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Abstract

This investigation concerns the transition pathway of the condensation phase transition.
Under certain conditions condensation is initiated by nucleation events, which are driven
by fluctuations or instabilities in the vapour phase. This involves the spontaneous for-
mation of groups of particles, which we refer to as clusters. The clusters have a highly
unstable nature and exist momentarily, before breaking up. This makes them difficult to
study experimentally and model mathematically, in comparison to larger more stable sys-

tems.

The aim of this study is to explore the stability of these tiny molecular clusters that ex-
ist momentarily within their environment, in terms of the time taken for the cluster to lose
particles (decay). To do this we employ a microscopic cluster model of n-nonane molecules
in which the cluster is treated in isolation from the vapour particles that would normally
surround it. The interactions between cluster particles are modelled using empirical po-
tentials. The cluster’s dynamics is modelled using deterministic molecular dynamics sim-
ulations. The simulations generate a time evolved trajectory of all the positions, velocities

and forces of all the atoms in the cluster.

The process of cluster decay in n-nonane clusters is modelled using a Langevin interpre-
tation of the decay mechanism. This treatment views cluster decay as a process of single
particle escape from a confining potential of mean force, driven by a particle’s interactions
with the surrounding cluster particles. The motion of a cluster particle is modelled us-
ing a Langevin equation, which is parameterised using the MD generated data in order to
extract the decay related parameters. The decay parameters are used to evaluate an Arrhe-
nius type equation for the kinetic decay rate. This is used to calculate the mean timescale

of cluster decay for n-nonane clusters, which we refer to as the mean cluster lifetime.

We compare the dynamically generated lifetimes calculated from the model to those pre-
dicted by experimental measurements, as well as classically derived lifetimes. We discover

the dynamical model predicts lifetimes that compare well to experimental predictions. The



cluster decay model allows us to predict cluster decay timescales without decay events ac-
tually occurring. This makes it an essential tool for systems with long decay timescales,

for which decay events can not be feasibly observed through MD simulations alone.

Finally, the last chapter presents recent work that has been conducted on ice cluster em-
bryos. The ice embryos emerge during the freezing transition of supercooled water into
ice I. Unlike the previous method of treating clusters in isolation from their surroundings,
this study involves the treatment of ice clusters in coexistence with their environment. We
utilise a molecular dynamics trajectory of supercooled water freezing into ice, which is
used to identify and extract ice cluster embryos. It is evident from the MD simulations
that at the initial stages of freezing the clusters are very amorphous and disordered. We
investigate cluster properties such as the size distribution and molecular connectivity, and
explore whether we are able to quantify the potential of mean force in order to estimate

the mean lifetime of disordered ice cluster embryos.
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Chapter 1

The Phenomenon of Nucleation

1.1 The Motivation Behind Condensation

There is a rare consequence of particle interactions within solids, liquids and gases, whereby
altering a system’s ambient conditions induces a sudden and dramatic change in the sys-
tem’s properties, resulting in a transformation into a completely different state of matter.
This process is known as a phase transition. The main problem concerning the physics
of phase transitions is that given the present analytic and computational tools we are not
able predict whether a transition will occur at certain conditions. This presents us with un-
certainties concerning the behaviour and properties of systems that undergo phase transi-

tions.

An important class of phase transition is the condensation of a vapour to a liquid. Conden-
sation phase transitions encompass collective transformations in a wide range of natural
and industrial processes. For instance, the formation of clouds in the atmosphere is driven
by the condensation of cloud vapour into liquid droplets or aerosol particles. Clouds play
an important role maintaining the earth’s climate by scattering solar radiation from the
upper part of the atmosphere and long wave radiation from the earth’s surface. The for-
mation of cloud aerosol particles is facilitated by the presence of cloud condensation nuclei
(CCN), which act as seeds onto which the vapour can condense [1]. An increase in con-
centration of CCN increases the number of cloud aerosol particles, which increases the
reflectivity of the cloud [2], and can also influence its lifetime. The relevance of conden-
sation in industrial processes is also of central importance. For example, steam turbines
that are used in power stations are subject to the deterioration of turbine blades, which is

a major contributor to loss in power generation efficiency [3]. One of the main causes of
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turbine deterioration is the condensation of water droplets onto the blades, which causes

erosion [4].

1.2 Mechanisms of Condensation

A major objective in studies of phase transitions is to identify the rate at which a system
evolves toward the new phase. A common approach to this problem is to focus on the
underlying mechanisms that drive the transition, which occur over comparatively shorter
timescales than the transition itself. To understand the mechanisms that drive condensa-
tion we must look beyond the macroscopic descriptions of matter, since the critical pro-

cesses occur at the microscopic scale.

1.2.1 Microscopic description

On a molecular level, condensation is initiated by the formation of tiny molecular clus-
ters from the vapour phase. The clusters are essentially density fluctuations that occur
on the microscopic scale. The clusters spontaneously emerge from the vapour and ex-
ist for a short time before breaking up. The process of emerging groups of molecules or
clusters is called nucleation. The clusters can either grow by colliding with surrounding
vapour molecules that stick due to attractive interactions, or they can break up by losing
fast moving molecules that have escaped the cluster’s binding interactions. The latter pro-
cess is cluster evaporation, which we refer to in this study as cluster decay. If the cluster
maintains a certain stability, and survives for a relatively long timescale compared to the
timescale of molecular collisions, then it is generally called quasi-stable. Very occasionally
there may be a series of favourable density fluctuations and collision events that assist the
cluster in growing to a critical size. At this point the energetic gain due to the molecular at-
tractions start to balance the unfavourable entropy change associated with forming a high
density region. This is the critical cluster size, which has an equal probability of growth
or decay. Beyond the critical cluster size the new liquid phase is considered to form spon-
taneously. Generally speaking, clusters smaller than the critical cluster size are unstable
with respect to the vapour phase, and have a tendency to break up rather than grow. This
means that under certain conditions it can take a long time to reach the critical cluster size.
In this situation the vapour is said to be metastable, which means it is stable in the dy-
namic sense, with respect to small fluctuations, but it has not reached full thermodynamic

equilibrium.
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Nucleation events that involve on type of particle are referred to as homogeneous nucle-
ation whereas events that involve more than one type of particle are referred to as mul-
ticomponent homogeneous nucleation [23]. The presence of foreign particles or a surface
can facilitate the process of nucleation as the cost of creating an interface in a coexisting
system is reduced, which is called heterogeneous nucleation. Homogeneous nucleation
was first recognised in 1897 by Wilson [5], and it has received much theoretical and exper-
imental attention, and is the focus of this study.

1.2.2 Non-equilibrium thermodynamic description

If we compress a vapour (at constant temperature) it will start to condense. The pressure P
plotted against volume V for such a process is illustrated in Figure 1.1, where the horizon-
tal black line represents a region where the liquid and vapour coexist at thermodynamic
equilibrium. The black dot on the P — V diagram represents a saturated vapour at equi-
librium. In reality, the vapour may become supersaturated, which means it is more dense
than equilibrium conditions will allow. This is shown by the red line. The critical cluster
size will be largest close to the black line and smallest far from the thick black line. Con-
sequently, the lifetime of a metastable vapour will be longest close to the black dot, and
shortest close to the red dot.

PAr F »
liquid
/
\ /\ g
N ‘ § N
> H, H, H
v

Figure 1.1: The pressure-volume variation (at constant
temperature) illustrates the equilibrium thermodynamic de-
scription of the vapour-liquid transition. The red line rep-
resents the non-equilibrium situation in which the vapour is
supersaturated (metastable).

Figure 1.2: The free energy variation plotted against an ar-
bitrary thermodynamic parameter H. The black and red particles
assume global and local minima respectively. The red particle is
stable with respect to small microscopic fluctuations but a suffi-
ciently large fluctuation would drive it over the barrier into the
global minimum. The black particle is in a stable thermodynamic
equilibrium.

The energy available in the system to do work is the free energy, which can be defined as

F=U-TS (1.1)

13



where U is the internal energy, S the entropy, and T the temperature. The difference in free
energy between vapour and liquid is what favours the new phase to form, as a system will
generally try to lower its free energy to reach a global minimum. For the system to be at
thermodynamic equilibrium, it must be at a global minimum, as shown by Figure 1.2 (the
black particle). If it is at a local minimum (red particle) then the system is metastable. There
is a kinetic hindrance associated with the phase transition that prevents a vapour from
spontaneously forming into a liquid, which is characterised by a free energy penalty or
barrier that must be overcome for the transition to progress. Such transitions are generally
known as first order phase transitions and they are usually associated with the transfer of
energy referred to as the latent heat. The barrier is quantified by two competing processes;
the free energy gain of forming cohesive clusters, and the unfavourable entropy or free

energy cost of forming the cluster’s interface in a coexisting system.

The main hindrance to condensation is quantified by the free energy barrier, which must be
overcome for the transition to progress. The molecular clusters provide a means of climb-
ing the free energy barrier and act like “stepping stones” through which the macroscopic
transition can propagate. The process of nucleation must produce a critical sized cluster to
overcome the free energy barrier. Reaching the very top of the barrier (the critical cluster
size) is the least likely and slowest stage of the process, which is the bottle neck of the tran-
sition. The mean rate at which clusters of a critical size are formed is called the nucleation
rate. A major obstacle in studies of phases transitions is to identify the nucleation rate as it
ultimately determines the timescale of the transition. The nucleation rate is a challenging
quantity to measure both theoretically and experimentally due to the microscopic nature

of molecular clusters and their relative instability compared to the metastable vapour.

1.3 Basic Methods of Approach

A familiar thermodynamic approach used to study molecular systems is to regard them as
being part of a larger macroscopic system. The zeroth law of thermodynamics states that
a system in thermal equilibrium with its surroundings, which comprise a large system or
heat bath, will have the same well defined temperature as the bath [6]. However, molecular
clusters are not necessarily in thermal equilibrium with their surroundings, which means a
precise definition of cluster temperature is difficult to establish. This introduces problems
in the development of conventional thermodynamic relations of molecular clusters. We

are faced with two central concerns: the microscopic and quasi-stable nature of clusters.
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An alternative approach to thermodynamic studies of molecular clusters is through statis-
tical mechanics. This discipline uses statistical techniques to derive macroscopic properties
from the microscopic ingredients of a system. The connection between thermodynamics
and statistical mechanics is established in the limit of a large number of particles N, in
the system. The essence of statistical mechanics is the statistical ensemble: many identical
copies of a system each with slightly different microscopic configurations but with iden-
tical macroscopic properties, such as temperature, volume and pressure. The ensemble
allows macroscopic observables to be deduced from microscopic averaging of the system,
which is clearly less successful for small systems, where averages contain large fluctua-
tions. However, statistical mechanics can accommodate fluctuations and deviations from
average behaviour, which gives it the power to deal with small systems and systems away
from equilibrium. The main axiom of statistical mechanics is the ergodic theorem, which
states that with sufficient time a system will sample all microscopic configurations of po-
sitions and momenta in phase space that are available to it. This suggests the use of the
powerful method of molecular dynamics (MD), in which a computer simulation evolves a
system according to Newton’s laws of motion, such that average properties are deduced
over molecular configurations in time. A concise theoretical understanding of the dynam-
ics of molecular systems can be achieved through the combination of MD and statistical
mechanics, which forms the basis of this work. These methods are discussed in more detail

in Chapter 4.

1.4 Summary of this Study

Understanding the nature of fluctuations at the vapour-liquid boundary remains a theo-
retical and experimental challenge. This is a difficult problem to solve because it involves
microscopic processes that are rarely occurring between observable states of matter. There
remains an ongoing need to develop more suitable models that accurately describe the

microscopic precursors to condensation.

This work aims to investigate the behaviour and properties of quasi-stable molecular clus-
ters in condensation. We seek to better understand the cluster’s evolution to the critical
cluster size by calculating the mean cluster lifetime. We use a combination of statistical
and dynamical methods, which collectively present a novel approach to investigate the

physics of these unique and rarely occurring events.

To improve the computational efficiency of the task, the interactions between the cluster

15



and the surrounding vapour phase are represented using an average energy exchange me-
diated by a heat bath. This interpretation effectively treats the cluster in isolation from the
vapour molecules that would normally surround it. The interactions between the cluster
and vapour are averaged out over the timescale of interest. The cluster’s dynamic proper-
ties are generated using molecular dynamic simulations which provide the time evolved
positions, velocities and forces of the cluster’s constituent molecules. The trajectory is
used to parameterise a Langevin model of the cluster decay, which views the decay mech-
anism as a randomly driven process due to the interactions between cluster molecules.
The combination of the molecular dynamics simulations and the Langevin treatment of
cluster decay are used together to calculate mean cluster lifetimes, described using a type

of Arrhenius equation.

The lifetimes predicted from the dynamic cluster model are validated with quantitative
comparisons determined from experimental studies of condensation and classical nucle-
ation theory with detailed balance in thermal equilibrium. The cluster models developed
in this study provide a means to build up new theoretical approaches that provide better

predictions of the rate of homogeneous nucleation.

1.5 Breakdown of Chapters

Chapter 2, reviews the most important principles and issues concerning condensation nu-
cleation. It provides an outline of the experimental and theoretical methods developed in

vapour-liquid homogeneous nucleation studies.

Chapter 3, contains a calculation of the experimentally determined cluster decay time and
a derivation of the classical decay time under conditions of detailed balance in thermal
equilibrium.

Chapter 4, introduces the foundations of the main mathematical and computational tools
used in this study. It illustrates how MD and Langevin dynamics can be used together to

interpret the process of cluster decay and quantify the mean cluster lifetime.

Chapter 5, describes in detail the issues relevant in conducting MD simulations in ther-
mal equilibrium at constant temperature. It provides preliminary results of the molecular
dynamics simulations, such as the calculation of the specific heat capacity from the mean

cluster energy.

Chapter 6, describes the details of the Langevin interpretation of cluster decay, and approx-

imations made in the absence of cluster decay. Mean cluster decay times are presented in

16



comparison to lifetimes predicted from experiments and classically derived lifetimes.

Chapter 7, is a study of ice cluster embryos in coexistence with the supercooled metastable
liquid. We aim to apply the Langevin interpretation of cluster decay to ice clusters in order

to estimate the mean ice embryo lifetimes.

Chapter 8, contains some concluding remarks about the cluster studies of n-nonane and

ice clusters.
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Chapter 2

Experimental and Theoretical

Condensation Nucleation Studies

2.1 A Brief Overview of Nucleation Experiments

One of the main objectives of nucleation experiments is to determine the rate of nucle-
ation. This is defined as the number of clusters, of a critical size, formed per second per
unit volume. The rate of nucleation depends on two main variables, the temperature and
supersaturation of the vapour. A supersaturated vapour is one that contains more vapour
particles per unit volume than equilibrium conditions will allow. The amount by which a
vapour is supersaturated is often expressed in terms of the saturation ratio, which is the
ratio of vapour pressure to saturated vapour pressure at equilibrium. The saturation ratio
is equal to 1 under conditions of equilibrium, and is greater than 1 for a supersaturated

vapour.

Experimentally, the rate of nucleation is taken to be the rate of formation of observable
droplets, assuming that droplets do not coalesce between nucleation and observation, or
otherwise disappear by adsorbing onto the walls the of the experimental instruments. This
is a reasonable assumption provided the growth of macroscopic droplets beyond the criti-

cal size occurs very quickly.

2.1.1 Experimental techniques and devices

There is a range of experimental techniques and devices used to measure nucleation rates.

Different devices are suited to different substances, and function over different tempera-
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tures and supersaturations, and can measure different ranges of nucleation rates. A brief
review of the most popular techniques is provided by Arstila [7]. A schematic representa-
tion of the most popular devices and their corresponding range of nucleation rate measur-

able is illustrated in Figure 2.1.

102 v
_R
SUDErSONIC nozzie
1012 < 4
o H
! 108 1
g shock tube
- 10* A nucleation puise chamber
piston expansion wave tube
. iaminar fiow diftusion chamber
10° 4 single piston expansion chamber
104 A thermal dffusior cloud chamber 4

Figure 2.1: Schematic illustration of different experimental devices and their corresponding range of mea-
surable nucleation rates, taken from Hyvarinen [8].

Early nucleation experiments often relied on measuring properties that vary with the nu-
cleation rate such as the critical supersaturation needed to produce a particular nucleation
rate, conducted at a fixed temperature [9]. In such studies, the vapour supersaturation is
adjusted until droplet formation is observed. The size of the emerging droplets is mea-
sured using optical scattering techniques, and the population of droplet sizes is used to

determine the nucleation rate.

More recent nucleation experiments measure the actual nucleation rate as a function of
varying supersaturations and temperatures. This is a more direct measurement of nucle-
ation rates than the previous technique. A popular example of such an experimental device
is the thermal diffusive cloud chamber originally developed by Langsdorf [10]. The main
chamber is filled with the vapour, and there are metallic plates at the top and bottom of
the chamber. The lower plate is submerged in liquid and is maintained at a higher temper-
ature than the upper plate. The temperature gradient between the top and bottom of the
chamber drives an upward diffusion flow of vapour. The vapour will have a maximum su-
persaturation at some particular height of the chamber. The temperatures of the plates are
adjusted so that the nucleation rate at a desired chamber height may be measured. The nu-
cleating droplets are detected using a laser scattering technique, and the nucleation rate is
simply measured by counting the number of droplets formed. The thermodynamic trans-

port properties of the vapour are used to determine the supersaturation and temperature

19



at the height at which droplets are formed. The main advantage of the thermal diffusion
cloud chamber is that it operates over a wide range of temperatures (eg. 233K-315K), and
supersaturations (eg. 1 — 35), and can measure a relatively wide range of nucleation rates

(eg. 10~3cm3s - 10%m?3s), shown for the example of n-nonane [11].

Another familiar and popular device is the expansion cloud chamber developed by Wag-
ner and Strey [12]. It works by the rapid cooling of vapour by adiabatic expansion, which
leads to high supersaturations and induces a burst of nucleation. A small recompression
is used to terminate the nucleation, which maintains the vapour in a supersaturated state
and allows the nucleated droplets to grow to optically detectable sizes. Expansion cloud
chambers are capable of producing significantly larger supersaturations and nucleation
rates than diffusion cloud chambers. The expansion cloud chamber has been modified by

Strey and Wagner [13] as the nucleation pulse method.

The laminar flow diffusion chamber [14] passes a mixture of vapour and carrier gas toward
a cooling tube, where it becomes supersaturated, and nucleation occurs. The nucleating
droplets are carried away with the flow so that growth of the particles does not deplete the

supersaturated vapour within the nucleating region.

Turbulent mixing chambers [15], [16] use two or more flows of vapour with different com-
positions and temperatures. The flows are rapidly mixed in the chambers to produce the
supersaturation required for nucleation. The local temperature and vapour pressure fluc-

tuates rapidly over time, which can cause difficulties in interpreting the nucleation data.

2.2 A Theoretical Discussion of CNT

The main objective of theoretical studies is to predict the rate of nucleation, and for it to
be in agreement with experimental data. In order to determine the nucleation rate, the
net rate at which clusters grow into the critical cluster size must be quantified. The most
prominent theory to emerge in theoretical homogeneous nucleation studies is the classical
nucleation theory (CNT). This was first derived by Volmer and Weber [17], and Becker and
Doring [18]. However, much of the basic theory was formalised prior to this by Gibbs, in
the liquid drop model [19], [20]. The liquid drop model is one of the earliest and simplest
thermodynamic descriptions of curved surfaces and small particles. In this section we
shall build up a picture of CNT from the liquid drop model and illustrate how a set of
simple rate equations can be used together with the Gibbs formalism to predict the growth

and decay rates of a metastable system.
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2.2.1 The liquid drop model

_ The liquid drop model was first developed to determine the thermodynamic properties of
macroscopic bulk phase droplets. It assumes that the droplet is made up of the liquid bulk
and is separated from the vapour by a well defined spherical boundary (ie the droplet’s
surface). A schematic of a droplet surrounded by vapour, and a droplet submerged in
liquid is illustrated in Figure 2.2. The droplet in system A has very different interactions
compared with the droplet in system B. The energetic difference between the two systems
can be viewed as the energy required to form a droplet from the vapour phase. This is
characterised by the free energy of formation, which can be interpreted as the “available
energy to do work”. We can write the free energy of formation F of a droplet made up of i

molecules as the sum of a volume and surface term as shown by

F =iw(T, p) + psi?? (2.1)

where y; (T, p) is the chemical potential per molecule of the bulk liquid, at a given temper-
ature T, pressure p, and s is the chemical potential per molecule of the surface. The first
term in Equation (2.1) represents the free energy contribution due to the droplet’s volume,
which is proportional to the number of bulk liquid molecules that it contains. The second
term represents the free energy cost of forming the droplet’s surface, which is proportional
to the cube root of the volume squared (in the Gibbs model).

Figure 2.2: System A is a spherical droplet within a liquid. System B is a droplet of bulk phase liquid
surrounded by the vapour phase. Both systems are at constant pressure. The droplet in system B is effectively
isolated since its surroundings (ie the vapour) is considerably less dense. Clearly the isolated droplet will
have different thermodynamic characteristics such as energy compared to the immersed droplet, since it is
not surrounded by liquid. These differences are thought to be contained within the surface of the cluster,
whilst the volume of the droplet is assumed to have the same characteristics as the bulk liquid.
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The work of cluster formation

The change in free energy between the vapour phase and the droplet quantifies the re-

versible work of droplet formation, A W;, which is given by

AW; = i(uf — po) + s i2/3 (2.2)

where 41, is chemical potential (free energy) per molecule of the supersaturated vapour and
i is the chemical potential of the liquid phase at equilibrium. The first term in the brackets
represents the free energy change in forming a liquid from a supersaturated vapour. As
mentioned previously, the saturation ratio is defined as the supersaturated vapour pres-
sure P, divided by the saturated vapour pressure P;. Under equilibrium conditions (which
corresponds to a saturated vapour) the saturated vapour pressure can be taken to be the
liquid pressure. To good approximation to an ideal gas, the ratio of pressures is equal to
the ratio of monomer density in the supersaturated vapour n; to the monomer density in

the liquid at equilibrium n{, as shown by

s =l 2.3)

We can write the change in chemical potential per molecule between the supersaturated

vapour and the liquid at equilibrium as shown by

f — pp = —kTInS 2.4)

which, by definition, is equal to zero for a saturated vapour (S = 1). This results in the
vanishing of the first term in Equation (2.2), such that the droplet work of formation is
determined by the surface free energy of the droplet, which is characterised by its surface

interactions, approximated by

s 1?3 = 47 R%0 (2.5)

where R is the radius of the droplet and o is the surface tension of a planar bulk lig-
uid. This treats the droplet as a bulk liquid with surface interactions described by a bulk
planar surface tension, which is generally known as the capillarity approximation. The
approximation works well for large particles like droplets, however, it carries major ap-

proximations if it is applied to small clusters that contain relatively few molecules, since
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they do not have a well defined spherical surface that can be characterised using the sur-
face tension of the bulk. The capillarity approximation is one of the main assumptions that

is made by CNT in the treatment of molecular clusters.

