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ABSTRACT

Computational methods are developed to simulate interactions of nonlinear waves with
single- and multi-structures through the finite element method based on second order and
fully nonlinear theories. The three dimensional (3D) mesh with prism elements is
generated through an extension of a two dimensional (2D) unstructured mesh. The
potential and velocity in the fluid field are obtained by solving finite element matrix
equations at each time step using the conjugate gradient method with SSOR
preconditioner. The combined Sommerfeld-Orlanski radiation condition and the damping
zone method is used to minimize wave reflection. The regridding and smoothing
techniques are employed to improve the stability of the solution and the accuracy of the
result.

The method is first used to simulate interactions of waves and an array of cylinders in
the time domain based on the second order theory. It is shown that the interference
between the cylinders has magnificent influence on the phase and amplitude of the waves
and forces.

The fully nonlinear problem is tackled first by considering the two dimensional
problem, which allows the developed method to be properly tested and validated.
Simulation is made for a body in a tank and a wedge-shaped body in oscillation.
Comparison is made with results obtained from other methods.

In the next application, the 3D interactions between single- and multi-cylinders with or
without flare and waves generated by a wave maker in a rectangular tank are investigated
based on the fully nonlinear theory. The effect of the flare on waves and hydrodynamic
forces is analysed, and the mutual interference of multiple cylinders is also studied.

The method is also employed to solve the 3D fully nonlinear radiation problems by
single- and multi-cylinders undergoing oscillation in the open sea. The result is compared
with those obtained from the linear and second order theories.

It is concluded that the developed numerical approaches based on the finite element
method can be used to effectively simulate interactions of waves and single- and multi-
cylinders with or without flare, which can provide some valuable information to design of

offshore structures.
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1. INTRODUCTION

1.1 Background

One of the most important tasks in ocean engineering is to describe and predict water
waves. Wave runups, hydrodynamic forces acting on ocean structures and the resulting
motions have been intensively studied for many years. However, it is still not easy to
obtain accurate results for many practical situations. Further research is required in the
fields of mathematical modelling and numerical procedure.

When studying interactions between waves and ocean structures, the fluid is usually
assumed to be incompressible and inviscid, and the flow irrotational. The fluid motion

can be described by a velocity potential ¢ which satisfies the Laplace equation within

the fluid domain and boundary conditions on the free surface, body surface and a
surface at the far field. Although the governing equation is linear, the boundary
conditions are fully nonlinear, which is the main source of difficulty. There are several
issues: (i) a complicated condition has to be satisfied on the free surface which is not
known a priori, (ii) numerical tracking of the free surface is prone to instability, (ii1) an
appropriate boundary condition to simulate the open sea condition is required at the far
field to avoid numerical reflection, (iv) the body motion and the fluid flow is fully
coupled.

Perturbation theories have traditionally been used to solve the problem. Based on the
assumption that the wave amplitude is small relative to the wavelength and the body
dimension, the conditions on the free surface and bddy surface are satisfied on their
mean positions through the Taylor expansion. There are two commonly used methods:
the frequency domain method and the time domain method. The former is based on the
assumption that the fluid motion has reached a periodic state. The advantage of this
method is that for each frequency the equation has to be solved only once for each order
of the perturbation expansion as the time factor has been taken out. By contrast, the
time-domain method needs to solve the problem at each time step, which can usually be

repeated for thousands of time steps.
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Studies of interactions between nonlinear water waves and structures are very
important both in design and theoretical studies. The linear model has been popular
since it provides many useful results. In particular, it can capture resonant phenomenon
well. The second or higher order model can further provide some interesting features of
nonlinearity such as drift forces and ringing oscillations. But these analyses are based
on the assumption of small amplitude waves. The motivation of the current study arises
primarily because of the need to obtain more accurate prediction of runups, forces and

motions in extreme conditions where the perturbation theory becomes invalid.

1.2 Theories of wave-structure interactions

The studies of the interactions between waves and structures have received a
considerable amount of interest over the past years and many theories and numerical
methods have been developed. This chapter will give a review of the previous work in
this and the next sections.

There are a variety of theories for the nonlinear wave model that have been
developed such as linear theory, second order theory and fully nonlinear theory. The
solutions of these theories give insight into the propagation of waves and can provide
answers to problems when their assumption is valid. In the linear theory, conditions on
both the free surface and body surface are satisfied on their mean positions and all the
nonlinear terms are ignored. The second order theory imposes the boundary conditions
on the same position, but all the product terms in the perturbation expansion are
retained. Strongly nonlinear problems may be described by the fully nonlinear theory
with all the terms included. More information can be found from Lamb (1945),

Whitham (1974), Sarpkaya & Isaacson (1981), Mei (1983) and Dingemans (1997).

1.2.1 Linear frequency-domain theory

In this theory, it is assumed that interactions between waves and structures have
lasted for a long time, the initial transient effect has disappeared, and the flow and the
motion of the structure have reached a periodic state. If the wave is sinusoidal, the

corresponding motion of the structure is also sinusoidal but with a phase difference.
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Since the 1940s, researchers have tried to seek a theory to predict floating body
motions. Haskind (1946a, b) decomposed the disturbed potential into a diffracted
potential and a radiated potential. He used the Green’s theorem to construct an integral
equation for the potential and obtained some results for a thin ship. Nearly at the same
time, Havelock (1942) and Ursell (1949) solved the boundary value problem for
motions of a ship and floating cylinders, respectively.

A realistic 3D simulation of ship motions was not easy and new methods were
required to efficiently predict ship motions. There was a breakthrough in the 1950s. The
approach was the strip theory/slender body theory, which is stemmed from Korvin-
Kroukovsky (1955) and then further developed by Korvin-Kroukovsk & Jacobs (1957)
to investigate the pitching and heaving motions of a ship. The strip theory assumes that
ships are slender and may be longitudinally divided into many intervals and that the 3D
fluid flow around the hull is simplified as a 2D flow around each transverse section. The
hydrodynamic loading on the ship was obtained by integrating the 2D results along the
ship length from which the ship response could be determined. Several strip theories
such as rational strip theory (Ogilvie & Tuck, 1969), new strip theory (Tasai & Takagi,
1969), STF theory (Salvesen, Tuck & Faltinsen, 1970) have been developed. The STF
method has the most successful application in estimating motions and loads of
conventional ships in waves. In 1980, a new theory called unified theory was developed
by Newman & Sclavounos (1980) and got remarkable success in practical applications
of predicting ship motions. This theory divided the fluid domain into an interior domain
near the ship and an exterior domain away from the ship. The strip theory was used in
the interior domain and 3D source distribution along a line was used in the exterior
domain. Some other slender theories such as those on high speed vessels (Chapman,
1975 & Faltinsen, 1993) were also developed. Kashiwagi (1995) presented a theory
which combined the two theories by Newman & Sclavounos (1980) and Chapman
(1975) together. This theory was suitable for medium speed. It was reported that it may
provide good results of hydrodynamic coefficients in surge motions. It should be
mentioned here that the strip theory has been extended to nonlinear problems such as
Yamamoto et al. (1978, 1979), Jensen & Pedersen (1979), Meyerhoff & Schlachter
(1980), Wu & Moan (1996), Xia et al. (1998) and Fonseca & Guedes Soares (1998),
and a recent development was made by Gu, Shen & Moan (2003).

Strip theory is efficient and provides good global results such as body motions but it

does not give accurate local results especially near the stern and bow. With the
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development of computational speed and memory, three-dimensional (3D) numerical
simulations were developed. A successful way to solve 3D zero-speed problems is to
use a Green’s function in the frequency-domain. This has become a standard design tool
for large volume offshore structures (Faltinsen, 1990). Faltinsen & Michelsen (1974)
and Garrison (1978) employed the source distribution method to study motions of
structures and loads on structures at zero speed. Linton (1991) employed the
multipole method to study radiation and diffraction problems on a submerged sphere
in finite depth, and a recent work on Green’s functions was made by Chakrabarti (2001)

For the problem of ship motions at forward speed, the 3D study began with
Chang’s pioneering work (1977), this was followed by Inglis & Price (1982),
Guevel & Bougis (1982), Wu & Eatock Taylor (1987) and Iwashita & Ohkusu
(1989). The 3D frequency-domain analysis of ship motions at forward speed
employs Green’s functions in complicated mathematical forms. The Green’s
function has singular and highly oscillatory properties which can lead to difficulties
in computation which was captured in a recent study by Chen & Wu (2001). Chang
(1977) directly calculated double integrals in the Green’s function and the
calculation requires a small step in the numerical integration due to the
oscillatory behaviour of the Green’s function and so is very time-consuming.
Inglis & Price (1982) replaced the double integral terms belonging to the
principal value formulation by single integrals in the expression of the
exponential integral. Wu & Eatock Taylor (1987) introduced the complex
exponential integral to reduce the double integral.

The low speed assumption was proposed since the problem of ship motions at
forward speed is complex. Based on this assumption, the Green’s function of
zero speed was used and a modified term was added to consider the effect of the
speed such as in that by Wu & Eatock Taylor (1990a). Besides the Green’s
function method, Dawson (1977) suggested distributing Rankine sources near the
free surface and body surface to solve the problem of forward speed. This
approach was then used by Nakos & Sclavounos (1990), and extended to
nonlinear problems by Jensen et al. (1989) and Raven (1992).

1.2.2 Linear time-domain theory
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The frequency-domain method is applicable to periodic problems. For the general
transient problem, the time-domain method may be used. Many publications have been
based on this theory. Maskell & Ursell (1970) considered a transient oscillation of a
floating body. Lee & Leonard (1987) studied a free oscillation of a floating body
induced by a wave maker. Beck & Magee (1990), Bingham, Korsmeyer & Newman
(1994) and Bratland, Korsmeyer & Newman (1997) studied wave-body interactions and
obtained the added mass and the damping coefficient.

Like the linear frequency-domain theory, the Green’s function method is usually used
to study body motions in the time domain. The early study using the Green’s function in
ship motions are credited to Finkekstein (1957) and Cummins (1962). Finkekstein
(1957) derived the Green’s functions of infinite and finite water depth in both two and
three dimensions, and Cummins (1962) decomposed the velocity potential into the
instantaneous and memory parts. Ogilvie (1964) and Kotik & Lurye (1964) extended
Finkekstein and Cummis’s work to the cases of ship motions at forward speed.
Wehausen (1967) derived an integral equation and the Haskind relation for ship motions
at zero forward speed. However, it was not until 1976 that Van Oortmerssen (1976)
successfully implemented it using a computer. Subsequently, with the development of
computer facilities, many researchers began to use the Green’s function method to
investigate body motions. Yeung (1982) and Newman (1985a) studied the free
oscillations of floating bodies in two dimensions and symmetric floating bodies in three
dimensions, respectively. Beck & Liapis (1987) calculated the added mass and damping
coefficients of floating bodies at zero speed. The calculation of the time-domain
Green’s function method may be significantly faster than the frequency-domain Green
function method when the forward speed is considered (Beck, 1994).

With the increase in computational power, it is possible to use the Rankine source
method to calculate wave-body interactions in the time domain. The Rankine source is
easier to calculate than the Green function, but it requires a distribution of Rankine
sources on the free surface and/or other boundaries. Isaacson & Cheung (1993) studied
the effect of current on the radiation and diffraction of regular waves around a two-
dimensional body in the time domain and Cheung et al. (1996) extended it to the 3D
case. Some other work may be found such as that by Prins & Hermans (1994) who
calculated wave-current interactions in two dimensions and that by Kim, D.J. &
Kim, M.H. (1997) who calculated interactions of wave-current and large body in

three dimensions.
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1.2.3  Second or higher order frequency-domain theory

The linear theory gives satisfactory results for ship motions of small amplitude or in
small amplitude waves. But it ignores all the important nonlinear features such as mean
drift forces, slowly-varying forces or sum frequency forces. This leads to the
development of the second order theory. The second order theory retains all the product
terms in the Bemoulli equation and in the Taylor expansion. Typical publications
include those by Eatock Taylor & Hung (1987), Abul-Azm & Williams (1988), Kim &
Yue (1989), Wu & Eatock Taylor (1990b) and Newman (1990).

There are two main approaches to calculate the second order force. One is based on
the conservation of momentum and the other is the direct pressure integration. The
former uses the far field potential to calculate forces and so is called the far field
method. This method was mainly developed by Maruo (1960) and extended by others
such as Newman (1967), Lee & Newman (1991), Lin & Reed (1976) and Gerritsma &
Beukelman (1972). The second method (Pinkster & Van Oortmerssen, 1977) is to
directly integrate pressure on the surface of the body to obtain second order forces. It
employs the near field potential, and so it is called the near field method. This method
has been used by other researchers such as Faltinsen & Loken (1978). The far field
method can be used to calculate the mean force in the horizontal direction. However,
complete second order forces including the mean force and the oscillatory forces may
need the near field method.

Many other publications have also focused on the calculation of second order forces.
For example, Ogilvie (1963) obtained the mean vertical force on a submerged cylinder
through the integral of pressure on the mean wetted cylinder surface. Wu (1991a)
calculated second order forces on horizontal cylinders. Mclver (1994) employed the
near field method to study second order diffraction problems in two dimensions. For
problems involving bodies at forward speed, focus was on added resistance in waves
such as in those by Wu (1991b, 1993) about submerged bodies in finite depth and
Varyani (1993) about calculation of added resistance on submersibles.

The numerical calculation of the second order potential, which satisfies an
inhomogeneous free surface condition, is not an easy thing. However, it was shown by

Molin (1979) and Lighthill (1979) independently that it was not necessary to calculate
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the second order potential if only the second order forces were required and not the
potential. A fictitious radiation potential at double the frequency of the incident wave
was introduced and the second order forces were expressed in terms of an integral on
the mean free surface. This method was extended by Eatock Taylor et al. (1989) to
obtain the pressure on the body surface, Wu & Eatock Taylor (1989) to study 2D
diffractions by horizontal cylinders and Wu (1991a) to calculate second order wave
reflection and transmission at infinity in two-dimensions. Other extensions can be found
by those such as Molin & Marion (1986), Eatock Taylor & Hung (1987) and Abul-Azm
& Williams (1988). The direct numerical computation of the second order potential
needs more effort, and 2D & 3D studies of diffraction problems have been undertaken
by Vada (1987) and Kim & Yue (1989). Chau (1989) or Chau & Eatock Taylor (1992)
employed the eigenfunction expansion method directly to obtain the second order
potential.

In some cases, the second order theory is sufficient for capturing nonlinear features.
But higher order forces will be important in many other problems. For example, tension
leg platforms (TLPs) and gravity-base structured (GBS) are usually acted on by wave
forces with a frequency that is three times the wave frequency and resonant oscillations
will occur. This phenomenon is known as ‘ringing’ and ‘springing’. Draugen
monotowers in waves will be acted on by third order loads (Faltinsen, 1999). Generally,
a study of third order forces requires a high accuracy for results at lower order. There is
some works on third order loads such as those by Malensa & Molin (1995) and
Faltinsen, Newman & Vinje (1995). Vantorre (1986) presented a third order theory to
study radiation problems about floating and submerged bodies experiencing heaving

motions, but its mathematical formulation is very complicated.

1.2.4 Second order time-domain theory

An alterative to the frequency-domain second order theory is the time-domain second
order theory. This theory was used by Isaacson & Cheung (1990, 1991, 1992). Just like
the frequency-domain second order theory, it is possible to apply Taylor expansions to
transform the free surface boundary and body surface conditions from their exact
locations to their corresponding mean positions. At the same time, an initial condition is

given and two linear systems are solved to obtain the first- and second- order potentials
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and the hydrodynamic forces in the time domain. Isaacson & Cheung made
investigations into the diffraction problems of a submerged body (1990) and floating
bodies in two and three dimensions (1992, 1993). Meanwhile, a 2D radiation problem
by a floating semi-circular cylinder was studied by Isaacson & Ng (1993) and a 3D
radiation problem by Isaacson, Ng & Cheung (1993). Ng & Isaacson (1993) employed
this theory to study the motion of a freely-floating cylinder and interactions between
waves and a moored floating cylinder. Kim, Kring & Sclavounos (1997) also employed
this theory to study 3D wave-body interactions. The interactions between a cylinder and
second order waves together with a current were considered by Buchmanna, Skourup &

Cheung (1998).

1.2.5 Fully nonlinear theory

The linear and second order theories are based on the small amplitude wave
assumption. The linear theory is efficient for some problems such as prediction of ship
motions in small waves, and its numerical implementation is simple. But it cannot
capture some nonlinear features such as mean forces. These phenomena can be
uncovered by using the second order theory. The numerical implementation for the
second order theory requires much more work than the linear theory but still has the
advantage of a fixed computational domain. For small and mild wave problems, the
second order theory gives satisfactory results. However, the second order theory is
invalid for large amplitude waves. These kinds of problems require the fully nonlinear
model. This model usually employs the boundary element method (BEM) or the finite
element method (FEM) in space and the finite difference method (FDM) in time.
Longuet-Higgins et al. (1976) developed a numerical approach called mixed Euler and
Lagrange (MEL) for steep waves. It used the Eulerian method to obtain the solution in
the fluid field, and then used the Lagrangian method to track the position of the free
surface and velocity potential on the free surface. Faltinsen (1977) used this method to
study transient nonlinear free surface motion outside and inside moving bodies. Vinje &
Brevig (1981a) studied a two-dimensional radiation problem using complex variable
functions. Cointe (1989) & Hwang et al. (1988) applied the boundary element method
to solve the same problem as Vinje & Brevig (1981a). The MEL method was also used

to study the water entry of two-dimensional wedge-shaped bodies (Zhao & Faltinsen,
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1993). Scullen & Tuck (1995) calculated the nonlinear resistance increase on a
submerged cylinder at forward speed. Other work includes that by Kashiwagi (1996)
and Berkvens (1998) on simulating free heaving motion of a sphere and Tanizawa
(1996) on the motions of a floating body. Some recent applications were made by Maiti
& Sen (2001) on wave diffraction by single and twin hulls and by Koo & Kim (2004)
on a freely floating body. Taking a different approach from MEL, Sen (1993) used the
Eulerian free surface condition to study the heaving and rolling motions of floating
bodies in two dimensions.

In three-dimensional cases, Isaacson (1982) calculated interactions between nonlinear
solitary waves and a vertical cylinder in the time domain. Lin er al. (1984),
Dommermuth & Yue (1987) studied diffraction and radiation problems about circular
cylinders based on the MEL boundary element method. Ferrant (1997) simulated
strongly nonlinear wave generation and wave-body interactions. Celebi and Beck
(1997) used a Rankine source method called desingularised BEM to solve fully
nonlinear transient waves. Celebi, Kim & Beck (1998) employed the desingularised
BEM simulated 3D numerical wave tank. A recent work is on interactions of linear and
nonlinear irregular wave and cylinders by Boo (2002).

All the above mentioned work employed the boundary element method. Some
researchers used the finite difference method to study the wave-body interactions such
as Wang & Spaulding (1988) who solved the 2D problem. Arai et al. (1993) used the
FDM to simulate a 3D numerical tank.

In the last decade, simulations of fully nonlinear waves based on the finite element
method have been developed. This method was used to simulate nonlinear transient
waves problems such as those by Wu & Eatock Taylor (1994, 1995), Greaves,
Borthwick, Wu & Eatock Taylor (1997) and Westhuis (2001) in two-dimensions and
Wu et al. (1998), Ma, Wu & Eatock Taylor (2001a, b), Hu, Wu & Ma (2002) and Wu &
Hu (2004) in three-dimensions.

1.3 Numerical methods in studying wave-structure interactions

Generally, there are four main numerical methods used in the fluid problem: the finite

difference method (FDM), the finite volume method (FVM), the boundary element
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method (BEM) and the finite element method (FEM). Sometimes mixed methods such
as coupled FEM and BEM are used. There are a number of reviews on ideal free surface
flow problems such as linear flows by Mei (1978), both linear and nonlinear flows by
Yeung (1982), nonlinear problems by Schwartz & Fenton (1982) with an emphasis on
theoretical methods, and numerical methods by Tsai & Yue (1996).

1.3.1 Finite difference method (FDM)

The finite difference method is an efficient numerical tool in solving fluid problems,
and it has been the mainstream numerical method for a considerable time. The
fundamental idea of the method is to discretise the fluid domain with an orthogonal
structured mesh and replace the continuous derivative in the governing equation and
boundary conditions with discretised versions and then solve the difference equation.
Actually, it is simple to solve directly time-dependant problems with a regular boundary
on which the boundary conditions are easy to handle. For problems of complex domain,
a body-fitting system is usually employed to convert the equations of the problem in the
physical domain to that in a regular computation one. This method is widely used in
viscous flows and wave-making problems such as simulations of nonlinear ship waves
by Miyata er al. (1985, 1987). It is also employed to handle problems of interactions
between waves and structures, For example, Telste (1985) simulated a large amplitude
heave motion of a two-dimensional cylinder in a free surface, and Yeung & Wu (1989)
calculated the motions of a floating body in a closed domain. Some other work about
using the FDM in the problem of flow with a free surface, such as Emmons (1972),
Orsag & Israeli (1974) and MacCormack & Lomax (1979), can also be found.

1.3.2  Finite volume method (FVM)

The finite volume method is a numerical method for solving partial differential
equations of conservation law system; it has been extensively used fluid mechanics,
heat and mass transfer and petroleum engineering. One advantage of the finite volume
method over the finite difference method is that it can use not only the structured mesh
but also the unstructured one, and so it may be used on any domain with arbitrary

geometries. A feature of this method is the local conservation of the numerical fluxes
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for each control volume, which also ensure the global conservation for the entire
domain, and this makes the finite volume method quite attractive when modelling
problems for which the flux is of importance, such as in fluid mechanics, semi-
conductor device simulation, heat and mass transfer. In fluid mechanics, the FVM
method is mainly used to simulate viscous flow problems. Some works on simulations
of viscous fluid based on the FVM may be found such as those by Greaves (1995), Hu
et al. (2002) and Wu & Hu (2006).

1.3.3 Boundary element method (BEM)

Although the FDM is an important numerical method in computational fluid
mechanics, in the field of wave-body interactions, the BEM has been widely used for
solving linear and nonlinear problems. A noticeable feature of the BEM in linear wave-
body interaction problems is that the use of Green’s functions ensures that the
governing equation and boundary conditions except those on the body surface are
automatically satisfied. As a result, it is only necessary to distribute sources on the
body surface, and so it has much smaller number of unknowns. An early work in
this area was that by Kim (1965), who obtained hydrodynamic coefficients for
heaving and swaying motions of a 2D circular cylinder and a sphere both submerged
and on free surface. It was then followed by other researchers such as Frank (1967),
Yeung (1973), Hearn (1977), Noblesse (1982) and Newman (1984, 1985b). A
common feature of these pieces of work is the use of special functions to express
Green’s functions so the singular integral could be avoided and the
corresponding computations become more efficient. For higher order and fully
nonlinear problems, no Green’s function which satisfies the free surface
boundary condition and radiation condition has been found. In these cases, the
Rankine source method is usually used. This method is simple in form but it
requires discretisation on all the boundaries including the free surface and so it
has much more unknowns.

The simplest discretisation scheme in the BEM is to use the constant panel method
(CPM) (Hess & Smith, 1964), which assumes that the collocation point is the element
centroid and physical variables on an element is constant. It needs a huge number of

elements to achieve accurate numerical results. For simulations of nonlinear wave-body
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interactions, higher order boundary element method (HOBEM) or linear element
method are usually be used. In contrast to the CPM, the higher order element method
assumes that the collocation points are the vertices and physical variables such as the
potential on an element continuously vary. One advantage of the higher order element
method is that it can provide more accurate results using less numerical computation
compared with the CPM. Liu, Kim & Lu (1990) gave a comparison between the
HOBEM and the CPM and show the efficiency of the former, Choi et al. (2000) further
verified the efficiency of the HOBEM. The most common higher order element is the 8-
or 9-node bi-quadratic isoparametric element such as Choi er al. (2000), Xu & Yue
(1992) and Boo (2002). Recently, Grilli et al. (2001) utilised the 16-node cubic
quadrilateral element to study three-dimensional overturning waves and the
corresponding numerical method has been developed. Another advantage of the
HOBEM for second order wave-body interactions is that spatial first- and second-order
derivatives can be obtained through shape functions, which is difficult when using the
CPM. Extensive work can be found on second order wave-body interactions based
on the HOBEM such as that by Teng & Eatock Taylor (1994), Choi et al. (2000)
in the frequency domain and Kim, Kring & Sclavounos (1997) in the time
domain. It should be mentioned that discontinuous elements are sometimes used
in numerical simulations such as those by D. J. Kim & M.H. Kim (1997) and Boo
(2002). The discontinuous elements are usually distributed along the intersection
of two boundaries that Dirichlet conditions are imposed. The objective of using
these elements is to remove the singularity in the coefficient matrix, where two
rows in the matrix are identical.

In the last two decades, the fully nonlinear simulations have become popular,
and the BEM has gained a wide range of application in this area such as the
computation of 3D water waves by Xu & Yue (1992), wave-body interactions by
Ferrant (1997) and nonlinear irregular wave simulations by Boo (2002).

As well known, a main feature of the BEM is that singularities exist when
source points and field points coincide. The singularities may cause serious
computational difficulties and so require special numerical schemes. For 2D
problems, exact analytic integrals can be found (Lage & Costa, 1987). For 3D
problems, there is also much work on the calculation of the singular integral such
as that by Lachat & Watson (1976), Rizzo & Shippy (1977), Cristescu &
Loubignac (1978), Srivastava & Contractor (1992) and Liu et al. (1995). Some
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recent development can also be found such as those by Karami & Derakhshan
(1999) and Smith (2000).

Sometimes special elements for example B-spline elements have been used by a few
researchers such as simulations in 2D by Maiti & Sen (2001) and Lee & Kerwin (2003)
and in 3D by Lee, Maniar, Newman & Zhu (1997) and Kim & Shin (2003). The B-
spline element can offer a more continuous representation of potential or velocity and
geometry description, and can improve the numerical efficiency. Numerical procedures

however, are more complicated.

1.3.4 Finite element method (FEM)

The finite element method was developed in the late 1950s for structural analysis. The
fundamental idea of this method is to discretise the continuous fluid domain into
separate elements and then use interpolation functions within the elements. At first it
was less frequently used in fluid mechanics than the finite difference method, but now it
has become a powerful and more popular alternative in water wave problems. Shen
(1977) gave a detail review on its applications in fluid-flow problems, and Mei (1978)
also mentioned its application in linear wave-wave radiation and diffraction problems.

During the early days of the development of the FEM in fluid mechanics, finite
element equations were derived from the variational principle. Luke (1967) derived a
formulation for the problem of free surface but did not implement it on computers. This
variational principle was then extended by Whitham (1967, 1970) to check the
dispersion characteristics of nonlinear waves. Bai (1975b) also employed a variational
method to handle two-dimensional linear scattering problems. Other work such as Chan
& Larock (1973), Larock & Taylor (1976), O'Carroll (1976), Betts (1979), Aitchison
(1980) and Betts & Assaat (1980) also used the variational principle to solve linear and
nonlinear fluid problems of a free surface without a body. However, variational
principles may not always be found due to the complexity of fluid problems. Actually,
the most popular approach is the so called Galerkin weighted residual method and it has
been widely used in linear fluid problems such as Bai (1977, 1978, 1979) and Lenoir &
Jami (1978).

