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Subject dropout is a common problem in repeated measurements health stud-
ies. Where dropout is related to the response, the results obtained can be
substantially biased. The research in this thesis is motivated by a repeated

measurements asthma clinical trial with substantial patient dropout.

In practice the extent to which missing observations affect parameter esti-
mates and their efficiency is not clear. Through extensive simulation studies
under various scenarios and missing data mechanisms, the effect on para-
meter estimates of missing observations is explored and compared. Bias in
the model estimates is foqnd to be sensitive to the missing data mechanism,
the type of model used, the estimation method, and the type of response

variable, amongst other factors.

Findings from the simulation study highlight the importance of considering
the likely dropout mechanism in choosing a model for the analysis of incom-
plete repeated measurements. For example, generalised estimating equations
(GEE) require a missing completely at random (MCAR) assumption in gen-
eral, as does the summary statistics method. Several formal tests of MCAR
have been published, and these tests are compared both quantitatively, and

in terms of their various merits and limitations.

Other than the sensitivity analysis, there are no widely accepted methods for
analysing data with missing observations missing not at random (MNAR),
as strong assumptions are required about the missing data mechanism. A
method for incorporating cause of dropout into the analysis is proposed for
MNAR data. A Bayesian hierarchical model is developed with informative
priors for the bias of dropouts compared to completers for each cause of
dropout. The feasibility of the proposed prior elicitation is investigated by
consultation with clinicians. And the model is assessed through simulation
studies, in which the sensitivity of the approach to misspecification of the

parameters of the dropout mechanism is examined.
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Chapter 1

Introduction

Medical studies frequently involve the collection of repeated measurements
on subjects over the duration of the study. Such longitudinal studies allow
the change in response to be measured over time, and provide more reliable
information about chronic diseases, which are characterised by fluctuating
symptoms. Collecting several measurements on each subject also enables

within and between subject effects to be estimated.

Repeated measurements data are a special case of clustered data, in which
observations within subject are correlated. Standard generalised linear mod-
els do not apply because of the lack of independence between measurements,
and models have been developed to handle this dependence. The main mod-
els in use are the random effects model and generalised estimating equations
(GEE) model. The summary statistics method, in which the observations
for a subject are reduced to a single summary measure, is commonly used
in medical research, and is a simple and generally valid approach. These

methods for the analysis of clustered data are described in chapter 2.

Patient dropout is invariably a problem in repeated measurements studies.

In a review of published randomised controlled trials, Wood et. al. [1] found



almost 90% of them to contain missing data, and in many of these studies
the missing data were handled inadequately. As well as reducing efficiency,
missing data can cause substantial bias if, as is likely, the subjects that drop
out are not representative of the whole sample. For example, results may be

biased if sicker patients drop out of the study.

Missing data are commonly categorised into three levels, according to the
severity of the bias they are likely to cause. Missing completely at random
(MCAR) implies that the missing observations are are a random sample of all
observations. A less strong assumption about the missing data is that they
are missing at random (MAR), which means that although the probability
of being missing is independent of the values of the missing observations,
missingness may depend on the values of other observations in the data. The
most difficult category of missing data to deal with is missing not at random
(MNAR). where the probability of the observation being missing depends on

its value.

If standards are to improve in the analysis of incomplete data, a better under-
standing of the extent to which missing data affects the parameter estimates
is vital. The consensus of opinion is that GEE models require an assump-
tion of missing completely at random (MCAR) data, while random effects
models are robust to the more relaxed missing at random (MAR) assump-
tion, except in the case of gaussian response data when both the random
effects model and GEE, with correctly specified correlation, are robust to
MAR data. The summary statistics method is only valid under the strict as-
sumption of MCAR. In practice, the boundaries are not as clear as this. For
example: Park [2] demonstrates that the GEE model is not always valid with

MCAR data, even when the data are gaussian; it is unclear whether random



effects models are robust to MAR data when covariates are cluster-varying
[3]; and it has been suggested that GEE models may be robust to MAR
observations for non-gaussian data if the correlation structure is correctly
specified [4]. In chapter 3 of this thesis, a thorough investigation is carried
out, using simulation studies together with evidence from the literature, in

order to clarify these issues.

Armed with a clear framework on the robustness of methods to missing data,
the researcher must be able to identify categories of missing data in order to
assess the likely impact of missing observations on the parameter estimates.
By definition, it is impossible to distinguish missing not at random (MNAR)
and MAR mechanisms from the observed data. It is, however, possible to
discriminate MCAR and MAR data from the information available. Several
tests of MCAR have been published over the last few decades, each approach-
ing the problem from a different angle, some more accessible to the applied
statistician than others. Chapter 4 assesses these tests of MCAR, both qual-
itatively, in terms of their ease of implementation and flexibility to various
scenarios, and quantitatively via simulation studies, and recommendations

are made on the best approaches to employ.

A motivation for the work in this thesis was a repeated measurements asthma,
clinical trial, from which over 20% of subjects dropped out. In chapter 5 the
data from the trial are analysed using the methods described in chapter 2.
The missing data mechanism is explored using the approaches recommended
in chapter 4, and the likely bias in the parameter estimates is discussed,

based on the findings of chapter 3.

Missing not at random dropout in the asthma clinical trial cannot be ruled

out. The issue of MNAR data poses a difficult challenge because of the ne-
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cessity to make strong and untestable assumptions about the nature of the
missing data mechanism. It is therefore a vastly overlooked issue, with the
sensitivity analysis as the only standard method in use. In the sensitivity
analysis, a model is constructed for the missing data mechanism, and a range
of plausible parameter values for this mechanism results in a range of para-
meter estimates for the model of interest. This is somewhat unsatisfactory if
a point estimate is required, and in fact the approach is often used as a test
for the robustness of the model to assumptions about the missing data mech-
anism rather than a method for MNAR data; if the parameter estimates are
little affected by the choice of missing data mechanism, the point estimate,

ignoring the missing observations, is considered robust to missing data.

Clinicians are advised, or even required by study protocol, to collect infor-
mation on the cause of patient dropout, but this information is generally
used to justify the assumptions about the missing data mechanism rather
than incorporated into the analysis. In chapter 6 a model is proposed to
handle MNAR dropout in which information on the cause of dropout is fully
exploited. Clinicians’ knowledge and uncertainty about the missing data,
based on the cause of patient dropout, is quantified and incorporated into
the model. This information is elicited from clinicians in the form of prior

distributions, and a Bayesian analysis is performed.

In contrast to the sensitivity analysis, the Bayesian model provides clinicians
with point estimates and associated credible intervals that incorporate their
uncertainty due to dropout in a formal manner. In a sensitivity analysis,
clinicians are presented with a range of plausible parameter estimates which
they must incorporate with their own beliefs about the dropout mechanism

in an ad hoc way. Some may prefer this approach, on the grounds that
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the Bayesian point estimate, averaged over plausible dropout mechanisms,
applies to no particular dropout scenario and, in practice, such a combination

of dropout mechanisms could be impossible.

The sensitivity of the Bayesian model to mis-specification of the prior dis-
tribution, under various missing data mechanisms, is tested using simulation
studies, and clinicians are consulted on the practicalities of elicitation of

information about dropout bias.

Chapter 7 provides a discussion of the work in the thesis, highlighting the ma-
jor findings of the research, and suggests directions in which future research

could be taken.
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Chapter 2

Review of methods for the
analysis of clustered data, and
introduction to missing data
issues

2.1 Introduction to modelling clustered data

Clustered data arise when, for example, repeated measures are taken on each
subject (longitudinal data), or when data are collected from different GP
practices, hospitals, schools, communities etc.. In the latter case, treatments
may be randomly assigned either by cluster, in which case this is termed a
cluster randomised design, or by individuals within the cluster. In longitudi-
nal studies the clusters are the individuals, each with several observations at
different time-points, and typically there are a large number of clusters, each
with only several observations. The observations within subjects tend to be
fairly highly correlated because observations on the same subject are likely
to be much more similar than observations between subjects [5]. Studies
where the subjects are clustered by GP practice etc. are characterised by a

relatively small number of clusters compared to the number of observations
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within clusters, and designs of this type tend to have a smaller within-group

correlation than in longitudinal studies.

Classic generalised linear models (GLMs) cannot in general be used to model
clustered data because they require an assumption of independence between
all observations. The most common statistically valid methods of analysis
for clustered data are random effects models, GEE models and the summary

statistics approach, described below.

2.2 Random effects models

It is expected that in clustered data, observations on the same cluster will
be correlated, and that there will be less variability between observations
within the same cluster than between observations across clusters. In ran-
dom effects models, also called hierarchical models or multilevel models, the
heterogeneity between clusters is modelled by allowing certain model parame-
ters to vary randomly between clusters [6]. This imposes correlation between
observations within clusters. It also allows the between- and within- group
variances to be estimated. In the simplest case, the intercept takes on dif-
ferent values for each cluster, while the other regression coefficients remain

fixed. For example a random intercept model for gaussian data is as follows:

Y = (a+u;) + 8 + €5 (2.1)
U; ~ N(O, 0'12‘)
6,']‘ ~ N(O, 0'3)

where y;; and x;; are the observations on the outcome variable and explana-

tory variable respectively for the jth observation on the ith cluster. o rep-

13



resents the underlying average intercept for all clusters, and u; gives the
deviation of the ith cluster’s intercept from the overall average, a. The re-
gression coefficients, 3 and a are termed fixed effects while u; and ¢;; are
random effects with variances o2, the between-cluster variance, and o2, the
within-cluster variance, respectively. The intra-cluster correlation coefficient
(ICC) is defined as the proportion of the total variance that is between-

cluster variance:

0.2

ICC = ——>_ (2.2)

0% + o2
The ICC is a positive coefficient ranging from zero, when the observations
within clusters are independent, up to one, for perfect correlation within

clusters.

More complex models allow several regression coefficients to vary between

clusters. A more general linear random effects model is:

Y = (a+u)+ Z(,Bkzijk + dixziji) + Z NTijt + €
k 1

where a, B and < are fixed effects and u;, d; and ¢;; are random effects.
In this example, z;;; denotes the kth variable with both fixed and random
effects, and z,; the Ith variable with only fixed effects. The fixed effects
measure the average effect of each covariate across the clusters, while the
random effects give estimates of the deviation from the average effect, in the

ith cluster.

Data with any distribution from the exponential family can be modelled
using a random effects model, by applying the same link function as in the

GLM. As in the GLM framework, further complications to the structure
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of the data can be incorporated into the model, such as interaction terms,

quadratic terms etc..

Extension to multiple levels of clustering, such as longitudinal data clustered
by GP practice, is straightforward. Hence the terms multilevel models and

hierarchical models.

Random effects models are sometimes described as cluster-specific models
because the random effects allow each cluster to have its own regression
equation. The fixed regression coefficients are interpreted as the expected
change in the outcome within a specific cluster for one unit change in the

covariate.

Estimation of parameters is by maximum likelihood methods or, where the
number of clusters is small, by restricted maximum likelihood methods (REML).
Where estimation is by maximum likelihood, significance of the parameters
can be tested by either Likelihood ratio or Wald tests. Only Wald tests are
valid if REML methods are used [7].

The random effects model is robust to missing data that are missing at
random (MAR). This is because the inference is likelihood-based, and the
likelihood of the complete data factorises into terms dependent on missing-
data mechanisms and terms that depend on the model parameters [8]. This

is explained further in section 2.6.2.

2.3 GEE models

Generalised estimating equations (GEE), or marginal models, as implied by
their name, model the marginal expectation of the response across all clus-

ters. Whereas random effects models explicitly model the correlation within

15



clusters by allowing parameters of the model to vary randomly between clus-
ters, generalized estimating equations treat this correlation as a nuisance and
adjust for it. The correlation is specified separately to the regression model,
in an ad hoc way rather than parametrically. A structure for the "working"
correlation matrix, R;(a), which is assumed to be the same for each cluster,
is chosen by the user. The model is relatively robust to mis-specification of

this working correlation matrix.

The score-like equations solved in GEE models are: [4]

U;=DfV;!S =0 (2.3)
where
V; = A:/2R4(§Q)A:/2

In this representation of the score equations A; is a diagonal variance matrix
of Y; and V,; is the estimated covariance matrix of Y;. S, is a vector of
residuals for the ith cluster, (Y; — u;). and D; = %‘iﬁl. The generalised esti-
mating equations reduce to the maximum likelihood score equations when the

response is gaussian, provided the relevant correlation structure is specified.

The generalised estimating equations are solved iteratively. Initially, a stan-
dard generalised linear model is fitted, assuming all observations are inde-
pendent, to produce initial estimates of the regression parameters. Next the
residuals, S;, are used to estimate a, the parameters of the working cor-
relation matrix. The model is then re-fitted by solving equation 2.3 using
this new working correlation matrix, and the parameter estimates are up-
dated. This process of updating the correlation parameters and regression

parameters is repeated iteratively until convergence is reached.
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Liang and Zeger demonstrated that as long as the correct regression model is
applied, the regression parameters are consistent even if the wrong correlation
structure is chosen, although incorrect correlation structure leads to a loss in
efficiency [4]. They also proposed a robust estimator of the standard error of
the regression coefficients, the sandwich estimator, that is consistent under

mis-specification of the correlation matrix:

N N N

(Z DiTVi—lDi)_I[Z D:'TVi_lcov(yi)Vi_lDi](Z D?V;IDi)_l (2.4)
i=1 i=1 i=1

When clusters are of equal size, the parameter estimate in the GEE model is

the same as that specified in a GLM, treating all observations as independent,

but the same is not true for the standard error.

There are several standard choices for the structure of the working correlation

matrix, for example [6] [9]:

e Independence: The correlation between different observations in the
same cluster is zero. The independence GEE model is equivalent to
the generalized linear model. If pj; is the correlation between the jth
and kth observations in the same cluster, then p;; = 1 and pjz = 0

where j# k.

e Exchangeable: Each observation within a cluster is equally correlated
with every other observation within that cluster. Here p;; = 1 and
pjx = a if j# k, where a is an estimate of the intra-cluster correlation
coefficient. A model with this correlation matrix is equivalent to a

random effects model with a random intercept.

17



e Unstructured: The correlation between each pair of observations is
allowed to take any value between -1 and +1, and is estimated from

the data. p;; = 1 and p;x = r;x where j# k.

e Autoregressive: This applies only to repeated measurements data. The
correlation between pairs of observations in the same cluster decreases
as the time between the measurements increases. For first order au-
toregressive correlation, p;; = 1 and p;x = al?~*l for observations |j — k|

time-points apart.

e User fixed: The user sets the value of the correlation between all pairs

of observations prior to the analysis.

Likelihood-ratio tests are not appropriate for the GEE model because the

approach is not likelihood-based, and Wald tests are used instead [6)].

The approach described above is called GEE-1 methodology because only
first order moments are estimated, and parameters of the correlation are
treated as nuisance parameters. Extensions to this approach have been de-
veloped which estimate the first and second order moments, and these are
termed GEE-2 methods [10]. These methods can add efficiency to the analy-
sis, but have the disadvantage that the correlation structure must be correctly

specified in order to obtain unbiased estimates of the model parameters.

2.4 Summary statistics method

The simplest approach to dealing with clustered data is to reduce the ob-
servations in each cluster to a single measurement, and analyse this set of

summary statistics as if they were the raw data. This removes from the data

18



any correlation within clusters and offers a statistically valid approach if a
sensible choice of summary measure is made and any missing observations

are missing completely at random (MCAR).

The choice of summary statistic depends on the shape of the data and the
particular research question. For example, if a researcher is interested in
which of several treatments acts the fastest, the time to reach a maximum or
minimum value may be a suitable summary statistic. The mean response is
a common choice of summary measure, but where measurements are made
at unequal points in time, the area under the curve is a better statistic to
use. Matthews et. al. [11] offer a discussion of various choices of summary
measure. Whatever the choice of summary statistic, this decision should be

made in the design stage, before the results are obtained.

The simple summary statistics method, with the mean as the summary mea-
sure, weights all clusters equally, regardless of the number of observations
in the cluster. This ignores the fact that clusters of different size estimate
the summary measure with different accuracy, and may result in a loss of
efficiency. An alternative approach is to weight clusters according to their
size, but this ignores the correlation within clusters, and provides the cor-
rect inference only if observations within clusters are independent. A correct
weighting would take into account the correlation structure within clusters,
and weighted summary statistics approaches have been proposed that do
just this [12]. Such methods do not have the appeal of simplicity that the

unweighted summary statistics approach offers.
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2.5 Comparison of random effects and GEE mod-
els

2.5.1 Gaussian data

For gaussian data the generalized estimating equations, with a linear regres-
sion model, reduce to the score equations used in random effects models [4],
so that although the two types of models are specified differently, the same
model is applied. The choice of correlation matrix in the marginal model
determines the structure of the corresponding random effects model. For
example, a marginal model with independent correlation is equivalent to a
generalized linear model, and with exchangeable correlation corresponds to

a random-intercept model.

In theory, equivalent marginal and random effects models produce identical
regression parameters, but where there is missing data this is not necessarily
the case. The issue of missing data is discussed in detail in section 2.6. Aside
from missing data considerations, the choice between types of model for
gaussian data comes down to whether there is direct interest in the variance
and correlation parameters, and perhaps whether a likelihood-based method

is preferred.

2.5.2 Likelihood based inference

An important distinction between random effects and GEE models is that the
former are likelihood-based and the latter are not. There are various merits
and limitations associated with each model for this reason. Likelihood-based
inference is well researched and therefore methods of estimation and signif-
icance testing are well founded; for example, maximum likelihood methods

can be used for parameter estimation and model adequacy can be assessed
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using likelihood ratio tests.

Random effects models are only valid if certain assumptions about the data
hold. In particular, the random effects must be normally distributed, within-
and between- cluster residuals must be independent, and random effects must
be homogeneous [7]. GEE models are more robust than random effects mod-
els to deviation from these assumptions. But this robustness of GEE method-
ology is at the cost of efficiency: Because marginal models avoid specifying
the full distribution, by specifying only the mean and covariance structure,
they do not make full use of all the available information and in general are

less efficient than random effects models [8] [13].

As discussed in section 2.6.2, likelihood-based methods such as random ef-
fects models, are robust to missing data that are missing at random (MAR),

whereas GEE models, in general, are not.

2.5.3 Model fitting in random effects models

Parameter estimation is generally simpler under GEE methodology than in
random effects modelling because it is often impossible to directly evaluate
the likelihood in random effects models, particularly for non-gaussian data.
This is because the likelihood is determined by integrating the joint distrib-
ution of the outcome variable, Yj;, and the random effects, Uj, with respect
to Uj, and this integral is no longer of closed form for link functions other

than the identity function.

Numerical integration methods, linear approximations to the link function,
or computer intensive methods based on the bootstrap or the Gibbs sampler

have been developed to fit random effects models for non-gaussian data [14].
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Numerical integration for random effects generalised linear models, such as
Monte Carlo integration or quadrature methods, is only possible where the
dimension of the random effects matrix, U;, is small [9]. As the dimen-
sion of the random effects increases above two dimensions, a huge number
of quadrature points are needed for quadrature estimation and the process
becomes extremely computationally intensive. Stata uses quadrature meth-
ods to estimate parameters in random effects logistic models, and SAS also
uses quadrature methods in some of its algorithms. Bayesian methods are
making numerical integration of higher dimensions much more feasible, and
MCMC methods can be carried out in statistical packages such as WinBUGS
or MLwiN.

Many statistical packages, including MLwiN, VARCL, SAS and HLM, use
less computationally intensive linear approximation methods such as mar-
ginal quasi-likelihood (MQL) or penalised quasi-likelihood (PQL) for random
effects generalised linear modelling [15]. These methods approximate the link
function to a linear function using Taylor expansion. The difference between
MQL and PQL is that MQL iterates on the fixed effects only while PQL
makes use of the current estimators of both the fixed and random effects in
its iterations. Second-order MQL and PQL include first- and second-order
derivatives whereas first-order quasi-likelihood methods approximate only as

far as the first term in the Taylor expansion.

2.5.4 Interpretation of parameters in random effects and
GEE models

Random effects models estimate conditional means, where the conditioning

is on the random effect, for example:
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9[E(Y:; | w)] = Xi;8c + w (2.5)

In contrast, GEE models produce marginal estimates, averaged across all

clusters. The marginal equivalent to equation 2.5 is:

9[E(Y;;)] = Xi;Bm (2.6)

When the model is linear, parameters of the conditional model, 8¢, and the
marginal model, By, are in general the same [4]. For non-linear models,
such as the logistic regression model, the parameters are different and have
a different interpretation. The conditional estimate, (¢, is the expected
influence of the covariate on the response of a cluster with a particular value
of random effect. The marginal estimate, 3y, is the expected influence of the
covariate on the response averaged over all clusters. Because of this, random
effects models are commonly referred to as cluster-specific, and GEE models

as population-averaged.

To understand why random effects models and GEE models provide different
parameter estimates for non-linear models, consider the logistic regression
model. The random effects model fits a separate logistic regression model to
each cluster with a unique random effect, estimating a separate odds ratio for
each covariate for each cluster. The overall odds ratio from the random effects
model is the expected value of these individual odds ratios. In contrast, the
GEE model estimates one marginal odds ratio for each covariate, as the ratio
of the mean odds across all clusters. The random effects model estimates the
mean of many odds ratios while the GEE model estimates the ratio of the

mean odds, resulting in two different estimates.
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Zeger et. al. [16] introduce a simple equation that can be used to approxi-
mately convert a cluster-specific coefficient to a population-averaged coeffi-

cient, as follows:

Bcs

SR e

- (52)

Bcs is the cluster-specific coefficient and Bp,4 is the coefficient with a population-

(2.7)

where

2
u

averaged interpretation. o represents the between-cluster variance. This
approximation relies on the assumption that the logistic function can be ap-
proximated to the cumulative gaussian function. The smaller the between-

cluster variance, the better the approximation.

It is widely stated in the literature that the choice between marginal and
conditional models should be based on whether the question of interest re-
quires a population-averaged or cluster-specific estimate. For example, in
an epidemiological study, a marginal comparison between two populations
of subjects, such as an exposed and an unexposed group, may be required.
In contrast, the random effects model allows inference to be made about the

effects of explanatory variables on an individual.

Lindsey and Lambert [17] dispute the argument that if the required pre-
diction is for population-averaged inference, then a marginal model should
be fitted. They argue that the marginal model is only population-averaged
if the sample in the study is representative of the population of interest.
Clinical trials are given as an example of when the participants are not a

representative sample, as participation in the study is voluntary. They are
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highly critical of GEE models, giving several examples of where they may
fail. The basis of most of their arguments is that GEE models treat the data
from longitudinal studies as cross-sectional and do not adequately model the
change in individuals over time. For example, small mean differences could
mask heterogeneous differences amongst subjects. Lee and Nelder 18] con-
tinue the arguments of Lindsey and Lambert, going as far as to recommend
random effects models as the analysis of choice over GEE models, because of
the issues raised by Lindsey and Lambert, and also because of the difficulty
in checking assumptions of models that are not likelihood-based. They also
argue that model selection is a separate stage in the analysis to the prediction
stage, and that each stage does not necessarily need to use the same model.
Whether the inference required is population-averaged or cluster-specific is

something that should govern the model used in the prediction stage.

