available to estimate the value of n. The first
objective is to establish an expansion relationship based using a correlation which can
produce consistently accurate prediction of bed expansion.

Bed expansion correlations are developed for mono-sized beds. However in
practice EBA intrinsically displays particle size distribution, and such models naturally
can not accurately represent EBA expansion. So as a first step towards the model which
considers particle size distribution, perfectly classified bed (PCB) model developed by
Al-Dibouni and Garside (1976) for a liquid fluidised bed will be implemented in the EBA
context. It simplifies the system by assuming the bed to be perfectly classified. But this is
far from a reality. There exists mixing or distribution of particle size categories at any
given axial position. So as to accommodate this reality and make the model more
accurate, a semi-empirical approximate mixed bed approach will be developed and its
usefulness in representing bed expansion will be tested. Based upon the findings,

conclusions will be drawn for representing the steady state EBA hydrodynamics.
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Specific objectives of this chapter are as follows (in relation to steady state EBA

hydrodynamics).

e establish an appropriate expansion relationship
e implement a perfectly classified bed (PCB) model in EBA
e develop an approximate mixed bed approach to represent expanded bed

behaviour.

4.4 Establishment of Expansion relationship

4.4.1 Introduction

As has been mentioned above the Richardson-Zaki correlation is the main basis used for
representing bed expansion. There are a number of correlations available to estimate the
value of the parameter n which lies at the core of this correlation. The best way to express
the expansion relationship which produces consistently accurate predictions of bed
expansion will be established here. It can be either with the use of a particular correlation

or if required even fitting from a given data set.

4.4.2 Method

For the purpose of selecting the most appropriate approach, two of the widely used
correlations will be presented briefly. A range of experimental data (bed height data with
respect to given flow rates and operating conditions) have collected from the literature.
The prediction from those expansion relations along with experimental fitting will be
used against the data set to establish which is more robust and accurate for general use.
This will be based on both the accuracy of the prediction and its variance in different

experimental sets.

4.4.3 Tested Expansion Relationship

During expansion, the particulate phase is subjected to different forces mainly: gravity,
buoyancy, drag by fluid and inter-particle interactions. A bed expands uniformly and

stays at an equilibrium height corresponding to the superficial fluid velocity when this is
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greater than the minimum fluidisation velocity of the particles. The bed porosity and
distribution of particle will remain uniform for mono-size particles.
The Richardson and Zaki (1954) developed the following semi-empirical

correlation to describe the expansion in relation to superficial fluid velocity.
L =g 4.1)

where

vo = superficial fluid velocity

v, = terminal velocity of particle

eg = bed porosity

n = correlation parameter (or Richardson-Zaki parameter)

Eq. (4.1) is the expansion relationship used for describing expansion in most of the
liquid fluidised bed models. This establishes the relationship between the superficial fluid
velocity and the resulting bed voidage. Different methods employ a range of approaches

for estimating the parameter n and will be explained next.

i. Reynolds number based correlation

Richardson and Zaki (1954) proposed the correlation parameter, n, was a function of
Reynolds number (Re;) and dp/D (particle diameter/column diameter).

For Re, < 0.2 (viscous flow, inertial force negligible)

n=4.65+ 19.5%’ 4.2)
For0.2<Re < 1
dP -0.03
n=|435+17.5— |Re 4.3)
D t
For 1 < Re, < 200
dP -0.1
n=445+18—— |Re 44
D t
where
v.d
Re, =% (4.5)
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) o d.g(p, - p;) “6)
18u
where
pr = fluid density
dp = particle diameter
u = fluid viscosity
g = acceleration due to gravity

ps = particle density

ii. Galileo number based correlation

The following general correlation based on the use of Galileo number, Ga, has been used
by Anspach et al. (1999), Fenneteak et al. (2003) and Yun et al. (2003) to estimate the
value of parameter n:

51-n
n-24

=0.01Ga*? @4.7)

where the Galileo number (Ga) is given by

zdig(ps _pf)pf

2

u

Ga 4.8)

iii. Experimental fitting approach

Often the prediction afforded using the correlation-estimated Richardson-Zaki parameter
(n) is not accurate enough in EBA. One of the reasons for these inaccuracies is because
the correlations are developed based on mono-size particles and do not accurately
represent the EBA system where wide distribution of particle sizes is crucial for bed
stability. The mixing of different size species makes the observed expanded height values
different from predicted. When such a difference becomes large and significant, it
becomes necessary to use the experimental fitting. Especially in relation to predicting
adsorption response of the bed, 10% error in bed height estimation results into a huge
error. Hence for better accuracy, an alternative is for both n and terminal velocity (v;) to
be fitted simultaneously using the experimental data set at different flow rates in the Eq.
(4.1) as done by Thelen and Ramirez (1997). Once determined these parameters are then

used to predict the bed expansion or voidage for any flow rates within the range of data.
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Parameters n and v, were determined by fitting the experimental data as slope and
flintercept) from:

Invy =Inv, +nlng, 4.9)

4.4.4 Results and Discussion

For the comparative study of the 3 approaches noted above the following dataset (Table
4.1) was used. It consisted of literature published equilibrium bed height results with

respect to applied fluid velocity under a set of given experimental conditions.

Table 4.1 Data set used in the analysis

EBA column Fluid Settled
velocity | bed Equilibrium
Data set Reference
Matrix | Diameter | (v0) height bed height
(Streamline) mm cm/s (h0) cm (h) cm
0.017 20.5 225 |
. 20. .
] Thelen and DEAE 50 0.021 0.5 24.2
Ramirez (1997) 0.030 20.5 28.3
0.038 205 32.1
0.047 20.5 36.1
Bruce and
2 SP 50
Chase (2001) 0.051 21.2 42
0.050 10.0 20
0.128 10.0 30
3 Tong et al. Quartz 26
0.078 10.0 25
0.024 10.0 15
0.056 18.5 36.5
4 yun etal SP 50 0.077 18.0 42
(2004) ) )
0.090 18.0 47

Estimation of bed heights were made for all data sets using both Re based and Ga
based correlations and a relative error in terms of the root mean square (RMS) percent

error were calculated as given in Table 4.2.
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Table 4.2 Correlation error as a root mean square (RMS) percentage observed when

different methods are applied to each data set.

No of data Correlation Error (RMS%)
Data sets | points per éet Re-based Ga-based
1 5 8.6 7.7
2 1 18 11.9
3 4 9.8 8.8
4 3 11 4.1
Model average 11.8 8.1

The bed height estimated by the Ga based correlation was found to be slightly
better than when using Re based correlations. The former had about an 8% error and the
latter 12% on average. When both v, and n were fitted, the approach produced more
accurate estimate as can be seen for Ramirez data in the following Fig. 4.1.

Based on the above result Ga based method was found to be more accurate than Re
based method. However average 8% error can still be significant error when using this to
estimate bed height and voidage for predicting adsorption response. In such cases, more
accurate method might be required. This can be achieved by experimental fitting
approach as observed in Fig. 4.1. When such an approach is employed both v, and » are
fitted using experimental data. The natural v, (intrinsic v; of a particle when there is no
inter-particle interferences) has to be ignored in preference for an effective v, as given by
the experimental data. The fact that the natural v, is not used, means one important
physical meaning is lost. Since two parameters are fitted, the result is close to the
experimental data, but its valid range is narrow and rapidly loses its predictive power
when experimental conditions are changed. The correlation remains useful to predict the
expansion within the flow rate interval under which the parameter values were estimated

and providing the other experimental conditions is kept constant.
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Fig. 4.1 Bed height estimated for Thelen and Ramirez (1997) data set at different fluid
velocities. ¢, using Re based correlation; a, using Ga based correlation; -, using parameter
fitting for both v; and n; o, experimental data.

4.4.5 Conclusion

In the situation where experimental data is not available, Ga based method seems to be
the method of choice to predict the bed expansion using the Richardson-Zaki correlation.
If there is adequate experimental data and the prediction has to be made within the
interval of the data set or just near its boundary, parameter fitting from available data
would be better for accuracy, but suffers from the lack of general applicability.

The expansion relationship established in this section will be the basis for
describing bed expansion in this thesis. Though these relationship themselves are based
on mono-sized bed assumption, the next section is included to specify clearly what it
means when mono-sized bed model is the model which used to describe hydrodynamics

of EBA.
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4.5 Mono-sized Bed Model

In this simplest form, the bed is assumed to be mono-sized and the Richardson-Zaki
correlation is used to predict bed expansion. Based upon the findings 6f section 4.4,
Galileo number (Ga) based correlation will be used to estimate the parameter n as shown
below.

g (4.10)

vy

where n = f{Ga) as given by (4.7) and (4.8).

When experimental data is available and much accurate prediction of bed expansion
is necessary, experimental fitting approach will be applied. One possible improvement
over experimental fitting approach described earlier can be that instead of totally
discarding both v, and n, it could be advantageous to add two modifying variables (a; and
a,) as shown below. |

vV

20— g el @.11)
A%

where n =f{Ga) as given by (4.7) and (4.8).

a; and a; = fitted values based on experimental data

Though this is effectively same as the experimental fitting described in section 4.4,
by keeping natural v, and Ga based n means that it will at least partially retain the effect
of physical properties of the system. Once the parameters a; and a; are determined using
a set of vy for a range of possible operating conditions, they can be considered relatively
constant. Whereas slight variations in the expansion due to slight changes in physical
properties might be able to manifest through the natural v, and Ga based n used. However,
this is just a hypothesis, and has not been verified in this work.

Hydrodynamics of expanded bed assuming mono-sized bed has been established
here. This can be a huge assumption especially while predicting adsorption response. So
when mono-size bed assumption is relaxed, one of the simplest approaches to include
particle size distribution in the model is by assuming the bed to be perfectly classified.

The next section will investigate such an approach in the context of EBA.
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4.6 PCB Model

4.6.1 Introduction

The first step towards incorporating particle size distribution (PSD) in a model of
expanded bed behaviour is by using the Perfectly Classified Bed (PCB) approach. This
approach was developed by Al-Dibouni and Garside (1979) for liquid fluidized beds. In
the expansion of a particulate system having particle size distribution (PSD) the bed is
considered to be perfectly classified or segregated into strata based upon particle size as

shown in Fig. 4.2. Each stratum contains particles of only one size.

Fig. 4.2 A perfectly classified bed showing segregation of particles based upon their size
when the bed is expanded (according to the Al-Dibouni and Garside, 1979).

In an expanded bed particles do not perfectly classify. Instead in reality a mixed bed
with many particle sizes co-existing in an axial position is generated. Another limitation
of the PCB approach is especially when there is wide size distribution with a large
amount of small particles, the error in estimation can be high as small particles tend to
expand to a greater degree. The approach was implemented for EBA by Yun et al. (2004).
One of the reasons for its re-implementation here is for using it to develop an integrated

EBA model whose hydrodynamic part will be defined by a PCB approach.

4.6.2 Model Development

The expansion of each column segment as shown in Fig. 4.2 with respect to superficial

fluid velocity (vg) is determined by its representative particle size. The relationship

92



developed for mono-size particles, as in the previous section 4.5, will be used for each
segment to predict the segment expansion. The cumulative of all segments then gives the
total bed height, and the voidage profile. .

The PCB model in his thesis is established as follows. Let volumetric particle size

distribution be represented by a normal distribution N(R,o) with mean particle size
radius R and std. deviationo . It is assumed that the distribution of particle sizes in EBA

can be considered approximately normal as has been done by Yun et al. (2004).

Considering a constant density (ps) for all particle size sp., the cumulative mass

distribution is given by,
M= j N(R,0)p,dR (4.12)
aMm d - _
= - p. = [ NR,0)dR = p N(R, 4.13
=P | NR.0)dR=p,N(R,0) (4.13)
aMm _
=——=p NR,o 4.14
m=—r=p,N,0) | (4.14)

Assuming a perfectly classified bed (PCB), a particular particle size (R) will

correspond to particular axial position (z) with one to one mapping as shown in Fig. 4.3.

—D» Volume fraction
0.00 0.03 0.05 0.08 0.0

—p N

<P article radius (um)

T

Fig. 4.3 PCB and particle size correspondence: Bed is perfectly classified and patrticle size
decrease as height increases. The volume of each size categories is fixed and given by
volume fraction covered by the radius interval. In the column that volume will occupy space
along the vertical axis and its thickness will be given by dz.
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After bed expansion, if particle size R to R+4R is contained exactly between z to z+4z

then:

Mass fraction contained = %AR = volfractior*density= AzA(l—e]z)ps (4.15)

(where 4z is fraction of total equilibrium bed height)

mdR = p Al - €)dz ' (4.16)
Integrating the mass fraction in PSD covered by an interval of radius (4R) to evaluate the
total mass fraction contained within it, will be equivalent to an integration along the bed

axis in a corresponding axial interval (4z).

0. All-¢€)

Substituting the value of m from Eq. (4.15) and evaluating the integral,

" [\Rp NR, ")dR=Az | (4.18)

As demonstrated by Hassan et al. (2005) density of particle can be reasonably considered
constant for all particle sizes for hydrodynamic purpose, it can be taken out of integral

and will be cancelled out.
LR M_"_)dR Az (4.19)

For a discrete value of size class or segments, each segment can be considered to
expand as a mono-sized bed. Thus the resulting expansion or ¢ is given by vy and R of the
segment as if mono-sized. Appropriate models as in section 4.5 can be used to represent
it. If Ga based correlation is used:

Vo =V,E&" (4.20)
where n is given by (4.7) and (4.8). This means

n=f(Ga)= f|(R)
v, = f,(R)

From Eq. (4.20),

€= (3"—] @21)
v

Eq. (4.19) along with Eq. (4.21) gives the location of a particular size category in an

expanded bed or vice versa. The largest or heaviest particle lies at the bottom and the
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smallest or lightest particle lies at the top (assuming constant particle density, p;). The top

surface of the smallest particle gives the bed height or expansion at a given vy.

4.6.3 Result and Discussion

Using the data set 1, 2 and 4 in Table 4.1, expanded bed heights were estimated using
both PCB and Mono-sized bed approaches. The results can be observed below in Fig. 4.4.

50

40 -

Bed height (cm)
&

30

25

20

30 60 90 120 150 180 210 240 270 300 330
Fluid velocity (cmvh)

Fig. 4.4 Bed heights at different fluid velocities estimated using Perfectly classified bed
(PCB) model and Mono-sized bed (MSB) model for 3 different experimental data sets:
Thelen and Ramirez, 1997 (TR); Bruce and Chase , 2001 (BC); Yun et a., 2004 (YU). «,
PCB estimate for TR; a, MSB estimate for TR; m, experimental data of TR; +, PCB
estimate for BC; x, MSB estimate for BC; *, experimental data of BC; «:, PCB estimate for
YU; A, MSB estimate for YU; o, experimental data of YU.

The PCB approach was found to be more accurate for datasets 2 and 4. For one case
(dataset 1), the PCB model may be slightly better than mono-sized bed approach but not
significantly. Most importantly the PCB approach considers distribution of particle sizes
and also provides a better estimate of axial variation of voidage which is especially
important when making an integrated model to predict the adsorption response as a

function of axial positions. The PCB approach is superior to that of a simple mono-sized
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bed. Improvements with PCB method by considering the existence of a distribution of

particle sizes in any axial position by mixed bed approach will be explored next.

4.7 Approximate Mixed Bed Approach to Represent Expanded
Bed Behaviour

4.7.1 Introduction

In the perfectly classified bed (PCB) model the bed is considered to be segregated based
on particle sizes and the amount of each size range or stratum is known. The expansion of
each size-specific stratum at a given flow rate causes bed expansion and results in a full
expanded bed height. In a mixed bed model, the existence of different particle sizes at
each axial position or strata is taken into account (Fig. 4.5). For a given flow rate, it is
assumed that the bed expands such that there exists a characteristic PSD and voidage at
each axial position. In this part of the work, an approximate method to estimate mixed
bed expansion was developed and was tested for its effectiveness in representing

expanded bed.

O] Y .

00‘ °.

0% . o
° O o°

Fig. 4.5 A mixed bed displaying the existence of particles of different sizes at any axial
position when the bed is expanded.

Willoughby et al. (2000) demonstrated that axial variation of voidage in EBA is
function of fluid velocity and also published the axial particle size distribution (PSD) for
a fluid velocity. Bruce and Chase (2001) and Yun et al. (2004) also published axial PSD

in expanded bed at different experimental settings. It is envisaged that, given an
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experimental setting, axial variation of PSD and voidage in EBA can be described by an
empirical model as a function of fluid velocity. Clearly such an approximate approach
based on experimental data will have a limited predictive capacity, but can still be useful
for practical applications by representing the PSD along the bed axis. The main objective
in this thesis was to model expand bed adsorption, and by keeping the hydrodynamic part
independent of adsorption part, the final model can easily make use of any better
hydrodynamic description as and when it is available; replacing the original approach.
The mixing of particle size species is due to the natural propensity to reach an
equilibrium in relation to the segregation velocity and diffusion at a given superficial
velocity as described by Kennedy-Bretton (1966). However in this black-box approach,
the mixing propensity of a particle size species is taken as a function of the applied vy and
particle size provided all other parameters are kept constant. This is a fundamental
weakness in the approach. In spite of this weakness, the advantage bf using this approach
is that it gives one single parameter or a function to represent the axial PSD variations in

an expanded bed.

4.7.2 Method

It is envisaged that mixed bed expansion can be approximated by the combined effect of

two separable steps, which are as follows:

1. Particle size composition or mixing specific to axial position in the bed

2. Expansion of each axial segment

4.7.2.1 Particle size composition

Bed mixing is determined by the propensity of the bed to deviate from perfect
classification based on particle sizes as is assumed in the PCB model earlier. The
magnitude of this can be represented by the standard deviation, 6,,; (mixing sigma), for
each particle size species i. If o,,; = 0 (for all i), perfect segregation of sizes exists. This g,
can be considered to be dependent on fluid velocity (vp), particle sizes (R;), amount and
PSD of the bulk matrix and other phyéical properties of fluid and flow. It is assumed that
for a given system, keeping important influencing parameters constant, the effect on it

due to control variables like vy can be estimated at least by using prior experimental data.
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The particle size composition of a bed is determined by first segregating the bed into
different size specific strata and then mixing of sizes in different strata as a result of .
The mixing is considered to be as a result of migration of a particle species to domain or
strata of other size species. This will redefine the strata in terms of its composition and
thickness.

The mixing parameter specific to a particle size category, o, is estimated
empirically as observed in steady-state expansion. Though there can be skewness, for a
simplified modelling approach, it is assumed such deviations make little effect on the
overall size composition and distribution and so will be neglected. For a more accurate
representation, a skewed distribution like the Generalized Exponentially Modified
Gaussian distribution with additional parameters can be applied. For this work only one
parameter o,,; is assumed to be adequate.

From whatever initial size composition it starts, at steady state it is considered to
always reach and stabilise in a particular composition specific to the experimental
conditions. There will be a limited level of continuous dispersive particle movement
across strata but their net effect will be null for equilibrium to exist.

The mixing parameter g, is taken as based on the spread along the bed axis which
will imply the spread along the layers originally of other particle size categories. Due to
mixing each original size-specific segment is changed along with its composition. These
are determined by net transfer of mass or particles from different original segments. The

particle size specific mixing parameter, 0,,;, is approximated by a simple correlation like:
o, =a, +aR, +a,R’ (4.22)
where ay, a; and a; are parameters fitted from experimental data, and are considered to be

function of vy.

(ay,ay,a,) = f(vy) (4.23)

4.7.2.2 Expansion of each segment

Once the segment composition and thickness of the resulting mass/volume fractions have
been determined as explained above, the characteristic equivalent particle size or radius
of each segment is then determined by using a weighted mass or volume average particle
radius. As particle density can be considered fairly constant, the mass average or volume

average are equivalent. This segment specific characteristic radius is then used to estimate
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the expansion using relationship such as those developed for mono-sized particles as in
PCB model described in section 4.6.
Equivalent particle size or radius of segment j (R;) is given by:

R, =Y 4R | BNCED

where @ = mass/volume fraction of particle size species i (radius R;)

This approach is applied using following algorithm.

4.7.3 Algorithm

The algorithm employed was based upon a number of assumptions. First, due to narrow
difference between representative particle sizes of segments which is already averaged
based on volume fractions, the bulk porosity when settled is assumed to be fairly equal.
(In the case, where more accurate bulk porosity data is available for different size species
based on experimental data or correlations, such insight can be used to provide for a more
accurate result.)

The algorithm then proceeds as follows:

Bed segmentation and estimation of mass average particle size
o Settled bed as in PCB
o Division of bed into N equal segments or volume fractions
o Estimation of mass/volume average particle size representing each
segment
e Specification of size specific mixing parameter value (o,,;) — using function or
prior data from experimental fitting
e Determination of new segment composition after mixing
o Mass repositioning of each representative size species along bed axis due
tO Opmi
o Determination of new size composition or PSD for each segment, its
thickness and estimation of representative mass average particle size
e Expansion of each segment based on Richardson-Zaki correlation as in PCB

model using representative particle size to give total bed expansion behaviour.

This provides the bed expansion, axial voidage profile and size compositions in

each axial segment. However to implement this, the procedure needs particle size specific
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mixing parameter (o,,;). When experimental data on axial PSD for a set of fluid velocity is
available, this can be estimated by fitting as follows. (Further simplification can be done

by assuming a,; be relatively constant in a range of flow rate used in EBA.)

The method of estimating mixing parameter (o;) by fitting:

e Choose g; or its associated parameters (a,,a,,a,)= f(v,)
e Apply mixing and expansion as above
e Determine axial PSD at specified location of the bed

e Determine error of estimate

Error = Z Z (¢‘ I estimated ¢i

number of axial positions i

(4.25)

)2
observed

where ¢ is volume fraction of size species 1
e Find g, or its associated parameters which minimise the error as given above in

Eq. (4.25).

Using this method, bed expansion, axial particle size distribution and voidage

profile was estimated. The results are as follows.

4.7.4 Results and Discussion

At first, in section 4.7.4.1, mixing parameter (o,;) values were estimated using
Willoughby et al. (2000) experimental data set of 200 cm/h fluid velocity. These values
were then applied to predict axial PSD at different bed heights and axial voidage profile
for the same dataset. After this, in section 4.7.4.2, assuming the a,,; constant and that the
value applicable in a similar operation conditions in terms of fluid, flow and particle
physical properties, the method was then applied to predict the bed expansion in different

experimental set ups as described in Table 3.3.1.

4.7.4.1 Estimation of mixing parameter from experimental PSD data

In order to apply a simplified mixed bed approach, the mixing parameter (o) specific to
each particular particle species i is required. This can be determined using the

experimental data of axial PSD at different axial position using the method as described
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in section 4.7.3. Here Willoughby et al. (2000) experimental data was used to estimate
such parameter in Streamline Phenyl 50 column operated at 200 cm/h fluid velocity. The
PSD of the bulk matrix was considered as: 200 pm mean particle diameter, 50 um
standard deviation and 70-500 pm range. It is expected that the value estimated for this
would also act as rough guideline for the expected values in other similar EBA matrices

and operating conditions. This value is always bracketed in between two extremes:

omi=0 : no mixing as in PCB or

omi — © :completely mixed resulting in almost mono-size bed behaviour.
Infinity is a relative term. In the present context of mixing sigma value
3-4 times the magnitude of bulk PSD sigma can be considered to be

approaching to infinity.

For comparison and estimation the experimental axial PSD data was normalised.
Here five size categories of equal mass/volume (density being considered constant) were
used to cover the whole range. It can be any number, but at the present limitations and
simplifying assumptions of the method for example use of same bed voidage for all used
size categories. Too high a number of categories can introduce errors while the use of
very few categories will not adequately represent the PSD. The use of five categories was
found to be optimal in the present context. Using different mixing parameter (o,,;) value
axial PSD was determined which was compared with experimental data to find out best
om; Which minimises the difference between estimated and observed as described in
section 4.7.3.

As shown in the Fig. 4.6, the mean o, value (corresponding to the mean particle
size) was found be to be about 40 pm. It was assumed that g, varies linearly with slope of
0.5 to the variation in particle size. And o,, was considered higher for the lower particle
sizes. However for a simple approximation such size specific variation does not
necessarily need to be considered and in which cases a,, can be considered constant for all

particle sizes.
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Fig. 4.6 Estimation of mean mixing sigma (o) parameter value which minimises total sum
of square error (SSE) of simulated axial particle size distribution (PSD) with respect to
experimental axial PSD data at 200 cm/h fluid velocity (Willoughby et al., 2000). In the
figure o, value of about 40 is found to produce the least total SSE and thus the best
estimate to represent axial PSD of a mixed bed.

The comparison of estimated axial PSD at different axial positions using mean
mixing sigma parameter of 40 um to the experimental data is shown in Fig. 4.7 and Fig.
4.8. Though there are conspicuous differences, in general, they seem to compare
reasonably well for a practical purpose. The correlation coefficient between simulated
prediction and experimental data was found to be 0.83. Hence, although this method
needs further refinement for more accurate predictions, it seems possible to use this for an

approximate estimate of mixed bed state and its resulting bed expansion in an expanded
bed.
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Fig. 4.7 Comparison of an axial particle size distribution (PSD) at 200 cm/h fluid velocity
estimated using Approximate mixed bed (AMB) approach with mixing sigma (o) of 40 to the
experimental data of Willoughby et al. (EX) at different bed heights. m, 5 cm AMB; ¢, 10cm
AMB; 4, 15¢cm AMB; =, 5¢cm EX; &, 10 cm EX; A, 15 cm EX.
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Fig. 4.8 Comparison of an axial particle size distribution (PSD) at 200 cm/h fluid velocity
estimated using Approximate mixed bed (AMB) approach with mixing sigma (o) of 40 to the
experimental data of Willoughby et al. (EX) at different bed heights. m, 20 cm AMB; ¢, 25
cm AMB; 4, 30 cm AMB; o, 20 cm EX; ¢, 25 cm EX; a, 30 cm EX.
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When PSD are available for wide range of fluid velocity, such data can be used to
estimate mixing sigma (o) as a function of fluid velocity by the method as has been
described in sections 4.7.2 and 4.7.3. Here only one fluid velocity data at 200 cm/h was
used which estimated mean g, of 40 pm. Assuming the relatively no variation in &,
when fluid velocity is changed within a small range, approximate mixed bed (AMB)

approach was applied to estimate bed heights in the next section.

4.7.4.2 Bed Height Estimation

Bed height was estimated for different experimental sets with different fluid velocities
and by employing range of predictive methods and the result compared with experimental
data. Bed heights were predicted using mono-sized bed, PCB and AMB approaches. The

results are shown in the figure below (Fig. 4.21).

50

©
-a

40

Bed height (cm)
&

25 |

M EEEEEEETE
Fluid velocity (cmh)
Fig. 4.9 Bed heights at different fluid velocities estimated using Approximate mixed bed
(AMB) approach, Perfectly classified bed (PCB) model and Mono-sized bed (MSB) model
for 3 different experimental data sets: Thelen and Ramirez, 1997 (TR); Bruce and Chase ,
2001 (BC); Yun et a., 2004 (YU). s, AMB estimate for TR; ¢, PCB estimate for TR; 4, MSB
estimate for TR; m, experimental data of TR; -, AMB estimate for BC; +, PCB estimate for
BC; x, MSB estimate for BC; *, experimental data of BC; -, AMB estimate for YU; ¢, PCB
estimate for YU; A, MSB estimate for YU; o, experimental data of YU.
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For estimation purposes using mixed bed approach, mean mixing sigma value of 40
um was used. To accommodate for variations in the mixing sigma value with respect to
particle size, the mixing sigma was approximated by a linear function with mean as above
and a slope of 0.5 with respect to particle size. Apart from these for mixed bed, the results
were primarily produced without using fitted parameters. The natural terminal velocity
(Eq. (4.6)) was used and the Richardson-Zaki parameter (n) was estimated using the Ga
based correlation (Egs. (4.7)-(4.8)).