As the FEM was further developed in fluid mechanics, the hybrid element method

was used. They were mainly employed to solve the problem of the infinite domain.
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These hybrid methods suggest that the fluid domain is divided into two parts: the
interior which is close to the body and the exterior which is away from the body. The
interior domain is discretised with finite elements, but the analytical presentations or the
infinite element method, which satisfies the radiation condition, is used (Zienkiewicz et
al., 1978) in the exterior domain. These methods can effectively decrease nodes and
correspondingly require less storage and CPU time. These methods were generally used
to handle linear problems. Both the variational principle and the Galerkin formulation
can be used in the hybrid method. Bai & Yeung (1974) and Chen & Mei (1974)
employed variational methods to solve problems of a free surface in an infinite domain,
and then Bai (1975b) applied this method to the diffraction of oblique waves by an
infinite cylinder. The Galerkin formulation was used by Yim (1975) to solve a problem
of linear ship waves. Bai (1975a, 1977, 1978) also used it to study flow with free
surface in both 2D and 3D problems, and then Bai (1979) derived an equation about
blockage effects correction with a free surface. The method used by Bai (1978) was also
extended to nonlinear steady wave problems by Bai & Han (1994). Other work about
applications of hybrid methods in problems of free surface can be found such as
Wellford & Ganada (1980), Oomen(1981), Jami (1981), Mei & Chen (1976), Yue and
co-workers (1978, 1979) and Euvrard ef al. (1981). Recently, a method coupled by the
FEM and the BEM was developed by Wu & Eatock Taylor (2003) to solve fully
nonlinear wave-body interactions. The difference is that the interior domain is
discretised with boundary elements and the exterior with finite elements.

The work above-mentioned is mainly about linear problems. The finite element
method was also developed to handle weak nonlinear water waves. Clark et al. (1991)
used a second order model in the frequency domain to simulate Stokes wave diffraction
problems on waves acting on offshore structures.

Fully nonlinear simulations of free surface problems based on the finite element
method have also achieved a lot. Nakayama & Washizu (1980) used the finite element
method to analyse the sloshing of liquid in a container subjected to forced pitching
oscillation. Lynch & Werner (1987, 1991) simulated the actions of linear and nonlinear
waves on harbours due to winds and tides. Allievi & Calisal (1993) employed a semi-
Lagrangian finite element method to solve nonlinear flow with a free surface and used
slender body theory to calculate the nonlinear water waves of Wigley ships advancing
in static water. In the last decades, Wu & Eatock Taylor completed several pieces of

work on the simulation of nonlinear water waves based on the finite element method.
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They used the FEM to calculate 2D nonlinear transient waves (1994) and studied a
nonlinear wave radiation problem in two dimensions (1995); Greaves et al. (1997)
simulated fully nonlinear steep waves, and Wu, Ma & Eatock Taylor (1998) gave a
fairly broad account of both 2D and 3D sloshing problems based on the finite element
method. Recently, Ma, Wu & Eatock Taylor (2001a, b) developed a numerical scheme
based on the finite element method to study fully nonlinear interactions between vertical
cylinders and steep waves. More recently, Hu, Wu & Ma (2002) extended this method
to the case that a cylinder is in forced motion, and then Wu & Hu (2004) considered a
floating structure in large amplitude motion based on a hybrid mesh with an
unstructured mesh near the cylinder and a structured mesh away from the cylinder. All
these pieces of work are for cylindrical structures with no variation of the cross section
in the vertical direction. Wang & Wu (2004) extended this method to circular cylinders
with flare. All this work employed elements with linear shape functions.

To improve the accuracy and efficiency, some techniques such as high order elements
and adaptive methods may be used. The same accurate results with fewer high order
elements than that with linear elements may be obtained. Wang & Khoo (2005)
employed the quadrilateral element with quadratic shape functions to simulate 2D
sloshing problems in forced random oscillations. However, there are some difficulties
when using higher order elements. A big challenge is the mesh generation, which will
probably be much more difficult than that with linear elements, especially for 3D
complex domains. The adaptive technique may lead the simulation to be more efficient
and the result to be more accurate. There are a few kinds of refinement methods: A-
refinement, p-refinement, r-refinement and their combinations: Ap-refinement and Ar-
refinement. The refinement is based on a posteriori error indicator, which may be
predicted from the solution gradients of variables: density, velocity pressure or
temperature. The error indicator in each element is first calculated. If the indicator is
greater than a specific tolerance in an element, the mesh may then be refined in the
following ways: (1) the element is subdivided through its midpoints for A-refinement,
(2) the nodes around the element are rearranged for r-refinement and (3) the order of the
shape function is increased for p-refinement. An example of using hp-refinement
technique can be found in Robertson and co-workers (1999, 2004) for simulations of

nonlinear free surface flows.
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It is known that most of the previous work on wave-body interactions is based on the
boundary element method. However, it is shown from above-mentioned work that the
finite element method is robust and effective in solving nonlinear water wave problems.
A comparison between the FEM and the BEM was made by Wu & Eatock Taylor
(1995). Their results suggested that the FEM was more efficient in both memory
requirement and computational time than the BEM. A main advantage for the BEM is
that the discretisation need only be performed on the boundary, which reduces the
dimension of the problems by one. In contrast to this, the FEM requires discretisation of
the whole fluid domain. Hence, the number of nodes in the FEM is much larger than
that in the BEM. Since the solution is calculated in the whole domain for the FEM and
only on the boundary for the BEM, it seems that the BEM needs much less computer
storage and computer time than the FEM. However, the global coefficient matrix in the
FEM is symmetric and sparse, which can be held efficiently in packed storage of only
nonzero elements. Therefore, smaller storage and computational resources are required
than the BEM, which corresponds to a fully populated matrix. For example, a 3D mesh
with 8-node hexahedral elements in a wave tank with 10 intervals in three directions,
the number of nodes in the domain is 1331, and the total number of nonzero elements in
the coefficient matrix is only 15561. If the same 4-node quadrilateral elements on the
boundary are used for the BEM, it will lead to a total number of 231x231=53361, even
when the symmetry about the wall and bottom of the tank is considered. In the
numerical simulations in this thesis, the number of nodes may sometimes reach
hundreds of thousands, but using the advantage of the packed storage scheme, we can
finish most of our numerical simulations in a personal computer with 256 MB memory.
This would be problematic if the same nodes were distributed on the boundary in the
BEM. The finite element equation can be solved by some efficient methods such as the
conjugate gradient (CG) method with a symmetric successive over relaxation (SSOR)

preconditioner.

1.4 Wave absorption

In numerical simulations, the computational domain is usually truncated at some
position which is an artificial boundary. This boundary was differently named as the

radiation boundary (Zienkiewicz et al., 1977), the transmitting boundary (Claerbout,
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1976), the absorbing boundary (Lysmer & Kuhlemeyer, 1969), the nonreflecting
the boundary (Smith, 1974a, b), the silent boundary (Cohen & Jennings, 1983) or
the open boundary (Jagannathan, 1986). A radiation condition is required to ensure
that the wave reflection from this boundary is minimal. Generally, there are two kinds
of approaches for absorbing waves. One is the Sommerfeld-Orlanski radiation

condition; the other is the damping zone method.

1.4.1 Active wave absorption in physical tanks

In physical tanks, wave reflection is a very important issue. Waves generated by a
wave maker at one end of the tank can be absorbed by another wave maker at the other
end. Milgram (1970) presented a method for active wave absorption by a moving
boundary of wave-maker type. Wave elevations in front of the absorber were used for
controlling the device. A flap type active absorber was implemented in a physical wave
flume and was found to give good results. Bullock & Murton (1989) developed and
implemented a wedge type absorbing wave maker in physical wave flume experiments.
The wedge motion was controlled partly by the requirement of the wave field
generation and partly by a feed-back loop connected to two wave gauges mounted on
the front face of the wave maker. Some other methods have also been developed.
Skourup & Schaffer (1998) studied active absorption of multidirectional waves by a
piston type wave absorber and developed a 3D active wave absorption control system
called 3DAWACS. Chatry et al. (1999) applied the Kalman filter to self-adaptive
control of a piston wave absorber. These methods can theoretically be used in numerical

wave tanks.

1.4.2  Artificial wave absorption in numerical tanks

In the numerical simulation of water waves, the computational fluid domain is
truncated at a finite distance. The boundary should keep the wave outgoing and not
reflect it back. The most common methods to achieve this goal are to employ a radiation
condition or use a passive wave absorber. One approach based on Sommerfeld’s
radiation condition was developed by Orlanski (1976) and so is usually called the

Sommerfeld-Orlanski radiation condition. In this method, the phase velocity was
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calculated numerically at each time step in the vicinity of the boundary. The
computation should ensure that the phase velocity smoothly develops with the time.
Much work on this subject include that by Chan (1977), Jagannathan(1988),
Romate(1992), Isaacson(1991, 1992, 1993), Sen (1993) and Kim, D.J. & Kim,
M.H. (1997). Romate (1992) also discussed an extension of the Sommerfeld
radiation condition to a higher order, but it has a higher computational demand
and may cause numerical instability.

The passive wave absorber uses the so-called damping layer, damping zone,
sponge layer or absorbing beach in front of the truncated boundary. The free
surface conditions inside the damping zone are modified by adding a dissipative
term to absorb outgoing waves as much as possible. This approach can be easily
implemented and it is very effective for shorter wave problems (Tsai & Yue,
1996). However, the computational domain must be extended to include the
damping zone, which leads to more elements and nodes in numerical simulations.

Baker et al. (1981) introduced the damping layer into their study of 2D nonlinear free
surface flow. Around at the same time, Israeli & Orszag (1981) employed the sponge
layer with the combination of the viscous damping and the Newtonian cooling
techniques for a one-dimensional wave equation. This method is widely used now.
Cointe (1989) utilised this method in his nonlinear simulation of transient free surface
flow based on the boundary element method, in which Newtonian cooling terms were
introduced in both the kinematic and the dynamic free surface conditions. However, it
was shown by Cao et al. (1993) that a dissipative term only added to the dynamic free-
surface condition would also give good results for wave absorption. Subramanya &
Grilli (1994) and Celebi et al. (1998) have used this formulation in their sponge layers.
However, other formulations are also possible (eg. Ferrant, 1993 & Wang, 1993). Nakos
et al. (1993) proposéd a damping zone method. They introduced Newtonian cooling
term into kinematic condition and excellent performance was obtained. It should be
mentioned that the viscous damping and Newtonian cooling terms should be carefully
chosen. Otherwise, the absorption effect will be either too strong or too weak. A portion
of the energy will be reflected from the radiation boundary for weak absorption or
strong absorption. The damping coefficient may be determined by optimisation
schemes.

The combination of several different techniques for treating the radiation condition,

which was suggested by Israeli & Orszag (1981) and Clement & Domgin (1994), may
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be more effective. Ohyama & Nadaoka (1991) combined a sponge layer with the
Sommerfeld-Orlanski condition and studied its performance in order to find optimum
sponge strength. Boo & Kim (1997) and Boo (2002) combined a sponge layer with a
stretching technique for simulations of nonlinear irregular waves. Ma, Wu & Eatock
Taylor (2001a, b) used the damping zone and Sommerfeld-Orlanski condition in their
3D interactions of steep waves and structures based on the FEM. More details on the

radiation condition will be given in Chapter 3.

1.5 Numerical methods for calculating hydrodynamic forces

The force is a very important factor for the designs of ocean structures. It is easy to
obtain the hydrostatics, but the calculation becomes more difficult for the hydrodynamic
force. The hydrodynamic force may show strong nonlinearity when the interactions of
waves and ocean structures are serious.

A difficult problem for calculating the hydrodynamic force is how to obtain the
derivative of the velocity potential with respect to timed¢/dr . The simplest method is
to use a difference scheme. This way is effective for linear or higher order problems
based on the perturbation because the mesh nodes are fixed. However, it becomes
difficult for fully nonlinear problems since the wetted surface of structures varies with
the time.

In the last decades, four methods have been developed to calculate d¢/or : (1)
iterative method by Sen (1993) and Cao et al. (1994), (2) modal decomposition method
by Vinje & Brevig (1981a, 1981b) and Cointe et al. (1990), (3) implicit boundary
condition method by Van Daalen (1993) and Tanizawa (1995), (4) indirect method by
Wu & Eatock Taylor (1996, 2003).

Here, we give a brief summary of Wu & Eatock Taylor’s (1996, 2003) method. This
method introduces some auxiliary functions, which satisfy the Laplace equation in the
fluid domain and the corresponding boundary conditions on the free surface and the

body surface. The computation of integration of the d¢/dt term on the body surface is
converted to that on both the body and free surfaces without the 0¢/of term. This

method was used by Kashiwagi (1998) in his 2D numerical wave tank, and it was also

used by Ma et al. (2001a, 2001b) in their wave-body interactions in wave tanks, Hu et
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al. (2002) in radiation problems and Wu et al. (2004) in motions of FPSO. The

expression of this method will be given in Chapter 3.

1.6 Methods for mesh generation

An essential part for finite element simulations is mesh generation. There are mainly
two types of mesh: the structured and the unstructured. A lot of methods can be found in
the handbook of mesh generation edited by Thompson et al. (1999). For the structured
mesh, the connectivity of any node with its neighbouring nodes can be easily
recognised. In general, there are two kinds of structured mesh generation: algebraic
method and partial differential equation (PDE) mapping method which needs to solve
elliptic, hyperbolic, or parabolic partial differential equations. The structured mesh has
been widely used in the field of CFD.

The unstructured mesh generation, on the other hand, allows any number of elements
to meet at a single node. Triangle and tetrahedral meshes are by far the most common
forms of the unstructured mesh generation, although quadrilateral and hexahedral
meshes can also be unstructured. Most current methods for triangle and tetrahedral
mesh have three main categories: quadtree/octree methods, Delaunay triangulation
methods and advancing front methods.

The quadtree/octree method was primarily developed by Yerry & Shepherd (1984).
In this method, squares or cube boxes containing the geometric model are recursively
subdivided until the desired mesh is obtained. Irregular elements are usually created
near the boundary, and it often requires a significant number of surface intersection
calculations. In order to improve element shapes, smoothing and cleanup operations
may be employed.

The most popular triangular and tetrahedral meshing technique is the Delaunay
triangulation method, in which the Delaunay criterion is obeyed. The Delaunay criterion
has the property that the circumcircle (circumsphere) of every triangle (tetrahedron)
does not contain any points of the triangulation. A circumcircle (circumsphere) can be
defined as the circle (sphere) passing through all three (four) vertices of a triangle
(tetrahedron). Although the Delaunay criterion has been known for many years, it was
not until the work of Lawson (1977) and Watson (1981) that the criterion was utilised

for developing algorithms to triangulate a set of nodes. There are two main and very
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similar Delaunay triangulation methods: the Watson algorithm (Watson, 1981) and the
Bowyer algorithm (Bowyer, 1981). The triangulation process of the Watson algorithm
has the following steps:
1. Initialize the triangulation by discretising boundaries and giving an initial mesh
surrounding all nodes on boundaries.
2. Introduce a new point.
3. Search all the triangles and identify those whose circumcircles contain the new
point.
4. With the union of all such triangles, an insertion polygon is formed, and then we
connect the vertices of the polygon to the new point by straight line.
5. Repeat step 2 through step 4 until all nodes have been inserted.

Another very popular method for triangle and tetrahedral mesh generation is the
advancing front method (AFM). In this method, the triangles (tetrahedrons) are built
progressively inward from the triangulated surface. An active front is maintained where
new triangles (tetrahedrons) are formed, and it will be updated to create new triangles
(tetrahedrons) to fill the remainder of the area. The process is pursued until the front is
not empty.

It has been in some reports that unstructured meshes have been used in flow
problems. For example, Greaves (1995) used a quadtree method together with an
adaptive technique to model laminar separated flow and standing wave interaction with
bodies and this method has also been used in moving boundary problems (Greaves et
al., 1997 & Greaves, 2004a, b). Zhu et al. (2001) also used the same meshing procedure
to simulate interactions of submerged cylinders and viscous flow with a free surface.
Hu, Greaves & Wu (2002) improved the tri-tree method and applied it in laminar
separated flows, and then Wu & Hu (2004) used a hybrid mesh based on the tri-tree
algorithm to simulate a floating structure in large amplitude motion. Turnbull ez al.
(2003) adopted a coupled structured and Delaunay algorithm based unstructured mesh

technique to simulate 2D wave-body interactions.

1.7 Objectives of the study

The previous studies based on the finite element method such as Ma, Wu & Eatock

Taylor (2001a, b), Hu, Wu & Ma (2002) and Wu & Hu (2004) are all on wall-sided
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structures. However, FPSOs (Floating Production, Storage and Offloading vessel)
usually have large bows with pronounced flare above the still waterline. The flare may
limit the green water but may cause larger hydrodynamic forces on FPSOs. With such a
change in design, it is necessary to develop new numerical approaches to predict the
interactions of waves and flared FPSOs. Another interesting topic is interactions of
waves and multiple structures such as bridges, tension leg platforms and floating
airports, most previous work is based on the frequency-domain method. A time-domain
approach may be easier to observe the development of the waves and forces with the
time and the mutual effect of structures on the development. To solve these problems,
we develop the corresponding numerical methods based on the finite element method.
The main tasks are: (1) to develop a numerical scheme for 3D simulations of the
interaction of nonlinear waves with an array of cylinders based on the second order
theory in the time domain. A semi-structured or semi-unstructured 3D mesh with prism
elements based on the 2D unstructured mesh is presented; (2) to develop a numerical
method based on unstructured meshes for fully nonlinear 2D simulations of interactions
between waves and non-wall-sided structures. The 2D simulation is helpful to 3D study
in this thesis and may probably be useful in extending it to full 3D unstructured mesh
based cases, although this work is not included in this thesis; (3) to develop a numerical
method to study fully nonlinear interactions between waves and structures with flare. A
numerical tank with flared structures inside will be investigated. The effect of flare on
waves and forces will be discussed; (4) to simulate interactions between waves and
multiple structures including numerical wave tank and radiation problems based on the
fully nonlinear wave theory, and the influence of the interference on waves and

hydrodynamic forces will be discussed.

1.8 Outline of the thesis

This thesis has nine chapters. A review of previous work about interactions between
waves and ocean structures has been presented in this chapter. In Chapter 2, the
mathematical formulation used to solve wave-structure interaction problems is
described. In Chapter 3, the numerical methods are described. It includes the finite
element discretisation, time marching schemes, computation of velocity, remeshing and

smoothing techniques and numerical radiation conditions. The method of 3D mesh
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generation is proposed in Chapter 4. In Chapter 5 a time-domain second order
numerical algorithm based on the finite element method is developed and used to study
interactions of waves and an array of vertical cylinders. In Chapter 6 a 2D fully
nonlinear simulation of wave-structure interactions based on unstructured meshes is
presented. The fully nonlinear simulations of interactions between waves and vertical
flared cylinders and multiple wall-sided cylinders in a tank are given in Chapter 7; a
radiation problem about multiple cylinders in an open sea is calculated in Chapter 8

followed by the conclusion and recommendations for the future work in Chapter 9.
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2. MATHEMATICAL FORMULATION

2.1 Introduction

The mathematical formulation of the nonlinear water wave problem is derived from
the mass and momentum conservation laws. It consists of equations which are valid in
the fluid domain, and the conditions which should be satisfied on the boundaries.
Together they define the nonlinear wave problem. For potential flow problems, the
nonlinearity comes from the boundary conditions on the free surface and the body
surface.

In this chapter, we will give the mathematical description of the governing equation
and the boundary conditions. The computational expression of the hydrodynamic force

will be given as well.

2.2 Governing equation

With constant density assumed, the fundamental mass conservation law can be

described by the following continuity equation
V-u=0, (2.2.1)

and the momentum conservation by the Navier-Stokes equation:
0 _ .- D -
(6— +u -VYu=V(—+gz)+vwW-u, (2.2.2)
! P

where u = (u,v,w) is the velocity vector, p the pressure, p the density, g the

gravitational acceleration, v the constant kinematic viscosity, and z is a coordinate in the
vertical direction which is positive upwards.
When the fluid is assumed to be inviscid, equation (2.2.2) is simplified as the Euler

equation

(—a—+ﬂ V)i =V + g2). (2.2.3)
ot Joj

Furthermore, if the fluid motion is assumed to be irrotational, that is, the vorticity

Vxii =0, (2.2.4)
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a potential ¢ exists and we can define it as u =V¢ , and then equation (2.2.1) will

become the Laplace equation

V.i=V-V¢=Vp=0. (2.2.5)
This is the governing equation for the fluid that is incompressible and inviscid and its
motion is irrotational. Correspondingly, the Euler equation (2.2.3) will become the

Bemoulli equation

_P_9 142
> +2|v¢1 +gz+C(1), (2.2.6)

where C(¢) is a constant.

2.3 Boundary conditions for numerical wave tanks

In this section, we consider the boundary conditions with the fluid assumed
incompressible and inviscid, and the flow irrotational. In simulations of interactions
between nonlinear water waves and structures, the boundary of the fluid domain
consists of: the free surface, the body surface and the artificial control surface at the far
field. On these surfaces, the dynamic and kinematic conditions, impenetrable condition
and the radiation condition are satisfied respectively. In addition, an initial condition
should be given since the problem is solved in the time domain.

The full nonlinear boundary value problem defining the motion of a body such as a
floating vertical cylinder in a numerical tank is first considered here. A wave maker
which is in horizontal motion is at the left end of the tank. With reference to Figure
2.3.1, the three-dimensional problem is defined with respect to a right-handed Cartesian

coordinate system oxyz, in which x and y are measured horizontally and z is measured

vertically upwards form the still water level, and the plane oxy is coincident with the
still water surface.

The body surface is denoted by S, , the free surface S, , the surface of the wave maker

S, , the wall of the tank § the fluid domain V and the unit normal vector of the

wall >
boundary directed outward from the fluid region N = (N,,N_,N.). Let  denote time
and n the free surface elevation relative to the still water level. The seabed Sp.s is

assumed horizontal along the plane z =-4.
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Figure 2.3.1 Coordinate system and fluid domain

2.3.1 Free surface conditions

The free surface is a moving boundary with two conditions satisfied on it. The first
condition is the kinematic condition. The instantaneous free surface equation may be
defined as

z=n(x,y,t) or F(x,y,z,t)=z-n(x,y,t)=0. 2.3.1)
The kinematic boundary condition can be derived as

Eza_F+g.VF=0_ (2.3.2)
dt ot

We can write equation (2.3.2) in the following form

09 _on_0¢on _0¢on_, ons, . (2.3.3)

The second is the dynamic boundary condition, and it can be derived from equation

(2.2.6) by setting the pressure to be zero on the free surface

5 1
a—f+gn +5’V¢12 =0 onS, . (2.3.4)

Equations (2.3.3) and (2.3.4) are the free surface conditions in the Eulerian form, and
they can also be written in the Lagrangian form

Dx_0p Dy 0 Dz _0¢

Dt &’ Dt oy Dt oz’ (23.5)
Dp 1

L =—gn+—V¢V

D~ &1t Veve, (2.3.6)

0
) . . . =~ 4+Vo-V
where _D PRE the substantial derivative and is defined as D ot ¢-V.
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2.3.2 Body surface boundary condition

This condition is used on the rigid surfaces of structures, which states that the fluid
particles cannot penetrate or depart from the rigid surfaces and can only move

tangentially. On solid fixed boundaries such as the bottom S, , and the wall of the tank

S, » the normal velocity is zero
9
W 0 on S, &S, .- (2.3.7)

On the moving boundaries such as a floating body and the wave maker, the velocity
potential satisfies

3 N-V on S, (2338)

ON |N-(V+QxF) on S,
where V' is the translational oscillatory velocity of the cylinder or the wave maker, O
is the rotational velocity about a point on the body, which may be chosen as the mass

centre of the body and r is the position vector from a point on the body surface to the

mass centre.

2.3.3 Open boundary condition

In numerical simulations of nonlinear wave problems, the computational capacity is
limited even though the real fluid domain may be very large. We need to truncate the
fluid domain at some distance from the area of interest. The open boundary condition
can be used at the truncation to minimise the effect of reflecting waves. In addition,
when modelling practical problems within finite fluid domains such as experiments in
physical tanks, active absorbers for absorbing reflection waves are usually used. The
numerical simluations of these problems also need artifical open boundary conditions in
numerical tanks.

As shown in Figure 2.3.1, an appropriate open boundary condition must be imposed
on the control surface S. in order to simulate a sufficiently long duration in the finite
computational domain. In numerical computation, there are two main schemes. One is
to apply the Sommerfeld radiation condition on S. . This idea was first used by Orlanski

(1976)
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9. .9 (2.3.9)
ot ON

Some successful results are reported such as that by Sen (1993). In this method, it is
important to decide the phase velocity ¢ described in Chapter 3. The other scheme is to
apply an artificial damping zone on the free surface near the control surface S., which
means that damping terms are added to dynamic and/or kinematic free surface
conditions. For example, Cointe et al. (1990) added a dissipative term to the dynamic

boundary condition

D¢ 1 2
_Ez_gn +E|V¢I —vé onS, (2.3.10)

The parameter v is specified, which increases from zero at the beginning of the damping
zone to a positive value at the end of the zone. The magnitude of v and the length of the
damping zone are chosen empirically. More details of these two schemes will be

discussed in the next chapter.

2.3.4 Initial conditions

Since the fully nonlinear water wave problem is solved in the time domain, the initial
conditions including the velocity potential and the position of the free surface should

also be given. They can be expressed as

o(x,y,z=¢6,t =0)=0(x,y),n(x, y,t =0) =¢(x,y), (2.3.11)

2.4 Boundary conditions in the moving system for an oscillatory

floating body at constant forward speed in an open sea

The full nonlinear boundary value problem defining the fluid motion of a floating
body undergoing specified oscillatory motions at forward speed in an open sea is
considered here. With reference to figure 2.4.1, the three-dimensional problem is
defined with respect to two right-handed Cartesian coordinate systems: one is the

inertial (space-fixed) coordinate systemo,x,y,z, , and the other is the coordinate system
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oxyz which moves along the o,x, axis with the floating body at a constant speed

U =(U,0,0).

Figure 2.4.1 Coordinate system and fluid domain
for an oscillatory floating body at constant forward speed

On the surface of the floating body, the velocity potential satisfies

9% _ 5.5 on S, (2.4.1)
aN

where V' is the velocity of the body surface in coordinate system o,x,y,z, and
V'=U+V +Qx7 .