The work of formation of a cluster containing i molecules (i-cluster) is illustrated in Figure
2.3. This is the change in free energy plotted against cluster size. As the cluster grows,
and i increases, the volume term which is linear in i slowly begins to dominate over the
surface term as more molecules are contained within the bulk. The work of formation
has a maximum value at the critical cluster size i*, which is shown in Figure 2.3. At this
stage the cluster has gained a sufficient number of molecules with attractive interactions,
which outweigh the unfavourable cost of the surface formation. The amount of reversible
work needed to produce a critical cluster is quantified by A W*. This defines the initial free
energy barrier that a metastable system must surmount in passing from a local to a global
minimum. Once a cluster reaches this critical size it has an equal probability of growth
and decay, which in a sense means that it is the most stable cluster size, although it is the
most unlikely cluster size. Beyond the critical cluster size the cluster grows very quickly

into a droplet of new phase.
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Figure 2.3: The free energy of cluster formation for a cluster of i molecules (cluster size). The critical cluster
size i* marks the maximum height of the barrier. It quantifies the amount of reversible work W* that needs
to be expended to form an i sized critical cluster from the same number of molecules within the bulk vapour
phase. The barrier can be thought of as the free energy change necessary for the transition to progress freely,
as climbing to the top of the barrier is the slowest step of the transition.

We know that the growth of clusters occurs through a series of conglomeration events.

The clusters are considered to reach the critical size through a series of instantaneous, but
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favourable violations of the laws of thermodynamics, which are essentially fluctuations.
For a system in thermal equilibrium, the probability of a fluctuation is exponentially de-
pendent on the reversible work needed to produce the fluctuation, which is well defined
by Transition state theory [21]. An important approximation made by CNT is that it re-
lates the probability of producing a fluctuation of given cluster size to the population of

that cluster size given by
€

AW,
¢ = n{ exp (——kT ) (2.6)

where n¢/n{ is the population density ratio of i-clusters to monomers in thermal equilib-

n

rium of a metastable supersaturated vapour, T is the temperature of the vapour, and k is
the Boltzmann constant. It was argued by Volmer and Weber [17] that the nucleation rate
should be proportional to the monomer density at equilibrium n{, although their reasons

for this assumption were not formally established.

2.2.2 The Becker-Déring equations and detailed balance in equilibrium

Intuitively, the process of nucleation can be viewed in the kinetic sense whereby an indi-
vidual cluster grows and decays stochastically, and is occasionally driven into more stable
cluster sizes. This process can be modelled using a simple set of rate equations that de-
scribe the growth and decay rates of the population dynamics of clusters. This principle
forms the basis of the Becker-Doring equations [18], in which the population density of
i-clusters (n;) can vary over time via four principal mechanisms, assuming growth and
decay occurs through the addition and subtraction of a monomer, as shown in Figure 2.4.
The mean growth rate (monomer attachment) and decay rate (monomer detachment) for

an i-cluster are given by J; and v; respectively.
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Figure 2.4: The four component pathways of the time variant population change for a given cluster size,
assuming processes involving two or more clusters occur at negligible rates. The processes are assumed to be
Markovian such that growth and decay are governed by the cluster’s properties and not their histories.
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favourable violations of the laws of thermodynamics, which are essentially fluctuations.
For a system in thermal equilibrium, the probability of a fluctuation is exponentially de-
pendent on the reversible work needed to produce the fluctuation, which is well defined
by Transition state theory [21]. An important approximation made by CNT is that it re-
lates the probability of producing a fluctuation of given cluster size to the population of
that cluster size given by

n{ = ni exp (_i_l;l,) (2.6)

where n{/n{ is the population density ratio of i-clusters to monomers in thermal equilib-
rium of a metastable supersaturated vapour, T is the temperature of the vapour, and k is
the Boltzmann constant. It was argued by Volmer and Weber [17] that the nucleation rate
should be proportional to the monomer density at equilibrium n{, although their reasons
for this assumption were not formally established.

2.2.2 The Becker-Doring equations and detailed balance in equilibrium

Intuitively, the process of nucleation can be viewed in the kinetic sense whereby an indi-
vidual cluster grows and decays stochastically, and is occasionally driven into more stable
cluster sizes. This process can be modelled using a simple set of rate equations that de-
scribe the growth and decay rates of the population dynamics of clusters. This principle
forms the basis of the Becker-Doring equations [18], in which the population density of
i-clusters (n;) can vary over time via four principal mechanisms, assuming growth and
decay occurs through the addition and subtraction of a monomer, as shown in Figure 2.4.
The mean growth rate (monomer attachment) and decay rate (monomer detachment) for

an i-cluster are given by /3; and v; respectively.
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Figure 2.4: The four component pathways of the time variant population change for a given cluster size,
assuming processes involving two or more clusters occur at negligible rates. The processes are assumed to be
Markovian such that growth and decay are governed by the cluster’s properties and not their histories.
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The mean rate of change of population density of i-clusters is given by

dn;
Ti—t—’ = Giaaniy tvianig — 8ing —ving = iy — (2.7)

where |; describes the mean flow of cluster population between cluster sizes i and (i + 1),

which is referred to as the nucleation current, as shown by
Ji = 8ini — viginia. (2.8)

Cluster growth

Assuming that cluster growth is driven by collisions with monomers, and that all collisions

stick, the growth rate is proportional to the density of monomers n; in the vapour,

3,’ =m 3,’ (29)

where collisions with dimers and larger clusters are assumed to be negligible. The growth
rate coefficient 3{ is estimated from the collision rate between spherical clusters and a

monomer in a saturated vapour [22] is given by

, 47 R?kT

p_ TR 2.10
T @rmkT)2 (210)

where m is the mass of a molecule, R; is the radius of an i-cluster, and T is the temper-
ature of the vapour. The collision rate comprises the collision cross section of a sphere
multiplied by a velocity. Obviously, this is a very simple view of the cluster growth mech-
anism with notable shortcomings. For instance, the approximation of the cluster’s volume
and collision cross section to that of a sphere filled with bulk liquid is a crude assumption.
Nevertheless this simplification allows the growth coefficient to be calculated conveniently

and exactly when the cluster is relatively large, and the metastable phase is an ideal gas.

Cluster decay

For a system in thermal equilibrium, the transition probability for a process and its reverse

process are equal, which means the nucleation current is zero. If this is true for all pairs of
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states in thermal equilibrium this is called detailed balance, which for the case of J;_; = 0

leads to

Bni_y = ving (2.11)
where n¢_, and n{ represent the equilibrium population densities of (i — 1)-clusters and
i-clusters respectively, in a saturated vapour. To good approximation, the population den-
sities are given by Equation (2.6), provided the timescale of interaction between the cluster
and the vapour is much longer than the interactions within the cluster. We can presume
this is true, since the vapour is much less dense than the cluster. The decay rate for an

i-cluster is determined by rearranging Equation (2.11) to give

v = 3 ("5"1) 2.12)
1 -1 ne .

where the growth rate 3{_, is determined as before using Equation (2.9) evaluated for
a saturated vapour at equilibrium. Written in this form, the decay rate is governed by
the cluster work of formation in the saturated vapour, which CNT approximates to the
surface free energy of the cluster, calculated using the surface tension of a planar bulk
liquid. The classical treatment of the decay rate under conditions of detailed balance in

thermal equilibrium is discussed further in Chapter 3.

Nucleation Rate

In the steady state, the nucleation current is constant, such that -dﬁ = 0 and J; is constant

for all i. Taking this steady state condition, Equation (2.7) can be solved for metastable

vapour to give the steady state nucleation rate [23].

To conclude this section, we have seen that the cluster growth rates are estimated using a
simple kinetic treatment of the collision between a sphere and a monomer in a saturated
vapour. The decay rate is characterised by the reversible work done in forming a cluster,
which is quantified by the height of the nucleation barrier. The growth rates and decay
rates can be used to determine the steady state nucleation rate. In the next section we shall
address the shortcomings and modifications of CNT, as well as developments in alterna-

tive theories and approaches.
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2.3 The Failure of CNT and Alternative Theoretical Approaches

There is a concise review of comparisons made between experimentally measured nucle-
ation rates and CNT predicted rates provided by Ford [24]. Comparisons of nucleation
rates for water show that CNT successfully predicts the isothermal dependence of the nu-
cleation rate on the supersaturation to within a couple of orders of magnitude at temper-
atures around 210K-260K [25], [26], [27]. However, the temperature dependence of the
nucleation rate is systematically different from that predicted by CNT. Some early experi-
mental nucleation data for n-nonane show deviations of several orders of magnitude from
CNT [11], [28]. It is thought that the disparity between classical nucleation rates and ex-
perimentally measured rates is essentially due to the capillarity approximation. The free
energy of cluster formation is proportional to the assumed surface tension, and this error
is amplified due to the exponential dependence of the nucleation rate on free energy of

cluster formation.

Despite its shortcomings, CNT still remains one of the most widely accepted formalisms
used to describe homogeneous nucleation processes. Although it remains questionable
whether CNT can be used as a rigorous means of calculating cluster properties, at the
very least it serves as an order of magnitude tool when there are no substantial equivalent

measures otherwise available.

2.3.1 Modifications of the capillarity approximation

The deviations between the experimental and CNT predicted nucleation rates have sparked
the development of more sophisticated nucleation models. There is a useful review of a
few prominently emerging alternatives to CNT, provided by Oxtoby [9]. One such exam-
ple is the argument made by Lothe and Pound [29], [30] who argued the cluster free en-
ergy should take into account contributions from the rotational and translational degrees
of freedom. This results in an increase in the nucleation rate by a factor of 107, which
in most cases worsens the agreement between experiment and theory [9], [31]. Reiss [32]
stated that the use of an experimental surface tension in the capillarity approximation al-
ready includes most of the effects of fluctuations in the centre of mass and rotation of a

liquid like cluster, and that Lothe and Pound effectively “over counted” these effects.

An early extension to classical theory, suggested by Dillman and Meier [33], uses Fisher’s
droplet model [34] to determine the work of formation of a droplet of i molecules at con-

stant pressure. The free energy of the cluster includes rotational, translational and config-
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urational terms. In addition to this, the surface tension is modified to account for effects of

curvature which is particularly important for small clusters.

Overall, the improved theories predict the rate of nucleation well for some substances
under certain conditions, but fail in other cases. An intuitive and alternative approach to
CNT involves molecular theories. This involves the explicit treatment of molecules using
an interaction potential. There are two main molecular approaches to nucleation studies:

density functional theory, and molecular simulations.

2.3.2 Molecular cluster studies

Molecular studies of nucleation avoid many limitations of classical and related theories.
The system energy is modelled using presumed realistic interactions between molecules

instead of bulk macroscopic properties of matter.

Density functional theory (DFT) is a powerful technique for the rigorous calculation of free
energy barriers. It has the important advantage that it is not limited to the nucleation of
liquids and ideal vapours. In the case of a supersaturated vapour, DFT treats the system
as an inhomogeneous fluid with a density that varies in positional space. The theory fo-
cuses on the derivation of the free energy of cluster formation of the critical sized nucleus.
DFT nucleation studies conducted by Oxtoby and Evans [35] developed new non-classical
nucleation theories for homogeneous nucleation. The results show that DFT predicted nu-
cleation rates are consistent with experimental data using cloud chambers. However, the
extent of agreement between DFT and CNT strongly depends on the range of the attractive
potential employed.

Molecular simulations provide a more realistic treatment of physical systems than CNT
and its modifications. It involves solving equations of motion for each particle, which is
a many body dynamical problem with high computational demands. For this reason it is
almost impossible to obtain the average nucleation rate by direct simulation. However, it
has been possible to observe nucleation events [36], and more recently entire phase transi-
tions [37] but only using higher saturation ratios than can be achieved experimentally. To
overcome the problem of high computational demands in nucleation studies, various in-
direct methods have been developed to model part of a nucleating system using molecular
simulations. Recent studies of liquid argon clusters are modelled in thermal equilibrium,
in isolation from the vapour [38]. The study uses a Langevin interpretation of cluster decay

to calculate decay rates of molecular clusters [39].
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The cluster definition

One of the most important considerations in molecular studies of clusters is how to define
a cluster. Essentially the cluster definition should specify which particles are considered
to be part of the cluster. A good review of recent progress concerning the use of cluster

definitions is discussed in a paper by Senger [40].

One of the simplest means of defining a cluster in a physical sense, is to impose a geometri-
cal constraint on molecular positions. An example of such a definition was used in a study
by Reiss et al. [41], which restricted molecules to lie within the volume of a sphere about
the centre of mass of the cluster. Another well known geometric cluster definition is the
Stillinger cluster [42], which imposes a constraint of separation between cluster molecules
so that each molecule must lie within a certain region centred around any other molecule
within the cluster. This approach was used to model Lennard-Jones argon clusters in a
study of cluster stability [38]. The main advantage of such geometric cluster definitions
is that they are intuitive and straight forward to implement. However, their realism is
questionable as they do not utilise dynamic information of the motion of particles. A geo-
metric definition might include situations where particles pass close to each other without
being captured. In this scenario, such “close encounters” between particles are considered
to be clusters, even if they only exist momentarily, and do not possess a certain stability.
One way of overcoming the simplification of the geometric definition is to use an energetic
cluster definition. An early example of this approach was developed by Hill [43] who
identified a cluster as a group of molecules that were confined to configurations which
had a total energy that was negative. It was also required that the total energies of pairs of
particles in a cluster should be negative, relative to their centre of mass, which defines an

effective bond energy between particles.

In the case of liquid clusters there is a well defined difference in density between the clus-
ter and the saturated vapour phase, which makes condensed phase clusters easy to distin-
guish from their surroundings. In the case of MD simulations of isolated liquid clusters,
the cluster definition is only violated under instances of cluster decay, when particles leave
the cluster. Under such circumstances it may be necessary to “repair” the cluster to its
original state, which requires a suitable cluster definition. This treatment was used in the
molecular dynamics study of liquid argon clusters [38] mentioned previously, which used
geometric constraints to define the cluster. The mean lifetime of an isolated liquid argon
cluster of 50 molecules at a temperature of 63K was deduced to be approximately 10.0ps.

For certain systems with long decay timescales, the cluster invariably remains intact and
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the cluster definition is rarely violated. For the rare instances when cluster decay does oc-
cur, periodic boundary conditions may be implemented to confine the evaporated particle
to regions surrounding the cluster, so that it can recombine with the cluster given sufficient

time.

2.4 Summary of Nucleation Studies

The most prominent theory to emerge from nucleation studies is CNT. It predicts the rate
of nucleation using a simple set of birth and death rate equations. The rate coefficients are
obtained from the treatment of the cluster in thermal equilibrium. This allows us to obtain
the nucleation rate in terms of the population ratio of clusters in thermal equilibrium,
which is dependant on the cluster work of formation. To calculate the cluster work of
formation it is assumed that clusters comprise spherical droplets of a bulk phase liquid,
with a surface tension of bulk phase flat film. This treatment is known as the capillarity
approximation, which is the main assumption of CNT. The capillarity approximation is
thought to be responsible for differences in experimentally measured and predicted CNT
nucleation rates by several orders of magnitude. There have been numerous studies that
have attempted to improve CNT by modifying the approximation of the cluster’s surface
work of formation to the surface tension of the bulk. The different versions of CNT have
had varying degrees of success, mainly due to the difficulty in predicting the cluster work
of formation rather than inaccuracies in approximate solution of the kinetic rate equations

(Equation (2.7).

The next chapter discusses how experimentally measured cluster properties for the sub-
stance of n-nonane can be used to determine experimentally estimated cluster decay times
to validate the dynamic calculations. It is also shown how a classical interpretation of
cluster decay based on population balance in thermal equilibrium can be used to derive
a classical cluster decay time, which is at present the only alternative means of predicting

decay times.
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Chapter 3

Properties of n-nonane Clusters

3.1 Experimental Nucleation Data of n-nonane

There has been a number of nucleation experiments conducted on organic substances such
as alkanes, as they condense conveniently around room temperature. This makes the ex-
perimentation easy to perform, which can help improve the reliability of the data. A pop-
ular choice of vapour used in condensation nucleation studies is n-nonane, which has a
boiling point of 300K, at atmospheric pressure. Typical nucleation studies of n-nonane in-
volve condensation of the saturated vapour together with a carrier gas (typically helium

or argon) performed over a range of temperatures and supersaturations.

An early study of n-nonane conducted by Adams et al. [44] involved the use of a single
piston expansion cloud chamber. Typical nucleation rates of n-nonane were measured
over the temperature range 215K-270K, as a function of supersaturation, which yielded
rates between 102 — 10° drops cm~3 s™!. Nucleation rates greater than this for n-nonane
were measured in a study by Wagner and Strey [12], [45] using a two piston expansion
chamber over the temperature range 199K-241K, which yielded rates between 10° — 10°
drops cm~3s71. A study of n-nonane using the upward thermal diffusion chamber [11]
measured nucleation rates over temperatures 233K-315K to be 5 x 107> — 5 x 10° drops

cm3s71,

Overall, the nucleation rates of n-nonane measured by these studies compare poorly to
nucleation rates predicted by CNT, with regard to the temperature dependencies of the
rates [11]. One of the main objectives in the pursuit of newly developed nucleation theories

is to achieve good reconciliation with experimentally measured quantities.
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3.1.1 Nucleation theorems applied to n-nonane clusters

There are two nucleation theorems which use experimentally measured data to obtain
properties of critical clusters. The first nucleation theorem was originally derived by
Kashchiev in 1982 [46], [26], [47]. It relates the nucleation rate of droplets from the su-
persaturated vapour to the number of particles in the critical cluster. The first nucleation

theorem is given by

dln] .
=1+1 .
( IS )T + 1 (3.1)
which expresses the supersaturation S dependence of the experimentally measured nucle-
ation rate | to the critical cluster size i*. The second nucleation theorem was derived by

Ford [22], [48] and relates the temperature T dependence (at constant supersaturation) of

the measured nucleation rates to the critical cluster’s internal energy

dln] 1 -
( 5T )S_W[L—kT+Ex(z)]. (3.2)
The quantity E, defines the excess internal energy of the cluster, which can be interpreted
as the energy difference between i molecules of the bulk liquid phase, and a cluster of i

molecules. The excess energy is given by

E, = E. —il (3.3)

where E. is the total energy of the cluster, and L is the latent heat of vaporisation per

molecule of liquid.

The nucleation theorems provide a important means by which the properties of critical
molecular clusters can be extracted from experimentally measured nucleation rates of
droplets formed from the supersaturated vapour phase. The critical cluster size and ex-
cess energies for different organic substances have been extracted by Ford [22], [48] using
experimental data measured by Hung et al. [11], Adams et al. [44], Wagner and Strey [25],
and Rudek et al. [28]. Ford deduced that under the experimental conditions employed by
Hung et al. and Rudek et al. the critical cluster sizes for n-nonane range from approxi-
mately 40 molecules to 70 molecules. We employ a range of cluster sizes, given in Table
3.1, that have been deduced to be critical by Ford [22] at the given temperatures and su-

persaturations, which will be simulated in the dynamical study. In the next two sections
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we will outline two different methods of determining the cluster decay rate, which will

provide a quantitative comparison to the dynamically generated results.

3.1.2 Experimentally derived lifetime of n-nonane clusters

Under the experimental conditions the cluster suffers collisions with the vapour and car-
rier gas that surround it. According to detailed balance, critical clusters have an equal
probability of growth and decay, which means the average time between cluster growth
events can be assumed to be equal to the average time between cluster decay events. We
approximate the cluster decay rate to the cluster growth rate, assuming the mean growth
rate of an i-cluster in a supersaturated vapour is equal to the collision rate, provided all
collisions with the cluster stick. The collision rate is approximated using the collision cross
section of a sphere with the vapour molecules, which is calculated using Equation (2.10),
defined in Chapter 2. This is repeated here for convenience in terms of the growth rate of

the cluster in a supersaturated vapour, as shown by

P 47 R2KT | |
T | @rmeny | ™ .

where R; is the radius of the i-cluster, T is the temperature of the vapour, m is the mass
of a monomer, and nj is the density of monomers in the supersaturated vapour. The term
in the brackets is the collision cross section of the cluster multiplied by the mean veloc-
ity of monomers in the supersaturated vapour. The collision cross section of the cluster
and mean monomer velocity are multiplied by the density of monomers in the vapour
nj, which gives the flow of monomers per unit area of the cluster’s surface. To good ap-
proximation for an ideal gas, the density of monomers nj in the supersaturated vapour is
calculated by the saturation ratio, which is given by

i =~ ﬁ (3.5)

Pe e
Pg ng

S =

where P} is supersaturated vapour pressure, P; is the saturated vapour pressure at equi-
librium, and nj is the density of monomers in the saturated vapour (at equilibrium). The
saturated vapour pressure is a temperature dependent quantity [11}, and is calculated for
different temperatures as shown in Table 3.1. The cluster radius R; is calculated from the
temperature dependent bulk liquid density p;;, [11], which is calculated for the different

temperatures as shown in Table 3.1.
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i TK) pigKgm™) Ri(A) R;_1(A) PYPa) n{= 3% oNm) S n$

40 233 765.051 13.88 13.76  2.28876 7.11x10%° 0.02888 29 2.06x10%
50 250 751.699 15.04 1495 13.6422 3.95x102' 0.02688 20 7.90x1022
67 300 712.268 16.88 16.79 654.889 1.58x10%  0.02221 6 9.49x10%3

Table 3.1: Experimentally determined parameters obtained from Hung et al. [11], Rudek et al. [28], and
Ford [22].

The collision growth rate is recast as the experimental cluster decay rate as shown by

4 (323K T
yoPt = l (=) ] nj (3.6)

L | @rmkT)1/2

which is evaluated for the selected cluster sizes using the supersaturation and tempera-
tures at which the clusters were deduced to be critical by Ford [22], [48]. The experimen-
tally determined cluster lifetimes are shown in Table 3.2 (page 34) along with the cluster

sizes and the appropriate temperatures and supersaturations.

Although the kinetic treatment of cluster decay is a rather simplified interpretation of a
complex process, it should provide a good estimate of the cluster decay time as it funda-
mentally relies on the experimentally measured quantities | and S, which have a limited
uncertainty, and are reliably determined from the experiments. Overall, this approach
presents a reasonably accurate estimation of cluster lifetimes, which should provide a use-
ful comparison to the dynamically generated lifetimes, as well as those derived from clas-

sical theory, which is derived next.

3.2 Classically derived lifetimes of n-nonane clusters

As we have seen in Chapter 2, the population dynamics of molecular clusters can be mod-
elled using the rate equations proposed by Becker and Déring [18], which describe the
cluster’s growth and decay. In the steady state the average number of growth events
from an (i — 1)-cluster to an i-cluster, minus the average number of decay events from
an i-cluster to an (i — 1)-cluster, per second, defines the nucleation current J;. At thermal
equilibrium, which corresponds to a saturated vapour, there is no net flow of nucleation
current (J; = 0) and the decay rate v; of i-clusters is directly proportional to the growth of
rate of (i — 1)-clusters 3¢_,, through Equation (2.11) in Chapter 2, which is repeated here

for convenience,



Bini_y = vin§ (3.7)
where n{ denotes the equilibrium population density in a saturated vapour. In CNT, the
population of i-clusters in thermal equilibrium is related to the surface properties of the
cluster, which are presumed to depend on the surface tension ¢ of the bulk liquid phase

[17]. This is given in Equation (2.6), which is repeated here for convenience as

4m Rzo}
! (3.8)

nj x exp [~ T
where R; is the radius of an i-cluster, which is estimated as before, using the temperature
dependent bulk liquid density [11]. These models are combined (ie Equations (3.7), (3.8),
(2.10)), to provide an estimate for the classical cluster decay rate at thermal equilibrium,

given by

{.‘IQSS 47r (Rlz B Riz—l) U} (39)

where 3f | is the growth rate of an (i — 1)-cluster in a saturated vapour (assuming the
cluster grows by collisions with monomers and that all collisions stick). The classical decay
rate employs experimentally determined quantities similar to those used to extract the
experimental decay rate, such as the saturated vapour pressure to determine the monomer
density in equilibrium, and the bulk liquid density to determine the cluster radius, as
shown for the i and (i — 1)-clusters in Table 3.1. Furthermore, the classical decay rate uses
the surface tension o of a bulk planar interface [11], which is calculated for the different
temperatures as shown in Table 3.1. An important difference between the classical decay
rate (Equation (3.9)) and experimental decay rate (Equation (3.6)) is that the classical decay
rate relies on the saturated monomer density in equilibrium n{, whereas the experimental
decay rate employs the supersaturated monomer density nj. Both monomer densities are

given in Table 3.1.