Neuhaus et. al. [19] discuss the appropriateness of GEE models to different
applications. Like Lindsey and Lambert, they argue that if an important
predictor changes within clusters, for example the age of subjects within
GP practices, a random effects model is more informative because it pro-
vides information about the variation of the effect of age within GP practice,
while a population-averaged estimate will miss any heterogeneity of the ef-
fect within clusters. But they are not without criticism of the random effects
model, using the cluster-randomised trial as a scenario in which parameters
from random effects models may be difficult to interpret. A random effects
mode] assumes that there are underlying latent groups on which the model
conditions, and parameter estimation is with reference to these groups. Inter-
pretation of cluster-specific parameters may be difficult if these latent groups

cannot be identified.
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Further to the debate about conditional versus marginal models, Begg and
Parides |20] raise an interesting point. They argue that between-cluster and
within-cluster effects can be estimated using either random effects models or
GEE models as long as an appropriate model is constructed. For example,
a marginal model could provide estimates of the within-cluster effects if, for
each cluster, the covariate centred by the cluster-level mean, (X;; — X)), is

included as a covariate in the model:

E(Y;) = Xi;8+ (Xi; — Xi)v (2.8)
2.5.5 Versatility of the models

The hierarchical structure of random effects models extends to more than
two levels. This allows data with a more complex structure to be analysed,
such as clusters nested within clusters, for example, repeated measures on
subjects clustered by general practice. It also allows multivariate data to be
analysed by introducing extra outcome variables at the appropriate level in

the hierarchy [21].

GEE models have the advantage of being robust to the mis-specification of
the correlation structure. If this structure is not known, or is complicated in
a way that makes modelling it via a random effects model difficult, a GEE

model may be preferable [21] [22].
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2.6 Missing observations in clustered data

2.6.1 Classifying missing data

Little and Rubin [23] classified missing observations into three types, missing
completely at random (MCAR), missing at random (MAR) and informative
or missing not at random (MNAR). The complete set of observations that
would have been observed had there been no missing data, Y*, is parti-
tioned into observed and missing data, Y* = [Y?,Y¥]. M is a random
variable that indicates whether an observation is missing (M;; = 1) or ob-
served (M;; = 0) and the missing data mechanism is denoted f(M\Y"*, ),
where ¢ represents the parameters of the missing data mechanism. The three

categories of missing data mechanism are then defined as follows:

e Missing completely at random (MCAR): The missing data mech-
anism is independent of both observed and unobserved data, Y© and

YM.

fM Y ¢)=f(M]¢) for all Y*, ¢ (2.9)

Under MCAR, analysis of the available data provides valid inference,

i.e. estimates are asymptotically unbiased, if less efficient.

e MCAR conditional on the covariates: A more general case is
where the missing data mechanism depends on one or more of the ob-
served covariates, X, ...X,, and is independent of the observed and un-
observed outcomes, Y*, conditional on the observed covariates. Analy-
sis of the available data is then valid if these covariates are included

in the model of interest [24]. Little calls this missing data mechanism
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covariate-dependent missing, distinguishing it from true MCAR.

Formally:

FM|Y*, Xy, .. X,;0) = F(M | X1, ...X,; 6) (2.10)

e Missing at random (MAR): The missing data mechanism is inde-
pendent of the unobserved data but depends on the observed data,

YO

fM|Y",¢)=f(M]Y9) for all YM, ¢ (2.11)

e Missing not at random (MNAR): The missing data mechanism is

dependent on the unobserved data, Y.

In a hypothetical study of blood pressure in patients with hypertension, data
would be classified as MNAR if, for example, a subject failed to attend clinic
for follow-up because they had an acute exacerbation of hypertension symp-
toms, which could not be predicted from their preceding blood pressure mea-
surements. Alternatively, if repeatedly low blood pressure readings predicted
that a subject would go on to drop out of the study, their observations would
be MAR. In an ideal situation, patients’ failure to attend their follow-up ap-
pointments is independent of both their observed and unobserved readings,
in which case the data are classified as MCAR. The assumption of MCAR
dropout would be a reasonable in cases where a patient’s dropout is unre-
lated to the study. For example, the patient moved away from the area in

which the study was carried out.

Incomplete repeated measures, or longitudinal data, can be further cate-

gorised into data that are missing intermittently, and dropout. Dropout,
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also termed attrition or monotone missing, refers to a situation where once
a subject has one missing observation, all following observations are missing.
In contrast to intermittent missingness, it is often impossible to find out why
subjects drop out of a study, because they do not attend clinic again. Diggle
et. al argue that subjects who miss follow-up appointments intermittently
are more likely to be missing at random than dropouts [9]. Clearly, this
assertion will not always hold. More importantly, it should be possible to
record reasons for their missing observations, which can be used to judge the
type of missing data mechanism present, or used directly in the analysis, as

demonstrated in chapter 6.

2.6.2 Likelihood-based inference and missing data

Likelihood-based methods, such as the random effects model for clustered
data, produce an unbiased analysis for data that are MAR, and the stricter
assumption of MCAR is not necessary [23]. This follows from noting that,
when data are MAR, the full likelihood of the observed data and missing data
indicator, L%%,(8, ¢ | Y°, M), factorises into a function of the parameters of
the missing data mechanism, ¢, and a function of the parameters of the

distribution of the observations, 6:

L$5(8,6) = Li(¢) x La(6) (2.12)

Likelihood-based inferences for 6, from the full likelihood of the observed data
and the missing data indicator, L‘}’:ﬁ,(ﬂ, ¢), are then the same as inferences
for 8 from the likelihood of # based on the observed data only, ignoring the
the missing data mechanism, L25(6). Unbiased estimates of f can then be

obtained from the observed data. The proof of equation 2.12 is as follows.
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The full likelihood function of the complete data, L77;”, is proportional to
the joint density function of the response and the missing data mechanism,

given by:

L7 (0,6) o f(YO,YM, M |6,9) = f(YO,YM | 6)f(M | Y°, Y™, ¢)
(2.13)
The full likelihood function for the observed data, L?‘,’fu(e, ¢), is obtained by
integrating the full likelihood function for the complete data in equation 2.13

over YM, to give

L o f(YO,M|6,¢) = / FOYO, YM M | 6, $)dYM (2.14)
- / FOYO,YM | 6)f(M | YO, YM, )dYM

Now if the data are MAR then from the definition given in equation 2.11,
the likelihood for the observed data becomes:

LE(6,0) o« [F(YO, Y™ |6)f(M| YO, g)d¥™
= f(M|Y?,9) [ (YO, Y™ | g)ay™
= f(M]Y°¢)f(Y°|06)
= L(¢) x Ly(0) (2.15)

L$%(0, ¢) and L:(0) are then the same, for inference about 6, as long as 6
and ¢ are distinct. The term distinct means that the joint parameter space
of 8 and ¢ factorises into the product of the parameter space for # and the
parameter space for ¢. If 8 and ¢ are not distinct, inference for 6, from the

observed data only, will be unbiased but less efficient.

If the response is incomplete and the missing data mechanism is believed

to be MAR, the recommendation is to carry out a likelihood-based analysis
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on the observed data, ignoring the missing data mechanism. This is called
an “available case analysis”. The analysis becomes more problematic if there
are missing observations in the covariates, because an available case analysis
then excludes the whole case for subjects with missing observations on as
few as one covariate. The issue of missing data in the covariates is beyond

the scope of this work.

2.6.3 Generalized estimating equations and missing data

Because GEE models are not likelihood-based, in general they require data
to be MCAR to ensure estimation is robust to mis-specification of the corre-
lation matrix. If the correlation matrix is correctly specified, Liang and Zeger
state that a MCAR assumption "may not be necessary" [4]. With MCAR
dropout, the data are simply unbalanced in their cluster size, which GEE
models, in theory, can handle [6]. The only issue with unbalanced data in
GEE is that estimation of the correlation parameters may be biased, which

Park demonstrates using simulations [2].

When the data are gaussian, generalised estimating equations reduce to the
score equations in likelihood-based models and, provided the correct correla-
tion structure is applied to the GEE model, the two types of model become
equivalent [4]. Because likelihood-based models are robust to MAR data,
this implies that GEE models can handle MAR data when the response is
gaussian. Again, this relies on unbiased estimation of the correlation parame-
ters, and with unbalanced data, GEE do not always provide this. This issue
is discussed in greater detail, alongside the results of the simulation studies,
in chapter 3, which demonstrate that GEE are fairly robust to MAR dropout

if the correct correlation matrix is applied, but that mis-specification of the
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correlation structure can cause substantial bias.

A new class of weighted estimating equations has been developed, that are
robust to MAR dropout in general, provided the probability of dropout, given
the observed response, is modelled correctly [25]. The missing observations
are effectively imputed by weighting the responses that are observed, analo-
gous to the weighting in survey analysis. The weights applied to the observed
elements of the response are the inverse of the probability of remaining in the
study, conditional on past observations, estimated by logistic regression. For
this reason the method is often referred to as inverse probability weighting
(IPW). Heyting et. al. [26] provide a clear introduction to the concept of
IPW.

In summary, standard GEE models require a MCAR assumption in general,
but in certain circumstances may be biased in the presence MCAR data. For
gaussian data, GEE models may be robust to missing observations with a
MAR mechanism. Weighted GEE have been developed which, when a model
for the probability of dropout is correctly specified, handle MAR missing

data in general.

2.6.4 Testing for MCAR

The missing data mechanism should be taken into account when choosing the
method of analysis for incomplete clustered data. GEE models require any
missing observations to be MCAR in general, as does the summary statistics

method.

The clinical causes of missing data should be considered when assessing the
missing data mechanism. It is also possible to distinguish between MCAR

and MAR data by examining the data. By definition, the observed data
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do not provide sufficient information to determine if the missing data are
MNAR,; clearly it is not possible to test if the missingness is dependent on
the unobserved data. Inspection of the observed data helps to distinguish
between MCAR and MAR data, and Carpenter et. al. [27] suggest plotting
the means (% 2 standard errors) for the subjects who drop out at the next
time-point compared to those that do not. Several formal tests of MCAR
have also been published, and these tests are compared in detail in chapter

4.

2.6.5 Methods for MNAR data

Likelihood-based models are robust to MAR data if the missingness is in
the response, but no models that ignore the missing data mechanism can
handle MNAR data. It is important, therefore, to check that any findings
based on MAR assumptions hold by carrying out a sensitivity analysis. In
a sensitivity analysis, the missing data mechanism is incorporated into the
model of interest [27] [28]. The missing data mechanism may be modelled
using a pattern mixture model or selection model, described in section 2.6.6.
The sensitivity of model estimates to changes in the missing data parameters
is then examined. The model is fitted with a range of plausible missing data
parameters, resulting in a range of plausible estimates for the parameters of
interest. If the analysis is sensitive to the missing data parameters, the range

of estimates for the parameters of interest should be reported.

If data are MNAR, the common recommendation is to carry out a sensitivity
analysis and report a range of estimates for the parameters of interest. Fairly
recently, Bayesian models have been proposed as alternatives to the sensitiv-
ity analysis [29] [30]. A pattern mixture model or selection model is fitted

with informative priors on the missing data parameters. This incorporates
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the uncertainty due to the missing data into the posterior distribution of the
parameters of interest. An extension of these models for repeated measure-
ments is proposed in which the cause of dropout is included in the analysis,

in chapter 6.

2.6.6 Modelling the missing data mechanism

Joint modelling of the missing data mechanism and the model of interest can
be considered in a pattern-mixture model (PMM) or selection model (SM)

framework, defined as follows:

SM  f(Y,M\X,48,¢) = f(IM\Y, X, 9)f(Y\X,0) (2.16)
PMM f(Y,M\X,4,¢) = f(Y\X,M,0)f(M\X, ¢) (2.17)

where M is a dichotomous variable to indicate whether an observation is
missing or observed. Y is a vector of the response, X represents the covari-
ates, and 6 and ¢ are parameters of the model of interest and parameters of

the missing data mechanism respectively.

In the pattern-mixture model framework, the data are stratified according
to which observations are missing in the response. The distribution of the
full data is treated as a mixture of of distributions over these missing data
“patterns”. For example, subjects that have complete observations have a
different distribution to those that have one missing observation, which is
different again to the distribution of subjects with only one measurement
observed. A separate model is fitted to each stratum, f(Y\X,M,#§), and
an overall parameter of interest is computed by taking a weighted average
of the stratum-specific parameter estimates, weighted by the proportion of

observations in each stratum, f(M\X, ¢).
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In contrast, the selection model assumes that the complete data are random
samples from the same distribution, and that a selection of subjects drop
out according to their response values. The distribution of the complete
observations is f(Y\X, #), and the subjects that drop out are a selection of

these complete data, with missing data mechanism, f{(M\Y, X, ¢).

2.6.7 Single imputation methods

Single imputation methods are in fairly common usage in the analysis of
medical studies. Each missing observation is replaced with an imputed value
to create a single "complete" dataset which is then analysed as if it were
the original data. Common choices of imputed values are the last observed
value on the subject (called "Last observation carried forward (LOCF)"),
mean imputation in which the missing observation is replaced with the mean
value for that variable, or in the case of dichotomous data, the "Mean equals

failure" approach, in which missing observations are assumed to have failed.

These single imputation methods are sometimes sold as being conservative.
For example, LOCF is believed by some to be conservative because on aver-
age it will reduce any slope that is estimated up until the point of dropout.
All single imputation methods are statistically invalid. They have the poten-
tial to distort the covariance structure, and will tend to under-estimate the
variance[55]. Even if the dropout mechanism is MCAR this is still clearly
the case. If the standard errors are under-estimated, the method is not nec-
essarily conservative and can in fact be anti-conservative. The next section
explains the use of multiple imputation as a valid tool that allows us to

estimate the additional uncertainty in the model due to the missing data.
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2.6.8 Multiple imputation and inverse probability weight-
ing

The pattern-mixture and selection models are approaches to full parametric
modelling of the dropout mechanism. Multiple imputation (MI) and inverse
probability weighting (IPW) are alternative methods that approximate these
parametric models. Both techniques are valid provided the imputation model
(in MI), or the dropout probability model (in IPW), is correctly specified.
Inverse probability weighting is described in section 2.6.3. Multiple imputa-
tion draws samples from a distribution defined by a model for the dropout
mechanism. Multiple values are imputed for each missing observation so that
the between- and within-imputation components of variation can be incorpo-
rated in the estimates of the parameter standard errors using Rubin’s rules
[31]. Carpenter et. al. provide a theoretical and practical comparison of

multiple imputation and inverse probability weighting [32].

2.7 Summary

This chapter is an overview of common approaches to the analysis of repeated
measurements data, and an introduction to the main issues when there are
missing observations in the data. Random effects models, generalised esti-
mating equations and the summary statistics method have been described
and the approaches compared. Different classifications of missing data have
been defined, and the sensitivity of the models to each category of missing
data has been discussed. Approaches to dealing with missing data are in-
troduced. The theory in this chapter is referred to throughout the thesis,
and many of the issues raised here are dealt with more thoroughly in later

chapters.
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Chapter 3

Sensitivity of marginal models,
random-effects models and
summary statistics methods to
missing data

3.1 Introduction

The aim of this chapter is to explore the extent to which dropout affects
the parameter estimates of methods for repeated measurements data. A
thorough investigation is carried out using simulation studies, together with
evidence from the literature. From the findings of the research, recommen-
dations are made to the applied statistician, for the analysis of incomplete
repeated measurements. The impact of dropout on the results of the asthma

clinical trial are discussed in chapter 5, in the context of this work.

In theory, likelihood-based methods such as the random-effects model are
unbiased for data that have missing observations missing at random (MAR).
This follows from noting that when the data are MAR or missing completely
at random (MCAR), the likelihood factorises into parameters of the distribu-

tion of the response, , and parameters of the missing data mechanism, ¢, as
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described in section 2.6.2. The likelihood, based on only the observed data,
is only fully efficient if these vectors of parameters, 6 and ¢, are distinct, i.e.
there is no overlap in the two parameter vectors. Because GEE models and
the summary statistics method are not based on likelihood theory, in general

both approaches require missing data to be MCAR.

Theory also tells us that when the data are gaussian, generalised estimat-
ing equations reduce to the score equations in likelihood-based models and,
provided the correct correlation structure is applied to the GEE model, the
two types of model become equivalent [4]. According to Diggle, Liang and
Zeger, equivalent marginal and random effects models for gaussian data pro-
duce identical regression parameters but, where there is missing data this
statement will not always hold [9]. Park [2] demonstrated that generalised
estimating equations do not always reduce to the score equations when the
data are incomplete, even if the missing data are MCAR. This is because the
estimation of the covariance matrix in the GEE model is no longer equivalent
to that in maximum likelihood estimation when the clusters are of unequal

size.

Liang and Zeger state in their seminal 1986 paper that if the correlation
structure in a GEE model is correctly specified an assumption of MCAR
"may not be necessary" [4]. This implies that if the wrong working correlation
matrix is used in a GEE model of the simulated data, biased estimates may
be produced when the data are not MCAR. With binary response data,
the GEE of Liang and Zeger, therefore, require missing data to be MCAR,
whereas MAR data will not cause the random effects model to be biased.
Research has found [34], at least in limited scenarios, that GEE show little

bias if the correlation is well estimated. There have been extensions to Liang
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and Zeger's GEE that attempt to improve the estimation of the correlation
parameters, and this is discussed in section 3.4.2. The summary statistics

method requires a stronger assumption of MCAR, for all types of response.

In practice, the extent to which missing observations cause bias to parameter
estimates and affect their clinical and statistical significance is not clear. For
example, it is not known how robust the GEE model is to misspecification
of the working correlation matrix in the presence of missing data. It is also
unclear how sensitivity to missing observations compares between data with
cluster-level and cluster-varying covariates, what proportion of missing data
leads to substantial bias under MAR and MNAR, and how the random effects

model, summary statistics method and GEE compare in different scenarios.

Through simulation studies the effect on parameter estimates of missing data
with various missing mechanisms was investigated. GEE models, random
effects models and the summary statistics method were compared under var-
ious scenarios. The GEE model was fitted with several working correlation
structures to investigate the sensitivity of the model to missing data under
misspecification of the correlation structure. The summary statistics method
was used as a comparison to the more sophisticated models, to give a sense
of the maximum size of bias that could result from the missing data process.
In addition, the summary statistics method is an approach that is employed
in the analysis of repeated measurements from medical studies. A simple
unweighted summary statistics method was implemented, rather than an ap-
proach that weights by a function of cluster size or variance within clusters.
As discussed in section 2.4, the appeal of the unweighted summary statis-
tics approach is its simplicity, which is not shared by the weighted summary

statistics approach.
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MAR and MNAR missing data mechanisms were compared for gaussian and
binary data, with both cluster-level and cluster-varying covariates. By defi-
nition it is not possible for any method to be robust to every MNAR missing
data mechanism, because the values of the missing observations are unknown
and could potentially take any value. In practice, however, observations
within clusters are correlated, and because of this it is possible that the bias
caused by MNAR data may be small. The effect of MNAR dropout was
investigated with various levels of intra-cluster correlation. The sample size
and the proportion of observations missing were altered to investigate their
impact on the parameter estimates. The strength of the ICC was considered
important as it governs the amount of information carried by each observa-
tion in a cluster, and the effect of its size on the parameter estimates was

also investigated.

For binary data, sensitivity of the parameter estimates to missing data un-
der different levels of event probability, p, were compared. The models were
fitted using the statistical package, Stata version 8. Two methods of es-
timation were compared for the random effects logistic regression model:
Gauss-Hermite quadrature in Stata 8, and penalised quasi-likelihood (PQL)
in MLwiN, as PQL has been known to produce biased results [7]. The fit-
ting of binary logistic random effects models is described further in section
2.5.3. The correlation coefficient in the GEE was estimated using the stan-
dard Liang and Zeger method, as a function of the Pearson residuals of the

data.

No simulation study into the impact of missing data on these methods of

analysis of clustered data has been carried out in such depth.

The results of the simulation studies and explanations of the various findings
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are given in section 3.4. Conclusions of the study are summarised in section
3.6, and from the findings, recommendations are made to applied statisticians

analysing incomplete clustered data.
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The following scenarios were investigated:

Gaussian data
MAR data

1. Cluster-level covariate
2. Reducing the sample size

3. Cluster-varying covariate

MNAR data

4. Selection model (SM) simulated data

5. Pattern mixture model (PMM) simulated data

6. PMM simulated, data include period x treatment interaction

7. SM simulated, reducing the intra-cluster correlation to 0.2

Binary data
MAR data
8. Probability of event, p=0.5
9. Reducing the sample size

10. Probability of event, p=0.1

MNAR data
11. Success probability, p=0.5
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3.2 (Gaussian data

3.2.1 MAR observations

Scenario 1: Cluster-level covariate

Data simulation

The data were simulated based on a repeated measurements clinical trial,
comparing two treatments over time. One thousand sets of longitudinal data

were simulated with the following distribution:
Yij = a+ u; + PBtreat + e;; (3.1)

U; ~ N(O, 03)
e,~j‘ ~ N(O, 0'3)

where y;; is the response of the ith subject on their jth visit. All complete
datasets contain 4 observations on 200 subjects, unless otherwise stated. Val-
ues of 3, 02 and o2 were chosen so that, on average, the statistical significance
of 3, the treatment effect, would be fairly strong. The size of §/s.e.(8) is
2.5.

Observations were removed from the complete datasets with subjects drop-
ping out of the study without returning. At least one observation was avail-
able for all subjects, with dropout occurring at periods 2, 3 or 4. Datasets
were constructed with varying degrees of missingness, from 5% to 30% of
observations missing. The results displayed are for datasets with 20% of ob-
servations missing. The intra-cluster correlation (ICC), as defined in equa-

tion 2.2, is a measure of the correlation between observations within clusters.
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Unless otherwise stated, the data are simulated to have an ICC of 0.5, by

setting the between- and within-cluster variances to be equal.

The same 1000 complete datasets were used to construct 1000 datasets with
incomplete observations. The probability of an observation being missing
was dependent on the value of 2;;, a function of previous observations in the

cluster, with the following missing data mechanism:

logit(pi;) = aj + ¢zi; (3.2)
where p;; is the probability that the ith subject drops out at time j. The
choice of z;; depends on whether the missing data are MAR or MNAR.
In the MAR scenarios z;; = y; j_1, i.e. the previous value of the response
predicts dropout. Where the missing data are MNAR, the current value of
the response predicts dropout, z;; = y;;. The value of ¢ is large enough that
subjects that drop out are the subjects with the lowest values of z;;. In other

words, the probability of dropout is strongly related to the response.

In the datasets with 20% of observations missing, on average the frequency

of subject dropout at periods 2, 3 and 4 is given in table 3.1.

Table 3.1: Mean frequency of missing data patterns in datasets with 20%
observations missing

Pattern Dropout at period Proportion subjects

XXXX - 0.55
X... 2 0.1
XX .. 3 0.15
XXX . 4 0.2
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Model fitting

The sensitivity of random effects models, GEE models and the summary
statistics method to MAR data was compared. The data were simulated to
have a random intercept but no other random effects, therefore a random
intercept model was fitted for the random effects model. The correct corre-
lation structure for the GEE model is exchangeable, which is equivalent to

the random intercept model.

The summary statistics method is a simple approach used widely in medical
research. The set of measurements from each cluster is reduced to an appro-
priate single summary measure, and these summary measures are analysed
as if they were the raw data [11]. This removes the clustering effect from the
data. The choice of summary measure, or summary statistic, depends on the
research question, and the nature of the response. For example, the mean
response over the cluster could be chosen as the summary statistic if clini-
cal interest is in the average difference in response between two treatment
groups. Time to maximum response, area under the curve, or rate of change

of response are other possible choices of summary statistic.

In this scenario, the summary statistics method was implemented by reduc-
ing the vector of observations for each subject to the mean of observations
for each subject, as the overall efficacy of the treatments over time is of in-
terest. The mean in the summary statistics method is directly comparable
to the estimates of the random effects and GEE models. The measurements
are equally spaced in time, and therefore there is no need to weight the ob-
servations on a subject according to their spacing. The treatment effect was

estimated to be the difference in means between the two treatment groups.
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The relevant hypothesis test to test for a non-zero treatment effect, was a

two sample t-test.