On the free surfacez, =n(x,,y,,?), the kinematic and dynamic conditions should be

satisfied:
0 on_0¢ on _0¢ on _, onS, . (2.4.2)
0z, Ot Ox,0x, Oy, Oy, :
oo 1 2
- et 5!V¢l =0 onS, (2.4.3)
The free surface elevation can be more easily described in the moving system oxyz:
Mrze =VMoss (2.4.4)
0 o -~
—)er. =(=—-U-V)__, 24.5
(D = =T V), (2:4.5)
and so equations (2.4.2) and (2.4.3) become:
o - o¢
2 (U=-Ve$)-Vin =X S 2.4.6)
[~ (0 ~Vg)-Vin =" ons,, (
o = 1
[5,~U-VB+,Vé-Vé=—gn onS§, (2.4.7)
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If the forward spéed of the floating body is zero, that is, U=0, equations (2.4.6) and
(2.4.7) will become equations (2.3.3) and (2.3.4), respectively. Meanwhile, the body
surface boundary condition (2.4.1) will become equation (2.3.8).

In addition, the radiation condition and initial condition should be given.

2.5 Second order solution

One of the major difficulties in solving above-mentioned fully nonlinear free surface
potential flow problems is the treatment of the free surface boundary conditions (2.3.3)
and (2.3.4), which are both nonlinear and defined on the free surface which is not
known prior to solving the problem. Here we will consider the problem to the second
order. The second order approach for predicting floating structures has been given by
Ogilvie (1983) in the frequency domain and then used by Isaacson, Ng & Cheung (1993)
in the time domain.

Besides the coordinate system oxyz shown in Figure 2.3.1, we define another

coordinate system oxyz , which is fixed on the body and the origin o is located at the
mass centre of the body x, =(x,,y,,z,) . The coordinates in systems oxyz and
oxyz are denoted as X =(x,y,z)and X =(X,,Z) respectively. The unit normal vector
of the mean body surface S” directed outward from the fluid region is denoted

by ri =(n,,n,,n ). The motion of the rigid body can be described in terms of a

translational motion vector X =(X,Y,Z) along the axis x, y and z and a rotational

motion vector @ = (0,,0,,0,) around the mass centre. The displacement vector of a

point on the body surface is denoted by Z and it can be expressed as

=X-X, -

(2.5.1)

=

(1

With the assumptions that the wave amplitude is small compared to the wavelength and
the body motion is small compared to a principal body dimension, it is possible to apply
Taylor series expansions to transform the free surface and body surface conditions,
originally defined on the instantaneous surfaces, to conditions evaluated at the

corresponding mean positions (Isaacson, Ng & Cheung, 1993)

51



2.5.2)
== )+--=0 onSy,

o0 1, .2 0 06 1, 1 ©
B o an -V +n (i on+ Ve[ )+---=0 onS?, (253
(5, +en 2| ¢ n—(Z-+en 2| ¢ ., (253)

E.N=[V+E-V(VP) +---]-N on S;” (2.5.4)

b

where S}O’ is the still water surface, ==V + Qx7 , where the over-dot indicates the

time derivative. The boundary conditions may now be applied on S¢°’, S}*

and other

mean boundaries. Using the Stokes expansion procedure, quantities at first and second

order are separated by introducing perturbation series forg,n, X and ©

¢ =™ +gz¢(2) Feen, (2.5.5)
n=en®+en® +..., (2.5.6)
X =ek® 422X 4., (2.5.7)
0 =60V +£?0? +---, (2.5.8)

where ¢ is a perturbation parameter related to the wave slope which is small, and the
superscripts (1) and (2) indicate respectively components at the first- and second-order.
With assuming the motion to be harmonic and specified, X and ® may be considered
to first order only, so that

X=eX (2.5.9)

©=e0" (2.5.10)
which means X =(x®,y®,Z") and 0 =(0",0",06") . For convenience, the
superscript (1) will be omitted, so (X® Yy, Zz")and (@",0"",0) can be denoted
by (X,Y,Z)and (@ ,0,,0,) respectively.

Since we consider only small amplitude motions, the displacement = can be
expressed using the translational motion X and the rotational motion ® by the
following equation

Z=(X +Ox7%)+ Hx, (2.5.11)

where matrix A is given as
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[ @ +@? |
ST 0 0
2 o
A=| ee, - 94—3—% 0
0’ +0’
0,0, 0,0, -—_—*

Equation (2.5.11) is valid up to second order. Similar to equation (2.5.11), the unit

normal vector N is given by

N=ri+Ox7+Hx- (2.5.12)
By a time differentiation of equation (2.5.11), we obtain the velocity on the body
surface

E=(X+OxP)+Hx (2.5.13)

Upon substituting the Stokes perturbation expansions of ¢, nand = into the Laplace
equation and the boundary conditions and collecting terms of equal order, it yields the
corresponding boundary-value problems for & and &’ terms in the power series
expansions, and so the boundary value problem at each order is now linear. In the &-th
order wave radiation problem (with &=1, 2 in turn), the potential satisfies the Laplace
equation in the fluid domain
Vie® =0 in v©, (2.5.14)

and is subject to the boundary conditions applied on the still water surface, the mean

body surface and the seabed, given respectively as

a¢(k) an(k)

= f! A 2.5.15

0z ot Js on 2y ( )
k)

a‘gt +gn® =17 on 5S¢, (2.5.16)
o (k)

gn :fk on S;O), (2.5.17)
(k)

o¢ =0 on z=-h, (2.5.18)
Oz

where V'” is a time-independent fluid domain bounded by the seabed, the mean body

surface S;” , the still water surface S and the open boundary S.. The

terms f,', f,” and f, are given respectively as
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0 (k=1
fk’ = 6¢“) an(l) . 6¢(” 61](” —n“’ az¢(1)

; (k=2)
ox Ox oy Oy 0z”
0 k=1
.fk”: _l (1)2_ o 62¢(]) _ s
27T (k=2)
(X +Ox5)-7i k=1
fo = () -7~ [(X +BxF)-V(VeD)] -7
+(@Ox7)[(X +OxF)-Ve?] (k=2)

For the first order solution, the problem corresponds to the linear wave radiation
problem; for the second order solution, the boundary problem is inhomogeneous and f,,
fy & f, represent quadratic forcings of the corresponding free surface and body

surface conditions which can be determined from the first order solution.

2.6 Hydrodynamic forces

The hydrodynamic forces on the body can be obtained by carrying out a direct
integration of the pressure over the instantaneous wetted body surface S,. The pressure
in the fluid can be determined by the Bernoulli equation (2.2.6) with taking c(f) to be

zero and we rewrite equation (2.2.6) as

op 1 2
p=-pCL4 |vef +g2). (26.1)

For a structure with a constant forward speed U , the pressure can be expressed as

0 - 1 2
p=—p(-—£—U-V¢+——|V¢I +gz). (2.6.2)
ot 2
The hydrodynamic force and moment acting on body can be expressed as
F = ([ pNds, (2.6.3)
S
M = [[ p(F x N)ds, (2.6.4)

where7 = x — X, is the vector from the point on the body surface to the mass centre. The

numerical method for calculating equations (2.6.3) and (2.6.4) will be given in the next

chapter.
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For the second order problem, the pressure on the instantaneous body surface can

consistently be expanded about the mean body surface

(p)sb = (p +::;'Vp+"')sh(o: (2.6 5)

Substituting equation (2.5.11) into equation (2.6.5) and retaining terms to second order,

we obtain
0 1 2 _ _
p=—p—‘é——lV¢“’| -pgz-pg(Z+0,y-0 %)
or 2 2.6.6
i o o - (2.6.6)
—ng):c—p(X+®xf)-V(—a——) onsS,
t

The integration over the exact wetted body surface may be expressed as the sum of
the integration over the mean wetted body surface and the correction integral defined at
the still waterline WL. The hydrodynamic force contains three components

E=FY4F®4+F® (2.6.7)
where F©,F® and F® are the first order oscillatory force at the excitation frequency,
the second order oscillatory force at twice the excitation frequency and the second order

mean force, respectively. F® and F® may be finally expressed as (Isaacson, Ng &

Cheung, 1993)

7o = [[2% 54 o e
=-p nds — pgA (Z" +y,0, —x,0 )k (2.6.8)

S},U,

F®=_p ” 0g° nds —%p”’vrﬁmlz nds +%i(nf”)2ﬁ,dl

S[(,(” at S:,(,)

- - - a¢(1) B a¢(1) B
—p j j [(X +©x3) V(=—)Jiids — p ”7(@ xi)ds,  (2.6.9)

S[(,O) SI{’O)

-pg4,1(y,0,0, +x,0.0,)+ %(@i +©2)z, 1k - F@

where A4, is the mean waterplane area, (x,,y,) is the centre of floatation in the system
: . M _ M = =
oxyz when the body is at rest, WL denotes the waterline. n,” =n""'-Z -0 y+0 X is

the relative wave height at the waterline and #n, = ﬁ/ J1-n’ . In equation (2.6.9), the

first term is the contribution from the second order potential, the second term is

associated with the velocity squared term of the Bernoulli equation, and the third term is
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related to the correction for the hydrodynamic forces on the instantaneous body surface.
The fourth, the fifth and the sixth terms account for the change in pressure due to first
order motions, change in directions of forces due to first order rotation and the second

order hydrostatic forces associated with the displacements of the body motions from its

equilibrium position, respectively. The mean force F® may be obtained by time

averaging the part due to the first order potential in equation (2.6.9) over one period

- (1) _—
F(Z) =-p ! ¢ (@Xn)dS+Pg §(T’£l))"-‘dl
ot

M

—p”[ |v¢<“| +(X +OxF) V( 4’ Vads . (2.6.10)

S(O)

1, -
- PEA.[(7,0,0, +x,0.0,) + (0] +0))z,

The corresponding moment components M ", M ® and M’ may be obtained in the

similar way
MO = p” (xxﬁ)ds
5(0)
- pg{ZA,y, +O [V(z, -z, )+L ]-O L -0 Vx,}i , (26.11)
_pg{_Z‘Auxf +®\[v(zb _Zg) +L_x_x]_®xLx\ _szyb}j
a (2)
=—p“ (xxn)ds——p”(xxn)‘vtpml ds
S(Ul
(1)
+£2 §(n“’) @x7i)dl - p [[ExA)(X +6x3) V( "’ )lds
SO
m
—p”———[Xxn+®x(xxn)]dS ,(2.6.12)
S(O)
1 2 2 < = i
—EPgAng (O, +0)(y, i —x,j)-M
. D) _ =
M® = j o¢ [Xxﬁ+®x(fxﬁ)]ds+%§(nf")2(fxﬁ)d1
s“” WL
1 ¢‘”
—p”(xxn)[ |v¢<>| +(X +Ox X)) V(2—)]ds . (26.13)

S(U)

1 T2 L 2. T =
- 5 pgAng (®J2c + ®_2v )(y_/‘l —X.J)
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where V is the displaced volume of the body at its mean position, ( xp, Vs, z) 1S the
center of buoyancy and L,, is the water plane area moment of inertia with respect to

the m and »n axes when the body is in its equilibrium position.
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3. FINITE ELEMENT DISCRETISATION AND NUMERICAL
PROCEDURES

3.1 Introduction

In this chapter, we will present numerical algorithms for solving the fully nonlinear
wave problem described in Chapter 2. In the numerical simulation of the problem, the
fluid domain is first discretised and the finite element equation is solved to obtain the
velocity potential in the domain. After the potential is obtained, we can calculate the
velocity using the Galerkin method and the hydrodynamic forces on the body. We then
update the velocity potential and the wave elevation on the free surface and render the
boundary information for the next time step. Other numerical techniques such as
remeshing and smoothing will also be presented in this chapter.

As mentioned in Chapter 2, with the fluid assumed to be incompressible and
inviscid, and the flow irrotational, the fluid motion can be described by the velocity

potential ¢ which satisfies the Laplace equation

V¢ =0 3.1.1)

within the fluid domain V¥ and the following boundary conditions
¢=/f,(x,y,z) onS§, (3.1.2)
@—=f”(x,y,z) onS§,, (3.1.3)
on

where S, is the Dirichlet boundary where the potential is known, and S,

represents the Neumann boundary where the normal derivative of the potential is

known. Taking the numerical tank shown in Figure 2.3.1 as an example, §,
includes the free surface S, and the artificial boundary S, and S, includes the
body surface S,, the wave maker surface §,, the tank wall S, , and the tank
bottom S, ,. Equations (3.1.1)~(3.1.3) will be solved by the finite element method

to obtain the velocity potential in the whole domain.
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3.2 Finite element discretisation

In the numerical simulation based on the finite element method, the fluid domain is
first discretised with many elements and the details will be discussed in the next
chapter. Several methods can be used to transform the problem described in equations
(3.1.1)~(3.1.3) to its finite element discrete analogue, and the most popular one is the

Galerkin weighted residual method.

3.2.1 Galerkin weighted residual method

The basic idea of the Galerkin weighted residual method is to construct a
mathematical process to minimise the residual of the governing equation R = V’¢

as close to zero as possible. The mathematical process may be expressed in the

form of the inner product of the residual R and a weighted function W; as follows

(w,,R)=[|[w,Rdv =0. (3.2.1)

The weighted function W; may be selected as the variation of the potential 5¢ ,

and then equation (3.2.1) can be written as

IHV $(69)dV = m(a ¢, ¢ o ¢)5¢dxdydz = (3.2.2)
or
‘m(W’ V(5¢)dxdyd2+m[a a¢5¢) ai’acﬁ) 9 a¢5¢)]dxdydz 0.

It follows, using Green-Gauss’s theorem IHV -XdV = ﬁﬁ Xds , that
v

N

- mw V(8¢)dxdydz + H L sgas =0 (3.23)

S, +S,

It is noticed that the variation ¢ is zero on the Dirichlet boundary S, , and

SO ”%&pds = 0. Thus, equation (3.2.3) becomes
on

[[[v¢ - v(69)dxdydz = [[,50ds. (3.2.4)
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3.2.2  Shape functions

3
lLen

(-Lo.-

< N
= © 51

Figure 3.2.1 A triangular prism element with 6 nodes

For 3D simulations, the 6-node triangular prismatic element (see Figure 3.2.1) is used

and the fluid domain is divided into many prismatic elements. The shape functions
defined in a local coordinate system 5— =(&,n,¢) at the six corners of an element e may

be expressed as, respectively
N =E(1+¢)/2
N =n(1+¢)/2
NS =(1-&-m(1+&)/2
NO =£1-¢)/2
N =n(1-4)/2
NS =(1-&-n)1-¢)/2

The local coordinate system can be mapped to a global coordinate system x =(x,y,z) by

(3.2.5)

the following transformation

6
X=Y NEOXE . (3.2.6)

i=1

In the same way, the velocity potential at X within element e can be represented as

4R =Y N8O R,) (32.7)

3.2.3 Coefficient matrices and right-hand side vectors

Due to equation (3.2.7), the following equation holds for a typical finite element
6
8¢ =Y N5¢% . (3.2.8)
i=l

Substituting equations (3.2.6), (3.2.7) and (3.2.8) into (3.2.4), we obtain
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6

6 6
> (K800 = D F 0 (3.29)
=l j= i=
where
Ky = [[fone - av, 6210
v(el
F = ([ f,Nds. (3.2.11)

s

Since all variations 8¢ (i =1,2,---,6) are independent of each other, we have
6

Y KPP =F9 i=12,--6. (3.2.12)

=1
This is the finite element equation in element e. We can assemble the global coefficient
matrix from equation (3.2.12) through the connectivity information of the element and
the node

[K]{¢} = {F}, (3.2.13)
where [K] and {F} are the global coefficient matrix and the global right-hand side

vector and are assembled by K[ and F*, respectively, over all elements in the fluid

domain. They can be expressed as

K, =§ m VN VN, (3.2.14)
k=1 ytet)
NK
F= anNi‘e"ds, (3.2.15)
k=

1 S,('q)
where / and J are the global numbers of nodes i and j in element e, respectively. NK is
the number of elements that share node /. For convenience, we define a global shape

function N,(£,n,4) by

N'(ek) b b 9 b

N,(é,n,€)={ cene) ndlea o L NK) (3.2.16)
0 €.n.0)¢ e

and so K,, and F, can be rewritten as
K, =[[[VN,-VN,av, (3.2.17)
v
F,=[[f,N,ds. (3.2.18)
S,
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Since the potential on the Dirichlet boundary is known, we can incorporate it into

equation (3.2.13). Finally, the global coefficient matrix and the right-hand side vector

can be written as

K, =[[[VN,-VN,dv IeS,andJe5,, (3.2.19)
\4

F,=[[fnds-[[[vN, ¥(f,) VN,dv IS, andJeS,. (32.20)

J(JES,)

3.2.4 Numerical integration of the local element coefficient matrix and right-hand

side vector

From the chain rule for partial differentiation, we have

(N [ave]
o0& ox
(e) (e)
oN; :[,]aN} , (3.2.21)
on oy
ON® ON®
. 0¢ | . 0z ]

where [J] is the Jacobian matrix given by

& &
o5 o0& 08
Ox Oz
V== 2 Z|.
on on 0n
x y &
|06 o¢ 0f |
Therefore, we have
[oN© ] [ oN© ]
Ox o0&
(e) (e)
ON, T ON; , (3.2.22)
oy on
ON® ON@
| Oz | i o¢ ]

where [J]"is the inverse matrix of [J] and is calculated by the following equation
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[J]" _ 1|{0x 6z Ox 6z Ox 0z ©6x Oz Ox 6z Ox Oz _(3.2.23)

|J | is the determinant of [J] and K;_e’ can be expressed as

K =[[[vN© -YN©|J|dednds . (3.2.24)

o)

where dV = dxdydz =|J|dédnd{ is used and VN{® can be obtained from equation

(3.2.22).
The integration of a function f(&,n,¢) in a prismatic element can be obtained by the

following equation:

[[[re&moraganac =[ (1] r&n.dnueds
- o (3.2.25)
= ZZf(é:lejaC;)WiW;

i=l j=1
where &, n; and £, are abscissae and w;, W/ are weighted coefficients of the one-
dimensional Gauss integration and the numerical integration in a triangle, respectively.
The Abscissae and weight coefficients are given in the Appendix A. Thus, Equations
(3.2.10) and (3.2.11) can be written as, respectively

K = Z i VN VN

k=1 I=1

Jwwy s (3.2.26)

n n

DD f,NOJy|w,w, for quadrilateral elements
FO =4+ , (3.2.27)

> LNO W for triangular elements
k=1

where N are the shape functions for S that is a 4-node quadrilateral or a 3-
node triangle and they can be found in Appendix B. |J0| is the Jacobian

determinant that maps surface S'” in the global coordinate system (x,y,z)to an
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local system (&,n), in which the surface is represented by (=constant. It can be

expressed as

Oy 0z azay) (%ﬁ_axﬁz) +(8x_fzy_‘§22_6x)]2.

|°|_[(aga oc on’  0Eén O0Edn  BEdm OF om

3.2.5 Solution method for the finite element equation

A simple and efficient iterative method widely used for the solution of sparse systems
is the conjugate gradient (CG) method, but its convergence is generally slow. The
convergence can be considerably improved by using preconditioning matrices. In this
thesis, the CG method with a symmetric successive overelaxlation (SSOR)
preconditioner is employed to solve the linear system (3.2.13). The detailed description
of this method can be found in the book by Saad (2003). Ma (1998) further took
numerical tests for this method in his thesis and suggested it was a good alternative for
solving finite element equations in simulations of nonlinear wave problems. This
method is summarised below.

Suppose we have a non-singular symmetric positive definite (SPD) matrix [M], whose
inverse matrix is denoted by [M]"'. We multiply the both sides of equation (3.2.13) by
[M]" as follows

[M][K1{¢} =[M]{F}> (3.2.28)
where [M] may be defined as
1
p2-p’

4 1s a constant called the relaxation coefficient, [D] is a diagonal matrix formed by the

[M]=([D]+ p[LD[D] " ((D]+ pIL]")

diagonal entries of [K], and [L] is the lower-triangular part of matrix [K] with its
diagonal entries equal to zero. For the constant g, it is in the range 0 <0< 2 and its
optimal value may be determined by numerical tests. The original task of solving
equation (3.2.13) has now become to solve equation (3.2.28) with faster convergence.

The algorithm of the CG method with SSOR preconditioner is given as follows:
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6 [
}(0) ={FV (K (0); © _ M -1 (0); 50 = (0)’ 0) A‘o e - 0 >
{r {F}-[KNe} ;s {p}™ =[M] " {r} (3.0 ) (__—){p}",[K]{p}" J

—WI {¢}(k) = {4’}“_” +A’k—1 {P}(k_l)

) = " + 2, [K)p

v
|
(&) =M ( s )

A

8, =(Ir" (g}

l a,=8,/8,,
|

|

¥

{3 ={g}* +a, {p}*" }

4

A =8, /(s ™. 1K1 (P} ™)

5&—1 =0,

In the above algorithm, {r}, {p} are vectors, 5, 4, o, are scalars, and ¢ is a tolerance
erTor.

It should be mentioned here that we have to calculate the multiplication of the inverse
of the preconditioning matrix [M] and a vector such as [M]" {r}*’ many times when

using the CG method with the SSOR preconditioner. However, the inverse matrix of [M]
is not necessarily sparse and can even be a full matrix, and so it is not practical to
directly calculate [M]". To compute {w}=[M]"{x}, we may solve the following two

linear systems
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1+ pL][D] )z} = {x}, (3.2.29)
((D1+ pl L] ){w}/u(2 - p) = {z}, (3.2.30)
where [I] is the unit matrix. It is clear that [/]+ u[L][D]'is a lower triangular matrix

and [D]+ pu[L]" is an upper triangular one and so the solution can be easily obtained.

3.2.6 Storage of the global coefficient matrix

The global coefficient matrix [K] is generally a sparse symmetric matrix. In order to
take advantage of the large number of zero coefficients in [K], special schemes are
required to store the sparse matrix. The simplest storage scheme is the so-called
coordinate format. The data structure consists of three arrays: a real array containing
nonzero elements K, in the global coefficient matrix and two integer arrays containing
the row and column indices of K;;. However, the most popular scheme for storing sparse
matrices is the compressed sparse row (CSR) format, which is more efficient than the
coordinate scheme in a matrix-vector product or preconditioner solver such as the
above-mentioned CG method with SSOR preconditioner. To store any sparse matrix in
CSR format, we need three arrays: one real array 4 and two integer arrays /4 and JA.
The array A stores the values of the nonzero elements K, /4 stores the first element in
each row and J4 stores the column indices of the elements in the global coefficient
matrix. Since the global coefficient matrix is symmetric, we may need to store only
nonzero elements of the upper triangular part of the matrix. When assembling the global
coefficient matrix, the row and column coordinates (/, J) and the values of K, at them
are obtained. In order to solve the sparse linear system more efficiently, we need to
convert the entry coordinate (/, J) and K;; to CSR format, which should be performed as
quickly as possible. We introduce an approach to calculate the global coefficient matrix
in CSR format as follows.

Firstly, we store all nonzero elements in the global coefficient matrix using a data
structure called a linear linked list (Dale, 1998), which is very convenient for the storage
of sparse matrices. A linear linked list is a set of records with a linear relationship
between records. The linked list is convenient for recording the row and column
coordinate (/, J) and the value at (Z, J) although all elements at any row in the sparse
matrix are not continuous and the number of elements at each row is not identical. The

linked list that we use here contains an integer number called co/umn denoting the
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column J, a double precision real number val expressing the value of a nonzero element
and a pointer next for the address of the next record. A list may be described using a
data type called ‘struct’ as follows in C language
struct List {
long column,
double val;
List *next;
J
The pointer next is used for connecting the present record and the next one. A list with
n records is shown in Figure 3.2.2. Each record includes a data zone and an address
zone. At the front of the list, there is a pointer called HEAD pointing to the first record,
and a NULL pointer in the last record expressing the end of the list. The data zone

contains the data column and val while the address zone contains the pointer next.

| HEAD % data 1| next +———®data 2| next ——» -+ ——» data n| NULL
i S 1 . : : ‘

Figure 3.2.2 A linear list

—» data i | next-——
| - :

| HEAD [ ® data 1 - next -— —» data 2| next +——® ... ——— P gata n| NULL

Figure 3.2.3 Insert a record into the list

The nonzero elements at each row in the global coefficient matrix [K] are stored
using a linked list, so it needs n lists for n rows. At the same time as assembling the
global coefficient matrix, the row and column coordinates (/, J) and K}, are added to the
I-th list. In each list, the position of K}, is determined by the value of J. The addition can
be finished by an insert operation. Suppose we need to insert a record between records
one and two, we only need to let the pointer in record one point to the inserted record
and meanwhile the pointer in the inserted record points to record two (Figure 3.2.3).
The operation is simple. The advantage of using a list is that the length of the list can
dynamically increase or decrease with very few operations, which is difficult when

using an array expression.
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Secondly, we convert the matrix in the format of the linearly linked list to that of
CSR. This process is very simple. K;, [4 and JA4 can be easily taken out from the list by
assignment and addition operations.

This approach for storing sparse matrices in CSR format is fast. A test has been made
with an AMD 1800+ personal computer with windows XP system and the result is
shown in Figure 3.2.4. It is seen that the time to construct the global coefficient matrix

in CSR format nearly linearly increases with the number of nodes or elements.

300000 -

1 a
@ 250000 o (@)
% 4
£ 200000 5
— 4 a
> 100000 -} o
3 7 /
£ 500004 o
=] R D/
< 0 T T T T T 1 T T M 1 - T T T
0 20000 40000 60000 80000 100000 120000 140000
25—‘ number of nodes , ®
ey 20 /
g E
i8)
8 7 /
\U-)’ E
@ 10 o
g ° 4 D/
e D/
0 g T g T T T T T X T T T T T "
0 20000 40000 60000 80000 100000 120000 140000

number of nodes

Figure 3.2.4 Time cost for constructing the global coefficient matrix in CSR format

3.3 Numerical procedures

3.3.1 Computation of velocity

For a quadrilateral or a hexahedron isoparametric element, we can directly obtain the
velocity at nodes based on the shape function. However, for a linear element with
triangular facets such as a triangle, prism or tetrahedron element, the velocity will be
constant on the facet. Thus, the result may not be sufficiently accurate.

