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Abstract

The thesis is concerned with the development of data-driven methods for fault diagno­

sis of plant-wide disturbances. Industrial plants producing large quantities of liquid or 
gaseous chemicals run continuously and under tight cost, safety, quality and environmen­
tal constraints. Any unwanted variability in the form of disturbances in the production 
process affects one of these constraints. Worse still, disturbances can spread and cause 
large parts of the process to be upset. Detection and diagnosis of disturbances is therefore 
an important subject for chemical companies. Chemical processes are well equipped with 
modern instrumentation technology so that measurements of process variables such as 
flow, temperature or pressure are abundantly available.

The research has used time series analysis for process measurements in a novel way. In 
particular, it focuses on measures to decide about cause and effect of processes variables 
to address the question whether A causes B or B causes A. Knowing the causal relation­
ship finds the fault propagation path in case of a disturbance and eventually traces the 
disturbance back to the root cause. Three different measures are investigated and devel­
oped for the application to chemical process data: one straight forward algorithm based 
on the cross-correlation function and two statistics based on nearest neighbours methods 
and transfer entropy. Together with the automatic generation of causal maps these ap­
proaches lead to a breakthrough in fault diagnosis. Guidelines for the parameters of the 
methods are tailored to signatures caused by disturbances common in chemical processes. 
A significance level is introduced for automatic implementation of industrial applications.

Case studies with process disturbances, in particular those from a three months placement 
with Eastman Chemical Company, are analysed with the developed tools. The results are 
compared and recommendations of choosing the best method for a data set are generalised 
from results of the case studies.
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Chapter 1

Introduction

This chapter gives an introduction to th e subject m atter o f data-driven m eth­
ods in process analysis. T he m otivation for data-driven analysis o f process 
disturbances is given first. Existing approaches and techniques are discussed  
thereafter. Lastly, th e contributions o f this thesis are outlined and th e organ­
isation o f th e  th esis  is laid out.

1.1 M otivation

Industrial chemicals are produced in large quantities in plants that operate continuously 
over weeks and months. During operation, the process conditions are sought to be con­
stant. For example, the temperature in a reaction tank should be 60 °C because the 
ingredients react best at this temperature and not at 59.9 °C or 60.1 °C. The most impor­
tant physical quantities of the process are therefore regulated by an automatic controller. 
However, changes in process conditions such as the outside temperature or equipment wear 
might affect the process conditions and cause disturbances in the physical quantities of a 
process that the controller cannot tackle. Research and development in the process indus­
tries is focused on the fast and systematic elimination of disturbances and thus reduction 
of variability. Reduced variability is in most cases linked to the economic performance of 

the process.

Physical quantities such as temperature, flow, level and pressure are measured automati­

cally at fixed time instants. The measured value may be used to adjust a control element, 
for example a flow valve or a pump. Also, the value can be used to monitor the physical 
quantity and raise an alarm if it is above or below a specified threshold. All measured 
data samples are recorded automatically in a centralised data base. Thus, time trends of 
the physical quantities, also referred to as process variables in the following, are readily 

accessible.

1
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Figure 1.1: A disturbance affecting a number of process measurements in an industrial case study.

The first step to eliminate the disturbance is detection. If only one variable is affected then 
the root cause of the disturbance can be eliminated immediately. On frequent occasions, 
however, the disturbance travels with the process flow and affects a number of measure­
ments. The task then becomes a plant-wide problem. For plant-wide disturbances, fault 
diagnosis is required because the variable at which the disturbance was first detected might 
not be the root cause. The left hand panel of Figure 1.1 illustrates the process schematic 
of a chemical process1. The circles indicate the position at which a measurement is taken. 
The stars inside the circles indicate that these measurements are affected by the same 
disturbance and a sample time trend of the disturbance is shown on the right hand panel 
of Figure 1.1. The time trend is clearly not constant and will affect the performance of 
the process. Root cause analysis is hence concerned with finding the process measurement 
that is closest to the originating point of the disturbance.

A number of different root causes can lead to a plant wide disturbance. Desborough 
and Miller [21] at Honeywell split the causes in the categories of process or constraint 
problems, controller tuning problems and valve problems. Valve problems and tuning 
problems have been addressed in numerous previous publications but only few approaches 
exist for process and constraint problems. A specific issue in the category of process 
and constraint problems is controller interaction in recycles. Adrian Meaburn, a process 
control engineer at BP Chemicals, estimates the severity of the this issue as follows:

“In my experience about 30% of chemical processes with recycles have suffered from
controller interaction problems.”

The objective is now to employ the abundantly available process data to detect and diag­
nose disturbances and identify the root cause. John Cox at Eastman Chemical Company 
has provided the following motivations for data-driven disturbance analysis at the outset

’How to interpret a process schematic is explained in Section 2.2.
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which are commented on.

Turn data into concise targeted inform ation: Analysing the process data often
results in an information overload. The objective is to find measures that extract the most 
important signatures in the process data and discard all other irrelevant features.

Streamline and reduce troubleshooting time: The process control engineer is called 
in by the operator. The process control engineer then retrieves data from the process in 
concern from the data historian. Any tests that can systematically give first insight into 
the problem are highly desirable to speed up the analysis.

Yield inform ation to enhance maintenance efforts during plant shutdown: 
The continuous processes are shut-down usually once or twice a year. During shut-down, 
equipment is tested and replaced. Equipment tests can be made. Any explanatory infor­
mation about plant problems helps to focus the maintenance.

D iscover problems not found with traditional “fight today’s f ire” approaches:
Problems in the plant might exist of which neither the operator or the process engineer is 
aware of. Methodologies that can pinpoint disturbances which have escaped the standard 
investigated tools are extremely useful.

1.2 Introduction  to  D ata-D riven Fault A nalysis

A brief review of the work in the area of data-driven methods for process analysis that is 
most relevant for this thesis is outlined in this section. More detailed literature reviews 
will be given in Part I of the thesis. Approaches to fault detection and diagnosis of plant- 
wide disturbances are split in two branches: model-based and data-driven. Model-based 
techniques compare model parameters against measurements, whilst data-driven methods 
are based on historical process data. An overview of qualitative model based methods 
is given in Section 3.4. The focus of this work is on data-driven methods since in the 
chemical industries only about 5% of the processes2 are modelled. The organisation of 
process monitoring and fault analysis techniques is discussed in Section 3.2 while data- 
driven methods are described in more detail in Section 3.3.

The methods investigated in this thesis are usually grouped in the area of multivariate 
statistics and higher order statistics. A recent review article on data-driven methods for 
process analysis is by Venkatasubramanian et al. [143]. Kourti and MacGregor gave an 
early tutorial and overview on multivariate statistics for process monitoring and diagnosis 
[66, 67]. A textbook on multivariate statistics for fault diagnosis is by Chiang et al. [15] 
based on the PhD thesis by Chiang [14]. Choudhury focuses in his PhD thesis on higher 
order statistics for fault diagnosis [19]. A further PhD thesis that has been consulted for

2Estimated by Andrew Ogden-Swift. IEEE! APC Seminar ‘2005.
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this work is on condition monitoring of control loops by Horch [46]. The topic is in this 
case particulary relevant because Horch focuses on the analysis of historical process data 
for evaluating the performance of a control loop using data-driven methods.

Fault and disturbances are at the centrepoint of the thesis and these terms are therefore 

frequently used. Broadly, fault is understood as a the malfunctioning of some process 
equipment. As a consequence, a disturbance is caused which affects a large number of 
process measurements causing the process to be less efficient as it would be without the 
presence of the fault. The time scale of the disturbance varies. Some disturbances are 
long-term and persist for weeks and months such as a heat exchanger failure or a sticking 
valve. A sensor failure, on the other hand, is an example of a persistent disturbance which 
lasts for hours or days. Transient disturbances are short deviations from the normal 
operation such as a compressor trip.

In this work, the root cause of a plant-wide disturbance is argued by the fault propagation 
path. The disturbance is caused at a specific point in the process and then travels through 
the process equipment. If the fault propagation path can be determined then the origin of 
the disturbance helps to identify the root cause. Model-based approaches that have been 
previously developed to identify the propagation path include signed digraphs. Signed 
digraphs have been constructed from expert knowledge [52] or from differential equations 
[80, 81]. The fault propagation path can also be modelled by a simplified version of the 
signed digraph, called causal map. Chiang and Braatz [16] derived a causal map from 
the process schematic and verified the fault propagation path using a data-driven entropy 
measure. The relevance to this work is that the results of the data-driven methods will be 
used to construct a causal map.

1.3 Contributions o f Thesis

Methods and algorithms that form the main part of this thesis are concerned with identi­
fying the fault propagation path of a plant-wide disturbance. They include the following:

• A simple method using cross-correlation to argue cause and effect between two pro­

cess variables from the presence of dead time (Chapter 5);

• A causality method based on embedded vectors and nearest neighbours based on 
predictability of one process variable by a second variable. Five variations in the 
algorithm are proposed and compared. Guidelines for the parameters are established 

in Chapter 6;

• Application of the recently proposed method of transfer entropy to fault diagnosis 
in chemical processes. A significance level is introduced and parameter guidelines 

are established (Chapter 7);
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• An algorithm for automatic generation of a causal map from causality measures in 
Section 4.4;

• Three new industrial case studies and the application of the causality measures to 
these case studies (Sections 4.2, 9.2 and 9.3);

• A decision tree for selecting the best of the three proposed causality measures de­
pending on the data characteristics in Section 11.1.3.

All methods have been implemented with Mathworks Matlab Release 123. A software 
license agreement has recently been signed between the author and University College 
London (UCL) which will allow the methods developed in this work to be incorporated in 
a plant-wide disturbances assessment tool developed by an ABB/UCL joint venture.

Publications

The work reported in this thesis has so far led to the following submissions and publica­
tions.

The transfer entropy method described in Chapter 7 has been published in

• Bauer M., Thornhill, N.F. and Meaburn, A., 2004. Specifying the directionality of 
fault propagation paths using transfer entropy. Proceedings of DYCOPS  7, Boston 
MA, 5-7 July 2004.

The concept of the nearest neighbours method in Chapter 6 has been published in

• Bauer, M., Cox, J.W. and Thornhill, N.F., 2005. Measuring cause and effect of pro­
cess variables. IEEE Advanced Process Control Applications for Industry Workshop, 
Vancouver, Canada 9-11 May 2005 (Best Paper Award).

A comparison of the cross-correlation method in Chapter 5 and the transfer entropy 
method applied to the case study in Section 9.3 has been published in

• Bauer, M., Thornhill, N.F. and Meaburn, A., 2005. Cause and effect analysis of 
a chemical process analysis of a plant-wide disturbance. IEE Seminar on Control 
Loop Assessment and Diagnosis, London, UK, 16 June 2005.

The concept of transfer entropy using the case studies from Sections 4.2 and 9.2 has been 
submitted as

• Bauer, M., Cox, J.W., Caveness, M., Downs, J.J. and Thornhill, N.F., 2005. Finding 
the direction of disturbance propagation in a chemical process using transfer entropy. 
IEEE Transactions on Control Systems Technology (forthcoming).

3For more information on Matlab visit the website http://w w w .m athw orks.com /products/m atlab/, 

July 2005.

http://www.mathworks.com/products/matlab/
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1.4 O rganisation o f T hesis

The thesis is divided into four parts and consists of twelve chapters. In the first part, the 

background literature is discussed. Chapter 2 gives an introduction to chemical processes, 
process control and the faults and disturbances that frequently occur in these processes. 

Chapter 3 explains the stages of process monitoring, that is, fault detection, identification 
and isolation, and gives a literature review of data-driven process monitoring methods. 
The data-driven features that are implemented in commercial monitoring systems are also 
described in Chapter 3.

In Part II, causality measures for fault diagnosis retracing the fault propagation path are 
developed. Chapter 4 outlines the framework of data-driven causality measures and some 
graphical representation tools. A reference case study is introduced together with an al­
gorithm that automatically generates a causal map. Both case study and the automated 
causal map generation are used throughout the thesis. Also in Part II, three causality 
measures are derived. Chapter 5 describes an approach using the cross-correlation func­
tion, Chapter 6 introduces the concept of nearest neighbours and Chapter 7, the concept 

of transfer entropy.

The developed methods are applied to simulated and industrial data in Part III. Chapter 8 
studies the impact of fault propagation effects on the causality measures from Part II. The 
fault propagation effects are dead time, low pass filtering and additive noise, as introduced 
in Section 2.4. The causality measures are applied to further industrial case studies in 
Chapter 9. Two case studies from processes at Eastman Chemical Company and BP sites 
are investigated and the root cause is identified in each. Chapter 10 studies the effect of 
quantisation and compression on the causality measures.

Part IV summarises the results of the application of the three causality measures to indus­
trial and simulated data introduced in Part III. In Chapter 11, a framework is developed 
to find the best method for the analysed process characteristic. All steps required for the 
causality analysis are summarised in a causal analysis toolbox. Finally, Chapter 12 gives a 
critical discussion of the work, identifies open issues and highlights the main achievements.
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Background
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PART I - BA C K G R O U N D
In this part, the terminology of control and monitoring approaches used for the 
industrial production of chemicals is defined. The focus of this work is the use 

of historical process data for monitoring techniques in continuous processes. In 
Chapter 2, control setup and instrumentation for chemical plants as well as faults 
and disturbances in these plants are described. A brief introduction to process 
control is given highlighting the use of PID controllers. A study at Honeywell [21] 

in 2001 estimated that 97% of all control setups are PID controller. The study 
also gave insight into common root causes: 50% of the disturbances observed were 
due to process or constraint problems, 40% due to controller tuning and 10% due 
to valve problems. Typical examples of data trends from these disturbances are 
also discussed in Chapter 2 as well as the mechanisms from which the propagation 
path of a disturbance can be identified.
Chapter 3 discusses previous and current work about process monitoring tech­
niques. Two stages of monitoring are identified: fault detection and fault diag­
nosis. Fault diagnosis can be divided in two steps, fault identification and fault 
isolation. While identification is concerned with determining the kind and size 
of the fault, isolation is concerned with finding the root cause as well as the 
propagation to the current situation and the identification of the cause and ef­
fect relationships. This thesis focuses on these aspects of fault isolation. Thus, 
the emphasis of the literature survey on monitoring techniques is firstly on data- 
driven methods and secondly on methods that represent the propagation path, 
that is, qualitative models in the form of signed digraphs and causal maps. In the 
last section of Chapter 3, the state-of-the-art of commercial process monitoring 
systems is discussed focusing on the use of data-driven systems.



Chapter 2

Chemical Processes

This chapter gives an introduction to chemical processes and an overview of 
state-of-the-art control strategies in these processes. The control and fault 
terminology used in this thesis is defined. The cause of common faults and 
disturbances in the processes and their resulting data characteristics will be 
given.

Most chemicals are produced in continuous processes with a constant inflow and outflow 
that run continuously 24 hours a day. Seborg et al. [116] summarise the definition of 
chemical processes as used in the chemical industry:

“A process is the conversion of feed materials to products using chemical 
and physical operations.”

before adding: “In practice, the term process tends to be used for both the process oper­
ation and the processing equipment.”

A number of constraints have to be regarded when producing chemicals on a large scale. 
Important constraints are safety, profitability, quality and environmental regulations. 
Most physical properties, also referred to as process variables, such as flow, level, temper­
ature and pressure, should therefore be constant in order to achieve the desired chemical 
reaction. However, process dynamics, caused by basic principles of fluid mechanics, reac­
tion kinetics, thermodynamics, heat transfer or mass transfer, often intervene and require 
intervening control action. On top of the wanted dynamics outside disturbances caused 
by faulty equipment, changes in process conditions or unwanted interaction can upset the 

process.

Eastman Chemical Company is a representative example of a large industrial production 
site for chemicals as it produces 1/200 chemicals, two basic fibres and three types of

9
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Rank Company Rev. US$b (2003) Country

1 Dow Chemical 32.6 US
2 BASF 30.8 Germany

3 DuPont 30.2 US
4 Bayer 21.6 Germany

5 Total 20.2 France
6 Exxon Mobil 20.2 US
7 BP 16.1 UK

8 Royal Dutch /  Shell 15.2 UK /  Netherlands

9 Mitshubishi Chemical 13.2 Japan

10 Degussa 12.9 Germany

34 Eastman Chemical Company 5.8 US

Table 2.1: Revenues of top 10 chemical companies in 2003.

plastics. The chemicals are produced as coatings, adhesives for tapes, labels and packaging, 
paints, sealants, printing ink, agriculture products, fibres, food, beverages, photographies, 
pharma polymers, medical devices, electrical connectors, personal care and cosmetics. 
More than 15,000 employees work for Eastman Chemical Company and half of them in 
Kingsport, Tennessee, USA. The chemical industry is large and continuously growing. 
Sales of chemicals in the US climbed from around US$ 200 billion in 1980 to US$ 390 
billion in 1998. Sales in Europe were US$ 430 billion in 19981. Table 2.12 lists the major 
chemical production companies and their revenues. The majority of the field work that 
forms the basis of the development of data-driven methods was undertaken at Eastman 
Chemical Company in Kingsport. During the placement at Eastman Chemical Company, 
the author of this thesis learnt control strategies in chemical plants, principles of chemical 
reactions, process representations and the nature of the task of process systems engineers.

The structure of this chapter is as follows. The first section reviews the differences in 
production types such as batch and continuous processes. In Section 2.2, graphical repre­
sentation of chemical processes and process equipment are introduced which will be used 
in case studies in the reference case study in Section 4.2 and in Part III. Controlling the 
process maintains it at desired operating conditions. Control loops are introduced in Sec­
tion 2.3 and their instrumentation as well as control strategies are reviewed. The major 
interest of this work is the analysis of faults. Faults and disturbances that can occur in 
chemical processes, their causes and data characteristics are given in Section 2.4.

1 http://www.technology.gov/Reports/chem icals/chem ical.pdf: US Department of Commerce, Of­

fice of Technology Policy. Meeting the challenge: US industry faces the 21st century;

http://www.chemicalprocessing.com , February 2005.
2Chemical Engineering News, Business, July 19 2004, Volume 82(29). p .12.

http://www.technology.gov/Reports/chemicals/chemical.pdf
http://www.chemicalprocessing.com
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Figure 2.1: Process types as functions of product volume and product variety.

2.1 P rocess T ypes

This section discusses the types of processes in the chemical industry and in other indus­
tries. In the operations management literature, which provides managerial tools to design 
and assess processes on a high management level, five process types can be identified [122]: 
project, jobbing, batch, assembly line and continuous processes. Process types are chosen 
according to the quantity and variety of a product. Figure 2.1 illustrates the relationship 
between product volume, variety and process type by categorising processes into projects, 
jobbing, batch, assembly line and continuous. A general statement for all production types 
is that lower volumes imply higher variety. The process type therefore depends on volume 
and variety rather than on the nature of the product.

P rojects: Products produced in projects are produced in low quantity and high variety. 
They are usually very complex and highly customised. The manufacturing process is a long 
cycle extending over several weeks or months. Projects always have a defined start and 
finish and some interval is taken between two projects. The resources for manufacturing 
- raw material, equipment and work force - are assigned to only one project. Examples of 
projects include ship building, construction sites and drilling oil wells.

Jobbing: Jobbing processes like projects also produce low volume and high variety
products. The manufacturing process is highly flexible to product changes. The differ­
ence between jobbing and project processes is mainly that jobbing processes use shared 
resources for several jobs. The items processed are usually smaller and less complex than 
projects. Precision engineers and small requests in the printing industry are examples of 

jobbing processes.

B atch:  Batch processes can deal with a wider range of product volume with a lower
variety. Always more than one item is manufactured at a time, repeating the operation 
process. The process consists of a sequence of discrete steps. The application of batch
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processes is widely spread in various industries: wafer handling in the semiconductor 
industry, component parts of automobiles, fermentation processes of pharmaceutical or 
frozen pizzas in the food industry.

A ssem b ly  lines: Assembly lines are employed for a high product volume and a relatively 

narrow variety. The processes are repetitive and largely predictable. The difference to 
batch processes is tha t only one discrete item at a time is manufactured. The most 
common example of an assembly line is car assembly where the basis is identical and 
variety is only introduced through different colour or engine type. Assembly lines can also 
be found in the food industry for instance in the form of beer bottling.

C ontinuous: Continuous processes operate at a highest possible volume and allow al­
most no product variety. The process runs over a long period of time and sometimes seems 
like an endless flow. Continuous processes are very inflexible and usually very capital inten­
sive. Halting the production is always extremely costly and sometimes means permanent 
plant shut-down. Examples of products from continuous processes are petrochemicals and 
refineries, steel making and the paper industry.

The most common process types in the chemical industry are batch and continuous pro­
cesses which will be explained further in the following sections with reference to the chem­
ical industry. All processes that were analysed within the frame of this work were contin­
uous processes. There is, however, no reason why the methods developed here should not 
be applied to data from batch processes with appropriate selection of variables and time 
parameters.

2.1.1 Continuous Process M onitoring and Control

Chemical products are most commonly produced in a continuous process since the pro­
duction costs are low for large quantities. Production is run 24 hours a day and process 
shutdowns are extremely costly. Continuous processes are halted once or twice a year for 
general inspection of instrumentation and mechanical equipment. Common features are 
constant inflows and outflows. Seborg et al. [116] give a number of example of continuous 

processes:

•  Tubular heat exchanger: A process fluid on the tube side is cooled by cooling water 

on the shell side;

• Continuous stirred tank reactor: Two or more reactants are fed into a vessel and 

continuously stirred;

• Thermal cracking furnace: Crude oil is broken down (“cracked”) into a number of 
lighter petroleum fractions by the heat transferred from a burning fuel/air mixture;

• Multi-component distillation column: Two or more components are separated into 

a lighter and a heavier mixture.
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When continuous processing methods were first used in industrial plants disturbance prop­
agation was a serious issue that was initially reduced by placing surge vessels between 
process units [116]. Surge tanks are used to buffer changes in process variable such as flow 
or temperature. In modern plants the extra cost that surge tanks imply through set-up 
and operation are avoided but the result is a more tightly coupled process in which faults 
can propagate more easily.

Data measurements for continuous processes are recorded at fixed time points for all 

process measurements, resulting in so called time trends. Analysis can be carried out 
by applying methods to a single time trend (univariate) or by gathering a number of 
time trends (multivariate). A difficult part in the analysis is then the selection of the 
appropriate process variables. The non-invasiveness of any monitoring or fault detection 
method for continuous processes is important since no changes can be made to the process 
during operation. As a results, continuous plants in the chemical industry are only shut 
down once or twice a year.

When referring to chemical process control the term is usually equivalent to the control 
of continuous processes and numerous text books are available, see for example [76, 116, 
118, 126].

2.1.2 Batch Process M onitoring and Control

Batch or semi-batch processing is the most common process type in the chemical industry 
after continuous processes. A sequence of steps is performed for a tank of defined quantity. 
Such a sequence can be for a simple blending process as described by the following steps 
[116]:

1. Transfer amount of material from tank A to tank R,
2. Transfer amount of material from tank B to tank R,
3. Agitate material in tank R for a period of time after the feeds are added,
4. Discharge the product to storage tank C.

Batch processes are often a compromise between the accuracy of a laboratory scale reaction 
and the volume of continuous processes. Some steps of the process may run in a continuous 
fashion in which disturbances similar to a continuous process can occur. Disturbances 
common in batch processes can be caused by fouling of vessel walls and heat transfer 

surfaces or raw material impurities.

Measurements are taken for each process step and each batch so that the data variations 
between batches rather than between time intervals are analysed. In this way, the data is 
available in a three dimensional way: batch number versus process variable versus process 
time [79]. For most batches, the process time for each step differs so that the length of
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the data set for each batch differs as well. This must be taken into account when applying 

data driven methods. Furthermore, the data is in a three dimensional form which is 
impractical for most methods. The data can be transformed into a two dimensional set in 
by rearrangement in a number of different ways. Most commonly, the data is decomposed 
into a two dimensional array where each row represents a single batch run and comprises 
individual process measurements at each time point. The number of batches might also 

be limited, thus restricting the use of methods which requires a large amount of data.

An introduction to batch process control is given in the latest edition of the textbook by 
Seborg et al. [116] describing the control of batch reactors, the production management 
and run-to-run control incorporating modifications of the process steps from one run to 
the next; for control during batch operation, for example see Bonvin [8].

2.2 G raphical Process R epresentations

For most processes, several graphical representations of the process exist. Examples are the 
process and instrumentation diagrams (P&ID), the flow diagrams of the control software 
and process schematics as on overview tool. The P&ID diagram is a regulatory requirement 
and thus exists for all plants and units. However, for an overview and understanding of the 
process a process schematic is often produced by the control engineer. Process schematics 
are also used by the operators in the controller software. In some cases, these controller 
software flow diagrams are used by the process engineer for discussing the process flow 
and the controller interaction.

A common feature of all graphical representations is that the direction of intended flow 
is indicated by vectors and that the top and bottom of the sheet corresponds to top and 
bottom of the equipment. Unlike in electrical diagrams, in which resistors or capacitors 
can be placed at will, tanks, columns or pumps will never be shown upside down. Piping, 
however, might be not drawn to scale so that a tank and a pump on a process representation 
appear next to each other but are actually situated on other ends of different floors in the 

building.

Process and  In s tru m e n ta tio n  D iagram s: P&IDs are used for installation, process
adjustments and trouble shooting by process engineers and operators alike. They are 
created by special computer added design (CAD) software and follow strict norms3. In 
the right hand lower corner, information about contractor and process owner companies as 
well as management, engineering and contractor approvals is kept. On the main section, 
tags and sizing of all equipment, exact position of sensors, outflows and inflows, connecting 
pipes, electrical and pneumatic signals are drawn. Also, physical information of location,

:3See P&ID design handbook, http://www.engineeringtoolbox.com/p&id-piping-instrumentation- 

diagram-44_466.html, February 2005.

http://www.engineeringtoolbox.com/p&id-piping-instrumentation-
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for example building number and floor level might be indicated. Space is left for notes 

and comments about changes in the equipments and connection of flows to other sheets 
are indicated. All information on the P&ID is additionally stored in related databases. 
P&IDs show process equipment and piping in great detail and for a single plant can easily 
exceed a hundred pages of A3 sheets.

Process S chem atic :  The process schematic is a formless graphical representation of
all major process flows and equipment drawn by hand or with standard office software 
such as Microsoft Word or Excel. There are variations in the representation of equipment. 
There is an unspoken convention that the process schematic should not exceed a single 
page (letter, A4 or A3 formats) for convenience in handling, especially when going out 
to the plant. All control loops and major equipment should be included although often 
only a part of the complete process is represented. Commonly used representations of 
the important equipment is shown in Figure 2.2. Heat exchangers heat or cool streams 
of gas or liquid and can induce a phase change from liquid to gas by vaporisation or gas 
to liquid by condensing [126]. Pumps are used to transport the product from one piece 
of equipment to the next. They ensure a certain pressure and flow and can be also used 
to control levels. In a distillation column, two or more components are separated from 

each other based on their different vaporisation points. A feed enters the column and the 
lighter distillate exits the column at the top while the heavier product exits at the bottom. 
Trays or solid packaging, which are in some rare cases indicated in the process schematic, 
are inserted in the column to ensure a large contact surface for the reaction to happen. 
Separation in distillation columns is the chemical operation that is most often used in 
the chemical industry4. The most common control element in the chemical industry is 
the control valve which is explained in more detail in the next section. The measurement 
points are abbreviated depending on the type of measurement, that is, F for flow, L for 
level and so on. Furthermore, a differentiation is made between a controlled measurement 
(C) and an instrument (I). The two letters are then combined. For example, TC stands 
for a controlled temperature.

2.3 P rocess Control Loop

To achieve desired operating conditions control mechanisms are added to the process in the 
form of control loops. A distinguishing feature of feedback control is that the controlled 
variable is measured and the measurement is then used to adjust the manipulated variable. 

The block diagram structure of a feedback control loop is shown in Figure 2.3. The 
process dynamics act on the process variables (PV) which are measured by a sensor. 
Process variables are physical quantities such as flow, level, temperature or pressure. The 
measured values are compared against a given setpoint, (SP) and the resulting deviation

4See http://chem istry-about.com /od/chem icalengineerinl/, March ‘2005.

http://chemistry-about.com/od/chemicalengineerinl/
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Figure 2.2: Equipment frequently represented in process schematics
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Figure 2.3: Block diagram of feedback control loop including final control element (F.C.E) and 
measurement facility (sensor).

from the setpoint is an input signal to the controller. The controller output (OP) signal 
acts on a final control element, in most cases a control valve, which then in turn adjusts 
the input variables of the process through the manipulated variable (MV). Disturbances 
enter the process at any point but are not measured in feedback control. The corrective 
action occurs via the feedback regardless of the nature of the disturbance. The purpose of 
any controller is not to eliminate variability but to move variability to a variable that is 
associated with lower cost. For feedback control this means transferring variability from 
the process variable to the manipulated variable, which is in most cases a flow rate.

For the analysis carried out in this work, SP, PV and OP are available and considered 
although in most cases only the relationship between process variables is investigated. The 
manipulated variable is only available if a so-called smart device is used measuring the 
MV.

Exam ple: A simple example of a tank given for instance by [126] with a controlled
level is chosen to explain the derivation of process description and control scheme. Figure
2.4 (a) shows a tank with inflow Wjn(t) and outflow wout(t). The control objective is to 
keep the level in the tank constant despite any incoming disturbances through w-m(t). 
To describe the process, the relationship between Bow and volume in the tank can be
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expressed by the following equation:

dV
—  = wiB(t) -  wout(t) (2.1)

where V  = A -1 is the volume in the tank; A the bottom surface and I the height or level.
Using level I rather than volume V  and applying the Laplace transform gives the following
algebraic equation in the frequency domain:

AsL(s) = Win(s) -  Wout(s). (2.2)

The transfer function is then as follows.

L(s) 1
(2.3)Win(s) -  Wout(s) As

The manipulated variable is the outflow Wout(s) while Win(s) is considered as an outside 
disturbance. The control setup is designed to buffer this disturbance and keep the level 
constant. Instead, the disturbance is passed on to the control valve and thus the outflow 
W out- Assuming ideal conditions for both the final control element and the sensor and 
applying a simple proportional controller results in the block diagram as shown in Figure
2.4 (b). If, through an outside disturbance in Wjn(s) or a set point change o f Lsp , the 
level is larger than the set point, the controller error is smaller than zero which causes the 
outflow to decrease. I f  the level is smaller than the set point, the controller error is larger 
than zero so that the outflow increases. The resulting system is first order and therefore 

does not cause any oscillations. The time constant o f the dynamic system is TD — ~̂c- 
A  small dynamic time constant tq ensuring fast tracking o f process changes is achieved 
through a large controller gain K c. The disturbance Win however, is then passed on to a 
downstream unit through the outflow Wout while the level stays constant---------------------

The type of a control loop refers to the process variable which is either a flow, level, tem­
perature or pressure. Consistency controllers are also employed in some plants to regulate 
composition. Table 2.3 gives the percentage of flow, level, pressure and temperature loops 
in industrial plants. In a recent study by Paulonis and Cox [92] a large-scale controller 
performance system assessed 14,000 PID controllers in 40 plants at Eastman Chemical

LC

(a)

Kr

winM

H'ou.WA. J_
As

MM

(b)

Figure 2.4: Process schematic and block diagram of level feedback control loop.
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Control loop type % as in [92] % as in [21]

Flow 32% 39%
Level 18% 20%
Pressure 15% 20%
Temperature 20% 19%
Other 15% 2%

Table 2.2: Percentage of controller types averaged over a large number of industrial processes by 
Paulonis and Cox [92] and Desborough and Miller [21].

Company while Desborough and Miller [21] collected data from 11,600 controllers at eigh­

teen sites in multiple process industries.

The role of the controller will be explained in the following sections. In general, controller 
performance is considered as good if variability is transferred from the controlled to the 
manipulated variable and thus the variability of the critical process variable reduced. The 
last part of this section gives an overview of the instrumentation used for control and 

monitoring purposes in a chemical plant.

2.3.1 P ID  control

The control algorithm for the feedback controller as shown in Figure 2.3 has three basic 
control modes: proportional (P), integral (I) and derivative (D) control. These modes 
are all combined in a PID controller that is implemented in most distributed control 
systems (DCS) in chemical plants. A proportional controller was used in the previous 
section for the example of a level controlled tank. The proportional control mode can 
be used to respond rapidly to large errors caused by disturbances. The controller gain 
K c is adjusted to make the loop sensitive to deviations of the setpoint. Integral action 
can be added to remove any offsets or steady-state errors. This is achieved because the 
controller output depends on the integral of the error signal over time. The integral time 
constant 77 controls the rate of integration. A small integral time removes the integrated 
error fast but also leads to decaying oscillations. A derivative control action counteracts 
integral and destabilising lags in the process or controller with a derivative time constant 
77). The controller anticipates the future behaviour of the error signal by considering the 
rate of change. Derivative control is never used on its own but always in conjunction with 

proportional and integral parts. The transfer function of a PID controller is:

Gc(s) — Kc +  7̂ ^ +  Tns^j . (2-4)

For a detailed treatment of PID controllers see Astrom and Hagglund, [159].

Tuning rules were established by Ziegler-Nichols tuning or Tyreus-Luyben tuning which 
are based on loop testing and are therefore invasive [116]. Luyben and Luyben [76] give
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Flow Level (surge) Level (other) Pressure Temperature

Type PI P PI PI PID

K c small scaled scaled depending on small
to level to level application

Tl fast - slow depending on process time
(O.lmin) application constant

td - - - - 1/4 process time
constant

Table 2.3: Tuning guidelines as rules of thumb by Luybens and Luybens [76].

rules of thumb for the tuning parameters of flow, level, pressure and temperature loops. 
These rules are extremely valuable when quickly checking the tuning parameters of an 
inspected loop. An overview of the guidelines is given in Table 2.3. For flow controllers, 
PI control is used with a low gain to limit noise due to flow turbulence. The value for the 

integral time is small for fast responses (around 0.1 minutes). An exception is the control 
of throttled reboilers, for example at the bottom of a distillation column, for which a 
slower response time is chosen. For level loops, the purpose of the control action has to be 
considered. Level controllers that provide for surge capacity need to react slowly and need 
not hold the level tightly at its setpoint. If the tank has a different purpose, the accurate 
level might be desirable and PI control can be applied. Temperature control loops are 
often slow and PID controllers can be used.

The use of PID controllers is widespread. Desborough and Miller [21] estimate that 97% 
of all control loops have PID controllers and give three reasons for its popularity: (i) 
the PID works well in the vast majority of applications; (ii) it is easy to understand and 
(iii) the PID algorithm is pre-programmed in every control system. Nevertheless, a large 
proportion of the control loops in chemical plants are open loop [21, 26, 92] also referred 
to as in ‘manual’. This means that the operator has intervened to remove any automatic 
control action because the controller was not fulfilling its task.

2.3.2 Control Loop Instrum entation

The instrumentation of a control loop is shown in Figure 2.5 as it would be represented in a 
detailed P&ID. First, the sensing element, for example an orifice for flow or a thermocouple 
for temperature measurements, measures the process variable. The result is converted by 
the measurement transmitter into a signal readable by the control element. The control 
element then performs the control algorithm and sends the result to the signal transducer 
which converts it in a format readable by the final control element. The final control 
element is in most cases a control valve but can also be a pump or a heating element.
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Figure 2.5: Instrumentation of flow control loop in P&ID representation.

The use of DCS in modern control instrumentation is widespread. The controller algorithm 
is in this case discrete instead of continuous. The controller therefore includes an analogue- 
to-digital converter (ADC) to process the signal received by the transmitter as well as a 
digital-to-analogue converter (DAC). Some electronic final control elements, such as an 

electronic pump, can process a digital signal and thus comprise the DAC. The sampling 
rate of the ADC, which results in term “DCS data” coined by process engineers and 
operators, is usually set to 0.1 seconds. Any time constants faster than 0.1 seconds can 
therefore not be implemented nor recorded and used for the fault diagnosis analysis. The 
data is logged and sent to the data storage system every five seconds.

S en sin g  E lem en t:  The main sensors used in chemical processes are temperature,
pressure, flow rate and liquid level. For a detailed description of sensors see Lenk [71] or 
Liptak [75]. Seborg et al. [116] give a list of on-line measurement options most commonly 
used in process control. Knowing the type of sensor that is employed in a control loop can 
give insight into the process behaviour. Temperature sensors include filled systems, which 
are familiar from daily usage, and thermocouples. Filled systems use a liquid that expands 
with increased temperature. Thermocouples consist of a pair of wires of different metal, 
one maintained at a reference temperature, the other at the temperature to be measured, 
and both joined at one end. A temperature difference produces a voltage between the 
two metals also known as the thermoelectric effect. The time constants of a temperature 
sensor can be in the same range as the process time constants and thus can affect the 
control performance [76]. W ith electronic instrumentation, a strain gauge is often used to 
convert pressure into an elongation of resistance wires which changes a millivolt-level [116]. 
Pressure sensors are very unreliable and are often set in pairs when measuring a crucial 

pressure. Flow cannot be measured on its own easily but other effects are used to deduce 
the flow. One basic principle of sensing the rate of flow is to place an obstruction in the 
path of the fluid and measure the difference in pressure before and after the obstruction 
using a differential pressure sensor. The obstruction object is often an orifice plate that is 
a disk with a hole. Low flow rates can be measured through the heat loss from a heated 
element which varies with flow rate. Signals from flow measurements are usually noisy
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Input Output pneumatic Output electrical

P V min 3 psig 4 mA
PVA v max 15 psig 20 mA

Table 2.4: Standardised ranges for pneumatic and electronic transmitters [116].

and often need to be filtered before sent to the controller. Liquid levels can be easily 
measured by following the position of a float that is lighter than the fluid, measuring the 
apparent weight of a heavy cylinder as it is buoyed more or less by the liquid or measuring 
the difference in static pressure between two fixed elevations, one in the vapour above the 
liquid and the other under the liquid surface [76].

Transm itters and Transducers: Transducers are the interfaces between the process
and the control system and, in this role, measure process variables and convert them 
into a signal tha t can be interpreted by the controller. As a terminology convention, the 
combined setup of sensor and transmitter is referred to as transducer [116]. The output 
signal range of the transm itter is restricted to standardised ranges as listed in Table 2.4. 
These ranges are used in the majority of all process industries. The difference between 
the minimum and maximum value of the process variable, PVmin and PVmax, is called 
“span” . The dynamic response of the transmitter is usually much faster than the process 
and the control valves. Thus, the transmitter can be considered as a simple gain [76].

Final Control Element: In chemical processes, the control valve is the most common
final control element and in an average industrial process several thousand valves can 
be found [21]. This is because the variability of temperature, level and pressure can be 
transferred to the flow rate. Lenk [71] distinguishes between two types of control valves: 
shut-off type and throttling type. The opening of the shut-off valve is either completely 
open or closed acting as a switch or, in electrical terms, an ideal diode. The throttling 
valve, on the other hand, is adjustable to any opening between these two extremes acting 

as a tuner or transistor.

The most common type of throttling valve is the plug-and-seat valve in the form of a globe 
valve. The flow through the valve is controlled through a movable plug that is placed in 
the seat if closed and further away if open. Thus, the relative position between the plug 
and the seat determines the effective flow through the valve. A stem is attached to the 
plug and controls the opening or closing movement by means of a diaphragm that is moved 
by air pressure. The stem itself is controlled by an electrical or manual actuator. Other 

frequently used types of valve are butterfly, ball and angle valves.

The throttling valve has an inherent flow characteristic that describes the relationship 
between stem position and the maximum of flow through the valve [116]. The characteristic 
is grouped in two behaviours, linear trim and equal-percentage trim as shown in Figure 
2.6. The term equal-percentage comes from the slope of the characteristic being a constant
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Figure 2.6: Valve characteristic as a function of stem position as in [76].

fraction of the flow [76]. Equal-percentage trim valves are more favourable if the valve 
is placed between process equipments. This is because the installed characteristic is a 
function of both the inherent characteristic and neighbouring pieces of equipment that act 
as resistances. As a result, installed pneumatic valves often have inherent second order 
dynamics contributing a gain and two time lags to the control loop [126]. The size of the 
valve chosen by the designer depends on the flow rate, specific gravity of the fluid and 
pressure drop over the valve.

To monitor the performance of the valve, a valve positioner can be attached to the valve. 
The positioner measures the actual stem position and compares the position to the value 
requested by the controller output. Additionally, an independent air source is used to 

drive the measured stem position.

2.4 Faults and D isturbances

Monitoring the performance of a process involves identifying and analysing unexpected 
events occurring within the process. These unexpected and mostly unwanted occurrences 
are called faults. An often used definition of a fault is given in the report for standard 
terminology in technical process monitoring by Isermann and Balle [53]:

“A fault is an unpermitted deviation of at least one characteristic property or vari­

able of the system.”

Patton et al. [90] define fault as follows:

“A fault is an undesired change in the system that tends to degrade overall system 
performance, although it may not represent the failure of physical components.”
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The term fault is preferred to the term failure because a failure usually involves the break­
down of a complete system or plant. More precisely, a failure is a permanent interruption 
of a system’s ability to perform a required function under specified operating conditions 
[53].

Measures of faults are: how often a fault occurs, the probability of faults occurring and 
the amount of available useful operating time [122]. The distinction between fault and 
disturbance, however, involves much debate. Gertler [34] notes that the difference between 

fault and disturbance is that faults are exceptional whereas disturbances are present most 

of the time. It is a m atter of judgement as to what is exceptional and what is most of 
the time. Isermann and Balle [53] define disturbance as an unknown (and uncontrolled) 
input acting on a system. The underlying cause of the exceptional event of a disturbance 
is referred to as the basic event or, more commonly, the root cause.

A number of industrial studies [7, 21, 26] investigate common root causes of the distur­
bance which will be reviewed in the following Section 2.4.1. Resulting disturbances often 
have common features in their data trend which will be looked at thereafter. The fault 
propagation mechanism that causes the disturbance to travel from one process variable to 

the next is the motivation of applying causality measures and will be reviewed in the last 
section.

2.4.1 Com m on R oot Causes

The industrial study by Desborough and Miller [21] classifies the problems associated 
with control loops in three categories: valve problems, controller problems, process or 
constraint problems. From the 11,600 loops of a number of industries analysed they found 
the following split of problematic loops:

Process or constraint problems 50%
Controller tuning problems 40%
Valve problems 10%

A previous study limited to the pulp and paper industry [7] found 30% of the loops 
assessed having valve problems while a third of the loops cycled due to inappropriate loop 
tuning. Similar results were reported by Ender [26] (30% equipment problems, 15% tuning 
problems of all loops analysed). In the following paragraphs these main categories of root 
causes are discussed. A number of reasons for oscillations can be found in Horch [46] which 
include static friction, dead-zone, backlash, saturation and quantisation.

Process or C o n stra in t P roblem s: Problems caused by the process configuration
and constraints are as manifold as the equipment and design variations in the process.
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Shunta [118] gives the following list of sources of instabilities that cause disturbances in 
the process:

• Reaction systems are typically nonlinear and often the cause of product variability;

• Separation systems (distillation, absorption, extraction, scrubbing, etc.) have several 

control loops tha t may interact, causing cycling. Loops are often cascaded which 
may amplify the effect of upsets;

• Heat exchangers are a common source of variability caused by physical constraints;

• Piping and recycles tie parts of the process together and cause instability.

Control loop performance measures such as the Harris index which will be described later 
on in Section 3.1.3 often fail when assessing process problems. The reasons for this are 
that not only a large number of process variables is affected but also the variable close 
to the root cause does not necessarily have the worst performance index. Unlike tuning 
and valve problems, process problems come in a large variety caused by various parts and 
configurations of the process. This makes it difficult to cluster or structure the disturbances 
into categories. Any knowledge of the fault propagation path is therefore extremely useful 
when investigating the root cause of the problem. An example of a process constraint 
problem is discussed in Section 9.3 using a case study from a plant at a BP Chemicals 
site.

C ontro ller T un ing  Problem s: The vast majority of control loops are PID controllers, 
see Section 2.3.1, which can level out disturbances by introducing and adjusting controller 
gain and time constants for the integral and proportional part. The consequence of PID 
feedback control is that the controller can actually cause oscillatory responses. For good 
adjustments of the tuning parameters, an induced oscillation has a small amplitude and 
damps out quickly. However, for some settings of the control parameters the amplitude 
does not decrease with time and causes persistent cyclic oscillations. The adjustment of 
the control parameters can be made on site on the distributed control system. Luyben and 
Luyben [76] estimate that 80% of all loops are tuned experimentally by an operator and 
75% of the time the operator can guess appropriate parameters by drawing parallels to 
past experience. However, in many cases the tuning is either not appropriate or changes 
are made to the process configurations, such as throughput or consistency adjustments. 
Thus, a large percentage of disturbances are due to tuning problems.

Valve Problem s: Control valves are commodity products in the chemical process, they
are numerous and often a cheaper model is chosen over a more reliable model to save 
on installation cost of the process. Until recently, most control valves installed had no 
positioner so that the performance of the valve was difficult to monitor5. Problems of the 
valves include oversizing and undersizing, excessive hysteresis, static friction and stick-slip

5For a description of control valves and positioner see Section 2.3.2.
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behaviour [26]. Physical causes of the valve faults are listed by Patton [91] and include 
clogging, sedimentation, errosion, increase of brushing friction, leakage and evaporation. 
Stiction is caused as the valve movement does not follow the controller output, which is 
also the valve input, in a linear fashion. Instead, the valve does not move at all until a 
threshold is exceeded. If the pressure on the valve is high enough the valve moves too far 
and the controller must reverse the direction. The same effect will occur in the opposite 
direction when the valve should close. Small variations are enough to trigger this behaviour 

and the loop will fluctuate around the setpoint without any outside disturbance. For a 
detailed description of valve stiction see [18] by Choudhury et al. who in a recent paper 
model also derive a model for valve stiction [17]. The consequence of these problems is 
often a cyclic behaviour seen in the data trend of the following flow variable. An example 
of a valve with stiction is shown in the next section.

2.4.2 D ata Characteristics of Disturbances

Most of the process variables in a continuous process are ideally constant. This applies 
equally to a level in a tank as to the temperature at a certain tray in a distillation column 
or a flow from one piece of equipment to the next. Most disturbances make the process 
variables deviate from the desired set point and thus affect the efficiency of the process or 
the quality of the product. The nature of the disturbance reflected in the data trend may 
have various appearances. Often, a cyclic, or periodic, behaviour can be observed but also 
irregular disturbances are common. In this section, sample data trends from industrial 
processes are displayed for different root causes to give a first notion of the time trend 
from which information will be extracted. Figure 2.7 shows time trends for some typical 
process disturbances. However, these trends are only exemplary and the disturbance can 

have very different features.