The classically derived lifetimes are calculated for each cluster size, as shown in Table 3.2.
They appear to make a good comparison to the experimentally predicted lifetimes. The
best comparison between the two results is for the largest cluster size, and the poorest
comparison is for the smallest cluster size. This trend is consistent with the view that
CNT best describes large clusters that resemble liquid droplets. The agreement between

the experimental and classical results might seem surprising given the use of the surface
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tension of a bulk planar interface to describe the surface interactions of the clusters. It is
not expected that clusters containing as few as 40 molecules should behave like spherical
droplets of bulk liquid. However, for reasons that are not entirely clear, this assumption

appears to work (to first approximation).

Cluster Size i T (K) S Texpt (NS) Tclass (NS)
40 233 29 440 34.0
50 250 20 8.80 9.20
67 300 6 0.53 0.47

Table 3.2: The experimental and classically determined cluster lifetimes are shown for the respective cluster
size, temperature and supersaturation. The lifetimes are calculated using the mass of an n-nonane monomer
of 128AMU, and the bulk liquid density and saturated vapour pressure, which are temperature dependent
quantities as stated by Hung et al. [11]. The comparison between 7, and T, is poorest for the smallest
cluster size.

In the dynamical cluster model, it will be important that we emulate the experimental con-
ditions as closely as possible since the dynamic lifetimes will be quantitatively compared
to the experimentally predicted lifetimes. In the next chapter we will outline the theoret-
ical mechanisms used to model n-nonane clusters to extract the dynamical cluster decay

times at the experimental conditions stated in Table 3.1.
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Chapter 4

Theoretical Tools

This chapter introduces the foundations behind molecular dynamics and Langevin dy-
namics and shows how they can be used together to build up a theoretical framework in

which the decay process of quasi-stable molecular clusters can be conveniently studied.

4.1 Principles of Statistical Mechanics in Molecular Dynamics

Thermodynamics is a phenomenological theory of matter that draws its concepts directly
from experiments. This work involves the study of quasi-stable molecular clusters mod-
elled in thermal equilibrium using equilibrium statistical mechanics as a tool for imple-

menting thermodynamics.

Statistical mechanics is a well known technique that normally deals with the equilibrium
statistics of large populations of particles N that are moving subject to a force. Consider a
system of vapour particles at thermal equilibrium. The particles positions and momenta
are subject to small changes over time. These variables are the microscopic properties of
the system and can be used to determine the system’s macroscopic average properties,
such as temperature or pressure. Different sets of microscopic configurations are called
microstates, and those that yield the same macroscopic average of a property are members
of a statistical ensemble. The ensemble is a theoretical construct that comprises many
identical copies of a system that are considered simultaneously, each having the same bulk
macroscopic properties but different microscopic properties. The statistical ensemble is
different to a real time evolving system, as it considers all microstates at the same instant

of time.
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Obviously, statistical averages are best represented in the limit of large N, and are not
as meaningful for small systems, which are subject to large fluctuations. In large systems,
there are a sufficient number of particles at any given instant, so that the average of a quan-
tity over all particles is equal to the time average. The time average can be calculated from
molecular dynamics simulations, by averaging over different molecular configurations. In
a sense, an MD simulation generates a time evolving statistical ensemble, or microstates
that vary over time. When dealing with small systems, such as molecular clusters, it is
unsuitable to average over the system particles alone because there will be an error in the
instantaneous mean. Instead, we must calculate time averages of molecular clusters rather
than instantaneous ensemble averages. The approximation of the ensemble average to
the time average forms the fundamental assumption of statistical mechanics known as the

ergodic hypothesis.

4.1.1 Ergodicity and the microcanonical ensemble

The ergodic hypothesis states that a macroscopic system evolved over time will eventu-
ally explore all microscopic configurations of phase space that are available to it for a
given energy surface, thereby sampling an equilibrium statistical ensemble. This means
that a system at fixed energy will sample all configurations of phase space at that energy,
given sufficient time. The time average and ensemble average are fundamentally different
quantities: the time average samples the most likely microstates and the ensemble average
samples all possible states. The ergodic hypothesis approximates these two averages to be
equivalent in the long time limit. This enables the treatment of a small number of particles

using equilibrium statistical mechanics.

The time average of a system property f(p.q) observed over a time period 7 is generally

calculated by

Up.9), = lim %/Orf(p(t)-q(t)) dt (4.1)

where p and g are position and momentum respectively. The ensemble average over all
simultaneously observed configurations of phase space that have the same energy E, is

calculated by

Sp-e=[_, S0 Pp.g) d¥p ag 42
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which is a probability weighted average or expectation value, where N is the number of
particles and P(p, q) is the probability density distribution of the random variable f(p,g),

where Z is the partition function (the sum over all possible states), given by

_ N N
z= [  fopdpdy @3)

As mentioned previously, if Equations (4.1) and (4.2) are equivalent then the time average

is equal to the ensemble average and the system is said to be ergodic.

For some situations it can be difficult to establish whether a system is ergodic or not, prin-
cipally because it can be difficult to distinguish between configurations that are impossible
and those that are just highly unlikely. For example, consider a system of vapour particles
with an impenetrable dividing wall. The ensemble average for a property of the system
will include all possible configurations on both sides of the wall. In reality, or in an MD
simulation, these configurations would never occur regardless of how long we waited.
This means that it is not a real ergodic system. In the case of an isolated cluster, if we per-
formed molecular dynamics for a finite time we may not observe all possible microscopic
configurations as some of them are very unlikely, such as the entire cluster in an evapo-
rated state. However, if we waited for an infinite time we would eventually observe this
state. The main assumption made in the MD simulations of isolated molecular clusters is

that the system is ergodic.

The ergodic theorem has an important consequence for isolated systems at thermal equi-
librium. An isolated system does not exchange energy with its surroundings, and thus its
total energy remains fixed. It was postulated by Gibbs that this meant all microstates in
this system are equivalent, and have the same probability of occurrence. Essentially, this
means that there is only one invariant probability density for an ergodic system. A specific
example of such a system is the microcanonical ensemble which has constant particle num-
ber N, volume V, and energy E. The probability weighting function for the microcanonical

ensemble is proportional to a delta function over energy as shown by

Pmicro = 5(E(P¢7) — Ep) (4.4)

where ppicr, is the weighting function, and p and g are the momenta and positions of the
particles. Equation (4.4) confines the probability density to a constant energy value. The
system temperature is free to fluctuate about a mean value and can be estimated at thermal

equilibrium using the equipartition theorem given by
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1/2m(v?*) = 3/2kT (4.5)

which is an approximation to the average kinetic energy in 3-dimensions, where v is the
particle velocity m the particle mass and T the temperature. Constant energy calculations
are a desirable choice of treatment as they are relatively easy to perform. However, most
experimental scenarios do not deal with isolated systems, but instead consider systems
that are in thermal contact with the environment with which they can exchange energy
or particle number. An important example of such a system is the canonical ensemble at

constant particle number N, volume V and temperature T (NVT).

4.1.2 Temperature and the canonical ensemble

Thermodynamically, temperature is defined as the derivative of energy with respect to
entropy at constant NVT [6]. However, it can also be defined in the kinetic sense as the
averége kinetic energy at thermal equilibrium through the equipartition theorem. This is a
useful definition of temperature because it can be calculated conveniently from the particle

velocities.

A drawback to the kinetic definition of temperature is that it poses a problem for small
systems in contact with a heat bath, since they are subject to large fluctuations in kinetic
energy over very short timescales, although over longer timescales the average kinetic
energy remains fixed. This is a particular problem for molecular clusters as they have
significant instantaneous deviations from mean behaviour. Although we can define the
temperature of a cluster over a sufficiently long timescale, we can not treat temperature
fluctuations in the same way as a true thermodynamic variable. This means it is unsuitable
to define the temperature of small systems over short timescales using the kinetic energy.
The characterisation of temperature fluctuations in small systems has been a source of

much controversy, and remains a difficult and unresolved issue [49], [50], [51].

The canonical ensemble is allowed to exchange energy with its environment, such as a heat
bath, and it has a well defined temperature. The probability that the system is in a given
microstate is described by the probability density given by the Boltzmann distribution

P(E) = g(E)e E/XT (4.6)

where g(E) defines the number of available states per unit of energy known as the density
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of states. The density of states increases with energy [52], as there will be more available
microstates at higher energies. The density of states can be approximately recovered from
the probability density distribution obtainable from the MD simulations (see Chapter 5).
All accessible microstates in the canonical ensemble are weighted according to the Boltz-

—E/KT

mann factor e , which is a decreasing function of energy. The combination of these

two terms gives the Boltzmann distribution its familiar peaked shape.

In the canonical ensemble, fluctuations in energy have a linear relation with the specific
heat capacity Cy, defined as the derivative of energy with respect to temperature at con-
stant volume [53]. This represents the energy needed to increase the temperature of a sub-
stance per unit mass by one degree Kelvin. The relation between energy fluctuations and
specific heat capacity can be derived from the definition of the mean energy and energy
variance. The thermodynamic definition of the mean has already been given by Equation

(4.2) and is recast in terms of energy as shown by

(E(p.9)) = %/ E(p.q) e 3" aNp aNg (4.7)

where Z is the canonical partition function given by

Z = / e 4Ny 4Ng. (4.8)
The variance in energy fluctuations o2 is given by
o = (E*) — (E)? (4.9)

where E the instantaneous energy, and ( E ) the mean energy. It can be shown from Equa-
tions (4.9) and (4.7) that there is a linear relation between specific heat capacity and the
energy fluctuations, given by

02 = kT?Cy. (4.10)

This relation only holds true for systems in thermal equilibrium, and it is questionable
whether we can assume this for molecular clusters, which are not in thermal equilibrium

over timescales of energy fluctuations.

So far we have established that an isolated system has a well defined energy with a tem-

perature that cannot be explicitly defined, and fluctuates about a mean value. In contrast,
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a system that is immersed in a heat bath has a well defined temperature, but can not si-
multaneously have a well defined energy. The relation between energy and temperature
illustrates the complementarity that exists between these two thermodynamic variables.
Whether certain aspects of this relation are comparable to the complementarity relation
that exists between position and momentum, given by Heisenberg’s uncertainty principle,
is yet to be clarified [54], [55].

4.2 Molecular Dynamics Mechanisms and Approximations

There are different molecular modelling techniques available each with distinct methods
of generating conformational states. Molecular Dynamics (MD) mimics the movement of
particles over time. Successive configurations of the system are generated by integrating
Newton'’s equations of motion. The result is a trajectory that specifies how the positions
and velocities of particles vary with time, including the instantaneous force acting on each
particle. MD describes the dynamic behaviour of the system from which the time averaged
properties can be calculated. It can predict the state of the system at any future time from
its current state. This means that for a given starting configuration the system will produce
the same end configuration, if repeated. This behaviour is called deterministic. In contrast,
Monte Carlo simulations assign random changes to the system by modifying a few degrees

of freedom at a time, so that particles are moved randomly rather than deterministically.

Fundamentally, the physical binding forces between particles are ultimately determined
from the interactions between electrons. In MD, it is assumed that because the nuclei are
much heavier than the electrons, their centre of mass is fixed relative to the motion of the
electron. This separates the nuclei and electron motions, so that the energy of an atom
in its ground state can be described by the nuclear coordinates. This is known as the
Born-Oppenheimer approximation, which is the main assumption of molecular dynamics

calculations [56].

4.2.1 Empirical force field model

An important part of MD is to define a suitable particle interaction that mimics the physical
interactions within the system. The level of detail included in the interaction potential
will depend on the quantities being calculated. Ab initio molecular dynamics involves the
quantum mechanical treatment of electrons. This is computationally expensive to perform

because of the large number of particles that need to be considered in cluster simulations.
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A simpler approach is to use an empirical “force field” to describe the potential energy of a
particle as a function of the nuclear position. This treatment does not include the motion of
electrons explicitly, and for this reason is less computationally demanding than ab initio cal-
culations. The molecular dynamics force field is a potential energy function that describes
the interaction between particles. It allows for the potential energy of particles to be rep-
resented as a multidimensional surface with atomic or molecular positions as variables.
The force described by the force field changes continuously with particle separation. This
behaviour describes the coupled nature of the motion of the particles, and is commonly
termed collective motion. To define a force field we must specify the functional form of
the potential and any necessary parameters (like harmonic constants). The force field is fit-
ted against physical properties determined experimentally and with ab initio calculations,
which make it empirical in nature. A widely used empirical potential is the Lennard-Jones
12 — 6 potential given by Equation (4.11), where € and o are the potential well depth, and
length scale respectively, and r;; is the separation between the i*" and j'" particles. For a
system of liquid argon, the Lennard-Jones parameters have values of ¢ = 3.4050A and
¢ = 0.9955kJmol ! [57].

o 12 o 6
ij ij

The Lennard-Jones potential is an example of an intermolecular non-bonded interaction
that is defined between different particles or molecules. In contrast, intramolecular bonded
interactions are defined between atoms within the same molecule, such as covalent “chem-
ical” interactions. There are different types of particle motion that are associated with
bonded and non-bonded interactions, which are illustrated in Figure 4.1. Typically, bonded
particles undergo bond stretching and bond bending motions as well as bond rotating mo-
tions that occur between planes. The angle between two rotating planes is called the dihe-
dral rotation angle. The non-bonded interactions describe pairwise interactions between
atoms in different molecules, or within the same molecule provided they exclude bonded
atoms [56]. This is because atoms bonded in the chemical sense should not participate in
intermolecular interactions [58]. Most molecular force fields exclude a minimum of three
nearest neighbours within the same molecule for the calculation of non-bonded interac-

tions [59].

A key attribute of empirical force fields is the transferability of the potential functional and

the parameters to describe interactions in similar types of molecules. This enables a set of
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Figure 4.1: A schematic representation of the five basic interactions important for molecular systems: bond
stretching, angle bending, torsional terms (due to bond rotations between molecular planes), as well as non-
bonded electrostatic and Van der Waals interactions [56].

parameters that are tested on a relatively small number of cases to be applied to a much
wider range of problems. For instance, the same set of potentials and parameters are used

to model a series of liquid alkanes [59] in a study of the liquid properties.

4.2.2 Equations of motion and the Verlet algorithm

Under the influence of a continuous potential, the motion of particles are coupled together
giving rise to a many body problem that can not be solved analytically. Instead, the equa-
tions of motion are approximated by a numerical integration based on a finite difference
method. This approach breaks down the integration into many small stages each sepa-
rated by a fixed time 4 t. The positions, velocities and accelerations can be approximated
by a Taylor expansion to first order, provided ¢ ¢ is sufficiently small, and the force acting
on the particle is slowly varying. This is the basis of most varieties of integration algorithm
that are used to solve the equations of motion in MD. A popular velocity integration algo-
rithm is the Verlet Leapfrog algorithm. Particle positions at time ¢ are used to evaluate the
force at t, which are then used to get the acceleration at t. The acceleration is used together
with the velocity at the previous half time step t — } & ¢ to calculate the velocities at the

next half time step v (t + 1 ) as shown by



v(t+%5t)=v(t—%5t)+5ta(t). 4.12)

Hence the positions and forces are defined at time t, while the velocities are defined half a
time step behind. The positions at the next full time step r (t + 4t ) are deduced from the

velocities calculated in Equation (4.12) together with the positions at time ¢ as shown by

r(t+6t)=r(t)+5tv(t+%5t). (4.13)

The subsequent velocities at time ¢ are calculated using

v(t)=v(t+%(5t)+v(t—%5t). (4.14)

In this sense, the velocities are considered to “leap” over the current integer time step
to give values at the next half integer time step, which is why it is called the Leapfrog
algorithm. This has the obvious disadvantage that the positions and velocities are out
of sync, and are never calculated at the same time instant. This means that the kinetic
energy which is determined from the velocities, can not be calculated at the same time as
the potential energy, which is determined from positions. Despite this inconvenience, the
Leapfrog algorithm conserves energy and angular momentum, and it is time reversible,

which make it sensible choice of integration method for this study.

4.3 Principles of Stochastic and Langevin Dynamics

Another important modelling technique in this study is stochastic dynamics. Stochastic
behaviour is not deterministic but random in the sense that the next state can not be fully
predicted from the previous state. A stochastic process can be used to model the evolu-
tion of variables which are governed by a complex dynamic. The behaviour of such sys-
tems can not be predicted easily using deterministic molecular dynamics because of the
considerable and arbitrary size of the numerical task. This forces us to represent the sys-
tem’s evolutionary behaviour to a seemingly unpredictable or random factor. Examples of
stochastic processes can be physical, such as the turbulent motion of air flow [60], or non

physical such as the price of stock in the stock market and exchange rate fluctuations [61].

A well known example of a simple physical stochastic process is Brownian motion. This

describes the perpetual random motion of a macroscopic’ particle such as a pollen grain
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when immersed in a fluid of liquid or gas particles. Brownian motion was first observed
by Robert Brown with pollen grains in water. Brown, who was a botanist, concluded
the behaviour of the pollen grain was due to “a general life force in organic matter”. It
was later deduced by Einstein [62], [63] that this behaviour of pollen grains arose from
the continuous bombardments of the surrounding water molecules. If the system were
treated exactly using molecular dynamics, we would need to solve the coupled equations
of motion for all the particles in the system. This is a difficult task to accomplish, since we
do not know the initial position of all the particles in the fluid. Instead, the force on the
Brownian particle is approximated using an effective treatment of its interactions with the
environment. The random impacts of the surrounding particles generally cause two types
of effect. Firstly, they act as the random driving force responsible for the particle’s incessant
irregular motion. This force is characterised by a mean number of random collisions per
unit time. The motion of the particle through its environment gives rise to a second force,
which represents the drag experienced by the particle due to its motion through a fluid.
Within the time taken for the Brownian particle to move a relatively short distance in the
fluid, it will have suffered many collisions with the fluid particles. The motion of the
Brownian particle occurs over a much longer timescale than the collisions as the particle is
much larger than the surrounding fluid particles. The Brownian particle feels an average
force due to the preferential collisions opposing its direction of motion. This is defined
as the friction force which is proportional to the negative velocity, so that the faster the
Brownian particle moves, the more resistance is felt [64]. The friction force is dissipative
in nature, because if no other forces acted on the Brownian particle, its velocity would

eventually reach zero as its momentum is transferred to the fluid.

A better understanding of the two forces can be achieved by viewing the system in terms
of frames of reference. If we imagined the Brownian particle’s centre of mass to be fixed,
then the bombardments from the fluid are equally likely to occur from all directions, and
the average force due to these collisions will be zero. In contrast if we imagine the centre of
mass motion of the fluid to be fixed, then a moving particle will experience higher impact
collisions against the direction of motion. In other words the preferential force felt by the
moving particle opposes the direction of motion. The random force and the friction force
have the same origin, which means that they must be related in a fundamental way. The
relationship between the friction and random parts of the microscopic force is a special

form of the Fluctuation Dissipation Theorem (FDT) [65].

In certain situations, a Brownian description of motion has been used for particles that



are a similar size to the surrounding fluid particles [6]. In this case, the immersed particle
incurs collisions with the fluid over the timescale of its motion. This means that within the
time taken for it to travel a short distance, there will have been only a few collisions with
the fluid, which are likely to change the particle’s velocity. Consequently, the immersed
particle does not feel an average opposing force, at least over the timescale of collisions.
However, over a sufficiently long timescale the immersed particle will have experienced
so many collisions that oppose its direction of motion, that it feels an average force acting
against it. The equation of motion for a light immersed particle undergoing Brownian

motion is given by the Langevin Equation,

mo(t) = —m~yo(t) + f(t). (4.15)

The equation is an inhomogeneous, first order, stochastic differential equation, where v is
the velocity in 1-dimension, and 7 is the coefficient of friction with units s ~1. The total force
acting on the immersed particle is decomposed into the fluctuating stochastic force f(t),
which is brought about by the particle’s continual bombardment with its surroundings,
and the force attributed to friction —m~ v, which is due to the particle’s motion through
the fluid.

The Langevin Equation has a different interpretation for massive Brownian particles and
lighter immersed particles, since their relative motions operate over very different timescales.
For large Brownian particles like pollen grains, the timescale of their motion is much longer
than the timescale of collisions they experience with the fluid. This means that the friction
and random forces are averaged over numerous collisions with the surrounding fluid. Un-
der such circumstances the Langevin Equation represents a true equation of motion, in the
sense that it is evolving in real time. However, for lighter immersed particles of similar or
equal size to the fluid particles, the Langevin Equation is only valid over sufficiently long
timescales, over which the friction and random forces are time averaged. This condition
regards lighter particle dynamics as Brownian on some coarse timescale, where determin-

ism is not apparent but the complex behaviour is.

The general solution for an inhomogeneous first order ordinary differential equation is of

the form

t !
o(t) = v(0) e ' + / e D Ity at’ (4.16)
0
where t' represents a dummy time variable, and I" represents the randomly fluctuating
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force per unit mass where I' = ;é The first part of the solution v(0) depends on the ini-
tial conditions. The second part of the solution persists when the memory of the initial

conditions is lost.

4.3.1 The autocorrelation function

An important part of dealing with random processes is the relationship between fluctu-
ations of random variables. By definition, the deviations of a random variable from the
mean will be zero on average, but the average of the square of the deviations will not. The
measure of association between two random variables indicates how well the value of one
variable can be predicted from the other. This is the measure of correlation between any
two random variables, which is determined by the correlation function. In general, the
correlation function is equal to the average of the product of two random variables. If the
correlations are between two different random variables, considered at the same time, then
it is called a mutual correlation function. If the correlations are between the same random
variable but at different times then it is called the autocorrelation function. The autocorre-
lation function is an important quantity in dynamical systems because it characterises the

time dependent behaviour of random fluctuations.

The velocity autocorrelation function

The velocity autocorrelation function G(t) indicates the timescale over which correlations

between particle velocities persist, as shown by

G(t) = (v0)u(t)). (4.17)

If we consider the autocorrelation function of a particle’s velocity, there will be a maximum
correlation equal to the mean square velocity ( v? ) at the initial time t = 0, since the two
velocities are identical. As the time interval between velocities increases, the particle will
be subject to random collisions from the fluid. This reduces the degree of correlation on
average, and the correlation function decreases. After a sufficiently long time the two
velocities are completely independent and the velocity autocorrelation function goes to

Zero.

The time taken for the correlation function to fall by ! defines the mean correlation time

7.. In a sense this defines the period of time for which the system retains a memory of
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its previous velocity. Assuming the correlation function decays exponentially, the mean

correlation time is given by

]‘ x 4 /
= 50 /0 G()dt (4.18)

which relates 7. to the area under the velocity autocorrelation curve, which is calculated
by multiplying the height of the correlation function at ¢ = 0 (ie (G(0))) with the time taken

for G(t) to reach 1 of its original value.

4.3.2 Mean square displacement

The distance travelled by an immersed particle in time t can be found by integrating its

velocity

x(t) = /0 "oy (4.19)

The mean square displacement can be related to the velocity autocorrelation function G(t),

using Equation (4.19). This involves a non-trivial derivation [6], which leads to the relation

() =2 /O "t - 7)G(r)dr. (4.20)

Next, we will consider the mean square displacement for two limiting cases of timescale,

which result in two very different types of particle motion.