Results

The results of the models fitted to incomplete gaussian MAR data with a
cluster-level covariate, compared to the same 1000 complete datasets, are
summarised in figure 3.1. The bias is computed by comparing the estimate
of the treatment effect to the estimate obtained for the complete data from
the random effects model (or, equivalently, the GEE exchangeable model).
The bias compared to this sample treatment effect reflects the bias intro-
duced by the missing observations rather than including the sampling error.
The efficiency is the ratio of the empirical standard error of the parameter
estimate, 3, from a correctly specified random effects model fitted to the
complete data, compared to the empirical standard error from each model
fitted to the incomplete data. The next row of the table is the size of the
mean bias compared to the empirical standard error of the estimate. The
final line of the table contains the proportion of datasets where the para-
meter estimate is statistically significant at the 5% level, and the parameter
estimate is in the correct direction. In other words, a parameter estimate
that is negative when the true parameter is positive would not be counted as
significant. For the complete data, with a correctly specified random effects

or GEE exchangeable model this proportion was 0.71.

Plotted below the table are the mean bias and 95% confidence intervals for
the mean bias, for each model. These confidence intervals are an estimated
range for which 0.95 of all mean biases would lie within, if many sets of 1000

datasets were simulated. The intervals can be used to assess the statistical
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significance of any bias in the estimates. The proportion of the 1000 para-
meter estimates significant at the 5% level allows us to assess what effect the
bias would be likely to have on decisions made by clinicians as a result of the
findings of a similar repeated measurements study with missing data. This,
in contrast to the statistical significance of the bias, demonstrates whether
the bias is large enough to affect clinical decisions. This can be considered
“clinical significance” as opposed to “statistical significance”. The mean bias
of the parameter estimate compared to its standard error gives further in-
sight into the size of the bias, in this case providing information about its size

compared to uncertainty in the parameter estimate due to sampling error.

The table below the bias plot summarises the bias and efficiency in the ran-

dom effects, 02 and o2, and the effect of any bias on the ICC.

The results demonstrate that the random effects model is unbiased with 20%
observations MAR, for both fixed and random effects, for a cluster-level co-
variate. The GEE model is significantly biased even when the correlation
structure is correctly specified as exchangeable, or an unstructured corre-
lation matrix is used. The size of this bias is very small compared to the
the standard error of the parameter, and has no effect on the proportion
of datasets where the estimate is statistically significant. The GEE model
performs worst when the wrong correlation structure is applied, and the pro-
portion of datasets where the estimate is significant at the 5% level is reduced
quite substantially, The summary statistics method is also significantly bi-
ased. The size of the mean bias for the GEE models with incorrectly specified

correlation structure, and the summary statistics method, is substantial in
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Figure 3.1: Scenario 1. The effect of 20% MAR missing observations on
gaussian data with a cluster-level covariate.

Hierar- GEE Model Summ.
chical | Exch | Indep | Unstr A-R Stats.
Efficiency (%) 91 93 109 94 104 76
Mean bias/s.e. | -0.009 -0.045 -0.329 -0.057 -0.506 0.163
Proportion sig. 0.67 0.67 0.64 0.67 0.55 0.66
0.64
0.4
0.2
3
g2 ol x I — _—
-0.4
3
-04 $
-04
-048
Random effects estimated in random effects model
ICC Efficiency (%) Bias (95% C.1.)
Comp. data | Inc. data | o2 o2 o’ o2
0.498 0.497 84 84 | -0.104 (-0.40,0.20) | 0.041 (-0.11,0.19)

comparison to the empirical standard error of the estimate.

Increasing proportions of missing data were simulated and, as expected, the

bias in the parameter estimates tends to increase with the proportion of miss-
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ing observations. The bias becomes substantial in comparison to its standard
error with around 10% of observations missing when a GEE model with incor-
rect correlation is implemented. With as little as 5% of observations missing
the GEE are significantly biased, even with the correct correlation structure

chosen.

The summary statistics method is less efficient than the more sophisticated
GEE and random effects_models. The efficiency of the random effects and
GEE models is not substantially affected by the missing data, and actually
increases for the independence autoregressive GEE, despite the decrease in

the sample size. This increase in efficiency is discussed in section 3.4.4.

Scenario 2: Reducing the sample size

The same models were fitted to the simulated data with the number of cases
in each dataset reduced to 100 and to 40. All parameter values were kept
the same, so that the standard error became large in comparison to the size

of the treatment effect.

Reducing the sample size had no effect on the findings. As with the larger
datasets, the bias tends to increase as the proportions of missing observations
increases. The random effects model and correctly specified GEE model
had unsubstantial bias while the greatest bias is caused by the GEE model
with independent or autoregressive correlation, and the summary statistics

method.
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Scenario 3: Cluster-varying covariates

The treatment effect in the above models is termed a cluster-level covariate
because it does not vary within clusters. In this scenario, the sensitivity of
the models to missing data was explored when the covariate varies within
clusters. Time period was introduced into the model as an extra covariate
that varies within clusters. As the data are longitudinal, the subjects are the

clusters and time varies within subject.

Data simulation

Time period, equal to j, is treated as a continuous variable, and the response
is simulated to change linearly over time. The model from which the data

are simulated is as follows:

Yij = o + u; + Bitreat + Brtime + e;; (3.3)
u; ~ N(0,07)
e;; ~ N(0,07)

The value of 3, was chosen so that the size of §,/s.e.(3;) was 2.5, as it was

for the cluster-level covariate, treatment, in section 3.2.1.

Model fitting

A random effects model and GEE models were fitted to the data, with the

same covariates that the data were simulated from. A summary statistics

50



method was also applied to the data. This time, because the parameter of
interest is change in the outcome over time, a suitable summary statistic is
an estimate of the slope. The slope was estimated by ordinary least squares.
In the incomplete data some subjects have only one observation, that taken
at period 1, and for these subjects there is no estimate of the slope. The
estimate of the parameter of interest, 32, is the mean of all the slopes. The
model standard error of (3, is the standard definition of the standard error
of a mean, i.e. the sample standard deviation of the estimates of the slope
divided by the square root of the number of slope estimates. The results are

summarised in figure 3.2.

Results

When the covariate varies within cluster, the bias is in general greater than
when the covariate is fixed over the cluster. The random effects model is

virtually unbiased, but this bias is borderline significant.

The performance of the GEE model is again poor in comparison to the ran-
dom effects model, especially when the wrong correlation structure is chosen.
With an exchangeable or unstructured working correlation matrix the bias
is significant but smaller than the standard error of the parameter. The bias
in the correctly specified GEE is significant even with 5% of observations
missing. With the wrong correlation structure, in the presence of missing
data, the estimates become extremely biased. For example, with 20% of ob-

servations missing, the parameter estimate obtained from the independence
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Figure 3.2: Scenario 3. MAR missing observations in gaussian data with a
cluster-varying covariate.

Hierar- GEE Model Summ.
chical | Exch | Indep | Unstr A-R Stats.
Efficiency (%) 61 60 59 41 57 36
Mean bias/s.e. 0.046 0.607 4.495 0.138 -0.215 -7.047
Proportion sig. 0.53 0.77 1.00 0.61 0.46 0.00
0.5
0 - M B e -
g o
-14
-14
-26

Random effects estimated in random effects model

ICC Efficiency (%) Bias (95% C.1.)
Comp. data | Inc. data ol o’ ol o2
0.495 0.520 81 83 | 1.94 (1.6,2.2) | -0.595 (-0.74,-0.45)

GEE model is more than three times the true value of the parameter. The
summary statistics method performs worst of all. The bias is significant with

as little as 5% of observations missing at random.
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The efficiency of the methods is substantially decreased by the missing data,
even for the random effects model which is unbiased, but especially for the
unstructured GEE and the summary statistics method. The proportion of
parameters significant at the 5% level was, again, 0.71 in the complete data.
This proportion is affected by the missing data in all models, even in the

random effects model, which is unbiased but less efficient because of dropout.

3.2.2 Missing data that are missing not at random

Scenario 4: Selection Model simulated data

The incomplete datasets so far have contained missing observations that are
missing at random (MAR). Because the data are gaussian, in theory both
random effects and marginal models should be robust to this missing data
mechanism. However, neither type of model can, in theory, handle missing
data that are missing not at random (MNAR). It is unclear, however, to
what extent MNAR dropout will affect the parameter estimates because of
the correlation within subjects. The models were fitted to datasets with a
MNAR missing data mechanism to test how sensitive they are in practice to

MNAR missing data.

The same complete datasets were used to construct datasets with a MNAR
missing mechanism. The probability of an observation being missing was

dependent on the value of that observation; in equation 3.2 2;; = y;;.
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The same models were fitted to the data here as to the data with a MAR

missing data mechanism.

Results

Figure 3.3: Scenario 4. MNAR selection model simulated data

Hierar- GEE Model Summ.
chical | Exch | Indep | Unstr A-R Stats.

Efficiency (%) 116 117 125 119 118 102
Mean bias/s.e. | -0.361 | -0.382 | -0.604 -0.397 -0.737 -0.179
Proportion sig. 0.67 0.67 0.63 0.67 0.55 0.66
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Random effects estimated in random effects model

ICC Efficiency (%) Bias (95% C.I.)
Comp. data | Inc. data | o2 ol ol o’
0.498 0.447 103 91 |-6.76 (-7.0,-6.5) | -2.64 (-2.8,-2.5)

o4




There is generally more bias with a MNAR mechanism than with MAR
data. All models, including the random effects model, are significantly biased
when the data are MNAR, even with as little as 5% of observations missing.
The findings are the same for fixed and random effects. There is very little
difference in the performance of the models; in the scenario simulated, the
summary statistics method produces the least biased estimates, although
this bias is significant and substantial. The bias due to MNAR dropout is so
great that the choice of correlation structure in the GEE becomes relatively

unimportant.

The efficiency of all models increases when the data are incomplete, even
though there are less available data. Notice that the within- and between-
variances in the random effects models are negatively biased, demonstrating
that there is less overall variability in the data. This issue is discussed further

in section 3.4.4.

Scenario 5: A Pattern mixture model MNAR mechanism

Data simulation

The selection model simulated MNAR data attempts to replicate a clinical
situation where a subject’s response is unusually low (or high) at the time
of dropout. An example of where this might occur is a study in which

clinicians withdraw patients if their response falls below (or rises above) a
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pre-specified threshold, or a patient’s condition suddenly deteriorates to the
extent that they fail to attend clinic. An alternative clinical scenario can be
considered where subjects that drop out of the study come from a different
distribution to subjects that complete the study. This can be considered
a missing covariate problem; there is a covariate that is missing from the
analysis which causes the distribution of the subjects that drop out of the
study to be different to the distribution of the completers. In certain clinical
scenarios this may be a more realistic dropout mechanism than the selection
model mechanism in scenario 4. For example, it may be that subjects that
drop out of the study are characterised by a different average response and
/ or different reaction to the treatment to subjects that complete the study.
The data were simulated from the following models for the completers and

dropouts:
Yij = ac +u; + Betreat + e;; completers

Yij = 0q + U; + Patreat + ;5 dropouts
u; ~ N(O, 0’3)
ei;; ~ N(0,02)

The population parameters were defined so that:

ﬁc =10 x ,Bd
The overall population treatment effect, Bcompined, averaged over all subjects,
can be computed as the weighted mean of the two values of beta for the

two distributions, weighted by the proportion of subjects with each distribu-
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tion. This value was chosen to give 3/s.e.(3) =2.5, as it was in the previous

scenarios.

The dropout mechanism here is different to the previous scenarios, as the
data are simulated in such a way that it is predetermined which subjects will
drop out. Amongst the dropouts, those with the lowest response at time 2
drop out at time 2, those remaining with the lowest response at time 3 drop

out at time 3, and the rest drop out at time 4.

Results

The random effects model is significantly biased with this MNAR missing
data, but the bias is less than in the selection model simulated MNAR data.
The GEE model is also significantly biased, even when the correct correla-
tion structure or an unstructured correlation is used. Again, the bias in the
random effects follows the same trend as the bias in the fixed effects. Notice
that the models fitted here are wrong, in that there are two distribution for
the data, and only one distribution is modelled. This increases the overall
variability in the data, and affects the variance components and normality
assumptions of the model, even in the complete data. The summary statis-
tics method under this MNAR mechanism is unbiased. This is explained in
section 3.4.3. In the straightforward unweighted summary statistics method
adopted here, the number of observations within clusters is not adjusted for,

and therefore, the standard error is estimated incorrectly.
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Figure 3.4: Scenario 5. MNAR pattern mixture model simulated data

Hierar- GEE Model Summ.
chical | Exch | Indep | Unstr A-R Stats.
Efficiency (%) 113 114 134 113 128 104
Mean bias/s.e. 0.092 0.118 0.552 0.105 0.400 0.002
Proportion sig. 0.77 0.78 0.93 0.78 0.88 0.70
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Random effects estimated in random effects model
ICC Efficiency (%) Bias (95% C.1.)
Comp. data | Inc. data ol o> o2 o’
0.715 0.677 97 87 |-10.73 (-11.2,-10.2) | -0.253 (-0.39,-0.12)

Scenario 6: MNAR with a time-by-treatment interaction

More realistically the model for the data will have interaction terms as well

as main effects. Subjects in the treatment group were given a time effect of
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(B2 while subjects in the control group had no time effect, as follows:

Yij = ac + u; + Bctreat + Bytime X treat + e;; completers
Yij = g + Uu; + Bytreat + Botime X treat + e;; dropouts
u; ~ N(0,02

eij ~ N(0,02)

Again time is equal to j. The size of 3, and (3, are the same as in scenario 5,
and the dropout mechanism is also the same. As in scenario 5, the parameter
of interest is the overall treatment effect. The random effects model fitted to

the data is:

Yij = a + u; + Bitreat + Botime X treat + e;; (3.4)

while the GEE model fitted is:

E(yij) = a + Bitreat + Bytime x treat + e;; (3.5)

Results

The overall findings are very similar to those of scenario 5, with all models
biased. The performance of the GEE model was worse than the random
effects model, especially when the correlation structure is misspecified. The
bias is in the opposite direction to scenario 5 for the GEE independence and

auto-regressive models. The other difference in the results from scenario 5
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Figure 3.5: Scenario 6. Bias due to MNAR data with a period-by-treatment

interaction.
Hierar- GEE Model Summ.
chical Exch | Indep Unstr A-R Stats.
Efficiency (%) 104 104 98 98 95 175
Mean bias/s.e. 0.095 0.073 -0.455 0.108 -0.151 1.991
Proportion sig. 0.61 0.47 0.31 0.49 0.43 1.00
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Random effects estimated in random effects model

Bias (95% C.1.)

ICC Efficiency (%)
Comp. data | Inc. data o’ a2 a-
0.705 0.677 86 | -7.44 (-7.9,6.9) | -0.011 (-0.15,0.13)

is that the efficiency is generally decreased by the missing data, rather than

increased.

The summary statistics method is a poor analysis approach when an inter-
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action term is introduced, even with complete data, because it does not take
into account any period effect and overestimates the difference in means of

the two treatment groups.

Scenario 7: Changing the correlation within clusters

All of the data so far have had an intra-cluster correlation coefficient (ICC)
of 0.5. This is the proportion of the total variance that is between-cluster
variance. Lowering the ICC means that there is more variation within clusters
and less variation between clusters. Removing an observation from a cluster
removes a greater amount of information from the data than when the ICC
is lower, because with a higher ICC the observations that remain within the
same cluster are more similar to the missing observation. We therefore expect

missing data to cause a greater degree of bias.

Data simulation

Further datasets were simulated with an ICC of 0.2. The same total variance
was used but this time the between-cluster variance and within-cluster vari-
ance had the ratio 1:4. The incomplete datasets were constructed in exactly

the same way as those in scenario 4.

Results
The results are summarised in figure 3.6. When the ICC is reduced, the bias

in every model is much greater in comparison to the standard error of the
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Figure 3.6: Scenario 7. MNAR data with a reduced ICC.

Hierar- GEE Model Summ.
chical | Exch | Indep | Unstr A-R Stats.
Efficiency (%) 140 140 141 141 133 120
Mean bias/s.e. | -1.114 | -1.119 | -1.180 -1.132 -1.240 -0.854
Proportion sig. 0.62 0.61 0.60 0.62 0.55 0.59
0.6
0.4
0.2
B 0
o
-0 -
¥ X 3 + X 3
-0.4 3
-0
-0.8

Random effects estimated in random effects model

ICC Efficiency (%) Bias (95% C.1.)
Comp. data | Inc. data | o2 a2 ol o’
0.198 0.152 116 101 |-3.91 (-4.1,-3.7) | -6.80 (-7.0,-6.6)

parameter. The absolute size of the bias is smaller than when the ICC is 0.5,
but as in scenario 4, all models produce significantly biased estimates. The
random parameters are again biased. As in scenario 4, the extent of the bias

is so severe that there is little difference in bias between the different models.
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The choice of correlation structure has less of an effect on the bias when the

ICC is low.

3.3 Binary data

When the data are not gaussian, the random effects model and the GEE
model are no longer equivalent, even when the appropriate correlation struc-
ture is chosen. Theory tells us that while the random effects model can
handle missing observations that are MAR, GEE models require the stricter
assumption of MCAR, as explained in section 2.6.2. It is expected that there
will be bias in estimates from a GEE model fitted to binary incomplete data

that do not meet the MCAR assumptions.

Estimates from a GEE model have a population-averaged interpretation
while coefficients of a random effects model are cluster-specific, as described
in section 2.5.4. For gaussian data, the estimates from a GEE model are the
same as those estimated from a random effects model. However, for non-
gaussian data the estimates are no longer equivalent. When the data are
binary, population-averaged coefficients are interpreted as the average log
odds ratio of the event for a unit change in the covariate, having adjusted
for all other covariates. In contrast, the interpretation of the cluster-specific
estimate from a random effects model is the log odds of the event for a change
in the covariate, for a specific cluster with its particular values of the other
covariates, averaged over all clusters. Equation 2.7 is an approximation de-

rived by Zeger et. al. to convert a cluster-specific coefficient from a random
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effects logistic regression to a population-averaged coeflicient.

3.3.1 Data simulation

The GEE is fitted to data simulated on the population-averaged scale, i.e.
the logistic relationship between the success probability and the covariate is
marginal, as in equation 2.6. Parallel datasets must be simulated on a cluster-
specific scale to test the robustness of the random effects model to missing
data, with a cluster-specific relationship between the success probability and

the covariate, as given in equation 2.5.

Population-averaged data simulation

Population-averaged correlated binary data were simulated using an ap-
proach suggested by Oman and Zucker [35]. The data have an exchangeable
correlation structure and are generated by simulating two independent stan-
dard Normal variables, ¢;; and ¢;, and a third independent binomial variable,
U;; with success probability 7. There are, again, 200 subjects with 4 observa-
tions for each subject. A continuous variable, S;;, correlated within subject,

is constructed as follows:

S,'j = (1 — U,'j)fij + U,'jé,‘ (36)

From this continuous variable, a binary variable with success probability, p;,

is defined by:
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Y20 oo @)
where 6;; is the quantile of the standard Normal distribution corresponding
to the marginal success probability of the binary variable, p;. The correlation
between observations within-cluster is equal to ¥2. This correlation occurs

as a result of the variable, ¢;, which takes the same value for all observations

within the same subject.

The covariate, treatment effect, was introduced to the data by defining the

value of p; for the ith subject from the following relationship:

logit(p;) = a + Btreat; (3.8)

Cluster-specific simulated data

Simulation of cluster-specific data is more straightforward, as follows:

Y;; ~ Bernoulli(p;) (3.9)

_ exp(a +u; + Btreat;)
Pi=17 exp(a + u; + Btreat;)

(3.10)

For both the population-averaged and cluster-specific simulations, the strength

of 3 was chosen so that the size of s—e% was 2.5, as in the gaussian data.

The missing data mechanism is the same as for the gaussian data, as de-

scribed by equation3.2. The parameter ¢ governs the strength of the rela-
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tionship between the probability of dropout and the response, and this is the

same for gaussian and binary data.

3.3.2 MAR data

Scenario 8: Success probability p=0.5

Model fitting

The random effects model was fitted to the binary data using both ML-
wiN and Stata, as the two packages use different methods of model fitting.
These methods, described in section 2.5.3, are second-order penalised quasi-
likelihood and quadrature respectively. There is concern that the quadrature
method is unreliable for fitting random effects models to non-gaussian data
because convergence can be difficult to achieve, especially if the number of
quadrature points is not large [7]. Stata uses 12 quadrature points by default
but this number can be increased at the expense of longer convergence time.
In this study the number of quadrature points was kept at the default setting

of 12.

Results

The random effects models implemented in Stata and MLwiN are not sig-
nificantly biased in the fixed effects, although the bias in the random effects
is significant. The GEE model is unbiased when the correlation structure is

correctly specified or an unstructured correlation matrix is used. The GEE
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Figure 3.7: Scenario 8. Binary MAR data, success probability p=0.5

R.E. model GEE Model
MLwiN [Stata | Exch | Indep | Unstr A-R
Efficiency (%) 117 94 85 76 84 70
Mean bias/s.e. | 0.063 | 0.006 | -0.059 1.111 -0.074 1.159
Proportion sig. 0.64 0.70 0.72 0.24 0.73 0.22
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0.142 (-0.01,0.30)

model with incorrect correlation structure produces the most bias and least

efficient estimates.

Note that there is no estimate of the within-cluster variance, o2, for binary
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data. In a random effects logistic regression model it is usual to constrain
the level 1 random effects, e;;, to have mean zero and variance 1, resulting

in binomial variation.

Scenario 9: Reducing the sample size

As with gaussian data, the sample size did not affect the findings of the
study. Again, the random effects model in MLwiN and the GEE model
with correctly specified correlation were unbiased, but the other models were

significantly biased.

Scenario 10: Changing the success probability, p

The results in figure 3.8 are for binary data with success probability p=0.2
instead of the previous p=0.5. The missing data mechanism is MAR, as in
scenario 8.

When the success probability of the binary response variable is reduced from
0.5 to 0.2 the bias due to dropout in the GEE models increases. With this
smaller success probability, the bias is statistically significant, even when the
correct correlation structure is applied. GEE models with incorrectly spec-
ified correlation structure are extremely biased. The random effects model
fitted in Stata is also significantly and substantially biased, for both the fixed
and random effects. There are problems with model convergence in MLwiN,

which is why no results are shown for this model. In almost 40% of simula-
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Figure 3.8: Scenario 10. Binary MAR data with success probability
0.2

R.E. model GEE Model
MLwiN |Stata | Exch | Indep | Unstr A-R

Efficiency (%) - 86 98 83 94 58
Mean bias/s.e. - -0.555 | 0.148 0.865 0.062 1.718
Proportion sig. - 0.65 0.67 0.35 0.71 0.10
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tions, either the model fails to converge, or the model becomes un-estimable
because the covariance matrix of the random effects becomes negative definite

or all the random parameters become zero during the iterations.

3.3.3 Missing observations that are missing not at ran-
dom

Scenario 11

Refer to figure 3.9 for a summary of the results. All models perform very
poorly when the missing data are MNAR. For example, the estimates ob-
tained from a random effects model fitted in Stata and the GEE exchangeable
model are both biased on average by an amount comparable to the size of
their standard error. And worse than this, a GEE model with auto-regressive
correlation structure produces a mean estimate biased by almost twice its
standard error. The size of the bias in the random effects model is greater
here than for MNAR gaussian data, but is no greater in the GEE models.
The extent of the bias is so great that no model could be recommended when

the data are binary and observations are MNAR.

3.4 Discussion of findings

The findings are summarised in tables 3.2 and 3.3 for gaussian and binary
response data respectively. In each scenario and for each model, a e in the

column "Biased" indicates that with 20% of observations missing, the bias
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Figure 3.9: Scenario 11. Binary MNAR data, success probability 0.5.

