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Abstract

This thesis furthers our understanding of the canonical quadrupolar svstem
UPd;. which is unusual and interesting for several reasons. It is the onlv
known localised uranium intermetallic. it exhibits long range quadrupolar or-
der. and it has four phase transitions below 8 K attributed to a succession of
different quadrupolar orderings of the 5 f? uranium electrons. The two strate-
gies used in this work are: probing the quadrupolar order directly using X-rayv
resonant scattering. to determine the order parameters. and investigating how
the quadrupolar order is perturbed by the substitution of neptuninm for ura-
nium through bulk thermodvnamic measurements.

This is the first time that the svmmetry of the quadrupolar order in UPd;
has been examined directly. making use of the unique properties of X-rayv
resonant scattering. which couples directly to the quadrupoles as opposed to
neutrons which only couple to the induced lattice distortions. We have been
able to ascertain. through a detailed comparison between calculations and
experimental data. that the T, = 7.8 K transition is to a quadrupolar or-
dered phase described by the anti-phase stacking of Q. quadrupoles along the
c—axis. This. in combination with new high precision low temperature heat
capacity measurements. has enabled us to place constraints on the quadrupolar

operators within the cryvstal field model. We have also investigated the order-



ing in two of the lower temperature phases, and shown that the scattering
corresponds to a more complex model.

We have also investigated NpPdy; by measurements of the electrical resis-
tivity. magnetic susceptibility and heat capacity. and demonstrated that it
undergoes two phase transitions. one antiferromagnetic and the other possibly
quadrupolar. In the dilute neptunium region of (U.Np)Pd3 we have followed
the lowering of the transition temperatures with increasing neptunium con-
tent. and shown that several observed features of (Ugg;N\Npo.os)Pds are con-
sistent with proximity to a quantum critical point. which we have associated
with the suppression of a quadrupolar transition to zero temperature. This
preliminary work has indicated that there is considerably more scope for inves-
tigating the (U,_,Np,)Pd; system to identify a new type of quantum critical

point associated with the "squeezing out™ of quadrupolar order.
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Chapter 1

Introduction

In the past couple of decades there has been considerable interest in the or-
bital ordering of d and f electron systems [1 11]. The highly degenerate f-
electron shells in actinide and rare earth systems provide a wealth of local
degrees of freedom: dipolar(magnetic), quadrupolar, octupolar etc. In a lo-
calised f-electron system, such as UPd3, the quadrupolar degree of freedom
becomes a potential order parameter, which can lead to interesting and com-
plex phase diagrams. Whilst, historically, the order associated with magnetic
dipole moments has been studied extensively, more recently the importance
of electric quadrupoles in magnetic materials has been recognized [12]. In
classical electrodynamics the multipole expansion suggests that the interac-
tion between higher order multipoles is seemingly much weaker than between
dipoles. However, the interaction between multipoles is quantum mechani-
cal in origin, and dipolar and quadrupolar interactions may be equally strong.
More recently, quadrupolar order has been associated with new and interesting
behaviour, such as the novel heavy Fermion state in PrFe P;, 7], and the ex-
otic superconductivity in PrOssSb;,, which may be mediated by quadrupolar

fluctuations [8].
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In this thesis I have attempted to develop the understanding of quadrupo-
lar interactions through the study of the canonical quadrupolar system UPd3,
its order and how it evolves with the substitution of neptunium for ura-
nium. [ present extensive X-ray Resonant Scattering studies, which have
determined the order in the first quadrupolar phase, and macroscopic poly-
crystalline magnetisation and transport measurements of the mixed actinide

system (U,Np)Pd; and NpPds.



Chapter 2

Background

2.1 Actinides

The actinide metals from actinium to nobelium, see Table 2.1 are amongst
the most complex and unusual series in the periodic table, displaying proper-
ties such as magnetism, superconductivity, low melting points and numerous
structural phase transitions see Figure 2.1, but due to the difficulty in han-
dling these materials they are the least well studied. Only actinium, thorium
and uranium occur naturally in the earth’s crust. The spatial extent of the 5 f
electrons and their tendency to interact with ligand site electrons make the ac-
tinides the most difficult series to understand, whilst presenting opportunities

for interesting behaviour.

The lanthanides are the first series in the Periodic Table to have f electrons,
so that the 4 f electron wavefunctions are orthogonal to all previous wavefunc-
tions. Therefore the 4 f radius can be very small while still satisfying the Pauli
Principle, which often results in the electrons being localised. The physics

and chemistry of the actinides differ from the lanthanides due to the extended

3
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Table 2.1: The elements in the actinide series, the half-lives of the predominant isotopes
(taken from Wikipedia) and significant transition temperatures. (Tsc superconducting tran-

sition temperature, T Curie temperature and Tn Néel temperature)

Atomic Number | Symbol | Isotope half-life T/ K

89 Ac 227Ac 21.8 vears

90 Th Z2Th 1.41 x 10'° years | Tgo = 1.4

91 Pa 1Py 32760 years Tsc =04

92 C 3L 4.5 x 10? years Tse =0.9
B50 7 x 10® years

93 Np | 'Np 2.14 x 10 years

94 Pu 29Pu 24100 years

95 Am | 2Am 7370 years Tsc =0.8

96 Cm 247Cm 1.56 x 107 years | T = 52

97 Bk 7Bk 1380 years Ty =25

98 Ct B1CE 900 years Te =52

99 Es 22Eg 472 days

100 Fm 37Fm 100 days

101 Md | #°Md 52 days

102 No | 2®*No 1 hour
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Temperature ( C)

Figure 2.1: The experimentally determined connected binary phase diagram of adjacent

actinide elements. an adapted version of the original in [13] taken from [14].

23
22
21+
20+
<: 19+
H
eS|
A
Transiton metals (5d)
16—
151
1 | | 1 1 1 1| | 1 1 I L
Lanthanides: Ce Pr Nd Pm Sm Eu Gd T Dy Ho Er Tm Yb Lu
Actindes: Th Pa U Np Pu Am Cm Bk Of
Transitonmetals: La Hf Ta W Re Os Ir Pt Au

Figure 2.2: The experimental Wigner-Seitz radius of the Actinides compared with the Lan-
thanides and Transition Metals, showing that the light Actinide radii decrease with increas-
ing atomic number. similar behaviour to that shown by the Transition Metal radii, but in

contrast to the Lanthanides. where the radii remain approximately constant [15].
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nature of the 5f wavefunctions. As a result. depending on the actinide ion
involved. the inter-actinide spacing. its environment and the electron-electron
correlations. the properties of actinide compounds can range from itinerant. as
in transition metals. to localised. as in lanthanides. Moving across the series.
the similarity in electron localisation from transition metal-like to lanthanide-
like shows up in physical properties such as the atomic radius. see Figure 2.2.
The similarities in the variation of the radii with increasing atomic number for
the light actinides and transition metals. led to the actinides initially being

assigned as a new 6d transition metal series.

Close to the Mott transition between itinerant and localised electrons. the
cross-over in electronic properties may lead to new and unconventional behav-
iour. Actinide compounds are unique materials. many showing an interplayv
between magnetism and superconductivity. which is of interest to the wider

condensed matter physics community.

2.2 Multipolar Order

There is currently much interest in the interplay between spin and orbital
couplings leading to a range of interesting phenomena [16]. such as Orbital
Ordering. as seen in Transition Metal Oxides [17]. Jahn-Teller distortions [18].
as in Rare Earth spinels. and Quadrupolar Ordering. as seen in CeBg [19] and
UPdj. The study of multipolar interactions concerning the unfilled f-electron
shell in Rare Earth and Actinide intermetallics involves the complex problems
of pair interactions between different ions and the effect of the crystal field
acting on an f ion. The quadrupolar pair interaction is mediated by conduc-
tion electrons. via an indirect mechanism like the RKKY interaction. and by

phonons. in the case when quadrupoles are coupled strongly to the lattice.
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When this interaction dominates the magneto-elastic coupling. quadrupolar
ordering may occur. Depending on the sign of the pair interaction the order-

ing will either be ferro- or antiferroquadrupolar {12].

Quadrupolar moments are expressed as average values of the components
Q;; of the electric quadrupole tensor Q. They express the deviation of the 5f

charge clouds from a perfectly spherical distribution:

Qij = / (37‘,‘]'_,‘ - 7'26,‘1‘) p(r)(lr. (.)1)

and. using the Wigner-Eckart theorem. can be seen to measure the correlation

between components J; and J; of the total angular momentum. such that:
QB3 -1 =Q,, —3J7-JJ+1). (2.2)

and

1 1
Qu — §JJJy = §(Jf']y + JyJr). (2.3)

where the “overline” symmetrizes the non-commuting operators. Unlike dipole
moments there is no net directionality. The quadrupole moment couples to the
gradient of the electric field. as can be seen from the multipole expansion of

the electrostatic energy:

Wy = /(13.1'/)(x)<1>(x)

1 o (2.4)
=q®(0)—d-E- ¢ > Qi OE/60;)(0) + ...

where the charge ¢ couples to the electrostatic potential and the dipole d to the
electric field E = —V®. The wave functions of quadrupoles look like those of
atomic d-orbitals. but with positive and negative lobes. and are schematically

represented by ellipses. which are the simplest form reflecting the svmmetry.

The different quadrupolar order parameters induce different changes in

the charge distribution. The (Q,2_,2) order parameter changes the charge
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Figure 2.3: Schematic representation of Q.2 ,: and Q., on a cubic lattice.

distribution on the uranium ions from being spheroidal to ellipsoidal, and
(Q..) results in a rotation of this distribution about an axis in the basal plane,

see Figure 2.3.
A two ion coupling between quadrupoles can be written analogous to that
of the Heisenberg coupling of two magnetic dipoles [20]:

H[;‘A\' — ijJ, Jj

ij

—_
o
(S]]

S

where 7;; is the exchange constant between the ith and jth dipoles, replacing
the spins with quadrupole moments. A generalised interaction Hamiltonian
between lattice sites i and j can then be written as:

M= JHm) I+ THQ)QQ! + Z TE(0)0FO! + (2.6)

k.l k.l

where J*, Q% and OF are the dipolar, quadrupolar and octupolar moments
at site 7, and j/j’(m). ,ﬁ"(Q ) and J“(()) are the magnetic, quadrupolar and
octupolar coupling constants. The lattice Hamiltonian is then given by the sum
over all the pair interaction Hamiltonians, and is invariant under all symmetry

operations of the lattice.

When symmetry conditions are taken into account. the quadrupolar term in

the Hamiltonian can be written in the Molecular Field Approximation in terms
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Table 2.2: Expression of the quadrupolar operators

Operator  Expression

09 3J2—J(J+1)

03 J2—J2=1(J2+?)

P., Y dy+ dyd.) =3 (J2 = J?)
P, L(Jyds + J:dy)

P,=0) (JJ +J.J)

of the quadrupolar Stevens operators and the two-ion quadrupolar parameters
corresponding to the two linear combinations of quadrupolar operators. which
are associated with the anisotropic normal strain modes. Hence. for example.

for cubic symmetry the Hamiltonian is given by:

Ho = —K ({000 + 3(ODO2) — K* ((Py) Poy + (Py) Py + (P)Poy)
(2.7)

where the quadrupolar operators are given in Table 2.2 and A~ and K¢ are

the two-ion quadrupolar parameters for tetragonal (~) and trigonal (€) strain

!

modes [12].

Higher order multipolar terms are not necessarily insignificant and have
been suggested as the primary order parameters in systems with “hidden or-
der”. such as URw,Si, and NpQO,. but are little discussed. 1f the multipoles
are described according to 2". where n = 1 for magnetic dipoles and n = 2
for electric quadrupoles. the higher order terms are n = 3: magnetic octupole.
n = 4: electric hexadecapole. n = 3: magnetic triakontadipole. n = 6: electric
hexacontatetrapole ete. In general. n odd terms break time reversal syvime-
try. while n even terms preserve time reversal svinmetry. Octupoles are named
after the eight magnetic poles. as shown in Figure 2.4, where there are four
current eddies belonging to the magnetic field lines entering and four belonging

to the lines leaving the surface. and do not have time-reversal svmmetry. The
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Figure 2.4: Diagrammatic representation of a free-ion T, octupole in the | = 2 Hilbert
space. showing the current eddies about the magnetic field lines entering and leaving the

surface.

octupole in Figure 2.4 is in the [ = 2 Hilbert space, and differs toan [ = 4 T,,.
octupole, which displays more complex current eddies. with four minor eddies
in a petal arrangement within the one major eddy in each octant [21]. The
overall vortex pattern is the same, but the central eddy of the sub-eddies in
each octant rotates counter to the others, so that the field changes direction
within each octant. The magnetic fields of octupolar currents are weaker in
| = 4 than [ = 2 states. Hexadecapoles are time-reversal invariant and the
eigenstates are similar to quadrupolar eigenstates, but with a higher number

of positive and negative lobes.

Whilst octupolar order has been suggested as the primary order parame-
ter in NpO, [22], which is consistent with the absence of observed magnetic
order. more recent calculations suggest that the actual primary order parame-
ter is triakontadipolar [23]. Hexadecapolar order has been proposed for the
skutterudite PrRuyP,5 [24], and a combination of higher multipolar orders has

been suggested for URu,Si, [21].
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2.3 UPd;

UPdj; is a particularly interesting and unusual compound as it displavs four
phase transitions at low temperatures: Tp =78 K. T,;, =69 K. T_, =6.7 K
and T, = 4.4 K [25 27]. and it is the best known example of a localised uranium
intermetallic. For this reason it has been studied in great detail by a wide
range of experimental techniques:- neutron [27 33] and X-ray scattering [1].
photoemission [34.35]. magnetic susceptibility [36 39]. heat capacity [37.39

41]. magnetostriction [42.43] and ultrasonic techniques [25]. These transitions
have been attributed to a series of quadrupolar order parameters using group
theory arguments. making it one of only a small number of metallic svstems

exhibiting long range quadrupolar ordering.

The uranium 5f electrons are well localised in a 5f? configuration. The
localised behaviour is clearly evident from the existence of crvstal field exci-
tations first measured by Buvers et al.. using inelastic neutron scattering [28].
and supported by intermultiplet spectroscopy results [33]. It is also indicated
by the absence of a peak at the Fermi level in Ultraviolet Photoemission va-
lence spectra and the poorly screened peak at higher binding energy than in
pure uranium in the X-ray photoemission uranium 4f spectra [34.35]. a low
~ value ranging between 2.5 [40] - 9.5 [37] mJ/K?. and low cvelotron effective
mass 0.24 — 3.62m (i.e. no evidence of hybridization between conduction and
5f electrons) [37.39.44]. Applyving Hund's Rules. assuming Russell Saunders
coupling. indicates that the ground state configuration is the *Hy multiplet
(S =1. L =5.J =4). This ground state indicates that the atomic mo-
ment should be 3.2p¢5. which is strongly in contrast with the measured value
of 0.024p for the antiferromagnetically ordered moment [39]. This discrep-
ancy could be due to the crystal field splittings. induced by the developing

quadrupolar order. almost entirely quenching the moment. Since the 5f shells
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are unfilled, the uranium ions will have fluctuating magnetic dipole. electric
quadrupole and higher order multipole moments. The large orbital moment
means that there is strong coupling to the lattice. which helps explain why
quadrupolar effects are dominant in UPdj;. Recently a new crystal field model
has been developed which provides a qualitative understanding of the transi-

tions and the excitations observed by inelastic neutron scattering at 2K [26].

UPd; is also interesting to study as a comparison to UPts. a heavy fermion
superconductor [43]. The nearest neighbour uranium distances in the two
compounds are nearly the same: UPdyz dy_- = 4.106A and UPt; di-_; =
14.132A. However. they have different structures. UPd; is double-hexagonal
close-packed while UPty is simple hexagonal close-packed. and the Pt 5d wave
function is more extended than the Pd 4d one. contributing to different band
structures [46]. At least some of the U 5f electrons in UPty appear to be
itinerant. forming band states [47]. This goes some way to explaining why the

two compounds show markedly different behaviour.

2.3.1 Crystal Structure

UPd; crvstallizes in a double hexagonal close packed structure with hexagonal
lavers stacked ABACABAC. uranium atoms in the B and C layers possess
locally hexagonal syimmetry. while those in laver A have a local enviromment
BAC indicating a quasi-cubic symmetry. The crvstal structure is of the TiNiy
tvpe (see Fig. 2.3) with lattice parameters a = 5.76 A and ¢ = 9.62 A [48]. and
the space group is (#194. P63/mmc). In the dhep unit cell atoms are situated

at:
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Figure 2.5: Dhep structure of UPd; viewed from the side and from above.

U Quasi-cubic: (0,0,0) (0,0, %)

U Hexagonal: (% =; f) (=; l; i)

Pd I: (3,0,00 (0,300 (3,3.0)
@0 04D (D

Pd 11: (z,2z,3) (2%,%,3) (z,%,3)
()22, f) (2z, z, f) (%, z,3),

where the ideal value of parameter z is + [48]. The inter-uranium distance is
4.11 A, which is greater than the Hill Limit (3.4 A) suggesting that the 5f

electrons should be localised.

2.3.2 Neutron Experiments

The first inelastic neutron scattering experiments on single crystal UPd3 ob-
served three well-defined spin-excitation bands, indicating that the 5 f electrons
are localised: two strong transverse bands between 12.8 and 18.6 meV and a
weak band at 1.7 meV [28]. A crystal field level scheme was developed to
give the relevant transitions and to agree with the fact that up to that point

no magnetic ordering down to low temperatures had been observed, which
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14.9 meV

1.7 meV

Cubic Sites Hexagonal
Sites

Figure 2.6: CEF level scheme developed for UPd; by Buyers and Murray [28]

required there to be a non-magnetic ground state on both sites. The strong
mode around 15 meV was attributed to the hexagonal sites, with a J, = |0)
ground state and a J, = | & 1) excited doublet. Using this fit, the cubic site
crystal field splitting was estimated, leading to the belief that there was also a
singlet ground state on the cubic sites, which was compatible with the absence

of magnetic ordering (see Fig. 2.6).

A subsequent experiment using polarised neutron diffraction (PND), with
the polarization P parallel to the scattering vector Q, investigated the struc-
tural and magnetic character of the phase transitions at Ty ~ 7 K and T ~ 5
K [30] that had been identified up to that time in bulk measurements [36].
The experiment made use of the fact that for neutrons polarised parallel to Q
the origin of the Non-Spin-Flip (NSF) cross-section is entirely nuclear, whilst
that for Spin-Flip (SF) scattering is purely magnetic, apart from incoherent

nuclear scattering.

The temperature dependence of elastic scattering at (h + 3,0,1) peaks was
measured. All peaks showed an increase in the NSF scattering below T, with

a change in the intensity below 75, which was interpreted as the phase with
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5 < T < 7 K incorporating a modulated lattice distortion with a wavevector
of 0.57y00, which accompanies a quadrupolar structure. The SF data showed
a distinct increase in intensity only below 4.5 K in the case of the (%,0,0)
peak, indicating that the low temperature transition is of both structural and
magnetic origin, while the higher temperature transition is of non-magnetic
origin. However, the diffraction peaks are not resolution limited, indicating
that the order is only short range, and uSR measurements suggest that spin
fluctuations may be dynamic, but appearing static within the time window of

neutron scattering [49)].

Group theoretical arguments applied to the (%, 0,1) and (%, 1,1) peak inten-
sities established that the order parameter symmetry is By, [29]. The doubling
of the unit cell means that the structure is antiferroquadrupolar (AFQ). For
such a structure the allowed quadrupolar symmetry modes are 6Q,,, Qx2_y2
and Q,x, where §Q),, is the deviation of Q),, from the average value, which
cannot act as an order parameter itself as it is non-zero above 7). Landau
Theory has shown that the transition at T) is to an ordered phase which is

triple-q, and that the phase space group is P3m1.

The localised nature of the 5f electrons in UPd3 in comparison to UPt3 was
confirmed using neutron intermultiplet spectroscopy [33]. Using an incident
energy of 800 meV a clear excitation at a transfer of 395 meV was observed
in UPd3, while nothing was found in UPt3. This corresponds to the electronic
configuration of UPd3 being 512, and the excitation is ascribed to a*H; — 3F,

transition.
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2.3.3 Xray Resonant Scattering Experiment

Unlike neutron and X-ray non-resonant scattering probes, which couple to
the lattice distortions associated with the ordering, X-ray resonant scattering
(XRS) couples directly to the quadrupolar structures. Measurements, made
when only three transitions had been identified, found that resonant enhance-
ment of scattering was observed from two peaks associated with long range
quadrupolar order: (103) and (104) written in the orthorhombic notation [1].
The temperature dependence of the scattering at the two reflections indicated
that between T and T critical fluctuations build up at (103). Then at T)
the scattering intensity at (103) increases abruptly while there is a first order
transition in the intensity at (104), and finally at T, there is a discontinuity in
both reflections’ intensities. Polarisation analysis of the intensity at the two
reflections indicated that the (103) peak was predominantly in the unrotated
7w channel, in contrast to the (104) peak, which was mainly in the rotated
mo channel. Calculations based on the resonant scattering amplitude for dif-
ferent quadrupolar order models were compared with the data, showing that
between Ty and T; the limited data was consistent with the cubic different
Qx2—y2 order parameter. This would be manifested as an antiphase stacking of
the quadrupole moments on the cubic sites up the z-axis (see Fig. 2.7). Below
T, comparisons of calculations and data suggested that the charge densities

are rotated off axis.

2.3.4 Ultrasound

The large coupling of the acoustic strain to the ionic quadrupolar moment
tensor makes ultrasound well suited to investigations of long range quadrupolar

order and the quadrupole-quadrupole interaction. Ultrasound was the first
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Figure 2.7: The AFQ structures in UPd3 shown using the orthorhombic unit cell {1]. The
ellipsoids on the quasicubic sites represent the U 5f quadrupoles. a) For Ty < T < T the
structure was believed to be Q42 2 with an antiphase stacking along the z axis. b) Below

T, it was believed that the moments are rotated, introducing other order parameters.
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experimental technique to identify the two distinct transitions at T,; = 6.9 K
and T_, = 6.7 K [25]. Figure 2.8 shows that hysteresis was observed close to
T_, but not T',, suggesting that the transition at 7_, is first order, while the

transition at T, is likely to be second order.
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Figure 2.8: Temperature dependence of the ~ 20 MHz (a) longitudinal and (b) transverse
attenuation coefficients of the (33 and Cy elastic modes in UPd3 ultrasound measurements

[25], providing the first evidence separating the T, and T, transitions.

Investigations of the temperature dependence of different elastic constants
led to the conclusion that the four transitions, including the magnetic tran-
sition T», are indeed driven by quadrupolar interactions. The data supports
a scheme where at Ty the crystal symmetry changes from hexagonal to or-
thorhombic. Then at T',, there is a second order transition from orthorhombic

to monoclinic with (Qy,) possibly being the significant order parameter. At
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Figure 2.9: CEF level scheme developed for UPd3; by K. A. McEwen et al. [26]

T_, there is a first order transition from monoclinic to a trigonal triple-q state,
followed by a probable first order transition from the trigonal triple-q state to
monoclinic magnetic state at 75, where the order parameter should be a linear

combination of (Qy;) and (Qx2_,2).

2.3.5 Summary

Following a comprehensive analysis of the huge range of data, a new crystal
field level scheme has been developed to explain the physics of the different
phase transitions [26], see Fig. 2.9. The magnetic entropy and single crystal
susceptibility data (Figure 2.10) indicate that the ground state on the quasi-
cubic sites in the high temperature phase is a doublet rather than a singlet.
Also a two-level system would not be able to explain the four phase transitions

observed.

The two singlet ground states of the Buyers and Murray scheme [28] was
in good agreement with the observed absence of magnetic ordering, while this

new scheme has a magnetic doublet ground state meaning that magnetic order
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Figure 2.10: The inverse magnetic susceptibility of single crystal UPd3 measured along the
principal crystallographic axes, and the magnetic susceptibility between 2 and 10 K, with

arrows showing the transition temperatures.

would be possible. However, the hexagonal crystal structure will lead to a geo-
metric frustration of simple antiferromagnetism. In addition, the high strength
of the quadrupolar interactions means that the quadrupolar transitions occur

first preventing magnetic ordering.

The different quadrupolar order parameters lead to the cubic ground state
degeneracy being lifted below 7.8 K. Using the symmetries of the different
quadrupolar operators, the nature of the quadrupolar transitions have been

analyzed. The scheme suggested for the phase transitions was as follows:

To  2nd order transition  @Qy2_y2 primary order parameter, only small
splitting of doublet levels

Ty, 2nd order transition @, develops

T_, 1st order transition Q. primary order parameter which enhances
Qx2_y2 due to symmetry considerations, leads
to large splitting of ground state doublet

T,  1st order transition Q. disappears, leaving an AFQ state

with 4 sublattices with order parameters

sz —y2? and sz
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The hypotheses for Ty and T, are supported by low temperature neutron
scattering data [31], and estimates of the exchange interactions at T = 0
K were made by making a mean field fit to this data:- J,2_y2 = —3.0 meV
and J,x = 1.0 meV. These values are consistent with the expected magnitudes
within the limitations of Mean Field Theories in the regime of four inequivalent
sublattices, since Jya_,2 is close in value to the energy of the first excited level,

A and J,, = kgT¢ gives an estimate for T_; of 11.6 K.

2.4 NpPd;

Dhep NpPdj; is an interesting but little studied compound, in contrast to
isostructural UPd3, with most of the work done published in only one paper
many years ago [50], and so this literature review will take the form of a
synopsis of this paper. As far as we are aware, no papers have been published

relating to the mixed (U,_,Np,)Pds system, prior to our own work.