Short time limit

For times much shorter than the correlation time t < 7, the autocorrelation function will
not have changed much from its initial value, so we can say G(t) ~ G(0). This can be

substituted into Equation (4.20), which gives

(X2(H)) = v*(0) (4.21)

where (x%(t)) is proportional to t?, which indicates the particle is moving freely. This is
due to the fact that over short timescales the particle will not have experienced sufficient

random collisions to have a significant effect on its motion.
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Long time limit (diffusion)

The second case is for times much longer than the correlation time ¢ >> 7.. Over sufficiently
long timescales, we can assume the autocorrelation function will have decreased to zero,
so that G(¢) = 0. This means that to good approximation we can evaluate Equation (4.20)

with an upper limit of oc, which gives

(2)) =2 /Ox G(rytdr — 2 /Ox G(ry T dr (4.22)

where the second term is independent of time ¢, which makes it negligible compared to the
first term (since we are considering the long time limit). Therefore we can write the mean

square displacement as,

<£m>=2tﬁxcwm7 (4.23)

which shows that ( x2(t) ) is proportional to time ¢, which is characteristic of a diffusive

process [6]. We can write the mean square displacement (in 1-dimension) as shown by

(xX(t)) = 2Dt (4.24)

where D is the diffusion coefficient defined as the area under the velocity correlation curve,

given by

D= /O ~ G(rydr. (4.25)

We recall that the area under the velocity correlation curve is related to the velocity au-
tocorrelation time, which was defined by Equation (4.18). Therefore, we can write the

diffusion coefficient in terms of the velocity autocorrelation time, as shown by

D = v*0) .. (4.26)

Assuming the immersed particle is in thermal equilibrium with its surroundings, we can
use the equipartition theorem (Equation (4.5)) in 1-dimension to write the particle veloc-
ities as v> = kT/m, which leads to a relation between the diffusion coefficient and the

velocity correlation time, given by
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kT
D=—r. (4.27)

m
Equation (4.27) is generally known as the Einstein relation [66], where T is the temperature
of the system, m is the mass of a molecule, and 7, is the velocity autocorrelation time. It
should be noted that the diffusion coefficient is not directly proportional to temperature,

since 7. is also a function of temperature.

4.3.3 The fluctuation dissipation theorem

The stochastic Langevin force I', defined in the context of Equation (4.16), is assumed to

have an ensemble average equal to zero, for v = 0, as shown by

(T(t)) = 0. (4.28)

It is also assumed that the stochastic forces at time #; and some later time ¢, are approxi-
mately independent, which is valid if the timescale of collisions is much smaller than the

timescale over which the force is observed, which is given by

(TN T(t)) =T26( — t). (4.29)

This assumption is important for systems with a light immersed particle, because it means
that sufficient time has passed between consecutive collisions for the effect of a collision
to have dissipated. A random force with this property is said to be d-correlated, which is
also called white noise, where I can be viewed as the “strength” of the noise. In contrast,

a random force that is not d-correlated is called coloured noise.

When the assumptions described by Equations (4.28) and (4.29) are applied to Equation
(4.16) in the long time limit, under conditions of thermal equilibrium [64], we get the rela-

tion

m

KT r. (4.30)

’\/:

This illustrates the connection between the frictional force, which is related to v and the
random force, which is described by I'. This important result is a fluctuation dissipation
theorem (FDT) [66], and it relates in a fundamental way the random fluctuations in the

system to the dissipative force characterised by friction.
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4.3.4 The frictional force

Typically, frictional forces occur when a body moves through a static fluid, and to first ap-
proximation the opposing force it experiences is proportional to its velocity. The force is
a direct consequence of the moving body’s collisions with the surrounding fluid particles.
The mechanism of the friction force can be understood in terms of molecular motions.
As a molecule moves in a particular direction it undergoes a change in velocity over a
given time period. If we consider the particle to have a velocity v (t) and a future velocity
v (t + 7), then the velocity change over the time interval 7 is the molecular acceleration
at time ¢. If 7 is very large, then it is likely the particle will have experienced so many
collisions with its neighbours that its acceleration is no longer related to its initial velocity
v (t). In contrast, if 7 is small then the particle may not have travelled far enough to experi-
ence sufficient collisions with its neighbours for it to feel the preferential force opposing its
velocity. Instead, its acceleration will be deterministic in nature. In between these two lim-
iting cases there is a time interval for which the particle acceleration will be proportional
to its velocity at time t. This timescale defines the duration over which frictional forces act

within the system.

When a cluster molecule suffers a collision with a neighbour its energy changes in response
to that collision. This brings about fluctuations in the kinetic energy, and consequently the
molecule’s velocity. The time taken for the energy to dissipate defines the time for which
there is a correlation between the initial and final velocities of the molecule, which can be

a7

viewed as the molecule’s “memory”.

As mentioned previously, the frictional force is proportional to the particle velocity. This
means that the velocity correlation time must also be related to the frictional force. This
relation can be derived from the solution to the Langevin equation [6], given by Equation
(4.16), and from the definition of the velocity autocorrelation function for a time interval
7, as shown by Equation (4.31). The first term on the right of Equation (4.31) describes the
initial state of the system which goes to zero for long timescales. The second term describes
the correlation between the initial velocity v(0) and the acceleration I'(t’), at a much later
time, which is equal to zero. The remaining third term describes the equilibrium steady

state behaviour independent of the initial conditions.

52
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Substituting Equations (4.28) and (4.29) into this expression, forces the two time variables

t" and t” to be equivalent, so that the velocity autocorrelation function can be written as

G(T) = (v*(0))e 7 (4.32)

where (2%(0) ) = 2 =, which is deduced from Equation (4.30) and the equipartition theo-
rem. This result is substituted into Equation (4.18) and integrated, which gives the velocity

autocorrelation time in relation to the friction coefficient as

T, = v L (4.33)

We recall that in the long time limit, 7. is related to the diffusion coefficient D, which was
previously defined by Equation (4.27). This means the frictional forces in the system are

also related to diffusion.

4.3.5 The Fokker-Planck Equation

The velocity of the Langevin particle is dependent on the random force, which means it
will vary stochastically. Since velocity is a continually changing variable, the probability
associated with finding the system at a particular velocity interval (v — v + J v) is defined
by the probability density distribution of particle velocities W(v). It is standard manipu-
lation to convert a Langevin equation of motion (in 1-dimension) into a time evolution of

the probability density [66], as shown by

OW __0@W) kT PW
ar ' oo " o

(4.34)

where v is a 1-dimensional velocity. This is also known as a Smoluchowski Equation,

which is the equation of motion for probability density in 1-dimension [66].
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4.4 Langevin Dynamics Applied to Cluster Decay

In this section we use the Langevin picture of particle motion through a fluid to describe
the decay mechanism of molecular clusters. The Langevin treatment of a cluster views the
decay mechanism as single particle escape from a constraining potential, driven by a ran-
dom force due to all the other molecules in the cluster (and the carrier gas if present). This
means that cluster decay is viewed from the perspective of an individual molecule within
the cluster, where the constraining potential is a potential of mean force. Each molecule in
the cluster is considered to move in a 3-dimensional potential well due to its average inter-
actions with all the other cluster molecules that are randomly colliding with it. A similar
approach was used by Nowakowski and Ruckenstein [67], [68], which modelled cluster
decay as a diffusive process along an energy reaction co-ordinate. However, this approach
failed to take into account the radial position of particles within the cluster, and thus was
not a realistic view of cluster decay, as a fluctuation to positive energy will only lead to

decay if the particle is near the cluster’s surface.

More recently, a variation of this approach was adopted by Ford and Harris [39], which
considered the motion of Lennard-Jones particles in real space along a radial reaction co-
ordinate. The radial motion of an individual molecule relative to the cluster’s centre of
mass was modelled using a Langevin equation for noise-driven dissipative motion in a

potential well, given by

mo = f(r) —myv+ f(t) (4.35)

This equation is similar to Equation (4.15) except it includes the mean force f(r) on the
particle due to its average potential interactions with the surrounding particles. The mean
force is the average potential interactions felt by a particle due to its neighbours. It is very
different to the collision induced frictional force and the random force, which are prin-
cipally kinetic in nature. The particle forces are treated in 1-dimension along the radial
co-ordinate relative to the cluster’s centre of mass, assuming the cluster is spherically sym-
metric. This reduction in the degrees of freedom implicitly assumes a certain symmetry
of the dynamics, and that the inclusion of higher dimensions would yield the same result.
This is a reasonable assumption since a single-particle dynamical model with a spherically

symmetric forcefield will invariably produce a spherically symmetric mean radial force.

It seems sensible that the likelihood of particle escape is related to its position in the cluster,

as well as its energy. In addition to this, if the cluster is surrounded by a carrier gas this
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will increase thermal fluctuations within the cluster and assist the particle’s escape. A
sensible guess for the equilibrium probability density distribution P(r) for a particle at
radial position r from the cluster’s centre of mass would be the Boltzmann distribution,

given by

P(r) x e~ ®0V/kT (4.36)

where @ defines the potential of mean force, which is related to the mean radial force by

o(r) = /OrdtD(R) - —/O'f(R)dR 4.37)

If we evaluate the integral in Equation (4.37) between r = 0 (the cluster’s centre of mass)
and r,, which is the cluster escape radius defined as the radius at which & first reaches
a plateau, we obtain the change in potential of mean force A ®, which we refer to as the
cluster potential of mean force depth. The larger the potential depth, the less likely it will
be for a particle to escape as large thermal fluctuations will be needed to assist it out of the
confining potential. The relation between the particle escape rate and confining potential
depth is illustrated schematically in Figure 4.2. The relation is mathematically represented
in terms of the Langevin cluster decay rate, which is derived from the equation of motion
of probability density in 3-dimensions (ie the Fokker-Planck Equation). The derivation of
the Langevin cluster decay rate is outlined next, and it is largely adapted from Tang and
Ford [69], and Harris and Ford [39].

The Langevin description of particle motion can be simplified by taking the small mass, or
high friction limit, which treats the decay particle as comparable to those comprising the
surrounding fluid. The Fokker-Planck equation in 3-dimensions is given by

oW 1

= = —[-V -(fW) + kT V*W 4.

57 = o LY W)+ ! (4.38)

where f = —V ®(x,y,z) and W(r.t) is the probability density of finding a particle at po-
sition r and time t. This represents the full 3-dimensional Fokker-Planck equation, as op-
posed to the 1-dimensional one stated in Equation (4.34). The model can be simplified to a
form more suitable for a molecular cluster by transforming the problem into spherical po-
lar coordinates, relative to the cluster’s centre of mass (assuming spherical symmetry). In

this scenario only the radial properties are needed, and the mean force becomes the mean

radial force f = %2 as shown by
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Figure 4.2: A schematic representation of a particle in a cluster confined by a potential of mean force ®(r).
The potential of mean force is centred about the cluster centre of mass position at r = 0. The particle can
escape by reaching a radial position of r,, driven by a phenomenological stochastic force. The cluster escape
radius r, has an arbitrary value that can be estimated for a decay event to be the radius at which the potential
of mean force first reaches a plateau.
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The rate of change of the probability density can be interpreted as the divergence of the
probability current moving outward from the cluster’s centre of mass (in a radial direc-

tion), as shown by

oW 10
27 =~V 0 = - 55D (4.40)
where equating and rearranging Equations (4.39) and (4.40) gives the probability current J

as shown by

ow

<] (4.41)

1
= — — kT
J= oUW

where | is the radial component of J. The characteristic boundary condition for the proba-
bility density at the edge of the cluster, which we regard as the cluster’s escape radius 7, is
W(r.) = 0. We can implement this boundary condition by writing the steady state solution
as ] = 0, upon which integrating gives
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The subsequent solution of Equation (4.42) is given by

W(r) x e~ ®O/T (4.43)

which resembles a Boltzmann distribution and verifies the “guess” of the probability den-
sity previously made in Equation (4.36). Taking the time independent situation from Equa-
tion (4.40) with a non-zero current means that r? | must be constant with respect to r, which

gives

ow

St = pg =0 (449

This is a rough approximation, since it implies that there is no probability of escape, which
means the cluster never decays. In actual fact, this is not true and it is assumed there is a
small steady drain of probability or “leakage” such that 2 V;’ < 0. The probability current

] can be rewritten in the form

J(r) exp [ o )} = — :—,Tn di (W(r) exp (d;(T) ) ) (4.45)

where the integration of both sides over all radii, from 0 to the escape radius r,, given by
the boundary condition W(r,) = 0, leads to the expression of the probability current at the

escape radius as shown by

kT re -1
J(re) = ~m Ww(0) (7’3/0 rl—zexp(w)d ) ) (4.46)

The probability density at the centre of mass W(0), can be evaluated by normalising the

steady state solution over all space, so that

W(0) = exp [—(—z-(—gl] ( / 7 exp( ())d ) . (4.47)

Since J(r.) represents the probability current of a single particle at the edge of the cluster
(assumed to be spherical), the decay rate of an i-cluster will be proportional to the number

of particles i, and is given by
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Vi = 420 ](r,). (4.48)

The complete form of the kinetic decay rate is given by

Jkin _ ikTr? exp (- %;?) (4.49)

' ym [fore exp (_®(r)—T¢(0)) d,] [rg 7o 1 exp (—¢<r);¢<0)) d,]

where m is the particle mass, A ®; is the potential of mean force depth for an i-cluster, r
is the radius from the cluster centre of mass, and r. is the escape radius, which may be
estimated for a decay event to be the radius at which the potential of mean force first
reaches a plateau. This result has been provided by Tang and Ford [69], and represents a
complete 3-dimensional description of the variables. The decay rate shown by Equation
(4.49) differs from the decay rate derived by Ford and Harris [39] by a factor of r?/ r?, inside
the second integral. The decay rate of an argon cluster of 50 molecules at 49 K, calculated
using Equaticn (4.49) is approximately 1.5 times smaller than that predicted by Harris and
Ford.

In essence, Equation (4.49) is a form of Arrhenius Equation, since it is defines the frequency
of decay in terms of a temperature dependent exponential quantity. The important result
here is that the kinetic decay rate is dependant upon the potential of mean force depth
A @ and the frequency of particle collisions represented by . The practical implications
of Equation (4.49) are important for cluster systems which have lengthy decay timescales
and are quasi-stable at a given temperature and supersaturation. In these systems, the
observation of dynamically generated cluster decay configurations are typically very rare,
and obtaining sufficient decay statistics is a formidable if not impractical task. The kinetic
decay equation shown here provides a crucial means of predicting cluster lifetimes. It can
be used in the absence cluster decay configurations with certain approximations (discussed

in Chapter 6), which makes it a highly efficient and desirable tool for this type of study.

4.5 Summary of Methods Applied to Cluster Dynamics

Molecular dynamics models of clusters provide a realistic treatment of the system dynam-
ics. This study pursues an approach of treating clusters in isolation from the vapour in

thermal equilibrium, using molecular dynamics simulations performed at constant tem-
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perature. We focus on the calculating the decay timescale of clusters of complex molecules,
using a Langevin interpretation of the decay mechanism. This bypasses the need to calcu-
late the cluster work of formation and instead focuses attention on the potential of mean
force of the cluster. The potential of mean force describes the average force felt by a particle
at a particular radius from the centre of mass, which is related to the free energy required
to remove a particle from the cluster to infinity. The cluster work of formation is the free
energy required to form an i-cluster from i particles of vapour. The potential of mean force
is easier to determine than the cluster work of formation as it is calculated from the molec-
ular dynamics generated forces. Another important factor in determining the cluster decay
rate is the frequency of particle collisions. This is characterised by the friction coefficient,
which can be determined from the particle motion. In the next chapter we will discuss

details of the dynamic cluster model, and test the MD tools employed.
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Chapter 5

The Molecular Dynamics Model of

n-nonane Clusters

The MD model of n-nonane clusters is based on the treatment of the clusters in isolation
from the supersaturated vapour under the experimental conditions. This eliminates the
interactions a cluster would normally experience with the surrounding vapour molecules.
The approach of removing the cluster from its normal surroundings is often used in MD
simulations of molecular clusters [38], [70] to improve the computational efficiency of the
task. The approach used by this study is an effective treatment of molecular clusters, even
though it is not the most direct treatment of the problem. Since the cluster is isolated, it is
not allowed to grow by collision but it can still lose fast moving molecules by evaporation,
so decay events can still occur. This constraint is illustrated in Figure 5.1, which implies
that the evolutionary dynamics of the cluster, induced by collisions with vapour molecules
will not be investigated. Instead, we focus on the interactions within the cluster itself
that occur between cluster molecules, and observe how these interactions affect the cluster

decay dynamics.

- a2 ®
¥ 8L
(i-1) (i) (i+1)

Figure 5.1: A schematic showing the isolating treatment of the cluster during the MD simulations. Growth
by collision is not allowed but the cluster can still lose molecules by evaporation, so decay can occur.



5.1 Timescales of Interest

Under the experimental conditions, the cluster suffers collisions with the vapour molecules
and the carrier gas molecules that surround it. The carrier gas collisions occur over a
much shorter timescale than the vapour collisions, since the carrier gas molecules are much
lighter than the vapour molecules and the concentration of the carrier gas is higher than
the vapour. The timescale of collisions between the carrier gas and cluster can be esti-
mated approximately from the kinetic theory for a collision cross section of a sphere. We
calculate the typical collision time between a helium carrier gas and a cluster by evaluating
the collision growth rate according to Equation (3.6) for a helium atom at the prevailing
experimental conditions. We use a carrier gas pressure of 40kPa [11] and temperature of
233K for helium to determine the number of helium atoms, assuming it to be an ideal gas.
The average collision time between the helium carrier gas and a 40-cluster is estimated to
be 10ps. This is a significantly shorter timescale than the vapour collisions with the clus-
ter, which was calculated to be 44.0ns for a 40-cluster at a temperature of 233K, with a
supersaturation of 29, a saturated vapour pressure of 2.2889Pa, and a liquid bulk density
of 765.1 Kg m~3 [11] (as stated in Chapter 3). The two collision timescales have a quanti-
tative difference of about 3 orders of magnitude, so it is reasonable to assume there will
be a substantially large number of carrier gas collisions in between vapour collisions with
the cluster. Under these circumstances, to good approximation, the mean kinetic energy
of a cluster molecule inside the cluster remains equal to that of the carrier gas. Provided
there are a sufficiently large number of thermalising carrier gas collisions with the cluster,
it is reasonable to assume that the cluster grows, and by implication decays, when it is at
thermal equilibrium with the carrier gas. This suggests the use of constant temperature
dynamics in the MD simulations, which can be implemented by immersing the cluster in a
heat bath at a constant temperature T, to maintain the cluster in thermal equilibrium with

its surroundings.

5.2 Liquid Empirical Potentials

Classical MD simulations use force fields to describe the interactions between the particles
of a system. Typically, force fields describe the behaviour of particles comprising the bulk
phase. Defining a force field for molecular clusters is not an easy task as it should describe
both the surface and bulk interactions within the cluster. It is not clear how the potentials

must be adjusted to correctly represent interactions of molecular clusters, a task which is
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Figure 5.2: A schematic representation of the
united atom model of a n-nonane molecule. The
blue particles represent CH; groups and the red
particles represent CH, groups. The united atom
model has fewer degrees of freedom, which re-
duces the number of pairwise calculations that are
needed to evaluate the potential energy.

beyond the scope of this study. Instead, we use empirical potentials of the bulk liquid to
describe the interactions within the cluster. Although this is not an ideal approximation,
it provides a practical means by which we can perform MD simulations of clusters. The
simulations will ultimately test the suitability of liquid empirical potentials at describing

the interactions within small molecular clusters.

The number of non-bonded interactions within a molecule scale with the square of the
number of interaction sites present. In the case of n-nonane, each molecule has 9 carbon
atoms and 20 hydrogens, which means there are approximately -2—9’2ﬁ pairwise calculations
to perform to determine the molecular potential energy. Clearly there is a computational
advantage if the number of interactions sites can be reduced. The simplest way to do this
is to subsume the hydrogen atoms into the carbon atoms, so that a CH3 group can be mod-
elled as one particle called a united atom. Using a similar approach with the remaining
CH, groups, n-nonane is reduced to a 9 particle united atom representation as shown in

Figure 5.2.

By employing the united atom approach we aim to improve simulation efficiency by aver-
aging out explicit degrees of freedom; however it is important that the united atom model
still describes the dynamics of the cluster correctly. Obviously, the reduced system dynam-
ics has certain limitations. For instance, polar molecules have large asymmetries in charge
distribution [56], which can not be modelled as a single unit with spherically symmetric in-
teractions. This is not an issue for n-nonane, since it is a charge neutral molecule. Another
obvious consequence of the reduced dynamics approach is the necessary modification of
the Van der Waals interactions for the united atom. Invariably, these interactions are cen-
tred on the largest atom’s nucleus, as opposed to the centre of mass position of the united
atom, which can lead to problems associated with energetic conformations. In the case of
n-nonane this makes a relatively small difference since the hydrogens are comparatively
lighter than the carbon atoms, and we can assume the centre of mass of the united atom is

the same as the centre of mass of the carbon.

Overall, it is reasonable to assume that the spherical united atom model centred on the

carbon nucleus is a fair approximation of the interactions sites of n-nonane, and similarly
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for most hydrocarbons.

5.2.1 The GROMOS96 force field

The intramolecular and intermolecular interactions of n-nonane clusters are modelled us-
ing the GROMOS96 suite of united atom potentials [71]. The potentials are directly pa-
rameterised to reproduce the enthalpy of vaporisation, and the vapour pressure of liquid
alkanes at 298K [59], [72]. The potentials comprise of bonded and non-bonded interac-
tions, which result in the molecules having flexible bonds and a flexible structure. The
united atom potential treats the hydrogen atoms implicitly, which is a reasonable approx-
imation since n-nonane is overall non-polar, and the hydrogen atoms are assumed to have

a negligible effect on the molecule’s overall dynamics.

The bonded interactions are described by a combination of harmonic and an-harmonic

potentials, as shown by

N
Vbond(r) — 22‘; lK [b2 _ b2 ]2 +
"214 bnlYn ngy
> 5 Kg,[c0s0, — cosfn, > + (5.1)
n=1
N
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n=1

where r is the 3N-dimensional position vector of N atoms in the system. Generally, K de-
fines the force constant, b defines the instantaneous bond length, # the instantaneous bond
angle, and v’ defines the torsion angle between two planes (see Figure 4.1). For the tor-
sional interaction, 4, is the equilibrium rotation angle between two planes and and m,, is
the “strength” of the coupling. The superscript O refers to the equilibrium value of the re-
spective quantity. The first summation describes the bond stretching motion between two
covalently bonded atoms, and hence requires the specification of two atomic positions. The
second summation describes the bond angle bending motion, which requires the specifi-
cation of three atom positions. The third summation describes the interaction arising from
the torsional forces that act on an atom as a result of bond rotations (see Figure 4.1), which

requires the specification of four atom positions.

The non-bonded interactions usually comprise short range Van der Waals interactions, as

well as long range electrostatic interactions for charged atoms. Since n-nonane is a non-
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Bonded Interaction Force Constant Equilibrium Value

CH, — CH, Ky, = 7.15 x 10° kJmol ! by, = 1.53A
CH, —CH, — CH, Kg, = 530 kJmol ! 6o, = 109.5°
CH, — CH, — CH,, — CH, Ky, = 5.92kJmol~! cos(8,) = +1.0
m, =3
Non-Bonded Interaction € (kJjmol 1) o (A)
CH, (—CH,) 0.4899 3.990
CH; (—CH,) 0.7327 3.905
CHs (—CHj) 0.7327 3.875

Table 5.1: The bonded and non-bonded parameters of n-nonane that are used in the MD simulations. The
parameters are taken from the GROMOS96 force field [59], [72].

polar molecule it does not have permanent dipole charges, so the electrostatic interactions
can be neglected. The Van der Waals potential is modelled using a Lennard-Jones inter-
action, which has already been stated by Equation (4.11) in Chapter 4. This is an effective
short ranged pair potential that describes the interaction between two uncharged atoms.
It is strongly repelling for very small radii but weakly attractive for large radii. The GRO-
MOS96 parameters for the bonded and non-bonded interactions in n-nonane, that are used

in the simulations are defined in Table 5.1.

