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Abstract

Recently, watermarking has been modelled as communications with side information
at the transmitter. The advantage of this is that in theory the interference due to the
cover Work or host signal can be eliminated, thereby improving the capacity of the wa-
termarking system. Hence a number of different practical methods have been proposed,
one of which is based on dirty paper trellis coding. These codes are a form of spherical
code, and as such, have the advantage of being robust to amplitude scaling. Dirty paper
trellises have a number of design parameters. There is a lack of understanding on the
influence of these parameters on performance, and this thesis attempts to address this.
In particular, the thesis examines the following parameters: (i) the number of states and
the number of arcs per state in the trellis, (ii) the distribution of the codewords gener-
ated by the trellis, and (iii) the cost function associated with each arc. Experimental
results are provided on both synthetic signals and real images that demonstrate how
performance is affected and a number of suggestions and improved designs are dis-
cussed. In particular, a deeper understanding of trellis configurations is provided that
serves as a foundation on which to choose the best trellis structure based on bit error
rate performance and computational cost. Secondly, trellis coded modulation (TCM)
is adapted for use in a dirty paper trellis. This results in an improved distribution of
the codewords on the sphere which leads to improved performance. Lastly, during em-
bedding, the embedder usually searches for the codeword that has the highest linear
correlation with the cover Work. However, this codeword may be difficult to embed
due to perceptual constraints. We show that searching for a codeword that maximises
a cost function based on linear correlation and perceptual distance can significantly

improve performance.
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Chapter 1

Introduction

Rapid advancement in computer hardware and the evolution of the Web has enabled
ordinary individuals to transfer perfect digital copies of multimedia content from one
place to another. Large multimedia data such as music, video, computer software and
pictures can be easily distributed across the internet in a short span of time at almost no
cost. This raises the concern of several industrial groups, such as the RIAA (Record-
ing Industry Association of America) and the MPAA (Motion Picture Association of
America), regarding the issue of copyright protection as illegal file-sharing is claimed
to have cost them billions of dollars. A number of industry technology groups, such
as the CPTWG (Copy Protection Technical Working Group) and the SDMI (Strategic
Digital Music Initiative), were established to tackle these concerns.

Illegal distribution of digital multimedia content, especially across the internet, has
led to the development of digital watermarking in order to reduce piracy. Digital wa-
termarking is a technique to either hide copyright information or verification messages
(i.e. watermark messages) into multimedia content, or prevent unauthorised distribu-
tion. Such messages may contain information such as the name or place of a copyright
holder. A digital watermark, generated by the watermark message and a watermark
key, is a digital signal or pattern inserted into an original digital multimedia content,
called the cover Work. The entire process is illustrated in Figure 1.1.

Digital watermarking is used for copyright protection of cover Works because of
their three important attributes. Firstly, watermarks are imperceptible. They do not
detract from the visual appearance of an image or the audio quality of a piece of music.
Secondly, watermarks are inherently bound to the Works in which they are embedded.

This means that they do not get removed when the Works are displayed or converted to
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Cover Work
l Watermarked Detected
Watermark Watermark Work Watermark etecte
— > ——-watermark
message embedder detector

message

Watermark Watermark

key key

Figure 1.1: A generic watermarking system

other file formats. Lastly, watermarks undergo the same transformation as the Works.
In this case, it is possible to learn something about the transformations by examining
the resulting watermarks. Therefore digital watermarking can be invaluable to certain

applications because of these attributes.

In general, watermarks can be classified into two categories: semi-fragile and ro-
bust. Semi-fragile watermarks are designed to lose their validity after even the slightest
modification, except for some intended processes such as compression, to the water-
marked content called the watermarked Work. These watermarks are employed to de-
tect the presence of an intentional attack. On the other hand, robust watermarks, as
the name suggests, are supposed to resist any alteration, such as channel noise or com-
mon signal processing, to the watermarked Work. Under such operating conditions, the
watermark detector is still able to detect the embedded watermark. The use of either

fragile or robust watermarks depends on the application.

Since digital watermarks are imperceptible, inseparable from the cover Works,
and undergo the same transformation as the cover Works, digital watermarking can be
useful in a variety of applications [CMBO00]. For example, digital watermarking can be
used for broadcast monitoring. The identification of the embedded watermark helps to
monitor when advertisements were broadcasted. Another use of watermarking is owner
identification whereby copyright holders can distribute their works without losing their
rights. Watermarking is superior to textual copyright notices since the former is im-
perceptible and inseparable from the Work while the latter may be detracted from the

visual appearance of the image, or easily removed by cropping. The most famous case



15

of copyright violation is the use of a photography of Lena Sjo6blom by many image
processing researchers without permission from its rightful owner, Playboy Enterprises,
Inc [pla72]. Transaction tracking is another area in which an embedded watermark can
be used to track the source of an illegally distributed Work. An example of this is
in the distribution of Oscars-nominated preview DVDs, known as screeners, to award
judges. When illegal copies of these screeners appeared on the Internet, the transaction
watermark embedded in them were successfully used to determine their source.
Another application of watermarking is content authentication since the embedded
watermark (or signature) is inseparable from the cover Work. Any slight modification
to the cover Work will cause the watermark to be modified and thus not be detected.
In this case, the watermark is termed a semi-fragile watermark. If the watermark is not
detected, the owner will know that the Work has been modified. Since the watermark
undergoes the same modification process as the Work, we can therefore learn from the
watermark to determine how the Work has been tampered. Similar studies have been
carried out by many researchers [WD96]. Lastly, watermarking can be used for copy
control. Although cryptography is popular in copy control applications, it provides no
protection after decryption, which is essential for viewing. Watermarking compliments
cryptography by providing protection even after decryption. The CPTWG (Copy Pro-
tection Technical Working Group) has been interested in watermarking for copy control
use in video DVDs. Readers are directed to [BCK™99] for more details on copy control.
Watermarking systems are often characterised by a number of properties whose
importance depends on the requirements of the application. In certain situations, some
properties can be more important than the others, depending on the role the watermark

should play. Some of these properties are:

Robustness. Robustness refers to the ability of a watermark to survive common signal

processing operations. Examples of such operations are

e analog-to-digital or digital-to-analog conversion, resampling, requantisa-
tion, lossy compression, lowpass filtering, etc.
e rotation, translation, scaling, cropping, etc.

If a watermark is to be detected at the watermark detector, it has to survive some

(or all) of the transformations that are expected to be encountered during the
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transmission of the watermarked Work. However, in some scenarios such as
when semi-fragile watermarks are used, robustness is totally irrelevant. There-

fore depending on the application, the importance of robustness varies.

Tamper resistance. Tamper resistance refers to the ability to resist hostile attacks, usu-
ally with the intention of eliminating the watermark. These kinds of attacks can
involve unauthorised removal or embedding of a watermark. Two common forms
of such attacks are collusion and forgery. Collusion is a process whereby the at-
tacker gathers several watermarked copies of a given Work, each with a different
watermark embedded, and combines them to produce a copy with no watermark
or totally different watermark. On the other hand, forgery involves an unau-
thorised embedding of an illegitimate watermark so that the detector incorrectly

identifies the false watermark as legitimate.

Fidelity. Fidelity is defined as the perceptual similarity between the original and the
watermarked version of a cover Work. The watermark should ideally be imper-
ceptible so that it does not affect the viewing/listening of the multimedia content.
However, in certain circumstances, mild perceptibility is tolerated for a higher

robustness or lower cost of implementing a watermarking system.

Embedding Effectiveness. A positive detection occurs if the correct watermark is
identified at the detector. Using this definition of positive detection, the effec-
tiveness of a watermarking system is defined as the probability of correct detec-
tion immediately after watermark embedding. Ideally, the effectiveness should
be 100% but this may come at a high cost if other properties are to be met as well.
Depending on the application, some effectiveness may be sacrificed for the other

requirements, such as high fidelity.

Digital watermarking is different from two related technologies: cryptography
and steganography. Cryptography [TWO01] is another content protection technology
that has been widely used in many practical applications. As compared to watermarked
Works which are still perceptible to human, encrypted contents are totally pseudoran-
dom and hence are not perceptible at all unless the encrypted contents are decrypted.

However, the encrypted contents are no longer protected after decryption whereas wa-
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termarks remain bound to the watermarked Works. As for steganography [KP00],
which is the art of writing hidden message such that the existence of the message is only
known to the intended recipient, the steganographic message will generally appear in
something unrelated to itself such as a picture, an article or another message called the
covertext. Hence there is luxury of choosing any media to conceal the steganographic
message. The main priority of steganography is to conceal the very existence of the
hidden message and it is usually not resistant to any distortion of the stegotext. In con-
trast, while digital watermarking is imperceptible, it is common to inform the public
that content is watermarked, as this acts as a deterrent to copying. In addition, a water-
mark is often designed to be robust to many common signal processing operations, €.g.

lossy compression, that a Work may undergo.

1.1 Outline of the Thesis

Digital watermarking has been extensively studied for multimedia content. Many dif-
ferent methods have been devised to deal with various watermarking scenarios with
each scenario focusing on one or more specific properties of watermarking depending
on the intended applications. In this thesis, we will focus our attention on robust wa-
termarking for images, i.e. designing watermarks that are resistant to common signal
processes.

In general, watermarking systems can be modelled as communication systems
because of the similarities involved. The advantage of such a relationship between wa-
termarking and communication systems is that it enables some useful communication
concepts to be implemented in watermarking applications to improve watermarking
performance. In Chapter 2, some ideas on communications and watermarking systems
and their techniques are covered. Section 2.1 starts with a description of a general com-
munication system. One important communications concept, which can be useful for
watermarking purposes, is then briefly mentioned in Section 2.2. This communication
technique, known as spread spectrum, enables the original information to be “spread”
over a larger range of frequencies used for transmission. A watermarking system that
models a communication system is then described in Section 2.3 to illustrate the simi-
larities between both systems. These similarities enable watermarking systems to em-

ploy the concept of spread spectrum communication so as to improve its performance
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through “spreading” of the original information and details can be found in Section 2.4.

Before the late 1990s, watermarking systems were modelled as simple communi-
cation systems. At the end of the 20** century, researchers recognised that watermark-
ing systems can be better modelled as another communication system called communi-
cations with side information at the transmitter, which is described in Section 2.5. This
new communication system models the transmission channel as two noise sources and
the interference of one noise source on the transmitted signal is totally eliminated if this
noise source is known to the transmitter. Since the original Work is normally available
to the watermark embedder (i.e. transmitter), the new communication concept enables
interference elimination of an original Work, which is acting as a noise source initially,
on the watermarked version of the same Work. As such, the performance of the wa-
termarking system will not be affected by the original Work. Details on watermarking
systems modelled as communications with side information at the transmitter are cov-
ered in Section 2.6. Upon recognising the fact that the original Work can be considered
as side information, Section 2.7 illustrates how spread spectrum watermarking can be
enhanced by introducing the concept of improved spread spectrum (ISS), which simply

takes into account the availability of the original Work at the watermark embedder.

In Section 2.8, three types of practical embedding strategies are described and
they have been proposed by others to make use of the fact that watermarking can be
regarded as communications with side information at the transmitter: /attice codes,
syndrome codes, and dirty paper spherical codes. Lattice codes are designed with
computational simplicity in mind whereas syndrome codes are proposed to make use of
error-correcting codes. However, both lattice codes and syndrome codes are susceptible
to a common signal processing operation, i.e. amplitude scaling, which is multiplying
the Work by a scaling factor. To solve this problem, another class of codes called dirty
paper spherical codes was proposed since scaling only affects the magnitude of the
code and not the decoding decision if spherical codes are used. A specific subclass,
called dirty paper trellis codes, has been introduced to incorporate spherical codes with
coding techniques to achieve a much better performance. Dirty paper trellis codes are

the focus of this thesis.

To understand the principles of dirty paper trellis codes, a brief description on error

correcting codes is required. Hence Chapter 3 begins by explaining two types of error
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correcting codes. One of them is trellis coding which involves a trellis structure that
consists of many paths and each path corresponds to a codeword. In this case, there is
one-to-one mapping between messages and codewords. An example of watermarking
using this trellis is illustrated. But this type of watermarking does not make use of
the fact that the original Work is available to the watermark embedder. In order to do
so, dirty paper trellis codes are designed to provide a one-to-many mapping between
messages and codewords, instead of a one-to-one mapping. This one-to-many mapping

allows a nearer codeword to be chosen for embedding, thus incurring less distortion.

The performance of dirty paper trellis codes has not been fully examined. Without
a good understanding of its performance, one may encounter problems in trying to cor-
rectly implement dirty paper trellis codes for practical watermarking purposes. In this
thesis, we look at some factors that can influence the performance of dirty paper trellis
codes and thus its selection for watermarking. Chapter 4 first looks at the performance
in relation to different trellis structures and then takes into consideration the compu-
tation cost in the selection of a trellis structure. Hence we can have a more informed
choice on the different trellis configurations having the same performance, i.e. the one
with the least computation cost will be chosen. In the end, we are able to implement
a wafermarking system which achieves a specified performance and yet operating at a

lower computation cost.

To further understand dirty paper trellis codes, it is noted that the distribution of
codewords generated by a trellis can affect the performance of the trellis. In other
words, a set of well-separated codewords generally brings about an enhanced perfor-
mance for the trellis. Current dirty paper trellis codes may generate codewords that are
not well-distributed. In view of this, Chapter 5 describes the use of a new trellis with
better codeword distribution and presents experimental results to show that this new

trellis performs better than the original one.

The codeword chosen for watermark embedding corresponds to a path through the
trellis. The selection of this path depends on the cost associated with each path. Cur-
rently, this cost function is defined as the linear correlation between an original Work
and the codewords. However, this does not guarantee that the linear correlation between
the watermarked version of the Work and the codewords are maximised if a perceptual

constraint is imposed that will limit the embedding strength of the chosen codeword. In
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Chapter 6, a new cost function, that takes into account both linear correlation and per-
ceptual distance, is proposed. Using this proposed cost function, experimental results
have shown that significant improvement in performance can be achieved.

Finally, Chapter 7 summarises the usefulness of dirty paper trellis codes for wa-
termarking use and then highlights the major contributions of this thesis. Some areas

for further research are also provided in this chapter.

1.2 Contributions

Several design parameters can influence the performance of dirty paper trellises but the
relationship between design parameters and performance has not been fully examined
by other researchers [MDC02,MDCO04]. This thesis attempts to improve watermarking
performance by first identifying some of these parameters and then suggesting different
dirty paper trellis designs upon a closer examination of these parameters. In particular,
this thesis examines the following design parameters: (i) the number of states and the
number of arcs per state in the trellis, (ii) the distribution of the codewords generated
by the trellis, and (iii) the cost function associated with each arc.