As part of a programme investigating magnetic ordering with actinide con-
centration in actinide-palladium alloys and looking at the localised nature of
the 5f electrons (the Np-Np distance is greater than the Hill Limit) magneti-
zation, electrical resistivity, Mdssbauer effect and neutron diffraction measure-
ments were made on dhcp NpPd3 between 1.5 and 300 K [50]. Samples of dhcp
NpPd3 were prepared by arc melting stoichiometric amounts of high purity Np
and Pd metals before annealing at 1350°C for at least 85 hours to ensure that
none of the cubic phase, produced on quenching, was present, which was found

to be antiferromagnetic with Ty = 55 K.

The isofield-magnetization measurements displayed a broad peak centred
on about 20 K, with the magnetization falling steeply between 20 — 35 K,

see Fig. 2.11. The isotherm-magnetization curves showed no saturation down
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Figure 2.11: Isofield magnetization of NpPd3 showing a sharp rise below 32 K. and a broad

peak centred on 20 K [50].

to 1.74 K and for T < 32 K the susceptibility for 6 < H < 12 kQOe was
almost independent of temperature. The data implied some kind of magnetic
ordering near 32 K, while for temperatures in the range 100 — 300 K the
susceptibility obeys a Curie-Weiss behaviour with an effective paramagnetic

moment of p.r; = (2.75+0.03)up/F.U.

The electrical resistivity increased rapidly from a residual value of 19.7
#€2cm to a knee at 30 K after which the gradient is reduced near the temper-
ature at which magnetization measurements indicate some form of ordering.
For T > 50 K the slope of the resistivity curve was found to be negative.

The low temperature rapid increase in the resistivity was assigned to spin-
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Figure 2.12: Neutron diffraction patterns for the cubic and dhcp phases of NpPdj at 1.2
K [50]. The shaded peaks in the cubic pattern are magnetic Bragg peaks due to antiferro-

magnetic ordering.

disorder scattering, while the high temperature negative gradient suggested
spin-flip scattering and could be fitted by a Kondo-type scattering expression

p=A+ BT +CInT.

Some paramagnetic line broadening was seen close to the transition at 32 K,
but no clear hyperfine structure was observed in the Mossbauer effect spectra
at 4.2 K, and the authors were unsuccessful in attempting to make a fit to the
data. The neutron diffraction data was identical at 78 and 4.2 K, see Fig. 2.12,

meaning that no magnetic transition was observed.

The authors ascribed short range magnetic order to being responsible for
the magnetization, resistivity and Mdossbauer data, but could not describe the

precise nature of this ordering. The fact that the features in the resistivity
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and magnetization are sharp implies that the onset of ordering occurs over a

narrow range of only a few degrees. One possibility is that there is a small con-
centration of magnetic clusters distributed throughout the sample, which order
antiferromagnetically at nearly the same temperature. These would polarise
the surrounding Neptunium moments thus affecting bulk properties. This sit-
uation could also explain the Mdssbauer behaviour. Neutrons should reveal
these structures as broad peaks at incipient superlattice reflection positions,
but may not have done in this case due to the use of only a small polycrystalline

sample and the poor flux and resolution.

2.5 Fermi Liquid Theory, Non-Fermi Liquids

and Quantum Critical Points

In 1876 Boltzmann used statistical mechanics to explain the Dulong-Petit law
that the specific heat per mole of nearly any solid is approximately the same.
However, by the end of the nineteenth century, numerous materials had been
found to have too small a specific heat, and the low temperature specific heat
was temperature dependent contradicting Boltzmann’s theory. Classically each
electron in a material should contribute 3kp/2 to the specific heat. The prob-

lem was overcome with the advent of quantum mechanics.

The Pauli Exclusion principle states that no two fermions can occupy the
same quantum state. For a non-interacting system of free electrons, minimising
the kinetic energy subject to Pauli’s constraint produces the lowest energy
state, consisting of a filled Fermi sea of occupied quantum states in momentum
space within a sphere described by the Fermi energy ¢ and momentum pr =
hkp. Energy and momentum conservation during particle-hole excitations, in

which an electron is promoted from below the Fermi surface to above it, result
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in only electrons within kgT of €r contributing to the specific heat, with the

majority of electrons lying too far below ¢ to reach an unoccupied state.

Whilst the problem pertaining to the low electronic heat capacity has been
solved it leaves an interesting question, why should a non-interacting model
work in materials where interactions are significant? The answer came from
Landau’s Fermi Liquid Theory (FLT) in which interactions are introduced to
the electron gas as slow perturbations. The central principle of FLT is “adi-
abatic continuity”, which postulates a one-to-one mapping of the low energy
eigenstates of the interacting electrons to those of the non-interacting Fermi
gas, where it is the label, in the form of the good quantum numbers, which
is preserved after interactions are applied. In an interacting system the per-
turbed wavefunction is associated with quasiparticles, rather than the original
electrons, but the spin and charge are preserved. The quasiparticles interact
weakly, filling up the states to the Fermi level in the same way as the electrons

in the electron gas.

Landau made two basic assumptions in his Fermi liquid theory, that to
leading order in temperature the entropy is that of a Fermi gas, but the en-
ergy is not additive. The first assumption is consistent with the distribution
function being unchanged as interactions are “switched on”. The second as-
sumption states that for two quasiparticles in states (k,o) and (k’,o’) their
total energy is not the sum of the two independent quasiparticle excitations

(eko + €x’or), but instead
E = €0 + €or + fka,k'a', (28)

where fi, k. is the Landau interaction function. Quasiparticles also have
a modified inertial mass m* due to the back-flow in the Fermi sea when a
quasiparticle moves “pushing” the ground state out of the way [51]. Using

these assumptions, equilibrium properties can be calculated and shown to be
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similar to those for the non-interacting Fermi gas but with the modified mass

m* and the Landau parameter F¢, which is related to the f-function.

Fermi Liquid Theory has proved to be very successful in describing metallic
behaviour at low temperatures where the quasiparticles persist, with charac-
teristic scaling laws found for different properties in a large range of metallic
systems, even in systems with the strongest electron correlations, such as UPt3.
However, over the last decade, heat capacity measurements have again posed
problems for our theories of matter, as they did a century ago. The materials
in which FLT fails, non-Fermi liquids, are some of the most interesting materi-
als known, such as the high temperature superconductors and low dimensional

systems.

In calculating the quasiparticle lifetime near the Fermi level in FLT it is as-
sumed that the scattering matrix elements are independent of the momentum
and energy transferred. This is valid in the limit of small energy transfers,
which is usually the case given that the Pauli principle confines scattering
to the vicinity of the Fermi surface. However, close to a second order phase
transition, order parameter fluctuations slow down and their wavelengths in-
crease, such that quasiparticles influence others to a greater extent resulting
in a greatly enhanced scattering cross-section. Below the ordering tempera-
ture the fluctuations are locked in and the Landau quasiparticle is conserved.
A transition occurring at 7 = 0 K is driven not by thermal motion, but
instead by quantum fluctuations, zero-point motion, associated with Heisen-
berg’s Uncertainty Principle, which can “melt” order. At such a transition the
scattering cross section increases without constraint making the assumptions

used in building Fermi Liquid theory untenable leading to its breakdown.

One of the first experimental observations of the failure of Fermi liquid

theory came from heat capacity and resistivity measurements of the antifer-
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romagnetic system CeCug_,Au, [52|. It was found that with increasing gold
concentration the Sommerfeld coefficient increased, suggesting the electrons
were getting heavier and heavier, until at some critical concentration it kept
growing never reaching a constant as the temperature was reduced, as though
the electron mass at the Fermi surface was becoming infinite. In addition the
low temperature resistivity did not vary as the square of the temperature, but
instead close to the critical concentration was linear in temperature. These re-
sults suggested that CeCug_.Au, was not a “normal” metal, but that quantum

critical matter was a fundamentally new type of electron fluid.

In 1976 John Hertz first questioned how quantum mechanics would affect
critical phenomena at a phase transition [53]. In conventional matter, electron-
electron interactions are short order, and therefore electrons can be treated as
individual particles moving independently. His theory introduces quantum
mechanics through the inclusion of time as an imaginary dimension. At zero
temperature the interactions would grow to have infinite range, while being
retarded in time, such that one electron is felt by another long after it passed,
making the electrons strongly correlated. This leads to droplets of incipient
order associated with the transition being quantum-mechanical rather than
classical. He reasoned that close to a quantum critical point the quantum
droplets would eventually dominate the material resulting in quantum critical
matter. The drastic properties associated with the QCP extend over a fan of
phase space above absolute zero. This makes the study of quantum critical
matter possible experimentally, and offers a class of materials which could
display new universal electronic behaviour independent of the fine details of

the individual material away from the QCP.

Quantum phase transitions have been most studied in materials where mag-
netism has been “squeezed out” by some tuning parameter, such as pressure,

applied magnetic field or chemical pressure through doping. Antiferromagnetic
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Property | Fermi liquid Non-Fermi liquid
FMQCP AFMQCP

p Po + AT2 T5/3 T3/2
C T TlnT TIn(T/Ty)
X constant InT 1-VT

Table 2.3: Table comparing the temperature dependence of measurable quantities for Fermi
liquids and non-Fermi liquids in the vicinity of a Ferromagnetic and an Antiferromagnetic
QCP.

and staggered spin alignments are more susceptible to melting by zero-point
fluctuations and antiferromagnetic QCPs comprise most of the experimental
literature. Ferromagnetic quantum critical points are less commonly observed,
but are equally significant, for example the application of pressure to UGe,
destroys the ferromagnetism but leads to a novel form of superconductivity
with an unusual pairing mechanism [54]. The expected temperature depen-
dences for quantum critical matter associated with ferromagnetic [51] and an-
tiferromagnetic singularities have been calculated using Fermi’s Golden Rule
and the appropriate models, see Table 2.3, and show that the temperature
exponents of a given property are dependent on the nature of the singularity.
Experimentally the T°/3 form for the resistivity has been observed in MnSi [55]
and ZrZn; [56] when pressure suppresses T — 0 K. However, for various an-
tiferromagnetic systems the temperature dependence of the resistivity is less

than that predicted.

There is currently considerable debate regarding a theoretical understand-
ing of quantum criticality. While some of the experimental observations are
in accordance with the theory of Hertz, other features are incompatible, for
example the effects are much more significant and occur over a greater range of
temperature and other tuning parameters than predicted. Additionally one of

the key signifiers of quantum criticality has been shown to be E/T scaling in
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Figure 2.13: Diagram of a conventional (left) and a local (right) quantum phase transition
in Kondo lattices. g is the tuning parameter relating the strength of the RKKY interaction
to the Kondo energy scale, SDW is spin density wave, T is the Néel temperature. FL is

Fermi liquid and NFL non Fermi liquid and T} . corresponds to a local energy scale.

the dynamical susceptibility measured by inelastic neutron scattering, e.g. as
in UCus_,Pd, (z = 1, 1.5) [57], Ce(RhosPdo.2)Sb [58] and CeCusgAug; [59].
The observation of critical excitations over a wide range of momentum values,
by Heisenberg’s Uncertainty Principle, indicates that the critical excitations
are highly localised in space, which is inconsistent with Hertz’ theoretical treat-

ment.

Various different ideas have been voiced to solve the problems, with some
further developing Hertz’ theory to take the complexity of the material into
account [60], while others suggest he made inappropriate approximations [61].
Another model has been used for magnetic two dimensional insulators, in which
it has been proposed that electrons in quantum critical matter break up into

spin and charge components, at deconfined quantum critical points [62].

Alternatively, it is possible that a whole new framework needs to be devel-
oped for quantum phase transitions, rather than developing the theory out of
that for classical phase transitions. This has led to a debate between “local”
and “global” theories of quantum phase transitions, see Figure 2.13. Hertz’s

theory is global, based on classical criticality in which static order in space
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grows globally, with the addition of growth along the quantum time dimen-
sion. In local quantum critical theory, critical matter involves the growth of

drops of order in time but not in space [63].

Si et al found that both situations emerge as solutions, when extended
dynamical mean-field theory is used to examine the Kondo lattice model [63].
When spin fluctuations are three-dimensional, the lattice system orders before
the local Kondo problem becomes critical, i.e. the local energy scale T} is
still finite, and at T = 0 K the local moments are completely quenched over
the entire paramagnetic region and at the QCP. In this case the critical spin
fluctuations form a spatially delocalised wave, and this situation corresponds
to Hertz’s theory. However, when the spin fluctuations are two-dimensional
the lattice system orders at the point when the local problem becomes critical,
i.e. T},. vanishes at the QCP and so two critical degrees of freedom co-exist:
spatially extended fluctuations of the order parameter, and local fluctuations
originating from the local moments. The resultant dynamical spin suscep-
tibility satisfies E/T scaling, while the static susceptibility has a modified
Curie-Weiss form consistent with magnetisation data for some heavy fermion
metals close to quantum criticality [45,59]. This looks promising, but one
has to question how a three-dimensional system could exhibit two-dimensional
excitations. In the case of CeCug_,Au,, earlier inelastic neutron scattering

experiments suggest that the magnetic fluctuations are two-dimensional [64].

It is clear that as yet there is no consensus as to a theory which is able
to explain the behaviour associated with the quantum criticality observed in

different systems.
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2.5.1 (M,_,U,)Pd;

Transport and thermodynamic measurements on the cubic AuCus-type system
Y.8Uo.2Pd3, to further investigate the evolution of the localized 5f behaviour
with doping Y3* for U4*, after photoemission work which showed that the
Fermi level could be tuned through removing electrons from the system [65],
led to the first reports of non-Fermi Liquid behaviour [66,67]. The behaviour
is manifested as the weak power law or logarithmic divergence of the electronic

properties at low temperatures,

Ap(T)/Ap(0) = 1 — a(T/Tk), (2.9)
v(T) = AC(T)/T ~ —(1/bTk ) In(T/Tk), (2.10)
AX(T)/Bx(0) ~ 1 — ¢(T/Tk)3, (2.11)

where a, b and c are constants of order one. Since 1991 the system has been
studied extensively with numerous different experimental techniques but there
is still no theoretical consensus as to the origin of the NFL behaviour. Possi-
ble scenarios include intrinsic property mechanisms such as the Quadrupolar
Kondo Effect [66] or proximity to a zero temperature second order phase transi-
tion [67] and extrinsic mechanisms due to the metallurgical inhomogeneity [68],

which could lead to a distribution of different Kondo temperatures.

Non Fermi Liquid behaviour is also observed in the spin glass system
Sc;-,U.Pd3 for £ = 0.35 with similar properties to Y;_,U.Pds, but there
is a nearly homogenous U distribution within the cubic ScPd3 matrix [69).
Phase diagrams for Y;_,U,Pd3 and Sc;.,.U,Pd; are shown in Figure 2.14.
That the physical properties of the two systems are quite similar despite their
metallurgical differences suggests that the NFL mechanism is intrinsic rather
than extrinsic. Inelastic neutron scattering experiments on Scg g5 U 35Pd3s show

that the susceptibility x/(q,w,T) at all measured wavevectors (q), tempera-
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Figure 2.14: Temperature T versus Uranium concentration x phase diagram for (a)
Y;-.U,Pd3s and (b) Sc;_,U,Pd3s. NFL: non-Fermi liquid: SG: spin glass; AFM: antiferro-

magnet; Tigg: irreversibility temperature (for magnetisation): Tx: Kondo Temperature. [69]
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tures (T') and energies (E) obeys E/T scaling indicative of a T = 0 K sec-
ond order phase transition [70]. Similar E/T scaling is also observed in NFL
compounds near to an antiferromagnetic QCP, e.g. CeCug_,Au, [59] and
Ce(Rhg gPdg2)Sb [58], but in this case x//(q, E,T) is wavevector independent
with no spatial correlations and the scaling extends over a much larger energy
range. This composition is too far removed from the antiferromagnetic region
of the phase diagram, and so this quantum phase transition corresponds to
the spin glass transition. It is interesting to note that NFL properties such as
E/T scaling are common to systems with a QCP irrespective of the nature of

the T = 0 K transition.



Chapter 3

X-ray Resonant Scattering

In this chapter the technique of X-ray Resonant Scattering and some of the
basic theory behind it is introduced. Experimental details of X-ray Resonant
Scattering Experiments performed on the ID20 beamline at the European Syn-

chrotron Radiation Facility (ESRF) are also presented.

3.1 Introduction

X-rays are a form of electromagnetic radiation with wavelengths in the range
10712 to 1078 m and energies of the order of 10% to 106 eV. These wavelengths
are on a length-scale comparable with atomic structures, unlike the wavelength
of visible light, and hence crystallographic structures can be determined from
the scattering of X-rays from materials. X-rays were the first tool by which

such information could be inferred.

34
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3.1.1 Conventional X-ray Sources

Classical sources of X-rays generate X-rays in one of two ways: - 1) when high
energy electrons are slowed down in an anode material they produce radiation
with a continuous frequency spectrum, this is Bremsstrahlung radiation; 2)
when electrons recombine after the creation of empty states in the inner shells
of atoms in the anode by collisions or photoionization, radiation is emitted
with a sharp wavelength determined by the transition energy. The use of X-
ray tubes is limited by the fact that only 1% of the energy of the absorbed

electron is emitted as X-ray radiation, the rest being converted to heat [71].

3.1.2 Synchrotron Radiation

Synchrotron Radiation is the electromagnetic field radiated by relativistic ac-
celerated charged particles. It was first observed in 1947 at the General Electric
Research Laboratory in the United States in a particle accelerator [72], and
was thought to be a nuisance as it led to the particles losing energy. Character-
isation of this radiation showed that it was a much stronger source of X-rays.
Since the first parasitic sources, synchrotron rings in combination with elec-
tron storage rings have been developed to produce brighter and brighter X-ray

sources.

Particles can be made to follow a circular trajectory using the Lorentz
force, where static magnetic fields are applied perpendicular to the horizontal
orbital plane using bending magnets. For non-relativistic accelerated charged
particles the energy flux is emitted isotropically around the acceleration in
a large solid angle. Synchrotron radiation however is emitted by accelerated
particles which are high energy ~GeV and have a velocity close to the speed of

light making them relativistic, and so the angular distribution of the emitted



3.1. Introduction 36

Acceleration
Electron Orbit
P Acceleration
¢ - >
.’_.—
H
§<<1 %-'1

Figure 3.1: Radiation emission patterns of electrons in circular motion: case 1. non-
relativistic electrons - cyclotron radiation. case II. relativistic electrons - synchrotron ra-

diation. (adapted from [74])

radiation is no longer described by a dipolar distribution [73]. Instead the
relativistic transformation causes the radiation pattern to be distorted in the

direction of motion, shown in Fig. 3.1.

Radiation will only be visible when the velocity of the electron is directed
towards the observer. The radiation is in the form of a short burst with a
timescale dependent on the radius of curvature and the velocity of the particle
T ~ (R/c)y~3, where « is the Lorentz factor = (1 —v?/c?)~!/2, v is the velocity
in the reference frame, and c is the speed of light. The Fourier transform of
this short pulse therefore shows a wide frequency spectrum, explaining why
the beam is white, up to a spectral cut-off at the critical energy E¢, which
characterises the spectrum. In designing a machine for synchrotron radiation,
it is first necessary to choose a value for E¢ as this dictates the choice of the

energy of the particles, which is constrained by the magnetic fields obtainable.

Another effect of the relativistic motion is that the electric field FE is con-

tracted by the Lorentz transformation, with the result that the radiation is
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predominantly polarised with E in the plane of motion. If the radiation is
observed in the orbit plane, it is completely linearly polarised. Observation at
small angles out of the plane leads to the detected radiation being elliptically
polarised.

In the straight sections in storage rings no radiation is emitted. However
the use of insertion devices in these sections with periodic magnetic structures
induces oscillations of the beam which causes radiation to be emitted. The
spectral and spatial behaviour of the radiation is determined by the nature of

the periodic structure in the insertion device [73,75].

Wigglers are one type of insertion device (ID). They lead to trajectories
which are deflected by an angle > 1/ and produce a radiation pattern for each
electron which is the incoherent sum of the radiation fields emitted by each
magnet. The brightness (flux per solid angle) of the emitted X-rays is increased

by a factor corresponding to twice the number of periods of oscillation.

Undulators are another type of ID involving a spatial periodic array of mag-
netic dipoles which lead to trajectories deflected by an angle < 1/+v. In this
case the radiation emitted from a single electron by each section of magnets
sums coherently, leading to a strongly increased photon flux. (The radiation
emitted by a pulse of electrons sums incoherently, whilst in a Free Electron
Laser the radiation produced by a number of electrons will add coherently lead-
ing to a further increase in the beam intensity.) The increase in brightness of
the radiation emitted by an undulator over a bending magnet is approximately
equal to the square of the number of periods. The lower deflection angle for an
undulator as opposed to a wiggler means that the beam divergence is lower,
with the result that the radiation emitted by an undulator is more brilliant

than from a wiggler.

Third generation sources were developed using storage rings with a low
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Figure 3.2: The history of the development of X-ray sources and the rise in brilliance.

emittance, i.e. propagating beams with a small cross section and angular di-
vergence, and long straight sections to incorporate insertion devices to produce
higher brilliance and a greater degree of spatial coherence. The brilliance of
these third generation sources is some 10'? times greater than classical X-ray

tubes [73], see Fig. 3.2.

The European Synchrotron Radiation Facility (ESRF) is an example of a
third generation source, which operates at 6 GeV, and was the first of the

hard X-ray sources to come online. Electrons are accelerated in a LINAC up
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to 200 MeV, before being transferred to a booster where they are accelerated
up to 6 GeV. They are then injected into the storage ring where they cycle
for several hours. The storage ring has a circumference of 844m. X-rays are
generated by bending magnets and insertion devices, each one giving different
beam characteristics. Several modes can operate in the ring depending on
the number of electron bunches running at the same time, from the single
bunch (X-ray pulse useful for biological samples) to uniform mode (continuous

generation as used in our experiments).

3.2 X-ray Scattering in Magnetic Materials

The history of magnetic scattering is much shorter than that of classical Thom-
son charge scattering, but clearly X-rays do have a role to play in the study of
magnetic materials since as part of the electromagnetic spectrum they will be
sensitive to magnetic, as well as charge, distributions. This effect is the result
of a relativistic correction and can be treated with relativistic quantum theory
which takes the spin of the electrons into account [76]. In a relativistic theory
the space and spin wavefunctions cannot be separated and so a perturbation
of an electron by a photon will have an effect dependent on the spin. However,
typically the magnetic contribution to scattering is several orders of magnitude
smaller than the charge contribution [77], the intensity ratio per electron being

given by

Imagnetic _ I hw l2 (3.1)

Icharge mc?
and so it is not until recently with the advent of synchrotron sources capable
of producing high brilliance beams, that magnetic x-ray scattering has become

a routinely available experimental technique [76].

The magnetic contribution to scattering can be most easily identified when
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it does not coincide with charge scattering, i.e. when the magnetic order dif-
fers from the charge order resulting in a superlattice which produces additional
peaks at forbidden positions in reciprocal space, as in an antiferromagnet [78].
However, the magnetic contribution can still be discriminated from the charge
contribution even when they overlap, e.g. in ferromagnets. One method for
separating the two elements is to use the interference between the imaginary
part of the charge amplitude and magnetic amplitude in a sample with a com-
plex Thomson amplitude. This can be manipulated by reversing the direction
of an external magnetic field, to find the difference in intensity on changing the
orientation of the magnetic moments, leading to the magnetic amplitude {79).
Alternatively the interference induced by circular polarisation can be used to
look at the difference caused by a reversal of polarity to find the magnetic scat-
tering amplitude - this is the scattering analogue of X-ray Magnetic Circular
Dichroism (XMCD). In addition, magnetic scattering can be identified sepa-
rately from charge scattering by using the scattered photon beam polarisation
state since the two differ. Given the ratio in intensity of the two scattering
mechanisms it is obvious that when investigating systems in which magnetic
and charge Bragg peaks do coincide it is beneficial to look at peaks where the

charge scattering is weak so as to optimise the relative magnetic contribution.

Quadrupolar order has also been observed using non-resonant X-ray Thom-
son scattering, for example: the spiral arrangement of the aspherical 4 f shells
detected in Holmium as early as 1969 using a laboratory source [80], and AFQ
order was observed in NdMg using synchrotron radiation [81]. The great ad-
vantage of using non-resonant scattering as a probe of quadrupolar order is that
it is possible to obtain the absolute value of the quadrupole moment. However,
the count rate is so weak even using the high flux synchrotron radiation that,
especially when combined with complicated sample environments, it can be

too difficult to collect detailed data sets; and it is for this reason that very
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few experiments have been successfully performed to investigate quadrupolar

order using this technique.

3.3 X-ray Resonant Scattering (XRS)

Large resonant enhancements of X-ray magnetic scattering signals were first
reported in Holmium metal [82], when it was observed that there was a signifi-
cant increase in the signal on tuning the energy through the Ho L;;;-absorption
edge. Enhancements have also been observed at M-edges, and X-ray resonant
scattering has been observed in non-magnetic systems displaying orbital order-
ing [83] and other forms of electromagnetic multipolar order [84,85]. The huge
increase in the signal to noise ratio at resonance has allowed a large variety of

problems to be studied which were previously intractable.

In classical Thomson X-ray scattering the X-rays scatter from an extended
distribution of free electrons such that the scattering length of an atom is
simply given by —rof°(Q), where f°(Q) is the atomic form factor and ry is
the Thomson scattering length for an individual electron. The atomic form
factor is the Fourier transform of the charge distribution, and is therefore a real
number. When absorption processes are included the atomic scattering length
becomes complex, with the imaginary part f” proportional to the absorption
cross section. However, a more complicated model than just a cloud of free
electrons is required to describe some systems of interest, some of the electrons
may be bound in atoms. Classically the response of these bound electrons to
the driving force provided by the X-rays is one of a weighted superposition of
damped harmonic oscillators [71]. This leads to dispersion corrections, real f’

and imaginary f” of the form factor:

F(Quw) = f(Q) + f'(w) + of"(w) (3.2)
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These corrections are energy dependent and take their extremal values at the

absorption edges, where they are known as resonant scattering terms.