5.3 Thermostatting Clusters

In order to achieve thermal equilibrium in MD it is essential that there be a suitable means
of controlling the temperature of the system correctly. For clusters with just a few molecules
this can be a difficult problem and consequently the issue of fixed temperature cluster
dynamics is often avoided in MD, in favour of treating clusters in isolation, without a
surrounding heat bath. This fixes the total energy of the cluster, which means that its ther-
modynamic temperature cannot be completely defined. The thermodynamic temperature
is defined as the derivative of the system energy with respect to entropy T = OE/0S,
which is different to the kinetic temperature, which is defined as the average kinetic en-
ergy of the system, given by the equipartition theorem 1/2m(v?) = 3/2kT. A molecular

cluster that is isolated from its environment does not interact with its surroundings, but
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its kinetic energy can vary about a mean value. Provided the mean kinetic energy has
converged, we can characterise the thermal state using the kinetic temperature, obtained
using the equipartition theorem. It is also possible to fit the distribution of velocities of a
cluster molecule to a Maxwell-Boltzmann distribution, and use it to obtain an estimate for
the cluster temperature, which provides a quantitative comparison to the kinetic tempera-
ture. Fixing the cluster’s energy is not the most realistic approximation because the cluster
normally interacts with a carrier gas (and the supersaturated vapour) under experimental
conditions. It is preferable to impose canonical energy fluctuations on clusters with rel-
atively long lifetimes (ie longer than the thermal equilibration time). This is achieved by
maintaining the cluster in thermal contact with a larger system such as a heat bath. The
correct thermalisation of the cluster is crucial, as the decay rate will be sensitively depen-

dent upon the average kinetic energy per molecule.

5.3.1 The Berendsen thermostat

In MD, thermal equilibrium is achieved by using a thermostat to maintain the system at a
fixed temperature. This means the simulated microscopic configurations are at the same
temperature, and make up a canonical ensemble. There are various thermostats that are
used to control the simulation temperature in MD. The method of temperature control
employed should populate energetic modes according to the equipartition theorem. A fa-
miliar method used to control temperature is the Berendsen thermostat (73], which uses
a simple approach of velocity scaling. It responds to kinetic energy fluctuations with a
global rescaling of all velocities. Each particle velocity is multiplied by the same factor, to
achieve the correct system temperature. Since each particle velocity is multiplied by the
same scalar factor this is equivalent to scaling the system'’s total momentum by the same
factor. The Berendsen thermostat is expected to conserve angular momentum [73], how-
ever, the global rescaling of the system velocities creates unphysical correlations between
each particle and the rest of the system. For a large number of particles this is a fair approx-
imation because the magnitude of rescaling is small since it is equally shared among all of
the particles. However, for a small number of particles, the magnitude of rescaling for each
particle is much larger, creating unrealistic correlations between particles in microscopic
systems. This could lead to an incorrect equipartition of energy. If equipartition is not
established properly in microscopic systems, a thermostat that populates translations and

rotations about the centre of mass may cause the system to translate or spin nonphysically.

We employ constant temperature dynamics for a 40-cluster and 50-cluster using the Berend-
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sen thermostat for a time period of 5ns. We use a coupling time parameter of 0.01ps, which
is approximately three orders of magnitude greater than the coupling time between the
cluster and a helium heat bath, as deduced at the start of the chapter, which accelerates
the thermalisation between the cluster and the surrounding heat bath. To ensure that the
Berendsen thermostat correctly conserves the cluster angular momentum we calculate the
angular momentum of the cluster at each snapshot. The angular momentum for a system

of particles about the centre of mass is given by

N
L = Z m;r; X vj (52)
i

where m is the mass of the i particle in the cluster, r; is its radial position relative to the
centre of mass, and v, is its linear velocity relative to the centre of mass [74]. The angular
momentum can be expressed in terms of the angular velocity w and the moment of inertia

I as shown by

L=1lw (5.3)

where w = vr and I is given by

N
=Y mir? (5.4)
i

The angular momentum is related to the rotational kinetic energy given by

N L2
Ta = 3 57 (55)

which is analogous to the translational kinetic energy Tians = ¥ 5’;1"2—1. The angular momen-
tum of the cluster is calculated from Equation (5.2) using the positions and velocities from
the MD trajectory. The magnitude of angular momentum L is plotted against snapshots in
time for the 40 and 50 clusters, as shown in Figures 5.3 and 5.4 respectively. For both clus-
ter sizes, the Berendsen thermostat causes a sharp increase in magnitude of the angular
momentum. This could be due to the fact that the majority of the cluster’s kinetic energy is
contained in the centre of mass translation and rotation, leaving the vibrational degrees of
freedom unpopulated. Other groups have reported similar difficulties concerning poorly

conserved angular momentum of small clusters [75]. The Berendsen treatment of locally
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Figure 5.3: The angular momentum of a 40-cluster simulated at 225K for approximately 2.5ns with coupling
time parameter 0.01ps. During this time the cluster suffers around 250000 thermalising collisions with the heat
bath. The angular momentum is calculated from the united atom masses, positions, and velocities.
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Figure 5.4: The angular momentum of a 50-cluster at 250K over approximately 4ns with coupling parameter
0.01ps. There are about 400000 collisions between the cluster and its surroundings during this time. The
angular momentum is calculated from the united atom masses, positions, and velocities.
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occurring kinetic energy fluctuations through a global velocity scaling of all particles is
an unrealistic representation of the fluctuations in a microscopic system. For the case of
the bulk, the Berendsen method may be sufficient, but for microscopic quasi-stable clus-
ters, it carries serious consequences as it clearly does not conserve the cluster’s angular

momentum correctly.

5.3.2 The Andersen thermostat

An alternative approximation of the energy exchange between the cluster and carrier gas
can be achieved using random collisions. This approach is implemented through the An-
dersen stochastic thermostat [76], [77], which mimics the effect of carrier gas collisions
with the cluster using effective random collisions characterised by a random momentum
transfer. The carrier gas collisions are treated implicitly, rather than explicitly. A recent
MD study conducted by Tang and Ford [69] investigates the effect of explicitly modelled
carrier gas collisions with argon clusters. However, this approach involves a large number
of interacting particles, which can be a computationally demanding task to generate. The
Andersen thermostat assumes that all atoms in the system are equally likely to suffer a
collision, and that successive collisions are uncorrelated. This means that the probability

distribution of time intervals between two successive collisions is of the form

P(n) =nexp[-nT] (5.6)

where 7) is the collision frequency of the cluster atom with the carrier gas, which is equal
to one over the mean atom lifetime, 1/( 7). The probability of uninterrupted motion of
a cluster atom diminishes exponentially with 7, since it is unlikely for a cluster atom to
survive for a long time without experiencing a random collision. The Andersen thermostat
works by randomly selecting a cluster atom which is to suffer a carrier gas collision at
some randomly sampled time. The atom is assigned a random velocity sampled from a
Gaussian distribution at the temperature of the carrier gas (ie the average kinetic energy of

the carrier gas).

The random nature of the Andersen thermostat means that the probability of incurring a
collision is equally likely from all directions. Therefore the Andersen thermostat should
conserve the angular momentum of the cluster, regardless of the system size, and the du-
ration of simulation. To check that this is true, we calculate the angular momentum mag-

nitude of a 40-cluster simulated at 225K using Andersen thermostat, maintained at NVT,
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with a coupling time of 10ps. The magnitude of the angular momentum is plotted against
time in snapshots as shown in Figure 5.5.
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Figure 5.5: The angular momentum magnitude for a 40-cluster simulated at 225K for 5ns. During this time
the cluster suffers approximately 500 thermalising collisions with the “effective” carrier gas modelled using
the Andersen thermostat.

The plot indicates that the Andersen thermostat appears to control the angular momen-
tum of the cluster correctly, and does not lead to unphysical spinning clusters. The aver-
age angular momentum magnitude in Figure 5.5 is 7.633 x 105 AMUA?ps . We can check
whether this is a quantitatively reasonable value by calculating the rotational kinetic en-
ergy of the system. According to equipartition theorem, a system in thermal equilibrium
will have on average 1/2kT of energy for each degree of freedom. For a 40-cluster at
225K, this corresponds to an average rotational kinetic energy of 4.660 x 10~2!]. In con-
trast, the rotational kinetic energy can be calculated from Equation (5.5). To do this we
calculate the moment of inertia about the cluster centre of mass using the united atom
masses and positions, which is thus determined to have an average value over all snap-
shots of 8.267 x 108AMUA 2ps~!. This is used in Equation (5.5), along with the average
angular momentum magnitude squared to give an average rotational kinetic energy of
5.884 x 10~2!]. This value compares very well to the average rotational kinetic energy pre-
dicted by the equipartition theorem. Therefore, it is reasonable to assume the system is in

approximate thermal equilibrium.

Overall, the Andersen thermostat provides a realistic and physical means of modelling
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the experimental conditions that the cluster is exposed to. We have determined that the
Andersen thermostat maintains the cluster angular momentum properly, with an average

rotational kinetic energy of approximately 3/2kT.

5.4 Cluster Equilibration

The molecular dynamics software employed by this study is DL_POLY [58], which spe-
cialises in dealing with simple molecular systems like polymers. For molecules with flex-
ible bonds, a suitable molecular dynamics time step is 0.5fs [56]. The initial positional

co-ordinates of the cluster atoms are generated using the drawing package XLeap'.

Before we can perform MD simulations, the system must be structurally relaxed so that all
the atoms reach their equilibrium positions at the desired simulation temperature. This is
an important step because unequilibrated configurations can lead to unrealistic structures
and conformational energies. This is particularly important for constrained bonds rather
than flexible bonds, since flexible bonds can dissipate extra energy, given sufficient time.
A convenient approach to relaxing flexible n-nonane molecules is to gently elevate the
temperature using molecular dynamics until the desired temperature is achieved. This
is illustrated for a 5-cluster in Figure 5.6, in which the cluster temperature is increased
by 50K (starting from OK) every 125ps until the desired temperature is achieved (200K).
The cluster is then simulated at the desired temperature for a sufficient amount of time to

equilibrate its energy, as shown in Figure 5.7.

5.5 Molecular Dynamics Simulations of n-nonane Clusters

MD simulations are performed at NVT for n-nonane cluster sizes of 40, 50 and 67 at con-
stant temperatures maintained using the Andersen thermostat. The simulated tempera-
tures correspond to the experimental temperatures at which the clusters were deduced to
be critical by Ford [22]. The simulations generate approximately 5ns of real time dynamics.
We employ simple cubic periodic boundary conditions with a cubic cell parameter of 80A,
and a Van der Waals cut off radius of 30A. The approximate time taken to conduct the MD
calculations in real time, along with the computational specifications of the machine, are

outlined in Appendix A.

! Xleap is part of the AMBER molecular dynamics modelling suite.
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Figure 5.6: The temperature of the cluster is increased at intervals of 125ps, until the desired cluster temperature (200K)
is achieved using a coupling parameter of 0.1ps. The total energy and potential energy are also plotted to show the relative

change in energy contributions.
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Figure 5.7: Equilibration of the 5-cluster after the temperature elevation to 200K, using a coupling parameter of 10ps.
The different energy contributions are plotted against time in snapshots.
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During the simulation the cluster is in thermal equilibrium with the effective carrier gas,
but dynamically, it remains unstable with respect to decay. This means that decay events
are permissible and may be observed occasionally depending on the system conditions.
The length of time elapsed before a decay event can be observed, will depend on the size
of the cluster and its temperature. Our 40-cluster and 50-cluster trajectories do not exhibit
cluster decay, and remain bound throughout the simulation. Our 67-cluster trajectory has
two decay events, the first at around 1.5ns into the simulation, and the second at 2.5ns.
Both evaporated molecules recombine with the cluster within half a picosecond due to
the periodic boundary conditions, which prevents the molecule moving beyond a certain
region from the cluster. The first evaporation event is illustrated in Figure 5.8, which shows
a series of MD snapshots generated from the 67-cluster trajectory. Snapshot B shows that
a molecule has escaped, and snapshot C shows it just before it recombines with the cluster

again.

Figure 5.8: A sequence of molecular dynamics snapshots of a 67-cluster. The colour scheme represents
radial position relative to the cluster’s centre of mass in the first snapshot A, which is at 1.2ns. The second
snapshot B is taken about 200ps later, and shows a molecule has escaped. The third snapshot C is taken
another 200ps later, just before the molecule recombines with the cluster, and fourth snapshot D is a further
200ps later, just after it has recombined. An interesting feature of these images is the radial distribution of
molecules within the cluster. As we might expect for a liquid cluster, the molecules appear to be disordered,
which illustrates the cluster’s unstructured fluid nature at 300K.

The colour scheme represents radial position relative to the centre of mass in snapshot A.



Clearly there are fewer molecules close to the cluster’s centre of mass (red), and at the
periphery (blue), than molecules within the cluster’s main volume (green). This suggests
that the sampling of forces for these regions may be relatively poor due to comparatively
fewer statistics. At later stages of the simulation, the molecules explore different positions

within the cluster, and become “mixed”.

5.5.1 Temperature fluctuations

The cluster temperature is determined from the average kinetic energy, which is calculated
from the particle velocities. The temperature of the cluster is plotted against simulation
time in snapshots, as shown in Figure 5.9. The plot shows the temperature of a 40, 50, and
67-cluster. For all three cluster sizes, the temperature appears to fluctuate about a mean
value, which is expected for small systems because the temperature is calculated from the
average kinetic energy, and averages of small systems exhibit large fluctuations. In con-
trast, for large systems where N ~ 10?3, we expect the kinetic energy to remain relatively
constant and the fluctuations to be small. This is because, in large thermodynamic systems,
at any given instant, the large number of particles ensures that any variation of a system
property from the mean will be negligible. Hence, for large systems, to good approxima-
tion, the temperature can be expressed in terms of the average kinetic energy. For small
clusters, however, it is not sensible to define the temperature in the same way using the
average kinetic energy because the instantaneous temperature is not fixed. The significant
deviation in kinetic energy from the mean is obviously due to the cluster’s small size, and
this poses a problem over the validity of the kinetic definition of temperature over short

timescales.

5.5.2 Particle velocities

We can determine whether a cluster’s thermal fluctuations are correctly represented by the
Andersen thermostat by deducing the probability density distribution of velocities. Fol-
lowing the discussions in Chapter 4, we expect the velocity to be distributed according to
a Maxwell-Boltzmann distribution, provided the sum of independent velocity measure-
ments has a finite variance. The Maxwell-Boltzmann probability density of velocities is

given by

%

m
2k

P(v) = Av? exp [ ] (5.7)

h}
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Figure 5.9: The temperatures for the 40, 50, and 67-clusters determined from the kinetic energy, plotted over
5ns (using the Andersen thermostat).
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Figure 5.10: The red curve shows the normalised distribution of particle velocities obtained from the
5-cluster simulation at 175K. The black curve shows the predicted velocities from a Maxwell-Boltzmann dis-
tribution, which estimates the temperature to be 174.726K.
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where v is the magnitude of the particle velocity, m is particle mass (united atom mass),
T is the temperature of the cluster, and A is normalisation constant. The velocities of the
cluster particles are taken from the MD trajectory of a 5-cluster simulated at a temperature
of 175K using the Andersen thermostat at NVT. The velocities are divided into appropri-
ate intervals ranging from the smallest measured velocity to the largest. The number of
particle velocities that lie within each interval is divided by the total number of particle
velocities over all snapshots. This gives the normalised velocity probability density, aver-
aged over time, which is plotted against the velocity midpoint of each interval, as shown

in Figure 5.10 by the red curve.

The distribution of Equation (5.7) is fitted to the simulated data by choosing appropriate
values for the exponent and A.2 The value of the exponential coefficient from the fit is
then equated to 577, where the mass of a united atom is approximated to that of CH,
for convenience. This gives a theoretically predicted cluster temperature of 174.726K. The
predicted cluster temperature compares very well to simulation temperature calculated by
DL_POLY to be 175K, which is determined using the average kinetic energy of the clus-
ter. The agreement between the two temperatures illustrates that the Maxwell-Boltzmann
distribution is the correct representation of velocities for a cluster simulated at constant
temperature at thermal equilibrium. It also supports the assumption that the Andersen

thermostat produces the correct equipartition of energy for the cluster.

5.5.3 Cluster energetics

A system in true thermal equilibrium is expected to sample a canonical distribution of
energies. This means the probability that the system has a particular energy state, at any
given instant is proportional to the Boltzmann factor, and the total energy of the cluster is
approximately Gaussian distributed. The total energy of a 40-cluster, simulated at 233K is

plotted against time in snapshots, as shown in Figure 5.11.

The probability density of cluster energies should indicate whether the cluster energies can
be described using a Boltzmann weighted probability, and if it is a good approximation to
thermal equilibrium. To plot the energy distribution, suitable energy intervals are defined,
and the number of energies that fall into each interval are counted and divided by the total
number of cluster configurations (snapshots). The normalised population of each bin is
the energy probability density, which is plotted against the midpoint value of each energy

interval, as shown in Figure 5.12. The number of microscopic configurations of the cluster

*The theoretical fit is made in Mathematica using the NonLinearFit function [78]
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Figure 5.11: Total energy plotted against simulation time for a 40-cluster at 233K. The plot also shows the
kinetic energy and potential energy contributions.

with a particular energy E defines the density of states g(E). The density of states was
originally defined in Chapter 4 by Equation (4.6), and can be loosely interpreted as the
entropy of the cluster. We can evaluate the density of states approximately, by rearranging

Equation (4.6) for g(E) as shown by

g(E) = P(E)eE/FT, (5.8)

This requires knowledge of the partition function that is contained in P(E). As we know
the partition function is the sum over all possible energetic states of the system. We can
evaluate the partition function approximately with a numerical integration over the prob-
ability energy density in Figure (5.12). This is used together with the cluster energies in
Equation (5.8) to give an approximate value for the density of states shown in Figure 5.13.
This plot illustrates the log-linear variation of the density of states with cluster energy.
This illustrates that the density of states is an exponentially increasing function of energy
[52]. The behaviour of the density of energy states in Figure 5.13 supports the view that
the simulated n-nonane clusters are in approximate thermal equilibrium with the effective
heat bath.
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Figure 5.12: The probability density distribution of energies obtained from a 40-cluster simulation maintained at a
constant temperature of 233K. We can use the distribution of energies to calculate the density of states, shown in Figure ?2.
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Figure 5.13: The logarithm of the density of states plotted against the total energy of a 40-cluster, simulated at a constant
temperature of 233K.



Specific heat capacity

The specific heat capacity of a liquid (or any substance) is a measure of temperature change
for a given input of energy per unit mass. In true thermodynamic systems there is a linear
relation between the energy fluctuations and the specific heat capacity. However, this rela-
tion is not well defined for finite sized systems modelled in thermal equilibrium because
the condition of thermal equilibrium only fixes the average kinetic energy over a suffi-
ciently long timescale, which means the instantaneous temperature does not necessarily
assume a fixed value. Instead we can calculate the specific heat capacity from the mean

energy of the cluster.

The mean energy of a 5-cluster (at NVT) is plotted for a range of temperatures, in Figure
5.14. The plot shows there is a linear relation between the cluster’s mean energy and
temperature. The specific heat capacity is determined from the gradient of the line of best
fit, which is calculated to be 150.2 k. The theoretical maximum heat capacity for an ideal
gas at higher temperatures is approximately given by the Dulong-Petit limit 3 N k [79],
which yields a value of 135 k for a 5-cluster. Although the calculated specific heat capacity
is slightly higher than this value, they are approximately consistent, which gives further

evidence that the system is in thermal equilibrium.
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Figure 5.14: The mean energy of a 5-cluster maintained at constant temperature using the Andersen ther-
mostat, plotted against increasing temperatures of 175K, 185K, 195K, 200K, 205K, 215K, 225K. The simulations
are run for approximately 5ns.
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5.6 Discussion and Conclusions

In this chapter we have put together a molecular dynamics model of n-nonane clusters
treated in isolation from the vapour that is normally present in the experiments. The in-
teractions between cluster atoms are defined using liquid empirical potentials. A reduced
dynamic model of cluster atoms is employed to increase computational efficiency of the
task.

We employ constant temperature dynamics to emulate the experimental conditions. This
is achieved by submerging the clusters in an effective heat bath of thermalising helium par-
ticles to maintain its temperature at a fixed value. The heat bath delivers effective random
collisions to the cluster, which is implemented through the Andersen stochastic thermo-
stat. We have demonstrated that the Berendsen thermostat is unsuitable at controlling the
angular momentum of molecular clusters correctly. The temperature of the cluster is ap-
proximated by the average kinetic energy of the effective heat bath, and for small systems
the kinetic energy fluctuates about a mean value. This makes it difficult to establish a pre-
cise definition of temperature over short timescales for molecular clusters. However, over
the timescale of the simulations we have shown that the Andersen thermostat maintains

the clusters at thermal equilibrium.

In the next section we discuss the Langevin treatment of cluster decay and estimate clus-
ter decay timescales. We compare these values to the classically derived timescales, and

experimentally predicted timescales that were determined in Chapter 3.
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Chapter 6

Langevin Model of n-nonane Cluster

Decay

A direct way of measuring cluster decay timescales from molecular dynamics simulations
is to simply observe the trajectory and count the number of evaporation events that occur,
and deduce the mean cluster lifetime. This is a simple and straightforward means of es-
timating cluster lifetimes, which provides a competent test for the dynamically predicted
lifetimes. This approach was used by Ford and Harris in a study of argon clusters [39].
The frequency of argon decay events was sufficiently substantial to provide good decay
statistics. Ford and Harris reported that the mean argon cluster lifetime deduced from ob-
serving the trajectories was approximately 10ps at a kinetic temperature of 60K and cluster
size of 50 molecules. This result was in good agreement with the cluster lifetime predicted
by the dynamical cluster decay model used in the study. A similar approach was used in
a MD study conducted by Yasuoka and Matsumoto [80], which involved the simulation of
a supersaturated vapour at a high supersaturation, in which the number of clusters of dif-
ferent sizes were directly counted from the trajectory and used to determine the nucleation

rate.

In the present case of n-nonane clusters we have to use a different strategy because the
likelihood of decay is quite small due to the relatively strong interactions between cluster
molecules. To generate sufficient decay statistics we would need to perform unfeasibly
lengthy MD simulations, which is undesirable and inefficient as only a small fraction of
the trajectory contains relevant decay information. To overcome this problem, we em-
ploy a statistical approach developed by Ford and Harris for liquid argon clusters [39] to

overcome the difficulty in treating molecular clusters with long lifetimes. The evaporation
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process involves complex dynamics of the cluster’s constituent molecules. Each molecule
is subject to interactions with all the other cluster molecules, as well as interactions with
the surrounding heat bath. These two types of interaction occur over different timescales,
and can be simplified using random force fluctuations over appropriate timescales. Oc-
casionally, a random force fluctuation is sufficiently large to expel the molecule from the
cluster, resulting in an evaporation event or in other words cluster decay. The randomly
modelled interactions of a cluster molecule with the other cluster molecules, and the heat

bath, are used to predict a third, random, yet rare event of cluster decay.

