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Abstract

In clinical trials and cohort studies the event of interest is often not observable, and is
known only to have occurred between the visit when the event was first observed and
the previous visit; such data are called interval-censored. This thesis develops three
pieces of research that build upon published methods for interval-censored data. Novel
methods are developed which can be applied via self-written macros in the standard
packages, with the aim of increasing the use of appropriate methods in applied medical

research.

The non-parametric maximum likelihood estimator [1,2] (NPMLE) is the most common
statistical method for estimating of the survivor function for interval-censored data.
However, the choice of method for obtaining confidence intervals for the survivor function is
unclear. Three methods are assessed and compared using simulated data and data from the
MRC Delta trial [3].

Non- or semi- parametric methods that correctly account for interval-censoring are not
readily available in statistical packages. Typically the event time is taken to be the right
endpoint of the censoring interval and standard methods (e.g. Kaplan-Meier) for the analysis
of right-censored failure time data are used, giving biased estimates of the survival curve. A
simulation study compared simple imputation using the right endpoint and interval midpoint
to the NPMLE and a proposed smoothed version of the NPMLE that extends the work of
Pan and Chappell [4]. These methods were also applied to data from the CHIPS study [5].

Different approaches to the estimation of a binary covariate are compared: (i) a proportional
hazards model [6], (ii) a piecewise exponential model [7], (iii) a simpler proportional hazards
model based on imputed event times, and (iv) a proposed approximation to the piecewise
exponential model that is a more rigorous alternative to simple imputation methods whilst

simple to fit using standard software.
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CHAPTER 1: INTRODUCTION

The motivation for the work in this thesis comes from the analysis of follow-up studies
of HIV infection. After defining interval-censored data in section 1.1, a brief description
of the background to the problem is given in section 1.2. An overview of methods for
the analysis of interval-censored data from the published literature is given in section

1.3. Finally, the structure of the thesis in subsequent chapters is outlined in section 1.4

1.1 INTERVAL-CENSORED DATA

In clinical trials and observational follow-up studies individuals are followed over time
for the occurrence of a specific event. When either the precise time of the event is
known or individuals do not experience the event during follow-up (right censoring),
standard survival analysis methods are applied [1]. The survival data are often
summarised using the survivor or hazard functions. The survivor function at time t is
defined as the probability that the time to the event (survival time) is greater than t. The
hazard function is the instantaneous risk of death at time t, conditional on having

survived to time t.

Often, however, the precise time of onset of the event is unobservable, e.g. the
recurrence of cancer for a patient in remission or an increase in a biological marker to
above a certain level. In this instance the event is known only to have occurred within
the interval defined by the time the event was first observed and the previous event free

visit, the censoring interval. Data of this type are called interval-censored.

Individuals may have been either monitored at irregular times over the study period or
observed at pre-specified times as defined by the study protocol. In the latter case many ties
will exist within the data, which are considered to be grouped.

1.2 HIV INFECTION
Human immunodeficiency virus (HIV) is a retrovirus that infects cells in the human
immune system, primarily CD4+ T lymphocytes. Infected cells are depleted through

three main mechanisms: direct viral killing, increased rates of apoptosis, and destruction

12



by CD8 cytotoxic lymphocytes. When CD4+ T cell numbers decline below a critical
level, cell-mediated immunity is lost, and the individual becomes progressively more
likely to develop opportunistic infections and other pathologies, collectively referred to
as Acquired Immune Deficiency Syndrome (AIDS) [2]. Without potent treatment, the
median survival after HIV-1 seroconversion has been estimated to be 12.5 years for

people aged 15-24 years and 7.9 years for those aged 45-54 years)li[Z].

Infection with HIV occurs by the transfer of blood, semen, vaginal fluid, or breast milk.
Within these body fluids HIV is present as both free virus particles and virus within
infected immune cells. The three major routes of transmission are unprotected sexual
intercourse, contaminated needles and transmission from an infected mother to her baby
at birth or through breast milk. Screening of blood products for HIV in the developed
world has largely eliminated transmission through blood transfusions or infected blood

products in these countries.

HIV infection in humans is now pandemic. An estimated 38.6 million (33.4-46.0
million) people worldwide were living with HIV at the end of 2005, an estimated 4.1
million (3.4-6.2 million) became newly infected with HIV and an estimated 2.8 million
(2.4-3.3 million) died from AIDS during the year [3]. Antiretroviral treatment reduces
both the mortality and the morbidity of HIV infection, but routine access to

antiretroviral medication is not available in all countries.

Current treatment for HIV infection consists of highly active antiretroviral therapy
(HAART) which first became available in 1996. At the same time, assays for
quantification of the virus (measured by the number of HIV RNA copies in the plasma
or serum) were developed and used to monitor the response to treatment. Current
HAART options are combinations consisting of at least three drugs belonging to at least
two classes of anti-retroviral agents. The three main classes are nucleoside analogue
reverse transcriptase inhibitors (NRTIs), protease inhibitor (PIs), and non-nucleoside
reverse transcriptase inhibitor (NNRTIs). With currently available antiretroviral agents,
eradication of HIV infection is not likely to be possible. The main aim of treatment is
thus to prolong life and improve quality of life by maintaining suppression of virus
replication for as long as possible. In adults, treatment is usually started when the
disecase becomes symptomatic or the risk of clinical progression is high [4,5]. Because

AIDS progression in infants is more rapid and less predictable than in adults guidelines

13



generally recommend treatment in children less than a year old. Decisions about

treatment in older children are usually based on immune function [6].

The first clinical trials of antiretroviral drugs for the treatment of HIV assessed efficacy on
the clinical endpoints of AIDS or death [7,8]. The advent of HAART, together with
improved prophylaxis and diagnosis of opportunistic infections, has led to increased AIDS-
free and overall survival (Figure 1.1) [9]. Consequently clinical endpoint studies are now
very difficult to conduct with larger and longer trials required to detect an improvement in
clinical outcomes. In a dynamic area such as HIV where new therapies and new data from
small studies have a major influence on patient management this can be problematic, and is
compounded by issues of cost, retaining trial participants throughout follow-up, and
adherence to allocated treatment strategies. Thus, endpoints based on biological markers are

frequently used as surrogates for clinical outcome [10,11].

1999 - 2000

1997 - 1998

n
|

1979 - 1996

Cumulative survival probability

XY
n
|

T I T T T | T T T I T
0 2 4 6 8 10 12 14 16 18 20

Time from seroconversion (years)

Figure 1.1 Estimated survival from time of HIV-1 seroconversion in 3

calendar periods [9]

Both CD4 cell count and HIV RNA have been shown to be strong prognostic markers
for clinical progression but neither is an ideal surrogate marker [12-14]. Nonetheless,

regulatory agencies license new drugs on the basis of these markers [15,16]. HIV RNA
14



provides the more direct measure of the potency of antiretroviral drugs. Virological
endpoints include quantitative change in HIV RNA levels, time to undetectable
viraemia, the proportion of subjects with undetectable viraemia at a fixed time point,
and the durability of virological control. For time to undetectable viraemia, each
individual’s event time is censored by the interval defined by the time of the first
sample where virus concentration was below the detection limit of the assay and the

previous sample (where it was not).

1.3 OVERVIEW OF ANALYTICAL APPROACHES TO INTERVAL-CENSORED
DATA

This section gives a brief overview of different analytical approaches to interval-censored
data that have been proposed. A fuller description and a mathematical exposition of selected

methods are given at relevant points in subsequent chapters.

1.3.1 Imputation

Interval-censored data in HIV infection are typically analysed by simply taking the time the
event is observed (the right endpoint of the censoring interval) as the time of the actual event.
An alternative and potentially less biased approach is to use the midpoint of the observed
censoring interval [17]. It is then possible to apply standard methods available for the
analysis of exact and right-censored observations in statistical software packages. For
example, estimates of the survivor function using the Kaplan-Meier estimator [18], or the
effect of covariates upon the hazard using a Cox proportional hazards model [19] are then
easily obtainable. Imputation may be a reasonable approach when the width of the censoring
interval is small relative to the total follow-up. However, simple imputation leads to

underestimation of standard errors, which can be overcome by using multiple imputation
[20].

1.3.2 Interval-censoring methods

There is an expanding statistical literature on methods for the analysis of interval-censored
data [21-23]. These can be broadly classified into parametric methods requiring specification
of a family of survivor functions, semi-parametric methods requiring specification of a

model for the effect of covariates only, and assumption-free non-parametric methods.



a) Parametric methods

Most standard statistical software packages can accommodate interval-censored data in
routines for parametric models. Also, the estimation of a single survivor function can be
easily extended to model the effect of covariates. However, these advantages must be
balanced against a potentially severe bias if an inappropriate family of distributions is chosen

[24].

b) Non-parametric methods

Unlike parametric methods, only limited routines are provided within standard packages
for non-parametric or semi-parametric analysis of interval-censored data. The most
intensively studied non-parametric method was first proposed by Peto [25] and Turnbull
[26]. This non-parametric maximum likelihood estimator (NPMLE), obtained by an
iterative procedure such as the EM algorithm [27], allocates probability mass within
intervals defined by the observed data. The resulting step function often has large
regions where the survival curve is flat or undefined as shown by examples in later
chapters, and several authors have proposed techniques that achieve a smoother estimate

to overcome this problem.

Pan & Chappell propose a Expectation Maximisation Smoothing (EMS) algorithm,
which introduces a smoothing step to the Expectation Maximisation (EM) algorithm
described [28]. Other approaches include kernel smoothing the probability density
function [29], modelling the log density [30] or the hazard function [31] using
regression splines. Alternatively, Bebchuk et al. describe a multiple imputation
approach [32], and Betensky et al. discuss a procedure based on local likelihood [33].
Several of these methods can be extended to allow estimation of covariate effects within

a proportional hazards framework [34-37].

¢) Semi-parametric methods

The piecewise exponential model assumes a constant hazard within predefined time
intervals [38], and can be considered a special case of the method proposed by
Rosenberg [31,34]. Carsenten [39], Farringébn [40] and Smith et al. [41] present a
generalised linear model approach to fitting a piecewise exponential model, whereas

Lindsey & Ryan [21] use an EM algorithm.
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The Cox proportional hazards model [19] is commonly used in survival analysis as it
allows analysis of covariate effects without specification of the baseline hazard
function. However, construction of the partial likelihood is precluded when the data are
interval-censored, since the ordered rankings of failure and censoring times cannot be
determined. In an early approach by Finkelstein [42], a full likelihood proportional
hazards model was fitted using a parameterisation of the log cumulative hazard where
covariates effects and nuisance parameters associated with the baseline hazard were
estimated simultaneously. This approach is similar to the piecewise exponential method,
except that the intervals are determined by the data rather than pre-specified. Satten has
proposed two rank-based methods, one which estimates the covariate effects without
specification of the baseline hazard by maximising the marginal likelihood using Gibb’s
sampling [43], the other imputes failure times by assuming a parametric model for the

baseline hazard which are used to determine ranks [44].

Other regressions models, including the accelerated failure time model [23,45,46] have been
proposed for interval-censored data. In addition, some methods have been extended to
truncated and interval-censored data or doubly censored data, where both the time origin and
the event time are interval-censored. Methods have also been proposed to allow for
informative examination times or informative dropout. These types of data are not

considered further.

1.4 SCOPE OF THESIS

This thesis develops three pieces of work relating to the analysis of interval-censored data.
Within each chapter, a simulation study is used to examine the effect of different factors, e.g.
sample size and degree of censoring on the relative performance of the different methods
under study. Data from the MRC Delta trial [8] and the Collaborative HIV Paediatric Study
(CHIPS) [47] are used to exemplify these methods.

Chapter 2 examines three different methods for obtaining (pointwise) confidence intervals
for the NPMLE proposed by Peto [25] and Turnbull [26]. The method proposed by Peto and
Turmnbull in their original papers is based on the inversion of a submatrix of the information
matrix, without clear justification. This method is assessed and compared with inverting the
full information matrix, and a profile likelihood approach that has not previously been

considered for interval-censoring.
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As noted above, except in the case of parametric models, methods that correctly account for
interval-censoring are not readily available in statistical packages, and the use of right-
endpoint, and to a lesser extent, mid-point imputation are commonly employed. Chapter 3
examines the accuracy of these simple methods in the context of estimating the survivor
function of a single sample. Results are compared with the NPMLE and a smoothed version
of the NPMLE based on the work of Pan & Chappell [28]. A modification to the smoothed

estimator is proposed and assessed.

This work was extended in chapter 4 to consider the comparison of two samples, specifically
the estimation of the hazard ratio within a proportional hazards model. Simple imputation
methods are compared to the proportional hazard model for interval-censored data proposed
by Finkelstein [42], a piecewise exponential model [38] and a proposed approximation to the

piecewise exponential model that can be fitted using standard software.

Finally, the conclusions to be drawn from this work are discussed in chapter 5, along with

suggestions of how the work could be extended.
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CHAPTER 2: CONFIDENCE INTERVALS
FOR THE NON-PARAMETRIC MAXIMUM
LIKELIHOOD ESTIMATOR

2.1 INTRODUCTION

Of the interval-censoring methods discussed in section 1.3.2, the non-parametric
maximum likelihood estimator (NPMLE) [1,2] is the most regularly used method to
obtain an estimate of the survivor distribution function. A variety of fitting methods [1-
4] and the properties of the estimator have been discussed in the literature [4-7] and are
described in more detail in section 2.2.2. However, there has been limited research on
methods for obtaining confidence intervals for the survivor function. Peto and Turnbull
described the derivation of (pointwise) confidence intervals based on the observed
information matrix. However, several authors have questioned the applicability of
standard asymptotic theory since the number of parameters that define the survivor
function increases with the number of observations [8-10]. In typical applications, many
of these parameters are estimated as zero. Peto and Turnbull suggest that the rows and
columns of the information matrix corresponding to these zero elements should be
deleted prior to matrix inversion, although the theoretical justification for this is unclear
[1,2]. An alternative approach, also based on asymptotic theory, is to obtain confidence
intervals by inverting a likelihood ratio test at each time point of interest, as has been
examined in the case of right-censored data [11] but not previously considered when the

data are interval-censored.

The aim of this chapter is to examine the accuracy of confidence intervals for the non-
parametric survivor function based on the three methods described above which have
not been previously assessed or compared. In section 2.2, the underlying theory for each
approach is described. In section 2.3, an illustrative data set is used to exemplify these
methods. Section 2.4 describes a simulation study examining the coverage of the
confidence intervals and how this is affected by selected factors, including sample size

and the width of the individual censoring intervals. Section 2.5 summarises the main
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findings from this analysis, considers the practical implications of these findings for

applied research, and suggests possible areas for further research.
2.2 NOTATION AND THEORY

2.2.1 Observed data

Let the failure times T arise from the survivor distribution S(t) = Pr(T>t). Each
individual has a sequence of examination times which, to ensure that censoring is non-
informative, are assumed to be independent of the failure time. The observed data
consist of censoring intervals I;=(L;,R;) for individual i=1,...,n. In the special cases of

left-censored and right-censored observations, Li=0 and Rj=c0, respectively.

2.2.2 Non-parametric maximum likelihood estimator (NPMLE)

If no parametric assumptions about the distribution of S(t) can be made the methods of
Peto [1] or Turnbull [2] can be applied to obtain the analogue of the Kaplan-Meier
product limit estimator for right-censored data. The Kaplan-Meier method can be easily
adapted to deal with left censored data, but no simple algebraic method can be
implemented in the more general cases where data are a mixture of left and right
censored observations, or when any observation is censored into an interval. The log-

likelihood is expressed as a function of the interval endpoints
=2 log(S(L,) - S(R,-)) (2.1)
i=1

The search for a function S that maximises (2.1) is facilitated by the following reduction
of the problem. Let {u;; j=1,...,m+1} denote the unique ordered values of {0,{L;},{Ri}}
and define an indicator variable o;=1 if (u;, uj+1)cl; and 0 otherwise. Let f=S(u;)-S(uj+1)

for j=1,...,m. The log-likelihood can then be rewritten as
(=3 log[z%f,)
i=1 J=1

subjectto >0, Y f, =1 2.2)

=

One parameter is redundant due to the linear constraint (2.2). Conventionally, f;, is re-

m-]
expressed as 1— 3 f, , although inference is unaffected by choice of the parameter that
j=1

is eliminated [1,2]. It can be shown that f;#0 only if u e{L} and
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u,,, €{R,} (Appendix 1) [12]; if this condition is not satisfied then f ; =0 a priori and

these elements can be eliminated from the model. All subsequent analyses in this thesis

are predicated on this fact.

"

S(#) is constant outside all distinct intervals with endpoints u, €{L,}and u,,, €{R,},

and undefined within any interval for which fj is strictly greater than zero. Probability

mass tends to be concentrated in a small number of intervals, giving rise to large regions
where the survivor function is flat and a number of regions where it is undefined. These
characteristics become less pronounced with increasing sample size, although only

gradually — due to cube root asymptotics of the estimator [4,6,13].

In general, there is no closed form solution for the maximum likelihood estimate (MLE)
f= (f,f"m) and an iterative method is required. Peto proposes a constrained Newton-
Raphson approach, while Turnbull proposes an expectation maximisation (EM)
algorithm [14] that is easy to implement but slow to converge. Define an indicator
function Iy = 1 if T, € I,, 0 otherwise, which constitutes the “complete data”. The E-
step calculates the conditional expectation of person i, i=1,...,n, experiencing an event
in interval 7, j=1,...,m, given the observed data and the current estimates of f= (f, fm ),

namely

Ell1=a,f, / (ia” f, ) 23)

Considering E[I;;] as an observed rather than expected frequency, the M-step is simply

to estimate the proportion of events in interval j,
RO
/== D E[1,] (2.4)
i=1

The algorithm iterates between (2.3) are (2.4) until convergence. This is equivalent to a

self-consistency approach with iteration of the equation

25 )

until convergence. Gentleman & Geyer show how the Kuhn-Tucker conditions can be
used to verify that the self-consistent estimator is the MLE [5]. A more complex,
convex minorant algorithm that is faster to converge than the EM algorithm has been

proposed [4]. In addition, Bohning has described how algorithms suggested for mixture
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model problems can be applied [3]. In practice, increased computer power has
facilitated the use of standard optimization techniques and eliminated real concern over

speed of convergence for the EM algorithm.

Wald type confidence intervals are easily derived via the observed information

var(f) ~ {— ;;f ] =(4" Da)” 2.5)

where A is the n x m matrix with elements o and D the n x n diagonal matrix with

2
d, =—/[Zaijfj) .
=1

o I oa
The estimated survivor function at uj:j, S(uj+,)=1—z f.» can be written as
k=1

elements

1~ [le Omij] f where 1; is the unit vector of length j and Op; the null vector of length

(m-j). From (2.5) the approximate variance of é(u j)is
1
T T : -1
b oot [ ]
m-j
Asymptotic pointwise (1-a) confidence intervals are obtained by §(uj+,)iza,ZSE [é(u . )]

where SE denotes standard error and z, is the upper o point of the standard normal

distribution. This will be referred to as the Wald-1 method.

It has been suggested, although without formal justification, that the rows and columns

of the information matrix corresponding to zero elements of f should be deleted prior
to matrix inversion [1,2]. This will be referred to as the Wald-2 method. A key objective

of this chapter is to examine the validity of this procedure.

Alternatively, confidence intervals can be constructed via the likelihood ratio test (also

called profile likelihood confidence intervals). The likelihood ratio statistic for testing

Hy:S(u;,)=S, is W(S0)=2[€(f‘)—€(7)] where f is the MLE subject to

[1 jT 0,,,_1.7'] ?=SO. A (l-a) confidence interval consists of the set of values

{SO :W(Sy) < xi} where 2 is the upper o point of the ¥* distribution with 1 degree of

freedom.
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Although the likelihood has a simple form estimation of the survivor function or
pointwise confidence intervals is not a straightforward problem. Except in the special
case when the data are grouped, each new observation can potentially add up to two
additional parameters in (2.2), depending on the precision of the time scale. The MLE
will typically have several parameters identically zero i.e. on the boundary of the
parameter space so that standard asymptotic theory may not apply [15]. Although the
MLE has been shown to be consistent [4-7] the validity of standard methods for
determining confidence intervals for the survivor function has not previously been
examined. In particular, the NPMLE does not satisfy the Central Limit Theorem with
the usual n'’-rate convergence and use of the observed information to construct
confidence intervals for the NPMLE does not have large sample justification [6]. Also,
the likelihood ratio statistic does not necessarily follow a y* distribution with the
nominal number of degrees of freedom if parameter estimates, including nuisance

parameters, lie on the boundary of the parameter space [16].