R.E. model GEE Model
MLwiN [Stata | Exch | Indep | Unstr A-R
Efficiency (%) 127 84 77 71 75 64
Mean bias/s.e. | 1.175 | 1.515 | 1.001 1.831 0.958 1.908
Proportion sig. 0.24 0.14 0.29 0.09 0.30 0.06
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83

-0.012 (-0.07,0.05)

105

-0.056 (-0.28,0.16)
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was at least 0.1 times the size of the standard error, and was statistically
significant. And efficiency of less than 80% is indicated by a e in the "Ineffic."

column.

Table 3.2: Summary of findings for gaussian response data

R.E. Exch. Ind. Unstr. A-R Sstat.
Scenario @ :E? glg|w|lsg|lw|ls|w|s|wls
& E 1S8R &8 151818
17| 8 | F E|P|E|F|E|F LT
MAR
1 Cluster-level ° ° °
3  Cluster-varying e | o | oo | 0o | 0| e |0 ||| e
MNAR
4 SM ° ° ° ° ° °
5 PMM ° ° ° °
6 period x treat ° ° ° °
7 ICC=0.2 ° ° ° ° ° °

Table 3.3: Summary of findings for binary response data

R.E.

MLwiN | Stata | Exch. Ind. Unstr. A-R

Scenario
i P8 PIE|P|E|F 8 |P|E|F

MAR
8 p=0.5 o | o °
9 p=0.2 - - ° ° °

MNAR
11 p=0.5 ° . o | oo 0o | 0| 0| e | e

Studies of the degree of missingness show that in the random effects model or

GEE with correctly specified correlation, the bias is unsubstantial with up to
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20% missing observations when missingness is MAR. With a MNAR dropout
mechanism, however, the parameter estimates are affected substantially with
as little as 5% of observations missing. This demonstrates that the correlation
within clusters is no protection against MNAR missing data, and that any
assumption that the missing data are MAR, and not MNAR, should not be

made without serious consideration.

Reducing the ICC does increase the bias of the parameter estimate relative
to its standard error, as expected. The absolute size of the bias, however,
is smaller when the ICC is lower. This follows from noting that data of the
same sample size, and the same total variance (i.e. the sum of the within-
and between-cluster variances) but lower ICC produce parameter estimates
with smaller standard errors, at least when estimating the effect of a cluster-
constant covariate. The missing data, therefore, cause a smaller absolute
bias in the mean response in each treatment arm, and therefore a smaller
bias in the treatment effect. This result cannot be generalised to cluster-
varying covariates because the ICC will affect the estimates of a cluster-
varying covariate differently; large correlation within clusters is likely to lead

to better estimation of effects within clusters.

3.4.1 Random effects model

The random effects model was found to be robust to MAR missing data for
both cluster-level and cluster-varying covariates. Although the bias in the
presence of a cluster-varying covariate was statistically significant, the size of

the bias compared to the standard error of the parameter was minimal. The
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only exception to this robustness to MAR is in the logistic regression model
when p is small, when the model fitted in MLwiN often failed to converge,
and the quadrature method implemented in Stata 8 was substantially biased.
These findings agree in general with the theory that likelihood estimation is
robust to MAR data, as discussed in section 2.6.2. The findings were the same
for both fixed and random effects. As expected, the more severe missing data
mechanism, MNAR, leads to significant bias in estimates from the random
effects model, even with as little as 5% of observations missing. The bias in
the random effects model, compared to the standard error of the estimate,
as in all approaches, increases as the ICC decreases. This is because each
observation carries more information when the correlation within clusters is
reduced, therefore removing observations causes more bias. As expected, the
extent of the bias also increases with the proportion of observations missing.
Reducing the number of clusters in the datasets did not affect the findings

of the study.

Although the quadrature method, implemented in Stata 8 for the logistic
random effects model, was robust to MAR for p=0.5, the estimates were
significantly biased when the average success probability was reduced to 0.2.
The adequacy of the method of model fitting was checked using a feature
in Stata 8 that re-fits the model with two different numbers of quadrature
points, and compares the parameter estimates between the two model fits.
If the parameter estimates from each model fit have a relative difference of

greater than 1 x 10™* the quadrature method is not considered reliable [36].
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For both the complete datasets and the incomplete datasets in scenarios 8
and 10, the relative difference in the model parameters with 8 and 16 quadra-
ture points was of the order of 0.1. This demonstrates that the quadrature
method did not fit the model reliably, and explains why the random effects
model fitted in Stata gave biased results, in scenario 10, with p=0.2. Up to
30 quadrature points can be used to fit the logistic random effects model in
Stata 8. With 30 quadrature points, the relative difference in the parameter
estimates with 26 and 34 quadrature points is of the order 1071°, demon-
strating a much more reliable model fit. In fact, with the maximum number

of quadrature points, MAR data do not cause significant bias in scenario 10.

Stata have released version 9 since these simulation studies were carried out.
Stata 9 uses adaptive Gauss-Hermite quadrature in its estimation of ran-
dom effects logistic regression models, using the procedure glamm. This
transforms the integrand so that it is sampled on a more appropriate range,
and has been shown to be a better numerical integration method than non-
adaptive quadrature [37]. The glamm procedure also extends to random co-
efficients other than a random intercept, which the standard random effects

model is Stata does not allow.

There were convergence problems with MLwiN when the success probability
was small. Goldstein (7] found by simulation that when the average proba-
bility is very small (or very close to 1), and there are therefore many clusters
where all elements are zero (or one), the estimates may not converge, and

when they do, they may be biased.
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3.4.2 GEE models

GEE models on gaussian data are expected to be unbiased under MAR when
the correlation structure is correctly specified and the correlation coefficient
is estimated without bias. Here the GEE model was found to be fairly robust
to MAR observations if the correct correlation structure was applied, or an
unstructured correlation matrix was used. Under these conditions the bias
was small but statistically significant. The estimate was more biased but
just as efficient as the estimate from the random effects model. For binary
response data, the GEE model is fairly robust to MAR observations only if
the correct correlation structure is applied and the average event probability,
p, is 0.5. If the wrong working correlation matrix is applied and / or the
event probability is small, the GEE model is significantly biased but the size
of the bias compared to the standard error of the estimate is small, and is
smaller than that estimated from the random effects model implemented in

Stata 8.

If the missing data are MNAR, GEE perform poorly, for both gaussian and
binary data, for cluster-level and cluster-varying covariates. This is also the
case for the random effects model; all models are very biased in the presence

of as little as 5% of observations MNAR.

MAR dropout in GEE with gaussian response

The following description of GEE demonstrates why GEE are, in theory,

asymptotically robust to MAR dropout for gaussian data, when the correct
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correlation structure is chosen. Following this proof is an explanation of
why GEE with the wrong working correlation matrix are biased under MAR

dropout.
The score-like equations solved in GEE models, for N clusters, are [4]:

N N
Y U= DIV;'s;=0 (3.11)

i=1 i=1
where
A”Ri(a)A}?
- ¢

In this representation of the score equations A; is a diagonal variance ma-

V;

trix of Y;, R;(a) is the working correlation matrix, and V; is the working
covariance matrix of Y;. S; is a vector of residuals for the ith cluster, (Y;—
ui). D; = %% can be considered the “covariate weighting” because it weights

how useful the elements of Y, are for estimating 3 from the value of X;.

Consider the situation where the full response vector, Y, is partitioned into
Y, of dimension n,, which is fully observed for all subjects, and Y5 of dimen-
sion ny, which is observed only for some subjects. If u= E(Y}; | X;) then
Sy is a vector of residuals Y;;—p1; and analogously, Sy; = Yo;—pa;. Let
Vi be the working covariance matrix in the fully observed partition of the
data, and let D;; = Q(%l. Then the contribution to the estimating equations

from a subject that is only partially observed is:
U? =D}, V'S (3.12)
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Define M; to be an indicator variable, equal to one if a subject is partially
observed, and zero for completely observed subjects. The full GEE, had all

observation been obtained is then:

iUi = f: MU; + (1 - M;)Uj] (3.13)

=1

while the estimating equations for the incomplete data, ignoring the missing
data are:
N

M, U? + (1 — M,)Uj] (3.14)

N
S U=
i=1

so that the difference in the estimating equations on the complete compared

=1
to the incomplete data lies in whether the contribution from the subjects
that drop out is U; or U?.

Assume that the working correlation matrix, R(a), is correctly specified. For

normal linear regression A; is constant across j and can be re-written:

1 0 0
A—or| O 1 e (3.15)
0 1
and then:

i‘jDT Corr(Y,) CorrT(Y,,Y,) ! E S, | M;=1
¢ : CO’I"T(YI,YQ) COT’T(YQ) 82 l Mi =1

and from multivariate theory we note that the expectation of the unobserved

S, conditional on the observed Y, assuming the missing data are MAR, is:
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E(82 | M,’ = 1) = COTT(Y],Y2)COTT(Y1)_1E(81 I M,‘ = 1) (317)

so that, from 3.16:

a’_, Corr(Y,) CorrT(Y1,Ys) \ L, _
?Di ( Corr(Y1,Y5) Corr(Ys) Corr(Y1,Y3)Corr(Y;)™! ElSi | M; =1]

which can be shown to be equal to:

2 _
E(U; | M;=1) = %DZ ( Co:)r ) ) ES; | M; =1] (3.19)

where 0,,, », is a matrix of zeros of dimension n, x n;. The proof of 3.19 is
given in appendix A. Compare this to the expectation of the ith contribution

to the GEE of the observed measurements, ignoring the missing data:

2
= %—D'l,-Corr_l(Y,)E[Sl | M; = 1]

so that E(U? | M; = 1) = E(U; | M; = 1) and the GEE on the incomplete
data is asymptotically unbiased if the missing data are MAR and the correct

correlation structure is chosen.
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Intrinsic weighting in GEE

Equation 3.19 demonstrates that GEE are robust to MAR missing data if
the correct correlation structure is chosen. The intrinsic weighting in GEE

explains the bias in GEE with different working correlation matrices.

To ease notation, V; ! is represented by C;, which is referred to as the “inverse

covariance weighting”, and the score equations in 3.11 become:

N
> U;=D]C;S; =0 (3.21)

i=1

If the covariate is fixed at the cluster level, the elements of D, are constant

within the cluster and D; becomes:

1
1
1
and the score equations are reduced to:
S;
Cini Caz ... Cig, S;
U =d(1,1,....1) . (3.23)
Cinil e e Cin.-n.- .
Sin,-

=d;(Xrt; Cik1Sin + 2kt CikaSiz + ... + Xkt Cikn, Sin,)  (3.24)

= di(WﬂSil +...+ WijSij +...+ WiniS,-n,.) (325)

where Cj; is the element of the inverse covariance matrix corresponding to
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the jth and kth elements of Y;. Equation 3.25 demonstrates that the weight
from the covariance matrix for the jth residual, W;;, is the sum of the jth
column of the inverse covariance weighting matrix, C;. The vector W; is

referred to here as the “correlation weighting”.

As stated earlier, for gaussian data, A; is constant across j and can be re-

written:

1 0 0
A=o2| 01 (3.26)
o ... ... 1

Therefore, for gaussian data with only a cluster-level covariate, C; is a scalar
multiple of the inverse working correlation matrix. For exchangeable, inde-
pendence and autoregressive GEE models, the working correlation matrix is
a function of the correlation parameter, &, estimated at each iteration of the
GEE algorithm. The expected correlation weighting, W; is calculated for
exchangeable, independence and autoregressive GEE models, as a function

of &, in table 3.4.

Here, the simulated data are exchangeable, and equation 3.19 demonstrates
that if exchangeable GEE are applied to these data with MAR dropout, and
the correlation coeflicient is estimated without bias, the regression estimates
will be asymptotically unbiased. In scenario 1, the GEE parameter estimates

were much more biased when the wrong correlation structure was chosen.

Equation 3.25 expresses the GEE as a weighted sum of the residuals. If these

weights do not match those in the exchangeable GEE, and there is bias in
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Table 3.4: Intrinsic weighting within and between clusters for the GEE model

and summary statistics method

Correlation
structure

Correlation weighting,

m }

Weighting for cluster,
Wi

Independence

Exchangeable

Auto-regressive

Summary Statistics

( Wi \
Wi2
wj3

\ i, J
( Wi \

W2
W;3

k w;,,.. )
( Wiy \

Wi2
w;3

\ v /
/ Wiy \

Wi2
W;3

\ i,

(1)

1
1
1

L1/

=1
T 1+(ni—-1)a&

\1)

n;

_n
I+(ni—Da

n,-—!m—2!d
1+é&
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elements within clusters and/or in whole clusters, the parameter estimates
will be biased. Table 3.4 demonstrates that the weights between elements
and/ or between clusters in the independence and autoregressive GEE are
different to those in the exchangeable GEE. The MAR dropout mechanism
causes subjects to drop out immediately after an unusual response, causing
bias in the elements of incomplete cluster as a whole. The correlation between
elements in a cluster means that there is also bias in the clusters. This
explains the different bias in the GEE when different working correlation

structures are chosen.

The unstructured GEE with MAR data gives similar bias to the exchangeable
GEE, because the correlation structure is estimated from the data. When the
data are exchangeable, it is expected that the unstructured correlation matrix
will be estimated as similar to the exchangeable correlation matrix. By
examining the working correlation matrix of the unstructured GEE model,

it was established that this was indeed the case.

Estimation of the correlation coefficient, o

Park [2] demonstrated that generalised estimating equations do not always
reduce to the score equations when the data are incomplete, even if the
missing data are MCAR. He attributes this to bias in the estimation of the

covariance matrix when the cluster sizes are unequal.

Since Liang and Zeger first published their GEE approach, advances have

been made in estimating parameters of the correlation matrix in the pres-
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ence of missing data. The standard GEE use the unconditional Pearson
residuals to estimate a. One alternative approach proposed by Carey et.
al. [38] and Lipsitz and Fitzmaurice [39] is to estimate o using conditional
residuals, ie. {Y,Yi: — E(Y: | Yis = ¥is, Xi)} in estimating the correla-
tion between observations s and ¢ (¢ > s) in the ith cluster, as opposed to
{Y:,Yy — E(Y.:Y:s | Xi)} in the standard GEE. An alternative approach for
estimating the correlation parameters is through multivariate normal esti-
mating equations. Lipsitz et. al. [40] suggested this approach for binary
outcomes, which ensures that the correlation matrix is non-negative definite.
Fitzmaurice et. al. [34] demonstrate through simulation studies that, with
binary response data, these advances in estimating the correlation parame-
ters result in negligible bias in a, é.nd as a result, in the regression parameters,
when missing data are MAR. They found that the standard GEE of Liang

and Zeger, fitted to the same data, gave biased estimates of o and 3.

Perhaps then, a further possible explanation of the sensitivity of GEE models
to missing data is that there is bias in the estimation of a. The simulation
study mentioned above, by Fitzmaurice et. al., investigated the bias in the
correlation parameter for binary response data only. The GEE with correctly
specified correlation structure is biased in the presence of MAR dropout, even
with gaussian response data. This disagrees with the result in equation 3.19.
Also, the GEE reduce to the score equations under these conditions, and the
random effects model is unbiased. Bias in the estimation of o would explain

this anomaly.
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Note that the data are simulated to have an exchangeable correlation but that
the autoregressive GEE model fits a correlation of v ~*! between observations
at time-points j and k. For example, the autoregressive model attempts to

fit the following correlation structure to a cluster of size 4:

1 v 7y 7
vy 1 oy A2
3.27
¥y oy 1
when the true correlation structure is:
1l o o «
a l a «o
0 o 1 o (3.28)
a a o 1

Depending on how the particular algorithm estimates < for autoregressive
correlation, 4 could be very biased if the true correlation is exchangeable.
However, Stata’s autoregressive GEE model estimates v using only pairs of
observations that are one time-period apart. Therefore in Stata, 4 estimated
from an a-r GEE model will be unbiased (if less efficient) compared to &
estimated on the same data from the exchangeable GEE, when the true

correlation structure is exchangeable.

The estimation of the correlation coefficient was checked by examining the
estimates across all 1000 datasets. By correlation coefficient, we refer to o
in the exchangeable GEE, v in the auto-regressive GEE, and all elements,
aji of the unstructured correlation matrix. For example, in the unstructured

GEE, a cluster of size 4 has a vector of 6 correlation parameters, defined by:
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1 a3 an ag
a1 1 azp oy
a3 azz 1 oy
Q41 Qg2 ag3 1

(3.29)

For gaussian response data, with cluster-varying or cluster-level covariates,
the GEE model with exchangeable, unstructured or a-r correlation estimated
this parameter without bias when the data were complete. The estimate
was significantly biased by the missing data, with very little difference in the
estimates between exchangeable, unstructured and autoregressive correlation
structures. Whether the covariate was fixed at the cluster level or was cluster-
varying made very little difference either. 95% confidence intervals for the
correlation coefficient are given in table 3.5. This bias explains the bias in
the GEE with gaussian data and a MAR dropout mechanism, even when the

correlation structure is correctly specified.

GEE models with binary data

The severity of the bias in GEE models is similar for gaussian and binary data
for MAR and MNAR data, especially if the success probability in the binary
data is not 0.5. In general, GEE models require missing observations to be
MCAR. As explained by equation 3.19, for gaussian response data, there are
circumstances where the generalised estimating equations are robust to MAR.
GEE are not expected to be robust to MAR missing data for binary data,

and there is indeed bias in the GEE logistic model, even when the correct
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Table 3.5: 95% confidence intervals for the correlation coefficient, estimated
in each GEE, for the complete and incomplete gaussian data with a=0.5

Complete/ Incomplete Correlation structure 95% CI

Cluster-level covariate

Complete Exchangeable (0.42,0.57)
Unstructured (0.42,0.57)
AR (0.42,0.57)

Incomplete Exchangeable (0.32,0.51)
Unstructured (0.27,0.50)
AR (0.29,0.48)

Cluster-varying covariate

Complete Exchangeable (0.42,0.57)
Unstructured (0.37,0.61)
AR (0.42,0.57)

Incomplete Exchangeable (0.31,0.51)
Unstructured (0.28,0.51)
AR (0.29,0.48)

correlation structure is chosen. This is the case even when the estimation
of a is unbiased, when the success probability, p, is 0.5. When p=0.2, the
estimation of a becomes biased, as shown in table 3.6, and the bias in the
GEE increases for all correlation structures. The bias in o is a possible

explanation for this increase in bias in the regression parameters.

3.4.3 Summary statistics method

Cluster-level covariates

For MAR data and cluster-level covariates, the size of the bias is similar
in size to that of the GEE model with mis-specified correlation structure.

The exchangeable GEE has been shown to be robust to MAR dropout. Just
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Table 3.6: 95% confidence intervals for the correlation coefficient, estimated
in each GEE, for the complete and incomplete binary data with a=0.5

Complete/ Incomplete Correlation structure 95% CI
Success probability p=0.5

Complete Exchangeable (0.42,0.57)
Unstructured (0.37,0.61)
AR (0.41,0.58)

Incomplete Exchangeable (0.43,0.61)
Unstructured (0.36,0.63)
A-R (0.39,0.59)

Success probability p=0.2

Complete Exchangeable (0.39,0.60)
Unstructured (0.33,0.66)
AR (0.38,0.61)

Incomplete Exchangeable (0.20,0.50)
Unstructured (0.21,0.60)
A-R (0.17,0.50)

as the bias in the independence and autoregressive GEE was explained by
examining the weights within and between clusters, the same approach can
be used with the summary statistics method. Table 3.4 demonstrates that
the weights of the summary statistics method do not match those of the

exchangeable GEE, explaining the bias in the summary statistics method.

Cluster-varying covariates

With cluster-varying covariates, the summary statistics method is the most
biased of all approaches. The bias is positive in contrast to that for the GEE
and random effects models. The summary statistics method implemented

here computes the time effect for each subject separately by estimating the
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slope over time of the responses, and then takes the mean of all of these
estimates. The formula for the ordinary least squares estimate of the slope

is:
?:1(11' — Ty
?:1(331' - I)?

ﬁtime =

(3.30)

When all four responses are observed, xT = (1,2, 3,4) with a resulting T of

2.5 and:

,Btime =

(—1.5y; — 0.5y2 + 0.5y3 + 1.5y4) (3.31)

[ N

If y4 is missing then B,,-me becomes:

Brime = %(ys - Y1) (3.32)

with the value of y, having no effect on the estimate of the slope. This
occurs here because the observations are at equally spaced timepoints. If y,
is missing then Z = 2. The result of this is that when ¢ = 2 in equation 3.30,
(z; — Z) becomes zero, and there is no contribution from y, to the estimate

of the slope.

If both y3 and y,; are missing then Btime becomes:

Btime =Y~ (333)

If subjects have only one observation, no estimate of the slope is available.
Subjects that drop out after period 3 have a slope estimated from the first and

third observations only. With MAR data, the third observation is unusually
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low for that subject, and is on average lower than the first observation, so
the estimate of the slope becomes negatively biased. The same applies to
subjects that drop out after period 2. Their second observation is unusually
low and their slope is estimated to be the difference between their second
and first observations. Again, the estimate of the slope becomes negatively

biased.

The bias in the summary statistics method is much greater for the cluster-
varying covariate than for the cluster-level covariate. Consider a simple sce-
nario with no time effect where the response of a particular subject that
drops out after period 3 varies randomly about . There is a MAR miss-
ing data mechanism and the response at period 3 is biased by an amount
—0d, leading to the subject dropping out. The subject has expected response
yT = (§,9,9—6,7). The expected estimate of the slope for that subject’s in-
complete cluster is E(3(ys —y1)) = —%. The expected slope for the complete

cluster is — 2

15> S0 the expected bias in the slope for that subject is —4 This

10

compares to a bias of (§ — %) —(g— g—) = % in the estimate of the mean for

that subject. Following the same argument, consider a cluster of size 2, in

which the second observation is biased by an amount —4§. The expected bias

118

in the period effect for this cluster is —5 compared to an expected bias of

é

—7 in the mean of the cluster. This demonstrates that the bias in the slope

is greater for the summary statistics method than the bias in the treatment

effect.

MNAR data
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In the fairly limited scenarios here, the summary statistics method performs
better than the more sophisticated random effects and GEE models, with
MNAR data. When the data were simulated under a pattern mixture model
framework the summary statistics method was unbiased. This is because the
observations remaining in an incomplete cluster were unbiased estimators of
the mean of the complete data for that cluster, and clusters are weighted
equally, regardless of their size. The incomplete clusters have a different
mean to the complete clusters, but all clusters are given the same weights as

they would have been had the data been completely observed.

It should be noted that although the summary statistics method did perform
well under these limited scenarios, it is a fairly inflexible tool that cannot cope
with several covariates, any interaction terms, more complicated correlation
structures etc.. The summary statistics approach is very sensitive to missing
data when the covariate of interest is cluster-varying, as demonstrated in
figure 3.2. Also, even if the approach does provide an unbiased estimator of
the parameter of interest, the unweighted summary statistics method, used
here, does not adjust for the number of observations per cluster, and will

therefore give a biased estimate of the standard error.

3.4.4 Model efficiency in incomplete data

For gaussian data, the loss of extreme observations in MNAR dropout leads
to a reduction in variability, to such an extent that even though there is a loss
of information, the efficiency of the estimates increases. This effect is seen

in all models, in all MNAR scenarios. The negative bias in the within- and
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between-cluster variances demonstrates this reduction in variability, caused
by MNAR dropout. The effect is most noticeable in scenarios 5 and 6,
when the models fitted to the data are wrong, in that the completers and
dropouts have different distributions. In a scenario where the data come from
a mixture of different normal distributions, it is easy to see why dropout of

extreme values would lead to a reduction in variability.

There is slight efficiency gain in the estimation of a cluster-level effect with
MAR dropout, in independence and auto-regressive GEE, but not in ex-
changeable or unstructured GEE models fitted to the same data. Refer to
figure 3.1. There seems to be an advantage to modelling the data as inde-
pendent, or with weak correlation within clusters in this scenario. This gain
in efficiency, however, is at the expense of substantial bias in the parameter

estimate.