Ma, Wu & Eatock Taylor (2001a, b) developed a numerical method to calculate the

velocity u = (u,v,w) . They employed a differential formula to obtain the vertical

component of the velocity w. Here we employ a cubic polynomial to express the

velocity potential along the vertical direction
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p=a+bz+cz’ +dz°, (3.3.1)

and its first- and second-order derivatives with respect to z are

w=6—¢=b+2cz+3dzz, (3.3.2a)
Oz
2
0 ? =2c+6dz, (3.3.2b)
0z°

respectively, where a, b, ¢ and d are coefficients and may be determined through solving

the following system:

1 z z! z |la ¢
1 z, 22 zZ||b |9
1 z, z2 z e B o, ’
1 z, z; z,|d]| |4,

where z, (i =1,2,3,4) are four successive nodes along the vertical direction, and
é, (i =1,2,3,4) are the velocity potentials at z; (i =1,2,3,4) . The vertical velocity is
obtained using equation (3.3.2a). The calculation of second order derivative 6°¢/dz” in

equation (3.3.2b) is required in the second order problems of the later chapters. After the
vertical velocity is obtained by equation (3.3.2a), the following equation is used to

obtain the horizontal components « and v:

wly +vl; =é37¢2——w,.lz"
5 332C
T R (3320
ull +vi] =517—w,.lz
0 ¢i+k _¢,- k gk k Tk
where El—k:——l;——, and [, & [; are the components of /* (k=1,2,...), a vector

formed by nodes i+k and i. A weighted average was then used to obtain the final
velocity. This method requires the node on the free surface and three nodes immediately
below the free surface to be on the same vertical line. The method is found to be
accurate but it is suitable only for wall-sided cylindrical structures. In this thesis, we
will consider interactions of waves and cylinders with flare. The above method will be
invalid, and the method developed by Wu & Eatock Taylor (1994) when they
considered the 2D problem is adopted. We first expand the velocity in terms of the
shape function similar to equation (3.2.2) and then the Galerkin method is used. This

means
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m(ﬁ—w)N,.dv:o, (3.3.3)

or

j j j iN,av = [[[VeN.av . (3.3.4)

v v

The equation to calculate velocity can be finally derived as

[4]{i} =[B1{¢}, (3.3.5)
where

4, = [[[N.N,av

v

B, =j£jNiVNjw'

A comparison between the two methods is performed. We consider a diffraction
problem of interactions between Stokes second order waves and a vertical circular
cylinder. The water depth is equal to the radius of the section of the cylinder and a
nondimensional wavenumber kya=1.0 is chosen to test the two approaches. We only
compare the first order waves at the front and back sides of the cylinder. The results are
shown in Figure 3.3.1. It can be seen that wave history is graphically identical.

Equation (3.3.5) is suitable for general cases, but the computation needs more time

when comparing with equations (3.3.2a) and (3.3.2c¢).

Using equations (3.3.2a) & (3.3.2c) (a)
-------- Using equation (3.3.5)

wave

N

4+ time

(b)

wave
o
g

time

Figure 3.3.1 Comparison of two methods of calculating velocity
(a) at the front side; (b) at the back side
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3.3.2 Time-integral of free surface boundary conditions

After the velocity potential and velocity are obtained by equations (3.2.13) and (3.3.5),
we can use (2.3.3) and (2.3.4) for Eulerian form or (2.3.5) and (2.3.6) for Lagrangian
form to update the information on the free surface. For the fully nonlinear wave
problems, the wave elevation and the velocity potential on the free surface should be

updated at each time step by

fa+an =@+ foa, (33.6)

where f(¢) represents either the coordinate of the free surface or the velocity potential

and [’ is its derivative with respect to time ¢.

A time integration scheme should be adopted for equation (3.3.6) in numerical

simulations. A simple integration scheme is the second order Adams-Bashforth equation
At ' '
f(t+Ar) :f(t)+7[3f ®)-f'(t-A)]. 3.3.7

Other higher order time integral methods such as the fourth order Adams-Bashforth

equation
fE+An=f()+

At , , , , (3.3.8)
2—4[55f @)=59f"(t —A)+37f'(t —2At) -9 f'(t —3A1)],

and the fourth order Runge-Kutta method (Engeln-Miillges & Uhlig, 1996)

f(t+At)=f(t)+%£(k1 + 3k, + 3k, + k,) (3.3.9)
. i-1
are also usually employed. In equation (3.3.9), k, = f'(¢ +l—;—1At,Q 3)(@=12,3,4).

. i —1 .-
At time steps nAt+lTAt (i=23,4) , the position of the free surface and the

corresponding velocity potential can be computed by the following equations

respectively,
f(H%) = f(t)+—A3£k1, (3.3.10a)
f(z‘+§At)=f(t)+At(—%k1 +k,), (3.3.10b)
SU+A) = f()+ Atk —k, +k;). (3.3.10¢)
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One advantage of the Runge-Kutta method is that it does not need the information at
previous time steps but only depends on the position of free surface and the
corresponding potential within the present time step. It does however need additionally

to calculate equations (3.3.10a, b, ¢) and the corresponding derivative f’ at mini steps
nAt+l——;—1At (i =2,3,4), which means that three additional linear systems should be

solved at these time steps. Thus it will increase the CPU time. In 2D fully nonlinear
simulations, we use the fourth order Runge-Kutta method to update the free surface
since the computational cost is acceptable. In 3D simulations, the fourth order Runge-
Kutta method is generally timé-consuming and the Adams-Bashforth methods will be
used. The second order Adams-Bashforth method will be utilised for the fully nonlinear
problem and the fourth order for the second order calculation. A consideration to this is

that the derivatives f' at previous time steps #-At, t-2At and ?-3A¢ are obtained through

interpolation when remeshing is performed. The interpolation is only required for steps
t-At for the second order Adams-Bashforth method but required at #-At, t-2At and 1-3At¢
for the fourth order method. More interpolations require more computation and may
cause numerical errors. However, the cost is that a smaller time interval is needed. For
the second order perturbation solution, since the nodes on the free surface do not vary
with time, no additional computation of interpolation is required at the previous three

time steps t-At, t-2At and #-3At when equation (3.3.8) is used.

3.3.3 Remeshing the free surface

When the simulation is over a substantial period of time, the nodes on the free surface
may cluster and cause elements to be distorted. In order to avoid this, nodes on the free
surface should be rearranged every few time steps i.e. remeshing should be performed.
We first present a 2D remeshing method. Suppose there are n+1 nodes
P.(x;,z,)(i=0,,---,n) on a curve. We may interpolate any point on the curve between
nodes P; and P;; using B-splines. We use the uniform cubic B-spline to express the

point as

P(u)=iBj‘3(u)Vi+j (i=0,],,n), (3.3.11)
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where u is a parameter and 0<u<l, B, ,(u) (j = 0,1,2,3) are cubic B-spline functions and

may be expressed as
1
B, . (u) = g(1 ~u)’

B, (u)= %(3113 —6u’ +4)
b (3.3.12)

B, ,(u) =é(—3u3 +3u” +3u+1)

1 5
B, (u) =guy

and V,  (i=0,,-,n) are control points. We can obtain the following equation

according to equations (3.3.11) and (3.3.12)

Pi(0)=é(Vi+4V +V.,) @(=0,1,---,n). (3.3.13)

i+] i

In matrix from, this becomes

[4][V]=[P], (3.3.14)
where [A4] is a tridiagonal matrix, [V] and [P] are vectors consisting of the control points
V; and nodes P; respectively

6 0 . L

VO P—1
1 4 1
1 .. .. V] PO
[A] = ST A el ER A S E
4 1
an+7 Pn+]
i 0 6] - -

The boundary points Vj and V,;; are set to be P.; and P,+, respectively, and P, and
P,. may be obtained through linear extrapolation
P,=2P,-P,

P

n+l

2P, -P, .

The arc length from node P; to Py may be calculated by the following equation:

Lol ds )
Si=2fConde (=01,.m), (3.3.15)
k=0

[T
du du du) ’

where
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and

3 dB,
( dy AP By

du’ du du ‘o du e
Suppose there are m segments or m+1 nodes on the curve after remeshing. We

denote the nodes as P, (i =0,1,---,m) . The arc length §,, from node P,, to P, may
be determined as we require, for example, if we wish to have smaller elements near P,

and larger elements near P,, we can adopt the following procedure (Chung, 2002)

w+n—w—mﬁi§””
5., =5, — Pl =01m), (33.16)
(_ﬁ_i_)l—if’m +1

p-1
where B >1 is a constant and it controls distribution of the nodes. A larger value of j
will give a more uniform distribution. Equation (3.3.16) will be discussed in more detail
in Chapter 4.
For 3D problems, we can employ a 2D horizontal remeshing scheme (Ma, 1998) as
we consider single value waves. The detailed remeshing procedure can be found in

Ma’s thesis (1998). We gave only a summary below.

P.

I

| | ;

0, . . .
X P, ' ¥

P, ‘A

P,

X

Figure 3.3.2 Projection of a triangle on the free
surface to the oxy plane

(1) The free surface is projected to the horizontal plane oxy and a 2D mesh M, is

generated on the plane. The projection of a triangular element AP, P,P, on the free
surface is denoted by AP/P,P; on plane oxy (Figure 3.3.2). The potential and
velocity at nodes P,(x;,y,,z;) (i =1,2,3) are denoted by ¢,, u;, respectively.

(2) A new 2D mesh named M,,, is generated on the oxy plane. The node in M, is

denoted asP/(x],y!)and its corresponding node vertically projected to the free

surfaceis P (x,,y,,z,).
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(3) A search is performed to find the location of P! in the mesh M.

(4) Interpolation is performed to obtain the vertical coordinate, the potential and

velocity at P,. We assume that the node P! is in the triangular element AP/P;P;
and P/will divide the element into three triangles: AP/P,P;,AP/P;P/ and AP/P/P;.
The ratios of areas of AP/P,P;, AP/P;P/ and AP/PP, to that of AP/P,P; are
denoted by y,(i =1,2,3). The coordinates, the potential and the velocity at P, can

be obtained by the following equations:

3
X, =X, Y, =Yz, = Y X (3.3.17)
i=1
3
¢, =D 24> (3.3.18)
i=l
3
u =) yu,. (3.3.19)
=1

(5) Steps (3) and (4) are repeated until all nodes in M, and the potential and the
velocity at them are found.

In order to use equation (3.3.7) to update the wave and potential on the free surface,
the coordinates, the potential and the velocity at the node at the previous time step
t — At corresponding to node P, should be known, and they can obtained by the same
method as above.

It should be noticed that an over frequent remeshing may cause a loss of energy. For
the numerical wave tank problem, remeshing every 20-30 steps will be adopted in this

thesis.

3.3.4 Smoothing technique

Simulations of steep waves sometimes crash due to saw-tooth problems on the free
surface. In order to avoid such behaviour we may use a smoothing technique. A simple

method is the weighted 5-points smoothing for a curve with equal spacing

- 1

fi= E(_.f;‘—Z +4f, +10f+4f, - fi.2)> (3:3.20)
or

f; = é(—ﬁ—3 + 9fi—1 +16f, + 9fi+1 - fi+3)f (3.3.21)

75



This method was first used by Longuet-Higgins & Cokelet (1976) for removing saw-
tooth instability. For nonuniform distribution, an energy method introduced by Zhu
(2000) is utilised to smooth the free surface for 2D problems in this thesis. Suppose
there is a discrete set of nodes defined through position vectors Q; (i=0, 1, ..., n) and
node Q; becomes P; after smoothing. We define the energy of all nodes P; (i=0,1,...,n)
as

n-1 1 ,
E =S e —e), 3.3.22
c l+l (H—l z) ( )

Jj=1%i i+l

where /, :”Qi—Qi_,” is the distance between Q; and Q.;, e; is defined as

_ Pi —Pia

e and p, (i=0,1,---,n) is either x or z coordinate of node P;. The

i
i

smoothing process should ensure that the difference between P;and Q,(i =0,1,---,n) is

as little as possible. In order to achieve this, we define an objective function as
F,=aE .+ B,(p;-q;), (3.3.23)
j=0

where a and 3, are constants, and g, (i =0,1,---,n)is either xor z coordinate of node

Q;. Substituting equation (3.3.22) into (3.3.23), we obtain

—az o [pf“_pf—p’ p"J +Zﬂ( —q,F.  (3324)

[

j+l

The first summation of this equation reflects the smoothness while the second
summation reflects the difference between the curves before smoothing and after
smoothing. Both of them should be minimal, which is achieved through setting the

derivatives of F, with respectto p,(i =0,1,---,n) equal to zero, that is

OF

<=0 (i=071""7n)- (3.325)
op;
This gives
[4][P]=[Q], (3.3.26)

where 4 is a matrix with bandwidth being five,

76



b ¢
a, KR
[4]= .
' n-2
- M dn—l
an b" Cn

The coefficients in matrix [4] are given as, respectively,

1

a,=a——————(>=2,,n),
(li +1i—l )lili—l
1
—a— (i=1
(=D
1 1 1
b=i—a—(—+77) (=2,,n-1),
i 9 liz (li_H li_l) ( )
1
—a i=n
l: n-1 ( )
By (i=0)
L, +1 1 .
o + + l:l
[122112 (13+12)122] B, (=1
1 li+l +l, 1
Ci=<a[ . 1 +
(li +li‘1 )l'- li+lli (li+2 +li+1 )li+l
1 l+1,,
a + -2 nly 4 i = nl
[(l”—1+ln-2)lj—1 l:l:—l ] ﬁ"‘l ( )
\ﬁn (i:n)
e (=0)
It
1 1 1
d=yap r J la an_z 5
i lizﬂ l’- l‘.+2)( )
1
-« C(i=n-1
lj n-1 ( )
1 .
e, =a (1:0,...’,1_2)_
(N S T Y A

—1+B, (=2

In our simulations, the constants B,(j=0,1,---,n) are set to be a unit value. The

smoothing factor «a is related to /,(i =1,2,---,n) and may be obtained by numerical tests.

We adopt the following procedure. Suppose the minimum value of /,(i =1,2,---,1) 1S Ly,

we write a = CI>

min
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number between 5 and 10 is a good choice for C. It should be mentioned that the
boundary nodes Qg and Q,, are constrained and they are equal to Py and P,, respectively,
which may be achieved simply by taking dy=ey=a,=b,=0.

At the same time as smoothing the free surface, the velocity potential on the nodes of
the free surface should also be smoothed. The same procedure can be used but one of

the coordinates is taken as the potential and the other taken to be zero.

0.6

O Before smoothing (a)
04 — Smoothing with C=5.0(0=0.0260)
02l el T Smoothing with C=10.0(0=0.052)
N 0.0
0.2 1
0.4
0.6
T T T T v Ll T T 1
0 1 2 3 4 5 6 7
X
. O Before smoothing (b)
06 g ——— Smoothing with C=5.0(c=0.000655)
044 . = \‘: ;;;;;;;
0.2 4
N 0.0
0.2 1
-0.4
0.6
I T ¥ ¥ T T T 1
0 1 2 3 4 5 6 7

Figure 3.3.3 Curve Smoothing
(a) 30 nodes (/ . =0.173); (b) 100 nodes (/ =0.051)

For 3D simulations, the free surface consists of many triangular elements and the
distribution of nodes is irregular since the mesh is unstructured. Ideal smoothing
techniques should be suitable for an irregular distribution of nodes on a surface, which
could be a challenge. Here since the hybrid mesh (see Chapter 4) on the free surface is
used, we may utilise the 2D smoothing technique [see equation (3.3.20)] to smooth the
wave and potential within the part of the structured mesh as shown in shadow in Figure
3.3.4. The nodes along the y-direction are uniformly distributed after remeshing, which
is performed on the whole free surface, and smoothing is then performed along the y-
direction within the structured mesh for both the wave elevation and the velocity

potential.
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[Structured mesh] [Unstructured mesh

i

y-direction

x-direction

Figure 3.3.4 Smoothing within the structured mesh

3.3.5 Artificial wave absorption

When a wave is produced in a tank by a wave maker or by oscillation of a floating
body on water surface, it will propagate outwards. In numerical simulations of nonlinear
water waves in the time domain, it is impossible to select a computational domain as
large as the physical domain. It is usually truncated at some position called an open
boundary denoted by S.. To avoid wave reflection, an appropriate radiation condition
should be imposed at the open boundary. There are usually two methods for wave
absorbing in numerical simulations. One is based on the Sommerfeld radiation

condition, and the other is through an artificial damping zone.

(1) Sommerfeld-Orlanski radiation condition

When we simulate radiation problems such as oscillations of a floating body in the
frequency domain, an appropriate radiation condition is indispensable in obtaining a
unique solution. The radiation condition guarantees that waves always propagate away
from the oscillating floating body. Although the fluid domain is infinite, Green
functions can still be constructed for linear problems to directly satisfy the radiation
condition in both situations of finite and infinite water depths. However, in nonlinear
time domain simulations, no such a Green’s function is available and we can only deal
with a finite computational domain. For the problem of a wave generated by a disturbed
source such as wave maker in a 2D tank (see Figure 3.3.6), the Sommerfeld radiation

condition should be satisfied at the open boundary S,

op  0¢
—+c—=0, 3 B2
ot . Ox ( )

where ¢ is the phase velocity of wave and ¢ is the velocity potential. For a single

frequency, periodic and linear wave, the phase velocity in the Sommerfeld radiation
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condition is constant. In time domain simulations, we have to deal with transient
phenomena. Therefore, the phase velocity ¢ is not initially constant and has to be
determined numerically. Orlanski (1976) made an improvement on the Sommerfeld
radiation condition. He calculated the phase velocity ¢ which is time-dependent, at the
open boundary using neighbouring grids. When this condition is applied to time domain
numerical simulations, it is usually called the Sommerfeld-Orlanski radiation condition.
Since then, Chan (1977), Jagannathan (1988), Romate (1992) have also used this
method in their simulations of interactions of second order waves and bodies in two-
and three-dimensions in the time domain.

In nonlinear simulations, ¢ is determined by substituting equation (2.3.4) into equation
(3.3.27)

(;V4:V4+gn)

c= 5075 , (3.3.28)

where 1 is the wave elevation at S, . 0¢/0x may be obtained by differential schemes
using grids near S.. After ¢ is obtained, we integrate 0¢/6¢t with respect to time to
calculate the potential ¢ on S, at next time step, and this potential is taken as the
boundary condition on S, for solving the finite element equation. If the phase velocity ¢
calculated using equation (3.3.28) is greater than Ax/At ( Ax is the length of
neighboring grid), it is set to be Ax/Ar. When it is negative, we set it to be zero.
Orlanski (1976) gave the discretisation form of equations (3.3.27) and (3.3.28) in a

central difference in time and a leap-frog difference in space
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Figure 3.3.5 Discretisation of the Sommerfeld-Orlanski radiation condition
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d(X,t +At) —¢(x,t —At)
2At (3.3.29)
+i{l[¢(it T A+ ¢(x,1-An)]-¢(%,,0)} =0,
An 2

where X is a point on S, An is a small distance from S, (An = Axfor 2D problems),
and 7 the normal vector at x as shown in Figure 3.3.5. The celerity c on S, is calculated

by equation (3.3.27) at the previous time step

_ﬂ ¢(int)_¢(£1at"2At) , (3'3.30)
At ¢(x,,0) +¢(X,,t —2At) - 2¢(X, ,t — AY)

where x, and x,are two neighbouring points to X, X, = X -iAnand x, = X - 27iAn (see
Figure 3.3.5). However, there are numerical difficulties in using equation (3.3.30) as ¢

will become undefined or inaccurate when both 8¢/dr and 6¢/on are zero or very

small. In practical commutation, the celerity is usually obtained from
0 c<0
c'=1c 0<c<An/At. (3.3.31)
An/At 2 An/At

Equations (3.3.29) and (3.3.30) have been used by Isaacson & Cheung (1991,
1992) to simulate second order wave diffraction problems in two- and three-

dimensions.

(2) Artificial damping zone

When the Sommerfeld-Orlanski radiation is used in simulations of nonlinear
water waves in the time domain, the mesh size near the open boundary must be
small enough. Otherwise, the phase velocity at the open boundary obtained by
equation (3.3.28) may not be sufficiently accurate. A different method from the
Sommerfeld-Orlanski radiation type is based on an artificial damping zone, which is
also called a sponge layer or an artificial beach. The artificial damping zone is an
absorbing boundary. Outgoing waves will be absorbed through artificial damping
terms added to free surface boundary conditions when they arrive at the damping
zone.

Cointe et al. (1990) developed a damping zone technique for their 2D
numerical wave tank. In the damping zone, the following absorbing free surface

boundary condition is modified as follows
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&-—-%—vn, (3.3.32)

dt 0z
D_¢:_gn+.l_v¢.v¢_v¢’ (3.3.33)
Dt 2
with
e R <x<x =x +BA
v(x) = e A ) Fo2EEN TN ﬁ,
0 O<x<x, orx>x

where w is the wave frequency, A the linear wave length. The damping zone
starts from point xo, and extends for B4 as shown in Figure 3.3.6. Parameters a
and B control the strength and the length of the damping zone respectively, and

they may be obtained through numerical experiments. The numerical
investigation by Tanizawa (1996) has shown that reflection is minimised

whena = =1.0.

Figure 3.3.6 Artificial damping zone

In linear 3D problems, Nakos et al. (1993) claimed the excellent performance of
their proposed damping zone. They added a damping term called a Newtonian

cooling term only in the kinematic boundary condition

2
M _99 _pmi¥y, (3.3.34)
ot 0Oz g
o9
% _ . 3.3.35
ot & ( )

where v is the damping coefficient given by

C
v(r)=3c—;(r—ro)2 0<r-r,<C,-

w
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As shown in Figure 3.3.7, Ly, is the length of the damping zone, and r is the distance
for the point p under consideration to the centre of the body. The damping zone starts

from the edge of an inner rectangle r=r/(x,y) and ends at outer
rectangle r =r,(x,y)+ C, (x,y) . C, in the equation is a constant to control the

strength of the damping coefficient and is chosen to be 1.0 in this study, Ly, is set to
be one wavelength of the linear wave for shorter waves and eight times the
typical dimension of the body for longer waves. This method has been extended

to 2D fully nonlinear wave simulations by Kashiwagi (1996).

Figure 3.3.7 Damping zone on the free surface

The damping zone method is simple but efficient. Its disadvantage is that an extra
domain is needed in the computation. Sometimes the Sommerfeld-Orlanski radiation
condition and the artificial damping zone are combined together in numerical

simulations (Tsai & Yue, 1996).
3.3.6 Calculation of hydrodynamic forces

In equations (2.6.3) and (2.6.4), the computation of integration of (%|V¢|2 +gz)on

the body surface is not too difficult. There are however some problems with 6¢/or . It
may be calculated using the finite difference method. However, for fully nonlinear
problems, this often causes instability and sawteeth in the force history may occur,
especially in the case of large amplitude motion. In order to avoid this behaviour, we

use the method developed by Wu & Eatock Taylor (1996, 2003) to compute the
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hydrodynamic forces, which circumvents the need for the derivative with respect to
time directly. We summarise the method below.

We consider a numerical wave tank problem with a floating body in the tank. We
denote the translational and angular velocity of the moving body as ¥ and Q
respectively. In the fluid domain, the time derivative ¢, satisfies the Laplace equation

V¢, =0. (3.3.36)

On the fixed boundary it satisfies

% _y. (3.3.37)
oN

On the free surface ¢, is given by the Bernoulli equation as

¢, = —gz—%V(f)V(ﬁ . (3.3.38)
On the moving boundary, the condition can be written as (Wu, 1998)
d [;;ﬁ]_-av¢~a_~
—, )=V +QxF} N-V.—+Q-—|Fx{V = V¢ ||, 3.3.39
o 0)=F + 787 2R 0. [ (- vg)] (3339)

where 7 is the position vector. The dot over ¥ and Q indicates the derivatives with

respect to time. On the wave maker this becomes

8 S v
—(¢,)=V,-N -V, ==, 3.3.40
6N(¢') 0 TN ( )

where 170 is the velocity of the wave maker. If the accelerations in equation (3.3.37) are
known, we can solve equations (3.3.36)~(3.3.40) to obtain ¢, , otherwise we may
introduce some auxiliary functions y,(i =1,2,---,6), which satisfy the Laplace equation
in the fluid domain

Vg, =0 (3.3.41)

with the boundary condition

%%y (3.3.42)
oN

on the body surface and
2, =0 (3.3.43)

on the free surface, where N, (i =1,2,---,6) are the components of Nand 7x N . The

condition on other boundaries is given as

84



i_g (3.3.44)
ON

x,; can then be obtained by solving equations (3.3.41)~(3.3.44). Using Green’s identity

ﬁ (¢I—6L— X %)=0 and considering boundary conditions for ¢, in equations

(3.3.37)~ (3.3.40), we obtain

ove

jj Nds—”x{[V+er]N V. ~

- 8 _ -
Q-aw[rx(V—ng)]}ds

(3.3.45)
+ﬂ( V- V¢+gz) ds+”( Vo +Vb.) 2.

The hydrodynamic force on the body «can finally be obtained as
F = —H{in[(ﬁ +Qx7)-NI[Vo - (¥ +QxF)+ 7,(QAxV)- Nids

- [f (_v¢ V+ga) o, ds+”( Vo +Vebo)2,ds (3.3.46)

S,+S,

—ch j (i=1,2,"',6),
where C; = _U x:N;ds and A,(j=12,---,6) are the acceleration components
S,

corresponding to the three translations and three rotations of the body. In this equation,

there is an integration of second order derivative ¢_ y, on the surface of the wave maker,

and it may be calculated by the following equation

[[oarids=="["" p.xdzdy~[" ['" g, 5.dzdy
= [ -0, +F¢ ~dz)dy
[ bl [ e

- jj(¢ iy, % e

(3.3.47)

where B is the breadth of the tank. If the body is fixed, we may solve equations
(3.3.36)~(3.3.40) to obtain ¢, and then the force. For a body in forced motion, although

its acceleration is known, we still use equation (3.3.46) to calculate the force. This is

because it may be inaccurate to calculate the second order derivative dV¢/on in

equation (3.3.39), which can be avoided when equation (3.3.46) is used.
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4. MESH GENERATION FOR FLARE STRUCTURES

4.1 Introduction

An essential part of CFD is the mesh generation. The fluid domain should be
discretised when the finite element method is used. Two types of mesh are usually used:
the structured mesh and the unstructured mesh. The latter is more suitable for complex
fluid domains, and it has been successfully used in many areas such as car and plane
design, heat conduction and fluid dynamics. However, the application of 3D
unstructured meshes to simulations of fully nonlinear water waves presents a
considerable challenge. The difficulty is mainly due to the fact that the boundary of the
fluid domain including the free surface and the body surface is time-dependent. Meshes
have to be generated regularly and so extensive computer resource is required. In this
thesis, the mesh employed consists of 6-node prismatic elements. This mesh may be

said to be semi-unstructured or semi-structured.

4.2 3D mesh generation

As mentioned in Wu & Hu (2004), a fully 3D grid generator is usually too
computationally intensive for this problem, especially when a typical simulation would
allow only a few minutes of CPU at each time step. Thus, they adopted a 2D method for
cylindrical structures. The mesh is first obtained through the tri-tree method on a
horizontal plane and the 3D mesh is then generated by drawing straight lines in the
vertical direction. The procedure is efficient but it does not allow variation of cross
section in the vertical direction [see Figure 4.2.1(a)], even though the shape of the
section can be arbitrary.

When the body is not cylindrical or it has a flare [see figure 4.2.1(b)], substantial
change in mesh generation is required. For a cylindrical structure, the projection of the
waterline on the free surface will remain the same if the body is in translation only. For
a flared structure, the projection will vary considerably. We summarise the mesh
generation procedure for a flared structure below.

The wavy free surface is first projected on to the horizontal plane, and a 2D

unstructured mesh is generated on the plane. A 2D mesh generator called BAMG
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(Hecht, 1998) which is based on the Delaunay algorithm is used here. One of its
advantages is that it is less computational intensive than the tri-tree algorithm by Hu et
al.(2002). A typical triangular mesh generated by BAMG is shown in Figure 4.2.2(a).
The mesh generator can also handle holes of arbitrary shape in the domain as shown in
Figure 4.2.2(b). Furthermore, BAMG can make a local refinement and Lapacian
smoothing. Its preparation of data input is simple, which needs the nodes and element
numbers on all boundaries only. A 2D mesh for a circle generated by this method is
shown in Figure 4.2.3.