Experiments are carried out on both synthetic signals and real images to demon-
strate the influence of the design parameters on watermarking performance. In this
thesis, several suggestions are discussed and trellis designs proposed to enhance wa-
termarking performance. Specifically, a deeper understanding on how to choose an
optimum trellis configuration in different noiseless and noisy channel environments is
provided in Chapter 4 by taking into account both the bit error rate performance and
the trellis computational cost. Secondly, trellis coded modulation (TCM) is adapted
for use in a dirty paper trellis so that the codewords generated by the trellis are better
distributed on the surface of a sphere. An improved codeword distribution leads to a
better watermarking performance and this is shown in Chapter 5. Finally, the selection
of codeword for embedding is proven to be significantly improved by maximising a
cost function that is a linear combination of linear correlation and perceptual distor-
tion, instead of just linear correlation alone as is commonly used [MDC02, MDCO04].
Chapter 6 demonstrates that this improved choice of codeword leads to an enhanced

watermarking performance.



Chapter 2

Communications and Digital

Watermarking

Digital watermarking can be viewed as a process which consists of several stages, each
serving a specific purpose. Before going straight into the detailed, technical working
principles of each of these stages, it is necessary to first describe a generic communi-
cation model which is similar to a watermarking model. With that in mind, a general
communication system, with its different stages, is described in Section 2.1. This is
followed by a description of one of the most important digital communications tech-
niques - spread spectrum - in Section 2.2, together with its useful properties. Spread
spectrum involves the “spreading” of the original information across a wider band of
frequencies at the sender and gathering the spread information from those frequencies
at the receiver so that the information can better resist noise and be hidden from eaves-
droppers.

A general watermarking system is then described in Section 2.3, with the simi-
larities between watermarking systems and communications systems highlighted. The
advantage of highlighting such similarities is to allow watermarking systems to make
full use of the advancement in communications techniques. A simple communications
model of watermarking models the cover Work, i.e. the original media content, as a
channel noise source. Distortions that are present after watermark embedding will be
considered as a second channel noise source. Because the properties of spread spec-
trum are also applicable and beneficial to watermarking, spread spectrum techniques
can be applied to watermarking and Section 2.4 gives an example of a simple spread

spectrum watermarking scheme.
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Another important communication concept is communications with side informa-
tion at the transmitter which is described in details in Section 2.5. This side infor-
mation contains knowledge on the communication link between the sender and the
receiver. Specifically, Costa [Cos83] showed that for a channel with two independent
noise sources, only one of which is entirely known to the transmitter whereas the other
is the channel noise, but neither of which is known to the receiver, the channel capacity
is equivalent to a channel in which the first noise source is absent, even when the trans-
mitter is subjected to a power constraint. Because of similarities between watermarking
and communications with side information at the transmitter, i.e. the cover Work (first
noise source) is known to the watermark embedder, watermarking can be modelled as
such. Section 2.6 provides details on why and how watermarking can be modelled as
communications as side information at the transmitter.

Watermarking employing spread spectrum makes no use of the concept of commu-
nications with side information at the transmitter. However, a better spread spectrum-
based watermarking has been developed to incorporate this new communication con-
cept for performance enhancement. This is discussed in Section 2.7.

Finally, three practical implementations of watermarking systems, i.e. lattice
codés, syndrome codes, and dirty paper spherical codes, using the above-mentioned
communication concepts are illustrated in Section 2.8. Brief descriptions on those
methods and the advantages and disadvantages of using them are discussed. Because of
the advantages of dirty paper spherical codes over lattice and syndrome codes, Chapter

3 provides a detailed discussion of dirty paper spherical codes.

2.1 A Communication System

A simplified communication model, shown in Figure 2.1, consists of a transmitter (or
sender), a receiver, and a communication channel (or link). An information source
is fed through the transmitter for some processing to produce a signal x. Then this
signal, x, is sent through the communication channel to the receiver. This communica-
tion channel is a physical medium used to send (or transmit) information between the
transmitter and the receiver. When the information is sent through this channel, it is
corrupted in a random manner by noise. The simplest and most commonly used chan-

nel model is additive Gaussian noise, denoted by n, which is usually characterised by
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random variables having mean zero, variance o2, and a probability distribution function
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Figure 2.1: A simplified communication system.

The probability distribution function (PDF) indicates, in relative terms, how prob-
able a random variable takes a particular value. For example, Figure 2.2 shows the
probability distribution function (PDF) of a Gaussian-distributed random variable »
with various standard deviations!, o, i.e. the PDF is represented in the form N(0, o).
When the PDF takes on the form A/ (0, 0), the random variable taking the zero value is
more likely for a PDF with ¢ = 1.0 than for that with ¢ = 2.0. Naturally, Equation
2.2 must be satisfied because the probabilities of a random variable having all possible
values must sum to one.

Once the corrupted signal, y, is captured at the receiver, an estimate of the trans-
mitted message is produced. In order to maximise the chance of correct estimation,
the receiver determines the most probable transmitted signal, x, by maximising the
conditional probability of obtaining signal, y, given that a signal, x, is sent.

A fundamental question is how much information can be transmitted through this
noisy communication channel from the transmitter to the receiver such that the proba-
bility of error is negligible. The capacity of such a channel per unit transmission has
been defined by Shannon [Sha48] as

C = max I(X;Y) (2.3)

p(z)

IStandard deviation is the square root of a variance
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Figure 2.2: Gaussian probability distribution function.

where p(x) is the probability distribution function (PDF) of the transmitted signal x,
X and Y are the random variables of the transmitted and received signals (x and y)
respectively, and 7(X;Y) is the mutual information between x and y. By constraining
the power of the transmitted signal, i.e. F(X?) < P,., where P,, is the maximum
allowable transmission power, and performing maximisation of the /(X;Y) over all

possible p(x), the channel capacity is then given as

1 P
C=Zlog, 1+ (2.4)
2 o2
1 o2\ . -
=3 log, ( 1+ —5 ) bits/transmission. (2.5)
Un

Readers who are interested in the detailed explanation of the mutual information
between X and Y, i.e. I(X;Y), and the derivation of the channel capacity listed in
Equation 2.5 can refer to Sections 2.5 and 2.6 of [GHW92].

According to Shannon’s noisy channel coding theorem, there exists channel codes

and decoders (their brief descriptions follow immediately after this paragraph) to make
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a reliable communication, at a very small error probability, if the data transmission rate,
R, is less than the channel capacity C. However, if R > C, then there is no code at all
that can achieve transmission at a very small error probability.

The simplified communication model, as shown in Figure 2.1, can be extended to
include the following stages at the transmitter side: source encoder, channel encoder,
and modulator. Source decoder, channel decoder and demodulator are present at the
receiver side to perform the opposite functions. This extended communication model

1s shown in Figure 2.3.

Information Source Source Information
e .
source Encoder Decoder sink
4
Y
Channel Channel
Encoder Decoder

\

Modulator —>®-—> Demodulator

|

Noise

Figure 2.3: A extended communication system.

Raw information is first processed by a source encoder. The function of the source
encoder is to use fewer bits (or other information-bearing units) than an uncoded in-
formation source to represent the original information source, i.e. data compression.
Naturally, one would consider using as few bits as possible to present the given orig-
inal data. Consider an alphabet, A, consisting of & letters, each with a probability of
occurrence as shown in Table 2.1. There are several ways in which the letters in this
alphabet can be represented. One very simple way is to use a 3-bit symbol to represent
each of the & letters, i.e. fixed-length coding. A cleverer way is to use variable length
symbols, depending on the probabilities of occurrence of each of the letters. This can

be done by a well-known variable-length code called a Huffman code?. Refer to Table

2To know how Huffman coding works, please consult Section 3.3 of [Pro01]
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2.1 to see the respective representations using fixed-length coding and Huffman coding.
Although the Huffman code uses more than 3 bits to represent some letters, i.e. 7 and
zg, the average number of bits for Huffman code is 2.70, which is lower than that of the
fixed-length code. Hence the Huffman code removes redundancy present in the data set

and achieves data compression.

Letter | Probability | Fixed-Length Code | Huffman Code

T 0.36 000 00

T 0.14 001 010

z3 0.13 010 011

T4 0.12 011 100

Ts 0.10 100 101

Zg 0.09 101 110

T7 0.04 110 1110

zg 0.02 111 1111
Average symbol length: 3.00 2.70

Table 2.1: Source coding using fixed-length coding and Huffman coding

Huffman coding is a type of lossless data compression, i.e. the exact original
data can be obtained from the compressed data. Since there is a one-to-one mapping
between a letter and a symbol for Huffman coding, the letter, z;, can be reconstructed
given a symbol during source decoding. On the other hand, data compression is lossy if
the reconstructed data from the compressed data is different from the original data, but
sufficiently close for practical purposes. There are applications that require lossy com-
pression due to bandwidth or storage constraints. There is always a trade-off between
the amount of compression to be achieved and the distortion caused by the compres-
sion. Whenever lossy compression is carried out, it is not possible for the original
information to be recovered from the coded symbols.

Channel coding has a different purpose from source coding. Source coding tries to
remove redundancy during data compression whereas channel coding adds redundancy
to reduce errors at the receiver. During signal transmission, channel noise is present

and the received signal is different from the transmitted signal. Hence there is a chance
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that errors can be present in the received signal. In order to detect and/or correct these
errors as best as possible, redundancy is added during channel coding. An example
of channel coding is by repeating each of the symbols several times, e.g. a message
containing 01001 can be coded as 000 111 000 000 111 using repetitive coding having
a repetition factor of three. In this case, there are two possible codewords, namely 000
and 111, in the codebook used by the channel encoder. If the received message is 100
111 000 000 111, we know that the first group of three encoded bits has errors since a
group of encoded bits can only consists of 000 or 111. Whenever a group of encoded
bits does not consist of all ones or all zeroes, error correction is carried out using the
majority-wins rule, i.e. a ‘0’ is decoded if most of the encoded bits within a group
are ‘0’, and ‘1’ otherwise, since it is more likely to have a lesser number of incorrect
encoded bits within a group. In this case, the decoded message after error correction is
01001, which is still the same as the transmitted message. In general, error correcting
techniques can be divided into two groups - linear block codes and convolutional codes

- which will be described in more details in Sections 3.1.1 and 3.1.2.

The encoded data cannot be sent through a noisy communication channel without
going through a process called digital modulation, which is a method that uses a finite
number of, say M, distinct signals to represent encoded symbols. In other words, every
encoded symbol is mapped to a different signal for transmission. Modulation allows
sharing of a common medium by different users (multiple access), and makes the signal
easy to propagate in a chosen transmission medium. Common digital modulation tech-
niques are phase-shift keying (PSK), amplitude-shift keying (ASK) and frequency-shift
keying (FSK). PSK, ASK and FSK convey data by modulating the phase, amplitude and
frequency of the carrier signal respectively. Figure 2.4 shows examples of these mod-
ulation schemes in the form of a signal constellation marked by the M distinct signal
points. The ‘M’ before the terms MPSK, MASK and MFSK gives the number of dis-
tinct signals (usually a power of 2) used to represent data. If ‘M’ is not a number but a
‘B’ ora ‘Q’, it stands for binary (i.e. M = 2) and quaternary (i.e. M = 4) respectively.

The received signal is then demodulated using a demodulator which processes the
corrupted transmitted signal and converts them into a sequence of data symbols. If
the transmission channel is known to be additive white Gaussian noise (AWGN), the

optimum demodulator is the matched-filter demodulators. For example, in the case of
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Figure 2.4: Different digital modulation schemes.

MPSK, the signal point closest, in terms of Euclidean distance, to the received signal
will be the demodulated signal. The Euclidean distance, d, between two signal points

x and y is defined as

d=ly x| = (Z(yi - z>) 2.6)

where z; and y; are the coordinates of the signal points x and y respectively.

2.2 Spread Spectrum Communications

Spread spectrum, as the name suggests, is a technique to “spread” the original data over
a much wider range of frequencies. The range of frequencies occupied by the trans-
mitted signal is commonly known as the bandwidth. Spread spectrum communications
was first developed for use in military communications and then several commercial ap-
plications such as CDMA (Code Division Multiple Access) mobile telephone networks
adopted the technology . Because of the vast number of applications using spread spec-

trum, it has become one of the most important communication techniques currently
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used.
The importance of spread spectrum in today’s communication systems is because
of its useful properties. In this section, the properties of spread spectrum communica-

tions are first discussed.

2.2.1 Properties of Spread Spectrum Communications

Spread Spectrum is a widely used technique in a lot of different communication ap-
plications because there are several favourable properties. Let us now highlight the

properties of spread spectrum communications.

Anti-jamming. Jamming, in communications, means an intentional disruption of ex-
isting communication by sending another signal, usually of random nature, hav-
ing substantial power. This jamming signal acts as an additional noise source on
top of the channel noise that is already present in the transmission medium. The
anti-jamming property of spread spectrum results from the fact that an attacker
has no prior knowledge of the signal characteristics of the communication be-
tween the sender and the receiver except for the overall channel bandwidth and
the type of modulation® used. As a result, the attacker must jam the entire fre-
quency spectrum used by the spread signal so as to be confident of preventing the
communication between the sender and the receiver. However, the jammer has a
limited power and is only able to jam certain frequencies, i.e. the jammer is not
able to jam all frequencies all the time to prevent any communication between

the sender and the receiver.

Low probability of interception. The low-probability-of-interception (LPI) property
results from the very fact that the original signal intended for transmission has
only a certain amount of power that is subsequently distributed over a much larger
band of frequencies upon spreading such that only a very small amount of power
is present at each frequency. The spread signal power at each frequency is often
lower than the channel noise power such that the attacker may not even detect the

presence of its transmission.

3The types of digital modulation are PSK, ASK and FSK. Refer to Section 2.1 for an elaboration on
these modulation types.
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Security. Spreading is carried out by superimposing a pseudo-random pattern, which
is generated by a secret key known only to the sender and the intended receiver,
of a transmitted message. An eavesdropper, who has no knowledge of the secret
key, will not be able to decipher the communication and, as such, the privacy of

the message is preserved during transmission.

2.2.2 Principles of Spread Spectrum Communications

The properties of spread spectrum suggest that communications can be carried out in a
more secure manner by reducing the severity of an attack (anti-jamming), the probabil-
ity of detecting a transmitted spread signal (LPI), and by increasing the security of the
transmitted message. In order to fully understand these properties, we shall go into the
technical details of spread spectrum.

Spread spectrum communications involves spreading a narrowband signal to a
wideband signal and is carried out at the modulation stage in a communication system
(See Figure 2.3). The two main types of spreading used in current communication
systems are: frequency hopping spread spectrum (FHSS) and direct sequence spread
spectrum (DSSS).

In frequency hopping spread spectrum (FHSS), there are many frequency slots
available for transmission. Instead of transmitting the data at just one frequency slot as
in the case without using FHSS, the data is transmitted at randomly selected frequency
slots at various times and hence the name “frequency hopping”. For example, assume
that there are 4 frequency slots (f1, f2, f3, f4) available for transmission as shown
in Figure 2.5. Instead of transmitting a signal at frequency slot f; all the time, the
transmitter chooses to transmit the signal at frequency slots fa, f4, f2, f3, f1 at time
slots 1, t2, L3, L4, L5 respectively. In this case, an eavesdropper will not be able to catch
the entire message if he does not know the range and order of frequencies used for
transmission, which are only known to the transmitter and the intended receiver.