The motion of a molecule is modelled using a Langevin equation for noise driven dissi-
pative motion in a potential well, which was originally stated in Chapter 4. The Langevin

Equation (6.1)) is repeated here for convenience,

mo = f(r) — myv+ f(t) (6.1)

wﬁere f(r) is the mean radial force, —m~ v is the friction force, 7 is the friction coeffi-
cient, and f is the stochastic random force. This equation describes the centre of mass mo-
tion of molecules. This is a reasonable simplification since the internal molecular motions
(bond vibrations, rotations) occur over much shorter timescales than the gross motion of
the molecule through the cluster, and can be assumed to be averaged out over the timescale
of molecular movements. For simplicity, all the forces on a molecule are resolved to act in

1-dimension along a radial co-ordinate relative to the cluster’s centre of mass.

6.1 The Potential of Mean Force

The potential of mean force ®(r) is related to the mean radial force through the integral
relation along the radius r given by Equation (4.37), which is repeated here for convenience

as

qa:-ﬁ}mm& 6.2)

To obtain the mean radial force toward the cluster centre of mass, the cluster radius is
divided into suitable intervals, and the total force experienced by particles in each interval
is calculated and divided by the number of particles within that radial interval. This is
the mean radial force felt by a cluster particle at a radius r from the centre of mass, at any

instant in the simulation.
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The mean radial force of a 67-cluster is plotted against the midpoint of each radial interval
from the centre of mass in Figure 6.1. The sampling of forces near the centre of mass
appears to be quite noisy, which is most likely due to the small relative volume associated
with small radii, leading to poor sampling. As the radial distance increases, the mean
radial force acting on a cluster molecule becomes more attractive, and appears to have a
minimum value at just over 20A . Beyond this point the force becomes less attractive and
levels off toward 30A . The shape of the curve shows that between the radii 10A—30A , a
molecule feels a preferential force toward the centre of mass. The peripheral regions of the
cluster will have a comparatively low particle density to the rest of the cluster, since there
are fewer particles contained around the cluster’s surface. Consequently, the sampling of
forces around the edge of the cluster may be rather poor, and the mean force for these
regions may not be well defined. This limitation will be most apparent in the absence
of cluster decay since particles do not explore certain configurations that a decay particle

would explore via its trajectory of escape.

The potential of mean force is determined by integrating the mean radial force over all
radial positions, from the centre of mass (r = 0) to the desired radius. The integration is
numerically calculated using the trapezium rule.! The potential of mean force of the 67-
cluster is plotted against radial position from the centre of mass, in Figure 6.2. The shape
of the potential of mean force indicates that the work done in moving a molecule from
the edge of the cluster outward is much less than the work done in moving a molecule out
from the centre. Close to the cluster centre of mass, the potential of mean force takes a local
minimum value of about —12 kT. Moving outward from the centre of mass, the potential
of mean force increases rapidly until it reaches a plateau around the cluster’s periphery.
The plateau can be interpreted as a particle no longer being influenced by the cluster, in
which case it has escaped. The radius at which the potential of mean force first levels off
is called the escape radius, which can be loosely viewed as the cluster radius, as discussed

on page 55 and in Figure Caption 4.2.

A similar analysis is employed for the 40-cluster and 50-cluster, and the mean radial force
is plotted against radius from the cluster centre of mass, in Figures 6.3 and 6.4 respectively.
Clearly, the mean force plots for 40 and 50-clusters appear to have an undefined force
beyond a particular radius in comparison to the 67-cluster force. We recall that the 40-
cluster and 50-cluster simulations do not exhibit cluster decay, and the unquantified mean

radial force beyond a certain radius may be attributed to the insufficient data available

'Area of trapeziums = 4 (fy + f2).4(f2 + f3) + L (> + f1) ... + B (fiv-1 + fx), where h is width of the
trapezium.
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Figure 6.1: The mean radial force for a 67-cluster, simulated at T = 300K.
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Figure 6.2: The potential of mean force for a 67-cluster simulated at T = 300K.
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mass. As radial distance increases, the mean radial force acting on a cluster molecule becomes more attractive
and stops abruptly at around 17.5A . This is because there are no molecular forces measured beyond this
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Figure 6.4: The mean radial force of a 50-cluster (250K) plotted against radius from the cluster centre of
mass. The mean radial force acting on a cluster molecule stops abruptly at around 194, since no molecular
forces are measured beyond this radius due to the absence of cluster decay.



around the cluster’s periphery. We have to find a means to deduce the mean force for
these peripheral regions, since it is important that we obtain a complete description of the
potential of mean force over all radii in order to correctly determine the potential of mean
force depth A @.

In the absence of cluster decay we approximate the mean radial force beyond the cluster’s
periphery using the negative derivative of the mean potential energy of an imaginary par-
ticle placed at that location. This approximation is referred to as the far field construction,

and it avoids the need to perform further MD simulations.

6.2 Far Field Construction

Consider a cluster of N particles as shown in Figure 6.5. We want to calculate the force
acting on the decayed particle (ie the red particle), which has some position 7,. The far
field approximation assumes that beyond the cluster’s escape radius r, the mean radial
force experienced by a-‘molecule at position 7, is approximately equal to the mean force
between the cluster and an imaginary molecule placed at that location. The imaginary
molecule does not affect the MD generated cluster configurations, which means the cluster
is “blind” to the imaginary molecule. This assumption is valid as r — 0.

Figure 6.5: A cluster of N particles (blue) and a particle outside the cluster (red). The mean radial force
acting on the particles inside the cluster is calculated from molecular dynamics simulations. The mean radial
force acting on the red particle is calculated using an approximation to the negative derivative of the mean
potential energy, which is valid in the far field.

The Hamiltonian of the system in Figure 6.5 can be decomposed into the cluster Hamilto-
nian H, due to the interactions between all the cluster particles (ie blue particles) and the
Hamiltonian H,. due to interactions of the decay particle (red particle) with all the other

cluster particles, which is given by

H == Hc =+ Hoc- (6'3)
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The mean radial force in the far field is approximated by saying

0 Hy, ~ 0 Hy,
<* or, > - <_ or, >C (6.4)

where the subscript “c” refers to averages taken over cluster configurations only. For nu-

merical convenience, we evaluate the mean radial force using the derivative of the mean

potential energy, as shown by

OHo \ 9 (Ha),
<“ a1, > = T orn, 6.5)

which holds true, provided averages are taken over cluster configurations. To implement
the far field construction we evaluate the mean potential energy of an imaginary molecule
(ie an effective escapee) at radial positions outside the cluster, using only the non-bonded
interactions, which are modelled using a Lennard-Jones potential. We integrate over a
random set of orientations for a given cluster configuration and different escapee confor-
mations. The centre of mass of the escapee is randomly chosen to lie within a spherical
region of volume surrounding the cluster. For convenience, the random escapee’s po-
sitions are selected within the positive xyz quadrant of the sampling region, which is a
reasonable approximation provided that cluster decay is equally likely to occur in all di-
rections relative to its centre of mass. This means we can assume that the average potential
energy of an escapee is the same for each quadrant. We must bear in mind that escapees
need to be placed close enough to the cluster so that their interactions with the cluster
can be evaluated. However, they should not be too close to the cluster as they could af-
fect the cluster configurations significantly, which would violate the approximations made
by equating the negative derivative of the mean potential energy to the mean force. The
minimum separation between escapees and existing cluster molecules must be at least one
Lennard-Jones radius 0. The conformational structure of the escapee is constructed using
molecular conformations of the cluster molecules as templates. The potential energy of the
escapee is calculated from its interactions with the cluster. The interactions between clus-
ter molecules and the interactions within the escapee itself are excluded, since we are only
interested in the effect of the cluster on the escapee. We take the numerical derivative of
the mean potential energy of the escapee, plotted against radius, which is shown in Figure
6.6 for the 40-clusters (black line), along with the previously determined MD generated
mean radial force, which was calculated inside the cluster (blue line). Similarly, the mean

radial force for the 50-cluster is shown in Figure 6.8, which is generated using MD data
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(blue line) and the far field approximation (black line).

Clearly, there is a quantitative disparity between the force inside the cluster and the far
field approximated force, close to the cluster’s escape radius r.. This could be due to the
fact that we use cluster molecule conformations to approximate the escapee’s conforma-
tion, instead of real evaporated molecule configurations. Obviously a molecule inside the
cluster will interact strongly with the other molecules, which invariably affects its confor-
mation, whereas a decay molecule that has escaped from the cluster is not surrounded by
the same type of molecules, and is therefore likely to have a very different conformation.
In any case, the quantitative difference between the derivative of the mean potential en-
ergy and mean force is relatively small, and can be resolved by interpolation between the
two curves (shown in red in Figures 6.6 and 6.8). This combines the actual force acting
on molecules inside the cluster (determined by MD) with the force predicted to act on a
molecule outside the cluster, determined by the far field construction. The total force is
numerically integrated from radius 0 to oc to give an estimate of the complete potential of
mean force for all radii, including in the cluster’s peripheral region. The complete potential
of mean force for the 40-cluster and 50-cluster is shown in Figures 6.7 and 6.9 respectively.
The far field construction allows us to identify the variation of the potential of mean force

beyond r,, which enables us to estimate the depth of the potential well A ®.

6.3 Calculating the friction coefficient

To calculate the cluster lifetime it remains for us to determine the friction coefficient ~.
We can determine the friction coefficient from the reciprocal of the velocity autocorrelation

time, which is the time taken for the mean velocity fluctuations to decay by 1.

The velocity autocorrelation function

To do this we calculate the velocity autocorrelation function, defined in Chapter 4 by Equa-
tion (4.17), using the time evolved radial velocities of a molecule taken from an MD tra-
jectory at constant energy (NVE). The velocity data from the trajectory is in intervals of
0.05ps, and the MD time step is 0.5fs (ie data is taken every 100 snapshots). The product of
the radial velocity of a molecule at time t and a later time (t + 7) is calculated, and averaged
over all the molecules in the cluster to improve statistics. This is plotted as a function of

time interval in Figure 6.10. The velocity autocorrelation function is fitted approximately
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Figure 6.6: The mean radial force felt by a molecule in a 40-cluster plotted against radial position from the
cluster’s centre of mass. The black line shows force approximated outside the cluster (derivative of the mean
potential energy), and the blue line shows the mean force inside the cluster determined from the simulations.
The red line shows the interpolation between the two forces. The force inside the cluster was calculated from
a 40-cluster simulation at 233K for approximately 5ns.

-
<o

Potential of mean force (kT)

'
—_
~

i 1 1 1 = 1 1

10 20 30
Radius from centre of mass (Ang)

Figure 6.7: The complete potential of mean force for the 40-cluster determined from an integration of the
mean radial forces shown in Figure 6.6.
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Figure 6.8: The mean radial force for a 50-cluster as a function of radial position from the cluster’s centre of
mass. The black line shows the derivative of the mean potential energy (far field construction), and the blue
line shows the mean force inside the cluster, determined from the simulations. The red line shows the inter-
polation between the two forces. The data used was from a 50-cluster, simulated at 250K for approximately
5ns.
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Figure 6.9: The complete potential of mean force for the 50-cluster determined from an integration of the
mean radial forces shown in Figure 6.8.
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to a decaying exponential, according to Equation (4.32), which yields a velocity autocor-
relation time (relaxation time) of approximately 0.16ps. This can be loosely interpreted as

the timescale over which we might expect frictional forces to act in n-nonane clusters.
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Figure 6.10: The velocity autocorrelation function plotted against time. The timescale associated with the
fall off of the correlation function is approximately 0.5ps. The data is fitted very approximately to a decaying
exponential which yields a fall off timescale of 0.16ps. This indicates the approximate timescale over which
there is a linear correlation between a molecule’s velocity and the force it experiences due to collisions with
surrounding molecules.

The molecular acceleration

The timescale associated with the friction coefficient can be verified by a numerical evalu-
ation of the Langevin Equation, defined in Chapter 4 by Equation (4.35). It is recast here in

the form

ymv —f = f(r) —mv (6.6)

where v m v is the frictional force, f is the stochastic random force, f(r) is the mean radial
force, and mo is the MD deterministic force. Assuming the stochastic force is averaged out
over some suitable coarse grained timescale, the Langevin Equation attributes the friction
force to a “discrepancy force” (ie right hand side of Equation (6.6)). We evaluate Equation

(6.6) over a suitable coarse grained time interval 7, in an attempt to observe a correlation
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between velocity and the discrepancy force. To do this we take data for radial velocity
v and mean radial force at position 7, over intervals of 0.05ps, from the trajectory of a
single molecule (at NVE). This is repeated for each molecule in the cluster to improve the
statistics. We evaluate the radial acceleration v of a single particle by taking the velocity

difference divided by the coarse grained time interval 7, by

v(t + 17)—0v(t)
. .

mv, = m (6.7)

The force discrepancy is plotted against radial velocity v for various values of 7, in Figure
6.11. The shortest value of 7 is taken to be the MD time step (0.0005ps). The behaviour
of the force discrepancy clearly shows deterministic motion, since it is predictable and de-
termined from its current position. This means there are no friction forces acting on the
molecule over this timescale. As we employ increasing values of 7, the molecule expe-
riences collisions with its surroundings, due to its motion in the time interval 7. This is
illustrated in the plots in Figure 6.11, which shows that the force discrepancy appears less
deterministic as the coarse grained time interval increases. The force discrepancy is taken

to have the general form

y=-Ax—f (6.8)

where y = f(r) — mv,, x = v, and f is the stochastic force. Taking the average of the force
discrepancy per unit mass over suitable intervals of v (for 7 = 0.025ps), yields a linear
relation with the intercept through the origin as shown in Figure 6.12. Clearly, there is
a strong linear relation between the mean force acting on a molecule and its velocity at
time t. The linear relation appears to become more noisy for large negative and positive
velocities, which is probably due to the poor sampling of data for these velocities. The
intercept passes through the origin, which indicates that the stochastic force contribution
vanishes over the coarse grained timescale 0.025ps. According to Equation (6.6), the mean
of the data corresponds to —v m v (per unit mass), and <y is obtained from the gradient of
Figure 6.12.

This treatment is repeated for a range of coarse grained time intervals increasing by 0.025ps,
which yields similar correlations between force discrepancy and velocity, as shown in Fig-
ure 6.13. The gradient of the force velocity plot increases with increasing 7 until it reaches
a maximum value, and does not change for increasing 7 for approximately 0.1ps. The be-

haviour of the friction coefficient vy can be observed by plotting the gradient against the
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Figure 6.11: A series of plots showing the time evolution of the radial force discrepancy plotted against
radial velocity for a molecule in the cluster. The first blue plot is coarse grained over the time interval 7 =
0.0005ps, which is the MD time step. The second blue plot is coarse grained over twice that time interval. The
pink and black plots are coarse grained over 7 = 0.005ps and 7 = 0.0075ps respectively. The plots have been
generated using data from a 40-cluster simulation maintained at constant energy. A negative correlation with
radial velocity gradually becomes apparent with increasing 7.
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coarse grained time interval, as shown in Figure 6.14.
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Figure 6.12: The average (radial) force discrepancy per unit mass acting on a cluster molecule plotted
against (radial) velocity of the molecule, determined using a coarse grained time interval 7 = 0.025ps, taken
from data of a 40-cluster under conditions of NVT at 225K. The plot illustrates the linear correlation between
the discrepancy force and velocity. The red dots show the mean force per unit mass calculated for each radial
velocity interval, and the black line shows the line of best fit to these points. The zero intercept indicates that
the stochastic force has a zero mean over the timescale 7.

The plot illustrates that for timescales of 7 ~ 0.025ps, the friction coefficient is small. The
friction coefficient increases with increasing 7 and reaches a plateau at about 3.0ps 1. We
take 7 to be this plateau (averaged over several data points). The reciprocal of this, 0.3ps
indicates the timescale associated with friction, which is approximately consistent with
the coarse grained timescale at which < reaches a plateau, at about 0.15ps. This timescale
agrees very well with the velocity autocorrelation time, which was calculated in the pre-
vious section to be 0.16ps. For 7 < 0.025ps, there are insufficient collisions for the friction
force to act. For 7 between 0.1ps - 0.2ps there is a good linear correlation between discrep-
ancy force and velocity. This can be regarded as the timescale over which frictional forces
act in the system. For 7 > 0.25ps the linear correlation between the force discrepancy and
velocity starts to break down. This is evident as the friction coefficient in Figure 6.14 starts
to decrease beyond 0.025ps, which is due to the molecule experiencing so many collisions
that its motion starts to become diffusive. As time continues to increase, we expect the

friction coefficient to eventually reduce to zero.
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Figure 6.13: The radial components of the force discrepancy for the 40-cluster under conditions of NVT
at 225K, plotted against velocity for six different coarse grained time intervals: pink- 0.025ps, black- 0.05ps,
blue- 0.075ps, red- 0.1ps, green- 0.125ps, purple- 0.15ps, and orange- 0.2ps.
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Figure 6.14: The friction coefficient for varying coarse grained timescales 7, calculated from a 40-cluster
trajectory under conditions of NV T at 225K. The plot shows that ~ reaches a plateau at about 3ps . Therefore

we expect the friction timescale to be the inverse of this value, and indeed 7 does appear approximately
consistent with this.
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To summarise this section, we have calculated the friction coefficient of n-nonane clusters,
using a Langevin equation to model the dynamics of single molecule motion as point par-
ticles, parameterised using MD data. This effectively maps MD onto Langevin Dynamics.
The motion of a molecule through the cluster is similar to the Brownian motion of a mas-
sive particle through a fluid. The important difference between the diffusion of a Brownian
particle and the diffusion of a lighter particle or molecule is that their relative motions oc-
cur over different timescales. The Brownian particle is subject to fast random collisions
with the fluid, which are averaged out over the timescale of its motion since its motion
occurs over a much longer timescale than its collisions with the fluid. In the case of a light
molecule, the force acting on it is not fast and random, but deterministic and smooth. This
behaviour is clearly evident in Figure 6.11, for the first two plots. The random behaviour
of molecule motion is only apparent when the interactions are averaged over a sufficiently
lengthy coarse grained timescale. We also calculate the friction coefficient of a 50-cluster
and 67-cluster using a similar method, which yield values of 2.8ps~! and 2.7ps~! respec-

tively.

6.4 Calculation of Dynamic-Langevin Decay Timescale

We use the potential of mean force depth obtained in sections 6.1 and 6.2, together with the
friction coefficient from section 6.3.1 to parameterise the cluster decay model, and calculate
mean decay times of n-nonane clusters using Equation (4.49). We employ cluster sizes
of 40, 50 and 67 molecules, at temperatures of 233K, 250K and 300K respectively, which
correspond to the temperatures at which they were deduced to be critical. The error in
determining A @ is estimated approximately from the potential of mean force plots to be
+ 0.2kT. The error in determining ~ is estimated approximately from Figure 6.14 to be
+0.1ps™.

The dynamically generated cluster decay times are given in Table 6.1 along with the esti-
mated errors. This is compared to cluster decay times deduced from experiments, and to
the classical decay time, listed in Table 3.2, page 34. Overall, the dynamically generated
decay timescales 7,4, are reasonably consistent with the experimentally estimated decay

times 7.y, and the classical predictions 7, particularly for the smallest cluster sizes.

There is a strong agreement with the dynamically generated lifetimes and the experimen-
tally estimated lifetimes for the smallest cluster size. In contrast, CNT makes the poorest

prediction for the smallest cluster size, which is precisely where we might expect the CNT
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i T (K) re (A) A (kT) Tmodel (S) Texpt (NS) Telass (NS)

40 233 25 12.15 46.0 + 18.0 44.0 34.0
50 250 26 10.08 8.10 £ 3.00 8.80 9.20
67 300 27 11.70 6.00+ 2.00 0.53 0.47

Table 6.1: The error in Tme is determined from estimated errors in 7, of +1 Aand A & of +£0.2kT.

treatment of molecular clusters to breakdown. To identify whether CNT becomes com-
pletely unsuitable for calculating decay times of even smaller molecular clusters, further
investigations are required, which might involve simulations of a broader range of clus-
ter sizes. The agreement for the dynamical decay times with experiment is poorest for
the largest cluster size. This could be due to the fact that larger cluster sizes need longer

simulation run times to obtain sufficient data.

Overall, these results indicate the dynamic model predicts cluster decay times better for
smaller sized clusters than larger sized clusters compared to CNT. However, it is impor-
tant to understand that the model is fundamentally microscopic, whereas the classically
derived lifetimes are based on a thermodynamic treatment of clusters in equilibrium us-
ing bulk phase properties. Molecular decay models provide a means of predicting the
decay timescales of clusters that are long lived, where the direct observation of cluster de-
cay from the MD is currently unfeasible to perform. However, there remains an ongoing
need to establish reliable methods that combine theory and computational techniques to

correctly deduce the lifetime of small molecular clusters that maintain a certain longevity.
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Chapter 7

Stability of Supercooled Embryonic

Ice Clusters

The second study in this thesis involves a very different type of system to condensation.
It concerns the freezing phase transition from supercooled water into ice I. ! This study
applies the Langevin interpretation of cluster dynamics and decay to ice clusters that form

during the water freezing phase transition in order to estimate ice cluster lifetimes.

7.1 Introduction to Supercooled Water

Water is the principle component of all living organisms that plays a major role in many
chemical and biological processes such as oxidation and photosynthesis, which are essen-
tial to life on earth [81], [82]. One of the most important characteristics of water is its ability
to form hydrogen bonds [83]. An example of the importance of hydrogen bonding, is its
role in binding DNA strands, which is central to protein synthesis [84]. At atmospheric
pressure bulk water freezes at 273K, however, it has the unusual property of expanding
when cooled below 277K. Water can be cooled at ambient pressure to well below its freez-
ing temperature to around 240K [85] with a density comparable to ice, before ice begins
to form. This remarkable feature is called supercooling. It means that a liquid can exist in
a metastable state well below its normal freezing temperature. The concept of supercool-
ing is similar to a condensing vapour becoming supersaturated. In both cases the existing
phase becomes metastable and deviates from equilibrium behaviour. This is illustrated

for condensation in Figure 1.1, where the metastable vapour, which is supersaturated, is

'There are ten known isomorph’s of ice, each with a unique structure and properties
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shown in red. In principle, the same plot can be used to illustrate the nature of supercool-
ing except the original phase is a liquid and the final phase solid. A well known example
of supercooling in nature is the presence of cloud droplets of liquid water, which exist at
temperatures well below the freezing point [86], [87]. The presence of supercooled water
in the atmosphere plays an important role in the formation of clouds, which has generated

much interest into the behaviour of water under supercooled conditions.

Supercooled water is metastable in nature. It is sensitive to spontaneous fluctuations in
density and order, which lead to the formation and dissociation of hydrogen bonds be-
tween molecules. This is a nucleation process which results in networks of hydrogen
bonded molecules, which we refer to as embryonic ice clusters. The process of hydro-
gen bond formation and dissociation leads to the growth and decay of the ice embryo
clusters. Very occasionally, there is a large enough fluctuation or ice cluster that drives
the entire system to freeze into ice. In principle, this process is similar to the condensa-
tion of a liquid droplet from a supersaturated vapour in the sense they are both driven by
nucleation events. However, the difference is that in condensation, cluster growth is con-
trolled by monomer flux from the vapour, whereas in the case of crystallisation, the water
molecules are already in contact with the embryo, and growth is a matter of molecular
reorientation of hydrogen bonds. The aim of this study is to develop a greater insight into
the properties of these small ice cluster embryos, which are the precursors to crystallisation

in supercooled water.