2.2.3 Implementation

Throughout this chapter the NPMLE has been fitted using a quasi-Newton optimisation
procedure implemented in SAS Version 8.2 [17]. A program available from the
SAS/IML sample library fits the NPMLE to interval-censored data but gives confidence
intervals using the Wald-1 method only [18]. This SAS code was adapted to allow
estimation of Wald-2 and likelihood ratio confidence limits (see Appendices 2A-C).

2.3 EXAMPLE: The Delta Virology Substudy

Delta was a double blind randomised trial comparing zidovudine (AZT) monotherapy
with AZT combined with either didanosine (ddI) or zalcitabine (ddC) in 3207 HIV-1
infected individuals [19]. Here, the focus is on the 420 subjects allocated to AZT+ddC
who participated in the virology substudy [20]. Estimation of the survivor function is
considered for the endpoint of time to achieving undetectable levels of plasma HIV
RNA, measured by the NASBA assay with limit of detection 800 copies/ml [21].

The individual censoring intervals are shown in Figure 2.1. For the purpose of
presentation, R; was set to 60 weeks for subjects who exhibited right censoring i.e.
never achieved undetectable HIV RNA. This was commonly observed, occurring in 247
(59%) subjects, of whom 177 (42%) were last assessed at 48 weeks. Note also the large
number of left-censored subjects who had undetectable HIV RNA at the first
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measurement at 4 weeks or who became undetectable between their first and second

measurements at 4 and 8 weeks.

Left censored
I observations

60 + +4+ +X +++X+x00 X+ + FHXAX+ ++xX ++# 44— Right
censored
55 - observations

1-2 subjects
3-§ subjects
8-10 subjects
20 subjects
72 subjects
177 subjects

right endpoint (R,)
N
[a3]
i

-

I I I I I I I T | I | 1 !
12 16 20 24 28 32 36 40 44 48 52 56 60

left endpoint (L)

o
-
0

Figure 2.1: Individual censoring intervals in the Delta Virology Substudy

The data induced 22 intervals, in 13 of which the probability density was estimated as
zero (Table 2.1, Figure 2.2). The proportion of subjects who achieved HIV RNA <800
copies/ml increased steadily to approximately 40% by week 16, with little change
thereafter. This example illustrates the highly discontinuous behaviour, with probability
density concentrated in a few intervals, which is characteristic of the non-parametric

estimator.

Several points emerge from a comparison of the confidence intervals in Table 2.1. First,

for the Wald-2 method, a confidence interval is by definition identical to the preceding
confidence interval if f ; = 0. Although this is not true for the likelihood ratio method,

the changes between adjacent intervals are generally very small, particularly for the
upper confidence limit; for example, this is identical to the fourth decimal place
(0.6988) in intervals 9-10. Second, the Wald-2 and the likelihood ratio confidence

intervals are generally very similar, except for interval 1, where the latter is much
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Figure 2.2: Non-parametric survivor function in Delta Virology Substudy

Although the NPMLE is strictly only defined within time intervals corresponding to where the
curve is flat, it is shown with interpolated values (diagonal lines) for the intervening intervals.

narrower. Third, the Wald-1 confidence intervals are consistently wider than those
obtained by the other two methods, often considerably so. Fourth, the Wald-1
confidence intervals are pathologically wide at some time points, in comparison with
adjacent time points (e.g. intervals 7 and 20), due to ill-conditioning of the information

matrix.

The ill-conditioning was observed to only affect confidence intervals for intervals (uj,
u;+1) that satisfied all of the following conditions:

(1) yy < R; <ujs1 = S(Ly)=1, for all i

(i) y < Lj < uj+) = S(R;)=0, for all i

(iif) f, = 0.
Consider only those intervals (uj, uj+1) that are not known a priori to have zero mass
(section 3.2.1). Points (i) and (ii) can be determined by looking at all individuals with
censoring intervals that do not cover both (uj, uj+;) and the next interval. Point (i) states
that the censoring interval I; for all individuals with (uj, uj+1)c]; does not contain any

later interval and contains ALL previous intervals; if the censoring interval for all other
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individuals does not contain (uj, uj+;) but contains ALL the subsequent later intervals *
then point (ii) holds. It was not possible to determine if this rule holds in the general
case. However, conditions (i) and (ii) will hold only under extensive left and right
censoring. It should be noted that condition (iii) is never satisfied under the Wald-2

method, and may explain why this approach is numerically stable.

2.4 SIMULATION STUDY

In light of the concerns discussed in section 2.2.2 regarding the asymptotic validity of
standard methods for confidence interval estimation, a simulation study was carried out
to assess the coverage of confidence intervals obtained by the Wald-1, Wald-2, and

likelihood ratio methods.

2.4.1 Methods

Data were generated from a hypothetical prospective study of 48 weeks duration in
which visits were scheduled every 4 weeks (Figure 2.3). Individuals were assumed to
miss each visit at random with a fixed probability, p. In addition, to allow for the fact
that a patient may not attend on the exact scheduled date, the actual visit time was
assumed to be normally distributed, centred at the scheduled visit time with standard
deviation 1.33 weeks. Survival times were generated from a Weibull distribution and

the individual censoring intervals determined.

Scheduled visits
| ] | ] ! ] | | | | | | |

[ | | | | | [ | | | | | |

0 4 8 12 16 20 24 28 32 36 40 44 48
Attended visits

| | | | | | | | |

|
I | | [ I ! | | I |
0 4 8 12 16 20 24 28 32 36 40 44 48

Alllowlng liandom variaﬂclm in ‘lzisit tim?s
I | | I | | | | ] |

0 4 12 15 19 30 33 36 44 48
Event interval
| °
19 30

Figure 2.3: Scheme illustrating generation of individual data in simulation study (hypothetical case)

1,000 hypothetical studies were simulated for each combination of the following factors

(scenario) and pointwise confidence intervals for the survivor function computed by
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each of the three methods at =12, 24 or 48 weeks:

(a) Sample size, n=100, 200, 400, 800 subjects.

(b) Probability of missing a scheduled visit, p=0.2, 0.4.

(c) Shape parameter of Weibull distribution, »=0.6, 1.0, 1.5, representing a
decreasing, constant, and increasing hazard function, respectively. For each
value of the shape parameter, the scale parameter, A, was selected so that
S(12)=0.75, S(24)=0.5, and S(48)=0.25. These values are consistent with
estimates of the frequency of HIV-1 RNA undetectability following initiation of
antiretroviral therapy [22,23].

(d) Proportion lost to follow up, d=0%, 10%. This was achieved by assuming
individuals were lost from the study at random with a fixed probability at each

visit, such that the expected loss by 48 weeks was d%.

As was noted in section 2.2.2, S is undefined at all times within any interval (uj,uj+1) for
which f | * 0. When this occurred at =12, 24, or 48 weeks, é(t) was estimated by

linear interpolation, and a confidence interval derived from the lower limit that
pertained at uj; and the upper limit that pertained at u;. This approach yields
conservative confidence limits but was required in relatively few simulations (Tables
2.2a & b), never exceeding 5.6% or 5.0% in simulations with 0% and 10% loss to

follow-up rates respectively, and was always less than 1.1% when n>100.

For each simulation, the Wald-1 and Wald-2 methods give an estimate of the standard
error (of the estimated survivor function) at each time point. These estimates were
averaged over the 1000 simulations, and compared with the Monte Carlo estimates of
standard error i.e. the empirical standard deviation of the point estimates from each of
the 1000 simulations. The coverage of the confidence intervals for each of the different

scenarios was then calculated and compared.

2.4.2 Results

a) Number of parameters

Because the data induce the parameterisation (section 2.2.2), the number of parameters
(probability densities) to be estimated varies from simulation to simulation. With no
loss to follow up and a sample size of 100, the mean number of parameters was 28

(range 22 - 33) and the mean number of non-zero parameters was 13 (range 9 — 16).
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There was an observed trend of increasing number of parameters (total and number
estimated as non-zero) with increasing sample size. For a sample size of 800, the
corresponding values were 51 (range 50 — 51) and 29 (21 — 35). Results were very

similar when considering a 10% loss to follow-up rate (data not shown).

b) Consistency

First the consistency of the point estimates (against the known values of 0.75, 0.50, and
0.25) was examined, since any such bias would affect the coverage achieved by any
method of confidence interval estimation (Tables 2.2a & b). Bias was found to be
minimal relative to the Monte Carlo standard error, particularly for the larger sample
size (n=800) in line with theoretical results on the consistency of the non-parametric

estimator [5].

¢) Coverage

The Wald-1 method clearly over-estimated the standard error (Figure 2.4) for all
combinations of the simulation factors (Table 2.3), particularly for larger sample sizes.
The standard error was over-estimated by a factor of 1.34-2.40 for n=100, decreasing to

a factor of 1.08-1.56 for n=800, compared with the Monte Carlo (empirical) estimate.
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Figure 2.4: Comparison of mean estimated standard error and empirical standard error.

Each point represents the mean of 1000 replicates from a single scenario.
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Consequently, the coverage achieved by the Wald-1 method substantially exceeded the
nominal coverage of 95% and, overall, the true point estimate lay within the confidence
interval in 99.0% of simulations. As the percentage of parameters in the model
estimated as zero rises, the Wald-1 method becomes increasingly conservative (Figure
2.5).

Table 2.3: Average coverage according to factors considered in simulation study

Factor Value Average coverage (%)
Wald-1 Wald-2 Likelihood ratio
Probability of missing a visit (p): *
0.2 98.5 94.1 95.2
0.4 99.4 93.5 95.5
Time (weeks): * *
12 98.9 93.1 95.4
24 99.0 93.5 95.2
48 99.1 94.8 95.5
Shape parameter (y): *
0.6 99.1 94.2 95.3
1.0 99.1 93.9 95.4
1.5 98.8 93.5 95.3
No. of subjects (n): * *
100 99.0 92.9 95.1
200 99.4 93.5 95.4
400 99.1 94.3 95.6
800 98.4 94.5 95.4
Percent lost to follow up (d):
0 99.0 93.9 95.4
40 99.0 93.8 95.3

* significant variation at p<0.01 (global % test)
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Figure 2.5: Relationship between percentages of parameters estimated
as zero and coverage when using the Wald-1 method
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In contrast, the mean estimated standard errors from the Wald-2 method were in close
agreement with the empirical standard error (Figure 2.4) for all combinations of the
simulation factors (Table 2.3). However, coverage was significantly less than 95% (at
p<0.01) for 14 of the combinations with =0 (Table 2.2a), and the overall coverage for
this method was 93.9% (Table 2.3). With a 10% loss to follow-up rate this rose to 24
combinations but the overall coverage was similar (93.8%) (Tables 2.2b & 2.3).
Because this method estimated the standard error consistently, this finding at first
seemed paradoxical. To clarify this, a combination of factors that gave particularly
inaccurate coverage (90.0%; n=100, =1.5, =12, p=0.4, d=0) was examined in more
detail. The distribution of estimated survival probabilities were found to be
approximately normally distributed but the distribution of estimated standard errors was

highly positively skewed (Figure 2.6).
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Figure 2.6: Relationship between Wald-2 standard error and point estimate
over 1000 simulations (3=1.5, =100, =12, p=0.4, d=0). Note that S(12)=0.75

Figure 2.6c shows the estimated standard error plotted against the point estimate from
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each simulation. The left line represents values of the upper 95% confidence limit for a
point estimate of 0.75 for different values of the standard error of the estimate.
Similarly, the right line plots values of the lower 95% confidence limit at different
values of the standard error. This figure shows that the inaccurate coverage was mainly
due to the lower confidence limit exceeding the true survival probability (6.4% of
simulations), rather than the upper confidence limit being too small (3.6% of
simulations). This was a consequence of estimating smaller standard errors at high

values of the point estimate.

The coverage achieved by the likelihood ratio method was consistently close to the
nominal value of 95%, and even the most extreme values observed (93.9% and 96.8%)
are compatible with expected binomial variation given parameters 1000 and 0.95.
Overall coverage using the profile likelihood approach was 95.4% (Table 2.3). In
addition, the distribution of the likelihood ratio statistic was examined as part of the
simulation study. The likelihood ratio statistics from four different scenarios (with a

range of estimated coverage probabilities) were found to follow closely the nominal
x: -distribution up to values of approximately 10 (Figure 2.7). This implies that correct

coverage would be achieved at any reasonable choice of significance level.

A. , B Coverage=95.0% ; B., &1 Coverage=93.9%
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Figure 2.7: Chi-squared Q-Q plot of likelihood ratio statistics for 4 different

simulated scenarios.
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There was no evidence of systematic variation in coverage with respect to sample size,
frequency of missing visits, Weibull shape parameter, time point and loss to follow-up
rate for the likelihood ratio method (Table 2.3). However, for the Wald-2 method,
coverage was more accurate as sample size increased e.g. 94.5% (n=800) compared to
92.9% (n=100). In addition, there was a significant effect of both time point and shape
of the hazard distribution, with closer to nominal coverage at 48 weeks or with a

decreasing hazard. The impact of a 10% loss to follow-up rate was minimal.

2.5 DISCUSSION

In this chapter, three methods for calculating pointwise confidence intervals for the non-
parametric survivor function estimated from interval-censored data have been described
and assessed: the first based on the full information matrix (Wald-1), the second a
modification of this approach involving deletion of rows and columns of the
information matrix corresponding to zero estimates prior to inversion (Wald-2), and the
third based on likelihood ratio inference. The Wald-1 and Wald-2 methods were based
on the observed rather than expected (Fisher) information, the latter being highly

complex because the parameterisation is data dependent.

The simulation study showed clearly that the Wald-1 method substantially and
consistently over-estimated the standard error (of the estimated survivor function at
fixed time points), and therefore resulted in confidence intervals that were too wide,
achieving an average coverage of 98.6% against a nominal value of 95%. Furthermore,
this approach may give pathological results under extensive left and right censoring, as
highlighted by the example in section 2.3. The Wald-1 method cannot therefore be

generally recommended.

In contrast, the Wald-2 method produced accurate standard errors, using the Monte
Carlo estimates as a benchmark. Despite this, confidence interval coverage was slightly
less than the nominal value of 95%, a consequence of correlation between the estimated
standard error and the point estimate — standard errors were smaller at higher values of
the estimated survival probability. An underlying weakness of the Wald-2 approach,
which also applies to the Wald-1 approach, is the use of symmetric confidence intervals
for a probability [24]. However, this may be overcome by using a log-log"®
transformation. For most of the combinations of factors considered, the coverage was, |

for practical purposes, acceptably close to 95%. However, for some combinations, the
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coverage was unacceptably low (minimum value 90.0%), understating the true
uncertainty in the point estimates. The key practical issue is identifying the
circumstances when the Wald-2 method can and cannot be validly used. Since this
method is based on asymptotic theory, coverage was more accurate for a sample size of
800 than for a sample size of 100. However, the information in a set of interval-
censored observations reflects the width of the censoring intervals as well as sample
size. Unexpectedly the “probability of missing a visit” parameter had little effect,
although this was in the right direction with standard errors slightly larger when 40% of
visits were missed compared to 20%. Adding to the complexity, coverage was also
dependent on the shape of the survivor function and the centile of the survivor function.
This suggests it may not be possible to identify a simple rule to guide when the Wald-2
method can be used reliably, and that the use of this approach should always be attached

with caveats.

The likelihood ratio method gave the most accurate confidence intervals with coverage
consistently close to the nominal level of 95%. This reassuring result was not

predictable from a theoretical standpoint since a high proportion of the estimates lay on .
the boundary of the parameter space [16]. In‘aéldition, the distribution of the likelihood -

ratio statistic was found to follow closely the nominal . -distribution up to values of -

approximately 10. This implies that correct coverage would be achieved at any

reasonable choice of significance level.

The likelihood ratio approach also offers several theoretical advantages over Wald
confidence intervals, for example, ensuring that confidence limits do not extend beyond
the range of the parameter space [25]. The drawback with the likelihood ratio method is
computational. It is not currently implemented in any of the standard statistical
packages and therefore requires the use of computationally intensive ad hoc programs
(see Appendix II) [26]. Also, in the simulations performed here it was found that
“tolerance” parameters needed to be set to very small values to ensure convergence.
Finally, in contrast to the methods based on the information matrix, the program has to

be re-applied at each time point of interest.

Two alternative approaches based on re-sampling methods have been described by Sun
[8]. The first was a simple non-parametric bootstrap, re-sampling with replacement

from the original set of observations. The second approach employed multiple
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imputation of the exact survival time for each individual, apart from those who were
right-censored, given the individual censoring intervals and the maximum likelihood
estimate of the survivor function. This produced a set of right-censored data to which
the Greenwood formula [27] was applied. Both methods performed reasonably well in a
small simulation study. However, the simplicity of re-sampling methods is
compromised by the fact that the estimated survivor function is not uniquely determined
at the time point of interest in some of the replications. The work in this chapter could
be extended to compare the methods of confidence interval estimation discussed here

with those proposed by Sun.

This chapter focuses on uncertainty in the estimated survivor function at fixed time
points. However, there is often interest in the reverse problem — estimation of the time
points that correspond to selected quantiles of the survivor function. For right-censored
data, one approach calculates approximate confidence intervals using the first derivative
of the survival distribution but this would not generalise easily to interval-censored data

where the non-parametric distribution function is undefined at certain time points [27].

An undesirable feature of the non-parametric estimator for interval-censored data is
sharp discontinuities in the survivor function. Smoothing techniques, allied to penalised
likelihood inference, which have been developed to reduce this phenomenon, are likely
to be increasingly used. It might be expected that this would result in significantly
tighter confidence intervals, although at the cost of the assumptions underlying the
smoothing algorithm. Little research has been conducted on confidence intervals for this
approach, although re-sampling methods may offer the only tractable solution.
Alternatively, the possibility of using full parametric survival models should not be
overlooked. Inference for such models, including the derivation of confidence intervals,
is relatively straightforward. Both these methods are compared to the NPMLE in
chapter 3. Nevertheless, non-parametric methods will continue to play an important role
in informing the selection of an appropriate family of distributions and in assessing

goodness-of-fit [28].
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CHAPTER 3: ESTIMATING THE SURVIVOR
FUNCTION FOR A SINGLE SAMPLE

3.1 INTRODUCTION

The non-parametric maximum likelihood estimator (NPMLE, section 2.2.2) for interval-
censored data is a step function that tends to have a small number of jumps and hence
large jump sizes. Smooth estimators may therefore be more desirable when the
underlying survivor function can be assumed to be smooth. Non-parametric smoothing
techniques used in the estimation of the hazard or survivor function include kernel

smoothers, splines, and local or penalized likelihood estimates.

Kernel smoothing has been well studied when the data are right censored and Pan [1]
applies this method to interval-censored data. The kernel estimator of the density
function of the NPMLE is integrated to give the kernel estimator of the survivor
function. The main difficulty with this approach is the choice of an appropriate
bandwidth, especially since some of the proposed bandwidth selection methods for
right-censored data can no longer be implemented as there is generally no explicit form
of the NPMLE when data are interval-censored. Pan uses a 10-fold cross-validation
technique and the Parzen kernel in a small simulation study, where he compares the
kernel estimator to the NPMLE and the log-spline density estimator proposed by
Kooperberg and Stone [2]. Here the density function is directly modeled as a smooth
function using cubic splines, which may be more efficient than smoothing the discrete
NPMLE. Kooperberg and Stone provide S-plus [3] functions to fit the log-spline density
which include algorithms for selection of the number and placement of knots that use
the Akaike or Bayesian Information Criterion for final model selection. Results from the
simulations study (where sample size=100, number of follow up visits=1 or 3, and
initially 4 knots are used for the log-spline density) indicate that all 3 methods have
small bias, but that both smoothed estimators have reduced variability compared to the
NPMLE. The calculation of confidence intervals for either method is not discussed, but

Rosenberg [4] uses bootstrap percentile confidence intervals for spline estimation of the
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hazard function for interval-censored data. However, Pan notes that software for the

log-spline density model does not support small to medium or heavy censored samples.