The assumption of mixed bed (MB) approach did not improve results over that of
perfectly classified bed (PCB) approach for the data set used in this study. Estimates by
the MB approach were within about 10-15% of experimental values and slightly better
than mono-sized bed approach. This result was as expected since the mixed bed approach
lies in between that of the mono-sized and PCB approaches which naturally are the
boundary conditions of mixed bed with complete-mixing and no-mixing.

Whereas the mono-size is a crude approximation, the PCB approach provides an
improved approximation and also provides some estimate on the variation of particle size
and voidage along the bed axis. But besides such estimates being a crude guide, it has one
important limitation. As flow rate increases, the segment of small sized particle will have
a tendency to expand greater degree. Especially if the particle size distribution is wide,
this can cause a problem in the simulation. The particle velocity of small particles is
likely to rise almost to the elutriation velocity and raise the bed height significantly. The
mixed bed approach improves the model in many ways. Due to the averaging nature in
each segment not only does it stabilise or avoids such overexpansion problems but also
more accurately estimates the axial voidage variations. Even of more significance is that
it provides an estimate for axial PSD at any given axial position. These advantages come
at the cost of having to provide a mixing sigma parameter value which is a further

experimental investment.

4.7.5 Conclusion

The development of an approximate mixed bed approach was attempted and tested for its
suitability in representing EBA. The approach seems to hold promise but requires further
refinement. Use of an optimal discretisation or size categories to represent PSD, gave a
resulting axial PSD close to the experimental data, and with the estimated bed height

lying in between that produced by PCB and mono-sized bed approaches. Because in
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reality the bed is mixed, the axial PSD and voidage variation estimated by the mixed bed
approach can be expected to be more accurate than those estimated using PCB. Compared
to the PCB assuming the mixed bed approach also provides stability in the simulation of

bed expansion but comes at the cost of providing an additional parameter i.e. mixing

sigma (o).

The need to use an optimal number of discretisation or size categories is an important
limitation of the approach at its current state. This is due to the use of a simplified method
and the code at present. Further work to correct the current weakness of this approximate
mixed bed approach is necessary and recommended. Besides, it is also recommended to
determine the g,, as a function of fluid velocity by using experimental data from a range
of fluid velocity. This will make the approach more robust and useful for more accurate

predictive applications.

4.8 Conclusion

The Richardson-Zaki correlation is a widely used method to estimate bed expansion in a
liquid fluidised bed including EBA. The estimation of the Richardson-Zaki correlation
parameter (n) using a Galileo number (Ga) based correlation seems to be slightly better
than the adoption of a Reynolds number (Re) based correlation for expanded beds with an
error in the order of 10%. The existence of particle size distribution (PSD) in real EBA
system is probably the root cause of this error since all correlations have been developed
based on the assumption of mono-sized bed. When such an error becomes too significant,
for example for adsorption purposes, parameter fitting using experimental data may be
necessary.

The perfectly classified bed is a better approach than mono-sized bed approach
when particle size distribution (PSD) and variation of axial voidage have to be
considered. PCB produces better results than assuming a mono-sized bed for estimation
of bed height for the representative data set used in the study.

The development of an approximate mixed bed approach was attempted and tested
for its suitability in representing EBA. The approach seems to hold promise but requires
further refinement. Use of an optimal discretisation or size categories to represent PSD,

gave a resulting axial PSD close to the experimental data, and with the estimated bed
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height lying in between that produced by PCB and mono-sized bed approaches. Because
in reality the bed is mixed, the axial PSD and voidage variation estimated by the mixed
bed approach can be expected to be more accurate than those estimated using PCB.
Further work to correct for the current weaknesses of this approximate mixed bed
approach are necessary and recommended.

The next chapter will study representing the transient hydrodynamic response of
EBA which will be crucial for developing an integrated EBA model with transient

hydrodynamics.
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5.1

5 Transient EBA Hydrodynamics

Introduction

In the previous chapter, the approach to predict bed expansion and axial particle size

distribution at steady state was established. There are however a number of situations in

which knowledge of the dynamic response of a bed in relation to a given change in the

system, for example changes in fluid velocity or fluid properties, will be desirable. With

this in mind this chapter will study and establish the possible model needed to predict the

transient hydrodynamic response of an expanded bed (EBA).

Some of the possible reasons for the need of such transient models can be as

follows.

While loading in EBA, the physical properties (density, viscosity, etc.) of the fluid
change. This will cause the bed to adopt a new equilibrium based upon these
parameters. Until the bed assumes this new equilibrium stage, it will be in
hydrodynamic transient mode which will affect the adsorption behaviour of the
column.

Even when the bed has equilibrated to a constant bed height axial particle
dispersion continues. The net change in particle concentration at any axial position
remains constant at steady state but it affects the adsorption response of the bed.
Thus consideration of such axial particle dispersion becomes important.
Depending upon the system of study the axial particle dispersion coefficient can
vary. In some it can be small and neglected; while in others it can be significant.
The most rapid adsorption changes take place in the lower part of the bed, the
effect of such axial particle dispersion is especially critical in this part of the bed
or when the bed height used is small. Thus estimating the axial particle dispersion
coefficient becomes important. A correlation developed for fluidized beds has
frequently been used in literature (Van der Meer et al., 1984). Depending upon the
contexts in which it is to be applied this approach may be adequate. However if it
is necessary to verify it or to improve the accuracy, another independent method

would be required. One such method is to estimate the axial particle dispersion
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from experimental data. Transient EBA hydrodynamic model can be used for such
purposes even when mono-sized bed is considered.

e During EBA operation it is necessary to know how much time it will take for a
bed to reach hydrodynamic equilibrium for a given system so that appropriate
control action can be taken in a given process sequence. For example this would
be especially valuable for increasing throughput and maintaining product quality.
A transient hydrodynamic model would be useful for such purposes.

e As will be discussed in Chapter 9, an integrated EBA adsorption model linked
with a transient hydrodynamic model can have many uses e.g. for gradient change
in flow velocity for bed stability, operation in hydrodynamic transient bed mode
for possibility of maximizing bed productivity, etc. Development and proving of a

transient hydrodynamic model is the first step toward building such models.

In this chapter a simple mono-sized transient hydrodynamic model of expanded bed
behaviour will be established. Literature available models will be adopted when possible,

and improved or adapted if and when required.

5.2 Literature Review

There are not many work related to modelling of transient hydrodynamics of expanded
bed. Transient model of expanded bed is generally represented by a general mass balance
model of particle phase as of Eq. (2.16) with no source term. The critical part in the
model is the velocity of the particle phase. As done by Kennedy-Bretton (1966) and
shown in appendix A.3.3, this is estimated based on the inclination of the particle phase
concentration to go towards an equilibrium as observed in steady state value as of mono-
sized bed, i.e. using a Richardson-Zaki correlation. When the particle size distribution
(PSD) is considered to exist, the bed will be segregated and mixed based on the relative
strength of the convective and dispersive terms of each size species. Large, heavy
particles have a lower upward particle velocity compared to that of small and lighter
particles. So small particles move up and large particles tend to stay towards the bottom
of the bed. However the dispersion of each size species will result into a partially mixed
bed with a degree of segregation. Asif et al. demonstrated this approach in modelling

liquid fluidized bed of coal particles in their 1994 paper. There was a subsequent paper by
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Kaufmann et al. from the same research group in 1995. Thelen and Ramirez (1997) used

the approach but for a simplified system of mono-sized bed.

5.3 Plan and Objective

With the aim of developing an integrated EBA model capable of predicting adsorption

response while the bed is at transient hydrodynamic state later, in this chapter, a simple

transient hydrodynamic model of expanded bed as developed by Thelen and Ramirez

(1997) by assuming only mono-sized bed will be established. The specific objectives are:
e to establish mono-sized bed transient hydrodynamic model of EBA

e to verify the model using experimental data.

5.4 Model Development

The first stage in the development of a mono-sized bed model was to construct a mass
balance of a differential volume element of an expanded bed is done here at first. This
neglects the existence of particle size distribution (PSD) and assumes the bed to comprise
of only mono-sized beads. As in the steady state models discussed in the previous

chapter, the following additional assumptions were taken.

e Assuming the validity of self-diffusion of small particles (<300 pm diameter) for
practical purpose as shown by Brotz (1952), Fick’s Law can be applied to model
dispersion in expanded bed as demonstrated by Kennedy and Bretton.

e Only one axial dimension will be taken as Willoughby et al. (2000) has
demonstrated that there is no or limited radial variation in particle phase
concentration

e Bedis stable.

e Convective flux is the result of particle movement to bring the local solid phase
concentration to equilibrium w.r.t. applied superficial velocity. It is assumed that
the flux can be represented by the Richardson-Zaki correlation as developed for a
mono-sized bed in spite of having a PSD. Irrespective of the particular
composition of size, only the total solid phase concentration is considered to be

factor which is important for the equilibrium state. Moreover as the bed is
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assumed to be mono-sized, the Richardson-Zaki correlation could be directly

used.

'l—_Az—I'

Z Z+Az

Fig. 5.1 A differential volume element of a column

From Eq. (2.18), a mass balance of particles in a differential volume element of a

column (Fig. 5.1), as there is no source term, yields:

9. V.n =0 (5.1)
ot

where p; is concentration of particle (s) and n; mass flux which is given by

n.=—pEVw +pv, (5.2)
where p is bulk density, E; dispersion coefficient of particle size species s, w; is mass
fraction and v; is velocity of particle w.r.t. to bed (that is Eularian).
Voidage (¢) is given by
e=1-c (5.3)
And bulk density is given by
P =cp, +&o; (5.4)
where pris density of fluid.

p=0,-p, -0, (55
From Eq. (5.1) and (5.2)
Le V- (pEVw, )4V (p,y,)=0 5.6)

Taking only one axial dimension (z),
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do. d d
s _— (pEV — =0 5.7
ot dz (oEVw, )+ dz (o.v.) G-D

Representing fractional volumetric concentration of particle phase by c:

.= particle mass = particle mass fraction total mass =w.0 ‘ -8)
A volume , A volume

where A volume is the volume of a differential element.

_particle mass particle volume
particle volume A volume (5.9)

= particle density * particle volume fraction = p ¢

Thus,
w,p=p.cC (5.10)

where p, is density of particle.

w,=L5c (5.11)
o,
Substituting the value of w; into Vw_,
ow, _ dfc /_)( dc ap)
== p— 5.12
0z paz( ] o’ 7 o G2

Substituting the value of w; and Vw;, into Eq. (5.7),

3 oc 0 0 dc 8,0) d
% _ClEpLs|pZ =0
Ps ot az[ “Opz(paz caz }'ﬁs az(cv)

dc 9 dc ¢ dp d
k Slg|&¥_< g 0
o az[ (az pazJ:|+az(c)
2
g P 2., &, 2

il —+c—==0 5.
ot ’822+ *oz\ o 0z az+ 0z G.13)

The above equation represents the transient hydrodynamic model of an expanded

bed when the bed is considered to be made up of homogenous mono-sized beads. This

can be simplified as follows.

Simplification of the term: i( c j

dz\ p 0z
d[(cdp) _9dpd cd*p
—| ==+ < 14
az(p az) 0z az( J+p 0z’ G194
oiz\' 9z 9z )p* p 97’
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2 2
}_a_pic__ﬁ(gﬁ] +£a p (5.15)
0z p 0z°

Substituting the value of p, from Eq. (5.5),
1 ac\’
E s — P {—J
(ps-pf)cwf(p "oz

a 2
E—a—(ia—pJ =—E < (o, —pf)z(—f) (5.16)
dz\ p 0z ((ps—pf)c-rpf) Jz
c d’c
+E (o, - p, )=
(ps_pf)c'*'pf ! d 0z*
By order of magnitude analysis using experimental data from normal operating condition,

shows that this term is about 0(0.05-0.1), and thus may be neglected. Thus Eq. (5.13)

becomes:

2
& _pde ) % o (5.17)
ot 0z 0z 0z
The Eq. (5.17) is same as that of Thelen and Ramirez (1997). The crucial part of

this is determining particle velocity (vy). For that the same approach as used by Kennedy-

Bretton (1966) has been used as given below.

Particle velocity (vs): The particle size species velocity (v;) is determined as
follows. The particle interstitial relative velocity with respect to fluid (v,), as a
result of expansion of the bed to reach equilibrium as given by Richardson-Zaki

(RZ) correlation, is given by:

V=V, v, = =v,e"! (5.18)

where v; is terminal velocity of particle, n is its RZ correlation parameter and ¢ is
the voidage at that axial position z. Fluid velocity (vy) is given by:

Ve =V, oy, (5.19)

v, =v, +ev, e (5.20)
From eq. (5.18)

v, =v, —v, e (5.21)
Substituting the value of v¢
ET (5.22)

_ n-1 _
Vs =Y, +CV,€ A4
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v, =v, —(1-cp,e""

v, =v, —v,(1-c)" (5.23)

5

Thus substituting the value of v; in Eq. (5.17):

dc d%c » \OC a(vo -V (l—c)")

—~-FE —lv. —v(1- — L 5.24
o oz bo 1= )az T 624
dc d%c 2 \ocC -1 OC
E:E'{)Z—Z—(VO—V,(I—C) )a—z—ncv,(l—c) la—z

dc d%c n ' o1 \OC

—_—= _— - - 1"‘ — '25
Ey E % ((v0 v,(1-c¢) )+ncv,( c) ) % (5.25)

This is a non-linear partial differential equation. If the upper surface of the solid
phase is considered as an upper boundary by applying conservation of total solid phase in
the domain as a constraint, the problem becomes a moving boundary problem with a non-
stationary upper boundary. To make it easier to solve numerically, this moving boundary
value problem is converted to stationary two point boundary value problem with variable

coefficient by spatial variable transformation as follows:

= th) height with respect to maximum height (5.26)
“a_1 (5.27)
dz h()

Partial derivatives w.r.t. new variable A:

oc(z,t) _ ac(ﬂ,t)i1£+ dc(A,)dA _ 1 dc(4,t)

0z ot dz 04 dz h@t) 94 (5:28)
9%c(z,1) _ 1 i(ac(i,t))_cﬁ_i_i(ac(ﬂ,t)]d_/l _ 1 d%c(A,1) (5.29)
oz h®\\ 04 Jdz A\ 91 Jdz) K@) oA '

dc(z,t) _Oc(A,t) dt  dc(A,t) dA  dc(A,t) A dh(t) dc(A,1)
- a . at _ - (5.30)
ot o dt oA dt ot h(t) dt 94
Also transformation for dimensionless time:
7= 531
3 (5.31)
ar _vy 5.32
d L (5-32)
Ic(A,1) _9c(A,7) d  dc(A,7) dA _ dc(A,7)
a or di oA di_ 94 (5:33)
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9%c(A,1) _ 9%c(A,7)

0A? oA
dc(A1) _dc(h 1) dz  dc(h) dA _vo 0c(h7) A dh(t) 0c(A,7)
o6  or ar oA dt L 9t h(t) dt oA

Final transformed variables:

E)c(z,t)= 1 dc(A,7)
0z h(t) 04

c(zt) _ 1 3’c(A,7)
02> K@) A

ac(z,t): Vo ac(/l,'r)_ A dh() dc(A,7) B A dh(t) dc(A,7)
ot L ot h(t) dr 04 h(t) dt 0A

L oz h(t) dt 97

Thus:
0 9% n Y
a—j = Egz——((v0 -v,(1-¢) )+ncv,(1—c) ’)a—z
vy Oc . A dh(t) dc 1 9%
0 L, 2 2
Lot h(t) dt oA  Rh*(t)oA®
- ((vo -v,(1-0)" )+ nev,(1-¢)™* )%g—;
dc 1 L Ld%
= -FE ==
or h*(t) v, L OA*
n a1 L A dh@) L \dc
- -v,(1- + l-¢)" )——-2""TL2 | =
(((vo v,(1-¢) ) ncv,(1-c) )h(t) v YR dr v, ] 51
Using following modified Peclet number (Pe) as a model parameter,
Pe = M
E
Let,
oL
h(t)
U = v (A=c)" +v,—v,(1-¢c)"
Vo
W= dh(t)/dt
Vo

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)
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Substituting values,

dc _y? d%

9 _ Y 9%¢ 1y _2awn)oE 5.45
3~ pep "W )5 (5.43)
dc dc  y* d%c . ‘

had - = _ L 7290 5.46
5 U 24W) - (5:40)

The initial and boundary conditions of the system are as follows.

Initial conditions:

_ Csettted seted (5.47)

cNew h
New

Boundary conditions:

As the superficial fluid velocity is far below the elutriation velocity, the total solid phase

or particle mass is conserved and remains constant in the column. If the domain is

considered to be from the bottom to the upper surface of the solid phase, the size or

volume of domain is changing with time but total mass within it is contained and constant

as given below (Thelen and Ramirez, 1997).

Lm(ﬁs c)dV =m (5.48)

Taking a time differential and expanding Eq. (5.48) utilizing extended Liebnitz’

formula:
iL 12 c)dV—I2 0. —aﬁdV+ p.c(v_ . -n)dS=0 (5.49)
= Lo Podv=[ 7= [, 7. ey -n)dS = :

where
vaurf = velocity of boundary surface
n = unit outward pointing normal (as confined to axial direction only: = * z)

Rewriting the mass balance as an integral over the surrounding volume:

dp,c _[ = dc Y =
L% v L pfos [ ommso oo

From the divergence theorem of Gauss:

LU)(V-Ns)dV = 4[(0(1\15 -n)dS (5.51)
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Thus,
L» (N, -n)dS = Lo B¢V, -n)dS

N,-n=p.c(v,, n)

The flux expression then becomes:
a(cp,) —

N,=|-E = +vep, |z
s ( aﬂ' p.Y

(z : unit normal vector along z axis)

1. At the bottom of the column: A=0

Vsurf = 0

(n=-2)

dcp,) —
(- E —S%— +vep, Jz (=2) = PV gy - (=2))

1 dc

Eﬁs%a—l‘cﬁs (Vo —v,d-¢)")=0
& -va-ome iv"
g; 1:,6(1——(1 )" )

2. At the top of the column: A=1 (n=2)
Vaurf = dh(t)/dt
(‘Ea(gﬁs)ﬂ“vws jz (z)=p, 9, (dz(tt) z]
—Ep, ;(l—t;g%wﬁs (vo —v,(l—c)")=pscff§l
% et -ra-or) - LD
g—;=((v0 v,(1=c)") - dh(’))hg) ’L“:Z

dc Pe v
—=1-210-O)"-W
oA }’( v,( ©) JC

(5.52)

- (5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

Thus the model of transient hydrodynamics of expanded bed is given by Eq. (5.46)
with initial conditions, Eq. (5.47), and boundary conditions, Egs. (5.57) and (5.60). It was

found that there was difficulty in implementing this model. Thus for a unique and stable
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solution, some additional assumptions on the boundary conditions were taken. It is
possible that this can make the solution slightly different from what it should have been.
But such difference will be small and contained, and null when its reaches to an
equilibrium level or steady state. Besides the difference introduced by such assumption

can be reduced by increasing the number of discretisation.
Additional boundary conditions assumptions:

The assumptions and their subsequent results are as follows.

1. At A = 0: Immediately after expansion starts, ¢ at the bottom surface will try to
equilibrate with the new vy Considering that the effect of convection is
considerably higher than dispersion, we fnay assume that ¢ at A = 0 immediately
adopts the new ¢ value which makes the velocity of the particle (v) zero with
respect to the new vy, and remains at that value throughout. From Eq. (5.57), the ¢
at the bottom surface will then be given by:

vo—Vv,(1-¢)" =0 (5.61)

2. At/ = 1: As the bed height is moving, the compression or expansion of ¢ (that is
change in ¢) at that upper surface is significantly lower compared than that in
other parts of the bed, so dc/dA at that upper moving surface may be effectively
assumed to be zero. The boundary equatidn, Eq. (5.60), at that surface derived
from mass conservation can thus be used to determine the surface velocity. The
surface velocity is thus given by:

dn

5TV (I-¢)" (5.62)

Thus the final model for a transient hydrodynamics of expanded bed is given by Eq.
(5.46) with initial conditions Eq. (5.47), boundary conditions Egs. (5.61)-(5.62), and
constants of the system, Eqs (5.41)-(5.44). In the next section, the method employed to

estimate parameters of the model will be explained. That will be followed by simulation.
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5.5 Parameter Estimation

In chromatography modelling (Section 3.5), it is required to estimate several parameters.
In line with this need the hydrodynamic model derived above needs the estimation of one
parameter, particle dispersion coefficient. The method applied to estimate it is described

below.

5.5.1 Particle Dispersion Coefficient

Van der Meer et al. (1984) developed a correlation to estimate the particle dispersion
coefficient in a fluidized bed. It is given by:

E=0.04v,"* ¥10* cm?/s (5.63)
where vy = superficial velocity (cm/s)

This has been used for EBA model to estimate particle dispersion [Wright and
Glasser (2001), Tong et al. (2002), Chen et al. (2003), Li and Rodrigues (2004), Yun et
al. (2005) and Li et al. (2005)]. Though it has been widely used, it appears that most of
these papers have taken for granted in terms of the hydrodynamics the validity of the
correlation and there has not been another independent method to verify it. It should also
be noted that this correlation does not provide estirhation of particle dispersion for
specific particle size categories when particle size distribution is considered. So in this
work, when required, the particle dispersion coefficient will be fitted based upon

experimental data developed with transient hydrodynamics.

5.5.2 Richardson-Zaki Correlation Parameter

As discussed in model development section, the Richardson-Zaki correlation parameter
(n) is required to determine the particle size species velocity (v) as given in Eq. (5.18).
This can be determined using a Galileo number (Ga) based correlation as discussed in the
previous chapter on EBA steady state hydrodynamics. Often however the final bed height
prediction based on such correlations differs by 10-15% or more from the observed
experimental result. In these cases both n and the observed terminal velocity v, are
required to be fitted in order to match the experimental data. Once estimated those values

should remain valid within the interval of the set of fluid velocities used for the purpose.
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5.6 Simulation

The transient model (Eq. (5.46) and associated equations) was discretised using the
method of line principle (section 2.4.2.3) to result in an ODE system which was solved
using an ODE-solver within MATLAB. A centred finite difference as described in section
2.4.2 was used to achieve spatial discretisation and an upwind scheme (section 2.4.2.4)
was followed to accommodate for the convective term. The difference scheme employed

is as follows.

Q_C; _ ‘J/(U _Z/lW)u(/l,’r)—-u(/l '—M,T)
oz AL (5.64)
LY eA+ad D) - 2¢(A,7)+c(A-AA,7)
Pe AA®

Thus resulting ordinary differential equation system Eq. (5.64), after applying boundary
conditions (Egs. (5.61)-(5.62)) and initial condition (Eq. (5.47)), is solved using ODE-
solver of MATLAB. The results are as follows.

5.7 Results and Discussion

Using the above model for a mono-sized transient bed, the simulation was performed
using the Thelen and Ramirez (1997) data set and transient bed experimental data
obtained in this work. Thelen and Ramirez used Streamline DEAE for expansion in 50
mm diameter column. The bed was assumed to be mono-sized with mean particle
diameter was 200 pm. The average particle density was considered to be 1.2 g/cm’.
Twenty percent aqueous ethanol solution was used for expansion whose density and
viscosity were taken to be 0.98 g/cm® and 0.01 g/cm.s. Settled bed voidage was 0.4. The
experimental set up and parameter values for the experiment performed in this work were
also same except that the column diameter was 25 mm instead of 50 mm.

In the case of the steady state model, without fitting the Richardson Zaki correlation
coefficient, the results were about 10% away from the Ramirez data set (Fig. 5.2) and in
the case of experimental data set more than 25% out (Fig. 5.3). About 10% margin of

error for Ga-based correlation appears to be common based upon the analysis in section
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4.4. But much larger difference in prediction for experimental data of this work is
probably due to the old matrix used for the study. Due to many uses and long storage, its
physical properties might have changed such that it resulted in much higher expansion
than that would have been expected. Thus model fitting approach (as discussed in section
4.4) was used to fit both effective terminal velocity (v;) and Richardson-Zaki correlation
parameter (n). For Thelen and Ramirez data 0.139 cm/s v; and 2.663 n were used.
Similarly for the experiment in this work 0.136 cm/s v; and 4.323 n were used. An axial
particle dispersion coefficient was fitted to adjust for the rate of bed expansion for each
data set examined in this work.

The simulation results obtained for the mono-sized bed approach using fitted
parameters of v, and n matched very well with both the literature data of Thelen and
Ramirez and the experimental data obtained in this work as shown below in Fig. 5.2 and
Fig. 5.3. The modification in the boundary conditions from those adopted by Thelen and
Ramirez model appears to be valid. It is observed that this slightly modified model

actually gives more accurate result than those results published in the literature.
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Fig. 5.2 Transient bed heights predicted using Transient mono-sized bed hydrodynamic model for a
data set of Thelen and Ramirez (1997) at different fluid velocities. Three sets of results are shown.
Parameters (n and vy) are fitted in the first set (PF). Parameters are not fitted in the second set (NF).
Final set is experimental data (EX). », 169 cm/h PF; A, 137 cm/h PF; ¢, 108 cm/h PF; », 61 cm/h
PF; o, 169 em/h NF; A, 137 em/h NF; 0, 108 cm/h NF; =, 61 cm/h NF; *, 169 cm/h EX; +, 137 cm/h
EX; x, 108 cm/h EX; —, 61 cm/h EX.
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Fig. 5.3 Transient bed heights predicted using Transient mono-sized bed hydrodynamic
model for a data set produced in this thesis at different fluid velocities. Three sets of results
are shown. Parameters (n and v)) are fitted in the first set (PF). Parameters are not fitted in
the second set (NF). Final set is experimental data (EX). =, 241 cm/h PF; a, 180 cm/h PF;
+, 108 cm/h PF; o, 241 cm/h NF; A, 180 cm/h NF; 0, 108 cm/h NF; *, 241 cm/h EX; +, 180

cm/h EX; x, 108 cm/h EX.

The results showed that depending upon the particular process situation, parameter
fitting can be important when a mono-sized bed approach is followed. It may be possible
to obviate or to minimise the need for parameter fitting by improvement in the modelling

by consideration of the effect that particle size distribution (PSD) has on expansion.

5.8 Conclusion

The assumption of a mono-sized bed model accurately predicts the bed height of an
expanded bed when the Richardson-Zaki correlation parameters along with particle
dispersion coefficient are fitted. As correlations are available for both of those
parameters, it is in principle possible to simulate without fitting any parameters and

depending upon the system, the result may be close to the experimental data. In some
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cases however, the error can be too large to be of any practical use and parameter fitting
can become necessary. The approach to use can be decided based upon the closeness of
prediction based on the correlation to the steady state result.