For direct sequence spread spectrum (DSSS), a large band of frequencies is avail-
able for use to transmit the original data from the sender to the intended receiver. Trans-
mission takes place over the entire band of frequencies all the time as compared to a
much smaller band of frequencies used by the data signal prior to spreading. Spreading

(and despreading) is carried out at the sender (and receiver) using a pseudo-random
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Figure 2.5: An example of frequency-hopping spread spectrum (FHSS).

(PN) signal generated by a secret key only known to the sender and receiver. To eas-
ily understand how direct sequence spread spectrum (DSSS) works, consider a BPSK
modulation (i.e. bit ‘0’ is mapped to ’-1" and ‘+1° otherwise) for a pseudo-random (PN)
signal, s(t), and a data signal, d(¢), as shown Figure 2.6. The time duration for a pulse,
called a chip, within the PN signal, s(t), is called the chip interval, T, whereas the
time duration for a bit within the data signal, d(t), is the bit interval, T},. In this case, 4
chip intervals make up one bit interval. The final spread signal is c(t) = d(t) x s(t). If
additive white Gaussian noise (AWGN) is present during the channel, then the received

signal is r(t) = ¢(t) + n(t), where n(t) is the Gaussian noise signal.

If the signal is transmitted in a wireless medium, the propagation delay from the
transmitter and the receiver is generally unknown to the receiver. In order to correct
this problem, the symbol timing has to be accurately estimated. Furthermore, the signal
does not necessarily travel in a straight path from the transmitter to the receiver. More
often than not, the signal takes various paths to reach the receiver because of the terrain
along the transmission. Therefore the receiver may receive multiple copies of the signal
at various times with varying power and this makes decoding especially difficult when
the transmission is a stream of continuous data. This can cause serious timing and phase
problems during decoding. Hence synchronisation is often required in every digital
communication system which transmits information synchronously. Many different
synchronisation methods have been established and interested readers are referred to

Chapter 6 of [Pro01].
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Figure 2.6: An example of direct sequence spread spectrum (DSSS).
Assuming perfect synchronisation, despreading is carried out at the receiver

whereby the original information is obtained by multiplying the received signal, r(t),

by the same PN signal used during spreading, s(t), to get a corrupted data signal

d'(t) =r(t) x s(t) 2.7
= [d(¢) x s(t) + n(t)] x s(t) (2.8)
=d(t) + n(t) x s(t) 2.9)

where the auto-correlation of s(t), i.e. s(t) x s(t), equals 1, and can be easily observed
from Figure 2.6. Therefore the original data signal, d(¢), can be seen as corrupted by a
noise source 7.(t) x s(t). Since the PN signal, s(t), is a pseudorandom signal, n(t) and
s(t) are likely to be orthogonal to each other, i.e. n(t) x s(t) is approximately zero.
Hence by using direct sequence spread spectrum (DSSS), the effect of the noise signal,

n(t), is small.
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2.3 Watermarking as a Communication System

Watermarking is a form of communication since a message is transmitted from the wa-
termark embedder to the watermark detector. Therefore it is natural to fit watermarking
into the general models of communication discussed in Section 2.1.

The two basic types of watermarking systems are shown in Figures 2.7 and 2.8.
Further types of watermarking systems are discussed in Section 2.6. Both Figures 2.7
and 2.8 differ only at the watermark detection stage. The original cover Work, c,, is
available to the watermark detector in Figure 2.7 but not in Figure 2.8. We refer to the
detector in Figure 2.7 as a informed detector and that in Figure 2.8 as blind detector. In
both cases, the watermark embedder is blind since the cover Work, c,, takes no part in
the watermark encoding process and is simply added to the added pattern, w,, which

is of the same size as the cover Work, c,.

:_\’\_/a—te}r;x;rlz embedder _: Noise :-V{/a_te-n;a_rlz detector -:
| | !
Input m ! Watermark ! Watermark 'm’  Output
——
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Figure 2.7: Watermarking system with informed detection.
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Figure 2.8: Watermarking system with blind detection.

Regardless of whether the watermarking system deploys an informed detector or

a blind detector, the watermark embedding consists of two basic steps. First, the input
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message, m, is mapped to an added pattern, w,. This mapping is usually done with
a watermark key to enhance the security of the system. There are many ways to carry
out this mapping, depending on what is the criterion for the added pattern, w,. Specific
mapping rules will be described later in this chapter. Secondly, the added pattern, w,,
is added to the cover Work, c,, to produce the watermarked Work, c,,. Note that in
general, the watermark embedder produces only the watermarked Work, c.,, and the
added pattern, w,, can be obtained indirectly by subtracting the cover Work, c,, from

the watermarked Work, c,.

The watermarked Work, c.,, is normally subjected to some degradation or distor-
tion, either by adversarial processes or by normal signal processes, when it is trans-
mitted through a communication channel. Examples of normal signal processing are
compression and decompression, image enhancement, and broadcasting over air. Al-
though some of these types of processes are dependent on the watermarked Work, ¢,

the channel noise is usually modelled as additive noise, n.

The watermark detector now receives Cwp, wWhich is the noisy version of the water-
marked Work, c.,. Watermark detection can either be informed or blind as illustrated
in Figures 2.7 and 2.8 respectively. In the case of informed detection (Figure 2.7), the
original cover Work, c,, is subtracted from the received Work, cwn, at the watermark
detector to give the noisy watermark pattern, w,,. This is then decoded by the water-
mark detector with the same secret key used by the watermark embedder. Since the
cover Work, c,, is added at the watermark embedder and then subtracted at the water-
mark detector, the cover Work, c,, has no effect on the system and the result is that the
noisy watermark pattern, w,,, is simply an addition of noise, n, to the added pattern,
w,. Therefore the watermark encoder, the noise process, and the watermark decoder
form a system analogous to the communication system shown in Figure 2.1.

On the other hand, in a blind-detection watermarking system (Figure 2.8), the un-
watermarked cover Work, c,, is unknown to the watermark detector and hence is unable
to be removed prior to watermark decoding. Nevertheless, this watermarking system
is still analogous to the communication system in Figure 2.1, where the watermark
encoder is viewed as the transmitter, the combination of the original cover Work, c,,
and the noise signal, n, is considered as a combined noise source, and the watermark

detector is regarded as the receiver. In this scenario, the corrupted watermarked Work,
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Cwn, 1S @ noisy version of the added pattern, w,.

2.4 Spread Spectrum Watermarking

In Section 2.2, we saw how spread spectrum communications enables a message to be
spread over a larger bandwidth and also how the original message can be recovered
from the spread signal with the help of a secret key known only to the sender and the
receiver. In order to achieve robustness against malicious attacks, low perceptibility
of the embedded watermark and security of the message, the concept of spread spec-
trum is applied to watermarking systems [CKLS97]. In this section, an example of
watermarking based on direct sequence spread spectrum (DSSS) is illustrated.

Let us consider a simple additive spread spectrum-based (SS) watermarking sys-
tem with the secret key, K, available to both the sender and the receiver, as shown in
Figure 2.9. This system uses the secret key, K, to select a distinct watermark pattern,
W, from a set of possible patterns generated by the pseudorandom number generator
(PRN). The mapping between the secret key, K, and the watermark pattern, wy,, is a
one-to-one, i.e. one secret key can only choose one distinct watermark pattern. This
watermark pattern, wyy,, is then multiplied by a BPSK-modulated message bit, b, (i.c.
bit ‘0’ is modulated to ‘-1°, and ‘+1° otherwise), and the result is added to the cover

Work, c,, to form the watermarked Work,
Cw = Co + bW, (2.10)

Correlation
detector

1

1

1

. 1
Noise !
I

!

]

I

Figure 2.9: An example of a spread spectrum-based watermarking.

During the transmission process, the watermarked Work, c,,, is corrupted by chan-

nel and attack noise, n, such that the watermark detector (in the form of a correlation
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detector) receives the corrupted watermarked Work, cwn = ¢y, + n. The correlation
detector uses the same watermark pattern, w,,, generated using the same secret key, K,
to compute a correlation statistic, », from the corrupted watermarked Work, cy,,. This
correlation statistic is defined as

p— Swn Wm (2.11)

Wm - W
between the corrupted watermarked Work, cy,,, and the watermark pattern, w,,. The

2"

symbol “-” is defined as the inner product (or simply correlation) operator, i.e. x -y =
>_.(zi x y;). Assume that the cover Work, c,, the watermark pattern, wy,, and the

noise, n, consist of elements ¢, w, and n from Gaussian random processes such that
c~N(0,0%),w~ N(0,02),n ~ N(0,02). (2.12)

By substituting Equation 2.10 into Equation 2.11 and recognising wy, - Wy, =
No?, where N is the length of each of the vectors, we get

_(cw+n) wy

2.1
NoZ (2.13)
(Co + bWy + 1) - Wy
= 2.14
o 2.14)
Co Wm+ 0wy -wp, +n-wp,
= 2.15
o2 2.15)
Co W n-w
—b o "m m 2.16
T Nez T Nt (2.16)
The correlation detector produces an estimate of the sent bit as
-1, ifr<o0
b' = sign(r) = 2.17)

+1, otherwise.

The correlation statistic, 7, can be easily shown to be Gaussian with mean 7 and

variance o as given below.

2 2
_ 9 [0.+ 0,
r=bo, = ( No? ) (2.18)

2.5 Communications with Side Information at the

Transmitter

A simplified communication system model, shown in Figure 2.1, consists of a single

additive noise source, and the channel capacity of this channel is given in Equation 2.5
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2 . . . . . .
as C' = L log,(1+ Z% ) bits/transmission. Let us consider a communication system hav-
n

ing two independent, additive noise sources, n; and n,, with mean zero and variances

0% and 022 as shown in Figure 2.10. In this situation, the channel capacity for this

ny

communication model is given as

1 2
C= 5 log, (1 + ;7211—0_:—721;) bits/transmission. (2.19)
Noise Noise

Source 1  Source 2

nl ll2

Information

Transmitter Receiver  —Output
source

Figure 2.10: A communication model with two independent, additive noise sources.

In 1958, Shannon [Sha58] considered the scenario where the first noise source, n;,
is known to the transmitter. In this case, the first noise source, n, is considered to be
side information, which contains the state of the transmission channel that can be used
to aid the coding and transmission of information. Hence a communication system that
is based on this scenario is called communications with side information.

Costa [Cos83] further investigated this concept and considered a specific case il-
lustrated in Figure 2.11. The side information, n;, in this case is a sequence of inde-

pendent and identically distributed (i.i.d.)* N'(0,0?2 ) Gaussian random variables while

2

ny

the noise source ny is another sequence of i.i.d. (0, 02_) Gaussian random variables,

where 02 and o2, are their signal powers respectively. The transmitted signal, x, is
a function of the input message, m, and the side information, n;, i.e. the input mes-
sage, m, and the side information, n;, determines what will be transmitted through the

channel. Assume that there 1s a power constraint on the transmitted signal, x, such that

N
1
i=1

where N is the length of the signal x.

“In probability theory, a sequence of random variables are said to be independent and identically
distributed (i.i.d.) if every random variable has the same probability distribution and each of them is

independent of one another.
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Figure 2.11: Communications with side information at the transmitter.

If the transmitter (and not the receiver) has the first noise source, ny, as side in-
formation, the channel capacity of such a communication system, as investigated by
Costa, is shown to be C = % log,(1 + a%%) bits/transmission. This means that the first
noise source, ny, has no effect on the channel capacity, even though n, is not known
to the receiver. Note that the channel capacity cannot exceed that given in Equation
2.5 since the second noise source, ny, is still present to limit the maximum allowable

capacity as in the case of Figure 2.1.

In order to achieve this result, Costa assumed that the encoder contains a codebook
of IV, distinct sequences u and that there are only /V,, different messages m that can
be generated, where N, >> N,,. The N, sequences are distributed uniformly over
N,, messages such that a message can be encoded by N, /N,, different sequences. By
considering u = x + an;, and maximising the capacity of this channel, Costa obtained
o = 02/(0% + 02,) as the optimum . According to Costa [Cos83], the encoder (at

the transmitter) looks for a sequence u such that
|(u—oa'ny) | <6 (2.21)

for some approximately small §, where the superscript 7" indicates a matrix transpose.
In other words, the encoder searches for a sequence (u — a*ny ), or simply x, which is
nearly orthogonal to n,. However, there is no guarantee that a sequence u can be found
to satisfy Equation 2.21 unless NV, and /V,, are very large. Although Costa provided a
solution to build a random codebook of [V, distinct sequences u, there was no proposed
method to efficiently search for the sequence u that satisfies Equation 2.21, especially
if the IV, number of distinct sequences u, and N,,, the number of different messages

m, are not very large.
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2.6 Watermarking as Communications with Side Infor-

mation

As mentioned earlier, watermarking can be viewed as a communication system (see
Figures 2.7 and 2.8). Let us consider a very simple, practical watermarking system that
employs a simple scaling of the watermark pattern, wy,, shown in Figure 2.12. The
secret message, m, to be hidden is first encoded (at the message encoding block) as a
watermark pattern, wp,, without the knowledge of the cover Work, c,. In this case, the
message encoding block provides a one-to-one mapping between a message, m, and a
watermark pattern, w,,, i.e. one message will only be mapped to a specific watermark
pattern. This watermark pattern, wy,, is modified by simple scaling (at the scaling

block) to obtain an added watermark
W, = QWp,, (2.22)
which is then added to the cover Work, c,, to produce a watermarked Work
Cw = Co + W,, (2.23)

where o (a is always positive) is the scaling factor used during watermark embedding.
In this scenario, the watermark embedder is blind since no knowledge on the cover
Work, c,, is available during the message coding stage (blind coding) and the scaling

stage (blind embedding).

__________________________________________

Watermark embedder

1
'.
Input m i Message | W Watermark
I
1
'

decoder

message coding Scaling

.
Original
cover Work

Figure 2.12: Watermarking with blind embedders.

Although simply scaling the watermark is easy to implement, this method will
result in a much reduced capacity since the cover Work, c,, acts as a noise source (see
Equation 2.19). To increase the capacity of a watermarking system, note that Costa’s

dirty paper scheme, mentioned in Section 2.5, is almost identical to watermarking with
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blind detection as shown in Figure 2.8. The side information plays the role of the cover
Work, c,, whereas the second noise source plays the role of distortions that occur
during normal processing or malicious attack. The power constraint, F,,, expresses
the fidelity requirement of a watermarking application. The only alteration to Figure
2.8 is to make sure that the watermark encoder has access to the cover Work, ¢, so
that the resulting watermarking system is shown in Figure 2.13, with the watermark
encoder in Figure 2.12 replaced by a message coding block and a modification block in
Figure 2.13. Several researchers have recognised that watermarking can be modelled

as communications as side information at the transmitter [CW98, CMM99].