Betensky et al. [5] describe local likelihood estimation of the hazard function when data
are interval-censored. Here, the local likelihood estimate of the hazard function at time t
is based on a polynomial approximation to the log hazard in a smoothing window with
defined bandwidth around t. As estimation is relatively straightforward when the data
are right-censored a local EM algorithm is used to facilitate estimation when data are
interval-censored. However, the method is restricted to using locally constant
approximations to the log hazard function with a Gaussian kernel weighting function
due to computation complexities. Since this may lead to biases at the boundaries,
Bebchuck et al. [6] propose an iterative multiple imputation algorithm that treats the
interval-censored observations as missing data, imputes values for them and then
obtains estimates for the more tractable right-censored data problem. This process is

iterated until convergence. Both methods are highly computationally intensive.

Lesaffre et al [7] describe a maximum likelihood based approach for the accelerated
failure time model for interval-censored data that exploits penalised smoothing of the
baseline density. A much simpler approach that is closely related to maximum penalised
likelihood estimation was proposed by Pan and Chappell [8]. By introducing a
smoothing or S-step into the EM algorithm when estimating the NPMLE, they obtain an
estimator that is not smooth in the usual sense but is “smoother” in that the jump sizes
do not vary so rapidly. The resulting EMS algorithm [9], being the simplest of the above

smoothing methods to apply, is discussed further in section 3.2.5.

Despite the wide range of approaches to the analysis of interval-censored failure-time
data, in practice the use of the simple imputation methods predominate, partly due to the
fact they are conceptually easier for the non-expert and as few of the alternative
approaches are implemented in the major statistical packages. This chapter considers the
commonly employed midpoint (MKM) imputation for the estimation of the survivor
function for a single sample. These methods are compared with the NPMLE, the
smoothed estimator of Pan and Chappell and a fully parametric model. In addition, a
new smoothed estimator that is obtained through a modification of method proposed by

Pan and Chappell is assessed.
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One objective of the work in this chapter is to identify circumstances under which the
relatively straightforward mid-point approach achieves sufficiently accurate estimates of
the survivor function compared with more complex approaches. Although mid-point
imputation for interval-censored failure-time data has been investigated in a number of

studies, this question has not been directly addressed.

Odell et al [10] compared an accelerated failure time Weibull model based on the full
interval-censored data and a Weibull model based on midpoint imputation. Simulation
studies focus mainly on estimation of a single continuous covariate, which will be
discussed further in chapter 4. However, the authors state that their results indicate that
if interest lies in estimation of the location or scale parameter, the interval-based model
is almost always superior, especially for decreasing hazards. The paper did not consider

any non-parametric approaches.

Dorey et al [11] considered a continuous outcome where the endpoint is the time of
crossing a certain threshold value. Their main approach was based on multiple
imputation of the threshold-crossing time with use of models that took into account the
continuous nature of the measurements. These were found to be superior to using

midpoint imputation in two example datasets.

Law and Brookmeyer [12] considered the case of doubly censored data, where both the
time origin (e.g. date of HIV infection) and the event time (e.g. dates of AIDS
diagnosis) are interval-censored. They investigate the impact of using midpoint
imputation for the time of infection on: the asymptotic bias and coverage of Kaplan-
Meier estimates of the latency distribution, the bias in estimation of hazard ratios, and
the size/power of the log-rank test. From results of a simulation study (where infection
distribution = exponential or log-logistic; latency distribution = Weibull, median 10
years; sample size=100; time between visits=1, 2, 4 or 8 years) the authors conclude
that midpoint imputation is reasonably accurate when the gap between visits is no more

than 2 years.

In addition to examining the performance of the simple imputation approaches, a
simulation study, in which a number of factors — the true survivor function, sample size,
and the frequency and pattemﬁbl})inspection times — are allowed to vary (section 3.3),

was used to investigate the following questions: (i) the right endpoint method is clearly
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biased, but by how much? (ii) how much accuracy is gained, if any, by using a
smoothed rather than a non-smoothed non-parametric approach? (iii) if the correct
parametric model is adopted, what is the gain in accuracy compared with the optimal
non-parametric approach? An illustrative data set is used to exemplify the different
methods (section 3.4), before a summary of the main findings and their practical

implications (section 3.5).
3.2 NOTATION AND THEORY

3.2.1 Observed data
The same notation as in section 2.2.1 is used. In addition, let M; = (L;+R;)/2 denote the

midpoint of the observed censoring interval

3.2.2 Imputing event times

By replacing the observed censoring interval by a single time point it is possible to
implement methods available for the analysis of right-censored data. Non-parametric
estimators of the survivor function are obtained by applying the standard Kaplan-Meier
method [13] to data where the censoring intervals are replaced by i) the censoring
interval right endpoint, R; (RKM), or ii) the midpoint, M; (MKM).

3.2.3 Parametric Weibull model (W)

Parametric models are easily fitted to interval-censored data. The family of Weibull
distributions has a monotonic hazard function that is defined by a shape parameter v,
and a scale parameter A, and is widely used in the parametric analysis of survival data
since the hazard function can take on a wide variety of forms depending upon the value
of the shape parameter (Figure 3.1). The hazard function is decreasing, constant or

increasing when y<1, y=1 or y>1 respectively.

The survivor function is given by S(t) = exp(- 4" ).The log-likelihood function is then

given by A7) =3 log(S(L) ~ S(R,-)

= Zn: log(exp(—ﬂLf ) — exp(=AR/ )).

i=]
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shape

Figure 3.1: Underlying Weibull survivor functions used in simulation study

3.2.4 Non-parametric maximum likelihood estimator (NPMLE)
As described in section 2.2.2, and returning to that notation, let {u;; j=1,...,m+1} denote
the unique ordered values of {0,{L;},{Ri}} and f=S(u;)-S(uj+;) for j=1,....m. Define an

indicator variable ;=1 if (u;, uj+1)cli and 0 otherwise. The log-likelihood function is

g(f):leog[Z;a,jfj} subject to £> 0, .Z]fj =1 (3.1
i= Jj= )=

As discussed in section 2.2.2, there is no closed form solution for the maximum
likelihood estimate (MLE) f = (f', f'm) and an iterative method is required, such as the
EM algorithm [14,15]. Define an indicator function I;; =1 if T, € /,, 0 otherwise, which

constitutes the “complete data”. The E-step calculates the conditional expectation of

person i, i=1,...,n, experiencing an event in interval j, j=1,...,m, given the observed data

and the current estimates of f = (f', ...f“m ), namely

E[Iy]=ayfj/(iaqu )

Considering Efljj] as an observed rather than expected frequency, the M-step is simply

to estimate the proportion of events in interval j,

ij =%iE[1y]
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The algorithm iterates between (2.3) are (2.4) until convergence. It can be shown that
f #0 only if u, {L}andu,, €{R} if this condition is not satisfied then f; =0 a

priori and these elements can be eliminated from the model [16].

3.2.5 Smoothed NPMLE (SNP & SNP2)

The EMS algorithm [9,17] is a simple modification of the EM algorithm which adds a
smoothing (S) step after the expectation (E) and maximisation (M) steps. The S-step is
often realised as a weighted average of neighbouring parameter estimates. Both Pan and
Chappell [8] and Leung and Elashoff [18], who use an EMS algorithm for the analysis
of doubly censored data, propose 3-point smoothing as this provides good estimates
without sacrificing efficiency. Pan & Chappell obtained similar results using S-point
and 3-point smoothing in simulations and 3-point smoothing is used throughout this

thesis.

Applying the EMS algorithm to estimation of the NPMLE as described above, and
denoting the parameter estimates at the k-th iteration by f* = ( AR fm(k)), the S-step

uses a triangular kernel

F0 :%["(_1;) +2F® 4 “"’];(25i<m-l).

i+l

To ensure that the smoothed estimator constitutes a proper distribution function,

estimates at the two endpoints are given by
~o
JO =350+ fW)a, jO =370+ F0 )4,
If however the last interval is infinite due to right censoring, i.e. ump+ 1=, the last

parameter is excluded from the smoothing step since it is determined by equation 3.1.

The addition of the S-step speeds up the convergence rate of the EM algorithm and the
resulting smooth non-parametric MLE (SNP) from the EMS algorithm can be shown to
be an extremum of a penalized likelihood. In a small simulation study where there is
only one follow-up visit, Pan & Chappell compare the NPMLE and SNP estimators and

conclude SNP performs satisfactorily in terms of bias and variation.

By definition, the EMS algorithm smoothes away any parameter estimates that would
have been estimated as zero by an EM algorithm. An issue that arises in this approach is

how to handle the elements of f that are zero a priori (section 3.2.4). Pan and Chappell
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ignore these elements as recommended by Peto and Turnbull when fitting the NPMLE.
The rationale for this is unclear since it is merely the arbitrary set of individual
censoring intervals that determines whether a particular element of f is zero a priori. It
would be expected that including these elements in the algorithm would enhance the
smoothness of the estimator. Therefore, two smoothed estimators have been examined.
Firstly, the a priori zero elements were excluded before estimation and the EMS
algorithm fitted as described by Pan and Chappell to estimate the SNP as outlined
above. Secondly, an alternative smooth estimator (SNP2) was fitted to the data by
estimating a parameter for each of the intervals defined by the unique ordered values of
{0,{Li},{R;}} and NOT excluding the a priori elements.

3.3 SIMULATION STUDY

3.3.1 Methods

A simulation study, with similarities to that of section 2.4, was carried out to assess the
accuracy of the various estimation methods described in section 3.2. Data were
generated from a hypothetical follow-up study of duration D with v evenly spaced
scheduled follow-up visits at =D/v, 2D/v, ... , D. Each visit was missed at random with
a fixed probability p. In addition, to allow for the fact that a patient may not attend on
the scheduled date, the actual visit time was assumed to be normally distributed, centred
at the scheduled visit time with standard deviation D/(3*v). Survival times were

generated from a Weibull distribution and the individual censoring intervals determined.

1,000 data sets were simulated for each combination of the following factors:

(a) Shape parameter of Weibull distribution, »=0.6, 1.0, 1.5 representing a decreasing,
constant, and increasing hazard function respectively. For each value of the shape
parameter, the scale parameter, A, was selected so that S(D)=0.05.

(b) Sample size, n=25, 50, 100, 200, 400, 800 individuals.

(c) Probability of missing a scheduled visit, p=0, 0.4.

(d) Number of evenly spaced scheduled follow up visits, v=3, 6, 12.

The survivor function was then estimated for each of the six methods described in
section 3.2 (RKM, MKM, W, NPMLE, SNP, SNP2). Following Aalen [19], the

accuracy of the estimated survivor function was defined as the absolute difference

between the estimated cumulative hazard function, -log(S‘ (1)), and the true cumulative
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hazard —log(S(f)) = - A¢” integrated over (and standardised for) the duration of the study

1.e.

1 Q y
= f|— log(S()) - A¢” |at (3.2)

A composite trapezoidal rule with 673 segments was used to calculate the metric (3.2).

For each combination of ¥, n, p and v, the metric (3.2) was averaged over the 1000

simulations, using a 10% trimmed mean.

aw b. NPMLE c. SNP

cumulative hazard

cumulative hazard

cumulative hazard

cumulative hazard

- -~ true Weibull cumulative hazard —— estimated cumulative hazard ## accuracy

Figure 3.2: Illustration of accuracy metric for different methods of estimating the

survivor function with interval-censored data

3.3.2 Illustration
Figure 3.2 shows the estimated cumulative hazard function for each of the six methods
for a single simulation (y=1, =100, p=0.4, v=6), where the shaded area corresponds to

the metric (3.2). The highly discrete nature of the NPMLE can be clearly seen in this
example (Figure 3.2b). As was noted in section 3.2.4, S is undefined within intervals

(uj,uj+1) for which f”i #0 for the NPMLE, SNP and SNP2 methods. Following

convention §(t) was estimated by linear interpolation in these intervals, although the
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survivor function is only strictly defined for times where the curve is horizontal.

Smoothing the NPMLE reduces the variation in step sizes and introduces additional
steps by assigning mass to intervals where previously f,- = 0. The resulting curves are

therefore smoother than the NPMLE (Figure 3.2c, d), and the SNP2 estimator is
smoother than the SNP estimator due to the increased number of parameters in the
model. The severe underestimation of the cumulative hazard from the RKM method
(Figure 3.2f) and the improved accuracy from fitting a correctly specified parametric

model (Figure 3.2a) are apparent.

3.3.3 Implementation

All analyses were implemented using SAS Version 8.2 [20]. A program available from
the SAS/IML sample library (ICE.sas) [21] was modified to fit the NPMLE using a
quasi-Newton optimisation procedure and the SNP and SNP2 methods using an EMS
algorithm (Appendices 3.A & 3.B). The Weibull model was fitted using PROC Lifereg
and the MKM and RKM methods using PROC Lifetest.

3.3.4 Results
The mean accuracy metric for each method is given in Table 3.1. These reflect three
characteristics of each estimator: bias, variance, and smoothness. It can be demonstrated

that the exponentiated value can be roughly interpreted as the geometric mean of the

ratio of the estimated survivor function to the true survivor function (inverted if <1) at

any given time point. The ratio of the accuracy metric for selected comparisons of

estimators are given in Table 3.1: the RKM method is reported relative to MKM, the
SNP2 method relative to the Weibull, and the NPMLE, SNP and MKM methods
relative to SNP2. These can be directly interpreted on a survivor function scale. For
example, the value of 1.07 (= 0.554/0.520) for the NPMLE relative to the SNP2
estimator (Table 3.1, first row) implies that the error in estimating the survivor function
at any time t is, on average, 7% higher for NPMLE than for SNP2. The standard errors

of the ratios of mean accuracy metric were calculated using a Taylor series expansion.
As expected, general trends of increased accuracy as » or v increased and as p or@

decreased were seen for all methods. Results for »=1.0 and y=1.5 were similar (Table}
3.1, Figures 3.3-3.5).
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a) Right-censored Kaplan-Meier estimator

The RKM approach was less accurate than the MKM in all simulations (Table 3.1) due
to the systematic underestimation of the cumulative hazard function with this method.
The relative inaccuracy of RKM increased with increasing sample size, a larger shape

parameter, and@&':t’e? sparseness“@'ﬂle highest ratio of 8.39 was obtained for
n=800, y=1.5, v=6, p=0.4.

b) Effect of smoothing the non-parametric estimator

Figures 3.3a-c show the mean accuracy metric for the NPMLE and SNP models relative
to the SNP2 method by v, p and n when y=0.6, y=1.0 and y=1.5 respectively. In general,
smoothing the non-parametric estimator gave improved accuracy, with SNP2 superior
to SNP (Table 3.1).

When y=0.6, the corresponding ratios were only slightly greater than one (NPMLE
range 1.0 — 1.17, SNP range 1.0 — 1.14) implying all three non-parametric methods had

similar accuracy (Figure 3.3a).

When y=1.0 or 1.5, the benefit of the SNP2 method over the NPMLE increased as
sample size increased and the number of visits decreased. In contrast, for the SNP
estimator the effect of sample size reversed, with appreciable difference in accuracy
compared to SNP2 being evident only for n<200 (Figure 3.3b&c). This effect was
reduced as the number of follow-up visits increased. Both smooth estimators had similar
accuracy when the number of visits and sample size were large. The effect of frequency

of missing visits upon the relative accuracy of the methods was minimal.

¢) Midpoint Kaplan-Meier estimator

Figures 3.4a-c show the accuracy of the MKM approach relative to the SNP2 method
(the optimal non-parametric method) by v, p and » when y=0.6, y=1.0 and y=1.5
respectively. This comparison was affected by a complex interaction between the shape

parameter, sample size and sparseness of the data, which is discussed below.
When there were no missing visits, the relative accuracy of the MKM and SNP2

methods was not affected by the shape parameter (Table 3.1). When v=12, the relative
accuracy was close to 1 for all sample sizes (range 1.02 — 1.12), but the MKM method
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Figure 3.3: Comparing non-parametric methods: The effect of sample
size and sparseness of data when a) y=0.6, b) y=1.0, ¢) y=1.5.
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Figure 3.4: Comparing MKM and SNP2 models: The effect of sample size and
sparseness of data when a) y=0.6, b) Y =1.0, ¢) y =1.5.

63



became relatively less accurate with increasing sample size when there were fewer

visits.

When 40% of follow-up visits were missed the strength of these trends diminished as
the shape parameter increased. For y=0.6 and v=3 or 6, the SNP2 approach became
more accurate relative to MKM as the sample size increased (Figure 3.4a). The
accuracy of the two methods was comparable when y=1.0, 1.5 except when v=3 and
n>200 (Figure 3.4b&c). |

d) Parametric vs. non-parametric methods

Figures 3.5a-c show the accuracy of the SNP2 approach relative to the Weibull model
by v, p and n when y=0.6, =1.0 and y=1.5 respectively. By definition, the Weibull
model was the most accurate method since the data were generated from a Weibull
distribution [22].

The SNP2 method was less accurate by a factor of 1.09 — 1.61 relative to the Weibull
model (Table 3.1). The effect of sample size on the relative accuracy of the two
methods depended strongly on the shape parameter. For y=0.6, the gain from fitting a
fully parametric model increased with sample size, with a steeper gradient with fewer
visits (Figure 3.5a). For y=1.0, 1.5 the impact of sample size was much reduced (Figure
3.5b&c). Similar trends were seen for the NPMLE and SNP methods.

3.4 EXAMPLE: CHIPS multi-centre cohort study
In the simulation study described above the SNP2 estimator was consistently superior to
the NPMLE and SNP estimators and the MKM method was found to perform as well as
the SNP2 estimator in certain cases. To illustrate the MKM and SNP2 approaches we
now focus on data from the CHIPS multi-centre cohort study of HIV-1 infected children
in the UK and Ireland [23] and examine the impact of starting highly active
antiretroviral therapy (HAART) on the time to achieving undetectable levels of plasma
HIV RNA less than or equal to 500 copies/ml.

Of 599 children starting HAART with available HIV RNA measurements, 166 (28%)
did not achieve undetectable HIV RNA within one year from starting therapy. Children
had an average of 4 (IQR 3-5) plasma HIV RNA measurements over the year, and a

median gap between measurements of 8 (IQR 5-13) weeks. The censoring intervals
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were on average 8 (IQR 4-12) weeks wide. The individual censoring intervals are
shown in Figure 3.6. For the purpose of presentation, R; was set to 60 weeks for the 166

subjects who exhibited right censoring.

— Left

¢ censored
601 00 xxxxx x xxxxx Ox xx xfx<xxx00OD:pApopoonxn <@— Right
censored
561 observation
527
487
44
407 )
4
= 36 x .
'S 327 «
= 10 « «
5 28 7 %X - x
Nt - L .
EO 24 « x x 1-2 subjects
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12 O 16-20 subjects
o 7] 0 29 subjects
.
n -

T T T T T T T
O 4 81 1 2 2 2 3 3 4 4 4 5 5 6

left endpoint

Figure 3.6: Individual censoring intervals in the CHIPS study

Using the MKM method, the cumulative hazard function indicates the hazard is
decreasing (Figure 3.7). Most events occur in the first 24 weeks, during which time
children have on average 2 (IQR 1-3) measurements. The findings of section 3.3.4¢

indicate the SNP2 method is therefore the more reliable method for these data.