Process Problem : Plot (a) in Figure 2.7 is the data trend of a process disturbance
originating from the upsets in the inert gas flow. The case study of this disturbance is 
investigated in Section 9.2. The prominent feature in the data trend are spikes occurring 
at irregular intervals. These spikes consist of a short period at an increased level which 
is followed by a sharp decrease before returning to the original value. During the interval 
from minute 800 to minute 1000 the spikes occur at an almost regular frequency.

C o nstra in t Problem : A process variable that is constraint by a physical limit is shown
in plot (b) of Figure 2.7. In this case, the control valve was always too close to the state of 
complete shutting off. Thus, the time trend of the flow seems to stick to a lower boundary. 
The high frequency of oscillation, a period of only a few seconds, indicates that the cycling 

is due to a mechanical equipment problem.

Tuning Problem : Oscillations due to timing issues are very common and an example
of a loop with poor tuning is shown in Figure 2.7 (c). The cycling is very regular and



CHAPTER 2. CHEMICAL PROCESSES 26

(a)

(b)
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Figure 2.7: Time trends of disturbances by different root causes; (a) Irregular process disturbance 
via inert gas inflow, (b) Constraint problem (minimum value) resulting in high frequency oscillation, 
(c) Oscillation due to tuning problem, (d) random process noise.
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almost completely sinusoidal. The magnitude of the oscillations changes with time but is 
very high at all times compared to the noise level. The oscillation period, in this case 20 
minutes, can give insight to the tuning parameters.

P rocess and  M ea su rem e n t N o ise:  A common feature of any process is a certain
amount of noise. Most of the time, outside process disturbances in the form of measure­
ment or other noise is not significant enough to affect process performance. The noise 
depicted in Figure 2.7 (d) is uniformly distributed and has constant mean and variance. 
It was caused by a faulty sensor which upset the measurement.

Valve problem : A common root cause is stiction in control valves. A typical data trend
of the process variable (PV) and output (OP) of a controller with valve stiction is shown in 
Figure 2.8. The PV value is sticking to a value for some while until it drops sharply. The 
controller output cycles continuously with the same oscillation period of approximately 24 
minutes. The PV/OP plot clearly shows a hysteresis instead of a linear function. Since 
stiction, and in some cases slip stiction, is a common problem that affects directly the 
efficiency of a process, a large number of data-driven methods are available to detect and 
classify these control loops, see for example [18, 46, 102]. These examples use the PV/OP 
relationship of the loop with valve stiction either in the form of cross-correlation [46] or 
by extracting features of the PV/OP plots [18, 102]. The root cause analysis for control 
valves is actually not perfect because behaviour of PV and OP can in some cases actually 
be misleading. Looking at Figure 2.3 shows that the characteristic of the final control 
element, the valve, can be derived if the controller output and the manipulated variable 
(MV) are available. The availability of a measurement of the MV is rather the exception.
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Figure 2.8: Fault propagation mechanism of magnitude decrease: Time trends of process variable 
and controller output for a loop with valve stiction.

This is the reason why the process variable is used instead. Replacing the MV by the PV 
only works well if the process has no relevant dynamics and no outside disturbances or 
sensor faults occur. Thus, it basically works for flow loops only.

2 .4.3 F a u lt P ro p a g a tio n

In most cases, faults travel in the direction of the gas or fluid flow just as normal varia­
tions that occur in the process. However, the direction of propagation might either not 
be measurable under normal process conditions or can invert in some cases under ab­
normal situations. The knowledge of the propagation path improves root cause analysis 
significantly since the question of cause and effect can be answered and the disturbance 
traced back to its origins. In particular, challenges are posed through recycle streams in 
a process since a disturbance might affect all process variables in the recycle so that it 
becomes impossible to understand which variable started the disturbance.

Four common effects can be observed which change the features of the disturbance and 
allow conclusions of the direction of propagation. An overview of the changes to the 
signals due to fault propagation is given in Table 2.5. These observations are based upon 
experience from dealing with a number of process data sets and give a tendency of the 
behaviour of the disturbances as they travel from within the plant. The effects will be taken 
up later and their influence on the methods developed in this work will be investigated in 
Section 11.1.1.
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Characteristic Description Underlying mechanism

Dead time Time delay between two measure­ Process dead time
ments

Magnitude Amplitude of the disturbance de­ Process gain smaller than one
decrease creases, measurable by the standard 

deviation
Attenuation Low pass filtering, i.e. removal of 

high frequency components
Process time constant

Noise Additive random noise Measurement noise or outside 
influences

Table 2.5: Changes in data characteristics while disturbance travels along the fault propagation 
path.
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Figure 2.9: Fault propagation mechanism low pass filtering: Two temperature measurements 
with disturbance and different magnitude along a distillation column, Til at the top, TI2 at the 
bottom. The disturbance entered the column through the top inflow.

Firstly, the disturbance can be observed with the time delay that is equal to the dead time 
of the process between two observation points. An example for dead time is a composition 
or temperature change in a fluid pumped from a mixer to a stirred tank. The dead time 
injected by the connecting pipe will depend on the length of the pipe and the flow rate 
and can be large. Another example (see Shuta, 1993) is the exit temperature in a heat 
exchanger. Again, it will take an amount of time for the heated gas or liquid to reach the 
desired temperature. Dead time can also be inserted by measurement. A viscometer, for 
example, that measures viscosity draws a sample of fluid from the process through a tube. 
The dead time corresponds to the time it takes for a molecule to make its way down the 
tubing. A long length of tubing can add a significant amount of dead time. The knowledge 
of the dead time inherent in the process would simplify the search for the propagation path 
enormously. Because the dead time changes with changing process conditions, such the
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Figure 2.10: Temperature are measured along a distillation column. The disturbance originates 
from an unknown root cause and propagates along the process with Til being closest and TI5 
being furthest from the root cause. The original spiky feature of the disturbance in Til is less 
prominent in TI2, TI3 etc.

throughput, it is rather the exception to know the precise time it takes for the product to 
pass between two measuring points.

A second change in the data trend is that the magnitude of disturbance usually decreases 
further away from the root cause. This is often measured by the decrease in process 
variability through the standard deviation of the signal. In this effect, the actual form 
and thus the frequency spectrum of the disturbance is not affected. The transfer function 
of the process, if known, would have a gain smaller than one which leads to the decrease. 
A number of statistical tools, such as principal component analysis (see Section 3.3.1) 
are based on this assumption of change in the data trend. Figure 2.9 shows an irregular 
disturbance in two temperature measurements at the top and bottom of a distillation 
column. The disturbance enters the column at the top. The standard deviation in the 
upper plot is 1.4 °C while the standard deviation of the signal in the lower plot is 0.3 °C.

Thirdly, the data characteristic often also appears attenuated or damped when distributing 
along the process flow. This is due to the time constant of most process transfer functions. 
Usually, the period of oscillation or the occurrence of abnormal peaks is shorter than the 
time constant of the system. Thus, the process acts as a low pass filter on the disturbance. 
The filtering of the high frequencies has the effect that potential harmonics inherent in a 
disturbance are suppressed while the main oscillation sustains. This feature is exploited in 
methods described in Section 6.2.3. Figure 2.10 shows an example of a nonlinear harmonic 
disturbance which appears smoother and more like a sinusoid the further it travels in the 
process. The decrease in magnitude and the damping are both aspects of the dynamic 
behaviour of the process.
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Fourthly, a certain amount of noise is added along any process due to imperfect outside 
conditions. Noise is counteractive to the damping in the sense that the low pass behaviour 
removes noisy component and smoothes the signal while additive noise has the opposite 
effect. Most of the time, however, process noise added to the disturbance via propagation 
through the plant has a less prominent effect than damping.

Chapter 2 Summary

In this chapter, the background information on faults and disturbances in 
chemical processes has been mapped out. Root cause categories for com­
mon faults include process and constraint problems, controller tuning and 
valve problems. The data characteristics and fault propagation mechanisms 
for faults have been discussed.



Chapter 3

Process M onitoring

This chapter discusses process monitoring techniques for the chemical industry. 
The requirements for these techniques are defined and the respective litera­
ture is reviewed. The focus of this work is on data-driven methods for fault 
propagation and inferred qualitative models. The present status of industrial 
process monitoring systems is discussed.

Monitoring the performance and efficiency of critical process parameters is an essential 
component of process control. The reason for this is that processes conditions, such as 
throughput, outside temperature or consistency of the feed, change during operation. 
Also, equipment can show wear and tear and add unwanted characteristics to the process 
behaviour. The monitoring can be conducted on a localised level for each control loop 
and process variable or on a global level over a number of loops and variables. The area 
of control loop performance assessment (CLPA) or control loop performance monitoring 
(CLPM) has been studied in detail, for an overview see [98]. Most CLPA techniques also 
exploit the time trend of controller variable, output and set point but are supplementary 
to process monitoring techniques. The process monitoring methods that are investigated 
in this chapter usually do not consider the controller type or setup and investigate the 
historical data trends of process variables instead. Established statistical methods for pro­
cess monitoring are summarised in [67]. The two approaches of control loop performance 
and process monitoring work hand in hand to achieve the objectives of process efficiency, 
product quality and safety.

Similar process monitoring methods are developed for and applied to a number of indus­
tries in which continuous processes can be commonly found. These industries include the 
production of chemicals, petrochemicals, pulp and paper, food and pharmaceutical prod­
ucts. The more critical production conditions are, the greater is the need for sophisticated 
control strategies and process monitoring techniques. In the pulp and paper industry the 
composition materials and the speed of the paper rolls are critical [7] and require careful 
control and observation. Pinder and Godfrey [95] describe the requirements for process

31
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Figure 3.1: Stages of process monitoring system: fault detection and diagnosis give the time, 
location, kind and size of the disturbance.

monitoring techniques in the food industry while Luyben and Luyben [76] focus on the 
chemical and petrochemical industry.

This chapter is organised as follows. In the first section, an overview of the requirements 
and a list of the problems addressed by the monitoring methods are given. Benchmark 
criteria for the comparison of various techniques are discussed. Since process monitoring 
is usually compared to control performance monitoring, a short introduction to control 
performance monitoring techniques is included. In Section 3.2, classifications of monitoring 

techniques from the literature are compared and a classification suited for this work is 
introduced. The main groups are model-based and data-driven techniques. Since this work 
focuses on data-driven techniques, common techniques from the literature are described 
in Section 3.3 and 3.4.

3.1 R equirem ents for Process M onitoring

A process monitoring system is structured in several stages. These stages are fault detec­
tion, isolation, identification and diagnosis which are defined in the following. A number of 
benchmark criteria have been defined by Venkatasubramanian et al. [141] which are given 
and explained in Section 3.1.2. Another way of benchmarking is the comparison relative 
to control loop performance monitoring systems. A short overview of present monitoring 
indices is therefore given in Section 3.1.3. Control loop and process monitoring systems 
can also be combined to enhance the monitoring tool.

3.1.1 Stages of M onitoring

Process monitoring is often divided into the stages of fault detection, fault isolation, fault 
identification and fault diagnosis as suggested by Isermann and Balle [53]. Figure 3.1 
shows these stages. The first step is the detection of the disturbance, that is, the time when 
the disturbance affects the process. Fault isolation and identification follow the detection. 
Here, fault isolation involves locating the root cause of the disturbance while identification 
involves the characterisation of kind and size of the disturbance. The definition of fault 

detection is given by Isermann and Bailee as:
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“Fault detection is the determination of the faults present in a system 
and the time of the detection.”

That is, the question “if’ and “when” a fault has occurred is investigated by the detec­
tion. Patton et al. [90] point out that fault detection is more than making a binary 
decision whether the process is in normal operation and the presence of a disturbance. 
The challenge rather is to detect the fault at an early stage before it distributes through 
the plant. The reliable detection of small or early faults before an intervention is required 
are therefore objectives of a robust fault detection scheme.

The next step of fault diagnosis is defined Isermann and Balle as follows:

“Fault diagnosis is the determination of the kind, size, location of a fault 
which includes fault isolation and identification.”

In this work, the focus is on fault isolation and retracing the fault propagation path of 

the disturbance. In most case studies investigated here, the disturbance has been detected 
and the number of processes variables to be analysed has been narrowed down. A straight 
forward approach to fault detection are upper and lower control limits which raise an alarm 
if a threshold value has been exceeded. Fault isolation and identification is sometimes 
tackled in a single step by arguing that the process variables with the largest disturbance 
characteristic is also the closest to the root cause. As an example, Thornhill [137] uses a 

nonlinearity index to trace the root cause.

3.1.2 Benchmark Criteria

Benchmark criteria are desired when comparing a number of process monitoring ap­
proaches. Venkatasubramanian et al. [141] provide a list of desirable characteristics that 
allow the choice of the best method for a given monitoring task. The list of properties 
and features of a fault monitoring system is given in Table 3.1. The list is very generic 
to allow a comparison of a variety of monitoring approaches. The first characteristic, for 
example, a fault detection and diagnosis facility is concerned with the early detection of 

faults and the diagnosis of the correct fault.

Not all benchmark criteria are equally important for all applications, for example, if no 
model of the process exist, characteristic 9. is very important and less important if a 
detailed model is already available. The focus of this work is on the feature of explanation 
facility. The data-driven causality methods developed in the next part find the root cause
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Characteristic Description

1. Fast detection &, diagnosis Early detection of faults. Trade-off: tolerable perfor­
mance during normal operation, might be too sensitive 
to noise which results in frequent false alarms. 
Distinction between different faults. Trade-off: rejec­
tion of modelling uncertainties.
Insensitiveness to noise and uncertainty. Trade-off: 
performance.
Ability to decide if a detected fault is due to a known 
fault class or due to an unknown novel fault.
Adapting to process operating changes due to chang­
ing environmental conditions, e.g. product quantities, 
quality of raw materials or demands.
Finding the fault origin and root cause as well as prop­
agation to the current situation and identifying cause 
and effect relationships.
Ability to identify more than one fault present at the 

same time.
A priori estimate of classification error that occurred 

to confidence level.
Amount of modelling required for development of di­
agnostic system.
Amount of memory storage necessary for operation 
Amount of computation capacity required during op­

eration.

Table 3.1: Desirable characteristics of process monitoring system after Venkatasubramanian et 
al. [141].

and argue the fault propagation path through cause-and-effect analysis. Thus, the question 
of fault origin and the propagation to the current situation is addressed. Several test can 
be carried out concerning the robustness, adaptability and isolability which will be carried 

out later on in this thesis.

3.1.3 Control Loop Performance M onitoring

Control loop performance monitoring (CLPM) exploits the well understood behaviour of 
traditional PID control loops. CLPM is usually conducted online and used as a non- 
invasive tool. A famous and established technique for control loop assessment is based 
on the diagnosis using minimum variance control. In 1967, Astrom [158] introduced the 
minimum control variance (MVC) principle. MVC feedback control achieves minimum

2. Isolability

3. Robustness

4. Novelty identification

5. Adaptability

6. Explanation facility

7. Multiple faults

8. Classification error

9. Modelling requirements

10. Storage requirements
11. Computational effort
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Figure 3.2: Process monitoring and fault diagnosis methods as organised by Venkatasubramanian 
et al. [141].

variance of the controller output from a process and disturbance model. The models 
are for example derived from the time trend through an autoregressive moving average 
(ARMA) model. Harris [42] proposed the use of MVC to assess the performance of a 
control law and thus initiated the developments of numerous loop performance assessment 
techniques. The resulting index is often referred to as the Harris index and is imple­
mented in most commercial process monitoring systems, see Section 3.5. Qin [98] gives an 
overview of MVC and other monitoring methods. Hagglund [41], for instance, proposes an 
automated control loop performance monitor based on oscillation detection together with 
a diagnostic framework, exploiting the oscillations that can occur in malfunctioning loops. 

Thornhill and Hagglund [132] extend the diagnosis through spectral analysis and plotting 
controller set point versus the process variable. A linear quadratic Gaussian benchmark 
has been proposed by Huang and Shah [49] for models of PI and PID loops. More recent 
developments include an overall loop performance index (OLPI) by Xia and Howell [152] 
and a generalisation of the MVC principle by Harris [43].

CLPM can be combined with process monitoring by investigating both the process per­
formance and the control performance separately and comparing or supplementing the 
results. A first approach undertaken by the joint project of ABB/University College 
London to develop a plant-wide disturbance analysis tool. The ABB/University College 
London tool is described later in Section 3.5.3. An evaluation of control performance 
monitoring algorithms from an industrial perspective was carried out by Desborough and 

Miller in 2001 [21],
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Figure 3.3: Process monitoring and fault diagnosis methods as organised by Chiang et al. [14].

3.2 O rganisation o f Process M onitoring M ethods

Process monitoring methods can be classified in a number of ways. In his early textbook, 
Himmelblau [44] divides the techniques of fault diagnosis into two categories: estimation 
of variables or model parameters and pattern recognition methods. Estimation techniques 
require a model and are therefore also called model-based. Pattern recognition techniques 
on the other hand use process data comparing normal operation and disturbance data and 
are therefore also referred to as data-driven methods.

Venkatasubramanian et al. [141, 142, 143] follow the categorisation by distinguishing be­
tween the type of knowledge, which is either a priori or historical knowledge. Model-based 
methods require a priori knowledge to estimate model faults while data-driven methods 
extract the information from quantitative historical process data. The classification of 
process monitoring methods in [141, 142, 143] is shown in Figure 3 .2 . A further differenti­
ation between quantitative and qualitative models is made. Quantitative models usually 
express the relationship between inputs and outputs in terms of mathematical functions 
while qualitative models, by contrast, express the relationship in terms of qualitative 
functions centered around different units in a process. Venkatasubramanian et al. also 
differentiate between qualitative and quantitative process history based methods. Quan­
titative approaches formulate the process monitoring problem as a data-driven problem, 
for example, to find common features in a number of time trends. Qualitative process 
history based approaches extract statements from the time trend that are represented by 

a qualitative model.

Chiang et al. [14] focus on data-driven methods which is reflected in their classification of 
process monitoring methods, shown in Figure 3.3. Here, the differentiation criterion is the
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Figure 3.4: Process monitoring and fault diagnosis methods as organised in this work. Methods 
developed in this work axe highlighted in bold font.

type of diagnostic search strategy rather than the kind of knowledge or whether the system 
is model-based. The first level of the organisation is therefore the differentiation amongst 
analytical, data-driven and knowledge based methods. Hybrid systems are introduced as 

a subclass of knowledge based techniques.

The focus of this work is on data-driven methods. The organisation of the review of process 
monitoring methods is therefore structured in more detail for the data-driven methods, 
as shown in Figure 3.4. The first category are statistical methods, often referred to as 
multivariate statistical process control (MSPC). A number of applications of artificial 
intelligence methods - neural networks and self organising maps - can be found in the 
literature. The third category is here called signal processing techniques, which could also 
be regarded as deterministic methods. An example is a cross-correlation algorithm which 
is developed in 5. Statistical methods that are usually not grouped under the term MSPC 
are here referred to as time series analysis methods. Transfer entropy and the nearest 
neighbours method developed in Chapters 6 and 7 for process monitoring purposes are 
examples of these time series methods. In the next section, established techniques listed 
here will be reviewed in more detail.

In most chemical processes, accurate dynamic models are normally not available although 
some qualitative guidelines might be known by the process engineer. In this case, qualita­
tive model-based methods are of importance since a qualitative model is derived as part of 
the developed monitoring system in this work, see Section 4.3. Thus, Section 3.4 gives an 
overview of the development of digraphs and signed digraphs. No models were available 

for the case studies in this thesis.
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Figure 3.5: Example of model description of disturbance: Home heating and air conditioning 
control system by Ellis [25].

A number of reviews on quantitative model-based methods have been published by Venkata­
subramanian et al. [141, 142], Frank [30] and Isermann [53]. Quantitative models incorpo­
rate the disturbance into the process model. As an example, Ellis [25] give the disturbance 
modelling of a home heating and air conditioning control system, as shown in Figure 3.5. 

Here, the disturbances enter the system after the actuator, the furnace and air condition­
ing, and before the plant, represented by the thermal mass. Controller, actuator and plant 
are described by transfer functions. If all these models are available, a quantitative model- 
based approach is preferable over a data-driven approach since all information about the 
process can be incorporated.

3.3 D ata-D riven M ethods

Data-driven methods are directly applied to process data. The measures extract features 
from high dimensional data providing information on the state of the process. An advan­
tage of data-driven methods is the application to complex processes which are too large 
to allow derivation of a process model without excessive effort. The techniques are non 
invasive, can be applied to various processes and situations and work with data available 
from standard data acquisition tools. A disadvantage is that their proficiency is dependent 
on the quantity and quality of the process data used for the analysis. The structure of the 
following sections follows the classification of the process monitoring methods in Figure 
3.4. Cross-correlation, transfer entropy and nearest neighbours, highlighted in bold font, 
are developed in this work and explained in the methods part.

3.3.1 M ultivariate Statistics

In multivariate statistics, a number of measurements taken at the same time instance or 
batch are analysed. Objectives are compression or extraction of common data features, 
such as a spiky signal present in a number of measurements. For process control, the 
application of multivariate statistics is referred to as multivariate statistical process control
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Figure 3.6: Example of multivariate Shewart chart.

and in particular for the application to chemical processes as chemometrics1. Overviews 
of MSPC are by MacGregor and Kourti [77] and Kourti and MacGregor [6 6 , 67]. In 2002 , 
a special edition of the IEEE Control Systems Magazine was dedicated to MSPC [96, 68]. 
Most frequently used MSPC methods are reviewed in the following paragraphs and include 
Shewart and CUSUM charts, principal component analysis (PCA), partial least squares 
(PLS), canonical variate analysis (CVA) and independent component analysis (ICA). In 
their textbook, Chiang et al. [14] apply PCA, PLS, CVA and Fisher discriminant analysis 
to simulation data from the Tennessee Eastman Process [23] and compare the efficiency of 
these methods for fault diagnosis. Multivariate statistical methods have been previously 
applied in a large variety of research fields to financial, medical, geographical or socio- 
demographical data. Textbooks on these methods are by Anderson [1] or Srivastava [124].

Shew art and C U SU M  Charts: Shewart and cumulative sum (CUSUM) charts were
developed as univariate statistical methods for process monitoring purposes. Extension 
to multivariate methodologies followed but since the emphasis is on the simultaneous 
investigation of several variables, both Shewart and CUSUM charts have been replaced 
by truly multivariate methods such as PCA and the like. In Shewart charts, key process 
variables are monitored and compared to a target value. If an upper or lower control 
limit is exceeded an alarm is raised. The limits are usually set to ±3cr, that is, the set 
point plus or minus three times the standard deviation under good operating conditions. 
An extension to multivariate Shewart charts is shown in Figure 3.6 where PV1 is plotted 
versus PV2 for the same time or sample instance. The control limit is here defined as the 
oval shape. Values, for example a point close to PV1 equals +3cri and PV2 equals —3(72 as 
indicated by an arrow in Figure 3.6, are not permitted since they are outside the control 
limit. Thus, the multivariate case can give better performance than the univariate case, 
see [68]. CUSUM charts act on a similar principle as the Shewart charts by cumulated 
summing of the difference between a measurement over time and expected value. If the

lrrhe term ’chemometrics’ was coined by Bruce Kowalski, founder of the Centre for Process Analytic 

Chemistry in the 1980s[96]
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Figure 3.7: Example of principal component analysis. Left hand panel shows the original time 
trend while the right hand panel shows the five principal components pci to pc5. The percentages 
on the right give the percentage of variation contained in each principal component.

sum exceeds a threshold an alarm is raised. CUSUM was introduced by Page [88]. An 
overview of a multivariate extension of CUSUM charts is given in [104].

Principal C om ponent A nalysis (P C A ): Principal component analysis is a frequently 
used multivariate statistics method in process monitoring. PCA was developed for data 
analysis and compression. The principal components are the characteristic vectors of 
the covariance matrix of the data set. The first principal component is the normalised 
linear combination of statistical variables with maximum variance. A statistical measure 
is derived by evaluating the power of the first principal components, applying Hotellings 
T 2 statistic or by comparing the residuals of each variables as the squared prediction 
error (SPE) [1]. PCA is illustrated in Figure 3.7 using the example introduced earlier in 
Figure 2.10. The first principal component, pci, shows the spiky regular pattern which is 
prominent in all signals and contains 43% of the variation of the five time signals. PCA 
can thus be used for selecting and clustering process variables. PCA has been applied to 
process monitoring since the early 1990s for example by Kresta et al. [69] to overcome 
the problem of data overload arising from the large number of discrete measurements 
captured by plant sensors. Further investigations followed [151, 101]. The PCA algorithm 
has some shortcomings such as the inability to deal with time lags or large numbers of 
process variables. A number of variations of the original method, such as multi-block 
[148], consensus [99] or spectral [134] PCA, have been reported to address these problems. 
Most recent applications of PCA for process monitoring are by Choi et al. [17] and Yoon 
and MacGregor [154].

P LS, CVA and IC A :  Partial least squares (PLS), canonical variate analysis (CVA) 
and independent component analysis (ICA) are linear dimensionality reduction techniques 
similar to PCA. PLS maximises a predictor or independent matrix and a predicted or de­
pendent matrix for each component of the reduced space. PLS is often employed in 
statistical quality monitoring by selecting the dependent matrix to contain only product 
quality data while the independent matrix contains all other process variables. PLS was 
introduced around the same time as PCA in the early 1990s [69] and more recent appli-
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Figure 3.8: Two layer topology of a neural network: input, hidden and output layer.

cations to process monitoring are [40, 65]. CVA maximises a correlation measure between 
two sets of variables. It is related to PLS as it involves a singular value decomposition 
but the difference from PLS is that CVA maximises correlation whereas PLS maximises 
covariance. Scharper et al. [109] apply CVA to fault diagnosis and Russel et al. [105] 
compare CVA to PCA and found that CVA gave the best overall sensitivity and early 
detection of all faults. A combined index of CVA and PLS is applied to a continuous 
stirred tank co-polymerisation reactor by Simoglou et al. [120].

The basic assumption for ICA is that the new components are statistically independent, 
that is, the joint probability density function is factorisable. Li and Wang [74] demonstrate 
the use of ICA for process monitoring on a case study of two continuous stirred tank 
reactors, Kano et al. [56] investigate ICA for the purpose of fault diagnosis. Spectral 
ICA is proposed by Xia et al. [153] to analyse the frequency spectra rather than the time 
trends.

3.3.2 A rtificial In telligence

Artificial intelligence (Al) techniques are often grouped into the area of pattern recognition. 
Like a human brain, Al methods are trained with a number of examples. After the training 
period, the Al system is able to classify decisions with an input data set. An advantage 
of Al systems is the extraction of complex and potentially nonlinear input features. As 
a trade-off, large data sets for the training period are required and computational effort 
increases easily beyond practicability. Here, the application of two techniques of Al for 
process monitoring and fault diagnosis are reviewed. The two applications are neural 
networks and self organising (feature) maps. The use of neural networks in fault diagnosis 
is widespread and many examples have been described in the literature. Self organising 
maps are a more recent development, often more complex and less frequently employed 
for fault detection. A comparison of the two methods for chemical problems in monitoring 
and control is given by Zupan and Gasteiger [157].
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Neural Networks: In neural networks, input variables are mapped onto output vari­
ables by a neural network consisting of interconnected neurons as illustrated in Figure 3.8. 
The neurons are arranged in layers of connected nodes where the connection represent 
weights or a, usually nonlinear, function such that

N - 1 M - l

zk = ^ 2  v>j9(xj) and y{ =  ^  vk h(zk) (3.1)
j = 0 k = 0

The network is developed in two stages: the first stage is the choice of the architecture 
or topology of the network and the second stage the selection of the learning strategy 
for developing strong connections. The most frequently used topology in fault diagnosis 
is a three layer neural network and the most common learning strategy is a feedback 
propagation algorithm. The neural network can be used for fault diagnosis by assigning 
the input neurons to process variables and the output neurons to fault indicators. A large 
number of data sets is needed to train the network. Sorsa et al. [123] used 3000 training 
cycles to train a continuous stirred tank reactor with 14 measurements and 10 faults. 
Becraft and Lee [4] study the hidden and input layer development during fault space 
training. More recent work includes the successful application of neural networks to an 
industrial reactor [84] and to the actuator of a process valve [61]. A general shortcoming 
of neural networks is the lack of novelty identification, as highlighted previously in Table

3.1.

Self Organising Maps: Self organising maps (SOM) were introduced by Teuvo
Kohonen in the early 1980s are often also referred to Kohonen maps. The SOM consists
of two layers: the input and the output layer. The high dimensional input data is projected 
on a two dimensional output grid2. The output “map” is a M  by N  array of reference 
vectors rm>n. The reference vectors are of the same dimension as the input vectors. At 
time k =  0, the map is initialised with random vectors for rm>n[0] that have values within 
the range of the input vectors v[fc]. For the next time steps k = 0...AT, the following two 
steps are repeated:

1. Find the reference vector rVjW closest to input vector v[/c] through minimising 

||v[fc] -  rm>n[fc]||.

2 . Adjust the reference vectors in the proximity of rv,w the according to 

rm ,n[k +  1] =  rm>n[fc] +  fc(m, n, rV)W, d, k)a (l -  £ )  (v[fc] -  rm,n[/c])
where k is the neighbourhood kernel function, d the kernel radius and a the learning 

rate.

A new class of variables is created in the form of a newly stored pattern in rm;Tl whenever a 
pattern with a high distance is applied to the SOM. For fault detection, a SOM is trained 
with data from normal operating conditions. A fault can be detected by monitoring the 
distance between the observation and the pattern closest to the observation. Ignova et

2http://w w w .sbc.su .se/ m accallr/thesis/nodel37.htm l. March 2005.

http://www.sbc.su.se/
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al. [50] find the SOM to be a potentially useful tool for statistical quality monitoring by 
applying it to seed data of a fermentation process. Jamsa-Jounela et al. [54] apply SOMs 
for fault detection and diagnosis to a copper flash smelting process. SOMs in general 

require even more training data than neural networks but unlike neural networks, can 
deal with new fault categories.

3.3.3 Signal Processing

In this section, methods are grouped which are usually placed in the area of signal pro­
cessing. Signal processing methods are used for the analysis of signals in many electrical 
engineering areas, such as communication, control and power electronics. Here, the fo­
cus is on the deterministic analysis tools of frequency spectra and wavelets which will be 
reviewed in the following paragraph.

Frequency S p ec tru m : One of most commonly used technique is the representation
of a signal in the frequency domain via the Fourier transform. The Fourier transform 
splits a signal into sine waves with varying oscillation periods. Amplitude and phase of 
the oscillations present in the signal are plotted over the frequencies. The square of the 
amplitude spectrum is often also referred to as the power spectrum. The frequency axis 
is measured in seconds-1  =Hz or minutes-1 . Oscillating signals can best be observed in 
the frequency domain. The following list of useful applications of frequency analysis for 
fault diagnosis and process monitoring purposes has been made during the placement in 
the Advanced Controls Technology Group Eastman Chemical Company:

• The frequency spectrum can be used to focus on a smaller number of mea­
surements which show a specific oscillation (fault detection);

• If oscillation are present in several variables then higher amplitudes may 
indicate that closeness to the root cause;

• Several oscillation periods in several signals can be detected and compared;
•  Multiple oscillations in one signal are easy to detect;
•  Harmonics at multiples of the main frequency may be caused by nonlinear­

ities and tend to be close to the root cause;
•  Various faults have different frequency ranges.

Caution has to be taken for some signals unsuited for frequency analysis. This is the case 
for the following situations.
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• Frequency analysis is unsuited for irregular patterns;
•  A drifting mean must be removed before generating the frequency spectrum;
• Some harmonics are due to the PIa compression algorithm, see Section 10 .2 .

“PI here refers to the PI data historian by OSIsoft, see Section 3.5.1, not the PI control.

The spectral analysis is carried out in conjunction with principal component and indepen­
dent component analysis as described in previous Section 3.3.1. In the example in Section 
4.2, Figure 4.4 shows the frequency spectrum of the time trend displayed in Figure 4.3. 
The main period of around 0.05 min-1  can be clearly observed in most process variables. 
Harmonics at multiples of this frequency are visible in some of the spectra.

W avelets: The investigation of the power spectrum views the oscillations in a signal while 
disregarding all time information. Wavelet analysis combines both time and frequency 
analysis by decomposing the signal into elementary building blocks of wavelet transforms 
and plotting the blocks for a number different frequencies over time. An application of 
wavelet analysis to sensor fault detection and diagnosis is proposed by Zhang and Yan 
[156]. Different sensor faults, such as bias, cyclic, stuck, spike and erratic, show distinct 
features in one or more of the frequency ranges at different times. Tse et al. [139] apply 
wavelets to utilize the time localisation of vibrating signals of rolling element bearings.

3.3.4 Tim e Series Analysis

A number of methods investigate the statistical properties of a time series. These methods 
are here grouped under the term time series analysis to differentiate them from the methods 
traditionally referred to as multivariate statistics, see the previous Section 3.3.1. In the 
textbook by Kantz and Schreiber [57] methods are described dealing with the description 
of chaotic signals and properties such as determinism, predictability and nonlinearity. 
Only few methods from this area have been used for process monitoring and the two main 
contributions of this work, transfer entropy and the nearest neighbours method, originate 
from this area. The statistical method of probability density function is, however, widely 
used for fault diagnosis and is reviewed here. A method based on the same principles as 
nearest neighbours method is the nonlinearity detection by [57]. Thornhill et al. [136, 137] 

introduce this method for fault diagnosis, see also Section 6.2.3.

Probability D en sity  F unction: A full description and discussion of the probability
density function (PDF) is deferred to Section 7.1 where it will be explored in detail. A 
random variable is fully described by its PDF and the PDF is therefore used for two 
purposes: data compression and analysis. Desforges et al. [22] use the PDF to detect 
abnormal and unexpected process conditions from measured response data. Wang and Lin
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Figure 3.9: Signed digraph derived from expert knowledge: process schematic (left) and signed 
digraph model (right) of buffer tank process by Iri et al. [52].

[145] combine the analysis of probability density function with observer based techniques 
by applying the PDF to the system output signal which is then fed back to the input of 
the control system. Forbes et al. [29], more recently, use the shape the PDF of process 
states for control and monitoring purposes. Horch [46] uses the PDF to decide whether a 
loop fault is due to stiction or non-stiction of the control valve.

3.4 Q ualitative M odels

In this thesis, the data-driven methods described in the previous section are supplementary 
to the data-driven causality measure derived in this work. They are used to pre-process 
the data or to gain additional information about the process. In this section, causal quali­
tative models are reviewed that give the context for the causality methods and derivations 
developed in this work as they are representations of the cause and effect relationships 
in a process unit. The resulting models are digraphs or signed digraphs. A digraph is 
a graph with directed arcs between nodes where nodes represent process variables and 
the arcs represent the relationship between the process variables. Signed digraphs have 
additionally a sign attached to each arc where the sign indicates whether the dependent 
variable increases or decreases. All qualitative models require some knowledge about the 
process for the construction of a causal map or digraph. The process knowledge can either 
be a description of differential algebraic equations, expert knowledge of the process sys­
tems engineer or representations of the process schematic. These three approaches will be 
reviewed in the following sections. For an overview of qualitative models see the second 
part of the process monitoring assessment by Venkatasubramanian et al. [142].

3.4.1 Expert Knowledge

When first introducing signed digraphs for fault diagnosis and process monitoring, qual­
itative states were assigned to each unmeasured node in the digraph. Figure 3.9 shows 
the example of a buffer tank by Iri et al. [52] and the corresponding expert knowledge. 
The tank in Figure 3.9 has one inflow and two outflows. The inflow Fi is controlled by
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Figure 3.10: Digraph for the differential and algebraic system of a controlled level tank, see 
Section 2.3.

valve Vi, the first outflow F2 by flow controlled valve V2 and the second outflow F 3 by 
level control V3 . The causal map in the right hand panel of Figure 3.9 is derived through 
expert reasoning. For example, if the inflow valve Vi opens, inflow Fi increases. This is 
visualised in the causal map through an arrow pointing from Vi to F i. The plus sign next 
to the arrow means that the flow is increasing. On the other hand, if outflow F2 increases, 
then level L decreases. The arrow pointing from F2 to L is therefore labelled with a minus 
sign. Nam et al. [85] propose a scheme for constructing extended symptom-fault asso­
ciations (ESFA) from the signed digraphs and thus identify the fault propagation path. 
This method has the same objective as the causality measures derived here. However, 
a construction of ESFAs is only possible if a signed digraph has been derived which is 

usually only available for less complex processes, such as a buffer tank or a continuous 
stirred tank reactor.

3.4.2 Differential and Algebraic Equations

A systematic framework for deriving digraphs from mathematical models is given by Mau- 

rya et al. [80]. The basis are firstly a differential equation, for example =  /  (3/1, 3/2)* 
The variable x  on the left is called endogenous and the variables 3/1, 2/2 on the right side 
of the equation are called exogenous. Directed arcs are drawn from the exogenous to the 
endogenous variables since a constant value of y\ or 1/2 results in a change of x. Therefore, 
y\ and y2 influence x. If is not a function of x  then a zero arc is drawn to node x. Al­
gebraic equations, on the other hand, such as 7/2 = g(%), capture instantaneous behaviour 
and thus contain no causal information. However, strongly connected components can be 
identified by partitioning the variables into subsets and finding the dominant direction of 
causality. The developed digraph model can use propagation through the graph to predict 
the behaviour of the system. Signs can be assigned to the arcs to indicate the direction 
in which one variable will influence the other, that is, increase or decrease. The sign of 
the arc is equal to the partial derivative of the endogenous variable to the exogenous. The 
resulting graph is called signed digraph (SDG). Maurya et al. [81] deduce a SDG for fault 
diagnosis for the simple example of a continuous stirred tank reactor.
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Figure 3.11: Causal map derived from process schematic: A part of the process schematic (a) of 
the Tennessee Eastman Process together with a digraph construction (b) by Chiang and Braatz 
[16].

Exam ple: For constructing the digraph from differential and algebraic equations consider 
the controlled level tank from Section 2.3. The system was described by the differential 
equation

dl
A — = win(t) -  wout(t) (3.2)

with inflow Wjn ( t ) and outflow wout{t) and l(t) the level o f the tank. For this equation, 
two arcs are drawn from wm and wout to the level I. The feedback control law was set to 
be

Wout(t) =  K cl(t) (3.3)

which gives an additional algebraic equation for the relationship o f I, wjn and wout. Since 
the level I controls the flow wout, a further arc is drawn in the opposite direction from 
I to wout. The digraph o f the controlled level tank is shown in Figure 3.10. The arrow 
pointing from variable I to itself attached with a zero indicates that the derivative o f 
I is used. Small examples like this are rarely useful for process analysis. However, if  
mathematical descriptions o f large processes exist, a good overview of the behaviour can 
be achieved through digraph construction. _______________________________________

3.4.3 Process Schematic

A digraph can be derived through expert knowledge by using the process schematic as 
described previously in Section 3.4.1. The process variables are indicated along the flow 
line and their consequential order depends on the direction of flow. Deriving the digraph 
from process schematics is often labour intensive and not always straight forward. Not all 
relationships between the variables can be investigated so that attention has to be paid to 
the ones in which the disturbance occurs. There is no differentiation between the case of
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normal operation and disturbance. Chiang and Braatz [16] construct a digraph model of 
the Tennessee Eastman Process from knowledge of the process and the covariance matrix. 
An excerpt of that process model together with the process schematic is shown in Figure 
3.11. Fault diagnosis is conducted by an entropy related measure of the Kullback-Leibler 
Information Distance (KLID) only after the digraph is derived. Maurya et al. [82] also 

deduce a signed digraph from the Tennessee Eastman Process using an initial response 
table for measured variables.

3.5 Com m ercial D ata-D riven M onitoring System s

Advantages of software based monitoring tools are their non-invasiveness, cost-effectiveness 
and their ability to therefore minimise downtime. All monitoring systems are usually online 
and use normal operating data received from the standard data source OPC3. Desborough 
and Miller [21] describe the use of a process monitoring system as follows.

“The high-level goal of a process control monitoring system is to provide 
plant control engineers with enhanced capabilities to identify problems 
for many controllers while minimizing additional effort or expenses.”

In this section, data acquisition systems are described that are state-of-the-art in process 
control. The ability to acquire a good data set within the time frame when the disturbance 
occurs depends largely on the data acquisition system. A number of control and process 
performance assessment tools by Honeywell, Matrikon and Expertune are available which 
will be summarised in the next section. The process measurement are captured and 
discretised by the DCS or supervisory control and data acquisition (SCADA) systems. The 
captured data is sent to the data historian, for example the PI system. The monitoring 
and assessment tools fetch the data from the historian data base and process it to gain 
information about the process.

3.5.1 D ata Acquisition System s

Process monitoring systems are embedded in data acquisition systems, that is, they receive 
data and send back control parameters. Data acquisition systems gather data from the 
hardware at the instrumentation in the plant, such as distributed control systems or 
programmable logic controllers (PLC). Often in this context the term SCADA is used for 
control of industrial plants. It is more widely used in power plants and water systems

3OPC: OLE for Process Control. OLE is short for Object Linking and Embedding and is a programming 

language attribute.
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where large areas have to be covered. Some applications are reported for chemical plants 
[3]. Four major components are part of every SCADA system [131]:

•  A master station where computers, peripherals and input/output systems are com­
bined to enable the operators to monitor and control the process;

•  Remote terminal units (RTU) which acquire all data from field devices, process the 
data and transmit it to the master station. RTUs also distributes control signals to 
the field devices;

• Field buses for communication between the master station and the RTUs with a 
defined bandwidth;

•  Human machine interface (HMI) for the interaction of the operators with the master 
station.

Most SCADA system have facilities to record, present and store data. However, the qual­
ity of the HMI decides about the use of the system for process monitoring tasks. In the 
chemical industry, the most frequently used data historian system is the PIsystem™ , a 
software product by OSIsoft™ 4. OSIsoft claims 5000 applications have been installed 
in large plants world wide. The focus of the PIsystem is on data acquisition but some 
monitoring facilities are incorporated. Its popularity is also due to a large number of inter­
faces to all major automation vendors such as ABB, Honeywell, Rockwell and Siemens. In 
the following paragraphs the main facilities of the PIsystem are listed together with their 
significance for process monitoring purposes. The data acquisition system is of particular 
importance when dealing with data quality issues such as compression, quantisation or 
sampling problems, described in Chapter 10.

P I  da ta  h istorian: The data historian acquires, processes, displays and stores process 
data. The system has real time facilities that allow process control, alarms and opera­
tions. The data is stored in a data historian (PI Datastorage) using the swinging doors 
compression5. From there, historical data can be retrieved by individual users of PI and 
exported as plain text or Microsoft Excel files.

P I  server  applications: A number of applications are implemented on the PI server to 
carry out monitoring tasks, such as alarms, batch events or statistical process control func­
tions. PI alarm tracks and manages predefined alarm conditions which can be triggered by 
the duration of an event or deviation from norm. Alarm conditions are also stored in the 
PI data historian. A batch manager identifies processes stages and measures repeatability 
of batch processes. The events can be hierarchically grouped. The PI real-time statistical 

quality control stores test results and records control limits.

4h ttp://w w w .osisoft.com; Information on the PI data historian by OSIsoft, March 2005.
5For the algorithm of the swinging door compression see Section 10.2.

http://www.osisoft.com
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P I  m odule database: The PI module database manages equipment data such as the
equipment specifications, manufacturer data and photographs. Process data can be stored 
and allocated to a piece of equipment. Additionally, all configuration changes are recorded. 
The data is structured into hierarchies and connectivity models to incorporate process 
knowledge. However, the process knowledge is not processed any further to automatically 
incorporate it into fault diagnosis.

3.5.2 Control Performance Assessment Tools

The publication of methods that assess the performance of control loops from the data 
trends, such as the Harris index [42], led to the development of a number of computer 
aided tools. These control loop performance assessment tools were developed by tradi­
tional engineering firms and new startups. John W. Cox, Eastman Chemical Company 
states: “As far as specific control performance monitoring vendor tools, we would view 
Matrikon ProcessDoctor, ExperTune PlantTriage, and Honeywell LoopScout as the three 
best current vendor tools.” . The three tools are described in the following.

There are also drawbacks of these standardised and automated tools. In a publication in 
1999, Eastman Chemical Company assessed the use of LoopScout [92] but chose to build 
their own loop assessment tool to for three primary reasons:

•  Automated data collection at that time was limited to Honeywell control systems;

• Substantial amounts of process data would have to be sent to Honeywell, requiring 
complicating approvals;

•  The cost to assess loops worldwide was prohibitively high given the emphasis on 
reducing business expenses.

The control performance assessment facilities of the tool developed by Paulonis et al. are 
described in [92].

E x p e rT u n e ’s P lantTriage: PlantTriage is a monitoring and diagnostic system that
features a reporting scheme for economic performance criteria6. Up to 40 analytical mea­
sures are calculated per control loop to assess the performance of the loop. The assessment 
takes place at regular intervals for each unit of the plant. In particular, an oscillation de­
tection, identification and diagnosis scheme scans all control loop. The analysis of the 
oscillation detection is based on the frequency spectrum and in a first step the periods 
and strengths are identified. The period of oscillation is measured as peaks in the spectrum 
and displayed in seconds. The strength is calculated from the percentage of energy of the 
identified peak compared to the total energy of the spectrum. The first three harmonics 
are considered in the analysis. The detected oscillations are classified into three categories:

6http://w w w .expertune.com/planttriage.html, PlantTriage software by ExperTune, March 2005.

http://www.expertune.com/planttriage.html
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• Load - the disturbance originates from load upset or from interaction with other 
loops,

• Tuning - aggressive tuning is the cause of the disturbance,

• Valve - the disturbance is caused by valve stiction or hysteresis.

A confidence level is established for all categories ranging from 0% to 100%. The higher the 
percentage, the more confidence can be placed in this diagnosis. This gives more flexibility 
in the interpretation since there is, for instance, no category allocated for root causes other 
than load, tuning or valve problems. A basic mechanism of fault propagation is suggested 
by ExperTune through grouping loops with the same oscillation period and checking if 
one of the loops has a high confidence level for valve problems. The argumentation is very 
rudimentary but practical and works for distributed disturbances caused by sticking valves. 
In addition to the oscillation analysis a control performance assessment is conducted for 
each control loop. Here, traditional indices such as the Harris index [42] are implemented. 
A further feature is the “Control System Availability” which is specifically designed to 
detect controllers in manual, controllers that are stuck at a limit or with frequent mode 
changes. A data historian and trending facility plots process variables that are received 

from the OPC historical data access. Expertune is currently extending its software to the 
application of batch processes.

H oneywell’s Loop Scout: A frequently used control loop performance monitoring
system is Honeywell’s Loop Scout™ 7 which is completely based on the internet, thus all 
the data remains with Honeywell. Pattern recognition techniques are applied to distinguish 
between tuning problems and valve problems. Characteristics of the loop are compared 
to pattern which are known to be caused, for example, by stick slip behaviour and which 
are stored in a data base. The performance classification is similar to the PlantTriage 
software, not exact but only a recommendation provided with a confidence level for the 
recommendation. Loop Scout™ focuses on regulatory (SISO) rather than on multivariable 
(MIMO) controller assessment. The statistical tools employed by the software package 

include:

• Hysteresis characterisation - PV-OP plots and hysteresis metrics;

• Scatter plots and pattern recognition - for oscillation analysis and hysteresis identi­
fication;

• Minimum variance analysis - controller error analysis and computation of theoretical 

minimum variance;

• Spectral analysis - frequency plots that are linked with poor performance are iden­
tified and spectrum of PV is analysed.