With a binary response, MAR and MNAR dropout leads to an efficiency
gain in the random effects model fitted in MLwiN, whereas all other models
have a reduced efficiency. Again, this efficiency gain is at the cost of a large

bias in the parameter estimate.

3.5 Comparison to other simulation studies

Park [2] investigated the sensitivity of GEE models and random effects mod-
els to missing data that are MCAR for gaussian response data. He found
through simulating longitudinal gaussian data with 30 and 50 clusters and

4 observations per cluster, that with 30% of observations MCAR, GEE esti-
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mates were more biased than random effects estimates for cluster-varying
covariates. The data were constructed with an exchangeable correlation
structure and the GEE model was fitted with the correct correlation ma-
trix. When the proportion of missing observations was 20% or less, GEE
and random effects estimates were comparable. Although the missing data
mechanism in Park’s study was MCAR, the findings are not inconsistent with
the findings of this study for cluster-varying covariates, except in this study,
with dropouts MAR, the estimates of random effects and GEE exchange-
able models became biased with lower proportions of missing observations.
This is not surprising as the MAR missing data mechanism is more likely to

introduce bias than the MCAR mechanism.

Touloumi et. al. [3] compared the bias and efficiency of random effects
models and GEE models in the presence of missing data, when estimating the
effect of time-varying covariates. Normal longitudinal data with 200 subjects
and a maximum of 14 observations per subject were simulated with random
intercepts and random slopes. The correct random effects model was fitted
but an exchangeable correlation matrix was used for the GEE model, which
is not correct when there is a random slope as well as a random-intercept.
The performance of the two models was compared for incomplete datasets
with MCAR, MAR and MNAR missing data mechanisms. The proportion
of missing observations increased as the missing data mechanism changed
from MCAR to MAR to MNAR, confounding the influence of the missing

data mechanism and proportion of missing observations. Data with a MCAR
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mechanism had 20% of observations missing, MAR data had 50% and 60%
of observations missing, while those with a MNAR mechanism had 60% and

80% missing.

The findings of their study demonstrated that the GEE method requires
missing data to be MCAR to avoid bias, while random effects models were
unbiased for both the MCAR and MAR missing data mechanism. Note,
however, that this could also be due to the increased proportion of missing
observations in the MAR datasets. The findings for both the GEE model
and random effects model agree with this study; with gaussian data the
random effects model is robust to missing data that are MAR whereas the
GEE model is biased when the wrong working correlation matrix is chosen.
In our study, we compared GEE with correctly specified correlation to GEE
with mis-specified correlation, and found that the bias due to MAR dropout

is unsubstantial when the appropriate correlation structure is chosen.

Little and Raghunathan [41] compared the summary measures method to
maximum likelihood models for longitudinal Normal data with 30% of ob-
servations missing with MCAR, MAR and MNAR mechanisms. They esti-
mated the effect of cluster-varying covariates. They found that the summary
measures technique compared with ML models when data were missing com-
pletely at random but that ML methods were much less biased than summary
statistics methods for incomplete data with MAR or MNAR mechanisms.
This agrees with our findings for the data with cluster-varying covariates; the

bias in the summary statistics method was very biased with MAR dropout
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when estimating a slope.

The work in this thesis builds on these previous studies, investigating the
impact of dropout on parameter estimates in a much more comprehensive
range of scenarios: The robustness of correctly specified GEE is compared to
GEE with the wrong working correlation matrix; cluster-level covariates are
compared to cluster-varying covariates; change in the ICC is investigated;
binary and gaussian response data are compared; and MAR and MNAR

dropout are compared under different degrees of missing data.

3.6 Conclusions and recommendations based on
findings

When missing data are MNAR there is no reliable method of analysis for
clustered data, even when the proportion of observations missing is very
small. This highlights the importance of investigating the cause of dropout in
an attempt to determine whether missing data are MCAR, MAR or MNAR.
It is, therefore, important to record the cause of dropout for any subject that

goes missing from a study.

Missing observations in data with a low ICC should be of greater concern

than when the ICC is moderate, as it is possible that any bias is larger.

We prove that GEE for gaussian data with unbiased estimation of the corre-
lation parameters are unbiased under MAR dropout. In the scenarios investi-
gated in the simulation studies, the random effects model or GEE model with

correctly specified or unstructured correlation matrix gave reliable results for
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gaussian response data. Greater bias in GEE with the wrong working corre-
lation matrix have been shown to be due to the intrinsic weighting in GEE.
The effect of choosing the wrong correlation structure in GEE, on the bias
caused by the missing data, makes the unstructured GEE a sensible choice
of model if there is any doubt as to the correct correlation structure of the

data.

The bias in the correctly specified GEE seems to be due to bias in the estima-
tion of the correlation coefficient. Further research is needed to investigate
the advanced methods of estimation of «a, discussed in section 3.4.2, espe-
cially when the response is gaussian. For example, it is not known whether
these new estimation approaches would reduce the bias in GEE caused by
MAR dropout with gaussian data, with the correct correlation structure, and

also for different correlation structures.

The summary statistics is only a reliable method if missing data are MCAR.
In particular, the summary statistics approach should be avoided when esti-

mating a slope, if there are even a small number of missing observations.

Incomplete binary response data result in biased estimates when the success
probability is as small as 0.2, even for MAR data. Penalised quasi-likelihood
can have convergence problems. If using quadrature estimation in Stata,
it is recommended that the number of quadrature points is increased to
the maximum, and the adequacy of the model fit is then checked using the
quadchk command. With a success probability of 0.5, binary data with a

MAR missing data mechanism can be reliably analysed using a random effects

96



model fitted by second-order penalised least squares, or by the quadrature
method in Stata, or using a GEE model with correctly specified correlation
structure. The glamm procedure in Stata 9, which uses adaptive quadrature
in its estimation, should be investigated for any improvements in convergence

and accuracy.
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Chapter 4

Review of Tests of Missing
Completely at Random

4.1 Introduction

The previous chapter carries a strong message about the implications of
ignoring missing observations when analysing repeated measurements data,

and highlights the importance of investigating the missing data mechanism.

Of the categories of missing data described in section 2.6.1, missing com-
pletely at random (MCAR) has the strongest assumptions. The summary
statistics approach and generalised estimating equations (GEE), in general,
require an assumption of missing completely at random (MCAR), in order to
provide unbiased estimates. In section 2.6.3 is an explanation of why, when
data are gaussian, GEE models with correctly specified correlation structure
are robust to missing at random (MAR) data. However, as demonstrated in
the previous chapter, GEE with MAR dropout may lead to substantial bias,
even when the data are gaussian, if the correlation structure is misspecified.

Therefore, GEE models require an assumption of MCAR when the data are
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non-gaussian, or when the data are gaussian and the correlation structure
is unknown. The summary statistics method also requires an assumption of

MCAR.

Several tests of MCAR have been published, adopting various strategies and
applicable to various types of data. No formal comparison of these tests has
been made. In this chapter, these tests are compared qualitatively in terms
of their methodology, the types of data the tests can handle, how the tests
explore the relationship between the covariates of interest and the proba-
bility of dropout, and accessibility of the tests to the user. A quantitative
comparison of the tests is made in section 4.6, in which the rate of type I
error and the power of the tests are compared on simulated datasets with

various missing data mechanisms.

4.2 Avallable tests of MCAR

The following tests of MCAR were identified in the literature. There are
similarities between many of the tests, and three groups of test emerge: strat-

ification tests, dropout tests and GEFE tests.

Stratification tests: These tests stratify the data by missing data pattern
and test for heterogeneity between the strata. In Little’s test, the mean
response is compared between the strata, while in both of Park’s tests the
model of interest is fitted to each stratum and the model parameters are

compared between strata.
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. Little (1988) [42]
. Park et. al. (1993) [43]

. Park (1997) [44]

Dropout tests: These tests of MCAR dropout test if some function
of the previous responses is a predictor of dropout. In both Ridout’s
and Diggle’s tests the user chooses a function of the previous responses
that is a plausible predictor of dropout, whereas in both of Listing’s
tests the function of the previous responses is defined to be the value of
the response immediately before dropout. Ridout and Diggle both take
account of the dependence-of the response on a categorical covariate,
such as treatment group, by stratifying the data by the levels of this

covariate, but Listing’s tests ignore the effect of any covariates.
. Diggle (1989)[45]

. Ridout (1991) [46]

. Listing and Schlittgen (1998) [47]

. Listing and Schlittgen (2003) [48]

GEE tests: Not strictly tests of MCAR, these methods test the ig-

norability of the missing data in the GEE framework.
. Chen and Little (1999) [49]

. Qu and Song (2002) [50]
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The methodology of the tests is described below.
Stratification tests

1. The earliest test of missing completely at random for multivariate data
found in the literature is that of Little (1988). One simple approach
to testing for MCAR for univariate gaussian data is to compare the
mean observed response for responders and non-responders, using a
t-test. Little extends this approach to multivariate gaussian data by
testing whether responses for each missing data pattern are a random
sample from a multivariate normal distribution with the same mean and
covariance matrix across all patterns. The test statistic is a likelihood
ratio test statistic, which is asymptotically x? distributed under the
null hypothesis. The assumption that the covariance matrix is constant
across all patterns can be relaxed but the author believes this relaxed
test is likely to be more sensitive to assumptions such as normality. The
means by missing data pattern and the within-cluster covariance matrix
are obtained by maximum likelihood estimation, which is implemented

using an EM algorithm.

2. Park et. al. (1993) extends Little’s approach to a test for categorical
data. The data are stratified by missing data pattern and the model
of interest, f(Y | X) is fitted to each stratum, where Y is the response
variable and X is a matrix of the covariates of interest. A generalised
Wald test is then carried out to test whether the stratum-specific re-

gression parameters are homogeneous. Park et. al. used weighted
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least squares to fit multivariate multinomial models, but suggest that
generalised estimating equations could be used to estimate the stratum-
specific parameters. Whereas Diggle and Ridout adjust for important
predictors of the response by stratifying into homogeneous groups, this
approach is more flexible, easily handling several covariates, continuous
covariates, or even interaction between covariates, by including them
in the model of interest. The test is therefore likely to be sensitive to

selection of the model of interest.

. Park (1997) proposed a test for MCAR which uses generalised esti-
mating equations. Missing data patterns are identified and indicator
variables, Z, are constructed to label subjects by the pattern to which
they belong. A GEE model is fitted, f(Y | X,Z), of the same struc-
ture as the model of interest, but with the indicator variables, Z, as
covariates, as well as covariates of interest, X. A generalised wald test
is then used to test if all parameters corresponding to the missing data
pattern indicators are zero. The relationship between the covariates of
interest and the missing data mechanism can be examined by including
interaction terms of missing data pattern and the covariates and testing
whether the corresponding parameters are zero. The way the test deals
with dependence of missingness on the covariates is discussed further
is section 4.4. Like Park’s earlier approach, this test is flexible to data

with several covariates and / or continuous covariates.

A major advantage of Park’s test is that it produces parameters of the
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missing data mechanism that can be interpreted in a meaningful way;
the parameter corresponding to a particular missing data pattern is
the expected difference in the response for subjects with that missing
data pattern, compared to the subjects that have complete data, after

adjusting for the other covariates.

Dropout tests

. Diggle’s method tests whether, within each treatment group, or equiva-
lent homogeneous group, and at each time-point, the subjects about to
drop out are a random sample of all subjects that have not yet dropped
out. At time-point j, a response function, h;(yi1, ..., ¥i;), is defined as
some function of all values of the response observed up until time j.
For each homogeneous group, and at each time-point, the mean value
of the response function of subjects about to drop out, h;, is compared
to the mean value of the response function of all subjects that remain
in the study at that time-point, H,; . The choice of response function
depends on the hypothesised missing data mechanism. For example, if
it is suspected that a succession of low (or high) measurements leads
to patient dropout, the mean response may be chosen as the response

function.

The test statistic for the jth homogeneous group, h;, asymptotically,
has a normal null sampling distribution, with mean H;, and variance

equal to the variance of all values of the response function in group j
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multiplied by a function of the number of subjects to drop out and the
number of subjects remaining at time j. If the sample size is small, the
null sampling distribution of h; must be obtained exactly. Hypothesis
tests within all P groups at all except the last of the J time-points
lead to (J — 1) P p-values. The resulting p-values are either inspected
by eye, or a Kolmogorov-Smirnov test is carried out to test whether
the p-values are a random sample from a Uniform [0,1] distribution.
It is likely that the test of uniformity for the p-values will lack power

because the number of p-values will be small.

. Ridout’s test is based on Diggle’s test, and aims to be more powerful,
more straightforward, and more flexible to complications in experimen-
tal design. As in Diggle’s test, a response function, h;, is defined for
each time-point, 7, to be a function of the subject’s response up to that
time-point. If k£ indexes homogeneous groups, grouped by treatment
group and time-point for example, in the kth group, T} is the sum of the
response function for subjects that drop out between the current and
the next time-point. Instead of assuming that the mean of the values
of the response function within each homogeneous group is normal and
carrying out a separate hypothesis test for each group, Ridout suggests
constructing one single statistic, 7', to be the sum of the T}s over all
groups. Under the null hypothesis of MCAR, the distribution of this
single test statistic should be a better approximation to the normal dis-

tribution than each of the test statistics in Diggle’s test. If the expected
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value and variance of T} under the null hypothesis, conditional on the
number of dropouts and the number of available observations in group
k, are M, and V) respectively, then the mean and variance of T under
the null hypothesis are M = 3", M, and V = ¥}, Vj respectively. The
test statistic, T, is then standardised and compared to the standard

Normal distribution.

. Listing and Schlittgen argue that the response of subjects about to
drop out should be compared to that of subjects that remain in the
study until the end, the completers. The rationale for this is that any
gradual decrease (or increase) in response at each dropout point should
not be masked. Although he is not explicit that this is what his test
does, Park also compares each group of dropouts to the completers
in his 1997 test. Listing and Schlittgen’s test also differs from those
of Diggle and Ridout in that the comparison is made on the value of
the response immediately before dropout, rather than a function of
the response chosen by the user. At each time-point, the differences
in means between the subjects that drop out at that time-point and
the completers, D;, is computed. The test statistic, D, is a weighted
mean of these D;s, weighted by the the number of subjects that drop
out at each time-point. D is asymptotically normal with mean zero
under the null hypothesis. The data are assumed to be multivariate
normal and the variance of the test statistic is a function of elements

of the covariance matrix, estimated by fitting a multivariate normal
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distribution to the data. One limitation of the test is that it will be
lacking in power if few patients continue to the end of the study. The
procedure does not adjust for the dependence of the response on any

covariates.

. Listing and Schlittgen (2003) proposed a non-parametric test for MCAR
dropouts. Their test is based on the Wilcoxon summed rank test and
compares the value of the outcome variable for subjects that are about
to drop out with those that continue to be observed. In contrast to
Listing’s earlier test, the comparison is between subjects about to drop
out and all other subjects remaining in the study, rather than compar-
ing the subjects that are about to drop out with subjects that remain
in the study until the end. Wilcoxon rank test statistics are computed
for the difference between the dropout group and the group of remain-
ing subjects at each point in time. The test statistic used is simply
the sum of the individual rank test statistics at each time-point, which
is asymptotically distributed as a standard Normal distribution under
the null hypothesis. A limitation of the procedure is that, like Listing’s

earlier test, it does not extend to more than one treatment group.

GEE tests

. Chen and Little developed a test using generalised estimating equa-
tions. Unlike Park’s 1997 test, which fits one GEE model to all the
data and tests whether parameters corresponding to the missing data

pattern are zero, the data are stratified by missing data pattern, and
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the model of interest, f(Y | X, 0) is fitted to each stratum using GEE.
In some strata the model parameters, 8, may not be identifiable and
maximum identifiable parameters are estimated instead. A generalised
Wald test is used to detect differences between stratum-specific esti-
mates of 8. The test is not strictly a test of MCAR, but a test of
ignorable missingness in the GEE model, testing whether the expecta-
tion of the estimatipg equations taken over the incomplete data is zero.
The null hypothesis is that the stratum-specific estimating equations,
unadjusted for missing data, all have expected value zero. The authors
note that the test will suffer from loss of power if any of the strata are
sparse, and suggest that missing data patterns are grouped to avoid
this. Even with this groupihg, the power of the test will be sensitive to

the numbers of subjects in the strata.

. Qu and Song developed a test of ignorable missing in GEE based on
the approach proposed by Chen and Little. The null hypothesis is
again that the estimating equations have expected value zero, despite
the missing values in the data. The procedure involves computing one
test statistic, avoiding the need to solve separate GEE for each missing
data pattern. The test is designed to be superior to Chen and Little’s
in the case of a small number of observations per missing data pattern
because it does not require the assumption of normality of the stratum-
specific regression parameters necessary for the Wald test. Qu et. al.

extended the use of a function called the Quadratic Inference Function,
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@, to the GEE framework [51] which provides an alternative approach
to GEE for marginal models. @ is the sum of the scores for each
missing data pattern, weighted according to the variance of the score
for each pattern. The values of the model parameters that minimise
the quadratic inference function, @, are the solutions to the estimating
equations. The test statistic for the test of ignorable missingness is Q
evaluated at 0, Q(é) Under the null hypothesis the test statistic is

zero, and is asymptotically distributed as x2.

4.3 Types of data the tests can handle

The tests of Little (1988), Park (1993), Park (1997), Chen (1999) and Qu
(2002) apply to all types of clustered data, including repeated measurements
data. The other tests, those developed by Diggle (1989), Ridout (1991),
Listing (1998) and Listing (2003), apply only to longitudinal data. The
former five tests apply to dropout, where once a subject leaves the study
they do not return, as well as intermittently missing data, where a subject
returns to the study at a later period after an observation has been missed.
All other procedures, those designed for longitudinal data, test for MCAR

dropout only.

The tests for MCAR vary in the types of outcome they can handle. Those
of Diggle (1989), Ridout (1991) and Listing (1998) only apply to gaussian
data. Park’s test (1993) was developed specifically for categorical data, while
the procedures developed by Park (1997), Chen (1999) and Qu (2002) can
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handle data that fit into the GLM framework. The test proposed by Listing

in 2003 is non-parametric and is designed for non-gaussian quantitative data.

4.4 The influence of covariates on missing data

Little and Rubin’s categorisation of missing data considers only the relation-
ship between response variables and the missing data mechanism. There is
a further category of MCAR, as defined in section 2.6.1, where missing data
are classified as covar*iate;dependent missing if the missing data mechanism is
independent of the response variables, conditional on the covariates. Models
that are robust to MCAR data are robust to covariate-dependent missing

data, provided the relevant covariates are included in the model.

Only Park’s 1997 test for MCAR explicitly tests for the dependence of the
missing data mechanism on the covariates. By including the covariates of in-
terest as well as indicators of the missing data pattern in the GEE model, the
procedure tests for covariate-dependent missing, returning a result of MCAR
if the response is independent of the missing data pattern, after adjusting for
the covariates of interest. The procedure also allows the relationship between
the missing data mechanism and the covariates to be investigated by includ-
ing an interaction term between the covariates and indicator variables for the
missing data pattern in the regression model. This tests whether, not only
is the response independent of the missing data pattern, but also whether
the effect of the covariates on the response is modified by the missing data

pattern.
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Although none of the authors of the other tests state that their procedures
consider covariate-dependent missing a category of MCAR, stratifying the
data into homogeneous groups is one method of taking account of covariate-
dependent missingness [9], if the covariates are categorical. Diggle intro-
duced the idea of stratifying the data into homogeneous groups, in his test
for MCAR, and this approach was adopted by Ridout (1991), but the only
covariate used to stratify the data, apart from the missing data pattern, is
treatment group. If theré are many levels of the covariate and / or several
covariates, the data within each group may become sparse, and stratification

by homogeneous group becomes un-feasible.

4.5 Accessibility of the tests to the user

None of the tests in the literature can be carried out directly using tests
and models available in standard statistical software packages. In each test,
calculation of the test statistic involves more than a trivial amount of com-
putation. Some of the test procedures are simpler to implement and / or

understand than others.

The following tests are straightforward to understand and reasonably sim-
ple to implement: Little (1988), Ridout, Park (1993), Park (1997), Listing
(1998), Listing (2003). These tests all involve test statistics most applied

statisticians would be familiar with, and the procedures are straightforward.

The test proposed by Diggle involves two steps; firstly a set of several hy-

pothesis tests, and then a hypothesis test on the resulting p-values. This is
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unnecessarily cumbersome, when there are now several alternative simpler
procedures, and is likely to lack in power because of the reduction in infor-
mation at the first step. Chen’s test is not simple to understand because it
involves finding maximum identifiable parameters. The approach suggested
by Qu is not very accessible because the user must familiarise them-self with

the use of the quadratic inference function.

4.6 Quantitative comparison of the tests

Those tests deemed sufficiently straightforward to be useful to applied statis-
ticians were compared quantitatively using simulated datasets. The simula-
tion study was limited to gaussian repeated measurements data with dropout
rather than intermittent missinghess. The Park (1993) test was eliminated
as it was developed for categorical data, and the Listing (2003) test was not
included in the simulation study either, as it is a non-parametric test for
non-gaussian data. The four tests from the literature that were compared

quantitatively are:

1. Little (1988)
3. Park (1997)
5. Ridout (1991)

6. Listing and Schlittgen (1998)
4.6.1 Data simulation

The tests of MCAR were run on simulated hierarchical Normal data. The

dataset simulated was longitudinal with 100 subjects and 4 repeated mea-
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surements per subject. 1000 datasets were simulated for each scenario, and
the same 1000 datasets were used to compare the tests, in each scenario. The

model used to simulate the data is as follows:

¥ij = a+u; + Bitreat; + e;; (4.1)
u; ~ N(0,02
ei; ~ N(0, af)
where treat; indicates which the treatment group the subject has been as-
signed to. Parameter values were chosen to be similar to those estimated
from the repeated measurements asthma clinical trial [33]. Half of the sub-
jects were randomised to the treatment group. The covariate, treat; relates to

the probability of a subject dropping out of the study. The mean proportion

of subjects dropping out at each time-point is given in table 4.6.1.

Table 4.1: Distribution of missing data patterns

Dropout time Pattern Proportion subjects

2 X... 0.08
3 XX .. 0.07
4 XXX . 0.07
) XXXX 0.78

Subjects were simulated to drop out of the study in a selection model frame-

work, as defined in section 2.6.6.

The following scenarios were simulated:

1. (a) MCAR dropout
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(b) MCAR covariate-dependent dropout

2. MAR dropout. Dropout dependent on immediately previous response

with weak dependence on treatment group

(a) Weak MAR dropout
(b) Moderate MAR dropout
(c) Strong MAR dropout
3. MAR dropout. Dropout dependent on immediately previous response
with strong dependence on treatment group
(a) Weak MAR dropout
(b) Moderate MAR dropo‘ut
(c) Strong MAR dropout
4. MAR dropout with probability of dropout dependent on mean of all

previous values of response - moderate MAR dropout with weak de-

pendence of dropout on treatment group.

Missing data simulation

A dichotomous variable, D;; is defined to indicate whether a subject drops out
at time j, given that they were present at time 7 — 1. The probability of the
ith subject dropping out at period j is then p;; = P(D;; = 1| D; ;1 = 0). z;
is a function of the previous values of the response, equal to the immediately

previous response of the ith subject, y; ;_, in scenarios 2 and 3, and the
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Table 4.2: Values of the parameters of the dropout mechanism in the different
scenarios

Scenario Strength of MAR o o2
mechanism
2a, Weak 0.005 0.2
2b Moderate 0.01 0.2
2c Strong 0.02 0.2
3a Weak 0.005 0.8
3b Moderate 0.01 0.8
3c Strong 0.02 0.8
4 Moderate 0.01 0.2

ERER)

model for dropout is then:

logit(pij) = o + ¢12i; + Patreat; (4.2)

Three values of ¢, are chosen to give three levels of increasing departure from
MCAR dropout: Weak, moderate and strong MAR. ¢, governs the influence
of the covariate, treat, on the probability of dropout. The value of ¢, is small
in comparison to its standard error in scenario 2, and large compared to its
standard error in scenario 3. The values of these parameters are summarised

in table 4.2.