If a watermarking system behaves exactly as the system modelled by Costa, then
the cover Work, c,, will not act as a noise source and affect the capacity of the water-
marking system. However, there are substantial differences between Costa’s commu-
nications model and a real watermarking system. In watermarking, the distributions of
the two noise sources — the cover Work, c,, and the distortion n — are rarely Gaus-
sian. When watermarking in the Discrete Cosine Transform (DCT) domain, the DCT
coefficients may be approximately Gaussian [Pra78] although they resemble more to-
wards Laplacian distributions [RG83]. Furthermore, the power constraint, measured in
terms of the mean squared error metric, is known to be a poor indication of perceptual
distortions. In an attempt to relax the restriction on the distributions of the two noise
sources, recent research by Cohen and Lapidoth [CL02] and Erez ef a/ [ESZ00] proved
that Costa’s dirty paper scheme can be extended to specific cases where the second
noise source, n, (in Figure 2.11) comes from other arbitrary distributions. Although
watermarking may not be exactly the same as Costa’s scheme, it can still greatly bene-
fit from Costa’s result by identifying the cover Work, c,, as side information available

at the watermark embedder.

Referring to Figure 2.13, the secret message, m, is first mapped to several different
watermark patterns during the message coding stage (informed coding), i.e. a one-to-
many mapping. Out of the several watermark patterns, the final watermark pattern,
Wm, is chosen using the cover Work, c,. The watermark pattern, w,,, is then modified
during the modification stage according to some embedding criteria such as a speci-
fied perceptual distance or robustness, also with knowledge of the cover Work, c,, to

produce the added watermark, w,. In this case, the transformation between the water-
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mark pattern, wy,, to the added watermark, w,, is known as informed embedding. The
watermarked Work, c,, is produced according to Equation 2.23 and is subsequently
corrupted by additive noise, n. The hidden message is then determined by the water-

mark detector from the corrupted watermark Work, cywn.
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Figure 2.13: Watermarking as communication with side information at the transmitter.

2.7 Improved Spread Spectrum

From Section 2.6, we have seen that by modelling watermarking as communications
with side information at the transmitter, the effect of the cover Work, c,, can be signifi-
cantly reduced. Since simple spread spectrum (SS) watermarking, illustrated in Figure
2.9, does not utilise knowledge of the cover Work, c,, at the embedder, its channel
capacity is expected to be much lower.

To improve the performance of simple SS watermarking, Malvar and Florencio
[MFO03] proposed a new scheme called Improved Spread Spectrum (ISS). Instead of
using Equation 2.10 during watermark embedding, the new embedding approach is
slightly modified such that the knowledge of the cover Work, c,, is taken into account

at the watermark embedder, i.e.
Cw = Co + 11(b, Co) W, (2.24)

where p(b, c,) is a general function that has input variables b and c,. Similarly in
this case, the elements of those vectors (i.e. ¢,, Wi, n) are from Gaussian random
processes according to Equation 2.12. Note that the simple spread spectrum water-
marking scheme (of Figure 2.9) is a special case of ISS if the function u(b, c,,) is made
independent of the cover Work, c,.

In order to illustrate how ISS works, Malvar and Florencio [MF03] gave an ex-

ample, illustrated in Figure 2.14, which uses a linear function for (b, c,) such that the
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watermarked Work is

A o’ m
Co = Co + (ab - i) Wi (2.25)
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Figure 2.14: Improved spread spectrum (ISS) scheme.

The parameters @ and A determine the strength of embedding and the degree of
feedback by the cover Work, c,, respectively. The simple spread spectrum watermark-
ing system is obtained by setting o = 1 and A = 0.

Using Equation 2.25, the correlation statistic, », computed by the correlation de-

tector in this case is given as

r_(cw+n)-wm

(2.26)
Wm - Wm
(co+ (o0~ 3m) w + ) - wa
_ m W 2.27
o (2.27)
:Co-Wm+ame'Wm__i‘v_(:l%::—ZWm‘wm_f-n.wm (2.28)
Na,
_abNoi +(1-N)Co Wm+ 1 W (2.29)
No2
(1‘*)\)Co‘wm n-wm
. 2.30
ab+ No2 No?, o

The detector makes the same decoding decision as that of the simple SS water-

marking, i.e. using Equation 2.17. From Equation 2.30, the influence of <3™= on



2.8. Practical Dirty Paper Coding 43

the correlation statistic, 7, is reduced if the value of A is close to 1. In this case, the
probability of error is minimised when X takes a value close to, but not equal to, 1.

Similar to the case of SS watermarking, this correlation statistic, », can be shown
to be Gaussian with mean 7 and variance o2 where N is the length of all the vectors.

(1-X)02402
No?

F=abo=

(2.31)

The probability of error is defined as P(r < 0|b = +1), i.e. probability of receiv-
ing r < 0 given that the sent bit is ‘1°, or P(r > 0|b = —1). By comparing Equations
2.18 and 2.31 and noting that both means 7 are Gaussian, it is obvious that ISS can
achieve a lower probability of error compared to the SS watermarking scheme (under
the condition that o2, 02 and o2 are the same) since the former is able to raise 7 and
reduce o2 by increasing « and decrease ) respectively.

However, the value of a cannot be too large since the distortion (in terms of mean

square error), which is defined as

Dmse(co,cw) = ICw - Co| = \/(Cw - Co) : (Cw - Co)a (232)

to the cover Work, c,,, will be too large and therefore unacceptable.

2.8 Practical Dirty Paper Coding

So far, we have seen how watermarking is modelled as a general communication sys-
tem, with special focus on two important communications concepts: spread spec-
trum communications and communications with side information at the transmitter.
In particular, because of the potential benefits the latter can bring, several researchers
[CW99,CPR99,CMM99] have proposed watermarking systems based on Costa’s dirty-
paper scheme as depicted in Figure 2.13. Watermarking methods that are based on
Costa’s dirty-paper scheme are also known as dirty-paper codes.

In this section, three practical dirty-paper codes - lattice codes, syndrome codes,
and dirty paper spherical codes - that use Costa’s dirty-paper scheme are described and
some comparisons are made among them. Firstly, lattice codes, as the name suggests,
use a lattice structure (in a multi-dimensional space) such that each point in the lattice
represents a unique watermarked Work, c,,. The most popular method is Quantisation

Index Modulation (QIM), by Chen and Wornell [CW99], whereby the point in the
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lattice closest to the cover Work, c,, is assigned to be the watermarked Work, c,,.

More details of lattice codes are found in Section 2.8.1.

Another type of dirty-paper code proposed by Chou and Ramchandran [CPR99]
is syndrome coding where the watermark embedder incorporates a source encoder hav-
ing the knowledge of the cover Work, c,, as side information. Many examples of
syndrome codes are based on trellises constructed using channel codes such as con-

volutional codes. A more detailed description of syndrome codes is given in Section

2.8.2.

As an alternative to lattice codes, dirty paper spherical codes are designed such
that all the watermark patterns lie on the surface of a multi-dimensional sphere. As
such, every watermark pattern has the same energy. An example of dirty paper spheri-
cal codes is dirty paper trellis codes (DPTC) proposed by Miller et al [MDCO02]. Dirty
paper trellis codes (DPTC) use a trellis structure and a unique watermark pattern corre-
sponds to a specific path through the trellis. Dirty paper spherical codes are described

in more detail in Section 2.8.3.

2.8.1 Lattice Codes

A simple design of a dirty-paper code is a regular lattice structure that spans a real
vector space. Each point in the lattice structure corresponds to a watermarked Work
and rules are designed to map a message to a watermarked Work using the knowledge
of the cover Work. Watermarking techniques that are based on such a technique are

collectively called /attice codes.

One class of lattice codes, quantisation index modulation (QIM), proposed by
Chen and Wornell [CW98] is a simple and low complexity method to watermark mul-
timedia content. QIM is basically a quantisation process that maps the input (i.e. cover
Work), that can be anywhere in the vector space, to the output (i.e. watermarked Work)
that can only be from the set of points present in the lattice structure. In this case, we

say that the cover Work is quantised.

For QIM, the set of points in the lattice structure are divided into | M| subsets,
where M is the set of possible messages. In the simplest case, let us assume that
there are only 2 messages, ‘0’ and ‘1’ (i.e. |[M]| = 2), and the lattice structure is just

a one-dimensional line as shown in Figure 2.15. The set of points in this particular
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lattice is divided into two subsets, one marked with crosses and another marked with
circles. The points having circles correspond to message ‘0’ and the points showing
crosses correspond to message ‘1°. The distance between a pair of adjacent points
within the same subset is called the step size A. Just to note that this is a form of
uniform quantisation since the step size is uniform throughout. Assume that the cover

Work, c,, is denoted by a black square, the embedding function is defined as
Cw = q(Co;m, A) (2.33)

where ¢(co;m, A) is the m-th quantiser, i.e. the cover Work, c,, is quantised to the
closest point belonging to the subset that corresponds to the message. Referring back
to Figure 2.15, the cover Work, c,, is quantised to the closest point in the chosen subset,
i.e. the right circle if a message ‘0’ is to be embedded or to the left cross if a message
‘17 is to be embedded. Note that QIM is a form of dirty-paper code since a message

can be mapped to any of the alternative points in the corresponding subset.

RO [ ]
R1

Figure 2.15: A simple example of quantisation index modulation (QIM)

Quantisation will inevitably cause distortion to the original content, i.e. the cover
Work c,. This distortion is sometimes known as quantisation noise (in this case, it is
Co - Cyw) and it depends solely on the step size, A, i.e. a smaller step size will lead to a
smaller distortion. However, a smaller step size can also lead to a higher chance of an
error, i.e. the decoded point lies in a subset that does not correspond to the message, if
the watermarked Work, c,,, is subjected to noise.

Although standard QIM is a dirty paper code, its performance is still far from
Costa’s results. In order to approach Costa’s performance, Chen and Wornell [CWOI ]

proposed distortion compensation as a type of post-quantisation process. This can be
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achieved by using the embedding function
Cw = q(Co;m,Afa) + (1 — a)[co — g(co;m, A/r)] (2.34)

where « is a scaling factor and g(c,; m, A/a) is the m-th quantiser whose step size has
been scaled from A by a factor of a so that the distance between a pair of adjacent
points within the same subset is now A/«. If & < 1, the distortion will be increased,
thereby increasing the robustness at the same time. However, (1 —a) of the quantisation
noise, [co — g(co; m, A/a)], is added back to the quantised value, g(co;m, A/a), to
compensate for the increase in distortion. The first term in Equation 2.34 is the normal
QIM embedding whereas the second term is called the distortion-compensation term.
This type of embedding scheme is called distortion-compensation QIM (DC-QIM).
There are other variants of QIM such as dither modulation (DM) and spread trans-
form dither modulation (ST-DM). For dither modulation (DM), the quantisers used are
called dithered quantisers, which are shifted versions of the original quantisers. The
shift arises from the use of the dither vectors, d(m), which are pseudorandom vectors
mapped uniquely from a given message, m. The embedding function for DM is thus
defined as
cw = q(co +d(m);m, A/a) — d(m) (2.35)

An extension to dither modulation (DM) is spread transform dither modulation
(ST-DM), which uses an additional random spreading vector, v, during its quantisation
process, instead of just the usual quantisation of the cover Work, ¢,. The ST-DM
scheme quantises the projection of the cover Work, c,, onto the random spreading
vector, v, using the dithered quantisers.

Although QIM and all its variants mentioned so far (DM, DC-QIM and ST-DM)
are computationally simple to implement, they are very sensitive to amplitude scaling,
i.e. a multiplication of the volume or brightness of a multimedia content by a factor.
Even small changes in volume or brightness can lead to a complete loss of the embed-
ded message. Several methods have been proposed to deal with this sensitivity. These
methods can be categorised as either: (i) introducing a pilot signal to determine the
scaling [EBGO02], (ii) directly estimating the scaling [LKKMO3], (iii) adaptive quanti-
sation in which the quantisation step size is automatically adjusted based on the scal-

ing [OKS04, LCO7].
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2.8.2 Syndrome Codes

Syndrome codes, proposed by Chou ef al [CPR99], are related to distributed source
coding [PR99], as illustrated in Figure 2.16. In distributed source coding, the source
X is encoded and then transmitted to the decoder which has access to side information
Y. Even though, in this case, the encoder has no access to the side information Y, the
availability of the joint statistics of X and Y enables such a system performs as well
as the case when both the encoder and decoder have side information Y. This result is

known as the Slepian-Wolf theorem [SW73].

X——| Encoder R bits/sample > Decoder |—»X

|

Y

Figure 2.16: Distributed source coding: Source coding with side information at the

decoder.

In the watermarking context, the side information c, is available to the encoder
but not the decoder as shown in Figure 2.17. The encoder encodes the message m, to be
embedded, with the knowledge of the side information, i.e. the cover Work, c,, and the
output of the encoder is a watermarked Work c,,. An adversary will try to corrupt the
watermarked Work, c.,, so that the decoder will fail to detect the watermark. However,
the adversary has a limit on the amount of distortion he can inflict on the watermarked
Work c,,. Hence the encoder is to be designed such that it can withstand the allowable

degradation on the watermarked Work c,,.
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Figure 2.17: A watermarking problem

The watermarking problem in Figure 2.17 can be viewed as the problem of chan-
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nel coding with side information. Because of the similarities between distributed source
coding (source coding with side information at the decoder (SCSI)) and watermarking
(channel coding with side information at the encoder (CCSI)), the two cases are con-
sidered duals of each other. Pradhan er al [PCRO03] explored the duality between the
former and the latter and provided a mathematical characterisation of the conditions

under which their functions can be exchangeable.

Using the duality between distributed source coding and watermarking, Chou et
al [CPR99, CPGRO0] proposed a framework to use the concept of distributed source
coding on watermarking problems. This framework can be carried out in 3 main steps:
(1) build a channel code over the space of U, which is a set of all possible codewords
(i.e. codebook) used by the encoder, (2) partition this channel codeword space into
cosets of source codes, and (3) choose a codeword, wp,, to represent the side informa-
tion, c,, from the coset which corresponds to the message m. In [CPR99], Chou et a/
used trellis-coded modulation (TCM) [Ung82] as channel codes and source codes such
as trellis-coded quantisation (TCQ) [MF90] to partition the channel codes. Refer to the

respective references for more information on TCM and TCQ.

Although syndrome codes are robust to additive white Gaussian noise (AWGN)),
they are still susceptible to amplitude scaling since quantisation, in the form of trellis-

coded quantisation (TCQ), is used in one of the watermark encoding steps.

2.8.3 Dirty Paper Spherical Codes

Because of the vulnerability of lattice codes and syndrome codes to amplitude scaling,
researchers have considered spherical codes as an alternative solution. Spherical codes
are a class of codes with codewords distributed, usually uniformly, on the surface of
a high-dimensional sphere. Even if a scaling factor alters the codewords, the altered
codewords will still be distributed on the surface of another sphere (of the same di-
mension) with a larger (or smaller) radius. Hence scaling will not affect the correct

detection of codewords if watermark detection relies on angle-based detection statistic.

One method that is based on spherical codes is Angle QIM (AQIM) proposed
by Ourique et al [OLJPGO5]. Instead of quantising a cover Work along the linear
axes (with each axis perpendicular to one another) of a lattice used by QIM, AQIM

performs quantisation along the angular axes of a hyperspherical coordinate system.
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In a L-dimensional hyperspherical coordinate system, the coordinates of a point in that
space are given by a radius r and an angular vector 6 = (6,, 0,, - - -, 0;,_1).