There is one additional weakness in the mono-sized bed modelling. approach. In
reality there is a large particle size distribution, and a big axial variation in voidage which
is particularly important to account for when representing the bed’s adsorption behaviour.
The models developed so far would not able to represent such axial variations and their
subsequent effect on adsorption when integrated with an adsorption model. Besides, such
a mono-sized bed model will not be adequate when any axial variation of particle size
distribution requires to be accounted for. In order to achieve such a capability a general
transient hydrodynamic model will have to be developed which will be able to
accommodate for the existence of PSD and their axial variations. Such a model will be
able to predict the overall impact that this will have on the EBA behaviour. Thus this is
recommended as a future work. A preliminary work in that direction has been carried on
and included in an appendix.

Mono-sized bed transient hydrodynamic model established in this chapter will be
used to formulate an integrated transient hydrodynamic EBA model in chapter 8. Before
that, an integrated EBA model with steady state hydrodynamics will be developed in the

next chapter

123



6 Integrated Model: Steady State Hydrodynamics

6.1 Introduction

The hydrodynamic aspects of any model to simulate Expanded Bed Adsorption (EBA)
rely upon an ability to predict the bed expansion and the rate of movement. Such models
are based upon fluid velocity and particle size distributions and have been described and
developed in earlier [Chapters 4 and 5]. However, the most important objective from an
industrial point of view is the adsorption behaviour. Adsorption models to predict the
response of a packed bed chromatography are well established, but this is not the case for
EBA. In spite of importance of EBA as a key downstream tool in protein purification,
there is a lack of accurate comprehensive models, which take into account its unique
nature and are able to predict its behaviour. There were very few papers available which
dealt with EBA modelling at the outset to this thesis. Over the intervening years there are
number of EBA adsorption modelling papers have been published and which bear on the
work of this doctorate. The details of the key contributions are reviewed in the following
section. It is however clear that the models developed and available to date are still far
from providing an accurate representation of EBA. Some of the important aspects of EBA
like the appropriate integration of bed hydrodynamics and adsorption, the existence of
mixed bed, the accurate representation of particle dispersion, use of multi-component
models, etc. are still lacking. This thesis sets out to fill major part of this gap and to make

a more comprehensive and accurate integrated model of EBA.

6.2 Literature Review

Work by Draeger and Chase (1990), Wiblin et al. (1995) are among the earliest in EBA
modelling where each adopted packed bed chromatography model. Wiblin et al. used
BIOSEP Simulus (AEA Technology, Didcot, UK), a software package to simulate packed
bed adsorption process to predict adsorption of a-amylase onto Streamline DEAE. Such
models consider the bed to be mono-sized and of a uniform voidage along the bed axis.
The assumption of a homogeneous bed with constant bed voidage and particle size

along the axis is far from reality. So a second major improvement was to assume the bed
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was composed of a few different beds or segments in series such that each segment has its .
own physical properties like bed voidage and particle size, that are assumed constant
within each segment. This is a much better approach than the former and captures some
of the fundamental properties of EBA. Towards using this approach, Bruce and Chase
(2002) divided the bed into 3 discrete segments or zones for simulation purposes.
Average voidage, particle sized distribution, axial liquid dispersion for each segments
were experimentally determined. Other parameters were fitted from experimental data. As
done by Wiblin et al., they also used BIOSEP Simulus software to simulate, each segment
(or in the case of a uniform bed the whole bed) as a set of packed bed each with its
specific parameter values. They demonstrated that the inclusion of such axial variation in
bed properties improved the accuracy of the model prediction. Lysozyme-Streamline SP
and Bovine serum albumin (BSA)-Streamline DEAE were used as the model systems.

An improvement in this is instead of applying a few discrete segments the bed is
considered perfectly classified bed (PCB) so the bed properties are allowed to vary more
uniformly as given by PCB hydrodynamic models. Wistrand and Lacki (2002) developed
this approach and demonstrated its effect in the prediction of EBA performance. Yun et
al. (2005) also adopted this approach for the integration of PCB hydrodynamics and
adsorption to formulate an EBA model and tested it against BSA-Streamline DEAE and
lysozyme-Streamline SP model systems.

EBA models have also become more realistic by the representation of the
distribution of particle sizes and the variation of axial bed voidage. In all cases to this
point however particle dispersion was ignored. Although the bed was considered as a
homogeneous mono-sized, Wright and Glasser (2001) were able to develop a model by
introducing the effect of particle dispersion.Using the model they predicted the lysozyme
adsorption in Streamline SP and S-HyperD LS resin and found the result to be in close
agreement with the experimental data. This model was adopted by Tong et al. (2002) to
predict the lysozyme breakthroughs in EBA using a specialised dense adsorbent CB-
NFBA (a customised Nd-Fe-B alloy-densified agrose gel modified with Cibacron Blue
3GA). Similarly Chen et al. (2003) used the model to simulate EBA for the adsorption of
BSA to DEAE Spherodex M (BioSepra) where a yeast cell suspension was used as
feedstock. Both of them found that the model predictions were in good agreement with
the experimental data.

Li et al (2004) followed the model developed by Wright and Glasser but improved

upon it by considering 3-discrete segments of the bed based upon particle size as done by
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Bruce and Chase (2002) and its associated voidage instead of taking one single
homogenous bed. Experimental data were used to define bed properties in those segments
instead of getting them from hydrodynamic model. They validated the model using a
lysozyme-Streamline SP breakthrough data set of Bruce and Chase (2001, 2002). Li et al.
(2005) in their second paper on EBA modelling, used the same model but instead of using
3 discrete segments, developed an empirical interpolation function to estimate particle
size and voidage along the bed axis based on experimental data. They successfully tested
the model on adsorption of BSA in both Streamline DEAE (first generation adsorbent
with low density base matrix, wide particle size distribution (PSD) and ligand sensitive to
ionic strength and salt concentration) and Streamline direct CST I (second generation
adsorbent with high density base matrix, narrow PSD and ligand not sensitive to ionic
strength and salt concentration). The limitation of these approaches is the bed properties
are specified using an experimental data. So not only the existence of such experimental
data is a pre-requisite but also the inability to predict when fluid velocity is changed.
Furthermore, the approach of including the particle dispersion effect in the model has an
important weakness, which will be discussed in Chapter 7.

Representing the bed as a PCB instead of homogenous mono-sized is an important
step in improving EBA modelling. Another important step to achieve an even more
realistic representation is by consideration of mixed bed (MB) instead of PCB. The
natural reality of the expanded bed is the existence of mixed particle sizes in any axial
location. This moderates the difference in mean particle size and voidage along the bed
axis. PCB model will estimate a much wider difference than is true in reality. The MB
approach will naturally solve this problem and will make the estimation of bed properties
along the bed axis more accurate. At the start of this thesis, little work has been published
in the area of EBA adsorption modelling. Over time, this has changed. Hence, to reflect
this, developing a mixed bed approach to EBA modelling, keeping track of differences in
adsorption state in different particle size categories, has been taken as one of the major
themes of this thesis. A similar approach was eventually developed by Kaczmarski and
Bellot (2005). They used experimental data to define the bed properties. Using a few data
points of the mean particle size variation along the bed axis, they interpolated the mean of
PSD along the bed axis. Assuming the standard deviation of the distribution to be
constant along the axis, the volume fraction of size categories was computed to represent
the bed as a mixed bed. Although PSD was considered, bed voidage was considered

constant throughout the bed. These values are then used to calculate parameters for
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adsorption model. Consideration of mixed bed is an important contribution of this paper
and it would represent as one additional milestone in EBA modelling. However, the
assumption of constant bed voidage throughout the bed in spite of considering PSD is an
important weakness in this approach especially as bed voidage is a critical parameter. In
addition, as the bed properties are interpolated from experimental data, this model can not
handle change in operating conditions like fluid velocity, fluid and particle properties, etc.

Hence formulating a complete integrated model of EBA, which would solve the
problems and weaknesses existing in the currently available models, is seen as important.
The next section of this thesis describes the objectives and approach for making such a

model.

6.3 Plan and Objectives

In this work the EBA model will be gradually improved. Here hydrodynamics is
considered to be at steady state equilibrium so resulting in an EBA model which is treated
as being similar to a packed bed but with relevant parameters (Pe;, &,7; Bi;) as functions
of axial position (z). Such parameters are determined using an independent hydrodynamic
model based on the Richardson-Zaki correlation. The following five stages were
identified for modelling progressively from a simplified approximation of the system to a

more realistic physics.

Mono-sized bed adsorption model (MSBA)

Perfectly classified bed adsorption model (PCBA)

Mixed bed model — equivalent diameter approach (MBEQD)
Mixed bed size partition model (MBSP)

Mixed bed particle dispersion model (MBPD)

A S

At first, the steady state PCB hydrodynamic model will be integrated with an
adsorption model. This way the parameters at the different axial position of the bed
required for the adsorption part of the model will be determined by the hydrodynamic
element of the model. Consideration of the axial particle size distribution in the bed using
a mixed bed approach will be another major improvement. This will bring the EBA
model closer to reality. In the beginning, the mixed bed is used just to determine the

hydrodynamic parts of the model and a simple equivalent diameter based on axial PSD is
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used for the adsorption part. Later the distribution of particle sizes at a given axial
position is explicitly considered also in the adsorption part of the model by applying size
partitions. This means evaluating adsorption in different particle size ranges at each axial
position. Further improvement can be done by incorporating particle dispersion into the
model for each size species. However, the inclusion of particle dispersion effect in EBA
model will not be performed in this part of the work and will be attempted in the next
chapter.

The objectives of this chapter are:

e To integrate adsorption and steady state hydrodynamic parts of an EBA model so
as to represent a complete EBA system
e To compare the quality of the representation of EBA using different modelling

approaches.

6.4 Mono-sized Bed Model

6.4.1 Introduction

The mono-sized bed model is the simplest EBA model where the bed is considered to be
homogeneous and mono-sized. Both particle size and bed voidage will remain constant
throughout the bed. The bed voidage and total bed height will be given by the
hydrodynamic part of the model as described in section 4.5. Such estimated values can be
used in a chromatography model as described in section 3.4 to predict the EBA
adsorption response. Though this is a simple approach, it provides a rapid means by
which to use existing packed bed models or software tools to make EBA predictions. This
approach with minor variations was used by Bruce and Chase (2001) to predict the EBA
response using BIOSEP Simulus software developed for packed bed chromatography. As

the first step towards EBA modelling this approach has been implemented here.

6.4.2 Model development

The bed is considered a homogeneous mono-size, so it will look like a packed bed. The

bed expansion and its properties are given Eq. (4.10) along with Egs (4.7) and (4.8) as
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described in chapter 4.5. When predicted bed height does not match with the real height,
as discussed in section 4.5, the parameters will have to be fitted using Eq. (4.11).
Application of this system of equations will give constant bed voidage throughout
the bed. As both particle size and bed voidage will be constant, the adsorption part of the
model will be same as that of packed model described in section 3.4 and given by set of

equations (3.83)-(3.97).

6.4.3 Parameters Estimation

There are 3 main parameters: liquid dispersivity (E;), component species diffusivity (D),
film mass transfer coefficient (Kp) and 2 isotherm parameters used in the adsorption part
of the model. Isotherm parameters were used as published by Bruce and Chase (2001).
They are normally determined from batch experimental data. The remaining 3 parameters
were estimated based on correlations as described in the chromatography modelling
chapter (section 3.5).

For the hydrodynamic part, the Richardson-Zaki correlation parameter was
determined using Ga based correlation but natural terminal velocity was modified using a

fitting parameter to match the observed final bed height.

6.4.4 Simulation

Since a mono-sized bed model is essentially the same as a normal packed bed
chromatography model, its discretisation and simulation can be performed as described in
section 3.5 using FEM for the bulk phase and Orthogonal Collocation for the particle
phase. The resulting ODE systems were solved using MATLAB'’s stiff ODE-solver. The
hydrodynamic part, which remains independent, has its values determined as described in
the section 4.5. For simulation 12 elements for bulk phase were used, 2 internal
orthogonal collocation points for the particle phase and single component were used.

These computational parameters gave converging results.

Convergence Analysis

Computational validation of the simulation result, was done using different element

numbers. As discretisation becomes smaller or the number of elements increased results a
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smoother and more accurate. Use of 12 elements was found to be sufficient for the
convergence of the result as shown in Fig. 6.1. Beyond this as element number increased

the solution converged. The converged solution was close to the experimental data.
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Fig. 6.1 Convergence analysis of breakthrough curves at 40 cm bed height using Mono-
sized bed adsorption model, en is number of elements used in the simulation. 0, 2 err, ¥ 4

e, a, 8 ar, *, 12 ar, m, 25 err, ¢, 50 err, O, experimental data.
6.4.5 Results and Discussion

Simulations were performed for the Lysozyme-Streamline SP data set of Bruce and Chase
(2001) to predict the breakthrough at 10 cm, 25 cm and 40 cm axial positions of the bed.
Particles size distribution (PSD) of the Streamline SP matrix was taken to be of 192 pm
mean and 51 pm std. deviation as estimated by Bruce and Chase (2001). The range of
particle size was taken to be 90-450 pm as estimated by Yun et al. (2004). These are
slightly different from the manufacturer specified 200 pm average particle diameter and
100-300 pm range. For the mono-sized bed model, an average particle size of 192 pm
was used to represent the whole bed. The density of particle was considered to be 1.184
g/cm3 as by Yun et a. (2004) which was close to the manufacturer’s specification of 1.2

g/cmo. Fluid density and viscosity of the sample in phosphate buffer were taken to be 0.99
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g/em® and 0.102 gm/cm.s respectively. Coulson (1991) estimated the voidage in a packed
bed for different diameter spherical particles to be in the range of 0.395-0.415. Based on
it the settled bed voidage was taken as 0.4. Particle pore voidage was taken to be 0.35 as
described by Li et al. (2004).

In the experimental set up, the settled bed height was 21.2 cm and the superficial
fluid velocity was 184 cm/h. The use of a Ga based correlation underestimated the bed
height. Thus to match the simulated height and the observed experimental bed height for
2 times expansion with about average 0.7 bed voidage (as observed in experiment and
reported by Bruce and Chase (2001)), a parameter (a;) with value 0.80 was fitted to
accommodate for the observed terminal velocity (v;) in the multi-particle environment
compared to the natural v,.

The simulation results for the 40 cm breakthrough data (Fig. 6.2a) was found to be
close to the experimental data. For 10 cm and 25 cm breakthroughs (Fig. 6.2 b,c), the
results were not close. This may be due to the existence of a particle size distribution and
the resulting variation in axial voidage. The net effect on the whole bed can be more
appropriately approximated through the use of average bed properties. The 40 cm
breakthrough data accounts for all particles in the bed and for the voidage along the bed.
On the other hand, breakthrough data at 10 cm and 25 cm consider only part of the bed.
The bed being partially classified, it follow then that the average particle size is larger and
the voidage smaller at lower parts of the bed. In such cases the use of average properties
to represent them, means the particle size and voidage assumed is larger in simulation
than it is in reality. Thus, breakthrough comes earlier than for the real experimental data.
To correct these problems, instead of assuming mono-size, the existence of particle size

distribution (PSD) will be considered in the next section.

131



el

(@

(ewnuu) auny

0s

0L

oLt

o€l

0st

0Lt

06t

o
(%)
.

Dimensionless concentration (C/CO,
o o o
»H [«)] . [e-]

L A L

(®)

(awnunu) suny

(0,0]8

oct

ovl

091

o8t

002

Dimensionless concentration (C/CO)

o o o o
(V) I o ) -

\ L . :




\l
)

Dimensionless concentration (C/CO

0 20 40 60 80 100 120 140

Time (minute)

©

Fig. 6.2 A breakthrough curve simulated by a Mono-size bed model at bed height (a) 40
cm, (b) 25 cm and (c) 10 cm. Experimental data set is from Bruce and Chase (2001). ¢,
simulation; o, experimental data.

In spite of the fact that mono-sized bed model did not represent the concentration
profile along the bed axis well due to the neglect of PSD and resulting axial variation in
bed voidage, it does represent successfully the aggregate-average effect of the bed as a
whole reasonably. Therefore, despite its simplicity, it seems possible to use it to make a
crude estimate of EBA behaviour. This is especially useful as existing packed bed

modelling software tool can be employed for the purpose.

6.5 Perfectly Classified Bed Model

6.5.1 Introduction

There exists a particle size distribution (PSD) in EBA, which the mono-sized bed model
does not account for. One of the simplest ways to include the distribution of particle size

is by assuming the bed to be perfectly classified. Here each class or category of particle

size will form a segment one above another, the largest being at the bottom. The
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expansion and voidage of each segment will be given by a perfectly classified bed (PCB)
hydrodynamic model. The adsorption at each segment will be the same as in packed bed
chromatography using average bed-segment properties: mean segment particle size and
voidage. As this PCB model accounts for the distribution of particle sizes and its
classification along the bed axis based on size and continuous axial change in voidage, it
represents the EBA more accurately and thus its predictions are of more significance and
can be expected to be more accurate. Wistrand and Lacki (2002) developed this approach
and demonstrated its effect in the prediction of EBA performance using Streamline
DEAE column. Yun et al. (2005) also adopted this approach for the integration of PCB
hydrodynamics. This approach of EBA modelling is developed and implemented here as

an intermediary step to develop more advanced mixed bed model in the next section.

6.5.2 Model Development

Compared to the mono-sized bed explained earlier, the model will be improved by
consideration of the changes of physical properties of the bed including particle size and
voidage as given by the PCB hydrodynamic model. The nature of integration though will

remain essentially the same.

i)
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[O)e'®)

090
T

Fig. 6.3 A perfectly classified bed adsorption showing stratification of particles based on

their size. The adsorption at each layer is given by cumulative adsorption of all particles in
that layer.

The bed is considered to be completely segregated based on particle sizes (Fig. 4.2)
as in the hydrodynamic PCB model discussed in Chapter 4. This is integrated with an
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adsorption model of chromatography discussed in Chapter 3 as shown in the flow chart

below (Fig. 6.4).

Richardson-Zaki

Correlation: v,n

0
Hydrodynamic model

O

(dp, €8) =f(2)
igh

(v, D;, kg, €8) =f(2)
o

(Pe;, & m;, Biy) = f(2)
o

Packed bed
Adsorption model

Fig. 6.4 Flowchart of integration of hydrodynamic and adsorption parts of EBA model

Using the PCB model the bed is divided into series of segments. Each segment is
considered to be of homogeneous bed properties. Thus in totality the system will look like
different packed bed columns in series. The hydrodynamic model is independent of the
adsorption part. The only purpose of the hydrodynamic model is to estimate the parameter
values at different axial positions in the bed. These parameters are then used in the
adsorption part of the model to represent a complete EBA system. In the case where
experimental data of axial d, and ep are available, these can also be directly used
especially to check the validity of the model or for achieving a more accurate simulation
result. The automatic estimation of such parameters by use of a hydrodynamic model
without need of experimental data is a key benefit of using in integrated EBA model.

Thus the hydrodynamics is represented by set of equations (4.19), (4.20), (4.6)-(4.8)
of PCB hydrodynamic model as described in chapter 4.6.2. As in earlier section, if

predicted bed height differs from the real height significantly, as discussed in chapter 4.5,
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the parameters will have to be fitted using Eq. (4.11). In such a case, the fitted
parameters, a;, az, will be assumed constant irrespective of particle sizes.

The above hydrodynamic part will gives bed voidage and particle size as a function
bed height. These are then used to calculate parameters for each segment which will be
taken as a segment of a packed bed. Similar to previous section of mono-sized bed model,
the bed is represented by packed model described in section 3.4 and given by set of

equations (3.83)-(3.97) but with axial variation in parameters and bed properties.

6.5.3 Parameters Estimation

The parameters (E;, D;, K4, bo; and by;) for the adsorption part of the model and the
method for their estimation in PCB model are the same as in the mono-sized bed model
described earlier. For the hydrodynamic part, the Richardson-Zaki correlation parameter
was determined using Ga based correlation. If required, fitting parameters could be

employed to match the final bed height.

6.5.4 Simulation

As in the previous section for the mono-sized bed model, the discretisation and simulation
were performed as described in section 3.6 using FEM for bulk phase and Orthogonal
Collocation for particle phase. The resulting ODE systems were solved using MATLAB’s
stiff ODE-solver. The hydrodynamic part was kept as an independent part, and their
values were determined as described in the section 4.6. Particle size and bed voidage data
as a function of axial position in the bed estimated from hydrodynamic part of the model
were used to interpolate such values at the middle node of elements. The parameters
computed based on such values were taken as constant within that element to make the
computation simpler and faster though at the loss of some accuracy. Providing the finer
discretisation using a large number of elements, such a loss in accuracy will be minimal
and contained especially as the bed properties are continuous functions with no sharp
gradients. For simulations 12 elements were used for the bulk phase, 2 internal orthogonal
collocation points were used for the particle phase, 1 component species was assumed and
40 particle size categories were used. These computational parameters gave converging

results.
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Convergence Analysis

To achieve computational validation of the simulation results, a convergence analysis was
performed using different element numbers. As the level of discretisation became smaller
or the number of elements was increased, so the result became smoother and accurate.
Use of 12 elements was found to be sufficient for the convergence of the result as shown
in the Fig. 6.5. As element number is increased, the solution converged. The converged

solution was also broadly close to the experimental data.
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Fig. 6.5 Convergence analysis of breakthrough curves at 40 cm bed height using Perfectly
classified bed adsorption model, en is number of elements used in the simulation. 0,2 err,

*, 4 en; a,8 ar, *, 12 en; m, 25 en; ¢, 50 err, o, experimental data.
6.5.5 Results and Discussion
The Lysozyme-Streamline SP data set of Bruce and Chase (2001), as used and discussed
in the previous mono-sized bed model (section 6.4), was used to predict the breakthrough

at 10 cm, 25 cm and 40 cm axial positions of the bed. Particles size distribution (PSD) of

the Streamline SP matrix was considered to be of 192 pm mean and 51 pm std. deviation
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with range of 90-450 um as described in previous section (6.4.5). This PSD value was
used in the hydrodynamic part of the model.

In the experimental set up, the settled bed height was 21.2 cm and the superficial
fluid velocity was 184 cm/h. While using PCB model, the use of Ga based correlation
slightly underestimated the bed height. Thus to match the simulated cumulative height of
all size classes and the observed experimental bed height for 2 times expansion with an
average 0.7 bed voidage (as observed in experiment and reported by Bruce and Chase
(2001)), a parameter (a;) with value 0.95 was fitted to accommodate for the observed
terminal velocity (v,) for each particle size category.

The simulation results for the 40 cm breakthrough data (Fig. 6.6a) were found to be
a fair match to the experimental data. There was a slightly delayed breakthrough. For 10
cm and 25 cm breakthroughs (Fig. 6.6 b,c), the results were also close. By contrast, in the
mono-sized bed breakthrough model in the lower part of the bed started earlier than the
experimental data. This was reversed in the PCB. The simulated breakthrough was
slightly delayed compared to the experimental data. On the basis of the PCB hypothesis,
the lowest part of the bed will have the largest particles only. However, the real bed is in
reality mixed. Therefore, an average particle size in such a segment will be smaller than
what the PCB estimates. Thus, the larger particle size and smaller voidage estimated by
the PCB model account for the fact that the simulated breakthrough was slightly delayed

as observed.
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Fig. 6.6 Breakthrough curves at (a) 40 cm (b) 25 cm and (c) 10 cm bed heights as
simulated by perfectly classified bed and mono-size bed models. ¢, perfectly classified bed
model simulation; A, mono-sized bed model simulation; o, experimental data.

The PCB model predictions were found to be slightly better than the mono-sized
bed model and especially so for the lower parts of the bed. The mono-sized bed and PCB
model are two extremes of reality. The real bed being mixed lies in between them. This is
clearly demonstrated by the fact that the experimental data lies in between the simulation
results of the mono-sized bed and PCB models at all axial positions. In general, at 40 cm
(about the end of the bed), the breakthrough curve of mono-sized bed and PCB was
expected to be similar, as both will represent the aggregate effect of the whole bed.
However, delayed breakthrough for the PCB model even at 40 cm indicated that the axial
variation of particle size and voidage is still important in controlling the computed results
at the bed outlet.

The data set of Bruce and Chase (2001), has also been simulated by Yun et al.
(2004) using a similar perfectly classified bed modelling approach. Their prediction was
also close to the experimental data but could not capture the slow rate of rise of
component concentration before it reaches to its saturation or maximum value at the

lower parts of the bed.
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The result obtained in this thesis demonstrates that the consideration of an existence
of particle size distribution and resulting variation of axial bed voidage are crucially
important. To represent the bed more accurately by considering the existence of different
particle size at all axial positions a mixed bed model will be developéd in the next

section.

6.6 Mixed Bed Equivalent Diameter Model

6.6.1 Introduction

The perfectly classified bed (PCB) model accounts for the distribution of particle size, but
fails to consider the existence of different sized particles at any axial positions. However,
a mixed bed (MB), i.e. various degree of mixing of different particle sizes at all axial
positions, is a reality. Due to mixing the extremities of particle size and bed voidage, as
projectéd by the PCB model are avoided. Inclusion of mixing in the model will make the
representation of a bed and its adsorption response more in line with reality and thus
improve the accuracy of its predictions.

At the outset of this thesis work, no expanded bed adsorption (EBA) model which
takes into account the mixed bed to predict an adsorption response existed. Developing
such a model became a key objective of the doctorate. In this approach, though bed is
considered as a mixed bed for hydrodynamic purposes, for adsorption, only one
equivalent particle size, which represents the distribution of size at that axial location,
was used. This makes the model simple and represents a first pragmatic step towards a
more involved mixed bed model of EBA. In spite of its simplicity, it captures some
essential aspects of expanded bed. Recently Kaczmarski and Bellot (2005) proposed a
more involved mixed bed model that is similar to the MB-size partition model developed
in the next section. Here a simple mixed bed model based on an equivalent diameter

approach will be developed and validated using available experimental data.

6.6.2 Model Development

Model development was similar to the PCB model as described earlier in section 6.5.2.

The hydrodynamic part and the adsorption part of the model were integrated as described
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in Fig. 6.4. The only difference was the hydrodynamic part of the model. Instead of
assuming a PCB model, a mixed bed approach was followed so that the existence of a
PSD at any axial position is considered. The equivalent diameter of representative particle
size of the segment was calculated based on the mass/volume average (wifh assumption
of constant density).

Equivalent diameter at axial position j (dp):

o.d
d,,j = _Z_ff_"f_ (6.1)
Zi ¢u
where ¢; = mass (or volume) fraction of particle size sp. (d;) at axial position j. (Density

is considered constant.)

Fig. 6.7 A mixed bed adsorption showing co-existence of particles of different sizes at each
axial position. The adsorption at each layer is given by cumulative adsorption of all particles

in that layer.