Quantum mechanically resonant scattering can be seen to arise in Second
Order Perturbation Theory. Taking an interaction Hamiltonian of the form:

eA-p e?A?
= + _
m 2m

Hj

(3.3)

where A is the vector potential, p is the momentum, and m is the electron
mass, the transition rate probability between an initial state |i) and a final
state |f) of the combined photon target electron system is given in First Order

Perturbation Theory by Fermi’s Golden Rule:
2w o\ 12
W= 7|(f|Hlll>| p(e), (3.4)

where p(ey) is the density of final states. The vector potential is linear in the
creation and annihilation operators @' and a. Therefore, the first term in the
Hamiltonian which is linear in @' and a, can either create or destroy a photon,
but not both, and gives rise to photoelectric absorption, see Fig. 3.3(a). The
second term in Hj is quadratic in a' and @, and so can create and destroy
a photon leaving the electron state unchanged, describing elastic Thomson
scattering, see Fig. 3.3(b). Going to Second Order Perturbation Theory gives
an additional term in the transition probability:

(£ H ) (] i) |
E - E,

W = 2 el + 3 ple). (35)

n=1
Now the first term in the interaction Hamiltonian can produce scattering via
an intermediate state |n), see Fig. 3.3(c), so that an event can be described as:

1. Incident photon destroyed

2. Electron excited into an intermediate state |n)
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Figure 3.3: X-ray scattering and absorption processes (modified from Elements of Modern

X-ray Physics).

3. Electron decays back to the initial state by emission of a scattered photon

in elastic processes.

Resonant behaviour occurs when the denominator tends to zero, i.e. when
E,= v+ E. = E,, (36)

when the incident photon energy is equal to the difference between the ground
state and an intermediate state energy. This means that resonant scattering
makes a good experimental probe of intermediate atomic states. Due to the
Pauli Exclusion Principle, which means that an electron can only be excited
into an unoccupied orbital, and the quantum mechanical selection rules, which
mean that electric dipole transitions dominate, XRS probes an “exchange in-
teraction” which is sensitive to the magnetization of the d and f bands. When
multipolar interactions split an intermediate state, XRS becomes a probe of

the multipolar order in a sample.

There is a clear relationship between absorption and resonant elastic scat-
tering processes, both deriving from the same term in the Hamiltonian, and
they are described by the same term in the scattering amplitude [78]. The
attenuation coefficient is proportional to the imaginary part of the scattering

amplitude in the forward direction, while the resonant scattering intensity is
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proportional to the square of the amplitude averaged over thermal, concentra-
tion and defect fluctuations. The quantities measured in the absorption and

resonant scattering processes depend differently on the incident polarisation.

In a radiative transition a photon is emitted with angular momentum J =
1. The radiation field will be the sum of electric and magnetic multipolar
contributions. Selection rules for the transition requires that total angular
momentum and parity are conserved. The transition rate decreases by the
order of 10® going up through successive multipolar transitions, such that
the electric dipole transition dominates. However, in several systems electric
quadrupole transitions are also significant, such as in DyB,;C, [11]. In UPd;
we are interested in probing the 5f electrons which are directly involved in
the quadrupolar order, and we therefore use the uranium Af;, edge which
connects the core 3d3/, states to the 5f states via an electric dipole transition.
Fortunately, the resonant scattering cross section is easiest to calculate for E1

transitions.

3.3.1 Scattering Cross Section

Returning to the scattering factor in Equation (3.2), the resonant terms can be
grouped to give the anomalous atomic scattering factor f;(w) = f'(w)+uf"(w),
which is given by the expression

_ e 1 (Bn = Eg)* My (5) Mng(3)
R hw £ hw —~ (B — Eg) =23

fi(w) 3.7)

where hw is the photon energy, m, is the electron mass, E; is the ground state
energy, and F,, and I',, are the energy and inverse lifetime of the excited states.
The sum is over all the excited states of the system. M,f,'g) are the transition

matrix elements of the matter-radiation interaction

ME(G) = (4|0 (%,(5)), (3.8)
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where W, () is the jth atom ground state, ¥, is the photon-excited state. The
operator O is written using the multipole expansion of the photon field up to

the electric dipole (E1) and quadrupole (E2) terms
OO = ¢ . p(1 - %,k(') 1), (3.9)

where r is the electron position from the absorbing ion, ") is the polarisation
vector of the incident (scattered) photon and k() the corresponding wave vec-
tor. Since JU,(,',) depends only on the electronic part of the operator O, ¢) and
k can be factorised out, with the result that the anomalous atomic scattering

factor can be rewritten as the scalar product of two irreducible tensors:
filw) =D () TPFP (j;w). (3.10)
Pq

Tq(” ) depends only on the incident and scattered polarisations and wave vectors,

while Fq(p) contains all the information of the properties of the system [86].

The X-ray Resonant Magnetic Scattering (XRMS) electric dipole (E'1) am-
plitude has been formulated [87] as:

fglRMs - m{_l [(@/ . g)F(O) — ,(g' X €) .ﬁnF(l) + (g’ “Zn)(€- 2n)F(2)] . (3.11)
or
JEi™MS = fo+2fi + o, (3.12)
where
fo=(€-&)[Fu+ F), (3.13)
fi=—(€ x & 2.[F11 — Fi_1], (3.14)
fo=(€-2a)(€-2n)[2F10 — F11 — F1-4], (3.15)

and where ¢ and ¢ are the incident and scattered polarisation vectors, the
terms F s describe the strength of the resonance as determined by the atomic

properties of the scatterer, k is the incident X-ray wavevector and Z, is a unit
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vector in the direction of the magnetic moment of the nth ion. Equation (3.11)
is a bilinear combination of polarisation vectors and can be rewritten in the
form of a 2x2 matrix using the polarisation states ¢ and 7 as basis states,
showing the polarisation dependence of the scattering [88]. When the vectors
k, k’ and 2, are resolved into the components i, @iz and iz of the diffraction
plane coordinate system, see Figure 3.4, one obtains the following expression

for the XRMS amplitude:

fgIRMS — FO 1 0
0 cos26
_ ) 0 z1cos0 + z3sinf (3.16)
z3sinf — z; cos — 29 sin 26

"2
“2

+ F® —25(21 sin @ — z3 cos §)
23(218in0 + z3c080) —cos? B(2? tan? 6 + 22)

As can be seen the XRMS scattering amplitude contains three terms, each
consisting of a polarisation state dependent geometrical factor and a charac-
teristic scattering ion tensor. The first term simply contributes to the charge
Bragg peak, having no dependence on multipolar order. The second term
probes a rank 1 tensor with odd time reversal symmetry arising from a net
spin polarisation of the 5f states, a difference between overlap integrals, res-
onant energy, or lifetime for the polarisation channels. For this term to be
non-zero it is clear from Equation (3.11) that the photon polarisation must
be rotated such that é # €', and there must be a difference in the resonance
strength and therefore transition probability to the intermediate states with
M = £1. For o-incident X-rays, the observation of scattering intensity solely
in the rotated channel is one of the key signatures of XRMS. The third term in
the scattering amplitude probes a rank 2 tensor with even time reversal sym-
metry and includes two powers of the magnetic moment, producing second

harmonic magnetic satellites.
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XRMS is a special case of resonant scattering, where the scattering am-
plitude has been calculated in a cylindrical symmetry, i.e. for a magnetic
dipole moment. In general, for polarized light incident on a system with an
anisotropic charge distribution described by the tensor scattering factor 7, the

f2 term in Equation (3.15) is replaced by
f2=(¢-T(Q) - €)[2Fi0 — F11 — Fi_1), (3.17)

where T(Q) is the Fourier transform of T'(r). In a quadrupolar ordered system
this scattering amplitude is taken to be proportional to the electric quadrupole

moment [10]. The measured intensity is then simply given by [89]
Lo x |€-T(Q) - ¢|% (3.18)

The scattering factor T(Q) is constructed from the individual second rank
atomic scattering lengths according to the phase factor, see Appendix B.1.
The anisotropic nature of the scattering is observed through the variation of
the scattered intensity as a function of the azimuthal angle, ¥, about the
scattering vector. Measurements of the azimuthal dependence of XRS, see
Figure 3.4 for the experimental setup, can be compared with calculations for

different scattering factors, to determine the details of multipolar order.

While the formalism for XRMS and anisotropic tensor resonant scattering
may be different, the two may coexist, such as in the case of Ug75Npg.2502,
which exhibits both magnetic dipole and electric quadrupole order [10], and
interference has been observed in GdB,, which is magnetically ordered and
where hybridisation distorts the valence charge distribution resulting in an

anisotropic tensor susceptibility [90].

Higher order electromagnetic multipoles are not measurable using the elec-
tric dipole resonance. The magnetic octupole and electric hexadecapole can
instead be probed directly using the electric quadrupole ( E2) resonance [91,92],
but this is difficult to do, due to the reduced intensity.
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Figure 3.4: A schematic of the experimental set up for measuring the azimuthal dependence
of the scattering intensity of a superlattice reflection at Q. o-polarised X-rays incident at an
angle 6 on to the sample are scattered by a vector Q. The scattered X-rays are separated into
the rotated, 7, and unrotated, o, channels by a polarisation analyser before being detected.
The sample stage is rotated to give an azimuthal rotation ¥ about the scattering vector.

The unit vectors u; define the reference frame.
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3.3.2 Polarisation Analysis

One of the most significant features of synchrotron radiation is that it is highly
polarised in contrast to the unpolarised laboratory based X-ray sources. The
polarisation of incident X-rays effects the angular distribution of the scattered
intensity, and as the previous section has shown the XRS scattering cross
section depends on the incident and scattered polarisation states. Therefore
determining the polarisation state is an important tool for investigating the

nature of order in strongly correlated materials.

Considering an electron classically, an incident electromagnetic wave, with
a wavelength much larger than the electron, will cause the electron to oscillate
along the Electric Field direction behaving like a dipole (Figure 3.5(a)). This
accelerating charge radiates a polarised spherical wave centred on the mean
electron position. In the plane perpendicular to the dipole axis, r(r,6 = 0, ¢),
the radiation is isotropic, i.e. there is no ¢-dependence to the scattering in-
tensity. In the plane of the dipole axis, when 8 # 0, an observer will see the
acceleration of the electron, so that the scattered amplitude varies as cos®@,
see Figure 3.5(b) for the polar diagram showing the angular dependence of the

scattering intensity.

We now consider the case of Bragg scattering from a crystal for the two
incident linear polarisation cases: m polarisation, where the incident polarisa-
tion vector lies in the plane described by the incident wavevector k and the
scattering vector q, and o polarisation, where the incident polarisation vector
is perpendicular to this plane. For an incident 7 polarised wave the scattered
radiation amplitude will vary as cosfp, where 05 is the Bragg angle, while
for incident sigma polarised light there will be no reduction in the scattered

intensity. This provides the basis for polarisation analysis.
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Figure 3.5: (a) Electromagnetic radiation incident on an electron will cause it to oscillate
along the Electric Field direction and reradiate a polarised spherical wave centred on its
mean position. (b) The angular dependence of the scattering intensity is described by the
polar diagram, showing that the intensity is isotropic in the azimuthal plane, but varies as

a function of @ in the plane of the dipole.

An analyser crystal is chosen to have a Bragg angle close to 90°. The angle
A « (el O
which actually gives the best polarisation selectivity, i.e. the least feed through

between polarisation states, is the Brewster angle,

Op(w) =

(3.19)

which takes the refractive index n(w) of the crystal into account, n(w) =

1 - 6(w) + iBw).

The polarisation state measured by the detector can be selected by rotating
the analyser crystal about the incident beam (the 7 axis). The experimental
arrangement of the polarisation analyser for detecting o and 7 polarised X-rays

is shown in Figure 3.6.
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Figure 3.6: Diagram showing polarisation analysis using a crystal analyser. By rotating the
crystal about the axis 7). the detector can be chosen to measure either the 7 or ¢ polarised

light.

3.3.3 X-ray Resonant Scattering on ID20 at ESRF

Experiments were made using the ID20 beamline at ESRF. ID20 is optimised
for the study of electronic and magnetic properties of solids, in particular
charge, magnetic and orbital ordering. To further this aim the instrument has
a large tuneable energy range, 3 — 30 keV, very good energy resolution, i.e.
AE/E < 1 x 1074, linear polarisation analysis of scattered photons, and can

be used in conjunction with complex sample environments [93].

Ideally the X-ray beam incident on the sample should be monochromatic
and linearly or circularly polarised with the unpolarised radiation minimized.
Linearly polarised X-rays at energies below 20 keV are obtained on ID20
through the use of a linear undulator installed in the straight section of the
storage ring. Below 20 keV the linearly polarized X-ray beam can be circularly
polarised using diamond phase plates. At higher energies circular polarisation

is provided by an asymmetric wiggler in the straight section of the ring.
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The ID20 beamline has been designed such that:

1. the photon polarisation can be changed using a diamond phase plate;

2. experiments can be performed in either the vertical or horizontal scat-

tering plane with analyzer crystals;
3. the front end is UHV compatible, and no graphite filters are used;

4. sensitive optical elements are supported on a girder with hydrostatic level

system sensors to optimise optical alignment.

The first hutch on the beamline is the Optics hutch, containing the mir-
rors, monochromators, slits and monitors for intensity and beam position, see
Figure 3.7. There are two mirrors with adjustable curvature covering a wide
energy range, which focus the beam at the sample position and reduce the
high order harmonics. The first mirror downstream from the source is water
cooled (necessary to dissipate the heat load from the incident white beam)
and has a curvature to provide a parallel reflected beam. The mirror reduces
the vertical divergence of the X-ray beam before it is monochromated, which
improves the energy resolution. ID20 has a double crystal monochromator
made of two silicon (111) crystals, the first flat and cryogenically cooled, and
the second sagitally focussing. The tilt and rocking angles of the second crys-
tal are controlled by piezo actuators. The second mirror is situated after the
monochromator. The photon energy can be varied by changing the incident
angle onto the mirrors, which is done by changing the mirror curvature using

benders.

The second hutch houses the incident beam optics and the EH1 diffrac-
tometer. The optic elements include slits, which define the beam size incident
on the sample, intensity and position monitors, and attenuators, foils of alu-

minium, copper and lead of varying thicknesses which can be used to absorb
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Figure 3.7: Schematic drawing of the optics elements in the first hutch on the ID20 beamline

at the ESRF. (XBPM stands for X-ray beam position monitor.)
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some of the beam intensity in the case of strong reflections to prevent the
detectors being damaged. The monitors and detectors are avalanche photo
diodes. Vacuum in the incident flight path is maintained by a Kapton win-
dow. The length of the evacuated flight path can be extended so that it is as
close to the sample position as possible if necessary. The uranium Mj-edge
is low energy, where there is significant attenuation of the beam by the air,
so the flight path through air is minimised. The EH1 diffractometer, manu-
factured by Microcontrole (Newport), is a four circle diffractometer that can
operate in both the horizontal and vertical scattering geometries. Azimuthal
scans are performed in the vertical plane. An additional motor p is mounted
on the x-circle, which rotates the sample about the face normal. When the
face normal is not coincident with the scattering vector, p # ¥, the azimuthal

angle, but the relationship between p and ¥ is known.

The design of the cryostat for use with the ID20 diffractometer is of vital im-
portance for the operation of azimuthal experiments. An adapted Ricor closed
cycle cryocooler with an additional Joule-Thompson stage is used, designed
and built within the cryogenics laboratory at the Institute Laue Langevin.
This device is capable of temperatures down to 1.7 K, and can be operated

over a wide range of angles without degradation of the base temperature.

To enable polarisation analysis, an analyzer crystal must be chosen with an
interplanar d-spacing which equates to an energy close to the resonant energy
of the system, so that the Bragg angle is close to 90°. The crystal quality must
be high, however the mosaic of the crystal must not be too small, as otherwise
the small difference between the absorption edge and the energy associated
with the analyser d-spacing will result in poor reflection from the analyser into
the detector. For experiments at the uranium My edge (E = 3.725 keV), the
most suitable crystal to use is gold cut with a (111) surface (d = 2.35454A,

E = 3.721 keV), giving a Bragg angle of 87.3°. By rotating the analyzer
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Figure 3.8: Photo of the EH1 diffractometer in the vertical scattering geometry. At the
centre of the picture is the outer beryllium dome of the azimuth displex cryostat which

contains the sample.



3.3. X-

ray Resonant Scattering (XRS)

Figure 3.9: This photograph shows the polarisation analysis set up on D20, The flight tube
enters coming from the sample position to the right. The circular aperture at the centre

is
where the analyser crystal is inserted. The upright tube is the detector arm, which rotates
through 90° about the n-axis to change the polarisation detected.
7= 90° only the & or the m-polarized scattered beam will be detected, see
Figure 3.9.
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3.4 Synchrotron X-rays vs Neutron Scattering

from Magnetic Materials

Despite the obvious difficulties in using X-rays to study magnetic materials
they do have a number of advantages over neutrons, the previous method of

choice [78].

1. Higher Angular Resolution - this leads to higher wavelength resolution
and makes it possible to investigate ordering phenomena on correlation

scales of the order of microns with high accuracy.

2. Polarisation Analysis - photon beams produced in synchrotron sources
are already highly linearly polarized (~ 98%), while neutron beams pro-
duced in reactors and spallation sources are unpolarized, and the process
of polarisation leads to a considerable reduction in the flux incident on

the sample.

3. Extinction Free Scattering - due to the weakness of non-resonant X-ray
magnetic scattering, it is appropriate to interpret the scattering in terms

of the First Born Approximation and no extinction correction is required.

4. Static Approximation - the energy resolution of many observations is
broad with the result that inelastic events are integrated over to a good
approximation, i.e. the total cross section is observed. Therefore in
diffuse charge scattering the observed intensity is related to the instan-
taneous value of the spatial Fourier transform of the spatial distribution

of scatterers.

5. Relatively small sample volumes are required. This is advantageous when
investigating new materials, as large single crystals are often difficult to

produce, which rules out some other experimental probes.
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6. Separation of spin and orbital magnetism - it is not possible using neu-
trons to separate scattering orbital and spin moments merely by choice
of scattering geometry, since the neutron’s magnetic moment senses the
total magnetisation due to spin and orbital contributions (L + 2S). For
magnetic X-ray scattering, however, in the dipole approximation the rel-
ative amplitudes for the spin and orbital densities are combined with

geometrical prefactors in the X-ray scattering amplitude:
fx=ray x {flaL - A +s- Bli), (3.20)

where A and B are matrices depending on the incident and scattered po-
larisation, L is the orbital angular momentum, s is the spin moment, and
li) and f) are the incident and scattered states. The magnetic matrix ele-
ments (M,z) for scattering processes with incident and final polarisation

vectors a and (3 can then be written as [94]

(A/IUU') (Maﬂ')

A YR
S, sin(26) 2sin?[(Ly + ;) cos 8 + S3sin 6]
B —2sin?0[(Ly + S,) cos§ — Sz sin 6] sin 20[2L, sin® § + 5]
(3.21)

where L; and S; refer to the Fourier components of the orbital and spin
magnetisation densities projected onto the axes 1; as defined in Fig-
ure 3.4. With a suitable choice of scattering geometries L; and S; can be

distinguished.

7. X-ray resonant scattering is element specific, which allows the magnetic

ordering of different elements within a compound to be probed individ-

ually.

However, neutrons still have some advantages over X-rays as a scattering probe.
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1. The scattering cross section of an atom for X-rays is proportional to
Z, the atomic number, whereas for neutrons it is non-linear with Z and
varies between different isotopes of the same atom, due to the interaction
with the nucleus as opposed to the electrons. This makes it possible with
neutrons to sense light atoms such as hydrogen in the presence of heavier

ones, and allows isotopic substitution.

2. The weak nature of the interaction between the neutron and the nucleus
makes neutrons a much more deeply penetrating probe. As a result the
bulk of a material is probed as opposed to just the surface region, and it
is more simple to use complex sample environments, such as cryostats,

magnets and pressure cells.

3. Whilst in most cases magnetic diffraction can only be performed at res-
onant energies using X-rays, there is no such resonant condition using
neutrons. Since neutrons are spin 1/2 particles they have a magnetic mo-
ment which couples directly to the spatial variations in magnetisation in
a material, and the charge and magnetic scattering cross sections are of
the same order of magnitude. As a result magnetic diffraction can be
performed using neutrons with a smaller wavelength, such that a much

larger region of reciprocal space is accessible.

4. Neutrons and X-rays used as condensed matter probes have comparable
wavelengths, however the energies are markedly different. Neutron ener-
gies vary from peV to eV and therefore neutrons are suited to inelastic
studies of lattice and magnetic excitations, enabling the determination
of exchange coupling constants. Inelastic X-ray scattering is much more

complicated and is not feasible for magnetic excitations.

5. The analysis of magnetic scattering by neutrons requires few corrections

to the data and it is possible to measure absolute intensities, by normal-
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ising to the incoherent scattering from a vanadium sample. Using the
ratio of magnetic to Bragg peak intensities the magnitude of magnetic
moments can be determined. The theory of magnetic neutron scattering

is well established.



Chapter 4

Macroscopic Experimental

Techniques

This chapter outlines the different experimental techniques used in the bulk
measurements described in this thesis, and the synthesis of our polycrystalline

and single crystal samples.

4.1 Sample Preparation

4.1.1 Polycrystalline samples

Polycrystalline ingots of (U,Np)Pd3 were produced by arc-melting stoichio-
metric amounts of the constituent elements on a water cooled copper hearth
using a zirconium getter, under an atmosphere of high purity argon. Start-
ing materials used were in the form of 4N palladium and 3N uranium metals,
and 3N neptunium metal, which was made available through a loan agreement

between Lawrence Livermore National Laboratory and I'TU, within the frame-
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Figure 4.1: X-ray powder diffraction pattern of NpPd3 (TiNiz-structure). The solid line
through the data is the Rietveld-type full refinement. The weighted R-factor is 6.2 %

indicating the absence of other phases, e.g. the cubic phase.

work of a collaboration involving LLNL, Los Alamos National Laboratory and
the US Department of Energy. **"Np is an alpha emitter (72 = 2.14 x 10°
vears) and therefore the samples were prepared in a glove box. Homogene-
ity of samples was ensured by repeated turning and remelting of the buttons,
followed by annealing them at 1300°C for one week. The phase purity of the
samples is of great importance in the case of the doped samples, where it is
important to establish that only one phase is present, and that it has the re-
quired double-hexagonal close-packed structure (dhep), and for NpPds, which
exists in one of two phases: cubic AuCus-type and dhep TiNiz-type, being the
phase in which we are interested. Sample phase purity was checked using X-ray
(Cu K,) powder diffraction data collected on a Bragg-Brentano Siemens D500
diffractometer using a 26 step size of 0.02 degrees. A Rietveld-type full profile
refinement of the powder pattern for each sample checked the phase purity,
see Figure 4.1 for the powder pattern with Rietveld refinement of NpPd3, and

gave the lattice parameters shown in Table 4.1.
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Compound | Unit cell dimensions in A | Cell Volume in A3
a ¢ c/a

UPd; 5.765 9.545 1.656 274.7
5.763 9.542 1.656 274.51

5.775  9.654 1.672 278.8*

1%Np 5.769 9.635 1.670 2777
2%Np 5.768 9.631 1.670 277.5
5%Np 5.766 9.623 1.669 277.1
50%Np | 5.774 9.576 1.658 276.4
NpPd3 5.765 9.545 1.656 274.7

Table 4.1: The structural parameters of DHCP (U;_Npy)Pds compounds. determined by

Rietveld-type full refinement of powder XRD, prepared and measured at ITU, apart from {

and * [95], corresponding to Pd and U rich samples respectively.
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Figure 4.2: The variations of cell volume and c-axis parameter as a function of z in

(Uj—2Np,)Pd3 do not obey Vegard’s Law. The plot does not include data points taken

from [95] for U rich (x) and U poor (1) UPd3 samples.
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Figure 4.2 shows the cell volume and c-axis parameter of (U;_;Np,)Pd; as
a function of z for the lattice parameters obtained from our powder XRD given
in Table 4.1. Interestingly, the cell volume rapidly increases with the addition
of just 1% neptunium before decreasing with further neptunium doping. This
is not the standard behaviour and violates Vegard’s Law, an approximate
empirical rule which holds that the lattice constant of an alloy varies linearly

as a function of the concentrations of the constituents [96].

Also given in Table 4.1 are further values for the lattice parameters of UPd3
from the literature, reflecting the observation of a homogeneity range around
the exact UPd3 composition: 23.3 to 24.8 atomic percent uranium [95], which
effects the lattice parameters significantly. Based on these measurements it
could appear that our UPd; sample is more palladium rich. If the doped
samples were more actinide rich, this could provide an explanation for the
apparent violation of Vegard’s Law, but all the samples were made in the
same way. The samples containing Np were necessarily produced in a glove-
box, while the UPd; sample was made outside, and therefore it may have
been “more” oxidised, possibly leading to a U poor sample. However, the
mixed samples were made using the UPd; and NpPd; as starting materials,
in the correct stoichiometric ratios, and therefore if the UPd; sample was U
deficient, this should be preserved throughout the whole series synthesised from

the UPdj, particularly for those samples with very dilute neptunium doping.

The sharp deviation from a linear trend at low neptunium concentrations
may be interpreted as possible evidence of a change in the valence state of
Uranium. Uranium is tetravalent in UPd3, while neptunium is trivalent in
NpPd3, see Chapter 6. The ionic radius of U4t is obviously smaller than
that of U3+ (10.3 Avs 11.6 A), and so if the neptunium doping caused a
valence change on the uranium ions, a rapid expansion of the unit cell may be

expected. The possibility of an induced valence change could be investigated
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Figure 4.3: Left hand image is of the simulation obtained in Orient Express for a UPdj
reciprocal space (207) face, and the right hand image is the Laue photograph taken in that

orientation.

through photoemission and X-ray absorbtion spectroscopy. Deviations from
Vegard’s Law are also associated with strains within the unit cell arising from

doping.