An example of AQIM is given in Figure 2.18, which shows a 2-dimensional vector
space with 8 quantisation axes uniformly separated from one another and radially out
from the origin (centre). These 8 axes are divided equally into 2 subsets corresponding
to each of the message bit ‘0’ (denoted by (O) and ‘1’ (denoted by [J) as shown in
Figure 2.18. The detection region, i.e. an area whereby any point within it is decoded

to the assigned message bit, is clearly indicated, with the shaded region corresponding
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mentioned in Section 2.1. In order to fully understand dirty paper trellis codes (DPTC),
the concepts of channel coding have to be first explained in details. Hence in the next
chapter, we will cover the concepts of channel coding and then go on to describe the

principles of dirty paper trellis codes (DPTC).



Chapter 3

Dirty Paper Trellis Codes

The basic idea of dirty paper trellis codes (DPTC) [MDCO02] is the use of a trellis code
to distribute the codewords on the surface of a high-dimensional sphere. The selection
of the chosen codeword (i.e. watermark patterns) for embedding, and the detection of
the embedded codeword, is based on correlation values, hence the problem of amplitude
scaling encountered by lattices codes and syndrome codes (refer to Section 2.8) does
not affect dirty paper trellis codes.

- In order to understand dirty paper trellis codes, we have to first understand the
concept of trellis codes (i.e. convolutional codes), which are a type of channel code,
or error correcting code. Convolutional codes are generated by passing a data stream
through a linear finite-state shift register, which consists of a finite number of memory
blocks. Because of these memory blocks, the output bits of a convolutional encoder are
related to one another. Another type of channel code, linear block code, are composed
of fixed-length codewords. In general, an (n, k) block code means that the codewords
are n binary bits long and contain & binary bits of information. A description of both
the block codes and convolutional codes are provided in Section 3.1.

With a deeper understanding of error correcting codes, we see how trellis codes
can be used for watermarking purposes in Section 3.2. However, the traditional trel-
lis codes cannot provide dirty paper coding (mentioned in Section 2.6), which can
eliminate the interference from the cover Work and improve the performance of water-
marking systems. Therefore, Miller et al. [MDC02] proposed dirty paper trellis codes,
which is a modification to traditional trellis codes. Dirty paper trellis codes provide a
one-to-many mapping between the input message bits and the codewords (i.e. water-

mark patterns). Section 3.3 provides a more detailed description of dirty paper trellis
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codes.

To implement a dirty paper trellis for watermarking, the selection of a suitable
trellis depends on various parameters. A brief discussion on the parameters is covered

in Section 3.4.

3.1 Error Correcting Codes

Modern error correcting methods started with Shannon [Sha48], Hamming [Ham50],
and Golay [Gol49]. Since then, intensive research has been carried out on new error
correcting methods to try to approach Shannon’s channel capacity limit [Sha48]. As
we have seen in Section 2.1, channel codes achieve error correcting capabilities by
introducing redundancies, i.e. adding additional bits to the original information bits.
There are two fundamentally different approaches to add this redundancy: linear block
codes and convolutional codes. This section will begin the discussion of linear block
codes, which is an easy way to implement redundancies by appending parity-check bits
to the original information bits. The parity-check bits not only detect any errors that
may be present, but also correct errors up to a certain limit.

The second part of this section deals with convolutional codes, which are obtained
by passing a data stream through a linear finite-state shift register. By doing so, the
output bits of the convolutional encoder will be related to one another. Since noise
can be present in a communication channel, errors may be found in the output stream
from the convolutional encoder and errors within this output stream may be corrected
using the output bits around the error. However, there is a limit to the number of errors
that can be corrected. A very efficient way to decode this output stream is the Viterbi

algorithm [Vit67].

3.1.1 Linear Block Codes

A block code consists of fixed-length vectors called codewords. The length of the
codeword is the number of elements in the vector and is denoted by n. The elements
of a codeword are chosen from an alphabet A of g symbols. Since we will be dealing
mostly with binary symbols, the alphabet 4 consists of two symbols ‘0’ and ‘1’, i.e.
g = 2. In this case, there are 2" possible codewords in this binary code of length n.

Out of these 2" possible codewords, a codebook C consisting of M = 2* codewords



3.1. Error Correcting Codes 53

are selected to form a code and these 2% codewords are called valid codewords. Thus k
information bits are encoded into a codeword of length n, i.e. there is a redundancy of
(n — k) bits. The resulting block code is referred to as an (n, k) code.

The number of different elements between any two codewords c; and c; within the
codebook C having M valid codewords is called the Hamming distance between the
two codewords, denoted as d[i, j|, where 0 < d[i, j] < n. The smallest value within
the set d[s, j] for the M codewords is called the minimum distance, denoted by d,ir, of
the code. Generally, a code with a larger d,,;, indicates a larger separation between the

codewords and hence has the ability to detect and/or correct more errors.

A linear block code can be expressed using linear algebra. Suppose x =
[1, 29, ..., xx] are the information bits encoded into its codeword ¢ = [c1, ¢a, . . . , ¢y
such that
c=xG 3.1
where G is called the generator matrix of the code, and is
911 912 Jin
G- 92.,1 92.‘2 gz‘,n (32)
| Gk k2 Gk,n |

By elementary row operations, G can be expressed in its systematic form as shown

below. _ -
100 0 | Py P12 P1,n—k
010 0 | p21 P22 P2n—k
G = [I[P] = ! , (33)
0 00 1 | pear Pro Phin—k |

where Iy is the k¥ x k identity matrix and P is a £ x (n — k) matrix containing the
(n — k) redundant bits or parity-check bits. Note that the rank of G, i.e. the number of
linearly independent rows in G, must be equal to k. If the rank of G is less than k, then
the code is not considered a valid linear block code.

When Equation 3.3 is substituted into Equation 3.1, the resulting codeword is

¢ = xG = [xIy|xP] = [x|xP] 3.9
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It can be seen from Equation 3.4 that the final code consists of the k original
information bits x and the (n — k) parity bits xP.
For every generator matrix G, there is a corresponding (n — k) x n parity check

matrix H which can be expressed as
H=[PT|I,«] (3.5)

where PT is the transpose of the matrix P and I,_y is the (n — k) x (n — k) identity

matrix.
Lety = [y1,¥2, - - - , Yn) be the corrupted received codeword, i.e. y = c + e, where
e = [ej, ey, ...,e,] is the error vector. During decoding, the product yHT yields

yHT = (c + e)H”
=cHT + eHT

—eHT =5

where s is a 1 x (n — k) vector called the syndrome of the error pattern. Note that since
c is a valid codeword, multiplying with the parity check matrix HT of the code will
yield a zero vector, 0. Note that GHT = 0.

The syndrome, s, can be used in error detection and/or error correction. Note
that there are 2™ error patterns and only 2"~* syndromes since the error patterns are
of length n whereas the syndromes are of length (n — k). Therefore k different error
patterns can result in the same syndrome.

To carry out decoding, a decoding table is first constructed by listing the first
row with all the 2% possible codewords, beginning with the all-zero codeword, ¢, and
ending with the codeword, c,k, as shown in Table 3.1. Next, the first column is filled in
with all (n — 1) error patterns of weight 1. If n < 2"~ all double error patterns, triple
error patterns, etc., may be filled into the table until there are 2"* entries in the first
column. Hence there are a total of 2" * rows and it equals the number of syndromes.
Next, each error pattern in the first column is added to the corresponding codewords to
form the complete table shown in Table 3.1. Note that the error pattern e, is an all-zero
vector.

This decoding table is called a standard array with each row consisting of the

possible received codewords that would result from a corresponding error pattern from
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Error Patterns Codewords
€y C1 Ca C3 PN Cok
€, ci; +e2 C2 + €2 Cc3 + ez Cok + €3
ezn—k Cl + ezn—k C2 + ezn-—k C3 + ezn—k P Czk + eznfk

Table 3.1: Standard array of a linear block code

the first column. Given a received codeword, its entry is looked up in the standard
array, and the corresponding error pattern, &, can be determined. This error pattern is

then added to the received codeword y to give the decoded word
c=yde

Having gone through the decoding method for an (n, k) linear block code, it is
interesting to know how many errors can be detected and corrected. The following
gives an answer to this question. When the syndrome consists of all zeroes, the received
codeword is one of the possible 2% transmitted codewords. It is possible for an error
pattern of weight d,,;, to transform one of these 2k codewords to another codeword
since the minimum separation between a pair of codewords is d,;,, therefore creating
an undetected error. However, if the actual number of errors is less than d,,;,., the
syndrome will have a nonzero weight. In this case, one or more errors can be detected.
Therefore an (n, k) linear block code can detect up to d,,;, — 1 errors.

To determine the number of errors that can be corrected by an (n, k) code, the
2F codewords are viewed as points in an n-dimensional space where each codeword is
the centre of a sphere of radius (Hamming distance) ¢. The largest value of ¢ such that
there is no intersection between any pair of the 2* spheres is ¢ = l_% (dmin — 1) |, where
| x| denotes the closest integer smaller than x. All possible codewords of distance less
than or equal to ¢ from a valid codeword lie within this sphere. Any received codeword
that is within a valid sphere is decode to the valid codeword at the centre of the sphere.
Therefore an (n, k) linear block code with minimum distance d,,;, can correct up to

t = | 3(dmin — 1)] errors.

Example. As an illustration to the coding and decoding of linear block codes, consider
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an (5, 2) linear block code with generator and parity-check matrices given by

10100
10101
G= H=101010
01011
11001

The standard array and the corresponding syndromes are given in Table 3.2.
From the valid codewords (those in bold), the code has a minimum distance
dmin = 3. Note that all five error patterns of weight 1 are included and there
is only room for two error patterns of weight 2, i.e. this code can correct all
single errors and only two double errors, namely [1 1 00 0] and [1 00 1 0]. If
the received codeword y = [1 0 1 0 0], by looking up Table 3.2, the syndrome
for the error is s = [0 0 1] and the corresponding error pattern determined is & =
[000 0 1]. The most likely transmitted codeword is then computed by adding
(modulo-2)étoy,ie.c=y+é=[10101].

Syndromes | Error Patterns Codewords
000 00000 00000 01011 10101 11110
001 00001 00001 01010 10100 11111
010 00010 00010 01001 10111 11100
100 00100 00100 01111 10001 11010
011 01000 01000 00011 11101 10110
101 10000 10000 11011 00101 01110
110 11000 11000 10011 01101 00110
111 10010 10010 11001 00111 01100

Table 3.2: Standard array and syndromes for a (5, 2) linear block code.

Examples of block codes are repetition codes, Hamming codes [Ham50], Go-
lay codes [Gol49], Bose-Chaudhuri-Hocquenghem (BCH) codes [Hoc59, BRC60b,
BRC60a], and Reed-Solomon (RS) codes [RS60].

3.1.2 Convolutional Codes

The second type of channel code are convolutional codes, which were proposed by

Elias [Eli54] because he believed that linear block codes do not exploit the channel
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to its fullest. A convolutional binary encoder is implemented using a finite-state shift
register and an example is shown in Figure 3.1. The shift register consists of » memory
blocks (delay elements) and » linear algebraic function generators, which are modulo-
2 adders. At any time instance, assuming that the input data to the encoder is binary,
k bits are drawn into the finite-state shift-register and shifted along the shift register
before producing » output bits. Hence, the code rate is defined as k/n. The shift
register contributes to the interconnectivity between the output bits, and thus the error
correcting capability of the convolutional code. The parameter v, also known as the
constraint length of the convolutional code, determines the total number of possible
states, S = 2”. The current state of the convolutional code is determined by the bits
stored inside all the memory blocks at that particular time instance. Note that the
current state is dependent on the previous state and the input bits. In Figure 3.1, the

convolutional encoder has v = 2 memory blocks and a code rate of 1/3 since k = 1

andn = 3.
s 1
+
2
Input -
( k bltS) - 3 Output

(n bits)

Figure 3.1: A convolutional encoder with v = 2 memory blocks, £ = 1 input bit and

n = 3 output bits.

The output of the convolutional encoder can be determined using its generator
polynomials, one for each output bit. The generator polynomials depend on the con-
nection to the memory blocks (delay elements). In the case of Figure 3.1, the first
generator polynomial is

g1 = [100]
since the output is connected only to the first stage, i.e. before the first memory block.

The second generator polynomial is

g2 = [101]
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since the output is connected to the first and third stage, i.e. before the first memory
block and after the second memory block respectively.

And finally the third generator polynomial is
gs = [111]

Note that just as for the block codes in Equations 3.2 and 3.3, the above generator

polynomials can be expressed in the generator matrix form.

111
G=gf ¢F gf| =0 0 1 (3.6)
011

A convolutional encoder can also be described using a state machine diagram or
a trellis diagram. A state machine is simply a graph of all the possible states of the
convolutional encoder and the possible transitions from one state to another. The state
of an encoder is determined by the bits stored in the memory blocks (see Figure 3.1).
The state machine corresponding to the convolutional encoder used in Figure 3.1 is
illustrated in Figure 3.2. In this case, the state machine has four states (because there
are two memory blocks, i.e. ¥ = 2) with an initial state A. For every input bit processed
by the convolutional encoder, a codeword of three bits is produced and subsequently
assigned to the respective arcs in Figure 3.2. If the input bit is a ‘0’, the non-bold arc
is traversed and the output is the three bits corresponding to the arc. Similarly, if the
input bit is a 1’ a bold arc is traversed and the three bits corresponding to the arc are
the output. The state will change accordingly depending on the previous state and the
input bit.

Let us consider the state machine shown in Figure 3.2 and a 4-bit message se-
quence 1010. Starting from an initial state 4, the first bit, a ‘1°, will select the bold arc
from state A4 to state C and the output is 111. Now at state C, the second bit, a ‘0’, will
select the non-bold arc from state C to state B and the output is 001. This carries on
until the last bit and the final output sequence is 111 001 100 001. Note that each input
bit affects not only the three current output bits, but also several subsequent output bits.
Therefore the subsequent output bits contain redundant information about the earlier

bits.
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000

Figure 3.2: State machine representation for a four-state convolutional code.

~ Another representation of the convolutional code is a trellis, where an example of
the convolutional encoder of Figure 3.1 is shown in Figure 3.3. A trellis consists of
many nodes and each of them corresponds to a specific state at different times. In this
case, there are four nodes at each stage and each node has two incoming arcs and two
outgoing arcs since the input of the convolutional encoder at any time instance is one
bit, 1.e. only two possible values. In other situations, there may be more than one input
bit per time instance and hence there can be more than two incoming and outgoing arcs
per node. Using the same convention as in Figure 3.2, a non-bold arc and a bold arc
represent bits ‘0’ and ‘1’ respectively. Figure 3.3 illustrates an example of a trellis with
an initial state A and the input message bits are 1010. The highlighted path corresponds
to the encoding of the message bits 1010.

The same trellis is used during decoding and the decoder computes the most likely
transmitted path traversed through the trellis. Thus, the bit sequence corresponding to
this most likely path will be the estimated message. However, if the original message
is long, the trellis will have a lot of stages and computation during decoding will be
too intensive if the likelihoods of all possible paths through the trellis are calculated.