The data induced 49 intervals in the estimation of SNP2. The MKM and SNP2
estimates of the cumulative hazard are shown in Figure 3.7, with bootstrap percentile
confidence intervals for the SNP2 approach. The proportion of children achieving HIV
RNA <500 copies/ml increased rapidly to 68% by 17 weeks, and then gradually
increased further to 74% by one year. The MKM and SNP2 estimators were markedly
different in the first 24 weeks, with the MKM giving lower (higher) estimates of the

cumulative hazard (survivor) function.
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Figure 3.7: Cumulative hazard in the CHIPS study

3.5 DISCUSSION

Six methods for estimating the survivor function from interval-censored data have been
described and assessed: a fully parametric Weibull model (W), the non-parametric
maximum likelihood estimator (NPMLE), two closely related smoothed versions of this
estimator (SNP & SNP2), a Kaplan-Meier estimator that assumes the event of interest
occurs either at the middle of the observed censoring interval (MKM) or at the time it is
observed (RKM).

The simulation study established that smoothing resulted in a significant increase in
accuracy, with the SNP2 estimator consistently superior to the SNP and NPMLE
estimators. The SNP2 method is therefore the recommended non-parametric approach
among those examined. An extension of this work would be to compare SNP2 against
other smoothing approaches developed for interval-censored survival data as reviewE in

the Introduction, particularly the methods discussed by Pan [1] and Lesaffre et al [7].

The simulation study showed clearly that the RKM method results in significant bias,
yet this method is still commonly applied in practice, perhaps because the main focus of

an analysis is often a comparison of two or more groups. This is examined in the
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following chapter. However, it remains desirable to obtain reasonably unbiased
estimates of the survivor function for the individual groups. Since the MKM method is

as easy to fit as the RKM approach, use of the latter cannot be justified.

In contrast, MKM performed well compared with SNP2 in certain situations. The results
of the simulation study indicate that the SNP2 method is superior if n>200 and there are
fewer than 5-6 visits per individual (during the period where most events occur), with
this superiority being more marked when the hazard is decreasing. In all other scenarios
considered, MKM was as accurate, or almost as accurate, as SNP2. A simple way of
determining the shape of the hazard function is to plot the cumulative hazard -log((S(t))
against time, using the MKM method to estimate S(t).

Inspection of the results of individual simulations showed that the poor performance of
the MKM when visits are infrequent was mainly due to over-estimation of the survivor
function when t is small. The estimator fails to capture early changes in the underlying
survival distribution as imputed event times are restricted by the distribution of the
earliest visits. In particular, the first step of the estimator cannot occur earlier than
midway to the first visit time. This phenomenon is stronger when the underlying hazard

is decreasing as proportionately more events occur at earlier times.

As noted in section 3.3.1, the accuracy metric reflects both bias and variance of the

estimators. For small samples sizes the accuracy metric is dominated by the variance
component. The similarity of the metric for MKM and SNP2 for small sample sizes
implies that the variance of these estimators is comparable. The superiority of the SNP2
method for larger samples sizes suggests that this approach is less biased. This finding
has some theoretical justification in that the NPMLE method, to which the SNP2

method is closely related, has been shown to be asymptotically consistent [24,25].

The simulation study was based on data generated from a Weibull distribution, and the
results confirmed the theoretical prediction that a correctly specified parametric model
would be the most accurate method. The maximum benefit of the Weibull model
compared to SNP2 was seen when the hazard was decreasing, sample size large and
there were few follow-up visits. However, in practice the family of distributions is not
known, and mis-specification leads to an asymptotically biased estimator [22]. The

simulation study is limited by its restriction to data drawn only from a Weibull
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distribution, however a range of hazard types was considered, although all were

monotone.

Finally, there is little research into methods for estimating confidence intervals for the
smoothed non-parametric estimator. Resampling methods, as demonstrated in the
example described in this paper, offer a tractable solution. Also, confidence intervals for
the MKM method by standard methods (e.g. Greenwood [26]) are likely to be too
narrow since the method assumes the event time is known exactly. Again, simple non-

parametric bootstrap confidence intervals are recommended.
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CHAPTER 4: ESTIMATING THE EFFECT OF
COVARIATES

4.1 INTRODUCTION

It is often desirable to quantifying the effect of different factors, for example age or
treatment, on the survival time. A variety of methods have been proposed for estimation
of covariate effects upon the survivor or hazard function when data are interval-
censored (section 1.3). However, these are often computationally intensive, requiring

complex programming.

In the case of categorical factors, the non-parametric maximum likelihood estimator
(NPMLE) [1,2] (section 2.2.2) of the survivor function can be fitted to data from each
level of the covariate and several significance tests have been proposed, mainly for the
two sample problem [3]. Most of these are adaptations of non-parametric tests available
for right-censored data but assume that the data are grouped, that is, have a finite
number of possible follow-up times common to all individuals. This is often not the

case.

Fang et al. [4] propose a test statistic for continuous survival times based on an
integrated weighted survival difference that is implemented using simple bootstrap. This
is a generalisation of the test statistic proposed by Pepe and Fleming [5] for right-
censored survival data. The authors report that the method does not perform well when
the difference between the survivor functions under examination is non-proportional,

based on a simulation study (results not given).

Zhao and Sun [6] describe a generalised log-rank test, also for continuous survival
times, that reduces to the usual log-rank test [7] when data are right-censored. The
covariance matrix of the test statistic is calculated using multiple imputation, and the
standardised test statistic is then referred to a x’-distribution on p-1 degrees of freedom,

where p is the number of groups under study. This distributional assumption is shown to
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work well in a simulation study (where survival times = discretized exponential, p=2,

n=100 per group, right censoring = fixed or random; 10%, 25% or 40%).

Alternatively, Pan suggests a multiple imputation approach based on the Approximate
Bayesian Bootstrap [8] that imputes survival times for interval-censored observations
and then implements standard methods for right-censored data to compute a test statistic
[9]. None of these methods are available in the standard statistical packages, although S-

plus [10] code is available from Pan for the multiple imputation method.

In the case of continuous covariates when data are exact or right-censored, the
proportional hazards model proposed by Cox [11] is often applied. The appeal of this
method arises from its semi-parametric nature; the effect of covariates on survival can
be investigated using a partial likelihood framework that does not require specification
of the baseline hazard function. Instead only the rank order of event and censoring times
are required. However, when the data are interval-censored these are not, in general,

possible to derive, precluding the use of partial likelihood inference.

Several methods combine multiple imputation and the Cox proportional hazards model
for right-censored data. Satten has proposed using either Gibbs sampling [12] or a
parametric model for the baseline hazard [13] to determine the rank ordering of event
times consistent with the observed censoring intervals. In contrast, Pan [14] uses the
Breslow estimator of the survivor function to estimate the ranks whilst Goggins et al
[15] use a Monte Carlo EM approach. Although these methods all reduce to the usual
Cox proportional hazards model when the data are right censored the imputation
approach is slightly ad hoc in each case. Alternatively, when the baseline hazard can be
parametrically specified or modelled using splines the full likelihood can be maximised.
Rosenberg et al. [16] and Kooperberg and Clarkson [17] demonstrate the use of
regression splines, whilst Betensky et al. [18] extend their work on local likelihood
estimation to allow estimation of covariate effects. These methods provide a smooth
estimate of the baseline hazard/survivor function but do not reduce to the Cox
proportional hazards model when the data are right censored. The fitting of each of

these methods is complex and computationally intensive.

Finkelstein also describes a full likelihood approach where nuisance parameters

associated with a non-parametric baseline hazard and covariate effects are estimated
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simultaneously [19]. In this case, as for the NPMLE, the baseline hazard is only defined
within a number of time intervals which are determined by the individual censoring
intervals. This approach is similar to the piecewise exponential model [20,21], where
the hazard is assumed to be constant across fewer, predefined time intervals. Both
models require an iterative fitting procedure, such as Newton Rhapson, or the use of
GLM or an EM approach has been suggested for the piecewise exponential model
[22-24]. These methods are discussed in more detail in section 4.2. An approximation to
the piecewise exponential model is also proposed that can be fitted using standard

generalised linear modelling software without an iterative procedure (section 4.2.8).

As with the methods discussed in chapter 3, the above approaches developed
specifically for interval-censored have been neglected in applied medical research. In
practice, interval-censored data are usually analysed by fitting a Cox model assuming
events occur at the right endpoint of the observed censoring interval for each individual.
The following authors have discussed the use of simple imputation, where either the

right endpoint or midpoint is imputed.

Lindsey and Ryan [22] compared a Cox model using the left, mid or right endpoint of
the censoring interval to full parametric, piecewise exponential and Finkelstein models
by estimating the hazard ratio between two groups using two illustrative datasets. For
one dataset with light censoring (frequent visits and moderate proportion right-
censored) parameter estimates of the hazard ratio from all methods of analysis were
similar. For the other dataset, with heavier censoring, the Finkelstein model was

unstable and estimates from the other models varied considerably.

Three simulation studies investigating right endpoint imputation have been reported. So
[25] suggests that using the right endpoint in a Cox proportional hazards model may be
satisfactory when ties are handled using an exact likelihood. However, just one scenario
is considered with 100 observations and data that are grouped into 7 intervals. In
contrast Williams et al. [26] consider more general interval-censoring and vary the
number of follow-up visits and amount of right-censoring. They report moderate bias in
covariate estimation as the number of follow-up visits decreases and significant bias
when the patterns of follow-up visits are not identical in the two groups of subjects

under comparison. However, each scenario had 5000 observations and the effect upon
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their conclusions of reducing the number of observations to a size more common in

practice is unclear.

The impact of different measurement frequencies on covariate estimation was also
considered in a more extensive simulation study by Griffin et al. [27]. Here, right- or
mid- point imputation in a Cox proportional hazards model was compared to right
endpoint imputation in parametric models (Weibull, log-logistic, or cubic-spline
baseline hazard models) and to estimation using the same parametric interval-censored
models. Data were generated to mimic CD4 and HIV RNA measurements in patients
infected by HIV. Two groups of 200 observations were simulated 2000 times, with the
frequency of visits varying from equal schedules per group to one group having visits
twice as frequently as the other. As the difference in visit frequency increased between
the groups, imputation with the right endpoint, and to a lesser extent the midpoint,
resulted in biased estimation of the covariate effect, due to underestimation in the group
with fewer measurements. A difference in levels of detection bias in the two groups led
to some bias when the interval-censored methods were used. The bias in estimated
covariate effect led to poor coverage when there was a difference in measurement

frequency between groups.

Finally, Odell et al [28] compared an accelerated failure time Weibull model based on
the full interval-censored data (WIC) and a Weibull model based on midpoint
imputation (WMID). The impact of sample size, percentage censored and width of
censoring intervals on estimation of a single continuous covariate was assessed via a
simulation study. When all three factors were small WMID was satisfactory. This was
also the case when sample size was small and the censoring intervals relatively wide, or
there was less than 25% censoring, since WIC estimates had high variance. When
sample size was large the shape of the underlying hazard function affected the choice of
method. As the hazard became steeper the bias in WMID increased. The paper did not

consider any non-parametric approaches.

The two main objectives of this chapter are i) to assess a proposed approximation to the
piecewise exponential model. This method is suggested as a more rigorous alternative to
simple imputation methods whilst remaining easy to fit; and ii) to extend the work
described above in a simulation study by considering a wider variety of generated

datasets and regression models. The impact of the true size of covariate effect, baseline
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hazard/survivor function, sample size, and the frequency and pattern of inspection times
upon estimation of covariate effects were considered. Several different methods of
analysis are assessed: a fully parametric model, the Finkelstein proportional hazards
model, a piecewise exponential model, an approximation to the piecewise exponential
model, and a Cox model using either the midpoint or right endpoint of the observed
censoring interval. Situations under which the simpler methods (right- or mid- point
imputation in the Cox model, approximation to the piecewise exponential model)
achieve estimates of covariate effects that could be considered sufficiently accurate for
practical purposes are determined. The extent to which the simple imputation methods

are affected by the method of treating ties in the data is also examined.

After describing the approximate piecewise exponential model and other methods
(section 4.2), the results of the simulation study are reported (section 4.3). Data from the
Delta Trial Virology Substudy [29] and CHIPS study [30] are used to illustrate the
different methods (section 4.4). A summary of the main findings and their practical

implications is given (section 4.5).

4.2 NOTATION AND THEORY

4.2.1 Observed data

The same notation as in section 2.2.1 is used. In addition, let M; = (L;+R;)/2 denote the
midpoint of the observed censoring interval, and let x; (i=1,...,n) be a fixed covariate for
the i-th individual. The censoring mechanism is assumed to be independent of both the

true failure time and the covariate.

4.2.2 Proportional hazards model
The hazard function for a given covariate vector x,

lim

< <
Bt | x) = ao0s P<T<t+A|t<T,x)

At

represents the instantaneous death rate for an individual surviving to time t. In a
proportional hazards model, the hazard function is expressed as the product of an
unspecified baseline hazard, (f) and relative risk function, usually the exponential of a

linear function of covariates such that

h(t| x) = hy (1) exp(S) (4.1)
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The survivor function under the assumption of proportional hazards can be expressed as
S(e|x) =[S, O] (42)

where the baseline survivor function is given by

So(t) = exp(- _[ho(u)du) .

4.2.3 Partial likelihood

In a Cox proportional hazards model, the regression coefficients §§ in (4.1) are estimated
without the need to specify a form for the baseline hazard, which is itself not estimated.
Using a partial likelihood that treats the baseline hazard as a nuisance parameter, only
information on the rank of the censoring and event times is used rather than the actual

times themselves [11,31].

Assuming there are j=l,...m events, x; are the covariates for the individual
experiencing the j-th event and R(;) denotes the set of all individuals at risk at the j-th
event, the partial likelihood is given by

= eXp(ﬁx(,))
L(B) = H Zexp(ﬂx) (4.3)

ieR;y

When ties exist in the data, all terms from the partial likelihood (4.3) that are consistent
with the observed data can be summed. For example, if two individuals with covariates
X1 and X are tied at the j-th event time, and the set Ry; contains these two individuals
plus one other with covariates Xg3), the contribution from the j-th event time to the
likelihood would be

exp(f 'x( jl)) exp(f 'x( j2))
lexp(Bx,1,) + exp(B%, 5)) + exp(B% )| [exp(B% 1)) + exp(B, 3]
exP(ﬂx(jz)) exp(ﬂx(Jl))

lexp(ﬁx(m) +exp(B’5) +exp(B5,)| [exp(Bx 1y) +exp(B, 5))]

This sum does not simplify and the corresponding log likelihood is difficult to compute
if there are a large number of tied observations. Instead it is common to use an

approximation to the partial likelihood. Let d; be the number of tied observations, and
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Dy; the set of individuals with tied observations, at the j-th event time. In the simplest

approximation proposed by Breslow [32] the contribution for each tied event is given by

[ Texp(B5)

iy

[ ZeXp(,B'xi)]

ieR;

4.2.4 Imputing event times

As discussed in section 3.2.2, it is possible to implement standard methods available for
the analysis of right-censored data by imputing an exact failure time within each
observed censoring interval. Estimates of covariate effects can be obtained by fitting a
Cox proportional hazards model as described above using i) the censoring interval right
endpoint, R; (RCox), or ii) the midpoint, M; (MCox). This can give rise to a large

number of tied observations if there is a limited set of possible visit times.

4.2.5 Parametric Weibull model

By assuming a parametric model for the baseline hazard a proportional hazards model
can be easily fitted by maximising the full likelihood. Assuming the observed event
times follow a Weibull distribution (section 3.2.3), the baseline hazard is given by

ho(t) = Ap™”!

where A is a scale parameter and y the shape parameter. Under an assumption of
proportional hazards (4.1), the effect of any covariate will be to modify the scale
parameter, leaving the shape parameter unchanged. The event times of all individuals
will therefore have a Weibull distribution with shape parameter y, and the Weibull

distribution is said to have the proportional hazards property.

4.2.6 Adapting the Cox proportional hazards model
Finkelstein [19] describes a proportional hazards model fitted to interval-censored data
that maximises the full likelihood. Following the notation in section 2.2.2, let {uj;
j=1,...m+1} denote the unique ordered values of {0,{L;},{R;}} and define an indicator
variable a;=1 if (uj, u+1)cli and 0 otherwise. Under the assumption of proportional
hazards, the survivor function is given by (4.2) and the likelihood (2.1) is written
L= flog(f &[S () — 5 ()78 ]J .

Jj=1

i=1
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To remove range restrictions on the parameters for the underlying survival curve, the
likelihood is parameterised in terms of the log cumulative hazard such that
y;=log[-log(So(u;))]. The likelihood can then be rewritten as
N m
L(y, )= log > a,lexp(-exp(Bx, +7,.,)) —exp(-exp(B%, +,))]
i=l1 Jj=1

where o= -0 (So(#1)=1) and Ym= o (So(Um)=0).

As for the NPMLE of the survivor function, the baseline survivor function is constant

outside all distinct intervals with endpoints u, € {L,}and u ,, € {R, } (section 2.2.2) [33]

and so the number of parameters in the model can be reduced. An iterative procedure is
required to maximise the likelihood and Finkelstein proposes a Newton-Raphson
approach. Estimates of the standard errors of the parameters are obtained from the
second derivative of the log-likelihood. Setting /=0 in the score equation gives the

NPMLE described by Peto and Turnbull.

This approach is closely related to a piecewise exponential model (section 4.2.7), where
the time scale is divided into intervals over which the hazard is assumed to be constant
(the piecewise exponential model parameterises the hazard rather than the log-
cumulative hazard). However, in contrast with the piecewise exponential model, the
intervals in Finkelstein’s model are data dependent, and tend to increase with sample
size. As mentioned in the discussion of the NPMLE (section 2.2.3) the asymptotic
results may not therefore be justified. Finkelstein notes that continuous data can be
grouped and therefore the method can be appropriately applied. However, the method
can be numerically unstable and computationally intensive for some datasets (section
4.3.4).

4.2.7 Piecewise exponential model (PE)

The piecewise exponential (PE) model imposes the relatively weak assumption of
constant hazards within a fixed number of predefined time intervals. For example, when
analysing data from a clinical trial, follow-up can be divided into intervals centred at the
scheduled visit times. Let follow-up time be divided into p pre-specified intervals
=(t.1 t), j=l..p, over which failure rate A4, j=1..p, is considered constant.
Multiplicative covariate effects (i.e. proportional hazards) can be easily incorporated

into the model using equation (4.1). Let J; be an indicator of whether person i has an
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event. If all event times are known exactly, the likelihood contribution for a person with

follow-up time Tiel; is

S,

i j—1
A; exp ']Zlk (=t ) =4, Tt )
k=1
and the log-likelihood can be written as
L=Y{D,In,-1Y} 4.9
Jj=1

where D; and Y; are the number of events and person-time at risk in interval j
respectively. However the exact times of failure are not known. An EM algorithm [34]
can be used to obtain parameter estimates where the complete-data are defined as the
exact failure times for people experiencing an event and the censoring times of those

right-censored.

Lindsey and Ryan give expressions for an individual’s conditional probability that an

event occurred in interval j, and the conditional expected time at risk in interval j, given
the observed data and current estimates of A ; [22]. These are calculated in the E-step
and the most recent estimates of D; and ¥; then used in the M-step where the likelihood
(4.4) is maximised to update the estimates of yi ;- The likelihood (4.4) is proportional to

the likelihood obtained by assuming the D; are Poisson distributed with mean parameter
4Y;, and hence a Poisson regression package can be used to estimate the 4; by treating
the outcome as D; and log(Y)) as offset. Standard errors can be estimated using the

methods of Meng and Rubin [35]. Survival curves can then be calculated as
~ j_] A A
S@) = exp[—ZAm[tm b, ]- 4,0~ tj_,)} sl <t<t, 4.5)
) m=1

where 1 ; is the estimated rate in interval j. These rates can be modelled as log linear

combinations of covariates, which may be dependent on interval.

Seaman and Bird [21] extend the PE model to allow for time-varying coefficients and
left truncation, in an EM framework. Other authors [23] have suggested a generalised
linear model approach [24,36]that extends Efron’s proposal for fitting logistic models to
right censored survival data using an associated Bernoulli model [37]. The fitting
procedure requires user-written macros to iterate between estimation of the baseline
hazard parameters and covariates effects using standard GLM software. However, there
are often problems in estimation as the rate parameters should be restricted to positive
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values. In addition, standard errors must be obtained from the observed information

matrix, which is not always the default package output.