The homogeneity range also leads to questions about the actual actinide
content in our samples, in particular the actual neptunium content in the

nominally 1%Np sample.

4.1.2 Single crystal UPd;

A single crystal of UPd3 was grown using the tri-arc Czochralski pulling
method [97] starting with 4N palladium and 3N uranium metals by Dr. D.
Fort in the Department of Metallurgy at the University of Birmingham. The
crystal was cut using a spark cutter with a reciprocal space (207) face, in or-
thorhombic notation, to enable the superlattice reflections of interest: (103)
and (104), to be reached by only tilting the sample two degrees off-specular.
Orient Ezxpress was used to simulate the Laue photograph, which would be

obtained when the crystal was mounted in the required orientation, to ensure
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that the correct face was cut. See Fig. 4.3 for a comparison of the Laue sim-
ulation of the required face and the Laue photograph of the sample taken in

Birmingham. The 417 mg sample was polished with 0.25 um diamond paste.

4.2 SQUID Magnetometry

Possibly the most obvious way of attempting to measure magnetic order is to
make a conventional measurement of magnetization, essentially a measurement
of a sample’s net magnetization divided by the sample volume. A SQUID
(superconducting quantum interference device) is one of the most sensitive
ways of doing this. A SQUID contains a ring made out of two superconductors
separated by a thin layer (~ 1 nm) of insulating material, making up two
Josephson junctions through which electron Cooper pairs tunnel, leading to a
current [98]. The maximum or critical current depends on the temperature,
and the width and material of the insulator. The magnetic flux density in the
loop is quantised in flux quanta. Due to the interference between the currents
passing through the two junctions the critical current in the loop is maximised
when the applied external field is an integer multiple of the flux quantum in the
ring, and minimised when the field is a half-integer multiple. By measuring the
modulation of the current as a sample is moved through the ring the sample

magnetic field is determined.

Magnetization measurements were carried out using a Quantum Design-
SQUID magnetometer (MPMS-7) in fields up to 7 T for a range of tempera-
tures in each sample. Magnetic susceptibility measurements were also made

for T = 2 - 300 K in a range of fields for the different samples.
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4.2.1 Sample encapsulation and decontamination

In SQUID measurements it is essential that the magnetic contribution from
the sample holder must be as small as possible. However, since the samples
are radioactive, the encapsulation must ensure that all users and instruments
outside the glove boxes are protected from contamination. Within a glove box
the sample is enclosed in a 20 cm long plexiglass container, which is much
longer than the sample itself, but which means that as the sample is moved up
and down through the SQUID, the diamagnetic plexiglass signal is constant.
The plexiglass rod is then wrapped in teflon tape and sealed in a plastic enve-
lope. It is then transferred to a second glove box, where the plastic envelope
is removed, for decontamination. The teflon coated rod is sprayed with hair
spray, fixing any decontamination to the teflon tape. The tape can then be
removed and a Geiger counter used to check that the plexiglass rod has been
decontaminated. Finally the rod is encased in a tube made of a copper nickel
zinc alloy with a low paramagnetic signal. The combined encapsulation mag-
netic contribution of the plexiglass and alloy has been measured and modelled,
and can be subtracted off from the total signal using:

2.15 x 1077
— -8 _
M(T,H) = (3.972 x 10 ( 573 )) H, (4.1)

where T is in Kelvin, H in Gauss and M in emu.

4.3 Electrical Resistivity

Electrical resistivity measurements were made using a Quantum Design PPMS
(Physical Properties Measurement System) [99] in the temperature range 2 —
300 K in magnetic fields up to 9 T. The measurement uses four probes which

rest on the sample, as shown in Figure 4.4. Contact is made using screws to
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~6 mm

Figure 4.4: Photograph of (Ug.g95Npg.o5)Pds sample with four resistivity screw contacts.

position the probes. The probes are arranged such that the outer two probes
transmit the current, while the inner two measure the potential difference. The

resistivity is then calculated using Ohm’s Law:

B3 e (4.3)

Before encapsulating the sample, each contact is checked using an ohm meter.
The sample is mounted onto a support which can be connected to the PPMS
measurement stick, and then enclosed in a cap, before being decontaminated

in the same way as the SQUID samples.

Measurements were made in AC mode, in which the current applied to the

sample varies with a frequency of 50 Hz. The measured voltage is the average
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of the maximum and minimum absolute voltage values, which minimises the

residual potential difference contributions from the electrical contacts.

Additional measurements were also made using the 4 point contacts tech-
nique with current excitations of 3.2 mA above T = 5 K and 1 mA below. Tem-
peratures less than 1.5 K were obtained using 2 coupled cryompump devices
(3He—*He). Self heating effects make it impossible to cool samples containing

neptunium below 400 mK.

4.4 Heat Capacity

Specific heat measurements are also made using the QD PPMS [99] via the
hybrid adiabatic relaxation method, which combines the best measurement
accuracy and error analysis. Details of the experimental apparatus are given
in Figure 4.5. With the addition of a 3He refrigeration insert, the heat capacity
can be measured over the range T = 0.4 — 400 K, in fields up to 9 T.

Each heat capacity measurement consists of a number of stages. First the
sample platform and the puck which contains it are stabilised at the required
temperature. Secondly, for a chosen length of time, power is applied to the
sample platform heater, resulting in the platform temperature increasing. The
power is then turned off and the platform temperature relaxes back exponen-
tially to that of the puck. The heat capacity can then be calculated using the
two-tau model [100], which allows the flow of heat between the platform and

puck to be simulated.

A thorough description of the encapsulation of actinide samples for heat
capacity measurements at the Institute for Transuranium elements has been

published by Javorsky et al. in [101].
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Figure 4.5: Diagrams showing details of the PPMS probe for heat capacity measurements

adapted from the Quantum Design website [99].
I



Chapter 5

Results I - UPd;

In this chapter results for UPd3 heat capacity and X-ray resonant scattering

measurements are presented.

5.1 Heat Capacity

Previous heat capacity experiments were made before the T,; and 7_; tran-
sitions had been distinguished through ultrasonics measurements [25], and so
new accurate heat capacity measurements have been performed to determine if
the two transitions could be separated. The heat capacity of a polycrystalline
sample of 51.33 mg UPd3, synthesized as described in chapter 4.1.1, was mea-
sured from T = 2 — 300 K using a PPMS-9 Quantum Design calorimeter in
the Actinide UserLab at the Institute for Transuranium Elements. A 16.79
mg ThPd; sample was also measured to determine the phonon contribution,

since ThPdj is isostructural but non-magnetic.

Figure 5.1 a) shows Cp/T for both UPd3 and ThPd; indicating that at

temperatures greater than 50 K the heat capacity of UPd3 is dominated by
71
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Figure 5.1: a) Heat capacity of UPd3 (O) and ThPd3 (red line) up to 200 K, showing that
the phonons dominate the magnetic contribution to the heat capacity above 50 K. b) UPd3
heat capacity in the region of the four transitions. The lambda anomaly clearly shows that
the first order transition is associatgd with 7_; rather than T;;. c¢) The magnetic entropy
of UPd; at low temperatures deduced after subtraction of the phonon contribution given by

ThPd3. This shows that the significant change in entropy occurs at T_;.
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the phonon contribution. The low temperature data plotted in 5.1 b) reveal a
clear lambda anomaly associated with the 7_, transition. There is a shoulder
in the data at T and a less well defined feature at T, although in plots of Cp
vs T it is an obvious maximum. No clear features are associated with the 7',

transition.

The heat capacity of UPdj3 is the sum of different contributions:

Ct = Crnag + Cp + WT
U Hmes T TY (5.1)

= Crmag + Crn — yuT + WT,
where C,,,, is the magnetic heat capacity, Cp, is the phonon contribution and
~T is the electronic term. The presence of the quadrupolar transitions at low
temperatures makes it very difficult to estimate the Sommerfeld coefficient, ~,
in UPd3;; estimates in the literature vary between 2.5 [40] and 9.5 [37] mJ/K?2.
Making a fit to the ThPd; data for

=yt (5.2)

gives v = 1.0+0.2 mJ/K?mol and 8 = 0.422+0.004 mJ/K*mol, which in turn
gives a Debye Temperature of ©p = 166.5 £ 0.5 K, the temperature above

which all vibrational modes are excited [102], since

127

ﬂ=ﬁ

Nakp. (5.3)

At high temperatures the equal thermal population of the different crys-
tal field levels results in the magnetic entropy plateauing, as there can be no
further disorder. As the magnetic heat capacity is dependent on the temper-
ature derivative of the magnetic entropy, at high temperatures the magnetic
contribution to the heat capacity tends to zero. This can be demonstrated

easily using a simple two level model with an energy gap A. The energy of the
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system as a function of temperature is then given by

E,’ € exp(—ei/kBT)
> ;exp(—e€;/kpT)

_ A

" exp(A/kgT) + 1

E(T) =
(5.4)

From this the heat capacity can be calculated using dE/dT and is shown in
Figure 5.2, along with the magnetic entropy. The peak seen in C,,,4 is the
Schottky anomaly. Therefore at 300 K the heat capacity of both samples is
given by the electronic plus the lattice heat capacities, and at ~ 100 J/Kmol
is in accordance with the Dulong-Petit expression Cy = 3nkgN4 for the high
temperature limit of the lattice heat capacity, since as mentioned above the

electronic heat capacity of both is small.

By subtracting the phonon contribution and correcting for the electronic
contribution the heat capacity associated with the crystal field levels is deter-

mined. The entropy is then calculated using

AS(T) = S(T) — S(T = 2K) = / ' %’;ﬂdT, (5.5)

and is shown in Figure 5.1c). It is clear that the only significant change in
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the entropy is at T_,, i.e. there is only one strongly 1* order phase transition.
This effects the matrix elements for the order parameters. Using the three-level

model for the ground state doublet:

|d1) = al4) +b]1) + | - 2)

(5.6)
|d2) = a| —4) — b| — 1) +c|2)
and first excited singlet state:
|s) = d|3) + €|0) — d| — 3) (5.7)

on the quasi-cubic sites, developed by McEwen et al. [26], the operator matrices

can be written as follows,

004 A) (0 4 &
Qo= A4 0 B| Qu=|4 0 B
A B o) \ A B 0 59
0 —Ai A ) (0 Ai Ay
Qw=| 4 o -Bi| Q.= -4 o Bi |,
~Ai Bi 0 ) \ A% -Bi 0

where the A®) terms mix the singlet with the doublet states and the B") terms
split the doublet. It is important to note that there are only two symmetries
for the four quadrupolar operators, such that a non-zero (Qx'z_yz) implies that

a non-zero (@) will be induced, and vice versa, while a similar situation

occurs for (Q,y) and (Qy.)-

The symmetries of the sz_yz and Q,, operators: Q # —Q, mean that
within Landau Theory there should be at least two first order transitions,
contradicting the data which indicates that there is only one strongly first
order transition at 7_;. Since the B") term splits the ground doublet, leading
to entropy changes at the transition, either B or B’ must be ~ 0, to make
Q = —Q for either Qxa_yz or Q,., such that there can be just one strongly

first order transition.
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Figure 5.3: Crystal field level scheme for the hexagonal and quasi-cubic sites in UPd3 with

eigenvalues expressed as temperatures in Kelvin.
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Figure 5.4: A comparison for a) the entropy and b) Cp/T of UPd3 for our measured data

and calculated values (black lines) based on the CEF scheme in Figure 5.3.
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The entropy deduced from our measurements can be compared to calcu-
lations based on different energy level schemes. An example scheme deduced
from inelastic neutron scattering and magnetic measurements [103] is given
in Figure 5.3. Uranium is tetravalent (5f2) [33], which, using Hund’s Rules
supposing Russell-Saunders coupling, gives S = 1, L = 5 and J = 4, and
therefore there are 9 levels on each of the cubic and hexagonal sites. Optical
spectroscopy and free-ion calculations have indicated that the ground state
for U** is actually an admixture of 88% 3H, and 11% G4 [104], arising from
jj coupling, and which also has nine levels on each site type. Therefore the
maximum entropy should be RIn9. Our heat capacity measurements were
only made up to 300 K so that we would not expect all the levels to be equally
populated, but there will be some population of the high energy levels at 300
K.

Figure 5.4 a) shows the deduced entropy from our measurements compared
with the calculation based on the level scheme in Figure 5.3. There is an
obvious discrepancy between the data and the calculation, there is “missing”
entropy in our data. The calculated heat capacity does not include the effect
of the quadrupolar order, and so does not reproduce the lambda transition.
The calculated Schottky anomaly at ~ 50 K based on the proposed crystal
field level scheme is clearly larger than that in the data, and centred at a lower
temperature, indicating that this level scheme may include too many low lying
energy levels. Inelastic neutron scattering measurements are being performed
to identify excitations associated with transitions between different crystal
field energy levels. This should help to establish an improved crystal field level
scheme on the quasi-cubic sites, but on the hexagonal sites the ground state
is only dipole coupled to the first excited doublet and so neutrons cannot be

used to identify the other higher energy hexagonal crystal field levels.

The heat capacity was also measured in different magnetic field strengths:
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Figure 5.5: Heat capacity of polycrystalline UPd3 in a range of magnetic fields H =0 —~9

p ot

H=0-9T, see Fig. 5.5. In fields up to 3 T, Cp/T shows very little change.
In 4 T the main peak associated with 7", is reduced in magnitude but slightly
broader, while the features associated with the other transitions are unchanged.
In 5T the “T"_; peak” splits into two, while the “7,” feature is less obvious. In
higher fields the “T_; peaks” split further apart. the “75" feature is smoothed
away while the “T," feature becomes sharper. These measurements were made
on a polycrystalline sample, which introduces a lot of complications. UPd3 is
strongly anisotropic, with clear differences in the ways that the transition
temperatures evolve as a function of the magnetic field, depending on whether

the field is applied axially or in the basal plane, see Figure 5.6.
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Figure 5.6: Thermal expansion of UPd3, measured along the symmetry axes in zero field and

H =6 T, showing the anisotropy in the evolution of the transitions with applied field [40].
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5.2 X-ray Resonant Scattering

In the following section describing our X-ray resonant scattering measure-
ments, we have used the orthorhombic notation for the unit cell, as shown
in Figure 5.7. In real space the b-axis of the orthorhombic cell is defined to be
parallel to the a-axis of the hexagonal cell, with |b| = |ag|, and |a| = |a; V3.
The reciprocal space vectors are defined according to:

a3 X ax

[ai - a; x ag)’ (5.9)

aj =27

with the result that orthorhombic reciprocal space vector a* is parallel to the
hexagonal reciprocal space vector aj, but |a*| = |aj|, such that a superlat-
tice reflection labelled (303) in hexagonal notation, is indexed as (103) in the

orthorhombic notation.

(a) Real space (b) Reciprocal space

Figure 5.7: The hexagonal and orthorhombic unit cells drawn in the basal plane in real and

reciprocal space, showing how the two cells are related geometrically.
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5.2.1 Temperature Dependence

In the paramagnetic phase, T' > Ty, reflections are only observed when the

scattering factor:

f= Zl" exp(1Q - ry), (5.10)

where [,, are the individual scalar atomic scattering lengths, is non-zero. Scat-
tering factor calculations indicate that for different quadrupolar structures be-
low Tj the previously forbidden reflections at (103) and (104) become allowed
due to the tensor nature of the individual scattering lengths. Figure 5.8 shows
the Bragg and “forbidden” reflections within the Ewald sphere construction.
Measurements of the temperature dependence of the resonant scattering from
these superlattice reflections provides information about how the structures
evolve as well as about critical phenomena, which may be able to elucidate the

mechanism of the interaction between the quadrupole moments.

(000)

Figure 5.8: A map of the accessible region of reciprocal space in orthorhombic notation
coinciding with the vertical scattering plane of the diffractometer for energies in the vicin-
ity of the Afjy-edge of Uranium, defined by circles with radii & and 2k corresponding to
transmission and reflection. Also shown are the Bragg reflections () and the quadrupolar

reflections (¥).
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The ID20 diffractometer at ESRF was aligned at each of the superlattice
reflections at E = 3.726 keV. The temperature dependence of the unpolarised
resonant scattering was then measured by rocking theta at each temperature
set point as the sample was warmed from base temperature ~ 2 K. Beam
heating effects were found to be negligible and there was good thermal con-
tact to the sample, which, in combination with the thorough characterisation
of the thermocouples, gives us confidence in the measurement of the sample
temperature. Unfortunately, due to technical problems with the cryostat, the
temperature became unstable in the critical region 7' = 6.8 — 7.6 K, with tem-
perature variations of +£0.5 K around the target temperature for individual
scans. We attempted to repeat these measurements on several occasions, but

we were never able to perform the full temperature dependence measurements.

The data was fitted using a combination of a lorentzian squared (see Ap-
pendix A) and linear lineshape to find the integrated intensity, the full-width
half-maximum and peak centre. Such a lineshape gave the lowest chi-squared
value. The results are consistent with that published in the earlier paper by

McMorrow et al. [1].

The normalised intensity of the (103) peak, Figure 5.9 (a), is still non-zero
above Tp, but the increasing full-width half-maximum, Figure 5.9 (b), indi-
cates that this is critical scattering due to dynamic fluctuations of short range
quadrupolar order. Closer inspection of Figure 5.9 (a) indicates a possible
step in the intensity associated with the T, transition. As discussed above,
problems with the cryostat mean that we have no data at T, and the lack of
data in the vicinity of T__; and Ty makes it difficult to identify any anomalies

associated with these temperatures.

Figures 5.10 (a) and (b) show the normalised integrated intensity and full-
width half-maximum of the (104) reflection. Looking in detail at the intensity,
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Figure 5.9: Temperature dependence of a) the integrated intensity of the (103) peak nor-
malised to the monitor and b) its Full Width Half Maximum in UPd3 at ¥ = 93°, calculated
by fitting a lorentzian squared plus a linear term to 6-scans. The dashed line shown in (a)

corresponds to 15
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shown in (a) corresponds to T5.
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there is a suggestion that there is a small step in the data at 7T,. Unfortunately
the data does not extend to the 77, transition temperatures, while no intensity
is observed at this position at 7. At the maximum temperature limit, the
FWHM appears to be starting to increase, suggesting the onset of critical
scattering. Also visible in Figure 5.10 (a) is a kink in the intensity at T* ~ 5.8
K. This temperature is not associated with any known transition, and the

origins of this anomalous feature are unknown.

5.2.2 The first quadrupolar phase: T,; <T < Ty

The measurements as a function of temperature reveal that there is no scat-
tering intensity at (104) in the first quadrupolar phase, while the intensity at
(103) is non-zero. This indicates that the quadrupole moments on the cubic
uranium sites are stacked in anti-phase along the c-axis. By measuring the
count rate as a function of the incident energy a clear resonance is observed in
the rotated channel, see Figure 5.11. Closer inspection of the resonance indi-
cates the possibility of two peaks separated by less than 10 eV, in the form of
a shoulder on the main resonance, which in some systems might be interpreted
as being due to electric dipole (E1) and electric quadrupole (E2) resonances.
Resonant scattering is also observed in the unrotated channel, but there is
significant non-resonant interference. The electric dipole transitions, E1, dom-
inate the resonant scattering cross section, connecting the core 3ds/, states to
the 5f states at the uranium Mjy-edge. If the resonance was observed only in
on this would point to a magnetic origin, while if it was only in oo it would
suggest it was due to charge scattering. That resonant scattering is seen in
both channels at this energy, ' = 3.726 keV indicates that we are probing the

5f electrons involved in the quadrupolar order.

To investigate the nature of the quadrupolar order in UPdj;, experiments
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Figure 5.11: Energy scans of the (103) peak in UPd3 at T = 7.1 K, ¥ = 139° in (a) the on
channel showing resonance, with a main peak at 3.726 keV and a shoulder at ~ 3.722 keV,

and (b) the oo channel showing a significant non-resonant component.

were performed to determine how the resonant scattering intensity from a
superlattice reflection varied as a function of the azimuthal angle, ¥, see Fig-
ure 3.4. The azimuthal angle ¥ is defined relative to the reference vector [010].
At each azimuthal angle, the sample theta angle was rocked and the intensi-
ties of the oo and on polarisation channels measured. As for the temperature
dependence scans, the integrated peak intensities were calculated by fitting
a lorentzian squared (for the peak shape) and a linear contribution (due to
the background). The azimuthal dependence of the scattering intensity at the
(103) reflection at T = 7.1 K, i.e. within the first quadrupolar phase, is shown

in Figure 5.12.

The error bars shown are the output from the program which calculates
the integrated intensity from the peak shape fit. Systematic errors may be

introduced by the variation in absorption as a function of the azimuth angle.



5.2. X-ray Resonant Scattering 87

a) (1(')3)T=l7.1 K on 5

Normalised Integrated Intensity / 1x10®

Figure 5.12: The azimuthal dependence of a) the om and b) the oo scattering intensities of
the (103) peak in UPdj; at the U My edge, at T = 7.1 K. Comparison is made with calcu-

lations for the Q,x (solid black line) and the Qy2_y2 (dashed black line) order parameters.
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In this case, such errors were found to be minimal by showing that there was
no significant variation in the intensity of the (004) Bragg peak as a function of
W¥. Another source of potential error on rotating the sample is due to the X-ray
beam and diffractometer not being perfectly aligned, such that the incident
spot traces out an arc on the sample surface, which can result in some of the
diffractometer motors no longer being optimised for the superlattice reflection.
At each value of ¥ before performing the theta rocking curve, 8, 26 and x were
reoptimised, and at larger intervals we checked the transverse position of the
sample stage. However, clearly there was a loss of intensity as the experiment
progressed, and this can be seen in Figure 5.12 where certain data points were
remeasured after moving to different values of ¥ and then returning. The
difference between the two measurements at ¥ = 174° gives an estimate of

this source of systematic error.

The azimuthal dependence of the allowed order parameters was calculated
by summing the second rank tensors 7, of the individual quasi-cubic site ura-

nium quadrupoles to construct the resonant scattering length of the unit cell [1]
f=) T.exp(iQ-ry), (5.11)

see Appendix B.1 for details. The scattering amplitude is then given by
A=¢€-f-¢ (5.12)

where the incident (€) and scattered (€’) polarisations are transformed into the
coordinate system of Blume and Gibbs [77] following the method of Wilkins
et al. [10].

Inspection of Figure 5.12 shows that the (103) data is in excellent agree-
ment with the above calculation for the azimuthal dependence of @, anti-
ferroquadrupolar order [105]. In the o7 channel, note the asymmetry about

¥ = (° in both the data and @, calculation, and that the maxima are not



5.2. X-ray Resonant Scattering 89

at ¥ = 0,180°. In the oo channel, the data and calculation show a broad
minimum at 90° with symmetry about ¥ = (0°. Since our sample was cut
with a (207) reciprocal lattice face, the scattering vector Q = (103) is not
collinear with the face normal (n). The o polarisation vector is perpendicular
to both n and Q so the non-collinear nature is not observed, resulting in the
symmetry about ¥ = 0° seen in oo azimuthal measurements. However, the
7 polarisation vector lies in the plane of n and Q, and the non-collinearity
leads to an asymmetry in the azimuthal variation in intensity. Calculations of
the ¥ dependence of the scattering intensity for the Qy2_,2, Qxy and Qy, order
parameters do not agree with the data, as they show either the wrong periodic-
ity, symmetry or maxima and minima positions, see Figures B.1, B.2 and B.4,
and hence these order parameters can be ruled out. ), provides a natural
explanation for the macroscopic distortion to the orthorhombic cell [42] due to
the splitting of the x — y symmetry, see Fig. 5.13. Combining the knowledge
that the transition at Ty = 7.8 K is to a @),x antiferroquadrupolar ordering of
the 512 electrons, with the heat capacity evidence that this transition is either

second order or very weakly first order requires B’ ~ 0, i.e.

0 A A
Qx=| 4 0 o0
A0 0

Previous polarised neutron diffraction [27] and X-ray resonant scattering [1]
experiments revealed the wave vectors of the ordered AFQ structures, but did
not allow the order parameters to be identified unambiguously. However, on
the basis of the PND measurements, it was inferred that the order parameter
below Ty was Qx2_y2. The apparent discrepancy between the above @, re-
sult and that from the PND measurements might be explained when we take
into consideration that the onset of ), order below Tj is expected to be ac-

companied by the development of a (x2_,2 contribution due to the symmetry
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Figure 5.13: The Q,x AFQ structure with antiphase stacking along the z-axis in UPdj
at T3 < T < Ty in an orthorhombic unit cell. The U 5f quadrupole moments on the

quasi-cubic sites are represented by ellipsoids.

considerations of the different quadrupolar operators [106] as described earlier
in this chapter (equation (5.8)) with regard to the heat capacity data. The
application of a magnetic field parallel to the real-space a-direction will in-
duce antiferromagnetic moments aligned with the field direction in the case
of Qx2_y2, but not for Q,x. Hence the PND experiment could only detect the
contribution of Q2_,2 to the order parameter. Taking this into account a
slightly better fit to the azimuthal data can be obtained by including a Qy2_,2
contribution of 20% to the scattering tensor, see Figure 5.14. This is most no-
ticeable for the oo channel data, where the fit around ¥ = 90° is significantly

improved.
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Figure 5.14: The azimuthal dependence of a) the rotated and b) the unrotated scattering
from the (103) reflection in UPd3 at 7" = 7.1 K as in Figure 5.12 with fits made allowing

the Q,x and Q42 _y2 scattering tensor elements to vary freely.
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523 Th<T<T,

UPdj; is a particularly unusual compound because it displays a series of dif-
ferent quadrupolar ordered phases. Therefore, we were interested to observe
how the azimuthal scattering dependence varied in each phase. The second
quadrupolar phase lies between T,; = 6.9 K and T_; = 6.7 K, i.e. in a very
narrow temperature range. Unfortunately it is very difficult to stabilise the
cryostat within this particular range for the prolonged periods required to per-
form an experiment investigating the azimuthal dependence of the superlattice
scattering intensity. Therefore, we next performed measurements in the third

quadrupolar phase, at T = 5.2 K.