As in previous section, the bed is again considered as a series of packed bed or
segment with its parameters given by d, and €p of each segments. It is important to note at
this point that two independent approaches were employed to compute the bed properties,

especially axial PSD and voidage:

i.  Approximate mixed bed approach

ii.  Interpolation using experimental data

The use of two different approaches will help in independent validations of the integrated

model developed. The descriptions of these approaches are as follows.
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i. Approximate mixed bed approach

In this hydrodynamic mixed bed approach, the fractions of different particle size species
along with bed voidage at a given location of the bed is determined by mixing parameter,
om, Of particle size species with respect to an applied flow rate (vy) . The detail of such an

approach has been explained in detail in section 4.7.

ii. Interpolation using experimental data

When experimental data on EBA bed properties — axial particle size distribution (PSD|;)
and voidage (es|,), are available, they can be used in the model for simulation. This will
obviate the need of a hydrodynamic model whose function otherwise would have been to
estimate such values. In a normal experimental setting, when point estimates of the
particle size distribution (PSD) at few axial positions are available, one simple approach
to estimate PSD at other required axial position is to compute mean and standard
deviation of the distribution by separately interpolating them using a polynomial function.
The combination of estimated mean and standard deviation at a given axial location will
then define its PSD. PSD estimate can be used to estimate properties of each size category
or partitions at a given axial position.

Relatively few assumptions need to be taken for this approach to be valid. It is
assumed that the PSD is normally distributed. From the experimental data of Bruce and
Chase (2001), Yun et al. (2004), this seems to be approximately valid for the operating
conditions used for the simulation in this work. It was also observed that the variation of
mean particle size and standard deviation along the bed axis is continuous and monotonic.
Therefore, it is assumed that separate interpolation of mean and standard deviation to
estimate PSD at a given axial position is a viable approach.

However, often only interval estimate of voidage are available as determined by
blue dextran and acetone based experiments in Streamline columns. In such cases, such
interval estimates will have to be first converted to the point estimates, after which
normal interpolation can be applied. Alternatively, a correlation of bed voidage as a
function of bed height (z) has to be developed using the interval data. A method of

developing such a correlation is as follows.
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Let bed voidage (ep) in an EBA be defined by a polynomial function with the
assumption of monotonic continuity of voidage with respect to bed height (z), a cubic

function is considered to be enough as given in the following equation.

£
f(f:B):gj”-:aO+alz+azz2+a3z3 6.2)
B

where
z =normalised axial position with respect to total bed height (H) = (Height/H)
&, = average bed voidage

Integrating Eq. (6.2) along axis (2),

If(eB)dz=aoz+%z2+a?2z3+—Z—324=F(85) (6.3)

An interval-average bed voidage (€, ) is given by

gl = : dz =———=2"_ 6.4
El; _ [ riendz o) 64)

F(gB)ngIZ (Z2_zl) (6.5)
Data on an interval-average voidage, §B|z’ , are available for different axial positions ().

This gives F(e,) as a function of z. This data can then be used to estimate parameters

(ao, aj, ... ) of Eq. (6.3) by fitting or least square estimation. Thus parameters of &g
correlation (Eq. (6.2)) are determined. Such correlation can be used to estimate the bed
voidage at required axial positions with the bed, operating under same experimental
condition.

Once axial PSD and bed voidage are determined, the model parameter values at
given axial positions can be estimated. Thus before simulation using this model, the
methods employed to estimate the parameters of the model are described in the following

section.

6.6.3 Parameters Estimation
The parameters (E;, D;, Ks, bg; and b;;) for the adsorption part of the model and their

estimation in mixed bed model are same as in mono-sized bed model described earlier.

For the hydrodynamic part, the Richardson-Zaki correlation parameter was determined
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using Ga based correlation but the natural terminal velocity was modified using a fitting
parameter to match the observed final bed height. For the mixed bed model the mean
mixing sigma (a,,) value of 40 and a,, slope (the linear variation of o,, w.r.t. particle size)
of 0.5 was used assuming conditions did not to vary significantly from those used by
Willoughby (2000).

While using an experimental data approach, the mixed bed PSD was interpolated

from the experimental data. The following relation was used for estimation.

% =1.333-0.88197 + 0.2778z> (6.6)
% =0.9935-0.39227 + 0.20927> 6.7)
(o4

where z is normalised axial position with respect to total bed height (H), R and o are

particle radius and its standard deviation at axial position z. Similarly R and & are mean
particle radius and mean standard deviation of the bulk matrix. The bed voidage

correlation estimated from the experimental data was:

%5 _0.6411+0.722 6.8)
88

With these parameter values, the simulation of the model is performed in the next section.

6.6.4 Simulation

As in the previous section for the mono-sized bed and PCB models, discretisation and
simulation were performed as described in section 3.6 using FEM for the bulk phase and
Orthogonal Collocation for the particle phase. The resulting ODE systems were solved
using MATLAB?’s stiff ODE-solver. The hydrodynamic part was kept as an independent
part, and their values were determined as described in section 4.7. Particle size and bed
voidage as a function of axial position in the bed estimated from the hydrodynamic part
of the model were used to interpolate such values at the middle node of elements. The
parameters computed based on such values were taken as constant within that element to
make the computation simpler and faster though at the loss of some accuracy. Providing a
finer level of discretisation using large number of elements, will minimise any loss in
accuracy which will be contained especially as such bed properties are continuous

functions with no sharp gradients. For simulations 12 elements for the bulk phase, 2
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internal orthogonal collocation points for the particle phase, 1 component and 5 particle

size categories were used. These computational parameters gave converging results.
Convergence Analysis

The computational validation of the simulation result via convergence analysis was
performed using different numbers of elements. As discretisation becomes smaller or the
number of elements increased the result became smoother and more accurate. Use of 12
elements was found to be sufficient to achieve accuracy of the result as shown in Fig. ¢ .8.

As the element number increased so the solution converged. The converged solution is

also close to the experimental data.
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Fig. 6.8 Convergence analysis of breakthrough curves at 40 cm bed height using Mixed

bed equivalent diameter model, en is number of elements used in the simulation. ), 2 en;

4 en; a,8 en; *,12 en; m, 25 en; ¢, 50 en; o, experimental data.

6.6.5 Results and Discussion

The lysozyme-Streamline SP data set of Bruce and Chase (2001), as used and discussed

in the previous mono-sized bed and PCB models, was used to predict the breakthrough at
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10 cm, 25 cm and 40 cm axial positions of the bed. As described earlier two independent
approaches were employed to estimate the hydrodynamic bed properties.

In using mixing approach to define mixed bed hydrodynamics, a mixed bed mean
mixing sigma value of 40 um and slope (with respect to particle size) of 0.5 were used
based on similar experiment data available from Willoughby et al. (2000). As in the
mono-sized bed model described earlier, use of the Ga-based correlation underestimated
the bed height, and hence a parameter (a; in Eq. (4.11)) with value 0.80 was fitted to
accommodate for the observed terminal velocity (v;) in the multi-particle environment.
(Parameter a, was kept at unity for it to have no effect.) That matched the simulated
height and the observed experimental bed height for 2 times expansion with an average
0.7 bed voidage (as observed in experiment and reported by Bruce and Chase (2001)).

While using the experimental data approach, the particle size and its distribution
were estimated using interpolation of experimental data. However estimated bed voidage
profile using experimental data based correlation as described in sections 6.6.2 and 6.6.3
were found to have much large error. This conclusion is drawn based on the fact that the
voidage estimated toward the bottom and the top of the bed was much lower and higher
respectively than that estimated based on perfectly classified bed (PCB) modelling
approach. It is expected that the PCB approach should yield the most extreme estimates
of voidage at such positions. This error is likely due to the inadequate number of data
points available and used for the voidage estimation. One way to circumvent this problem
is instead of using continuous variation of voidage as would be given by correlations,
divide the bed into few discrete segments based on number of voidage data available and
keep the voidage constant within those segments. The other way would be to use voidage
profile as estimated by hydrodynamic perfectly classified bed (PCB) model. In this work,
PCB approach was used. It would be worth to note that in spite of using PCB approach
for bed voidage estimation, bed is still considered mixed bed and PSD at each axial
position were determined using experimental data as described earlier.

The simulation results for the 40 cm breakthrough data (Fig. 6.9a) was found to
almost exactly match with the experimental data when a mixed bed model was used. For
10 cm and 25 cm breakthroughs (Fig. 6.9 b,c), the results were not as accurate as for 40
cm breakthroughs but matched very close at least for the first half (40-50%) of the
breakthrough curves. The mixed bed model was found be better for prediction compared
to both mono-sized bed and perfectly classified bed (PCB) models. The only drawback is

the need for an additional parameter, the mixing sigma. Since the bed is naturally always
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in a mixed state, any approximate value will always give a better result than either mono-
sized bed or PCB models which represent the boundary for the MB results. The
bracketing of predictions using mixed bed assumptions in between those predictions
based upon the mono-sized bed and PCB models was clearly visible at all three axial

positions investigated.
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Fig. 6.9 Breakthrough curves at (a) 40 cm (b) 25 cm and (c) 10 cm bed heights as
simulated by Mixed bed equivalent diameter (MBEQD) model, MBEQD model using
experimental data for axial particle size distribution (MBEQD-ex), Perfectly classified bed
adsorption (PCBA) model and Mono-sized bed adsorption (MSBA) Model. ¢, MBEQD; u,
MBEQD-ex; a, PCBA; », MSBA; o, experimental data.

In the lower regime of the bed, for example at 10 cm, the particle size is large. Thus, the
rate of breakthrough will be slower due to large particle sizes having longer diffusion
paths in the particle phase. The PCB result also reflects this phenomenon as the average
size of particles in the lower segment in that model is much larger compared to the mixed
bed approximation while result of mono-size would naturally become worse as the
difference between particle size used in the simulation and the particle size that actually
existed becoming significantly different. This can be clearly seen in the above simulation
and experimental result. Another reason for such slow rate of breakthrough is likely be
due to particle dispersion.

The simulation results of the mixed bed model using experimental data approach,
i.e. using experimental data interpolation for PSD and PCB approach from voidage
estimation, was very close to the breakthrough prediction using earlier PCB model
(section 6.5) for all three axial position as can be seen in Fig. 6.9 a-c. However, it was not

that close to the experimental data as compared to the mixed bed model whose
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hydrodynamics was determined using mixing approach as described earlier. This was due
to the realistic axial variation of voidage estimated in the latter approach compared to that
estimated using the PCB approach.

Thus, it is concluded that a mixed bed model provides the best modelling approach
to be used for representing EBA among the three modelling approaches described thus
far. From the results observed here, it can also be concluded that inclusion of mixing, or
defining the bed to be mixed, is important for accurate EBA prediction. Adoption of one
equivalent diameter used for the adsorption part of the model appears to be valid
representation. This is likely be due to preservation of mass balance of particle phase,
whether this was represented by the cumulative fractions of different particles or their
weighted average. An important limitation is, although this model provides accurate
breakthrough prediction at the bed outlet, it is not able to provide the response of
individual size categories. For applications where such information is desired for
example, when studying size specific adsorption response to design matrices of optimal
physical properties, this model would not be adequate. Hence, use of an equivalent
diameter assumption will be relaxed in the next modelling stage, and all size categories
will be simultaneously considered at each axial position also in the adsorption part of the

model.

6.7 Mixed Bed Size Partition Model

6.7.1 Introduction

Further improvements from the modelling approach adopted in the previous mixed bed
model — equivalent diameter approach (section 6.6) may be achieved by taking into
account the existence of particle size distribution at each axial position of the bed even for
the adsorption part of the model instead of using one representative particle size per
segment. This makes the representation of the bed even closer to reality and such a model
can be expected to be more accurate and robust. The most important benefit of this
approach would be additional information about the system, e.g. the adsorption behaviour
to particular size specific particles along the bed axis, etc. Such information can be useful
when designing novel matrices for improving bed performance, devising new ways of

operating EBA to maximise bed productivity, etc. A similar approach has also been
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developed by Kaczmarski and Bellot (2005). They used experimental data to interpolate
the mean particle size at different axial positions and assumed the standard deviation of
the size distribution to be constant at all axial positions. Thié provided the size partition
proportion for the adsorption part of the model. Furthermore, they assumed constant
voidage across the bed. In this part of the work, a mixed bed model with size partition
will be developed and verified. As in the previous mixed bed models, the hydrodynamic
part will be represented by two independent approaches: mixing method as described in

section 4.7 and experimental data.

6.7.2 Model Development

In this approach, each axial segment is further partitioned into sections of different
particle size. The size or volume fraction of each. such partition was given by the mixed
bed hydrodynamic model. However, for expansion purposes and thus to determine an
average bed voidage of each segment, a representative particle diameter was used. The

partition approach can be seen as in the following figures.
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Fig. 6.10 A method of size partition in an axial segment. Each partition () consists of
particles of only one size or diameter (d, category). The proportion of such a partition (j) in
an axial segment ()) is denoted by fraction ¢;. The ¢; varies based on both partition and

axial position.

151



z+Az
N 83]’4-1
, .
i 1 é¢ai
z-Az
T
dp category (i): 1 2 3 n

Fig. 6.11 A simplified figure of Fig. 6.10. Partitions are represented as parallel columns of
specific particle size category. As before, the ¢; varies based on both partition and axial
position. Bed voidage (£g,) at each axial segment (j) will be constant within that segment
irrespective of the partition (i).

As shown in Fig. 6.10 and Fig. 6.11, the resulting system will resemble a set of
parallel packed bed columns of different particle sizes while there exists an axial variation
of bed voidage in each. The net effect at any segment will be given by weighted sum of

each partition.

Aggregate effect at a segment = Z.¢i (Effect due to partition )[ (6.9
The hydrodynamic part of the model will remain the same as described in previous
sections. The adsorption part of the model had to be modified to accommodate the
changes as given below.

The mass balance for the concentration of chemical component sp. i is given by
(from Eq. (3.4)):

ou,
&, % =—£,v-Vu, +&,V-DVu, +R, (6.10)

When multiple partitions are considered, the sink term (Ry;) is the sum of the effects of

each partition at an axial position (z). This is given by:

R, = —Zwmnﬁm 6.11D)

where
ngm = film mass flux of a component i in size partition m
wp, = outer surface area per unit volume of adsorbent particle in size partition m

Similar to the approach taken in Chapter 3, the film mass flux in each partition is given by

B =K =t | ) (6.12)

r=R
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where
kpm = film mass transfer coefficient of a component i in size partition m
Upim = concentration of component i in pore phase immediately next to the film or
its outer boundary in size partition m »
And w,, is given by
31-¢p)
w, = ————=
R

m

Do (6.13)

where
&» = volume fraction of particles representing size partition m

The sum of the particle or solid fractions is unity.

> 8, =1 (6.14)
Substituting the value of R,; in Eq. (6.10),
ouy, W, :
_a—f—z_v'qui+EV2uBi—§gkﬁm(uBi—upim r=R) (615)
Taking only one significant dimension z,
ouy, Uy, 0%uy, w
Ly By~ BN M (u. —u 6.16
ot 0z 0z* ; £y s (s ’""'|’=R) (6.16)

Making this equation dimensionless as in section 3.4, yields

oup, __auB,.+ 1 0%uy,

ot 0z  Pe, 3 = 2 Onbin W =) 6.17)
L

r=1

Where £, is analogous to & in the previous models of adsorption, but specific to the

size partition m. The detail of this is given below at the end of this section.

Similarly, the changes in other parts of the model to account for the partition (m)
are as follows. As the mass balance is done within a particle, it will remain the same as
before. The only difference is the reference of particle to denote its origin to the particular

size category or the partition. Thus, it yields:

Juy, 1 0 ,0uy,

ZKim _ 4, T —"Pim_ 6.18
9r  Im ar(’ or (6.18)

uKim = nguPim + (l—ng )uAim (619)

With boundary conditions:

Ouy
0z

+ Pe, (ug|, —ugl))=0 (6.20)

0

Uup;.
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au_si ~0 6.21)
Jz z=1

up: 2| — . (622)
oar |,
Otdpim| _ Biy (g, —thpin] ) (6.23)
ar r=1 a
With initial conditions:
uBiI,=o = ugi 4 uPim|,=0 = u?’im ’ uAim|,=o = ugim 4 uKim t=0 = u?(im (624)
Isotherm relation:
fi@agseei gy Uppseestipy) =0 k=12,..,N Vj (6.25)

or for a multi-component competitive Langmuir:

by pyy,

uAim = N (626)
1+ Z b ugup,
k=1
Feed concentration:
Uy =maxfuy_ .. (7)) —oo<T+oo (6.27)
Constants of the system:
31-
pe, =YL £ =Bi n 0% (6.28)
E Ep
Ep,D; L . R
w = Bi, =k =
nxm R,i v im fim gpm Di

Bed properties: As in the previous section 6.6, following both independent approaches

were implemented for determining bed properties.

i.  Approximate mixed bed approach for hydrodynamics as proposed in section 4.7

ii.  Interpolation using experimental data

Details of such implementation are the same as in the relevant sections.

6.7.3 Parameters Estimation

The parameters (E;, D, Kfi, bpi and b;;) for adsorption part of the model and their

estimation in mixed bed model are the same as in mono-sized bed model described
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earlier. For the hydrodynamic part, the Richardson-Zaki correlation parameter was
determined using a Ga-based correlation but the natural terminal velocity was modified
using a fitting parameter to match the observed final bed height. For the mixed bed model
a mean mixing sigma (o,) value of 40 and a,, slope (the linear variation of g, W.r.t.
particle size) of 0.5 were used assuming these do not to vary much from similar operating
conditions as used by Willoughby (2000). While using experimental data approach, the

mixed bed PSD and voidage were interpolated from the experimental data.

6.7.4 Simulation

The above equations were discretised using FEM for bulk phase and Orthogonal
Collocation for particle phase. The basis of which is same as described in section 3.6. The
resulting ODE systems were solved using Matlab’s stiff ODE-solver. As this is a different
equation set than as in section 3.6, the details of the finite element formulation are
described here. The discretisation of particle phase remained essentially the same. As in
the previous sections the hydrodynamic part remains independent with values determined
as described in the Ga-based relation in section 4.4 and section 4.5 if fitting is required.
The details of the bulk phase discretisation were as follows.

As in section 3.6, by applying the Galerkin method (section 2.4.4.1) based finite
element method (section 2.4.5) to discretise Eq. (6.17) and incorporating nature boundary
condition by transferring one differential order from variable to trial function as in the

Ritz method (section 2.4.3.2):

Auy —f,=0 (6.29)
where
0 1 9> 9
Il Pe, —az—2-+a—z+;¢m§im (6.30)
£i= D 0l (6.31)

Approximating ug; by ugi,, a quadratic element or approximation function which is

given by
3
Upin = D UV (6.32)
j=l
Applying the Galerkin method (based on Eq. 2.4.82) yields:
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(Aue - fwg)=0  fork=1,2,3 (6.33)

This gives

ous, 1 d%uy, oul, . .
L‘Wk{ - 2B + aZB +-;¢m§imu3i_;¢m§imuﬂm =1

0t Pe, 0z

}dz=0 C(6.34)

Reducing one differential order of second derivative term by transferring to the basis

function using integration by parts:

dus, d 1 dug oy; 1 Ju;
e "B 4, _ Il e Bi k __Bzd
L'Wk ar * L‘az( Pe dz ] Z+‘L dz Pe, 0z ‘

(6.35)
e auei e e e e
+ _Le Y a_;dz + L, Vi ;¢m§imu8i dz— L, Vi §¢m§im Upim| _, dz=0
Applying Gauss’ divergence theorem
L l//k B: dZ i e 1 aqu L aWk ___1__ auBi dZ
dz Pe, 0z
(6.36)
e uBi e e _ e e —
+ L Y _ag‘dz + L Vi §¢m§imu8i dz L Vi ;¢m§imul’im - dz=0
Integrating from z; and z; of an element
dug dy, 1 duy
'[ Wk [ PeL d ¥ f Wk a d
(6.37)

dZ + (Wk 1 agBt J
e, 02

'*'[ V/kz¢ Emlh; dz = [ sz¢ ‘f'mu”""

4

Substituting the value of the approximating function

3au§,--2ee 3ezlal//aW 3ezeawg
gar’[m%dz+,§1u””[ P % % ]d+j§1u3if.[,y/k azjdz

Pe, 0z 0z
. (638)
(.0,
Pe, Vi oz

4

+Zu3,,[ Z¢ SmW W5 dz= [ Z¢ Sl iU,

In matrix form for a component i:

My, +Kiuy, =Ff A (6.39)
where
= ["viv; @ 6.40)
1 awk aI//J 2. e al//j 2 e, e
' _f e 9 ©F [wi % dz+ [ ;afmé’,-mw,- dz  (641)
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(dz+g; (6.42)

r=

Ff = EZZ¢m§iml//:u:’i’n

e _ 1 e augij
qi _(PeL l//k az ]

Each matrix M;,K;,FS is evaluated element-wise and component-wise. During global

i

22

(6.43)

4

assembly (as described in section 2.4.5.4-2.4.5.6), the outflux ¢; from one element
cancels out the influx ¢/ into the following elements. The incoming flux g; at the first

element and outgoing ¢g; at the last element are given by the natural boundary conditions

(Eq. (6.20)-(6.21)). That is:

q; (6.44)

z=0 = U in uBilz:O

g/| =0 (6.45)

z=1

As in Eq. (3.134), applying orthogonal collocation to Eq. (6.17) and its associated
boundary conditions, following discretised form will result in a representation equivalent
to Eq. (3.138) for each size partition m. As each partition is independent of each other for

the particle phase, the derivation of the discretised equation is the same as given in

section 3.6.
M., i, =1,Bup, (6.46)
where
M,, = ALY (6.47)
au Pim

And up;, is a vector representing the concentration of component i at collocation nodes of

a particle in partition m.

The boundary conditions of particle phase are given by,

Atr=0:  Vu,,| =0 (6.48)

N
Bi,ug — Z AN+l,jtu,im

Atr=1: wu,,. . = i 6.49
PN AN+1,N+1 + Biim ( )
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Matlab’s ODE-solver was used to solve these discretised equations. For simulation
10 elements were used for bulk phase, 2 internal orthogonal collocation points for particle
phase, 1 component species was assumed and 5 particle size categories were used. These

computational parameters gave converging results.
Convergence Analysis

For the purpose of computational validation of the simulation results, a convergence
analysis was performed using different element numbers. As discretisation becomes
smaller or the number of elements increased the result became smoother and accurate.
Use of 10 elements was found to be sufficient for the convergence of the result as shown

in the Fig. 6.12. The converged solution was also closer to the experimental data.

\
/

Dimensionless concentration (C/CO

.. ] e,' . . ’ K j
80 0. 180 %10 160 180

Time (minute)

Fig. 6.12 Convergence analysis of breakthrough curves at 40 cm bed height using Mixed
bed size partition model. en is number of elements used in the simulation. ¢, 2 en; =, 4 en;

A,8en; e, 12 en; m, 25 en; ¢, 50 en; o, experimental data.
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6.7.5 Results and Discussion

As in the previous section 6.6.5, simulations were performed for the Lysozyme-
Streamline SP data set of Bruce and Chase (2001) using the Mixed bed size partition
model as described above to predict the breakthrough at 10 cm, 25 cm and 40 cm axial
positions of the bed. (All dataset and associated parameter values were as described in
section 6.6.)

The mixed bed-size partition model prediction of breakthrough was found to match
very closely to the MB-equivalent diameter approach predictions at both 40 cm and 25
cm axial positions (Fig. 6.13 a,b). There was slight difference at 10 cm (Fig. 6.13c). In
terms of overall accuracy this model, did not improve the predictions compared to those
under the MB-equivalent diameter approach. However, it provides additional information

of the system like adsorption behaviour specific to particular particle size categories

without additional input.

\
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Fig. 6.13 Breakthrough curves at (a) 40 cm (b) 25 cm and (c) 10 cm bed heights as

simulated by Mixed bed size partition (MBSP) model, MBSP model with experimental data
for bed properties (MBSP-ex) and mixed bed model equivalent diameter (MBEQD) model.

+, MBSP; u, MBSP-ex; a, MBEQD; o, experimental data.
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Predictions were more accurate compared to those of the mono-sized bed or PCB
model. When experimental data was used for particle size distribution and PCB based
axial voidage variation, as in the previous model, the resulting breakthrough at 40 cm was
delayed and close to that produced by the PCB model. So here again use of accurate
estimate of voidage variation seemed to be an important factor. Kaczmarski and Bellot
(2005) developed a similar model as described here. The main difference is they used
interpolation from an experimental data for an axial variation of mean particle size and
assumed constant voidage across the bed. The variance of PSD was also assumed
constant. As has been mentioned earlier, bed voidage is a critical parameter, so its
constant assumption is an important limitation in their approach especially when
concentration at other parts of the bed apart from bed outlet is desired. In addition, as the
bed properties are interpolated from experimental data, their model can not handle change
in operating conditions like fluid velocity, fluid and particle properties, etc. Use of
hydrodynamic model to estimate bed properties solved both of those limitations in the
MB-SP model developed here.

There are two major drawbacks to the model developed here. The first is it takes far
more computational time than the previous mixed bed model. Even for 10 elements, 2
internal collocation points and 5 size partitions, it took about an hour to simulate for a
mono-component system in a 1.7 GHz Pentium 4 processor with 500 MB RAM. When
much finer levels of discretisation and more size categories are required, it will take a lot
more time making it unsuitable for real-time applications like model-based controls. In
such cases MB-equivalent diameter approach is recommended whenever feasible as the
accuracy of the model are essentially same. The second weakness of the model is as this
is based on mixed bed hydrodynamic model, it inherits all the limitations and weaknesses
of the same. As explained in section 4.7, the approximate mixed bed hydrodynamic
approach needs further improvement in the method to enable it to simulate accurately for
more than 5 particle size categories. This is an important limitation of this approach at
present. For the 5 size categories used here it predicted axial PSD variation in line with
the experimental observations. Most importantly, what has been established in this part of
the work is a method or model to simulate adsorption in an expanded bed when insight of
an axial variations of particle size distribution and voidage are available. Those values
can come from either experimental data, which has also been demonstrated here, or from
an independent hydrodynamic model. Here an approximate mixed bed hydrodynamic

modelling approach was used.
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One additional limitation of the MB-size partition model and other previous models
is that particle dispersion has been assumed negligible. In reality dispersion exists, but the
magnitude of it may be sufficiently small to have no significant effect on the overall
adsorption response of the bed. The slow rise of breakthrough curve in the lower part of
the bed indicates that dispersion effects are more pronounced in that part of the bed and
current model developed so far has not been able to capture this. Thus in the next chapter
attempt will be made to develop an EBA model which will include the effect of particle

dispersion.

6.8 Conclusion

In this part of work, an integrated EBA model was developed which takes into account
the steady state hydrodynamics to predict adsorption response. Mono-sized bed (MSB)
and PCB models were implemented. Mixed bed model was developed using equivalent
diameter approach (MB-EQD). The result was found to match very close to the
experimental data for breakthrough at 40 cm bed height. A mixed bed size partition (MB-
SP) model was developed to be able predict particle size specific adsorption response.
The result was also found to match almost exactly to the MB-EQD model and thus very
close to the experimental data. Both MB-EQD and MB-SP models were also
implemented using interpolated experimental data on bed properties for an applied
operating condition instead of hydrodynamic model. The result was also close to the
experimental data but less accurate compared to the result when hydrodynamic model
was employed. This was because of paucity of experimental data points available and
thus the representation of the bed using it had been crude. Nevertheless, it demonstrated
the validity of the model developed. Mixed bed models, both MB-EQD and MB-SP, were
found to be more accurate than MSB and PCB, and in fact, their result lied in between
those two, as it should have been. Both MB-EQD and MB-SP are useful models and can
be used based upon the needs. If short simulation time is important for example for use in
real time control of the process, MB-EQD will be suitable. On the other hand, more detail
information of the system like particle size specific adsorption response of EBA is desired
MB-SP would be necessary. In the next chapter, further improvement in the model will be

attempted by incorporating particle dispersion.
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7 Integrated Model: Steady State Hydrodynamics with
Particle Dispersion

7.1 Introduction

An integrated model with steady state hydrodynamics was developed in the previous
chapter. For simplification, effect of particle dispersion in adsorption response was
neglected. However, although bed is operated at steady state hydrodynamics, continuous
particle dispersion along the bed exists. It is more like a random motion of particles with
a net aggregate effect on hydrodynamics null. Since adsorption is in transient mode, it
will bring about changes in adsorption behaviour of the system. Depending upon the
system, the magnitude of particle dispersion can vary. The significance of this effect also
can vary based upon the objective. For example, if the objective is to know the changes in
concentration of a component within the lower parts of the bed, its significance will be
higher than compared to that at the end of the bed, especially in the early parts of an
operation. This is due to the effect of dispersion in reducing the sharp gradient of
concentration which otherwise would have existed. Thus including particle dispersion in
the model is an important step and ensures that the model offers a more accurate
representation of reality. The current state of EBA model with particle dispersion has
already been described in literature review section of chapter 6. As an EBA model that
considers the existence of both a mixed bed and particle dispersion does not exist,
developing such a model, which is more realistic physics, is the objective of this part of

the thesis.