7http://www.loopscout.com , March 2005; LoopScout process monitoring software by Honeywell; for a 

free trial version visit the website.

http://www.loopscout.com
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The assessment also provides metrics to detect certain states of the loop such as wind-up, 
broken cascades, control in manual, control mode off normal and recognition of patterns of 
known faults. A data historian is provided which is a shared facility with other Honeywell 
applications. The time series data is collected in RM PCT’s MPT (multipoint trend for­
mat). For each controller it collects configuration information as well as 5000 samples of 
PV, SP and OP time series data. The default sample frequency values are 1 second data 
for flow loops, 5 second data for pressure loops and 30 second data for both temperature 
and level loops. A recent feature in Honeywell’s Loopscout is the criticality index that 
weighs the loop performance index by a factor to decide the importance of the loop.

M a tr ik o n ’s ProcessD octor: The software package ProcessDoctor by Matrikon8.
comprises different components for PID loops, model predictive control (MPC) and model 
identification. The package for PID loops identifies, prioritises and diagnoses control loop 
problems such as valve and tuning problems, oscillations and unwanted loop interactions.

3.5.3 P lant-W ide Disturbance Analysis Tool

At present, there are no known monitoring programs that use the data-driven methods 
developed for the investigation of plant-wide disturbance. A project between ABB and 
Imperial College /  University College London Centre for Process Systems Engineering is 
under way to develop solutions for computer aided plant disturbance analysis [48]. The 
tool incorporates data-driven methods that draw information from the time trend of a 
recorded disturbance. The objectives are as listed in [48] as follows:

• Detection of the presence of one or more periodic oscillations indicated by a regular 
pattern in the measurements;

• Detection of non-periodic disturbances and plant upsets;

• Determination of the locations of the various oscillations/disturbances in the plant 
and their most likely root cause.

The detection of time trends with similar oscillation patterns is pursued with help of the 
threshold crossings of the autocovariance function as described in [136]. The tool uses 
spectral principal component analysis to cluster time trends with irregular disturbances 
and presents them in hierarchical classification trees [134]. Nonlinearity assessments of 
the time trends give conclusions towards the root cause as described in [137].

The methods developed in here will be incorporated in a plant-wide disturbances assess­
ment tool as developed by the ABB /  CPSE joint venture.

8http://w w w .matrikon.com/products/processdoc. March 2005; ProcessDoctor process monitoring soft­

ware by Matrikon

http://www.matrikon.com/products/processdoc


CHAPTER 3. PROCESS MONITORING 53

Chapter 3 Summary

In this chapter, process monitoring techniques and systems were reviewed. 
Current industrial tools provide the facility of data-driven methods for auto­
matic use. A literature search showed that no data-driven methods presently 
exists that retrace the fault propagation path and which can construct a qual­
itative model of the process using historical data.
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PART II - DATA-DRIVEN CAUSALITY METHODS

According to Desborough and Miller [21], the most common cause of disturbances 

in chemical plants are process problems such as oscillations caused by a recycle 
or interaction between control loops that compete for the same physical quan­
tity. These disturbances usually affect a larger number of measurements and are 
therefore referred to as plant-wide disturbances. Unlike upsets caused by valve 
problems these disturbances can also not be classified or diagnosed easily. The 
root causes are manifold and the signature of the disturbance varies. For these 
reasons, identifying the fault propagation path assists in diagnosis of the root 
cause.
In the first chapter of Part II, an introduction to data-driven causality measures 
is given. Before describing the nature of causality measures and ways of repre­
senting measures for a number of variables, a reference case study is introduced. 
The causality problems and data trends of the reference case study are used 
throughout Part II of this thesis. Furthermore, the nature of causality measures 
is discussed and for graphical representation, digraph models of the system are 
constructed from the causality measure.
In Chapters 5, 6 and 7, three alternative ways of specifying the directionality 
of process variables from historical data are introduced and developed. These 
relatively recent statistical methods are available because of the development in 
the computational power of modern PCs. The simplest way is to measure the 
time lag between process variables using the cross-correlation function (CCF). 
The shortcoming of this method is that it requires a time lag in order to measure 
causality.
Two statistical methods presented here are the nearest neighbours and transfer 
entropy method. These have the key advantage of finding dependency also in 
case that no time lag exists between process variables. The reason for this is that 
the driver variable contains more process information than the second, response 
variable and thus a dependency can be measured. Thus, the driver variable 
can predict the response variable. The concepts of randomness, determinism, 
continuity and predictability are key to this work and will be explained in detail 
in Chapter 6.



Chapter 4

Introduction to Causality Analysis

This chapter provides an introduction to  causality analysis by giving the pre­
requisites and properties for a root cause explanation facility. A reference case 
study for the developm ent of the data-driven analysis m ethods is presented  
here. Graphical tools are investigated that allow the autom atic visualisation  
of the causality analysis.

As a prerequisite of the causality analysis, the disturbance should already have been de­
tected in a number of process measurements as done presently by the commercial controller 
performance tools. The objective of the causality analysis is to track the fault origin and to 
retrace the propagation path. The approach pursued here is to investigate the causal rela­
tionship between all combinations of the variables in which the disturbance was detected.

In the first section of this chapter, the causality measures are described and the expected 
descriptive form of the measure is formulated. In Section 4.2, a reference case study is 
introduced to which later on the developed causality measures will be applied. The reason 
for using a case study for the investigation is that simulated data is usually not rich enough 
to capture the stochastic structure of real plant data even when random noise is added. In 
Section 4.3, graphical representations are developed displaying the results retrieved from 
the causality analysis. The final graphical result is a causal map that shows the interaction 

between the process variables.

4.1 N ature o f Causality M easures

Measures of causality draw information on dependency from time delays, functional at­
tenuation and the noise content in the data. A measure of causality must exhibit an 
antisymmetric nature, that is

hx-+Y -  -hy-+ x  (4-1)
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where h is the causality measure and the plus or minus sign indicates whether X causes 
Y or vice versa. A positive value for hx->Y is called driver or cause while the negative 
value is referred to as response or effect. The algorithms investigated in the literature do 
in fact not measure causality but dependence or predictability. The question of causality 
is addressed by asking the question:

“Does X influence (predict) Y more (better) than Y influences (predicts) X?”

Dependency and predictability are indicated by positive values H ( X \ Y ) and H( Y\ X)  
which is also often referred to as coupling [86, 89]. If one of the two values is larger than 
zero one speaks of unidirectional coupling whereas both values H( X \ Y )  and H( Y\ X)  
being larger than zero is termed bidirectional coupling. The bar here indicates conditional 
behaviour, tha t is X  under the condition that Y  is known.

Any quantity that measures the influence of variable X  onto Y  must be potentially asym­
metrical to the inverted case of Y  influencing X.  In case of a symmetrical measure, which 
is the case for example for the linear correlation coefficient (see Section 5.1.1), correlation 
is measured instead of dependency and therefore no causality measure is achieved. The 

asymmetrical relationship is expressed by

H( X\ Y)  ^  H(Y\ X) .  (4.2)

After ensuring asymmetry of the measure, a quantity for causality is derived from the 
respective influences by comparing the quantity of X  influencing Y  with the quantity of 
Y  influencing X.  The comparison is achieved through taking differences.

h x ^ y  = H( Y \ X)  -  H( X\ Y)  

h y ^ x  = H( X\ Y)  -  H( Y\ X)

Here, h refers to the potentially bidirectional causality measure while H  is a positive and 
therefore unidirectional measure. As a result, Equation 4.1 holds by definition. Further­

more, hx-+x =  0 holds.

M u ltiva ria te  Case: As a start, all relationships are represented in a matrix with the
same order of the variables on both axis. The entries on the diagonal then represent the 
relationship between a variable with itself and are therefore zero, see the definition of the 
causality measure. The matrix is referred to as causality matrix in the following.
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The causality matrix is antisymmetrical, that is, h =  — h T or for its elements the following 
equality holds: hx^ Xv = —hXl/-+Xtl. The variables to be compared have to be pre-selected 
through a fault detection mechanism. Once the variables are selected, the causality matrix 
can be calculated automatically.

4.2 R eference Case Study

In this section a case study is introduced that has been chosen as a reference for developing 
causality methods. A strong emphasis of this work lies on the use of real process data. Due 
to the empirical nature of the methods there are no optimal parameters in the literature 
for the statistic methods of nearest neighbours and transfer entropy although some generic 
rules are given for simulated data such as the Rossler or Lorentz systems. An important 
contribution of this work is therefore to derive guidelines from application to real-life data 
from industrial processes. Criteria for selecting a good case study are given in Section

9.1.1. For the selected case study, a detailed process schematic exists locating all process 
variables. The measurements are complete and include setpoints and controller outputs. 
An onset of the disturbance is captured in the data. The process is well understood and 
a physical explanation is available. The root cause of the disturbance in the data had 
been identified prior to the analysis. But most importantly, two alternative hypotheses 
initially existed for the root cause that gave rise to the need of a causality measure to 
favour one or the other hypothesis. The causality measures defined in the next Chapters 
will be explained more visually by applying them to the reference case study. Examples in 
the following chapters and section that refer to this case study will be indicated in slanted 
font and the paragraph will be titled “Case Study” .

The probably most famous reference case study of an industrial control problem is presently 
the Tennessee Eastman Problem (TEP) by Jim Downs and Ernie Vogel [23]1. The TEP 
consists of a reactor and separator recycle arrangement and is fully described by a math­
ematical model. The simulation code features 21 common faults such as step changes or 
random variations of input parameters and stiction of control valves. The reason why the 
TEP was not chosen as a case study despite its fame is firstly, that simulated data is not 
rich enough to test data-driven methods, as mentioned earlier, and secondly, that the TEP 
has a process model and therefore is one case where model-based fault isolation would be 
more appropriate.

^ o r e  than 100 references citing the publication are listed in the Web of Knowledge, status February 

2005.
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Figure 4.1: Process schematic of reference case study.

4.2.1 P rocess D escrip tion

The process investigated is a distillation and part of a larger plant. Figure 4.1 shows 
the process schematic. The column has a tray structure for distillation. A feed enters 
the top of the column and is separated into the desired product that exits the column 
at the bottom and a by-product that exits the column at the side draw not shown in 
Figure 4.1. A heating fluid is pumped through a piping system along the length of the 
column, without coming in contact with the product, and exits at the top. The heating 
fluid flow is controlled by the heating fluid temperature as the heating fluid is a shared 
facility with a varying temperature. Distillation is a well understood and most frequently 
employed process type and a column control setpoint as shown here is fairly common. 
The temperature in the column is controlled by a cascade loop for which the master 
controller (TCI) measures the temperature in the middle of the column and the slave 
controller (TC2) uses the temperature of the heating fluid. The flow out of the column 
is the manipulated variable for the bottom tray level (LC1) and is adjusted through a 
pump. Temperatures are measured along the upper part of the column (Til to TI5), at 
the bottom tray (TI6) and further downstream of the column (TI7).
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Figure 4.2: Time trend in samples for all measurements in reference case study.
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Data source 
Sampling rate 
Number of samples 
Duration 
Oscillation period 
Disturbance intervals 
Number of measurements

PI data historian 
20 seconds 
8641 
48 hours
61 samples (~ 20 minutes)
Samples 1000 to 3500, 4200 to 4700 and 5000 to 8641 
10 measurements: 1 level controller, 2 temperature con­
trollers, 7 temperature instruments

Table 4.1: Measurement specifications of reference case study.

TI1.PV

TI2.PV

TI3.PV

TI4.PV

TI5.PV

TC1.PV

TC2.PV

TI6.PV

LC1.PV

V \ A A / W ^ / V V V W WTI7.PV

6100 6200 6300 6400 6500 6600 6700 6800 6900

Figure 4.3: Close up of time trend of process variables of reference case study.
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4.2.2 Process Disturbance

A periodic disturbance affected all variables in the process for most times with a few 
interruptions. The time trend of the process variables that was captured for analysis is 
shown in Figure 4.2. The disturbance most clearly affects T il to TI5, LC1 and TI7. A 
slow bump with high amplitude around sample 5000 disturbed the cascaded temperature 
controller TCI and TC2. Since TCI and TC2 are in cascade, the controller output of 
TCI equals to the controller setpoint of TC2. No set point changes happened during the 
period of observation for TCI and LC1. Temperature measurement TI6 was distorted 
until around sample 5000 with a high proportion of measurement noise.

The specifications of the data set captured for analysis are given in Table 4.1. The standard 
value of the sampling rate in the PI system is 20 seconds, that is, 3 samples per minute 
are captured. The period of the oscillation in Figure 4.2 is 61 samples and thus around 
20 minutes. A problem with the mechanical equipment can therefore be excluded as the 
root cause since it usually results in an oscillation period in seconds or a few minutes. 
The data was captured for a period of two days which shows the persistency over a longer 
period.

Figure 4.3 shows a close up of the process variable time trends during the period of 
disturbance. The different shapes of the oscillation cycle can be clearly observed. T il 
and TI2 show a very spiky peak which becomes smoother for TI3 onwards. TI7 shows an 
oscillation with an almost triangular shape. The oscillation is the least prominent in TCI 
and TC2 which are controlled temperatures. Traces of the PI compression algorithm2 can 
be detected in many trends. The reconstructed signal shows periods of perfectly linear 
stretches, particulary visible in TC2 and TI6. This is because of inappropriate settings 
of the parameter CompDev of the compression algorithm. All time trends of the process 

variables are normalised, that is, scaled to unit variance and zero mean.

The frequency spectra3 of these time trends are shown in Figure 4.4. The oscillation 
period of 20 minutes can be clearly observed at the frequency peak at 0.05 min-1 for all 
variables other than TC2. There are harmonics present in the frequency spectrum which 
are frequency peaks at integer multiples of the main oscillation frequency, that is, at 0.1 
min-1 , 0.15 min-1 and so on. The presence of harmonics is particulary strong in the 
first temperature measurements and almost non existent in LC1 and TI7. Low frequency 

components are present in all signals apart from LC1 and TI7. These represent long term 
deviations from the average value.

For completeness, the PV /O P plot that is often used for valve evaluation is shown in

2For a description of the algorithm see Section 10.2.
3The frequency spectrum is often also referred to as ’’Power Spectrum” since it shows the power of a 

frequency bin compared to the total signal. Here, the term ’’Frequency spectrum” is preferred meaning 

the absolute value of the Fourier transform.
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Figure 4.4: Frequency power spectra of process variables of reference case study.

Figure 4.5 for TCI, TC2 and LC1 in the interval between sample 1000 and 3500. The 
controller output of TC2 moves only in a small range between 46.5 and 48% while the 
output of LC1 ranges from 35 to 70% which is a rather large span. The process variable 
of LC1 also sticks to an upper limit which indicates also that LCl.PV is stuck at a value 
larger than the expected range. This can also be seen in the time trend in Figure 4.2. 
Physical explanations for the behaviour of LC1 is that either the level sensor is placed at 
a too low position or that the lowest tray is fitted with a weir that is overflowing when 
high value is reached. TCI is a cascade controller and decides about the setpoint of TC2. 
Thus, the output is a temperature. A first glance assessment of the PV/OP plots does 
not come to a conclusion. No strong hysteresis can be observed in any of the valves.

Tag T il TI2 TI3 TI4 TI5 TCI TC2 TI6 LC1 TI7

m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 13.4 0.2

Table 4.2: Standard deviation as percent of the mean of the process variables.
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Figure 4.5: PV/OP plots of controllers in reference case study.

4.2.3 Q uestion  on D irectionality

The root cause of the disturbance was a process problem caused by operating conditions 
of an upstream reactor. A pressure setpoint was set too high and was suspected to lead 
to flow surges. The uneven flow affected the heating of the product along the top part 
of the column and thus the temperature. The level was upset by the flow surges as well 
as by the disturbance of the temperature. Once the pressure setpoint was corrected the 
disturbance went away. The data set given in the previous sections are captured before 
the root cause was eliminated.

However, the operators first noticed the disturbance by the fact that the level was moving 
rather violently. Table 4.2 shows the standard deviation of the process variables as a 
percentage of the average value. All temperatures are actually oscillating with only 0.1 
to 0.2% of the mean value while the variation of the level is 13.4%. A first conclusion 
therefore was that the level oscillates strongly and then affects the temperatures in the 
column and further downstream through its strong oscillation. A support of the theory 
would be that the temperatures TI6 and TI7 which are closest to LC1 vary more (0.2%) 
than the remaining temperatures in the column.

In this situation, a causality measure can decide whether LC1 is the root cause or if the 
disturbance enters the column from upstream. If LC1 influences TI6, TI6 influences TI5 
etc, then LC1 would be favoured as the root cause. If T il influences TI2, TI2 influences TI3 
and so on, this would surely be an indication that the disturbance propagates downstream 
in the plant rather than upstream originating from LC1.

4.3 G raphical Tools for Causal In form ation

This section outlines ways of representing and visualising dependencies between process 
variables. Data driven methods for fault detection and diagnosis evaluate a process variable 
or a group of process variables and usually result in a single index. Such a single index 
can be the power of the first principal component in principal component analysis, see
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T il
T il

0

TI2 TI3 
1 1

TI4 TI5 TCI 
1 1 1

TC2 TI6 
1 1

LC1 TI 
1 1

TI2 -1 0 1 1 1 1 1 1 1 1

TI3 -1 -1 0 1 1 1 1 1 1 1
TI4 -1 -1 -1 0 1 1 1 1 1 1

TI5 -1 -1 -1 -1 0 1 1 1 1 1

TCI -1 -1 -1 -1 -1 0 1 1 1 1
TC2 -1 -1 -1 -1 -1 -1 0 1 1 1

TI6 -1 -1 -1 -1 -1 -1 -1 0 1 1

LC1 -1 -1 -1 -1 -1 -1 -1 -1 0 1
TI7 -1 -1 -1 -1 -1 -1 -1 -1 0

Table 4.3: Causality matrix of reference case study. Tags on the y-axis are the driver (cause) and 
tags on the x-axis are the response (effect).

MacGregor and Kourti [77], the power of a frequency peak or the oscillation regularity 
[136]. An index can be either displayed as a comparison of a number of process variables 
or for a single process variable over time. Classification techniques have been developed 
for the case of a number of indices per variable. For a textbook on pattern classification 
see Duda et al. [24]. As an example, Tan et al. [129] use hierarchical classification trees to 
map the first three component of the spectral principal component analysis onto a distance 
plot and thus enable a two dimensional image of the three dimensional data.

In causal analysis, one index is generated for every pairing of variables. The indices can 
well be displayed one by one for each combination of two time trends but to view the full 
information all relationships between the process variables should be compared. That is, 
for p process variables p(p— 1) relationships must be considered4. One way of representing 
the causal relationships is by visualising the causality matrix.

Case Study: A theoretical causality matrix o f the case study introduced in previous
Section 4.2 is given in Table 4.3 for the case when a feed disturbance propagates. The 
matrix can be interpreted as the tags on the y-axis being the driver and the tags on the 
x-axis being the response. Here, the process variables or tags are already ordered in the 
sequence o f their expected occurrence and along the process flow. The dependency will 
also follow along the process flow if the level is not the root cause. Thus, the elements 
above the main diagonal have the value o f the ideal causality value ‘1 ’ and the elements 
below the main diagonal the ideal causality value ‘-1 ’. For example, T il will then influence 
TI2 which is indicated by the value ‘1’ in element (1,2) of the matrix. TI7 will influence 
no other variable and therefore no value ‘1 ' can be found in the last row. Furthermore, 
T il will also influence TI3 and then TI4 and so on. In this way, the upper half o f the
matrix is filled with ‘1 ’ and the lower half with ‘- 1  ’. ________________________________

4There is no such thing as the relationship between a process variable and itself.
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LC1 TCI TC2 T 1 TI2 TI3 TI4 TI5 TI6 T
LC1 0 -1 -1 -1 -1 -1 -1 -1 -1

TCI 1 0 1 -1 -1 -1 -1 -1 1
TC2 1 -1 0 -1 -1 -1 -1 -1 1
T il 1 1 1 0 1 1 1 1 1
TI2 1 1 1 -1 -1 1 1 1 1

TI3 1 1 1 -1 -1 0 1 1 1
TI4 1 1 1 -1 -1 -1 0 1 1

TI5 1 1 1 -1 -1 -1 -1 0 1
TI6 1 -1 -1 -1 -1 -1 -1 -1 0
TI7 -1 -1 -1 -1 -1 -1 -1 0

Table 4.4: Causality matrix of reference case study with tagnames in alphabetical order. Tags on 
the y-axis are the driver (cause) and tags on the x-axis are the response (effect).
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Figure 4.6: Bubble chart of causality matrix in Table 4.3 and of shuffled causality matrix of Table 
4.4. Tags on the y-axis are the driver(cause) and tags on the x-axis are the response (effect).

In the following sections, a number of graphical representations are introduced. First, 
the causality matrix and their entries can be directly and conveniently represented by 
bubble charts. The directional information can then be displayed on a circular chart in 
a systematic way. Cause and effect for process monitoring and fault diagnosis is usually 
plotted in digraphs or causal maps which will be introduced in the last section.

4.3.1 Bubble Charts

Bubble charts are widely used in data presentation and are a feature of office software 
such as Microsoft Word or Excel5. Here, they are generated with Matlab. Bubble charts

5The Microsoft Excel description of a bubble chart reads: “Bubble. Compares sets of 3 values. Like a 

scatter chart with the third value displayed as the size of the bubble marker.”
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Figure 4.7: Examples of the circular chart. The left hand plot shows the chart in the original 
order while the right hand plot shows the case for the shuffled data.

are used to show matrix values that are a function of two inputs, for example, the cost of a 
company by business unit and product can be shown in one graph using the bubble chart6. 
The departments are listed on the y-axis while the products are listed on the x-axis. The 
size of the bubble at the intersection of a department and product reflects the cost that 
this department spends on a particular product.

In data-driven causality analysis, the bubble chart can be directly constructed from the 
causality matrix. The strength of interdependence between two variables is shown by 
the size of the bubble. Negative values are ignored but due to the anti-symmetry no 
information is lost.

Case Study: The left hand plot o f Figure 4.6 shows the corresponding bubble chart to
the causality matrix in Table 4.3. The chart is rather simple due to the ideal assumptions 
(only values o f ones and zeros are allowed.). The value o f the causality measure is shown 
in the centre of the bubble. However, the bubble chart can be read at a first glance 
while the causality matrix has to be studied thoroughly for entries unequal to zero. The 
benefit o f bubble charts becomes more obvious if the tags are not arranged in the order of 
process How. Table 4.4 shows the causality matrix with the tags shufHed into alphabetical 
order7. It cannot be seen from a Hrst glance which variable inHuences the other. Thus, 
an automatic algorithm would be of use to rearrange the variables like shown in the left 
hand plot o f Figure 4.6 where the dependencies can be seen at Hrst glance. An algorithm 
that achieves this task is introduced in Section 4.4. _______________________________

6The idea of using bubble chart came whilst being on an internship with The Boston Consulting 

Group (BCG) in February 2004, taking two months leave of absence of the Ph.D. course. BCG like other 

management consultancies uses bubble charts extensively in presentations clients.
7When capturing data sets the tags are often in alphabetical order due to a sorting mechanism of the 

data acquisition system.
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4.3.2 Circular Directional Charts

An alternative display is a circular chart in which the directional information that is 
contained in the causality matrix can be visualised. Arranging the data in this way goes 
back to Florence Nightingale who was also a pioneer statistician and developed graphical 
displays of descriptive statistics8. For this chart, only the elements in the row above the 
main diagonal are considered. All p variables are arranged in a circle separated by 360/p  
degrees. The sign of the values of the causality matrix that are above a confidence level 
are translated into vectors pointing from the driver to the response variable. The left 
hand plot of Figure 4.7 shows the circular directional chart constructed from the causality 
matrix in Table 4.3. The fault propagation path can be easily followed from T il to TI2 
to TI3 and so on. The strength of the dependency can be indicated by either attaching 
the values to the vectors or by changing the line width of the vectors. The former option 
is rather impractical in general as shown on the right hand graph of Figure 4.7. Here, the 
tags are again sorted alphabetically corresponding to the causality matrix Table 4.4. The 
fault propagation path can be followed but is less obvious. Circular directional charts as 
well as bubble charts can be generated in an automated way. The circular charts are not 

used in this work since they are more difficult to read than the causal map which will be 
introduced in the next section. The causal map is used for all case studies.

4.3.3 Digraphs and Causal Maps

When turning a causality measure into a graphical representation the desired output is a 
representation that is meaningful to the process engineer. That is, the graph should say: 
the flow out of a column affects the flow in the following tank that then subsequentially 
upsets the level. The root cause can be identified by finding the first variable in this chain 
of causal arguments. A graphical representation of cause and effect are digraphs which are 
also referred to as causal maps. A digraph is a graph with directed arcs between nodes. 
The nodes represent process variables and the arcs the relationship between the process 
variables. There can be several arcs leading to or from one node.

Digraphs can be constructed in a number of ways. If a mathematical model of the process 
exists in the form of algebraic and differential equations then these can be turned into 
digraphs as described in Section 3.4. A second method is to extract expert knowledge 
to construct a causal map from other sources describing the process such as the process 
schematic (see Section 2.2) or knowledge that the process engineer has. The approach 
followed in this work is to derive the causal information, and especially the causal in­
formation in case of a disturbance, from historical process data. The cause and effect 
relationships gained from the process data can be used even when no model exists and

8For information on the statistics of Florence Nightingale visit the Florence Nightingale Museum, 2 

Lambeth Palace Road, SE1 London, UK, or at www.florence-nightingale.co.uk

http://www.florence-nightingale.co.uk
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Figure 4.8: Causal map of reference case study described by causality matrices in Tables 4.3 and 
4.4.

provide a valuable supplement to process knowledge that is either ambiguous or deviates 
from normal in case of a disturbance. The construction of digraphs from the causality 
matrix will be explained using the example in the previous Section 4.2. An overview of 
how digraphs can be retrieved from expert knowledge and differential equations is given 
in Section 3.4.

Case Study: The signed digraph that can be retrieved from the causality matrix in
Table 4.3 is shown in Figure 4.8. The chart is neither surprising nor very sophisticated 
since the causality matrix follows an idealised and simplified structure. However, it is 
important to remark that the digraph derived from the causality matrix is identical for 
both arrangements o f the tags, that is, both the right hand and left hand panels o f Figure 
4.6 give the same digraph. ______________________________________________________

4.4 A utom atic G eneration o f Causal M aps

This section focuses on bubble plots and shows how a causal map can be automatically 
generated. For industrial applications the relationship between several measurements is 
considered, say p measurements xp with p = 1 .. .p, and a representation of the results in 
a causal map or digraph is desired. The causality measure of Equation 4.3 is computed 
for all combinations of variables xp, that is, p(p — l) /2  relationships. The results can be 
denoted in a causality matrix as follows.

0 hXl_+X2 • • • hxi—txp
'hXl_>X2 0 . . .  /iX2_>Xp

h x i  —*xp h x 2 —>xp • • • 0

(4.5)

The rows represent cause variables while the columns represent the effect variables. The 
task is to generate a causal map that shows the relationships between all xp and x v in an 
automated way. Due to symmetry, negative causality measures are ignored and set to zero 
without loosing any information. All relationships with a causality measure larger than 
a defined threshold are accepted and treated equally, such that A =  0(h) where ©(•) is 
the step function. Matrix A 6 Rp,p has a maximum of p(p — l) /2  unity entries while the 
remaining elements are zero.

Using the step function © removes information about the size of values hXp_,XT). As the 
decision of direction of propagation is binary, that is, does A influence B or vice versa, the
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size of the value is less important if the significance level lies above the threshold. In case 
of conflict between two options of fault propagation paths as described in the following 
algorithm the option with the higher entropy hXp̂ Xr) value is considered as the more likely 
option.

The automatic generation of a causal map from the causality matrix A is accomplished 
in two steps. First, the order of measurements xp is rearranged to A to bring a maximum 
number of entries above the main diagonal. In the second step, the causal map is con­
structed from A. The automatic construction of a causal map is shown here for a model 
example and later on in the paper for the test case study.

4.4.1 Algorithm  to Rearrange the Order of Variables

The new order of variables that maximizes the number of non-zero entries above the main 
diagonal is found by the following procedure.

► Step 1: Initial sorting. The measurements x p are sorted by the number of non-zero 
entries in the pth row to create a new causality matrix A' whose first row has the least 
number of zero entries. The new indices are p'. If there is a tie then the number of non­
zero entries in the p 'th  column is used as a tie break. In case of a further tie the order 
remains unchanged.

► Step 2: Establishing rules. The entries above the main diagonal of A' are translated 
into inequality rules to ensure that the element remains above the main diagonal when 
further sorting. For example, the element in the second row and third column of A' in 
Table 4.5 gives the inequality x% < x$.

► Step 3: Shifting elements above diagonal. If a non-zero element is below the diagonal in 
the p’th  row and rfth  column then x p and x v can be exchange if no previously established 
rule is violated as a consequence of the exchange. If a rule is violated, alternative positions 
with row index smaller than p' for xr] or larger than rf for x p can be explored in the same 
way. In case that no position change without a rule violation can be found, the option 
with the highest value of hXp-+ x , that is, the summed value for all rules in question, is 
chosen. A new rule is established for the exchanged variables.

► R epeat Step 3 for all elements below the main diagonal. The resulting matrix is the 
optimized causality matrix A, the order of the rows is denoted by p.

The algorithm is illustrated using a model example in Table 4.5. The top table shows the 
example causality matrix A for five process variables x \ . .  .x$. In the initial sorting step, 
the variables are rearranged with x<i and X3 both with two entries in each row and X5 one 
entry. X4 is excluded from further analysis and the modified causality matrix is shown in 
the middle table of Table 4.5. Rules for the four elements above the main diagonal are 
established in Step 2, that is, X2 <  £5, X2 <  x \ ,  x% <  x§ and x$  <  x \ .  The element below
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X \ X 2 X3 X 4 %5

X i 0 0 0 0 0

X 2 1 0 0 0 1

X 3 0 1 0 0 1

X 4 0 0 0 0 0

x 5 1 0 0 0 0

A' =

A —

Table 4.5: Example for reordering of variables x r for automated causal map generation.

the diagonal for x$ and x<i is dealt with by Step 3. and X2 can be exchanged since none 
of the established rules is violated. Thus, the modified causality A results as shown in the 
bottom table of Table 4.5.

4.4.2 Algorithm to Construct the Causal Map

Once the modified causality matrix A is retrieved the construction of a causal map is 
straight forward using the following steps.

► Step 1: Initializing layout. To generate a basic structure x p are placed in a row 
according to the new order p. Variables that were excluded from analysis in Step 1 can 
be omitted since they have no causal connection with all the other variables.

► Step 2: Inserting arcs. The relationships for all non-zero entries in causality matrix A 
can be represented by arcs pointing from a cause variable in the detected row to an effect 
variable in the corresponding column. These arcs are used to represents the information 

flow.

► Step 3: Removing shortcuts. In some situations, if a variable A causes a variable B 
and B in turn causes C, a further dependency between A and C can be detected. This 
dependency is only secondary and is not of primary interest. It can be easily ignored by 
removing all shortcut arcs, that is, all arcs from variable x p to variable x v for which two 
relationships via a third variable exist.

X2 X3 x 5 Xl

X2 0 0 1 1

X3 1 0 1 0

x 5 0 0 0 1

X l 0 0 0 0

X3 X2 x 5 x i

X3 0 1 1 0

X2 0 0 1 1

X 5 0 0 0 1

X l 0 0 0 0
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Z3 J \X2 J \X5 J [Xi  ) \X3 J— +\X2 J— J - + [ X l

21. 2. 3.

Figure 4.9: Construction steps of causal map for examples in Table 4.5. Step 1: initializing layout; 
Step 2: inserting arcs; Step 3: removing shortcuts.

The variable on the left of the causal map is then the suspected root cause. The procedure 
is illustrated by the model example in Figure 4.9. In the left hand plot representing Step 
1., all variables are laid out in the new row order p. In Step 2., arcs for all relationships 
are drawn representing non-zero entries of causality matrix A in Table 4.5. In the right 
hand plot of Figure 4.9, the third step is illustrated in which all shortcuts are removed. 
For example, the shortcut from x 3 to x 3 is removed since a way from x 3 to x$ via X2 exists. 
The resulting causal map represents the process dependency detected with the transfer 
entropy measure. x 3 is suspected to be the root cause of the investigated disturbance.

The main advantage of the algorithm is that it focuses on the order of occurrence of 
events which is desired for fault propagation and root cause analysis. The most important 
question of which variable comes first and is followed by which other variable is addressed. 
The situation of branches, that is, A influences B and C, can also be represented by the 
automatically generated causal map. Variables are set in the order A,B,C or A,C,B with 
arcs drawn from A to B and A to C.

C h ap te r  4 S um m ary

In  th is  ch ap te r, th e  n a tu re  o f causality  m e th o d s was described . T h e  following 
item s w hich will be  used  th ro u g h o u t th e  thesis  w ere in tro d u ced :

•  A reference case s tu d y  of an  E as tm an  C hem ical C om pany  process for th e  
developm ent of th e  causality  m ethods;

•  A graph ical rep re sen ta tio n , th e  bubb le  p lo t, th a t  d isplays th e  px.p causal­
ity  m atrix ;

•  A n a lgo rithm  for th e  au to m atic  g en era tio n  o f causal m aps th a t  sum ­
m arises th e  re la tionsh ips betw een  p variables from  th e  causality  m atrix .



Chapter 5

Cross-Correlation Function

In this chapter, a method based on cross-correlation is proposed to argue causal 
relationships from the presence of a time delay between two measurements. 
The concept of linear correlation is introduced and an algorithm proposed. 
The algorithm detects time delay and decides about its statistical relevance. 
The reference case study is used to test the method.

Correlation is a characteristic that establishes whether two variables are correlated in 
the most simplest functional sense, that is, a linear correlation. While being restricted 
to linear systems, correlation has the important benefit of being most tolerant to noise 
[86]. Cross-correlation is symmetric with respect to two variables x  and y and thus cannot 
distinguish a symmetrical interaction from an asymmetric one [150]. The cross-correlation 
function can be twisted to an asymmetrical measure building on an observation made in 
Section 2.4.3, that is, when the fault or disturbance affecting a number of process variables 
is observed with a dead time or time lag in the variables. Correlation functions are suited 
to detect these time lags which can be used to retrace the fault propagation path.

In this chapter, the linear correlations measures of correlation coefficient, autocorrelation 
function and cross-correlation are explained and their use in fault diagnosis is reviewed. 
In Section 5.2, an algorithm using the cross-correlation as a causality measure is proposed. 
Guidelines for when to use the measure, its merits and limitations together with a signif­
icance level for its reliability are given. The method is illustrated using the example from 
Section 4.2. Correlation functions have found a number of applications in the area of fault 
diagnosis and monitoring. Applications that have been proved to be successful in the past 
will be introduced together with the definitions of the functions.
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5.1 Introduction to  Linear Correlation M easures

In this section, popular linear correlation tools are reviewed that describe the correlation 
either between two time series or between two time points of one series, namely the lin­
ear correlation coefficient, the autocorrelation function and the cross-correlation function. 
These methods assume that the investigated underlying mechanism is linear and fail if a 
nonlinear functionality is analysed. However, some of these tools, such as the autocor­
relation function, are basic analysis particulary well suited for oscillatory signals. The 
application of the correlation tools for process monitoring purposes is also reviewed in this 
section.

5.1.1 Linear Correlation Coefficient

A measure for linear dependency of two discrete series is the linear empirical correlation 
coefficient which is also often called Pearson’s correlation coefficient. The correlation 
coefficient between two time series x  and y with N  samples is defined as follows [10]:

r  _  a xy _   Y l i = \ { x i ~ x ) {y i ~ y )  -| ̂

where (•) indicates the linear mean:

* = (5-2)
i=1

The denominator comprises the standard deviation of the series x  and y and therefore 
normalises the coefficient to values between -1-1 and —1 such that

-1  =  r Xy S  +1- (5-3)

The correlation coefficient has a maximum value of ±1 if the values X{ and yi lie on a linear 
line. In this case the two series are called linearly dependent or correlated. Independency 

results in rxy =  0.

The computation of rxy as defined in 5.1 is only an estimate of the correlation coefficient. 
Due to the finite sample length, the coefficient estimate will only be approximately zero 
for two uncorrelated sequences. The variance of rxy for two uncorrelated sequences can 

be estimated as

ol = j j  (5.4)

where N  again is the number of samples in the sequences x and y and larger than 400-500 
[97]. The derivation of the of estimate can be found in Appendix A.I. The restriction 
to linear dependencies becomes obvious. If x  and y are related by any other dependency,
lets say yi — x f, the correlation coefficient will not reflect the dependency. Instead, the
correlation coefficient will be close to zero if x is normally distributed, that is, the two
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sequences will appear uncorrelated. Also, if a time lag is inserted between x  and y, for 
example yi = X{-i, the correlation coefficient will not detect any dependency.

5.1.2 Autocorrelation Function (ACF)

The autocorrelation function (ACF) describes the similarity of two time points of a signal 
separated by a time lag k. The similarity of two separated time points is particulary useful 
when analysing oscillatory signals where time points separated by the oscillation period 
have a strong similarity or dependency. The ACF was originally designed as a determin­
istic description function of random sequences [35] but also reveals useful properties for 
deterministic signals, such as sinusoidal or other periodic signals. For discrete and finite 
time series the ACF is defined as follows:

+ N

0*x[«] =  X*X*-K (5-5)
i——N

where k is the discrete time delay. The bar indicates that this is only a preliminary estimate 
of the ACF. Normalisation has to be carried out. There are two ways of normalising the 
ACF, namely biased and unbiased normalisation. The biased normalisation divides the 
ACF by the number of samples,

1 +N
[̂ ] ~  j y  ^   ̂ ' %i—K (5-6)

i = —N

while the unbiased normalisation takes into account that for large values of k only small 
numbers of samples are available to compute the estimates. Thus, the unbiased normalised 
ACF is written as

1 + N

0xx[ft] — P̂ 7 ^   ̂ ' %i—K- (5*7)
i = —N

In the following, the biased ACF is used since the unbiased ACF can have unwanted 
outliers in estimations using small samples.

One of the effects of the ACF when applying it to a periodic function is that it filters out 
any noise components and additionally smoothes the original signal in a fashion similar to 
a low pass filter. A number of characteristics follow from the definition of the ACF (see 
Girod et al. [35]), in particular, the symmetrical behaviour of the ACF, that is:

0xx[ft]  =  0 x x [  ft] • (5 -8 )

Transforming the definition of the ACF results in the largest value of the ACF which is 
for k =  0, that is,

0xx[O\ =  cr2x + n l  ^  0xx[ft] (5.9)
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2100 2500 -500 0 500
Time in samples Time lag k  in samples

Figure 5.1: Time trend and corresponding autocorrelation function of TI6  from reference case
study.

where cr% is the variance of x  and p x is the expected value E{a:} =  p x that can be approx­
imated for stationary signals by the mean from Equation 5.2. Equation 5.9 implies that a 
large mean or variance will result in a high value for k = 0. It is therefore recommended 
to subtract the mean before calculating the ACF.

Case S tudy: The left hand plot of figure 5.1 shows the time trend of TI6 from the
example in Section 4.2. The signal appears noisy and without any structure. Calculating 
the ACF as shown in the right hand plot of the same figure eliminates noisy components 
and reveals a periodic structure inherent in the signal. The high peak for k  =  0 reflects 
the variance that is both due to the oscillation and to the noise component. The linear 
mean was subtracted prior to the analysis. ________________________________________________

W ie n e r -K in c h in  Theorem :  The ACF is related to the power spectrum by the Wiener- 
Kinchin Theorem (Girod [35]): The Fourier transform of the autocorrelation function 
equals the power spectrum.

N

\X[2irfn]\ = Y.4>xxMe-^f' (5.10)
k= - N

where f n is the discrete frequency. The Wiener-Kinchin theorem is particular important 
as it links the ACF to frequency analysis.

The ACF is often used for oscillation analysis since it compares the similarity of two points 
in time and also has some low pass filtering characteristics. As shown by the Wiener- 
Kinchin theorem it can therefore be used instead of frequency analysis which is often less 
intuitive and familiar to process engineers. Most process monitoring tools described in 
Section 3.5 have the facility of plotting the ACF overlayed in one graph. The period of 
oscillation can be compared by establishing the location of the maxima and taking the 
difference of the time parameter k:

k o s c  =  K rn a x  J (5.11)

59
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Figure 5.2: Autocorrelation function of sine wave with length of four oscillation cycles.

where is the time lag of the first maximum after the absolute maximum at k = 0 .

The continuous ACF of a sine wave described by function x(t) =  sint defined over an 
interval T\ can be expressed by the following equation:

I
2^r[(Ti -  t )  cost — sin(2Ti — r) +  sinr] 0 < r  < T\
(f)xx(-T) —T\ < r  < 0 (5.12)

0  r  otherwise

where T\ is the duration of the sine wave and r  is the continuous time lag used similar 
to the discrete time lag k. The derivation of this formula is shown in Appendix A.2. 
The discretised function of 0xx(r) for four cycles is shown in Figure 5.2. The function is 
bounded by straight lines with a slope of ± 2 7 7- This is due to the factor acting
on cost and overshadowing the other contributions. Equation 5.12 is the exact ACF of a 
sine wave that is nonzero within an interval T\. It resembles the unbiased ACF.

Case Study: The autocorrelation functions o f the first five signals in the example
from Section 4.2 are shown in Figure 5.3. For displaying the ACF, the time trend was 
restricted to samples 2000 to 2600 because this was the time frame in which the oscillation 
was purest. The oscillation characteristic in the ACF is similar to the time trend in Figure
4.2 but smoothed. The largest values of the ACF can be observed at k — 0. The two 
vertical bars indicate the maxima of the hrst oscillation for which the period of oscillation, 
kosc can be measured. In this example, kosc is 61 samples which, at a sampling rate of 20 
seconds is equivalent to 20 minutes. Plotting the ACFs of the signals on top of each other 
enables an easy comparison of the oscillation period. In this case, the oscillation periods 
of T il to TI5 are identical. The shape of the oscillation, however, is not, which can be 
easily seen from the ACF better than from the frequency spectrum. _____________________

Further processing is applied by Thornhill et al. [136] to deduce the period of as well as 
the regularity of oscillation from the ACF in case of multiple oscillations present in the 
signal. The measure assesses the zero crossings of the ACF.



CHAPTER 5. CROSS-CORRELATION FUNCTION 78

Autocorrelation function (ACF)
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Figure 5.3: Autocorrelation function of time trends from reference case study.

5.1.3 C ross-co rre la tion  function  (C C F)

In a fashion parallel to the ACF, the cross-correlation function (CCF) measures similarities 
of two time series delayed in time by a varying discrete time parameter k .

1 +N
= jy ^   ̂ Xiy i—K (5.13)

i = —N

For zero mean signals, calculating the CCF is equivalent to the linear correlation coefficient 
if one of the signals is delayed by «. The correlation coefficient is additionally standardised
to unit variance, see Equation 5.1. Important characteristics of the CCF is that it is not
symmetrical or commutative. However, the following relationship holds:

=  <Pyx[~^]'i (5-14)

and two signals are called uncorrelated if the following equation holds:

(foxy M = Mz/h/ (5.15)

for all values of k.  If x  and y  are two signals with the same oscillation frequency, then 
the CCF will reflect the oscillation but will also show the time lag with which the two 
oscillations occur. To show the measurement of the time trend consider the following
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.max
xy

j 4>xy [0]

K-

Figure 5.4: Cross-correlation function of sinusoid with CCF parameters for fault diagnosis (stic- 
tion) as proposed by Horch [45]. The CCF is calculated between process variable and controller 
output.

example. The CCF of a time sequence X{ and its delayed form yi =  Xi-Kl can be expressed 
as follows:

(pxy [^] =  Y l i —l Xiy i -K

= (5-16) 
=  + K i].

The CCF is therefore the ACF delayed by a value k\. This implies that the maximum 
value that was previously the value of the CCF at « =  0 is now the value at k, = — 
Finding the position of the maximum value is therefore a measure of the time lag. In other 
words, the time lag is retrieved for the delay k at which the similarity between the two 
sequences, and thus the cross-correlation, is at its maximum. This is true for the case of 
a simple delay between two linearly correlated signals. The continuous cross-correlation 
function of a sine wave x(t) and its delayed version x(t — r\) is derived in Appendix A.3 
and results in:

^xy iT ) — <

2^  [(Tp -  r) cos(r +  ri) — 5  sin(2Tp -  r  — t\ )  +  \  sin(r -  n )] 0 < r  < Tp
Y f r  [(Tp -I- r) c o s ( t  +  t \ )  -  \  sin(2Tp +  r  -  n )  — \  sin(r +  ri)] - T v < r  < 0

0 elsewhere.
(5.17)

C C F  f o r  D etec tion  o f  Valve S tic tion:  Horch [45] observed that stiction in a control 
valve introduces a time delay of a quarter period, or Tvj 4, between the process variable and 
the controller output of the affected loop whereas other oscillations result in an insignificant 
time delay between process variable and output. For time trends of a process variable and 
output of a loop with stiction see Figure 2.8. The parameters that are used to calculate 
the measure for stiction as developed in [45] are shown in Figure 5.4. Here, is the zero 
crossing for positive lags, the zero crossing for negative lags and 4>™yX the maximum 
value. The measures A a n d  A k together with their threshold values for stiction and non 
stiction are given in Table 5.1. A k and A0 are both measures of the symmetry; if they 
are zero the CCF is symmetric.
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Definition No stiction 
(symmetrical)

No decision Stiction
(asymmetrical)

a ^ \M0\-4>fvax\
V \4>Xy[0]+4>™aX\

A k =  |,t-T K+lK-+K+
0 ^ A^ 2 W I
0 < A k < i J < A k < |

5 < A0 < 1 

|  < A k < 1

Table 5.1: Symmetry measures of cross-correlation function for stiction detection by Horch [45].

5.2 A Sim ple M easure of Causality U sing CCF

In this section, an algorithm for detecting cause and effect between two process variables 
is introduced using the cross-correlation function. The underlying principle of the method 
is that when the disturbance propagates through the plant the disturbance can often be 
observed at a number of process variables with a time lag, see Section 2.4.3. The knowledge 
of the exact time lag hints towards the root cause by arguing that the variable closer to the 
root cause will show the disturbance before a variable further away. The CCF measures 
the similarity between signals at different time points and is therefore ideal to measure the 
time lag if a number of conditions are fulfilled. These limitations are given in the following 
after first introducing the algorithm and establishing guidelines and a significance level for 
the method.