Energy scans in the two polarisation channels, plotted in Figure 5.15, re-
veal a clear resonance in om at both (103) and (104) indicating an in-phase
component to the quadrupolar order along the c-axis. These resonances are
fitted well by a Lorentzian peak shape, as we would expect, since the high reso-
lution of the diffractometer means that the peak shape is an intrinsic property
of the sample. While resonance is observed in oo, there is also significant non
resonant interference again. Due to time constraints we were limited as to the
measurements we were able to perform, and so given the interference in oo we
decided it would be more profitable to investigate the dependence of just the
or scattering at (103) and (104). The results are presented in Figure 5.16. The
dashed lines in Figure 5.16 correspond to least squares fits made to the data by
varying the contributions of the different allowed quadrupole moments: Q.,

Qx2—y2, Qxy, Qy, and Q,, on the quasi-cubic uranium sites.

Clearly the azimuthal dependence of the Q = (103) scattering at 5.2 K
is more complicated than in the higher temperature Q,, phase, and the AFQ
order involves additional order parameters, Figure 5.16a). The least squares fit

to the data indicates that the predominant order parameter is still @, but that
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Figure 5.15: UPd3 energy scans at T = 5.2 K of the (103) peak at ¥ = 1.2° in (a) the o

channel showing resonance at E = 3.725 keV, and (b) the oo channel showing a significant

non-resonant component; and of the (10

4) peak at ¥ = 2.7° in (c¢) the om channel also

showing resonance at E = 3.725 keV, and (d) the oo channel showing interference.Both on

resonances are fitted well by a Lorentzian peak shape.
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Figure 5.16: The azimuthal dependence of the o7 scattered intensity from a) the (103) and

b) the (104) superlattice peaks. in UPd3 at the U Mjy edge, at T = 5.2 K. Dashed lines

show least squares fits to the data as described in the text.
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Qxy and Qy2_,2 are also present, and is derived from an anomalous scattering
tensor with the order parameters present in the ratio 77:10:13 respectively.
The fit to our data in Figure 5.16b), which reproduces the periodicity of the
(104) data, indicates that the most significant order parameters are @, and

Qy- in the ratio 2:1.

Furthering the Order Model
Quadrupoles on hexagonal sites

To improve the fit to the data it is necessary to introduce additional parameters
which go beyond the scope of the current model of quadrupoles on the quasi-
cubic sites. So far quadrupoles on the hexagonal sites have not been considered
due to the energy level splitting between the hexagonal ground state and first
excited state being so much greater at 81 K than the quadrupolar transition
temperatures. However, the existence of quadrupoles on the hexagonal sites is

one of the more simple ways of introducing additional model parameters.

Within the orthorhombic notation the four hexagonal sites within the unit

cell are at:
111 21 13 153

2617 37 033 Gg7)
Therefore when equation (5.11) is calculated for the (103) reflection, for certain
quadrupole arrangements the resultant tensor is complex, while it remains real
for all arrangements for the (104) reflection. For one particular Q,, ordering of
the quadrupoles on the hexagonal sites combined with the antiphase stacking
of @.x order quadrupoles along the c-axis, shown in Figure 5.17, the resultant
scattering factors of the (103) and (104) reflections are unchanged from those

for @.x order only on the cubic sites, i.e.

£(103) = Q,., f(104) = 0.
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Figure 5.17: An example of a more complex periodicity of quadrupoles on cubic and hexag-
onal uranium sites in UPd3, resulting in a scattering tensor unchanged from that describing

the order in Figure 5.13.

Therefore it is not possible using our current data sets to distinguish be-
tween the two quadrupole configurations shown in Figures 5.13 and 5.17. To
overcome this problem it would be necessary to perform experiments to mea-
sure the azimuthal variation of the scattering intensity of the (013) reflection.
Figures 5.18(a) and 5.18(b) show the calculated azimuthal dependence of scat-
tering from the (013) reflection for the two quadrupole structures shown in

Figures 5.13 and 5.17, corresponding to the scattering tensors

(00 1
f@9013)=100 0 |.

\ 100

( ~1.37+057 0 1.46 — 0.1%
f®(013) = 0 ~0.92 + 0.38 0

\ 146 - 0.19, 0 ~1.37+0.572

These are clearly very different; for example in o7 for the cubic sites only
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Figure 5.18: The simulated azimuthal dependence of scattering from the (013) reflection in
UPdj3 using [100] as the azimuth reference vector for (a)@,x order on the cubic sites only and

(b)quadrupoles in the zx plane on both cubic and hexagonal sites as shown in Figure 5.17.

structure there is a minimum at ¥ = 90°, while there is a maximum there
for the cubic and hexagonal sites structure, while in oo the oscillation in
Figure 5.18(b) is shifted through ¥ relative to that in Figure 5.18(a), and its

value is always greater than zero.

Figure 5.19 shows a least squares fit, with all data points weighted equally,
to the 7" = 5.2 K (103) data made for a scattering tensor which is the complex
weighted sum of tensors describing different orderings of the Uranium 5f?
electrons, > P, f,, where the multiplicative factor fitting parameters P, and

the overall intensity are allowed to vary freely, and for example

001
fiz=1010 00
100

Close inspection reveals that the fit to the data is very good and corresponds to
R? = 0.995. The real and imaginary components of the fitting parameters are
given in Table 5.1, indicating that the fit corresponds to a complex scattering
tensor, which could be due to the presence of quadrupoles on the hexagonal

sites.
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Figure 5.19: Fit to the azimuthal dependence of om scattering intensity from the (103)
reflection in UPd3 at T = 5.2 K.

Parameter Value | Paramater Value
Intensity 391 x 1074 | R? 0.995
R(Pp2_y2) —6.92x 1072 | J(Pr2_p2) 9.69 x 1072
R(Pyy) 1.87 x 1072 | 3(Pyy) —-1.40 x 107!
R(P.z) 4.67 x 107! | I(P.s) 5.99 x 107!
R(P,.) 3.27 x 1072 | 3(P,.) 1.19 x 107!
R(P,.) 1.90 x 107! | 3(P.,) 1.36 x 10%°

Table 5.1: Values of the real and imaginary components of the parameters for the fit to the

om (103) UPd; azimuthal data at T = 5.2 K shown in Figure 5.19.
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As mentioned previously the introduction of quadrupoles on the hexago-
nal sites does not lead to complex scattering factors for the (104) reflection.
However, when a least squares fit is made to the data shown in Figure 5.16(b),
allowing complex values for all the elements in the scattering factor tensor, it
is found that the best fit (R? = 0.976) is achieved for a complex F(104), see
Figure 5.20, where the fit parameters are given in Table 5.2. It is significant
to note, that for this fit and that for scattering from Q = (103), the imaginary
components of the individual scattering tensor elements are of comparable
magnitude to the real components. It should also be noted that the fitting
parameters are different for the two reflections, but the relation between the
order model and the scattering tensors for different reflections is not simple,
and so this is to be expected. For example, in the first phase, Q,x order with an
antiphase c-axis stacking results in very different scattering tensors for (103)

and (104).

A complex scattering tensor f requires either the tensors representing the
individual quadrupoles in the cell, T;, or the phase factor, exp(1Q - r,)), to
be complex, see equation (5.11). Since the individual quadrupole tensors are
derived by performing 3D rotations away from the tensor for a Qx2_,2 quadru-
pole, it is unphysical for T to be complex. Therefore the complex nature of the
scattering tensor must derive from the way the different quadrupole tensors
are combined according to the phase factor. With quadrupoles situated on the
cubic and hexagonal sites the phase factor for Q = (104) is real. Therefore,
within a model of purely quadrupolar order, to introduce complex numbers to
the scattering tensor requires that some of the quadrupoles are not sitting at
the exact positions for a dhep unit cell, i.e. there must be some crystallographic

distortion.
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Figure 5.20: Fit to azimuthal dependence of o7 scattering intensity from the (104) reflection

in UPd3 at T = 5.2 K.

Parameter Value | Paramater Value
Intensity 7.02 x 1075 | R? 0.976
R(Pr2_y2) —8.56 x 1072 | J(Pr2_y2) 1.37 x 107!
R(Pry) —4.05 x 107! | I(Py,) —6.67 x 107!
R(P.r) 2.19 x 107! | I(P.z) 1.60 x 100
R(P,.) 3.36 x 107! | 3(P,.) 3.85 x 107!
R(P..) 2.52 x 10*° | 3(P,,) 2.60 x 10%°

Table 5.2: Values of the real and imaginary components of the parameters for the fit to the

on (104) UPd3 azimuthal data at T' = 5.2 K shown in Figure 5.20.
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Crystallographic distortion

Different distortions and order parameters have been used in calculations to
derive scattering tensors. In the simplest case, based on the Q,, structure
determined for the phase between T',, < T < T_,, a distortion of 1% along
the c-axis has been applied to the location of the quasi-cubic sites with h, k = %,

such that quadrupoles are located at:
(000), (0.50.50.01), (000.5), (0.50.50.51).

This does not have a very large effect on the calculated scattering tensors for

the two reflections:

0 0 0.99 + 0.09:
f(103) = Qx — 0 0 0
0.99 +0.09: 0 0
(5.13)
0.05 — 0.372 0 0
f(104) =0 — 0 0.03 — 0.25: 0 ,
0 0 0.05 — 0.372

and is clearly incompatible with the fits obtained in Figures 5.19 and 5.20 and
the parameters listed in Tables 5.1 and 5.2. For the same structure, but with

a 5% change along the c-axis, the two scattering tensors are given by:

( 0 0 0.79 + 0.402
f(103) — 0 0 0
\ 0.79+0.40: 0 0
(5.14)
[ 1.04 - 1.43; 0 0
f(104) — 0 0.69 — 0.95: 0 ,
\ 0 0 1.04 — 1.43%

which gives comparable real and imaginary tensor elements. However, any

crystallographic distortion must be very small, as a larger distortion would
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have been observed in previous neutron diffraction experiments and would have
caused the crystal to shatter in all likelihood. For this reason it is unlikely that
the azimuthal dependence of the scattering from the superlattice reflections is

the result of a crystallographic distortion.

Multipolar interactions

Another alternative model for the low temperature phases, is that there is an
additional multipolar order parameter. In the temperature range Tb, < T <
T_; no magnetic ordering has been observed, which suggests that dipole order
is absent. However, magnetic order would be a simple way of introducing
imaginary elements into the scattering tensor through a total tensor T =
S (TQ +1TM)exp(2Q - r,,), where ¢ introduces the phase shift for magnetic
scattering, T9 is the scattering tensor describing the quadrupolar order and

TM is a rank 2 matrix representing the magnetic order following

0 =z -y
™= _, 0 =2 |, (5.15)
y —x 0

where z,y, 2 are the xyz components of the vector describing the dipole mo-
ment 4 in the unit cell basis. € - TM - ¢ is equivalent to (¢ x €) - , the f; term

in Equation (3.11).

When attempts are made to fit the azimuthal dependence of the scattered
intensity in the o7 channel for Q = (103) and (104) using such a tensor, where
it is assumed that the real elements are associated with quadrupoles on the
cubic sites and the imaginary elements are only due to a magnetic moment, a
good fit is obtained for (103), Figure 5.21 R? = 0.994, but a poor fit is made to
the (104) data, Figure 5.22, which does not reproduce the relative magnitudes

of the maxima well, such that R? = 0.714. The fitting parameters are given in
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Tables 5.3 and 5.4.

However, as discussed above, there are other possible causes of imaginary
elements in the scattering tensor due to the quadrupole moments, where if f
is the scattering tensor then tensor elements are such that J(fim) = I(fmi),
as opposed to J(fim) = —I(fmi), as for the magnetic tensor. Therefore, fits
have also been made to the data which take this into account, Figures 5.23
and 5.24. The fitting parameters are given in Tables 5.5 and 5.6, which give
the magnitudes of the contributions from the tensors describing quadrupolar
order and magnetic order. These fits are of a very similar quality to those made
with a complex tensor but no magnetic component, Figures 5.19 and 5.20, and
are generally better than those for which magnetic order is the only source of
imaginary tensor elements, Figures 5.21 and 5.22. From these assorted fits to
the data, the existence of magnetic order cannot be discounted entirely, but
clearly a simple model based on a combination of a real quadrupolar tensor and
a magnetic tensor cannot alone completely replicate the azimuthal dependence

of the scattering data observed.

There could be higher order multipolar order parameters such as octupolar
or hexadecapolar order. Magnetic octupolar order has been identified as the
primary order parameter, inducing the order of electric quadrupoles as the
secondary order parameter, in NpO, using XRS, see [22] and references therein.
The octupolar order breaks time-reversal symmetry allowing the interstitial
magnetic field observed in muon spin rotation measurements, while the cubic
symmetry prevents the local existence of a magnetic dipole secondary order
parameter, explaining why magnetic order had not been observed in M68bauer
spectroscopy or neutron diffraction experiments. Octupolar order has also been
suggested as the primary order parameter behind the “hidden” order in the
tetragonal system URu,Si; [21]; and field induced octupoles are important for

understanding the complex phase diagram of the cubic system CeBg [6]. To
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Figure 5.21: Fit to azimuthal dependence of or scattering intensity from the (103) reflection

in UPd3 at T = 5.2 K assuming magnetic and quadrupolar order.

Parameter Value | Parameter Value
Intensity  3.42 x 107% | R? 0.994
P, 1.02 x 107! | P, —2.23 x 107!
P, 1.20 x 10*° P, 2.55 x 107!
P, 2.25 x 107! | B, 7.70 x 107!
Ppa_p2 283 x 107! | P,. 4.58 x 10~}

Table 5.3: Values of the parameters for a fit to the om (103) UPd3 azimuthal data at T = 5.2

K shown in Figure 5.21 for scattering from quadrupole and dipole moments.
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Figure 5.22: Fit to azimuthal dependence of o scattering intensity from the (104) reflection

in UPd3 at T = 5.2 K assuming magnetic and quadrupolar order.

Parameter Value | Parameter Value
Intensity 1.09 x 1075 | R? 0.714
Py 6.35 x 107! | P, 4.86 x 107!
P, 3.83x 107! | Py, —7.76 x 1072
P,. -3.42x 107! | Py, 2.10 x 107!
Ppa_p2 1.52 x 107! | P,, 1.47 x 100

Table 5.4: Values of the parameters for a dipole and quadrupole moment fit to the om (104)
UPd3 azimuthal data at T' = 5.2 K shown in Figure 5.22 for scattering from quadrupole and

dipole moments.
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Figure 5.23: A free fit made to the azimuthal dependence of o7 scattering intensity from

the (103) reflection in UPd3 at T = 5.2 K using a complex scattering tensor.

Parameter Value | Parameter Value | Parameter Value
Intensity 8.31 x 107% | R(Pr2_,2)—1.02 X 107! | J(Pp2_,2) 4.31 x 107!
R(Pyy) 5.55 x 1072 | J(Pyy) 2.87x 107! | Py, —2.86 x 1073
R(P.;) 1.88x10™° | J(P.;) 2.07 x 10%° | P, —6.31 x 107!
R(P,.) 427x10°%|3(P,,) —647x107'|P,, —3.79 x 10!
R(P,.) 2.17x10*° | J(P.,) 2.47 x 107° | R? 0.996

Table 5.5: Values of the parameters describing the scattering tensor for the fit to the on

(103) UPd3 azimuthal data at T = 5.2 K shown in Figure 5.23.
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Figure 5.24: A free fit made to the azimuthal dependence of o7 scattering intensity from

the (104) reflection in UPd3 at T = 5.2 K using a complex scattering tensor.

Parameter Value | Parameter Value | Parameter Value
Intensity  8.26 x 107° | R(Pr2_y2) 2.75 x 107! | J(Ppa_y2) 5.48 x 1072
R(Pry) 6.46 x 107! | J(P,,) —3.31x 107! | P, —-2.06 x 107!
R(P..) 1.46 x 10%° | 3(P,;) —4.24x107%| P, -7.35 x 107!
R(P,.) —441x1071|3I(P,.) =3.52x107'|P,, —3.79 x 107!
R(P..) 420x10%°|3J(P,) -—215x10%°|R? 0.978

Table 5.6: Values of the parameters describing the scattering tensor for the fit to the o

(104) UPd3 azimuthal data at T = 5.2 K shown in Figure 5.24.
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our knowledge, there are as yet no publications suggesting octupolar order in
hexagonal systems. However, magnetic octupolar order can only be observed

directly through E, resonances [9, 86].

We have assumed that the electric dipole transition E1 (3ds/2 — 5f) dom-
inates the scattering. Interference between the F'1 and E2 resonances can pro-
vide another mechanism for explaining a complex azimuthal dependence of re-
flections as other types of multipolar order are probed, e.g. electric dipoles [86],
while a pure E2 resonance would lead to possible octupolar order also being
observed. However, an E2 resonance involves a momentum change AL = 2,
such that at the uranium M;y edge an E2 resonance probes the unoccupied g
bands, and it is believed that the matrix elements for such an event would be
too small to allow for any observable signal [9]. An E2 event at the M;; and
M1 edges would couple the 3p electrons to the 5f electrons, but the binding
energies are greatly removed from that of the 3d electrons at 5.18 keV and 4.30
keV respectively [107], and so such events could not have been observed in our
experiments. Therefore, the complicated azimuthal dependence observed at

T = 5.2 K, is not the response of multipoles of order higher than n = 2.

Low point group symmetry

After recent discussions with the group of Amoretti at Universita di Parma,
the significant importance of the uranium point group symmetry in determin-
ing the crystal field operators has been brought to our attention. Neutron
diffraction measurements have suggested that below T, the crystal symme-
try is lowered from orthorhombic to monoclinic [108]. The lowering of the U
point group symmetry will introduce imaginary terms in to the crystal field
operators, which may help explain the observed azimuthal dependence of the

scattering from the superlattice reflections in this phase and the resultant com-



5.2. X-ray Resonant Scattering 109

plex fits. We will be working with Amoretti et al to develop a new crystal field
model, to address this point.

5.24 T < T,

We have also investigated the lowest temperature phase through XRS mea-
surements made at T = 1.8 K. Energy scans, Figure 5.25, performed on the
(103) and (104) quadrupolar superlattice reflections reveal a resonance in the
om channel. These measurements were performed at an azimuth angle of
¥ = —87°, which unfortunately later proved to be a local intensity minimum
in both channels at both reflections. The energy scan of the (103) reflection
in oo was repeated at ¥ = —174°, giving a large increase in the count rate
and a change in the energy profile to give a resonance rather than a step,
with non-resonant interference, and is comparable to that measured at 5.2
K, see Figure 5.15(b). Unfortunately there was insufficient time to repeat all
the other measurements, so the preliminary energy scans are plotted together
in Figure 5.25 for comparison purposes, while the repeated scan is shown in

Figure 5.26.

Azimuthal measurements were made using the Stokes Method. This in-
volves rocking the Au polariser crystal theta angle (6p) for n = 0: 30 : 180° at
each azimuthal angle. The integrated intensity of the reflections is obtained by
fitting a lorentzian squared peakshape, and then the variation in the intensity

as a function of 7 is fitted using
1
I(n) = [5(1 + P; cos 2n + Py sin 2)] 1y = Iy cos®(n + ), (5.16)

to give the Stokes parameters P, and P, which are defined as:

_I(TI=0)—I(7I=7T/2) _Iaa_lmr

P, = =
YT I =0+ In=7/2) Lo+ Is’

(5.17)
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Figure 5.25: UPd; energy scans at T = 1.8 K of the (103) peak at ¥ = —87° in (a) the om
channel showing resonance at E = 3.725 keV, and (b) the oo channel showing an edge at
the resonant energy; and of the (104) peak at ¥ = —87° in (c) the on channel also showing

resonance at E = 3.725 keV, and (d) the oo channel showing an anti-resonance.
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Figure 5.26: Energy scan at T = 1.8 K of the (103) peak in UPd3 at ¥ = —174° in the oo

channel.

_ I(n=r/4) — I(n = 3n/4)
I(n=n/3)+1(n=>37/4)

Hence when all the scattering is o: P, = 1, and conversely when all the

Py

(5.18)

scattering is om: P, = —1. The variation in the intensity in the rotated
and unrotated channels as a function of the azimuthal angle is also obtained.
Figure 5.27 shows an example of the Stokes fit to the integrated intensities of
the (103) reflection at 7' = 1.8 K as a function of 7.

Figure 5.28 shows the azimuthal dependence of the o7 scattering from the
(103) reflection in UPd; at T = 1.8 K with two fits to the data. The dashed
line corresponds to a real scattering tensor, which gives R? = 0.986, while the
solid line is for a complex tensor, with R? = 0.999. The parameters for the two
fits are given in Tables 5.13 and 5.14. It would appear that the complex tensor
better describes the scattering. However, these measurements could only be
performed over an azimuthal range of 200°, due to problems with collisions
between the diffractometer and cryostat (these have now been remedied by

the removal of an obsolete chi circle). In order to differentiate between the two
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Figure 5.27: An example of the fit made to the integrated intensities of the peak shapes
of the (103) reflection as a function of n at T = 1.8 K and ¥ = —209° in UPdj; to obtain
values for P; and P, at this azimuth angle. The fit showed by the line is described in

equation (5.16).

tensors corresponding to the fits, it is clearly necessary to expand the range
of ¥ investigated, to cover the region between —45° and 90°, where the two

tensors give different results for the intensity.

The Stokes method also gives the azimuthal dependence of the oo scatter-
ing, and this is shown in Figure 5.29 for the (103) reflection in UPd; at T = 1.8
K. The form of the azimuthal dependence looks more complicated than for o,
with possibly two different waveforms of different intensities present, one with a
maxima centred at ¥ ~ 150° and another with a smaller maxima at ¥ ~ 210°.
Also shown in Figure 5.29 are fits for a real and a complex scattering tensor
described by the parameters given in Tables 5.9 and 5.10. The real scattering
tensor is strongly dominated by the yz elements, and if the more complicated
details of the maxima are disregarded as being the result of instrumental error,
gives a good description of the general periodicity of the scattering. With the

freedom of eleven variable parameters in the complex tensor, the fit is greatly
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Figure 5.28: Two fits to the azimuthal dependence of on scattering intensity from the (103)

reflection in UPd; at T = 1.8 K.

Parameter Value | Parameter Value | Parameter Value
R(P,.) —4.20 x 10! R(P,y) —9.23x 109 R(P,;) 6.41x 10°
R(Pyp2_,2) 2.18 x 10° | Intensity 7.54 x 1076 | R? 0.986

Table 5.7: Values of the parameters for the dashed line fit to the UPd3 T' = 1.8 K on (103)
data shown in Figure 5.28.

Parameter Value | Parameter Value | Parameter Value
R(P,;) -182x10' [ R(Py) —8.75x10°|R(P,.) 5.94 x 10°
R(Ppa_y2) 2.73x10° | R(P,,) 7.32x107'|I(P,) —7.20x 10°
I(Pyy) 4.60 x 10° | I(P,;) —2.12x 10° | J(Pr2_y2) 2.06 x 10°
I(P,.,) 1.37 x 10! | Intensity 2.14 x 107 | R? 0.999

Table 5.8: Values of the parameters for the solid line fit to the UPd; T = 1.8 K o (103)
data shown in Figure 5.28.
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Figure 5.29: Two fits to the azimuthal dependence of oo scattering intensity from the (103)

reflection in UPd; at T = 1.8 K.

Parameter Value | Parameter Value | Parameter Value
R(P.z) —4.84 x 10° R(Pry) 6.20 x 10° | R(P,.) 1.98 x 10!
R(Py2_,2)—9.60 x 107! | Intensity 1.99 x 1073 | R? 0.888

data shown in Figure 5.29.

Table 5.9: Values of the parameters for the solid line fit to the UPd3 T = 1.8 K g0 (103)

Parameter Value | Parameter Value | Parameter  Value
R(P,z) 3.927 x 10! | R(Pyy) 6.70 x 10° | R(P,.) 2.05 x 10!
R(Pp2_y2) 113 x10' | R(P,.) -1.72x10°|I(P,) 1.07x 10
I(Py) -1.07x10°|3(P,.) 9.20 x 10° | I(Pr2_,z2) 5.06 x 10°
J(P,.) —9.89 x 10° | Intensity 1.44 x 10~* | R? 0.988

data shown in Figure 5.29.

Table 5.10: Values of the parameters for the dashed line fit to the UPd3 T = 1.8 K g0 (103)
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improved, following the waveform more closely. It would be of interest to re-
peat these measurements to determine whether the waveform is truly intrinsic
or not and to expand the data set, so as to help discriminate between different

possible scattering tensors and their quadrupolar ordering models.

The dependence of the intensity on the scattering tensor and polarisation
vectors, as described in equation (5.12), requires the tensor to be the same both
for rotated and unrotated scattering. When the two parameter sets for each of
the om and oo fits are compared, real for real and complex for complex, there is
no obvious correlation. Looking at the parameters given for the complex fits to
the two data sets in Tables 5.14 and 5.10 there is a similar trend in the relative
values of the real elements with f,. being large, while f,, is the smallest,
but there is a difference in the signs of the tensor elements. Comparison of the
imaginary tensor elements shows that in both cases J( fyy) is negative while the
other imaginary elements are all positive, but there is no similarity between
the relative magnitudes of the different elements. It would be best if a fit
could be made to the two data sets simultaneously, but the disparity in the
two independent fits suggests that a least squares fit to both data sets would

result in a significantly suppressed R? value.