7.2 Plan and Objectives

Further improvement in mixed bed size partition (MB-SP) model developed in the
previous chapter is done by incorporating particle dispersion into the model for each size
species. At first Wright and Glasser (2001) approach will be employed. Due to an
important weakness in that approach as explained in the next section, a new particle
dispersion model will be also be developed which accurately represent the system.

The objectives of this chapter are:
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e to develop a mixed bed EBA model with particle dispersion using Wright and
Glasser (2001) approach
e to develop an approach to correctly include the effect of particle dispersion in an

EBA model.

7.3 Mixed Bed-Particle Dispersion Model

7.3.1 Introduction

Wright and Glasser (2001) first introduced the effect of particle dispersion in the EBA
model. For simplification they assumed the bed to be homogeneous mono-sized. They
added one additional variable — an average concentration of component in an aggregate
particle phase (u,) at that axial position. The aggregate particle phase includes both the
particle pore phase (up) and adsorbent phase (u4). Particle dispersion and transfer of a
component from the bulk liquid phase into the particle bring about the changes in ug;.
This aggregate particle phase concentration is then used to update changes in
concentration of a component inside a particle or at its radial nodes through boundary
conditions. This model has been adopted by Tong et al. (2002), Chen et al. (2003), Li et
al. (2004) and Li et al. (2005). They found the simulated results close to the breakthrough
experimental data. The particle dispersion directly affects the whole particle and thus
simultaneously brings about changes in component concentration at each particle radial
nodes at both particle pore phase (up;) and adsorbent phase (us;). Thus, this approach of
using average concentration of particle as an aggregate particle phase (ug) and
implementing its effect through boundary condition does not seem to represent the
physics accurately. The agreement of simulation to the experimental data can be due to
the relatively small value of particle dispersion coefficient estimated and used. That will
automatically cause the effect of particle dispersion in the system to be small. Using
sensitivity analysis, Wright and Glasser (2001) reported that the effect of particle
dispersion in the system as observed in the breakthrough of a component was small and
not significant compared to other variables like superficial fluid velocity and particle
radius.

To remove the weakness in the existing model, a new and better approach to

include particle dispersion in the EBA model is proposéd in the next section. Before
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going to that stage, Wright and Glasser’s approach of including the effect of particle
dispersion in EBA model was adapted in the context of the multi-particle size bed model
and implemented. Consideration of the existence of a distribution of particle sizes through

adoption of size partition approach in the mixed bed has not been attempted before.

7.3.2 Model Development

Dispersion was considered just within particle size category or partition (Fig. 7.1). Hence
the net proportion of particle size categories at each node z remain constant throughout

the operation.

)

2z 5550 O
O O T &Bj1
oo
z d}"n‘gd) O
Qo [FO | * T ™
z-Az T.T—fp
ﬁ .
dp category (i): 1 2 3 n

Fig. 7.1 Particle dispersion at each partition. Figure shows the equal transfer of particles
between upper and lower cells of each size partition with null net transfer. The result of all

particle sizes in that the axial node determines voidage.

As in the mixed bed size partition (MBSP) model of the previous chapter, the
properties of a mixed bed (MB) are given by the hydrodynamic part of the model. This
can be by either using an appropriate hydrodynamic model or directly using and
interpolating experimental data. Here both approaches were implemented.

The adsorption part of the model is also similar to MBSP model. A mass balance of
a component in both bulk liquid phase (Eq. (6.17)) and particle phase (Eq. (6.18)) are
same as in MB-SP model. The difference is a mass balance of the additional variable, the
concentration of component in aggregate particle phase (u,;), and its use in the update of
particle phase (up;) through the outer boundary of a particle. The derivation is as follows.

As in the MBSP model, the mass balance for the concentration of component i is

given by (in a discrete form of partitions):
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In bulk liquid phase:

Oup _ Oug 1 3%uy

B * = O | ) (7.1)

ot dz Pe, 07°

where @, is fraction of partition size species or partition m.

Similarly in particle phase of the partition (m):

ouy, 1 0( ,0u,

im o im 7.2
ot ™ r?or (r or 72)
Ukim = Epmllpim T (1= Epy MW i, _ (7.3)

With boundary conditions for bulk phase:

ou

Upi: B\ +Pe, (uy| —ug|,)=0 (7.4)
9z |,
Ml _ (1.5)
aZ z=1 R

With initial conditions:

uPiml,=() = ugim ’ uAim|,=0 = ugim ’ uKim t=0 = ulo(im (76)
Feed concentration:

uOi = max{uBi—feed (T)} —o< T+ (7°7)
Isotherm relation:

Feppseertly tipyntipy), =0 k=12,.,N Vj (7.8)
or for a multi-component competitive Langmuir:

b.u,.
Upim =~ (7.9)
1+ Z bugup,
k=1
Constants of the system:
L ) 31-¢
Pe, = = ) gi = Bi, M, M s (7.10)
E Eg
&, D, R
”im = sz : _I_J’ Biim =kﬁm =
R, v EpmD;

The outer boundary condition of particle phase will be based on the aggregate
phase. So the mass balance of a component in the aggregate phase will be derived first

and its effect on the particle phase through the boundary will also be set.
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Aggregate particle phase:

Let ugm be an average concentration of component i in the aggregate particle phase at size
partition m. Applying a mass balance for a component specific aggregate phase (uy;) in a

differential volume of partition m (Fig. 7.2), from Eq. (2.27),

€p

| Az 1

Fig. 7.2 Mass balance of a component specific aggregate phase (u,) in a differential
volume of partition m

du .
(1-¢,) a‘;’”’ ==, Vi, +V-E,Vu,, +R

As particle movement is only due to dispersion (because of hydrodynamic equilibrium

(7.11)

Vim

state), particle velocity at partition m (v,,) is zero. Taking only one significant dimension
2
(1—53)%’5"—=E,, a—251"”'—+w n (7.12)
ot " 322 i
where Ep,, is particle dispersion coefficient of particle size partition m. The source term
(Rvim) is given by flux (n4,) due to mass transfer from bulk phase to particle phase. w,, is

surface area per unit volume of partition m. As in MB-SP model, gy, is given by,

Npm =K (g —Upi,,) (7.13)

and w, = %(1— £5)0,, . (7.14)

Substituting these values into Eq. (7.12),

ou . E 0%u . 3
gim__ Pm qim + K .
T e e

) (7.15)

r=1
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When ¢, = 1, i.e. single size partition, Eq. (7.15) becomes same as Wright and Glasser’s
derivation for uy;.
Normalising the Eq. (7.15) as rest of the other equations as done in chapter 3.4 on

the same basis:

. =u‘7i 7 = Hem (7.16)

qim ’ u Pim
Uo, Uy,

Dimensionless variables for time 7 and for axial height Z are defined as before:

vt Z

=—, == 7.17
3 3 (7.17)
Which gives,
gr_v, %Z_1 (7.18)
ot L dz L

Applying them to transform terms into dimensionless forms (as explained in chapter 3.4):

ou,,,(z,t) _ Uy dit,,, (Z,7)

7.19
07 L 07 719
o*u_ (z,t 0%, (Z,7
uqlmz( ) — u_021 uql':(Zz ) (7.20)
0z L 0z
ou, (z,t ou,,. (Z,7
uqzm (Z ) _ Kuo,» uqu (Z ) (721)
ot L ot
Substituting the terms using Eqs (7.16),(7.20) and (7.21) into Eq. (7.15),
0, E, 1 0%, 3
v im m im ~ ~
2=k =+ P ’I'e’kﬁum (U —Up,y, ,=1) (7.22)

—Un.
L™ ot (1-¢,)L* o7’
As done in chapter 3.4, dropping the over-tilde (7) for notational ease but keeping the

meaning of the transformed variables yields,

2

ou . E 1 %u,, 3. L
gim _ Pm qm + —k,.— (U, —u,
0t (1-¢&)Lv 3z’ ¢"'R ! V( S

) (7.23)

r=1

Thus the mass balance of component i in the aggregate phase is given by,

ou . 1 1 0%u £
an _ ain B —u. 7.24
0t (1-g,) Pe, 0z* P (1—88)5'( 5 " W] ) (7.24)
where
L
Pe, =2~ (7.25)
E,

And boundary conditions for u#g, in a normalised form:

168



au im
= =0 | (7.26)
2 z=0
au im
and g =0
aZ z=1

The initial condition is given by:

u =0 (7.27)

gim =0
The outer boundary condition of the particle phase of size partition m can then be

updated using Wright and Glasser’s approach.
Boundary conditions of particle phase:

Due to radial symmetry at the centre of the particle, the boundary condition is given by,
ou,,
Heml (7.28)
ar |,
Where as at the outer boundary, applying Wright and Glasser’s approach of including an

additional flux due to particle dispersion:

3 ou,, | E, 0%u, 3
il D Pim - Pm qim = o ‘ '
e R 729

Normalising at before:

; r
=8 F=_ 7.30
b - (7.30)
Which gives,
o 1
- - 7.31
or R (7.31)
Ot py, (7,1) _ Uy, Olkpyy, (F,T) (7.32)
or R or '
Substituting these into Eq. (7.29)
3 u, o, | E u. 0%
—€ Di Pim = Pm__ 00 an +—k (U, —u,, 7.33
R P R or ,r=1 (1_83) L2 az2 R ﬁmqu (uBz U pim r=l) ( )

As before, dropping the over-tilde (7) for notational ease but keeping the meaning of the

transformed variables yields,

169



. : 9%, Rk
Ppn = 2 'Lz K Ztm +— (ug —up,, _1) (7.34)
or |, (1—83) L 3¢,D, oz €,D, ”
au i azu im .
a:m =Vim azi + Bi,, (g —Up|,,) -~ (71.35)
r=1

where

R? 1 E
Vo = Pn (7.36)
312 (1-¢&,)€p D,

1

Thus mass balance of component i in bulk fluid phase, particle phase and aggregate
phase and their associated initial and boundary conditions as derived above, equations:

(7.1)-(7.10), (7.24)-(7.28), (7.35)-(7.36), describes the EBA system.

7.3.3 Parameter Estimation

The parameters for this model and simulation are same as in previous sections. The
additional parameter axial particle dispersion coefficient (E,) has been estimated using
correlation of Van Deer Meer et al. (1984) by Wright and Glasser (2001), Tong et al.
(2002), Chen et al. (2003), Li et al. (2004), Yun et al. (2005) and Li et al. (2005) and
given by:
E,=0.04v'® m%s (7.37)

Here E, 0.008 cm?/s has been used as estimated from transient bed height model fitting.
The above correlation gives similar value 0.0047 cm?/s (as given in Li et al., 2004). In the
EBA adsorption system, this value seems be small and does not seem to have significant

contribution in the adsorption behaviour of EBA as observed below.

7.3.4 Simulation

Discretisation of the bulk and particle phases was done as before. The average aggregate

particle phase (u4m) was discretised using finite difference as follows.
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And boundary conditions of ugim:

Atz=0: Ugim| _y, = Uaim| s, (7.39)
andatz=1: Ugim|,,ne = aim|,_p, (7.40)
Zu )
And, 3 I part of particle boundary condition is discretised as follows
z
2 —
a uqim _ (uqim +Az 21"¢]l'mlZ +uqim Z"AZ) (741)

0z° Az*
The rest of the discretisation was the same as described in previous sections for MB-SP
model. The resulting system of ordinary differential equations was solved using Matlab’s
ODE-solver. For simulation 10 elements for bulk phase, 2 internal orthogonal collocation
points for particle phase, 1 component species and 5 particle size categories were used.

These computational parameters gave converging results.

Convergence Analysis

To achieve computational validation of the simulation results, a convergence analysis was
done using different element numbers. As discretisation becomes smaller or the number
of elements increased the result became smoother and accurate. Use of 10 elements was
taken to be sufficient for the convergence of the result as shown in the Fig. 7.3. As can be
seen below, as element number is increased the solution converged. The converged

solution was close to the experimental data.
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Fig. 7.3 Convergence analysis of breakthrough curves at 40 cm bed height using Mono-
sized Bed model. en is number of elements used in the simulation. m, 2 en; o, 4 en; o, 7

en; ¢, 10 en; o, experimental data.

7.3.5 Results and Discussion

As in the section 6.5.4, simulations were performed for the Lysozyme-Streamline SP data
set of Bruce and Chase (2001) using the Mixed bed particle dispersion model as described
above to predict the breakthrough at 10 cm and 40 cm axial positions of the bed. All
datasets and associated parameter values were as described in section 6.6.

The breakthrough curve simulated at 40 cm using the MB-particle dispersion (MB-
PD) model (Fig. 7.4a) was not significantly different from that using MB-size partition
(MB-SP) model. Both of them were close to the experimental data. At 10 cm there was a
slight difference in the simulation result of the MB-PD and MB-SP models (Fig. 7.4b).

The concentration of component rose slightly more slowly in the MB-PD model.
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Fig. 7.4 Breakthrough curves at (a) 40 cm and (b) 10 cm bed heights as simulated by
Mixed bed patrticle dispersion model (MBPD) and Mixed bed size partition model (MBSP).
¢, MBPD; a, MBSP; o, experimental data.

Based upon these results, it seems that the inclusion of particle dispersion did not

have a significant effect in the adsorption response of EBA under the operating conditions
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investigated where analysing breakthrough at the column outlet. This observation agrees
with that reported by Wright and Glasser (2001) who also concluded that the effect of
particle dispersion is not significant in EBA. In spite of that, failure to achieve an
accurate simulation of breakthrough within the lower parts of the bed by the model
indicates that it may not be entirely true. The observed slightly earlier rise and slower rate
of reaching saturation within the lower parts of the bed does in fact indicate a possible
effect of particle dispersion.

Thus to improve the model prediction and the shortcomings of the model, as
explained in the introduction (section 7.3.1), an investigation on a new approach to the
modelling of particle dispersion in EBA was performed and discussed in the following

section.

7.4 Simulated Particle Dispersion Model

7.4.1 Introduction

During loading of EBA, the component concentration in particles at the lower parts of the
bed is higher than it is in upper parts. When dispersion exists, particle moves randomly in
the bed in all directions. This causes some portion of more densely loaded particles (i.e.
having higher component concentration) from the lower section of the bed to reach the
upper part of the bed while some portion of lightly loaded particles from the upper bed
part will reach the lower part of the bed. These particles try to come to an equilibrium
with their new environment in terms of the component concentration inside them and
outside in the bulk fluid phase through mass transfer. This will simultaneously cause an
increase in the component concentration in bulk fluid phase in the upper parts of the bed
and simultaneously a decrease in the lower parts. This means that in all parts of the bed,
the component concentration in bulk fluid phase and in the averaged particle phase will
rise earlier but reaches the saturation point (or maximum) slowly. This will reduce the
sharp concentration gradient in the bed which otherwise would have existed. From an
industrial use perspective, this could be problematic, as it will severely limit the
separation efficiency of the bed. So knowing the magnitude of particle dispersion and its

effect on the adsorption response of EBA becomes important.
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The current approach of representing particle dispersion in the expanded bed
adsorption (EBA) model, developed by Wright and Glasser (2001), has an important
weakness that has been discussed in section 7.3. Here, a new approach to include particle
dispersion phenomenon correctly in EBA model will be developed and validated. The
projected effect of particle dispersion on the adsorption response of EBA will also be

tested using simulation results.

7.4.2 Model Development

The modelling approach is similar to that adopted in the mixed bed-size partition model
as discussed in section 6.7 except for the inclusion of the effect of particle dispersion. An
independent hydrodynamic part of the model determines the size distribution of particles
and bed voidage along the bed axis (z). As in the MBSP or MBPD model, the approach
used in hydrodynamic part can be an appropriate steady state hydrodynamic model or rely
upon interpolation using experimental data. This gives bed voidage at a given axial
position of the bed and the proportion of each size category.

If the particle dispersion is ignored, the EBA system can be represented by the same
model as described in section 6.7 (MB-SP model). Dispersion causes the particle of each
size partition to migrate between adjacent cells or nodes. As the bed is considered to be at
hydrodynamic steady state, the rate of such migration both to and from nodes will be
equal so that net change in concentration of particles in each size partition will remain
null, i.e., their concentration remains constant as shown in Fig. 7.1 (in section 7.3.2).

Though the bed is considered to be at hydrodynamic equilibrium, from an
adsorption perspective, it is in a transient state. The concentration of a component at
different parts of the bed both in the bulk liquid phase and particle phase change until it
also reaches an equilibrium (i.e. when the bed is fully saturated). When there is no
particle dispersion, all the particles are considered fixed in place throughout an operation.
Therefore, the mechanism of adsorption is the same as described for the MB-SP model in
section 6.7. However, due to particle dispersion, some random portions of particles are
continuously moving as described earlier. Though the particle flux is null, the adsorbed
component flux will not be. For example during loading a mono-component EBA system,
the concentration of a component is likely to be higher of within the lower parts of the
bed compared to upper parts. Thus due to particle dispersion, at any given node (or a cell)

the amount of component coming in from the upper adjacent node will be lower than the
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amount of the component going out to the upper node until they reach to a local
equilibrium, i.e., equal concentration at both. Such a mechanism of particle dispersion can
be represented as in Fig. 7.5. Dispersion results in an additional dispersive flux of a

component along the bed axis.
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Fig. 7.5 A particle dispersion mechanism in EBA. The darker circles or particles contain
different amounts of a component than do lighter ones. Due to particle dispersion, at the
next time step (t+A41), though the number of particle remain the same in both upper (z+A2)
and lower (2) cells of the bed as in the previous time step (f), the total amount of the
component in the cells will be different as the new composition of particles is different. The
voidage (¢g; and €g),s) of the cells jand j+1 will remain the same after the interchange of
particles but their average concentration of component i in the particle, pore phase (Cp)
and adsorbent phase (C,) will change to new values, C’s;and Cy;:

One of the simplest ways to represent this component flux due to particle dispersion
is by directly replicating the physical phenomena into a numerical scheme. Due to the
enormously increasing computational power and decreasing monetary cost, such an
approach becomes increasingly viable for many such simulation works.

In such an approach, the bed is represented as done in MB-SP models but instead of
representing the portion of an axial node by one particle, a large number of particles of
the same size are used. To make the result statistically significant at least 30 or more
particles at each partition of each axial node is preferable. The adsorption mechanism for
each particle will be the same as before. The net effect in the bulk liquid phase will be
due to the cumulative fractional effect of all particles in that axial node across all
partitions.

Similar to the MB-SP model, the mass balance of component i is given by:
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ou, __auB, 1 0’uy
at - aZ PeL a 2 §¢ z gxm (qu pzmq r=1

where @, is fraction of size partition m and g is the particle number within that partition

of total of gy particles.
The boundary conditions, initial conditions and feed inlet for bulk phase are same

as in the earlier model.

agﬂ + Pe, (uy| ~u|,)=0 (7.43)
Z o
sl _y (7.44)
8z z=1

Initial conditions:

Upil g = U (7.45)
Feed concentration:

Uy =Max{uy,_ ., (7)] —oo<T+oo (7.46)

The component concentration at particle phase for each particle within a partition is
also the same as in the MB-SP model. However, instead of one set of equations at each

partition of an axial node, there will be gy sets of equations, one for each particle. A set of

equations for a component i at particle g of partition m at axial position z is as follows.

—— = | T 747
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Uimg = EpmUpimg + (1= Epy Yl pimg (7.48)

With boundary conditions:
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0
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With initial conditions:
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Isotherm relation:
Fi@gseostigy tpyseontipy) =0 k=12,.,N Vj (7.52)

or for a multi-component competitive Langmuir:
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And constants of the system:
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The additional term in this set of equations is the flux of a component i due to
particle dispersion. Here instead of calculating such component flux, particle flux due to
dispersion (Jp) will be computed and incorporated into the model. This automatically
updates the component flux resulting from it. Molecular diffusion or dispersion is due to
the random motion of molecules. Similarly applying the same principle at the particle
level, the particle dispersion is due to random motion of particles. In the one-dimensional
case, it means movement of particles going away from a position and coming into it. For
an equilibrium to exist both going out and coming in will have to be equal. Thus the
particle flux will be given by total amount of such transport of particles on both
directions.

The amount of particle flux (Jp) due to dispersion will have to be determined using
experimental data or estimated using a particle dispersion coefficient. Once established,
Jp can be used to determine the fractional amount of particles which will interchange
between two adjacent axial positions (or nodes) in a small time step 4t. Let such a
fraction be w,,. Assuming a constant particle dispersion coefficient for all particle sizes,
the flux fraction, wy,, will also remain constant.

To implement this in a numerical scheme, adsorption in the bed at time ¢ was
simulated using the equation set as done in MB-SP model. The maximum time step A4t
was restricted such that at time step r+4¢ the flux fraction (w,,) was calculated based on

the axial discretisation size (4z), time step (4¢) and particle dispersion (Ep) index.
w, = ?12— Az At * Particle Dispersion Index (7.55)

Out of the total number of particles selected at each partition, a fraction w,, was randomly
selected at each node. Half of these selected particles were be interchanged with similarly
selected particles of the corresponding upper node and the remaining half with the lower

node in a similar manner. Simulation was continued from t+A4¢ time step to new t+24z
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time step with the new set of interchanged particles. Again at the end of the new time
step, calculation of wy,, random selection and interchange was performed. This sequence
of steps was continued until the completion of the physical process.

At this stage, for simplification, particle dispersion index was used instead of
particle dispersion coefficient. They will have a bijective relationship. However, the exact
relationship between them will have to be established in future. Here, the value used for
the index will be hypothetical but it will enable the study of the effect of particle
dispersion in the EBA system and demonstration of the proof-of-concept of the modelling

approach developed here.

7.4.3 Parameter Estimation

As in the MB-SP model, the parameters (E;, D;, K5, bo; and b;;) for the adsorption part of
the model and their estimation in the mixed bed model were the same as described earlier.
For the hydrodynamic part, the Richardson-Zaki correlation parameter was determined
using a Ga-based correlation but the natural terminal velocity was modified using a fitting
parameter to match the observed final bed height. For mixed bed model the mean mixing
sigma (a,,) value of 40 and o,, slope (the linear variation of a,, w.r.t. particle size) of 0.5
were used assuming these do not to vary much from similar operating conditions as used
by Willoughby (2000). A hypothetical particle dispersion index was used for test

purposes.

7.4.4 Simulation

The discretisation was same as described in the previous section for the MB-SP model
(section 6.7.4). For each particle, there will be a set of particle phase equations. The
resulting system of ordinary differential equations was solved using Matlab’s ODE-
solver. For each simulation 6 elements were assumed for the bulk phase, 2 internal
orthogonal collocation points for particle phase, 1 component species, 3 particle size
categories and 3 particles per size categories were used. Maximum time step was
restricted to 0.2% of total process time. Matlab’s in-built ode-solver routine was slightly
modified to call a function after each successful time step. Based upon the magnitude of
the dispersion flux calculated, selection of a set of random particles and interchange

between adjacent axial nodes was made to simulate the effect of dispersion during such
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function calls. Due to the large computing time required, only coarse discretisation was
possible. Thus, the simulation here was done just for testing the trend and for establishing
proof-of-concept.

Simulation in a 1.7 GHz Pentium 4 processor with 500 MB RAM took 5 hours for
the discretisation used here. For a reliable estimate, much finer discretisation would be

required. As it would take lot of time, it was not performed and recommended as a future.

7.4.5 Results and Discussion

As in the previous section 6.7.4, the simulation was done for the Lysozyme-Streamline
SP data set of Bruce and Chase (2001) using the Simulated particle disperison model as
described above to predict the breakthrough at 10 cm and 40 cm axial positions of the
bed. Except for the particle dispersion, all data set and associated parameter values were
as described in section 6.6.

Simulations were performed using a hypothetical value of particle dispersion index.
Higher index values correspond to higher rate of particle dispersion. However, the exact
magnitude and its relation to particle dispersion coefficient have not been established in
this work. Due to the large amount of computational time required, only a very coarse-
grid simulation was done. Therefore, the result cannot be reliably compared to the
experimental data or with simulation results produced by other models. Nevertheless, it
will provide some knowledge on the trends and tentative effects of particle dispersion. It
is demonstrated here as a proof-of-concept.

Simulation was performed for a particle dispersion (Ep) index of 20 and 1000. At an
Ep index of 20, the predicted breakthrough was close to that predicted using MB-SP
model (section 6.7.5) and the result at 40 cm breakthrough was also close to the
experimental data. It appears that the index value of 20 essentially does not affect the
system. When an Ep index value of 1000 was used, the simulation result for both 40 cm
and about 10 cm bed height differed from the MB-SP model result. The results are shown
in Fig. 7.6 a,b.
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Fig. 7.6 Breakthrough curves at (a) 40 cm and (b) 9.23 cm bed heights as predicted by
Simulated particle dispersion (SPD) model using a hypothetical value of 1000 and 20 for
particle dispersion (Ep) index, and by Mixed bed size partition (MBSP) model. ¢, SPD with
Ep index of 1000; «, SPD with Ep index of 20; «, MBSP; O, experimental data.
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The component concentration rose early and reached to its saturation value, slowly.
This result exactly matched with the hypothesis on effect of particle dispersion. This also
indicates the possibility of accurately simulating the breakthrough even at the lower part
of the bed by identifying correct particle dispersion index values. The previous models
developed in this work failed to simulate the breakthrough or temporal change in
component concentration profile at the lower part of the bed accurately. From these
results and analysis, it can be inferred that the effect of particle dispersion is more
pronounced at the lower part of the bed. Therefore, for accurate simulation of
concentration at such parts inclusion of particle dispersion is seen as important. The
simulated particle dispersion model developed here offers one approach by which to
include such particle dispersion effect in an expanded bed adsorption accurately.

To establish this method further tests will have to be done using much higher level
of discretisation and a larger number of particle simulations to make the result statistically
reliable. Due to large amount of time required for such simulation, this has not been done.
Another important aspect is the need for establishing a relationship between particle
dispersion index and particle dispersion coefficient. So these are recommended as future

work.