5.2.1 Proposed Algorithm

In the proposed algorithm, a time lag between two variables is found by looking at the 
maximum and minimum value of the cross-correlation function of the two variables. If the 
two sequences are similar enough but delayed by a time delay ki then Equation 5.16 can 

be used that is, <f)Xy[^\ = 4>xx[k +  ki]. The maximum value (f)xy without a delay will be 
close to 0 while a time lag ki will shift the maximum value to Kmax =  ki. Thus, the time 
delay is retrieved by finding the maximum value 0max and is then the corresponding time 
lag Kmax. It is also possible that the cross-correlation has a minimum that is larger than 
the maximum. In this case, the time index k of the minimum is the time delay because 
one of the time series was inverted. For the algorithm, the minimum and maximum as 
well as the corresponding time indices are noted:

4 >max — max{0xy[«]}; with </>max > 0

= min{^xy[K]}; with 0m,n < 0
=  {K|0xy[K] =

Kmi" =  { '#xyM  = 'T in}

The maximum of the cross-correlation function will always be positive while the minimum 
will always be negative [35].

The detected time delay depends then on the ratio of ^max to 0min. If </>max is larger than 
4>mm then Kmax is the detected time delay. The detected time delay is temporarily referred
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to as A. The time delay has to pass further tests to be detected.

f Kmax, 6max +  </>min > 0 
A =  < . ’ ^ v  . -  (5.19)

[ Kmin, 0max +  0min < 0

Also, a certain similarity between must exist between the two time series. The linear 

correlation coefficient is therefore calculated for the time series where one is delayed by 
Kmax. The difference between taking the linear correlation coefficient and the CCF value for 
Kmax is that the correlation coefficient can take the reduced number of samples, N  — /cmax 
instead of iV, into account. Furthermore, the correlation coefficient will have extremum 
values of ±1 for identical time series, unlike the CCF whose value for identical time series 
will depend on the nature of the series. The linear correlation coefficient is then defined

by
r max =  rxyx where y\[k] =  y[k +  A] (5.20)

In the case that the two signals x  and y are of oscillatory nature, a further test has to be 
carried out. The reason is that if the signals are time-reversal periodic1 with an oscillation 
period Tosc, then both A and A — Tosc/2  can be viewed as the time delay. If A is positive 
and detects a maximum, then the first time delay A detected by the maximum would mean 
that x  influences y while the second time delay A — Tosc/ 2 detected by the minimum would 
mean that y influences x. This is clearly contradictory. A further test therefore involves 
the ratio of the minimum and maximum. A comparative measure is given by

i h = ^ ~ --------™— !— (5.21)
i (0 max +  |0min|)

If 0max and <pmin are similar, then ip is close to zero; if the difference between the two 
is large then ip is significantly larger than zero. The largest value that ip can adopt is 
if either <pmax or |0mm| equals to one and the other to zero. In this case, ip = 2. Thus, 

0  <  il> <  2 .

The proposed algorithm can be summarised by the following steps:

1. Compute the cross-correlation function (pxy[n\ of the two variables x  and y\
2. Find the minimum and maximum (pmax and (pmm as well as the correspond­

ing time lags /cmax and Kmm\
3. Set the detected time lag to A =  «max if 0max + 0min > 0 else to A =  «mm;

4. Calculate the correlation index r max =  rxyx using yA =  yi+x and check if 

r max > r thresh;
Umax i ^min |

5. Calculate oscillation index 'ip = i '^ max ; ' and check if ip > thresh2 \<p i~\y) |)

The values for thresholds r thresh and ^thresh wifi be described in the following section.

lrTime reversal periodicity means that the oscillation is symmetrical with respect to time.
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Crosscorrelation function of TI4 and TI5

K m a x  -  10; <j)m a x  = 0.590.6
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Kmin = —li ;  <j)min = -0.33-0.4

-150 -100 -50 0 50 100 150
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Figure 5.5: Time lag of maximum value of CCF for TI4 and TI5 from reference case study. A 
time lag of 10 samples was detected between TI4 and TI5.

Case Study: Figure 5.5 shows a detail of the CCF of the two variables TI4 and TI5 from 
the reference case study in Section 4.2. The focus shows the CCF around the zero time lag 
n = 0. The position of the time lag of the absolute maximum and minimum are indicated 
by dashed lines. The minima occurs at nmm = —11 and has a value of (pmm — —0.33. 
This means that i f  the minima would be the time difference between TI4 and TI5, then 
TI5 would happen 11 samples before TI4. The maxima, on the other hand occurs at 
Kmax =  +10 and has a value of <pmax = 0.59. I f  this would be the time difference then 
TI4 would happen 10 samples before TI5. Because these are two contradictory results 
the coefficient ip is calculated to check if the maximum is significantly larger than the 
minimum: ip — i /l°rn9|~i° =  0.57. A significance level of p; to check if this is large2 (U.59-r| — u.oo|)
enough will be given in the next section. The correlation index rmax for the time lag 
A = +10 has a value of 0.99. ______________________________________________________________

5.2.2 Significance Level and  T hresholds

In this section, the values of the thresholds r thresh and ^thresh that are required for the 
causality algorithm described in the previous section are derived. If no threshold is set for 
r max then a time delay is detected for all time trends since all cross-correlation function 
have a maximum or minimum value at some point. It is therefore necessary to introduce 
the lower boundaries for r and ip. Threshold rthresh can also be regarded as a significance 
level of the detected time delay A if the criteria of ip > t̂hresh is fulfilled.
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Figure 5.6: Probability density function of correlation index rmax in case of two uncorrelated 
random sequences of length N =  200.

Correlation In d ex  rmax Threshold: The correlation index was defined in the previous 
section as the linear correlation coefficient between the two time sequences of which one is 
delayed by the detected time lag A. The question now is when the correlation coefficient 
r max is significant. Equation 5.4 in Section 5.1.1 gives the variance of the linear correlation 
coefficient of two uncorrelated signals. The variance is inversely proportional to the number 
of samples of the sequences from which it is estimated. Estimating the variance of r max 
in this way assumes that the expected value of r max is zero. This however is not the case 
since r max is chosen at the maximum value of the cross-correlation function.

Deriving the actual variance of r max analytically is a complex task since the maximum 
value has to be considered. Instead, it will be derived empirically here. Figure 5.6 shows 
the probability density function (PDF) of the correlation index r max for two uncorrelated 
random sequences of length N  = 200. The index was computed for 5000 uncorrelated 
sequences and the PDF was estimated using the histogram method2. It can be clearly 
seen that the mean, indicated by a vertical bar in Figure 5.6 is not zero but lies around 
0.2. The standard deviation of r max for uncorrelated data sequences of length N  = 200 is 
approximately 0.04.

If r max now lies outside the main distribution as given in Figure 5.6, say above 0.4, it can 
be said with a small remaining uncertainty that the two sequences are correlated. For this 
reason, a three sigma test is used such that

thresh — flrm*x | 3 CTlax , (5.22)

where /irmax is the mean and <rrmax is the standard deviation of the distribution. The PDF 
shown in Figure 5.6 is only valid for the case of N  =  200.

To derive a functional relationship between mean, variance and the number of samples 
N  investigated, the dependency is empirically derived. Therefore, the correlation index

2The concept of the probability density function and the estimation using histograms is described in 
more detail in Chapter 7
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Figure 5.7: Mean (left panel) and standard deviation (right panel) of correlation index as a 
function of sample length N. The solid line indicates the approximation function as given in 5.23 
and 5.24 while the stars give the experimentally measured values.

r max is computed 1000 times for a number of values of N. Mean and standard deviation 
are estimated from this sample set. Figure 5.7 shows the resulting functional dependency. 
Both mean and standard deviation decrease monotonically with increasing number of 
samples. Curves can be fitted to the sample values. Since the expected standard deviation 
was a polynomial function of N,  the same is assumed here. The following function can 
be fitted to match the observed dependency between the mean of r max and the number of 
samples N:

Hr™*(N) = 1.75 N ~0A (5.23)

while for the standard deviation of r max the following equation can be fitted.

(Tr max (N) =  0.75 N ~ 0 5 2  (5.24)

Thus, the threshold r thresh results by substituting the fitted functions 5.23 and 5.24 in 
Equation 5.22 such that

rthresh (N)  =  1.75 TV-0 '4 +  2.25 JV-0,52. (5.25)

The resulting value threshold for the threshold will be applied to the case study later on 
in this section.

O scillation Index  ip Threshold: The same approach as for the correlation index is 
pursued for the oscillation index ip. Again, the expected value and the variance of ip are 
difficult to derive analytically and are therefore deduced empirically. The oscillation index 
is first computed for 5000 random sequences of sample length N  = 200. Figure 5.8 shows 
the resulting probability density function (PDF) that has been estimated using histograms. 
The shape of the PDF is different from the shape of the PDF of the correlation index in
Figure 5.6. However, if the oscillation index is above a certain threshold, say 0.6, it is
unlikely that it originates from a random sequence. For calculating the standard deviation
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Figure 5.8: Probability density function of oscillation index ip in case of two uncorrelated random
sequences.
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Figure 5.9: Standard deviation of oscillation index as a function of sample length N. The solid 
line indicates the approximation function as given in 5.27 while the stars give the experimentally 
measured values.

of the distribution, the PDF is mirrored on the y-axis. The standard deviation is, in the 
case of 200 samples, around 0.2, as indicated in Figure 5.8. The threshold value for Rthresh 
is then again defined as a three sigma test such that

t̂hresh =  3 <7.0. (5.26)

For the derivation of the functional dependency between the standard deviation of ip and
the number of samples, the oscillation index ip is computed 1 0 0 0  times for different values
of sample length N . The standard deviation from the sample set is shown in Figure 5.9. 
Again, the standard deviation decreases with increasing sample length.

The following curve can be fitted to the empirical values and is also indicated in Figure 
5.9:

<70(1V) =  0.5 AT0’17. (5.27)

The threshold value of the oscillation index is then defined as

V-threshW =  1-5 i V - ° '7. (5.28)

Standard deviation o f \\f

N
------ ►

TTThrn--<->-̂
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Figure 5.10: Correlation index rmax (left) and oscillation index ifj (right) above the thresholds 
t̂hresh and Rthresh for the variables from the reference case study.
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Figure 5.11: Causal map derived from values in Table 5.2. using the automated algorithm.

Case Study: The proposed algorithm including the thresholds values derived in this
section is now applied to the reference case study from Section 4.2. For the analysis, a 
total length of 2500 samples are taken, starting from sample 1001 to sample 3500 during 
which the oscillation is clearly present. This interval is selected since the disturbance 
is uninterrupted during that time period. Correlation index rmax and oscillation index 
'ip that exceed the thresholds are shown for all combinations of the variables in Figure 
5.10. A cluster for the variables T il to TI5 and TCI can be observed in both panels. 
The corresponding detected time delays A are given in Table 5.2. It can be seen that all 
positive time delays lie above the main diagonal. In addition, the time between events 
can be seen from the detected time delay. For example, if T il occurs first, then after 2 
samples TI2, after 8 samples TI3 and so on. Thus, the cause and effect relationship is 
identified correctly as expected from Figure 4.6 and argued in Section 4.2. However, only 
the values of A for which the correlation and oscillation indices exceed both thresholds 
t̂hresh Rthresh are considered. These are highlighted in bold in Table 5.2. A causal 

map is derived using the algorithm from Section 4.4. The resulting causal map is shown 
in Figure 5.11. _____________________________________________________________________________



CHAPTER 5. CROSS-CORRELATION FUNCTION 87

T il TI2 TI3 TI4 TI5 TCI TC2 TI6 LC1 TI7

T il 0 2 8 14 25 50 163 39 58 64

TI2 -2 0 6 12 23 47 160 38 56 61

TI3 -8 -6 0 5 16 38 153 51 67 53

TI4 -14 -12 -5 0 11 34 266 48 42 49

TI5 -25 -23 -16 -11 0 22 246 37 30 37

TCI -50 -47 -38 -34 -22 0 153 15 35 45
TC2 -163 -160 -153 -266 -246 -153 0 359 528 388

TI6 -39 -38 -51 -48 -37 -15 -359 0 19 28

LC1 -58 -56 -67 -42 -30 -25 -528 -19 0 8
TI7 -64 -61 -53 -49 -37 -45 -388 -28 -8 0

Table 5.2: Detected time delay results of the cross-correlation function algorithm of time trends 
from reference case study.

5.2.3 Number of Samples

In this section, the question how many samples are required for the causality measure using 
the cross-correlation is addressed. For all signals, the resolution of time lags depends on 
the sampling rate. If, for instance, only zero time lags are detected it means the sampling 
rate is not high enough because the actual time lag cannot be captured. For an oscillatory 
signal, the required number of samples N min should depend on the number of samples per 
cycle as well as the number of cycles investigated.

Here, the number of samples will be investigated for a signal from the reference case study 
investigated earlier in Section 5.2.1. The cross-correlation algorithm is applied to time 
trends TI4 and TI5. The number of samples used for the analysis is varied from 2 to 1500 
by looking only at subsets of the original time trends. Figure 5.12 shows the detected 
time delay A, the correlation index r max and the oscillation index ip as functions of N. 
In the upper plot, it can be seen that time delay A is correctly detected for a subset of 
around N  = 50 samples or larger. The value fluctuates between 9 and 11 samples for a 
while which might both be correct since the actual time delay might be a value between 
9 and 11. The correlation index r max reaches a value close to one after approximately 
40 samples. The oscillation index ip, however, requires a much larger number of samples, 
around 300, to be larger than the threshold value Rthresh- It requires observation time to 
establish whether the detected time delay accredited to the oscillation or to the actual 

dead time between the two signals.
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Figure 5.12: Detected time delay A, correlation index rmax and oscillation index ^ as a function 
of the number of samples N  for the time trends TI4 and TI5 from the reference case study. Solid 
line: measured indices, dotted line: threshold values rthresh and Rthresh-

5.2.4 M erits  an d  L im ita tions

The CCF algorithm for time lag detection has a number of important benefits. Firstly, it is 
easy to understand and to implement. The CCF is a common feature of process monitoring 
tools and therefore readily available. There are no parameters which, if changed only 
slightly, have a large impact on the results. The guidelines are equally straight forward. 
Good results can be achieved for oscillatory signals as well as irregular disturbances and 
the case study of Section 4.2 gave unambiguous indications towards the root cause.

There are also a number of drawbacks that have to be considered when applying the 
algorithm. Firstly, the requirement for any result is the presence of a time lag between 
the two investigated variables. The time lag or dead time is only one consequence of 
fault propagation, as explained in Section 2.4.3. All other effects, attenuation, magnitude 
decrease or the adding of noise are not considered with the CCF method. Secondly, the 
CCF is a linear tool that cannot deal with nonlinear systems3. Nonlinear in this context 
means that the second signal is derived from the first signal through a nonlinearity. As an 
example, the time delay between a random noise function and the square of the identical 
noise function delayed by a lag cannot be measured.

3For discussions of nonlinearity see Section 6.2.3.
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Figure 5.13: Sine wave with different time lags samples per oscillation period: 2 0 0 , number
of total samples: 1000. Signal-to-noise-ratio: 2.
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A structural problem of the CCF algorithm caused by the finiteness of the time series is 
shown in Figure 5.13 and explained in the following. Here, a sine wave with added noise 
is investigated. The CCF of the combined function y(t) =  x (t) -f- n(t) with x{t) =  sint 
and n(t) ~  N(0, an) where AT is a Gaussian noise function with zero mean and a variance 
of crn:

l)  =  $ xx(T, Tl) <t>nn{Ti "̂l)

=  ^  [{Tp -  t ) c o s ( t  +  ri) -  \  sin(2Tp -  r  -  t{) +  \  sin(r — ri)] (5.29)

+CTn^ 7I <5(r -  n)

where t\ is the time delay. The signal-to-noise ratio (SNR) in this example is 2, in this 
case the variance of the signal is 0.5 and the variance of the noise 0.254. The ACF of the 
signal is shown in the second plot in Figure 5.13. Since the noise is uncorrelated to the 
sine wave, the ACFs of the two signals can be simply added. The ACF of a noise signal 
is a delta pulse at zero delay k =  0 and equal to zero otherwise. The time lag, which is 
zero in this case, is correctly identified at k = 0 by the CCF algorithm. If the sequence 
including noise is delayed by half the oscillation period (k,\ =  100 samples), the algorithm 
still detects the time delay as shown in the third plot. However, due to the decreasing 
behaviour of the CCF, a time lag of twice the oscillation period is not detected in the 
bottom plot of Figure 5.13. The little blip, that indicates the actual time delay and can 
be identified due to the presence of noise, is not large enough to outbalance the decay of 
the CCF of the sine wave. The information of the time lag, however is inherent in the 
data. In this case a delta pulse was used to indicate the noise, for process data there 
might be different features that are inherent in the data but are disregarded by the CCF 
algorithm. The two following methods, the nearest neighbours algorithm and transfer 
entropy, investigate the causal relationship by investigating also exceptional events and 
thus overcome this structural problem of the CCF.

The efficiency of the CCF algorithm will be investigated in Part III and the results of 
the investigation will be discussed and summarised in Chapter 11. A comparison to the 
measures of nearest neighbours and transfer entropy which will be introduced in the next 
two chapters will be made.

4The SNR is defined as SNR =  where <7 „ is the variance of the signal and the noise variance.
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Chapter 5 Summary

In this chapter, an algorithm is proposed that uses the cross-correlation func­
tion to detect a time delay and thus argues cause-and-effect. For validation of 
the time delay, two indices, a correlation and an oscillation index are devel­
oped. Threshold values for these indices were derived from empirical observa­
tion of two uncorrelated signals. The proposed algorithm could be successfully 
applied to the reference case study.



Chapter 6

Nearest Neighbours

This chapter develops the concept of nearest neighbours for causal analysis 
between two process variables using historical process data. The basic con­
cepts of phase space representation and embedded vectors which underly the 
nearest neighbours approach are discussed. The properties of predictability 
and nonlinearity of the time trend and nearest neighbours measures for these 
are introduced. The application of these properties for fault diagnosis is given. 
A centrepiece of this chapter is a new method which uses nearest neighbours 
and which has been developed for cause-and-effect analysis in the context of 
fault diagnosis.

Various methods that use the nearest neighbours principle to argue cause and effect have 
been introduced during the last decade. In the first section, the definition of delay coordi­
nate maps and embedded vectors are given and the background terminology is discussed. 
Embedded vectors are the foundations of the methods for predictability and nonlinearity. 
In Section 6.2, measures for both predictability and nonlinearity are introduced and their 
application to historical process data is shown. The use of measures for nonlinearity for 
fault diagnosis is summarised and explained using the case study from Section 4.2.

A contribution of this work is the development of a generic structure that forms the 
basic steps of the nearest neighbours method. In Section 6.3, the established methods are 
grouped in the framework of variations in the basic algorithm. Furthermore, the effect of 
these variations is tested on process data and a best method is established on the basis of 
the results from the application to process data. A significance level that give guidance 
whether to accept or reject the causality measure is proposed. The developed causality 
measure is applied to the reference case study.
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6.1 Phase Space R epresentations o f D ynam ic System s

When receiving data from the process, a sample time trend is the only information avail­
able while the underlying dynamic system that generated the time trend is unknown. 
Measurements are easy to obtain while the construction of a model of the system might 
be very complex. This section shows that useful information about the underlying nature 
of the process can be derived by constructing trajectories from the time trend. These rep­
resentations describe the dynamics for both linear or nonlinear systems. The foundation 
for a number of properties that describe the underlying system from a sample time trend 
is Taken’s theorem proposed by Takens in 1981 [128]. It loosely says that the trajectory 
formed from the sample time series is related to the actual phase space trajectory of the 
underlying system. Here, phase space trajectory refers to the movement of the variables of 
a dynamical system that is described for example by a transfer function. The trajectories 
give an estimate of a variable in relationship to its previous status. Taken’s theorem thus 
says that once properties are established for the time trend they are also valid for the 
dynamical system.

Phase space representations of trajectories are delay coordinate maps and embedded vec­
tors. Embedded vectors are trajectories formed from the time series by stacking the time 
series in groups in sequential order and are used extensively to describe the system struc­
ture. The concept of delay coordinate maps and embedded vectors will be explained in 
more detail in the next sections. Applications that follow from the reconstruction of the 
phase space through delay coordinate maps and embedding are measures for continuity, 
determinism and predictability. If the predictability is taken a step further to deal with 
two variables at the same time, a measure of causality can be derived. This is achieved by 
asking the question whether a variable A can predict a variable B more than B predicts 
A. Sauer [108] gives a description of the same principle for one variable:

“We identify the present state of the system which is producing the 
time series and search the past history for similar states. By studying 
the evolution of the observable following the similar states information 

about the future can be inferred.”

The principle is, for all derived measures, the method not only of embedded vectors, 
but more specifically the method of finding the nearest neighbours of the embedded vec­
tors. The term “nearest neighbours” is used throughout this chapter to indicate that 
methods for prediction and embedding are considered that at some stage find the near­
est neighbours. The method of transfer entropy, introduced in Chapter 7, also uses the 
same prediction mechanism but pursuing an alternative approach. Most of the literature
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that discussed the methods of nearest neighbours, is grouped under the terms nonlinear 
prediction, embedding, chaos and forecasting. Background literature on embedding and 
surrogate data can be found in Kantz and Schreiber [57], also in [112] and in [114] by 
Schreiber and Schmitz. Part III in O tt et al. [87] as well as the proceedings of the Santa 
Fe competition edited by Weigend and Gershenfeld [147] comprise a number of interesting 
articles on the prediction of discrete dynamic systems.

6.1.1 Delay Coordinate Maps

The motivation for using delay coordinate maps is that time evolution of a process can 
be defined in a phase space [57]. Delay coordinate maps are therefore also referred to as 
phase portraits. In delay coordinate maps all available measurements of a time series Xi 
are plotted against one or more previous values Xi-K to represent the phase state. The 
adjustment of the parameter k is crucial for an appropriate construction of the trajectory. 
The optimal value of k depends on the nature of the time series. For example, a sinusoidal 
sequence with Np samples per cycle can be best displayed in the delay coordinate map if 
k is set to Np/ 4, because the resulting map is a circle. If k is set to a too small value the 
map will be close to  a linear function. This effect is called “false nearest neighbours” and 
used by Kennel et al. [62] to find the optimal delay k as explained briefly later on in this 
section.

The idea of constructing maps from experimental time series was first introduced in the 
late seventies [87] by, for example, Glass and Mackey [36]. If the data is periodic, the delay 
map expresses the significant features of the nature of the oscillation. Visual inspection 
shows these features such as symmetry or resemblance to squares and circles which can 
be used for diagnosis as described in the following application to the reference case study 
from Section 4.2.

Case S tudy: Three time trends of the case study from Section 4.2 are chosen to
visualise the use o f delay coordinate maps. The upper left plot, T il , is a very nonlinear 
time sequence (the nonlinearity of this particular sequence will be investigated in Section 
6.2.3) with spikes and episodes when the signal is constant. This is reflected in the delay 
coordinate map to the right by a corner consisting o f a horizontal and vertical stretch of 
line. The middle left plot, TI7, looks far more like a sinusoidal time sequence. The delay 
map is not a perfect circle, which it would be for a sinusoidal oscillation, but very close to 
it with some indent on the upper left corner. The random signal, T I6 , in the lower plot 
gives at a first glance no indication of regularity. However, calculating the ACF of the 
time trend o f TI6 , as shown in Figure 5.1, revealed an underlying oscillation. This shows 
that the delay coordinate map is not robust to a low signal to noise ratio. The delay of 
the embedding was chosen differently for the two time trends, a delay of 5 samples was 
used for T il, 12 samples for TI7 and 1 sample for TI6 . _____________________________
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Figure 6.1: The delay coordinate maps for time trends from reference case study show almost 
a square form for the nonlinear signal in the upper plots and a circular, or linear, structure for 
the nearly sinusoidal signal in the middle plots. No structure can be observed for the random 
appearing time series, lower plots.

6.1.2 E m bedded  V ectors

In the previous paragraph, delay coordinate maps were introduced as a way of describing 
the dynamic system. A more generic, high dimensional and therefore non-graphical repre­
sentation of the time trend are embedded vectors. Embedded vectors1 are constructed by 
arranging the N  available measurements x \ . . .  xjy in N* = N  — (m — 1)k ra-dimensional 
vectors

x, =  [a:<, Xi -K . . .  ^ _ ( m_i)K] for i  =* (m -  1)* +  1 . . .  N.  (6.1)

Two critical parameters are embedding dimension m  and time lag «. The embedding 
dimension is the critical parameter that defines the quality of the representation of the

JFor mathematical formulation of the embedding methods see article “Embedology” by Sauer et al. 

[107]
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Figure 6.2: Entropy ratio as defined in Equation 6.3 as a function of embedding dimension m  and 
time delay k for the time trends from Figure 6.1, samples 2000:6:3200. The optimal values of m 
and k are at the minimum values for the entropy ratio.

phase space. The embedded vectors can be arranged in a matrix to simplify further 
processing. For an embedding dimension m  = 3 and n =  1, the embedding matrix has the 
following form:

x 3 x 2 X \

X 4 X 3 X 2

2-5 X 4 X3

X N X N - 1 X N -

The embedded vector x* is then the zth row and therefore a short piece of the time trend.

Methods are available to determine the minimum and optimal embedding dimension, see 
for example the two methods by [62, 59]. Both methods are based on the principle of false 
neighbours. Nearest neighbours are embedded vectors that have the smallest Euclidean 
distance because of repetitive dynamics. False nearest neighbours occur if an embedding 
dimension is too small to unfold the delay coordinate map, not all points that lie close 
to one another will be neighbours because of the dynamics. The false nearest neighbours 
criterion of the optimal value for m  is based on the increase of the distance of two nearest 
neighbours if the embedding dimension is increased by one to m  +  1. If the increase is 
large, then it is assumed that they were false nearest neighbours.

Time lag k, is in most cases set to one since adjusting the sampling rate is equivalent 
to adjusting k . A combined optimisation scheme of embedding dimension and time lag 
is presented by Gautama et al. [32]. They argue that the set of optimal parameters 
for m  and k yields a phase space representation which best reflects the dynamics of the 
underlying signal production system. Therefore it is expected that this representation has 
a minimal value for a quantity called differential entropy. Differential entropy is a measure 
of uncertainty of a signal which is estimated using the probability density function of the 
signal. The entropy ratio to be minimised is given by:

Tn In N*
#ent(m, k) =  I e n t ( m ,  k)(1 H —  ). (6.3)
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Here, Ient(m, k) is the ratio of differential entropy of the original time series to the averaged 
differential entropy of the surrogate time series. Surrogate time series are time series with 
the same statistical properties as the original sequence. Good results were achieved by 
[32] for simulated data sets. For real data sets the results can be sometimes disappointing 
as the minimum tends to lie at an embedding dimension of m  — 2. Figure 6.3 shows the 
results for the time trends as shown in Figure 6.1. For all three data trends the optimal 
embedding dimension is m  =  2 while the time delay is k = 1 to k = 3 and k =  5. As 
the results are not very encouraging, the approach of empirical optimisation through a 
number of data sets is pursued in Section 6.3.4.

6.2 N earest Neighbours for Predictability and Nonlinearity

This section discusses measures for predictability and nonlinearity based on the concept of 
nearest neighbours. The terms continuity, determinism, randomness and uncertainty are 
defined first in both their literal and mathematical meaning. In particular, measures for 
predictability and nonlinearity are defined and discussed. The application of these methods 
to fault diagnosis purposes is given alongside the previously introduced examples.

6.2.1 Continuity, Determ inism  and Predictability

Characteristics of both the dynamical system and the time trend it produces include con­
tinuity, determinism, predictability and uncertainty. These properties, as well as statistics 
to quantify them, have been studied by the following authors [60, 93, 106]. The following 
paragraph argues tha t continuity, determinism, predictability and uncertainty are closely 
related and even identical in some aspects in a mathematical sense. These characteristics 
can be used for fault diagnosis as they give insight into the nature of the time trend of a 

disturbance.

Before establishing a measure for continuity, Kaplan [60] defines it as follows:

“To test for the continuity of the underlying map, we want to answer a 
question like, ‘If two points X{ and Xj are close together, are their images 

Xi+1 and Xj+\ also close together?”’

If the question has a positive answer than the time series is considered continuous. In this 
context, the difference between continuity and determinism is that the term deterministic 
applies to time dependent functions, that is, x — f(t )  while continuity applies to invertible 
functions that map one variable onto another, such that y — f(x).  Pecora et al. [93] give 
in this context the following description of a deterministic system:
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“A basic property [...] of deterministic systems is that of continuity 
forward in time. That is, points very close in phase space should map 
forward to points still close in phase space.”

The counterpart of determinism is randomness. Pecora’s view conflicts at a first glance 
with the traditional definition of continuity. This is because continuity is usually under­
stood in the context of continuous functions. Here, however, the time series is available as 
a discrete function with distinct points X{. Continuity is not necessarily visible in the time 
trend of discrete functions but rather in the phase portraits that reflect the functional 
relationships. A further property that is often given to describe time series is predictabil­
ity. A definition tha t links determinism closely to predictability is given by Salvino et al. 
[106]:

“Predictability indicates to what extent the past can be used to deter­
mine the future.”

Based on this definition determinism and predictability will be treated as equal properties 
in this chapter. If predictability is treated as equivalent to certainty, then uncertainty 
is defined as the counterpart to predictability, such a definition makes sense in the non- 
scientific use of the two words. If a time series is not predictable it is unpredictable or 
uncertain.

The development of statistical methods for predicting a time series through knowledge of 
historical data of the time series was boosted in 1991 when the Santa Fe Institute called 
for a competition to predict the future trend of time sequences [147]. The aim of this 
competition was to provide a structure and compare quantitative results by analysing 
six time trends from disciplines such as physics, physiology, economics, astrophysics and 
music. The winning prediction method was by Sauer [108] and based on delay coordinate 
embedding and finding the nearest neighbours. In the following years research effort 
was focused on developing further predictability methods and providing a mathematical 
framework for these methods. The following predictability test by Kaplan is a direct result 

of the competition. The Kaplan method has been chosen because it gave robust results.

6 .2 .2  A  T e s t fo r P r e d ic ta b i l i ty

A test for continuity and predictability of the underlying dynamic system proposed by 
Kaplan in 1994 is the delta-epsilon method [60]. It is based on the principle of finding 
the nearest neighbours in a sample time series. The distance between all pairs of sample
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points Xi  and X j ,  8 i j  =  \xi  — X j \ ,  are compared to the distance between their images X i + i

and Xj+1, Cij = \xi+\ — Xj+1 |. The e-values for which the corresponding 8 zj  lie in the
proximity of a radius g are averaged by:

e(g) = €ij, for all i , j  such that: g < Sij < g +  Ag.  (6.4)

Here, A g denotes the width of the “bins” used for averaging and the overline indicates 
averaging. The purpose of the calculation is to check if the images are close together when 
the sample points are close together. Predictability is argued through this comparison. 
An upper limit for e is given by the a linear approximation if Xi  and X j  are close together 
and if g is small:

z(q) < A- ( e  + Ag), (6.5)

where A is the averaged absolute value of the slope of a linear approximation of the distance 
between the images of Xi and Xj on an e versus g graph. The reason for Equation 6.5 is 
that small values of 8  imply small values of e while large values imply large values if there 
is a functional relationship between a value and its image. When plotting all e versus all 
8 values for the combinations of i , j ,  the points lie under a curve that is piecewise linear 
according to A, in case of continuity. These scatter plots are difficult to measure by a 
singular number so rather the plot of e over g is used for a measure. If e approaches zero 
for g approaching zero then the underlying nature of the time series can be considered as 
continuous. The delta-epsilon method was developed for simulated data such as the tent 
map2 and is not very robust for noisy signals.

The continuity measure of the delta-epsilon method can be made more robust by applying 
embedded vectors3. For this purpose, an array of embedded vectors is constructed as 
defined in Equation 6.1. The embedded vectors are arranged in a matrix as defined in 
Equation 6.2. The embedded vector Xj is then of length m  and a small part of the time 
trend. The future image X i + \  continues to be a single value. The parameter 8  is given 
by the distance between two embedded vectors Sij — J|x* — X j | | .  The distances e are 
\xi+\ — Xj+1 | as before and form now the images of the embedded vector. The nearest 
neighbours of each embedded vector are found by minimising 8 ; the result is now more 
robust towards noise. This method is only one in a number of methods for evaluating 
predictability. Previous approaches that predict time series include a forecasting technique 
by Farmer and Sidorowich [27] and by Casdagli [12]. The delta-epsilon method, though, 
has the advantage of being simple and well established at the same time. Cao and Mees 
[11] use a one step ahead prediction which compares the predictability of a future value 

rather than the current value.
2 The tent map a time series that appears at a first glance similar to white noise but is based on the

following simple equation: X i + i  =  2X i  if Xi  <  0.5 and X i + i  =  2(1 — x 7 ) if Xi  >  0.5.
3A Matlab implementation of the delta-epsilon method using embedded vectors can be found on the 

website of D.T.Kaplan http://www.m acalester.edu/kaplan/Software/, July 2004.

http://www.macalester.edu/kaplan/Software/
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Figure 6.3: Extract of time trend of reference case study, temperature measurements TI6  and 
TI7, for delta-epsilon continuity analysis. TI6  is chosen to represent a random function while TI7 
is more continuous as it seems to follow an oscillatory function.
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Figure 6.5: Plots of averaged e values as defined in Equation 6.4 over distance parameter g for 
time trends as shown in Figure 6.3; embedding dimension m = 4.
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Case S tudy: An example is given using data from Example II  in Section 4.2. Data
subsets o f TI6  and TI7 are chosen. TI6  does not follow the disturbance and thus appears 
random while TI7 oscillates more similar to a continuous function. The time trend of 200 
samples of the sequence is shown in Figure 6.3. The randomness and the continuity o f the 
sample sequences can be determined from visual inspection. TI6  is random because of a 
measurement fault and TI7 is continuous. Sometimes, however, the underlying function 
is not as distinct and requires a continuity measure for separation. Figure 6.4 shows 
the resulting delta-epsilon plots for an embedding dimension o f m  = 4 for the random 
and continuous time trend. While the left panel appears more like a random blur, the 
right panel seems to lie under a boundary curve that is almost linear. This curve is the 
approximated and linear upper boundary as described in Equation 6.5. The delta-epsilon 
plot for TI7 looks therefore more structured. In both cases the embedding dimension m  
was set to four which might not be the optimum value but gives sufficiently clear results. 
The averaged e values as described in Equation 6.4 is given in Figure 6.5. For the random 
case of TI6 , e is almost independent of q . For TI7, on the other hand, the e approaches 
zero as q approaches zero. From this follows that the images of the nearest neighbours of 
the embedded vectors lie also close together, which is the original definition of continuity 
by Kaplan4. _____________________________________________________________ ______

The computational effort increases exponentially with increasing number of samples pro­
cessed. Here, the 200 samples were chosen which gave unambiguous results about the 
different nature of the two signals. However, it is then important to choose a relevant 
interval of the time trend during which the continuity can be observed.

6.2.3 Tests for Nonlinearity

The measures for continuity, determinism and predictability will be directly applied to two 
variables in the next section. There is, however, a further property of the dynamic system 
that is often analysed using nearest neighbours. This property is nonlinearity. The statis­
tics computed by the nearest neighbours principle can be used as a nonlinear observable 
and a measure of nonlinearity is derived by asking the following question: “What distribu­
tion of values for the statistic will a comparable linear model produce?” [57]. If the result 
of the original time series is consistent with the linear model it can be regarded as linear. 
If not, it might be nonlinear. A comparable linear model results from construction of a 
signal with the same linear properties, that is, linear mean, variance and autocorrelation 
function (ACF). A surrogate time series [130] with these properties can be constructed by 
transforming the time signal into the frequency domain via the discrete Fourier transform 
(DFT), shuffling the phase spectrum but leaving the amplitude spectrum untouched and

4Matlab codes for the implementation of the delta-epsilon method; http://www.m acalester.edu/ ka- 

plan/Software/, July 2004.

http://www.macalester.edu/
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Figure 6 .6 : Original time series (upper panels) of time trends from reference case study, their 
surrogates derived from phase shuffling (middle panels) and the corresponding power spectra (lower 
panels).

transforming the signal back into the time domain5. When carrying out the surrogate data 
analysis, it is important to ensure that the data is end-matched. End-matching requires 
the starting value and first order derivative to match the value and first order derivative 
of the end of the sequence. The reason for this is that the sequence is finite and conversion 
into the frequency domain using the DFT can result in spectral leakage. Stam et al. [125] 
suggest an algorithm that minimises the frequency mismatch error between a time series 
and the delayed time series.

C a s e  S tu d y :  Figure 6.6 shows the effect of phase shuffling on two time trends from
reference case study in Section 4.2, T il and TI7. The regular low frequency pattern 
of T il (left hand panels) is completely destroyed after computing the surrogates while 
the same low frequency persists, to some extent, for TI7 (right hand panels). Looking 
at the power spectra in the lower panels it is apparent that T il has more harmonics of 
the main oscillation, at least four are clearly recognisable, than TI7 for which only one

5Thereby, the ACF of the signal remains unchanged as the power spectrum and the ACF are related 

through the Wiener-Kinchin theorem.
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Figure 6.7: Epsilon plots for original time series and surrogate time series as shown in Figure 6.6

harmonic can be distinctively seen. The role of harmonics in the frequency spectrum and 
the relationship of nonlinearity and predictability will be explained later on in this section. 
First, the application of the delta-epsilon method by Kaplan to the original and surrogate 
time series from Figure 6.6 will show how a test for the nonlinearity can be derived. The 
shuffled data series in the middle left hand panel is less structured and thus less predictable 
than the original time series. This should result in an averaged e value, Equation 6.4, that 
does not approach zero as 6, or q, approaches zero. Figure 6.7 gives the plots for the 
averaged e values over the distance q of 8. The plots for both original time series and the 
surrogate of TI7 approach zero for small q. The surrogate time series of T il, however, 
which appears unstructured in the middle left hand panel of Figure 6.6, has a value of 0.3 
for the smallest interval of q  and q  +  A g. T il might therefore be nonlinear, although not 
only one but a number of surrogates should be considered for statistical significance. -----

A similar approach to the delta-epsilon algorithm is the delay vector variance method by 
Gautama et al. [31]. Instead of the distances, variances of the embedded vectors and the 
variance of the images are computed to retrieve a statistic similar to the averaged e plots. 
This provides a measure for both nonlinearity and noise.

N onl inear i ty  in the C on tex t  o f  Process M oni tor ing:  The definition of nonlinearity 
in time series is by no means trivial. A signal that is often regarded as nonlinear is, for 
example, a triangular periodic wave. The reason for non-triviality is the fact that the time
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series itself is not considered as linear or nonlinear but rather the process that generates
the time series or a system through which the signal is passed. Those systems are described
by transfer functions. A linear system can always be expressed by the following ARMA 
(autoregressive moving average) equation:

Ni N2

Xi  — do "t” ^   ̂CLj/Xi—1/  4“ buUi—jj.  (0 .6 )
i—v u=0

The coefficients au and bu describe the system fully. In the most trivial case Xi is a linear 
function of Ui (av — 0, bu =  0, v > 0). Process nonlinearities describe an element of 
the process that is nonlinear. The input sequence itself does not have to be linear but 
is usually assumed to be a sine wave. A nonlinear process element could be a sticking 
valve with stiction problem or bang-bang control element. The output is then nonlinear, 
that is, an oscillation that does not follow a sinusoidal behaviour. If the input is a sine 
function then the output in the form of a triangular wave is derived through an inverse 
sine function which is not a linear function. This is, however, only a static nonlinearity. 
Regarding sine waves as linear and all other periodic functions as nonlinear has a very 
attractive aspect in the frequency domain. Sinusoidal oscillation result in a single peak in 
the spectrum while all other periodic functions show harmonics at multiple of the main 
frequency. If the phase shows a certain structure, that is, it is not random, then the signal 
is considered nonlinear. The phenomena of showing structure in the phase spectrum is 
also called phase coupling.

Nonlinearity in time series is very relevant in the context of process monitoring and fault di­
agnosis because the underlying nonlinearity is often the root cause. A nonlinearity method 
based on nearest neighbours and surrogates was therefore successfully implemented as a 
diagnostic tool by Thornhill et al. [133, 135, 137]. The methods are based on similar 
approaches as described above based on methods as described by Sugihara and May [127] 
and Schreiber [112]. Choudhury [19] uses the bispectrum and bicoherence to exploit the 
effect of phase coupling in the frequency spectrum. A method based on Ljapunov expo­
nents as described by Kantz and Schreiber [57] was applied in [155] to simulated data 
of two interacting control loops and to industrial data. Stam et al.[125], on the other 
hand, measure the nonlinearity of oscillating system by time reversibility and amplitude 
asymmetry, arguing that all linear signals are time reversible and amplitude symmetrical. 
The reverse conclusion is not valid as for example a square wave is both time reversible 
and symmetrical but has distinct harmonics and is therefore not considered as linear.

6.3 A M easure of Causality Using N earest Neighbours

In this section, methods based on the concept of nearest neighbours that measure the 
predictability from one time series to a second time series are proposed for causality 
analysis in chemical processes. First the concept of predictability for two time series
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is explained and the underlying mechanism of causality, generalised synchronisation or 
coupling, is described. A review of methodologies that estimate the interdependence of 
two time series using nearest neighbour principles is given next. In Section 6.3.2, two 
main frameworks of the causality measure are given, one based on causality and one on 
one step ahead prediction. The variations to the main framework are then implemented 
and applied to the case study in Section 6.3.3. The most successful method is chosen and 
the parameters are optimised (Section 6.3.7). A significance level that gives an estimate 
of the reliability of the measure is developed in Section 6.3.4.

6.3.1 Underlying Mechanism of Causality

In Section 6.2, methods to measure predictability were introduced. The definition of 
predictability for a single time series was to what extent the past can be used to determine 
the future. The same question can be extended to the case of two variables, rephrasing 
the predictability definition by Salvino et al. [106]:

Predictability in the context of comparing two variables indicates to 
what extent the past of one variable can be used to determine the future 
of a second variable.

This definition results in a causality measure which can be derived by comparing the 
predictability from a first variable to the second with the predictability of the second 
variable to the first (see Section 4.1).

The underlying principle that is exploited to find causality using nearest neighbours is 
the principle of generalised synchronisation. Two systems are called synchronised in a 
generalised way if a causal functional relationship exists between the states of both systems. 
Therefore, if two time series are described by

y(t) = f(x{t))  (6.7)

then x{t) is identified as the driver and y(t) as the response if /  is a non-invertible function. 
When trajectories in the state space representation of systems x{t) and y(t) are connected 
by generalised synchronisation as in Equation 6.7, then two close states of the driver are 
connected to two close states of the response [103]. Taken’s theorem [128] translates this 
property to the state space representation of embedded vectors. The existence of the 
relationship between driver and response is evaluated by finding the indices of the nearest 
neighbours of the driver at time i. The indices gained this way should give good estimates 
of the response values at time i. Generalised synchronisation is further studied by Kocarev 
and Parlitz [63] and Kocarev et al. [64].
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The development of statistical measures for coupling strength, interdependency and hence 
causality started in the early 1990s as powerful computers and workstations became more 
readily available. One of the earliest approaches by Cenys et al. [13] is the mean condi­
tional dispersion (MCD) which finds the nearest neighbours within a radius e, similar to 
the delta-epsilon method by Kaplan in Section 6.2.2. The Euclidean distance between the 
original embedded vector of the response and the embedded vectors of the response with 
the indices of nearest neighbours of the driver are calculated. The dependency of the sum 
of the distance on e is a measure of causality. A later application of MCD to human and 
animal electroencephalogram (EEG) signals was reported by Ulbikas et al. [140].

Rather than using the concept of nearest neighbours, Rulkov et al., [103] applied the prin­
ciple of false nearest neighbours, see Section 6.1.1, to establish a causality measure. The 
mutual false nearest neighbours give then a measure of interdependency by comparing an 
increased embedding dimension of the driver while fixing the embedding dimension of the 
response variable. In 1996, Schiff et al. [110] introduced a method similar to [13]. Instead 
of considering the nearest neighbours within a radius, the number of nearest neighbours is 
fixed to a value K.  Additional scaling has the effect that the resulting measure is smaller 
than one with one corresponding to independency and zero to dependency between the 
two variables.

Variations and generalizations of the method by Schiff et al. have been successfully applied 
to EEG signals and discrete dynamic systems [5, 114, 100]. Arnhold et al. [2] in particular 
suggest a number of generalisations and alternatives of the measure of dependency. Bhat- 
tacharya et al. [6] propose a modification which omits the first K  nearest neighbours but 
considers the following K  +  1 , . . . ,  2K  arguing that noise can make the nearest neighbours 
of the driver better predictors of the response than the response itself. By considering 
only K  +  1 , . . . ,  2K  neighbours, the resulting measure will be more robust against noise. 
A further variation was proposed by Le Van Quyen [72]. Instead of summing the distance 
between embedded vectors, the distance between future images is summed. Thus, the 
predictability of a future value of the response is estimated by the embedded vector of the 
driver. Further approaches that consider a future value, referred to as “one step ahead 
prediction” , are by [73, 11, 150, 28]. Goodridge et al. [37] investigated the use of variances 
instead of simple averaging over the number of nearest neighbours, similar to the DVV 
method for detection of nonlinearity [31, 32].

6.3.2 Embedding-Prediction and One-Step-Ahead-Prediction

In this section, the algorithm proposed for calculating a predictability based measure for 
dependency will be developed. A further, modified version of the algorithm will be given 
later in this section. The modified algorithm involves a structural difference compared to 
the algorithm in this section, the prediction of a step ahead in the future rather than the
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prediction of an embedded vector. All other modifications that might improve the method 
are investigated in the next section. The proposed algorithm computes H( X\ Y)  as a 
measure of interdependence, that is, how Y  influences X.  The inverse case, H( Y\ X)  can 
be derived by exchanging time series X  and Y.  For notational purposes Di is introduced 
as an interim measure for constructing H  which has to be calculated for all embedded 
vectors. The proposed algorithm can be summarised in the following steps which will be 
explained below in more detail.

A lgorithm  - Em bedding Prediction
Step 1. Construct embedded vectors X*, y* and get distances between all pairings 
of embedded vectors ||x* — Xj||, | |ŷ  — ŷ -11.
Step 2. Find indices r^j and Sij of K  nearest neighbours of X* and y .̂
Step 3. Compute Di(X\X),  Di(X\Y)  as functions of ||x» — Xj||, ||x» — x s< . || 

over all j  =  1. . .  K.
Repeat Step 2 to 3 for i = 1 . . .  N*
Step 4. Compute H( X\ Y)  as function of Di(X\X) ,  Di(X\Y))  over all i =  
1 . . .N*.
Step 5. Compute causality measure hx-+y =  H( X\ Y)  — H(Y\X) .