For a flared cylinder, it may seem that the body is a small variation from that
without flare in shape. However, the flare will lead to more complexities in mesh
generation, and more attention should be paid to handling the intersection line between
the free surface and the cylinder. Unlike the situation of a wall-sided cylinder, the shape
of the projected waterline of a flared cylinder on the plane changes with time. It can be
non-circular for a cylindrical structure. The nodes on the curve need rearranging before
the new 2D mesh is generated.

A curve is then drawn from the nodes of the 2D mesh along the depth to form the
3D mesh. We use prism elements instead of tetrahedral elements here. One of the
advantages of this element is that its index system is much simpler for this problem.
This mesh is therefore semi-unstructured since the mesh is unstructured in the
horizontal direction and structured in the vertical direction.

A 3D mesh with prism elements is shown in Figure 4.2.4. The surface mesh around
the cylinder is shown in Figure 4.2.5(a).

A 3D mesh for a truncated cylinder with flare is shown in Figure 4.2.5(b), which
requires further steps. The 2D mesh on planes below the cylinder consists of two parts:
one is obtained from the extension of the 2D mesh on the free surface [Figure 4.2.6(a)],
and the other is the 2D mesh generated inside the bottom of the cylinder [Figure
4.2.6(b)]. The two meshes are joined together to form the 2D mesh on all planes below
the cylinder [Figure 4.2.6(c)]. Attention should be paid to the index system when the

two meshes are combined together.

Figure 4.2.1 Cylinders (a) without flare and (b) with flare
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Figure 4.2.4 3D mesh for a cylinder

Figure 4.2.5 Bottom mounted and truncated cylinders
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Figure 4.2.6 Combination of two unstructured meshes

When the 3D mesh is constructed, we usually divide the depth of the fluid domain
into many layers. The elements should be clustered near the free surface where the fluid

motion is largest. We may use the following equation (Chung, 2002) to achieve this

B+ (8 —1)(~g Ly
Z; =T]—(h+77) ﬁ-l-l (i=0,1,"‘,m), (42‘1)
( )l—i/m+1

B -1

where z, is the vertical coordinate of i-th layer, n the wave elevation, & the depth of the

fluid domain, m the number of layers along the depth, and #>1 is a constant. A smaller
value of f will lead the nodes and elements to cluster at the top of the domain and a
larger § will have the nodes and elements more uniformly distributed in the vertical
direction (Figure 4.2.7).

Equation (4.2.1) suits for bottom mounted cylinders. For truncated cylinders, we take
two steps. We first divide the height between the free surface and the cylinder bottom

into m, intervals using the following equation

ﬁ +1 ilm-a

Qa+p)=—) "™ +2a-p
z;=n-(d+n) Aol T (=0,1,--,m), (422)
(o +1)[(2—i—i) e+

where d is the initial drought of the cylinder and a is another constant. Equation (4.2.2)
can make the nodes and elements cluster at both the free surface and the cylinder
bottom. The influence of f and a on the distribution of nodes is depicted in Figure 4.2.8.
The vertical distribution of layers for the truncated cylinder with f=1.05 and a=0.5 for
the layers between the cylinder bottom and the tank bottom is shown in Figure 4.2.5(b).
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We then divide the height between the cylinder bottom and the tank bottom into m,

layers using equation (4.2.1) by replacing n with —d, we rewrite it as follows
+1 —i/m
(B+D)-(B-ELym

z, =—d —(h—d) : p-l (i=0,1,---,m,). (42.3)
(ﬁi)l—i/m2+1

B -1

A test on f is taken in a 3D numerical wave tank with a bottom mounted cylinder

without flare inside. There are 14 layers in the vertical direction. The waves at the front
side of the cylinder with two motion amplitudes of the wave maker are shown in Figure
4.2.9. Equation (4.2.1) is used to control the nodes distribution along the vertical
direction. Three values of £ 1.02, 1.05 and 1.08 are tested. The element near the free
surface should be smaller than those away from the free surface, which requires a
smaller value of 8. However, the size of the element should gradually but not abruptly
increase from the free surface to the tank bottom. Relatively, a very small S leads the
elements neighbouring the free surface to be much smaller and the element far from the
free surface much larger, and this may cause numerical errors such as overflow. A

compromise with # =1.05 will be taken in this thesis.

B=1.01 B=1.03 B=1.05
= = =_-
B=1.07 =11 B=2.0

Figure 4.2.7 Influence of
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B=1.03,a=0.5 B=1.05,a=0.5

B=1.07,a=0.5 B=1.07,0=0.4

B=3.0,a=0.1 B=3.0,a=0.5

Figure 4.2.8 Influence of § and a

Figure 4.2.9 Waves at the front side of the cylinder
(a) 4/k=0.01; (b) A/h=0.03

It should be mentioned that a zone of structured mesh [Figure 4.2.10(a)] near the
wave maker may usually be combined with the unstructured mesh to form a hybrid
mesh as shown in Figure 4.2.11. One reason of its presence is due to the transverse
stability discussed by Wu, Ma & Eatock Taylor (1996). They found that the stability
depends very much on the mesh structure used near the wave maker. The structured
mesh may improve the numerical stability. It should also be noticed the structured mesh
is symmetric about y=0. A symmetric mesh should be more stable than an asymmetric
mesh [Figure 4.2.10(b)] when they are used in free surface problems, and this is
confirmed by Robertson & Sherwin (1999) when they studied 2D free surface flow
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problems. They found that the asymmetric mesh caused some saw teeth on the free
surface. The 3D mesh based on this hybrid mesh is shown in Figure 4.2.12.

In this thesis, we also consider the interactions of waves and multiple cylinders. The
mesh generation for multi-cylinder cases requires slightly more work on the input
information of the boundary than that for a single-cylinder but it will be much more
complex if the structured mesh is used. The meshes on seven bottom-mounted and
truncated cylinders in a line are given in Figures 4.2.13 and 4.2.14.

(a) (®)

N

Figure 4.2.10 2D structured mesh

Figure 4.2.11 2D hybrid mesh

Figure 4.2.12 3D mesh for a cylinder

NPT IR 8 AN

Figure 4.2.13 Seven bottom-mounted cylinders
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Figure 4.2.14 Seven truncated cylinders
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5. SECOND ORDER WAVE DIFFRACTIONS BY AN ARRAY OF
VERTICAL CYLINDERS IN THE TIME-DOMAIN

5.1 Introduction

We now move on to the validation and application of the numerical method described
in the previous chapters. A few types of problem will be investigated: wave diffraction
and radiation for multiple cylinders in open seas and transient waves generated by wave
makers in tanks in two- and three-dimensions. In this chapter, we consider the
interaction of second order waves and multiple cylinders in the time-domain.

One of the interesting problems in wave-body interactions is an array of vertical
cylinders in an incoming wave. This configuration has a wide range of applications,
such as bridges and floating airports. Maniar & Newman (1997) considered linear
diffraction by an array of 101 cylinders. They found that when the wave number was
close to the trapped mode (Ursell, 1951), very large hydrodynamic forces could occur
on the cylinders in the middle. Evans & Porter (1997a) also showed that very large
force could occur for a small number of cylinders, such as four, especially when they
were quite close to each other. Malenica er al. (1999) further showed that similar
behaviour could occur for the second order result. The wave number for the first order
problem chosen by them was far away from the trapped mode and the linear result did
not exhibit any unusual behaviour. The corresponding wave number for the second
order problem was, however, quite near the trapped mode. As a result, some of the
second order results were found to be abnormally large. Other investigations on an array
of cylinders include those by Kashiwagi & Ohwatari (2002) and Ohl et al. (2001).

The work mentioned above is all based on the frequency domain method. The present
work is to use the time domain method to analyse the first and second order wave
diffraction by a group or an array of cylinders. One of the advantages of the time
domain method is that it can easily capture the transient effect if the motion is not
periodic. From the computational point of view, as the domain in the perturbation

method is fixed, the global coefficient matrix needs to be worked out only once. This
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can then be used at all the time steps during the simulation and be used at any frequency
for the periodic motions. The time domain problem is usually solved by the boundary
element method (BEM) through two schemes. The first one is to use a Green function
which satisfies the free surface boundary condition. As a result, the differential equation
can be converted into an integral equation. A typical example of this is the work by
Beck et al. (1987). Unlike the frequency domain method however, the integral equation
contains a term of convolution which includes all the information prior to the current
instant, or the memory effect. As time progresses, the memory effect can become too
big for practical computation. The other scheme in the time domain method is to use the
Rankin source. The Green function in this case does not satisfy the free surface
boundary condition and the source distribution is required on the free surface. Typical
examples of this scheme include those by Isaacson & Cheung (1990, 1991, 1992) on the
second order wave diffraction problems by a single cylinder. The advantage of the
Rankin source method is that it removes the explicit memory effect from the equation.
Its disadvantage is that it requires sources all over the free surface. As the matrix is fully
populated, the storage requirement can also be very big. In the present work, we use the
finite element method (FEM). As discussed in Chapter 1, even though the FEM has
more unknowns, it corresponds to smaller memory requirement because its matrix is
banded. For this reason, it has been widely used in a variety of fully nonlinear problems
in the time domain (Wu et al. 1998, Ma, et al. 20001a, b, Hu, et al. 2002, Wu & Hu
2004) and is found to be very effective. Wang & Khoo (2005) simulated fully nonlinear
random sloshing problems and the second order results based on the finite element
method were also provided for comparison.

Simulation is made first for two cylinders to investigate the effect of the interaction
through the comparison with the single cylinder case. Numerical results are provided for
both the wave elevation and the force. Simulation is then made for four cylinders, and
for both bottom mounted and truncated cylinders. The effect of the trapped mode on the
first- and the second-order results is investigated. Simulation is also made for an array

of ten cylinders in a line and a double array of eight cylinders in two lines.
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5.2 Mathematical formulation for second order diffraction problems

The mathematical formulation of fully nonlinear wave-body interactions has been
presented in Chapter 2, and the description of radiation problems based on the second
order theory has also been given in the chapter. In this chapter, we first give the
mathematical formulation of second order diffraction problems. The Sketch for multi-
cylinder is depicted in Figure 5.2.1. In the figure, S. is the artificial boundary surface, on
which a suitable radiation condition should be imposed. A difference of the diffraction

problem from the radiation problems is that the normal velocity on the body surface S,

1S zero

s SN £ (5.2.1)

ICvlindeé] [Free surface

Artificial
boundary Sc

Figure 5.2.1 A sketch of the problem

Based on the second order theory, the velocity potential and wave elevation can be
expressed in the first- and second-order components [see equations (2.5.5) and (2.5.6)]

using the perturbation expansion procedure. The components of the potential and the
wave are further split into the known incident potential ¢! and wave n*’, and the
unknown diffracted potential ¢’ and wave 1, respectively
=g +o5)+e* (@7 +¢7)+--- (5.2.2)
n=em® +nN)+e*@P +nP)+---. (5.2.3)

Similar to the second-order radiation problem given in Chapter 2, the mathematical

formulation of the second-order diffraction problem can be derived. The governing

equations for ¢ become

VW - in VO, (5.2.4)
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and is subject to the boundary conditions applied on the still water surface, the mean

body surface, and the seabed, given respectively as

6¢(k) an(k)

> = fr on S0, (5.2.5)
4
®
> o gn® = fr on S}O’, (5.2.6)
¢
(k) (k)
62 _ agz on SO (5.2.7)
n n
()
agz =0 on z=-h . (5-2.8)
The terms f and f” in these equations can be written as
1'=0,
e (5¢(2) 57752))+ 09" an® . 09" an® 0 R
2 ot ox &x oy oy oz*
f'=0,
¢ (2) ()] (l) a ¢(1)
[y =~(—+gn?)- |V¢| >

The incident wave and potential are transient in general. Here we consider the case in

which a structure is suddenly put in a periodic Stokes wave. This means

(€3] 2._(2)
n,=é&n,” +enm,

= gcosk0 (x—c?) > (5.2.9)

. (g_)z ko cosh kyh(cosh 2k h +2)
2

cos2k,(x—ct
4 sinh® kh o(x=e)

6, = ep + 574
= H —‘———COShk (z+h) sink, (x Ct) s (52.10)
2 sinh k h

3(11)2 (cosh 2k (z+h) _
+—| — | k,c n
2 sinh” k h

in 2k t
n o(x—cr)

where H is the wave height, ¢ the wave celerity, ko the wavenumber, 4 is the
water depth, and w= koc is obviously the frequency and is also linked to the wave
number through k, tanhk sz = w’/g.

For second order problems, the hydrodynamic forces on the cylinder can be

expressed as
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1 .
F, = _Upnjds+5pg§(n(”)2njdl (j=1,2,-,6) (-2.11)
WL

s
where p is the pressure up to second order. The normal vector (n,n,,ny,n,,n5,n,) =
(n,n,,n,,yn, —zn zn —xn,,xn,—yn ), j=1,23 corresponding to the force and
Jj=4,5,6 to the moment. The total force on the cylinder may be expressed as a sum of

three components: the first order oscillatory force Fj(” , the second order oscillatory

force Fj(z) and the second order mean force E‘Z). The first order oscillatory force is

given as

m
% nds (j=12,6)- (5.2.12)

FY=—p J‘

549
The second order oscillatory force may be expressed as
@ _ @ @) _fF@ (i 5.2.13
FO=F® +F® _F® (j=12,--6), (5.2.13)
where F{* and F(* are the second order force components due to the first- and

second-order potentials respectively, and they are defined as

1 2 1 .
Fj(Zl) — _EPIJ-IV¢(1)| njds_'_gpgj‘(n(l))andl (_] — 1,2,"',6); (52.14)
WL

50
o9 .
Fj(zz) =—p” ‘gt nds (j=12,6). (5.2.15)
50

By time averaging equation (5.2.14) over one period when the problem has become

periodic, we obtain the second order mean force

= 1 ool .1 Tao— ..
F® =—EpII|V¢(l)‘ njds+5pgj(nm)2njdl (j=12,--,6). (5.2.16)
WL

)
Sb

5.3 Computational considerations
5.3.1 Meshes for multi-cylinders

As presented in Chapter 4, the 2D mesh generator BAMG (Hecht, 1998) is used to
generate a 2D unstructured mesh on the plane first (see Figure 5.3.1). It is then extended
along the vertical direction to form the 3D mesh with prismatic elements (see Figure

5.3.2). When equations (4.2.1) and (4.2.2) are used to divide the water depth into many
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layers, the wave elevations n in them are zero since the second order problem is

considered on the mean water level.

Figure 5.3.1 A 2D unstructured mesh for four circles

Figure 5.3.2 A 3D mesh for four truncated cylinders

5.3.2 Computations of derivatives in time and space

2 (D
In equation (5.2.6), we need to calculate the derivative aéq;t . We first calculate
Z
velocity (g—¢,gy~¢,g—¢) using equations (3.3.2a) and (3.3.2c) since we only consider
X Z

wall-sided structures. The Galerkin method may be an alterative, but the former will
need much less time. We then use a back difference formula to obtain the derivative
02"

0zot

2,1 ) 1 My
99 _ 0%, (90 2 (=40, (5.3.1)
0z0t Ot Oz oz Oz

For the second order derivative °¢/6°z , equation (3.3.2b) is utilised. The two spatial
derivatives on" /ox and dn® /dy in equation (5.2.5) may also be obtained through

equation (3.3.2¢) by replacing the potential ¢ with the first-order wave elevation .
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5.3.3 Computations of velocity on the surface of cylinders

When using equation (5.2.14) to obtain the second order force, we need to calculate
the integration of the square of velocity |V¢v|2 over the body surface. We may have two

approaches to calculate the integration. One is to directly evaluate the integration, in
which the velocity at all nodes on the body surface is needed; the other one is to
calculate the integration based on the shape function, in which only the potential is
needed. We will adopt the latter. The velocity in an element may be obtained from the

following equation

op| [oxdv o] [09]
ox | |0cosas | |o¢
99| _|Oxy oz | 9| (5.3.2)
o | |[ondnon| |on
o9 n,n.n, o9

0z | 1 Lon ]

where (£,7) is a local coordinate corresponding to a global coordinate (x, y, z) , which

is the node coordinates of the quadrilateral element on the body surface, (1,1, ,n,) is

o9

the outside normal vector and ™ is the normal velocity at (x, y,z) . The derivatives of
n

x, y, z and ¢ with respect to & and 7 can be easily obtained through the shape function

in an element with # nodes

u v,
o5 T ot
. , (5.3.3)
G _$ W,
on ‘o on

where g denotes the coordinates x, y, z or potential ¢ . The normal vector can be
calculated by the following equations

Wl Wl

x ‘J ’ny - |J| an: - IJ' > (534)

where

|J1|= Oy 0z 0z Oy

otk on ot on’
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5.3.4 Numerical radiation conditions

For long time simulations, an appropriate numerical radiation condition should be
imposed on the boundary S.. We used a combination of the Sommerfeld-Orlanski
radiation condition and the damping zone method to absorb reflection waves. The
discretised Sommerfeld-Orlanski radiation condition equations (3.3.29) and (3.3.30) are
used. It should be noticed that points X; and X, are generally not the nodes of the mesh,
and they are obtained through interpolation.

We adopt the damping zone method in Nakos et al. (1993). This method has
been given in equations (3.3.34) and (3.3.35). Nakos et al. (1993) used it in
linear wave problems, and we now extend it to our second order simulations and

they may expressed as

(k) (k) 5
agt — ag _ﬂ ~2V‘r](k) +v_¢(k) (k — 1’ 2) on S([O) , (535)
A g .
6¢(k) " ) .
P U (k=1,2) on SO, (5.3.6)

where /i, f{ (k=12) are the same as those in equations (5.2.5) and (5.2.6) for the

diffraction problem and the same as those in equations (2.5.16) and (2.5.17) for the

radiation problem, respectively.

5.3.5 Modulation/ramp function

In order to let the diffracted wave develop gradually, we applied a modulation
function M(¢) in equation (5.2.7) (Isaacson & Cheung, 1992)
() ()
%z_M(t)a_l (k=12), (5.3.7)
on on

where
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1 it
M) = 5[1 —cos(—T~)] t<T

1 t2T
and 7 =2/ is the period of the first order incident wave. The modulation function is

necessary for the development of the wave and force with time. A comparison between
results with and without the modulation function is shown in F igure 5.3.3. The first- and
second-order diffracted waves for a single cylinder are depicted in the figure. It is
clearly seen that the first order wave without the modulation function is not good and
the second order wave is very bad. The modulation function has a tremendous influence

on the second order wave.

1.5
| — with the modulation function linear solution

-------- without the modulation function

diffracted wave

second order solution

-1.5 T T v T T T M T .
0 1 2 3 4 5

time
Figure 5.3.3 Comprasion of waves between with and without modulation function

5.4 Simulations for single-cylinder case

Before simulating multi-cylinder cases, we first consider the diffraction by a single
isolated cylinder to verify the accuracy of the present numerical method. A case with
koa=1, h=a and H/)=0.1 is considered here (a 1s the radius of the cross section of
cylinder and 4 the wave length of the first order incident wave). The same case was also
studied by Isaacson & Cheung (1992) and their results are used for comparison. The
wave histories at the front and the back sides of the cylinder are shown in Figure 5.4.1,
in which 4 denotes the amplitude of the first order incident wave and hereinafter for the
subsequent figures. It is seen that the waves develop well. The amplitude of the first

order wave and the maximum of the linear plus second order wave at the front side are
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about 1.75 and 2.67 times the incident wave amplitude, respectively, which are in very
good agreement with the results at ka=1 in Figure 5.4.2 given by Isaacson & Cheung
(1992). The force and moment shown in Figure 5.4.3 are also in very good agreement
both in amplitude and phase compared with those in Figure 5.4.4 given by Isaacson &
Cheung (1992). A further comparison between second order forces obtained through the
present method and the frequency-domain results by Eatock & Hung (1987) at different
frequencies is given in Figure 5.4.5, which further confirms that the present numerical

method is accurate.

4
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Figure 5.4.1 Wave histories at the front and back sides of the cylnider
(a) Front; (b) back

------ Linear; linear plus second order
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Fig 5.4.2 Wave amplitudes at the front of the cylinder versus the

nondimensional wavenumber (Isaacson & Cheung, 1992)
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Figure 5.4.3 Histories of force and moment
linear plus second order

x

F l“/pgaA

Figure 5.4.4 Histories of forces and moment ((Isaacson & Cheung, 1992)
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Figure 5.4.5 The amplitude of the total second order force versus ka

5.5 Simulations for two- and three-cylinder cases
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In all the simulation from this section, the cylinders are identical and all have radius
a. The water depth is taken as 3a. The ratio of the wave height to wavelength is taken is

H/ 7=0.05and A=H/2.

N
\/\/

m/i\m‘
\/uu

Figure 5.5.1 Two-and three-cylinder cases

incident waves
—————————

A two cylinder configuration is the simplest multi-cylinder case. Figure 5.5.1(a)
shows that two bodies are placed along the line of the wave direction. The centres of the

two cylinders are located at (-L,, /2,0) and (L, /2,0). The simulation corresponds to
L, =4a and kja =0.754.

The convergence study is first undertaken. In this case, the fluid domain on the free
surface is of rectangular shape with length 50a and width 40a, which are divided into 60
and 50 intervals respectively. This corresponds to a mesh with 8706 nodes and 17122
triangular elements on the free surface. The waterline of one cylinder is divided into 36
uniform segments and the time step is taken as At =T/200. Three different vertical
meshes with NH=10, 14 and 18 are used and their corresponding results for second
order waves are shown in Figure 5.5.2. The three curves are in good agreement and the
results at NA=14 and 18 are almost graphically identical. The simulation is made on a
Pentium 4 personal computer with 3.40 GHz Intel CPU, windows XP system and Open
Watcom C++ complier v1.1. The maximum memory is about 74 MB at NH=14 and 93
MB at NH=18. The CPU required is about 10 seconds per time step at NH=14 and 14
seconds at NH=18, respectively.

Convergence study is further undertaken with horizontal elements. The numbers of
nodes and elements on the free surface used above have been increased to 15024 nodes
and 29658 elements receptively. The simulation is performed with NH=14 and
At =T/200. The results are shown in Figure 5.5.3, and the agreement from the two
meshes is quite good. Convergence study is also undertaken with the time steps using
At =T/200 and At =7/400 at NH=14. The result is shown in Figure 5.5.4 and the

agreement is again quite good.
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Fig. 5.5.2 Convergence of second order waves with mesh variation in vertical direction
(a) front side of cylnider one; (b) back side of cylnider one;
(c) front side of cylnider two; (d) back side of cylnider two
-+ NH=10; — - NH=14; NH=18
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Figure 5.5.3 Convergence of second order waves with mesh variation in horizontal direction
(a) front side of cylnider one; (b) back side of cyinider one;
(c) front side of cylnider two; (d) back side of cylnider two
mesh with 15024 nodes and 29658 elements
mesh with 8706 nodes and 17122 elements
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Figure 5.5.4 Convergence of second order waves with time interval variation

(a) front side of cyinider one; (b) back side of cylnider one;

(c) front side of cylnider two; (d) back side of cylnider two
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Further comparisons between single- and two-cylinder cases at NH=14 and
At =T/200 are made and results are included in Figs. 5.5.5 and 5.5.6. The single
cylinder is placed at the location of cylinder 1 in Figure 5.5.5 and at the location of
cylinder 2 in Figure 5.5.6. As the body surface boundary condition is modulated

through M (), the wave runup becomes periodic after one wave period for the single

cylinder case, as in Isaacson & Cheung (1992). The transition to periodic state,
however, takes much longer in the two cylinder case, especially for the second order
results, as can be seen from the figures. The interaction effect on the first order wave is
evidently visible, but the major effect is on the second order. In fact, the amplitudes of
the first order waves at both the front and the back sides of cylinder one are generally
larger than those in the single-cylinder case and it is about 13% larger at the front side.
However, the amplitudes of first order waves are slightly less than those in the single-

cylinder case for cylinder two. It is also observed that the amplitude of 1'? at the front

side of cylinder two is about 3.7 times that of a single cylinder. Generally, the first- and
second-order waves between the two cylinders are affected by the existence of the other
cylinder in both amplitude and phase, and the influence on the second order wave is
even more evident.

The corresponding histories of the force and moment are shown in Figures 5.5.7 and
5.5.8. Similar to the wave runup, the results for the two-cylinder case take a longer time
to become periodic, especially for the second order force and moment. The interference

leads the first order force and moment to increase by 17% for cylinder one and decrease
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by 10% for cylinder two compared with those in the single-cylinder case. For the
second order force and moment, their mean values are greater than those in a single-
cylinder case, in which the peaks of the force and moment cannot even reach these
mean values. This indicates larger mean drift force and moment in the two-cylinder
case. We can also observe that the second order force and moment on cylinder two have
significant increase in amplitude. The total wave elevations and forces are shown in
Figures 5.5.9 and 5.5.10. The linear solutions are also given in the two figures to show
the nonlinearities of the waves and forces.

Besides difference in amplitudes, the phases of wave and force may be different

from those in single-cylinder cases as shown in Figures 5.5.5~5.5.8.
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Figure 5.5.5 Wave histories for cylinder one at k a=0.754
(a) first order & (b) second order at the front side;
(c) first order & (d) second order at the back side
-------- single-cylinder; —— twao-cylinder
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Figure 5.5.6 Wave histories for cylinder two at k a=0.754

two-cylinder

--- single-cylinder;
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Figure 5.5.7 Histories of force and moment on cylinder one at £ a=0.754

two-cylinder

-- single-cylinder;
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Figure 5.5.8 Histories of force and moment on cylinder two at k a=0.754
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Figure 5.5.9 Wave histories at

(a) front of cylinder one;

(

(c) front of cylinder two;

back of cylinder two

)

(d
linear plus second order

-----linear,
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A case with L,=4a and a larger wavenumber kya = 2.0 is also investigated. In this

case, the fluid domain may be chosen to be smaller than that in the case of kya=0.754
since the wavelength is smaller. However, more elements are needed around each
cylinder. There are 52 intervals on the waterline for each cylinder in this case. The wave
histories are shown in Figures 5.5.11 and 5.5.12. The nonlinearity of the wave at the

front side of each cylinder is clear but weak at the back sides, and this may be explained

through Figure 5.5.13. The two second order wave components are shown, n*" and

n®, which are the waves due to the first order potential and the second order potential,

@n (22)

respectively. It is seen that '’ and n'*"’ are almost out of phase and the amplitudes are
close, which leads the total second order wave to be very small. The wave at the back

side of cylinder two is similar to this.
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Figure 5.5.11 Wave histories for cylinder one at k ¢=2.0
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Figure 5.5.12 Wave histories for cylinder two at k a=2.0
(a) front; (b) back
linear plus second order
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Figure 5.5.13 Second order wave components at the back side of cylinder one

The wave profiles for the above mentioned two-cylinder configuration with

koa=0.754 and 2.0 are shown in Figures 5.5.14 and 5.5.15. The wave profile is generally
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smoother at kya=0.754 than that at kya=2.0, and more wave peaks and troughs can be
observed for the latter. The nonlinear effect of the waves around the cylinders is clear
especially for kya=0.754 since the second order wave has more influence on the whole

wave runup in this case.