4.6.2 Results

Table 4.3 displays the results of the Ridout, Listing and Park tests run on
1000 datasets in each scenario. “Ridout previous” refers to Ridout’s test with

the immediately previous value of the response as the response function, h;,
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that predicts dropout, while “Ridout mean” is the test with the mean of all

previous values of the response as the predictor of dropout.

It should be noted that a type I error, in the context of tests of MCAR,
corresponds to the false conclusion that an assumption of MCAR cannot be
made. The null hypothesis in these tests is that the missing data are MCAR,
and a small p-value represents evidence against this hypothesis. Counter to
convention, a high type I error rate, therefore, corresponds to a “conservative”
test. Conversely, a powerful test has a low rate of incorrect conclusions
that dropout is MCAR. Conventionally, type I errors are considered more
serious than type 1l errors, because the former involves drawing an incorrect
conclusion, while the latter means that the opportunity to draw a conclusion
was missed. In these tests, the power of the tests is more important than
their type I error rate. The consequence of assuming MCAR when the data
are MAR is that the choice of methods for the analysis is more limited. This
is much less serious than incorrectly concluding the missing data are MCAR,;
applying a method that requires missing data to be MCAR to data with a

MAR dropout mechanism could give biased results.

Park’s test offers the option of including in the GEE, interaction terms be-
tween model covariates and missing data pattern indicators. The covariate
of interest in these data is treatment group. Introducing these interaction
terms allows us to test for heterogeneity in the treatment effect, and not just
the intercept, between missing data patterns. The marginal model in the

test of MCAR is then:
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Table 4.3: Proportion of datasets where the tests are statistically significant
under the various scenarios

Scen Missing Strength | Ridout Ridout Listing Park Little
ario previous mean

1(a) MCAR - 0.116 0.128 0.062 0.230 0.180
1(b) MCAR - 0.143 0.164 0.067 0.258 0.209
2 (a) weak 0.842 0.878 0.169 0.211 0.116
2 (b) MAR moderate 0.948 0.955 0.408 0.330 0.185
2 (c) strong 0.994 0.992 0.880 0.677 0475
3 (a) weak. 0.894 0.915 0.222 0.193 0.106
3 (b) MAR moderate 0.965 0.973 0.489 0335 0.205
3 () strong 0.998 0.997 0.908 0.698 0.520
4 MAR moderate 0.869 0.917 0.299 0.340 0.977

E(y,'j I treati, Zi) = o+ ﬁltreat,- + ﬁ222,’ + ,B3Z3,' + ,64241' (43)

+Bs29itreat; + Pgzsitreat; + Brzytreat;

where z5;, 23; and 2z4; are variables that indicate subject dropout at periods 2,

3 and 4 respectively. The null hypothesis of the test of MCAR is ) = (3, =

... = B = 0. The size and power of this extended Park test for scenarios

1(a) to 4 is in table 4.4, in the column headed “Park covariate test”. Here

the tests are applied to data simulated from the same model as before, given

in equation 4.1, but with a sample size of 200 clusters, as explained in the

following paragraph.

The problem with this model is that there are many parameters to estimate

and, although the generalised estimating equations did, in general, converge,

the robust covariance matrix was not always invertible, and the Wald test
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Table 4.4: A comparison of the two alternative Park tests

Scenario Missing data Strength | Park Park covariate test
1(a) MCAR - 0.110 0.492
1 (b) MCAR - 0.111* 0.456*
2 (a) weak 0.177 0.495
2 (b) MAR moderate | 0.393 0.664
2 (c) strong 0.896 0.947
3 (a) weak 0.192 0.543
3 (b) MAR moderate | 0.378 0.670
3 (¢) strong 0.870 0.947
4 MAR ' moderate | 0.374 0.648

* 500 clusters needed to make the test statistic obtainable in the majority of datasets.

statistic could not, therefore, always be obtained. It was much more likely
to be non-singular for a larger number of clusters however, and results are
obtained for this model for data with 200 clusters. These results are compared
to the Park test carried out above, with a fixed treatment effect across the
missing data patterns, also with 200 clusters. In scenario 1 (b), 200 clusters
were often insufficient to make the covariance matrix non-singular, and data

were simulated with 500 clusters for this scenario.

4.6.3 Summary of findings

All tests were carried out at the 5% level. Listing’s tests has approximately
the correct significance level. Ridout’s and Little’s tests have an inflated
significance level, with 10 to 18% of datasets incorrectly identified as not
MCAR. Park’s 1997 test had particularly high false positive rates, with ap-
proximately one quarter of MCAR datasets found to be significantly different

from MCAR for the standard procedure, with this proportion rising to al-
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most 0.5 for the test with interaction terms between treatment group and

missing data indicators.

The most powerful test is Ridout’s, which is particularly sensitive at de-
tecting even small departures from MCAR, with over 80% of datasets being
correctly identified as not MCAR when a weak departure from MCAR is
simulated. Little’s test is lacking in power when the probability of dropout
in the simulated data is dependent on the immediately previous value of the
response, but is the most powerful of the tests when the mean of the previous

observations predicts dropout, as in scenario 4.

In scenario 3 the dropout mechanism is strongly dependent on the treatment
group. This has little effect on the results of any of the tests, compared to
scenario 2 where the treatment group dependence is weak. Dependence of
dropout on the treatment group, in scenario 2 (b), also had little effect on

the size of the tests.

Choosing the mean of all previous responses as the predictor of dropout
rather than the immediately previous response increased the power of Rid-
out’s test only very slightly. This increase was marginally the greatest when
the data were simulated to have a dropout dependent on the mean of all

previous responses, in scenario 4.

Introducing interaction terms between the missing pattern indicators and
treatment group increased the sensitivity of Park’s test to departures from
MCAR. Park’s test statistic, however, can be unobtainable, because of the

number of model parameters involved. This is particularly a problem when
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interaction terms between the missing pattern indicators and treatment group
are included in the model, and when the number of clusters in the data is
not large. Including these interaction terms in Park’s model increased the

type I error rate, rising to almost 0.5 for both MCAR scenarios.

4.6.4 Discussion of findings

The simulation study shows that all four tests do, to a greater or lesser
extent, discriminate betwéen MAR and MCAR data. For the data simulated,
Ridout’s test far out-performs the others. Along with Park’s test, Ridout’s
test adjusts for the treatment group. This is not, however, the feature of the
test leading to its high power; ignoring treatment group increases the bias
between completers and dropouts and therefore increases the power. The
distinguishing feature of Ridout’s test is that it conditions on the number
of dropouts in each missing data pattern. Conditioning on this nuisance
parameter will reduce the size of the estimated variance of the test statistic
compared to a test that does not condition on the number of dropouts, and

seems a plausible reason for the high power of the test.

The lack of power in Listing’s test is not surprising, as it does not make use
of all the available data at each time-point, comparing the response of the
subjects about to drop out only to the subjects that complete the study.
Listing et. al. designed the test to be sensitive to a gradual increase or
decrease in the response of the dropouts over time. The dropout mechanism
used to simulate the missing data, defined in equation 4.2 was applied first

to the data at period 2, and then to all those subjects that had not dropped
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out by period 3, and then to all those remaining at period 4. This means
that the response of subjects dropping out earlier in the study tends to be
more biased than those dropping out later, or in other words, the bias in the
dropouts decreases over time. This is the type of bias that Listing’s test was

designed to detect.

Park’s test is marred by its high false positive rate, particularly when co-
variate by dropout indicator interactions are included in the model. The
problem seems to be multiple testing; significance in any one of the pattern
indicators gives a significant result for the test of MCAR. Including interac-
tion terms in the model increases the number of model parameters that are
used in the test from three to six, and the type I error rate increases. When
these interaction terms are not included in the model, the test suffers from
a lack of power. In addition to the high type I error rate, the test statistic is
frequently unobtainable when the sample size is not large. This is mostly a

problem for the model that includes interaction terms.

Park’s and Listing’s test are appealing because they provide parameter esti-
mates or test statistics that can be interpreted meaningfully. Park’s approach
provides parameter estimates that are estimates of the difference in response
between subjects with each missing data pattern, and the completers, after
adjusting for other covariates in the model. Listing’s test provides an esti-
mate of the mean difference between the response of the dropouts immedi-
ately before they drop out, and the response of the completers. An associated
standard error is provided with this estimate. The test statistic proposed by

Ridout is an estimate of the sum of all values of the response function for
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subjects that drop out. This is not easily interpreted. Although Ridout’s
test does not have a test statistic which can be meaningfully interpreted, it

is the most powerful of the three tests compared quantitatively.

Dependence of dropout on treatment group had little effect on the results
of the tests. Little’s and Listing’s tests make no adjustment for treatment
group and it was expected that the power of these tests would increase when
dropout was covariate-dependent because the additional bias in the response
due to treatment group would not be adjusted for. In fact, there was a slight
increase in power from scenario 2 to scenario 3 for the both tests but it is
minimal. The type I error rate of both tests were also expected to increase
when there is covariate-dependent MCAR, for the same reason. Again, there

is an increase in size for both tests, but it is insubstantial.

With an intra-cluster correlation coefficient of 0.5, the results of Ridout’s test
were very similar whether the mean of all previous responses or only the pre-
vious response was chosen as the predictor of dropout. The largest increase
in power would be expected for scenario 4, when the mean of the previous
responses was used as the predictor of dropout in the data simulation. Even
in this scenario, the increase in power was unsubstantial. The correlation
within clusters was evidently sufficiently high to make the previous response

as good a predictor of dropout as all previous responses.

Little’s test improves dramatically when the simulated dropout is dependent
on the mean of previous responses, rather than the immediately previous

response, while this has little effect on Ridout’s test. The power of Ridout’s
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test is so high when dropout depends on the previous response, that no great

increase in power can be expected.

It should be noted that all of the approaches require an assumption of MAR
in order to test the missing data for MCAR, because MNAR, by definition,
cannot be tested for. A scenario could exist in which there is no relationship
between the observed data and the probability of dropout, but where the
missing data are MNAR. But intra-cluster correlation makes this unlikely.
A scenario where there was no dependence of dropout on the observed data
would only have MNAR missing data if patients had unbiased observations
while they remained in the study, followed by a sudden bias in their response.

A dramatic change in circumstances would be needed for this to happen.

4.6.5 Comparison to the findings of other simulation
studies
Listing and Schlittgen used simulation studies to investigate the power and
size of both of their tests, as did Park and Lee for their 1997 test, to investi-
gate the small sample properties of their procedure. With many simulations
run by the authors (1000 for the Listing test and 10 000 for the Park test),
the size of the test was correct when the significance level was set to 0.05.
The type I error rate was found to be higher for the data simulated here,

especially for Park’s test.

Park and Lee carried out simulation studies to test the small sample proper-
ties of their test. They used binary data with missing data mechanisms that

were quite far from the assumptions of MCAR. The odds of success on the

122



outcome variable was either 1.5 or 4.5 times greater for the incomplete data
than the odds for subjects in the complete group. With these missing data
mechanisms the power of the test, found from simulating 1000 datasets, was
less than 0.4 for datasets with 10% of cases incomplete and up to 100 cases
per dataset. With 100 cases in each dataset, and an odds ratio of incom-
plete versus complete data of 4.5, the power of the test was greater than 0.9
when at least 30% of cases were incomplete. A comparison between Park’s
simulation study and this work is difficult because Park simulated a binary
response. However, it is noted that Park found the type I error rate of the
test to be correct, whereas it was found to be too high in these simulations.
The findings about the power of the test from the two simulation studies are

not in disagreement.

4.6.6 Conclusions and recommendations

From the findings of the quantitative comparisons of the tests, the recom-
mended test of MCAR for dropout in gaussian repeated measurements data
is Ridout’s test. It is the most powerful without having a high type I error
rate. Its power does not seem to depend on which function of the previous
responses predicts dropout, and it is a conservative test, with a probability
of incorrectly concluding that data are not MCAR of more than 10% and a

power of at least 85% in these scenarios.

Little’s and Park’s tests cannot be recommended for data such as these, be-
cause of their lack of power; with moderate departures from MCAR, Little

had a power of less than 20%. Although Park’s test is more powerful when
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interaction terms between dropout pattern indicators and covariates of in-
terest are added to the model, where the test statistic is obtainable, the type
I error rate is then unacceptable. Listing’s test, although anti-conservative
in these scenarios, is a viable alternative to Ridout’s test. Here, it correctly
identified moderate departure from MCAR in at least 40% of datasets, rising

to about 90% for strong departure from MCAR.

In addition to these formal tests of MCAR, a visual comparison of the re-
sponse of the dropouts compared to subjects that remain in the study is

useful. This is demonstrated on the asthma clinical trial data in section 5.3.
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Chapter 5

A repeated measurements asthma
clinical trial with patient dropout

5.1 Introduction

As explained in chapter 1, a motivation for the work in this thesis was a lon-
gitudinal asthma clinical trial, from which a substantial number of patients
dropped out. In this chapter, the data from the trial are analysed using the
random effects model, GEE and summary statistics method, described in
chapter 2. In chapter 4, several formal tests of MCAR were compared, and
from the results of a simulation study, one particular test was recommended.
The missing data mechanism in the asthma trial is investigated, both visu-
ally, and using this recommended test of MCAR. The conclusions about the
missing data mechanism are used, together with the findings from chapter 3,

to evaluate the likely bias caused by dropout in the asthma clinical trial.

The data are from a double-blind randomised clinical trial to compare the
safety and efficacy of beclomethasone dipropionate (BDP), salmeterol xi-
nafoate (SM) and placebo in corticosteroid-naive children with mild to mod-

erate, chronic, stable asthma [33]. The primary outcome was peak expiratory
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flow rate (PEFR), a measure of lung function that tends to be low in asth-
matics. PEFR was measured daily, with averages taken over a two-week
run-in period and then over four three-monthly periods once treatment was
started. Over 20% of children dropped out before the end of the trial. Base-
line measures were taken on age, height and treatment centre. A total of 241
children, aged 6 to 14 years, were included in the study, 233 of which had a
baseline PEFR measurement and at least one post-treatment measurement.

Of these 233 patients, 77 received placebo, 80 received BDP and 76 SM.

5.2 Model fitting

Suitable methods to compare the overall efficacy of the treatments include the
random effects model, GEE model or the simple summary statistics method.
A random-intercept model is fitted, which has the same correlation structure
as an exchangeable GEE model. Unstructured generalised estimating equa-
tions model the intra-cluster correlation structure from the data. The closer
the estimated intra-cluster correlation structure is to the true structure, the
greater the model efficiency. However, the unstructured GEE involves the es-
timation of a greater number of parameters, and therefore potentially reduces
efficiency. The simulation studies in chapter 3 demonstrate that incorrectly
specifying the working correlation matrix in GEE increases the bias caused
by any missing data that are not MCAR, and that choosing an unstructured
correlation can limit this bias. Both unstructured and exchangeable GEE
are fitted to the data. These random-effects and GEE models are compared

to the summary statistics method.
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The random-effects model and GEE model, for the jth response on the ith
child, y;;, with treatment group indicators, BDP; and SM;, and other base-
line measures, x; as covariates, are summarised in equations 5.1 and 5.2
respectively. A linear time effect, time;;, equal to the time-period, j, was
also modelled in the random-effects and GEE models. In the summary sta-
tistics approach the repeated measures of the ith child are reduced to a mean
response over time, m;, and these summary measures are then modelled as
if they were univariate response data. A normal linear regression model is
fitted to the mean response, adjusting for baseline covariates, as given in
equation 5.3. It is not possible to model a time effect in the summary sta-
tistics approach, when the repeated measures are reduced to a mean. As
discussed in section 2.4, the choice of summary measure depends on the re-
search question, and the shape o.f the data. Here, an average response over
time is required; the measurements are equally spaced, so there is no need
to weight the measurements according to their distance apart, by taking an

area under the curve, for example, and the unweighted mean is chosen.

Elyi; | wi] = a + ui + Boap BDPi + Bem SM; + ByX; + Bitimes; (5.1)

u; ~ N(0, 03)

Elyi;] = o+ Boap BDP; + Bem SM; + BxX; + Bitime;; (5.2)

E[ml] =oa+ ﬁbdeDR + ﬁsmSMi + }Bxxi (53)
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Table 5.1; Parameter estimates of the various models fitted to the asthma

clinical trial data

Estimate (95% confidence interval)

Random effects (5.1)

GEE unstr. (5.2)

BDP-placebo
SM—placebo
baseline PEFR
age

height

time

Ou

O¢

ICC

12.53 (4.07,20.99)
18.46 (9.81,27.10)
0.697 (0.606,0.788
4.84 (1.58,8.10)
0.566 (-0.056,1.19)
7.36 (6.32,8.39)

25.22 (22.62,27.82)

16.41 (15.47,17.34)
0.703 (0.650,0.751)

10.84 (2.56,19.12)
16.90 (8.44,25.37)
0.715 (0.626,0.804)
4.26 (1.07,7.44)
0.614 (0.01,1.22)
5.48 (4.69,6.27)

GEE exch. (5.2)

Summ. stats. (5.3)

BDP-placebo
SM—placebo
baseline PEFR
age

height

time

Ou

Oe

ICC

12.55 (3.90,21.20)
18.47 (9.63,27.30)
0.697 (0.604,0.790)
4.84 (1.51,8.17)
0.567 (-0.07,1.20)
7.34 (6.35,8.34)

13.98 (5.17,22.80)
19.15 (16.17,28.12)
0.700 (0.604,0.795)
4.45 (1.05,7.84)
0.632 (-0.014,1.277)

These models were fitted in Stata with baseline PEFR, age and height as

baseline measures, x;. The parameter estimates from the models are sum-

marised in table 5.1.

Normal plots of the level one and level two residuals in the random-effects

model, in figure 5.1, show approximate normality, although there seems to

be some kurtosis.

The choice of model does not affect the significance of either treatment effect.
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Figure 5.1: Normal quantile quantile plots of the level one and level two
residuals in the random-effects model 5.1
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The parameter estimates are affected slightly by which model is fitted, while
the width of the confidence intervals is similar across the models. Notice that
the random intercept model and exchangeable GEE give virtually identical
estimates, because, at least for complete data, the two models are equivalent.
The unstructured GEE estimated the correlation between the first observa-
tion and the other three observations to be very high, approaching 1, while
the correlation between all other observations was estimated to be close to
0.5. This does not suggest exchangeable correlation, and explains why the

estimates from the unstructured and exchangeable GEE do not agree.

Interestingly, in these data the response is already a summary measure, as it
is the mean of daily peak flow rate averaged over four three-monthly periods.
This will reduce the within-subject variance, and lead to a higher ICC than

if the daily measures had been used as the reponse. Note from the findings
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of chapter 3 that missing data are more of a concern when the ICC is low,
because with less correlation within clusters, the loss of each observation

corresponds to a greater loss of information.

The summary statistics method, though crude, gives fairly similar results
to the more sophisticated models, and leads to the same conclusions about
the efficacy of the treatments. A time effect cannot be modelled when the
repeated measurements are reduced to a mean. In these data, ignoring the
trend over time has no great impact on the results, but this in no way gener-
alises to all scenarios. For example, see scenario 6 in chapter 3, in which there
is a period-by-treatment interaction, which the summary statistics method

cannot model.

5.3 Missing data

The frequency of missing data patterns is summarised in table 5.2. Overall,
12.2% of observations were missing, with more observations missing from the
placebo group than either treatment group: 16.9% of observations in the
control group were missing, compared to 7.2% in the SM group and 12.5%

in the BDP group.

Investigation of the missing data mechanism helps to assess the likely impact
of dropout on the parameter estimates. In chapter 4, a test of MCAR pro-
posed by Ridout, is found to be the most powerful of all the published tests
of MCAR, and has an acceptable type I error rate. It can be used to test
for dependence of either the immediately previous value of the response, or

the mean of all previous values, on the probability of dropout. This test was
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Table 5.2: Frequency and percentages of missing data patterns in the data

Pattern Cases % cases
X... 27 11.6
XX .. 12 5.2
XXX . 9 3.9
XXXX 185 79.4
Total 233 100

run on the asthma clinical trial data, and there was no statistically signifi-
cant evidence that either the previous response (p=0.71), or the mean of all
previous values of the response (p=0.66), are associated with the probability

of dropout.

In section 2.6.4 it was suggested that inspection of the observed data helps
to distinguish between MCAR aﬁd MAR dropout. Carpenter et. al. [27]
suggest plotting the means (% 2 standard errors) for the subjects that drop
out at the next time-point compared to those that do not. Such plots of the
asthma data are shown in figure 5.2, separately for each treatment group.
They reinforce the results of Ridout’s test, showing that although the means
of subjects just before they drop out are systematically lower than the means
of subjects that remain in the study, there is no evidence that this difference

is statistically significant.

There is no evidence that the missing data are not MCAR. As discussed in
section 2.6.4, it is not possible, by definition, to test for MNAR dropout.
The missing data would only be MNAR, however, if there were a sudden

change in the symptoms of the dropouts, after their last observation was
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recorded. The main cause of patient withdrawal (46% of all patients that
withdrew) was asthma exacerbation, with less frequent causes being adverse
events, noncompliance or protocol violation, and a quarter of dropouts with-
drawing for unknown reasons. With so many patients dropping out due to
asthma exacerbation, it is difficult to rule out MNAR dropout, especially
as the subjects that dropped out of the study did not have particularly low
PEFR before dropping out, and therefore the observed data are insufficient

to estimate the missing data.

Chapter 6 introduces a Bayesian model for repeated measurements data with
MNAR dropout, when the cause of dropout is recorded for each subject.
In the asthma clinical trial data, the dropout cause is not available at the
patient level, and the Bayesian model cannot be applied. In chapter 6, data
are simulated based on the asthma clinical trial data, in an attempt to make

the simulations as realistic as possible.

In light of the findings of chapter 3, 12% of observations missing from re-
peated measurements data, that are possibly MNAR, could cause substan-
tial bias to the parameter estimates. If the dropout mechanism is MNAR,
the parameter estimates are unreliable. The unstructured GEE are possibly
slightly more reliable than the exchangeable GEE, but with MNAR dropout,
no model that ignores dropout is unbiased. The high ICC in the observed
data potentially reduces the bias caused by any MNAR dropout, as discussed
in section 3.2.2, but this relies on the within-cluster correlation between the

observed and unobserved data also being high, which is a strong assumption.
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Figure 5.2: A visual comparison between the mean response of subjects about
to drop out, and those that remain in the study at the next time point
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In conclusion, it is not satisfactory to ignore the possibility of MNAR dropout
in the analysis of these data. Ideally, the causes of dropout would be recorded
at the patient level, and a Bayesian model incorporating this information
would then be possible. In the absence of this information, a sensitivity
analysis should be carried out, in which dropout is modelled, and several

plausible values are chosen for the dropout parameters.
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Chapter 6

Multiple causes of dropout in
repeated measurements data

6.1 Introduction

Data from a repeated measurements asthma clinical trial were analysed in
chapter 5. Over 20% of patients dropped out of the study before the end of
the trial, and investigation of the dropout led to the conclusion that MNAR
dropout was a definite possibility, especially as the main cause of dropout was
exacerbation of symptoms. The simulation studies in chapter 3 demonstrate
that, if dropout was MNAR, this quantity of missing observations would
cause serious bias in the parameter estimates of the models. An alternative
approach is needed, in which the bias is adjusted for, and the additional un-
certainty due to missing data is taken into account, by modelling the dropout
mechanism. Molenberghs et. al. [52] distinguish very clearly between uncer-
tainty due to sampling error and uncertainty due to “ignorance” of the values

of missing observations.