Deciding the number or breakpoints of intervals is often based on natural divisions of
time e.g. six-monthly, or yearly. However the number of intervals that can be reliably
estimated is@ on the number of events in the data. Friedman recommends
starting with 5-7 intervals and suggests choosing the interval breakpoints such that the
expected numbers of events in each interval are equal [20]. Two methods have been
described in the literature for refining this choice, which are based on the model with no
covariates. Estimated rate parameters and their standard errors can be investigated to
show whether adjacent intervals have similar hazard rates and can be combined, or there
are sharp changes in underlying hazard rates and intervals should be further divided
(assuming there are enough events in the new intervals for estimation) [20].
Alternatively the model can be progressively simplified by assigning the same indicator
variable to adjacent time points (starting with I;) as long as a likelihood ratio test shows
no significant difference as a result of combining the intervals [38]. The number and
breakpoints of the intervals has been investigated using real-life data and the method

found to be fairly robust to their choice [20,22].

4.2.8 Approximate piecewise exponential model (APE)

An approximate piecewise exponential (APE) method that can be fitted in standard
packages without an iterative procedure is proposed. As for the PE model, constant rates
4, j=1..p are assumed within p pre-defined t.ime intervals. First, each interval is
allocated total number of events D; and person-time at risk Y; accounting for the
interval-censoring, as described below. A standard Poisson regression model can then

be fitted, with D, ~ Po(Yj2; ).

This approach therefore maximises the same log likelihood (4.4) as that for the
completefdata when fitting a PE model using an EM algorithm[34]. However, instead of
computing the conditional expectation of D; and Y} in the E-step at each iteration as for
the PE model, the APE approach calculates the conditional expectation of D; and ¥;
once assuming the event time ¢ is uniformly distributed. So the APE approach is
equivalent to the first iteration of the PE model using an EM algorithm given that
starting values are calculated assuming that an individual experiences the event halfway

through the interval. This method is explained graphically in Figure 4.1.
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Figure 4.1: Dividing events and follow-up into intervals for the approximate

piecewise exponential method

If the censoring interval Ij, for the i-th individual lies wholly within the j-th pre-
specified interval, as for Person A, this individual will contribute one event to Dj and
person years are calculated assuming the event occurred at the midpoint of the
censoring interval, M;. If, however, one or more intervals are overlapped by the
observed censoring interval, the event and the person time at risk for that individual are

divided between all intervals during which the event may have occurred.

Consider person B, whose interval overlaps intervals 2, 3 and 4. Their event is divided
between these intervals in proportion to the length of time common to each interval and
their censoring interval; namely d,/2.d;, d/2.d;i and d3/2.d; for intervals 2, 3 and 4
respectively. The person-time at risk is then calculated for each proportion of an event,
as if the event occurred in the middle of the person-time at risk within the relevant
interval. For example, the person-time at risk in interval 2 is calculated as follows: if
the event occurred in interval 2 this corresponds to ((w»-d;)+d;/2)*(d,/2d;) person-time
at risk; if the event occurred in interval 3 this corresponds to w,*(d/2d;) person-time at
risk; and if the event occurred in interval 4 this corresponds to w,*(d3/2d;) person-time
at risk. The person-time attributed to interval 2 is therefore (w»o-d;) + di/2*(d\/2.d;) +
di*(da+d3)/2d;).
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4.3 SIMULATION STUDY

A simulation study was carried out to assess the performance of each of the following

estimation methods as described in section 4.2:

e the Finkelstein proportional hazards model (F).

e apiecewise exponential model (PE) with time divided into 5 periods with constant
hazard within periods. Breakpoints were chosen so that the expected number of
events using an MKM model (section 3.2.2) with no covariates were equal within
each interval.

e an approximate PE model (APE) with 5 intervals and breakpoints as for the PE
model.

e MCox and RCox models, using both an exact likelihood and a Breslow
approximation for the treatment of ties.

e aparametric Weibull survival model (W).

4.3.1 Methods

Data were generated from a hypothetical follow-up study of duration D as described in
section 3.3.1. Survival times were generated from a Weibull distribution with a single
binary covariate corresponding to a log hazard ratio 5. In each dataset n/2 observations
were generated for each covariate value. The individual censoring intervals were then

determined.

1,000 data sets were simulated for each combination of the following factors:

(a) Shape parameter of Weibull distribution in individuals, y=0.6, 1.0, 1.5 representing a
decreasing, constant, and increasing hazard function respectively. For each value of the
shape paraxﬂeter, the scale parameter, A, was selected so that S(D)=0.05 when x;=0.

(b) Total sample size, n=50, 100, 200, 400, 800 individuals.

(c) Probability of missing a scheduled visit, p=0, 0.4.

(d) Number of evenly spaced scheduled follow up visits, v=3, 6, 12.

(e) Log hazard ratio, £=0, 0.4, 0.8 corresponding to a hazard ratio of 1, 1.49 and 2.23

respectively.

Figure 4.2 shows the survivor functions for each shape parameter y, and log hazard
ratio, f. For each combination of S, », n, p and v, the mean log hazard ratio, mean

squared error (MSE), mean estimated standard error of the log hazard ratio, empirical
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standard error of the log hazard ratio and coverage probability were estimated. For 1000

repetitions the empirical variance is estimated to within 7% of the true value (or 3% for

the standard deviation).
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Figure 4.2: Survivor distributions in simulated data

4.3.2 Implementation

All analyses were implemented using SAS Version 9.1 [39]. Data were rounded from days -

to fortnightly units prior to analysis. Finkelstein models were fitted using the (Dual) Quasi-
Newton or Newton-Raphson Ridge non-linear optimisation routines in IML (Appendix 4.A).
PE models were fitted using (Dual) Quasi-Newton non-linear optimisation routines in IML
(Appendix 4.B), Weibull models were fitted using PROC LIFEREG, APE models were
fitted using PROC GENMOD after creation of the necessary data sets (Appendix 4.C), and
MCox and RCox methods fitted using PROC PHREG.
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4.3.3 Convergence

The default convergence criterion for PROC LIFEREG was used, namely that the
maximum change in the parameter estimates between Newton-Raphson steps was less
than 0.001. The non-linear optimisation routines in IML stop the iteration process when
at least one of the default termination criterion are met. This was usually relative
gradient convergence for the Finkelstein model and absolute function convergence for
the piecewise exponential model. Initially the Finkelstein model failed to converge for
around 10% of all simulations. This was determined to be due to the maximisation
procedure attempting to take the logarithm of zero and resolved by setting the

contribution from such terms to be a large negative number.

The Weibull model failed to converge in 45 (0.02%) simulations overall, from six
scenarios. The Finkelstein model failed to converge in 88 (0.03%) simulations overall,
spread between 14 different scenarios. The piecewise exponential model failed to
converge in 149 (0.06%) simulations overall, spread between 33 different scenarios.
All failed runs for the Weibull model and the majority of failed runs for the piecewise

exponential and Finkelstein models were from scenarios with n=50 and v=3.

To investigate the reason for lack of convergence, the data from scenarios with n=50 |,
and v=3 that had not converged were examined and a separate Weibull model fitted to |
each group (where X=0 or X=1). Problems occurred when the censoring intervals in a
sample were wide and the left endpoint for most individuals was zero. A Weibull model
could not be fitted to data from the single group in this case due to the lack of
information provided by the censoring intervals. Covariate estimates were unstable in

the proportional hazards model since all the information is being driven by one sample.
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4.3.4 Results

a) Treatment of ties for Cox models

For f=0.4 or 0.8, both the MCox and RCox methods under-estimated S when using
either an exact likelihood or the Breslow approximation (Figure 4.3). However, the bias
was more severe using the Breslow approximation, at least 4% higher for RCox and 2%

higher for MCox. The results of RCox and MCox analyses in the rest of this chapter use

an exact likelihood approach.

a) Right endpoint imputation
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Figure 4.3: Effect of method of treating ties in Cox model on bias in
estimation of covariate effect
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b) Comparison of methods
The mean bias, coverage and mean squared error (MSE) for the Weibull, Finkelstein,

PE, APE, RCox and MCox methods are presented in Table 4.1.

i) Bias

For =0 all the methods had mean bias less than -0.0005 (Table 4.1). This is as
predicted since the two groups defined by the covariate are “exchangeable” in terms of
the failure times. Note that inference under the MCox and RCox methods depends on
the rank order of the imputed failure times. The imputation results in a re-ordering of
the unobserved true failures times, but this process is independent of the covariate and

will not therefore induce any bias.

When (=0.4 or 0.8, general trends of increased bias in the estimation of beta as v
decreased and p increased were seen for all methods. Figure 4.4 shows the mean bias as
a percentage of the true value of beta for each method by v, p and n when $=0.8. Results
were similar for /=0.4 (Table 4.1). The shape of the underlying hazard had little effect

on the relative performance of the different methods.

The sparseness of the data, determined by the number of scheduled visits v and the
proportion of missing visits p, had the greatest impact upon the performance of the
different methods (Figure 4.4). When the number of follow-up visits was relatively high
(=0 & v=12 or 6, p=0.4 & v=12), all the methods estimated f with negligible bias.
With a smaller number of visits (p=0 & v=3, p=0.4 & v=6 or 3), the Weibull,
Finkelstein and PE models estimated £ with minimal bias for n>200, but with a positive
bias, overestimating S, for smaller sample sizes. This illustrates that these methods are

only asymptotically unbiased.

In contrast, the APE, MCox and RCox methods all estimated f with a negative bias,
which was greatest for RCox, followed by APE. In each case the difference between the
distributions of failure times for each value of x is diluted when the failure times are
approximated by the method. The extent of the bias, and differences between the
methods, were clearest when the data were most sparse (p=0.4 & v=3) and was similar

for all sample sizes.

95



2
o
w

0,6 0,12
g
=
bR [ EECE S .
oo - » Mﬂ‘ m.—..
% o [Tt
)
a 4
Ra
» 27
o
@ I
o 04,3 o 04,6 04,12
o &
© oA
g; et S . et
8 e - T Ny W 3:';.?:_5‘:&:-2:3:—:553 o
% & |T o —
L
°
2

T L) T T T T T 1 T T T T T
50 100 200 400 800 50 100 200 400 800 50 100 200 400 800

~— 8 — 8- —a8

sample size
b)
0,3 0,6 0,12

o J

«

o
© - ss
O o- —M _E'_u‘-‘h-‘&.__—..
g e
881
® Q]
P
3]
o 04,6 04,12
. ©
DN
® o
£2 —MMBS—
£ o ==
I e S —"
e T [ S, S, S
§ 84~
S

e

A

L L) T U L T T T T T T T ¥ T T
50 100 200 400 800 50 100 200 400 800 50 100 200 400 800
sample size

N

0,3 06 0,12

-40-30-20-10 0 10 20
1 PO R N ST Y

1

OO~ o —

Mean estimate: bias as %beta=0.8

-40-30-20-10 0 10 20

G 8 8 —0

4

L) T T T T T T T L} T T T T T T
50 100 200 400 800 50 100 200 400 800 50 100 200 400 800
sample size

l—-—O—w ---A---F — @& —PE ——6-— APE ----4---- MCox — &~ — RCox

Graphs by pand v

Figure 4.4: Comparing models: the effect of sample size and sparseness of data
on bias when $=0.8 and a) y=0.6, b) y=1.0, ¢) y=1.5.




A surprising finding was the large difference between the PE and APE methods when
the data were sparse: APE underestimated [ whereas PE was either unbiased or slightly
overestimated [ for small n. The difference between the estimates was greatest when
n=50 or there were few follow-up visits, indicating the assumption of uniform event
times is inadequate when the width of intervals is large and the amount of information

available is small.

ii) MSE
Figure 4.5 shows the MSE for each method by v, p and n when $=0.8. Results were
similar for /=0 & =0.4 (Table 4.1).

As expected, the MSE decreased for all methods as sample size increased. As for the

bias, clear differences between most of the methods were only apparent for infrequent

visits and small sample sizes (Figure 4.5), namely:

o the Weibull, Finkelstein and PE models had greater MSE for n<100 than the other
methods;

e the Finkelstein model had the largest MSE followed by the PE model;

e the APE and MCox methods had the smallest MSEs;

The RCox method had larger MSE than all other methods at large », reflecting the large

bias with this method for sparse data.

iii) Coverage
Figure 4.6 shows the concordance between the estimated standard error of 3 and the

empirical standard error of S for each method.

The mean estimated standard errors from all models were in close agreement with the
empirical standard error, with only slight underestimation when sample size was small.
This result was surprising for the RCox, MCox and APE approaches since they

theoretically underestimate the variability in the data by assuming event times are

known.
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When =0, the coverage for all methods was close to the nominal value of 95%
reflecting the lack of bias and correct estimation of the standard error of S for these
scenarios (Table 4.1). Figure 4.7 shows the coverage, as a percentage, for each method
by v, p and n when (=0.8. Any coverage ﬁless than 80% are plotted as 80% exactly.

Results were similar for #=0.4 (Table 4.1). The shape of the underlying hazard had little

effect on the coverage.

When S>0, coverage for the Weibull, Finkelstein and PE models were close to the
nominal value of 95% for all scenarios (Figure 4.7). The APE, MCox and RCox
methods had coverage close to the nominal value of 95% when there were frequent
visits, but when the data were sparse the coverage became under-conservative. The
RCox method had the lowest coverage due to having the greatest bias, followed by the
APE approach. Coverage was particularly low for large n, when the estimated standard

errors were small.

iv) Comparison of empirical standard errors
Figure 4.8 compares the empirical standard error for the Finkelstein, PE, APE, MCox
and RCox methods to that for the Weibull model.

The empirical standard errors for the Finkelstein and PE models were in close
agreement to those from the Weibull model, except for a few scenarios with the largest
variability i.e. those with small sample size. The empirical standard errors were smaller
for APE, MCox and RCox than the Weibull model as sample size decreased, most
markedly when p=0.4 & v=3. The APE approach showed greater “underestimation”

compared to the Weibull model than either Cox model.

4.4 EXAMPLES

The selected methods are illustrated using two datasets. The first is from the Delta trial
[40] (section 2.3). This example focuses on the 1280 subjects who participated in the
virology substudy [29]. One aim of the study was to determine how rapidly the
minimum HIV RNA level (limit of detection 800 copies/ml) according to treatment
regimen was achieved. This was to inform clinicians at what time a change of therapy

should be considered if the initial response was unsatisfactory.
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The 1243 trial participants with a viral load greater than 800 copies/ml at randomisation
and at least one subsequent result within 48 weeks are included in the analysis. Of these,
400, 423 and 420 individuals were randomised to receive AZT, AZT+ddl and
AZT+ddC respectively. 369 (92%), 213 (50%) and 247 (59%) did not achieve
undetectable HIV RNA within 48 weeks from randomisation. Nine follow-up visits
were scheduled during the first year of therapy at weeks 4, 8, 12, 16, 20, 24, 32, 40 and
48. An HIV RNA measurement was unavailable at 39% of these visits. The number of
plasma HIV RNA measurements over the year [median 6, IQR 4-7 measurements] and
during the first 24 weeks [median 5, IQR 4-5 measurements] was similar in the three
treatment groups. The individual censoring intervals are shown in Figure 4.9. For the
purpose of presentation, R; was set to 60 weeks for the 414 subjects who exhibited right

censoring.

proportion without virological response

time from randomisation

W ——F —--— PE ——— APE - MCox|

Figure 4.10: Time to achieving viral load <800 copies/ml by randomised treatment

Time to achieving a virological response was much faster for individuals in both
combination therapy arms compared to those starting treatment with AZT monotherapy,
and thef majority of responses on combination therapy had occurred by 24 weeks. This
implies {hat patients without a virological response by 24 weeks should be considered as

virological failures and their therapy altered. The best response was seen in individuals
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starting therapy with AZT+ddI (Figure 4.10). There was close agreement between the
hazard ratios and confidence intervals estimated using all the different analytical

approaches (Table 4.2).

Table 4.2: Parameter estimates and hazard ratios for the Delta example

DELTA

ddI+AZT vs. AZT

Method ' B (SEP) HR (95% CI)
Weibull (W)T 2.198 (0.193) 9.00 (6.17,13.14)
Finkelstein (F) 2.189 (0.193) 8.93 (6.11,13.04)
Piecewise exponential: 2.194 (0.193) 8.97 (6.15,13.09)

Approximate piecewise exponential: 2.195 (0.193) 8.98 (6.15,13.11)
Cox model:
Right endpoint (RCox): Breslow | 2.113 (0.193) 8.28 (5.67,12.07)
exact 2.191 (0.193) 8.95 (6.13,13.05)

Mid point (MCox): Breslow | 2.114 (0.193) 8.28 (5.67,12.08)
Exact 2.189 (0.193) 8.92 (6.12,13.02)

ddC+AZT vs. AZT

Method X B (SEP) HR (95% CI)
Weibull (W) T 1.880 (0.195) 6.55 (4.47,9.61)
Finkelstein (F) 1.869 (0.195) 6.48 (4.42,9.51)
Piecewise exponential: 1.875 (0.195) 6.52 (4.45, 9.56)

Approximate piecewise exponential: 1.878 (0.195) 6.54 (4.46,9.59)
Cox model:
Right endpoint (RCox): Breslow | 1.833 (0.195) 6.25 (4.26,9.16)

exact 1.874 (0.195) 6.52 (4.45,9.56)
Mid point (MCox): Breslow 1.835 (0.195) 6.27 (4.27,9.19)
exact 1.873 (0.195) 6.51 (4.44,9.54)

¥ Estimated Weibull Shape parameter = 0.227

The number of intervals in the piecewise exponential model was initially taken as 5, the
breakpoints determined by the expected number of events estimated using a Kaplqi’;l-
Meier survivor function where events are assumed to occur at the midpoint of Jthe
censoring interval. This model was then simplified in a stepwise fashion by joining
adjacent intervals where Qﬂ(g’ll?o_od ratio té\b indicated that the rate could be assumed
to be constant across the combined mterval. This resulted in a final model with 3 time
intervals: 0-4, 4-16 and 16-52 weeléis. The effect upon the treatment covariates was
minimal — results between the 5 and 3 interval models agreed to 3 d.p. The final model
for the APE method, determined in a similar fashion, had 4 time intervals: 0-4, 4-16, 16-
28 and 28-52 weeks. Changing the time intervals again had minimal effect upon the

treatment covariates.
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The second example is from the CHIPS multi-centre cohort study of HIV-1 infected
children in the UK and Ireland [30] (section 3.4). Treatment guidelines recommend that
initial antiretroviral therapy in children should be a 3-drug/2-class regimen of two
nucleoside reverse transcriptase inhibitors (NRTI) plus either a non-nucleoside reverse
transcriptase inhibitor (NNRTI) or a protease inhibitor (PI) [41]. In the absence of
evidence from paediatric trials there is still wide variation in the use of these two classes
of drugs. Data from the CHIPS study was used to examine the impact of starting highly
active antiretroviral therapy (HAART) with either an NNRTI or PI based regimen on
the time to achieving undetectable levels of plasma HIV RNA less than or equal to 500

copies/ml.

Of 599 children starting HAART with available HIV RNA measurements, 219 started a
Pl-based regimen and 308 an NNRTI-based regimen. The remaining 72 children started
other HAART regimens and are excluded from this analysis. Seventy-nine (36%) and
54 (18%) failed to achieve undetectable HIV RNA within one year from starting
therapy with a PI or NNRTI respectively. The number of plasma HIV RNA

measurements over the year [median 4, IQR 3-5 measurements] and during the first 24
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Figure 4.11: Individual censoring intervals in the CHIPS study by drug class of

initial regimen
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weeks [median 2, IQR 1-3 measurements] was similar in the two groups of children.
The individual censoring intervals are shown in Figure 4.11. For the purpose of

presentation, R; was set to 60 weeks for the 133 subjects who exhibited right censoring.