(@) (b)

Figure 5.5.14 Free surface profiles around cylinders at +=6T with kya=0.754

(a) linear; (b) linear plus second order

(®)

Figure 5.5.15 Free surface profiles around cylinders at =67 with kya=2.0

(a) linear; (b) linear plus second order

Three-cylinder cases are also considered. The centres of the three cylinders are

located at (-L,,,0),(0,0) and (Z_,,0), respectively, as shown in Figure 5.5.1(b). A case

with L =4a and k,a =0.754 is first simulated. The forces on the three cylinders are
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given in Figure 5.5.16. It is shown that the largest first- and second-order forces are on
cylinders one and two respectively. Two other cases with L,,=4a and 7a at a smaller

wavenumber kja = 0.57 are also considered. Figure 5.5.17 shows the histories of the

first- and second-order forces when L.,=4a. The largest first order force is on cylinder

two. The forces on cylinder two in case L = 7a are given in Figure 5.5.18 which also
includes results for L =4aand for a single isolated cylinder. It is seen that the first
order force at L = 4a is the largest and is smallest at L., =T7a. The cylinder on which

the maximum linear force acts in an array of cylinders may depend on the wave
frequency and this is confirmed by Maniar & Newman (1997) when they studied the
diffraction by a long array of cylinders (101 cylinders) in a line based on the linear
theory. The results about a small array of nine cylinders was also given by them and
further results about a double array of 2x9 in two lines was presented by Evans & Porter
(1997a). Their results show that the maximum force will occur on the cylinders near the
middle rather than at both ends when the frequency is near the Neumann trapped mode.
The trapped mode is a localized phenomenon with finite energy which does not
propagate into infinity (Ursell, 1951). Very large waves and hydrodynamic forces can
be produced when the wave frequency is near the trapped mode frequency. The trapped
mode may be described as follows:

An array of cylinders is located in the midway between the two parallel walls of a

long tank. The velocity potential ¢ satisfies the Helmholtz equation,

V¢ +kip=0, (5.5.1)
and the body surface condition

% =0 (5.5.2)

on

on surfaces of all cylinders. On the wall of the tank, if the normal velocity is zero, that

is,

0

—=0, 553

. (5.53)
itisin the Neumann mode and if the velocity potential is zero

=0, (5.5.4)

it is in the Dirichlet mode. Here we focus on the computation of waves and
hydrodynamic forces. Some work on the trapped mode can be found in many

publications. Maniar & Newman (1997) calculated the nondimensional wavenumbers
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kol (I=L./2=2a) in trapped modes for more than 10 cylinders in a line. The
nondimensional wavenumber in the Neumann trapped mode is about 1.346 for the ten-
cylinder case. The nondimensional wavenumber will gradually increase with increase in
number of cylinders, but there is only a small difference between a ten-cylinder case
and an infinite-cylinder case, in which the nondimensional wavenumber in the
Neumann trapped mode is about 1.391. Kashiwagi (2002) calculated the diffraction by
four truncated cylinders with Z,,=4a based on the second order theory in the frequency
domain and his calculation showed that the nondimensional wavenumber ky/=1.2 or
koa=0.6 was near the Neumann trapped mode. The nondimnesional wavenumber in the
three-cylinder case in a trapped mode should be smaller than that in the four-cylinder
case according to the study by Maniar & Newman (1997). Therefore, this three-cylinder
case with kpa=0.57 or ko/=1.14, which is smaller and very close to that (ky/=1.2) in the
four-cylinder case, is probably near the Neumann trapped mode, and so the
hydrodynamic force on cylinder two in case L,=4a is larger than that on a single
cylinder. However, the force in case L,=7a is smaller than that on the single cylinder

since the frequency is far from the Neumann trapped mode.
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Figure 5.5.16 Histories of first- and second-order forces on the three cylinders with L =4a at ka=0.754
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Figure 5.5.18 Histories of first- and second-order forces on the middle cylinder at & a=0.57

5.6 Simulations for four-cylinder case
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Figure 5.6.1 Four-cylinder cases
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Two configurations of four cylinder cases with L =4a are considered in this

section, as shown in Figure 5.6.1. They are both symmetric about x and y axes. The

simulation is first made for configuration 5.6.1(a). The results for kya=0.754 are given
in Figures 5.6.2 ~5.6.4. We focus on the wave at the back side of cylinder one and the
front side of cylinder two, and the result is given in Figure 5.6.2. The double frequency
effect is particularly obvious at the back of cylinder one. Force and moment are given in
Figures 5.6.3 and 5.6.4. The second order effect on the force in the x-direction and the
moment in the y-direction does not seem to be evident at this wave amplitude, but it is

highly significant on the transverse force £ .
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Figure 5.6.2 Wave histories for cylinders in figure 5.6.1(a) at £ a=0.754
(a) front of cylinder one; (b) back of cylinder one;
(c) front of cylinder two; (d) back of cylinder two
- linear; — linear plus second order
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Figure 5.6.3 Histories of forces and moments on cylinders in figure 5.6.1(a) at k ¢=0.754
(a),(b) cylinder one; (c),(d) cylinder two
--------- linear; linear plus second order

Figure 5.6.4 Transverse forces on cylinders in figure 5.6.1(a) at k ¢=0.754
(b) cylinder one; (b) cylinder two
--------- linear; —— linear plus second order

The configuration in Figure 5.6.1(b) can be obtained through rotating that in Figure
5.6.1(a) by 45°. This is the case considered by Evans & Porter (1997b) based on the
linear theory and by Malenica et al. (1999) based on the second order theory in the
frequency domain. When k,a =1.66, it is very close to the trapped mode. Simulation is
made and the wave histories for the four cylinders are shown in Figure 5.6.5, with the

locations of points 4,, B, (i =1,2,3,4) given in Figure 5.6.1(b). It can be seen that the

maximum ratio of n/4 is around 4 which is much larger than 1.85 for the single-
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cylinder case. It ought to be pointed out that the maximum ratio will increase

dramatically when L /a is reduced, as observed in the frequency domain analysis

(Evans & Porter, 1997b). We do not undertake extensive simulation for the cases with a
small gap between cylinders, as their practical interest is limited.
When the first order result is large, one would expect that the second order result

would be even larger because of those product terms in equation (5.2.6) when k = 2.

We give the second order waves in Figure 5.6.6 together with their components 7"

e 1 2)
due to the product terms of the first order result and n*» = -— a‘gt due to the second
g

order potential. It is seen that the wave runups at B, (i = 2,3,4) have large components

n®" and n®. The magnitudes of 1" and n® are close but their phases are almost

opposite to each other. Thus n? itself is not particularly big at these points. The

situation at B, is somewhat different. There is a bigger difference between the

(22)

magnitudes of 7" and 7 even though their phases are almost opposite to each

other, and as a result n” is much bigger. Thus whether the big first order result will

lead to a big second order result depends also on the behaviour of each individual
component.

The corresponding hydrodynamic forces and moments at kya =1.66 are shown in

Figures 5.6.7~5.6.9. Generally, the dominant part of the total result at this frequency
and this wave height is the linear one. However, the second order effect is quite
noticeable in some cases. It is interesting to see that the transition of the force to the
periodic state progresses rather slowly. This behaviour is similar to that of waves
sloshing in a tank near to resonance (Wu et al., 1998), where the transition of the
amplitude envelope is dominated by the difference between the natural frequency and
excitation frequency. When the difference is small, the development of the envelope can

be very slow.
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We then consider a case at k,a =0.468 for the same configuration. The trapped

mode is far away from this wave number and its effect on the first order result is not
expected to have any significance. At this wave number however, the second order
wave corresponds to a wave number which is very close to the trapped mode. For this
reason, the case was chosen by Malenica, et al. (1999) in their second order analysis
based on the frequency domain method. The results for the second order wave from the

present simulation are shown in Figures 5.6.10~5.6.12. As expected, these results have a

large component 1*? due to the second order potential whose wave number is near the

trapped mode. By contrast, n*" is very small because the trapped mode virtually has no

effect on the first order result. A comparison of second-order wave amplitudes at points
B\, B3 is given in Table 5.5.1. The frequency-domain results were taken from the paper

by Malenica, et al. (1999). The results are generally in a good agreement.

----- linear,

T
10

uT
Figure 5.6.9 Histories of force and moment on cylinder three in figure 5.6.1(b) at k a=1.66

15

linear plus second order

20

| kaa’ |/ /o4
Location Present F requency- Present Frequegcy— Present Frequeqcy—
method domain method domain method domain
B, 1.41 1.44 8.87 9.12 7.93 8.05
B, 1.74 1.72 15.96 16.68 17.10 17.72

Table 5.5.1 Comparisons of second order waves and components
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The linear and linear plus second order waves are given in Figure 5.6.13. It is
interesting to see from Figures 5.6.13(d) and (e) that the amplitude of n is even larger
than that of n". By contrast, the amplitude of the second order wave at the front of the
single cylinder is only about 20% that of the first order at kya = 0.468 and H/ /=0.05.
The results here of course may raise the question whether the perturbation method is
valid in this case, but it nevertheless shows some interesting behaviour near the trapped
mode.

The corresponding forces and moments at k,a=0.468 are shown in Figures
5.6.14~5.6.19 together with the components F " due to the product of the first order
result and F** due to the second order potential. Once again, F*® is much larger than
F @ for the same reason discussed above. The second order force is a much bigger or
even a dominant component in the total force, compared with those results at
kya=1.66. The free surface wave profiles around the cylinders at k,a =0.468 are
shown in Figure 5.6.20. The inclusion of the second order component has changed the

wave pattern completely.
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Figure 5.6.10 Second order wave histories at (a) A, and (b) B,
in Figure 5.6.1(b) at k,a=0.468
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Figure 5.6.20 Wave profiles at =167

(a) linear;
A case at kya=0.754 is also simulated. The trapped mode is away from both the first

and the second order wave numbers. The results in Figures 5.6.21 and 5.6.22 therefore

do not show similar behaviour as occurred at k,a =1.66 or at k,a
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Figure 5.6.21 First order wave histories for cylinders in Figure 5.6.1(b) at k 2=0.754
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Figure 5.6.22 Second order wave histories for cylinders in Figure 5.6.1(b) at k,a=0.754
(a) front of cylinder one; (b) back of cylinder one;

(c) front of cylinder three; (d) back of cylinder three
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To demonstrate the flexibility of the present numerical procedure, we next consider
truncated cylinders in the same configuration as that in Figure 5.6.1(b). The cylinders

all have the identical draught d=0.54 and L, = 4a. The wave histories at k,a =1.66

are given in Figure 5.6.23 for cylinder one and Figure 5.6.24 for cylinder three. The

results are hardly different from those for the bottom mounted cylinders. This is
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expected as the main component in this case is the linear one and the major action of the
linear wave at this frequency is near the free surface. The change near the seabed
usually does not affect too much the results near the free surface. Figures 5.6.25~5.6.28
give waves at kya=0.468. The difference between waves for the bottom mounted
cylinder and the truncated cylinder becomes more evident as the disturbance decays
more slowly along the depth at lower frequency. A big difference can be seen in the
second order waves. This is because the second order potential decays much more
slowly than the first order one along the depth, which was observed by Eatock Taylor et
al. (1989) and then discussed in detail by Newman (1990). The forces on truncated
cylinders one and three at koa=0.468 are given in Figures 5.6.29 and 5.6.30. The figures
show the highly significant effect of the second order component. Another difference
between the truncated cylinder and the bottom mounted cylinder is that there is a

vertical force on the former, which is also included in the figures.
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Figure 5.6.23 First order wave histories for cylinder one in Figure 5.6.1(b) at k,a=1.66
(a) front; (b) back
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5.7 Simulations for an array of cylinders

The case simulated in this section is given in Figure 5.7.1. The cylinders are placed

along the line y =0 with an identical distance L, between two adjacent bodies. The
configuration is symmetric about x=0. In the simulation, L, =4a and ka=0.673

which is near the Neumann trapped mode given by Maniar & Newman (1997). The
waves along the two cylinders at two ends and two cylinders in the middle are given in
Figure 5.7.2. It can be seen that the result corresponding to cylinders 5 and 6 are larger
than those corresponding to 1 and 2. This is consistent with the linear results of Maniar
& Newman (1997) from the frequency domain method. Figure 5.7.3 gives the second
order wave elevation. As in the four-cylinder case, the components may be big but the
total result is much smaller due to cancellation. Figure 5.7.4 gives the linear forces on
all the cylinders. It is seen that the force tends to be greater towards the middle cylinders.
It is also interesting to see the envelope of the amplitude does not seem to have
stabilised even after 30 periods, similar to the behaviour in Figures 5.6.7~5.6.9. Wave
profiles at + = 25T are given in Figure 5.7.5, in which the contribution from the second

order component is quite evident.
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Figure 5.7.5 Free surface profiles at /=257. (a) linear; (b) linear plus second order

The diffraction by eight truncated cylinders in double lines with d = 0.54 shown in
Figure 5.7.6 is also simulated. This case resembles the columns of a floating airport,
although the total number 8 is relatively low. The distance between two neighbouring

cylinders is L, =4a and the distance between the two lines is also4a. We provide

results for cylinders 1, 2, 3 and 4 only because of symmetry. The waves at k,a = 0.456

are given in Figures 5.7.7 and 5.7.8. Generally, the waves at the front sides of cylinders
are larger than those on their back sides and show stronger nonlinearities, and the
amplitude of the second order wave is about 44.6% that of the first order for cylinder

two while it is 53% for cylinder three. The horizontal and vertical forces are given in
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Figures. 5.7.9 and 5.7.10 while F| has been ignored as it is small. A snapshot of the

wave profile for this case at /=257 is shown in Figure 5.7.11.
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Figure 5.7.6 Eight-cylinder case
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Figure 5.7.7 Wave histories at the fronts of cylinders (a) one, (b) two, (c) three, (d) four
------- linear; linear plus second order
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Figure 5.7.11 Free surface profiles at =257
(a) linear; (b) linear plus second order
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6. SIMULATIONS OF WAVE INTERACTIONS WITH NON-WALL-
SIDED BODIES BASED ON UNSTRUCTURED MESHES IN
TWO-DIMENSIONS

6.1 Introduction

In the last chapter, we gave a second order simulation of interactions of waves and
multiple cylinders. For large amplitude waves or large amplitude motions of structures,
the perturbation method will be invalid. In these cases, the fully nonlinear theory should
be used. We will consider fully nonlinear problems from this chapter. Before 3D fully
nonlinear simulations, we give some 2D numerical results about wave-structure
interactions based on the fully 2D unstructured meshes.

As mentioned in Chapter 1, there have been extensive applications of the FEM to
fully nonlinear wave-body interaction problems in the last decade. For example, Wu &
Eatock Taylor (1994) used both the FEM and the mixed FEM to analyse the 2D
nonlinear transient water wave problems. Wu & Eatock Taylor (1995) subsequently
made detailed comparison between the FEM and the BEM for the nonlinear free
surface flow problem and found that the former was more efficient in terms of both
CPU and memory requirement. Later, Ma, Wu & Eatock Taylor (2001a, b) extended the
technique to simulate interactions between waves and three dimensional fixed structures
in numerical tanks and Hu, Wu & Ma (2002) to the case of a vertical cylinder in forced
motions. Other FEM based simulations include those by Clauss & Steinhagen (1999),
Robertson ez al. (1999, 2004), Westhuis (2001) and Wang & Khoo (2005).

The publications mentioned above mainly used structured meshes. A structured mesh
is easier to generate but may become ineffective if the fluid domain is complex due to
the geometry of the body or large motion of the boundaries. In this case, an unstructured
mesh will be more suitable, such as that use by Greaves et al. ( 1997), Zhu et al. (2001)
and Turnbull ez al. (2003) in 2D and Wu & Hu (2004) in 3D.

140



All these applications are either for submerged bodies or for wall-sided or non-flared
floating bodies where the body surface at the moving waterline is always vertical to the
still water level. In fact, the nonlinear effect will become more significant for a body
with flare. From the computational point of view, the presence of the flare makes the
mesh generation more complex, especially in the local area. The slope or the curvature
of the body near the waterline also makes it more difficult to trace the movement of the
waterline in the nonlinear simulation. In this chapter, we use BAMG (Hecht, 1998) to
generate the unstructured mesh in the fluid domain (see Figure 6.1.1). Simulations are
first made for wave motions in a rectangular tank and for progressive waves in a
numerical tank, and results are compared with published data for validation. The focus
of this work is on a wedge either in forced large amplitude motion or in nonlinear waves
in a numerical tank, and on twin wedges. The wedge has been widely investigated in the
water entry problem and extensive survey of the work in this area has been given in W,
Sun & He (2004). This is a good example of a non-walled body, and results for this case
can provide valuable information on the nature of wave interactions with some
complicated body shapes.

In the simulations, some numerical algorithms presented in Chapter 3 will be utilised
in this chapter. The velocity is obtained using the Galerkin method and the free surface
information is updated using the fourth order Runge-Kutta method. The free surface is
regularly remeshed and smoothed using the B-spline and the energy method
respectively. The damping zone method is employed to absorb the incoming wave and
minimize the reflection. The second order theory is also used in several cases for

comparison.

RAVAV VAV
AVAVAVAVAVE %

Figure 6.1.1 An unstructured mesh for a floating wedge

6.2 Free oscillation problems
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Figure 6.2.1 Sketch of a container

The first validation case concerns a free oscillation problem in a rectangular container
with length L and depth A=L/2, as shown in Figure 6.2.1. The initial wave elevation and
the velocity potential on the free surface are given as, respectively

n(x,t =0) = Acos(2mx/L),

¢(X,T](X,O), t= O) = 0 ’
where A4 is the wave amplitude. The analytical solutions of first and second order wave

elevations at x = L/2 for this case have been given by Wu & Eatock Taylor (1994)
n"(x, ) = acos(w,t) cos(k,x), 6.2.1)

n®(x=L/2,t)= 8i[2(co2,4)2 cos 20,1) +i;(k§g2 +o5)
g o,

o , (6.2.2)
~(k; g% +3w;)cosw,1)]

w,

where

k,=in/L (i=1,2,3,..),

o, =[k,gtanh(k,h)]'"? (i=1,2,3,...)-
This result will be used for validation below.

In the simulation, the finite element nodes are uniformly distributed along the free
surface and the bottom of the container. Equation (4.2.1) is used to control the
distribution of nodes on the side walls along the depth to have smaller elements near the
free surface. An initial mesh is shown in Figure 6.2.2 with NF=120 uniform segments
on the free surface, NB=NF/2 uniform segments on the bottom and NH=40 non-uniform
segments on the side walls. Two cases at 4/4=0.05 and 0.1 are considered. The step of

nondimensional time 7 = z/ Jh/ g is set to be 0.05 for the former and 0.025 for the

latter, respectively. It is found that smoothing needs to be applied regularly. The mesh at
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r = 4.9 without smoothing is shown in Figure 6.2.3, and the simulation crashes

subsequently. When smoothing is applied every 20 time steps, the result becomes stable

and the mesh at 7 =12 is shown in Figure 6.2.4. The numerical results with two

different meshes are shown in Figure 6.2.5, together with the linear solution plus the
second order solution obtained from equations (6.2.1) and (6.2.2). The figure suggests

that the numerical simulation is convergent and provides good accuracy.

R R N
KDY, o s

R A R IS B

e e
X .,.nvgx.v‘m“v%'gaén‘.‘g 20k

A0 w. Amiu' RIS

»«&g‘}&%ﬁ{:ﬁ%"?‘% >
A R o STRD

S AR AR KR PN B I

Ay AEAOZSALTOS

A |

v

S

SVANSTAN LA VAN VAV Za
S N Ve
R ROk
VaVAVAY %m
v TaVAYAN

S e s B b
SRRSO 5 R
R i::i.-";«'\‘“ =
EravaTavano 2 XA & BORRRXA RS
R AR KRNI PN O e ST N e T
o A TA s AV A ST T S e X
s s SR,

]

2
SR
R

2

5k K5 i %
2 A e L i S A R
e S e
B "%"ﬁ%“*‘%&%’*{:’#}‘% ;eo.:a%' S o SRIERD -%.
SRR A <2 W AR Tt 4%, PSS 5
B I R
R I X N SRS
PR NI Y hs“

.

Figure 6.2.3 Mesh at =4.9 without smoothing

ORI,
5 At SN
TAT AT PATAV Yy,

DA ISSIINISZRO
OSSN
YATAAYAY v, N A
ORISR,
TSNS

)
S
SR
ORI
Y

)
A

5

A"

AYAY,
Pava,
X/
A VA
JAVAal
LY.
28
KRXK]

\VATAV,Y)
&
V%
)
7AY)
<l
VoV
Y,

V)
)
A

2
S
AKX

o

\/

A

PZAX
2

X
IAVAVAY
KINK 3
NAVES L,

AYAYS
000
Z V4
NS varAvavaYavaVld

AYAVAYAY

IN

YAV,

Figure 6.2.4 Mesh at ==12 with smoothing

143



39 fully nonlinear (NH=20, NF=60)
] fully nonlinear (NH=40, NF=120) @)
] ----- first order plus second order (Wu & Eatock Taylor, 1994)

niA
o
1

niA

)

Figure 6.2.5 Wave histories in the container at x/L.=0.5
(a) A/h=0.05; (b) 4/h=0.1

6.3 Wave tank problems

We next consider wave propagation generated by a piston-type wave maker
installed at the left side of a numerical tank. The wave maker undergoes motion
with the following horizontal velocity

U(t) =wAcoswt » (6.3.1)
where w and A are the motion frequency and amplitude of wave maker,
respectively. The case chosen is that studied by Lin et al. (1984). In our
simulation, A=0.6m, L=9m, A=0.05hand o = 1.5539\@/—/1 . A similar procedure
to equation (4.2.1) is used to distribute the nodes on the free surface. An initial mesh
with NF=200, NB=150, NH=20 on the left side of the tank and 16 on the right is shown
in Figure 6.3.1. This corresponds to 2423 nodes and 4458 elements. The damping
zone method expressed in equations (3.3.32) and (3.3.33) is used to avoid the
wave reflection. The damping zone is applied at the far end over one wave
length. Figure 6.3.2 gives the wave histories at x =1.1674 = 0.078L , where again
x is measured from the left hand end of the tank, with two different time steps,

where 7' =2r/w . It clearly shows that convergence in the time discretisation has
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been achieved. The results have been compared visually with those by Lin et al.

(1984) and no visible difference is found.

Figure 6.3.1 An initial mesh with 2423 nodes and 4458 elements
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Figure 6.3.2 Wave histories in the tank at x=1.1674

Further validation is made by making comparison between the present fully nonlinear
result and the solutions obtained from the perturbation method. In this method the first-

and second-order velocity potentials satisfy the Laplace equation in the fluid domain

Ve =0 (k=1,2) in VvV, (6.3.2)
and they are subject to the conditions on the mean positions of the boundaries. They can
be given as
o9®  on®
—_ = on S, 6.3.3
oz ot I 4 ( )
()
aq;t +gn® = g7 on S}O)’ (6.3.4)
)
ag =fk on SiO) . (635)
n
)
62 =0 on z=-h, (6.3.6)
z
where V' is a time-independent fluid domain bounded by the tank bottom, the mean

surface of the wave maker S, the still water surface S% and the far end of the tank.
The terms f;, f” and f, are given respectively as
0 k=1)

f}(’ = a¢(|) an(l) _r’(l) 62¢(”

k=2)
Ox Ox oz? ( )
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0 (k=1)
f"”=4 1 m? m az¢(1) ’
SV " k=2
-U (k=1)
ﬂ = a2¢(l) 5
X k=2
X ( )

where X = Asinwt is due to the motion of the wave maker. The closure of this
problem can be achieved by including the initial and the radiation conditions. It is then
solved through the quadrilateral element based the FEM with quadratic shape functions.
An advantage of using the quadratic shape functions is that the second order derivatives
can be obtained directly. For the wave tank problem, 80 segments in the horizontal
direction and 7 in the vertical direction are used, which corresponds to 1855 nodes and
560 elements. The results are shown in Figure 6.3.3 together with the fully nonlinear
solution and the experiment result given by Lin ef al. (1984). It can be seen that the
linear plus second order solution is in very good agreement with the fully nonlinear
result and the experiment result for this case.

It should be noticed that no modulation function is used for the second-order body
surface condition [see equation (6.3.5)] which seems to contradict the conclusion made
in Chapter 5 that the modulation function is very important for the second order
solution. Actually, like the modulation function, the smoothing is also helpful to
improve the numerical result. In order to demonstrate this, we make a comparison of
waves in three cases. In Case one, smoothing is used but without modulation function;
In Case two, both smoothing and modulation are used and in Case three neither
smoothing nor modulation function is used. The results are shown in Figure 6.3.4. It is
seen that the development of the first order waves in the three cases is very good. For
second order waves, they are also good in Cases one and two but very bad in Case three.
In general, the first- and second-order waves in Cases one and two are graphically
identical when they reach the period state. Therefore, the smoothing is very important

for the second order waves if no modulation function is used.
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Figure 6.3.3 Comparison of wave histories at x=1.167h
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Figure 6.3.4 Influence of smoothing and modulation function on
first- and second-order waves

After these comparisons, fully nonlinear simulations are made for the wave maker at

larger amplitude. A case at 4/h =0.1 is considered. The wave history at the same

location as above is shown in Figure 6.3.5 and the wave profile at T = 24.26 is shown in

Figure 6.3.6. As expected, the nonlinear features in these figures become more evident.
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Figure 6.3.5 Wave history in the tank with 4/4=0.1
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Figure 6.3.6 Wave profile in the tank at =24.26 ( 4/h=0.1)

We now put a wedge in the tank at x=10/4. The body is symmetric about a vertical
line and Figure 6.3.7 shows half of the wedge. The case considered corresponds to
d=0.4h and 6=75°. The motion of the wave maker still follows that defined in equation
(6.3.1). The motion amplitude is taken as 4=0.054 and the frequency remains the same.
The wave profile at 7=58.63 is shown in Figure 6.3.8. In the simulation, the wetted
surface of the body may vary significantly with the time, and the number of nodes on
the surface will follow this change to ensure the sizes of the elements attached to the

body will remain more or less the same.

I“F

Figure 6.3.7 Sketch of a fioating wedge

The wave history at x=1.1674 is shown in Figure 6.3.9. The difference between this
case and that in Figure 6.3.2 is that waves will be reflected from the body after several
periods. The corresponding hydrodynamic forces without the contribution of initial
buoyancy are shown in Figure 6.3.10, and they are obtained using equation (3.3.46) from
Wu & Eatock Taylor (1996, 2003).