The azimuthal dependence of the scattered intensity was also measured
for the (104) reflection at T = 1.8 K. Figure 5.30 shows the rotated channel
scattering data and a fit made to the data for a real scattering tensor (the fit
parameters are given in Table 5.11), which indicates that the order is domi-
nated by Qx, and Qy,. The same least squares fitting routine was used to vary
the elements of a complex tensor, and while this appeared to obtain a slightly
improved fit, R? was increased from 0.989 to 0.992, the complex tensor pro-
duced a negative scattering intensity for —30 < ¥ < 40°, which is unphysical

and hence this fit is not shown.
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Figure 5.30: Fit to the azimuthal dependence of om scattering intensity from the (104)
reflection in UPd; at T = 1.8 K.

Parameter Value

Parameter Value

Parameter Value

R(P,.)  5.74 x 107!
m(Prz_yz)—3.58 x 1071

R? 0.989

R(P,,)  —1.57x10°

Background 4.04 x 10~

R(P,.)  1.15x10°
Intensity 8.30 x 1074

Table 5.11: Values of the parameters for the dashed line fit to the UPd; T = 1.8 K o7 (104)

data shown in Figure 5.30.
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Figure 5.31: Fit to the azimuthal dependence of oo scattering intensity from the (104)
reflection in UPd3 at T = 1.8 K.

Parameter Value | Parameter Value | Parameter Value
R(P,z) —2.76x 1072 | R(Py,) 1.37 x 10° | R(P,.) —6.30 x 10°
R(Pr2_y2) 3.96 x 107! | Background9.43 x 10~ | Intensity 1.72 x 104
R? 0.961

Table 5.12: Values of the parameters for the dashed line fit to the UPd3 T = 1.8 K o0 (104)

data shown in Figure 5.31.

Figure 5.31 shows the unrotated scattering data and a least squares fit ob-

tained for the real scattering tensor defined by the parameters in Table 5.12.

The fit is reasonably good with R? 0.96, and again indicates that the
quadrupolar order is dominated by Qy, and @y, components. When a least
squares fit was made allowing the tensor elements to be complex no improve-

ment was found.

It is interesting to note that for the (103) reflection an improved fit to the

data is obtained using a complex scattering tensor, while for the (104) reflection
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a real scattering tensor is better. As discussed previously, the presence of
quadrupole moments on the hexagonal sites can lead to a complex scattering
tensor for (103), but not for (104). Hence the azimuthal dependence of the
scattering from the two reflections at 7' = 1.8 K, may be compatible with the

existence of hexagonal site quadrupoles.

Spin flip scattering, observed in polarised neutron diffraction measurements
for T < T [30], suggests the existence of magnetic order in this phase. A finite
imaginary component for Q = (103) scattering but zero imaginary component
at (104) could be indicative of a wave vector describing antiferromagnetic order,
suggesting an antiphase stacking of dipole moments along the c-axis, as for
the quadrupole stacking for T, < T < Tp. To investigate this possibility
two fits have been made to the data in this phase. In one fit the imaginary
elements of the scattering tensor are assumed to have purely magnetic origins,
while in the other the imaginary elements originate from a combination of
resonant magnetic and resonant anomalous scattering. Figure 5.32 shows that
the quality of these fits to the (103) on data at T = 1.8 K are very similar,
R? = 0.998 and 0.999 respectively, but that the actual azimuthal waveforms
are quite different. In order to determine whether there is magnetic scattering
in this phase it will be necessary to extend the azimuthal range of the data

set.

Attempts to make similar fits to the oo data and both data sets for (104)
have so far proved to be unsuccessful. Given that the magnitude of the moment
in this phase has been estimated to be less than 0.02 x5, and that unambiguous
fits for magnetic order have not been successful, it is believed that another
model may be required to more accurately explain the observed data. This
phase also exhibits low symmetry and therefore these data sets will also be
taken into consideration in the theoretical work of Amoretti et al, as discussed

in section 5.2.3.
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Figure 5.32: Two fits, with magnetic moments, to the azimuthal dependence of o7 scattering

intensity from the (103) reflection in UPd3 at T = 1.8 K.

Parameter Value | Parameter Value | Parameter Value
R(P,,) 149 x10° | R(P,,) 2.05x 107! | R(P,.) 9.01 x 10!
R(Pr2_y2) 8.20 x 107! | R(P,,) 8.13 x 10° | P, 1.67 x 10!
P, 5.46 x 10° | Py, 6.61 x 1072 | Intensity 8.53 x 10™*
R? 0.998

Table 5.13: Parameter values for the solid line fit to the UPd; 7' = 1.8 K on (103) data

shown in Figure 5.32.

Parameter Value | Parameter Value | Parameter Value
Intensity 2.24 x 107 | R(Pra_y2) 2.93 x 10° | I(Py2_y2) —1.41 x 10°
R(P,,) —1.89x10°|3(P.,) —4.91 x 10° | P, 6.92 x 10°
R(P..) 2.50x10*° | 3(P,;) —8.22 x 10° | Py, 4.39 x 107!
R(P,.) 482x107'|3(P.)  —739x10°| P, —4.84 x 10°
R(P,.) 1.58 x 10*! | J(P,,) —1.36 x 10*! | R? 0.999

Table 5.14: Parameter values for the dashed line fit to the UPd3 T = 1.8 K on (103) data

shown in Figure 5.32.
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5.3 U(Pd;_.Pt.)s

UPt3 is another very interesting uranium intermetallic, being a heavy fermion
superconductor with Tgc = 0.5 K [45], where platinum, the uranium ligand
ion, lies directly below palladium in the periodic table and hence has a more
extended wave function. The crystal structures of UPd3 and UPt; are slightly
different (double hexagonal versus simple hexagonal close packed) but the Hill
distance in each is very similar. This leaves questions about how the band

structures of the two compounds differ to give different properties.

Experiments have been performed previously on samples with z = 0.005
[109]. Single crystal magnetic susceptibility data measured with the field ap-
plied parallel to the a-axis is reminiscent of that for UPd3, suggesting that
quadrupolar order has not been destroyed, while for H||c there is a clear anom-
aly in the data at T = 4.6 K. This temperature is also associated with the
development of a peak at (301) in polarised neutron diffraction experiments.
Susceptibility data for a £ = 0.02 sample showed no evidence of ordering
above T = 2 K, indicating the high sensitivity of the quadrupolar order to
ligand doping.

To further investigate the significance of Pd and Pt we have performed an
XRS experiment on a single crystal of U(Pd;_.Pt;)s; grown at Birmingham
by Dave Fort with z = 0.01. As for the UPd; sample, it was cut with a
reciprocal space (107) face and polished using diamond paste. The experiment

was performed as for UPd3; on the ID20 beamline.

Once the UB matrix had been defined at £ = 9 keV at T = 2 K, and the
lattice parameters set (in orthorhombic notation a = 9.935 Ab=57324,¢c=
9.651 A), the energy was changed to the resonant energy, £ = 3.725 keV, and
then a rocking curve of the (004) Bragg peak performed. The peak was sharp,
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Figure 5.33: Energy scans of the (103) in U(Pdg.gePtoo1)s at T = 1.9 K and ¥ = 171° in

a) the on channel and b) the oo channel both showing resonance.

i.e. the mosaic of the crystal is small, indicating the sample quality. Then
we moved to (103) in reciprocal space to see if the quadrupolar superlattice
reflection was present and varied the rho motor so as to find the azimuth angle
which gave the maximum intensity reflection. This proved to be very difficult,
due to the very weak intensity of the peak. A wide scan on the (004) peak
was then performed to ensure that no other grains or crystallites were present,

which could account for the poor signal.

On moving back to the (103) reflection all the motors were optimised re-
vealing broad peaks in both channels in theta rocking curves, and energy scans
were performed. Inspection of Figure 5.33 shows resonance in both channels

without the significant nonresonant interference observed in the oo channel in

UPd; (Figure 5.11).

At the resonant energy, the sample stage was rotated through 10° and
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another theta rocking curve performed. The integrated intensity of the peak
proved to be not significantly changed by this rotation, as one would expect
for the azimuthal variation, which disproved that the broad peak could be the

result of multiple scattering.

As discussed in Appendix A.2 the width of the measured peak is inversely
related to the degree of correlation in real space, such that a broad diffraction
peak corresponds to a small correlation suggesting short range order. Therefore
we performed wide H and L scans (scans along the reciprocal space lattice
vectors) with long counting times, to obtain good statistics, to determine the
full-width half-maximum (FWHM) of the (103) reflection in owr. The H and L
scans are plotted in Figure 5.34. Making a lorentzian squared plus linear term
fit to the peaks in the two scans gives a FWHM= 0.066 in units of 7199 and
0.063 in units of ooy, or 0.0424+0.003 A and 0.041+0.003 A respectively. These
can be converted, see Appendix A.3.3, to give an indication of the degree of
correlation in real space, which corresponds to 34 + 2 A, i.e. the quadrupolar

ordering is short range only, extending over 3 - 4 unit cells.

Once the diffractometer alignment had been reoptimised on the (103) re-
flection in om we performed theta rocking curves as we increased the sample
temperature from 7" = 2 K to 13 K. Again the resultant peak shapes were
fitted using a lorentzian squared plus linear lineshape to find the integrated
intensity, peak centre and full-width half-maximum, which showed that for
T < 9 K the peak centre and FWHM do not change significantly. Figure 5.35
shows the normalised integrated intensity decreasing as a function of tempera-
ture, until T > 10 K when there is no peak observed. Fitting I = a(T¢ — T)?
gives B = 0.60+£0.06 and T¢ = 9.1£0.1 K, which is greater than the transition
temperature we would expect from bulk measurements made for compositions
at less than and greater than x = 0.01. The disparity in the transition tem-

peratures may suggest that we do not have the Pt content that we expected,
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extending 3 - 4 unit cells.
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Te =9.1+0.1 K, and 3 = 0.60 £ 0.06, which minimises chi squared.

and therefore we need to independently verify what the actual concentration of
platinum is in the sample, which could be done using energy dispersive X-ray

spectroscopy (EDX).

5.4 Conclusions

Our new high precision heat capacity measurements confirm the suggestion by
Lingg et al. [25] from ultrasound that the transition at T, is second order,
while that at T_, is first order, and indicate an interesting evolution of features

associated with the transition temperatures as a function of applied magnetic

field.

We have identified the nature of the order in the first quadrupolar phase
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between Ty and T, as being dominated by the @, order parameter with
quadrupole moments on quasi-cubic sites being stacked in antiphase along
the c-axis, Fig. 5.13, which requires B’ ~ 0 in the matrix representing the
quadrupolar operator. This is in agreement with calculations, based on the
Hamiltonian

H = HCEF + HZeeman - sz (Ozx) Ozxv (519)

performed to reproduce the magnetic phase diagram for H || [001] and T, <
T < T, obtained from high-field magnetisation and magnetostriction mea-
surements [44]. It has been found that the fit to the data is further improved
by the small admixture of a Q,2_,2-type contribution to the scattering tensor,
such that our data is consistent with the previous polarised neutron diffraction

measurements [27], which were only able to detect Qy2_,2 order in this phase.

It has not been possible to perform an experiment to determine the az-
imuthal dependence in the phase between T',; and T_;, due to the exceedingly
narrow temperature range. Below T_; the azimuthal dependence of the scat-
tering is more complicated, and indicates that a more complicated model is
required to describe the quadrupolar order. Excellent fits to the data for
Q = (103) and (104) at T = 5.2 K have been obtained on allowing all the
elements of the scattering tensor to vary freely, but no physical model has
been found which recreates such a complex tensor. The addition of quadru-
pole moments on the uranium hexagonal sites to the ordering model, is unable
to account for the scattering from Q = (104). While a structural distortion
would introduce a complex scattering tensor for Q = (104), the magnitude of
distortion required would lead to the destruction of the crystal, and therefore
this seems an unsuitable solution. Another possible extension of the ordering
model for this phase is the presence of additional multipole moments. Other
measurement techniques have found no evidence of magnetic order. The fits

to the data made allowing a symmetric imaginary tensor, associated with the
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quadrupolar order, and an antisymmetric imaginary tensor, associated with a
magnetic moment, are unable to conclusively prove whether or not magnetic

order may be present.

XRS measurements performed at T = 1.8 K, in the lowest temperature
phase, again reveal a complicated azimuthal dependence to the scattering in-
tensity from both the superlattice reflections. It has been interesting to note
that the least squares fit to the experimental data is significantly improved for
a complex scattering tensor for Q = (103), but that a better fit is obtained
for a real scattering tensor for Q = (104). This could have significant im-
plications, and could be interpreted as being due to quadrupole moments on
the hexagonal sites, or an anti-phase stacking of magnetic moments along the

c-axis.

Our XRS experiment on U(Pd,_.Pt.)3 reveals a transition at Tc ~ 9 K to
short range quadrupolar order with a correlation length of the order of 3 - 4
unit cells, indicating the sensitivity of the system to platinum doping. It will

be necessary to check whether the Pt concentration is 1% or not.

5.5 Further Work

Heat capacity measurements are planned on single crystals in a field to fol-
low the transitions in the basal plane and along the c-axis, enabling a better
understanding of the peak splitting feature seen for the polycrystalline data,

Fig. 5.5.

We hope to remeasure the temperature dependence of the (103) and (104)
reflections over the quadrupolar transition temperatures using the cryomagnet

on ID20, which has a much greater temperature stability. This is important
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to determine at which transition the scattering intensities from each reflection

develop and to reinvestigate the feature at 7* seen in Figure 5.10 (a).

In order to distinguish definitively whether the quadrupolar structure at
T = 7.1 K includes quadrupole moments located on the quasi-cubic sites or
on both the quasi-cubic and hexagonal sites we would like to perform an XRS
experiment to investigate the azimuthal dependence of the scattering from
the (013) reflection. Using the (0k!) reflections could also help to determine
whether the azimuthal dependence of the scattering in the lower temperature
phases is the result of hexagonal site quadrupoles or a crystallographic distor-

tion.

It has been unfortunate that we have not, so far, been able to collect larger
data sets over a wider range of ¥ in the phase T' < T,. The initial technical
problems, which prevented us from extending the data range have been over-
come, and it has only been due to lack of time that we have not returned to
these measurements. It would be very interesting to re-perform these mea-
surements, since fits based on different ordering models providing very similar
results in the data region, give very different results in the unexplored region.
Therefore, this would hopefully enable us to rule out different models for the

ordering in this phase.

Theoretical work is now underway at the Universita di Parma to establish
the effect of the point group symmetry of the uranium in the lower temperature
quadrupolar phases and to develop the associated crystal field model. This
will prove to be particularly interesting since, so far, the multipolar systems
investigated have tended to be high symmetry, and this work will provide
new insight into low symmetry systems. To assist in this process, it will be
important to carry out a full crystallographic investigation of UPd3, which, to

our knowledge, has been surprisingly absent up until this time. We plan to
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submit a proposal to ISIS to use the General Materials (GEM) diffractometer,
to perform diffraction measurements in the different phases, to determine how

the crystal symmetry evolves as a function of temperature.

So far all our experiments have concentrated on the uranium in UPdj3, and
therefore it would be interesting to use the element selectivity of XRS to inves-
tigate any physics specific to the palladium ions. In other 5f compounds it has
been shown that there is interesting behaviour also associated with the tran-
sition metal ions, such as the resonant enhancement observed at the gallium
K-edge from electric dipole transitions in UTGas (T=Ni, Pd and Pt) [110).
The azimuthal dependence of the scattering has been understood in terms of
a model of orbital polarisation of the Ga sites compatible with the symmetry
of the neighbouring U moments. These experiments have demonstrated that
XRS provides information about the induced orbital polarisation on ligand
ions in systems where there is significant valence-band hybridisation between
U 5f and anion 4p states. The U 5f states in UPd3 are well localised, but if
resonant enhancement was observed at the palladium K-edge in UPdj, per-
forming experiments at this energy, rather than at the U AM-edge, would allow
access to a much larger region of reciprocal space and make it possible to per-
form experiments in complex sample environments, such as pressure cells, due
to the much lower attenuation at higher energies. This could provide access

to a whole new wealth of information about UPd;.

Nuclear Magnetic Resonance (NMR) is another technique that directly
probes quadrupolar order, but uranium NMR can only be done using °U, as
233U has no unpaired nucleons and therefore zero nuclear magnetic moment.
235U NMR is notoriously difficult due to the properties of the nuclei: a very
small nuclear gyromagnetic ratio, a large nuclear quadrupole moment, the low
natural abundance (< 1%) and the strong radioactivity. In addition the relax-

ation times are commonly very short due to the strong hyperfine interaction
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with the 5f electrons, which makes the NMR signal detection very difficult us-
ing standard pulsed methods [111]. Quadrupolar order has only been studied
directly using 233U in the solid state in UO; [112]. In order to first determine
whether it will be possible to use U-NMR in UPd; we will need to estimate
the spin-lattice relaxation time 23T;. This can be done indirectly using unlike
spin-spin coupling which causes the T}-modulated 23U spins to contribute to

the spin-echo decay process of the ligand nuclei, i.e. Pd nuclei {111].



Chapter 6

Results II - NpPdj;

In this chapter results of magnetisation, resistivity and heat capacity measure-
ments performed on polycrystalline samples of dhcp NpPd3z at the Actinide

User Lab, Institute for Transuranium Elements, Karlsruhe, are discussed.

6.1 Magnetisation

Magnetisation measurements were carried out for T = 2 — 300 K in a range
of fields up to 7 T on encapsulated samples using a SQUID magnetometer
(Quantum Design MPMS-7), see section 4.2. In low applied fields, H = 0.03
T and 1.1 T, the isofield magnetic susceptibility shows a sharp increase be-
low 35 K to a broad maximum centred at 20 K, as previously reported [50].
However, in addition we observe a shoulder at 10 K [113]. In higher fields:
4 T and 7 T, the form of M/H changes such that the 10 K feature becomes
more pronounced, see Figure 6.1(a). The 30 K and 10 K anomalies could be
attributed to two antiferromagnetic transitions, 7; and T5; these might occur

separately on the locally hexagonal and quasi-cubic sites, similar to the tran-

130
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sitions observed in neodymium [114], or successively on only one of the site
types, as in praseodymium [115]. Another possibility, considering the unusual
form of the higher temperature transition, which was of considerable interest
to Nellis et al. [50], is that it is a quadrupolar phase transition. This would
result in a relatively high quadrupolar temperature, considerably higher than

those in UPd3, but comparable to that in DyB,C,: T = 25 K [116].

The transition at 30 K is seen more clearly in the inverse susceptibility,
see Figure 6.1(b). Above 50 K the inverse susceptibility follows a Curie-Weiss
law, with an effective magnetic moment of 2.85 + 0.05 up per Np atom. This
suggests that Np is trivalent in this compound, since in the Russell-Saunders
coupling scheme the moment value one would expect for a 54 electron config-
uration (S =2, L =6 and J = 4) is 2.68 up, whereas if Np was tetravalent, as
U is in UPdj3, the expected moment would be 3.62 up. Within the intermedi-
ate coupling scheme, which given the high atomic mass of the neptunium may
be more appropriate, the expected moment for trivalent Np is 2.75 up/Np
ion, and tetravalent Np is 3.68 up/Np ion [117], which again supports our

conclusion that Np is trivalent in NpPd;.

Figure 6.2 shows the isothermal magnetization, measured after cooling the
sample in zero field. Below 30 K it increases rapidly in low fields before in-
creasing more slowly and linearly in higher fields. The zoomed in section of
the figure shows that, on reducing the field, hysteresis is observed below 0.1
T, with a maximum residual ferromagnetic moment of 0.06 xp/Np atom at
T = 15 K. Below the 10 K transition, hysteresis is observed below 0.5 T but
with a reduced residual ferromagnetic moment. Above 32 K, the isothermal
magnetization increases linearly as a function of field over the entire range
H=0-7T. At 7T the maximum moment was 0.3 up per Np atom. The
absence of saturation in 7 T and the low remanent magnetisation, if an in-

trinsic property, may indicate that the structure below 30 K contains a small
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ferrimagnetic moment. An alternative explanation is the presence of some
ferromagnetic impurity phase, but the isofield measurements appear to rule
out either carbides or nitrides, commonly occurring ferromagnetic impurities
in other systems. The neptunium palladium binary phase diagram has not
been extensively studied, making it difficult to identify other compounds which
may have been synthesized and their magnetic properties. Only 2-3 % of an
impurity containing Np3* would provide a residual ferromagnetic moment of
0.06 up/Np atom, and such a small percentage impurity would be difficult to
resolve from the X-ray powder diffraction data (Figure 4.1). In support for
the possibility that the hysteresis is an intrinsic property, is the fact that the

onset of hysteresis coincides with 7.

However, magnetisation measurements for H = 0.03 T, shown in Figure 6.3,
reveal a discrepancy between those made in zero field cooling and in-field
cooling at T' = 100 K. The two measurements deviate below this temperature
until they are again perfectly superposed for 7, < T' < T K. Closer inspection
of the zero field cooled data reveals that there is a change in the slope of the
data at the point where the split from the in field cooled data occurs. This
difference in behaviour between zero field and in-field cooled data might be
due to an impurity phase, or possibly an instrumentation problem. It requires
further investigation, and ideally a repeat of the measurements. However,
neutron diffraction studies should be able to identify whether it is the result

of an intrinsic property of NpPd3.

6.2 Electrical Resistivity

Electrical resistivity measurements were carried out using a Quantum Design

PPMS-9 (section 4.3) for 7= 2—300 K in zero field and 9 T. In NpPd3 in zero
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Figure 6.3: (a) M/H(T) and (b) H/M(T) in NpPd3 at H = 0.03 T for zero field cooling
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two transitions at 10 and 30 K can be seen clearly. In 9 T the upper transition is smoothed

away, while the lower transition is shifted down in temperature.
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model gives a residual resistivity pg &= 4 2 em, and hence a residual resistivity ratio of 85,

indicating the high quality of the sample.



6.2. Electrical Resistivity 138

field the data presented in Figure 6.4(a) shows two kinks at T = 30 K and 10
K corresponding to the transitions 77 and 75 seen in the magnetisation data.
When a 9 T field is applied, Figure 6.4(b), the feature associated with T is
smoothed away, while that of 7, becomes more pronounced and shifts down

in temperature, consistent with an antiferromagnetic transition.

Above 30 K the resistivity decreases with increasing temperature, see Fig-

ures 6.4(a) and 6.5(a), following a Kondo-like behaviour:
p=po+cT — psIn(T). (6.1)

The coherence temperature coincides with the T3 transition seen in the M/H
data. The onset of coherence is very sharp, and at lower temperatures the

resistivity drops very rapidly.

In most materials scattering increases with temperature and therefore so
too does the resistivity; however, in Kondo systems the scattering increases
logarithmically as the temperature is lowered. This scattering mechanism in-
volves the scattering of electrons passing a localised magnetic moment on an
impurity leading to a spin flip in both the electron and the impurity [118].
There is an antiferromagnetic interaction between the electron and the im-
purity which increases with decreasing temperature. As the temperature is
lowered the conduction electrons form a cloud of opposite spin-polarisation
around the local moment resulting in a quasi-bound state and the screening
of the local moment [119]. The strong interaction between the conduction
electrons and the moment leads to a strong enhancement of the electron scat-
tering cross-section, which leads to the term proportional to J1In7T in the
resistivity, where J < 0 is the exchange coupling between the moment and
conduction electrons. However, when a temperature ~ Tk is reached, a bound
singlet state is formed [51). The crossover from incoherent inelastic scattering

of conduction electrons from partially screened moments to coherent elastic
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electron-electron scattering is commonly referred to as the onset of Kondo lat-
tice coherence. At high temperatures a Kondo lattice behaves as an ensemble
of non-interacting Kondo impurities. At the lowest temperatures, the Kondo

lattice can be described as a periodic Fermi liquid [120].

Kondo behaviour was initially observed in transition metal alloys where
there is a resistivity minimum at low temperatures, but in heavy fermion sys-
tems the behaviour is commonly observed in the form of a maximum in the
resistivity at a temperature Ty which generally lies below 40 K. For example,
the resistivity of NpRu,Si; is similar to that of NpPd3 displaying a logarithmic
variation with T above the ordering temperature, 27.5 K, and a precipitous
drop below T)s understood as a huge magnetic contribution of an energy gap
antiferromagnet [121]. The value of T); is a function of the Kondo tempera-
ture T and the mean RKKY (Ruderman-Kittel-Kasuya-Yoshida) interaction
strength between the magnetic ions [122]. The presence of a maximum in the
resistivity data does not imply that magnetic ordering actually occurs. Instead
Ty marks the temperature below which the RKKY interactions between the
magnetic ions start to convert single-ion Kondo behaviour into correlated-ion

behaviour.

The low temperature resistivity below 10 K does not vary as a simple
Fermi Liquid p(T') o T2, but instead behaves as an antiferromagnet with a 17

K energy gap [123]:
o(T) = po + AT? + bT(1 + 2T /A)exp(—A/T), (6.2)

see Figure 6.5(b). The residual resistivity ratio given by p(T = 0K)/p(T =
300K) is 85, which is high for a neptunium bulk sample indicating the quality

of the sample.
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Figure 6.6: Cp/T vs T of NpPd3; (W), showing peak features at 7' = 10 K and 7" = 30 K,
and of ThPdj (o).

6.3 Heat Capacity

Heat capacity measurements were performed also using the PPMS-9 for T =
2 — 300 K in a range of applied magnetic fields. The NpPd; zero field data
reveal two clear lambda anomalies at 7" = 10 K and 30 K, see Figure 6.6.