Experimentally, it is very challenging to perform reliable measurements on supercooled
water below 238K because it requires an exceptionally clean sample, free from trace im-
purities, which is difficult to achieve experimentally [85], [88], [89]. This makes it difficult
to validate theoretical models of supercooled water against experimental measurements.
Theoretically, there are two general approaches to water models at low temperatures. The
first was proposed by Roentgen in 1892 who treated water as a mixture of a bulky “ice
like” component and a less bulky “normal liquid” component [90]. This basic idea has
successfully explained some of the anomalous properties of water, and has been extended
by many authors [91], [92]. The second treatment of water is the distorted hydrogen bond
model, which was first proposed by Bernal and Fowler about 50 years ago [93]. They
suggested that water forms a network that is almost completely hydrogen bonded. This
basic principle has been extended in a variety of studies [94], [95]. A notable extension
to the distorted hydrogen bond model is the percolation model proposed by Stanley [96],

[97], which uses molecular connectivity rather than molecular positions to examine the
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behaviour of supercooled water. If the mean number of hydrogen bonds is larger than a
certain value (which will depend on the hydrogen bond definition), there will be an in-
finitely large network of bonded molecules, by means of percolation. The mean number of
hydrogen bonds per molecule at which percolation occurs is called the percolation thresh-
old.

One of the first molecular dynamics studies of liquid water was performed in 1971 by Rah-
man and Stillinger [98], using rigid molecules and simple effective pair potentials. Their
simulations reproduced many dynamic and structural properties of water. One of the main
difficulties in modelling liquid water at the microscopic level is the correct description of
the rearrangement of hydrogen bonds, and its effect on structural changes within the lig-
uid dynamics. More recently, Ford investigated nucleation processes in supercooled water.
In these studies the properties of relatively large ice clusters were extracted from experi-
mental freezing rates measured in the temperature range 230K-240K, using the nucleation
theorems [99]. Similar studies by Vortisch et al. [100] extracted the free energy of formation
of ice cluster embryos from the homogeneous freezing rates of aerosol droplets. However,
the studies made by Ford and Vortisch deal with the continuum dynamics of freezing sys-
tems as opposed to the microscopic detail, which is not necessarily the most appropriate

tool at the microscopic scale concerned.

Recently, Matsumoto et al. [37] have conducted an extensive study of nucleation and
growth of ice cluster embryos leading to freezing into ice I, using molecular dynamics
simulations. They define ice cluster embryos as long lived hydrogen bonded networks,
which coexist with the surrounding unbound supercooled water, which represents the
metastable liquid. The most striking feature is that the clusters do not show a strong de-

gree of crystalline ordering, but instead appear amorphous and disordered in nature.

Aim of the study

The aim of this study is to investigate whether the presence of molecular disorder in su-
percooled water can be explored through the treatment of ice embryo dynamics at the
molecular length scale using a theoretical approach similar to that used for liquid clus-
ters of n-nonane (discussed in the first part of the thesis). The MD trajectory provided
by Matsumoto et al. provides an accurate means of investigating the decay of the smaller
and more numerous of these structures. The trajectory is used to parameterise an effective
model of the dynamics of the ice embryos, which employs Langevin dynamics to rep-

resent the non-bonded water environment. Since the surrounding water is not included
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explicitly, the model provides an efficient means to study the decay, and perhaps growth
processes, of small ice clusters. In addition to this, the mean population of embryos of a

variety of sizes can also be extracted from the MD trajectory.

7.2 The Structure and Properties of Water

7.2.1 Hydrogen bonding

To investigate the properties of ice cluster embryos it is essential to understand the na-
ture of hydrogen bonding. It is thought that hydrogen bonding is responsible for many of
water’s unusual properties, such as its relatively high melting and boiling points, its un-
usually large heat capacity [101], [102], and more specifically its ability to be supercooled

to well below its freezing temperature [85].

Hydrogen bonds are specific intermolecular interactions that form between strongly po-
lar molecules that contain hydrogen atoms. Polar molecules have permanent dipole mo-
ments (partial charges) that arise due to the tendency of certain atoms to attract electrons
more than others [103]. This property is called electronegativity, and atoms with a strong
tendency to attract electrons such as oxygen or nitrogen are said to be electronegative,
whereas Group I metals that have a tendency to lose rather than attract electrons, are said
to be electropositive. Water is an example of a polar molecule. It has an oxygen atom at-
tached to two hydrogen atoms. The equilibrium bond length of the O — H covalent bond

is 0.95718A , measured from the vibration-rotation spectra of water vapour [81].

The geometric structure of a water molecule is importantly affected by its electronic struc-
ture. Oxygen is a Group VII element with six electrons in its unfilled atomic valence orbital,
which can be written as 252 2px? 2py! 2pz! [104]. The 2py and 2pz Pi orbitals are unfilled
and only have one electron out of a maximum of two. In atomic orbital theory, it is thought
that orbitals overlap and mix together, which is called hybridisation [103]. In the case of
an oxygen atom this results in four sp> hybrid orbitals, which are roughly tetrahedral in
shape. In a water molecule, two of the oxygen hybrid orbitals overlap with the hydrogen
orbitals, and the two remaining hybrid orbitals have one electron each, which are referred
to as a “lone pair”. Each lone pair electron is free to pair with an electron from another
water molecule’s hydrogen, and each hydrogen can bond with another water molecule’s
oxygen lone pair. This gives water a total number of four hydrogen bonds per molecule: a

quantity which is generally known as the molecular co-ordination number.
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Hydrogen bonding in ice I

The hexagonal structure of ice I was first suggested by Bragg in 1922 [105]. It was later
formalised by Pauling using X-ray scattering studies, which determined the arrangement
of the oxygen atoms [106]. Each oxygen atom sits at the centre of a larger tetrahedron,
formed by four surrounding oxygen atoms at the corners, which are 2.76A away from the

central oxygen as shown in Figure 7.1.
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Figure 7.1: The arrangement of the oxygen atoms in ice I is Figure 7.2: The structure of ice I is built up from the water’s
due to the highly localised partial charges and geometry of the  tetrahedral shape.

hybrid orbitals. This results in a hydrogen bonding axis that is

tetrahedral in shape, which leads to an open hexagonal structure.

Each water molecule is hydrogen bonded to four of its nearest neighbours. The hydrogen
bond tetrahedral angle between the central oxygen and any two neighbouring oxygens
(O-0-0) is 109.5°. It is easy to see how the hexagonal structure of ice I can be built up from

this arrangement, as shown in Figure 7.2.

7.2.2 Empirical water models

There is an important difference between hydrogen bonds and bonding due to permanent
dipoles in other types of polar molecules. The difference is that in hydrogen bonding, the
hydrogen atom of one molecule has strong preferential attraction to the second molecule’s
lone pair to such an extent that the hydrogen atom is partially transferred to the second
molecule. This results in a strong, highly directional bond, which characterises a hydrogen
bond. The average energy of a hydrogen bond in water is approximately 23 kJmol !, which
is calculated from the cohesive energy of ice assuming an average of two 2 hydrogen bonds
per molecule [101]. This is much stronger than Van der Waals interactions which are about
1.25kJmol ! but weaker than typical covalent bonds, which are usually about 400 kJmol ~*
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(101].

The charge distribution around a water molecule is often approximated by an electrostatic
point charge model [1]. In such models, a point charge is usually assigned to specific
locations in the molecule, such as the atom sites or the centre of mass, and the overall
charge on the molecule is neutral. A familiar type of empirical molecular water model
that uses point interaction sites and a rigid geometry is commonly known as the TIPS

potentials [107], [108]. The potential function of the TIPS potential is generally given by

qi9;¢€2 A B
— t 35 %
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V() = (7.1)
where g; is the atomic partial charge of the i** atom, ¢ is the electron charge, A and B are
the coefficients for the Lennard-Jones 12 — 6 potential, and r;; is the separation between
the i and j** atom. The parameters are determined empirically from experimental data
and high quality ab initio quantum mechanical calculations [109]. A good comparison of
the most popular empirical water potentials is made by Jorgensen [109] using classical
Monte Carlo simulations. Two of the most widely used water forcefields are the TIP3P
and T1P4P potentials. The main difference between these two potentials is the positioning
of the oxygen'’s partial charge. In the TIP3P potential the oxygen charge is positioned
on the oxygen’s centre of mass, where as in the TIP4P potential it is positioned on the

molecules centre of mass (slightly off the oxygen’s position).

There are more sophisticated empirical water models which treat the charge distribution
of the electrons more sensitively than a point charge on the atom'’s centre of mass. Such
models are often called polarisable water potentials. A notable example of a polarisble
water model is the charge-on-spring model [110], which views an atom as being made up
of a core and a shell region. The core region is charged, and uses a harmonic constraining
potential to tether the core to lie within the region of the shell. This type of model provides
a more accurate description of the fluctuating dielectric field, which is important for sys-
tems such as ionic solids surrounded by water molecules [111]. In the case of this study,
an average mean field treatment of the dipole interactions is a reasonable approximation,
since the dipole interaction is averaged out over the surrounding molecular configurations

and orientations of the surrounding liquid molecules.
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7.3 Embryo Identification and Analysis

In this study we aim to identify ice cluster embryos that form during the water freezing
phase transition, and estimate cluster properties such as the mean cluster lifetime. The
ice clusters emerge spontaneously due to localised fluctuations in molecular positions and
orientations, and break up quickly. The clusters are unstable with respect to their sur-
roundings and are bound for short periods of time by hydrogen bonds and Van der Waals
interactions. The hydrogen bonds create a bonding network surrounded by unbound su-
percooled water molecules. The freezing simulations show that the bonding networks
appear inherently disordered, changing size and shape much like a cold liquid cluster,
rather than an ordered crystalline solid. This is mainly due to the low temperature of the
supercooled water, which prevents the hydrogen bonds from rearranging into a more or-
dered ice-like configuration. The motion of an ice cluster molecule is modelled subject to a
random force due to its interactions with the other cluster molecules and the surrounding
water. The random force drives a molecule to “escape” from the cluster in the sense that
it violates the cluster definition. However, it will not be able to move very far from the

cluster due to the surrounding water molecules.

We utilise a molecular dynamics freezing trajectory generated by Matsumoto et al. [37].
The molecular dynamics simulation was conducted at NV T using a bulk liquid water den-
sity of 0.96gcm =3, and a temperature of 230K. The interactions between water molecules
were modelled using TIP4P potentials. The simulation trajectory provides the time evolved
positions of all the molecules during the freezing transition, which are output in intervals
of 200ps over the complete simulation, which is just under 500ns. We describe the mobility
of molecules in terms of the diffusion coefficient, defined by the mean square displace-
ment. This is used to estimate the friction coefficient. The mean radial force is determined
from an evaluation of the derivative of the potential using molecular positions from the
trajectory. The mean radial force is numerically integrated to give a potential of mean
force, from which we can estimate the potential of mean force depth. This is used together
with the friction coefficient to parameterise the cluster decay equation given by Equation

(4.49) in Chapter 4 to estimate the mean ice cluster lifetime.

7.3.1 Defining a hydrogen bond

In order to identify ice embryos we must first be able to identify a hydrogen bond. One of

the simplest means of defining a bond is to use a geometric criterion, which imposes a min-
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imum radial separation between particles in the system. A popular example of a geometric
definition is the Stillinger cluster definition [42]. It considers neighbouring molecules that
lie within a minimum radius of a given molecule to be bonded. The Stillinger definition is
a rather crude approach to a complex problem, as it imposes a stringent constraint that all
molecules that lie within a given radius of each other must be hydrogen bonded, regardless
of whether the configurations are favourable in terms of energy or longevity. However, it
can be argued that neighbours which lie within a minimum radius of each other are likely
to have energetically favourable orientations and those that lie outside the bond radius are
more likely to have unfavourable energetic configurations. Alternatively, one could use
an energetic hydrogen bond definition, which requires pairs of particles have a minimum
specified potential energy if they are to be considered bonded. This was the approach used
in a study of collective liquid dynamics, whereby pairwise potential energy surfaces were
used to identify hydrogen bonded networks [102]. A drawback to this definition is that the
pairwise evaluation of the potential energy is computationally demanding. In this respect

the Stillinger definition has the advantage of being intuitive and easy to implement.

We employ a radial constraint between the oxygen and hydrogen atoms of different molecules.
If any pair of molecules has an oxygen and hydrogen that lie within a minimum radius of
each other, the pair of molecules are considered as candidates for hydrogen bonding. In
addition to the geometric constraint, we demand that molecule pairs must also maintain
a certain longevity. This means a pair of molecules must maintain a minimum separation
for a specified duration in order to be considered as hydrogen bonded. This constraint is
referred to as the lifetime of the hydrogen bond, although strictly speaking it is not a true
lifetime, but rather a minimum lifetime requirement that we have imposed. The longevity
constraint provides a simple means of selecting bonds that maintain a certain stability. Fur-
thermore, it avoids the crude assumption suggested by a purely geometric definition that

all molecules which lie within a certain radius of each other must be hydrogen bonded.

The choice of bond criterion employed is an important part of defining clusters, as different
bond definitions will identify different clusters. For instance, the separation radius must
be large enough to include interactions with neighbours, however, it should not be too
large so that every molecule is bonded to every other molecule in the system by means of
percolation. The separation radius at which this occurs is called the percolation threshold.
The equilibrium distance between neighbouring oxygens in ice is about 2.75A [81], so it
is sensible to select a separation radius no greater than this value. The choice of hydrogen

bond lifetime will reflect the relative stability of the molecule pairs. Generally speaking,
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pairs which survive for a relatively long timescale will be more stable than those that sur-
vive for a shorter timescale. A suitable hydrogen bond lifetime will determine clusters
which represent truly bound quasi-stable structures, rather than random fluctuations. The
freezing study conducted by Matsumoto et al. utilises a maximum separation radius of
2.5A between oxygen and hydrogen atoms, and a hydrogen bond lifetime of 2ns to define
a hydrogen bond. This means that molecular separations (between an oxygen and a hy-
drogen) that are equal to or smaller than this value and maintain this maximum separation

for at least 2ns, qualify as hydrogen bonds.

We employ the same bond criterion used by Matsumoto et al. to extract a list of bonded
pairs of atoms from the freezing trajectory. In addition to this we are only interested in
qualifying pairs that maintain a minimum separation for a minimum timescale, which we
call the hydrogen bond lifetime 7;,. In a sense, we are coarse graining the MD trajectory
over the timescale 7, to extract a list of time resolved bonded pairs of atoms. The atom
pairs list is used to deduce a corresponding list of hydrogen bonded molecules. We recall
there are 512 molecules in the system, which means there are 1536 atoms, labelled by atom
index number in the order HHO. If an atom number is divisible by 3 then it is an oxygen.
This is also the molecule number. If the atom number plus 1 is divisible by 3, then the
atom is the second hydrogen. If the atom number plus 2 is divisible by 3, then the atom
is the first hydrogen. This calculation identifies the corresponding molecule number for a
given atom number. We plot the population of molecule pairs (hydrogen bonds) against
simulation time in Figure 7.3. The plot illustrates the evolution of the number of hydrogen
bonds during the freezing transition, based on the employed bond definition (r, = 2.54,
T, = 2ns). There is a sharp increase in the population of hydrogen bonds at around 300ns.
The number of hydrogen bonds levels off at around 400ns, with approximately 400 bonds.
Beyond 400ns, all of the hydrogen bonds will be participating in the final ice lattice. Hy-
drogen bonds that are determined using a shorter bond lifetime of 1.4ns are also shown in

Figure 7.3 for comparison.

7.3.2 Defining a cluster

The molecule pairs list is used to identify which molecules are connected to each other.
This is determined using a cluster identification algorithm, which identifies all the molecules
that are participating in the same cluster for each time resolved snapshot. The algorithm
searches for repeated occurrences of a given molecule number, and then searches for re-

peated occurrences of those molecules, and so on. This is a hierarchical calculation, which
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Figure 7.3: The number of bonded pairs of molecules, based on a hydrogen bond definition of radial sepa-
rationr, = 2.5A and a longevity of 75, = 2ns (red line) and for comparison 7 = 1.4ns (blue line). The system
is maintained at NVT (constant particle number N, volume V and temperature T respectively) at 230K.

is repeated until there are either no more repeated occurrences of molecules in that time
resolved snapshot, or the number of molecular connections is so great that the calculation
is no longer viable to perform. The details of the calculation are given in Appendix B.
The cluster identification algorithm identifies clusters up to approximately 340ns of the
trajectory for the employed bond definition of 2.5A and 2ns.

7.3.3 Population size distribution of ice clusters

The size of an ice cluster embryo is defined by its number of constituent molecules. We
explore the evolution in population of different cluster sizes before the predominant ice
phase (up to 340ns). To do this we divide the trajectory into 8 sections or “sub-blocks”,
which are approximately 42.5ns long. We calculate the average number of ice cluster em-
bryos of a given size in each sub-block, which is the total population of each cluster size
(in a sub-block) divided by the number of intervals for which we have data. The mean
population of ice embryos for each sub-block is plotted against cluster size in molecules,
as shown in Figure 7.4. The first 6 sub-blocks (up to 256ns) are shown by the blue lines and
the last 2 sub-blocks (256 — 340ns) are shown by the red lines.
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Figure 7.4: A log-linear scale of the mean population of clusters averaged over sub-blocks (coarse grained
time intervals of the trajectory up to 340ns) plotted against cluster size in molecules. The clusters are identified
using a cut of radius of 2.5A and longevity of 2ns. The system is maintained at NV T (constant particle number
N, volume V and temperature T respectively) at 230K.

The smallest cluster size is a dimer, which contains two water molecules. At the early
stages of the simulation (up to 256ns), the mean population of dimers is just above 2. This
means that at any instant in a sub-block (below 256ns), there will be on average 2 dimers
with a minimum lifetime of 2ns. Another way of interpreting the mean population is to
consider that each sub-block is made up of 210 snapshots, since we have data in intervals
of 0.2ns. A mean dimer population of 2, corresponds to an average of 2 dimers (that are
long lived) in each snapshot of the sub-block. Similarly, a mean trimer population of 0.1
means that there are on average 21 snapshots (out of 210) in a sub-block that contain a

tetramer (that is long lived).

Opverall, the plot shows at the early stage of the freezing process there are a relatively large
number of small sized clusters (ie dimers and trimers). This is due to water molecules
forming hydrogen bonds momentarily with neighbours, and then breaking up very quickly.
There are generally no clusters larger than 15 molecules as the probability of forming large
hydrogen bond networks at an early stage is very small. As the freezing transition pro-
gresses more large sized clusters emerge, which is evident as the populations indicated by

the red lines are higher than the blue lines, they extend further, and are less noisy. Overall,
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there are a greater number of clusters of all sizes in the data taken from the latter interval
256 — 340ns than the first interval 0 — 256ns. This illustrates that at the onset of growth
(256ns) there are a greater number of all cluster sizes explored, rather than the growth
of one cluster size. This is most evident in considering the population of dimers, which
jumps from an average of 2 dimers below 256ns, to an average of 10 dimers 42.6ns later.
This behaviour is consistent with the view that there is a rapid increase in the number of

hydrogen bonds around this time, which was suggested by Figure 7.3.

We extract MD images of ice cluster embryos identified using a maximum separation ra-
dius of 2.5A and a bond longevity of 1.4ns. The images illustrate the connectivity between
molecules in different sized embryos. An example of a dimer cluster is shown in Figure
7.5, and a trimer and tetramer are shown in Figures 7.6 and 7.7, respectively. Larger cluster
sizes of 18, 28, and 55 molecules have also been identified as shown in Figures 7.8 and 7.9,
Figures 7.10 and 7.11, and Figures 7.12 and 7.13, respectively. The large cluster sizes were
identified at around 250ns, which corresponds to the onset of growth of the ice phase (ac-
cording to Figure 7.3). The 55-cluster appears to have the beginnings of a distinct ordered
structure.

7.3.4 Molecular co-ordination

The structure of hydrogen bonding in the ice embryos is examined in terms of the molecu-
lar co-ordination number. This is the number connections (bonds) that each cluster molecule
possesses. The co-ordination number reveals how the hydrogen bonds are arranged in the
cluster. A cluster molecule may be bonded to up to 4 other molecules, which is evident
in the 55-cluster images. The molecular co-ordination number of each cluster molecule is
plotted against cluster size in Figure 7.14. This is the number of connections possessed
by each cluster molecule, for each cluster size. The number of molecules with a particu-
lar co-ordination number (over the 340ns trajectory) is indicated in Figure 7.14. The plot
shows that the maximum co-ordination number possessed by cluster molecules is 4. It is

also seen that embryos as small as 5-clusters contain molecules that are 4 co-ordinated.

The mean molecular co-ordination number is the average number of connections of each
cluster molecule. This is exactly twice the value of the average number of bonds in the clus-
ter per molecule, which is the total number of bonds divided by the number of molecules.
The mean molecular co-ordination number is determined for each ice cluster identified,
and averaged over the total number of clusters of that size in the trajectory. This is plotted

against cluster size in Figure 7.15.
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Figure 7.5: An example of an ice dimer shown for two different perspectives, identified from the simulation
trajectory where r;, = 2.5A and 7, = 1.4ns. The system is maintained at NVT (constant particle number N,
volume V and temperature T respectively) at 230K.

Figure 7.6: An example of an ice 3-cluster with two hydrogen bonds, shown for two different perspectives.
The system is maintained at NVT at 230K.

Figure 7.7: An example of an ice 4-cluster with four hydrogen bonds shown for two different perspectives.
The system is maintained at NVT at 230K.
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Figure 7.8: An image of an ice 18-cluster with hydrogen bonds defined using a maximum separation radius
of 2.5A , maintained for a minimum of 1.4ns. The system is maintained at NVT at 230K.

Figure 7.9: An image of the same ice 18-cluster shown in Figure 7.8 illustrated for a different perspective.
The system is maintained at NVT at 230K.
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Figure 7.10: Animage of an ice 28-cluster with hydrogen bonds defined using a maximum separation radius
B g ) g g F
of 2.5A , maintained for a minimum of 1.4ns. The system is maintained at NVT at 230K.

Figure 7.11: Animage of the same ice 28-cluster shown in Figure 7.10 illustrated for a different perspective.
The system is maintained at NVT at 230K.
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Figure 7.12: Animage of an ice 55-cluster with hydrogen bonds defined using a maximum separation radius
of 2.5A , maintained for a minimum of 1.4ns. The system is maintained at NVT at 230K.

Figure 7.13: An image of the same ice 55-cluster shown in Figure 7.12 illustrated for a different perspective.
The system is maintained at NVT at 230K.
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The dimer cluster has a mean co-ordination number of 1. The mean molecular co-ordination
number increases with cluster size, and appears to reach a plateau at a value just above 2.
We expect the mean molecular co-ordination number of ice to be 4, however, if there there
are a large number of single bonded molecules at the periphery of the cluster, this will
lower the mean number of molecular connections. Generally, the behaviour of the mean
number of molecular connections is consistent with the view that large size clusters are
involved in extensive hydrogen bonded networks, and subsequently have more of their

potential bonds satisfied compared to smaller clusters.

In general, we expect the statistical sampling of larger cluster sizes to be relatively poor
since there are few large size clusters. However, in contrast to this, toward the end of the
freezing transition there will be fewer variations of cluster sizes, as the ice phase starts
to dominate, which means there will be less deviation in the variance of the molecular

co-ordination number.

7.4 Hydrogen Bond Longevity in Ice Dimers

We aim to determine the mean lifetimes of ice dimers, using an estimation of the potential
of mean force depth and the friction coefficient of the bulk liquid. An ice dimer should not
be confused with a hydrogen bond pair, which is a component of a larger network rather

than a separate entity.

7.4.1 Calculation of the potential of mean force

Generally speaking, the force acting on an individual cluster molecule is due to its interac-
tions with the other cluster molecules and the surrounding unbound water molecules. For
simplicity, we use TIP3P potentials to evaluate the force on cluster molecules, assuming
that the difference in position of the oxygen’s partial charge in TIP3P and TIP4P has a
negligible effect on the total force. This is a reasonable assumption because the internal
distances within a molecule are much smaller than the distances between neighbouring
molecules. The molecular positions from the trajectory are used to evaluate the mean
radial force on each cluster molecule. The force is evaluated instantaneously from the po-

sitions using DL_POLY, which does not require generating any further dynamics.