Time to achieving a virological response was significantly shorter in those starting a
NNRTI-based regimen for each methods of analysis (Figure 4.12), with close agreement
between the estimated hazard ratios and confidence intervals (Table 4.3). The likelihood
of achieving a virological response was reduced by 46-48% in children starting therapy
with a PI compared to those starting an NNRTI containing regimen, depending upon the
choice of analysis. This result is likely to be partly explained by the confounding effect
of improved response in CHIPS children seen with calendar year [42] and the fact that

NNRTI-based regimens have increased in popularity over time [30],

proportion without virological response

time from starting HAART

F ———— PE ——= APE -------- MCox

Figure 4.12: Time to achieving virological response according to drug class

of initial regimen in the CHIPS study

The initial piecewise exponential model had 5 time intervals determined by the expected
number of events as for the Delta example. This model was then simplified to a final
model with 4 time intervals: 0-3, 3-13, 13-32 and 32-52 weeks. The final model for the
APE method, determined in a similar fashion, had 3 time intervals: 0-13, 13-32 and 32-
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52 weeks. Changing the time intervals again had minimal effect upon the treatment

covariate for either method.

Comparing the survival curves to the non-parametric Finkelstein model suggests that
the Weibull model does not fit the data as well as the PE model, and that the APE and
MCox methods underestimate the event rate at the early time points. Nevertheless, the

log hazard ratios for the different methods were all within 2% of the Finkelstein

Table 4.3: Parameter estimates and hazard ratios for the CHIPS example

CHIPS: PI vs NNRTI
Method B (SEB) HR (95% CI)
Weibull (W)* -0.659 (0.108) 0.52 (0.42, 0.64)
Finkelstein (F) -0.643 (0.111) 0.53 (0.42, 0.65)
Piecewise exponential: -0.641 (0.108) 0.53 (0.43,0.65)
Approximate piecewise exponential: -0.651 (0.106) 0.53 (0.43, 0.65)
Cox model:
Right endpoint (RCox): Breslow -0.617 (0.107) 0.54 (0.44,0.67)
exact -0.632 (0.107) 0.53 (0.43, 0.66)
Mid point (MCox): Breslow -0.624 (0.106) 0.54 (0.44, 0.66)
exact -0.636  (0.106) 0.53 (0.42, 0.64)

*Estimated Weibull Shape parameter = 0.480

estimate. This is closer agreement between the methods than expected given the
simulation results (although the results are the mean of 1000 simulations and there were
examples of individual simulations where the variation in the estimates between the
different methods was consistent with that in the CHIPS example). Examination of
Figure 4.9 and Figure 4.11 shows a difference in the pattern of censoring for the CHIPS
and Delta data. In Figure 4.9 most data points form a diagonal line but in Figure 4.11
there are many “off diagonal” points. This reflects the wider variation in interval
endpoints and width for the CHIPS data (median width 9 weeks, IQR 5-15 weeks)
compared to the Delta data (median width 8 weeks, IQR 5-8 weeks). This is because
there is less regularity in the timing of clinic visits for children in the CHIPS study than
there are for the scheduled follow-up visits for individuals in the Delta trial. The number
of baseline hazard parameters for the Finkelstein model was higher for the CHIPS data
(46 compared to 31 for Delta) reflecting this.
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4.5 DISCUSSION

Six methods for estimating the effect of a covariate upon failure time have been
described and assessed: a parametric Weibull model (W), the full likelihood
proportional hazards model proposed by Finkelstein (F), a piecewise exponential model
(PE), an approximation to the PE model (APE), a Cox proportional hazards model that
assumes the event of interest occurs at the middle of the observed censoring interval
(MCox), and finally a Cox proportional hazards model where the event is assumed to

occur at the time it is observed (RCox).

The number of scheduled visits and the amount of missing visits had the greatest impact
upon the performance of the different methods. There were no material differences
between all six methods when follow-up visits were frequent in terms of bias, MSE and
coverage. In addition, all methods estimated the standard error of the log hazard ratio
accurately, including the APE, MCox and RCox methods which by imputing event

times ignore the uncertainty in the observed data.

The picture was more complicated however when the data were more sparse. In this
situation, the RCox model was the poorest of all the methods with substantial bias and
low coverage at all sample sizes and is therefore discounted as an appropriate method of
analysis. This concurs with the findings of Williams et al, who conducted a very limited

simulation study [26].

As in previous chapters, the simulation study was based on data generated from a
Weibull distribution, and even the correctly specified parametric model exhibited some
positive bias at small sample sizes when the data were sparse, as did the F and PE

methods. This reflects the fact that these methods are only asymptotically unbiased. In

contrast the APE, and to a lesser extent the MCox method were consistently biased for
all sample sizes. The ranking of failure times assuming events occurred at the midpoint
of the censoring interval are plotted against the true rank of the known event time for
one scenario from the simulation study in Figure 4.13. The effect of the imputation on
the ranking of event times will be more extreme as the number of ties in the data
increases, resulting in poor performance of MCox when the data was sparse. As for the
estimation of the survivor curve (section 3.5), the distribution of imputed event times is
determined by a function of the distribution of the visit times. This problem becomes

more marked as the number of visits decreases since the number of ties in the data then
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increases. Estimation is unbiased when B=0 since the rank of the true failure times is a
random process in this case. A similar argument can be used to explain the bias in the

RCox approach.

Given this relationship between the ranking of the failure times and the performance of
the method, the mechanism for the treatment of ties is important. Results from the
simulation study indicate that the bias is increased if a Breslow approximation is used
rather than the exact likelihood. This agrees with the work of So who performed a small

simulation study on grouped data [25].

In contrast, a major finding was that the MSE for all methods were similar at large
sample sizes and smaller for the APE and MCox methods when sample size was small,
due to more precise estimation of beta rather than smaller bias. This is surprising given
the theoretical prediction that a correctly specified parametric model should be the most
efficient. In practice the family of distributions is not known, and although mis-
specification of the baseline hazard may have little effect upon the estimation of the
relative importance of covariates, it may lead to a reduction in the size or power of

significance tests [43].

The coverage for the W, F and PE methods was good for all scenarios when the data
were sparse, but the APE and MCox methods had lower than nominal coverage at large

sample sizes.

The satisfactory estimation of the estimates and their standard errors for the MCox
approach when the number of visits was large suggests the use of this method is
reasonable unless the data are sparse, with fewer than 5-6 visits per individual (during
the period where most events occur). When the data are sparse the sample size affects
the choice of method. At small sample sizes, the low MSE and good coverage for the
MCox method mean this is still the method of choice. For larger sample sizes the PE
model or Finkelstein model should be used. The PE model has the advantage 6r/z

S

allowing estimation of time-varying covariates.

The simulation study is limited by its restriction to data drawn only from a Weibull
distribution, although constant, decreasing, and increasing hazards were considered. The

ability of the piecewise exponential or Finkelstein models to model flexibly a wide
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variety of hazard functions implies this is a robust approach when the underlying hazard
may be non-monotone. The simulation study considered a single binary covariate.
However, it seems likely that the findings should generalise to a continuous covariate

and to multivariate analysis.
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CHAPTER 5: DISCUSSION AND FUTURE
WORK

The aim of this research was to build upon previously published methods that are
accessible via self-written macros in the standard packages - with the goal of increasing
the use of appropriate methods in applied medical research, and to determine the impact
of simple imputation upon both the estimation of the survivor function and the effect of

covariates on the survival time. The key findings of this research are summarised below.

In the first part of this thesis, three methods for calculating pointwise confidence
intervals for the non-parametric survivor function estimated from interval-censored data
were described and assessed: the first based on the full (observed) information matrix
(Wald-1), the second a modification of this approach involving deletion of rows and
columns of the information matrix corresponding to zero estimates prior to inversion

(Wald-2), and the third based on likelihood ratio inference.

The simulation study showed clearly that the Wald-1 method substantially and
consistently over-estimated the standard error (of the estimated survivor function at
fixed time points), and therefore resulted in confidence intervals that were too wide. In
contrast, the Wald-2 method produced accurate standard errors, using the Monte Carlo
estimates as a benchmark, and for most of the combinations of factors considered, the
coverage was, for practical purposes, acceptably close to the nominal value. However,
for some combinations, the coverage was unacceptably low, understating the true
uncertainty in the point estimates. The likelihood ratio method gave the most accurate
confidence intervals with coverage consistently close to the nominal level. This
reassuring result was not predictable from a theoretical standpoint since a high

proportion of the estimates lay on the boundary of the parameter space [1].

In Chapter 3, six methods for estimating the survivor function from interval-censored
data were described and assessed: a fully parametric Weibull model (W), the non-

parametric maximum likelihood estimator (NPMLE), two closely related smoothed
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versions of this estimator (SNP & SNP2), a Kaplan-Meier estimator that assumes the
event of interest occurs at the middle of the observed censoring interval (MKM), and
finally a Kaplan-Meier estimator where the event is assumed to occur at the time it is

observed (RKM).

The simulation study established that smoothing resulted in a significant increase in
accuracy, with the SNP2 estimator consistently superior to the SNP and NPMLE
estimators. It could also be clearly seen that the RKM method results in significant
underestimation of the survival probabilities. In contrast, the MKM method performed
well, comparable to the SNP2 estimator when the sample size was small, except when

the underlying hazard function was decreasing and the data were sparse.

This work was then extended in chapter 4 to determine which methods could be
successfully employed to obtain the most precise estimates of covariate effects. A fully
parametric Weibull model (W), the full likelihood proportional hazards model proposed
by Finkelstein (F), a piecewise exponential model (PE), an approximation to the PE
model (APE), and Cox proportional hazards models where event times were imputed as
the right- (RCox) or mid- (MCox) point of the censoring interval, were compared in a

simulation study.

The number of scheduled visits and the proportion of missing visits had the greatest
impact upon the performance of the different methods. There were no material
differences between all six methods when follow-up visits were frequent in terms of
bias, MSE or coverage. In addition, all methods estimated the standard error of the log
hazard ratio accurately, including the APE, MCox and RCox methods. This was
unexpected since by imputing event times these methods ignore some of the uncertainty

in the observed data.

When the data were more sparse the RCox model estimated the log hazard ratio with
substantial bias and low coverage at all sample sizes. The W, F and PE models
estimated the covariate effect with a small positive bias when sample size was small,
and had good coverage for all scenarios. In contrast, the MCox and APE models were
consistently biased for all sample sizes and had lower than nominal coverage at large

sample sizes. An important finding was that the MSE for the W, F and PE models was
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larger than for the APE and MCox methods when sample size was small, due to less

precise estimation of the hazard ratio rather than smaller bias.

Results from the simulation studies carried out in chapters 3 & 4 show clearly that the
commonly employed method of imputing the event time as the right endpoint of the
observed censoring interval for the analysis of interval-censored data can be
substantially biased, both in terms of obtaining reliable estimates of the effect of
covariates upon survival and the survivor function itself. Unbiased estimates of
covariate effects can be obtained when the numbers of follow up visits are frequent but
as the number of visits decreases the bias becomes considerable. In contrast, survival

probabilities are always underestimated.

However, in certain situations simply replacing the right endpoint by the midpoint of the
censoring interval results in unbiased estimators. In chapter 3, accurate estimates of the
survivor function were obtained using the MKM method except when the sample size
was large, the underlying hazard was decreasing and the number of follow-up visits was
few. Inspection of the results of individual simulations showed that the poor
performance of the MKM when visits are infrequent was mainly due to over-estimation
of the survivor function when t is small. The estimator fails to capture early changes in
the underlying survival distribution as imputed event times are restricted by the
distribution of the earliest visits. In particular, the first step of the estimator cannot occur
earlier than midway to the first visit time. This phenomenon is stronger when the

underlying hazard is decreasing as proportionately more events occur at earlier times.

Midpoint imputation has also been shown, in chapter 4, to reliably estimate the hazard
ratio except when there are few follow-up visits and the sample size was large. The
shape of the underlying hazard was no longer influential. When there are few visits the
method fails due to an inability to approximate the correct ranking of event and failure
times. This problem is heightened as the number of ties in the data increases, which is
synonymous with a decrease in the possible visits times. It is therefore important to use
an exact likelihood for the treatment of ties rather than an approximation, such as

proposed by Breslow, when fitting the MCox method.

The results for the APE model were disappointing. The method was no better, and often

more biased, with lower coverage, than the MCox approach. Given the additional
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complexity of reshaping the data into the required format before fitting the APE model,
this method would be a second choice to the simple MCox approach in situations where

both performed adequately.

Although circumstances have been identified under which the straightforward midpoint
imputation approach may be successfully applied it should be noted that when the
intellectual or computational capacity are available more complex models may be
preferred. The choice of interval-censoring method, either when midpoint imputation is
not recommended or when wishing to apply the appropriate methodology, will depend

largely on the type of data being analysed.

The NPMLE can be used to estimate a non-parametric survivor function from interval-
censored data in standard packages with the aid of user written macros. This method is
an important addition to the fully parametric models which are readily available. Even if
a parametric approach is preferred the NPMLE can be used to determine which familyr
of distributions to use or assess goodness of fit. From the work in chapter 2 we can
conclude that the likelihood ratio method gives the most consistent and accurate
coverage for point estimates of the survivor function estimated using the NPMLE. The
Wald-2 method is easier to compute than the likelihood ratio method and also achieved
coverage close to the nominal value in most situations, particularly for large sample

sizes, but should be used with care given coverage was sometime underestimated.

The results of chapter 3 imply the SNP2 approach is in fac{preferential to the NPMLE
since smoothing the estimator resulted in a significant increase in accuracy. Estimating
a smooth function also gives more desirable estimates. In particular, estimation of
median (or other percentile) survival times is now possible since the function is fully
defined. However, there has been little research into methods of calculating confidence
intervals for the SNP2 estimator although re-sampling methods can be used as in the

example in section 3.4.

A large number of methods have been proposed in the literature for the estimation of the
effect of covariates upon survival or more commonly the hazard distribution. Many are
complex and computationally intensive and the methods included in this thesis were
chosen because they could be easily fitted in the more common statistical packages once

a generic macro program has been written. The full likelihood Cox model proposed by
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Finkelstein extends the NPMLE and is attractive since no parametric assumptions about
the baseline hazard are necessary. The model was sometimes unstable however at large
sample sizes in the simulation study in chapter 4. The PE model is a versatile alternative
which becomes more non-parametric in nature as the number of baseline hazard
parameters increases. This method can also be easily extended to include time varying
covariates. Either method would be recommended in situations where the MCox model
was inappropriate. A fully parametric model may also be a good alternative and should
not be overlooked, providing the distributional assumptions are checked, possibly by
fitting the NPMLE.

A number of areas have been identified in which the work in this thesis can be
extended. Although a range of hazard types were considered in the simulation study, all
were monotone and consideration of bathtub or uni-modal hazard functions would be a
useful extension of the simulation work presented. The simulation study could also be
extended by considering parametric models other than the Weibull to investigate the
robustness of midpoint imputation when the family of distributions for the hazard is
misspecified. In addition, more precise identification of situations in which the Wald-2
method underestimates the coverage, and a comparison of this and likelihood ratio
methods to the resampling methods proposed by Sun, would compliment the work in
chapter 2. Further work on the estimation of conﬁdence intervals for the SNP2 estimator

would facilitate the use of this method in practice.

For biological measurements such as HIV RNA levels, a value exists at each visit time
which is summarised by the binary outcome of success or failure as considered here. It
would therefore be possible to refine the imputation of event times by taking these
measurements into account e.g. using linear interpolation, rather than assuming the
events occur at the midpoint [2]. In related work Hsu et al. [3] describe imputation
methods that incorporate information from auxiliary variables e.g. CD4 counts, rather
than the outcome variable itself. Finally, the methods applied in this thesis would not
be appropriate if the timing of visits was related to an individual’s outcome or visits
were informatively missing [4-6], for example if low levels of a biological marker were
correlated to poor health and therefore more frequent clinic attendance or conversely
non-attendance. As such, consideration of informative censoring or visit times would

also be an important extension of this work.
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APPENDIX 1: Proof that the NPMLE is constant outside all distinct

intervals with endpoints u; e {L;} andu,,, e{R;}

Following the notation in Section 2.2.2, define the distinct intervals with endpoints

u,e{L;}andu,, € {R} in order as (q; p1)Xq2 p2)...(gm Pm); and define the set of points

4 , j=i,...,m-1 where t; is some value greater than all the right and less than all the left

endpoints in (p; gj+1).

Define a function S that decreases outside the distinct intervals (g; p;); j=i, ...,m. There

exists at least one 4 such that either
A S(p)>56)25,.)

or B S(p)z8¢,)>5(,.)

Define a function S* to be constant outside the distinct intervals (g; p)); j=i,...,m with
S*(p) =S*(gi+1)= S(,).

For case A, by construction of the distinct intervals, there exists at least one individual i

such that p; = R;, implying S*(R;) < S(R,). Therefore, denoting the contribution of the
i-th individual to the log-likelihood ¢,

£,(8%)>£,(S)
and it follows that

2(S*)> 4(S)

and therefore S is not the MLE. The same follows for case B.
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APPENDIX 2.A: Confidence intervals for the NPMLE in SAS

The simulation study (Section 2.4) was implemented using the SAS statistical software
[1]. The ICE.sas program available in the SAS/IML sample library (under ‘Interval
Censored Estimation Macro’) fits the non-parametric maximum likelihood estimator
(NPMLE) to interval-censored data but gives confidence intervals using the Wald-1
method only [2]. This SAS code was adapted to allow estimation of Wald-2 and

likelihood ratio confidence limits.

To calculate the Wald-2 confidence intervals, contributions to the Information matrix by
parameters estimated as zero are removed before inverting to calculate the covariance
matrix. Using code compatible with ICE.sas, for information matrix # and m parameters
estimated by array rx, the code to calculate the covariance matrix sigma2 by the Wald-2

method is given below:

top=m;

i=1;

do i=1 to m-2 ;

if rx[i]<10**-8 then do;

top=top-1;
Il=h[1:i-j,1:1i-3];
I2=h{1:i-j,i-j+2:top];
I3=h[i-j+2:top,1l:i-7j];
I4=h[i-j+2:top,i-j+2:top]l;

I=( 11 || 12) // (I3 || I4);
J=3+1;
end;
end;
top=top-1;

if rx[m-1]1<10**-8 then do;
top=top-1;
I=I[1:top,1l:top];
end;

sigma2=inv(I);
This can be directly inserted into the IML library program at line 469 after the section of

code titled ‘/* covariance matrix of the first mm parameters */°> . The ICE.sas program

will then automatically output Wald-2 standard errors.
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The likelihood ratio confidence limits are calculated for a specified time ¢, where S(1)

corresponds to the sum of the first i parameters. A user written procedure then

calculates the lower (upper) confidence limit by using interval bisection to find the root

of

5‘(t)—§(t)—%x§ -0 (1)

where S(¢) is the survival probability calculated at the maximum likelihood estimate £,

and S(¢) is the desired lower (ilpper) limit. This is achieved as follows:

1. An initial interval for the lower (upper) limit is set as the MLE of S(t) at time t,

S(), and 0 (1).

2. The initial estimate of the confidence limit S(r) is set as the lower (upper)

confidence limit estimate calculated using the Wald-1 method. (In light of our

findings, using the Wald-2 confidence limit would be more efficient).

3. The program then loops through the following process until the root is found:

constrain the sum of the last (m-i-1) parameters to be equal to the current
estimate C

set initial values of the probability densities such that this new constraint
holds and call the NLPQN optimisation subroutine to perform quasi-Newton
optimisation

calculate the current value of the likelihood function, S(¢)

calculate the value of equation (1) with the current estimate of S ()

replace one end of the current estimation interval by the current estimate of

S(#) such that the interval still contains the root of the equation

set the new current estimate of S () as the midpoint of the estimation

interval

Systematically subdividing the interval in this way produces a final interval containing

the zero. This final interval has a length bounded by the user’s specified error

requirements which are set as termination criterion for the above loop.