Step  1. First, embedded vectors are constructed from time series x and y\ xz =  

[xi tXi-Ki. . . ^ _ ( m_i )K] E R1,m and y* =  [yu yi -K, ■ • • 6 R1,m. If the time se­
ries consists of N  samples then N* = N  — (m — 1)k embedded vectors are formed. For 
implementation, the embedded vectors are arranged in a matrix such that the embedded 
vectors form m  rows:

' *^(m—1)k+1 Xi y ( m — 1)k+1 y i

x  = •̂ (m—1)k+2 x 2
, Y  =

y ( m — l)/c+2 y2

x n X n —(m—l)K VN y N —(m —l)K

X E R N*,rn, Y  E R N*,m. As described in Section 6.1.1, m  is the embedding dimension 
and k, the time delay between two successive samples. The embedding dimension m  as 
well as k are sometimes chosen differently for x and y which does not affect the structure 
of the algorithm for causality, see for example [110]. However, as the signals that are 
investigated in the background of root cause analysis are similar due to the pre-selection 
of process variables, identical parameters for m  are assumed. Optimization issues for m  
and k are addressed in Section 6.3.3. The Euclidean distance for all combinations of the
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embedded vectors i ^  j  is then computed by 

d a  = llxj — xJIJ V— ------------------------------  (6-9)
The generation of all distances at this early stage helps to implement a efficient computa­
tion since the distances are used in both Step 2 and 3, first to find the nearest neighbours 
and then to compute the statistic Di. Additionally, the distances are symmetrical so that 
only t}N*(N* — 1) distances have to be calculated. This can be achieved efficiently if the 
distances are stored in a matrix D =  {dij}  € Thus, elements d^i on the main
diagonal equal zero and D =  D T holds. __________________________________________

Step 2. The K  nearest neighbours for every embedded vector x; and result from the 
minimum value of the distances such that for embedded vector x;

(6.10) 

(6.11)

The minimum values and their indices can be found easily by sorting all distances, choosing 
only the K  smallest distances and gathering ri j  and Sij. The indices can be summarised 
in matrices R  € R^*’̂  and S 6 R^*’̂ . The adjustment of parameter K , the number
of nearest neighbours, is described in the following Section 6.3.7. This step has to be
repeated for all i = 1. . .  N*. ____________________________________________________

Step 3. Next, the statistic Di is computed from the distances of the nearest vectors. A 
simple solution is that the statistic is the averaged sum of the distances of all K  nearest 
neighbours,

1 K
Zli (X |y ) =  - ^ | | x i - x Sji.||. (6.12)

3 =  1

To scale this measure to sequence x , the average distance of all embedded vectors Xj with 
7 =  1. . .  N * is defined:

- N*

Di(X\X)  = — —  (6.13)
J =1

Both Di(X\Y)  and Di(X\X)  increase with increasing embedding dimension m  since the 
square of the average distance of embedded vectors is the square root of the sum of all 
(Xi — Xj ) 2 for j  = 1 . . .  m  as described in Equation 6.9. This effect can be eliminated by 
multiplying Di by factor Thus, Di will be approximately in the interval 0 < J9* < 2 if 
x is scaled to unit variance. It will lie there only approximately because of the stochastic 
nature of the measure. A benefit of the statistic is that there are no parameters to adjust 
in this step. The computation of D? has to be repeated for all i --------------------------------------------------------

and for embedded vector y i

: = { j  | min l lx i -Xj l
j#*

si,j :=  { j  I m m ||yi -y - | | } .
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S tep  4. After repeating Step 2 and 3 over all embedded vectors an average value of Di 
must be calculated to retrieve a single statistic. A straight forward averaging results in

rr (Y\v \  1 Di(X\Y)  (fi-m
h ^  = n ^ 2 ^ d ^ x \x ) (6'14)i=1

as the interdependence measure. The resulting measure H  is an indication of interdepen­
dency between X  and Y.  If H(X\ Y)  is much smaller than one, then Y  influences X  and 

vice versa, or in descriptive form

H (X \ Y)  < 1 => Y  -> X  ,
v 1 '  (6.15)

H( Y\ X)  < 1 =► X  -> Y.

Other options for calculating statistic H  will be discussed in the next section. No param­
eters are required for the calculation of H(X\Y) .  __________________________________

S tep  5. In the last step, the two measures of x  influencing y and y influencing x  are 
compared to turn the predictability measure into a causality measure. This addresses the 
question whether x  is a better predictor of y than y is of x. _________________________

The resulting measure of interdependence introduced here with definitions for Di and 
H( X \ Y)  is based on the measure defined by Schiff et al. [110]. More recently, Arnhold et 
al. [2] introduced a measure by defining Di{X\X)  as

1 K
D,<1)(XpO =  - £ | | x , - x rjJ|| (6.16)

3-1

by considering only the K  nearest neighbours for D ^ \ x \ X )  and then consequently they 

define

This measure has been picked up subsequently by further authors[100, 114, 5, 6]. However, 
a major drawback comes with the definition of Di(X\X).  By taking the nearest neighbours 
of the sequence and comparing it to its own embedded vectors gives a measure that not 
only depends strongly on the number of nearest neighbours but also cannot be easily 
scaled to a unit value for independency. The reason for this is that the distance between 
embedded vector X* and its nearest neighbours xTi . is not the average value but a smaller 
value, even if x is completely random because the minimum is always taken. Thus, if K  
is increased, the average value Di(X\X)  will increase, too. Also, since the data here is 
strongly periodic, the self predictability Di(X\X)  will always be very small compared to 
the predictability due to the second variable, Di(X\Y),  that is, A" is a good predictor for 
itself. The detailed mathematical derivation of the expected value of Di{X\X)  for the case 
that m  = 1 is given in Equation B. l l  Appendix B.l, the expectation value results in:

E{Di(* |* ) }  =  ~ 1] + 2 ^ [1  -  | V ^ ^ ] -  <6-18>
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Figure 6 .8 : Construction and value of the embedding prediction for two time trends of the refer­
ence case study. X = TI4, Y = TI5, N  = 1000, m = 4, k = 6, K  = 20.

This is an almost linear dependency on the ratio of K / N ,  as shown in the Appendix, and 
therefore has uncontrolled effects on the causality measure.

C a s e  Study: The algorithm as described above is applied to the case study of Section
4.2, again the relationship between temperature TI4 and TI5 is investigated here. The 
causality measure H (TI4\TI5 ) results in a value of 0.38 and H{TI5\TI4) in 0.39 when
choosing an embedding dimension of m  — 5, a time lag of k — 6 and K , the number of
nearest neighbours, equals 20. Both values of H (T14\T 15) and H (TI5\TI4) are smaller 
than 1 and therefore TI4 influences TI5 and vice versa. To understand the construction 
of H, the trends of Dt{X\X)  and Dt(X\ Y)  are plotted in the upper plot of Figure 6.8 for 
TI4 and TI5. The first observation is that Dt {X\Y)  is smaller than D i ( X \ X ) throughout, 
thus the indication of interdependence. In case of independence, Dl ( X\ Y)  and D i ( X \ X ) 

are identical. Interestingly, D i ( X \ X ) oscillates. The oscillation exists because the time 
series is not stationary. Thus, every time x is close to its mean value for a longer time, 
D i ( X\ X)  is at a minimum, that is, the average distance to all other embedded vectors is 
then minimal. The lower plot of Figure 6.8 shows a similar oscillatory behaviour. The 
main problem of the interdependence measures H (TI4\TI5 ) and H (TI5\TI4), however, 
is that their values though smaller than one are almost identical (0.38 and 0.39) and thus 
do not imply causality. This is mainly because there is a time delay o f 10 samples between 
the oscillations in x and y, see Table 5.2. This time delay cannot be incorporated in the 
measure of interdependence. Thus, the equations for Dt. Equation 6.12 and 6.13, will be 
modified as suggested first by Le Van Quyen et al. [72] as shown in the next paragraph.

The reason why the causality measure did not work is the inability to incorporate a time

D.(X|X)
D.(X|Y)H(X|Y) = 0.38
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delay between the two data trends. Although an asymmetrical measure, it is not optimised 
for detecting causality, especially in case that a time delay is present. The reason for this is 
that the presence of a strong deterministic component, such as a periodic function, results 
in bidirectional coupling. Unidirectional coupling, which can be used to argue cause and 
effect, is not captured.

Le Van Quyen et al. [72] were among the first to propose a one-step-ahead-prediction 
(OSAP) algorithm. The length of the step is referred to as the prediction horizon h. 
OSAP is then achieved by predicting a future value or image that lies h steps ahead. The 
image of embedded vector x* =  [xi, . . .  i)K] is then Xi+h and the nearest neighbours
of y i are used to predict the images x Sij+h- Although the statistic Di chosen by Le Van 
Quyen et al. varies slightly from the statistic proposed here, the basic principle is the same. 
Further measures based on OSAP have been proposed more recently by [11, 28, 73, 150]. 
The OSAP algorithm as an extension to the embedding prediction algorithm as described 
above can be summarised in similar steps. The outline of the algorithm is as follows.

Algorithm - One Step Ahead Prediction
S tep  1. Construct embedded vectors x^, y t h e i r  images Xi+ h ,  Vi+h  and 

get distances | |x j  — X j | | ,  ||y^  — y^-j| as well as 

distances of images \xi+h -  xj+h\, |y i+ h  -  V j + h l

Step 2. Find indices r ^ j  and S i j  of K  nearest neighbours of X* and ŷ .
Step 3. Compute D°(X\X) ,  D°(X\Y)  as functions of

\xi+h -  X j + h l  \xi+h -  x Si j+h\ over all j  =  1. . .  K.
Repeat Step 2 and 3 for i = 1 . . .  N*
Step 4. Compute H°(X\Y)  as function of D°(X\X) ,  D?(X\Y)) .
Step 5. Compute causality measure hx^ y = H°(X\Y)  — H°(Y\X) .

The norm | • | is used since the images are single values. The measures D°{X\Y)  and 
D°(X\X)  are here defined by

1 K
DUX\ Y )  = -  £  \xi+h -  x s,J+h\. (6.19)

j  = 1

To scale this measure to sequence rr, the average distance of all images is computed.

1 N *

m x \x)  = E  -  x i+»\- (6-2°)
3 = 1

Since now no embedded vectors are used for the computation of D°(X\X) ,  it be interpreted
as the standard deviation of the time series where the mean of the time series is Xi+h ■ The
computation of H°(X\Y)  is identical to the computation as described in Equation 6.14.

1 ^ D ° ( X \ Y )
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Figure 6.9: Construction and value of the interdependence measure for time trends of the case 
study. Upper plot: dotted line = X, solid line = D°(X\X), thick line = D°(X\Y). Lower plot: 
dotted line = Y, solid line = D°{Y\Y), thick line = D°(Y\X). H° is larger if solid line is well 
above the thick line. X = TI4, Y = TI5, N = 1000, m = 4, h = 10, k = 6 , K = 20.

P rediction horizon: If the time lag between two time series is known by means such
as the cross-correlation function, the prediction horizon is set to the detected time lag. If 
this is done then the nearest neighbours method is in a way the replacement of the linear 
correlation coefficient of the algorithm described in Section 5.2. However, if the prediction 
horizon is not available or uncertain, the nearest neighbours method will give a useful and 
more robust result due to the embedding. An optimisation of the prediction horizon in 
case that the time delay is not available is given below.

Case Study: The OSAP algorithm is applied to the same time trends as the embedding
prediction, that is TI4 and TI5 of the case study from Section 4.2 but with the prediction 
horizon set to 10. Figure 6.9 shows the time trend of TI4 and TI5 together with the 
OSAP values D°. In the upper plot, D°(X\Y)  is on average smaller than D°(X\X)  but 
not considerably which means that Y  can predict X  to some extent but is not a very good 
predictor. In the lower plot, however, D°(Y\X) is very small while D°(Y\Y) is between 
1 and 2 for all times i .  Thus, a very strong dependence from X  to Y  exists. This is 
reflected in the values for the interdependence measures H°(X\Y)  =  0.53 which twice as 
big as H°{Y\X ) = 0.26. Thus, the measure clearly detects a dependence from X  = TI4  
to Y  = T I 5 rather than vice versa. I f X  would be a perfect predictor o fY  than D°(Y\X)  
would be constantly zero. _________________________________________________________________

In the following only the OSAP method will be pursued since the algorithm is better
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D?(X\X)  D ° ( X \ Y ) H°(X\Y)

I |^ i+ h  N* — l  ^  x i+h \ I x i+ h  K Y L x S i j +h \
1 v JV* D° \X \ Y)  

N* D?(X \X)

II aXi+h <*Xsi , j+h
1 D?(X\Y)  

N* 2 ^ i= 1 D° {X\X)

III N * - l  \x i+h  x j + h \
± y p K + K !  \x  x  1 
K  Z ^ j - l + K i  1 l+h  ^ S i j+ h l

1 ^ N* D°{X\Y)  
N* l ^ i = 1 D?{X\X)

IV N * - l  X > i= l 1 x i+ h  x j + h \ ~K ^ j = l  \x i+ h  — x Si,j+h\ 1 V l O K ^ (X|y) N* 2^  o D°{X \X)

V N* — l  ^-Ji=1 \x i+ h  x j + h \ ~K \x i+h  ~  x Sitj+ h \

Table 6.1: Variations in computation of one-step-ahead-prediction algorithm.

suited for time series with a strong deterministic component. The superscript ° indicates 
that the OSAP algorithm is used. The OSAP method described here will be referred to 
as the basic or original OSAP algorithm.

6.3.3 Variations of Predictability Statistic

The variations in the statistic calculation of Di and H  are numerous and documented in 
the literature. For the one step ahead prediction, not as many variations have been tested 
so far and not in a systematic manner. In this section, the impact of five variations will be 
tested on process data. The alternative statistics are listed in Table 6.1. Variation I to III 
concern D° while variation IV and V are alternatives for computing H°. The variations 

are referred to as:

• Robustness for outliers (I);

• Variance instead of average (II);

• Nearest neighbours outside K \ (III);

• Added Logarithm (IV);

• Difference instead of division (V).

1 2 3 4 5 6  7 8 J1 2 3 4 5 6  7 8 J
(a) (b)

Figure 6.10: Constructional drawback of Variation I: good prediction (a) gives a larger value for 
the statistic D°{X\Y)  than poor prediction (b).
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Figure 6.11: Construction of nearest neighbours statistic, Variation I. Upper plot: dotted line = 
X, solid line = D°(X\X),  thick line = D°(X\Y)-, lower plot: dotted line = Y, solid line = D°(Y\Y), 
thick line = D°{Y\X). X = TI4, Y = TI5, N = 1000, m = 4, h = 10, k = 6, K = 20.

V ariation I: R obustness for O utliers The averaging of the distance when computing 

D° = N}_i Y l jL l Ix i+h  ~ x j + h \  can result in misleading estimates if the estimation is 
distorted by outliers. Schiff et al. [110] therefore calculate the distance between Xi+h  and 
the mean value of the nearest neighbours instead of summing the distance between Xi+h  

and each predicted nearest neighbour. This has the advantage of robustness since outliers 
have not as big an impact. A tradeoff when taking the distance to the average is that the 
result can be distorted for larger number of nearest neighbours. This effect is shown in 
Figure 6.10. Both plots show predictions of the value indicated by a solid line, the dotted 
line indicates the average of the nearest neighbours. The distance between the solid line 
and the dotted line is the predication measure of Variation I. The estimated values in the 
left hand plot are in fact the better predictions but the average distance gives a misleading 
result. Figure 6.11 shows the trend of D°  for the example of TI4 and TI5 from the case 
study. Comparing the trends of D°  with the same trends for the basic OSAP algorithm 
in Figure 6.9 one can notice that the trends of Variation I are noisier than the trends of 
the basic algorithm. While D°(Y\ X)  is always well below D°(Y\Y)  in Figure 6.9 this is 
not the case for Variation I. On the other hand, the resulting interdependency measures 
H°  indicate the causality more distinctively for Variation I where H°( X\ Y)  = 1.6 is larger 
than H°{Y\ X)  = 1.0.

V ariation II: V ariance Instead  of A verage Both the original OSAP algorithm as 
well as Variation I take the mean of the distance of the nearest neighbours. In Variation 
II, the mean is replaced by the variance of the distances, arguing that a good predictor will
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Figure 6.12: Construction of nearest neighbours statistic, Variation II. Upper plot: dotted line = 
X, solid line = D?(X\X), thick line = D°(X\Y); lower plot: dotted line = Y, solid line = D£(Y|Y), 
thick line = D°{Y\X).X = TI4, Y = TI5, N = 1000, m = 4, h = 10, k = 6, K = 20.

not only estimate a future value correctly but will do so with small variations. By taking 
the variance, the impact of outliers is reduced without the drawback of false prediction 
that occurred for Variation I. The idea of using variance rather than the mean has to 
the author’s knowledge not previously been applied to the OSAP algorithm. There are, 
however, parallel variations of the delta-epsilon method for one variable by Gautama et 
al. [33], the delay vector variance, and also for the embedding prediction by Goodridge 
et al. [37]. Figure 6.12 shows the trends of D°. Here, D°{Y\X)  is smaller than D°(Y\Y)  

for all times. This is not, as desired, the case for D°(X\ Y)  which is at some points much 
larger than D°(X\ X) .  Unlike for the original method and Variation I, D ° ( X \ Y ) and 
D°(Y\X)  show some periodic behaviour in phase with the periodicity of the time trend. 
The interdependence measure H°(X\Y)  is larger than H°( Y\ X)  by a factor of 3.6. This 
shows at a first glance a stronger causality than the original method and Variation I.

V ariation III: N earest N eighbours O utside K\  So far, K  nearest neighbours have 
been considered for the averaging or variance calculation of D°.  There might, however, be 
the chance that the nearest neighbours are due to random effects rather than coupling if the 
noise-to-signal ratio is very high. To overcome this problem, the K\  nearest neighbours 
are omitted and all further K  nearest neighbours are considered. This approach was 
proposed by Bhattacharya et al. [6 ] for the case of embedding prediction. The time series 
investigated in the case study, however, generally have a strong deterministic part and a 
low noise level. Figure 6.13 shows the trend of D ° , K\  is chosen equal to K.  The trend 
is almost identical to the trend of the original method in Figure 6.9. As expected since
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Figure 6.13: Construction of nearest neighbours statistic, Variation III. Upper plot: dotted line = 
X, solid line = D°(X\X),  thick line = D?(X\Y); lower plot: dotted line = Y, solid line = D?{Y\Y), 
thick line = D°(Y\X).  X = TI4, Y = TI5, N  = 1000, m =  4, h =  10, k =  6 , K  = = 20.

the signal has a low noise component, the impact of excluding the K\  nearest neighbours 
is only marginal. The interdependence measures are in the range of the measure for the 
original method: H °(X \Y )  =  0.60 (original method: 0.53) and H ° (Y \X )  =  0.32 (original 
method: 0.26).

V ariation  IV: Logarithm  Variations I to III involves changes in the computation of 
D°. In Variation IV, on the other hand, the summation for H°  is changed to summing the 
logarithm of D °(X \Y ) /D ° (X \X ) .  The argument of using the logarithm is that the asym­
metry is more pronounced compared to using a direct summation. The interpretation of 
the results remains unchanged since the logarithm is a monotonically increasing function. 
However, H° will now be negative so that large negative values indicate interdependence 
while values close to or larger than zero indicate independence. The final directionality 
measure hx->y = H °(X \Y )  — H ° (Y \X )  is again positive for x  influencing y. The use of 
the logarithm in the summation has been tested in [2, 100, 6, 114] and is similar to the 
structure of transfer entropy, see next chapter. The value of H °(T M \T Ih ) with identical 
parameter setting as chosen for Variation I to III is -0.79 while the opposite case is much 
smaller, H°(TM\TI5) = -1.5.

V ariation  V: Difference In stead  of Division Using logarithmic function in fact can 
be interpreted as taking the difference of D°(X\Y )  and D °{X\X)  since log |  =  log a — log b. 
Thus, the difference without taking the logarithm is a viable option when computing the
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Figure 6.14: Construction of significance level as defined in Equation 6.22: (a) Does the direction­
ality value stick out from the crowd of surrogates? (b) Significance level if the probability density 
functions of H(X\Y) and H(Y\X)  are known.

interdependence statistic. This approach is similar to the one pursued by Feldmann et al. 
[28] who, however, use the definition for D° from Equation 6.16 which has been rejected 
here because of its strong dependence on the number of nearest neighbours, see argument 
above. Again, the value of H°(TM\TIb)  with same parameter setting as before is negative 
and -0.54 while the opposite case is also negative but much smaller, H°(TM\TIb)  =  —0.86.

No recommendations will be made at this point. The five proposed variations have their 
right of existence as argued in the paragraphs above. A comparison of the five variations 
is carried out below.

6.3.4 Significance Level

For comparing the different implementation of the nearest neighbours one step ahead 
prediction algorithm (OSAP), a measure is needed for evaluating the performance of the 
algorithm. And maybe more importantly, once the algorithm is specified, a threshold 
should be established that defines above which level the detected directionality is a valid 
and not only coincidence. For the latter purpose, Theiler et al. [130] suggest Monte Carlo 
methods to establish a significance or confidence level. Monte Carlo methods are any 
methods that solve a problem by generating suitable random numbers or sequences and 
observing that a fraction of the random numbers obey some property6. The problem is 
to verify or reject a null hypothesis. Here, in the case of the directionality estimation, 
the null hypothesis is that x does not influence y. The null hypothesis is denoted by
Ao =  hx yy. Suitable random numbers are values of the directionality measure that are
generated by computing the measure from surrogate time series xsurr and ysurr, that is 

x̂surr->y8urr —: ^x-^y The method of surrogates is briefly described in Section 6.2.3, for 
details see [114]. Altogether, Ns surrogate measures are constructed and denoted by 
A j =  with j  = I . . .  N s. The null hypothesis is now rejected if Ao varies considerably

6See definition on http://mathworld.wolfram.com/Monte-Carlo-Method.html, November 2004.

http://mathworld.wolfram.com/Monte-Carlo-Method.html
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from all surrogates A j, that is, it “has to stick out from the crowd”. If hx^ y can be 
assumed to have a Gaussian probability distribution, then the significance level can be 
estimated as follows to measure the deviation of the directionality measure of the original 
from the surrogate,

sx- ,y = A° ~ MA > 3 (6.22)
0A

with

1  ̂ \
=  — and ax =

S J = 1 \ N \ n  £ ( *  -  « 0 2- (6-23)
2 = 1

The principle of significance level sx->y was suggested by Theiler et al. and is illustrated 
in Figure 6.14. The threshold of the significance above which a measurement is considered 
as valid is 3 for a two sided test in Theiler et al., that is, the distance of the directionality 
measure to the mean of the measure for the surrogates is three times the standard deviation 
of the surrogates. Assuming a Gaussian distribution, this would be equivalent to a 99.74% 
certainty. A three sigma test is still valid even the distribution is not Gaussian but the 
99.74% significance level cannot be defined.

In case that probability density functions of H( X\ Y)  and H ( Y \ X )  and their joint prob­
ability density function are accessible, the probability density function of hx->y can be 
deduced,

d  poo phx^ y + H ( Y \ X )
p ( h ^ y) = - -----  /  /  p ( H ( X \ Y ) , H( Y \X ) )d H (X \ Y ) d H ( Y \ X)  (6.24)

a n x_ J —oo 7 —oo

The significance level can then be conveniently defined by a threshold value of hx->y as 
illustrated in Figure 6.14 (b). The problem is that even though the probability density 
functions might be available for some reference signals, the joint probability will be difficult 
to derive. One cannot assume that H ( X \ Y ) and H( Y\ X )  are independent as the two values 
tend to lie in the same range or are even equal in most cases of independency of x  and y.

If the significance level in Equation 6.22 cannot be adopted because the measure does 
not follow a Gaussian distribution, a rank test can be considered instead to accept or 
reject a directionality value. It does however not provide a good means of comparison 
for a variation of methods. In a rank test, the directionality measure is computed for 
N s surrogates A j [57]. The probability that the original signal has the largest value is 
a = Nx+1; if 19 surrogates are considered then the chances are a=5%. The directionality 
value can be accepted with a 95% certainty if it is the largest among all surrogates, that 

is, Ao > A j for all j  — 1 . . .  N s.

In the following, hx^ y will be considered as Gaussian distributed and both significance 
level and rank test will be carried out to compare the variations of the method.
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Figure 6.15: Performance evaluation of variations of OSAP algorithm. For correct identification 
of directionality H°(X\Y)  should be larger than H°(Y\X) where represents H°(X\Y)  and 
represents H°(Y\X); m  = 4, k = 6 , h = 6 , K  = 20, N — 1000.

6.3.5 Selecting th e  B est O ne-S tep -A h ead -P red ic tio n  V ariation

The five variations of the original OSAP method are compared using the data trends from 
the case study in Section 4.2. The relationships selected are the temperature measurements 
along the distillation column, T il to TI5, that is whether T il influences TI2, TI2 influences 
TI3 etc. The relationship between LC1 and TI7, with LC1 being further upstream and 
closer to the root cause, is also included because both show similarities in the time trend. 
Thus, the direction of dependency is considered as known for these five relationships:

T i l—>TI2; TI2—>TI3; TI3^TI4; TI4^TI5; LC1^TI7.

The results for H°  using the OSAP algorithm and Variation I to V are shown in Figure 
6.15. The parameters are chosen as before with N  = 1000, m  = 4, h = 6 , k — 6 , 
K  = K\  =  20. All methods give good results in the sense that the direction of dependency 
is measured correctly, that is, H°(X\ Y)  > H° (Y\ X)  with the only exception of Variation 
I where the relationship between TI3 and TI4 is detected incorrectly. The representation 
in Figure 6.15 is, however, not suited for comparing the algorithms since the maximum 
and minimum values differ for each method.
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Figure 6.16: Performance evaluation of variations of OSAP algorithm. Higher ratios of
H°(X\Y)/H°(Y\X)  indicate better performance. Here, m = 4, k = 6 , h = 6 , K  = 20, N  = 1000.

As a first shot, the ratio of H °(X \Y )  to H °(Y \X )  is evaluated. The argument for this is 
that the larger the difference between the two interdependence measures the better the 
estimation of the direction. Figure 6.16 shows the ratio of H °(X \Y )  over H °(Y \X) .  The 
ratios of Variation III to V lie in the same range as the rations of the original algorithm 
while Variation I and II show significant larger values. A suspicion that the ratio is not 
an accurate mean of comparison is raised by the circumstance that Variation I does not 
detect the relationship between TI3 and TI4. The problem with the comparison of the 
ratio is that not only the maximum and minimum value of algorithm variations I to V are 
different but also the standard deviations of the measure.

The significance level constructed from surrogate data as described in Equation 6.22 over­
comes this problem by only assuming a Gaussian distribution of the directionality measure 
and scaling to standard deviation of the measure. The significance level of the relation­
ships of the case study are shown in Figure 6.17. The threshold value of 3 that indicates 
a deviation larger than 3<r is shown by a dashed line. Here, Variation I and II show a 
very poor performance while Variation IV and V are clearly better performing than the 
original algorithm. Variation IV has an overall higher value of sx^ y but the attractiveness 
of Variation V lies in the accurate detection of the relationship between T il and TI2. 
T il and TI2 are very similar and a dependency is therefore more difficult to detect. The 
decision to chose Variation V over Variation IV is also supported by the rank test. Table
6 . 2  summarises the results of the rank test, the numbers indicating the rank of the original 
value of hx-^y among the surrogates. Although Variation IV does not detect the T il and
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Figure 6.17: Performance evaluation of variations of OSAP algorithm: significance level sx_>y. 
Higher values indicate better performance. Here, m = 4, k = 6 , h = 6 , K  = 20, N  = 1000.

TI2 relationship as the highest rank, it is the second highest which outperforms Variation 
V for which it is only the seventh highest value. Variation I is performing poorly also in 
the rank test.

6.3.6 B est O ne-S tep -A h ead -P red ic tio n  A lgorithm

As a result of the previous analysis, the nearest neighbours algorithm with one step ahead 
prediction (OSAP) using the difference between D?(X\X)  and D°(X\Y)  of the prediction 
is chosen for future work since it showed best results when applied to the case study (see 
previous section). The algorithm can then be summarised as follows.

Ao ^  A* Original Var I Var II Var III Var IV Var V
T il -> TI2 7 9 7 6 7 2
TI2 -■+ TI3 1 4 1 1 1 1

TI3 --> TI4 1 4 1 1 1 1

TI4 - + TI5 1 6 1 1 1 1

LC1 --» TI7 1 8 1 1 1 1

Table 6.2: Rank test: rank of Ao among A*, i = 1 ... Ns in terms of largest value. Here, m = 4, 
K = 6, h = 6, K = 20, N = 1000.
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Algorithm - One Step Ahead Prediction V
Step 1. Construct embedded vector images Xi+h and get distances of 

all combinations of ||yi — y ■ 11 and \\xi+h — Xj+h\\
Step 2. Find indices stj  of K  nearest neighbours of y i with minimum of

lly* — yj 11 -
Step 3. Compute statistics D°(X\X)  = N } _ 1 Y^f= i Ix i+h ~ xj+h\ and 

D °(X \Y ) = jc EjLi \x i+h ~ x sitj+h\ with j  = 1 . . . K  
Repeat Step 2 and 3 for i = 1 . . .  N*

Step 4. Compute H°(X\ Y)  = Y,?= i D?(X\Y)  -  D?(X\X)
Step 5. Compute causality measure hx-+y =  H ° ( X \ Y ) — H°(Y\X)  and signifi­
cance level sx-^y using surrogates.

The measure H°( X\ Y)  will be negative and mainly distributed between -1 and 0 where 
-1 can be interpreted as dependence and 0 interpreted as dependence. This is because 
in case of independence D°(X\X)  «  D°(X\Y)  «  1. The negative sign is not particulary 
intuitive but the final directionality measure hx-+y will be positive if x  influences y which 
is the measure of interest.

C om puta tiona l E ffo r t:  The number of computations required for the described algo­
rithm is given in Table 6.3. The majority of computations are summations or differences 
which depend most strongly on N * 2 and on the embedding dimension m. In the algorithm, 
N* =  N  — (m — l)/t is the number of embedded vectors. Simplifying the dependency results 
in a dependency of the computational effort on N* 2 m. The number of nearest neighbours 
only has a marginal impact on the total number of computations since it has to be by 
definition a fraction of N*. Implementation with vector oriented software such as Matlab 
allows the computation to be carried out efficiently. On a Pentium IV PC, the computa­
tion for N  = 1000, thus N* «  1000 and an embedding dimension m  < 5 the computation 
of hx-+y requires a few seconds. Longer computation time however are experienced for the 
calculation of the significance level which requires the computation to be carried out N s 
times. W ith N s =  20 as a minimum number, the computation of the significance level 
takes a minute or two, again on a Pentium IV processor.

a ± b (a)2 y/a |a|

Ily* — yj 11 f  N*(N* --1) f  JV*(iV* 1) 1 N*(N* -  1) -

1 x i+h xj+h\ - 1) - - -  1)

D?(X\X) N * 2 - - N * 2

D°(X\Y) N*K - - N * K

H°(X\Y) 2 N* - - -

Table 6.3: Number of computations for nearest neighbours one-step-ahead-prediction algorithm, 
variation V.
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Figure 6.18: Parameter optimisation through maximising hx^ y = H°{X\Y) -  H°[Y\X) for 
embedding dimension, time lag and prediction horizon for validation that the directionality is 
identified correctly. Here, K  = 20, N  — 1000.

6.3.7 P a ra m e te r  O ptim isa tion

Apart from variations in calculating the statistics D° and H°, parameters of the algorithm 
can be adjusted to detect the coupling strength with an optimised value. The parameters 
that are used for the nearest neighbours method are:

m  Embedding dimension, 
k, Time lag between embedding, 
h Prediction horizon,
K  Number of nearest neighbours,
N  Number of samples.

Both time lag k and prediction horizon h depend on the sampling rate. The sampling 
interval of the reference case study from Section 4.2 is 20 seconds and treated as a reference 
guide. Time lag and prediction horizon have to be adjusted when dealing with other data 
sets. The number of samples N  and number of nearest neighbours K  are not expected to 
have a large impact on the directionality measure above certain thresholds since they are



CHAPTER 6. NEAREST NEIGHBOURS 124

m = 4; h =  6 k  = 4; h  =  6 k  = 4; m = 3

P  10

10 12

P  10

10 12

CO

- 5
2 4  6 8 10 12

10 12

2 4  6 8 10 12
Tim e delay  k

10 122 4  6 8 10
15
10

5
0

- 5
10 1210

- 5
10 1210

10 1210

- 5- 5
2 4  6 8 10 1210
Prediction horizon hEm bedding d im ension  m

Figure 6.19: Parameter optimisation through maximising sx->y for embedding dimension, time 
lag and prediction horizon. Here, K  = 20, N  = 1000.

only the number of statistical averages. Therefore, embedding dimension, time lag and
prediction horizon are optimised for fixed length and number of nearest neighbours. The 
optimisation is done using the examples of the case study for which the directionality is 
known, as done in the previous section. Thus, the five relationships

T i l—>TI2; TI2—>TI3; TI3-+TI4; TI4^TI5; LC1-*TI7. 

are investigated for reference. The optimisation is conducted in three steps.

• First, embedding dimension m  and prediction horizon h are fixed while the time

delay k is optimised.

• In the second step, prediction horizon h and the optimised time delay k are fixed 
while the embedding dimension m  is optimised.

• In the third step, the prediction horizon h is varied while h and m  are set to their 
optimised values.

The aim of the optimisation is to find the highest significance level while ensuring that the 
causality measure hx^ y is positive. Both the directionality measure and the significance
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Figure 6.20: Parameter optimisation by maximising hx->y for the number of nearest neighbours 
and the number of samples.

level are therefore considered for optimisation. The results of the procedure are shown 
in Figures 6.18 and 6.19. The left hand column shows hx-^y for the first step. Time 
delay « is adjusted while m  and h are fixed. The tendency of the measure for the five 
investigated relationship is that /ix—► y decreases with increasing time delay. An exception 
is the relationship between TI4 and TI5 which initially increases. The corresponding 
significance level is shown in the left hand column of Figure 6.19. The trends are similar 
to the directionality measure but the decreasing and increasing trends are noisier. It is 
suspected that this is due to the randomisation of the surrogates.

Optimising k in the sense that the sum of all relationships T il to TI7 is maximum for the 
hx^ y results in a value of k — 4. Similar considerations are undertaken for embedding 
dimension m  which is shown in the column in the middle of Figure 6.18 and 6.19 for which 
k is set to 4 and h fixed to 6 . The optimum value is then m  — 3. Prediction horizon h is 
optimised in the right hand columns to h = k = 4.

The same optimisation procedure is used for the number of nearest neighbours and the 
number of samples. The number of nearest neighbours K  is thought to have no major
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Parameter Opt. Value Comment
Embedding dimension m =  3 Smaller for faster computation
Time delay K = 4 Depending on sample rate
Prediction horizon h =  4 Similar range to time delay k

Number of nearest neighbours * II to o Insensitive
Number of samples N  > Nmin «  4 0 0 Insensitive if larger than threshold

Table 6.4: Summary of parameter guidelines of nearest neighbours algorithm for sampling interval 
of 2 0  seconds.

TI1 TI2 TI3 TI4 TI5 TC1TC2 TI6 LC1 TI7 T I1 TI2 TI3 TI4 TI5 TC 1TC2 TI6 LC 1 TI7

T il
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TI3

TI4 ,0.2:

TI5
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0 i  0 :TC2

TI6

LC1 0.2

TI7

T il ( (X88 (5 7̂) (53)

o@ ■ 0 0TI2

TI3

TI4

TI5

TCI

o  O  O  
\  o  O

TC2 (018

TI6

LC1

TI7

Figure 6.21: Case study results of for significance level sx_>y (left) and causality values hx-+y if 
significance level exceeds threshold (right); Ns = 20, N  = 1000.
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impact on the directionality measure due to the averaging nature of D° and H°. The left 
hand column of Figure 6.20 shows that this is true for the sample trends of the case study. 
K  is also linked to the number of samples N  and it is useful to define K  as a fraction 
of N. The fraction of K /N  is kept constant for investigating the impact of the number 
of samples on the directionality measure. It is expected that the measure is independent 
of N  at least for N  ^  N m\n where ^  a minimum number of samples rec^uired for 
the computation. The right hand column of Figure 6.20 confirms this expectation. The 
directionality measure varies significantly until A7min «  400.

The parameters are optimised for Variation V of the OSAP algorithm since this is the 
algorithm selected for future use. A summary of the values of all parameters is given in 
Table 6.4.

Case Study: The proposed algorithm including the guidelines for the parameter estima­
tion are applied to the full reference case study from Section 4.2. The directionality mea­
sure and the significance level are computed for all combinations o f the process variables. 
Figure 6.21 shows the bubble chart. All relationships that are detected are consistent with 
the root cause hypothesis. This can be seen from the fact that all hx^ y and sx->y > 3 lie 
above the main diagonal. _______________________________________________________

The efficiency of the nearest neighbours method will be investigated in Part III and the 
results of the investigation will be discussed and summarised in Chapter 11. A compar­
ison to the CCF method introduced in Chapter 5 and to transfer entropy which will be 
introduced in the chapter will be made.

Chapter 6 Summary

In this chapter, a new causality measure for fault diagnosis purposes has been 
derived. The method is based on the nearest neighbours concept and argues 
causality through predictability in a one-step-ahead prediction algorithm. Five 
alternative variations of the original algorithm were introduced together with a 
significance level to estimate performance. The best of these five variation was 
determined by comparing the performance of the method when applied to real 
process data from the reference case study. The parameters of the algorithm, 
embedding dimension m, prediction horizon h and time lag k, as well as the 
number of samples N  and the number of nearest neighbours K  were optimised 
using the same process data. The application of the new method with the 
guideline values for the parameters was successful and the root cause could be 
identified.



Chapter 7

Transfer Entropy

In this chapter, the method of transfer entropy is proposed for fault diagnosis. 
Transfer entropy is a statistical tool based on probability density functions that 
evaluates the predictability of one variable from a second variable. The under­
lying mechanism is similar to the one used by the nearest neighbours method. 
The chapter discusses the estimation of the probability density function and 
the application of transfer entropy to process data. Required parameters are 
optimised and a significance level established.

Transfer entropy was proposed by Schreiber in 2000 [113] as a recent advancement in 
the area of information theory. In 1948, Shannon [117] introduced entropy to quantify 
information in a mathematically defined sense. Further entropy measures, such as mu­
tual information or conditional entropy, investigate the common amount of information 
contained in two or more signals. Transfer entropy, as its name suggests, quantifies the 
amount of information transferred from one signal to a second signal. It is an asymmetric 
measure and can therefore be transformed into a causality measure specifying whether A 
influences B or B influences A. Successful applications of transfer entropy are to physi­
ological data such as the interdependency between heart and breath rate [113], financial 
data like the interaction between the American Dow Jones and the German DAX [78] 
or neurological data [55]. In this chapter, the application of transfer entropy to chemical 
processes is investigated and applied to the example of the industrial case study from 
Section 4.2. Parameter settings and implementation issues are discussed.

The chapter is structured as follows. In the first section, the concepts of probability 
distributions and probability density functions are reviewed. Two alternative estimation 
methods for the probability density functions, histograms and the Kernel method, are given 
in Section 7.2. Entropy measures and their application to fault diagnosis are introduced in 
Section 7.3. Section 7.4 introduces the causality measure of transfer entropy. A significance 
level is established and the computational effort estimated. The parameters used in the 
transfer entropy calculation are optimised in Section 7.5

128
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7.1 Probability D istributions

A signal whose trend can be described at any time by a function is called deterministic.
Most time signals of measurements from chemical processes are random to some degree 
and cannot or can only partially be expressed by a deterministic function. All concepts 
from functional theory for examining the time series, such as the Fourier transform, have 
shortcomings when investigating a random or stochastic signal because they do not capture 
the stochastic nature. Thus, a different approach has to be chosen for analysis. Random 
signals are expressed in terms of probabilities. In this sense, the probability distribution 
of a random variable is defined as the probability of a random variable X  being smaller 
or equal than a value x.

Here, P  denotes ‘probability’. The probability function is monotonically increasing and 
the limit values are P x(x  —► —oo) =  0, P x(x  —► +oo) =  1. But more importantly, 
the following statement has to be kept in mind when analysing any measurements from 
practical applications, such as from chemical processes.

The probability distribution gives an exact description of the stochastic or random 

part of a time signal.

Probability D e n sity  F unction:

The probability density function (PDF) of a random signal is the derivative of the proba­
bility distribution.

P x ( x )  =  ^ . p x ( x ) (7-2)

In the following, the subscript X  is omitted. Properties of the PDF are 0 < p(x ) < 1, 
p(x —► —oo) =  p(x —> oo) =  0 and f^°ocp(x)dx — 1. Also, mean and variance can be 
derived from the PDF, such that

Mean and variance are also called expectation value of first order. An important property

Px (x) = P (X  < x) (7.1)

and (7.3)

of random signals is stationarity. The definition of stationarity can be found, for example, 

in [51]

A random process is s tr ic tly  s ta tio n a ry  if the PDF is invariant to time shifts. 
A random process is w eakly s ta tio n a ry  if the expectation values of first order, 
such as mean and variance, are invariant to time shifts.



CHAPTER 7. TRANSFER EN TRO PY 130

0.8

0.6

p(x) sine 
p(x) sine + gauss

0.4

0.2

O' z ;  1 1 ‘------- ‘— -̂----
-1 .5  -1  -0 .5  0 0.5 1 1.51.5

Amplitude axis x
Figure 7.1: Probability density functions of a sine wave x(t) = sin(t) (dotted line) and of a sine
wave with added Gaussian noise x(t) = sin(t) + 77(0 ,0 .1) (solid line).

Testing a random signal for stationarity is not a trivial task. To prove strict stationarity

PDF is estimated from a sample time trend instead. Fortunately, for most applications 
proving that the random signal is weakly stationary is sufficient. A good indication of 
weak stationarity is a nearly constant moving average for the period of investigation.

Describing a signal by its PDF discards all time information, that is, the deterministic 
part of the system. The description of deterministic signals is nevertheless useful since 
most signals of practical interest have a deterministic and random component. A purely 
deterministic signal, however, cannot be reconstructed from the PDF alone. For example, 
the PDF of a triangular periodic signal has a uniform distribution, that is, p(x) =  0.5 for 
— 1 < x  < 1. This is, accidentally, the same PDF as uniform random noise. A triangular 
oscillation is therefore one possible, though unlikely, outcome of a random white noise 
process. More useful is the PDF of a sine wave because of its original shape but even more 
because of the widespread occurrence of a mixture of sine waves and random noise. The 
PDF of a pure sine wave is

where, A is the amplitude of the sine wave. The PDF of a sine wave with added Gaussian 
random noise with mean p and standard variance a is

For a complete derivation of 7.4 and 7.5 see [46] which uses the following theorems:

the PDF during all time instances has to be known. Usually, this is not the case but the

elsewhere.
(7.4)

(7.5)
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The trend of p{x) if a: is a sine signal or a sine signal with added Gaussian noise is shown 
in Figure 7.1. The PDF itself has found application in fault diagnosis by comparing the 
estimate of the PDF of a process under normal operation with the PDF estimate when a 

fault is present in the process [22]. In [47], the PDF was employed to decide whether a 
loop fault is due to stiction or non-stiction. The application of the PDF as nonlinearity
measure can also be explored. Stam et al. [125] define amplitude asymmetry as a measure
of nonlinearity and use the time trend evaluate this property. The PDF is an indication 
of amplitude asymmetry if asymmetrical around the y-axis.

J o in t Probability D e n s ity  F unction: The probability distribution describes the
probability that a random variable X  is smaller than a value x. The probability of two 
random variables X  and Y  being smaller than values x  and y is the joint probability 
distribution

P x y ( x , y) = P (X  < x n 7  < y) (7.8)

from which the joint probability density function (joint PDF) can be derived

92
Px y  (x, y) = V)- (7-9)

Again, Px y {x , y) is abbreviated by p{x , y) if it is unambiguous. The PDF of x  and y can be 
derived from the joint PDF, p(x) = Ĵ °Qop(x,y)dy, p(y) =  J °̂oop(x ,y)dx, and the integral 
over both x  and y must equal to 1. An important property of two random variables is 
whether the two variables are dependent, that is, whether the knowledge of x has any 
implication for y. Two variables are independent if the joint PDF is the product of the 
two PDFs.

p(x,y) = p(x)p(y) (7.10)

The joint PDF has been defined here for two variables x  and y. The concept can be 

extended to a number of variables dependent in time, say x* =  [ar*, • • • £*-(&-1)«] and

y* =  [yi,yi-K,- ■ - V i-ii-i)J- The joint PDF is then denoted by p (x i ,y j .  The length of 
the time vectors x* and that is, k and /, are referred to as embedding dimensions for 
consistency with the same vectors defined for the nearest neighbours method.

C onditiona l Probability D en sity  Function: Joint PDF gave a measure of depen­
dency between two random variables. The conditional PDF now indicates whether the 
PDF of x  and thus the outcome of x  varies if y is known. The conditional PDF is defined 
by the joint PDF and the PDF of y.

„(.!„) -  «7 ,n ,

Transition  Probability: The concept of conditional PDF can be extended to consecu­
tive time variables. By doing so, time information is preserved by capturing the dynamics 
of the underlying system. Thus, the concept of transition probability is defined as follows.

( | \ P{x i+hi x i? Yi) (rj 1 r,\p(Xt+h |xi,y , ) =  p(^ y d  (7.12)
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Figure 7.2: Transition probabilities of causal relationship p(yi+\\xi) (left panel) and non-causal 
relationship p(xi+\\yi) (right panel) for k = 0 and I = 1 . The transition probabilities are estimated 
from time trends of the reference case study with ar=TI3 and y=TI4.

Transition probabilities describe the probability of a future value of x  if past values of x 
and y are known. Parameter h is called the prediction horizon. If Xi+h is independent 
of Xi and then p(xi+h\*ii Yi) = p(xi+h) using Equation 7.10. Transition probabilities 
provide the basis for transfer entropy.

The concept of causality using transition probability is illustrated in Figure 7.2 for two 
time trends taken from the reference case study in Section 4.2. Here, the embedding 
dimensions are set to k = 0 and I = 1 and the prediction horizon is set to h — 1. The 
parameters k and I are chosen in order to display the transition probability in a three 
dimensional contour plot. Time trend x is temperature measurement TI3 and trend y 
is TI4 from the example in Section 4.2 of this work. The plots can be interpreted as 
follows. In the left plot cutting through p(yi+i\xi) at Xi =  2 gives the PDF p(^+i|2). The 
expectation value is then Xi+\p(xi+i\l)dxi+i. If the expectation value varies
for different values of Xi then y depends on x.