Fortunately, Viterbi [Vit67] proposed a very efficient way to obtain the most likely
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Figure 3.3: Trellis representation of the convolutional encoder of Figure 3.1.

path through the trellis by performing maximum-likelihood (ML) decoding. This ML
decoder chooses the codeword that minimises the Hamming distance (or Euclidean
distance if received codeword consists of soft values, i.e. not just ‘0’ and ‘1°) between
the received codeword and all possible codewords, i.e. minimum distance decoding. A
value, called a branch metric, is associated to each arc and is the Hamming distance
between the received codeword and the arc at that time instance. This branch metric
can be seen as the cost associated with traversing that arc. Another value, called the
path metric, associated with each node is the sum of the path metric of the predecessor
and the branch metric of the connecting arc. The following gives a pseudocode for the

Viterbi decoding algorithm.

1. Assuming that the convolutional encoder is at the zero state initially, assign the

path metric zero to the initial node; set ¢t = 0.

2. For each node at stage (¢ + 1), find for each of the predecessors at stage ¢ the sum
of the path metric of the predecessor and the branch metric of the connecting arc
(ADD). Determine the minimum of these sums (COMPARE) and assign it to
this node; label the node with the shortest path (also known as survivor path) to

it (SELECT).

3. If we have reached the end of the trellis, then stop and choose as the decoded
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codeword the path to the terminating node with the smallest path metric; other-

wise increment 7 by 1 and go to Step 2.

An example of Viterbi decoding for the received sequence 101 001 101 001, i.e. a
corrupted version of the encoded bits from Figure 3.3, is given in Figure 3.4. In order
to find the codeword closest (in terms of Hamming distance) to the received sequence,
the trellis is traversed from left to right, eliminating all paths that would not be the
prefix of the most likely path through the trellis. Each stage represents an iteration of
the encoding. Stage 0 is before the start of encoding and stage 1 is after the first bit is
encoded, and so on. The transition between one stage to next stage is defined as a step,
which corresponds to one decoded bit in this case. When stage 2 is reached, there are
four paths - one for each node. However at the next stage, i.e. stage 3, there are eight
paths — two per node. For each node at this stage, only one path of the two incoming
paths will remain - the one closest (in terms of Hamming distance) to the corresponding
prefix of the received sequence. The other path into each node will be eliminated since
it could not be the prefix of the most likely path through the trellis. The reason is that,
since the Viterbi algorithm maximises the probability of a correct decision, a path with
a higher path metric (i.e. Hamming distance) results in a lower probability of correct
decision. This process continues until the whole trellis is traversed, i.e. until stage 4.
The most likely path through the trellis is the one with the smallest Hamming distance.
In this case, the highlighted path in Figure 3.4 is the most likely path that corresponds
to the decoded sequence 1010. In Figure 3.4, the Hamming distance between the prefix
of received sequence and the most likely path leading to each node is shown above the
nodes. The eliminated path to each node is marked with the symbol ‘x’.

As mentioned earlier, the Viterbi algorithm is an efficient way to find the most
likely path through the trellis and the explanation for its efficiency is as follows. As-
sume there are S number of states and L steps in the trellis. If an exhaustive search is
used to find the most likely path through the trellis, all 2© possible paths through the
trellis are to be taken into consideration and comparison at the end of the trellis. The
number of possible paths through the trellis grows exponentially as L increases. If the
Viterbi decoding algorithm is used, there are only S possible paths at the end of the
trellis to be taken into consideration for comparison, regardless of L. The reason is that

after log, (S) steps and for the remaining (L —log,(S)) steps, i.e. when all the states, at
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Received
sequence

101 001 101 001

Figure 3.4: Viterbi decoding algorithm.

one time instance, have been connected by the arcs, the number of paths double at the
start of each step and half the number of paths are eliminated at the end of each step.
This eliminates those paths that have larger path metrics at each node and are definitely
not going to be the most likely path even before they reach the end of the trellis. In
this case, this minimises the probability of error or, in another words, maximises the
probability of correct decision. Note that the Viterbi algorithm is optimum when the

channel is additive white Gaussian noise (AWGN).

3.2 Trellis Codes for Watermarking

Practical dirty paper codes, described in Section 2.8, are designed in such a way where
codewords are grouped into subsets and each subset is associated with a given mes-
sage. A practical dirty paper watermarking scheme has to be designed to allow ef-
ficient search of codewords during watermarking embedding (at the transmitter) and
watefmark detector (at the receiver). At the watermark embedder, the codeword, which
is within the subset belonging to a given message, closest to the cover Work, c,, has to
be found quickly. During watermark detection, the subset within which the codeword
that is closest to the watermarked Work, c,,, is to be determined efficiently as well. It

should be noted that the cover Work, c,, can be obtained from many different ways.
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One way is to get some pixel values of a multimedia content to be the elements of the
cover Work [vSTO94]. Another is to allow the elements of the cover Work to be from
some transformed domain, such as Discrete Cosine Transform (DCT) [TD97], Discrete
Fourier Transform (DFT) [RDB96], Discrete Wavelet Transform (DWT) [BBC*99], of
a multimedia content, selecting only a portion to form the cover Work.

This watermarking case is similar to that of the traditional error correcting codes.
In this section, we see how a traditional trellis, as depicted in Figure 3.5, can be used
for watermarking. Each node has two arcs emanating from it to two different nodes in
the next column of nodes. A step is defined to be the transition from one column of
nodes to the next column of nodes, moving from left to right. Each step corresponds
to one message bit and each arc is labelled with a reference pattern of length N, i.e. a
N-samples pseudo-random sequence. Assuming that the starting node is 40, the trellis
is traversed from left to right by choosing a bold arc if the message bit is ‘1’ or an
non-bold arc if the message bit is ‘0’. Thus, each L-bit message is mapped to a unique
L-step path through the trellis, i.e. a one-to-one mapping, and the length (N x L) output
watermark pattern, wp,, is obtained by concatenating the labels (i.e. reference patterns)
associated with the arcs of the path. Figure 3.6 shows an example of the chosen path
if the first three bits of a L-bit message are ‘1 0 0’ and the last bit is ‘1’. It should be
noted that the cover Work, c,, is not involved in this process, and hence, this process is
called blind coding.

The resulting watermark, wy,, is subsequently embedding into the cover Work

using a simple blind additive approach:
Cw = Co + AW 3.7

where a is the embedding strength. During watermark detection, the most likely path
through the trellis is determined by using the Viterbi decoding algorithm mentioned in
Section 3.1.2. To do so, each step of the trellis is associated with a portion of the cover
Work, c,, e.g. N samples or coefficients. The cost of traversing an arc is then defined
as the linear correlation between the reference pattern associated with the arc and the
relevant portion of the watermarked Work c,,. As a result, the Viterbi decoding algo-
rithm finds the path which exhibits the highest linear correlation with the watermarked

Work c,.
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Figure 3.5: A traditional 8-state trellis.
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Figure 3.6: A message selects a unique path through the trellis.

3.3 Informed Coding

A given message, m, may be represented by several alternative codewords. In order to

provide a one-to-many mapping between messages and codewords, a simple modifica-
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tion is made to the traditional trellis. A computationally efficient way to map a message
to a desired codeword, consists of modifying a traditional trellis so that more than two
arcs leave and enter a node. Such a trellis is shown in Figure 3.7 and is referred to as
dirty paper trellis [MDCO02]. Once again, a bold arc is traversed if the corresponding
bit of the message is a ‘1°, and a non-bold arc is traversed if the corresponding bit is a
‘0’. A dirty paper trellis has the property that several paths through the trellis encode
the same message m. It is consequently necessary to tailor a procedure which decides
which path, and by extension which watermark signal, will be determined for embed-
ding. This is where the original cover Work, c,, plays a role, and hence, this process is

called informed coding.
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Figure 3.7: A dirty paper trellis with 8 states and 4 arcs per state.

During the embedding process, the choice of which codeword to embed is de-
termined by first modifying the dirty paper trellis so that all paths through the trellis
encode the same message m. This is accomplished by removing all the arcs which do
not encode the desired message. For example, if the first message bit is a ‘1°, the non-
bold arcs are removed in the first step (nodes A0 - - - HO to nodes A/ --- HI). Figure
3.8 shows a modified trellis that corresponds to a message with ‘1 0 0’ as the first three

bits and 1’ as the last bit. The Viterbi decoder is then run to find the path through this
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modified trellis which has the highest linear correlation with the input cover Work c,.
Once again, the watermark, wy,, is obtained by concatenating all the labels of the arcs
along the identified best path. In contrast to blind coding, both the message, m, and the
cover Work, c,, influence the encoding process.

The resulting watermark, wp,, is then embedded blindly according to Equation
3.7. At the detector, the decoder applies the Viterbi algorithm to the entire dirty paper
trellis, as depicted in Figure 3.7. This identifies the path through the trellis which has
the highest linear correlation with the watermarked Work c,. The hidden message can
then be determined by examining each arc in the optimum path to determine whether it

encodes a ‘1’ or ¢0’.

Figure 3.8: A modified trellis that corresponds to a given message.

3.4 Parameters Affecting Dirty Paper Trellis

A dirty paper trellis code is a form of spherical code since all of its codewords have
equal energy, i.e. same distance from the origin, and therefore are distributed on the
surface of a high dimensional sphere. A spherical code is designed such that its code-
words are well-distributed across the surface of the sphere, i.e. the minimum distance

between any pair of codewords is maximised. This set of codewords is usually divided
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in cosets (also known as subsets) and these cosets are well-distributed over the surface
of the sphere. Any point on the sphere should be close to a codeword in a coset so
that the distortion is minimised. Generally, a well-distributed set of codewords would
generate a better performance. In view of this, the design of dirty paper trellis codes
has to take into account the codeword distribution to ensure it has a good performance.

The performance of a system or scheme can be measured in several ways. One of
them is to determine the received signal-to-noise ratio, i.e. a ratio of the transmitted
signal power at the receiver to the noise present in the received signal. Because the
transmitter and the receiver can be a distance away from each other, the received signal
power can be considerably lower than the transmitted signal power. In this case, if the
received signal-to-noise ratio (SNR) is lower than the expected level, then the system
performance is said to be unsatisfactory. Another method to determine the performance
of a system is to measure the frequency of errors during transmission. This can be done
using an error ratio, which is the ratio of the number of bits, symbols, or blocks incor-
rectly received to the total number of bits, symbols, or blocks sent during a specified
time interval. The most commonly encountered ratio is the bit error rate (BER).

Upon closer examination of the dirty paper trellis, we can determine several pa-

rameters that can affect the distribution of its codewords. They are:

e the number of states, S, in the trellis,

the number of arcs, 4, entering/leaving each node,

the connectivity between the nodes, i.e. how the arcs join from one node to

another,

the set of reference patterns used to label the arcs,

the mapping between the reference patterns and the arcs, and

the mapping between the dirty bits (bold vs. non-bold) and the arcs

The performance of convolutional codes improves as the number of states, S, in-
creases since the encoder has more memory blocks and the coded bits have higher inter-
dependence, thus higher error correcting capability (refer to Section 3.1.2 for more de-

tails). Since a dirty paper trellis is based on convolutional codes, the number of states,
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S, together with the number of arcs per state, 4, also affect the trellis performance. The
effect of these two parameters on the performance of a dirty paper trellis is discussed
in Chapter 4.

The connectivity between the nodes, the set of reference patterns for arcs labelling,
the mapping between the reference patterns and the arcs, and the mapping between the
dirty bit and the arcs can also affect the distribution of codewords on the surface of the
sphere. Out of these four factors, the first three are also applicable to traditional trellises
if the reference patterns are replaced by coded symbols. These three factors will affect
a property of a trellis, called the free distance, i.e. the minimum distance between any
pair of codewords having the same start state and end state, which has a direct link to
the trellis performance. The discussion of all these four factors on dirty paper trellis is
covered in Chapter 5.

While traversing a trellis, arcs are chosen based on the cost function, i.e. there
is an associated cost of selecting each arc. Miller et al. [MDCO02] proposed the linear
correlation between a Work and the reference pattern labelled on each arc to be the
cost function. The final path through the trellis is one with the highest linear corre-
lation between a Work and the reference patterns associated with the arcs along this
path. This may be desirable to some watermarking schemes, but it may not be the
optimum solution depending on the embedding strategy. Chapter 6 explores different
cost functions that will bring about better watermarking performance according to the

embedding scheme.



Chapter 4

Trellis Structure and its Performance

In Chapter 3, we have seen how to generate a dirty paper trellis and a corresponding
modified trellis (given a message) for watermark purposes. In this chapter, we examine
how the structure of a dirty paper trellis, i.e. the number of states, S, and the number
of arcs per state, 4, can affect its performance. Performance of a dirty paper trellis,
which is commonly measured in terms of bit error rate (BER), is an important issue
for practical watermarking applications. Bit error rate (BER) is defined as a ratio of
incorrectly received bits to total number of bits sent.

Several preliminary studies have been done on dirty paper trellis using simple ad-
ditive embedding [MDCO02] and informed coding with informed embedding [MDC04].
In those studies, a simple evaluation of dirty paper trellis reveals the relationship be-
tween its performance and its structure in a noiseless channel environment. Generally,
the cover Work, c,, lies in the detection region of a codeword that does not encode the
message. Since there is no channel noise present, the errors come from the fact that the
embedding of the watermark pattern, w,, is not strong enough to “move” the cover
Work, c,, to the detection region of the correct codeword. Hence errors are present
even if there is no channel noise. The results in [MDC02, MDCO04] indicated that the
greater the number of states, S, and the number of arcs per state, 4, the better the perfor-
mance due to the fact that the number of codewords increases as the number of states,
S, and the number of arcs per state, 4, increase. Hence a codeword close to the cover
Work can be found. However, with an increased number of codewords, the minimum
distance between any pair of codewords is reduced, thereby causing the code to be less
resistant to noise. It was suggested in [MDC02, MDCO04] that the optimum trellis con-

figuration (using a noiseless channel) is S = 64 and A = 64 since a larger number of
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states, .5, and number of arcs per state, 4, will only marginally improve the performance
of dirty paper trellis.

The performance evaluation of dirty paper trellis from [MDC02, MDC04] is too
simplistic since it only considers the noiseless channel. Although it is desirable to
employ a dirty paper trellis with a larger number of states, S, and a larger number of
arcs per state, 4, to improve its performance in this case, there is a need to take into
account the performance using a noisy channel as well as the computation time (or
complexity). Therefore the aim of this chapter is to examine the relationship between
the trellis structure and its error rate performance, using computational complexity as
an additional factor in selecting a suitable trellis structure.

Firstly, the bit error rate (BER) performance of a dirty paper trellis is investigated
using simple additive embedding described in Section 4.1. Having obtained the perfor-
mance of a dirty paper trellis, the trellis complexity is then analysed and the selection
of a suitable trellis configuration, using both the BER performance and computation

time, are covered in Section 4.2.