References

1. SAS Institute Inc., Cary, North Carolina, USA. 1999; (8.2).
2. ICE.sas. http://support.sas.com/ctx/samples/index.jsp?sid=477 &tab=about 2006.
6-17-2006.
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APPENDIX 2.B: SAS program to fit the NPMLE with Wald-2

confidence intervals

The 1left and right interval endpoints of the observed censoring
intervals for each individual are recorded in variables LEFT and RIGHT
of data set DATASET, where LEFT = 0 1if the observation is left-
censored, LEFT = RIGHT if the observation is exact, and RIGHT = an
arbitrary fixed value beyond the 1last examination time if the
observation is right-censored.

proc iml;

% fit the NPMLE using the quasi-Newton non-linear programming routine;
start interval(l,r) global(_x,nobs,nparm,end,11l,rrr);

111=1;
rrr=r;
nobs= nrow(l);

/* GENERATE NON-OVERLAPPING INTERVALS */
p=0;

q=0;

call nolap(nparm, p, q, 1, r);

/* GENERATE THE ALPHA-MATRIX */

_X= j(nobs, nparm, 0);

do j= 1 to nparm;
_X[,3]= choose(l <= q[j] & p[j] <=r, 1, 0);
end;

/* USING NLP TO MAXIMIZE LIKELIHOOD FUNCTION */
/* options */
optn= {1 0};

/* constraints */

con= j(3, nparm + 2, .);
con{t, t:nparm]=1.e-10;
con[2:3, 1:nparm]= 1;
con[3,nparm + 1]=0;
con[3,nparm + 2]=1;

/* initial estimates */
x0= j(1, nparm, 1/nparm);

* **x*xx termination criterion ****x;
tc=j(1,13,0);
tc[1,1]=4000;
tc[1,2]=8000;
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tc[1,3]=.;
tc[1,9]=1e-12;

/* call the optimization routine */

call nlpgn(rc,rx,"LL",x0,0ptn,con,tc,,,"GRAD");
optx=rx;

optf=LL(optx);

9=4q ;
p=p;
theta= rx’;
do i=1 to nparm ;
if rx[1]<10**-8 then rx[i]=0;
end;

/* COMPUTE THE SURVIVAL DISTRIBUTION FUNCTION (NPMLE) */
tmp1= cusum(rx[nparm:1]);
sdf= tmp1[nparm-1:1];

/* COMPUTE THE WALD-2 CONFIDENCE LIMITS OF THE NPMLE */
mm= nparm -1;

/* calculate full covariance matrix of the first mm parameters */

_xx= _x - _x[,nparm] * (j(1, mm, 1) || {0});
h=j(mm, mm, 0);
ixtheta= 1 / (_xx * ((rx[,1:mm]) || {1})7);
do i= t to nobs;

rowtmp= ixtheta[i] # _xx[i,1:mm];

h= h + (rowtmp" * rowtmp);
end;

/* remove rows and columns of parameters estimated as zero */

A=h;

top=nparm;

i=1;

do i=1 to mm-1 ;

if rx{i]<10**-8 then do;

top=top-1;
Al=A[1:i-j,1:1i-j];
A2=A[1:i-j,i-j+2:top];
A3=A[i-j+2:top,1:i-j];
A4=A[1-j+2:top,i-j+2:top];

AS=A1 || AZ2;
A6=A3 || A4;
A=AS5 [/ A6;
j=i+1;
end;

end;

top=top-1;

if rx[mm]<10**-8 then do;
top=top-1;

A=A[1:top,1:top];
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end;

/* estimated variance of the NPMLE */
sigma2p= inv(A);

ind=rx>10**-8;

sigma3p= j(mm, 1, 0);

tmp1= j(top, 1, 0);

i=1;
do i= 1 to mm;
tmp1[jl= 1;

sigma3p[i]= tmp1’® * sigma2p * tmpi;
j=j+ind[1,i+1];

end;

sep=sqrt(sigma3p);

/* confidence limits */

tmp1= probit(1 - .5 * 0.05);

tmp1= tmp1 *sqrt(sigma3p);

1cl= choose(sdf>tmp1,sdf - tmp1,0);
ucl= sdf + tmpi;

/* PRINTOUT #3*/

left= {0} // p;

right= q // end;

sdf= {1} // sdf // {0};
se= {.} // se /] {.};
sep= {.} // sep // {.};
lcl= {.} // lcl // {.};
ucl= {.} // ucl // {.};

/* print distinct intervals and parameter estimates */
print q p theta;

/* print NPMLE and Wald-2 SEs/CLs of survivor function */
print left right sdf sep lcl ucl;

finish interval;

%* loglikelihood function *;
start LL(theta) global(_x,nparm,l1ll,rrr);
tmp=_x * theta’;
x1t= log(_x * theta’);
f= x1t[+];
return(f);
finish LL;

%* gradient vector *;

start GRAD(theta) global(_x,nparm);
g= j(1,nparm,0);
tmp= x # (1 / (_x * theta') );
g= tmp[+,];
return(g);

finish GRAD;
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Fr***** CONSTRUCT THE NON-OVERLAPPING TIME ******;
Sxxxx**x TNTERVALS FOR THE TURNBULL METHOD ******x*;

start nolap(nq,p,q,1l,r) global(end,le,ri);
le=1;ri=r;
pp= unique(r); npp= ncol(pp);
qq= unique(l); nqq= ncol(qq);
end=pp[npp];
a= j(1,npp, .);
do i= 1 to npp;
do j= 1 to nqq;

if ( qql[j] <= pp[i] ) then qg[i]= qq[]];

end;
if q[i] = qq[ngq] then goto labi;
end;
lab1:
if 1 > npp then ng= npp;
else ng= 1i;

q= unique(q[1:nq]);
ng= ncol(q);
p= j(1,nq, .);
do i= 1 to nq;
do j= npp to 1 by -1;
if ( pp[j] >= q[i] ) then p[i]= pp[j];
end;
end;
finish nolap;

* kkkkkkkk MAIN PROGRAM *********;
use DATASET;

read all var{left right};

call interval(left,right);

quit;
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APPENDIX 2.C: SAS IML macro to calculate profile likelihood
confidence limits for the NPMLE

Macro arguments:

Input:

i = The profile 1likelihood confidence 1limits are calculated for a
specified time ¢, where S(t) corresponds to the sum of the first I
parameters.

Global arguments (from macro INTERVAL above):
nparm = number of estimated parameters

con = constraint matrix from estimation of NPMLE
sdf = NPMLE of survivor function

ucl = upper Wald-2 confidence limit of NPMLE
1lcl = lower Wald-2 confidence limit of NPMLE

Output arguments:
lower = upper profile likelihood confidence limit
upper = lower profile likelihood confidence limit

* *kxkkkx PROFILE LIKELIHOOD CI ***x*xx*.
start plci(i,lower,upper) global(nparm,con,sdf,lcl,us,optf);

* *xxkx termination criterion ***¥x,
te=j(1,18,0);

tc[1,1]=20000;

tc[1,2]=18000;

tc[1,3]=.;

tc[1,9]=1e-12;

/* options */
optn= {1 0};

* kkkkk add Constralnt *******;
conadd=j(1, nparm + 2, .);
conadd[1,nparm+1]=0;
con2=con//conadd;
do k=i+1 to nparm;

con2[4,k]=1;
end;
chiprob=cinv(1-0.05,1);

* lower limit ***;

lest=0;

rest=sdf[i+1];

currentl=lcl[i+1];

if currentl=0 then currentl=10**-8;
diff=optf;
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do while ( abs(diff)>10**-2);
con2[4,nparm+2]=currentl;
x0=j (1,nparm, (1-currentl)/i);
do m = i+1 to nparm;
x0[1,m]=currentl/(nparm-1i);
end;
* call optimisation routine and calc constrained ests ;
call nlpgn(rc,rx,"LL",x0,0ptn,con2,tc,,,"GRAD");
estlike=LL(rx);

diff=optf-estlike-chiprob*0.5;
if diff<0 then do;
rest=currentl;
currentl=lest+0.5*(currentl-lest);
end;
if diff>0 then do;
lest=currentl;
currentl=currentl+0.5*(rest-currentl);
end;
end;
lower=currentl;

* upper limit ;
rest=1;
lest=sdf[i+1];
currentu=us[i+1];
if currentu>=1 then currentu=1-10**-8;
diff=optf,;
do while ( abs(diff)>10**-2);
con2[4,nparm+2]=currentu;
x0=j (1,nparm, (1-currentu)/i);
dom=1 to i;
x0[1,m]=currentu/(nparm-1i);
end;
* call optimisation routine and calc constrained ests ;
call nlpgn(rc,rx,"LL",x0,0ptn,con2,tc,,,"GRAD");
estlike=LL(rx);

diff=optf-estlike-chiprob*0.5;
if diff>0 then do;
rest=currentu;
currentu=lest+0.5*(currentu-lest);
end;
if diff<0 then do;
lest=currentu;
currentu=currentu+0.5*(rest-currentu);
end;
end;
upper=currentu;

finish plci;
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APPENDIX 3.A: Fitting the SNP and SNP2 methods in SAS

The only difference between estimation of the SNP and SNP2 methods is in the
estimation of the time intervals during which the survivor function jumps. The SNP
method uses the same routine as the NPMLE to calculate intervals with endpoints that
are in {L;} and {R;} respectively and contain no other endpoints. The SNP2 method

uses time intervals defined by all unique values of {L;} and {R;}.

APPENDIX 3.B: SAS program to fit SNP or SNP2 models

The left and right interval endpoints of the observed censoring
intervals for each individual are recorded in variables LEFT and RIGHT
of data set DATASET, where LEFT = 0 if the observation 1is left-
censored, LEFT = RIGHT if the observation is exact, and RIGHT = an
arbitrary fixed value beyond the 1last examination time if the
observation is right-censored.

start interval(l,r)
global(_x,nobs,nparm,ipar,lstar,end,vars3,con,sdf,ls,us,optf,111,rrr);

111=1;

rrr=r;
nobs= nrow(l);

SNP2: SNP:

/* GENERATE UNIQUE VALUES OF /* GENERATE NON-OVERLAPPING

{Li} and {Ri} */ INTERVALS
*/

timepoints=unique(11l]|rrr);

nparm=ncol(timepoints); p=0;

nparmi=nparm-1; q=0;

g= timepoints[1:nparm1]’; call nolap(nparm, p, q, 1,

p= timepoints[2:nparm]’; r);

nparm=nparm-1;

/* GENERATE THE ALPHA-MATRIX */
_X= j(nobs, nparm, 0);
do j= 1 to nparm;
_X[,j]= choose(l <= q[j] & p[j] <=r, 1, 0);
end;

/* initial estimates */
x0= j(1, nparm, 1/nparm);
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emconv=1e-12;

/* CALL EM MACRO */
rx=em(x0, emconv);

9= q;
p=p’;
theta= rx’;
do i=1 to nparm ;
if rx[i]<10**-8 then rx[i]=0;
end;

/* COMPUTE THE SURVIVAL DISTRIBUTION FUNCTION */
tmp1= cusum(rx[nparm:1]);

sdf= tmpi1[nparm-1:1];

/* PRINTOUT #3*/

left= {0} // p;

right= q // end;

sdf= {1} // sdf // {0};

print nparm q p theta;

print left right sdf;

finish interval;

/* CONSTRUCT THE NON-OVERLAPPING TIME INTERVALS
start nolap(nq,p,q,1l,r) global(end,le,ri);
le=1;ri=r;
pp= unique(r); npp= ncol(pp);
qg= unique(l); nqq= ncol(qq);
end=pp[npp];
= j(1,npp, .);
do i= 1 to npp;

do j= 1 to nqq;

if ( qq[i] < pp[i] ) then qg[i]= qq[jl;

end;
if q[i] = qqlnqq] then goto labi;
end;
lab1:
if i > npp then ng= npp;
else ng= 1ij;

g= unique(q[1:nq]);
ng= ncol(q);
p= j(1,nq, .);
do i= 1 to nq;
do j= npp to 1 by -1;
if ( ppljl > ql[i] ) then p[i]l= pp[j];
end;
end;
finish nolap;

*/
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Fr**xx*x*x Gelf-Consistency Algorithm ***x*xx*;
start em(thetaO, conv) global(_x,nobs,nparm,_zfreq,_freq);

iter=0;

u= _x # thetaO;

xt= u[,+];

Ixt= log(xt);

u= u # (1 / xt);
ntot= nobs;

110= 1xt[+];

thetaO= uf[+,] / ntot;

if nparm=3 then do ;

end;

s0= {3} || {3};
s1= thetaO[,2] || {0};
s2= {0} || thetaO[,1];

if nparm>3 then do;

end;

s0= {3} || j(1,nparm-3,2) || {3};
s1= thetaO[,2:nparm-1] || {0};
s2= {0} || thetaO[,1:nparm-2];

s= (sO0 # thetaO[,1:nparm-1]) + s1 + s2;
s = (0.25 # s ) || thetaO[,nparm];
thetal=s;

difcrit= 1;

do while ( difcrit > conv );
iter= iter + 1;
u= _x # thetaO;
xt= u[,+];
Ixt= log(xt);
u=s u # (1 / xt);
11= 1xt[+];
thetaO= u[+,] / ntot;

if nparm=3 then do;

end;

s0= {3} || {8};
s1= theta0[,2] || {0};
s2= {0} || thetaO[,1];

if nparm>3 then do;

end;

s0= {3} || i(1,nparm-3,2) || {3};
s1= thetaO[,2:nparm-1] || {0};
s2= {0} || thetaO[,1:nparm-2];

s= (sO0 # thetaO[,1:nparm-1]) + s1 + s2;

S =

(0.25 # s ) || thetaO[,nparm];

thetaO=s;

difcrit= 11 - 110;
110= 11;

end;

return(theta0);

finish em;
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* khkkkkkkk MAIN PROGRAM *********;

use DATASET;

read all var{left right};
call interval(left,right);
quit;
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APPENDIX 4.A: Fitting the Finkelstein, PE AND APE models in SAS

The 1left and right interval endpoints of the observed censoring
intervals for each individual are recorded in variables LEFT and RIGHT
of data set DATASET, where LEFT = 0 if the observation is left-
censored, LEFT = RIGHT if the observation 1is exact, and RIGHT = an
arbitrary fixed value beyond the last examination time if the
observation is right-censored. DATASET contains a single covariate X.

APPENDIX 4.B: SAS program to fit the Finkelstein model

proc iml;

/* CONSTRUCT THE NON-OVERLAPPING TIME INTERVALS */
start nolap(nq,p,q,1l,r);

pp= unique(r); npp= ncol(pp);
qg= unique(l); nqq= ncol(qq);
a= j(1,npp, .);
do i= 1 to npp;
do j= 1 to nqq;
if ( qalj]l < pp[i] ) then q[i]= qq[j];

end;
if q[i]) = qq[ngq] then goto labt;
end;
lab1:
if i > npp then ng= npp;
else ng= i;
g= unique(q[1:nqg]);
ng= ncol(q);
p= j(1,nq, .);

do i= 1 to nq;
do j= npp to 1 by -1;
if ( ppljl > q[i] ) then p[i]= ppl[jl;
end;
end;
finish nolap;

/* LA SR AR R AR RS RE RS R XS TE */

use DATASET;

read all var{left right x};
1=left; r=right;

nobs= nrow(l);

/* GENERATE NON-OVERLAPPING INTERVALS */
p=0;

q=0;

call nolap(nparm, p, q, 1, r);
nparmi=nparm-1;
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/* GENERATE THE ALPHA-MATRIX */
alphail= j(nobs, 1, 0);
_x= j(nobs, nparmi, 0);
do i= 1 to nobs;
/* sort out first col of alpha */
if 1{i]<=q[1] then alphatl[i]=1;
do j= 2 to nparm;
if ( 1[i]>=p[j-1] & 1l[i]<=q[j] ) then _x[i,j-1]=1;
if ( r[i]>=p[j-1] & r[i}<=q[j] ) then _x[i,j-1]=-1;
end;
end;

/* no. parameters */
ncoef=1;

start LL(theta) global(nobs,nparmi,ncoef,alphal,_x,X);
u=nparmi+i;
v=nparmi+ncoef;
11=0;
do i=1 to nobs;
xbeta= x[i,]}*thetau:v] ;
10=alphait[i];
do j=1 to nparmi;
tmp1=-exp(theta[j]+xbeta);
tmp2=exp(tmpi);
10=10+_x[1i,j]*tmp2;
end;
11=11+log(10);
end;
return(ll);
finish;

start GRAD(theta) global(nobs,nparmi,ncoef,alphal,_x,x);
u=nparmi+1;
v=nparmi+ncoef;
g1=j(1,nparm1,0);
g2=j(1,ncoef,0);
h=g1;
do i = 1 to nobs;
xbeta= x[i,]*theta[u:v] ;
lli=alphat[i];
10=0;
do j= 1 to nparmi;
tmp1=-exp(theta[j]+xbeta);
tmp2=exp(tmp1)*_x[1,]];
11i=11li+tmp2;
tmp3=tmp2*tmpi;
10=10+tmp3;
h[j]=tmp3;
end;
gl=g1+(h/111i);
g2=g2+(x[1,]1*10/111);
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end;

9 = 91|]92;
return (g);
finish;

/* estimate the regression parameters */

/* options */
opt= {1,0};

/* termination criteria */
tc=j(1,10,.);

tc[1,1]=500;

tc[1,2]=1000;

tc[1,6]=0;

* constraints;
nparm=nparmi+ncoef;
nparm2=nparmi-1;
con=j (nparm2,nparm+2,0);
do i=1 to nparm2;
con[i,i]=-1;
con[i,i+1]=1;
con[i,nparm+1]=1;
end;
con=j(1,nparm+2,.)//j(1,nparm+2,.)//con;

/* initial estimates */

beta=j(1,ncoef,0);

gamma=j (1,nparmi,0);

do j=1 to nparmi;
gamma[j]=log(-log(1-j/nparm));

end;

z0=gamma || beta;

b={.};

seb={.};

rcode={.};

method=2;

call nlpgn(rc,est,"11",z0,0pt,con,tc,,,"grad");

rcode=rc;
if rcode <15 & rcode>0 then do ;
b=est[nparm];
call nlpfdd(f, g, h, "11", est,,"grad");
help=-1*h;
v=inv(help);
betav=v[nparm,nparm];
seb=sqrt(betav);
end;
finkres= method || rcode || b || seb || nparm1 || nrcens || nlcens;

quit;
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APPENDIX 4.C: SAS program to fit the PE model

proc lifetest data=DATASET outsurv=surv noprint;
time midpt*event(0);run;

data a (KEEP= cutpt rep); set surv; where sdf_lcl ne .;

cutpt=0;

rep=0;

if survival<0.2 & lag(survival)>0.2 then do; cutpt=midpt; rep=rep+1;
end;

if survival<0.4 & lag(survival)>0.4 then do; cutpt=midpt; rep=rep+1;
end;

if survival<0.6 & lag(survival)>0.6 then do; cutpt=midpt; rep=rep+i;
end;

if survival<0.8 & lag(survival)>0.8 then do; cutpt=midpt; rep=rep+1;
end;

run;

data pcent5; set a; where rep ne 0; run;

proc iml;

start FITPE(1l,r,covar,event)
global(nparm,nobs,nint,w,tj_1,tj,vmat,j1,i1,xx,resp,A,B,ests,optx);

resp=event;
Xx=covar;
nobs=nrow(1);
nint=nrow(w);
nparm=nint+1;
i1=j(nobs,1,1);
j1=i(1,nint,1);
A=j(nobs,nint,0);
B=j (nobs,nint,0);
do i= 1 to nobs;
do j= 1 to nint;
if (1[4i] > tj_1[3] & 1[i]<=tj[]j]) then A[1i,j]=1[1]-tj_1[]j];
else if (1[i] > tj[j]) then A[i,jl=w[]];
else A[i,j]=0;

if (r[i] >= tj[j] & 1[i1<tj[j] & 1[i]>tj_1[j] & event[i]=1) then
Bli,j)1=tj[j]-1[1];
else if (r[i] >= tj[j] & 1[i]<=tj_1[]j] & event[i]=1) then
Bli,j]=w[]j];
else if (r[i] < tj[j] & 1[i]>=tj_1[]j] & event[i]=1) then
B[1,j]=r[i]-1[1];
else if (r[i] < tj[j] & r[i]>tj_1[j] & 1[i]<tj_1[j] & event[i]=1)
then B[1i,j]l=r[i]-tj_1[j];
else B[i,j]=0;
end;
end;
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/* USING NLP TO MAXIMIZE LIKELIHOOD FUNCTION */
/* options */
optn= {1 0};