7.5 Conclusion

In this part of the work, an integrated EBA model with particle dispersion was developed.
At first, effect of particle dispersion in adsorption response was included using Wright
and Glasser’s (2001) approach. Using that approach, for the system investigated, effect of
particle dispersion in adsorption response was found to be small. Due to an important
weakness in Wright and Glasser’s approach, a new model was developed for an accurate
representation of particle dispersion effect in EBA. In such a model, the effect of particle
dispersion was simulated by using random migration of a proportion of particles at each
axial position at each time step. Using a hypothetical particle dispersion index
corresponding to particle dispersion coefficient, the effect of particle dispersion in EBA
adsorption response was demonstrated. It was observed that the inclusion of particle
dispersion effect would be particularly useful in accurately predicting the breakthrough
profile even at lower parts of the bed, which the models developed without particle

dispersion were not able to represent accurately. In the next chapter, the steady state
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assumption of hydrodynamics will be relaxed and attempt will be made to develop a
model that would be capable to predict adsorption response while the bed is at

hydrodynamic transient state.
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8 Integrated Model: Transient Hydrodynamics

8.1 Introduction

There is as yet no literature with which to predict the adsorption response of EBA when
the bed is still under a transient state i.e. during expansion or contraction. At the start up
or at the time of loading, changes due to either flow or fluid will bring about changes in
EBA hydrodynamics and consequently its adsorption behaviour during that period. Being
able to predict EBA response can be édvantageous for optimal operation, e.g. during
loading and will give more confidence during process validation. To address these needs,
a simple integrated EBA model with transient hydrodynamics is developed in this
chapter. At this initial stage the model is simplified by assuming homogeneous mono-
sized bed. Future work would focus on relaxing this so as to provide for a more realistic

bed model where the distribution of particle sizes will be considered.

8.2 Plan and Objectives

The individual independent models for adsorption and hydrodynamics have been
developed in chapters 3 and 5 respectively. In this part of the work a complete transient
EBA model will be developed by integrating the adsorption and hydrodynamic models
developed earlier. For simplification at this initial stage, the bed will be considered mono-

sized.

8.3 Model Development

In this work, a simplified approach is followed whereby the hydrodynamic and adsorption
parts of the model were partially decoupled so that the hydrodynamic part is independent
of the adsorption part. The hydrodynamic element is simulated independently and is
progressed in single time steps. The different parameter values at an axial position of the
bed are updated from it. These updated parameter values are then used in the adsorption
part for that time step. In this way the two parts of the model are simulated sequentially at

each time step.
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8.3.1 Model Parts

In a simplified approach as mentioned above, the model itself is same as hydrodynamic
and adsorption models as described in section 5.4 and 3.4. At any given time the bed
properties of an axial segment (Fig. 8.1) will be given by hydrodynamic part of the model

and adsorption within it will be given by adsorption part of the model.
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Fig. 8.1 A section or differential volume element of bed shown during transient state of EBA

The details of the model parts are as follows:

i. Hydrodynamic part: The hydrodynamic part of EBA is represented as described in
Chapter 5 by Eq. (5.46) with initial conditions Eq. (5.47), boundary conditions Eqgs.
(5.61)-(5.62), and constants of the system, Eqs (5.41)-(5.44).

ii. Adsorption part: The adsorption part is represented by set of equations (3.83)-(3.97)
but with axial variation in parameters and bed properties based on a transient state

of the hydrodynamic part.

A crucial step in the integration of the models is the shifting of the particles due to
hydrodynamics at each time step and the updating of the component concentrations in
both the pore and adsorbent phases of the particle resulting from adsorption. This is

achieved by a particle shifting method which is explained in the following section.
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8.3.2 Integration Approach: Particle Shifting Method

At time ¢ particles are located at their respective positions along the bed axis. Due to
adsorption, they will reach certain values of concentration of component chemical in the
pore and adsorbent phases. Now due to transient hydrodynamic state, the bed will expand
(or contract if flow rate falls). This means at t+4¢ time step the particle occupying the
space at a given axial position, z comes from a different bed location. If it is an expansion,
it comes from below, z-4z;. The particle originally at z at time ¢ will have moved to z+4z;
at t+4t. So tracking which particle is the originating particle at r becomes important so
that the appropriate initial pore phase and adsorbent phase component concentrations are
used during the adsorption process at that time step. Had it been a fully coupled model, it
would have been automatically take care of by the model. However since for
simplification the hydrodynamic and adsorption parts are partially decoupled, such
tracking and updating becomes an integral part of the approach and is achieved by mass
balance. The update is done at discrete time steps rather than in a continuous fashion.
Providing such time steps are sufficiently small, it can be considered almost a continuous
process for practical purposes. The reason for the partial decoupling is valid as for
practical purpose it can be considered that due to the adsorption process, the viscosity and
density of fluid does not substantially change in a small time step 4¢. Here only
adsorption element depends on the results of the hydrodynamic part and so there is a one-

way update. The step-wise detail of the method is as follows.

Method:

The implementation of the approach is depicted in Fig. 8.2.

186



1.

Time step: t t+At

Fig. 8.2 Particle shifting method for integrating hydrodynamic and adsorption parts. (1)
Values of adsorption node to be determined at t+Af; (2) Mapping it to location at t using
mass balance; (3) Interpolation of values at that location at the end of t; (4) Shifting or
updating the values to the search-originating adsorption node before start of t+At for

adsorption process. ---, Adsorption nodes; -----, Hydrodynamic nodes.

To update concentrations of component in the particle pore and adsorbent phase at
time step r+4t at an axial position z, its concentrations at time step is required.
Due to movement of the particle during 4¢, the original particle location moves to
z+4z’ while the particle occupying this former axial position comes from location
z-Az. So concentrations at the end of time step ¢ from particle of location z-4z
should be used as the initial concentration of particle at z at the beginning of time
step t+A4t for the update due to the adsorption process.

Location of particles at time # or the value of axial migration 4z is determined
using a mass balance. What it means is that as the bed is uniformly expanding the
mass proportion of particle below it or above it remains constant throughout the
operation. And so it is true while going to t+4¢ from ¢ time step and thus the 4z is
determined.

So original position (or z-4z) of particle at z at r+4¢ is determined. This particle is
shifted to new location i.e. at z. Hence the concentration of component in the pore
and adsorbent phase of particle at z-A4z at the end of time step ¢ will be used as the

initial value for update at time step ¢+4z.
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4. Since Az is arbitrary, the location of a particle is rarely at the nodes when
discretised for simulation. So as only nodal concentration values are known or
computed, such values lying in between nodes (of adsorption discretisation axis)

will have to be interpolated.

In the present simplified method, during expansion if the upper surface of bed does
not match with the nodes on the adsorption axis (which is more a rule than an exception)
while going from 7 to r+4t, the effect of the mass of particles in-between that location and
the upper most node on the adsorption axis which is covered, will not be included in the
adsorption process update for that time step 4¢. Since the hydrodynamic part is
independent of the adsorption part the total mass of particles in the bed is always
conserved. The loss of a sink term at such upper surface of the adsorption axis is just
transient and will soon be covered and used by the next time step when the surface rises
above that node. Even after reaching a hydrodynamic equilibrium, it is possible that a tiny
fraction of the particle phase may remain excluded from its effects updates. Providing the
use of a finer mesh or a larger degree of discretisation is made, the effect can be made
very small and negligible. Hence the total error is bound and can be neglected. More
accurate remedies could be by applying a moving-mesh approach to match exactly
hydrodynamic and adsorption axial nodes, or by using of a weighted sink in the upper
node just above the particle phase surface, etc. At this stage only a simple method is
adopted.

In this way a simple integration of adsorption and transient hydrodynamics of EBA

is achieved.

8.4 Parameter Estimation

There are number of parameters used in both adsorption and hydrodynamic parts of the
model. Adsorption part uses parameters bulk liquid phase dispersion (E), diffusivity of
component species i (D;), film mass transfer coefficient (k5z) and isotherm parameters (b,
b;;). Estimation of their values was the same as described in section 3.5. Similarly the
hydrodynamic part uses particle dispersion coefficient (E,) and Richardson-Zaki
correlation (n) parameter values. The method employed to estimate them are same as

explained in section 5.5.
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8.5 Simulation

The adsorption part of the model was discretised using orthogonal collocation — finite
element method (OCFE) as described in section 3.6, and the hydrodynamic part of the
model was discretised using finite difference (method of line principle) to yield a set of
ordinary differential equations (ODE). Such an ODE-set was solved using Matlab’s stiff
ODE-solver. The maximum time step (4f) was specified to keep that small. Integration
between the adsorption and hydrodynamic parts of the model was achieved by applying
the particle shifting method at the end of each time step progression as explained earlier.
For this Matlab’s built-in ODE-solver code had to be slightly modified to call an external
routine and to pass and update variables after completing each successful time step and
before going to the next time step. That routine was developed as an interface between
Matlab’s ODE-solver code and other user made time step operation codes at each time
step. The integration between hydrodynamic and adsorption parts of the model was

applied through that interface.

8.6 Convergence Analysis

To validate the numerical scheme employed, convergence analysis was performed for the
discretisation size of space related with the adsorption part of the model, the
hydrodynamic part and the maximum size of each time step. In each case as the number
of discretisation events was increased, the result was found to converge as seen in
following Fig. 8.3-Fig. 8.5.

Use of 10 elements in the bulk fluid phase was found to give a result very close to
the converged solution (Fig. 8.3) for 40 cm bed height breakthrough. In this work, 30
elements will be used to be able to estimate the component concentration at 10 cm bed
height more accurately. Five internal orthogonal collocation points were used for higher
accuracy of estimation at lower axial positions. For hydrodynamic nodes, even use of five
nodes was found to give very close result to the converged solution (Fig. 8.4). It is
probably due to a simple bed voidage profile expected at any time, which could have been

represented using a low order polynomial, or even just a quadratic function.
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Fig. 8.3 Convergence analysis of Transient-hydrodynamic EBA model with respect to
number of elements fen) using breakthrough curve at 40 cm bed height. *, 2 e, o, 5 am,

10 err, m, 20 err, ¢, 30 err, O, experimental data.
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Fig. 8.4 Convergence analysis of Transient-hydrodynamic EBA model with respect to
number of hydrodynamic nodes (Vi) using breakthrough curve at 40 cm bed height. *, 5
Nh\ o, 10 Nh; », 20 Nhj u, 30 Nh] ¢, 50 Nh/ O, experimental data.
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Fig. 8.5 Convergence analysis of Transient-hydrodynamic EBA model with respect to
maximum time step size (df) as a percentage of total process time using breakthrough
curve at 40 cm bed height. =, 1% df; 4, 0.1% dft; e, 0.05% df;, ¢, 0.01% df; o, experimental
data.

Unlike element numbers, an increase in the number of hydrodynamic nodes did not
greatly increase the simulation required, much higher number of nodes could be
employed. Therefore, a mesh of 30 hydrodynamic nodes was taken as a benchmark for
simulation studies in this work. Similarly almost all maximum time step sizes specified
gave the same converged result (Fig. 8.5). This was because the actual time step size used
during the simulation was different from maximum time step size specified. The actual
step size was determined intrinsically by the built-in ode-solver algorithm of Matlab. That
also varies at every time step as the algorithm is based on an adaptive method. Therefore,
in spite of differences in maximum time step size specified, the actual simulation could
have used almost the same time step size during the simulation process. Use of a small
time-step was critical to the success of the transient-hydrodynamic EBA model developed
in this work due to the need for discrete updates of bed properties. In order to avoid the
use of large time steps even if the ode-solver allowed, a maximum time step size of

0.05% of the total process time was taken as a standard for this work.
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8.7 Results and Discussions

Due to a lack of time, experimental data could not be generated to verify the model.
However, simulation was done using the Lysozyme-Streamline SP data set of Bruce and
Chase (2001) to see how different the adsorption response of an expanded bed would
have been, had it been loaded simultaneously as the bed expanded instead of after
reaching a hydrodynamic equilibrium. In such a mode, adsorption would be taking place
while the bed is still at a hydrodynamic transient state. There are a number of
circumstances during an EBA operation that adsorption takes place while the bed is at
hydrodynamic transient state, e.g. during changing of feedstock, during stabilisation after
a non-propagating small shock or disturbance in the bed for example by a lump of feed
having tendency to aggregate, during gradient change of fluid velocity, etc. Thus, the
simulation done here would be a test for its possible uses and adaptations in other
operating scenarios, which would require consideration of the hydrodynamic transient
state.

Simulation was done for the Lysozyme-Streamline SP data set of Bruce and Chase
(2001) to predict the breakthrough at 10 cm and 40 cm axial positions of the bed. Mean
particles size of 192 pm was used as estimated by Bruce and Chase (2001). The density
of particle was considered to be 1.184 gm/cc as by Yun et a. (2004) which was close to
the manufacturer’s specification of 1.2 gm/cc. Fluid density and viscosity of the sample in
phosphate buffer were taken to be 0.99 gm/cc and 0.102 gm/cm.s respectively. As before
based on the estimate of Coulson (1991), the settled bed voidage was taken to be 0.4.
Particle pore voidage was taken to be 0.35 as described by Li et al. (2004).

In the experimental set up, the settled bed height was 21.2 cm and the superficial
fluid velocity was 184 cm/h. The use of Ga based correlation underestimated the bed
height. Thus as done in transient hydrodynamic modelling in chapter 5, experimental
fitting of Richardson-Zaki correlation parameter and effective terminal velocity was
employed. The particle size and density of Streamline SP is not much different from that
of Streamline DEAE used in the hydrodynamic experiment of Thelen and Ramirez
(1997). They used water as the mobile phase. Assuming the variation in density and
viscosity of mobile phase in lysozyme-Streamline SP system, i.e. phosphate buffer with

lysozyme sample, to be not too far from water, the parameter values to define bed
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expansion can be reasonably used to predict the transient bed expansion in later systems
when the settled bed height and fluid velocity are also similar. The settled bed height here
was 21.2 cm and it was 20.5 cm in Thelen and Ramirez experiment. The fluid velocity
used here 184 cm/h was also close in the range of fluid velocities used in their
experiment, which was 61 cm/h to 169 cm/h. Therefore, the correlation developed based
upon their experimental data was used heré for the prediction of bed expansion, which
was a terminal velocity of 0.139 cm/s and Richardson-Zaki correlation parameter of
2.663. To match the simulated height and the observed experimental bed height for 2
times expansion with about average 0.7 bed voidage (as observed in experiment and
reported by Bruce and Chase), the effective terminal velocity had to be reduced by about
5% to 0.132 cm/s.

The simulation results for both 40 cm and 10 cm breakthrough data using the
system when loading was done simultaneously with bed expansion from its settled state
were found to be almost exactly the same as if the loading was done after the system
reached to a steady state and the whole bed had a homogenous equilibrium voidage of

0.7. This can be seen in the following Fig. 8.6 a,b.
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Fig. 8.6 Simulation of breakthrough curves at (a) 40 cm and (b) 10 cm bed heights using
Transient-hydrodynamic EBA model and mono-sized steady state hydrodynamic EBA
model (developed in chapter 6.4) and using the correlation for the lysozyme-Streamline SP
system at investigated operating conditions. ¢, simulation result when hydrodynamic-
transient state of the bed is considered i.e. both bed expansion and loading done
simultaneously; A, simulation by considering the bed to be already at hydrodynamic steady
state and so homogeneous in terms of bed voidage and patrticle size before the start of
loading and during it; o, experimental data of EBA operation at hydrodynamic steady state
(Bruce and Chase, 2001).

For the lysozyme-Streamline SP system used here, it seems the change in voidage
to its equilibrium value was much faster than the change in component concentration in
any axial position. If we consider the voidage change as a hydrodynamic front and the
component concentration as an adsorption front, it can be said that the hydrodynamic
front moved much faster in this system investigated than did the adsorption front. Such a
situation is possible when a component is rapidly adsorbed to the matrix. Therefore,
effectively, when a component reaches a higher axial position downstream, the local bed
voidage at that position might already have been close to an equilibrium voidage. Another
way to look at it is that, in this system, most of the adsorption process at a given axial
position happens when the local voidage is already at or close to an equilibrium voidage.
It is also worth noting that the complete hydrodynamic equilibrium of the bed was

reached in about 20 minutes compared to more than 200 minutes in terms of adsorption,
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that is, the bed being almost fully saturated with the component of interest. In essence, the
adsorption response of an expanding bed of such rate parameters, in effect, will be the
same as that of the bed at equilibrium. This is an interesting finding. What it implies is
that assuming the bed remains stable in such a hydrodynamic transient operation, loading
can be done simultaneously while the bed is expanding without need to reach it to
hydrodynamic equilibrium first when the rate of adsorption is fast. This will save about
30-40 minutes of operation time and result in a valuable increase in throughput. Before
making any general conclusions here, these simulation results and the hypothesis should
be validated with experimental data. Such a validation experiment is recommended as a
future work.

In order to verify the above hypothesis that the faster rate of adsorption is the
reason, in this system, why the breakthrough result from hydrodynamic-transient bed
operation was not different from hydrodynamic-steady state bed operation, the following

investigation was conducted.

Hypothesis Testing:

For a simple test of the above mentioned hypothesis, an investigation was conducted such
that the rate of adsorption was delayed. Using simulation studies, the film mass transfer
from the bulk fluid phase to particle phase was found to be one of the important rate
limiting factors for adsorption. So as to reduce the rate of adsorption and observe its
effect, the film mass transfer coefficient (k) was reduced to 10% and three operating

scenarios investigated:

i. Both expansion and loading were done simultaneously resulting into a
hydrodynamic-transient state of the bed. (Transient hydrodynamic EBA model
developed in this chapter was used for the simulation.)

ii.  Bed was taken to be already at hydrodynamic-equilibrium so it was homogeneous
in terms of bed voidage and particle size before starting loading. (So simulation
for this was conducted using mono-sized steady state hydrodynamic EBA model
developed in section 6.4)

iii. Loading was done 30 minutes after the operation started. This meant the bed
would expand and possibly equilibrate before loading started. (This was also

simulated using transient hydrodynamic EBA model.)
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All simulations were done for first 7.5 minutes of loading only as the effect of
hydrodynamic-transient bed state would be more pronounced in the beginning of the
operation. All other operating conditions and parameters were same like before, i.e.
Lysozyme-Streamline SP system investigated earlier.

As can be seen in Fig. 8.7, the breakthrough curves at 10 cm of bed height for
scenario (i) and (iii) matched exactly while there was a slight delay in concentration rise

for scenario (i) for the first few minutes or for an early part of the adsorption process.

0.25

Dimensionless concentration (C/C0)

0 1 2 3 4 5 6 7 8

Loading time (minute)

Fig. 8.7 Simulation of breakthrough curves at 10 cm bed height for first 7.5 minutes of
loading using Transient-hydrodynamic EBA model. Film mass transfer coefficient (k) was
reduced to 10% of the original as estimated by correlation for the lysozyme-Streamline SP
system at investigated operating conditions. ¢, simulation result when hydrodynamic-
transient state of the bed is considered i.e. both bed expansion and loading done
simultaneously; A, simulation by considering the bed to be already at hydrodynamic-
equilibrium or steady state and so homogeneous in terms of bed voidage and particle size
before the start of loading and during it; o, simulation when loading was done 30 minutes
after the operation started.

This demonstrated that, at a lower rate of adsorption, the difference in the component
concentration rise in a hydrodynamic-transient bed and a hydrodynamic-equilibrium bed

would be more pronounced. In a hydrodynamic-transient bed operation, scenario (i), the
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voidage of the first 10 cm of the bed will be at slightly lower than that it would have been
had it been at equilibrium voidage from the beginning as in scenario (i), as there would
be more particles to adsorb. Therefore the rise of the component concentration in the bulk
fluid phase at such a location will be slightly delayed. This is clearly visible in Fig. 8.7.
Further process time would result in an equilibrium voidage being achieved, and the
difference would disappear as observed. When the bed was not loaded for the first 30
minutes of operation, as in scenario (iii), the bed would expand and would reach its
hydrodynamic equilibrium. As it took only about 20 minutes for this system to reach to its
hydrodynamic equilibrium, by 30 minutes the bed would have become fully
homogeneous with an equilibrium voidage. So when it was loaded after that, its
adsorption response would be same as that of a homogenous bed of scenario (if). These
results perfectly satisfied the expectation.

When the adsorption rate is sufficiently high, as observed in normal EBA operation
here for the Lysozyme-Streamline SP system, the breakthrough curve at both 10 cm and
40 cm bed heights for both hydrodynamic-transient bed operation and hydrodynamic-
steady state bed operation were found to match exactly as seen in Fig. 8.6 b,a. This
corroborates the hypothesis that when the adsorption rate is fast, such that the
hydrodynamic front moves much faster than adsorption front, the adsorption response of
the expanded bed in terms of breakthrough curve, or component concentration rise in bulk
fluid phase, at the bed exit would be similar.

There are number of assumptions taken in formulating the hydrodynamic model as
described in Chapter 5. The validity of such assumptions in addition to the assumptions of

the adsorption part of the model is one of the limitations of this model.

8.8 Conclusion

The approach, particle shifting method, developed in this work to integrate transient
hydrodynamics and adsorption parts of EBA model seems to be feasible and valid based
on: simulation result and the logic. Though due to lack of time, experimental data on
hydrodynamic-transient EBA operation could not be generated to validate the model,
when compared to hydrodynamic-steady state data, the result was found to be within the
bounds of expectation. On the other hand, the assumed independence of hydrodynamics

from adsorption for normal EBA operation and the possibility of reducing the time step to
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make the two processes (adsorption and hydrodynamics) practically simultaneous makes
the approach logically valid. As the hydrodynamic part is practically independent of the
adsorption part, any better hydrodynamic model, possibly a theoretical model, when
available can be integrated to the adsorption part by the same approach as explained in
this chapter so as to describe a complete EBA system.

There are number of areas in which further investigations are recommended in
terms of development of a hydrodynamic-transient EBA model from here. One is its
applications. It looks like it can have a number of potential applications, some of which
are enumerated in the next chapter. The second is to replace the current mono-sized
hydrodynamic part of the model by a more advanced model which considers the
distribution of particle sizes. Such a model has been described in appendix A.3.4. Along
with that then the adsorption part of the model will have to be updated with a model
which encompasses such a distribution of particle sizes and which provides more realistic
representation of a mixed bed. Such models have been developed and studied in detail in
Chapter 6.

Finally a more advanced method of integration is recommended to be developed.
One limitation of the current approach is a possible need to limit the maximum time step
to a small size. This means that the simulation takes a long time to run. Especially if the
model had distribution of particle sizes and when such models used in simulating multi-
component scenario, it would require a very long simulation time. Such a problem can be

obviated by developing a new integrated model.
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9 Model Applications

9.1 Introduction

In this thesis a series of models of expanded bed adsorption (EBA) have been developed
commencing with somewhat simplified descriptions to more realistic, comprehensive but
complex models. In this part of the thesis some important areas of application where such
models can be useful will be explored and studied. It is not always necessary to use very
involved models. Depending upon the purpose in many cases a simple model can be
sufficient. In some cases a simple model will be more suitable as complex models more
likely to require additional parameter values and computational resource. But obviously
the more involved models provide some additional details of the system and so will be a

pre-requisite when such details become an integral part of any process objective.

9.2 Plan and Objectives

There are a large number of possible applications of models, and a few will be selected

here. The specific objectives are as follows.

e Sensitivity analysis

e Determination of Windows of Operation

e Determination of optimal loading time

e Enumeration of some possible applications of transient hydrodynamic EBA

model.

9.3 Sensitivity Analysis

9.3.1 Introduction

One of the purposes of a model can be to optimise a process or maximise a performance
index within a given set of constraints. The EBA models developed in this work can also

be used for such purposes for example finding a superficial fluid velocity at which bed
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productivity or throughput is maximum, purity of separated product is highest, etc. To
determine these metrics, models will have to be simulated at varying conditions, model
parameters estimated and supplied in the model. The methods employed to estimate such
parameters have already been explained but such estimates normally will have errors. It is
therefore important to know how sensitive the system is to these errors in order to
ascertain the reliability of the findings. Thus sensitivity analysis of such parameters
becomes an integral part of modelling work. It is also important to know what parameters
or variables are the major limiting factors of a system. Such information can be useful in
improving the desired performance of the system. Besides these, sensitivity analysis is
also an important tool for validation of the model and its implementation. In a way, it
provides dissection view of the model for its examination.

In this work the sensitivity of the steady state hydrodynamic EBA models to the

following parameters will be performed:

e Bulk liquid phase dispersion coefficient (E)

e Diffusion coefficient of component i (D;)

e Film mass transfer coefficient of component i (k5)
e Superficial fluid velocity (vo)

e Particle size (R)

e Adsorption parameter of component i

e Particle porosity (ep)

9.3.2 Method

For the purposes of a sensitivity analysis a mixed bed EBA model using the equivalent
diameter approach (as discussed in section 6.7) was used. Though this is the simplest
mixed bed model of EBA with steady state hydrodynamics developed in this work, it is as
accurate as other involved ones like MB-SP model. Most importantly, it takes a fraction
of time for simulation compared to other involved model and for these reasons was
chosen as the basis for this part of the study. For sensitivity analysis, the magnitude of the
objective parameter was both increased and decreased and its result in the breakthrough
of a component from the bed was observed. The effect of the observation was then
interpreted. The normal settings of all parameters and variables were as described in

section 6.6 for lysozyme-Streamline SP system (Bruce and Chase, 2001). For simulation

200



12 elements, 5 internal orthogonal collocation points and 5 particle size categories were

used.

9.3.3 Results and Discussion

The results of the sensitivity analysis of the parameters studied are discussed individually

as follows.

9.3.3.1 Bulk liquid phase dispersion coefficient (E)

The effect of the bulk liquid phase dispersion coefficient (E) was indirectly tested using a
change in Peclet number (Pe). Pe being a ratio of the convective to dispersive term, it is
indirectly proportional to the liquid dispersion coefficient (E). For the lysozyme-
Streamline SP system investigated at given operating conditions, the mean Pe estimated
at an average bed voidage of 0.7 was 623. The actual Pe in the bed at different axial
positions will be slightly different around that mean based upon the local bed voidage and
interstitial velocity. To see the effect of the change in Pe, the set of Pe values were varied
by a factor of 0.1 and 0.01-100. The observed effects can be seen in Fig. 9.1 a,b.

Pe was not found to be a sensitive parameter in affecting the breakthrough results
of an expanded bed at both 40 cm and 10 cm bed heights. Decreases of Pe or increases of
liquid dispersion by a factor of 10 did not change the result appreciably at either axial
position. Only when E was increased 100-fold, was there a clear visible effect. Under
such conditions the component (lysozyme) concentration rose early and reached to the
maximum, i.e. the saturation point slowly resulting into a reduced axial concentration
gradient. This is consistent with a high level of liquid dispersion. The effect was more
pronounced at the lower axial position (10 cm bed height) tested.

Increases of Pe or decreases of liquid dispersion even by 100 times did not change
the result appreciably at either axial position. This indicates that at its default condition,
the magnitude of liquid dispersion as estimated by the correlation is small and thus the

bulk liquid phase dispersive flux in the system investigation has been small.
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Fig. 9.1 Effect of bulk liquid phase dispersion by changing associated Pe number on
breakthrough curves at (a) 40 cm and (b) 10 cm bed heights. Mean Pe estimated using
correlation for average bed voidage of 0.7 was 623. The correlation estimated values of Pe
were decreased or increased by a constant proportion for the sensitivity analysis. ¢, x0.01;

* x0.1; o x1; a, x10; , x100.