4.1 Trellis Performance

Performance is one of the most important considerations in determining a trellis con-
figuration for use in a watermarking application. In order to compare the performance
of different dirty paper trellises, one has to keep one or more parameters fixed. To en-
sure a fair comparison between different dirty paper trellises with different number of
states, S, and number of arcs per state, A4, the total number of distinct paths through a
dirty paper trellis (i.e. the number of different codewords) should be kept constant. The

total number of codewords is given by
N, = S.A" 4.1)

where L is the length of the trellis (i.e. the number of steps in the trellis). To illustrate
this, Figure 4.1 depicts two alternative trellis configurations which share the same to-
tal number of codewords, N, = 16. Configuration (b) is basically a traditional 4-state
trellis whereas configuration (a) is a degenerate trellis with only a single state and 4 par-
allel arcs. Keeping the number of codewords constant means that the measured BER

variations are only due to the changes in the trellis configuration, i.e. the minimum dis-
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tance between any pair of codewords changes. In the proposed example, configuration
(a) is memoryless, i.e. an error that occurs at one step is independently from decisions
in the previous steps. Therefore, the BER is likely to be higher than with configuration
(b). In the latter case, errors are more costly since an error at the first step inevitably

induces another error at the second step.

O X

(a) (b)

Figure 4.1: Different trellis configurations for 16 codewords: (a) 1 state, 4 arcs per

state, length 2 trellis and (b) 4 states, 2 arcs per state, length 2 trellis.

In practice, maintaining a fixed number of codewords is not always feasible. Re-
ferring back to Equation (4.1), if the number of arcs per state, 4, is divided by 2, then the
number of states, S, has to be multiplied by 27, which grows exponentially and rapidly
since L is large in practice. Therefore the decoding performances of all possible trellis

configurations have to be evaluated.

To analyse the performance of a dirty paper trellis, several performance metrics
such as Bit Error Rate (BER), Message Error Rate (MER), and Path Error Rate (PER)
can be used. The BER is the probability a message bit is incorrectly decoded whereas
the MER is the probability a message is decoded incorrectly, i.e. one or more bit errors
indicates a message error. The PER is the probability a path (i.e. codeword) output
from the Viterbi decoder differs between the path traversed during message coding at
the embedder and the path traversed during watermark detection. Note that a path error
may still occur even if the two different paths encode the same message, i.e. the BER

and MER are zero.

For simplicity, experiments have been carried out with synthetic signals as cover



4.1. Trellis Performance 72
Works using simple additive embedding as shown in the following equation.
Cw = Co + QW 4.2)

where o is the embedding strength. This simple additive embedding is illustrated in
Figure 4.2. Note that the power of the watermarked Work, c,,, can be larger than that
of the cover Work, c,, by a significant amount if a large embedding strength is allowed.
This will undeniably cause a huge distortion to the cover Work, c,. The Document-to-
Watermark Ratio (DWR), which is a ratio of the document (i.e. cover Work) power to
the watermark power, is the distortion measure used in this set of experiments to control
the embedding strength. A higher DWR indicates a lower distortion to the cover Work

Co. The Document-to-Watermark Ratio is defined as

_ |col? _ |co|”

|cw — Col? | oWy |2

where |c,|? is the power of the cover Work, ¢,, and [wy,|? is the power of the watermark
pattern, wp,. It is obvious that the embedding strength, o, controls the Document-to-

Watermark Ratio (DWR). For a desired, fixed DWR, « is given by

o= |Co] x 10~0-1xDWR (4.4)

Figure 4.2: An example of a simple additive embedding.

To reduce computational complexity, the number of steps in the trellis has been

set to 10 (L = 10), i.e. the hidden message consists of /0 bits. The length of the arc
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labels, i.e. the number of elements in the reference patterns associated with the arcs, has
been set to 64 (N = 64) and each element of those patterns is drawn from a Gaussian
distribution with zero mean and unit variance. Since we are interested in the effect of
the trellis structure, the number of states, S, and the number of arcs per state, 4 are
parameters. Therefore for a selected set of couples (S, A), the following experiment is

run 10° times.
1. Generate a random cover Work ¢, ~ N(0,1) of length V.L.
2. Create a dirty paper trellis with S states and 4 arcs per state.
3. Generate a random L-bit message m.

4. Identify the path p; in the dirty paper trellis which encodes the message m and
has the highest linear correlation with the cover Work, c,, using the Viterbi de-

coder.

5. Use Equation 4.2 to embed the resulting watermark pattern, wy,, with an em-
bedding strength o = /0.1 so that the Document-to-Watermark Ratio (DWR) 1s
equal to 10 dB'.

6. Corrupt the watermarked Work c,, with additive zero mean Gaussian noise
whose variance is adjusted to obtain a certain watermark-to-noise ratio W N R =
|0‘Wm|2

10log;q (—inlf-), where |n|? is the power of the noise, n, added to the water-

marked Work, c,,, before watermark detection.

7. Identify the path p, in the entire trellis which has the highest linear correlation

with the corrupted watermarked Work using the Viterbi decoder.
8. Compute the number of different bits between p, and pa.

The BER can then be computed by dividing the total number of reported bit errors
by the number of iterations times the length L of the path.
Figure 4.3 shows the measured BER for different dirty paper trellis configurations

with no channel noise (i.e. additive Gaussian noise), n, with respect to the total number

IThis value has been chosen to observe enough bit errors to estimate the BER without running a huge

number of iterations.
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of codewords N.. As shown in Figure 4.3, the BER first decreases as the number of
codewords increases because the larger the codebook, the more likely that a codeword
exists that is similar (i.e. highly correlated) to the cover Work, c,. This similarity can
be measured by the normalised correlation® between the cover Work, c,, and the clos-
est codeword, wy,, that codes the intended message, i.e. ﬁ:”—“’:’v’“m Figure 4.4 shows
average values of such normalised correlation for different trellis configurations com-
puted during the experiment described above. From Figure 4.4, the average normalised
correlation increases as the number of arcs per state, 4, increases. This is quite obvious
since the number of codewords, V., increases, thereby allowing the cover Work, c,,
to be closer to any of the codeword. Hence Figure 4.4 proves that a codeword is more
likely to be similar (in terms of normalised correlation) to the cover Work, c,, as the
number of codewords, V., increases. Note that for a given average normalised corre-
lation (from Figure 4.4), some trellises require more codewords than others to achieve
the same correlation value. Since more codewords are needed to ensure that the dis-
tance between a randomly chosen cover Work, c,, and the nearest codeword remains
constant, there is a higher tendency for clusters (or non-uniform distribution) to form
among codewords for those trellises requiring more codewords to achieve the same

normalised correlation.

As the number of codewords increases, it is surprising to see that the BER in-
creases at some trellis configurations before decreasing again, thus creating a “bump”.
Upon closer examination of Figure 4.3, it can be noted that the bumps occur when par-
allel arcs start to occur within the trellis (denoted by the black circles () in the figure).
Parallel arcs happen when arcs are linked to the same nodes, e.g. from node 40 to
node A1, as shown in Figure 4.5. In this case, single errors can occur without induc-
ing additional errors. In other words, making errors is easier and thus errors happen
more often. This is an important difference, with trellis configurations on the left side
of these bumps where an error necessarily induces other ones, i.e. making an error
is more costly and thus happens more rarely. This suggests that configurations with
A > S should be avoided. Finally, it can be observed that, for a given number of

codewords (roughly, 4 constant), very different BER can be obtained depending on the

2Since the cover Work, c,, can have varying power, normalised correlation is used instead of linear

correlation in order for fair comparison.
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Figure 4.3: BER as a function of the number of codewords for different trellis configu-

rations with no additive Gaussian noise.

trellis configuration. This implies that the trellis structure has a great influence on how
uniformly distributed the codewords are within each message coset (set of codewords

encoding the same message).

So far, we have only considered the performance of a dirty paper trellis without
any channel noise present. When additive Gaussian noise corrupts the watermarked
Work, c,,, before it reaches the watermark detector, the performance of a dirty paper
trellis will be worse than that reported in Figure 4.3. The effect of the channel noise,
n, on the performance depends on the power of the channel noise. For example, for a
Watermark-to-Noise Ratio (WNR) of -7 dB, the performance of the dirty paper trellis
is shown in Figure 4.6. As one can expect, the BER first decreases as the number of
codewords, N, increases. This is intuitive, since the larger the codebook (i.e. N.)
is, the more likely it is that a codeword exists which is similar to the cover Work, c,.

Therefore this codeword can be embedded more strongly, i.e. a larger correlation value
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Figure 4.4: Average normalised correlation (between a cover Work and the closest
codeword that codes the intended message) as a function of the number of codewords

for different trellis configurations.

Figure 4.5: A dirty paper trellis with 2 states and 4 arcs per state.

will result, for a fixed Document-to-Watermark Ratio (DWR). However, because of
noise, the BER increases after some point. This is because increasing the number of
codewords, N, reduces the minimum distance between any pair of codewords, thereby
shrinking the detection region of each codeword. As a result of a smaller minimum
distance between a pair of codewords, the watermarked Work, c,,, starts to be more

sensitive to channel noise.

One other thing to note is that different trellis structures have to be chosen to
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Figure 4.6: BER as a function of the number of codewords for different trellis configu-

rations with -7 dB additive Gaussian noise.

operate under different noise conditions. Let us consider the noiseless situation and a
noisy situation with WNR = -7 dB (see Figures 4.3 and 4.6 respectively). From Figure
4.3, trellis configurations (S, A) = (16,2), (2,8), (1,16) are chosen if the watermarking
system is operating at a BER = 3.3 x 1073, Under the same BER, trellis configurations
(S, A)=(64,4),(32,4), (16,8) will be chosen if an additive Gaussian noise of WNR = -7

dB is present. Hence the optimum trellis structure depends on the operating conditions.

4.2 Trellis Computational Cost

In the previous example, we observed that for a particular operating condition, e.g.
WNR = -7 dB, there were several trellis configurations that would provide a desired
BER of 3.3 x 1073. Even if a trellis configuration is found to give good decoding per-
formance, its computational complexity should also be taken into account to determine
whether it can be used in practice. In the case of dirty paper trellis watermarking, the

most costly operation is the Viterbi decoding of the whole trellis, i.e. during the water-
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mark detection process. To carry out this operation, it is necessary to compute the cost
function for every arc. Since linear correlation is used as the cost function in the set of
experiments in Section 4.1, the Viterbi decoding operation requires N multiplications,
(NN —1) additions and one division for each arc. Since there are A.S.L arcs in the trellis,

the computational time is given by:
T=ASL(NT«+ (N = 1)1 + 1)) (4.5)

where 7, (resp. 7, and 7/) is the computational time of a multiplication (resp. addi-
tion and division). Assuming that these three values are roughly the same?, then the

computation time is simply given by
T=2AS5.L.N. (4.6)

Referring back to Figure 4.1, it means that configuration (a) has half the computational
cost of configuration (b). There may be several alternative trellis configurations oper-
ating at a particular BER and the idea is to choose the one which is computationally
the least. The relationship between BER and computation time should therefore be
investigated.

Figure 4.7 shows the performance of different dirty paper trellises, in the absence
of additive Gaussian noise, in terms of BER with respect to the computation time which
is given by Equation 4.5. This shifts the previous curves (in Figure 4.3) horizontally so
that configurations sharing the same total number A.S.L of arcs are aligned vertically.
The main point to note is that, whereas most configurations have very similar bit error
rates for a given computational cost, a few specific trellis configurations appear to offer
a significantly better compromise. In fact, when we look closely at Figure 4.7, it is clear
that configurations with A = S (fully connected trellis) or A = S/2 (half connected
trellis) should be preferred. Indeed, for all the other configurations, an alternative struc-
ture can be found to offer a better trade-off between BER and computational complex-
ity. It is worth noting that the trellis configuration retained in [MDC02, MDC04] (i.e.

S = A = 64) is one of those few efficient trellis structures.

3In actual fact, the computation time for a multiplication, an addition, or a division differs, with the
division operation much more time consuming than the multiplication operation, which in turn consumes

slightly more time than the addition operation.
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Figure 4.7: BER vs. computation time for different trellis structures in the absence of

additive Gaussian noise.

Figure 4.8 shows another performance-computation time plot similar to Figure
4.7, except that, in this case, the computation time recorded is the actual average time
taken during the watermark detection process executed using Intel Pentium Xeon Dual-
Core 2.8 GHz. The similarity between these two plots enables us to use Equation 4.6

instead of recording the actual time taken during the watermark detection process.

Similar to Figure 4.7, Figure 4.9 shows the performance of different trellis struc-
tures, when additive Gaussian noise of W/ NR = —7 dB is added to the watermarked
Work, c., before watermark detection. Under close observation of Figure 4.9, it is
noted that certain trellis configurations are preferred to others. For instance, assum-
ing that we want to operate a watermarking system at a bit error rate (BER) of about
3.3x 1073, Figure 4.9 indicates that three alternative configurations can be used, namely
(S, A) =(16, 8), (32, 4) or (64, 4). Even though these configurations have similar per-

formance in terms of BER, Figure 4.9 clearly shows that configuration (64, 4) should
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Figure 4.8: BER vs. actual computation time, in seconds, for different trellis structures

in the absence of additive Gaussian noise.

be discarded because of its higher computational cost. In fact, looking closely at this

figure, one can easily isolate the set of configurations which operates under the same

BER and WNR.

4.3 Summary

The influence of the trellis structure on performance has been investigated. In this
chapter, we have measured the BER and the computation time for many different con-
figurations of a dirty paper trellis. The reported experiments have provided a better
understanding of the impact of different trellis configurations. The following conclu-

sions can be drawn:

e parallel arcs should be avoided in the trellis structure since they introduce single

CITors

e fully and half connected trellis structures (i.e. A = S and A = S/2 respec-
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Figure 4.9: BER vs. computation time for different trellis structures with additive

Gaussian noise of WNR = —7 dB.

tively) are preferred since they offer improved performance (BER) with respect
to both the number of codewords and computational cost in a noiseless channel

environment

e fully and half connected trellis structures do not guarantee an improved perfor-
mance (BER) with respect to both the number of codewords and computational

cost in a noisy channel environment

e optimum trellis configurations should be chosen, from a group of trellises which
are operating at the same BER in a noisy channel environment, to be one having

the least computational cost

e alternative trellis configurations having the same number of codewords, V., lead

to very different BER

e alternative trellis configurations having the same BER may have very different



computational cost

4.3. Summary



Chapter S

Using Trellis Coded Modulation to
Improve Dirty Paper Trellis Codes

The performance of dirty paper trellis watermarking is strongly related to the distri-
bution of the codewords ovef the surface of a hyper-dimensional sphere. Generally,
a well-distributed set of codewords would ensure that (i) the codewords are robust to
noise and that (ii) the distortion to the content (or cover Work) is minimised. In Chapter
4, we have seen how the number of states, S, and the number of arcs, 4, influence the
performance of dirty paper trellis and therefore affect the selection of a trellis configu-
ration. In this chapter, we examine the following factors that affect the distribution of

codewords and thus the trellis performance.
e the set of reference patterns used to label the arcs,

e the connectivity between the nodes, i.e. how the arcs join from one node to

another,
¢ the mapping between the reference patterns and the arcs, and

o the mapping between the dirty bits (bold vs. non-bold) and the arcs

Currently, for dirty paper trellis codes, the codewords are randomly generated
with each element from a Gaussian distribution and thus there is a high possibility
that this set of codewords may not be uniformly distributed across the surface of the
hyper-sphere. Also in the case for Angle QIM [OLJPGO5] (refer to Section 2.8.3), the
codewords are obtained by quantising a set of angles which defines the direction of

any vector in the multidimensional space, e.g. the longitude and latitude in 3-D. This
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leads to a suboptimal distribution of codewords (in 3-D) as there is a concentration of
codewords at the poles. In contrast, with a good spherical code, the minimum distance
between any pair of codewords should be maximised, thus leading to a uniform dis-
tribution of the codewords over the surface of the sphere [CS98]. Therefore in this
chapter, assuming that the distribution of the codewords is non-uniform when dirty pa-
per trellis code is used, the influence of the above-mentioned factors on the distribution

of codewords is discussed so as to enhance the performance of dirty paper trellis codes.