The left panel of Figure 7.2 shows the transition probability p(yi+\\xi), that is, y as a cause 
of x. Cutting for example at X{ — —2 results in «  —1.8 while cutting at X{ — +2

results in ~  +2.0. Thus, x  influences or causes y. On the other hand, cutting at
yi — —2 in the right panel results in 2 ~  0.2 which is very similar to Px\ ^ 2 w 0.0. 
The conclusion is that x does not influence y.

7.2 E stim ation  of P robab ility  D ensity  F unction

In almost every application, PDF, joint PDF and transition probabilities of the random 
processes investigated are not known. The PDFs however can be estimated from a time 
trend realisation of the process. PDFs are estimated by histograms in a straight forward
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Figure 7.3: Relative frequency table of sine signal with noise (p. = 0, a = 0.1) and corresponding 
histogram estimation, N  = 125, n = 10.

manor or by Kernel estimations. Both techniques are established and well understood. 
They will be introduced here briefly, though only the Kernel estimator is used for the 
calculation of transfer entropy in the following sections due to its higher accuracy.

7.2 .1  H istogram

In histograms, also referred to as relative frequency, the number of measurements that he 
within a measurement interval are counted and divided by the total number of measure­
ments. Discrete measurement intervals are constructed by partitioning the amplitude axis 
into n so-called amplitude bins. The j th interval of a signal x  is then defined as

AXj = ['Emin “t" 0  1)^5 Emin “I- jh\
=  [x^~l>) ; x ^ ] .

Here, h is the bin width defined by (xmax — x min)/n  with xmin and xmax minimum and 
maximum value of the time series. If N  is the total number of samples available, then the 
relative frequency of bin AXj is the number of samples that fall into this bin: hj = 
with rij = {xi\xi £ A Xj}. The estimated PDF is then defined by

n

p(x ) = J 2 h j{ e { x  -  I 0 -1 )) -  ©Or®)} (7.14)
Z—1

where © is the step function. An example of a PDF estimate using histograms is shown 
in Figure 7.3. Comparing Figure 7.3 to the analytical solution shown in Figure 7.1 shows 
that the estimation with histograms is only a poor representation of the real trend.

The parameter to adjust when estimating the PDF is the optimal bin width h which

controls the number of bins n — [(x max — x min)/ h]TOUnd- If the bin width is chosen too
large then the histogram will appear as a block of squares and if the bin width if set too 
small then appear very granular with empty bins next to bins with a large number of 
samples. For an optimal bin width, Scott [115] proposes to minimise the integral mean
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square error between the estimated and the actual underlying PDF. The minimisation 
problem results in the following optimal bin width

- , - 1 / 3

hopt =  | N  J  p2 (x)dx/d (7.15)

Assuming a Gaussian distribution p(x ), the optimal bin width is then given by

hopt =  2o i Oj P )  ■ (7-16)

The number of bins follows accordingly. The estimation of the transition probabilities 
using histograms is not recommended. To illustrate this, Equation 7.16 is solved for 
N: N  = 3 y/n. To achieve a good estimate of the sine wave signal with added
Gaussian noise, from Equation 7.5, 10 bins are assumed, resulting in hopt ~  0.2. The 
standard deviation of sine with noise is ox ~  0.71. The number of samples required for 

the estimation is then N  = ( 2q~;J1)3 3^/^ ~  1903. Estimating transition probabilities 
requires the power of that number, depending on embedding dimension k and I. Setting 
k = 0 and 1 = 2 requires N  = 1903°+2+1 =  6.8109 samples for a good estimation.

7.2.2 Kernel Estim ation

The Kernel method gives a more precise estimation of the PDF than histograms by con­
sidering the exact values of a time series x. A Kernel function K  is centered around every 
sample point and summed to give an estimate p.

1 N
P ( x ) = K (x  -  Xi) (7.17)

i—i

The Kernel function K  has to fulfill Ĵ °ooK (x)dx  = 1, its maximum value must be at 
x = 0 and the limit values for plus and minus infinity are zero. Here, a Gaussian Kernel 
function is used which satisfies all requirements.

K ( x -  Xi) = ~ i =  exp(—^  _ 2^ ')  (7-18)
V27T h 2 h

where h is the estimator width which is adjusted to the number of samples N  and the 
standard deviation of the time series x  after Silverman [119]. The following example 
explains the construction of the PDF. Consider the example of the sine signal with added 
noise as given in Equation 7.5. Figure 7.4 shows the construction of the estimated PDF 
p(x) using the Kernel method as well as the actual PDF p(x). Even for a small number 
of samples the Kernel method gives a good estimation of the PDF.

In [119], the amplitude axis is considered as continuous. For implementation, however, 
the x-axis has to be discretised similar to histograms. The difference is that the number of 
amplitude bins can be set arbitrarily high and is not restricted by the number of samples
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Figure 7.4: Example of Kernel estimation, (a) discrete sine function with additive noise, construc­
tion of Kernel estimator p(x) using 15 samples and (b) actual PDF p(x).
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Figure 7.5: Kernel estimation: Transformation from continuous to discrete amplitude axis ac­
cording to Equation 7.19. The total number of bins is n + 2<r.

N  or the standard deviation ax . A discrete value \ i  is introduced that translates a sample 
value of the time series, onto a discrete grid \% £ [l>n]-

Xi = ( n -  1 )
Xi — x7

Xm.n.T. Xi
+1 (7.19)

round

The number of amplitude bins is denoted by n  and can be set independently. The PDF 
is estimated according to Equation 7.17 with discrete Kernel function

K [ X ~  Xi] =
1

exP ( - ( x - X i ) 2/o-2)atjy/F
(7.20)

with x  =  Xi -  Xi — 0  +  1j • • • 1 Xi + o.  Due to the finite length of K  [x -  Xi] a scaling by 
factor a = Y^x=-o T7/n exP(—̂X2/ 0-2) is required. For the discrete Kernel, estimator width 
h is replaced by the discrete Kernel width cr. The optimal Kernel width is

a = cN l^G xn
round

with C ~  0.2. (7.21)

The translation from continuous to discrete x-axis for the PDF estimation is shown in 
Figure 7.5. The total number of bins is n -f- 2 cr with a «  n per definition.

The estimation of the joint PDF can be constructed parallel to the PDF. The estimation 
of the joint PDF for x  and y using the Kernel method is denoted by
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The Kernel function for a Gaussian Kernel is then

irr \ 1 /  (x ~ xi)2 +  (V ~ Vi)2 \ /7 00nK ( x  -  Xi,y -  y{) = ——^ exp(---------------^ -----------). (7.23)
2 h

For the discrete case of joint PDFs, simultaneous discretization of amplitude axes x  and y 
into n amplitude bins has to be carried out. Higher order joint PDFs can be constructed 
as an extension to Equation 7.22. Transition probabilities are decomposed into joint PDFs 
according to Equation 7.12.

The increased estimation quality can be clearly seen when comparing the estimation of 
the sine wave signal with noise for both histogram and Kernel estimation. Figure 7.3 
shows the histogram for 125 samples available. The estimate is poor and shows significant 
quantisation effects. In comparison, Figure 7.4 gives a smooth and good estimation of the 
PDF using only 15 data samples. For this reason, the Kernel estimator is used in the 
following for the calculation of entropy measures.

7.3 E stablished Entropy M easures

The concept of measuring information was introduced shortly after the development of 
communication systems to quantify the amount of information transferred from the source 
to the receiver in a communication system. In 1948, Shannon and Weaver [117] and Wiener 
[149] introduced in parallel developments a logarithmic measure of information, referred 
to as entropy.

In the context of statistical communication theory, in fo rm ation  is understood 
as the amount of u n ce rta in ty  or random ness of a random process and entropy 
is a measure of the information contained in that process.

In his early textbook on information theory and statistics Kullback [70] points out that 
information theory is a branch of mathematical theory of probability and statistics rather 
than a synonym to communication theory. Entropy measures are applicable to any random 
process described by a probability density function. More recent textbooks by Gray [39] 
or Ihara [51] give further applications for entropy measures such as hypothesis testing and 
discrete maximum entropy analysis.

Entropy: The entropy of random variable X  or the entropy of the probability density
function p(x ) is defined as

/oo
p(x)\ogp(x)dx  (7.24)

-oo

to measure the amount of information or uncertainty contained in random variable X.  
The logarithm may be taken to base e, the natural logarithm, or base 2. For the natural
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logarithm, entropy is measured in ‘nats’ while for the base 2 logarithm entropy is measured 
in ‘bits’. The signal with the highest uncertainty is uniform random noise. Every outcome 
of the random process is equally likely and therefore has a maximum uncertainty. Using 
the notational convention 0 • logO =  0 gives the entropy G(X)  =  log 2a from Equation 
7.24 for uniform random noise distributed between —a and a. The minimum value of the 
entropy measure is achieved by a constant signal which has an entropy value of G(X)  =  0. 
Thus, the boundaries of the entropy value are

0 < G(X)  < log 2a. (7.25)

The maximum value therefore depends on the interval defined by a over which the am­
plitude of random signal X  is distributed. For discrete probability density functions the 
integral in Equation 7.24 can be replaced by the sum over all discrete amplitude bins.

M u tu a l In fo rm a tio n :  Entropy on its own measures the uncertainty of a random
variable before the outcome is observed. The uncertainty however might be reduced if 
a second variable is observed. The reduction of uncertainty of two random variables is 
described by mutual information as follows.

L i y ^ m 5 5 a' d'  (7M>

Here, p(x, y) is the joint PDF of the two random variables. The independence property 
from Equation 7.10 can be exploited to explain the concept of mutual information. If X  
and Y  are independent, that is, p(x,y) = p(x) • p(y), then the mutual information can 
be simplified to I ( X , Y)  = p(x, y) log Idxdy — 0. This property leads to the
observation that mutual information is a single number that expresses the strength of 
dependency between two variables described by their PDFs and joint PDF.

C onditiona l E ntropy: Conditional entropy describes the remaining uncertainty of a
random variable after the outcome of another variable is known and is denoted by

G(X\Y)  = -  s y  p(x, y) logp(x\y)dxdy

G(Y\X)  is calculated in an analogous way. Conditional entropy is an asymmetric mea­
sure. However, the comparison between G{X\Y)  and G(Y\X)  does not give a measure of 
causality because the difference is a function of the entropy measures G{X)  and G{Y)  of 
the time sequence. In other words, the difference of conditional entropies equals to the 
difference of the entropies. This becomes more clear when considering that:

G{X) = I { X , Y )  + G(X\Y)  and G(Y)  =  I (X,  Y)  +  G(Y\X)  (7.28)

For a derivation of these equation see Appendix C. Subtracting these two equations results 
in

G(X) -  G(Y) = G(X\Y)  -  G(Y\X)  (7.29)
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I ( X , Y ) G ( X ) - G ( Y )
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G(Y) G(X\Y)

G(X\Y)  -  G(Y\X)

G(Y\X)

Figure 7.6: Entropy measures: relationship between entropy, mutual information and conditional 
entropy of two random variables.

and thus shows tha t the difference of the conditional entropies equals to the difference of 
the two entropies. The relationship is illustrated in Figure 7.6 where the uncertainty of X  
is larger than the uncertainty of Y  and the X  and Y  are dependent. Conditional entropy 
can be calculated for discrete PDFs by replacing the integrals in Equation 7.27 by sums 
of the discrete amplitude bins.

7.4 Transfer Entropy

Transition probabilities as introduced in Equation 7.12 contain information on causality. 
Unlike conditional entropy and mutual information, transition probabilities capture the 
time dependent behaviour and can therefore distinguish which variable causes the other. 
The recently proposed method by Schreiber [113] of transfer entropy measures the amount 
of information transferred from variable X  to Y  similar to the measure of dependency 
expressed by mutual information. Transfer entropy is calculated as follows.

T { X \ Y ) =  f  (  [ p(xi+h, Xi, y j  • log Pfo+hlxn y J ^Xi+h^ y .^x . (7.30)
jR k JRl J P\x i+h\X-i)

The integrals are taken over all k past values of x  and I past values of y as well as over the 
future value Xi+h and can be replaced by sums for discrete transition probability and joint 
PDF. The numerator of the logarithmic term, describing the probability of Xi+h if Past 
values x and y are known, is compared to the denominator, describing the probability of 
Xi+h if only x is known. Transfer entropy therefore incorporates a time dependency with 
a functional dependency and is therefore suited to capture fault propagation dependen­
cies as described in Section 2.4.3, that is, time lags, magnitude decrease and functional 
attenuation.

Transfer entropy has been previously applied to physiological and financial data. Schreiber 
[113] investigates whether the heart rate affects the breath rate or vice versa. Marschinski 
and Kaiser [78] and Kaiser and Schreiber [55] analyse cause and effect between various 
stock exchange indices.



CHAPTER 7. TRANSFER E N T R O P Y 139

7.4.1 Causality Measure

The transition probabilities in Equation 7.30 for the definition of transfer entropy can 
be replaced according to Equation 7.12 by the joint PDFs. Replacing the transition 
probabilities by joint PDFs and the definition of independence in Equation 7.10 give 
the lower threshold of T( X\Y) .  If Xi+h is independent from then no information is 
transferred from y to x. In this case, the log term in Equation 7.30 is

, , V p(xi+h\ î)p(y j)
p { x j + h | x j , y j  =  P(Vi) ( .

p(xi+h\xi) p(xi+h\xi) ’ }

and log(l) =  0. Thus, if y does not influence x  then the transfer entropy measure is zero. 
The maximum value is not trivial to compute and depends on the amplitude over which 
x  and y are distributed. Nevertheless, for causality analysis for plant-wide disturbances, 
the difference between T(X |Y) and T ( Y\ X)  gives a measure of directionality.

tx^ y  = T ( Y \ X ) - T ( X \ Y ) .  (7.32)

Thus, large values of tx^ y indicate a strong causality from x to y. The directionality 
measure treats the case of strong bidirectional coupling identical to the case of no presence 
of coupling which will both result in a small value of tx^ y. For the directionality problems 
investigated, this is of main interest. Bidirectional coupling can be interpreted in a further 
analysis step.

7.4.2 Significance Level

Small values of transfer entropy tx->y suggest no causality or direction of influence while 
large values do. To establish a threshold above which tx->y is recognized as a valid re­
sult Kantz and Schreiber [57] suggest Monte Carlo methods using surrogate data. The 
threshold is referred to as significance or confidence level. Here, the problem is to verify 
or reject a null hypothesis. In the case of the directionality estimation, the null hypothesis 
is that the transfer entropy measure tx->y is valid, that is, it is large enough to imply that 
x influences y. The null hypothesis is denoted by Ao =  tx-+y. Suitable random numbers 
are values of the directionality measure that are generated by computing the measure 
from N s surrogate time series such that Xj = t^Z y 3 with j  = 1 . . .  N s. For surrogate time 
series construction, the iterative amplitude adjusted Fourier transform (iAAFT) method 
as described by Schreiber and Schmitz [114] is used in the following computations. The 

significance level is then defined as

Sl_ B =  > 6 (7.33)

where and cr\ are mean and standard deviation of A7 . A six sigma threshold for the 
significance level is chosen here rather than a two or three sigma test as in [57] since 
tx^ y does not necessarily follow the Gaussian distribution assumed by Equation 7.33.
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Joint PDF Dimension fc =  l, 1 = 2

p(xi+h,x i l y i) fc +  Z +  1 4

p(x»,y<) k + l 3
p(xi+h,Xi) k -F 1 2

P(x») k 1

Table 7.1: Types and dimensions of joint probability density functions required for implementation 
of transfer entropy in Equation 7.30.

Marschinski and Kantz [78] use surrogate time series for transfer entropy referred to as 
effective transfer entropy. It is defined as the difference of transfer entropy from original 
data sets and shuffled data, such that

E T ( X \ Y )  =  T ( X\ Y)  -  T(X,  Y surr). (7.34)

The data is shuffled once for reference. Effective transfer entropy gave good results for 
financial data. In the following, the significance level is used rather than effective transfer 
entropy as it gave good and, more importantly, robust results.

7.4.3 Com putational Effort

Before calculating the causality value in Equation 4.3 from transfer entropy in Equation 
7.30, joint PDFs and transition probabilities have to be constructed from time series. 
Replacing the transition probability through joint PDFs after Equation 7.12 gives the joint 
PDFs as summarised in Table 7.1 required for the computation of tx^ y. The computational 
effort is significant and a computation with modern PC technology can take up to a couple 
of seconds for each transfer entropy calculation. This, and the finite number of samples 
limits choice of embedding dimensions k and I. The estimation of the computational effort 
is separated into two parts. Firstly, the construction of the PDF has to be considered and 
secondly the calculation of the transfer entropy value after Equation 7.30. For each joint 
PDF of dimension /c, (2a + 1 )kN  summations are required. Considering the joint PDFs 
required after Table 7.1, this adds up to qk(q + l)(q l + 1 ) N  summations with q = 2a + 1 as 
the length of the Kernel. After Equation 7.21, a  increases with the number of bins n  and 
with the number of samples N . The computation of transfer entropy requires (n+ 2 a )k+l+1 

summations. Embedding dimensions k and I have to be chosen carefully as the number 
of computations increases with their power. In the following, they are set to k — 0 and 
I — 2. This results in a total of 4N (2a 3 +  4cr2 + 3cr +  1) +  (n +  2a)3 summations.

7.5 Param eter O ptim isation

The calculation of transfer entropy requires a number of parameters to be set. It will be 
shown in the following that when applied to chemical process data the transfer entropy
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measure is insensitive to the parameter setting within bounds. Parameters will be opti­
mized by applying them to data of a reference case study. The transfer entropy parameters 
are optimized using these relationships parallel to the optimisation procedure in Chapter 
6. The parameter settings are then applied to a test case study for which the root cause 
was unknown prior to analysis. The sampling interval in the reference case study is 20 
seconds. This has to be considered when using the results for other data sets.

Fixed parameters are the embedding dimensions which are set to k = 0 and I = 2 due to 
computational constraints as argued above. The special case k =  0 means that only past 
values of y and not x  are regarded when estimating a future value of x  so that for instance 
T(TI1|TI2) in Eq. 7.30 would be calculated using past values of TI2 and the current value 
of T il while T(TI2|TI1) uses past values of T il and the current value of TI2. Adjustable 
parameters are the time lag k, between past value of y, such that y  =  [3/*, y«—k]» and the 
prediction horizon h of the future value of x, Xi+h in Eq. 7.30. The optimal parameter 
of both time lag and prediction horizon are a function of the process dynamics. If the 
process dynamics are known, the parameters can be set accordingly. If a dead time is 
detected between two measurements both k, and h should have the optimum value when 
set equal to the dead time. However, if the process dynamics are unknown, smaller values 
of k and h should give good results as the transfer entropy measure should be robust for 
parameter changes. The minimum number of sample N  required for computation is also 
investigated in the following.

7.5.1 Algorithm  Time Lag

In a first step, the time lag is varied while the other parameters are fixed. Time lag k 
was defined for the transition probabilities in Equation 7.12 which uses embedded vectors 

Xi =  {xi,Xi-K, . . .  ,Xi_(k_1)K] and y i =  [yi,yi-K, • • • ,V i-(k-1)«]* A change of the time 
lag corresponds to sub-sampling of the data series with the benefit of no data being 
disregarded. Adjusting the time lag ensures that dynamics of the underlying system are 
represented accurately. Figure 7.7 shows transfer entropy values and significance level for 
the five relationships of the reference case study. The significance level above the threshold 
of six sigma for most time lags which shows that transfer entropy is robust. The maximum 
value of s ^ y  is at different values of k  for the five plots, varying from k  =  2 for T i l—>TI2 
to k = 9 for LC1—>TI7. When summing all sx->y over the five relationships the maximum 
lies at k  — 4. Thus, the time lag is set to k, — 4 which gives a significance level well above 
the threshold for all five relationships. With a sampling rate of 20 seconds time lag k is 
equivalent to 80 seconds. In general, time lag k is dependent on the process dynamics of 
the process. However, Figure 7.7 shows that the result is robust to variations in k , s o  that 
a certain mismatch between process dynamics and time lag can still give good results.
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Figure 7.7: Optimizing time lag k for five dependencies; left hand plots: transfer entropy value 
tx-+y, right hand plots: significance value sx-+y; with h = k and N  = 4100.

7.5.2 P red ic tio n  H orizon

The prediction horizon was set to the k while optimizing time lag k. It is expected that 
the value of the prediction horizon h lies in the same range as the time lag since dynamics 
of the underlying system are also reflected by the prediction horizon. Figure 7.8 shows 

transfer entropy and significance value as a function of h. The dependency of transfer 

entropy on h is similar to the dependency on k, as in Figure 7.7. The values of tx^ y and 

sx->y are robust against the choice of h. The maximum value of sx—>y varies for the five 

relationships but the sum of all significance levels has its maximum at h = 4. Thus, the 

prediction horizon is chosen to be equal to the time lag.

7.5.3 M in im um  N um ber of Sam ples

For practical application the number of samples to be considered for computation is a 

crucial parameter. The question is how many samples are required to get a significant 

result, that is, the minimum number of samples Nmm. The impact of the number of 
samples on the transfer entropy measure tx->y is shown in Figure 7.9. Average value and
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Figure 7.8: Optimizing prediction horizon h for five dependencies; left hand plots: transfer entropy 
value tx^ y, right hand plots: significance value with k = 4 and N  = 4100.

standard deviation of tx >̂y are calculated using subsets of the original data set of length 
N. The subsets are overlapping and delayed by 100 samples. For example, with the total 
length being 4100 samples, 40 subsets are constructed for N  = 200 consisting of samples 
1 to 200, 101 to 300, 201 to 400 and so on, down to 2 subsets for N  =  4000. The left hand 
plots of Figure 7.9 shows that the average value of tx->y does not vary significantly when 
N  > 600. However, the results of tx->y for the subsets can vary as shown in the right hand 
plots. The standard deviation only levels out for approximately N  > 2000 samples.

The recommendation is that the minimum number of samples should be set to N m-m =  2000 
if possible. If, however, fewer than 2000 samples are available, it is still worth carrying out 
transfer entropy analysis down to 400 or 500 samples. The confidence level in the result 
will then be lower as a consequence.

7.5.4 G uidelines

The guidelines for setting the parameters resulting from the reference case study are 
summarized in Table 7.2. The parameters are dependent on the dynamics of the underlying
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nature of the data. The data investigated in the reference case study is cycling with a 
period of oscillation of 60 samples. Setting time lag and prediction horizon to k = h — 4 
corresponds to sub-sampling by factor 4. Thus, the number of samples of oscillation period 
are reduced to 15. This must be taken into account when investigating other case studies. 
The transfer entropy measure however is robust to changes in both time lag and prediction 
horizon. It is therefore expected that the parameters guidelines given in Table 7.2 also give 
good results if the underlying dynamics differ from the ones in the reference case study.

Case Study: Transfer entropy for the parameter estimation is applied to the full refer­
ence case study from Section 4.2 using the proposed guidelines for time lag and prediction 
horizon. The directionality measure and the significance level are computed for all com­
binations of the process variables. Significance level and transfer entropy value for all 
combinations of process variables of the reference case study is shown in Figure 7.10. A 
significance level above the threshold of six can be detected for the relationships between 
T il to TI5 and LC1 and TI7______________________________________________________________
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Parameter Guidelines
Embedding dimensions

CMIIoII

Minimum number of samples Nmin -  2000
Time lag K = 4
Prediction horizon h =  k = 4

Table 7.2: Guidelines for parameter setting as results of reference case study with a sampling rate 
of 2 0  seconds.
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Figure 7.10: Transfer entropy results of reference case study, significance level 8x->y (top) and 
causality values h x -*y if significance level exceeds threshold (bottom).
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The efficiency of transfer entropy will be investigated in Part III and the results of the 
investigation will be discussed and summarised in Chapter 11. A comparison to the CCF 
method introduced in Chapter 5 and the nearest neighbours method from Chapter 6 will 
be made.

Chapter 7 Summary

In this chapter, transfer entropy has been developed for the purpose of fault 
diagnosis. The Kernel method was introduced for estimating the transition 
probabilities that are required for the calculation of transfer entropy. A signif­
icance level for transfer entropy was introduced and a three sigma threshold 
proposed. Guidelines for the parameters needed for computing transfer en­
tropy were derived using historical process data. The parameters are time lag, 
prediction horizon and number of samples.
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Application of Causality Measures
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PART III - APPLICATION OF CAUSALITY MEASURES

In this part, the causality methods of cross-correlation, nearest neighbours and 
transfer entropy developed in the previous part are applied to a number of sim­
ulated and industrial data sets. The purpose of the application to various case 
studies is to provide means of comparison of the developed tools among each 
other and in relation to other data-driven methods. Since the methods are all 
statistical tools, the impact of changes in the nature of data is difficult to predict. 
Thus, an experimental approach is pursued throughout this part by analysing the 
impact that different natures of data have on the causality measures.
The fault propagation effects that were introduced and described in Section 2.4.3 
are investigated here and the impact they have on the causality measures are 
studied in detail in Chapter 8. The effects that can be used to argue cause and 
effect are dead time (because the disturbance propagates from one measurement 
to the next with a time delay) and low pass filtering (because most processes 
act as a low pass filter). The impact of additive noise is also studied though it 
distorts the causality results rather than arguing cause and effect. In Chapter 
9, two complete industrial case studies are investigated in which the cause and 
effect relationships investigate the root cause of a disturbance. The case studies 
are from plants at Eastman Chemical Company and BP Chemicals sites. Finally 
in Chapter 10, the impact of quantisation and compression on the three methods 
is investigated using real process data that is then quantised and compressed.



Chapter 8

Fault Propagation Effects

In this chapter, the causality measures are applied to benchmark data sets 
that model the fault propagation effects. The effects investigated are dead 
time, low pass filtering and additive noise. The aims of applying the causality 
measures to simulated data are as follows:

•  To investigate the impact of an isolated change in the nature of the data, 
that is the impact of a time delay and low pass filtering, on the causality 
measures;

•  To compare the performance of the three causality measures in relation 
to these changes to the nature of the data;

•  To find out whether further insight into the problem studied can be gained 
through cause and effect analysis.

The investigated simulated data in this chapter is specially designed to test the response of 
the methods to fault propagation effects that can occur in chemical processes. Simulated 
data does not contain any structural noise that is essential for the statistical methods 
investigated in this work, however, it serves the purpose of getting more insights into the 
methods. Investigating simulated data thus serves the purpose of investigating the impact 
of changes in the data trend that occur when the signal propagates in the process (see 
Section 2.4.3). The four effects commonly observed are dead time or time delay, low pass 
attenuation and added noise, as listed in Table 2.5. The effect of each propagation will 
be investigated in turn for the cross-correlation, transfer entropy and nearest neighbours 
method. Since the signals are normalised prior to analysis, a decrease in magnitude cannot 
be captured with the causality measures. A decrease in magnitude is only of significance 
if identical measurements are compared, for example, flow measurement with flow mea­
surement. It can be estimated by calculating the standard deviation as a percentage of 
the mean. This quantity is only valid if no equipment acts on the variables, for example, 
a buffer tank might decrease the variations in flow rate in general so that the disturbance 
has a larger impact on the standard deviation /  mean percentage than before the buffer

149
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Effect Methods Won’t Work Comment
Dead Time CCF, TE, NN Var see 8.1
Low Pass Filter TE, NN Var, CCF see 8.2
Additive Noise CCF, TE, NN Var see 8.3
Amplitude Attenuation Var TE, NN, CCF Only for same types

Table 8.1: Fault propagation effects and measures of causality; CCF: cross-correlation function, 
NN: nearest neighbours, TE: transfer entropy; Var: variability analysis using variance or standard 
deviation.

tank.

The effects acting on a process quantity such as flow, temperature or level are briefly 
described in Section 2.4.3, that is, dead time, low pass filtering, amplitude attenuation 
and additive noise. These effects and the methods applied to them are summarised in 
Table 8.1. In the following, the effect of dead time will be discussed in Section 8.1. 
Arguing cause and effect from the variance contained in the signal will give no result as 
the variance will be similar for both the delayed and the original time series. Section 8.2 
discusses the impact of a low pass filter element on the causality measure. The cross­
correlation causality method will not be able to detect the fault propagation since no time 
delay is introduced through the filtering. The impact of additive noise on cross-correlation, 
nearest neighbours and transfer entropy is discussed in Section 8.3. The case of amplitude 
attenuation will not be discussed in this chapter since amplitude attenuation can be best 
measured using a variability measure and arguing that the variability is strongest for the 
measurement closest to the root cause. This argument, however, can be misleading. Only 
measurements of the same types, that is flow and flow or pressure and pressure, can be 
compared.

The questions addressed in this chapter are as follows:

• Which of the three developed causality measures detects the direction of interdepen­
dence best through the presence of a time delay?

• Can transfer entropy or nearest neighbours argue the direction of interdependence 
better through the presence of a low pass filtering element?

• Which of the three causality measures is most robust to additive noise?

8.1 Signal Dead Tim e

As the product is processed in the plant, it travels through along the equipment with a 
certain speed or throughput. The propagation time between two measurement points is 
not known in general and is usually larger than the sampling time of the measurements.
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Figure 8.1: Signal dead time: Temperatures along a tube with flow rate F , velocity v. Right: 
block diagram.
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Figure 8.2: Gaussian random noise signal with signal dead time of Td = 5 samples.

Thus, an event happening first in a measurement upstream can be observed a certain time 
later in a measurement further downstream. The signal dead time Td between the event 
in the first and second measurement is usually unknown.

For example, consider a pipeline of length lp and area A , as shown in Figure 8.1. The 
signal dead time Td depends on the volumetric flow rate F  = A v ,  where v is the velocity 
of the liquid, as well as lp and A. If all three parameters are constant over the area of 
time and the transported mass is a compressible liquid, then the signal dead time can be 
expressed as

A /_
(8 .1)Td = ~

In general, the flow rate F  is unknown and also not necessarily constant. Determining all 
parameters through measurement would be feasible for some conditions but the throughput 
in the plant might change thus affecting the flow rate. Other equipment such as tanks 
and distillation columns also act as dead time elements to some extent. As a note it is 
remarked here that pressure measurements usually do not exhibit a signal dead time since 
pressure variations propagate at the speed of sound. Thus, the dead time is a fraction of 
a second which cannot be measured with standard sampling rates of a few seconds to a 
few minutes.

The time trend of a random noise signal delayed by a signal dead time Td of five samples 
is shown in Figure 8.2. Shown here are 100 samples, for transfer entropy 2000 samples and 
for the nearest neighbours method 400 samples are analysed. This simulated data is used 
for investigating the impact of signal dead time on the causality measures. The result for 
all measurements should be that the original time series causes the delayed time series.
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NN TE Aim

Experiment (a) h = 1 . . .  10; m  = 2, 3,4,5 m  = 2 Dependence on h and k in
k — h case of unknown dead time

Experiment (b) h — 1 . . .  10; m  = 2,3,4,5 m = 2 Dependence on h in case of
K — 1 unknown dead time

Experiment (c) h = Td m  — 2,3,4,5 m — 2 Dependence on k in case of

K=  1 ... 10 known dead time

Table 8.2: Causality analysis as structured in three experiment for random noise with signal dead 
time, for nearest neighbours K  = 15, for transfer entropy n = 50.

An important property of this time series is that there is only one relationship inherent in 
the signal which is the identity x(t) = y(t — Td). Since the sequence is a Gaussian random 
noise sequence, no structural relationships between previous data points exist. Thus, any 
detected causality is due to the identity relationship of the delayed sequence.

The causality analysis compares nearest neighbours method and transfer entropy by car­
rying out the three experiments listed in Table 8.2 and referred to as Experiment (a), 
(b), (c). The causality measure using the nearest neighbours method is calculated for an 
embedding dimension of m  — 2 ,3,4,5. The transfer entropy method implemented here 
is structurally similar to the nearest neighbours method with an embedding dimension 
m  = 2 since the transition probability length is set to / =  2 in definition 7.30. The 
results for transfer entropy and nearest neighbours are expected to be similar since the 
two methods have a related structure and both use the concept of predictability. In the 
experiment, the prediction horizon h and the algorithm time delay k are varied to find out 
if the directionality can be detected by the presence of signal dead time. The prediction 
horizon h for both transfer entropy and nearest neighbours method was the distance of the 
future value to be predicted to the embedded vector which is used to predict the future 
value. The algorithm time delay k is used for the construction of the embedded vectors 
and specifies the distance between the values of the embedded vector as given in Equations

6.1 and 7.30.

Experiment (a) In this experiment, prediction horizon h and algorithm time delay k 
are dependent and varied jointly from one to ten. The consequence is that the causality 
is only captured if h and k, are exactly the signal dead time 7^ =  5 since there is only 
a relationship between the «th sample of the first sequence and the i -I- T^th sample of 
the second sequence. This effect can be seen in Figure 8.3. An exception is the causality 
measure using the nearest neighbours method for embedding dimension m — 5 and a 
prediction horizon h — 1. The reason for this is that the embedded vector captures just the 
previous measurement that is able to predict the future value of the delayed time series. It 
can be observed for the nearest neighbours method that the lower the embedding dimension 
the higher the significance level. The reason is that due to the special construction of the
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Figure 8.3: Experiment (a): Results of nearest neighbours and transfer entropy significance level 
for random noise with signal dead time; h = k and Td = 5 samples.
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Figure 8.4: Experiment (b): Results of nearest neighbours and transfer entropy significance level 
for random noise with signal dead time; k = 1 and 7  ̂= 5 samples.

measurements, only one data sample predicts the delayed sequence. Any additional sample 
interferes the prediction and worsens the result. The amplitude of the significance level 
is extremely high for both nearest neighbours and transfer entropy, exceeding up to ten 
times the threshold in case of nearest neighbours and 1 0 0  times the threshold in case of 
transfer entropy. The reason for the better result of transfer entropy could be that more 
samples, 2000 instead of 400 for the nearest neighbours. The number of samples was 
chosen differently so that the computation time is constant for both methods. To verify 
this hypothesis, 2000 samples were used for the nearest neighbours method. The causality 
measure of the nearest neighbours method increased to the same dimension as the transfer 
entropy measure, for a h = k =  Td the significance level of the nearest neighbours method 
is sx^ y = 228 and for the transfer entropy method sx^ y = 321.
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Figure 8.5: Experiment (c): Results of nearest neighbours and transfer entropy significance level 
for random noise with signal dead time; h  = Td = 5 samples.

E xperim ent (b)  In the second experiment carried out on the same data, the algorithm 
time delay is set to k  = 1. The causality is again determined rather than the value of 
the signal dead time. Thus, the causality is correctly identified not only if the prediction 
horizon is exactly h = Td but also for lower prediction horizons. The significance level 
of transfer entropy and nearest neighbours method is shown in Figure 8.4. For the near­
est neighbours method, causality is detected for prediction horizons h smaller than the 
actual signal dead time Td = 5 depending on the embedding dimension m. The correct 
dependency is detected if h is within in the interval

h e [ T d - m P V ,T d}. (8.2)

Thus, the larger the embedding dimension the higher are the chances to select a prediction 
horizon h that can detect the causality. As a tradeoff, a larger embedding dimension 
has a lower significance level. Since transfer entropy here is equivalent to an embedding 
dimension of m = 2 , a correct causality can only be detected if h = Td — 1 or h = Td. The 
similar shape of both results for m = 2 in Figure 8.4 again highlights the relationships 
between the two methods.

Experim ent (c) In the final experiment, the prediction horizon is set to the signal dead 
time Td. The algorithm time delay k  is now varied from one to ten as shown in Figure 8.5. 
For these settings, the causality is correctly identified independently of algorithm time 
delay k. The reason for this is that the only dependency is the identity x(t) =  y ( t  -  Td) 
which is captured with the setting of the prediction horizon to the signal dead time. The 
same result is achieved for both nearest neighbours and transfer entropy. Again, a lower 
embedding dimension m  results in a higher significance level.

When assuming that the signal dead time is the only indication of a cause and effect 
relationship then the following guidelines should be considered when applying transfer 
entropy and the nearest neighbours measure.
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C onclusions: The three methods of cross-correlation, nearest neighbours and 
transfer entropy can all detect causality through the presence of signal dead time. 
Cross-correlation function gives the best result since it also evaluates the signal 
dead time. Furthermore, the following observations can be noticed.

• If signal dead time Td is known then the prediction horizon should be h = 

Td;
• Larger embedding dimensions m  have more chances to capture the causality 

but will result in a lower significance level;
• A prediction horizon h lower than signal dead time Td can still detect the 

causality but if h is larger than Td then the causality is missed;
• A lower algorithm time delay k has a higher probability of finding the 

dependency if embedding dimension m  is large enough.

8.2 Low Pass F iltering

In this section, the effect of the low pass filtering of process equipment on the causality 
measures are investigated. Items of process equipment that show low pass behaviour 
are also referred to as first-order systems. In Stephanopoulos [126], first-order systems 
are described. An example of such a system is a tank with an inflow stream win and a 
resistance in the outflow. Thus, the dynamic behaviour of the system can be described by 
the following differential equation:

AR=jj- + hi = R w ir, (8.3)
dr

where hi is the level in the tank, A  the area, R  the resistance of the outflow and wm the 
inflow. Transforming the differential equation into the Laplace domain with hi as output 
and wm as input gives the following transfer function that has the form of a first order 
system:

G c { s )  =  w !m  = d r r  where K c  =  r ’ t d  =  a r • (8-4)
Low pass filtering of time data for the purposes of simulation can be realised in a number 
of ways, for example through transformation into the frequency domain followed by elim­
ination of high frequency components and back transformation into the time domain. For 
discrete time samples, a straightforward time domain moving average (MA) realisation 
can be expressed as follows

j nf /2
f il t(^ ,n /)  = — x u-i  (8.5)n r z '

v= — nj / 2
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Figure 8.6: Transfer function (left) and step response (right) of a first order low pass system.

where n / is the order of the filter. The filter is acausal since future values of x are used to 
compute the average. The acausality does not cause any difficulties since the computation 
is done offline. This filter implementation ensures that there is no time delay introduced 
which is useful when studying only the filtering effect on the causality measure.

The simulated data set which will be used for testing the causality measures is constructed 
in the following way. A random noise signal with zero mean and unit variance (N (0,1)) 
is filtered with a low pass filter. Three filter orders are implemented, n / =  6 , rif = 8 and 
n / =  12. The filtered signal is filtered twice again so that four signals in total exist, cco, 
a?i, X2 and x3 :

zo =  N( 0,1)
xi = f i l t ( z o , 7 i / )  ^

X2 =  filt(acri, n /)
X 3 =  filt(£2,n/)

The time trends of these signals are shown in Figure 8.7. The time trend of the random 
signal xq is similar in all three cases. The filtered signal after the second filtering has 
features of a sinusoidal oscillation. For higher filter order, the oscillation period is different 
depending on the cut-off frequency of the filter is a function of the filter order. The 
filtered signals X2 and x$ have a very similar shape since all high frequency components 
still left in signal x\ have already been filtered out. Further filtering would only smooth 
further slightly. It is expected that the random data x$ inhibits more uncertainty than 
the filtered signals. The causality measures which estimate the reduction of uncertainty 
should therefore detect a cause and effect relationship from xq to x\ to X2 to X3 :

(xo) *(xi)------ *{x2)------ * (S )

The reason of the experiment using these four data samples is to see whether transfer 
entropy or the nearest neighbours method is better suited to detect the causality and to 
investigate the impact of the filter order on the causality measures.

Experim ent: When applying the causality measures both prediction horizon h and time 
delay n are set equal to one because of the independence of the data points of the original 
random time sequence. In case of a real life oscillation, the parameters in Table 7.2 would
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Figure 8.7: Filtered Gaussian random noise signal with varying filter order n/ = 6, 8, 12.

be preferred. Again, 2000 samples are used for the transfer entropy and 400 samples for 
the nearest neighbours method which result in approximately equal computational effort. 
The results of the nearest neighbours method are displayed in Figure 8.8 for all three filter 
orders and a variable embedding dimension of m  — 2,3,4. For almost all filter orders 
and all embedding dimension the causal relationship between the original random noise 
sequence xq and the filtered signals is detected. However, the expected causality between 
x\ and X2 i £ 3  as well as £ 2  and £ 3  does not show up in Figure 8 . 8 , that is, there is no line 
of bubbles in the second or third row in the bubble charts. Also, the significance level is 
much lower than for the random noise signal with a dead time. The causality measures 
using transfer entropy give better results as shown in Figure 8.9. The significance level 
is higher compared to the nearest neighbours method and additionally the dependencies 
between x \ and X2 , £ 3  are detected. The results do not vary in a coherent way with the 
filter order but exceed the threshold of three for all filter orders. The causal relationship 
between £ 2  and £ 3  does again not show up. The reason for this is probably the similarity 
between the time trends which are almost indistinguishable.
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Figure 8.8: Significance level of nearest neighbours method applied to low pass filtered signal with 
different filter orders and varying embedding dimension; h = k — 1.
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Figure 8.9: Results of transfer entropy applied to low pass filtered signal; h = k = 1. Left plot: 
filter order = 6, middle plot: filter order = 8, right plot: filter order =12.
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Figure 8.10: Simulation setup of additive noise: random noise with time delay.

Conclusions: Both nearest neighbours method and transfer entropy can cap­
ture to some extent causality in the presence of low pass filtering effects. Transfer 
entropy is better suited than the nearest neighbours method to detect the direc­
tionality caused by low pass filtering effects when a sample length of 2000 samples 
for transfer entropy and 400 samples for nearest neighbours is evaluated. The 
order of the filter appears to have no major impact on the causality.

8.3 A dditive N oise

In this section, the impact of additive noise on the causality measure is investigated. As 
the fault propagates through the plant and affects a number of measurements, additional 
noise is added to the disturbance. This additive noise is due to the sensors or outside 
effects. Unlike the dead time or low pass filtering effects, additive noise distorts the 
causality measure and makes it more difficult to detect the direction of propagation. In 
the following, two experiments are conducted to investigate the changes due to additive 
noise. In the first setup, a delayed random noise sequence is contaminated by additive 
noise and the causality between the original noise signal and the contaminated signal is 
studied. In addition to the nearest neighbours and transfer entropy method the cross­
correlation function is also investigated. In the second setup, the delay is replaced by a 
low pass filter.

E xp erim en t (a) In the first experiment, additive noise contaminates signal previously 
delayed by dead time Td- The setup of this experiment is shown in Figure 8.10. For the 
nearest neighbours method 400 samples and for the transfer entropy method 2000 samples 
are investigated, giving similar computation times for the algorithms. The embedding 

dimension of the nearest neighbours method is set to m — 2 for better comparison with 
transfer entropy results. The prediction horizon and the time delay are set to h — k — 1 
as argued in the previous section. The variance of the additive noise signal is increased 
to estimate the influence on the causality measures. The results of the nearest neighbours 
and transfer entropy method are then shown in Figure 8.11. The measured causality is 
in both cases decreasing with increased noise level. However, a causality can be detected 
for a additive noise variance ay — 3 that is three times higher than the variance of the
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Figure 8.11: Causality analysis between random noise signal and the same delayed by dead 
time Td and with additive random noise with variance ay: Left panel: nearest neighbours results 
(h = ac =  1 ,  m =  2 ) ,  right panel: transfer entropy results (h = k = 1).
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Figure 8.12: Causality analysis between random noise signal and the same delayed by dead time 
Td and with additive random noise with variance ay: Cross-correlation results.

original signal (crx =  1) for the nearest neighbours method and six times higher for transfer 
entropy. The results of the cross-correlation function have a similar behaviour as shown 
in Figure 8.12. The relationship between the variance ay of the added noise and the 
cross-correlation method is shown in Figure 8.12. The time delay was detected correctly 
(Td = 10) for all values of cry up to ay = 6. Both correlation index is shown in the left hand 
panel of Figure 8.12 and oscillation index ip (right hand panel) are above the threshold 
t̂hresh &nd ^thresh5 indicated by dashed line. Thus, the correlation methods is very robust 

against additive noise in case of dead time.

E xp e rim e n t (b) In this setup, a random noise signal is filtered with a lowpass filter 
before a further noise signal is added as shown in Figure 8.13. The filter order is set to 
rif = 6. For the nearest neighbours method 400 samples and for the transfer entropy
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Figure 8.13: Simulation setup of additive noise: random noise with low pass filtering.
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Figure 8.14: Time trend of additive noise signal generated by the system shown in Figure 8.13. 
In the left hand plot the noise variance cry is set to zero while in the right hand plot the variance
is set to cy = 0.15.

method 2000 samples are investigated. Figure 8.14 displays the time trends of the original 
signal and the filtered and contaminated signals. The embedding dimension of the nearest 
neighbours method is set to m  = 2 for better comparison with transfer entropy results. 
The prediction horizon and the time delay are set to h — k, = 1, the number of nearest 
neighbours is set to K  = 15. The variance of the additive noise signal is increased to 
estimate the influence on the causality measures. The results of the nearest neighbours and 
transfer entropy methods are shown in Figure 8.15. For the nearest neighbours method, 
the causality measure sxz between the original signal x  and the output signal z only gives 
a correct result if the variance ay is lower than 0.12. The measure sxz is more robust for 
the transfer entropy method which gives the correct direction for a variance ay = 0.3. In 
summary, the effect of additive noise is stronger when investigating the low pass filtering 
effect than the dead time.
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Figure 8.15: Significance level of nearest neighbours method (left hand panel) and transfer entropy 
method (right hand panel) as a function of the additive noise variance cy.

Conclusions: All three causality measures are affected by the presence of ad­
ditive noise so that the performance of the measures decreases. The effect of 
additive noise is negligible when analysing a pure dead time between two sig­
nals. When exploiting the low pass filtering effect, transfer entropy can cope 
with additive noise more successfully than the nearest neighbours method.

C h ap ter 8 Sum m ary

T he im pact of fau lt p ropagation  effects on th e  developed causality  m easures 
has been  stud ied  in th is chap ter. The effects of dead tim e, low pass filtering 
and  add itive  noise were investigated using sim ulated  noise d a ta . All th ree  
m easures de tec t th e  causality based on dead tim e. T ransfer en tropy  deals best 
w ith  low pass filtering effects while cross correla tion  is m ost robust against 
add itive  noise if th e  causality is argued by th e  dead tim e betw een th e  two 
signals.



Chapter 9

Industrial Case Studies

This chapter discusses the application of the causality measures to data sets 
from industrial processes. Recommendations and guidelines are given for the 
acquisition of the data sets and interpretation of the causality results. Two 
new case studies are introduced exhibiting data characteristics different from 
the reference case study. The root cause is hypothesised and the consistency 
of the three methods investigated.

The application of the causality measures to simulated data in the previous chapter inves­
tigated the impact of fault propagation mechanisms on each measure of the three causality 
measure. The question of directionality is, however, important for plant-wide disturbances 
and large data sets. The selection of relevant variables and the capture of the correct time 
frame when the disturbance occurs is important for the conduction of the analysis. Unlike 
simulated data, real industrial data has a certain dynamic structure even if a time trend 
appears to be random.