9.3.3.2 Diffusion coefficient of component i (D))

The diffusion coefficient (D;) of lysozyme in the buffer used in the experimental set up
investigated here was estimated to be 1.08*10° cm?s. To see the effect of the change in
D;, this was varied by a factor of 0.5-4. The observed effects can be seen in Fig. 9.2 a,b.

Breakthrough results of an expanded bed at both 40 cm and 10 cm bed heights were
sensitive to changes in the assumed diffusivity. Decreasing D; by a factor of 2 showed
minor changes in the result at both axial positions but at 4 times reduction there was a
huge effect. The component (lysozyme) concentration rose early and reached to its
maximum, i.e. the saturation point slowly resulting in a reduced axial concentration
gradient. On the other hand, increases in diffusivity sharpened further the concentration
gradient at both axial positions although since the concentration gradient was already
steep at the default diffusivity value assumed, the further increases were less serious.

As convective flux is absent in the pore liquid phase inside particles, diffusion is the
only mechanism of mass transports there. When diffusivity is low, such transport
becomes slower. This will cause the slow saturation rate of a particle by the component.
As the mass transfer from the bulk phase to particle phase is limited, the component
concentration in the bulk phase will also rise earlier. These effects resulted in a reduced
concentration gradient in the bulk liquid phase. Thus an opposite phenomena will be
observed when the diffusivity is low. These expectations were satisfied as can be
observed in Fig. 9.2 a,b.

It was observed that when the assumed diffusivity was low, the simulated
breakthrough curve especially at a 10 cm bed height appeared as series of step changes.
This was a result of numerical procedure. Such curves would become smooth when a
finer level of discretisation was applied using large number of collocation points in the
particle phase and elements in the bulk phase. When the diffusivity is small, the
concentration gradient inside the particle becomes steeper. To capture such gradients
accurately a much higher number of collocation points become necessary. However in
this work in order to keep the simulation time small, such a finer level of discretisation

was not applied.
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Fig. 9.2 Effect of a component diffusivity (D) on breakthrough curves at (a) 40 cm and (b)

10 cm bed heights. The D, estimated using correlation was 1.08%10‘6 cm2s. This was

decreased or increased by a constant proportion for the sensitivity analysis: ¢, x0.25; *,

x0.5; o, x1; a, x2; ¢, x4.
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9.3.3.3 Film mass transfer coefficient of component i (k)

For the lysozyme-Streamline SP system investigated the mean film mass transfer
coefficient (ksz) of lysozyme estimated at an average bed voidage of 0.7 was 9.74*10™
cm/s. The actual kg in the bed at different axial positions will vary around that mean
based upon the local interstitial velocity corresponding to the local bed voidage. To see
the effect of a change in kg, the k; values were varied by a factor of between 0.3 and 10.
The observed effects can be seen in Fig. 9.3 a,b.

The breakthrough results of an expanded bed at both 40 cm and 10 cm bed heights
were found to be sensitive to the Film mass transfer coefficient but were slightly less so
than to diffusivity. Decreasing ks by factor of both 3 and 10 caused the component
concentration to rise early and to reach the maximum, i.e. the saturation point more
slowly, resulting in a reduced axial concentration gradient. The effect of low k; was
especially pronounced in the lower parts of the bed (10 cm bed height) as the
concentration rise here is much rapid than at the later stages. Increases in k5 did not
increase the concentration gradient at either axial position. The breakthrough curves
remained constant.

Assuming a low k5 will lead to more resistance in terms of mass transfer from the
bulk liquid phase to the particle pore liquid phase. Thus the concentration in the bulk
liquid phase rises much earlier as components reach the upper part of the bed with a
smaller saturation level than in the lower parts of the bed beneath it. Due to mass transfer
resistance into the particle, the overall concentration continually declines from that
reaches at any particular axial location due to convective flux but at a slower rate. An
early rise in concentration is seen and it reaches saturation slowly. This result is clearly
borne out by the observations.

When kg is high less resistance to mass transfer is offered. This means a late rise in
concentration and rapid saturation, i.e. a steep concentration gradient. However, the
breakthrough curves remain constant. This was most likely because beyond the default kg4
value as estimated by correlation other factors become rate limiting. Component
diffusivity is the most likely rate limiting process. Therefore even if large k5 is assumed
which allows a high amount of transfer into the particle phase, due to the diffusion
process, material cannot transport inside the particle so rapidly. Hence overall the rate of

transport remains constant, and hence the breakthrough curves remain unaffected.
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Fig. 9.3 Effect of film mass transfer coefficient (kff on breakthrough curves at (a) 40 cm and
(b) 10 cm bed heights. Mean /o estimated using correlation for average bed voidage of 0.7
was 9.74*104 cm/s. The correlation estimated values of kfwere decreased or increased by

a constant proportion for the sensitivity analysis: ¢, x0.1; *, x0.3; o, x1; a, x3; *, x10.
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9.3.3.4 Superficial fluid velocity (v)

Since changes in superficial fluid velocity (vo) change bed height, instead of using 40 cm
as a reference bed height at which to observe the breakthrough concentration,
breakthrough curves at the bed outlet were used together with studies at a 10 cm bed
height. The default fluid velocity applied was 184 cm/h. To see the effect of the change in
vo, this was ranged between 0.85-1.3 of the base case. The observed effects can be seen in
Fig. 9.4 a,b.

Breakthrough results found to be very sensitive to fluid velocity at both the bed
outlet and at a 10 cm bed height. The axial component concentration gradient was found
not to be a function of fluid velocity. Instead, the breakthrough curves are shifted to
earlier times with increases in vy.

High fluid velocities increase the convective flux. This will cause an earlier
breakthrough. Contrary to packed bed chromatography, in an expanded bed, the rise in
fluid velocity does not necessarily increase the bulk liquid phase dispersion as the
effective interstitial velocity would, in fact, most likely it leads to a fall due to increased
local bed voidage and therefore the axial concentration gradient may not be reduced. In
the lysozyme system investigated, as the axial concentration gradient was already steep,
this remained constant and did not show any effect due to vy. Low vy means a reduced
level of bulk liquid dispersion (E). During the sensitivity analysis of_F, it was observed
that its default value in this system was already small. Any further reduction will make
this even less significant and it has already been observed that E is not very sensitive
parameter. Thus the fact that the axial concentration gradients did not change with

superficial fluid velocity is not surprising.
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Fig. 9.4 Effect of superficial fluid velocity (vy) on breakthrough curves at (a) bed outlet and
(b) 10 cm bed height. The default v, applied was 184 cm/h. This was decreased or

increased by a constant proportion for the sensitivity analysis: ¢, x0.7; =, x0.85; o, x1; a4,
x1.15; o, x1.3.
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9.3.3.5 Particle size (dp)

As with superficial fluid velocity (vy), changes in mean particle size (R) also changes the
bed height. Larger particles will have higher terminal velocities leading to lower bed
heights and vice versa. Again breakthrough curves at the bed outlet were used. As before
for vy, studies at a 10 cm bed height was uséd for observing the effect in the lower part of
the bed. The default average particle size (diameter) of the bulk of adsorbent was 192 um.
To see the effect of changes in d), this was ranged by a factor of 0.7-1.3. The observed
effects can be seen in Fig. 9.5 a,b.

Breakthrough results were found to be sensitive to particle size at both the bed
outlet and 10 cm bed height. Axial component concentration gradient decreased with an
increase in particle size. This effect was found to be more pronounced in the lower parts
of the bed (Fig. 9.5b). The breakthrough at the bed outlet was also delayed with increase
in particle size as seen in Fig. 9.5a.

Small particles have a large surface area per unit volume so providing for greater
rate of mass transfer to the particle from the bulk phase. The concentration rise in the bulk
liquid will be delayed. However due to the small size, it also rapidly exhausts its
adsorptive capacity. In the larger particle the opposite holds. The net film mass transfer
slows. Besides due to longer diffusion path the mass transfer within the particle will also
be slow. Overall this causes earlier rise and slow saturation resulting in a reduced
concentration gradient. As the proportion of large particles is much higher in the lower
part of the bed, the effect would be more pronounced at that location compared to the
overall average adsorption response of the bed. Similarly larger particles have a higher
net adsorptive capacity. So the breakthrough curve at the bed outlet would be delayed.

The observations clearly satisfy these expectations.
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Fig. 9.5 Effect of bulk mean particle diameter {dp) on breakthrough curves at (a) bed outlet
and (b) 10 cm bed height. The default dpwas 192 pm. This was decreased or increased by

a constant proportion for the sensitivity analysis: ¢,x0.7;*%, x0.85; o, x1; a,x1.15; *.xL.S.



9.3.3.6 Adsorption parameter of component i

When only one adsorbing component is used, Qumay represents the maximum adsorptive
capacity and k, the dissociation constant in a Langmuir isotherm. For the adsorption of
lysozyme to streamline SP, Q,,,x was 0.178 g/cm3 (Bruce and Chase, 2001). To see the
effect of the change in Q. this was varied by the factor of 0.7-1.3. The observed effects
can be seen in Fig. 9.6 a,b.

Breakthrough results were found to be very sensitive to Oy, at both 40 cm and 10
cm bed heights. Increases in Q. resulted in a delayed breakthrough. There was a slow
rise of component concentration with an increase in Qmax at 10 cm bed height (Fig. 9.6b).
Though such an effect was also observable at 40 cm, it was very small.

These responses exactly matched the expectations for when Q. is high. Due to the
larger adsorption capacity, the total adsorption by per unit length of the bed will be high
and hence. So breakthrough will be delayed at all axial positions and especially so at the
40 cm region of the bed. At large Qpna;, it will also take longer time for the particle to
reach saturation and therefore rise in concentration will also be slow. The opposite of this

will hold when Q. is low.
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Fig. 9.6 Effect of an isotherm parameter, 0 * , on breakthrough curves at (a) 40 cm and (b)
10 cm bed heights. The default Onuxwas 0.178 g/cm3. This was decreased or increased by

a constant proportion for the sensitivity analysis: ¢, x0.7; *, x0.85; o, x1;a, x1.15; », x1.3.

9.3.3.7 Particle porosity (zP

The default particle porosity (eP) of adsorbent Streamline SP was 0.35 as discussed in
Chapter 6. To see the effect of the change in ep, this was altered by a factor in the range of
0.7-1.3. The observed effects can be seen in Fig. 9.7 a,b.

Breakthrough results were found to be very sensitive to the particle porosity. The
observed result of a decrease of ep was found to be similar to that generated by an
increase in Qmm. The decrease in ep resulted in a delayed breakthrough. There was a slow
rise of the component concentration with a decrease in ep at a 10 cm bed height (Fig.
9.7b). Though such an effect was also observable at 40 cm, it was very small.

The similarity of response between fall in ep and rise in @mux, or vice versa, is due to
the nature of the mass balance represented for both the pore liquid phase («Pi) and
adsorbent phase (um) of particle. That is from Eq. (3.85) for a combined aggregate (uki)

phase of these two:

212



Uy = Eptip + (1~ €, 9.1)
This means that the reduction in ¢p will automatically raise the proportion of adsorbent
phase and increase the total adsorption capacity per particle. The response will be similar
to that generated by higher Q... In such a case, because of the larger adsorption capacity,
the total adsorption by per unit length of the bed will be high and breakthrough will be
delayed at all axial positions and especially so at the 40 cm or upper parts of a bed. Due to
higher adsorption capacity, it will also take longer time for a given particle to reach
saturation. Therefore the rise of product concentration will also be slow. The opposite of

this will hold when ¢pis high as this will correspond to a reduced adsorption capacity.
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Fig. 9.7 Effect of particle porosity (¢¢) on breakthrough curves at (a) 40 cm and (b) 10 cm
bed heights. The default ¢» was 0.35. This was decreased or increased by a constant

proportion for the sensitivity analysis: +, x0.7; =, x0.85; o, x1; a, x1.15; e, x1.3.

In this section a detailed sensitivity analysis of different parameters was performed
using an EBA model developed in Chapter 6. The purpose was to observe the effects on
the adsorption response of an expanded bed. In the next section use of such a model to

determine Windows of Operation will be performed.

9.4 Determination of Windows of Operation
9.4.1 Introduction

While running a process, it will be desired to maximise the values of one or more target
parameters while satisfying the system constraints. This is achieved by controlling one or
more operation variables. The need to satisfy constraints leads to the generation of
Windows of Operation (WO) only within which the process can be operated. One of the

important uses of EBA model can be to determine such windows for expanded bed
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operation. The use of simulation obviates the need to conduct huge numbers of
experiments to find out such permissible windows.

Depending upon the specified constraints and control variables, there can be
different windows of operation. One of the important WOs in the EBA context is the
superficial fluid velocity (vo) and the load volume which satisfies constraints of minimal
yield and throughput. Naturally both high yield and high throughput are desirable.
However, often, maximising one will compromise the other. Thus control variables have
to be set such that both yield and throughput satisfies minimal requirements. In this work

such windows of operation will be determined for EBA.

9.4.2 Method

A simple mixed bed EBA model with steady state hydrodynamics using the equivalent
diameter approach (as derived in section 6.6) was used for generating windows of
operation due to its simplicity and accuracy.

Specified process constraints were yield (g/g) and throughput (g/hour) while control
variable were superficial fluid velocity (cm/min) and load volume (litres). The definition
of yield and throughput are:

Amount of product recovered after adsorption and elution (g)

Yield = 9.2)
Amount of product loaded (g)
Throughput= Amountof productrec.:overedafter afdsorptlonand elution(g) ©9.3)
Total time of operation(hour)
where,
Total time of operation = equilibrium expansion time + loading time
+ washing time + elution time + washing time + regeneration
time
94)
In a simple approximation it can be represented by
Total time of operation = loading time + overhead time
9.5)

Load volume is the amount of product containing fluid passed through the column
for adsorption which can be calculated by
Load volume (cm®) = Superficial fluid velocity (cm/s) * Cross-

sectional area of the column (cm2) * Time loaded (s) ¢
(9.6)
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And amount of product loaded is given by
Amount of product loaded (g) = Load volume (cm®) * Feed

éoncentration (g/cm’)
9.7

The method of computing amount of product recovered (g) is as follows:
Amount of product captured in the column (g) = Amount of product
loaded (g) - Amount of product exited from column during
loading (g) - Amount of product contained in bed voidage

when the loading was stopped (g)
(9.8)

Amount of product recovered (g) = Amount of product captured (g)

* Recovery rate (%)
9.9)

For simplicity it was assumed that the entire product that existed in the voidage at
the time when loading was stopped will exit out of the bed without adsorption. This is not
likely to be true. However, as the earliest time when loading was stopped was at least
after the onset of breakthrough at bed exit, in the system investigated, as shown by the a
steep breakthrough curve, there would-be only small adsorption capacity left. Therefore
for an approximate purpose, neglect of a further adsorption after loading and during the
start of washing by such remaining capacity is likely not be critical.

The following algorithm was followed to generate windows of operation:

e Range of superficial fluid velocity (vy) and load volume were specified.

¢ Discrete vy values were chosen within the range

e Maximum loading time was calculated using maximum load volume.

e EBA simulation was done for each vy until it reaches a maximum loading time.
The concentration of a component in the column was recorded at frequent time
intervals.

e Total product loaded was calculated by integrating the concentration over the
entire column at particular time intervals corresponding to load volumes for each
vo applied.

e Using a recovery rate and an overhead time, yield and throughputs were
calculated specific to a particular vy and load volume.

e Contour plots of yield and throughput in relation to vy and load volume were made

and superimposed one above the other.
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e The overlap of vy and load volume which satisfied the minimum yield and

throughput required was the windows of operation.

9.4.3 Results and Discussion

A mixed bed model equivalent diameter approach was used for this investigation. The
lysozyme-Streamline SP data set of Bruce and Chase (2001), as used and discussed
during development and validation of that model in section 6.6, was used. Particles size
distribution (PSD) of the Streamline SP matrix was taken to be of 192 pym mean and 51
pum std. deviation as estimated by Bruce and Chase (2001). The range of particle size was
taken to be 90-450 um as estimated by Yun et al. (2004). The density of particle was
considered to be 1.184 gm/cc as by Yun et a. (2004). Fluid density and viscosity of the
sample in phosphate buffer were taken to be 0.99 gm/cc and 0.102 gm/cm.s respectively.
Based on the study of Coulson (1991) for packed bed, the settled bed voidage was taken
as 0.4. Particle pore voidage was taken to be 0.35 as described by Li et al. (2004).

For using the mixing approach to define mixed bed hydrodynamics, a mixed bed
mean mixing sigma value of 40 pm and slope (with respect to particle diameter) of 0.5
were used based on similar experiment data available from Willoughby et al. (2000) in
terms of size column of 50 mm, flow rate and density of matrix. As the use of Ga based
correlation underestimated the bed height, a parameter (a;) with value 0.80 was fitted to
accommodate for the observed terminal velocity (v,) in the multi-particle environment.
This matched the simulated height and the observed experimental bed height for 2 times
expansion with about average 0.7 bed voidage (as observed in experiment and reported by
Bruce and Chase (2001)).

Simulation was done for five sets of superficial fluid velocity (vp): 55, 92, 184, 276
and 368 cm/h. Mixing parameter values, mixing sigma and its slope, were based on mean
fluid velocity (vg) applied, i.e. 184 cm/hour. For simplicity, at this stage, it was assumed
that though the expansion would be different based upon the fluid velocity applied, the
proportion of mixing of different size categories would remain same. This assumption is
not likely to be true. However, it is envisaged that the variation from this would not be
too high and it would be within the limit of tolerance in terms of overall adsorption
behaviour of the bed. Maximum load volume was calculated based on the amount of fluid
that would need to be passed through the bed to get the breakthrough concentration of
100%, which would mean the bed would be fully saturated. For this study 95% recovery
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and 8 hours of overhead time were assumed arbitrarily for the simulation. Simulations
were performed for each fluid velocity to its corresponding maximum load volume and
windows of operation were generated as shown in Fig. 9.8. For simulation, 20 elements, 5

internal orthogonal collocation points and 5 particle size categories were used.
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Fig. 9.8 Windows of Operation generated based upon overlapping contour plots of yield
and throughput with respect to Fluid velocity (cm/hour) and Loaded volume (litre). The
basic parameter values were based on lysozyme-Streamline SP data set of Bruce and
Chase (2001). Recovery rate of 95% and overhead time of 8 hours assumed. (— ) Yield
(Amount recovered/Amount loaded, g/g); (— ) Throughput (Amount recovered/Time,

g/hour).

As seen in Fig. 9.8, throughput increased with increase in fluid velocity for same
loaded volume whereas yield decreased. Similarly, for a given fluid velocity, yield
decreased with increasing loaded volume. This satisfies the trend that would be normally
expected in an expanded bed adsorption (EBA). Increase in fluid velocity means less time
required for operation for those same volumes of loading so throughput will increase.
Whereas with increased fluid velocity the convective transfer becomes large, so the

amount of component exiting from the bed before the bed is fully saturated also can rise.
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This means increasing loss of product and yield decreases. One additional aspect of EBA
is the increase in bed voidage with increase in fluid velocity. Therefore, when length of
bed is long due to increased fluid velocity, much large amount of component residing in
the bed voidage would be wasted in cases where loading was continued at least until the
onset of breakthrough. This means the yield will fall with increasing rate with rise in fluid
velocity. This would lead to a series of windows of operation based on minimum yield
and throughput sought as can be observed in Fig. 9.8.

Normally there would be additional constraints for example a limit to which the
fluid velocity could be raised. The fluid velocity will have to be well below the elutriation
velocity of the smallest particle. With the increase in fluid velocity, the equilibrium bed
height rises. The maximum bed height possible is limited by the physical length of a
column. Besides, the stability of the bed would likely to become increasingly important
issue with the increase in fluid velocity. Because of number of reasons as mentioned
above, fluid velocity will have to be kept under certain value and this will modify the
window of operation thus formed. When 250 cm/hour was specified as an arbitrary
maximum possible value for fluid velocity, the resulting window of operation can be seen
in Fig. 9.9. For this system, it is observed that is not possible to get 3.9 g/hour throughput
when minimum yield required is 89%. However if throughput of 3.8 g/hour is
satisfactory, it is possible to get such yield. For the purpose the EBA will have to be
operated in an appropriate combination within a narrow interval of about 9-10 litre load

volume and about 175-250 cm/hour fluid velocity.
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Fig. 9.9 Windows of Operation generated based upon overlapping contour plots of yield
and throughput with respect to Fluid velocity (cm/hour) and Loaded volume (litre) when
maximum possible fluid velocity was fixed to be 250 cm/h. The basic parameter values
were based on lysozyme-Streamline SP data set of Bruce and Chase (2001). Recovery
rate of 95% and overhead time of 8 hours assumed. (— ) Yield (Amount
recovered/Amount loaded, g/g); (— ) Throughput (Amount recovered/Time, g/hour); ()
Constraint due to maximum fluid velocity; Shaded area: a window of operation for 3.8

g/hour minimum throughput, 89% minimum yield and 250 cm/hour maximum fluid velocity.

9.4.4 Conclusion

Hence in this section the use of a model developed in earlier chapters to develop windows
of operation of expanded bed has been demonstrated. Use of such windows of operation
method to determine the optimal operating condition for a lysozyme-Streamline SP
system has been shown and explained. Due to its utility in maximising yield and
throughput of the operation, a windows-of-operation method can be considered as a

valuable tool in analysis and design of an expanded bed process.



9.5 Determination of Optimal Loading Time
9.5.1 Introduction

Normally, in practice, EBA is loaded till a certain level of breakthrough is observed. It
may be 1%, 5% or some other percent breakthrough depending upon the binding nature
of the target component and adsorbent matrix. When breakthrough is steep, as in the
lysozyme-Streamline SP system investigated in this thesis, the adsorption capacity
remaining in the bed when the loading is stopped, say at 1%, is very little. However the
amount of the component in the column which is still un-adsorbed is large. After loading,
in the initial stage of washing, a fraction of this would be sufficient to bring the whole
column to the full saturation and the rest will be washed out. Expanded bed is normally
operated at much higher bulk voidage than that of packed bed chromatography. Here the
whole bed average voidage was 0.7. This means when loading is done till the onset of
breakthrough, it will incur a considerable loss due to wasted loading.

To minimise such loss, it might be possible to stop loading at an appropriate time
which is sometime before the onset of breakthrough. The product loss is minimised
because the unbound product in the voidage space will be adsorbed into the upper part of
bed which is still not saturated when it is conveyed to such parts during the initial stage of
washing immediately after the loading. The optimal time to stop loading is the timing
which would minimise product loss and maximising bed utilisation. Such loading time
appropriate for the system which would maximise yield and throughput of the operation
can be determined using a model. Thus following investigation was carried out to
determine the optimal loading time and see what happens when loading is stopped only

after the onset of breakthrough.

9.5.2 Method

Yield and throughput of the system were defined as in the previous section of windows of
operation. The simulation was done for the lysozyme-Streamline SP system data set of
Bruce and Chase (2001) described in earlier sections using MB-EQD model developed in
section 6.6 for its simplicity. The fluid velocity applied was 184 cm/h. For simulation 12
elements, 5 internal orthogonal collocation points and 5 particle size categories were

used. For the system, as the onset of breakthrough starts as about 145 minute, simulation
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was done with 90-180 minute range of loading time. As in WO section, arbitrary 95%
recovery rate and 8 hours of overhead time were assumed. Optimal loading time is

defined as the range of time which would maximise both yield and throughput.

9.5.3 Results and Discussion

The yield and throughput of the system for different loading time can be seen in the Fig.
9.10. As the loading time increased, the yield continually decreased due to increasing loss
of the product existed in the bed voidage. As can be observed in the figure, if loading is
stopped only after the onset of breakthrough, i.e. after about 145 minutes, there would
have been a considerable loss with maximum yield to be near 0.75. This compares very
badly to the yield of almost 0.95 had the loading been stopped at 100 minutes or earlier.
This is because almost no product is lost as any product that was in the voidage of lower
part of the bed would be adsorbed in the upper part of the bed during initial stage of
washing. The caveat, however is throughput will sharply fall as the bed will be
increasingly under-utilised when the loading time is decreased. Hence it will lead to an
optimal loading time which would maximise yield while satisfying minimum throughput
requirement or vice versa. As can be seen in the figure, the range of optimal loading time
for the system investigated was found to be between 100 to 130 minutes which would
satisfy minimum yield of about 0.85 g/g and minimum throughput of 2.8 g/hour. This is
about 10-30% time earlier than the onset of breakthrough. Such timing can be determined
by either use of a model or by a series of experiments. Experimental approach has a
drawback that the finding will be valid only to a particular operating condition in which it
was investigated besides the requirement of large amount time and resources. This clearly
demonstrates the importance of a model.

Furthermore, the loss of product with respect to application of different loading
strategies is shown in Fig. 9.11. Using optimal loading the loss can be minimised to
maximum possible, i.e. 5%, as the recovery rate was assumed to be 95%. On the other
hand, stopping loading at 1% breakthrough incurred 26% loss. Higher breakthroughs will
incur even larger losses. The throughput achieved at 1% breakthrough was about 2.95 g/h.
This was not significantly higher than 2.8 g/h throughput achieved while applying
optimal loading with 5% loss. This demonstrates the importance of applying model based

optimal loading strategy in minimising product loss.
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Fig. 9.10 Yield (Amount recovered/Amount loaded, g/g) and throughput (Amount
recovered/Time, g/hour) for different loading time (minute). The basic parameter values
were based on lysozyme-Streamline SP data set of Bruce and Chase (2001). The fluid
velocity applied was 184 cm/h. Recovery rate of 95% and overhead time of 8 hours
assumed. e, Yield; o, Throughput. Optimal loading time was found to be between 100 and
130 minutes which satisfied the minimum yield of about 0.85 g/g and throughput of 2.8
g/hour. Arrows points to the time (min) at which specific breakthrough % were observed at
the outlet. The onset of breakthrough starts at about 150 min. The range of optimal loading
time is much earlier than this as can be seen in the figure.
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Fig. 9.11 Product loss (%) with respect to loading strategies applied. Bkt is abbreviation for
breakthrough %. Figures in parenthesis are throughputs (g/h). Recovery rate of 95% and
overhead time of 8 hours are arbitrarily assumed. Simulation was done for Bruce and
Chase (2001) data set at 184 cm/h fluid velocity. The figure clearly demonstrates the

importance of applying optimal loading strategy to minimise product loss.

It is also worth to note that the operating condition of an EBA is much harsh due to
use of crude feedstock, existence of particle dispersion, etc. Due to this it is possible that
there can be some minor intermittent breakthroughs at bed outlet before the real onset of
breakthrough. If the onset of breakthrough is taken as a condition to stop loading, a false
signal of breakthrough can lead to a stop in loading before it is actually intended. This can
particularly happen if the system is automated and the prior knowledge in approximate
time required is either not available or not applied. A model based specification could
solve such problems.

A component breakthrough at the bed outlet as a signal to stop loading has one
additional weakness. Normally there exists a dead volume for example the volume
between the upper bed particle surface and adapter, and the volume in rig before it
reaches to the monitor. So the real breakthrough at the end of the bed will be earlier than
when it is observed. When such dead volume is large, it will be desirable to minimise loss

by stopping the operation based on model prediction than waiting for the experimental
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observation. Besides estimating the concentration of component at real time can be
difficult for some products especially when they are mixed with other product of similar
physical properties. So the operation will have to be controlled based on chemical
analysis of the product and normally such analysis can take a long time. Such time lag
can result into a huge product loss.