/* initial estimates */

startt=j(nobs,1,0);

startt=choose(event=0,1,14+0.5*(r-1));

pdOo=i1*w’;

pevent=j(nobs,nint,-9);

do j=1 to nint; :
pevent[,j]=choose(startt>tj_1{j] & startt<=tj[j],1,0);
pdO[,j]=choose(startt<=tj_1[j],0,pdO[,j]);
pdo[,j]l=choose(startt>tj_1[j] & pevent[,j]=1,startt-

tj_1031,pdO[,j1);

end;

totevent=pevent[+,];

totpdO=pdO[+,];

x0= totevent/totpd0 || {0};

* *xxx% termination criterion *****;
te=j(1,18,0);

tel1,1]=12000;

tc[1,2]=10000;

tc[1,3]=.;

tc[1,9]=1e-10;

/* constraint */
conl=j(1,nparm,-20);
conu=j(1,nparm,.);
con=conl//conu;

/* call the optimization routine */
call nlpgn(rc,rx,"LL",x0,o0ptn,con,tc,,,"GRAD");
optx=rx;

call nlpfdd(f, g, h, "11", rx,,"grad");
negh=-1*h;
help=det(negh);
if help *= 0 then do;
vmat=inv(negh);
seb=sqrt(vmat[nparm,nparm]);

ests=optx[1,nparm] || seb;
end;
if help = 0 then do;

seb={.};

ests=optx[1,nparm] || seb;
end;

finish FITPE;
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start PCT5;
use pcent5;
read all var{cutpt rep};
nint=nrow(cutpt);
total=rep[+];
cutpt=cutpt // {364};
rep[nint]=rep[nint]+(4-total);
tmp=cutpt;
do j = 1 to nint;
do k =1 to repl[jl;
new= cutpt[j] + k*(cutpt[j+1]-cutpt[j])/rep[j];
tmp=union(tmp,new);
end;
end;
tj=tmp";
tj_1 = {0} // tj[1:4];
w=1tj - tj_1;
tmp2=tmp[1:4];
output= {1} || tmp2’;
varnames={z p20 p40 p60 p80};
create tmp5 from output [colname=varnames];
append from output;
close tmp5;

finish PCT5;

/* loglikelihood function */

start LL(theta) global(xx,A,B,resp,i1,j1,nparm,nint,nobs);
LPIij=i1*theta[1,1:nint];
LPXij=xx*theta[1,nparm];
tmp=LPXij*j1;
LPij=LPIij + tmp;
sbrate=(-exp(LPij)#B)[,+];
mmm=choose(1-exp(sbrate)=0,1,1-exp(sbrate));
respbit=(resp # log(mmm))[+];
abit=(-exp(LPij) # A )[+];
f= abit+respbit;
return(f);

finish LL;

/* gradient vector */
start GRAD(theta) global(xx,A,B,resp,it,ji,nparm,nint,nobs);
LPIij=i1*theta[1,1:nint];
LPXij=xx*theta{1,nparm];
tmp=LPXij*j1;
tmp2=xx*j1;
LPij=LPIij + tmp;
sbrate=(-exp(LPij)#B)[,+];
abit= -exp(LPij) # A ;
bbit= (exp(sbrate)*j1) # exp(LPij) # B;
cbit= choose(1-exp(sbrate)=0,1,1-exp(sbrate));
Gij=abit + bbit/(cbit*j1);
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intgrad=Gij[+,];
lpgrad=(tmp2 # Gij)[+];
g= intgrad || lpgrad;
return(g);

finish GRAD;

%* -ve of hessian matrix *;
start HESS(theta) global(xx,A,B,resp,il1,j1,nparm,nint,nobs);
LPIij=it1*theta[1,1:nint];
LPXij=xx*theta[1,nparm];
tmp=LPXij*j1;
tmp2=xx*j1;
LPij=LPIij + tmp;
sbrate=(-exp(LPij)#B)[,+];
abit= -exp(LPij) # A ;
bbit= (exp(sbrate)*j1) # exp(LPij) # B;
cbit= choose(1-exp(sbrate)=0,1,1-exp(sbrate));
cbit2=(cbit##2 )*j1;
dbit= j(nobs,nint,1) - (exp(LPij)#B) - (exp(sbrate)*jt);
Hij=abit + (bbit#dbit)/cbit2;
int=Hij[+,];
lp= ((tmp2##2) # Hij)[+];
intlp=(tmp2 # Hij)[+,];
h=diag( int || 1p );
h{nparm,1:nint]=intlp;
h{1:nint,nparm]=intlp";
return(h);
finish HESS;

/* MAIN PROGRAM */

use DATASET;

read all var{left right x event};
call pct5;

call fitpe(left,right,x,event);

quit;

APPENDIX 4.D: SAS program to fit the APE model

data DATASET; set DATASET;

if event=0 then right=.; z=1;

run;

data use5; merge DATASET tmp5; by z; run;

data use5;set use5;

keep left right t event x id simnum i 1i ri wi;
i=1; 1i=0; ri=p20; wi=p20; output;

i=2; 1i=p20; ri=p40; wi=p40-p20; output;

i=3; 1li=p40; ri=p60; wi=p60-p40; output;
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i=4; 1i=p60; ri=p80; wi=p80-p60; output;
i=5; 1i=p80; ri=52*7; wi=52*7-p80; output;
run;

%MACRO FITMP(data=,est=);

data &data; set &data;
if (left>=ri) then pd=wi;
if (left>li & left<=ri) then pd=left-li;
eflag=0,;
if ( (pd=. or pd<wi) and right>1i) then eflag=1;
if eflag=1 then atrisk=wi;
if eflag=1 & pd-=. then atrisk=wi-pd;
if (right>li & right<=ri) then atrisk=right-1li;
if (left>=1li & right<=ri) then atrisk=right-left;
if atrisk=. then atrisk=0;
cens=1-event;
if i ne 1 then cens=0;
run;
proc means data=&data noprint;
var atrisk; class id;
output out=tmp sum=tatrisk ;
run;
proc sort data=tmp; by id; run;
proc sort data=&data; by id descending i; run;
data &data; merge tmp &data; by id; where id ne
data &data; retain sum; set &data;
by id descending 1i;
if first.id then sum=0;
sum=sum+atrisk;
run;
data &data; set &data;
if eflag=1 then e=atrisk/tatrisk;
else e=0;
if pd=. then pd=0;
pdbit=e*(sum-0.5*atrisk);
totpd=pd+pdbit;
if totpd=0 then delete;
ltotpd=log(totpd);
run;

proc genmod data=&data;

class 1i;

model e = i x / noint dist=p offset=1ltotpd;
make 'parameterestimates' out=parm ;

run;

%MEND;

%fitmp(data=useb5,est=est5);

.; run;
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APPENDIX 4.A: Fitting the Finkelstein, PE AND APE models in SAS

The 1left and right interval endpoints of the observed censoring
intervals for each individual are recorded in variables LEFT and RIGHT
of data set DATASET, where LEFT = 0 if the observation is left-
censored, LEFT = RIGHT if the observation is exact, and RIGHT = an
arbitrary fixed value beyond the last examination time if the
observation is right-censored. DATASET contains a single covariate X.

APPENDIX 4.B: SAS program to fit the Finkelstein model

proc iml;

/* CONSTRUCT THE NON-OVERLAPPING TIME INTERVALS */
start nolap(nqg,p,q,1,r);

pp= unique(r); npp= ncol(pp);
qg= unique(l); ngg= ncol(qq);
q= j(1,npp, .);
do i= 1 to npp;
do j= 1 to nqq;
if ( qq[j] < ppl[i] ) then q[i]= qq[j];

end;
if q[i] = qq[ngq] then goto labt;
end;
lab1:
if i > npp then ng= npp;
else ng= 1i;
g= unique(q[1:nq]);
ng= ncol(q);
p= j(1,nq, .);

do i= 1 to ng;
do j= npp to 1 by -1;
if ( pp[j] > q[i] ) then p[i]= pp[]];
end;
end;
finish nolap;

/* L2 2SR ER SRR R AR RR R R LRSS */

use DATASET,;

read all var{left right x};
1=left; r=right;

nobs= nrow(l);

/* GENERATE NON-OVERLAPPING INTERVALS */
p=0;

q=0;

call nolap(nparm, p, q, 1, r);
nparmi=nparm-1;
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/* GENERATE THE ALPHA-MATRIX */
alphatl= j(nobs, 1, 0);
_X= j(nobs, nparmi, 0);
do i= 1 to nobs;
/* sort out first col of alpha */
if 1{i]<=q[1] then alphai[i]=1;
do j= 2 to nparm;
if ( 1[i)>=p[j-1] & 1l[i]l<=q[j] ) then _x[i,j-1]=1;
if ( r{i]>=p[j-1]1 & r[i]l<=q[]j] ) then _x[1i,j-1]=-1;
end;
end;

/* no. parameters */
ncoef=1;

start LL(theta) global(nobs,nparmi,ncoef,alphatl,_x,x);
u=nparmi+i;
v=nparmi+ncoef;
11=0;
do i=1 to nobs;
xbeta= x[i,]*thetafu:v] ;
10=alphatii];
do j=1 to nparmi;
tmp1=-exp(thetalj]+xbeta);
tmp2=exp (tmp1);
10=10+_x[i,j]*tmp2;
end;
11=11+1l0g(10);
end;
return(ll);
finish;

start GRAD(theta) global(nobs,nparmi,ncoef,alphatl,_x,X);
u=nparmi+i;
v=nparmi+ncoef;
g1=j(1,nparmi,0);
g2=j(1,ncoef,0);
h=g1;
do i = 1 to nobs;
xbeta= x[i,]*thetau:v] ;
lli=alphat[i];
10=0;
do j= 1 to nparmi;
tmpt=-exp(theta[j]+xbeta);
tmp2=exp (tmp1)*_x[i,j];
11i=11li+tmp2;
tmp3=tmp2*tmp1;
10=10+tmp3;
h[j]=tmp3;
end;
gi=g1+(h/111);
g2=g2+(x[1,]*10/111);
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end;

g = g1]]92;
return (g);
finish;

/* estimate the regression parameters */

/* options */
opt= {1,0};

/* termination criteria */
tc=j(1,10,.);

tc(1,1]=500;

tc[1,2]=1000;

tc{1,6]1=0;

* constraints;
nparm=nparmi+ncoef;
nparm2=nparmi-1;
con=j(nparm2,nparm+2,0);
do i=1 to nparm2;
con[i,i]=-1;
con[i,i+1]=1;
con[i,nparm+1]=1;
end;
con=j(1,nparm+2,.)//j(1,nparm+2,.)//con;

/* initial estimates */

beta=j(1,ncoef,0);

gamma=j(1,nparmi,0);

do j=1 to nparmi;
gamma[j]=log(-log(1-j/nparm));

end;

z0=gamma || beta;

b={.};

seb={.};

rcode={.};

method=2;

call nlpgn(rc,est,"11",z0,0pt,con,tc,,, " "grad");

rcode=rc;
if rcode <15 & rcode>0 then do ;
b=est[nparm];
call nlpfdd(f, g, h, "11", est,,"grad");
help=-1*h;
v=inv(help);
betav=v[nparm,nparm];
seb=sqrt(betav);
end;

finkres= method || rcode || b || seb || nparm1 || nrcens || nlcens;

quit;
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APPENDIX 4.C: SAS program to fit the PE model

proc lifetest data=DATASET outsurv=surv noprint;
time midpt*event(0);run;

data a (KEEP= cutpt rep); set surv; where sdf_lcl ne .;

cutpt=0;

rep=0;

if survival<0.2 & lag(survival)>0.2 then do; cutpt=midpt; rep=rep+i;
end;

if survival<0.4 & lag(survival)>0.4 then do; cutpt=midpt; rep=rep+i;
end;

if survival<0.6 & lag(survival)>0.6 then do; cutpt=midpt; rep=rep+i;
end;

if survival<0.8 & lag(survival)}>0.8 then do; cutpt=midpt; rep=rep+i;
end;

run;

data pcent5; set a; where rep ne 0; run;

proc iml;

start FITPE(l,r,covar,event)
global(nparm,nobs,nint,w,tj_1,tj,vmat,j1,11,xx,resp,A,B,ests,optx);

resp=event;
XxX=covar;
nobs=nrow(l);
nint=nrow(w);
nparm=nint+1;
i1=j(nobs,1,1);
j1=j(1,nint,1);
A=j(nobs,nint,0);
B=j (nobs,nint,0);
do i= 1 to nobs;
do j= 1 to nint;
if (1[1i] > tj_1[]j) & 1[i]<=tj[j]) then A[1,j]=1[1i]-tj_1[]j];
else if (1[i] > tj[j]) then A[i,j]=w[ij];
else A[1i,j]=0;

if (r[i] >= tj[j] & 1{il<tj[j] & 1[i]>tj_1[j] & event[i]=1) then
Bl1,j1=tj[j]-1[1];
else if (r[i] >= tj[j] & 1l[i]<=tj_1[j] & event[i]=1) then
Bli,j]=w[]];
else if (r[i] < tj[j] & 1l[i]>=tj_1[]j] & event[i]=1) then
B[i,j]=r[1]-1[1];
else if (r[i]) < tj[j] & r[il>tj_1[j] & 1[i]<tj_1[j] & event[i]=1)
then B[1i,j]=r[i]-tj_1[il;
else B[i,]j]=0;
end;
end;
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/* USING NLP TO MAXIMIZE LIKELIHOOD FUNCTION */
/* options */
optn= {1 0};

/* initial estimates */
startt=j(nobs,1,0);
startt=choose(event=0,1,140.5*(r-1));
pdOo=it1*w’;
pevent=j (nobs,nint,-9);
do j=1 to nint;
pevent[,jl=choose(startt>tj_1[j] & startt<=tj[j],1,0);
pdO[, j]=choose(startt<=tj_1[j],0,pd0[,]]);
pdO[, jl=choose(startt>tj_1[j] & pevent[,j]=1,startt-
tj_1[il,pdO[,]]);
end;
totevent=pevent[+,];
totpdO=pdO[+,];
x0= totevent/totpd0 || {0};

* *x%*x termination criterion **x**;
tc=j(1,13,0);

tc[1,1]=12000;

tc[1,2]=10000;

tc[1,3]=.;

tc[1,9]=1e-10;

/* constraint */
conl=j(1,nparm,-20);
conu=j(1,nparm,.);
con=conl//conu;

/* call the optimization routine */
call nlpgn(rc,rx,"LL",x0,0ptn,con,tc,,,"GRAD");
optx=rx;

call nlpfdd(f, g, h, "11", rx,,"grad");
negh=-1*h;
help=det (negh);
if help "= 0 then do;
vmat=inv(negh);
seb=sqrt(vmat[nparm,nparm]);

ests=optx[1,nparm] || seb;
end;
if help = 0 then do;

seb={.};

ests=optx[1,nparm] || seb;
end;

finish FITPE;
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start PCT5;
use pcent5;
read all var{cutpt rep};
nint=nrow(cutpt);
total=rep[+];
cutpt=cutpt // {364};
rep[nint]=rep[nint]+(4-total);
tmp=cutpt;
do j = 1 to nint;

do k = 1 to rep[jl;

new= cutpt[j] + k*(cutpt[j+1]-cutpt[j])/rep[]j];
tmp=union(tmp,new);

end;
end;
tj=tmp’;
tj_1 = {0} // tj[1:4];
w=1tj - tj_1;
tmp2=tmp[1:4];
output= {1} || tmp2’;
varnames={z p20 p40 p60 p80};
create tmp5 from output [colname=varnames];
append from output;
close tmp5;

finish PCT5;

/* loglikelihood function */

start LL(theta) global(xx,A,B,resp,il,ji1,nparm,nint,nobs);
LPIij=i1*theta[1,1:nint];
LPXij=xx*theta[1,nparm];
tmp=LPXij*j1;
LPij=LPIij + tmp;
sbrate=(-exp(LPij)#B)[,+];
mmm=choose(1-exp(sbrate)=0,1,1-exp(sbrate));
respbit=(resp # log(mmm))[+];
abit=(-exp(LPij) # A )[+];
f= abit+respbit;
return(f);

finish LL;

/* gradient vector */
start GRAD(theta) global(xx,A,B,resp,it1,j1,nparm,nint,nobs);
LPIij=i1*theta[1,1:nint];
LPXij=xx*theta[1,nparm];
tmp=LPX1ij*j1;
tmp2=xx*j1;
LPij=LPIij + tmp;
sbrate=(-exp(LPij)#B)[,+];
abit= -exp(LPij) # A ;
bbit= (exp(sbrate)*j1) # exp(LPij) # B;
cbit= choose(1-exp(sbrate)=0,1,1-exp(sbrate));
Gij=abit + bbit/(cbit*j1);
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intgrad=Gij[+,];
lpgrad=(tmp2 # Gij)[+];
g= intgrad || 1lpgrad;
return(g);

finish GRAD;

%* -ve of hessian matrix *;
start HESS(theta) global(xx,A,B,resp,it,j1,nparm,nint,nobs);
LPIij=i1*theta[1,1:nint];
LPXij=xx*theta[1,nparm];
tmp=LPXij*j1;
tmp2=xx*j1;
LPij=LPIij + tmp;
sbrate=(-exp(LPij)#B)[,+];
abit= -exp(LPij) # A ;
bbit= (exp(sbrate)*j1) # exp(LPij) # B;
cbit= choose(1-exp(sbrate)=0,1,1-exp(sbrate));
cbit2=(cbit##2 )*j1;
dbit= j(nobs,nint,1) - (exp(LPij)#B) - (exp(sbrate)*j1);
Hij=abit + (bbit#dbit)/cbit2;
int=Hij[+,];
lp= ((tmp2##2) # Hij)[+];
intlp=(tmp2 # Hij)[+,];
h=diag( int || 1p );
h[{nparm,1:nint]=intlp;
h{1:nint,nparm]=intlp’;
return(h);
finish HESS;

/* MAIN PROGRAM */

use DATASET;

read all var{left right x event};
call pct5;

call fitpe(left,right,x,event);

quit;

APPENDIX 4.D: SAS program to fit the APE model

data DATASET; set DATASET;

if event=0 then right=.; z=1;

run;

data use5; merge DATASET tmp5; by z; run;

data use5;set use5;

keep left right t event x id simnum i 1i ri wi;
i=1; 1i=0; ri=p20; wi=p20; output;

i=2; 1i=p20; ri=p40; wi=p40-p20; output;

i=8; 1i=p40; ri=p60; wi=p60-p40; output;
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i=4; li=p60; ri=p80; wi=p80-p60; output;
i=5; 1i=p80; ri=52*7; wi=52*7-p80; output;
run;

%MACRO FITMP(data=,est=);

data &data; set &data;

if (left>=ri) then pd=wi;

if (left>1li & left<=ri) then pd=left-1i;
eflag=0;

if ( (pd=. or pd<wi) and right>li) then eflag=1;
if eflag=1 then atrisk=wi;

if eflag=1 & pd~=. then atrisk=wi-pd;

if (right>1li & right<=ri) then atrisk=right-1li;

if (left>=1li & right<=ri) then atrisk=right-left;

if atrisk=. then atrisk=0;
cens=1-event;
if i ne 1 then cens=0;
run;
proc means data=&data noprint;
var atrisk; class id;
output out=tmp sum=tatrisk ;
run;
proc sort data=tmp; by id; run;
proc sort data=&data; by id descending i; run;

data &data; merge tmp &data; by id; where id ne .;

data &data; retain sum; set &data;
by id descending i;
if first.id then sum=0;
sum=sum+atrisk;

run;

data &data; set &data;
if eflag=1 then e=atrisk/tatrisk;
else e=0;
if pd=. then pd=0;
pdbit=e*(sum-0.5*atrisk);
totpd=pd+pdbit;
if totpd=0 then delete;
ltotpd=log(totpd);

run;

proc genmod data=&data;

class i;

model e = 1 x / noint dist=p offset=1ltotpd;
make 'parameterestimates' out=parm ;

run;

HMEND;

%sfitmp(data=use5,est=est5);

run;
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