Making a fit to the data for 2 < T < 5 K using
Cp/T =T + BT?, (6.3)

gives the electronic heat capacity, v = 78 £4 mJK ?mol !, however the value
obtained for [ determines the Debye Temperature to be 61 K. which is too
low. This makes the estimate for v less reliable. This is a very small data
range over which to make a fit to determine v and /3, but a larger range of
temperature leads to even smaller values for the Debye Temperature, since
there is considerable curvature due to the lambda feature associated with 75.
Kadowaki and Woods [124] observed that the ratio of A/+*, where A is the

coefficient of the quadratic term in the low temperature resistivity, has a com-



6.3. Heat Capacity 141

10°

—

R

10° 10*? 10" 10° 10’
v (J / mol K?)

Figure 6.7: Kadowaki-Woods plot of A (where p = py + AT?) versus 4 (electronic heat
capacity coefficient) for a number of materials including NpPd3. after Li et al. {125]. The
three lines are lines of constant Kadowaki-Woods ratio. A/42. for values of 0.5. 5 and 50
ag. where ag = 1 x 107 uQcm(mol.K/mJ)2. The first line at ap = 0.5 is characteristic of
heavy fermion materials: the second line at 5ap. on which NpPd3 lies. is typically found in
systems with magnetic frustration or close to a Mott insulator: the third line at 50aq is for

the largest ratio found so far in Nag 7C00,.

mon value of the order of 1.0 x 1073 uQ2e¢m(mol.K/mJ)? in numerous heavy
fermion materials, which is at least an order of magnitude greater than that
for common d-metals. In NpPd3, A/y2 = 5.2+ 0.8 x 10~° uQcm(mol.K/mJ)?,
which when included on a Kadowaki-Woods plot, see Figure 6.7 after Li et
al. [125] and references therein, lies on the 5a4 line with La, 7Srp 3CuO, [126],
V20; [127] and Ca, Sro2RuO, [128], which all lie close to a Mott transition

and LiV,04 [129], which exhibits geometric magnetic frustration.

Figure 6.8 does not show the magnetic entropy, from which quantitative
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conclusions can be drawn regarding the crystal field levels. Instead it shows

T
[(G )
2 T nNppds T Thpds

where ThPd3; has been used as a phonon blank, but the electronic contribution
has not been removed. This is due to the difficulties in estimating . Above
T = 100 K the heat capacity data is less good with larger error bars, and if the
thorium data and v = 78 mJ/K2mol are subtracted from the neptunium data
the resultant difference is negative. As previously explained there is reason
to doubt such a value for gamma. Regardless of this, it is still possible to
draw qualtitative conclusions about the crystal field levels. Figure 6.8 shows
the calculated entropy of NpPd3 to be almost double that of UPd3 below 40
K, suggesting occupation of a larger number of the crystal field levels. Since
magnetisation measurements have indicated that neptunium is trivalent, this
means that J = 4, as for uranium in UPdj3, so that there will also be nine
crystal field levels on the quasi-cubic and hexagonal sites. One possibility is
that both site types have doublet ground states, which would lead to a ground
state entropy of RIn 2, as opposed to %R In 2 for UPd3, before the degeneracy is
raised due to the mixing of levels caused by the quadrupole operators. Another
cause of the increased entropy could be that the energy gaps to the first excited
states on the cubic and hexagonal sites are low enough that both are thermally
populated at 40 K, unlike in UPd3; where only the cubic excited state is partially
occupied.

Inspection of Figure 6.9(a) reveals that in increasing applied magnetic fields
the anomaly associated with T; shifts down in temperature, in agreement with
the behaviour expected from an antiferromagnetic transition. The feature
also decreases in size until H = 7 T after which it sharpens and increases in
magnitude, behaviour which is as yet not explained. The application of a 1
T field broadens the 7; transition feature and shifts it up in temperature by

2 K, while in fields greater than 4 T the feature has been smoothed away.
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Figure 6.8: A comparison of the entropy of NpPd3 ([J) and UPdj3 (e). suggesting the oc-
cupation of a greater number of crystal field levels at low temperatures in NpPds than

UPds.

These are not the characteristics of an antiferromagnetic phase transition,
however this could be consistent with a quadrupolar transition. The effect of
the application of a magnetic field on the transitions is also seen clearly in the

calculated entropy as shown in Figure 6.9(b).

6.4 Conclusions

In conclusion, magnetisation, electrical resistivity and heat capacity measure-
ments reveal two transitions in dhep NpPdjz at 75, = 10 K and 7, = 30 K. The
in-field behaviour of the features associated with the 75 transition in different
measurements indicates that it is most like an antiferromagnetic transition.
The T; transition is that which was observed in the previous experiments by
Nellis et al., [50] but unattributed. It has proved more difficult using the cur-

rent polycrystalline bulk property experimental data to assign the nature of
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Figure 6.9: (a) Application of a magnetic field to NpPdj3 leads to the 75 transition feature in
Cp/T moving down in temperature, which is consistent with an antiferromagnetic transition,
with an abrupt increase in peak height for H > 7 T. The T; feature broadens and moves
up in temperature in low fields before being smoothed away for H > 4 T, behaviour more
commonly associated with a quadrupolar transition. (b) The field-effect on the transitions

is also seen clearly in the calculated entropy.
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this transition. Initially, based on the magnetisation data, 7} was also assessed
as being an antiferromagnetic transition [113]; however, the in field behaviour
seen in resistivity and heat capacity results is inconsistent with such a con-
clusion. The smoothing away of the features with increasing field is more

reminiscent of a quadrupolar transition.

Isothermal magnetisation measurements revealed hysteresis below T}, while
saturation was absent at 7 T. Based on the results we have so far it is not possi-
ble to determine whether this is an intrinsic property indicating a ferrimagnetic

moment or if it is due to some ferromagnetic impurity.

Interestingly the T) transition is at Ty in the resistivity data, which shows
high temperature Kondo behaviour. The low temperature resistivity data fits
the model for an antiferromagnet with a spin gap, consistent with 75 being a

phase transition to an antiferromagnetic state.

By fitting the low temperature data an estimate of 7844 mJ/K?mol for the
Sommerfeld coefficient has been determined. When this is taken in conjunction
with the value of the T? coefficient in the fit to the low temperature resistivity,
a Kadowaki-Woods ratio of 5.2 + 0.8 x 1073 uQ2cm(mol.K/mJ)? is obtained,

which is over an order of magnitude greater than that for standard d—metals.

Our measurements indicate that NpPdj is a very interesting compound,

which will benefit greatly from further study.

6.5 Further Work

There are clearly many more experiments to be performed on NpPd;. Once the
glove box containing the new Czochralski puller at ITU has been commissioned,

one of the first samples that they will attempt to grow will be single crystal
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NpPd3;, which as far as we are aware has never been attempted before. It is
hoped that, given it is isostructural to UPds, it should not prove to difficult to
produce good quality samples. We will then be able to measure the magnetic
and transport bulk properties of single crystals, which we hope will further

elucidate our current data sets.

Neutron experiments will be of particular interest, but require large sam-
ple quantities, approximately 1 — 5 g, which means that we are limited by
the time taken to produce samples, but also in the long term by the fact that
neptunium supplies are finite. It is planned to perform a neutron diffraction
experiment in different fields at HMI on the E2 diffractometer to try and de-
termine the nature of the transitions at 77 and 7,. The previous diffraction
experiment [50] observed no additional peaks at 4 K, which seems to rule out
the possibility of an antiferromagnetic phase, since this would lead to magnetic
Bragg peaks due to the increase in size of the unit cell. This led to discus-
sions of some type of short range order, possibly in clusters. However, the
experiment was performed on a very small quantity of polycrystalline NpPd3
with poor instrumental flux and resolution. With the immense improvements
in neutron sources and instrumentation that have taken place over the past
thirty years we are confident that new diffraction data below 10 K will provide
information about the ordering vector of the antiferromagnetic phase. Mea-
surements in the phase between the two transitions at 7 = 10 K and 30 K
will be particularly interesting. The absence of magnetic Bragg peaks would
point to a non-magnetic origin for the transition at 30 K. Neutrons do not
couple directly to quadrupole moments, but instead we may observe a lattice
modulation vector associated with an induced lattice distortion as is seen in

UPd3.

A proposal to perform polarised neutron diffraction on D3 at ILL to follow

the susceptibilities of the locally hexagonal and quasi-cubic sites individually
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has also been accepted. This will allow us to identify whether magnetic mo-

ments are developing on the site-types successively or simultaneously.

Inelastic Neutron Scattering (INS) experiments will provide a great deal
of information about NpPd;. We have had a proposal accepted on the HET
spectrometer at ISIS to investigate NpPd3, and it will also form part of the
commissioning of the new MERLIN spectrometer. We will measure the crystal
field excitations, giving us information about the valence state of the neptu-
nium to compare with magnetisation data, and energy levels which can be used
to calculate the heat capacity to compare with our data. The presence of the
Kondo-type behaviour seen in the high temperature resistivity measurements
suggest that NpPd3 may not be as fully localised as UPd3, which we can look
for through the effect it would have on the crystalline field. A fit to the low
temperature resistivity data indicates the presence of a spin gap A ~ 17 K,

which will also be investigated using INS.

If T} = 30 K is determined to be a transition to a quadrupolar phase, even-
tually we will perform an XRS experiment to look for “forbidden” superlattice
reflections due to the order and to determine the azimuthal dependence of the

scattering.



Chapter 7

Results ITI - (U,Np)Pds

Numerous studies of UPd3 indicate that it undergoes four phase transitions
at To =78 K, T,; =69 K, T_, =6.7 K and T, = 4.4 K, which have been
attributed to a succession of antiferroquadrupolar orderings of the 5f2 localised
U electrons on the quasi-cubic sites (see section 2.3). Magnetic susceptibility
measurements on pure dhcp NpPdj; indicate that it undergoes two magnetic
phase transitions (see section 6.1). Since dhcp NpPd3z and dhep UPd3 have al-
most identical lattice parameters and the same crystal structure we have antic-
ipated complete solid solubility from UPd3 to NpPdj allowing us to investigate
the perturbation of the quadrupolar structures of UPd3 by substitution of Np
on some U sites. In this chapter the results for different measurements on the
mixed actinide compounds are detailed, which for ease and clarity will often
be identified by the percentage neptunium doping, such that 50%Np refers to
(UosNpo.s)Pds. The compositions investigated are 50%, 5%, 2% and 1% Np,
with particular attention being focussed on (Ug ¢5Npg.05)Pd3.

148
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7.1 Magnetisation

7.1.1 (U0.5Np0,5)Pd3

The 50%Np M/H data qualitatively resembles that for pure NpPdj shifted
down in temperature, such that there is a sharp rise below 15 K to a broad
maximum centred at 5 K, see Figure 7.1(a). In the H/M data, shown in
Figure 7.1(b), the transition is seen clearly at 15 K, while above 100 K the
data is linear, exhibiting Curie-Weiss behaviour with an effective paramagnetic
moment of 2.9761+0.003 up per actinide ion. Hysteresis is observed in magneti-
sation measurements as a function of applied magnetic field while saturation
is absent, Figure 7.1(c). For T < 15 K the field below which hysteresis is
observed increases with decreasing temperature to 1 T at 2 K, Figure 7.1(d).
The maximum residual ferromagnetic moment is 0.05 up/An. Again this
leaves questions about the origin of this behaviour, whether it is an intrinsic
ferrimagnetic effect or if it is due to a very small quantity of an impurity phase

with a large ferromagnetic moment.

7.1.2 (UgosNpo.os)Pd;

The 5%Np magnetic measurements show no clear evidence of a magnetic tran-
sition. M/H data may show a slight upturn at the lowest temperatures, Fig-
ure 7.2(a), however, this could be an experimental artifact associated with
the cryogenics. Figure 7.2(b) shows that above 100 K H/M may follow a
modified Curie-Weiss Law, possibly indicative of a singlet ground state with
a large energy gap to the first excited state, giving an effective paramagnetic
of 3.06 £+ 0.02 up per actinide ion. There is no evidence of hysteresis in the

isothermal magnetisation data.
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Figure 7.1: (a) M/H(T) in (Ug5Npo.5)Pds at H = 1.1 (O) and 4 T (e). showing a transition
at T ~ 12 K. (b) Curie-Weiss fit to H/M(T) for H = 1.1 T giving an effective moment of
2.976 £ 0.003 pup/An. (¢) M(H) in (UysNpos)Pds up to 7 T at a range of temperatures,
indicating that a 7 T field is insufficient for saturation; (d) the same data plotted up to 1
T showing hysteresis below 15 K, with a maximum residual ferromagnetic moment of 0.05

up/An atom.
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the Curie-Weiss fit above 150 K shown as a black line.
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7.1.3 (U,_.Np,)Pd3, z = 0.02, 0.01

A very similar slight upturn in M/H at ~ 5 K is also seen for the 2%Np and
1%Np samples, Figures 7.2(c) and 7.2(e), while fitting a Curie-Weiss law to
H/M for T > 100 K and T > 150 K gives effective paramagnetic moments
of 3.07 £ 0.01 and 3.16 + 0.01 up per actinide ion respectively, Figures 7.2(d)

and 7.2(f). No hysteresis or saturation is observed in either compound.

7.1.4 Summary

Plotting the M/H data for all the different samples: NpPd3, 50%Np, 5%Np,
2%Np and 1%Np, as a function of temperature on a logarithmic plot, Fig-
ure 7.3, shows that the 5%Np data follows a near negative logarithmic trend.
This can be characteristic of non-Fermi Liquid behaviour. A linear fit to the
5%Np data plotted on a log plot gives a fit with R = 0.997, Figure 7.4. It is
also interesting to note that the value of M/H at T = 2 K is a minimum for
z = 0.05, with the value increasing as a function of £ moving away from this
composition towards both the more dilute and more concentrated regions of

the phase diagram.

Figure 7.5 shows how the Curie-Weiss temperature varies as a function of
the neptunium concentration in (U,_,Np,)Pds. The data point for x = 0 was
obtained from single crystal data [26] using

2 1
opoly = gea + 506, (71)

where 6; is the Curie-Weiss temperature determined from measurements with
the applied field direction parallel to the i-axis. The sharp change in 6 with
low neptunium doping is unusual. The behaviour may be associated with the

dramatic change in the lattice parameters, Figure 4.2. One possibility is that
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Figure 7.3: M/H in pure NpPd3; and mixed (UNp)Pd3 at H = 1.1 T plotted vs logT.

(Up.95Npo.os)Pds shows a near negative log trend, possibly indicative of a non-Fermi Liquid.
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Figure 7.4: A linear fit to M/H in (Upg5Npo.o5)Pds at H = 1.1 T plotted vs log T'.

the addition of a small quantity of Np leads to a sharp change in the cohesive

energy, and hence the lattice constants, and the exchange interaction may be

very sensitive to the lattice spacing due to changing bands near the Fermi
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level.

7.2 Electrical Resistivity

Measurements were made using a Quantum Design PPMS in temperatures up

to 300 K and in a range of fields up to 9 T, as described in section 4.3.

7.2.1 (U0_5Np0_5)Pd3

In the 50%Np sample the high temperature resistivity has a negative gradient,
as seen in NpPdj (section 6.2). However the onset of coherence is not so
sharp, varying over a broader range of temperatures, and is not associated
with a transition temperature deduced from the magnetic measurements, see
Figure 7.6(a). A kink is observed in the zero field resistivity at 7 = 12 K,
which is smoothed away in a 9 T field, Figure 7.6(b).
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Figure 7.6: (a) p(T) in (UpsNpos)Pdz at H =0 T for T' = 2 — 300 K, showing a smooth
change from a positive to a negative gradient at 7' ~ 50 K. (b) p(7') for H = 0 (W) and
9 (o) T. In zero field a transition can be seen at 12 K. In 9 T the transition is smoothed
away. (¢) A Kondo-type fit (black line) to p(7') in (UgsNpo.s)Pds at H =0T for 7" > 100
K. (d) Below 5 K the resistivity varies as 72, in very good agreement (R = 0.99965) with

Fermi-Liquid Theory.
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A fit to the high temperature resistivity above 100 K, Figure 7.6(c), for
p=po+cl —psInT, (7.2)

is in good agreement with the data indicating Kondo-type behaviour. However,
in comparison to the data for NpPdj, the term linear in 7" dominates the
logarithmic term. A good linear fit was also made to the data, however, the
value of R? was slightly better for the Kondo fit, if only in the fourth decimal
place (0.99937 vs. 0.99946). The low temperature resistivity varies as 77,
Figure 7.6(d), with a residual resistivity of 175 uf2cm. This is some two orders
of magnitude larger than in pure NpPdj, due to the disorder introduced with

the uranium atoms.

7.2.2 (UpgsNpoos)Pds

The electrical resistivity of the 5%Np sample is markedly different from the
50% and 100%Np samples showing no Kondo-like behaviour at high tempera-
tures, Figure 7.7(a). The form of the resistivity as a function of temperature
is much more similar to that of pure UPd3, showing a shoulder in the data at
T ~ 25 K. This feature is associated with the thermal occupation of an excited
crystal field level leading to an additional scattering channel. Application of a

9 T field has negligible effect on the resistivity.

Initial measurements made down to T' = 2 K using the PPMS showed that
at the lowest temperatures the resistivity trend was linear, see Figure 7.7(b).
Such anomalous behaviour can be indicative of a non-Fermi liquid state or
a mixed valence state, or can be attributed to the disruption of the periodic
Bloch potential by the doping leading to a change in the scattering mechanism
dictating the temperature dependence of the resistivity. To further investi-

gate the low temperature resistivity the measurements were repeated using
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Figure 7.7: (a) p(T) in (Ug.95Npo.o5)Pds at H = 0 T for T' = 2 — 300 K, showing a standard
metallic behaviour at high temperatures, with the resistivity increasing with increasing
temperature. (b) For 7' = 2 — 10 K the temperature dependence of the resistivity does not

appear to be that of a standard Fermi Liquid.
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Figure 7.8: The maximum in dp/dT as a function of temperature in (Up.95Npg.o5)Pd3

indicating a change in regime.

the same encapsulated sample on a cryopumped system capable of attaining

temperatures less than 1.5 K, see section 4.3.

The first derivative of the resistivity with respect to temperature was cal-
culated and plotted, see Figure 7.8, to look for changes in the temperature
dependence. A clear broad maximum centered on T = 4 K indicates that
there is a change in the scattering regime. Below 1.6 K a fit made to the data
using

p = po+ AT, (7.3)
gave a value of 2.11£0.01 for the temperature exponent and A = 0.418+0.003
uQlemK =2, see Figure 7.9, while for temperatures between 1.6 K and 4 K
the exponent is 1.62 + 0.01. This indicates that at the lowest temperatures

(Uo.95Npo.05)Pd3 is a Fermi liquid.

The resistivity of a 2%Np sample has not been measured, since the sample

was used to make the 1%Np sample, and this sample has yet to be measured
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Figure 7.9: p(T) in (Ug.95Npg.os)Pds at H =0T for T = 0.4-1.75 K. A fit to p = pg+ AT*

for T < 1.6 K indicates that this composition in a Fermi liquid.

due to problems with encapsulation of the sample

7.3 Heat Capacity

7.3.1 (U0_5Np0,5)Pd3

Heat capacity measurements of (UysNpgs)Pds and ThPd3 in zero field (Fig-
ure 7.10(a)) show that below 100 K the heat capacity is dominated by magnetic
contributions. A sharp cusp in the 50%Np data is seen at 12 K, correspond-
ing to the transition seen in the magnetisation and resistivity data. However,
there is also a broad peak centred on 5 K in C/T, a temperature at which
no features were seen in the other measurements. The origin of this feature is
unknown. One suggestion is that it is due to the neptunium moments order-

ing first leading to a rapid increase in the molecular field and therefore a slow
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Figure 7.10: (a) Cp/T in (Uy5Npo.5)Pd3 (e) and ThPds () at H =0T for T = 2 — 200
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application of field leads to the cusp being smoothed away (H = 0.1 T(O), H =2 T (A),
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Figure 7.11: The broad peak in Cp/T centered on T' = 5 K in (U 5Npg 5)Pd3. means that it
is not possible to fit the data using Cp/T = v+ 3T2, but by eye 150 < v < 250 mJ/K?mol.

ordering of the moments on the uranium sites. In very low applied fields no
change is seen, but in fields of 2 T and above the cusp is removed while the

broad peak becomes narrower, see Figure 7.10(b).

The strong curvature at low temperatures due to the broad peak, seen in
Figure 7.11, makes a fit to Cp/T = v+ BT? difficult. Using the data measured
down to T = 2 K, the electronic heat capacity can be estimated to be between
150 and 250 mJ/K?mol, which gives a Kadowaki-Woods ratio of 5.24+2.8 x 10~°
pQem(mol. K/mJ)?, suggesting that (UgsNpgs)Pds is a heavy fermion.

Using the ThPd3 data as an estimate for the phonons in the 50%Np sample,
an estimate for the magnetic entropy was calculated. However, the electronic
heat capacity was not subtracted before the integration due to the difficulties
in obtaining an estimate for v. In addition it is not possible to extrapolate
the data below 2 K with any degree of accuracy, and so the actual quantity

plotted in Figure 7.15 is S(T) — S(T = 2K).



7.3. Heat Capacity 162

7.3.2 (UggsNpo.os)Pd3

Initially the heat capacity of (UggsNpo.os)Pds was measured for T = 2 — 300
K in applied magnetic fields of 0, 5 and 9 T. The broad peak feature below 5
K leads to significant curvature and a high value of Cp/T =~ 400 mJ/K?mol at
T = 2 K [130]. Extrapolating back to T = 0 K from this data set would result
in a highly elevated value for the Sommerfeld coefficient implying that 5%Np
is a heavy fermion system. Two possible explanations for this are: 1) that this
composition is in the vicinity of a quantum critical point (QCP) arising from
the suppression of the quadrupolar transitions to zero temperature, or 2) that

there are additional lower temperature transitions.

To investigate these possibilities the heat capacity was remeasured using
a 3He insert in the PPMS for T = 0.6 — 20 K (base temperature could not
be obtained due to self-heating effects), see Figure 7.12 for the low tempera-
ture data. The new measurements have revealed several additional features.
There is a shoulder in the H = 0 T data at T = 8 K, which is smoothed
away with increasing field strength. The broad peak is still clear at 7' ~ 3.5
K but there may be evidence of another peak centered on T ~ 2.5 K ex-
plaining the feature on the low temperature side of the main peak. There is
a further feature at 7' ~ 1.5 K. The two lowest temperature features appear
to stay at the same temperatures while being reduced in absolute value with
increasing field, while the main peak centre moves to higher temperatures with
increasing applied magnetic field. Such behaviour is inconsistent with an anti-
ferromagnetic transition, and magnetisation measurements (section 7.1.2) rule
out a ferromagnetic transition. Therefore this feature may be associated with

a quadrupolar transition.

Even for 0.6 < T < 2 K Cp/T is linear as a function of temperature,

such that one cannot use the y-intercept of a plot of Cp/T vs T? to estimate
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Figure 7.12: Cp/T in (UpgsNpo.os)Pds for H =0T (A), H=5T (B) and H =9 T (o)
and in ThPd; (v).

the Sommerfeld coefficient. Assuming there are no further low temperature
transitions, using the low temperature trend in Cp/T gives an estimate of
v = 125 + 25 mJ/K?mol, which using the value of the quadratic temperature
coefficient of the resistivity (section 7.2.2) gives a Kadowaki-Woods ratio of
2.7+ 1.1 x 107 pQem.(mol.K/mJ)?, indicating that the compound may also

be a heavy fermion.

The low temperature form of the heat capacity means that it is very difficult
to try extrapolate back to zero temperature, so that only S(7") — S(T = 0.5K)
can be calculated, however, S(T')—S(T = 2K) is plotted in Figure 7.15 so as to
be compared with the compounds for which lower temperature measurements

have not yet been made.
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Figure 7.13: Cp/T in (UpgsNpoo2)Pdz for H=0T (0). H=6T (¢) and H =9 T (4),
and in ThPd3 (V).

7.3.3  (UpgsNpg2)Pd3

The heat capacity of (UggsNpoo2)Pds, measured in applied magnetic fields of
H = 0,6 and 9 T, is shown in Figure 7.13. In zero field Cp/T increases rapidly
to a peak at T = 4.2 K and then decreases to a shoulder at 7 K [130]. These
features are similar to those observed in polycrystalline UPd; measurements
(section 5.1), although the maximum value for Cp/T in (UggsNpg.g2)Pd; is
approximately half that in pure UPd3, and considerably less sharp. The zero

field data may also show evidence of a shoulder in the data at around 3 K.

When a magnetic field is applied, the peak is observed to move up in tem-
perature to 5.5 K in / = 9 T. In addition the shoulder feature around 7
K becomes more pronounced as well as shifting up in temperature slightly.
The positive shift in temperature with field indicates that the transitions are

not antiferromagnetic in origin, and since no magnetic hysteresis has been
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observed in this compound (section 7.1.3) these transitions cannot be ferro-
magnetic. Hence, given the resemblance to the UPd; data, we believe that

these transitions are to quadrupolar phases.

The apparent bulge in the H = 0 T data at 3 K, means that in this
compound, as for the others with higher Np concentrations, it is difficult to
estimate the electronic heat capacity, and to extrapolate the magnetic contri-
bution below T" = 2 K. Therefore, S(T") — S(T = 2K) is plotted in Figure 7.15.
Since we have not measured the resistivity of the 2% Np sample it is not

possible to evaluate the Kadowaki-Woods ratio.

7.3.4 (Uo.gngg.m)Pdg

The heat capacity of (U g9Npg.01)Pds was measured as a function of tempera-
ture for H =0, 5 and 9 T. As one might expect, the form of Cp/T, as shown in
Figure 7.14, bears a strong resemblance to that of pure UPdj, see section 5.1
and Figure 5.1 b). There is a sharp lambda transition at T ~ 6 K, which is
very similar to that associated with T_; in UPd3, and which moves to higher
temperatures with increasing applied field. The “Ty” feature at 7.3 K in zero
field, shifts up in temperature and becomes more prominent with increasing
field. The “T,” shoulder present at 4 K in zero field is smoothed away for
H>5T.