Thus in this section, use of an EBA model in determining optimal loading time has
been demonstrated and need for such an approach has been explained. In the next section
some of the possible applications of transient-hydrodynamic EBA model will be

enumerated.

9.6 Enumeration of some possible applications of transient
hydrodynamic EBA model

Out of many possible applications, some of the uses of the transient hydrodynamic EBA
model can be as follows. Due to lack of time, they have just been mentioned here as

possibilities, and detail analysis and validations were not performed.

9.6.1 Modelling the Effect of Feedstock Changes

Expanded bed is normally operated after it reaches to a hydrodynamic equilibrium, and
final expanded bed height becomes constant. But while changing feedstock for loading or
elution, the fluid properties will change, thus bed will be in a hydrodynamic transient
state till it reaches to a new equilibrium. Transient EBA model being able to capture such
an event and their effect in the system and its adsorption response, it can be a valuable

predictive tool. Such prediction can be very useful for both analysis and control purposes.

9.6.2 Study of Gradient Change of Fluid Velocity

Keeping the bed stable is one of the important concerns during an EBA operation. Step
change of fluid velocity is more likely to cause the bed to become unstable especially
when size of such change is large. To avoid this, fluid velocity can be applied either in a
gradient or small increment over time. This can result the bed to be in a hydrodynamic

transient state for a long time causing reduction in throughput. To avoid such fall in
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throughput, when such operation is overlapped with adsorption, hydrodynamic-transient

EBA model becomes an important tool to predict the bed behaviour.

9.7 Conclusion

Besides some of the application described in this chapter, models developed in this thesis
can be used for numerous other applications. They can be used for analysis, validation,
control, etc. They can estimate detail and specific information about the system which
would be very difficult or expensive to determine using experimental procedures. For
example: particle size specific information can be useful in designing new series of
matrices, etc. Finally it is recommended to explore more applications of models to make

the EBA operation even more useful, robust and productive.
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10 Conclusions and Future Work

10.1 Conclusions

Expanded bed adsorption (EBA) chromatography is an important technique for the
purification of macromolecules from solids-containing feedstock. The process naturally
exhibits mixed particle sizes along the bed axis along with particle dispersion. To date
models have not accounted for this simultaneously and accurately. Besides, there has not
been any work to predict the adsorptive response when the bed is operating under a
hydrodynamic-transient state; which occurs for example while changing feedstock. In
order to address this, developing appropriate EBA models have been the major objective
to this thesis work. For this, two categories of EBA models were developed. The first
relies upon the integration of an adsorption model with steady state hydrodynamics and
the second is with transient hydrodynamics. Some of the applications of such models
have been demonstrated.

At first a comprehensive general rate model of chromatography as developed by Gu
(1995) was established. The model and its implementation was validated using literature
data. This model provides the basis for representing the adsorption behaviour of an EBA
when bed properties are constant and known. To develop an integrated model,
hydrodynamic aspects of expanded bed behaviour was established next.

The steady state expansion of a liquid fluidised bed or an expanded bed is normally
represented by the Richardson-Zaki relation. But there are a number of methods available
in literature to estimate its correlation parameter. As this expansion relation is the basis
for determining particle velocity in all hydrodynamic model of EBA, establishing this
was important. Three main approaches for estimating expansion of the bed are:
correlation parameter estimated using Ga-based correlation or Re-based correlation, or
fitting both effective terminal velocity and correlation parameter using experimental data.
It was found that the Ga-based correlation to represent bed expansion was found to be
better than Re-based original correlation of Richardson-Zaki. In some circumstances,
experimental fitting was found be necessary as the error in prediction using such
correlations could be high.

Steady state hydrodynamic model was studied using a simple mono-sized bed

(MSB) and Perfectly Classified Bed (PCB) approaches for their suitability in representing
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the bed. The PCB model did not significantly improve the accuracy of the model
prediction for steady state bed height. However, as PCB considers the distribution of
particle size, it provides a better representation axial variation of particle size and voidage
in expanded bed. PCB, though an improvement over MSB, does not represent reality as
the bed is in fact mixed and there exists different particle sizes in each axial position.
Hence the development of an approximate method to represent the mixed bed state which
takes into account axial variations of particle size distribution of an expanded bed was
attempted. It was partially completed providing the number of particle size categories
used is not high (preferably within 5). It represented the axial variation of particle size
distribution and bed voidage better than either MSB or PCB models. The further
improvement in the developed approach was required but was not completed in this thesis
due to lack of time. In spite of this, this mixed bed approach to represent hydrodynamics
was employed when integrated EBA models with steady state hydrodynamics were
developed. For this reason those models were also tested using interpolated experimental
data of bed properties. Such an approach being independent from hydrodynamic model,
the EBA models developed would be self-standing and could be evaluated based on their
own merits.

Steady state hydrodynamic EBA model development was performed in a series of
steps by representing the hydrodynamics progressively by: mono-sized bed (MSB),
perfectly classified bed (PCB) and mixed bed (MB) approaches. The adsorption part of
the model was also made increasingly representative of the reality by progressively
considering: an equivalent particle size per axial position (EQD), distribution of particle
size per axial position by using size-partition (SP) approach and inclusion of an additional
component flux due to particle dispersion. Each model was assessed by comparing with
literature data for lysozyme-Streamline SP system. Use of a mixed bed approach for
hydrodynamics of EBA gave more accurate breakthrough prediction compared to MSB
and PCB approaches clearly demonstrating the importance of including size distributions
in axial positions. The result of mixed bed EBA model matched very close to the
experimental data for 40 cm bed height breakthrough when EQD approach for adsorption
part was used. The use of an SP approach for adsorption gave almost exactly the same
result as that of EQD approach but provided additional information of the system for
example the individual adsorption response of different particle size categories at
different axial position of the bed, etc. However as MB-EQD model takes much less

computational time and resource for a simulation, it is expected that it would be useful for
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a number of applications for example real time model based evaluation and control of the
process, etc.

When particle dispersion was considered, its effect in adsorption response was
included at first using Wright and Glasser’s (2001) approach. Using that approach, for the
system investigated, the effect of particle dispersion in adsorption response was found to
be small. Due to an important weakness in Wright and Glasser’s approach, a new model
was developed for an accurate representation of particle dispersion effect in EBA. In such
a model the effect of particle dispersion was simulated by using random migration of a
proportion of particles at each axial position at each time step. Using a hypothetical
particle dispersion index corresponding to particle dispersion coefficient, the effect of
particle dispersion in EBA adsorption response was demonstrated. It was observed that
the inclusion of particle dispersion effect would be particularly useful in increasing the
accuracy of the breakthrough profile prediction even at lower parts of the bed which was
lacking in the models developed without particle dispersion.

As a first step towards developing an integrated transient EBA model, a literature
available transient hydrodynamic model with mono sized particle was implemented with
modification in boundary conditions. The predicted results were found to match
experimental data. This transient hydrodynamic model was then integrated with an
adsorption model to formulate an integrated transient hydrodynamic EBA model. Using
the simulation study of the integrated model, it was found that the adsorption response of
the bed when it was expanded and loaded simultaneously was not different from the
response when the bed was loaded only after it reached to a hydrodynamic equilibrium.
This is most likely due to fast adsorption rate in the system investigated. Providing bed
remains stable for such an operation, it would mean a possibility of high throughput due
to possible reduction of operation time. However, due to lack of time, an experimental
verification could not be performed.

The effects of various physical parameters on the performance of EBA were
investigated using simulation. At its default operating condition investigated for the
system, the liquid dispersion estimated by correlation was found to be small and its effect
little. Thus it was not found to be very sensitive at that level either by increase or decrease
by the factor of 10. On the other hand, component diffusivity (D;) and film mass transfer
coefficient (k;) were found to be sensitive parameters. Lower D; and kg decreased the
axial concentration gradient. Superficial fluid velocity (vy) which directly determines the

convective flux besides bed height and voidage profile was found to be very sensitive to

229



the adsorption response. Higher vy resulted into faster breakthrough. Particle size was
found to be sensitive. Increase in size delayed breakthrough and decreased concentration
gradient. Adsorption capacity, Qmar, Was found to be naturally very sensitive. Increase in
this delayed the breakthrough. Particle porosity (ep) was also found to be a very sensitive
parameter due to the fact that the complementary portion of this was automatically taken
as the proportion of adsorbent phase in the model. So any change in ep was reflected as
the change in adsorption capacity of the bed.

As an example of application of models developed in this work, a window of
operation in relation to fluid velocity and load volume was determined, using steady state
hydrodynamic EBA model (EQD), which would satisfy minimum yield and throughput.
The model was also used to determine optimal loading time. For the system investigated,
it was found that the loading should be stopped at least 15-40 minutes before the start of
breakthrough at bed outlet for higher yield and throughput. Such timing can not be
determined without use of a model and thus clearly demonstrates the importance of
modelling in EBA operation for product yield and economy. Some of the possible
applications of transient hydrodynamic EBA model were also enumerated.

Finally, two important areas in hydrodynamics which need to be addressed for
further development of EBA modelling were identified. The first is a steady state
hydrodynamics representation of EBA by considering mixed bed state as done Kennedy
and Bretton (1966) and the other is transient hydrodynamics representation of EBA by
considering distribution of particle size as done by Asif et al. (1995). Their models were
derived and included as an appendix. However, it was found difficult to implement them
at this stage due to numerical problems. Possibly use of a PDE software tool might be a

simple solution for this problem. Hence they are recommended as a future work.

10.2Future work

One of the key future areas which need immediate attention in modelling EBA is the use
of hydrodynamic model which takes into account the particle size and density distribution
and existence of mixed bed. This applies to both steady state and transient hydrodynamics
of EBA. As these affects bed height and voidage distribution which are critical
parameters for adsorption response of EBA, their accurate representation is important and

make the model more robust and useful. Moreover such models already exist for liquid
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fluidised bed whose physical and operating parameters are not much different from those
of expanded bed used in downstream processing of proteins. However as observed in this
thesis, implementing those models, Kennedy and Bretton (1966) and Asif et al. (1995)
was found to be not easy due to some numerical problems. So solving these problems is
recommended as one of the first priorities. To circumvent the problem an approximate
mixed bed approach was developed in this work to represent mixed bed state of steady
state hydrodynamics of expanded bed. However, the approach needs additional work for
its refinement and make it more robust and useful.

It was observed that transient hydrodynamics of EBA can be useful for many
purposes. Here a simple model assuming a mono-sized bed was developed. To have more
confidence in the result, an experimental verification is recommended. Besides, its use
and verification for several important operating scenarios of EBA is recommended. When
transient hydrodynamic model with PSD is working, its integration with adsorption would
provide more complete description of an EBA system.

In this study, the data set of a model protein in a clean system was used. As the
objective of the model is for its use in a real system having crude feedstock and a target
protein in the mixture of many other proteins and bio-molecules, such experimental result
should be used for the test of the models developed here. It is possible that further
improvements in the models might be required to predict adsorption response in such
systems accurately.

An appropriate method to include effect of particle dispersion in EBA has been
developed in this work. However, the simulation was done based on a hypothetical value
for particle dispersion index. For practical applications of the model, there is a need to
develop a method to estimate particle dispersion index, or to establish a relationship
between particle dispersion index and particle dispersion coefficient so as to make use of
the correlations already available for the latter.

Another crucial area of study in expanded bed modelling would be the bed stability.
As crude feedstock is applied in expanded, the operating environment of an EBA is much
more complex and extreme compared to packed bed chromatography. Besides, dispersion
of particles and the possibility of not considerable difference in density of particle from
fluid phase, etc. can result into existence of certain degree of uncertainties in the system.
A small disturbance may get damped or in some circumstances can propagate. For

example there can be flocking of particles, channelling of fluid, etc. So knowing the
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conditions when a minor disturbance can propagate and make the system unstable

become important. Hence it is recommended as another important future work.
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A Appendix
A.1 Conservation in a Control Volume having internal moving
Interface

When the interior of control volume contains a moving interface (Fig. A. 1) at which the

concentration is discontinuous, Eq. 2.2 becomes (Deen, 1998):

Fig. A. 1 A control volume at the interface between two phases. (Figure adapted from
Deen, 1998.)

Applying Liebnitz integral formula to phase A and B:

— —-Lmatd +L uy, ndS+L u,v,-n,ds

(l) (A. 1)
dr (') - '[; ® ot dV+ -L (t)uvx nydS - L;(r)qu’ ‘n,dS (A.2)
where v/(r,t) = interface velocity.
Adding Eqs (A. 1)and (A. 2)
fadl (;) ‘[,(') Ey dV+L uy, ndS+L (u,—ug)v,-n,)ds (A.3)

Substituting into Eq. 2.3

Ju
ngdw Lm (u, —uy), -n,)dS =~ Lt)F -ndS + Lt)RvdV+ _[ JRsdS (A4

If there is a source/sink term at the interface:

233



o ot &, e T .10 M 710!
J’/( )a—dV+ j; (s ~up), -mdS=~[ F-ndS+[ Rav+ LU)R ds (A.5)
where
I refers to interface between phases A and B, n; is normal to the interface and v; is velocity
of the interface. Eq. (A. 5) represents the mass balance of u in the control volume having

a moving interface inside it.

A.2 Conservation Equation at a Point on an Interface

Applying mass balance of u at interface (Fig. A. 2), from Eq. (A. 5), denoting volume by
Q(#) and surface by I'(?):

ng Sr(t)

Fig. A. 2 A control volume at interface. (Figure adapted from Deen, 1998.)

[ ou v+ [ (y-uv, mdS==[ Fonds+[ Rav+[ RdS (A.6)

(1) at 1) 0
J'_U)F -ndS = Lm(F-n)AdS+ Lm(F-n)BdS+ L(r)(F-nE)dS (A.7)
limV =0= L fdv =0 (A. 8)
(1)
Thus
[ u—upw,-n dS+_[F -ndS = [ Rds (A.9)

As it is valid for any arbitrary small surface AS; as 1—0,

r@=r,@=I,¢ and —n, >n, —>n, (A. 10)

L“[(F 1), +(F-n),+u,w, -n,—umw, n,—R,HS =0 (A.11)
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[(F-n),+(F n), +uy, n,—uw,-n,—RAS, =0 (A.12)
[(F -uv,), —(F —wv,),]-n, =R, (A. 13)
where (F —uv,) is flux in relation to the interface, I refers to interface between phases A

and B, and n; is normal to the interface. Here accumulation and transport within the
interfaces are neglected. Eq. (A. 13) repfesents the mass balance of u at a point on

interface between two phases.

A.3 Further Hydrodynamic Models of Expanded Bed

A.3.1 Introduction

Adsorption part of the EBA model developed in this thesis will be sufficient for wide
varieties of needs and uses. But hydrodynamic part has been relatively not that robust due
number of assumptions taken for both steady state and transient models. Though they are
sufficient for many practical applications, there are opportunities of improving them. One
of the immediate improvements possible for steady state hydrodynamic model is adoption
of Kennedy and Bretton (1966) model. Similarly, consideration of particle size
distribution instead of mono-sized bed by adopting Asif et al. (1995) model would be
immediate an improvement in transient hydrodynamic model. As a part of future work
these two additional models will be established here. Instead of direct adoptions, these
models will be established using first principle for ease in their adaptation in the context
of EBA.

A.3.2 Plan and Objectives

In this work, two additional models of expanded bed, one for steady state and the other
for transient state as available in literature, will be established. The specific objectives

arc:

e To establish steady state hydrodynamic model of expanded bed which considers
the bed to be mixed as developed by Kennedy and Bretton (1966)
e To establish transient hydrodynamic model of expanded bed which considers the

distribution of particle size as developed by Asif et al. (1995)
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A.3.3 Steady State Hydrodynamic Mixed Bed Model
A.3.3.1 Introduction

In the section 4.7, an approximate method was devised to represent EBA as a mixed bed.
In this part of the work, the model developed by Kennedy and Bretton (1966) to represent
segregation and mixing in a liquid fluidised bed consisting of two particle categories will

be tried to be adopted in the context of EBA having a wide particle sized distribution.

A.3.3.2 Model Establishment

In the mixed bed model, the existence of different particle sizes at each axial position or
strata is taken into account (Fig 4.5). For a given flow rate, it is assumed that the bed
expands such that there exists a characteristic PSD and voidage at each axial position.
Kennedy and Bretton (1966) developed a model to represent simultaneous
dispersion and segregation occurring in a fluidized bed with more than one particle size
and demonstrated the result using mixtures of two particle sizes. Assuming the validity of
self-diffusion of small particles (<300 pm diameter) as shown by Brotz (1952) is correct
for practical purposes, Fick’s law will be applied to model dispersion in expanded bed as
done by Kennedy and Bretton for fluidized glass beads.
From Eq. (2.8), the mass balance for a particle size species i is:
XoaVom 4R, (A 14)
where ¢; = concentration of particle species i
(Density, p; for all species is considered constant.)
and n; = mass flux of species i
n,=n,+n, (A. 15)
‘where n,; and n,; are convective and dispersive flux of species i respectively.
As there is no source term, at steady state Eq. (A. 14) becomes

V-n,=V-n,+V-n,=0 (A. 16)

Convective and dispersive fluxes are given by
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n, =c\v, (A.17)

n, =—E,—~  (asimplified form as used by Kennedy-Bretton) (A. 18)

E; is the diffusivity of particle species i and v; its velocity. Velocity has been taken as the
inclination of particles to reach an equilibrium concentration in relation to an applied
superficial velocity (vg) and its magnitude is given by the Richardson-Zaki correlation. As
v; will be different for different sizes, it will result in segregation, and is thus called a
classification velocity.

For equilibrium to occur for a given particle size i at a given concentration, the
required effective vy; is given by:

Vo =V E" (A.19)
As this is different from the real applied vg;, the particle species i will move so that the

concentration at that location will reach equilibrium. The velocity of such movement is

given by:
vi=v0—v0i =V0—Vﬁ€' (A 20)
£ £
Voidage (¢) is given by
C.
é.:l_Z_'. (A.21)
P;

Terminal velocity (v;) and Richardson-Zaki correlation parameter (n;) are given as in
section 4.4.

Thus from Eq. (A. 16)-(A. 18):

cv, —E, 4y | (A. 22
dz
dc., c,
E———lv —v.e")]=0 A.23
i dZ € ( 0 t ) ( )

The total mass of each species i will remain constant which provides an additional

constraint to the system as follows:
[cidz=m, (A. 24)

where m; = total mass of species i in the bed
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A.3.3.3 Simulation and Resulit

The model of Kennedy-Bretton results in a non-linear first order differential equation, a
boundary value problem, with Eq. (A. 24) as a constraint. As it is not an initial value
problem, it can start from any concentration combination of particle i at z=0 and proceed
up along z satisfying the total mass constraint (Eq. (A. 24)). Due to the nonlinearity of Eq.
(A. 23) and a single constraint, different initial values can result in different solutions. It
is likely this is the reason for model being difficult to solve though it has been
successfully implemented in the literature for the bed with two-particle categories. For the
more complex PSD problem set in this work it appears that additional constraints are
needed to solve it. It is recommended as a topic for future work as the generation of
mixed bed model is an important part of EBA modelling. In the next section, transient

hydrodynamic model which considers distribution of particle size will be developed.

A.3.4 Transient Hydrodynamic PSD Model

A.3.4.1 Introduction

As particle size distribution (PSD) is a reality and also an intrinsic necessity of expanded
bed operation, its inclusion in any model is important for the accuracy of the model and
making it robust in its prediction. Asif et al. (1994) and Kaufmann et al. (1995) each
developed models for liquid fluidized bed of coal particles considering the distribution of
particle sizes. This model should be valid in the context of EBA. As in mono-sized bed

model in the previous section, the following assumptions are taken.

e Assuming the validity of self-diffusion of small particles (<300 pum diameter),
Fick’s Law will be applied to account for particle dispersion in the expanded bed
as done by Kennedy and Bretton.

e Only one axial dimension will be taken as Willoughby et al. (2000) has
demonstrated that there is no radial variation in particle phase concentration

e Bed is stable.

e Convective flux is the result of particles movement to bring the local solid phase
concentration to equilibrium with respect to applied superficial velocity. It is

assumed that it can be represented by the Richardson-Zaki correlation as
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developed for mono-sized bed in spite of the bed in reality having a PSD.
Irrespective of the particular composition of size sp., only the total solid phase
concentration is considered to be a factor which is important for determining the

equilibrium state.

A.3.4.2 Model Establishment

The model follows closely that developed by Asif et al. (1994). The detail derivation is as

follows. From Eq. (2.8), a mass balance for particle size species i, with no source term

yields:
op,
—+V-n, =0 (A. 25)
ot
where p; is concentration of particle and n; mass flux which is given by
n, =—-pEVw, + pv, (A. 26)

where p is bulk density, E; dispersivity of particle size species i, w; is mass fraction and v;

is velocity of particle size species i w.r.t. to bed (that is Eularian).

?—V.(pEivwi)-'-v'(pivi):O (A.27)
t
Taking only one axial dimension (z),
do, d d
L e —(pEVW. )J+—1(p0v.)=0 A. 28
= dz(p, w,) dz(p, ) (A.28)
Representing in terms of a fractional volumetric concentration, ¢;
P = pw; (A.29)
P; = P,C; (A. 30)
Equating Eqgs (A. 29) and (A. 30),
W, = Pyc; (A.31)

where p;; is density of particle size species i.

Wi 2&@ (A.32)
Yo,
Substituting the value of w; into Vw,,
ow, _ dfc ) p.( oc 8,0]
—t=p,—| =L |==L p=L—c, = A.33
0z P az(p] o’ (,o 0z 0z ( )

Substituting the value of w; and Vw, into Eq. (A. 28),
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ﬁz—i Eip&(p%_ci a_p):|+/_75i"a_(civi)=0 (A.34)
L Z

Yo 0z 2 dz 0z
dc, 9 dc, c, dp d
B S B ) (Bcied S S ol ~(cv.)=0 A. 35
o az[ oz azﬂ+az(c'v‘) (&)
X )
%_ iaci-i-Eii ﬁ..‘?ﬁ +vi2&+ci-ai:0 (A. 36)
ot 0z* dz\ p 9z 0z 07

Eq. (A. 36) represents the transient hydrodynamic model of expand bed behaviour for a
distribution of particle sizes. The crucial part of this is the ability to determine the particle
size species velocity. For this the same approach as used by Kennedy-Bretton (1966) was

adopted as described in the section A.3.3.

Particle size species velocity (v;):

The particle size species velocity (v;) is determined as follows. The particle interstitial
relative velocity with respect to fluid (v,;), as a result of bed expansion to reach the

equilibrium as given by Richardson-Zaki (RZ) correlation, is:

Vv, =v, v, =t—=vy." (A.37)

where v;; is terminal velocity of particle species i, n; is its Richardson-Zaki correlation

parameter and ¢ is the voidage at that axial position z. Fluid velocity (vy) is given by:
vV, =V, + Zciv,i (A. 38)
Vv, =V D v e (A. 39)
From Eq. (A. 37)

v, =v, —v, e (A. 40)

Substituting the value of v¢
v, =v, + Z:c,.vu.f;""—l —v,e" | (A.41)

Voidage (&) and bulk density (p):

Voidage is given by
£=1-Y ¢ (A. 42)
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And bulk density is given by
P=) CDy+E0, (A. 43)

where pris density of fluid.
From Eqgs (A. 40) and (A. 41), p can be represented as

p=Y(B.-p . +p, | C(A49)

Boundary conditions:

Due to the operating conditions of an expanded bed, with the lower adapter forming the
bottom of the bed and provided the fluid velocity is below elutriation velocity of the
smallest particle, the total mass of all particle species in the bed is conserved and remains
constant.

Thus integrating the Eq. (A. 25) in the whole system domain (£2)

L(%+V-ni)dv=0 (a.45)
ot

L%%dVJrLV-n,.dV:o (A. 46)

As the total mass of each particle species in the system remains unaltered, the first term in
Eq. (A. 46) becomes zero. Converting the volume integral to a surface integral using

Gauss’ divergence theorem yields:
[7-mas=0 (A. 47)

where n is a unit normal vector at the boundary surfaces (I).

From Eqgs (A. 47) and (A. 26),

[7 (= pEVw, + pv,)ds =0 (A. 48)
Using Eq. (A. 31) and expanding Eq. (A. 48) and taking only one axial dimension
[7 —Ei(%—ia—pJ+civi ds =0 (A. 49)
dz p 0z .
Thus at z=0 (inlet):
_E‘_(QCL_ELQB rev, =0 (A. 50)
dz p oz

and at z=L (outlet):
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dc;, ¢, dp
-E|— =0
'[8z paz)-wv

Some simplification of terms in terms of c¢;:

d

The term — 5 (c,. Zp ) can be expanded to yield:
74

ﬁﬁi(&}&az/’
o0z 0z\ p) p 97°

2
ap(pac E)p) LG 9%

oz\' dz 'z p 0z°
TN et ~
p 0z 0z dz) p 9z’

Substituting the value of p from Eq. (A. 44),

dc,

X6, - pf)c P, (Z 7, - pf)az]az
=6, —;if k,+0,f (Z"(ﬁ” e )%CZL]
AR =05

Furthermore the term v; can be replaced by:

1 -
=vy+ Y cv " —v, e
_ -1 ( )ni-l
-vo+chva(1-chk)” “vill-2 ¢
j

The term — a becomes:
az

) a—z ;ij’j (1 _Zk Ci )nj-lj—vu‘ aiz(l “chk yi-l

=;v,,-(1—zkck)"“'§ o, - - T e 2

(m, ‘1( Z ck)"-@%i

(with the assumption of uniform convergence of c;)

(A.51)

(A.52)

(A.53)

(A. 54)

(A. 55)

242



In summary the model can be expressed by 3 simultaneous equations:

ac, d’c, d(c dp dc, dv,
— —E, —L1+E —| L= |+v,—Lt+c¢,—= (A. 56)
o dzr az(,o dz) oz 0z
v, =V, + Z:c,.vn.é""'_1 —v, g™ (A.57)
p=YPa=p ki +p, (A. 58)
And with boundary conditions:
Atz =0:
_ Ei(%_ia_/’) rew, =0 (A. 59)
dz p 0z
and at z =L:
_E[%_a9P ),y —0 (A. 60)
dz p oz

A.3.4.3 Simulation and Result

Equations (A. 36), (A. 41), (A. 44), (A. 50) and (A. 51) describe the complete transient
EBA hydrodynamics. This is a differential-algebraic equation system. It was found
difficult to implement this model at this stage in spite of already available published
works in its successful implementation. It looks like it will need a special method to
simulate. Due to lack of time, detail study on its solution was not performed. One possible
simple approach could be implementing the model using a PDE software tool. Such a tool
is likely to have an automatic provision to handle certain numerical difficulties that may
arise in a differential-algebraic equation system of this type. Hence it is recommended as

future work.

A.3.5 Conclusion

Two additional models of hydrodynamics of expanded bed, one for steady state and the
other for transient state as developed by Kennedy and Bretton (1966) and Asif et al.
(1995) were established. Both considers the distribution of particle size and mixed bed
and thus are more realistic representation of the bed. The model equatibns derived here

are same as that of those authors. However due to numerical difficulties, they could not
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be implemented here at this stage. As both of these are important areas for the further

improvement in EBA model, they are recommended as future work.
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