In the first section, the acquisition of data and the general interpretation of the causality 
results are discussed. Section 9.2 introduces a process at Eastman Chemical Company that 
showed an irregular disturbance in a number of time trends while Section 9.3 describes 
a process at BP Chemicals with a linear oscillation. The causality measures of cross­
correlation, nearest neighbours and transfer entropy are applied to the two processes.

9.1 Selection of Case Studies

Before applying the causality measures to a data set it is useful to check the data set 
for validity and carefully phrase the causality questions to be solved. In this section, a 
checklist of topics to be considered before the analysis is provided. First, the data set has 
to meet some requirements explained in Section 9.1.1. The directionality investigated has 
to be stated before applying the methods and some guidelines are given in Section 9.1.2.

163
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Assisting information for verification of the results and measures is given in Section 9.1.3.

9.1.1 Acquisition of D ata Sets

When capturing the data from acquisition system such as PI or directly from the DCS, a 
number of checks have to be carried out to ensure that the causality analysis gives useful 
results. The following requirements are necessary when preparing the analysis.

(A )  Selected Process Variables A prerequisite for the causality analysis is that a 
number of process variables are selected that show the same features of a disturbance in 
the data. The detection of disturbances using data-driven methods is a solved problem 
for most types of disturbances. Detection can be carried out using oscillation detection 
or principal component analysis, see Section 3.3. The reason for analysing such reduced 
data sets is to limit the number of measurements. Comparing p measurements requires 
p(p — 1) directionality measures to be calculated and interpreted. It is therefore sensible 
to restrict the analysed measurements to those that show the presence of the disturbance 
to be investigated.

(B ) O nset and  ending  o f  a disturbance  Time periods during which the disturbance is 
present should be separated from time periods that appear as normal operating conditions. 
One reason for this is that the cause and effect relationship might only be present during 
the upset. Furthermore, the statistical tools require stationarity. The statistical properties 
usually change during the period of disturbance. The start and end of a disturbance can 
be detected through increased variability or limit crossings. In addition, the start and end 
of the disturbance should be captured which might give further conclusions towards the 
root cause.

( C) Process data  The result of the causality analysis depends significantly on the quality 
of the data. Most importantly, data of the most important process variables should be 
available without too much data missing. In general, flow measurements are particularly 
interesting since the flow is in most cases the adjusted variable and the disturbance tends 
to propagates along the direction of flow. The quality of the data is also a requirement, 
that is, compression and quantisation should not be an issue. Cleaning outliers from 
the data is necessary for transfer entropy as the construction of the probability density 
function places its interval from the smallest to the largest value. Thus, the number of 
bins are computed incorrectly in the presence of outliers.

(D ) Sam pling  rate  The sampling rate has to be sufficiently high in order to capture 
the relevant features in the measurements. Measurements are usually recorded once a 
minute if captured with the PI historian, data from the distributed control system range 
between 10 and 20 second data. Subsampling might be necessary prior to the analysis 
when analysing low frequency features.
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9.1.2 Q uestions on Directionality

After selecting the measurements and the time frame of the analysis a hypothesis on the 
direction of fault propagation can be phrased. The advantage of having a hypothesis 
in mind is tha t the interpretation of the causality measure is easier. Alternatively, the 
automated construction of a causal map as described in Section 4.4 can be utilised. Specific 
questions on directionality are for example:

•  Can the directionality measures identify the correct direction of flow as given in the 
process schematic?

• Does directionality change if a disturbance is present compared to normal operation?

• Is there a cause and effect between controller output and process variable?

• Is there a causality between the same type of measurements, e.g. from temperature 
to temperature?

9.1.3 Interpretation of Results

In order to adjust the causality measures and to verify the results, additional information 
about the case study is helpful. If a quantitative model of the process exists, the data 
driven methods can be compared to the results obtained from cause and effect digraphs 
constructed from the model. Furthermore, the following information can be used to judge 
the result obtained from the causality analysis.

(A )  C om plete process schem atics  Information can be obtained by skillfully inter­
preting the process schematic. The process schematic contains all relevant equipment and 
product flows and the positions of the measurements are indicated alongside control in­
strumentation. The direction of flow detected with the data-driven causality measure can 
be confirmed from the direction of flow indicated in the process schematic.

(B ) Process knowledge available Process knowledge of expert process engineers can 
be used to argue the information flow and confirm the root cause. Further insight into the 
process can help to understand the results obtained from the causality analysis.

(C ) P ost-ana lysis  data set A data set captured after the disturbance has been elim­
inated can highlight the impact of the disturbance. Cases in which the disturbance went 
away after fixing the cause detected by cause and effect analysis verify the results in a 
constructive way.
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Figure 9.1: Time trends of irregular disturbance with sharp bursts.

9.2 Irreg u la r D istu rbance  (E astm an  C hem ical C om pany)

This case study is selected because unlike the reference case study, the plant-wide distur­
bance affecting this process is of non-oscillatory nature. Irregular spikes appear in eight 
measurements with the peaks or valleys being clearly distinguishable (for the time trend 
see Figure 9.1). It is therefore expected that the dead time is a dominant effect from 
which cause and effect can be argued as well as the low pass filtering that changes the 
shape of the spikes. Since most data-driven analysis tools are mapped out for oscillatory 
disturbances, irregular disturbances are a challenge to these methods. In this section, the 
causality measures are applied to the process data to investigate the ability to analyse an 
irregular disturbance. The process is an acid production process at Eastman Chemical 
Company as shown in Figure 9.2. The disturbance was present for a period over a few 
weeks. The process data, schematic and insight were provided by Michelle Caveness.

The centrepiece of the process part is a reactive distillation column in which the product 
is processed as shown in Figure 9.2. The overhead outflow of the column is recycled in 
the condenser and reflux tank and fed back to the column. The pressure in the column 
is thereby controlled through the reflux flow and PCI. To prevent the reflux tank from 
overflowing an exit line outflow is supervised by LC1. The temperature in the column is 
critical for the chemical reaction to take place and therefore not only controlled by TCI 
and TC2 but also observed by T il and TI2. As in all distillation processes, a pressure and



CHAPTER 9. INDUSTRIAL CASE STUDIES 167

Inert gas

Condenser

Feed
Reflux
tank

Reacting; 
distilla- • 
tion
column .

T il

Condenser TI2

PI2 ,PI1
Flash
pot Re­

boilerInert gas 

Product

Figure 9.2: Process schematic of case study with irregular disturbance.

temperature gradient can be observed along the column with pressure and temperature 
being functionally related. The pressure of inflows of steam and inert gas further on in 
the process is monitored by PI1 and PI2 respectively.

9.2.1 P rocess  and  D a ta  Set

In the selected part of the process a disturbance affects the measurements around the 
acid column in Figure 9.2. The time trend of the disturbance is shown in Figure 9.1 
with 3000 samples taken at a rate of one every 10 seconds. Altogether, 8640 samples 
were available but only 3000 samples are displayed here for clarity. A common pattern 
can be seen in all time trends. Sharp spikes occur around the same time instance in the 
level, pressure and temperature measurements although with some interruptions and thus 
not necessarily regular. The fact that the spikes are part of the same disturbance can 
best be seen by visual inspection. The tips of the spikes line up which can be best seen 
when observing TCI and T il. Furthermore, a longer period of normal operation following 
sample 1500 is common to all time trends. Because of the irregular pattern Fourier analysis 
or autocorrelation will give no useful results. Instead, for example spectral principal 
component analysis [134] or, even better, time shifting principal component analysis [144] 
can be used to detect the disturbance. Level measurement LC1 is distorted by noise and 
therefore filtered with a sixth order low pass frequency filter as described in Equation 
8.6. The controller temperature TC2 showed some additional noise in the same frequency
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range as the disturbance. TC2 is therefore not filtered.

The process schematic shown in Figure 9.2 is to some extent incomplete. For example, the 
inflow into the distillation column or the flash pot is not clearly defined. The purpose of 
the process schematic at this point is to locate the position of the process variables which 
are crucial to argue the fault propagation path. The description of the reaction, from a 
chemical engineering point of view, is thus incomplete. The reason for leaving out some 
of the process engineering information is that the process displayed here is only a small 
part of a larger plant and that proprietary information is not given.

Some of the time trends are quite visibly quantised. This manifests itself in the square 
shape appearance which can be most clearly observed in measurements PI2 and TI2. 
Quantisation is a common feature in measured time trends, frequently occurring in temper­
ature measurements. The effect of quantisation on the causality measures is investigated 
in Section 10.1.

9.2.2 Question on Directionality

The root cause of the disturbance was unknown prior to the analysis. Thus, the question 
of directionality is which variable affected the other variables in order to find the order of 
occurrence and then consequentially the root cause. If all dependencies are identified, a 
causal map can be constructed automatically as described in Section 4.4. The most likely 
root cause according to the causality analysis will be the first variable in the string of 
variables in the causal map.

9.2.3 Interpretation of Results

In the following, the three causality measures of cross-correlation, nearest neighbours and 
transfer entropy are applied to the data set. A causal map will be derived from the causality 
matrix and a possible explanation of root cause discussed using the process schematic in 
Figure 9.2 and additional expert knowledge.

C ross-C orrela tion  Function: The method of causality using cross-correlation func­
tion was described in Chapter 5. The following table gives the sample number of the 

detected dead time.
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LCl
PC I
PI1
PI2

TC I
T il

TC2
TI2

Only results of the detected dead time are considered that have a correlation index r max 

larger than the threshold r thresh and an oscillation index ip larger than ^thresh- For this 
purpose, 3000 samples are considered so that r max >0.11 after Equation 5.25 and ip > 0.38 
after Equation 5.26. For the generation of the causal map, non-zero entries of the matrix 
are considered and ordered according to the algorithm described in 4.4.

LCl PC I P

LC l
P C I
PI1
PI2
TC I
T il
TC2
TI2

It can be seen here that PI2 is preceding the seven other measurements since the values 
in the fourth row are all one. A further variable that causes many other variables is PCI. 
The sorting algorithm rearranges the order of the variables. After re-entering the detected 
dead times Td, the causality matrix has the following form.

PI2

PC I
LCl
TCI
TC2
T il
TI2
PI1

This result reveals completeness and consistency. For example, PI2 not only causes all 
other variables but the order of occurrence can be retrieved from the dead time. The peak 
occurs first in PI2, then 1 sample later in PCI and then 4 samples later in LCl. The
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Figure 9.3: Significance level (left panel) and causality measure (right panel) of the nearest 
neighbours method for case study with irregular disturbance.

last variable to be affected is PI1 which occurs 22 samples after the initial disturbance 
in PI2. Thus, the cross-correlation function maps out a picture of cause and effect. This 
picture, however, is not complete. For example the dependencies between LCl and TCI 
and between TCI and TC2 can only be concluded indirectly since no dead time between 
these measurements was detected. Also, the value 4 for the dependency between TC2 and 
PI1 does not seem to fit into the scheme. However, since this is the only exception, the 
value of the detected time delay is omitted here.

TCI TC2 TI2 PI1PCI LCl T ilPI2

N earest Neighbours: The results of the nearest neighbours method from Chapter 6
is shown in Figure 9.3. The parameters were set as given in the guidelines in Table 7.2, 
that is, prediction horizon and time delay were set to h = k = 4 and the embedding 
dimension to m =  3. For this approach, 400 samples were analysed. The results show 
that the pressures PI2 and PCI affect all other variables. However, unlike in the cross­
correlation investigation, the nearest neighbours method does not identify whether PI2 or 
PCI occurred first. Also, most other relationships between the following measurements 
were not detected.

TC2 PI1LCl TCI T il TI2PCIPI2
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Figure 9.4: Significance level (left panel) and causality measure (right panel) of the transfer 
entropy method for case study with irregular disturbance.

Transfer E ntropy: Figure 9.4 shows the results of transfer entropy. Again, the pa­
rameters are set according to the guidelines in Table 7.2 and in total 3000 samples were 
used for the analysis. The results show a picture similar to the matrix derived from the 
cross-correlation function. Unlike the previous methods, transfer entropy gives a complete 
picture and detects the dependencies that were missing previously, such as the relationship 
between LCl and TCI as well as TCI and TC2.

Overlap between the three methods. There are no contradictions between the methods 
although transfer entropy gave the most complete picture. Constructing the causal map 
according to the proposed algorithm in Section 4.4 using the causality matrix derived from 
transfer entropy, gives the following causal map.

This therefore suggests that PI2 is closest to the root cause. Since PI2 is an indicator and 
not a control variable, the diagnosis of the root cause requires expert knowledge. Referring 
to the process schematic in Figure 9.2 shows that PCI and PI2 are two pressures connected 
with the inert gas flow. Further investigation showed that the inert gas inflow into the 
condenser and the flash pot was coming from the same pipe controlled by a split pressure 
controller. Investigations revealed that the pressure controller had oversized split settings 
and caused the inert gas to be upset, thus affecting the remaining process.
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C onclusions: The results obtained by the causality analysis all comply with the 
verified root cause. The order of events of the measurements is identical for all 
three methods. However, the nearest neighbours method does not detect all the 
events but only the ones closest to the root cause. Transfer entropy gives the most 
complete picture of causal relationships. Cross-correlation correctly identifies the 

dead times between the occurrence of the disturbance peaks so that the time of 
events can be argued.

9.3 Linear O scillation in R ecycle (B P )

The disturbance described in this section is included in the thesis because the nature of 
the disturbance is linear. In the reference case study from Section 4.2, the measurements 
closer to the root cause were also more nonlinear. The nonlinearity can be seen from the 
frequency spectrum. In this example, the oscillation that affects a number of variables is 
linear and without any harmonics in the frequency spectrum. Thus, the nonlinearity index 
provides no means for cause and effect. However, the disturbance is not a pure sinusoid 
but has a considerable amount of stochastic contribution. Therefore the application of 
the statistical causality measures derived in this work could give some information about 
cause and effect in the process. The three methods of cross-correlation, nearest neighbours 
and transfer entropy are applied and their results are compared. A hypothesis of the root 
cause is made. The process schematic and data are courtesy of BP Chemicals and was 
provided by Adrian Meaburn.

9.3.1 Process and D ata Set

The process schematic of the case study is shown in Figure 9.5 and includes six control 
loops that were available for the analysis. The time trend of the eight loops, including 
controller output and controller error1, is shown in Figure 9.6. The sampling rate is 1 per 
minute and 3000 samples in total were analysed. The time trend shows a regular oscillation 
affecting to some extent all measurements. The period of oscillation is 56 samples or 56 
minutes. The oscillation can also be clearly seen in the frequency spectra in Figure 9.7. 
The lack of any harmonics in the frequency spectrum suggests no nonlinearity. In addition 
to this most prominent oscillation, level controllers LCl and LC4 exhibit slow deviations 
in the lower frequencies.

The process schematic shown in Figure 9.5 is the information available from Adrian 
Meaburn at BP Chemicals. The information provided is not enough for understanding and

1The controller error is the setpoint minus the measured process variable.
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Figure 9.5: Process schematic of process with linear oscillation in a recycle.

arguing the controller schemes in place since the manipulated variables are not indicated. 
For the purpose of retracing the root cause by investigating the process measurements this 
suffices. The process schematic given here was suggested and approved by BP Chemicals. 
Details about the kind of the reaction cannot be disclosed.

9.3.2 Q u estio n  on D irectionality

The ultimate goal of the directionality analysis is to find the root cause of the 56 samples 
oscillation. The analysis is particularly challenging since the process includes a recycle. In 
the case of a recycle, there are two different kinds of disturbance propagation mechanisms:

• The disturbance originates from a single cause such as oscillatory tuning of a loop 
or a disturbance that enters the process through an input feed.

• The oscillation is due to the setup of the process, either by the presence of the recycle 
or by the interaction between two loops fighting for the same process quantity.

The automatic generation of the causal map assumes the first option and then breaks up 
the recycle. The first variable in the resulting chain of occurrences is the variable that is 
most likely to be the root cause. Therefore, no circular causality can be represented. How­
ever, the causality measure gives also insight into the second case of a inherent instability 
and argues the direction of propagation and the events of occurrence for the variables that 
cannot be straight forwardly placed in the recycle. For example, the event of occurrence 
between the level, pressure and temperature in the reactor in the process shown in Figure 
9.5 combined with process knowledge can reveal more information about the cause of the 
disturbance.
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Figure 9.6: Time trends of controller errors and outputs of variables indicated in Figure 9.5.
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Figure 9.7: Frequency plots of controller errors and outputs of variables indicated in Figure 9.5.
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9.3.3 Interpretation of Results

In the following, the three causality measures of cross-correlation, nearest neighbours and 
transfer entropy are applied to the data set. Causal maps will be derived from the causality 
matrices for the different measures and a comparison will be made. An explanation of root 
cause discussed using the process schematic in Figure 9.5 and additional expert knowledge.

C ross-C orrela tion:  Applying the correlation analysis gives the following detected
dead times summarised in the causality matrix. Only samples are considered that have a 
correlation index r max larger than the threshold r thresh and an oscillation index tfj larger 
than ^thresh"

x /y LCl LC2 LC3 LC4 PCI TCI
LCl -

LC2 -

LC3 4 2
LC4 6 -
PC I 10 -
TCI 9

The reason why only relatively few dependencies, five out of 30 potential dependencies, 
are found is that the disturbance is an oscillation and that it cannot distinguished between 
a dead time of Td and Tosc — Td. After reordering the variables, the following causal map 
results. The order of events complies with the results obtained from all three methods as 
will be seen in the next two paragraphs.

LClTCILC3 PCI LC4

The detected dependencies indicate that LC3 causes LC4 and PCI which means that the 
reflux level influences the reactor level and reactor pressure. The level LCl in the buffer 
tank is influenced by the quantities measured in the reactor. This leads to the conclusion 
that the disturbance is unlikely to enter the process from an upstream unit via the feed. 
There is, however, no information about the order of events in the reactor, that is, between 

LC4, PC I and TCI. Also, no causal information including LC2, the flash drum level, can 

be inferred.

N earest Neighbours: The results using the nearest neighbours method are shown in
Figure 9.8. The parameters of the method are set to the guideline values given in 7.2. In 
total, 400 samples were analysed. The detected relationships can be transferred into the 
rearranged causal map as follows:
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Figure 9.8: Significance level and (left panel) and causality measure (right panel) of the nearest 
neighbours method for case study with linear oscillation.
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Figure 9.9: Significance level and (left panel) and causality measure (right panel) of transfer 
entropy for case study with linear oscillation.

LClLC2 LC3 PCI TCI LC4

Similar to the cross-correlation function method, only few dependencies are detected. 
Here, the level of the flash drum, LC2, influences the reflux drum level LC3 and reactor 
pressure and temperature (PCI and TCI). A further relationship between PCI and LCl 
is detected. Together with the cross-correlation function, a more complete picture of cause 
and effect in the process evolves.

T ra n sfer  en tropy: The results of the transfer entropy are shown in Figure 9.9. The
standard guidelines parameter are set for the analysis and all 3000 samples were used.



CH APTER 9. INDUSTRIAL CASE STUDIES 177

Reordering the variables and generating the causal map through the algorithm described 
in Section 4.4 gives the following results:

Thus, transfer entropy gives a complete map of the order of events. However, one relation­
ship could not be incorporated in the causal map as it conflicts with the other detected 
dependencies. LCl is both at the end of events but also causes the first variable LC2. 
This expresses itself as the only bubble below the main diagonal in the right hand panel 
of Figure 9.9. According to the algorithm, this value is omitted since no recycle paths can 
be included in the final result, the recycle is broken.

E xpert K now ledge: Process insights from Adrian Meaburn (BP) and information from 
the process schematic lead to the following comments.

•  The recycle from separator to reactor contains an intermediate chemical species in 
the reaction;

• The reaction is sensitive to concentration of the recycled intermediate chemical 
species and to  reactor temperature;

• Reactor pressure is key to the stability of the flashing stream, which is controlled 
via a DCS controlled valve, and hence the reactor inventory;

• Variations in separator reflux level (LC3.PV) reflect changes in the inventory of the 
intermediate chemicals species;

• Variations in separator reflux drum level (LC3.PV) reflect variations in the compo­
sition of the stream leaving the reactor via the flash line;

•  Liquid recycled from the reflux drum (LC3.0P) will be cool and will disturb the 
reactor. Variations in flow also affect the composition in the reactor;

•  Variations in the flash tank level (LC2.0P) reflect variations in the amount of an 
un-reacted component leaving the reactor.

In v e n to ry  control explanation: The hypothesis that will be put forward to explain
the 56 minute oscillation is an interaction between the pressure control and inventory 
of the recycled intermediate chemical species. The coupling is taking place through the 
reaction. The recycling of an intermediate chemical back into the reactor means that 
a physical feedback loop exists. A plant with a recycle can oscillate just as a feedback 
control loop can oscillate if the gain is too high. Such an oscillation will be affected by 
process loop gain (i.e. the extent to which one physical variable influences others in the 
path). In this case the process loop gain would be affected by reaction rate and also by 
the presence or absence of buffering capacity within the recycle path.
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S u p p o rtin g  evidence: Supporting evidence for the hypothesis is that transfer en­
tropy testing highlighted a causal interaction chain LC2—>LC3—►PCI—>LC4—»LC1 involv­
ing flash tank level (LC2), separator reflux drum level (LC3), reactor pressure (PCI) 
reactor level (LC4) and feed buffer tank (LC1). All these measurements involve the inven­
tory in the recycle and are explained by the process insights in the previous column, for 
instance it says tha t material in the reflux drum level (LC3) upsets the reactor pressure 
(PCI). Other evidence is that the variables participating most strongly in the oscillation 
are reactor pressure and temperature and the inventories of the flash tank and separator 
reflux drum which contain the products of the chemical reaction and give an indication 
of their inventory. The reactor level was not found to be oscillating overall because its 
behaviour was dominated by long slow deviations from set point. However there was an 
oscillation comprising 24% of the total signal power superimposed upon its low frequency 
trend. In other words, the reactor level is participating in the oscillation though not dom­
inated by it. Transfer entropy also showed a causal path P C I—►TCI—►LC1 suggesting an 
influence from reactor pressure to temperature and feed tank level.

P la n t te stin g :  Step testing confirmed the interaction between the inventory in the
separator reflux drum level (LC3) and the reactor level controller output (LC4.0P) and 
vice versa. Adrian Meaburn reported he has managed to settle the plant by making the 
level control in the separator reflux tank less tight thus including buffering capacity into 
the recycle. The effect would be to make the recycle flow more steady and thus to prevent 
the oscillation from feeding back and upsetting the reactor.

A n  advanced control solution: An advanced controller was commissioned in order
to successfully stabilise the inventory controllers on the unit. This was based upon a FIR 
process model which showed strong interaction on the inventory controls based upon the 
step response data gathered on the unit. The decision to break the inventory controls 
was strongly influenced by the studies carried out in this report, which served to confirm 
operational experience on the unit.

C onclusions: In the example of a linear oscillation, cause-and-effect relation­
ships can be detected with the methods of cross-correlation, nearest neighbours 
and transfer entropy. The detection is assigned to the combination of the oscilla­
tion and structured noise since a purely linear oscillation would give no indication 
to cause and effect. The detected relationships vary for all three methods but can 
all be incorporated in the same causal map. Transfer entropy gives the complete 
causal map by detecting all dependencies.



CHAPTER 9. INDUSTRIAL CASE STUDIES 179

Chapter 9 Summary

In this chapter, the causality measures of cross-correlation, nearest neighbours 
and transfer entropy were applied to industrial case studies. Two new case 
studies were introduced and a root cause hypothesis formed from the causality 
analysis. The results of the three methods are consistent. In both case studies, 
an irregular upset and a linear oscillation, transfer entropy gave the best and 
most complete results.
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D a ta  Q uan tisa tion  and 
C om pression

T his ch ap te r stud ies the  im pact of d a ta  com pression and  quan tisation  on th e  
causality  m easure . For th is purpose, the  raw tim e tren d s a re  com pressed and 
q uan tised  w ith  a varying com pression factor Com pD ev and  quan tisa tion  factor 
f q. T he  com pression algorithm  investigated here is also used by th e  P I  d a ta  
h isto rian .

The time trends that are investigated for the causality analysis are not strictly the ac­
tual process variables. Before the analysis, the time trends are measured by a sensor in 
the distributed control system (DCS) and then processed by the data acquisition system 
as described in Section 3.5.1. These steps can distort the behaviour of the investigated 
causality measures. The most common effects are data quantisation and data compres­
sion which will be described in the following two sections. The impact on the causality 
measures of cross-correlation, nearest neighbours and transfer entropy is investigated and 
then summarised.

.quant

.quantx(t )

Figure 10.1: Block diagram (left) and transfer function (right) of a quantiser.
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Figure 10.2: Time trend and probability density function of quantised process variable.

10.1 D a ta  Q uan tisa tion

When converting an analogue process measurement into a discrete signal, the measure­
ment has to be quantised. Figure 10.1 shows the symbol of a quantisation block and the 
functional mapping from the unquantised, continuous variable x ( t) onto the quantised 
variable x quani(t). The quantised variable can only assume discrete values. An example of 
the resulting quantised data trend is shown in the upper panel of Figure 10.2. The process 
variable only assumes a number of discrete amplitude values and alternates between those 
values. The effect of quantisation can best be observed in the probability density function 
(PDF), estimated by histograms1 since the amplitude value falls into discrete amplitude 
bins. The amplitude bins are separated by equidistance intervals.

Quantisation occurs if the ranges of the analogue-to-digital converter, see Section 2.3.2, 
are set too large for the actual process conditions. Often, the ranges were set initially 
during plant configuration and not adjusted when the process conditions changed. A mini 
study using data from processes at Eastman Chemical Company and BP Chemicals was 
conducted for a first insight of the extent of quantisation problems in chemical processes. 
In total, 192 process variables were investigated taken from PI historian data: 55 flow, 39 
level, 65 temperature and 33 pressure measurements. The results of visual inspection of 
the time trend and the histograms is given in Table 10.1. 80% of the temperature and 30% 
of the pressure measurements show effects of quantisation while flow (18%) and level (8%) 
are less affected. The results show that quantisation is widespread in the measurements 
taken and especially temperature measurements have to be considered with great care.

To estimate the degree of quantisation is not necessarily trivial. Fortunately, quantisation 
can be implemented easily by the following algorithm.

—  (10.1) 
Jq &x J round

Here ox the standard deviation of the time trend of X{ while [] round denotes rounding 
to the next integer value. The quantisation factor f q gives the strength of quantisation.

^ o r  PDF and histograms see Section 7.1.
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Process variable Number of PVs Number of quantised PVs Percentage

Flow 55 10 18%
Level 39 3 8%
Temperature 65 52 80%
Pressure 33 10 30%

Total 192 75 39%

Table 10.1: Quantisation problems in process measurements.

Large values for f q result in fewer discrete bins and thus a higher quantisation. Thus, 
the quantisation factor considers the range over which the samples are most commonly 
spread. It does not give the actual number of bins. The number of bins is in fact not a 
meaningful quantity since one outlier increases the number significantly. A quantisation 
factor of 1 means tha t the majority of values will be spread over the bins 0, 1 and -1.

In the following investigations, the unquantised time trends of the reference case study 
in Section 4.2 will be quantised using equation 10.1. The causality analysis is carried 
out using the cross-correlation, nearest neighbours and transfer entropy methods. This 
approach gives the causality measures as a function of quantisation factor f q and thus 
the impact of quantisation on the analysis. The quantisation error is a function of the 
quantisation factor and can be expressed as follows:

^quant

\ i f : ( x i - x r nt) 2 (10-2)
i= 1

The quantised time trends of the reference case study with a quantisation factor of f q = 
1 and f q = 2 are shown in Figure 10.3. The quantisation error as a function of the 
quantisation factor f q for all variables from the reference case study is shown in Figure 
10.4. Up to a quantisation factor f q — 0.8, the error shows a similar behaviour. For higher 
values of f q, TI5, LC1 and TI7 show higher errors than all other process variables. The 
reason for this could be that those variables are similar to a sine wave and thus are more 
exposed to the quantisation than the sharp peaks of signals T il to TI4.

Im p a c t o f  Q u a n tisa tion  on C ross-C orrelation: To investigate the impact of quan­
tisation on the cross-correlation causality measure from Chapter 5, the original signals are 
quantised by a varying factor f q. shown in Figure 10.5. The original unquantised time 
trend are successively artificially quantised as described in Equation 10.1. The time trends 
of the reference case are taken and the five dependencies, between T il to TI5 and LCl 
and TI7, are investigated. The plots in the left column of Figure 10.5 show the detected 
dead time T^. The values as detected in Table 5.2 were T i l—>TI2: 2 samples, TI2—>TI3: 
6 samples, TI3—>TI4: 5 samples, TI4—»TI5: 11 samples and LC1—>TI7: 8 samples. All 
signal dead times are correctly identified with a variation of ±1 samples up to a quan­
tisation factor of approximately 2.9. The correlation index r m ax  is shown in the middle
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Figure 10.3: Quantised time trends of the reference case study with two quantisation 
factors: f q — 1 (left panels) and f q =  2 (right panels).
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Figure 10.4: Quantisation error as function of quantisation factor f q for time trends of reference 
case study.
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Figure 10.5: Quantisation impact on cross-correlation function: detected signal dead time

correlation index rmax and oscillation index ip as a variable of quantisation factor f q.

colum n of F igure 10.5 and th e  oscillation  index in th e  right hand colum n. T h e correlation  

coefficient decreases w ith  increasing f q but not below  th e  critical threshold  rthresh th at is 

ind icated  by dashed  lines. T h e oscillation  index ip falls below  th e  threshold  ^thresh for a 

quantisation  factor larger than  2 for the relationships T I2—>TI3, T I3 —>TI4 and T I4—>TI5. 

T his supports the d etection  of th e correct signal dead tim e by Td for these relationships.

Im pact o f  Q uantisa tion  on N earest Neighbours: T h e sam e experim ental setup is

m ade for th e  nearest neighbours m ethod. T he tim e trends o f th e  case stu d y  from Section  

4.2 are gradually m ore quantised  and the causality  m easure using th e  nearest neighbours 

m eth od  is com puted  for th e varied tim e signals. F igure 10.6 show s th e results of th is  

analysis. In th e left hand colum n, th e causality  m easure hx-,y is p lo tted  as a function of  

th e  quantisation  factor f q. If th e  value hx-+y is positive, then  th e  d irectionality  is detected  

correctly. T h is is th e  case until a quantisation factor o f around 2.5 above which the  

cau sa lity  m easure for T I4—>TI5 becom es negative. T h e right hand colum n of F igure 10.6 

show s th e  corresponding significance level sx->y as a function  o f quantisation  factor f q. T he  

threshold  values of ±  3 a are ind icated  as dashed lines, n egative values indicating a inverse 

directionality. T he significance level lies above th e threshold  for all relationships up to  a 

quantisation  factor of 2.1 below  which the significance level betw een LC1 and TI7 drops 

below  3. T he quantisation  significance level leads to  false n egative values for very high  

quantisation  errors because a different structure of th e underlying system  is introduced
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Figure 10.6: Quantisation impact on nearest neighbours causality measure hx^ y and significance 
level sx^ y as function of compression factor f q.

by strong quantisation. For example, a square wave might be introduced through high 
quantisation.

Im pact o f  Q uan tisa tion  on Transfer Entropy: The impact of quantisation on
transfer entropy is shown in Figure 10.7. The left hand column shows the dependency of 
the transfer entropy difference £x-*y on the quantisation factor f q. The entropy measure 
t x *y is positive even for high quantisation errors and therefore correctly detects the direc­
tionality. The significance level sx—y as a function of the quantisation factor is shown in the 
right hand column of Figure 10.7. Like the transfer entropy measure, the significance level 
is also above the detection threshold of 3 for all values of f q. Only the significance level 
s L C i —+TI7 falls below the threshold for a quantisation error larger than 3.8. No direction is 
detected for this case, unlike the nearest neighbours method for which incorrect directions 
were detected. Thus, transfer entropy performs better when exposed to quantisation than 
causality measures using cross-correlation or nearest neighbours.
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Figure 10.7: Quantisation impact on transfer entropy causality measure tx-+y and significance 
level sx->y as function of compression factor f q.

Conclusions: Quantisation affects the performance of all three causality mea­
sures. A quantisation factor up to f q = 2 can still be dealt with by all the causality 
measures. For the case that f q > 3, the nearest neighbours and cross-correlation 
method gave incorrect results while transfer entropy detected no causality instead 
of an incorrect direction. Thus, transfer entropy is the most robust method to 
quantisation compared to the other two causality measures.

10.2 D a ta  C om pression

This section describes the impact of data compression on the causality measures. Process 
data is often compressed for data storage purposes. Compression involves the storage of 
only a fraction of the data points. The compressed data is then restored for conducting 
fault diagnosis and applying data-driven methods. A number of compression algorithms 
are used in the process industries and SCADA systems. The swinging door compression 
algorithm [9] and the Box Car Back Slope (BCBS) [94] algorithm are most frequently 
used.
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Figure 10.8: PI historian compression algorithm records a value only if any of the values since 
the last recorded value do not fall within the compression deviation blanket. The height of the 
parallelogram is CompDev.

The compression method employed by the PI data storage system2 is referred to by OSIsoft 
as the “swinging door compression”, although it uses a method similar to the BCBS 
method. In the following, the PI algorithm will be explained in detail. Singhal and Seborg 
[121] investigate the PI compression algorithm effect on pattern matching techniques. The 
impact of swinging door compression on statistical properties, the nonlinearity index (see 
Section 6.2.3) and the Harris index (Section 3.1.3) has been investigated by Thornhill et al. 
[138]. The authors recommend caution when dealing with compressed data and provide 
an estimate of the compression factor from process data. The PI historian compression 
algorithm will be described in the next section and the impact of this algorithm on the 
causality measures will be discussed thereafter.

P I  H isto rian  C om pression Algorithm : The PI data historian compression algorithm 
is displayed in Figure 10.8 and can be described as follows. All values that fall on a line 
connecting values that are recorded in the archive [146]. When a new value is received the 
previous value is recorded only if any of the values since the last recorded value do not 
fall within the compression deviation blanket. The deviation blanket is a parallelogram 
extending between the last recorded value and the new value with a width equal to twice 
the compression deviation specification. When the current measured value has exceeded 
the error bound, defined by the recording limit, the value at the previous time step is 
recorded and the algorithm repeated. The discussed procedure is illustrated in Figure 
10.8. In the first three figures (i) to (iii), all previous values fall in the deviation blanket.

2http://w w w .osisoft.com; Information on the PI data historian by OSIsoft, March 2005.

http://www.osisoft.com
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Figure 10.9: Sinusoidal signal with added noise and compressed. Top panel: original time series; 
second panel: compression factor CompDev= 0.2cr, rcomp = 1.33 and ecomP = 0.02; third panel: 
compression factor ComDev= 0.8<r, rcomp = 10 and ecomP = 0.2; bottom panel: compression factor 
CompDev= tr, rcomp = 20 and ecomp = 0.24.

In figure (iv) this is not the case and thus a new value, the previous, is recorded. The 
method is called ’’swinging door compression” since one side of the deviation blanket is 
fixed while the other side swings according to the data points.

The data historian then stores the recorded values and their time indices. The time trend 
is reconstructed by extrapolating the missing values through linear segments. Obviously, 
an error is made by reconstructing the signal. If both the original and the restored time 
trend are available, the average compression error e can be calculated as:

comp _
N i= 1

The compression ratio r comp is derived from the number of samples of the compressed 
time series NOTlg\na\ and the number of samples of the original time series N:

rcomp =  — !-— . (10.4)
’'original

An important parameter in the compression procedure is the compression deviation. It 
can be adjusted to specify the compression error and the compression ratio. Additionally, 
a minimum and maximum compression time can be implemented in the algorithm. A 
new event is not recorded if the time series since the last recorded event is less than the 
minimum compression time for the point. This can be expressed in mathematical terms
for the new event Xi+L which is not recorded if:

Xj € Xi +  j  - t+~ —— [—CompDev; +CompDev], for all i < j  < i *f L, (10.5)
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reference case study.

L > CompMin, (10.6)

L < CompMax. (10-7)

Here, Xi is the last recorded value, CompDev is the height of the deviation blanket and 
CompMin and CompMax are the minimum and maximum recording time. If any of the 
three requirements in Equations 10.5 to 10.7 is not fulfilled, then the value is recorded.

The parameters to be adjusted are hence CompDev, CompMin and CompMax. The pa­
rameters are set separately for every control loop in the industrial process. This is often 
done only once for each loop for the initial setup of the PI system. However, process 
changes might require changes of the compression parameters and omitting these changes 
results in poor adjustments of the compression parameter. The deviation blanket param­
eter CompDev will be referred to as the compression factor in the following sections. The 
threshold parameters CompMin and CompMax are ignored in the following investigations. 
CompDev is measured in engineering units in the PI system. For the purpose of investi­
gating the impact of compression on the causality measures, all signals will be normalised, 
that is, adjusted to zero mean and unit variance. In the following, the compression factor 
CompDev is therefore a pure number and not in engineering units.

Figure 10.9 shows an example of a sinusoidal signal with added noise that is compressed 
with varied compression deviations. For a compression factor ComDev of 0.2 times <r, 
the standard deviation of the signal, as shown in the second panel, the compression ratio
1.33. The difference in the compression error for a compression factor of 0.8 and 1.0 is 
very small, however, the compression error is increased by a factor two (rcomp =  5 for 
0.8 and r comp =  10 for 1.0). However, if one is interested in the high frequency part of 
the signal, the highly compressed signals cannot be used for analysis because only the 
sinusoidal signal is represented in the time trend.
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In the following paragraphs, the impact of the compression factor CompDev on the signals 
from the reference case study from Section 4.2 is studied. The original time trends are 
compressed with a compression factor CompDev in the range of zero to 1.2. The resulting 
compression error, as defined in Equation 10.3 is shown in Figure 10.10. The compression 
error increases almost linearly with the compression factor CompDev for all time trends 
TI to TI5, LC1 and TI7. The compression ratio r comp, as defined in Equation 10.4 as a 
function of the compression factor is shown in Figure 10.11. However, LC1 shows a steeper 
increase in r comp than all other time trends. The reason for this is that the time trend of 
LC1 is already piecewise linear, as can be seen in Figure 4.3. LC1 resembles a triangular 
wave. Thus, the compression algorithm works more effectively than for the other time 
trends which are not piecewise linear.

Im pact o f C om pression on Cross-Correlation: To investigate the impact of com­
pression on the cross-correlation causality measure from Chapter 5, the original signals 
are compressed by a varying factor CompDev. shown in Figure 10.12. The original un­
compressed time trend are successively artificially compressed as described in Equations 
10.5 to 10.7. The time trends of the reference case are taken and the five dependencies, 
between T il to TI5 and LC1 and TI7, are investigated. The plots in the left column of 
Figure 10.12 show the detected signal dead time T .̂ The values as detected in Table 5.2
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Figure 10.14: Compression impact on transfer entropy and significance level as function of com­
pression factor CompDev.

were T i l—»TI2: 2 samples, TI2—>TI3: 6 samples, TI3—»TI4: 5 samples, TI4—>TI5: 11 
samples and LC1—>TI7: 8 samples. All signal dead times are correctly identified with a 
variation of ±1 samples up to a compression factor of approximately CompDev= 0.6. The 
correlation index r max is shown in the middle column of Figure 10.12 and the oscillation 
index in the right hand column. The correlation coefficient is almost constant with in­
creasing CompDev and well above the critical threshold r thresh> indicated by dashed lines. 
The oscillation index ip falls below the threshold t̂hresh for a compression factor larger 
than 0.6 for the relationships TI3—>TI4. This is supports the detection of the correct 
signal dead time Td for these relationships.

Im pact o f  C om pression on N earest Neighbours: The nearest neighbours causality
measure hx-*y and the significance level sx^ y as a function of compression factor CompDev 
is shown in Figure 10.13. For the relationship between T il—>TI2, TI2—>TI3 and TI3—>TI4 
the causality measure is almost independent of the compression. This might be explained 
by the periodicity of the time series which is more similar to the linearly compressed 
signal. It is speculated that the nearest neighbours are found more easily if the signal is 
periodic and piecewise linear. For the relationships TI4—>TI5 direction of propagation is 
not detected accurately for a compression factor larger than 0.6. The significance level for 
LC1—>TI7 falls also below the 3<r threshold above a compression factor of around 0.85.
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Im p a c t o f  C o m p ressio n  on  T ransfer Entropy: The impact of compression on
transfer entropy and its significance level is shown in Figure 10.14. Compared to cross­
correlation and the nearest neighbours method, the influence of compression is minor. 
Both transfer entropy value and significance level are above the detection threshold, 0 
and 3 respectively, for all investigated relationships. An explanation could be that the 
piecewise linearisation allows the detection of dependency just as easily with a limited 
number of samples when constructing the conditional PDFs. The conditional PDF is 
distributed over a k  4- I +  1-dimensional space. If the conditional PDFs are constructed 
from linear functions this will be reflected by linear curves in the PDFs which are also the 
shortest distance th a t can be represented in the cubic structure of the joint PDFs. Thus, 
with a finite number of samples, more samples will fall in the bins of the linear function 
and hence give a better estimation of the PDF.

C onclusions: All three causality methods are to some extent robust against 
the information loss of compression. This is, however, only the case when both 
measurements, the potential cause and the potential effect, are compressed in the 
same way as done in this chapter. Transfer entropy is more robust to compression 
than the nearest neighbours method which still performs better than the cross- 
correlation method.

C h ap te r  10 Sum m ary

In  th is  c h ap te r , q u a n tisa tio n  and  com pression was fo rm u la ted  an d  th e  im pact 
on th e  d a ta -d riv e n  causality  m easures was investiga ted . T h e  Box C ar Back 
S lope a lg o rith m  used  in  th e  P I  d a ta  h is to rian  has been  s tu d ied . Q uan tisa­
tio n  an d  com pression  affect th e  perform ance o f all th re e  m easures. T ransfer 
en tro p y  is th e  m ost ro b u s t m easure  for b o th  com pression  an d  quan tisa tion .
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Chapter 11

Summary of Data-Driven  
Causality Measures

This chapter explains when to use which causality method. It also gives a com­
parison to other data-driven methods by discussing the characteristics from 
Section 3.1.2 on process monitoring systems. A decision tree is developed to 
decide which method to use depending on the data characteristics. Further­
more, a summary of the steps to conduct the causal analysis is provided by a 
causal analysis toolbox.

In the first section of this chapter, the results obtained by applying the developed causality 
measures of cross-correlation, nearest neighbours and transfer entropy to simulated and 
process data are summarised and discussed. Recommendations for the choice of method 
based on the data characteristics are given and a decision tree is developed. In Section
11.2, the benchmark criteria by Venkatasubramanian et al. [141] that were introduced in 
Section 3.2 are evaluated and discussed. In the last section of this chapter, all facilities that 
are needed to conduct the causality analysis are comprised in a causal analysis toolbox 
including fault detection, data pre-processing, the causality analysis and the automatic 
generation of a causal map.

11.1 Finding the B est M ethod for a D ata Set

In Part II, three causality measures were introduced. The first approach was a simple cross­
correlation method that finds the dead time between two process measurements and argues 
cause and effect by establishing in which measurement the disturbance occurred first. The 
other two methods, based on the nearest neighbours concept and transfer entropy, find out 
whether past value of one measurement are good predictors of the future value of a second 
measurement rather than vice versa. To accomplish this task, transfer entropy estimates 
probability density functions while the nearest neighbours method compares the Euclidean

195
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distances of the predicted future values. All three methods are statistical methods that 
can investigate deterministic as well as random time sequences.

The question now is, which method to apply for which disturbances? One solution is to 
simply apply all three methods and compare the results for consistency. However, the 
computational effort is high, in particular for the transfer entropy and nearest neighbours 
method, so tha t it is not desirable to carry out all three calculations. The choice of the 
method depends foremost on the data characteristics. Thus, in the following section the 
impact of the data characteristics on the causality measures are discussed and tests for 
detecting these characteristics are devised. This discussion together with the conclusions 
from the previous chapters are used to derive a decision tree for deciding which method 
to use. The decision tree is given in the Section 11.1.3.

11.1.1 D ata Characteristics

The two causality methods of transfer entropy and nearest neighbours work on the prin­
ciple of predictability. Thus, any structure in a time trend that can predict the future 
value of a second time trend can be used to argue cause and effect. The structure can be 
either deterministic or stochastic, linear or nonlinear. If the disturbance is an oscillation 
then the surrogates tha t are used to establish a significance level are particulary impor­
tant since they describe nonlinearity. It must be kept in mind that the causality measure 
using cross-correlation can only be applied if a dead time exists between two variables. 
The following paragraphs will reflect on the data characteristics and their implication for 
the causality measures. Tests for detecting nonlinearity, determinism and oscillations are 
available so that the knowledge of the nature of the data can be used to select the most 
promising measure of causality.

Stochastic  and D e te rm in is tic  Signals: All methods investigated here are statistical 
tools for random signals. However, deterministic signals can also be investigated when 
containing a certain degree of uncertainty. Deterministic signals contain information that 
cannot be investigated with statistical measures. In particular, transfer entropy uses prob­
ability density functions that omit the deterministic structure of the signal and thus loses 
information inherent in the time sequence although a certain degree of determinism is still 
sustained by investigating the relationship between past and future values. The same is 
the case for the nearest neighbours method. A differentiation can be made between struc­
tured and unstructured random signals. For example, a structured relationship exists if 
one value relates to the next value via a quadratic function. This will not be picked up 
by the linear method of cross-correlation. However, both transfer entropy and nearest 
neighbours will capture the relationship in either the probability density function or by 
mapping the nonlinear relationship in a higher dimension phase portrait. Tests of deter­
minism were described in Section 6.2.2 and include the delta-epsilon method by Kaplan
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[60] or the delay vector variance method by Gautama et al. [31]. Both methods are based 
on the nearest neighbours principle.

O scilla tions:  The causality methods can all investigate both oscillatory and non os­
cillatory signals. Oscillatory signals show the same pattern with a periodic repetition. 
They are deterministic since they can be described through sums of sinusoidal functions 
with a varying period of oscillation. A difficulty with using the cross-correlation method 
for oscillatory signals is that the dead time, from which cause-and-effect relationships are 
argued, is ambiguous. A dead time Td can also be interpreted as a delay of Tosc/2  — Td 
because of the symmetry of an oscillation. A deterministic oscillation that does not change 
its shape as it travels from one measurement to the next cannot be detected with any of 
the methods as since directionality in both directions, A causes B to the same extent as 
B causes A, will be observed. Tests whether a disturbance is of oscillatory nature are 
given by Hagglund [41] as well as Thornhill and Hagglund [132]. An oscillation index of 
periodicity is derived that gives an indication of the amount of oscillation present in a 
signal.

L inear and  N o n lin e a r  Signals: Nonlinearity in the context of time series has two
meanings. The two types of nonlinearity are as follows:

• Type 1: The signal originates from a nonlinear process;

• Type 2: There is a nonlinear functional relationship between two signals.