Figure 6.3.8 Wave profile at 7=58.63
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Figure 6.3.10 History of force on a wedge in the tank

6.4 Forced oscillations of floating wedge-shaped bodies
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Figure 6.4.1 Coordinate system

149




We consider floating bodies in forced motions on the free surface in an open sea as
shown in Figure 6.4.1. The damping zone is set at the both ends of the computational
domain. A symmetric wedge-shaped body is considered here. The initial draught of the
wedge is d=1m and width 2a as shown in Figure 6.3.7. The body is assumed to be
subject to the following sinusoidal horizontal or vertical displacement

X = Asinwt or Z = Asinwt . (6.4.1)
The centre line of the wedge is taken as the z axis. In order to avoid an abrupt start and
allow a gradual development of the radiated potential, the body surface boundary
condition is multiplied by the following modulation function, as used by Isaacson et al.

(1993)

%[1 —cos(nt/2T)]  t<2T

M(@) = (7=2%). (6.4.2)
(0]

1 t 22T
We take d = h/8, 6=60° and 4/d=0.5, which is relatively large motion. Two cases of
vertical motion at w =2./g/h and @ =3,/g/h are calculated and the wave elevation

at x=-2d is shown in Figure 6.4.2, where ® =w/+/g/h . The length of the

computational domain on each side of the body is 31 (A is the wave length) and is
divided into 100 intervals. 20 intervals are used along the depth. On the seabed, the
number of intervals is only two-fifths of that on the free surface. It should be noticed
that the node numbers on the free surface and the body surface vary with time. The time

step 1is taken as 77/100. Smoothing and remeshing are applied every 20 steps. The

nonlinearity at w = 3./g/h is stronger, because this corresponds to a shorter wave.

Another simulated case corresponds to a wedge of =45° in vertical motion at
A/d=0.5 and w =2/g/h . The wave histories are shown in Figure 6.4.3. For the

heaving motion, the flow should be symmetric about the centre line of the wedge.
However, due to the asymmetric nature of the unstructured mesh, symmetry in results
may not be achieved because of insufficient accuracy. We plotted the results at x = +24
in Figure 6.4.3a and x=+3d in Figure 6.4.3b. The figures clearly show that the
symmetry is accurately maintained. For the linear problem, the wave histories near and
away from the body should all be sinusoidal when the motion has become fully
periodic, even though their amplitudes may be different. When nonlinear effects are

strong, the higher order components become significant. The wave histories at different
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locations will have not only different amplitudes but also different shapes, as shown in

Figure 6.4.3.

To compare the present simulation with the result from the corresponding
perturbation solution, the wedge with 8 = 45° in vertical motion is calculated here with
several amplitudes. In this case, the second order body surface boundary condition may
be expressed as

a¢(k)

5 Ji on S5\, (6.4.3)
n

where S”is the mean body surface and f; (k=1,2) are given as

z, (k=1)
£ = dt
kT 2,(1) 2 (1) :
0%¢ 0%
-7 + k=2
(n, 57 o ) (k=12)

We consider a case with w=3,/g/h at A/d =0.1,0.2and 0.4 . The waves at

x =-2d are given in Figure 6.4.4. The figure shows that the results from the fully
nonlinear solution and the perturbation theory are in good agreement at A/d=0.1.
Noticeable differences appear at 4/d=0.2 and become significant at 4/d=0.4. Further
results from the nonlinear simulation for wave elevation at x = —3d and for force are
given in Figure 6.4.5. The nonlinear features become very strong when the amplitude
increases. Further simulation is made for a wedge of 0 = 60° in the identical condition.
The results are shown in Figure 6.4.6. The nonlinear features are still quite visible but
weaker than the those corresponding to 0 = 45°, as the waterline is more ‘wall-sided’ in
this case.

The case of a wedge of #=45° in sway motion at 4/d=0.5 and @ = 2@ is also
considered. The wave elevation and forces are shown in Figures 6.4.7 and 6.4.8. It can
be seen from Figure 6.4.7 that the difference between phases of the wave histories at
x =-2d and x =2d is about half a period. In fact, strictly speaking, after sufficiently
long period of time, these two curves should become identical if one of them is moved
along the horizontal direction. This can be explained using the argument made by Wu
(1993, 2000). We can define y pointing out of the paper. One can view the same
problem either along or against the y direction. The difference between these two cases

is that there will be a phase difference of half a period when the problem becomes
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periodic. As a result, the horizontal force will have components at (2n+1)w , while the
vertical force components will be at 2nw, (n=0,1,2...) This can be seen in Figure

6.4.8. In fact we may write

F a, < . e
—_— A. cos(iot) + B, sin(iwt)]. 6.4.4
edd 2 Z[ (iot) + B, sin(iot)] (6.4.4)

The results using the Fourier analysis are shown in Figure 6.4.9. It can be seen that the
horizontal force is dominated by the component corresponding toi=1, while the

vertical forceby i=0and i =2.

A wedge in large heaving motion relative to the water depth is also considered. In
this case, the elements below the body can be squeezed or stretched, similar to the 3D

case considered by Wu & Hu (2004). It is vital that remeshing is applied regularly to
avoid any over distorted elements. We consider the case at 4/d=0.4, o =2./g/h , h=2d

and 6=75°. This means that the distance from the tip of the wedge to the bottom of the
fluid changes from 0.6d tol.4d . The wave history at x=2d is shown in Figure 6.4.10
and the corresponding hydrodynamic force is given in Figure 6.4.11. The wave is highly
nonlinear. Some snapshots of the mesh at different time steps are shown in Figure

6.4.12 and the result of remeshing is evident.

Twin-wedges are also considered here. Recently Wu (2006) solved the water entry
problem for this case through a three stage approach. He found that the pressure
between the wedges can increase significantly as the wedges move into the water. Here
both wedges have #=75°. The symmetry line of the two wedges is taken as the the

z axis and the centre lines of the two bodies are located at x = —1.54 and x =1.5d . The
results for heaving motion atw =2./g/h, A/d=0.1 and h=2d are shown in Figures

6.4.13,6.4.14 and 6.4.15. The wave at x=0 is much larger than those at x=+2d, +3d. The
envelope of its amplitude is also very different. In fact it resembles to some extent the
motion of sloshing waves in a tank, which is clearly because the location is confined
within two bodies. The forces on both wedges should be identical and therefore the
results are given only for one wedge. A difference between the twin-wedge and the
single wedge in heaving motion is that there is a horizontal force here, as shown in

Figure 6.4.15.
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Figure 6.4.2 Wave histories near the wedge with g=60° in vertical motion (x=-2d and 4/d=0.5)
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Figure 6.4.3 Wave histories near the wedge with 6=45° in vertical motion (Z;=2.0 and 4/d=0.5)
(a) x=42d (b) x=8d
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Figure 6.4.4 Comparison of wave histories near the wedge with 6=45°
in vertical motion (x=-2d and «=3.0)
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Figure 6.4.5 Wave histories at x=-34 and force histories for a wedge with §=45°
and »=3.0 in vertical motion
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Figure 6.4.6 Wave histories at x=-3d and force histories for a wedge with §=60°
and ©=3.0 in vertical motion
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Figure 6.4.7 Wave histories near the wedge in sway motion (&=2.0 and 4/4=0.5)
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Figure 6.4.8 Hydrodynamic forces on the wedge in sway motion (=2.0 and 4/d=0.5)
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Figure 6.4.10 Wave history at x=24
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Figure 6.4.11 Force history
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7. INTERACTIONS BETWEEN FULLY NONLINEAR WATER
WAVES AND STRUCTURES IN A WAVE TANK

7.1 Introduction

In Chapter 6, we applied the numerical method for the interactions of fully nonlinear
waves and non-wall-sided (flared) bodies based on the unstructured mesh in two-
dimensions. There is extensive work on the 3D problem. For example, Ma, Wu &
Eatock Taylor (2001a, b) simulated the interaction between waves and fixed cylinders
in numerical tanks. Hu, Wu & Ma (2002) extended this method to the case of a cylinder
in forced motion. Both of these two works are based on structured meshes. Even though
remeshing is applied regularly, connectivity between nodes remains unchanged during
the simulation. More recently, Wu & Hu (2004) considered a floating structure in large
amplitude motion. A hybrid mesh, with the unstructured part near the body and the
structured region away from the body, is used. A completely new grid is generated
regularly and information is transported from one mesh to another. All these works,
however, are for cylindrical structures with no variation of the cross section in the
vertical direction.

For the problem of interactions between steep waves and structures, an interesting
topic is wave impact at the bows of FPSOs, which may cause green water loading. A
noticeable feature in FPSO design is the large bow with pronounced flare above the still
waterline. A greater flare can improve the performance of ships by increasing local
reserve of buoyancy and limiting the green water on deck (Schneekluth & Bertram,
1998). With such a change in design, traditional prediction methods become less
reliable and direct numerical simulations would be more appropriate. However, flare
can cause a rapid variation in pressure especially when the relative angle between the
structure and the free surface is small, and the hydrodynamic forces on the flared
structure may have stronger nonlinearity than those without flare. This will make the
simulation more difficult and complex.

An application of flare in offshore structures is the Draugen platform as shown in

Figure 7.1.1. The Draugen platform is used to produce oil in the North Sea, it was built
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in 1984. The platform has a concrete monotower base structure with a flare above the

mean sea level to more efficiently support the integrated topside facilities.

Figure 7.1.1 The Draugen platform

Another interesting problem is the interaction of waves and multiple cylinders. The
diffraction by an array of cylinders in the open sea has been studied based on the second
order theory in the time domain in Chapter 5, and the mutual influence of cylinders on
waves and hydrodynamic forces has been discussed and the trapped modes have been
observed. However, a fully nonlinear simulation of this problem has not yet been
undertaken.

In this chapter, we will first utilise the numerical method and mesh generation
method presented in Chapters 3 and 4 to study the interaction of waves and single-
structure with flare based on the fully nonlinear wave potential theory. This work is an
extension of the previous ones for 2D non-wall-sided and 3D wall-sided bodies. The
mesh generation is different from that in Wu & Hu (2004) and needs more work since it
is for flared structures, and has been presented in Chapter 4. We summarise it as
follows: A 2D unstructured mesh is generated on a horizontal surface using BAMG
(Hecht, 1998), and then it is extended along the vertical direction following a curve
rather than a line. Thus, a 3D mesh with prism elements has been generated. Similar to
the 2D problem on flared bodies presented in Chapter 6, the Galerkin method (equation
3.3.5) will be utilised to calculate the velocity in the fluid domain for this 3D problem.
Numerical results will be provided to show the nonlinear features of waves and
forces/moments. Comparisons of waves and forces/moments between bottom mounted
and truncated cylinders will be made, and the influence of flare on waves and
forces/moments will be discussed. And then, we give some simulations for interactions

of irregular waves and a cylinder. Finally, we will investigate interactions of waves and

160



multiple cylinders through the fully nonlinear wave theory, and the effect of the nearly

trapped mode will be discussed.

7.2 Simulations of interactions between waves and a single cylinder

with flare

Wave maker Free surface [Flared cylinder [Damping zone|
zk Tank

T~ Tdm
-~

Figure 7.2.1 Computational domain for a numerical tank

A numerical wave tank with length L, width B and depth /4 is shown in Figure 7.2.1.
The x-axis of the coordinate system is along the longitudinal direction of the tank, z-axis
is positive upwards and the origin is on the undisturbed free surface. A wave maker is
initially located at the left end of the tank (x=0) and a structure such as a cylinder with
flare is placed on the plane y=0 and it is L, away from the left end.

0.25h

a :
oo cylinder

Figure 7.2.2 Dimension of the truncated cylinder with flare

In all the simulations, the water depth 7 is set to be 1.0m, length L =124, and breadth
B= 0.72h. The radius of the cylinder without flare is a=0.1416Ah. When the cylinder has

flare, the variation of the cross section starts from z=-0.254, and the angle between the
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flare and the horizontal plane is denoted as §. The dimensions of a truncated cylinder
are shown in Figure 7.2.2. For the single-cylinder case, the cylinder is located at a
distance of L,.=7h away from the left end of the tank. The Sommerfeld-Orlanski
radiation condition and the damping zone method [see equations (3.3.32) and (3.3.33)]
are used with the length of damping zone L;»=A (A is the wavelength of the linear

wave).

7.2.1 Regular motions

The wave maker is assumed to be subject to the following horizontal harmonic motion
X =—Acoswt, (7.2.1)
where 4 is the amplitude of motion, and w isthe frequency. The time ¢ and oscillatory

frequency w are nondimensionalized as follows:

t=t/Jhlg. @ =w/g/h.

We first consider some cases of a bottom mounted cylinder with 6=80°, in which the
nodimensional frequency @ is set to be 2.0. In all the simulations for flared cylinders,
the location at which wave history will be provided is selected at x=L,..-2a. The wave
history with a small oscillatory amplitude 4=0.014 for a bottom mounted cylinder is
shown in Figure 7.2.3. We use a 2D hybrid mesh on the horizontal plane (see Figure
4.2.11). The structured mesh is within the range x<2.1% and the unstructured within
2.1h<x<L. There are 200 intervals for hybrid mesh in the x-direction (40 for the
structured mesh and 160 for the unstructured mesh) and 14 intervals in y-direction,
which corresponds to 2869 nodes and 5284 triangular elements for the 2D hybrid mesh.
In the z-direction, there are 16 intervals. The nondimensional time interval is set to be
T/100 (T =27 /@ ). The 3D remeshing and 2D smoothing [see equation (3.3.20)]
techniques presented in Chapter 3 will be utilised in the simulation. The remeshing is
performed within the whole hybrid mesh but the smoothing is only along the y-direction
within the structured mesh for both the wave elevation and the velocity potential every
20 time steps. The corresponding force and moment are shown in Figure 7.2.4. The

force is calculated by first solving equations (3.3.36)~(3.3.40) to obtain ¢, and then

integrating the pressure on the cylinder surface since the cylinder is fixed. The initial

buoyancy is excluded from the vertical force and hereinafter in other figures. The

162



vertical force is absent for a wall-sided cylinder but it is quite significant here. In fact
the figure indicates that it has more high frequency components than the horizontal

force.

Figure 7.2.5 shows the wave histories for the bottom mounted cylinder with three
different amplitudes 4=0.01A, 0.02h and 0.044, and the corresponding force and
moment are provided in Figure 15. It is clearly seen that the nonlinear effect is
noticeable for the wave, force and moment. There is a 12.3% or so reduction of the

maximum value of n/ 4 (at T = 52.15) from the case at A/4=0.01 to that with 0.02 and

a 28.5% reduction from A4/=0.02 to 0.04. This suggests that the effect of the
nonlinearity evolves much faster from 4/4=0.02 to 0.04 than it does from 4/4=0.01 to
0.02. This is of course expected as a function can be normally approximated by the
linear term in the Taylor expansion when the variable is small. When the variable
increases, the higher order terms become more important. Similar behaviour can also be
found for the force and moment in Figure 7.2.6. In this particular case, the fact that the
nonlinear effects associated with flare cause a reduction compared to the linear wave

loading is in marked contrast with the general findings for wall-sided bodies.

We give a comparison of the wave between the bottom mounted cylinder and a
truncated cylinder with the same angle 6 =80°. The wave history corresponding to
® =2.0 and 4=0.02 is shown in Figure 7.2.7 and there is hardly any visible
difference between these two cases. The corresponding time histories of force and
moment are shown in Figure 7.2.8. The force component in the x-direction and the
moment on the bottom mounted cylinder is larger than those on the truncated cylinder
but their difference is small. This is expected as the wave effect is significant mainly
near the free surface. The peaks of the vertical force on the truncated cylinder are
visibly larger than those of the force on the bottom mounted cylinder. This is partly
because for the truncated cylinder the bottom of the cylinder also provides a

contribution to the vertical force.
Similar comparison is made for cylinders with 6=75° with all the other parameters

remaining the same as above. Figure 7.2.9 gives the wave elevation. The difference in

results for the truncated cylinder and the bottom mounted cylinder is more significant
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than the corresponding results for@ = 80°. Part of the reasons is that §=75° corresponds
to a larger water plane area. Relative to the diameter of the water plane, the draught of
the cylinder is smaller in the case of 8=75°. The change at the bottom of the cylinder
therefore has a larger effect on the results. Further results at 6=75° are given for
A=0.04h in Figures 7.2.10 and 7.2.11. The difference between the results for the
truncated cylinder and the bottom mounted cylinder is even more significant. Part of the
reason is due to the larger degree of nonlinearity at 4 =0.044. While the nonlinear
components decay more slowly along the depth (Eatock Taylor, Hung & Chau, 1989),
the change at the bottom of the cylinder has even greater effect.

Comparison is also made for bottom mounted cylinders with 6 =75° and 6 =80°.
The amplitude of the wave maker is set to be A = 0.04% . The wave histories are shown
in Figure 7.2.12, and the corresponding force and moment in Figure 7.2.13. It is seen
that the wave near the body is generally smaller for the cylinder with 6 = 75° than that
for the cylinder with 6 = 80°. This suggests that a flare with smaller value of 8 may be
more effective to suppress the wave near the body. However, the force and moment on
the cylinder with 6 = 75°are larger than those on the cylinder with 6 =80°. A typical

wave profile around a flared cylinder is shown in Figure 7.2.14.
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Figure 7.2.3 Wave history at x=L -2a at 4/4=0.01 for a bottom mounted cylinder with 6=80
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Figure 7.2.6 Comparison of force and moment on a bottom mounted cylinder with 6=80°
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Figure 7.2.7 Comparison of wave histories for a bottom mounted cylinder
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Figure 7.2.8 Comparison of force and moment on a bottom mounted cylinder
and a truncated cylinder with 6=80 ° at 4/4=0.02
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Figure 7.2.9 Comparison of wave histories for a bottom mounted cylinder
and a truncated cylinder with 6=75° at 4/4=0.02
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Figure 7.2.10 Comparison of wave histories for a bottom mounted cylinder
and a truncated cylinder with 6=75° at 4/h=0.04
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Figure 7.2.11 Comparison of force and moment on a bottom mounted cylinder
and a truncated cylinder with 6=75° at 4/4=0.04
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Figure 7.2.12 Comparison of wave histories for two bottom mounted cylinders at 4/4=0.04

167



F r/pga"A

~
>3
Bg
<,
1
=
<=
=
80
N
= V
-10 . s — — T - f—
0 10 20 30 . 40 50 60

Figure 7.2.13 Comparison of force and moment on two bottom mounted cylinders at 4/4=0.04

Figure 7.2.14 Wave profile around the cylinder of 6=75° with 4/h=0.04 at =61.2

7.2.2  Irregular motions

The above simulations are limited to regular motions of the wave maker. Waves in the
actual sea environment are generally random. The corresponding hydrodynamic forces
on ocean structures and their responses are also random. Therefore, a study on
interactions of the random waves with structures is important but difficult since the
random wave has a lot of components at different frequencies. In this section, we
consider the irregular wave, which has only a few components of frequencies. Most
studies on irregular waves are based on the linear or perturbation theories. For
examples, Forristall (1985) estimated the kinematics of irregular waves. Longuet-
Higgins (1963) and Dean & Sharmar (1981) developed the Stokes second-order
irregular wave model for deep and finite water depth, respectively. Pierson (1993)
proposed a theory of the Stokes third-order nonlinear irregular waves in deep water. A
recent simulation of irregular waves is the work of Boo (2002) based on the fully

nonlinear wave potential theory. In this section, we will undertake some simulations for
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irregular waves, which are generated by linear superposition of a series of
monochromatic linear motions of the wave maker
X = i(—A,. cosw;t), (7.2.2)
=)

where X denotes the horizontal displacement of the wave maker, 4; and w; are the
oscillatory amplitude and frequency of each monochromatic motion, respectively, and
n is the number of total monochromatic motions. In the simulations below, we select
four monochromatic motions, whose corresponding frequencies w; (i=1, 2, 3, 4) are
selected as 5.25, 5.55, 6.73 and 7.46 (rad/s), respectively. These four frequencies have
been used by Boo (2002) to simulate linear and nonlinear irregular waves in a numerical
tank. When the damping zone method in equations (3.3.32) and (3.3.33) is used, the
frequency is chosen as the lowest one of the four monochromatic motions, at which the
corresponding wavelength is longest. This gives a longer damping zone and the wave
may be absorbed more effectively. The motion of the wave maker is shown in Figure
7.2.15 with four amplitudes 4; (i=1, 2, 3, 4) equal to 0.0038854, 0.0034894, 0.0023814
and 0.0019384, respectively. We consider a flared cylinder with 8 = 80° at the same
location as the regular motions. The histories of wave and force are shown in Figures
7.2.16 and 7.2.17 with a time interval At = 0.025057. It is seen that the wave and force
have typical irregular features and there are about three wave envelopes during the
whole simulation. Each wave envelope has a nondimensional period about 65.6
(corresponding to 20.94 seconds) due to a minimum frequency interval Aw=(w--
01)=0.3 (rad/s).

A comparison between three cases has also been made. Case one corresponds to those
A; above, Case two to 24; and Case three to 44;. The results are shown in Figures 7.2.18
and 7.2.19. In the Figures, A4 = i A, / 4 1s the average amplitude. The nonlinear feature

i=l
is captured, which is similar to that in the regular motions of the wave maker. For the
random wave, the typical linear elevation has a Normal distribution. However, the
nonlinear wave will deviate from the Normal distribution. In order to relate how the
nonlinearity of the irregular wave affects the magnitude of the deviation, we first
calculate the standard deviations of wave elevations in these three cases. The wave data

is recorded starting from 7 =56 over two wave envelope periods. The three standard
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deviations are founded to be 0.0122, 0.0199 and 0.0277, respectively. We then calculate

the so-called skewness A, to explain the nonlinear feature of the irregular wave

I 1 3
A= =), (7.2.3
=T, 21 (m:-n) )
where n is the total number of time steps, o the standard deviation, 7, the wave

elevation at i-th time step, and 17 the mean of all n,(i =1,2,---,n) . For the linear wave,

the skewness will be zero. For the nonlinear wave, its distribution is asymmetrical about
the mean water surface. A wave with stronger nonlinearity will be more asymmetrical
about the mean water surface. The skewness may be used to describe the asymmefry. A
larger skewness means that the wave peaks are greater than troughs and so more
asymmetrical about the mean water surface. The three skewnesses are obtained to be
0.0614, 0.0788 and 0.119, respectively, which indicates that the wave nonlinear feature
becomes stronger with increase of the amplitude of the wave maker. Some wave
profiles in Case one are given in Figure 7.2.20, which shows the feature of the irregular

wave in space and time.
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Figure 7.2.15 Motion of the wave maker
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Figure 7.2.16 Wave history at x=L_-2a
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Figure 7.2.20 Irregular wave profiles at time steps (a) 6000, (b) 6050, (c) 6100, (d) 6150

7.3 Simulations for multiple cylinders

In Chapter 5, we presented some numerical results for diffraction by an array of
vertical cylinders based on the second order theory in the time domain. In this section,
we will investigate fully nonlinear interactions of waves and multiple cylinders without

flare in a numerical wave tank, which may have not been considered in previous
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publications. Ma (1998) considered a case of two cylinders in a numerical wave tank
based on the structured mesh. For an array of cylinders the advantage of the
unstructured mesh becomes more obvious.

The motion of the wave maker is subject to the harmonic motion given in equation
(7.2.1). We first consider a case of three bottom mounted cylinders. The cylinders are
placed on the plane y=0 and the second cylinder is located at a distance from the left end
of the tank 7k and the distance between two neighboring cylinders is L,~=7a. The
configuration is shown in Figure 7.3.1. In the simulation, we choose equations (3.3.2a)
and (3.3.2c¢) rather than the Galerkin method [equation (3.3.5)] to calculate the velocity
since the cylinder is wall-sided. Both smoothing and remeshing are performed every 20
time steps. The amplitude of the wave maker is 4=0.01% and the nondimensional
frequency @ is still set to be 2.0. The wave histories are shown in Figure 7.3.2. The
waves at the front sides are generally larger than those at the back sides for cylinders
two and three, but not one. For cylinder one, the wave at the front side is also larger
than that at the back side when 7 <33 but it then becomes smaller, which is very
different from that in the single isolated cylinder case as shown in Figure 7.3.3. The
hydrodynamic forces and moments on the three cylinders are given in Figure 7.3.4.
Generally, the peaks and troughs of the force and moment on cylinder one are the
largest and those on cylinder two are the smallest. The wave histories for cylinder two
with three different motion amplitudes A=0.014, 0.02A and 0.044 are provided in Figure
7.3.5 for comparison and it still shows the same nonlinear feature as that in a single-
cylinder case although there is interference between cylinders.

Comparisons of waves and forces between bottom mounted and the corresponding
truncated cylinders are also made and the results are given in Figures 7.3.6 and 7.3.7.
The amplitude of the wave maker is 0.014. The waves and forces on bottom mounted
cylinders are generally larger than those on truncated cylinders. The difference of waves
between the two cases is very clear and it is even more evident than that in a single-
cylinder case reported by Wu & Hu (2004) at a larger amplitude 4=0.024.

We then run another three-cylinder case with L.=4a, and the nondimensional
frequency remain the same as above, which corresponds to a nondimensional
wavenumber ky/=1.14 (ko is the wavenumber and /=L./2). In Chapter 5, we consider
two cases L,=4a and 7a at ky/=1.14 and compare the results with that for a single
isolated cylinder, and we found the case at L.~4a is probably near the trapped mode.

We further compare the result between two cases L.,=4a and 7a at ko/=1.14 here. The
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results for cylinder two are given in Figure 7.3.8, in which the result for a single isolated
cylinder at the same location is also included. It is seen that the force and moment at L,
=7a are even smaller than those on the single cylinder. However, they are noticeably
larger at L.,=4a. The result is consistent with those obtained in Chapter 5 and so the
case L,,=4a may be near the trapped mode.

We further consider a seven-cylinder case with@ = 2.0 and L.,=4a, which may also
be close to the trapped mode. The middle cylinder is located at (x, y)=(7%,0). The wave
histories for cylinder four is shown in Figure 7.3.9. It is clearly seen that the wave at the
back side increases with the increase of the number of cylinders. For seven- and three-
cylinder cases, the wave amplitude still shows an increase trend at the end of the
simulation time. The maximum value of the wave peak within the whole simulation in
the seven-cylinder case is about 2.1 times that in the single-cylinder case. The
hydrodynamic force and moment show behaviour similar to the wave (see Figure
7.3.10). These results suggest a long array of cylinders in a wave tank may probably
produce very large wave and hydrodynamic force in the Neumann trapped mode, and
this is consistent with the result obtained by Maniar & Newman (1997) and Evans &
Porter (1997a). The histories of forces on the seven cylinders are shown in Figure 7.3.11.
The maximum force on cylinder five is nearly the same as that on cylinder four but
noticeably smaller for the other cylinders. It should be mentioned that the waves and
hydrodynamic forces would be much smaller than the prediction by the linear potential
theory due to the viscous damping and nonlinear effects (Maniar & Newman, 1997), so
the results calculated through fully nonlinear theory are probably smaller than those
obtained through the linear theory in magnitudes. A typical wave profile around the
seven cylinders is shown in Figure 7.3.12.