In clinical trials researchers are encouraged, or even required by protocol,
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to record cause of patient dropout. This information will usually be found
in the publication of the trial, and will often be used in any discussion of
the likely impact of the missing data on the parameter estimates. Three
different causes of dropout were recorded in the asthma clinical trial: asthma
exacerbation; adverse event and noncompliance or protocol violation. The
cause of dropout helps clinicians to make judgements about the likely effect of
the missing data. If this information is used informally in discussions about
the missing data, it is only sensible that it should be used in any model of
the dropout mechanism. Clinicians were interviewed about the information
they would feel able to provide about the response of patients after dropping
out of a study. See section 6.6. Both clinicians said that the single most
important piece of information that would help them to give an opinion on

this, was the cause of dropout.

Modelling MNAR dropout is necessarily subjective, and experts should be
consulted when constructing the dropout model. In this chapter, a Bayesian
model is proposed, for which prior distributions are elicited from clinicians,
on the bias in the response of patients that drop out, separately for each cause
of dropout. The Bayesian framework is not routinely used in the analysis of
clinical trials, but Spiegelhalter et. al.[53] advocate its use, on the grounds
that evidence external to the trial is already used informally in making de-
cisions based on the evidence from the trial. For example, the degree of
scepticism a clinician has about the new treatment is used in combination

with the findings of the trial, when deciding whether or not to recommend
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the new treatment. Also, quantitative opinions are elicited from experts,
or drawn from previous studies, when carrying out sample size calculations.
This quantitative evidence could be used to construct prior distributions for
a Bayesian analysis. The authors argue that a Bayesian framework allows
external evidence such as this to be combined quantitatively with the data

from the trial, in a more formal approach.

6.2 Literature on multiple causes of dropout,
and Bayesian models for MNAR missing
data

Discussion in the literature on incorporating information about causes of
missingness into the analysis is very limited. Proposed methods can be crude,

and are usually limited to cross-sectional data.

Gould [54] proposed a rather simplistic approach to handling multiple causes
of dropout in which the response is replaced with ranks, and missing obser-
vations are imputed with ranks, according to their reason for dropout. For
example, subjects that drop out of the study because they are "cured" are
given a score corresponding to the highest ranking of all subjects in the study,
and subjects that drop out due to intolerance to the treatment are assigned
the lowest possible score. This method is crude, and limited only to data
where the response is ordinal. It makes strong untestable assumptions about
the dropout mechanism, and, as in all single imputation methods, ignores

the uncertainty in the missing data. See Carpenter et. al. [55] for a further
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explanation of why single imputation methods are invalid. Lachin [56] pro-
posed a similar ranking method for dropout in clinical trials, which is again

crude, and has the same problems as Gould’s method.

Rubin [57] wrote an early paper on eliciting prior information from experts
on the expected response of subjects with missing observations compared
to those subjects that responded. The method incorporates the additional
uncertainty in parameter estimates due to the missing data, widening their
credible intervals, but does not adjust for any bias due to dropout. It applies
only to cross-sectional data, and does not model multiple causes of dropout.
More recently, White et. al. [30] developed a Bayesian method that incor-
porates the bias due to dropout in the model of interest. This model, for

cross-sectional data, is described -in detail in section 6.4.1.

Dufouil et. al. [58] propose a sensitivity analysis for MNAR dropout, treat-
ing death differently to other causes of dropout. In the terminology of the
survival analysis, they treat dropout as “failure” and death as “censoring”, in a
model for the probability of dropout. Their dropout model provides propen-
sity scores in an inverse probability weighting method. Inverse probability
weighting is introduced in section 2.6.3. The dropout model has previous
values of the response, as well as the current response value, as covariates.
The model parameters corresponding to the previous response are estimated
from the data, and plausible values of the parameter for the current response
are chosen, to form a sensitivity analysis. Beyond differentiating between

death and other dropout, the approach does not extend to multiple causes
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of missing data.

6.3 Methods for Missing Not at Random data

MNAR is the most severe category of missing data, as it implies that the
observed data are insufficient to predict the values of the missing observa-
tions. Therefore, subjective assumptions must be made about the dropout
mechanism, which is then modelled jointly with the model of interest. Due to
the subjective nature of the dropout model, the standard approach to deal-
ing with MNAR data is to carry out a sensitivity analysis, in which a range
of plausible models for dropout are fitted, including extreme case scenarios.
This results in a range of plausible parameter estimates rather than a point

estimate for each parameter.

The sensitivity analysis is often used as a test of the assumptions about
the missing data mechanism, rather than a tool for analysing incomplete
data with a MNAR mechanism. Sensitivity of the parameter estimates to
different missing data mechanisms is tested, and where estimates are sensitive
to the different mechanisms, the data may be deemed too flawed to be useful.
Conversely, where the estimates are found to be reasonably robust to a range
of plausible dropout mechanisms, the sensitivity analysis is often used as a

justification for ignoring the missing data.

Alternatives to the sensitivity analysis have been proposed recently [29] [30],
in which prior distributions are elicited for parameters of the dropout mecha-

nism, and a Bayesian analysis is adopted, resulting in posterior distributions

139



for the parameters of interest which incorporate experts’ uncertainty about
the dropout mechanism. Whereas the sensitivity analysis provides the clini-
cian with a series of parameter estimates under several different missing data
mechanisms, a Bayesian analysis averages over a range of possible missing
data mechanisms, effectively weighting according to the prior distributions of
the missing data parameters. The credible intervals incorporate, not only the
likely bias caused by dropout, but also the additional source of uncertainty

in the estimates, from the lack of information about the unobserved data.

A sensitivity analysis may be preferred by some researchers and clinicians
because the effects of the various missing data mechanisms remain explicit.
Clinicians examining the findings of a study are then able to informally inter-
pret this information alongside their own beliefs about the likely missing data
mechanisms. In contrast, the Bayesian approach offers a formal method of
incorporating into the analysis, clinicians’ beliefs about the uncertainty asso-
ciated with the missing data. An advantage of this method is that it provides
a single estimate of each parameter of interest which attempts to incorporate

all sources of uncertainty about the parameters, including the missing data.

So far, these Bayesian methods have only been developed for cross-sectional
data with a single cause of dropout. Here, this approach is extended to

multiple causes of dropout and to repeated measurements data.
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6.4 Modelling the dropout mechanism

6.4.1 A model for single cause of dropout

Joint modelling of the missing data mechanism and the model of interest can
be considered in a pattern-mixture model (PMM) or selection model (SM)

framework, defined as follows:

SM p(Y,M\X,6,¢) = p(M\Y, X, ¢)p(Y\X, 6) (6.1)

PMM p(Y,M\X,¥6,¢)=p(Y\X,M,0)p(M\X, ¢) (6.2)

where M is a dichotomous variable to indicate whether an observation is
missing or observed. Y is a vector of the response, X represents the covari-
ates, and 6 and ¢ are parameters of the model of interest and parameters of

the missing data mechanism respectively.

In the pattern-mixture model framework, subjects with different missing data
“patterns” are considered to be sampled from different distributions. For ex-
ample, subjects that have complete observations have a different distribution
to those that have one missing observations, which is different again to the
distribution of subjects with only one measurement observed. The data are
stratified according to which observations are missing in the response. A
separate model is fitted to each stratum, p(Y\X, M, ), and an overall para-
meter of interest is computed by taking a weighted average of the stratum-
specific parameter estimates, weighted by the proportion of observations in

each stratum, p(M\X, ¢).
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In contrast, in the selection model framework the distribution of all observa-
tions is considered to be p(Y\X, 8), had we been able to observe them all.
The subjects that drop out are assumed to be a selection of these complete

data, with missing data mechanism, p(M\Y, X, ¢).

A pattern-mixture model framework is chosen here, in which subjects with
missing observations are considered to be sampled from a different distrib-
ution to those with complete observations. In the pattern-mixture model,
parameters of the dropout mechanism are biases in the response, whereas
dropout parameters in a selection model are odds ratios. Odds ratios are
notoriously difficult to interpret, and therefore bias in the response is an eas-
ier quantity to elicit than an odds ratio. Consider the simple example of a
cross-sectional study with treatment group, treat;, as the only covariate. A
pattern-mixture model for the continuous response, y; of a subject, i, is given

in equation 6.3, below.

= { a + u; + Btreat; + e; if M; =0 (6.3)

a+u; + 6, + (B + 8)treat; +e; if M; =1
where [ is the treatment effect for the completers and d, is the bias in the
treatment effect of the incompleters compared to the completers of the study.
4, is the intercept bias of the incompleters compared to the completers. An
overall treatment effect, 3*, is computed by taking a weighted average of
B and (B + 6,), weighted by the proportion of subjects in each stratum, as
follows [28] :
B*=n(B+6)+ (1 —7)B (6.4)
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where 7 is the proportion of subjects that have missing observations.

Throughout this chapter, the parameters notated ¢ are referred to as bias
parameters. The word “bias” here is used informally to mean the difference

between the dropouts and completers.

In a sensitivity analysis, a range of plausible values would be substituted
for 6, and 4., resulting in a range of possible values for the overall treatment
effect, 3*. In a Bayesian framework, prior distributions are elicited for ¢, and
42, leading to a posterior distribution for 3*, from which a point estimate,

its standard error, and credible intervals can be obtained.

Carpenter et. al. [27] propose a pattern-mixture model such as this for a
sensitivity analysis, in which fixed values are substituted for the parameters
of the dropout mechanism, 4, and d;. Non-informative priors are specified
for the parameters of the model of interest and WinBUGS is used to im-
plement Markov Chain Monte Carlo (MCMC) estimation. MCMC is used
for the model estimation, not because a Bayesian analysis is required, but
because, by using vague priors for all parameters, it is a convenient approach

to obtaining very good approximations to maximum likelihood estimates.

White et. al. [30] extend this pattern-mixture model approach to the
Bayesian framework, eliciting prior distributions from experts for the pa-
rameters of the dropout mechanism, such as §; and 4, in equation 6.3. Their
model estimates the difference between interventions in a cross-sectional clin-

ical trial scenario, with gaussian response. They assume normality for the
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prior distributions, and because of the simplicity of the scenario, are able to
provide an approximate formula for the estimation of the treatment effect,
and its standard error. They show that this approximation agrees well with

MCMC estimation in WinBUGS.

6.5 Extending the method to longitudinal data
and multiple causes of dropout

6.5.1 Extension to longitudinal data

In the asthma clinical trial data, PEFR tended to increase over time, and the
model in equation 6.3 is extended to incorporate a linear time effect, that is
not directly of interest. For simplicity, only two treatment arms are modelled,
but extension to more than two tréatment groups is trivial. Apart from trends
over time, the main issue in the analysis of repeated measurements data is
the dependence between observations on the same subject, as described in
2.1. A random effects model is used with a random intercept, so that subjects
are allowed to have different intercepts, but the slope is the same for subjects
within the same treatment group. This could be extended by allowing other
parameters in the model to be random. A random-intercept model was used

to analyse the asthma data.

In the MNAR scenario, by definition, the distribution of the observations
of subjects that drop out of the study is different before and after dropout.
Subjects that do not complete the study, dropouts, are modelled with bias, 6;

before dropout, and bias d, after they go missing. A new indicator variable,
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gi; is introduced, which indicates whether it is before or after the subject
dropped out. The time of the last observation before dropout is represented

by t* in the following description of the model, in equation :

Completers Y;; = a + u; + fitreat; + Boti; + €;; (6.5)

Dropouts Y;; = a + u; + fitreat; + Bati; + 01(1 — gij) + 020:5 + €i;

o0 it <t
95 =1 1 otherwise

Which can also be written:
Y,'j =+ u;+ ﬂltreati -+ ﬁgt,’j + 51(1 - gij)dropi + Jggijdropi + €ij (66)

where drop; indicates whether or not a subject dropped out before the end
of the study. The model is represénted on the following plot of profiles of the
completers and dropouts in one of the treatment arms. For simplicity, focus

in this chapter is on dropout after time 1, i.e. tx = 1.

In the model described in equation 6.6 the data are stratified into completers
and dropouts only. The pattern-mixture model allows the data to be strati-
fied by missing data pattern, for example subjects that drop out after period
one are assigned a different stratum to those that drop out after periods two,
three, four etc.. It may also be decided to stratify by treatment arm. This
may result in very many strata, with few subjects per stratum, in which case
it is recommended that data are stratified by groups of missing data pattern,
or simply by completers versus dropouts [28]. In the asthma data, stratifying

by treatment arm and missing data pattern would result in some strata with
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Figure 6.1: Mean response profile of the completers compared to the
dropouts, with dropout after time 1
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as few as 2 or 3. It would only be sensible to stratify by missing data pat-
tern and / or by treatment arm if the clinicians providing the priors on the
dropout parameters believed the parameters were different across dropout

times and / or treatment arms.
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6.5.2 Extension to multiple causes of dropout

To incorporate cause of dropout into the model. subjects are stratified by
cause of dropout, as well as stratifying by missing data pattern. The simplest
model would have three strata: the completers (0), subjects that dropped
out for reason one (1), and a third stratum of subjects that dropped out for

a different reason (2). This scenario would be modelled as follows:

(0) Y;; = a; + Bitreat; + Boty; + €5 (6.7)
(1) Y;; = a; + Oitreat; + Baty; + 011(1 — gi5) + 021955 + €5
(2) Yi; = a; + Oitreat; + Oty + 012(1 — gi5) + 02295 + €
a; ~ N(tta,02)
€ij ~ N(0,02)

Prior distributions must be elicited for d3=(d3,d22)7. These parameters,
021 and d9p. are the mean difference in response between completers and
dropouts, after dropout, for each cause. The dropout parameters in the vec-
tor. ;= (dy,0d12)7. are estimated from the data. This model is represented
by a plot of the mean response profiles of subjects in each stratum. in one
of the treatment arms, in figure 6.2. It is assumed in this case that dropout

bias is the same in both treatment arms.

The overall treatment effect, 5;,.q;. is a weighted average of the treatment
effects in each stratum, averaged over all time periods. For example, consider

the case where subjects that complete the study have four measurements,
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and all dropouts leave the study after one observation. If C' denotes the
control group and T the treatment group, m¢¢ and 7 are the proportions
of completers in the control group and treatment group respectively.mc; and
mc2 are the proportions of subjects that drop out for causes 1 and 2 in the
control group. 7mr; and mp, are the equivalent proportions in the treatment
group. This information is summarised in table 6.1 below.

Table 6.1: Notation for the proportions of completers and dropouts for each

cause, in each treatment arm. and the expected value of the response in each
stratum

Control group Treatment group
Stratum Proportion E(Y) Proportion E(Y)
XXXX Tco Ha TT0 tha + B
X... Causel TCl fha + 011 + 20 T fo + B1 + 611 + 365,
X... Cause 2 TC2 o + 012 + 1522 T2 o+ B1 + 010 + 1522
Sum 1 - 1 -

Using the summaries in table 6.1, the combined treatment effect is as follows:

Birear = E(yT - y?)
= (mro¥ro + miyri + Tr2¥12) — (Tco¥co + Ter¥er + Teacz)
= [17o(tta + 01) + 771 (la + 81 + 611 + 2021) + 7r2(fta + B1 + 612 + 262)]
—[mco(tta) + o1 (pa + 811 + 2021) + Tea(fta + 12 + 3022))]
=0 +mr(0n + '3'(521) + mra(d12 + %522) —me1(0n + %521) — Te2(d12 + %522)

= [+ (61 + %621)(7TT1 —7mc1) + (012 + %522)(WT2 —~ Tca)
(6.8)
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Figure 6.2: Mean response profile of the completers compared to the patients
with each cause of dropout, with dropout after time 1.
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6.6 Prior elicitation

To find out how feasible it would be to elicit priors on dropout parameters
in a repeated measurements study such as the asthma clinical trial, it was
decided to consult a thoracic clinician who is involved in asthma studies. A
HIV clinician was also consulted, to investigate the feasibility of the approach
in repeated measurements studies more generally. Because of the chronic

nature of the disease, studies into HIV tend to result in the collection of
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repeated measurements.

The clinicians were asked about likely causes of dropout in studies in their
respective fields of medicine. how confident they thought they would be in
estimating bias due to dropout, and what information they thought would

help them to make their estimation.

Discussion with the clinicians was based around the questions below. In an-
swering the questions the thoracic clinician was asked to consider an asthma
study in which Peak Expiratory Flow Rate (PEFR), is measured repeatedly
over time. The HIV clinician was asked to consider a HIV study where the re-
sponse is repeated measurements of CD4 count, a measure of how the immune
system is functioning. Both clinicians were shown the type of questionnaire

that would be used for prior elicitation, given in appendix B.

1. What are the main causes of dropout in asthma / HIV studies and clinical

trials?

2. Do you believe the bias in the response of the dropouts is different for

different causes of dropout?

3. Would knowing the cause of dropout help you to predict the response of

the dropouts after they have dropped out?

4. Would knowing the mean and standard deviation of the completers help

you to predict the response of the dropouts?
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5. Would knowing the bias in the response of the dropouts before they drop

out (4;) help you to predict the bias in their response after they drop out

(62)7
6. What other information might help you predict the response of the dropouts?

7. Consider one cause of dropout. Do you believe these dropouts follow a
different slope to the completers after they drop out? If so, would you be

able to predict what this slope would be?

8. Do you have any other comments about estimating the response of dropouts

by cause of dropout?

Both clinicians said that knowing the cause of dropout would help them to
estimate the dropout bias. The thoracic clinician explained that there are
two main causes of dropout in an asthma study. The most common cause
is that the patient finds participating in the study too much of an inconve-
nience and drops out, and the second most common cause is that the patient
suffers an acute exacerbation of symptoms and either visits their GP or is
admitted to hospital. This statement is compatible with the findings of the
asthma clinical trial, in which the main cause of dropout was exacerbation
of symptoms., with the second most common cause being unknown. He sug-
gested that a third. less common cause of patient withdrawal would be that
a patient’s symptoms were so stable that they lost motivation for continuing

in the study and withdrew them-self. He was confident that these different
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causes would lead to very different dropout biases, often in opposite direc-
tions, and would be confident in estimating what these biases were likely to

be.

The HIV clinician said that knowing the cause of dropout would usually
indicate whether or not the patient had continued on treatment. For example,
common causes of dropout in HIV studies are death, change of therapy due
to tolerability problems. failure to take treatment. or removal of consent. He
was confident that knowing whether or not the patient had continued with
their treatment would tell him the direction of the dropout bias, and would

allow him to predict the size of the bias reasonably accurately.

The consultants were also asked whether they would be able to estimate the
correlation of d, with other parameters in the model. Of particular interest
was the correlation between 4, and 8,, as it seemed possible that the bias
after dropout would depend on the bias before dropout. The HIV clinician
told us that knowing the values of 4, would not help him to estimate the
values of d,. once he knew the cause of dropout. The same was true for the
other parameters in the model. The thoracic clinician agreed that he would
be unable to estimate any correlation between d; once he knew the mean of
the response up until dropout and the length of time the subjects remained

in the study.

Both clinicians said that the time of dropout would affect their estimate of
dropout bias. This means that the model needs to allow different prior esti-

mates of the dropout parameters at each time-point. The thoracic clinician
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explained that time of dropout was important because earlier dropouts would
be likely to have had poor response values. This implied that the response
before dropout would be more useful to the clinician than the length of time
in the study before dropout. He added that the more observations recorded
before dropout, the easier it would be to estimate the dropout bias because
the stability of the response before dropout would provide information about

the dropout bias.

The clinicians were asked if they would be able to estimate the slope of
patients who drop out after dropout. Both clinicians said that although they
thought it was plausible that the slopes of the dropouts would change after
dropout. neither of them felt able to offer estimates of what these slopes

would be.

During discussion with the HIV clinician, it became clear that for HIV stud-
ies it would be more sensible to elicit the mean response after dropout rather
than the dropout bias. This conclusion was made because the clinician ex-
plained that the CD4 count of patients who discontinue their treatment tends
to drop towards their baseline response and then stay at approximately that
level. This happens at different rates for different patients. It seems it would
be sensible to elicit parameters for the mean response after dropout com-
pared to the baseline response, and parameters for the time taken for the
response to reach this level. This highlights the need to discuss the likely
dropout model with clinicians before constructing the model and carrying

out any prior elicitation.
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Garthwaite [59] has written a thorough guide on prior elicitation, drawing
on findings from a large number of experiments in elicitation. Several exper-
iments have demonstrated that experts are poor at estimating measures of
spread compared to measures of location. Research has shown that eliciting
credible intervals, whereby the expert is asked to assign weights to a series
of possible intervals for a parameter. is more reliable than attempting to di-
rectly elicit a variance or standard deviation. But even with credible interval
elicitation. subjects tend to underestimate the width of intervals. It has been

found that visual aids can help with prior elicitation.

6.7 A simulation study

Talking to the clinicians, the approach seems feasible, and prior elicitation
of the dropout parameters promises to provide useful information, with the
potential to reduce bias in the model estimates. Equation 6.7 seems to be a
sensible model for the asthma clinical trial scenario. To investigate how well
the model works under various scenarios, with correctly and incorrectly spec-
ified priors for the dropout parameters, it was fitted to simulated incomplete
data. based on the asthma clinical trial. Estimates of the treatment effect
could then be compared to estimates from the full data, had all data been
collected, and estimates from an available case analysis, ignoring the missing

data.
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Table 6.2: Population parameter values for the simulated data

Parameter Value

0, Treatment effect of completers 20
3, Time effect 2

La Mean intercept of completers 300
o2 Between-subject variance 500
a? Within-subject variance 500
o Cause 1 bias before dropout -10
012 Cause 2 bias before dropout 0

091 Cause 1 bias after dropout -40
099 Cause 2 bias after dropout 0

6.7.1 Data simulation

For simplicity. only two treatment arms were simulated, analogous to the
placebo group and the salmeterol xinafoate (SM) group in the asthma clinical
trial. In the original data there were 153 patients. split equally between
these two groups. Data were simulated to have approximately the same
number of subjects, with parameter values close to the parameter estimates
of the asthma data. and a similar proportion of subjects dropping out. Two
causes of dropout were simulated: Cause one was that subjects suffered an
acute exacerbation of symptoms, and cause two was that subjects had stable
symptoms. According to the thoracic clinician, these are the two main causes
of dropout in asthma studies. For each cause of dropout, the data were
simulated to have a different bias before and after dropout. The model used
to simulate the data is that given in equation 6.7, with the parameter values
given in table 6.2. Here, patients drop out after the first time period, but

the model generalises to several dropout times.
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Subjects that dropped out because they had an acute exacerbation of symp-
toms (cause 1) had a reduced response before dropout compared to the com-
pleters, and then a further drop in response after dropout. Subjects who
dropped out because their asthma was stable (cause 2) were simulated to have
the same mean response as the completers, both before and after dropout.
The number of subjects in each dataset, N, is 150, and the proportion of
dropouts from each treatment arm and for each cause of dropout were as

follows:

Table 6.3: Proportions of dropouts by cause of dropout and treatment arm

Parameter Value
T Proportion dropouts - cause 1, treatment arm  0.16
o Proportion dropouts - cause 2, treatment arm  0.05
Tl Proportion dropouts - cause 1, placebo arm 0.32
T2 Proportion dropouts - cause 2, placebo arm 0.11

6.7.2 Model fitting

The dropout parameters, 82, were given Normal prior distributions. Model-
fitting was implemented in WinBUGS using MCMC simulation. Bayesian
inference treats missing values as parameters that have a joint posterior dis-
tribution with the model parameters, conditional on the observed data [60],

and initial values are therefore required for all missing observations.

It is important to check for convergence of the iterative simulations and to

discard the iterations prior to convergence. The recommended approach to
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checking for convergence [60] is to run more than one chain of iterations
with overly-dispersed initial values and ensure that the chains converge for
every parameter of interest in the model. This can be done by eye, from
plots of the chains of iterations. In addition, a convergence parameter, R
is calculated in WinBUGS for each parameter, which tends towards 1 as
the simulations converge. This convergence parameter was monitored for all
model parameters to ensure convergence had been reached. A large number
of iterations were needed to reach convergence, meaning that model fitting
was slow; model fitting on 1000 datasets took about 12 hours. Sensible

initial values were chosen, as unsuitable initial values can affect the rate of

convergence [61].