A signal originating from a nonlinear process (type 1) has harmonics in its frequency 
spectrum and shows phase coherence between these harmonics. Test for detecting type 1 
nonlinearity were discussed in Section 6.2.3 and include an approach based on finding the 
nearest neighbours by Thornhill [137] and an approach based on higher order statistics by 
Choudhury et al. [19]. Although a linear tool in the sense of type 2 nonlinearity, the cross­
correlation also works for nonlinear oscillations of type 1. The nearest neighbours approach 
is best suited for the type 1 nonlinear oscillation as it exploits the phase coherence. Type 
1 nonlinearity of a stochastic signal does not manifests itself in harmonics in the frequency 
spectrum. A test for nonlinearity for time series of an unknown system is described by 
Mizuta et al. [83]. It is defined as the excess output variance from a system that cannot be 
described by a linear system. This nonlinearity can be captured both by transfer entropy 
and the nearest neighbours method. The cross-correlation approach, however, fails in this 
situation.

11.1.2 Results from Application

In this section, the conclusions of the previous chapters are compiled to give an overview 
of the best method for the various data characteristics. The conclusions are summarised in 
Table 11.1. These conclusions combined with the discussion from on linearity, oscillations
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Effect studied Method Sec. Data analysed

A Dead time CCF 8.1 Simulated random noise
B Low pass filtering TE 8.2 Simulated random noise
C Additive noise TE, CCF 8.3 Simulated random noise
D Nonlinear oscillation NN 4.2 Reference case study
E Irregular disturbance with lin­

ear structure
TE 9.2 Eastman case study

F Linear oscillation and struc­
tured noise

TE 9.3 BP case study

G Quantisation TE, NN 10.1 Reference case study
H Compression TE 10.2 Reference case study

Table 11.1: Summary and best method of causality methods.

and randomness will then be used in the next section to derive a flowchart that allows the 
selection of the best method when the data characteristics are known.

(A ) D ead T im e  The three methods of cross-correlation, nearest neighbours and trans­
fer entropy can all detect causality through the presence of dead time. Cross-correlation 
function gives the best result since it also provides the length of the dead time. Further­

more, the following observations can be noticed.

• If dead time Td is known then the prediction horizon h for transfer entropy and the 

nearest neighbours method should be h = Td]

• Larger embedding dimensions m  in the nearest neighbours method have more chances 
to capture the causality but will result in a lower significance level;

• A prediction horizon h lower than dead time Td can still detect the causality in both 
transfer entropy and nearest neighbours method but if h is larger than Td then the 

causality is missed;

•  A lower time delay k in the nearest neighbours method has a higher probability of 
finding the dependency if embedding dimension m  is large enough.

(B ) Low  P ass F ilter  Both nearest neighbours method and transfer entropy can cap­
ture causality to some extent in the presence of low pass filtering effects. Transfer entropy 
is better suited than the nearest neighbours method to detect the directionality caused by 
low pass filtering effects. The order of the filter appears to have no major impact on the 

causality.

(C ) A dd itive  N o ise  All three causality measures are affected by the presence of 
additive noise so that the performance of the measures decreases. The effect of additive 
noise is negligible when analysing a pure dead time between two signals. When exploiting 
the low pass filtering effect, transfer entropy can cope with additive noise more successfully 
than the nearest neighbours method.
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(D ) N o n lin e a r  O scilla tion  In the reference case study, the causal relationship be­
tween the variables with different amounts of nonlinearity can be argued. The cross­
correlation function detects the most important relationships but also gives the correct 
dead time between the events. The most complete causal map can be obtained using the 
nearest neighbours method. The reason for this is that the phase coupling which occurs 
in nonlinear signals is best utilized with this approach.

(E ) Irreg u la r  D isturbance w ith  L in ea r  S tructu re  The results obtained by the 
causality analysis all comply with the verified root cause. The order of events of the mea­
surements is identical for all three methods. However, the nearest neighbours method does 
not detect all the events but only the ones closest to the root cause. Transfer entropy gives 
the most complete picture of causal relationships. Cross-correlation correctly identifies the 
dead times between the occurrence of the disturbance peaks so that the time of events can 
be argued.

(F ) L in e a r  O sc illa tion  and S tru ctu red  N o ise  In the example of a linear oscilla­
tion, cause-and-effect relationships can be detected with the methods of cross-correlation, 
nearest neighbours and transfer entropy. The detection is assigned to the combination of 
the oscillation and structured noise since a purely linear oscillation would give no indica­
tion to cause and effect. The detected relationships vary for all three methods but can all 
be incorporated in the same causal map. Transfer entropy gives the complete causal map 
by detecting all dependencies.

(G ) Q u a n tisa tio n  Quantisation affects the performance of all three causality mea­
sures. A quantisation factor up to f q = 2 can still be dealt with by all the causality 
measures. For the case that f q > 3, the nearest neighbours and cross-correlation method 
gave incorrect results while transfer entropy detected no causality instead of an incorrect 
direction. Thus, transfer entropy is the most robust method to quantisation compared to 
the other two causality measures.

(H ) C om pression  All three causality methods are to some extent robust against the 
information loss of compression. This is, however, only the case when both measurements, 
the potential cause and the potential effect, are compressed similarly. Transfer entropy 
is more robust to compression than the nearest neighbours method which still performs 
better than the cross-correlation method.

11.1.3 Decision Tree for the Selection of Causality M ethod

The decision tree shown in Figure 11.1 comprises the conclusions from case studies in 
Table 11.1 and the discussion of Section 11.1.1. First, the duration of the disturbance has 
to be ascertained. If the disturbance only occurs for a short time or if only a short data 
sample is available then the nearest neighbours method is the best method since it only 
requires around 400 samples. Short data sets are common in batch processes to which
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Figure 11.1: Decision tree for deciding on the analysis method depending on the data character­
istics.

this method could also be applied. If the data set is long, around 2000 samples or more, 
then further question about the nature of the disturbance can be asked. As a next step, 
a check whether the disturbance is of oscillatory nature is conducted. If the disturbance 
is not oscillatory, then a nonlinearity test can be applied. In case of a linear disturbance 
together with a dead time between the measurements, the method of cross-correlation is 
the best choice since it also provides information about the size of the dead time. If the 
disturbance is nonlinear, transfer entropy can capture any nonlinear dependencies.

If the disturbance is detected to be an oscillation, the question arises whether the oscillation 
is linear or nonlinear. In case of a nonlinear oscillation, the nearest neighbours approach 
should give good results as it captures the phase coupling of the nonlinearity. In case of 
a linear oscillation, it has to be ascertained whether the oscillation contains additional 
structured noise. For a purely sinusoidal oscillation no statement can be made towards 
any cause-and-effect relationship. Transfer entropy gives good results for the analysis of 
the combination of oscillation and structured noise.
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Characteristic CCF NN TE Eval.

Fast diagnosis (No) No No
Isolability No No No -
Robustness Medium High High +
Novelty Identification (Yes) Yes Yes +
Adaptability Yes Yes Yes +
Explanation facility Yes Yes Yes + +
Multiple faults No No No -
Classification error No No No -
Modelling requirements None None None + +
Storage requirements Medium Medium High -
Computational effort Medium High High

Table 11.2: Evaluation of benchmark criteria for the causality measures developed in this work 
(CCF: cross-correlation function, Chapter 5; NN: nearest neighbours method, Chapter 6; TE: 
transfer entropy, Chapter 7).

11.2 Evaluation o f Benchm ark Criteria

In Section 3.1.2, the benchmark criteria by Venkatasubramanian et al. [141] were listed. 
These criteria are desirable for any diagnostic systems, model-based or data-driven to al­
low a generic comparison. The different properties, features and expenses are summarised 
in Table 11.2. The last column of Table 11.2 gives an approximate rating of the perfor­
mance of the methods in comparison to other diagnostic approaches. The most dominant 
advantage of the causality measures are the explanation facility that is not featured by 
most fault diagnosis methods. Furthermore, the lack of model requirements is a strong 
benefit since most processes in the chemical industry have no existing model and the 
derivation of a model would show to be tedious and time consuming. The most impor­
tant disadvantages are the length of the diagnosis and the computational effort which 
is extremely high for the nearest neighbours and transfer entropy method. Thus, online 
fast fault diagnosis is not possible. A more detailed discussion of the benchmark criteria 
follows below. An advantage that is not included in the list by Venkatasubramanian et al. 
is the non-invasiveness of the methods. No changes, such as step tests, have to be made 

to the process.

F ast D e tec tio n  and D iagnosis: Fast detection and diagnosis concerns the early anal­
ysis of faults. For all three causality methods a data set has to be captured for a certain 
time length and is then analysed. The length of the data set varies for the method. The 
nearest neighbours method requires about 400 data points (see Section 6.3.7) while the 
transfer entropy method requires for the probability density function estimation more than 
2000 samples (see Section 7.5.3). The estimation of the cross-correlation function requires
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more than a few hundred samples (> 300) [97]. The fast diagnosis of a disturbance is of 
less importance when conducting it off-line. Disturbances that affect the performance of 
a process but still allow a certain quality of the product are often persistent for a couple 
of weeks or months. If this is the case, the early diagnosis is not of high priority to the 
process engineer. Thus, the methods are for plant audit purposes rather than for online 
use.

Iso lab ility : Isolability is the ability of the diagnostic tool to differentiate between different 
faults, tha t is, the tool not only detects a fault but also places it into a fault category. 
The causality methods are not able to differentiate between fault classes. Only some 
deductions can be made by looking at the fault propagation pattern that might vary for 
different faults.

R obustness: A  number of experiments concerning the robustness of the methods were 
carried out in the previous chapters. In Section 8.3, the impact of additive noise was inves­
tigated. All three methods were significantly robust to uncorrelated noise. Quantisation 
and compression were investigated in Sections 10.1 and 10.2 and showed that the variable 
can be both quantised and compressed and still give some useful results.

N o ve lty  Id en tifica tio n :  This is the ability to decide if a detected fault is due to a 
known fault class or to an unknown fault class. Since no fault classes are formed for 
the propagation analysis, this is not quite applicable to the causality measure. However, 
both known and unknown faults can be identified with the methods of nearest neighbours 
and transfer entropy as long as they have some structure from which dependency can be 
deduced. The cross-correlation method can only deal with a new fault if it causes dead 
time between two measurements.

A daptab ility: The ability to adapt to process operating changes due to changing envi­
ronmental conditions is a property of all three measures. The reason for this is that the 
data is normalised before analysis so that a change of the operating conditions does not 
have an impact on the results. In case of setpoint changes during the investigated time, 
the controller error can be used for analysis rather than the process variable.

E xp la n a tio n  Facility: The main purpose of investigating the cause-and-effect relation­
ships is to find the fault of origin and root cause as well as propagation to the current 
situation. This is therefore the main advantage of the methods developed in this work. 
In most cases, process insight is still required to interpret the results, however the results 
focus attention onto the area of the process where the fault is located.

M ultip le  Faults: None of the causality measures is able to deal with several faults 
present in the same measurements. The reason for this is that the question if A influence 
B or B influences A is a yes or no decision and does not deal with multiple answers. 
However, this question has not been addressed in this work. A way around this problem 
might be to conduct the analysis with different sets of parameters, say a high value for
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the prediction horizon for a slow disturbance and a low value for the prediction horizon 
for a fast disturbance.

C lassifica tion  Error: The classification error is an a-priori estimate of the significance 
level. Since no fault classes are given, this property cannot be addressed by the causality 
measures.

M odelling  R equirem ents: The data-driven approaches pursued here do no require 
any model but rather the opposite is the case: the causality analysis gives a causal map 
that acts as a qualitative model. This is a major advantage of the pursued approach in 
comparison to model-based approaches.

Storage R equirem ents: In the case of off-line analysis, the storage requirement is linked 
to the fast diagnosis ability. Since a large number of data points is required to conduct the 
analysis there is a need for storage. However, fewer data points have to be stored for the 
transfer entropy method than for the nearest neighbours method. The reason for this is 
that transfer entropy estimates the probability density functions. The sample contributes 
to the PDF and can then consequentially be discarded. Thus, only the values of the PDF 
have to be stored. The nearest neighbours method, on the other hand, compares each data 
sample with all other data samples so that all samples have to be kept until the analysis 
is complete.

C om puta tiona l E ffo r t:  The computational effort for the nearest neighbours and trans­
fer entropy methods is significant. It is discussed for the former method in Section 6.3.2 
and increases approximately with square of the number of samples. The computational 
effort for the transfer entropy method is given in Section 7.4.3 and increases approximately 
proportional with the number of samples. The high computational cost is also due to the 
calculation of the significance level which requires at the computation of the measures for 
the surrogates to achieve a significant comparison. The cross-correlation method has a 
comparatively low computational cost.

11.3 Causal Analysis Toolbox

In this thesis, several aspects and stages for the causality analysis for fault diagnosis have 
been discussed. For implementation in a process monitoring software tool, these stages 
have to be carried out one after the other. A summary for analysis is shown in Figure 11.2. 
In a first step, the presence of a fault is detected and a selection of measurements is made 
that show the same disturbance. A large number of methods have been developed for this 
purpose which were reviewed in Section 3.3. Further pre-processing normalises the data 
trends and removes unwanted frequency components through filtering. The following data 
subset is used to select the best method, as described in Section 11.1, and to select the 
parameters required for the analysis. For the nearest neighbours method, the parameter
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Figure 11.2: Flow chart of causal analysis toolbox.

estimation was described in Section 6.3.7 and for the transfer entropy method in Section 
7.5. No parameters have to be adjusted for the cross-correlation method. The causality 
analysis is then conducted with the selected method (see Chapters 5, 6 and 7). The result 
of the analysis is the causality matrix that gives the relationship for all combinations of the 
p variables, thus it is of dimension pxp. The automatic causal map generation algorithm, 
described in Section 4.4, then generates a causal map from which the fault propagation 
path and a root cause hypothesis is deduced. In addition, expert knowledge is used to 
interpret the results and verify the hypothesis.

Chapter 11 Summary

In this chapter, characteristics, that is, randomness, oscillation and nonlinear­
ity, of a data set have been discussed. The results of the industrial case studies 
and simulated effects from Part III have been summarised. Recommendations 
are drawn from these results and were incorporated into a decision tree. The 
benchmark criteria by Venkatasubramanian et al. [141] have been discussed 
for the developed methods. Finally, all elements of the causal analysis have 
been placed into context in a causal analysis toolbox.



Chapter 12

Discussions

Plant-wide disturbances in a chemical process affect a large number of measurements and 
decrease the performance of the process. Faults and disturbances can also put the safety 
of the process at risk or affect the quality of the product. A number of methods have been 
developed in the past decade to detect plant-wide disturbances at an early stage. Once 
the disturbance is detected, a further issue arises, that is, the diagnosis and elimination of 
the disturbance. The root cause analysis of a plant-wide disturbance is not trivial since a 
large number of measurements are affected.

The purpose of this work was to develop data-driven approaches to isolate the root cause 
of a plant-wide disturbance using historical process data. The objective of finding a data- 
driven method instead of a model-based method was motivated by the fact that a model 
exists for only about 5% of all chemical processes, while historical process data is readily 
available in all processes. The desired explanatory methodology should be designed to 
carry out the following tasks:

•  Find the origin of the fault (root cause);

• Identify cause and effect relationships;

• Explain the propagation from the root cause to the locations at which the fault is 
observed (current situation).

These three objectives can be achieved by developing a qualitative model in the form of a 
causal map. In a causal map, all measurements are represented by nodes and the detected 
relationships by arcs pointing from one node to a second node. The root cause is most 
likely to be the node with arcs pointing from it but no arcs pointing to it. The propagation 
to the current situation can be explained if at least one arc points towards each node.

Causality relationships are deduced from fault propagation effects. These effects are dead 
time and low pass filtering. Cause and effect is argued from the presence of a dead time 
observed in two time trends. The rationality behind this argument is that a feature that
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occurs at a first variable and then after a dead time Td at a second variable is caused at 
a point that is closer to the first variable than the second. The second effect of low pass 
filtering occurs because most process equipment acts as a low pass filter. High frequency 
components are removed as the disturbance travels along the process equipment. Thus, 
the measurement with the “spikier”-looking time trend is thought to be closer to the origin 
of the disturbance.

Review of Methods

In this work, three methods for identifying cause and effect relationships have been pro­
posed: cross-correlation, nearest neighbours and transfer entropy. The measures give a 
causality matrix when investigating the relationships between all combinations of process 
variables. An automated algorithm has been proposed in Section 4.4 to construct a causal 
map from a causality matrix and thus find the root cause and explain the propagation to 
the current situation.

The first method uses the cross-correlation function and was introduced in Chapter 5. 
In case of dead time between two measurements, the cross-correlation function of two 
time trends has a maximum at the time delay that is equal to the dead time. Since 
all cross-correlation functions have a maximum, two indices are introduced to measure 
the significance of the detected dead time. The correlation index establishes whether the 
correlation between the two time trends is high enough, that is, whether the two trends 
are similar enough. The oscillation index checks if there is a large difference between 
the minimum and maximum of the cross-correlation function. If the difference is too 
small, neither the time lag of the minimum or maximum are identified as the signal dead 
time. Cross-correlation works best in case of dead time between two measurements and 
an irregular disturbance. An advantage of cross-correlation is that the result gives also 
the detected dead time. It is also the method that requires the least computational 
effort. Since cross-correlation is a linear statistic, nonlinear transfer functions between 
two measurements cannot be analysed.

Chapter 6 describes a causality method using nearest neighbours. The method is based on 
the concept of predictability. Embedded vectors are constructed to represent the phase 
space. The nearest neighbours of the embedded vectors are found and future images are 
assigned. If the image of B associated with an embedded vector of A is similar to the 
images of B that are associated with the nearest neighbours of the embedded vector of A, 
then A is a good predictor of B. Causality of A to B is inferred by comparing if A is a 
better predictor of B than B is of A. This statistical approach is a very recent branch and 
a number of alternative algorithms have been developed by a number of authors. These 
alternative variations are compared in this work using industrial process data and the 
best method is selected for future use. Parameters to adjust are, for the construction of 
the embedded vectors, prediction horizon h, time delay k and embedding dimension m. 
A significance level was established using surrogate data points to establish whether the
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resulting causality is significant enough to be recorded. The nearest neighbours method 
uses dead time and low pass filtering effects to argue cause and effect but also a structure 
in the data tha t is difficult to measure with other statistical approaches. The advantage of 
the nearest neighbours method is that short time trends can be investigated. It performs 
best for nonlinear oscillations as shown in the reference case study. For other data sets, it 
did not find as many dependencies as the other two causality measures of cross-correlation 
and transfer entropy.

Transfer entropy has been recently proposed by Schreiber [113] to measure information 
transfer. Causality is argued by finding out whether A transfers more information to B 
than B to A, see Chapter 7. The basis for transfer entropy are transition probabilities that 
measure the probability of the future value of B having a certain value if the past values 
of A had their certain values. Thus, a similar concept of predictability as in the nearest 
neighbours method establishes cause and effect. The transition probabilities are estimated 
using the Kernel estimation. In this work, transfer entropy was proposed for fault analysis 
and a significance level established using surrogate time trends. The parameters to adjust 
are, similar to the nearest neighbours method, the prediction horizon h and the time delay 
k. Transfer entropy gave the best results for the industrial case studies of an irregular dis­
turbance and a linear oscillation in Chapter 9 as well as for the simulated data of low pass 
filtering and additive noise effects. On the other hand, a disadvantage of transfer entropy 
is that a large number of data points is required to estimate the transition probabilities.

Limitations and Implications

At a first glance, interpreting the results from statistical methods gives the impression of 
reading tea leaves because no mathematical proofs for stability or robustness exist and 
the result is made with a confidence level smaller than 100%. Model-based approaches 
have the advantages of giving an exact and certain result. However, since the nature of 
the data in chemical process like any real life data is stochastic, statistical tools are best 
suited for describing and analysing the disturbance. The structure that is inherent in the 
real process data is also difficult to simulate.

The causality analysis, however, will encounter difficulties if more than one fault is present 
in the same data trends. Multiple faults have not been studied in this work but it is 
expected that the more dominant disturbance will result in a cause and effect relationship. 
It is, however, difficult to predict which disturbance will be more dominant than the other. 
Interpretation of the results will prove to be difficult.

A further difficulty is the case of bidirectional coupling. If A influences B but B also 
influences A, then no directionality can be established. This is the case for the relationship 
between the process variable (PV) and the controller output (OP) in a control loop. 
Variations in the PV will cause the controller to react and thus affect the OP. The OP 
at the same time as an impact on the PV. No causality can be detected in this case with
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the methods discussed here. An example of the interaction between process variable and 
controller output is included in Appendix D.

The algorithm for the automatic generation of the causal map in Section 4.4 arranges 
all process variables in a row in the order of their occurrence. Detected causalities that 
do not fit into this optimised scheme are discarded. This procedure does not allow the 
incorporation of recycle paths. For example, the situation might be that A causes B, B 
causes C and C causes A. This situation cannot be represented by a line of events. The 
automated algorithm from Section 4.4 works well if the disturbance is caused at a specific 
point in the recycle. It is in fact desired to cut the recycle at a point and thus identify 
the origin of the disturbance. The disturbance, on the other hand, might be caused by 
the recycle itself, th a t is, a structural disturbance. In this case, the automated algorithm 
cannot explain the situation and gives a misleading indication of the root cause.

Recommendations

Guidelines and recommendations for the selection of the best method and selecting appro­
priate variables were incorporated in a decision tree in Section 11.1.3. A further recom­
mendation concerns the number of process variables to be used in the causality analysis. 
In the case studies discussed in this thesis, a maximum number of ten process variables 
were investigated in the reference case study. The industrial case studies in Chapter 9 
analysed eight and six variables. If the number of variables p is very large (>12) then the 
number of causality measures that have to be calculated increases with p(p — 1) and the 
computational effort will also increase with p (p — 1). It is recommended to limit the num­
ber of investigated variables to less than twelve due to computational bounds. Otherwise, 
the algorithm is capable of dealing with larger number of process variables if the user is 
prepared to wait for the results.

Future Research

For the last few years, commercial tools have been emerging which are dedicated to the 
analysis of plant-wide disturbances using historical process data, such as the plant-wide 
disturbance analysis (PDA) tool by ABB/University College London as described in Sec­
tion 3.5. The causality measures developed in this work will find their place in these tools 
rather than control loop assessment tools that investigate single loops and variables.

Some open issues and extensions to the causality measures suggested for future research 
at this point include:

• The ability to investigate multiple faults, for example by filtering the signal and 
conducting the causality analysis for the filtered signals with different filter cut-off 
frequencies;

• The incorporation of model-based approaches, such as expert systems and fault trees, 
to verify and extend cause and effect graphs by upstream/downstream argumenta­
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tion;

• The combination of causality measures with single indices that argue the root cause, 
such as the nonlinearity index (Section 6.2.3) or variability of the signal;

•  The indication of directions in the causal map (signed digraph): is an “effect vari­
able” increased or decreased as a result of a “cause variable” ? A plus sign is attached 
to the vector in case if the cause variable is increased and a negative sign if it is de­
creased;

• The inclusion of low sample frequency laboratory data or data with other sampling 
frequencies. At present only time trends with the same sample frequencies can be 
included. More insight can be gained by incorporating lab data that is taken over 
longer intervals.

Chapter 12 Summary

This chapter has reviewed and given a critical evaluation of the work on data- 
driven causality measures presented in the thesis and highlighted direction for 
future research. The research in this work has led to data-driven measures that 
use historical data to argue cause and effect between process measurements in 
case of plant-wide disturbances. The use of causal maps has been discussed as 
a graphical representation for the process control engineer. The contributions 
of this thesis to chemical process monitoring and its main achievements are:

•  Three alternative methods for establishing cause and effect relationships 
(cross-correlation function, nearest neighbours method and transfer en­
tropy);

• An algorithm for the automatic generation of a causal map from the three 
alternative causality methods;

• The introduction of three new industrial case studies with plant-wide dis­
turbances affecting a large number of process variables and the successful 
application of the causality measures to the case studies.

Critical evaluation has highlighted some suggestions for future work. The main 
criticism is the inability of the measures to deal with multiple faults affecting 
the same process variables and the inability of the causal map algorithm, not 
of the causality measures, to incorporate recycles. The main criticism will 
be overcome in future by frequency filtering to deal with multiple faults and 
by the incorporation of model-based approaches such as expert knowledge to 
argue the presence of a recycle. These approaches will lead to a robust and 
comprehensive solution to fault isolation of plant-wide disturbances.
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A ppendix A

Correlation Derivations

A .l  M ean Value and Variance o f Correlation Coefficient

The correlation coefficient is estimated from the N  samples with index i of two variables 
x  and y as follows:

r _  ^2iLl xiyj
\/££i . (A.l)

  1 X l ir s i  x iV i
N  CTxCTy

Time sequences x  and y have zero mean. The null hypothesis is defined such that x  and 
y are uncorrelated.

Ho : x, y uncorrelated (A.2)

Assuming Ho gives the following estimate of the mean of correlation coefficient r.

Mr =  E{r} =  E{ NJx<Ty ]Ci=l x iVi}

= n k r ,m * v }  (A-3)
=  o

The expectation value E{xy} is zero since x  and y are assumed to be uncorrelated. The 
variance of the distribution of r  can be estimated accordingly.

v? =  E{r } — nf

~  T'2llo* (^2 i= lx*yi) }

■ =  (22=1 Xiy*) }

=  i v w E ( E  (A-4)

1 , , ^ 2 - 2
No-2 x  y

N

Thus, the variance of the correlation coefficient r  is or — ^7=. For a 3a test, the fact that 
r can be positive and negative (two tailed) must be taken into account. Thus, x and y
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are correlated with a probability of 99.74% if the correlation coefficient lies outside the 
interval defined by

\r\ > —j= . (A.5)
1 ”  V n

A .2 A utocorrelation  Function of Sine Wave

The formula of the autocorrelation function of a sine wave is used in Equation 5.12, Section 
5.2. The derivation of the formula is as follows.

Consider the continuous form of the autocorrelation function (ACF) from for example [35]:

1 f +T
<f>xx(r) = ^lim^ —  J  x{t)x(t -  r)dt. (A.6)

The function x(t) is limited here to a finite interval since an infinite sequence would have
infinite power and the ACF would hence also be infinite. The sine function is therefore
defined on the interval from 0 to Tp as:

x(t) =  I 0 ^ * * T„ {A 7)
[ 0 elsewhere

Using the symmetry property of the ACF (4>Xx(t ) =  <!>xx{—t )) and the fact that the 
function is limited to an interval gives the following form for the ACF of the sine wave.

4*xxir) — ^

f r p sin t sin(t — r)dt 0 < r  < Tp 

<!>xx{ - t ) - T p < r  < 0 (A.8)
0 elsewhere

The integral is calculated from the boundaries r  to Tp since this is the overlap of the 
non-zero parts of the functions sin t and sin(£ — r). Only the case for 0 < r  < Tp has to 
be calculated while the other cases can be deduced from it:

1 [ tp
<Px x ( t ) = —  / sin t sin(£ — r  )dt (A.9)

■Lp Jt

Using the equality: sin a sin b = ^[cos(a — b) — cos(a -I- 5)], see [10].

<Pxx(r) =  27^ [/rTp COS r  -  cos(2£ -  r)dt]

=  m  I f r P COS rd t ~ SrP COS(2t ~  T)d ]̂
(A-10)

For the second integral, the substitution method [10] can be applied as follows: t — <p(z) = 

f +  J; — \ \  z — i p { i )  = — t  and hence for the integral boundaries: V;(T) — T\
i/j(Tp) -  2Tp -  t .
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Figure A .l: Autocorrelation function of a sine wave of length Tp = 87r.
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cos rd t  — J^Tp~r cos zdz 

cosr[t]rp — 5 [sin2:]rTp-r 

(Tp — r)  cos r  — J sin(2Tp — r) +  \  sin r]

Replacing Equation A.8 by the derived expression now yields:

<Pxxir)

2 f -  [(Tp — r)  cos t  —  ̂sin(2Tp — r)  +   ̂sin r] 0 < r  < Tp 

0
Tp <  r < 0

(A .ll)

(A.12)

elsewhere

which is then used in Equation 5.12, Section 5.2. This autocorrelation function of a sine 
wave is shown in Figure A .l for a time sequence of length Tp.

A .3 Cross-correlation Function of Two Delayed Sine Waves

The cross-correlation function (CCF) of a sine wave and a delayed form of the sine wave by 
half the oscillation period are given in Section 5.2. The analytical description of the CCF 
is shown in this section. Consider the continuous form of the cross-correlation function 
(CCF) from for example [35]:

1 r 1
tx y tj)  -  lim —  / x ( t ) y { t  -  r ) d t .

1 —>oo Z1 J—T

The function x ( t ) is here a function defined within an interval:

(A.13)

x(t) =  sint, where 0 < t < Tp (A.14)

and the second function y(t) is a delayed version of x(t):

y(t) =  sin(t — ri), where 0 < t < Tp and — Tp < T\ < Tp. (A.15)
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Figure A.2 : Cross-correlation function of a sine wave and a sine wave delayed by T\ = 7r/4 , both 
signals of length Tp = 8 ir.

First, the CCF is calculated for interval 0 < r  < Tp. The CCF can be expressed by the 
following equation.

1 f TP
4>xv{t) = Tfr I sin t sin(£ -  r  -  n )d t

-Lp Jt

Using the equality: sin a sin b = ^[cos(a — b) — cos (a +  6)], see [10], yields.

(A.16)

fyxy (t) = 2T p l f T P COS(T + rl) “ COs(2t - r  -  T i ) d t ]

=  2% [/tTp cos(r  +  ^l)dt — f ^ p cos(21 — T — Ti)dt]
(A.17)

For the second integral, the substitution method [10] can be applied as follows: t  = tp(z) =  

f +  r *l 5 =  S’ z =  — r  — ri and hence for the integral boundaries:
^ (r )  =  r  -  t i ; ip(Tp) = 2Tp — r  — t\.

4>x y { T )
1

2TP

1
2TP
1

2Td

Jrip cos(r -I- r\)d t — T T1 cos z&z 

cos(r +  Ti)[t]rp -  5[sin2:]J7pT7r_Tl 

(Tp — r)  cos(r -I- ri) — \  sin(2Tp -  r  — n )  + 5 sin(r — ri)]

(A.18)

For negative values of r , —Tp < r  < 0, the integral boundaries are 0 to Tp +  r. The 
transformed boundaries are then ^(0) = —r  — t\  and tp{Tp +  r)  =  2Tp + t  — t \ .  The 
summarised CCF is then as follows:

2̂  [(Tp -  r) c o s ( t  + ti)  -  \  sin(2Tp + \  sin(r -  t \ ) ]  0  < t  < T p

<t>xy{r) = { ^  [(Tp +  r) cos(r +  ri) -  |  sin(2Tp + r  -  r i)  -  5 sin(r +  ri)] ~Tp < r  < 0

) elsewhere.
(A.19)

The function 4>Xy(T) is plotted for a time delay of t \  = 7r/4  in Figure A.2.



Appendix B

Nearest Neighbours Derivation

B .l  M ean Value o f Self-Predictability

In this section, the expected value of the self-predictability as required in Section 6.3.2 
is derived for the case that the signal is uniform distributed random noise. The self­
predictability is defined, after Equation 6.12 for an embedding dimension of m  = 1 is:

Di ( X\ X)  = i  = 1*1*. -  S r J  (B.l)

where Xi is the zth sample and xrij are the nearest neighbours of Xi, Since X  is a random 
function, the nearest neighbours indices can be regarded as independent of i, that is, 
xri . =  Xj . The probability distribution of the sum of two independent variables with zero 
mean and symmetric probability distributions each equals to the probability distribution 
of the difference of the two independent variables and is:

/oo r - y + z

/ f(x,y)dxdy,  z = x ± y  (B.2)
- oo J —oo

where' f(x,  y) is the joint probability density function of x and y. For uniform probability 
density functions (PDF) with zero mean and standard variance, the joint PDF is:

t l  , /  A- - V 3 < x < + V 3 ,  - V 3 < y < + V 3
f(x ,y )  = < * (B.3)

 ̂ 0, elsewhere 

Using this in Equation B.2 yields for all negative values of z

F(z) = S -^ s & te d y

= h f w t z - y  + * + <B-4)
= ^ [ z 2 + 4 \/3 z  + 6].

Thus, the PDF of z — x ± y  results in

dF(z) 1 1  m
/(2 ) =  ^  =  l 2 z + v ! '  (B-5)
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B.l: The expectation value of Di shows an almost linear behaviour on the number of
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nearest neighbours, K. N  is the number of samples from which for which the self predictability 
should be estimated.

for —2\/3 < z < 0. Using the symmetric property of the PDFs of x  and y gives the PDF 
for all z. The absolute value of z' — \z\ is positive with the same PDF shape as the PDF 
for 2 .

( — - \ z '  0 < z' < 2v/3 

elsewhere

The probability distribution is then

(B.6)

0 z < 0

F V )  =  { z'(75-K> 0 < z < V l 2
1 z > -v/12

(B.7)

Let K  be the percentage of K  nearest neighbours compared to the number of samples 
from which the PDF is constructed: K  = such that 0 < K  < 1. The probability 
distribution of F(z') = K  now gives the value z[ that is the boundary for the PDF of the 
K  nearest neighbours. The expected value of Di will lie between zero and that boundary. 
Solving F(z'1) — K  for z\ results in

= V l2(i -  \ j \  -  k ) . (B.8)

The expected value of D{ can now be calculated from the adjusted PDF of the K  smallest 

values of all \xi — xj\ in Equation B.l. The adjusted PDF is

j  i «/ 0 < z '< z [  

elsewhere
(B.9)

The expectation value or mean of Di is then:

E{A } =  E{*'} =  f™0 0 z’f(z ')d z '
= f Zl z ' i  Jo Z K

1 h ' d z'
(B.10)
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and with z[ = \ / l2 ( l  — y / l  — K )

E { ° i }  = 1 - K - 1 ]+  2\/3[l -  1 - k \ .  (B .ll)

The expected value for Di if K  =  1 is equal to the expected value of \x{—Xj\. The expected 
value of | Xi  — Xj \  is J  z 'f(z ')d z ' = ^  and thus equals D ^ K  — 1. Figure B.l shows the 
function of Equation B .ll.



A ppendix C

Entropy Derivation

The relationship between entropy, conditional entropy and mutual information is required 
to show tha t conditional entropy cannot be used as a causality measure. The definition 
of entropy is after Equation 7.24

/oo
p(x)logp(x)dx. (C.l)

-oo

where p(x) is the probability density function of x. Mutual information was defined in 
Equation 7.26 as

/(*’y)=L  L v ( x ' y) 108 w m A ydx (c-2)
where p(x, y ) is the joint probability density function of x  and y. Conditional entropy is 

defined as
G {X\Y) = -  J  J  p{x, y) log dydx. (C.3)

The sum of mutual entropy and conditional entropy can be modified as follows. For clarity, 
the integral boundaries from — oo to oo are omitted.

I ( X ,Y )  + G (X \Y ) = f f p ( x , y ) l o g ^ ^ j d y d x - f f p ( x , y ) l o g ^ ^ d y d x  

= ~ P ( x , y ) l o g ^ - d y d x

= f f p ( x ,  y) [log -  log dydx

=  f f p ( x , y )  [ l ° g p (x [» ) ’̂ () p ( y ) 1 d y d x  

= -  J  Jp (x , y) \ogp(x)dydx 
=  -  /  logp(x) f  p(x, y)dydx

The integral over y can be dealt with separately and is the marginal density function, that 

is, f  p (x ,y)dy = p(x). Thus,

I ( X ,Y )  + G (X \Y) = J  p(x)logp(x)dx = G (X), (C.5)

which is the relationship between mutual information, conditional entropy and entropy.
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Appendix D

Two Interacting Controllers

In this chapter, the interaction between process variable and controller output is investi­
gated using benchmark data sets from the literature. The interaction between controller 
output and process variable is of interest since it may give insight into the performance of 
the control loop. The purpose of analysing benchmark data is also to allow a comparison 
to other tools and methodologies. The first benchmark data investigated here is a data set 
from two competing control loops of an industrial pulp and paper process, a concentration 
and a flow controlled loop, courtesy of Alexander Horch [46]. The main purpose of this 
case study is to investigate the relationship between cause and effect of process variable 
and controller output. The second benchmark data comes from a valve stiction simulator 
by Shoukat Choudhury [19, 20].

Horch investigated in his PhD thesis the detection of static friction (stiction) of control 
valves by analysing the cross-correlation function [46]. He found that a phase shift between 
controller output and process variable of a quarter of the oscillation period is an indicator 
for stiction. This method was evaluated using an industrial case study from a paper mill. 
In this example, the relationship between PV and OP of two coupled oscillating loops are 
examined. Further advancement in this area were made by Choudhury [19] in his PhD 
thesis. Instead of analysing stiction from industrial data, the stiction is modelled so that 
the amount of stiction can be varied in a measurable way. In the following, the causality 
analysis will be applied to both industrial and simulated data.

D .l  Industrial D ata

In this section, the data from the industrial case study was provided by Horch to investigate 
the causal relationship between controller output and process variable in feedback loops. 
This particular relationship is curious since the PV influences the OP and the OP the PV. 
In a sense, this circular influence is the same problem as a number of process measurements 
in a recycle path discussed in Section 9.3. However, the question of causality is a larger
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F igure D .l:  Two interacting controllers act on the water and pulp inflow of a mixing process.
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.2: Time trend and frequency spectra of process measurements from Figure D .l when 

the consistency control valve occurs causing a limit cycle.

challenge as the dynamics of time delay, filtering and accumulative noise act in a shorter 
time frame.

P rocess and  D a ta  Set: In the process investigated in [46] paper pulp is diluted with
water to achieve a desired consistency. The process schematic of this setup is shown in 
Figure D.l. The water inflow is controlled by the consistency measurement while the 
pulp inflow is controlled by the flow measurement. The consistency control valve shows 
a hysteresis caused by stiction in the valve while the flow control valve is operating as 
desired. The hysteresis causes a limit cycle oscillation. Due to the physical interaction 
between two controllers the oscillation can be seen in both measurements.

Time trend and frequency spectrum of the process with the limit cycle oscillation are shown 
in Figure D.2. Altogether 1196 samples were available courtesy of A. Horch. Both OP
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Q C .P V ± = *  QC.OP 

FC.OP FC.PV

Figure D.3: Expected dependencies between process measurements of two interacting controllers 
argued from process understanding.

and PV from the concentration and flow loop show the same oscillation period of around 
32 samples. The measurements of the flow loop looks noisier and thus more uncertain 
than the measurements of the concentration loop. The frequency spectrum show the first 
harmonic of the main oscillation most prominent in the consistency loop measurements. 
The noise components can be observed in the spectra of the flow loop measurements.

Q uestion  o n  D irectiona lity:  Although the process appears to be simple, the question 
of directionality and cause and effect is not straight forward. The reason is that all for 
measurements, flow, concentration and the two controller outputs, are interlinked. For 
example, if the water inflow is too high because the valve does not close as desired due to 
stiction then this will affect the concentration of the combined stream but also the flow 
which will increase. The concentration measurement then affects the controller output of 
the concentration loop and the flow measurement will act on the flow loop controller out­
put. The relationship between FC.PV, FC.OP and QC.PV, QC.OP is therefore expected 
to be bidirectional as pictured in Figure D.3. There could also be secondary influences 
between FC.PV and QC.PV which are due to the indirect influence over the controller 
outputs: if the flow changes than the consistency is likely to change, too.

Bidirectional coupling is not detected by the methods introduced in this work since only 
the question of cause and effect is analysed. However, the coupling in one direction can 
be measured by transfer entropy and the nearest neighbours method if not the combined 
measure is investigated but the single measures. That is, for transfer entropy Equation 
7.32 is not calculated tx-*y = T {Y \X ) — T (X \Y )  but rather the two entropy measures 
T (Y \X )  and T (X \Y ) . The same is the case for the nearest neighbours method.

In te rp re ta tio n  o f  R esults:  Since the time signal of the investigated disturbance is
strongly periodic, finding the time delay does not give a conclusion about the root cause. 
This is because a time delay from x to y Kxy could also be interpreted as a time delay 
from y to x  of Kyx = Tk — Kxy. This can easily detected if the time delay detected with 
the cross-correlation method between x and y plus the time delay between y and x is half 
the period of oscillation. When examining the following table and remembering that the 
oscillation period is 32 samples, this can be confirmed for all relationships between FC 
and QC. The following Table gives the detected dead times Td between the four process 
measurements QC.PV, QC.OP, FC.PV and FC.OP.
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Figure D.4: Correlation and oscillation index for detected dead times of simulated data for two 
interacting controllers.

N earest N eighbours Transfer Entropy

Q C .PV V 0.036 Q C .PV V f 1.6 )  0.0066

Q C.O P 0.028 N. Q C.O P \0 O
FC .PV © © / FC .PV \©
FC.OP © © o Q FC.OP 0 ©  \
Figure D.5: Significance level of causality analysis on oscillating signals where m = 4, h = k = I.

x /  y QC.PV QC.OP FC.PV FC.OP

QC.PV 0 1 6 -8
QC.OP -1 0 6 -8
FC.PV -6 -6 0 1
FC.OP 8 8 -1 0

Figure D.4 shows the corresponding correlation and oscillation indices. The correlation 
index in the left hand side of Figure D.4 is near to the maximum (max{rmax} =  2), and 
thus well above the threshold rthresh- The oscillation index ip in the right hand plot, 
however, is below the threshold ^thresh for all relationships between the variables. This 
means that there is only a small difference between the maximum and minimum of the 
cross-correlation function. The dead times are therefore not detected.

The results of the nearest neighbours and transfer entropy method are shown in Figure 
D.5. The left hand plot shows the bubble chart of the significance level using the nearest 
neighbours method. The largest significance level is for the causality measurement between
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Water

LC

Figure D.6: Process schematic of interacting controllers.

FC.OP and QC.PV and has a value of 2.6 which is below the threshold value of 3. The 
right hand plot shows the bubble chart of the significance level using transfer entropy. The 
largest value here is 1.9 and thus well below the threshold of 3. No directionality could be 
detected.

D .2 Sim ulated D ata

A continuation of the work by Horch has been pursued in the PhD thesis by Choudhury
[19]. The emphasis of the work by Choudhury is on the modelling stiction in a control valve 
and fault diagnosis with higher order statistics (see Section 3.3.4). The stiction model is 
embedded in a part of the consistency control model as used by Horch [46] in the previous 
section. The nature of the oscillation arising from the model depends on the effects of 
stiction incorporated in the model. These effects are hysteresis, deadband and slip jump
[20]. In the following, the process will be introduced and questions on directionality 
phrased. Results from the application of the causality measure will be discussed.

Process and  D a ta  Set: In the work by Choudhury [19, 20], process, controller and
stiction are modelled. The representation of the processes as a process schematic is shown 
in Figure D.6. Similar to the process used by Horch [46], water is added to a pulp flow. 
The water inflow is controlled by the consistency. Instead of a flow controller for the pulp 
flow, the mixture is collected in a tank and any disturbances in the inflow are buffered by 
the tank which is controlled by a level. The model of the tank can be found in the earlier 
example in Section 2.3. The transfer function of the process there was identified as 1 /A s  
with A  being the area of the tank. The process comprising the consistency control valve 
and the mixing is modelled of a low pass filter with time constant 1/10 and a time delay of 
10 samples. Both level and consistency controllers are PI controllers. The stiction model 
by Choudhury allows settings for the undershoot, deadband and slipjump, for details see
[20]. The settings here are for the undershoot SU=3, for the deadband SD=2 and for the 
slipjump J=l .
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Figure D.7: Time trend of two interacting controllers.

QC.PV   LC.PV

QC.MV

QC.OP LC.OP

: Expected dependencies between process measurements of concentration and levelFigure D.8 
loop.

The time trends of the process variables, controller outputs and the manipulated variables 
of the consistency valve with stiction are shown in Figure D.7. The nonlinearity in the 
signal can be most seen most prominently in the manipulated variable QC.MV which looks 
the least like a sinusoidal oscillation. Noise components are present only in the process 
variables since the PI controllers act as low pass filters and eliminate high frequency 
components. The level variable and output show an irregular signature on top of the 
oscillation frequency inherent in the other time trends.

Q uestion on D irectionality: Similar to the causality analysis of the consistency and
flow control loops in the previous section, the questions on directionality is not simple. The 
potential cause and effect relationships are shown in Figure D.8. In the consistency loop, 
the process variable affects the controller output which affects the manipulated variable 
which in turn affects the process variable. Thus, a mini recycle is formed posing the 
question of the origin of the disturbance. In the model, the consistency is connected 
to the level via a time delay. Level and the controller output in the level influence one 
another in a bidirectional fashion. The task when applying the causality measures to the 
data shown in Figure D.7 is to confirm any of these directionalities.

In terpreta tion  o f Results: All three causality measures were applied to the simulated
data set. The dead times resulting from the cross-correlation function method are listed 
in the following table
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.max = 0.13

QC.MV 0.91

QC.PV 0.93

QC.OP 0.97 I 0.93 0.81 X 0.92

LC.PV 0.781(0.81 0.89

LC.OP
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Figure D.9: Correlation and oscillation index for detected dead times of simulated data for two 
interacting controllers.
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Figure D.10: Results nearest neighbours and transfer entropy, h = k = 4, m = 3.

x /y QC.MV QC.PV QC.OP LC.PV LC.OP

QC.MV x 5 -3 23 15
QC.PV -5 x 7 18 10
QC.OP 3 -7 x 11 18
LC.PV -23 -18 -11 x 6
LC.OP -15 -10 -18 -6 X

The correlation and oscillation indices are shown in bubble charts in Figure D.9. Like 
in the industrial data, all correlation r max indices exceed the threshold rthresh while all 
oscillation indices if; are far below the threshold ^thresh- Thus, no dead time or hence 
directionality is detected between any of the process measurements. However, if looking 
at the expected directions in Figure D.8, the time delay match for the relationships between 
QC.MV, QC.PV and QC.OP. A time delay of five samples is detected between QC.MV 
and QC.PV, of seven samples between QC.PV and QC.OP and of three samples between 
QC.OP and QC.MV.

QC.MV

QC.PV

QC.OP

LC.PV

LC.OP

Transfer Entropy
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The significance levels of the nearest neighbours and transfer entropy methods are shown 
in Figure D.10. Nearest neighbours method shown in the bubble graph on the left gives 
the causality that LC.OP causes LC.PV. This can also be seen in the time trend as delayed 
version with filtered structure. The transfer entropy results are shown in the right hand 
plot and detect no directionality since the significance level is below the threshold of 3.

The directionality between two interacting controllers could not be specified in general 
using the causality measures of transfer entropy and nearest neighbours. In one case, a 
cause and effect relationship from controller output to process variable could be observed 

using the nearest neighbours method.
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