Wave | [fank] [Cylinder|[Cylinder|[Cylinder| | Free | [pamping
Imaker! | L__one | two || . three | {surface| zone

\ . | /

Figure 7.3.1 An array of three wall-sided cylinders in a numerical tank
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Figure 7.3.2 Wave histories for cylinders (a) one; (b) two; (c) three
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Figure 7.3.3 Wave histories for an isolated single cylinder
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Figure 7.3.4 Hydrodynamic forces and moments on the three cylinders
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Figure 7.3.5 Wave histories for cylinder two
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Figure 7.3.6 Wave histories for bottom mounted and truncated cylinders
(a) front of cylinder one; (b) back of cylinder one;
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Figure 7.3.7 Comparison of forces on bottom mounted and truncated cylinders
(a) cylinder one; (b) cylinder two; (c) cylinder three

----- bottom mounted; truncated
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Figure 7.3.8 Comparison of forces and moments on cylinder two
-------- single-cylinder case;
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Figure 7.3.9 Wave histories for cylinder four
(a) front; (b) back
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Figure 7.3.10 Hydrodynamic force and moment on cylinder four
------- single-cylinder; three-cylinder; - - seven-cylnider
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Figure 7.3.11 Histories of forces on the seven cylinders
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Figure 7.3.12 Wave profile at 7=55.29
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8. RADIATION BY MULTIPLE CYLINDERS IN AN OPEN SEA

8.1 Introduction

In Chapter 5, we simulated the wave diffractions by an array of vertical cylinders
based on the second order theory. A further simulation of interactions between fully
nonlinear waves and multiple cylinders in a numerical tank has been presented in
Chapter 7, in which the cylinders are all fixed. However, some ships and offshore
structures with multi-hull such as catamarans, tension leg platforms (TLPs), semi-
submersibles and drilling ships will be in motions due to the actions of waves, winds
and currents. This chapter will focus on forced motions of multiple bodies in the open
sea.

Most of previous work on nonlinear wave-structure interactions is on the diffraction
problems. There is, however, some work on bodies in motions based on either the
second order theory or the fully nonlinear theory. The wave radiation by a single
cylinder in 3D was considered by Li (1995) and Goren (1996) based on the second
order theory in the frequency domain. The time-domain simulations of second order
wave radiation by 2D horizontal single cylinders were undertaken by Isaacson & Ng
(1993) and Isaacson, Ng & Cheung (1993) further solved the second order time domain
problem in three-dimensions. For fully nonlinear simulations of radiation problems,
Yeung & Wu (1989) calculated the motions of a floating body in a closed domain. Sen
(1993) studied heaving and rolling motions of floating bodies. Other publications on the
2D problems include those by Kashiwagi (1996), Berkvens (1998), Tanizawa (1996)
and Koo & Kim (2004). For the 3D problem, a fully nonlinear numerical simulation of
vertical cylinders in swaying or surging motion motions was taken by Hu, Wu & Ma
(2002). The experimental studies on a vertical cylinder in horizontal motion have been
undertaken by Chaplin ef al. (1999) and Retzler et al. (2000).

For motions of multi-hull structures, the earliest work is that by Ohkusu (1969) on
the heaving motion of two circular cylinders on free surface in two-dimension. Williams
& Abul-Azm (1989) simulated wave radiation by a group of truncated cylinders, in

which one cylinder underwent forced motions but others were fixed. They found the
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added mass and the damping coefficient of the cylinder are very different from that of a
single isolated cylinder. Both these two works are based on the linear theory. Recently,
Wu & Hu (2004) reported fully nonlinear simulations of two bottom mounted vertical
cylinders in forced horizontal motions with large amplitudes but no detailed results
about waves and forces were given.

The interactions between second-order waves, fully nonlinear waves and fixed
multiple cylinders have been studied in Chapters 5 and 7 respectively. The results have
shown that the interference between the cylinders may have significant effect on the
wave runups and forces on some cylinders. In this chapter, we investigate these effects

when a group of truncated cylinders are in forced motions.

8.2 Simulations for single cylinders in horizontal and vertical motions

Single-cylinder cases are considered in this section. We focus on forced motions of
cylinders with or without flare. We first consider a wall-sided truncated cylinder (Figure
8.2.1) in heaving motion in an open sea. The initial draught of the cylinder is denoted as
d and the radius of its cross section is a. The fully nonlinear result will be compared
with the second order solution. The cylinder is subject to the following harmonic
motion in the vertical direction

Z =Asinwt . ’ 8.2.1)
A case with water depth A=a, initial draught d=a/2, amplitude 4=0.1a and a

nondimensional wavenumber k,a =1.0 is first considered. This case has been studied

by Li (1995) and Goren (1996) based on the second order theory in the frequency
domain. The mesh on the surface of the cylinder is shown in Figure 8.2.1. Since both
the free surface and the wetted cylinder surface change with the time, remeshing may be
required regularly. The elements near the free surface and the bottom of the cylinder
along the vertical direction should be smaller than other parts of the fluid domain by
using equations (4.2.2) and (4.2.3). We divide the height of the cylinder into 10 layers
using equation (4.2.2), and then divide the gap between the cylinder bottom and the
seabed into 6 layers according to equation (4.2.3). In the simulation, the modulation
function (see equation 6.4.2) will be used. The computational domain is a square of
length L=30a and width B=30q, and both the length and width are divided into 50

intervals, which corresponds to 6730 nodes and 13212 triangular elements on the initial
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free surface. There are 48 intervals along the waterline. The time interval is 7/150
(T=27/w). The radiation condition is the same as that in the second-order diffraction
problem in Chapter 5, and the length of the damping zone is set to be one linear
wavelength. The remeshing is performed every 15 time steps. We focus on the
computation of the vertical force. The force is obtained using equation (3.3.46). The
result is shown in Figure 8.2.2, in which the linear and linear plus second order
solutions are also given for comparison. Since we only consider the vertical motion, the

second order body surface condition may be written as

=5 (k=1)
Bt et onS© (82.2)
£ 240) 21 (1) 24(1) p 0.2
M| e g BB 0B i g iy

o&xéz T oyoz T &2
On the lateral surface of the cylinder, 8¢*’ /0n (k =1,2) are zero and on the bottom of

the cylinder this equation is reduced to

4
29" ‘fz_tnz e
3 = 5240 on the bottom of the cylinder .(8.2.3)
o) A6 AL EERER TS

oz

The second order derivative 8°¢/dz> in the above equation is obtained using equation

(3.3.2b). The comparison shows the fully nonlinear result is in good agreement with the

linear plus second order solution in this case.

Figure 8.2.1 Surface mesh for a truncated cylinder without flare
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Figure 8.2.2 Comparison of hydrodynamic forces between
linear solution, linear plus second order solution and fully nonlinear result

We then consider some cases of cylinders with flare (see Figure 7.2.2) in forced
heaving motions. The water depth is A=3a, the initial draught is d=1.5a and the variation
of the cross section also starts from z=-0.754. The cases with 0 =80°at kya=1.0 and
three amplitudes 4=0.15a, 0.3a and 0.64 are calculated. The force histories are shown in
Figure 8.2.3. The nonlinear feature is evident, and the shape of the peaks at 4=0.6a is
very different from those at 4=0.15a and 0.3a, which may be due to the effect of the
flare. Difference at peaks may also be seen from the comparison of hydrodynamic

forces between the flared cylinder (6 =80°) and that without flare (6 = 90°) shown in

Figure 8.2.4. It shows that the nonlinearity of the force on the cylinder with 0 =80° is
stronger than that on the cylinder without flare and this is consistent with the 2D results
in Chapter 6.

A higher frequency case with k,a = 2.0 is also considered. We calculate the force on

two cylinders with 6 =90° and0 = 80° respectively. The motion amplitude is 0.6a. The
result is given in Figure 8.2.5. The two curves are very different near the peaks but only
slightly different at the troughs.

29 4/a=0.15

- A/a=0.3
A/a=0.6 .,

Fjppa’A
B

Figure 8.2.3 Histories of forces on the cylinder with 6=80° at ka=1.0
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Figure 8.2.4 Histories of forces on cylinders with and without flare at k a=1.0
(a) 4/2=0.3; (b) 4/a=0.6
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Figure 8.2.5 Histories of forces on cylinders at £ a=2.0

A case of a bottom-mounted cylinder without flare moving in a circular path around
the origin at kya=1.0 is also simulated. The water depth is A=34. The motion of the
cylinder is defined as

X = Rcoswt
. ) (8.2.3)

Y = Rsinwt
where R is the radius of the path and R=0.015a. The fluid flow should become steady in
the system moving with the cylinder after a transition period (Wu & Eatock Taylor,
1990c). The results are given in figures 8.2.6~8.2.8. It is seen that the waves at the front
and the back sides of the cylinder are constants (Figure 8.2.6). The force history is given
in Figure 8.2.7. The force components in both x- and y-direction are harmonic.

However, the force in the normal direction of the motion is a constant. The wave profile

at =87 is given in Figure 8.2.8.
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Figure 8.2.6 Wave histories at the front and back sides of the cylinder at k a=1.0
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Figure 8.2.7 Hydrodynamic force on the cylinder at k a=1.0

Figure 8.2.8 Wave profile at =87
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8.3 Simulations for two cylinders in horizontal and vertical motions

Some special ships such as catamaran and SWATH (small waterplane area twin hull
ship) have two hulls and the interference may be important when advancing in waves.
In addition, two or more vessels in sufficient proximity may have significant
interactions. In this section, we will consider two vertical truncated cylinders without
flare in forced vertical and horizontal motions. All cylinders have no flare in the
following analyses.

In the simulation, the water depth is A=3a and the initial draught of the cylinder is
d=1.5a. The vertical motion of both cylinders is described by equation (8.2.1). The
distance between the two cylinders is L, =6a with cylinder one located

at(x, y) =(-3a,0) and cylinder two at (34,0). A case of cylinders in heaving motion
with 4=0.15a and koa=1.0 is first considered. We only give the results for cylinder one
since the configuration is symmetric about x=0. The waves at the left (exterior) and
right (interior) sides are shown in Figure 8.3.1, together with results for a single
cylinder. It is seen that the wave at the interior is affected more by the interference than
that at the exterior because it is closer to cylinder two. The maximum of the wave at the
exterior is about 20% larger than that for the single cylinder but is only about half of the
wave at the interior, and so the magnitude of the wave at the interior is more affected by
cylinder two. Furthermore, we can observe more evident difference in phase for the
wave at the interior than that at the exterior. The corresponding hydrodynamic forces
are shown in Figure 8.3.2. For multi-cylinder cases, equation (3.3.46) is modified to the
following form to obtain the force on the k-th cylinder

F,= —Zn: [[1V2,,[(7 +Qx7)- NI[V$ - (7 + Qx)]+ 1, (% V) Nyds

j=ls, .

1 aXi. 8 .
B J'J. (EV¢-V¢+gZ)a—]deS_jZ=I:Cij,kAj.k (121,2,"',6)

Sr+Sps

(8.3.1)

where n is the number of cylinders, S,, is the surface of the k-th cylinder,

Cix = H XixN,ds and 4;, is the acceleration of the k-th cylinder. A difference
Sk
between two-cylinder and single-cylinder cases is that there are horizontal forces on

cylinders for the former. There is no obvious difference for the vertical forces in the two

cases.
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We now consider the influence of distance L., on waves and forces. The amplitude is
still 4=0.15a, and four different distances L.,=0.5A, A, 1.5\ and 2X are considered () is
the linear wave length). The results for cylinder one are given in figures 8.3.3 and 8.3.4.
It is seen that the waves corresponding to L., =A and 2 are close and are very different
from those corresponding to L.,=0.5A and 1.5\ at both the left and right sides. This is
mainly because the phases of the radiated waves by the motions of the two cylinders are
almost identical for the former but more different for the latter. The waves at the right
(interior) side at L.,=0.5A and 1.5) are much larger than those at L., =\ and 2}, and the
difference between L,=0.5A and 1.5 A or L=\ and 2X\ are more evident than those at
the left (exterior) side since they are more affected by the interference. The variations of
the horizontal forces with the time are very similar to the waves at the right (interior)
side. However, the effect of the distance L, on the vertical forces is weak.

The wave at the symmetry line of the cylinders, or point (0,0) is given in Figure 8.3.5.

It is seen that the wave amplitude decreases as the distance L., increases. The wave at
Ly=0.5/ is about four times as large as that at L,,=24. The waves at (0, 0) produced by
the motion of the two cylinders have an identical phase and so the amplitude of the
wave is larger than that produced by a single isolated cylinder. The waves with smaller
values of L., will have larger amplitudes since the radiated wave becomes weaker with
the increase of the distance between the cylinder and the location where the wave is
calculated.

Three amplitudes 4=0.15a, 0.3a and 0.6a with L,=6a and 4a at kea=1.0 are
considered next. The results for cylinder one are given in figures 8.3.6~8.3.9. Generally,
the nonlinearity of the wave is not strong but it is noticeable for the force. It is also
noticed that the horizontal force at L.,~4a has stronger nonlinearity than that at Z.,=6a
and the corresponding maximum for the former is over twice the latter.

We then consider a larger nondimensional wavenumber kya=2.5. Two cases at
Ley=2) and 2.5) are calculated. The wave and force are given in figures 8.3.10 and
8.3.11 respectively. It is seen that the wave is more affected at L,,=2A and there is no
variation in phase for both cases. Sirhilar to the results at kya=1, the horizontal forces in
these two cases are very different. The magnitude of the horizontal force in L.,=2.5} is

significantly smaller than that in L,,=2A. The wave profiles for kja =1.0and k,a = 2.5

around the two cylinders with L.,=6a at =87 are shown in Figure 8.3.12.
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Figure 8.3.2 Histories of forces at k ¢=1.0 and 4/2=0.15
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We then consider some cases of horizontal motions. The two cylinders are initially
located at (-2a, 0) and (2a, 0) respectively. Two cases are simulated: Case one is two
cylinders moving in the same direction along x-axis with X = Asinwt ; Case two is two
cylinders moving in opposite directions along the x-axis, which means that the motion
for cylinder one is given as X = Asinwt and X =—4sinwt for cylinder two. Three
amplitudes 4=0.015a, 0.03a and 0.06a are considered for both cases. The vertical
hydrodynamic forces are not given since they are very small in these two cases. The
histories of waves and horizontal forces are shown in figures 8.3.13~8.3.16. The
nonlinearities of the waves do not seem strong in Case one but are more evident in Case
two. This is partly because the relative motion of the two cylinders is larger in case two
and so the interference is more significant. It seems that the difference between the
forces at the three different amplitudes in both cases is not significant and the forces are

generally linear. The wave profiles at #=87 for both cases are shown in Figure 8.3.17.
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Figure 8.3.13 Wave histories for cylinder one in Case one
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Figure 8.3.14 Horizontal forces on cylinder one in Case one
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8.4 Simulations for four cylinders in vertical motions

The TLPs are the most common offshore structure for deep-water operation. It
mainly consists of a few columns and tendons for constraining the motion of the
platform. The most common TLP has four columns. In this section, we only consider
the heaving motion, which is of importance for the design of TLPs. The heaving motion
may cause higher tension in the tendons. Another problem is that the TLPs’ motions in
vertical direction will change the gap between the TLPs’ decks and the water surface
and so it may cause impacts of waves on the TLPs’ decks.

In the simulation, the water depth and the initial draught of the cylinder are the
same as those in the previous two-cylinder cases. The four cylinders are located at the
vertices of a square whose edge length is L,,=4a [see Figure 5.6.1(a)]. Firstly, the cases
at kya=1.0 and three amplitudes 4=0.154, 0.3a and 0.6a are considered here. We only
give results for cylinder one since the configuration is symmetric about x- and y-axis.
The waves at the left and right sides are depicted in Figure 8.4.1. It is seen that the wave
at the right side is more nonlinear than that at the left side and its maximum is also
larger. However, the maximum is smaller than the corresponding value in the two-
cylinder case shown in Figure 8.3.8. The hydrodynamic forces at 4=0.15a and 0.6a are
given in Figure 8.4.2. Both the horizontal and vertical forces at 4=0.6a show stronger
nonlinearities. The vertical force at 4=0.6a has clear double peaks. We express the force

at A=0.6a in Fourier series as follows

F a, < )
=—+ ) [A4, cos(iot) + B, sin(iwt)] . 8.4.1
pgazAzg[,(),()] (84.1)
The results using the Fourier analysis is shown in Figure 8.4.3. It can be seen that the
horizontal force has a major componeﬁt corresponding toi = 1. The component of /=2 is
also significant but /=3 and 4 are negligible. For the vertical force, the components of
i=3 and 4 are also important because the double peaks are caused by these two

components.

We further consider a larger nondimensional wavenumber koa=2.5. The results are
shown in figures 8.4.4~8.4.5. In this case, the nonlinearity is not strong in the wave but
very evident in force. It is also seen that the horizontal forces are smaller than those at

koa=1.0 and vertical forces are larger than those at kya=1.0.

196



The wave at the centre of the four vertices is given in Figure 8.4.6 for kya=1.0 and
2.5. The maximum value of the wave is about twice that at the right side for kya=1.0
(see Figure 8.4.1) but is only about half of that at the right side for kya=2.5 (see Figure
8.4.4). This is because the wave at kya=2.5 becomes much weaker than that at kpa=1.0
when they arrive at the centre. Some wave profiles are shown in Figure 8.4.7 at kya=2.5

and A=0.6a. The variations of the wave profiles and the positions of the four cylinders

can be clearly observed.
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Figure 8.4.2 Histories of forces with L_=4a at k a=1.0
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Figure 8.4.5 Histories of forces with L _=4aatka=2.5
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Figure 8.4.6 Wave histories at the centre of the configuration
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Figure 8.4.7 Wave profiles at /=87, 8.27, 8.4T, 8.6T, 8.8T, 9T
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9. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

9.1 Introduction

The numerical method presented in this thesis is a substantial development of the
work by Ma (1998) and Ma, Wu & Eatock Taylor (2001a, b). A major new feature is
that the unstructured mesh is used and as a result many numerical procedures are
modified. A much wider simulation is made. This includes flare structures in numerical
tanks in both 2D and 3D, wave radiation and diffraction by multiple or an array of
bodies, and analysis through the second order and fully nonlinear theories. The
simulation is based on the finite element method. The fluid domain is first discretised
with prism elements in 3D and triangular elements in 2D with linear shape functions. A
finite element equation is then formulated by discretising the governing equation and its
corresponding boundary conditions. The nonzero elements in the global coefficient
matrix are stored in linear linked lists, whose length can dynamically increase or
decrease, and we then convert the matrix in the lists to that in the compressed sparse
row (CSR) format, which is more convenient for using the conjugate gradient (CG)
method with a symmetric successive overelaxlation (SSOR) preconditioner. The
computation of the global coefficient matrix is tested and is verified to be efficient, and
the matrix equation is then solved using the CG method with the SSOR preconditioner
to obtain the velocity potential in the whole domain. Finally, the velocity is calculated
by the Galerkin method for flared structures and by a finite difference method for wall-

sided structures.

Numerical results have been compared with analytical solutions, second order
solutions and previous work in several cases with good agreement being achieved. The
method is demonstrated to be flexible; it can deal with single and multiple cylinders,
cylinders with and without flare, bottom mounted and truncated cylinders. All
simulations are completed using the personal computer, which shows that the present

numerical method is efficient.

201



In conclusion, the numerical method developed in this thesis is accurate, flexible and
efficient thus it a good alternative for simulating wave-body interactions. All these have

been demonstrated by various numerical examples.

9.2 Second order wave diffractions by a group or an array of vertical

cylinders

The algorithm for the 3D second-order diffraction is based on a 2D unstructured
mesh. The 3D mesh with prism elements is generated by extending the 2D mesh in the
vertical direction. For an array of cylinders the advantage of the unstructured mesh
becomes more obvious. The first- and second-order velocity potentials in the fluid
domain are obtained by solving two linear systems at each time step. After the potential
is obtained, the first- and second-order derivatives with respect to the vertical coordinate
can be calculated through a cubic polynomial along a straight mesh line in the vertical
direction, the derivatives along the mean free surface can then be obtained by a
difference method, which is also adopted to calculate the derivatives of the potential and
the wave elevation in the horizontal direction. The free surface is updated using the
fourth order Adams-Bashforth scheme. The combination of the Sommerfeld-Orlanski
radiation and the damping zone method is used to absorb reflected waves. A single-
cylinder case is chosen to validate the present method to be effective by comparison of
some results with those obtained from previous work. The simulation of the multi-
cylinder case then shows that the influence of interference on the wave and the force is
evident especially for the second order components. Further simulations are made for
four-cylinder cases near the first- and second-order trapped modes with very large first-
and second-order waves and forces being found respectively. Near the second order
trapped mode, the nondimensionalised second order component is of significant
magnitude and can be even larger than the first order one. The amplitude of the
maximum second order wave has been compared with the frequency-domain result.
Finally, some cases of 10 cylinder in a line and 2x4 cylinders in a double line have

been simulated.

The algorithm can be used not only for the diffraction by structures without flare, but

also for some special cases of radiation problems such as single cylinders in vertical
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motion. For more general radiation problems, the algorithm needs to be extended to
calculate second order derivatives such as 0%¢" /6xdy accurately on the cylinder

surface, which is part of the further development of this method.

9.3 2D fully nonlinear wave-body interactions

The algorithm here we used for calculating 2D wave-body interactions is based on the
full 2D unstructured mesh and the Galerkin method is used to obtain the velocity in the
fluid domain. The mesh gives far more flexibility and more rational distribution of
elements for complex domains and complex flow fields. The adoption of the Runge-
Kutta method for integration with respect to time can avoid extensive interpolation
between results from different meshes. The introduction of the B-Spline to remeshing
has maintained the quality of the mesh throughout the simulation. The use of the energy
method for smoothing also removes the restriction of Longuet-Higgins & Cokelet’s
method to a uniform mesh. The method has been used to analyse fully nonlinear wave
and fully nonlinear wave interactions with non-wall sided floating bodies. Some
numerical results have been compared with analytic solutions and second order

solutions to demonstrate the effectiveness of the method.

Further work should be considered to incorporate the adaptive mesh technique into
the method and use it to simulate some problems with strong nonlinearity such as

sloshing in large amplitude motions and overturning waves.

9.4 Interactions between fully nonlinear waves and vertical cylinders

with flare

This is an extension of the 2D algorithm above. Similar to the second order wave
diffraction, this algorithm employed the 3D mesh which is extended from the 2D
unstructured mesh into the vertical direction but along a curve instead of a straight line.
Correspondingly, the Galerkin method is used to calculate velocity in the whole fluid
domain. The mesh is combined with a structured mesh near the wave maker to avoid the

transverse instability. Smoothing is performed within the structured mesh. The
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nonlinear features of waves and forces/moments for both the bottom-mounted and the
truncated cylinders with flare have been captured. Comparisons of the waves and forces
are made between the two types of cylinders with the same angle 8 between the flare
and the horizontal plane. The influence of flare on waves and forces has been studied
for each type of cylinder. The result suggests that the flare with smaller value of 6 is
more effective to suppress the wave runup but may cause larger forces and moments on
the cylinder. Some results for interactions between irregular waves and flare cylinders
are also provided. This method is currently limited to a big angle 6 between the flare
and the horizontal plane. Further work is needed for a small angle in particular when a

jet has been developed.

9.5 3D interactions between fully nonlinear waves and multiple

cylinders without flare

In this algorithm, the calculation of velocity is the same as that in the second-order
diffraction problem since we only consider wall-sided cylinders. The algorithm is used
in two problems: multiple fixed and bottom-mounted cylinders in numerical wave tanks
and radiation by multiple truncated cylinders in forced motions in open seas. The
extensive simulations have provided a better understanding of the influence of mutual
interference between cylinders on waves and forces, which has been overlooked by
previous work based on the fully nonlinear theory. The future work is to consider a
large array of cylinders, which is more relevant to bridges and floating airports. Work is
also needed to consider the combined problem of wave diffraction and radiation, which

is relevant to floating bodies in steep waves.
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APPENDIX A

Some abscissae and weights of Gauss and Hammer quadratures are given in tables A.1

and A.2, respectively.
" ! oM W,
) : Y3 :
-1/43 ,

1 0.0 8/9

3 2 B35 5/9
3 -V3/5 5/9
1 0.86113631 0.34785485

4 2 -0.86113631 0.34785485
3 0.33998104 0.65214515
4 -0.33998104 0.65214515
1 0.0 0.41795918
2 0.94910791 0.12948497
3 -0.94910791 0.12948497

7 4 0.74153119 0.27970539
5 -0.74153119 0.27970539
6 0.40584515 0.38183005
7 -0.40584515 0.38183005

Table A.1 Abscissae and weights of Gauss quadrature

! gi n; Ci W:

1 1/3 1/3 1/3 1

1 1/2 1/2 0 1/3

2 0 172 172 1/3

3 172 0 1/2 1/3

1 1/3 1/3 1/3 -9/32

2 3/5 3/5 1/5 25/96

3 1/5 1/5 3/5 25/96

4 1/5 1/5 1/5 25/96

1 0.33333333 0.33333333 0.33333333 0.11250000
2 0.79742699 0.10128651 0.10128651 0.06296959
3 0.10128651 0.79742699 0.10128651 0.06296959
4 0.10128651 0.10128651 0.79742699 0.06296959
5 0.05971587 0.47014206 0.47014206 0.06619708
6 0.47014206 0.05971587 0.47014206 0.06619708
7 0.47014206 0.47014206 0.05971587 0.06619708
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Table A.2 Abscissae and weights of quadrature in a triangle




APPENDIX B

1. Shape functions of 3-node triangular elements

3

A
¥

2

»

x
Figure B.1 3-node Triangular element

As shown in Figure B.1, the triangular element has three nodes numbered anticlockwise

as1,2,3, and their corresponding coordinates are (x,,y,) (i =1,2,3). The three shape
functions may be written as

N,.(x,y)zi(ai+bix+ciy) i=123, (B.1)

where 4 is the area of the triangle. a;, b; and ¢; are given as follows

@ =559 = 3,50,
by ==y, - 3,).
24
c =L(xk -y:).
24

The values ofj and & corresponding to i =1,2,3 are j = 2,3,1 and k =3,1,2 respectively.

In another way, we can obtain the shape functions by mapping a general triangle to a

right-isosceles triangle (see Figure B.2). The coordinates (£,n) at nodes 1, 2 and 3 are

(0,0), (1,0) and (0,1), respectively. The three shape functions are given as follows

N, =1-&-7
N, =¢& s
N, =n

(B.2)
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Figure B.2 Mapping from general triangle
to right-isosceles triangle

2. Shape functions of 4-node quadrilateral elements

Figure B.3 Mapping from quadrilateral to square
Similar to the triangle as shown in Figure B.2, when mapping a quadrilateral to a
square whose four nodes are at (-1,-1), (1,-1), (1,1) and (-1,1), respectively (see Figure

B.3), the shape functions may be represented as
N, =5 1-6)1-m),
NoEm) =5 0+ EXL =)

| (B.3)

Ny(E,m) = Z(l +&)A+n),

Nx;m=ia—®a+m.

228