Once early simulations were discarded, sufficient simulations were obtained to
accurately estimate the posterior distribution of each parameter of interest.
It was ensured that the Monte Carlo error, an estimate of the difference
between the mean of the sampled values and the true posterior mean, was

less than 5% of the sample standard deviation for each model parameter.

The multiple causes model with strong priors on the dropout parameters was
compared to the same model using weak priors. Strong dropout priors had
a prior variance of 1000, resulting in a prior standard deviation of approxi-
mately 5 times the standard error of the treatment effect. In contrast, the
weak prior distributions were given a prior variance of 1 x 104, resulting in a
prior standard deviation of approximately 20 times the standard error of the

treatment effect. A model with priors centred on the true values of d; was
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compared to a model where the priors were given the opposite direction but

the same size as the true values, i.e. —d5; and —d,,.

The multiple causes model, in equation 6.7, fitted to the incomplete data, was
compared to an available case analysis of the incomplete data, and a multiple
causes model fitted to the complete data. The available case analysis assumes
that the missing observations are MAR, and estimates the treatment effect
to be A in equation 6.9, ignoring the dropout biases both before and after

dropout.

}/ij =a; + ﬂltreati + B2tij + €ij (69)

Under this naive model, a straight line is fitted to each treatment arm, with
random intercept. This model is referred to as the naive model as it is much

simpler than the multiple causes model that the data were simulated from.

The multiple causes model fitted to the full data provides the inference we
would have obtained had we been able to observe all subjects through to the

end of the study, and is therefore considered the “gold standard”.

As a comparison to our multiple causes model, a pattern-mixture model is
fitted which assumes the missing observations are MAR. Dropouts and com-
pleters are allowed to be centred about different means, which are estimated
directly from the data. This assumes that there is only one cause of dropout,

or that all dropouts come from the same distribution. The model fitted is:

},ij = + ﬁltreati + ﬁ2tij + ,Bgdropi + 6,']' (610)
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where drop; indicates whether or not the subject dropped out. The estimate

of the treatment effect in model 6.10 is ;.

6.7.3 Results

One thousand datasets were simulated for each scenario. Unless otherwise
stated, the sample size is 150 cases, and the ICC is 0.5. The scenarios

investigated were:

. Correctly centred priors for dropout parameters

—

2. Incorrectly centred priors for dropout parameters
3. Reduced correlation within clusters

4. Reduced sample size

5. Introduce random dropout parameters

6. Examine model under virtually flat priors

1. Correct prior means for 4,

The dotted vertical line in figure 6.3 represents the true population treat-
ment effect, computed using the values in tables 6.2 and 6.3 in equation 6.8.
As expected, when the prior distributions for both elements of d, are cen-
tred about the true values of the simulated elements of d,, the bias is fully

recovered by the model. This is true regardless of the strength of the prior
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Figure 6.3: Scenario 1: Correct prior means for 4,
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distributions. The effect of assigning weak priors to the dropout parameters

is that the standard error of the treatment effect is inflated.

The strength of the prior distributions does not affect the point estimate
of the treatment effect, it is only the mean of the prior that has an effect.
This is because the data provide no information about the mean bias of the
dropouts after they have dropped out, d2. The posterior distributions of the
elements of d,, therefore, are the same as the prior distributions, and the

contribution to the treatment effect of these parameters, in equation 6.8, is

the same regardless of the strength of their priors.
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The multiple causes model fitted to the full data results in the narrowest of all
credible intervals, as we would expect. There is more information available

when fitting the model to the full data.

The credible interval from the available case analysis is narrower than those
from the multiple causes model, even with a strong prior. This is because the
multiple causes model incorporates additional uncertainty in the distribution
of the missing data. Note that the available case analysis fits a different model
to the model from which the data are simulated; the data actually come from

several distributions and this naive model fits only one.

The MAR pattern-mixture model estimates a treatment effect similar to the
available case analysis, with a similar standard error. Both models make
a MAR assumption. The MAR battern—mixture model is a different model
again, to the model from which the data are simulated, modelling two parallel

slopes in each treatment arm, one for the dropouts and one for the completers.

2. Incorrect prior means for §,

Figure 6.4 shows the results of the model when the priors are incorrectly
specified. The prior distributions for 4, were centred about means with
opposite signs to the true values, i.e. —dy; and —éy. This demonstrates
what happens to the treatment effect if the clinician is wrong about the

direction of the bias in the dropouts.
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Figure 6.4: Scenario 2: Incorrect prior means for
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If clinicians’ knowledge about the response of dropouts after they drop out
is unreliable, the model is a dangerous tool to adopt, especially if clinicians
underestimate their own uncertainty about the dropout parameters. Even
when a weak prior distribution is assigned to each dropout parameter, the
point estimate of the treatment effect is biased, and in this case, its credible

interval does not contain the true population value for the treatment effect.

3. Reduced correlation within clusters, ICC=0.1

As in scenario two, the priors for 4, are incorrectly centred with means —d,;

and —dy,. Note that the estimates from the multiple causes model would
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again be unbiased if the priors for d; were correctly specified.

Figure 6.5: Scenario 3: Reduced correlation within clusters, ICC=0.1
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The missing data cause greater bias, compared to the standard error of the
estimate, when the correlation within clusters is lower. This is because each
observation that is removed, being less similar to other observations within
the cluster, carries a greater amount of information. Note that the credible
intervals are, in general, narrower for all models when the ICC is low, be-
cause of the greater amount of information carried by each observation. The
exception is the MAR pattern-mixture model, which has inflated credible in-
tervals compared to the same model fitted to data with an ICC of 0.5. Note,

however, that this pattern-mixture model fits parallel straight lines to the
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data, one for each treatment arm for each cause of dropout, and that this is

the wrong model for the data.
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4. Reduced sample size, N=50

In all of the following scenarios the correct prior means are specified for 8,.

Figure 6.6: Scenario 4: Reduced sample size, N=>50
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Note the wider confidence intervals because of the reduced sample size. Be-
cause of this, the bias is small in comparison to the standard error of the
parameter. Once again, the informative priors for the dropout parameters

recover the bias caused by the missing data.
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5. Random 4, and 6,

For each cause, the bias in the dropouts, both before and after dropout, is

simulated to be normally distributed. See figure 6.7 for the results.

Figure 6.7: Scenario 5: Random 4, and 4,
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Treatment effect

When the data are simulated to have random dropout parameters, the model
with correctly centred priors for the dropout parameters, recovers the bias
caused by the missing data. The credible intervals are slightly wider for all
models, because of the additional uncertainty in the data, introduced by the

dropout parameters.
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6. Flat priors

In figure 6.8 the variances of the prior distributions tend towards infinity.

Figure 6.8: Scenario 6: Flat priors

Available Case analysis IL ) J]
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Treatment effect

The prior variances of each of the dropout parameters were set to 1 x 106.
As the priors tend towards being uninformative the posterior variance of
the treatment effect is inflated substantially. We see very clearly here that
the point estimate of the treatment effect is corrected by the same amount

regardless of the strength of the dropout priors.
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6.7.4 Summary of findings

Correct priors for the dropout parameters recover all the bias due to dropout,
as expected. The strength of the priors affects the standard error of the treat-
ment parameter, but not the point estimate. With the strongest priors used
here, there is more uncertainty in the parameter estimates than in the cor-
rect model fitted to the complete data. There is also more uncertainty than
in the available case analysis, because the multiple causes model takes into
account the uncertainty in the distribution of the missing data. As the pri-
ors tend towards being uninformative, the posterior treatment effect tends
towards a distribution with infinite variance. The results of the multiple
causes model with incorrect prior means for 2 demonstrates the potential
danger of the model if clinicians give poor estimates of the dropout para-
meters and overestimate their certainty about the parameters. The model
has been shown to cope with reduced ICC, reduced sample size and random

dropout parameters.

6.8 Discussion of findings

6.8.1 Prior elicitation

The prior precision of d; affects the posterior precision of the treatment effect
but not the posterior mean. This is because the data provide no information
about d5; and 6,9, therefore the posterior distributions of d5; and ;2 remain
centred on the prior means of these two parameters, regardless of the prior

variances they are given. When clinicians have little information to offer
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about the missing data, very weak priors for the dropout parameters result
in very wide credible intervals for the treatment effect. However unappeal-
ing these very wide credible intervals may be, they provide a more honest
representation of the true uncertainty about the model parameters than an

available case analysis provides.

The prior distributions for 2 would have to be very narrow for the multiple
causes model to result in a narrower credible interval for the treatment effect
than the estimate from the full data. This would correspond to the clinicians
being so certain about the missing values of the response that more could
be learnt from the incomplete data together with the priors elicited from the
clinicians, than from the data had all subjects been observed until the end
of the study. This is implausible, and would suggest that the clinicians were

under-estimating their uncertainty in the dropout parameters.

Note that the available case analysis fits a different model to the other ap-
proaches, and they are therefore not directly comparable. The multiple
causes model does not, therefore, reduce to the available case analysis in
the special case when the dropout parameters are centred on zero with zero
variance. In this special case, neither would the model reduce to the MAR
pattern-mixture model specified here, as the MAR pattern-mixture model
fits two parallel slopes in each treatment arm, one each to the completers
and dropouts. The multiple causes model with dropout parameters are cen-
tred on zero with zero variance would be equivalent to a pattern-mixture

model stratified by cause of dropout.
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A limitation of the scenarios simulated is that the subjects have the same
slope after dropout. This restriction would not necessarily hold in practice.
Further investigation would be needed to assess the robustness of the model
to changes in slope after dropout. Although the clinicians both said that they
would be unable to offer an estimate of the slope of the dropouts after they
drop out, it seems likely that they would be able to provide some information
about what this slope might be, even if it is a very weak prior. The model

should be extended to include a parameter for the slope after dropout.

6.8.2 Generalisability of the results

The results are specific to the particular data that were simulated. Attempts
were made to make the simulations as realistic as possible but it is not pos-
sible to simulate data to represent every possible scenario. As discussed in
section 6.8.1, it is likely that dropouts would have a different slope after they
drop out of the study. It would be useful to test the robustness of the model
to a change in slope after dropout, firstly for a model that ignores the change

in slope, and secondly, for a model with a weak prior on the change in slope.

So far the model has only been used to estimate effects of cluster-level covari-
ates such as a treatment effect. In theory, the model will extend to covariates
that vary within the cluster, but obtaining a weighted average of the para-

meter estimates across causes of dropout would be more complicated.

The model fitted here assumes that, within cause of dropout, dropout bias

is the same in each treatment arm. This restriction could be removed, but
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careful discussion with the clinicians would be needed to decide if this was
sensible. The issue is not whether dropout bias is different between the
treatment arms, but whether, conditional on cause of dropout, there is a dif-
ference. One possible argument in favour of stratifying further by treatment
arm is, in the case of exacerbation of symptoms, patients may deteriorate
to the same level of PEFR, regardless of treatment group. As it stands, the
model has the same treatment effect before and after dropout, and this may

be unrealistic.

The model assumes that the dropout parameters are uncorrelated with other
parameters in the model. This assumption will not always hold. Although
ideally attempts should be made to elicit the correlation between the dropout
parameters and other model parameters, the elicitation process proposed is
already quite complex, with parameters of bias for different causes of dropout
being elicited, as well as parameters of the slope after dropout. White et.
al.[30] suggest a method for eliciting correlation parameters by eliciting priors
conditional on several values of another model parameter. Prior elicitation
for longitudinal data with multiple causes of dropout is already far from
straightforward, and adding elicitation of parameters of correlation between

various parameters would make the prior elicitation process too complicated.

The multiple causes model, here, is designed for the analysis of an asthma
clinical trial. In section 6.6 it emerged from discussion with the HIV clinician,
that it would be better to elicit a distribution for the response after dropout,

for each cause of dropout, rather than a bias in the response after dropout.
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This illustrates that the model must be tailored to the type of data being

analysed.

6.8.3 Potential of the multiple ‘causes model as a tool
for MNAR data

It is extremely encouraging that clinicians consider the cause of patient

dropout to be the single most important factor in estimating the dropout

bias. Provided with this information, both clinicians consulted felt very con-

fident about their abilitiés to predict the response bias in patients that drop

out.

It has been assumed that the data on cause of dropout is reliable. In fact,
this will not always be the case. It is standard practice to report reasons
for patient dropout in clinical trials, and this data may even be required by
the protocol. However, it is possible that the quality of this data will not
be high, as it can be difficult to obtain information on patients who have

dropped out of a study.

The two clinicians interviewed for this study were comfortable with the idea
of prior elicitation and were able to provide opinions on the distributions of
the dropout parameters using the questionnaire given in appendix B. It is
hoped that such a questionnaire, filled out by the clinician in the presence of a
statistician, would be a reliable method of prior elicitation. This is something
that needs to be further investigated. If there are problems in using this style

of questionnaire, in which clinicians are asked to assign weights to possible
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values of the dropout parameters, time needs to be spent on improving the

prior elicitation process.

The causes of dropout that the clincians were asked to consider were simple,
clear and unambiguous. In the case of the thoracic clinician, the first cause
under consideration was dropout due to an acute exacerbation of symptoms,
and the other, dropout due to stable symptoms. In practice, more complex
causes of dropout will be recorded. Prior elicitation would then be more

difficult.

In the model as it is specified here, data with a large number of missing data
patterns and several treatment groups would be stratified into very many
small strata. This would particularly be a problem in data with intermittent
missingness and studies with a large number of follow-up times. Under these
circumstances it is recommended that the strata are limited to completers
versus dropouts by each treatment group. This does, however, require the
somewhat restrictive assumption that the bias is independent of the time and

number of missing observations on a subject.

An alternative use for the approach is as a “reverse Bayesian analysis” tool
that would determine which prior distribution for the dropout parameters
would mean the parameter of interest was no longer statistically significant.
This would be an alternative method of carrying out a sensitivity analysis.
A disadvantage of the method is that it would not produce point estimates
and credible intervals for the parameters of interest that incorporated the

uncertainty due to patient dropout.

173



The most important message to be learned from the simulation study, how-
ever, is that the approach should only be recommended with extreme caution.
Prior elicitation should be carried out in such a way that the clinicians’ true
uncertainty about the dropout bias is reflected in the prior distributions for
the dropout parameters. The approach should only be adopted in situations
where the clinicians genuinely have knowledge about the likely dropout bias
for each cause of dropout. The consequence of mis-specifying the priors in
this simulation study was demonstrated with an extreme case. It is incon-
ceivable that a clinician who knew that the cause of dropout was exacerbation
of symptoms, would get the direction of the bias wrong, rather than just its
size. However, the potential is certainly there for a prior to be mis-specified,
if not in the wrong direction, to such a degree that the parameter estimates
are extremely biased. To give an Aidea of the level of inaccuracy in the mean
priors that would lead to seriously biased results, assume that the clinician
provides the correct direction of the bias. In this example, they would need to
provide bias parameters that were at least twice as large as the true bias, in
order to cause a treatment effect estimate that was worse than that obtained

from the available case analysis.

6.9 Conclusions

This work highlights the great potential of a Bayesian model for MNAR
missing data when the causes of dropout are known. When missing data are

MNAR, and it is therefore necessary to look beyond the available data in
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carrying out the analysis, it is not sensible to ignore the causes of dropout.
Interviews with clinicians indicate that there are experts available to provide
information about the missing response, providing the causes of dropout are

recorded, and this expertise should not be ignored.

Simulations demonstrate that the model successfully recovers the bias caused
by the missing data, when the elicited priors are unbiased. This is the case
under a range of scenarios. The model is only recommended with extreme
caution, however. It is highly sensitive to mis-specification of the elicited
dropout priors, because the data provide no information on these parameter

values.

The work in this chapter provides the incentive to carry out further work
on prior elicitation for missing data problems. Perhaps more importantly,
though, it demonstrates the value of pursuing patients after they withdraw

from a study, so that their cause of dropout can be recorded.
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Chapter 7

Discussion

7.1 Sensitivity of existing models to dropout

The assumptions about the robustness of GEE models, random effects models
and the summary statistics method to missing data, are not as categorical

as is commonly stated in the literature.

As expected, no method for repeated measurements is statistically valid when
data are missing not at random. The extent of the bias in the presence of
MNAR dropout, with even a small proportion of missing data, is large enough

to be of great concern.

The random effects model is robust to MAR data if the response is gaussian,
but for binary data, may be biased if the event probability is small (0.2).
That is if the model converges: there are convergence problems with the
penalised quasi-likelihood method. An important finding of this research
is that the quadrature method, although in general biased in the presence
of MAR data, is vastly improved by increasing the number of quadrature

points. In Stata, the default number of quadrature points is 12. Increasing
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this to the maximum of 30 produced unbiased estimates under MAR dropout
in the scenarios where estimation with 12 quadrature points was significantly

biased.

The sensitivity of the GEE model to missing data depends strongly on the
accuracy of the working correlation matrix. In contrast to popular belief,
the GEE model is not always robust to MAR data when the response is
gaussian. Estimates from a correctly specified GEE are significantly but not
substantially biased when dropout is MAR, and the bias is considerable when
the wrong correlation structure is chosen. This bias is believed to be due
to bias in the estimation of the correlation parameters. Further research is
needed to investigate this further. Although a distinction is often made in the
literature between gaussian and non-gaussian response data, the conclusions

were the same for both gaussian and binary data in the scenarios investigated.

If a particular model is chosen in order to reduce bias caused by missing data,
it should be remembered that marginal and cluster-specific parameters have

a different interpretation, as explained in section 2.5.4.

The summary statistics method relies, as expected, on an assumption of
MCAR data. With MAR data, the approach can be extremely biased, espe-

cially where covariates vary within the cluster.

Missing data should be of even more concern when the ICC is low because,
assuming that the missing data are correlated with the observed data, the

size of the bias caused by dropout is potentially higher.
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7.2 Tests of MCAR

The importance of identifying the missing data mechanism is highlighted
by the findings discussed above. Many tests of MCAR have been proposed
over the last twenty years. Some of these procedures are unnecessarily com-
plicated, for example involving several stages. In chapter 4, a qualitative
comparison of the various tests assessed their benefits and limitations, in
terms of their accessibility to the user, the types of data they can handle,
whether general patterns of missing data can be analysed, or only monotone
missing, and how the approaches model the relationship between dropout

and any covariates.

The tests vary in their strategy of testing for MCAR, and as a result so
do their power and significance level. A quantitative comparison was made
between those tests that were deemed straightforward enough to be accessible
to the user. For gaussian repeated measurements data with dropout, a test
by Ridout is recommended as the most powerful test that has a reasonable
significance level. This test is implemented on the asthma clinical trial data,

together with visual inspection of the data, in chapter 5.

Tests proposed by Listing and by Park are appealing because they provide
test statistics or parameter estimates that can be interpreted meaningfully.
But, in the scenarios simulated, these tests proved to be either lacking in
power or with a high type I error rate. In addition, Park’s test statistic was
often unobtainable because the covariance matrix of the parameter estimates

was non-invertible. This was particularly a problem for smaller sample sizes.
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The research highlights the need for a powerful test of MCAR with mean-

ingful parameters or test statistic.

7.3 Model for data with multiple causes of dropout

The model for multiple causes of dropout proved to be potentially a very
powerful tool for MNAR data. Clinicians were extremely supportive of the
method, and believe the cause of dropout to be the most important factor in

predicting the dropout bias.

The results of the simulation studies do, however, demonstrate the potential
danger of the model if clinicians are to overestimate their certainty about the
bias, and great care is needed to ensure the prior distributions represent the

clinicians’ true uncertainty about the dropout parameters.

The model has only been tested under limited scenarios. For example, it has
been limited to covariates that are fixed at the cluster level, and modelling
the effect of cluster-varying covariates has not been attempted. Also, the
scenario where the slope of dropouts changes after they drop out has not
been investigated. These are issues which need further exploration in order

to advocate the model with greater confidence.

As well as a model for MNAR data, the approach could be used as a tool for
sensitivity analysis. In this setting, the model would estimate the minimum
size of dropout parameters that would cause the parameters of interest to no

longer be significant.
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7.4 Future Research

The model developed for MNAR data with multiple causes of dropout has
should be fitted to real data to test the practicalities of the method, and
highlight any unforseen issues in both the model fitting and prior elicitation
processes. Death as a cause of dropout is a difficult scenario to model, and
is an issue that it would be interesting to explore. So far the model has only
been applied to gaussian data, and further work is needed to extend this to
categorical and discrete data. The idea of the model as a reverse Bayesian
analysis tool for sensitivity analysis is very appealing, and a possible area for

future work.

As discussed in section 7.2, a test of MCAR was recommended for gaussian
repeated measurements with dropout that is powerful and has an acceptable
type I error rate. However, it would be useful to develop an accurate test
of MCAR where the parameters or test statistic were meaningfully inter-

pretable.

Simulation studies led to important findings about the impact of dropout on
different models for repeated measurements data. The work focused more
on bias than efficiency, and this is an area that could be explored further.
Particularly interesting are the scenarios where loss of data increased model
efficiency, because extreme values tended to go missing. There is a need for
a reliable estimation method for logistic random effects models, as there can
be convergence problems with the penalised quasi-likelihood approach. The

quadrature method has come under criticism, but the results here that, with
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an increased number of quadrature points, the approach does have potential.
The robustness of the logistic random effects model estimated using adaptive

quadrature method should also be investigated.
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Appendix A

Demonstration that GEE for
(Gaussian data are robust to MAR
missing data

This is the proof of equation 3.19 to show that GEE for Gaussian data are
asymptotically unbiased in the presence of MAR missing data, provided the
correlation parameter is estimated without bias. In order to prove 3.19 we

need to prove that the following holds:

Corr(Y:) CorrT(Y1,Yy) \ ( I, _( Corri(Yy)
Corr(Y1,Y,)  Corr(Ys) Corr(Y1,Y2)Corr(Y1)™' | ( Onz,ny )
(A.1)

For simplicity we introduce the following notation

Corr(Y1)=A
Corr(Y1,Y2) = B
Corr(Yy) =C
and equation A.1 becomes:
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( g %T )_l ( BIXI—I ) = ( 0::1 ) (A2)

T T
Firstly, to find the inverse of ( g BC ), the matrix ( g L;/:_. ) is defined

as:

D ET A BT\ ([ L, Onpn
(27)(5%)-(om ) w9

and from this definition, we obtain the following two equations:

DA+ETB=1, (A.4)
EA+FB=0,,,, (A.5)

T T
Using ( lE) EF ) as the inverse of ( g % ), the left hand side of

equation A.1 becomes:

(47) (&)

which is equal to:

A BT\'( I, D+ ETBA-!
(B c ) (BA“) ( E+ FBA™! ) (A.7)
T 1
- ( %ﬁi?? ) e
- ( - ) (A.9)
where A.9 follows from equations A.4 and A.5

Back in the original notation this proves A.1.
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Appendix B

Example prior elicitation
questionnaire

Consider first, subjects who drop out because they suffer an acute exacerbation

of symptoms. Please assign weights according to your strength of belief about

their mean response compared to the mean of the completers (65, on the plot).

Your weights should sum to 100.

Lower than Same as Higher than
completers by completers completers by
>60% | 40-60% | 20-40% | 0-20% - 0-20% | 20-50% | 40-60% | >60% | TOTAL
Now consider subjects who drop out because they report having stable symptoms.
Again, assign weights according to your strength of belief about their mean response
compared to the mean of the completers (822 on the plot). Your weights should sum
to 100.
Lower than Same as Higher than
completers by completers completers by
>60% | 40-60% | 20-40% | 0-20% - 0-20% | 20-50% | 40-60% | >60% | TOTAL
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