To determine the potential of mean force depth we calculate the mean radial force acting

toward the dimer centre of mass, averaged over the number of dimers, and over all snap-
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Figure 7.16: The mean radial force for ice dimers classified using a hydrogen bond radius of r; = 2.5A, and
hydrogen bond lifetime of 7, = 2ns. The error bars are generally too small to be seen on the plot, and are only
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Figure 7.17: The potential of mean force calculated by a numerical integration of the forces for the ice
dimers in Figure 7.16. The potential of mean force depth is approximately 5kT. The system is maintained
under conditions of NVT at 230K.
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shots up to 340ns (before percolation occurs). The mean radial force toward the dimer cen-
tre of mass is plotted against radius from the centre of mass in Figure 7.16 (for 7, = 2ns).
The plot shows that at very short radial positions the force felt by a dimer molecule is
strongly repulsive. The force becomes less repulsive moving away from the centre of mass.
At a radius of about 1.35A , which is approximately half the equilibrium O-O separation
of ice [81], the molecule begins to feel a preferential attraction toward the dimer centre
of mass. Beyond 1.55A the force appears to become slightly less attractive, but does not
reach zero. This could be due to poor statistical sampling for these regions, since there will
be relatively few dimer configurations with molecules this far apart. The standard error
on the mean is estimated from the standard deviation of the radial force for each interval,
divided by the number of measurements for that interval (ie the sample size for that inter-
val). The error on the mean radial force is shown in Figure 7.16 as error bars. Overall, the
uncertainty in the force is relatively small, except for the last radial position, which has an

error of approximately ~ 0.2nN.

The mean radial force is numerically integrated from the dimer’s centre of mass position
(r = 0) to the furthest molecule position, which gives the potential of mean force. The
potential of mean force is plotted against radial intervals in Figure 7.17. The shape of
the potential of mean force illustrates that the dimer molecules have preferential positions
toward the centre of the dimer. However, in the outer regions the potential of mean force
does not reach a distinctive plateau. This means a dimer molecule still experiences a non-
zero mean radial force at the outer regions. This is a similar problem to the non-decaying
n-nonane clusters in Chapter 6, where it was necessary to approximate the mean radial
force in the outer regions in order to calculate the complete potential of mean force and
quantify the associated depth using the far field construction. In the case of ice dimers the
situation is more complicated because the lack of data beyond 1.7A (shown in Figures 7.16
and 7.17) is a consequence of the imposed hydrogen bond maximum separation radius.
Although the separation radius can be extended beyond the current value of 2.5A it can
not be much greater than the mean separation radius between neighbouring oxygens in

ice (2.76A), otherwise the identified clusters will not be meaningful.

We investigate the effect of extending the hydrogen bond separation radius to 3.0A keep-
ing 7, = 2ns, and use this criterion to identify dimers. The mean radial force for a dimer
is plotted against radius in Figure 7.18. The mean radial force reaches a minimum at a ra-
dius of about 1.55A . Beyond this radius, the mean radial force becomes less attractive and

appears to tend toward zero. The potential of mean force is calculated and plotted against
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Figure 7.18: The mean radial force toward the ice dimer centre of mass plotted against radius. The hydrogen bond
separation radius employed is 3.0A, and the hydrogen bond lifetime is 2ns. The error bars are generally too small to be seen
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Figure 7.19: The potential of mean force plotted against radius from the ice dimer centre of mass position. The system
is maintained under conditions of NVT at 230K.
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radius in Figure 7.19. Once again, the dimer molecules do not appear to experience a flat

potential of mean force at the large dimer separation.

This result makes it difficult to characterise the potential of mean force for ice dimers.
In the case of n-nonane clusters, the potential of mean force depth was defined as the
difference in potential of mean force between the cluster centre of mass and the radius
at which @ first reaches a plateau. The flat potential of mean force indicates that when a
cluster molecule reaches a sufficiently large radius, it is not influenced by the remaining
cluster molecules. In the case of ice clusters that are surrounded by water molecules, this
is not the case. There may be repulsions due to unfavourable molecular configurations
with neighbours. As a result, we are not able to characterise the potential of mean force
depth in the same way as we did for n-nonane. To avoid this difficulty, we must redefine
how we view ice cluster embryos: we consider that a molecule has escaped from the ice
dimer when it violates the hydrogen bond radius employed. The potential of mean force
depth is estimated as the difference in potential of mean force between the dimer centre of
mass and the furthest radius for which there is data available (this will be dependent on
the employed separation radius). We estimate the potential of mean force depth for an ice

dimer defined using the bond criterion r, = 2.5A and 7, = 2ns to be approximately 5kT.

7.4.2 Calculation of the friction coefficient

The friction coefficient of water clusters in liquid water is determined by calculating the
friction coefficient of the bulk liquid, assuming they are approximately equivalent. We cal-
culate the friction coefficient of the liquid from the diffusion coefficient, which is calculated
using the molecular positions. This avoids the need to perform further MD simulations,
which is undesirable for large systems. The distance moved by a molecule determines the
mean square displacement, which is related to the diffusion coefficient D in the long time
limit. This relation was stated by Equation (4.24) in Chapter 4, and is repeated here for

convenience as

(x*()) = 2Dt (7.2)

where x? is the molecule centre of mass displacement squared. The relation indicates that
the further a molecule travels in a given time interval, the greater the diffusion coefficient.
The diffusion coefficient can be expressed in terms of the molecule mobility, which was

stated by Equation (4.27) in Chapter 4, and is repeated here as
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kT
D=-—r (7.3)
m

where 7, is the velocity autocorrelation time, T is the temperature (230K), and m is the
mass of a water molecule (18.015AMU). The molecule displacement squared x2, from the

freezing trajectory, is plotted against simulation time t in Figure 7.20.

g

(9]
&8 8
L T B

g

ol

Mecan square displacement (Angz)

0 50000 ' .100000' "~ 150000 200000
Time (ps)

Figure 7.20: The mean square displacement plotted against simulation time in picoseconds shows a linear
relation with a gradient given by 2D. The system under conditions of NVT at 230K.

The gradient of the plot is approximately 0.02A2ps~! = 2D, which provides an estimate of
the diffusion coefficient D. This is used in Equation (7.3) along with the mass of a water
molecule and a temperature of 230K to estimate the velocity autocorrelation timescale.
We recall that the velocity autocorrelation time is the inverse of the friction coefficient
(as stated by Equation (4.33)). The friction coefficient is thus determined to be 975ps !,
which is relatively large compared to that of n-nonane clusters (3.0ps™1). This indicates
that the system is viscous and sticky, rather than fluid like, which is probably due to the
strong directional nature of the hydrogen bonding and the considerably low (supercooled)

temperature.
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7.4.3 Calculation of dimer lifetimes

The friction coefficient of ice clusters (calculated in section 7.4.2) is used together with an
estimation of A ®, from Figure 7.19, with estimated errors of 70.2kT, to evaluate Equation
(4.49), which yields a mean dimer lifetime of 2.4ns (using a hydrogen bond definition of
2.5Aand 2ns). Obviously, different hydrogen bond definitions will produce different dimer
lifetimes. If the employed hydrogen bond longevity is too short, then the dimers do not
represent the truly bound quasi-stable structures that we are interested in, but random
fluctuations, which we want to avoid. We investigate a range of hydrogen bond lifetime
definitions from 0.8ns - 2.4ns in intervals of 0.2ns, which identifies a range of time resolved
dimer clusters, and corresponding potential of mean force depths. Similarly, we calculate
the mean dimer lifetimes using an estimation of the potential of mean force depth and
the friction coefficient (from section 7.4.2). The mean dimer lifetimes are plotted against
the defined hydrogen bond lifetimes in Figure 7.21, along with the estimated errors (from
the estimated error in the potential of mean force depth). A relative comparison of the
mean dimer lifetime with the defined hydrogen bond lifetime (7,,,4.: /1) is plotted against
defined hydrogen bond lifetime as shown in Figure 7.22.

To deduce the most suitable hydrogen bond lifetime, we seek a consistency between the
calculated mean dimer lifetime and the defined hydrogen bond lifetime. For short hydro-
gen bond lifetimes of around 0.8ns the mean dimer lifetime is about 6ns as shown by Fig-
ure 7.21. As the defined hydrogen bond lifetime increases, the dimer lifetime decreases.
Toward the larger hydrogen bond lifetimes above 2.2ns, the calculated mean dimer life-
times appear to be less than the hydrogen bond lifetimes, which is an inconsistency, sug-
gesting that the defined hydrogen bond lifetime is too stringent. The most sensible choice
of hydrogen bond lifetime appears to be 2ns, which supports the value employed by Mat-
sumoto et al.. We shall proceed with this hydrogen bond lifetime definition together with
a maximum separation radius of 2.5A , employed to extract larger cluster sizes, which are

analysed in the next section.

7.5 The Potential of Mean Force for Larger Clusters

We calculate the mean radial force and potential of mean force for a 5-cluster and 8-cluster,
as shown in Figures 7.23, 7.24, 7.25 and 7.26 respectively. The potential of mean force plots
of ice clusters are characteristically very different to the potential of mean force plots for

liquid n-nonane clusters. The ice cluster embryos exhibit a linear rise in potential of mean
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Figure 7.21: The mean lifetime of the ice dimer plotted against hydrogen bond lifetime. The system is
maintained under conditions of NVT at 230K.
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Figure 7.23: The mean radial force for an ice 5-cluster plotted against radius from the centre of mass. The
system is maintained under conditions of NVT at 230K.
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Figure 7.24: The potential of mean force for an ice 5-cluster. The potential of mean force is calculated
from the mean forces in Figure 7.23, through a numerical integration using the trapezium rule. The system is
maintained under conditions of NVT at 230K.
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Figure 7.25: The mean radial force for an ice 8-cluster plotted against radius from the centre of mass. The
system is maintained under conditions of NVT at 230K.
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Figure 7.26: The potential of mean force for an ice 8-cluster. The potential of mean force is calculated
from the mean forces in Figure 7.25, through a numerical integration using the trapezium rule. The system is
maintained under conditions of NVT at 230K.
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force with increasing radius, which ends abruptly toward the outer regions of the cluster.
We are not able to easily approximate the force for the outer regions, due to the surround-
ing water molecules, which influence the molecules in the cluster. Under such circum-
stances it is very difficult to identify the potential of mean force depth, which presents a
major obstacle in the study. Nevertheless we can attempt to estimate the mean cluster life-
time using an approximate guess for the potential of mean force depth, defined from the
centre of mass to largest radius for which there is data. We estimate the potential of mean
force depth for the 5-cluster to be 20kT and for the 8-cluster to be 25kT, although these
values are possibly too large. The depths are used together with an estimate of the friction
coefficient of 975ps !, which yield mean cluster lifetimes of 6800ns for the 5-cluster, and
8700us for the 8-cluster. Clearly, these estimates of the cluster lifetime are too great. This
error may be due to the insufficient data available for the central and outer regions, which
has significantly increased the uncertainty in the quantifying the potential of mean force
depth.

7.6 Summary of Ice Embryo Study

In this study we investigated the structure and dynamics of supercooled ice cluster em-
bryos, which emerge during the freezing phase transition. The ice embryos are bound by
hydrogen bonds and compose hydrogen bonded networks. We identify ice embryos by
identifying pairs of hydrogen bonded molecules using a definition based on a radial con-
straint and longevity requirement for a hydrogen bond. We require that pairs of hydrogen
and oxygen atoms do not exceed a maximum separation of 2.5A for a minimum timescale
of 2ns. The longevity requirement ensures that the ice embryos maintain a certain stability,
and are not random fluctuations. We have also investigated a range of hydrogen bond
longevities. We extract a list of qualifying pairs of molecules from the trajectory that meet
the specified bond criterion. The list of bonded molecule pairs is used to deduce which
molecules are connected to each other, to form ice embryos. We observe the evolution in
mean population of different sized embryos explored during different stages of freezing,
which reveals there is a greater population of larger cluster sizes toward the end of the
freezing transition, as expected. The bonding structure in ice embryos is investigated by
a calculation of the mean molecular co-ordination number for different cluster sizes. This
reveals that larger ice embryos have a mean molecular co-ordination number just above
2, and participate in a greater number of bonds than smaller ice embryos such as dimers,

which have a mean molecular co-ordination number of 1. This is consistent with the view
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that larger clusters participate in larger bonding networks and have more of their potential
hydrogen bonds satisfied. Nevertheless, the larger clusters have a co-ordination number

well below the value of 4, expected of hexagonal ice, due to their amorphous nature.

We model the motion of a dimer molecule using a Langevin representation of its dynam-
ics. This treatment is used to estimate the mean lifetime of an ice dimer. The lifetime is
viewed in terms of the the probability of a molecule’s escape from a constraining potential
of mean force. The process of a molecule’s escape is driven by its interactions with the
other cluster molecules and the surrounding water molecules. The timescale of friction
between the cluster molecules is approximated by calculating the friction coefficient of the
liquid water molecules. To avoid performing further MD simulations we calculate the
diffusion coefficient, which requires the molecular positions, and this is used to estimate
the friction coefficient. The friction coefficient of the supercooled water is calculated to be
976ps~1, which is approximately 3 orders of magnitude greater than for n-nonane. This
indicates that the system is much more sticky and viscous rather than fluid like, probably
due to the strongly directional hydrogen bonds, and the considerably low temperature of

the system.

The potential of mean force is determined from the mean radial force acting toward the
dimer centre of mass. The mean radial force of a dimer is evaluated from the derivative
of the potential using the molecular positions from the MD trajectory. The mean radial
force is deduced to be highly repulsive close to the dimer centre of mass, corresponding to
repulsive molecular interactions, and becomes less repulsive and more attractive further
out from the dimer. The mean radial force reaches a minimum value, and then stops rather
abruptly due to the imposed cut off radius. The hydrogen bond radius was explored out
to 3.0A , which yields a mean radial force for the outer regions that is less attractive but
does not quite reach zero. This is could be due to the highly localised partial charges and
specific orientational valence geometry of water which means that most configurational
orientations between molecules are likely to be unfavourable, which may cause repulsions
at the dimers peripheral regions. The problem of sampling the correct force at the outer re-
gions of the dimer is similar to the problem encountered with the non-decaying n-nonane
clusters. However, in the case of ice clusters there is a problem with extending the maxi-
mum separation radius beyond a certain threshold as it means every molecule is connected
to every other molecule, which we want to avoid, as the bond definition is too stringent.
The fact that the mean force does not reach zero at large dimer separations means that

molecules do not then sample a flat potential of mean force. This leads us to redefine our
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view of molecular escape from a cluster. Instead of viewing “escape” as occurring when a
molecule samples an unchanging potential of mean force, we characterise escape to occur
when the molecule violates the hydrogen bond radius. The potential of mean force depth
is estimated as the difference in potential of mean force from the centre of mass to the fur-
thest radius occupied by a molecule. The potential of mean force depth for a dimer defined
using a hydrogen bond separation radius of 2.5A and longevity of 2ns, is determined to

be approximately 5kT.

We have explored a range of hydrogen bond lifetime definitions from 0.8ns-2.4ns. The
mean dimer lifetimes are calculated using Equation (4.49). The results show that for hy-
drogen bond lifetimes above 2ns, the calculated dimer lifetimes are under 2ns, which is
inconsistent in the sense that the mean lifetime of the dimer exceeds the minimum life-
time of the hydrogen bond. This inconsistency indicates that the bond definition may be
too stringent. For longevities shorter than this, at 0.8ns the mean dimer lifetime is about
6ns. Although this is an agreeable result, we seek to select the most suitably consistent
lifetime in comparison to the minimum hydrogen longevity. A minimum hydrogen bond
longevity of 2ns yields a mean dimer lifetime of about 2.3ns, which appears to be the most
sensible choice. Furthermore, a hydrogen bond longevity of 2ns is consistent with the

value employed in the study by Matsumoto et al. [37].

We apply this minimum hydrogen bond longevity together with a maximum separation
radius of 2.5A to identify larger ice clusters. We investigate the potential of mean force
for a 5-cluster and a 8-cluster. The results show there is a linear rise in the potential of
mean force with increasing radius from the centre of mass, which stops abruptly due to
the imposed separation radius. The behaviour of the potential of mean force very different
to the behaviour of n-nonane clusters, which makes further analysis via this approach
difficult to proceed with. Nevertheless, we have attempted to estimate the mean ice cluster
lifetimes for a 5-cluster a 8-cluster, calculated using Equation (4.49), which yield values of
6000ns and 8700us respectively. These mean lifetimes are clearly incorrect, as they are far

too large and exceed the time taken form the ice phase in the simulation.
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Chapter 8

Concluding Remarks

This thesis focuses attention on predicting the lifetime of organic condensed phase liquid
clusters. The cluster lifetime is viewed as the mean time taken for particles to leave the
cluster, which is referred to as cluster decay. The cluster decay process views the motion of
a single particle in the cluster as being driven by its interactions with the surrounding clus-
ter particles. Any given cluster particle feels a mean force due to the average interactions it
experiences with its surroundings, and a stochastic force due to the random collisions from
its surroundings. The motion of a cluster particle is modelled using a Langevin equation,
which treats the force acting on a cluster particle in 1-dimension, which assumes a certain
symmetry of the cluster. The cluster particle forces are dynamically generated, and are
used to parametrise the Langevin equation. This is achieved by performing MD simula-
tions conducted at constant temperature using the Andersen stochastic thermostat. The
use of a stochastic thermostat mimics the experimental conditions at which clusters sizes
of 40-67 n-nonane molecule were deduced to be critical. The MD simulations are computa-
tionally demanding calculations, even for small cluster sizes and thus simulations of larger

cluster sizes are not practical.

The mean interactions of a molecule within the cluster are used to determine the potential
of mean force, and the associated potential well depth A®. In the absence of cluster decay,
the mean force on a molecule at the cluster’s periphery is not properly sampled. Conse-
quently, the potential of mean force for this region is not completely established and the
potential well depth cannot be correctly quantified. In order to address this shortcoming,
the mean force for these regions is approximated by the radial derivative of the mean po-
tential energy of an imaginary molecule placed at that location, provided it does not affect

the cluster’s configuration. This avoids the need to perform further MD simulations under
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circumstances of insufficient MD data for the cluster’s peripheral regions and beyond (ie

in absence of cluster decay).

The friction force is characterised by the friction coefficient ~. It is extracted by using an
analysis that involves mapping MD onto the coarse grained timescale of Langevin dynam-
ics. The difference between the force on a molecule evaluated over a coarse timescale, and
the MD force on a molecule averaged over all molecular configurations, is referred to as the
mean discrepancy force. We find that this force has a linear correlation with the molecule’s
velocity, and the gradient is related to the friction coefficient. The Langevin derived pa-
rameters A® and ~ are used together in an Arrhenius type of equation for cluster decay,

which yields estimates for the decay timescale of the simulated n-nonane clusters.

Overall, the stochastic cluster decay model is an essential tool for systems with long decay
timescales, for which decay events may not be observed during a typical MD trajectory. It
appears that the dynamic decay model taken to represent the cluster behaviour, together
with the Langevin interpretation of the dynamics, provides a successful description of the
real cluster behaviour, particularly for the smallest cluster sizes. These findings are in good
agreement with the decay times estimated from experimental data, and those suggested by
classical nucleation theory. Further simulations of varying cluster sizes would help better
characterise the decay model so that it can be applied to a complete distribution of cluster

sizes.

The latter study focuses on predicting the lifetime of amorphous ice clusters. The clusters
form during the freezing phase transition of supercooled water into ice. This is a very
different system to condensed phase liquid clusters, nevertheless, we aim to extend the
treatment of cluster decay in liquid clusters so that it can be applied to amorphous ice
clusters. The process of cluster decay in amorphous ice clusters is viewed as a single par-
ticle escape, driven by a mean and stochastic force, due to the average interactions and
random collisions an ice cluster molecule experiences with its surroundings. The mean
force felt by an ice cluster molecule is not properly quantified at the periphery of the clus-
ter. This is due to the fact that the ice clusters are surrounded by “unbound” supercooled
water, which means that a cluster molecule does not necessarily sample an unchanging
potential of mean force at the cluster’s periphery, as expected. This makes it difficult to
quantify the potential of mean force depth. Consequently, any subsequent calculations of

the cluster lifetime are strongly influenced by how we choose to define a cluster.

The application of the Langevin model in the treatment of ice clusters has raised some im-

portant questions concerning the driving force of the water freezing phase transition. On
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a molecular level, it is likely that the probability of particle escape is largely characterised
by the molecule orientation rather than position. The centre of mass positions of cluster
molecules do not undergo significant displacements, due to the very low temperature of
the system. In this sense, the Langevin interpretation of ice cluster dynamics represents
a limited description of the entropic differences between the cluster and its surroundings,
for supercooled water. In condensation, the liquid phase has a lower entropy than the
vapour phase due to the smaller volume of phase space available to it. The difference in
entropy is a component of the driving force of the condensation phase transition. In the
case of freezing, the situation is rather different. Although the solid phase has a lower
entropy than the liquid phase, the relative volumes they occupy are similar. The differ-
ence in entropy is brought about by the larger number of bond orientations available in
a liquid than in the solid. This suggests there are different entropic contributions that are
important for condensation than for freezing. Essentially, the nucleation of liquid droplets
from a supersaturated vapour is controlled by monomer flux from the vapour, whereas
the growth of ice embryos from a supercooled liquid is a matter of molecular reorientation

of hydrogen bonds.

Perhaps a more suitable approach to this problem would be to employ a confining poten-
tial of mean force that is orientation dependent, which would include entropy of order as
an important factor. However, this is a development which would complicate the rela-
tively simple picture of cluster decay drawn here, but it would be a potentially interesting

future advancement for this study.
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Appendix A

Computational Specifications

The MD calculations were run on a Dell Precision Work Station Intel Pentium 4, with a
2.853 GHz processor and 500 MB of RAM. The simulations were conducted under condi-
tions of constant temperature, implemented using the Andersen stochastic thermostat. The
time taken to run the simulations varied from a few hours to several weeks, depending on
the sizes of the systems considered. For instance, the time taken to simulate a cluster of 67
molecules for about 5ns, took approximately 35 days, without any other major processes
being run simultaneously. The smaller cluster systems containing 50, 40 and 5 molecules

took approximately 28 days, 14 days, and less than 1 day respectively.
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Appendix B

Cluster Identification Algorithm

CLUSTER
IDENTIFICATION
FLOW CHART

EXAMPLE

Atom (H,H,0)

1.2,3 = molecule1
4,56 = molecule2
7,8.9 = molecule3

Atom list
of hydrogen
and oxygen

Identify bonded pairs of Atom 1connected to 6
hydrogen and oxygen Atom 1 connected to 8
atoms based on radius

and time in terms of

molecule numbes Algorithm

roads bt pak Molecule1 connected to 2

Molecule1 connectedto 3
Bonded
pairs of

molecules
v
Algorithm finds all
Cluster identification molecules connected to

molecule 1. Then finds
all molecules connected
to those molecules and
so on until there are no
more connections => It
has identified a cluster

m Molecule 1is

connected to 2 and 3
=> cluster

algorithm determines
which molecule pairs are
connected

Figure B.1: Flow chart illustrating the identification of clusters from a list of hydrogen bonded pairs of
atoms. The cluster identification algorithm is a topology based program. It uses a list of bonded pairs of
molecule numbers to deduce which molecules are participating in the same cluster. The algorithm is repeated
for each snapshot.
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