Measurements also reveal a concave feature at T~ 2 K in all fields. Possi-
bly a similar smaller feature is observed in the addenda measurements, where
the heat capacity of the sample holder without the sample is measured. How-
ever, the addenda is only 10% of the total heat capacity at this temperature,
and so is unlikely to be responsible for the kink in the sample data. It is pos-

sible that the feature could be attributed to another lower temperature tran-
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Figure 7.14: Cp/T in (Up.goNpg.o1)Pdz for H=0T (O), H=5T (e) and H =9 T (A). and
in ThPd3 (¥). The general shape is very reminiscent of that for pure UPd3, see Figure 5.1
b). The arrows show how the features associated with transitions evolve as a function of
the applied field. The three higher temperature features could be associated with Ty, 7"
and T5 using the nomenclature for UPd3. The feature labeled with a question marked arrow

may not be due to an intrinsic property of the system.



7.3. Heat Capacity 167

sition, but without further different measurements such a suggestion needs to
be treated with care. Another possibility is that the feature is not an intrinsic
property of the system, but instead due to some “bug” in the experimental
apparatus. This is not a standard problem encountered when using a 3He
insert in a PPMS and cannot be easily assigned to a particular part of the
measurements. The kink also bears some similarities to a feature in the 5%
Np data at the same temperature. Looking at Figure 7.12 the form of Cp/T
in zero field below 3 K could either be assigned to two peaks at T' = 1.5 and
2.5 K, which have coalesced, or there is a kink in the data at 2 K. Either the
same fault is present in both data sets, or this is a common intrinsic feature.
Until further different low temperature measurements have been performed

the origin of the kink is unknown.

Cp/T for T < 2 K varies quadratically with temperature, such that making
a fit to the data gives v = 26.0 + 0.5 mJ/K?mol. However the curvature is
large giving an unrealistically low value for the Debye Temperature, which
leads us to be less reliant on the estimate for the electronic heat capacity. It is
simple to extrapolate the data back to 7" = 0 K to calculate S(T), but for the
reason given above this may not be a reliable estimate for the heat capacity.
In addition, since for most of the other compounds it is not easy to extrapolate
to T = 0 K, for comparison purposes only S(T) — S(T = 2K) is plotted in
Figure 7.15.

7.3.5 Entropy summary

In all cases the heat capacity of ThPd; has been subtracted from each data
set to remove the phonon contribution. To obtain the magnetic entropy the
electronic heat capacity needs to also be removed. However, in several cases,

most notably for (UgsNpo.s)Pds, it has not been possible to determine v accu-
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Figure 7.15: a) The calculated entropy of (U;_,.Np,)Pdj for z = 0, 0.01, 0.02, 0.05, 0.5 and
1.0. showing that at 7" = 40 K the 50% Np entropy lies almost exactly half way between
that of UPd3s and NpPds. b) A low temperature zoom in of the same plot showing how

dilute Np concentrations smooth the UPd3g 7 ; transition.
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rately and only estimates with large error bars can be obtained. Figures 7.15

a) and b) show
/ ’ (§£ _Ce ) dT (7.4)
2 \ T (uNp)pds T ThPds ' '

since in most cases the entropy was only measured down to 2 K, and quite
often the form of Cp/T makes it very difficult to extrapolate to lower temper-
atures. That - has not been subtracted means that the quantity plotted is
an overestimate for the magnetic entropy, which would need to be taken into

account when making comparisons with different crystal field level schemes.

In the mixed systems, transitions are less clear than in UPd; and NpPd;.
The 1% Np sample shows a very similar form to UPd; as would be expected,
with the “T_;” still evident at a lower temperature, but for greater Np con-
centrations the cusp feature is no longer evident, see Figure 7.15 b). For the
50% Np compound the entropy at 40 K is almost exactly half way between the
values for UPd3 and NpPdj;.

7.4 Conclusions

The results relating to all the different measurements performed on polycrys-
talline samples of (U;_.Np,)Pds can be summarised in the phase diagram in
Figure 7.16. In the dilute Np region of the phase diagram quadrupolar order
is observed. The dominant feature in the heat capacity of UPdj is the lambda
anomaly at 7_,, and so the evolution of this feature is the easiest to follow
with increasing Np doping. The heat capacity of 1% Np is very similar to that
of pure UPd3, while that for 2% Np also has common features, but by 5% Np
doping there are significant differences in the form. The “T_,” feature moves
to lower temperatures as r is increased to 0.05, suggesting the possibility that

at some critical doping concentration this transition will be suppressed to zero
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Figure 7.16: Temperature T versus Neptunium concentration = phase diagram for
(Uy-2Np,)Pds obtained from bulk property measurements. Points marked with “?” are
from features in the heat capacity data, which either have yet to be assigned to a transition,

or are considered dubious. AFQ: antiferroquadrupolar, AFM: antiferromagnet.

temperature leading to a quantum critical point of quadrupolar origin.

Proximity to a quantum critical point at z = 0.05 could be consistent with
the apparent heavy fermion and possible non-Fermi liquid behaviours at this
composition observed in the bulk thermodynamic measurements. It would be
very interesting to have discovered a QCP associated with the suppression of
quadrupolar order. So far, as far as the author is aware, there have been no
theoretical models developed for such an occurrence, but we see no reason why
this system should not present quantum criticality as the doping destroys the

quadrupolar order.
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7.5 Further Work

There is much further work required to be done to try and establish or exclude
the existence of a quantum critical point in this system. The bulk measure-
ments of the x = 0.05 polycrystalline sample, while not inconsistent with
proximity to a critical point, are not strong enough evidence as to prove the
idea incontrovertible. Clearly measurements are required at additional compo-
sitions for 0.05 < x < 0.5. We also plan to repeat many of these measurements

using single crystal samples to provide improved data sets.

It will be interesting to perform X-ray Absorption Spectroscopy (XAS) to
determine where the dopant Np ions sit within the crystal structure, i.e. are
they randomly arranged throughout the unit cell, or do they preferentially
occupy one of the symmetry type sites, and the valence of the uranium and
neptunium ions. By tuning to the uranium and neptunium absorption edges

it will be possible to analyse the properties of the elements individually.

We have had proposals accepted to use INS to look at how the crystal field
levels of UPd; have been perturbed with the addition of Np, again looking
at the valence states. We also plan to look for E/T scaling associated with
non-Fermi Liquid behaviour in the vicinity of a Quantum Critical Point for

the 5%Np sample.

Our measurements suggest that quadrupolar order is present at least up to
5% Np concentrations, and so eventually it will be of great interest to use XRS
to investigate how the quadrupolar order evolves as a function of Np doping.
XRS will also allow us to investigate the possibility that the broad peak seen in
the heat capacity of the 50% Np sample (Figure 7.10(b)) reflects the ordering
of the Neptunium moments, increasing the Molecular Field, causing the slow

ordering of the uranium moments. Using the elemental selectivity of the probe,
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it would be possible to follow the temperature dependence of the intensity of
previously forbidden reflections, to determine whether there was a succession

of ordering temperatures related to the two elements.



Chapter 8

Conclusions

This project forms a concerted effort to further our understanding of the un-
usual antiferroquadrupolar compound UPdj3, both through direct measure-
ments of the quadrupolar order in UPd3, and by investigating how the proper-
ties change with the substitution of neptunium for uranium. We have built on
the knowledge from the considerable wealth of UPdj literature and have many
suggestions for further experiments to perform arising from the analysis of our
results presented in this thesis. Our new X-ray Resonant Scattering experi-
ments have made use of new developments in instrumentation at the European
Synchrotron Radiation Facility. While, as far as we know, no experimental
data has been published by other authors on the mixed system (U,Np)Pds;,
presumably partially due to the inherent difficulties in using neptunium. In

this chapter, I will summarise the conclusions drawn in the previous chapters.

Our X-ray resonant scattering measurements, discussed in Chapter 5, have
allowed us to probe the quadrupolar order directly in three of the four quadrupo-
lar phases of UPd3. At T = 7.1 K, in the highest temperature quadrupo-

lar phase, our data is consistent with a dominant antiferro-stacking of @,

173
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quadrupoles along the c-axis, with an admixture of Q-,2 quadrupoles. This
result taken in combination with our high precision heat capacity measure-
ments has enabled us to further the crystal field model for UPd;. The az-
imuthal dependence of the scattering in the lower temperature phases has
proved much more complicated, and cannot be explained using simple mod-
els of quadrupolar order on the quasi-cubic uranium sites in an orthorhombic
structure alone. Least squares fits made to these data sets by allowing the ten-
sor elements to vary freely indicate that the scattering tensors are complex. A
number of possibilities to extend the model have been investigated, but fits to
the data have so far proved inconclusive. UPd3 may exhibit multipolar order,
but we cannot use the azimuthal dependence of XRS to investigate whether
there is a primary order parameter driving quadrupolar order as a secondary
order parameter, since the transition matrix elements, equation (3.8), for elec-
tric quadrupole (E2) and higher order transitions are zero at the uranium

M;y-edge.

In Chapter 6 we reinvestigated NpPd; through magnetisation, electrical
resistivity and heat capacity measurements on polycrystalline samples. In ad-
dition to the transition at 7; = 30 K, identified by Nellis et al. [50], we have
found a second transition at 75 = 10 K. The behaviour of the anomaly as-
sociated with this transition in different measurements is consistent with an
antiferromagnetic transition. The nature of the T transition is more problem-
atic, but the in-field behaviour of the heat capacity feature at this temperature
could be consistent with a transition to quadrupolar order. Interestingly, the T}
transition coincides with the very sharp change in electrical resistivity regimes
to a high temperature Kondo-type behaviour. The bulk measurements have
not enabled us to distinguish between two possible scenarios for the transi-
tions: 1) the transitions occur successively on only one of the site types, or

2) the transitions occur separately on the two neptunium sites, but this will
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be determined by polarised neutron diffraction measurements on single crystal
samples in which we will be able to follow the different site susceptibilities. By
combining heat capacity and resistivity measurements, performed down to a
base temperature of 2 K, the Kadowaki-Woods ratio has been calculated to be
5.2+ 0.8 x 107 pQem(mol.K/mJ)?, suggesting that NpPds may be a heavy
Fermion compound. Clearly NpPd; is a very interesting compound, which

could benefit from further study.

Chapter 7 details the first measurements made, to our knowledge, on the
mixed system (U,_,Np,)Pds. Special interest has been paid to the dilute nep-
tunium end of the phase diagram, as we have been investigating the disruption
of quadrupolar order through chemical pressure. It has been shown that the
T_,-type transition moves to lower temperatures with increasing neptunium
content, and that for x = 0.05 there is a suggestion of heavy Fermion and non-
Fermi liquid behaviour, which may be consistent with being in the vicinity of
a quantum critical point. It will be very interesting to use inelastic neutron
scattering to determine whether there is E/T scaling at this composition, to
investigate the possibility of local quantum criticality [59,63]. Further compo-
sitions will need to be examined to look for non-Fermi liquid behaviour and

other signifiers of possible proximity to quantum criticality.
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Appendix A

Fourier Analysis and

Correlation Functions

A.1 Introduction

Fourier Transforms decompose a spatially varying function into its different
sinusoidally varying frequency components and in scattering theory transfer
between direct and reciprocal space. The Fourier transform of a function f(r)

is defined as
flg) = 712? / f(a)expl=ige) dr (A.L1)

The inverse Fourier transform converts the function f(g) back into the spatially
varying function:
1 * .
T)=—= exp(ugr) dq. Al2
1@) === [ Fta)exploan)do (A12)

An important feature of Fourier transforms is the way they transform con-

voluted functions. The convolution of a function f(zx) with the function g(r)

187
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is defined as
h(z) = /_ f(z)g(z — r)dx. (A.1.3)

The Fourier transform h(q) of the convolution is given by:

@) == [ dze { [ otz - aa}

= # /_: f(z)e™ " dz [Z g(u)e ™ du (A.1.4)
= V27 f(9)3(9),

i.e. the product of the separate Fourier transforms multiplied by v/27. This
result is significant since a crystal lattice in direct space can be modelled as
a periodic array of atoms represented by Dirac delta functions convolved with
the charge density at each atom. The convolution theorem states therefore
that the Fourier transform of the system will be the product of the Fourier
transform of the periodic lattice and the Fourier transform of the charge density

of a single atom.

A.2 Correlation Functions

A.2.1 Introduction

In an ideal system, in the ordered state the magnetic moments in a linear
chain would all be perfectly aligned with respect to one another, with an
infinite degree of correlation. However, in a real system there will be a degree
of disorder such that the magnetic moments vary slightly in orientation. The
probability that a moment situated at x will be in the same orientation as
one at the origin is described by the correlation function. In this section the

Fourier transforms of several direct space correlation functions are derived.
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A.2.2 Lorentzian

One of the simplest models assumes that the correlation at a point r decays
exponentially from an initial value, A at the origin, defining a correlation
function C(z) as

CL(x) = Aexp(—klz|), (A.2.5)

i.e. the correlation decreases by a factor of e in a length z = 1/k. Since
the function is even, the Fourier transform can be evaluated using the cosine

transform:

CLlq) = %An /000 exp(—«z) cos(gz) dx

2A >
= Eme { /0 e~ (k1a)e dx} (A.2.6)
24 e d £+ 4 _\/? Ak
Ve K2+q@ [ Var2+q®

This is the equation for a lorentzian centred at ¢ = 0 with height H =
V2/7A/k and a half width half maximum equal to x. Therefore if there
is a high degree of correlation in real space, such that x is small, the trans-
form in reciprocal space will be very narrow, see Figure A.1 for the real space
correlation function and its Fourier transform for different values of . It also
means that by measuring the width of the diffraction peak in reciprocal space

the degree of correlation in real space can be determined.
The integrated area (/) of a lorentzian is given by

1
I=nkH x k- —, (A.2.7)

K

and is therefore independent of the inverse correlation length k. Thus the
integrated area of the diffraction peak gives the amplitude of scattering with

infinite correlation.
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Figure A.1: The correlation function Cpr(x) = exp(—&|z|) (left) and its Fourier transform
Crlq) = =57 (vight) for x =1 (black), 0.25 (red) and 0.1 (blue).

A.2.3 Gaussian

Here the properties of a Gaussian correlation function:

Ce(z) = aexp [—;—;] . (A.2.8)

where o is the standard deviation of the distribution, are derived as above. By

completing the square and using standard integrals the Fourier transform can

be shown to be
! o2q?
Ce(q) = Ao exp [-—2-] . (A.2.9)

another Gaussian function.
Figure A.2 shows the direct space Gaussian function Cg(z) (left) and the

Fourier transform Cg(q) (right) for o =1, 2 and 5. Again the integrated area

is independent of the real space standard deviation.

A.2.4 Lorentzian Squared

The correlation function in section A.2.2 is quite unphysical since the back
to back exponential functions lead to a singularity at * = 0. A modified

correlation function which falls off more slowly with the spatial variable and
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Figure A.2: The correlation function Ci(x) = exp(—a22/202) (left) and its Fourier transform

Cclq) = o exp(—a2q?/2) (right) for o = 1 (black), 2 (red) and 5 (blue).
which smooths the singularity is given by
C(z) = A(1 + k|z|) exp(—~|z]). (A.2.10)

The computed Fourier transform of this function is

Ax?

é(‘]) X m,

(A.2.11)

which describes a Lorentzian squared peak shape. Figure A.3 shows the direct
space correlation function and the Fourier transform for different values of the
inverse correlation length.
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Figure A.3: The correlation function C(z) = (1 + k|z|) exp(—x|x|) (left) and its Fourier
transform C(q) = x%/(k? + ¢*)? (right) for x = 1 (black), 0.25 (red) and 0.1 (blue).

The lineshape of the quadrupolar order superlattice diffraction peaks mea-

sured as a function of theta, as in chapter 5.2, are fitted best using the
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lorentzian squared lineshape, indicating the nature of the correlation func-
tion between quadrupoles. The ultra high resolution of the instrument means
that it is not necessary to consider the convolution of the actual function with

the instrument’s resolution function.

A.3 Correlation Lengths

Fitting one of the above peak shapes to a peak in reciprocal space from a
scattering experiment gives the inverse correlation length x, which is equal to
the half width at half maximum. In real space the correlation length is defined
as the distance over which the degree of correlation has decreased by a factor of
1/e. Using Fourier transforms it is possible to derive the relationship between

the two correlation lengths.

A.3.1 Lorentzian

The relationship is simplest for a Lorentzian peak shape. If we define Ax as
the distance at which the correlation has dropped by 1/e in real space and Aq

as the inverse correlation length, then for a Lorentzian lineshape:

Azx

I
=

Aq =

-

b

giving the product
ArAgq =1. (A.3.12)
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A.3.2 Gaussian

Using equations (A.2.8) and (A.2.9) Ar and Ag are given by

Ar = oV?2
v2In2
Aq = pa

such that the product is 2vIn 2.

A.3.3 Lorentzian Squared

Ar for the function C(x) = A(1 + k|z|) exp(—k|x|) can be calculated numeri-

cally to be

Ar = 2.14619’
K

while Ag can be solved analytically:
Agq = kY V2 -1
Therefore the product of the two is
ArAq = 1.38128, (A.3.13)

which gives the numerical factor required when converting between the inverse
correlation length, identified from fitting the reciprocal space peak shape, and

the real space correlation length.
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Azimuthal dependence

calculations

B.1 Quadrupolar tensor construction

The quadrupolar tensor is calculated by considering ellipsoids on the four

quasi-cubic uranium sites at (000), (330), (000), and (333) and is given by
C*® = "exp(iQ - r;)C;” (B.1.1)

If the major axis is ¢;, and the minor axis is ¢, then for Q42_,2 order in the

cubic different structure the individual second rank tensors are given by:

(&) 0 O Cs 0 0
Ci,Ci=] 0 ¢, O and C3, C3=1]1 0 ¢ O
0 0 Cg 0 0 Cs

194
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Therefore for the (103) quadrupolar superlattice reflection the scattering tensor

used in azimuthal calculations is given by

C =C) + Crexp(in) + Csexp(3im) + Cyq exp(4im)
=C-C,—C3+C,

2(c; — ¢s) 0 0 (B.1.2)
= 0 2(cs—¢a) O
0 0 0

To calculate the scattering tensor for combinations of other order parame-
ters which tilt the ellipsoids off axis, 3D rotation matrices are applied to each

individual site tensor before combining them according to equation (B.1.1).

B.2 Azimuthal calculations

Given below are the details of the Matlab program used to calculate the az-
imuthal scattering dependence in UPd3, based on a program written by Stu-
art Wilkins, one of the beamline scientists on ID20 at the ESRF. The “run-
script.m” program calls the function “fitazimuth”, which is given below the
program, for a specific choice of order parameter described by the tensor C,
scattering vector, q, energy and reference vector from which the azimuthal
angle, psi, is measured, and then calculates the intensity for the different po-

larization channels as a function of psi.

% script to use the fitazimuth function for choice of q, azref,

% energy and quadrupolar tensor

q=1[1023]
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lattice = [sqrt(3).*5.77 5.77 9.66]
energy = 3.73;

azref = [0 -1 0];

psi = -180:1:180;

C=[100; 0-10; 000] % tensor for Qx"2-y~2
sp = [1;
ss = [];
pp = (1;

ps = [1;

for mypsi=(psi.*pi./180);

sp = [ sp; fitazimuth(C,energy,q,az.ref,lattice,[1 0],[0 1],mypsi)];
ss = [ ss; fitazimuth(C,energy,q,az ref,lattice,[1 0],[1 0] ,mypsi)];
pp = [ pp; fitazimuth(C,energy,q,az ref,lattice,[0 1],[0 1],mypsi)];
ps = [ ps; fitazimuth(C,energy,q,az ref,lattice, [0 1],[1 O] ,mypsi)];
end

Sp = sp.*conj(sp); % mod squared to get intemnsity

Ss = ss.xconj(ss);

Pp = pp.*conj(pp);

Ps = ps.*conj(ps);

figure

plot(psi’,Sp,’r’);
hold on
plot(psi’,Ss,’b’);
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legend(’\sigma — > \pi’,’\sigma — > \sigma’);
ylabel(’Intensity’,’Fontsize’,14);
xlabel(’\psi [degrees]’,’Fontsize’,14);
title(’(103) Qx"2-y~2’,’Fontsize’,14);

figure

plot(psi’,Pp,’r’);

hold on

plot(psi’,Ps,’b’);

legend(’\pi — > \pi’,’\pi — > \sigma’);
ylabel(’Intensity’,’Fontsize’,14);
xlabel(’\psi [degrees]’,’Fontsize’,14);
title(’(103) Qx"2-y~2’,’Fontsize’,14);

The " fitazimuth” function sets up the basis vectors for the reference frame to

define the polarization vectors for a given value of the azimuthal angle.

function out = fit_azimuth (tensor, energy, q, azref, lattice, ein,

eout, phi)

% Convert to reciprocal space using inverse lattice parameters

dhkl = 1./sqrt((q(1)./lattice(1))."2 + (q(2)./lattice(2)).72 ...
+ (q(3)./1lattice(3))."2);
theta = asin(12.39842./(2xd_hkl*energy));

gprime = (2.*pi./lattice).*q; az_refprime = (2.*pi./lattice).*azref;
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% Define a set of crystal basis vectors on q and the azimuth

% reference vector c1,c2,c3

c3
c2

cl =

"

c3
c2 =

cl =

-1.*qprime;
cross(c3,az_refprime) ;

cross(c2,c3);

c3./vecmag(c3);
c2./vecmag(c2) ;
cl./vecmag(cl);

% getting unit vectors by dividing through by modulus

% Now do an azimuth rotation about the c3 vector to the u

% vectors from Blume and Gibbs

u2

ul

c3;
(sin(phi) .*c1) + (cos(phi).*c2);
(cos(phi) .*c1) - (sin(phi).*c2);

% Now define a 2 element matrix for the incident and exit

% polarisation. For sigma polarisation in both cases this is just

% eps_sigma = u2. For pi polarisation there is a dependence on

% theta bragg.

% First make a set of unit basis vectors

eps_in = (ein(1).*u2) + ein(2).*((sin(theta).*ul) - ...



B.2. Azimuthal calculations 199

(cos(theta) .*u3));
eps_out = (eout(1).*u2) + eout(2).*((-cos(theta).*u3d) - ...
(sin(theta) .*ul));

out = eps_out * tensor * eps_in’;

Figures B.1- B.5 show the plots for the calculated azimuthal dependence of the
scattering dependence for the different allowed quadrupolar order parameters

using the above program.
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Figure B.1: Calculated azimuthal dependence of scattering from superlattice reflections in

UPdj3 for Q2,2 order.
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Figure B.2: Calculated azimuthal dependence of scattering from superlattice reflections in

UPdj for Q. order.



B.2. Azimuthal calculations

201

Intensity

(a) (103)

Intensity

06

0.4

0.2

0.0
-1

T = b

]

—on
o]

|
|
c/\/
J
80 -90 0 90 180

o

Wi

(b) (104)

Figure B.3: Calculated azimuthal dependence of scattering from superlattice reflections in

UPdj for Q.. order.
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Figure B.4: Calculated azimuthal dependence of scattering from superlattice reflections in

UPdj for Q. order.
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Figure B.5: Calculated azimuthal dependence of scattering from superlattice reflections in

UPdj3 for Q.. order.



Appendix C

Publications

H. C. Walker, K. A. McEwen, P. Boulet, E. Colineau, F. Wastin, Magnetic
Susceptibility of DHCP NpPds, Physica B 359-361, 1156 (2005).

H. C. Walker, K. A. McEwen, P. Boulet, E. Colineau, F. Wastin, Heat Ca-
pacity Studies of the (U;_,Np.)Pd; System, Physica B 378-380, 981 (2006)

K. A. McEwen, H. C. Walker, P. Boulet, E. Colineau, F. Wastin, S. B.
Wilkins, D. Fort, Quadrupolar and Magnetic Ordering in (U,Np)Pds, J. Phys.
Soc. Jpn. 75 Suppl, 20 (2006)

H. C. Walker, K. A. McEwen, D. F. McMorrow, S. B. Wilkins, F. Wastin,
E. Colineau, D. Fort, Determination of the antiferroquadrupolar order para-

meters in UPds, Phys. Rev. Lett. 97, 137203 (2006)

H. C. Walker, K. A. McEwen, D. T. Adroja, J.-G. Park, Y. S. Kwon, J.-

203



Appendix C. Publications 204

Y. So, W. Kockelmann, M. Meissner, Inelastic Neutron Scattering and Heat
Capacity Studies of Ferromagnetic PrinNiy, Physica B 385-386, Part 1, 41
(2006)

H. C. Walker, K. A. McEwen, E. Colineau, J.-C. Griveau, F. Wastin, A
New Route to Quantum Criticality in (U,Np)Pds, to be published in J. Magn.
Magn. Mater.

K. A. McEwen, H. C. Walker, M. D. Le, D. F. McMorrow, E. Colineau, F.
Wastin, S. B. Wilkins, J.-G. Park, R. 1. Bewley, D. Fort, Understanding the
quadrupolar structures of UPds, to be published in J. Magn. Magn. Mater.

D. T. Adroja, J.-G. Park, K.-H. Jang, H. C. Walker, K. A. McEwen, T.
Takabatake, Study of Non-Fermi Liquid Behaviour near the Ferromagnetic
Quantum Critical Point in CePdy 15Rhg g5, to be published in J. Magn. Magn.
Mater.

D. T. Adroja J. -G. Park, E. A. Goremychkin, K. A. McEwen, N. Takeda,
B. D. Rainford, K. S. Knight, J. W. Taylor, Jeongmi Park, H. C. Walker, R.
Osborn, Observation of two spin gap energies in the filled skutterudite com-

pound CeQOsyShyy, Phys. Rev. B 75, 014418 (2007)