To generate a better distribution of codewords, related work by Ungerboeck
[Ung82] is useful as it enables the symbols associated with the arcs to be well sep-
arated using a concept called trellis coded modulation (TCM). Prior to the introduction
of TCM, the channel coding stage and the modulation stage (refer to Section 2.1) are
carried out individually. To improve the performance of trellis coding, Ungerboeck
proposed TCM which combines these two stages. For a traditional trellis (depicted
in Figure 3.3), the output symbols associated with each arc are binary. Although the
output symbols of the arcs for a TCM trellis is also binary, there is a further mapping
(i.e. modulation) carried out such that each output symbol corresponds to a signal in a
modulation constellation, e.g. a point in the 8-PSK modulation. The concept of TCM

is described in Section 5.1.

A TCM trellis is similar to traditional trellis in that both perform a one-to-one
mapping between the input messages and the output codewords, i.e. one message cor-
responds to only one unique codeword. In order to use a TCM trellis for the purpose of
dirty paper watermarking, a slight modification can be done to the TCM trellis so that
the resulting TCM trellis enables a one-to-many mapping between input message bits

and output codewords. The discussion on this modification is covered in Section 5.2.

The TCM trellis proposed by Ungerboeck [Ung82] deals with signals which are
two dimensional, i.e. the signal point associated with each arc consists of 2 elements.
Although it can still be applied for watermarking purposes, a higher signal dimension
is very much preferred because, in general, performance and fidelity are improved. In
particular, Pietrobon et al [PDL*90] provided an extension to Ungerboeck’s work by
using a higher dimensional arc label, thus favouring its use for dirty paper watermark-
ing. A description of Pietrobon’s work and its application to dirty paper watermarking

are found in Section 5.2.
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Having determined how to use TCM for dirty paper watermarking, Section 5.3
focuses on practical watermarking schemes using TCM. Firstly, in Section 5.3.1, vec-
tor quantisation (VQ) is used as a preliminary test to see how well TCM dirty paper
trellis (TCM DPTC) and the original dirty paper trellis (random DPTC) perform. Since
vector quantisation (VQ) can introduce a substantial distortions to the cover Work, c,,
another embedding scheme, which causes much lesser distortions but achieves a fixed
robustness at the same time, is preferred. The iterative embedding algorithm mentioned
in [MDCO04] is suitable and is described in Section 5.3.2. Section 5.3.3 examines the
use of this iterative embedding scheme for TCM DPTC and random DPTC and com-

pares the performance between them.

5.1 Trellis Coded Modulation

Let us first ignore the dirty paper nature of a dirty paper trellis, i.e. the distinction be-
tween bold and non-bold arcs. We then have a trellis with several arcs entering/leaving
each node. From a communications perspective, this means that more than one bit is
mapped onto a reference pattern (i.e. signal point) per stage in a trellis. Figure 5.1
gives an example of a convolutional encoder that generates a trellis shown in Figure
5.2 with 4 states and 4 arcs leaving/entering each node. From Figures 5.1 and 5.2, the

input consists of two bits at each time instance and the output is a three-bit symbol.

Input —7{4

o 2 Output

o3

Figure 5.1: Convolutional encoder that takes 2 input bits at a time and produces 3

output bits.

In Section 2.1, we have seen that different coding schemes, e.g. linear block codes

and convolutional codes, can bring about coding gains, i.e. performance improvement
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Figure 5.2: Trellis diagram for the convolutional encoder in Figure 5.1.

in terms of the difference in signal-to-noise ratio (SNR) required to achieve a specified
error rate. However, the channel coding stage and the modulation stage (e.g. frequency
shift keying (FSK), amplitude shift keying (ASK), and phase shift keying (PSK)) are
usually carried out separately as shown in the general communications model of Figure
2.3. Ungerboeck [Ung82] proposed to combine these two stages into a single stage and
showed that the performance of the resulting communication system can be improved.
For example in [Ung82], Ungerboeck considered a transmission of 2 (information) bits
per time interval and compared a coded 8-PSK modulation (with 8 symbols) and an
uncoded 4-PSK (with 4 symbols). He showed that a theoretical gain of 7 dB can be
achieved by using the former in an error-free transmission (assuming unlimited coding
and decoding capability) over the latter with an additive white Gaussian noise chan-
nel at a symbol-error probability of 1075, Note that an error-free transmission for an
uncoded 4-PSK requires an infinite SNR, hence a transmission with a hypothetical er-
ror rate is assumed. By increasing the number of symbols further (from 8 symbols

onwards), only an additional gain of 1.2 dB can be achieved. Since other modulation
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schemes revealed a similar gain in channel capacity, Ungerboeck concluded that most
of the gain in channel capacity can be achieved by just doubling the number of symbols.

In order to achieve the gain in terms of channel capacity, Ungerboeck used trellis
coding (i.e. convolutional coding) with the Viterbi decoding algorithm as the cod-
ing/decoding scheme. Assuming that, at time ¢, & bits are to be transmitted using an
alphabet A of 2¥+! symbols, a convolutional encoder with rate R = k/(k + 1) can be
used to expand the & input bits and then map the resulting (£ + 1)-long symbols into the
symbol set of the alphabet .A. This entire framework, which was originally proposed
by Ungerboeck [Ung82] and depicted in Figure 5.3, is commonly referred to as trellis
coded modulation (TCM).

x K ytk+l
.—_—_’t -
— | Binary convolutional - Mapping s
. encoder ) !
: : S = M
[ R=Wk+D) R
x(l ytl

Figure 5.3: Trellis coded modulation (TCM): A binary convolutional encoder with rate
R = k/(k + 1) is fed at time ¢ with a k-bit binary word x; and a mapping function

defines which symbol s; to transmit depending on the (k + 1)-bit encoded output y.

The transmitted sequence of symbols (i.e. codewords), {s; }, corresponds to a path
in the trellis. When this sequence {s;} is corrupted by additive white Gaussian noise
(AWGN), the decoder may make wrong decisions by determining a path in the trellis
that differs by at least one transition from the correct path, i.e. producing a decoded
sequence of symbols {s; }. Such mistakes are called error-events and their occurrences
are related to the free distance defined as

L 3
diee = min s¢ — si||? 5.1
f (st} £{s0} L:l “ t t” } 5.1

between all pairs of codewords {s¢} and {s;}, whose paths start from the same state
and end at the same state, that can be produced by the encoder. In other words, the free
distance is defined as the minimum Euclidean distance separation between paths that
diverge from the same state at the beginning of the trellis and remerge at the same state

at the end of the trellis. The closer the pair of codewords, the more susceptible the code
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is to errors. If maximum likelihood (ML) decoding, such as Viterbi decoding, is applied,
the probability of such errors will asymptotically approach, at high signal-to-noise ratio

(SNR), the lower bound
Pe 2 Nfrce . Q(dfl'cc/za) (52)

where Ng. denotes the average number of error-events with free distance df.. and

Q(+), or sometimes known as the Q-function, is the Gaussian error probability function

defined as
Qu) = \/%/ e dr.u> 0 (53)

Figure 5.4 shows how the Q function, Q(u), varies with the variable u. From this
figure, it is clear that the larger the value of u, the smaller the value of Q(u). Hence
from Equation 5.2, a large free distance, d,.., will give rise to a small value of Q(u),
which in turn will result in a smaller error probability P.. Therefore the trellis should
be designed in such a way that the free distance, d .., is maximised since a larger d ;..

means a lower error probability.
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Figure 5.4: The Q-function, Q(u), as a function of the variable u.
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In order to achieve a larger free distance, df,.., Ungerboeck proposed a two-step
optimisation process: “mapping by set partitioning” followed by searching for an ap-
propriate binary convolutional encoder. Note that this system design is a reverse se-
quence of that in Figure 5.3. Let us first understand what “mapping by set partitioning”
is. Consider an alphabet, A, consisting of several symbols which may be transmitted by
the encoder. One desired property is that these symbols are as separated as possible to
avoid confusion at the receiver side. Furthermore, since the underlying goal is to obtain
a code that is invariant to valuemetric scaling in digital watermarking, equi-energetic

symbols, such as phase shift keying (PSK) symbols will be considered.

As an illustration, assume that an alphabet, A, consists of 8PSK symbols, i.e.
|A| = 2¥+! = 8 symbols in the alphabet A, where £ = 2. Once the alphabet, .4, has
been defined, TCM successively partitions the alphabet, A, into subsets with increasing
minimum subset distance A; < A, < ... between the symbols belonging to these
subsets. Figure 5.5 provides an example of such a partitioning on the alphabet of 8PSK
symbols. At each partition level, the considered set of symbols is further divided into
two subsets so that the minimum distance within the subsets increases. At the end,
the obtained subsets are arranged along a binary tree. Thus it is possible to label each

branch of this tree with a log,(|.A|)-bit label.

Now that the partitioning of the alphabet, .4, has been done to maximise the min-
imum subset distance, the next step is to search for a binary convolutional encoder
which maximises the free distance d,... The output of such a binary convolutional en-
coder, at time ¢, corresponds to a log,(|.4|)-bit label, which is associated to one of the
symbols involved during set partitioning. In other words, each of the arcs in the trellis
has an associated log,(|.A4|)-bit label, determined by the convolutional encoder, which
is then mapped to one of the |.4| symbols. Having known how the arcs of the trellis are
mapped to the symbols, this step is equivalent to enumerating all possible connectivity
configurations and retaining the one configuration with the largest free distance, dice,
i.e. the maximum distance between two closest codewords with the same start and end

states, as defined in Equation 5.1.

A convolutional code can be represented by a set of parity-check polynomials

[H**1(D)...H!(D)]. Any binary sequence y, output by the convolutional encoder
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Figure 5.5: Partitioning of 8PSK symbols. At each partition level, the considered set of
symbols is further divided into two subsets so that the minimum distance within each
resulting subset is increased (A; < A, < Aj). This results in a binary tree whose

branches are labelled with a 3-bit label.

satisfies the parity check equation:
by .yl [HY(D).. . HY(D)]" =0 (5.4)

where y.' is the i-th bit of the output symbol y, at time ¢, and D is a time delay in-
troduced by a delay element. Refer to Section 3.1.2 for a more detailed description of
convolutional codes.

A straightforward way to perform the exhaustive search is to enumerate all possi-

ble parity-check polynomials [Ung82]. These polynomials have the following form:
H(D)=Y hD', 1<j<k+1 (5.5)
i=0
0, j#1
1, 7=1

with h? =Rl =

where the h!’s are binary coefficients and v is the constraint length of code, i.e. the

number of delay elements in the finite-state machine. The larger the value of v, the
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more memory the code has. The exhaustive search then reduces to enumerating all
possible combinations of binary coefficients in order to identify the set of coefficients
that gives the trellis structure with the highest free distance d,... For example, Figure
5.6 shows a convolutional encoder with rate 2/3 and constraint length v = 3 that gives
the largest free distance, dy..., and the symbols used are from the alphabet of 8PSK
symbols given in Figure 5.5. The input to this convolutional encoder is 2-bit long while
its output, which selects one of the symbols from the alphabet of 8PSK, is 3-bit long.
The resulting TCM trellis is shown in Figure 5.7 where the labels of the arcs leaving
a node are listed (in the same order) on the left of the node, e.g. the arcs leaving
node A9 (from top to bottom) are having labels 0, 4, 2 and 6 (i.e. 000, 100, 010, 110)
respectively. Upon closer observation, the arcs leaving each node belong to one of the
two subsets, AJ and A}, of Figure 5.5, and are independent of y1, i.e. the first bit of
the 3-bit label y2yZy{. The other two bits of the 3-bit label, i.e. y2 and y2, determine
which arc (out of 4) is selected. For instance, arcs leaving node 40 have y! = 0
and the arc with label 4 is selected if y2 = 1 and y? = 0. It should be noted that
the free distance for the trellis shown in Figure 5.7 can be computed using the pair of

highlighted paths, both starting at state 40 and ending at state A43.

x2 Y —

x! ’ y2 —»{ 8-PSK |}—>

T

Figure 5.6: Binary convolutional encoder with rate 2/3 and constraint length v = 3

giving the largest free distance d,..

In general, if a convolutional encoder with rate k£/(k + 1), but of any constraint
length v, is used for TCM, the symbols used for mapping will come from an alphabet
of (2¥*1)-PSK symbols. Furthermore, the first bit, y1, of the (k + 1)-bit output label is

the same for all arcs leaving a particular node and the remaining & bits select an arc (out
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Figure 5.7: The 8-state TCM trellis, which is generated by the convolutional encoder in
Figure 5.6, uses the alphabet of 8PSK symbols whose partitioning is shown in Figure
5.5.

of 2¥) leaving that particular node. In other words, regardless of the number of states
of this TCM trellis, the number of arcs per state remain unchanged at 2* and only one

bit, i.e. y{, of the (k + 1)-bit label has the same value for all the arcs leaving a node.

The entire optimisation process ensures that the codewords are as separated as pos-
sible. From [Ung82], it has been shown that by using trellis coded modulation (TCM),
there is significant coding gains over conventional uncoded modulation. For example,
by using trellis-coded 8PSK modulation, a coding gain of 3.0 dB to 5.7 dB (depending
on the constraint length v) can be achieved over conventional uncoded 4PSK. Note that
this gain is less than the theoretical gain of 7 dB mentioned earlier because unlimited
coding and decoding capability is assumed in the derivation of the theoretical gain. A
larger constraint length v not only gives rise to a larger coding gain (i.e. more pow-
erful codes), but also increases the complexity of a Viterbi decoder exponentially. As

such, constraint lengths of up to 9 are used in practical applications (see Section 8.2.8
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in [Pro01]").

5.2 TCM Dirty Paper Trellis

In trellis coded modulation (TCM), the transmitted sequence of symbols, {s;}, is de-
signed to be as separated as possible. This sequence of symbols are the codewords or
watermark patterns, wp,, used in the watermarking context. To use TCM in our dirty
paper trellis framework, there is still one issue to be addressed: how to assign a dirty
bit (bold vs. non-bold) to the arcs of the trellis? For fidelity reasons, it is desired that
all the codewords encoding the same message, m, are well separated, i.e. all the paths
through the trellis encoding the same message should be as separated as possible. Us-
ing Figures 5.5 and 5.7 as an illustration, the arcs leaving each node belong to one of
the two subsets, either Aj or A}, and therefore have the same first bit, i.e. y! = 0 (or
1) depending on which node the arcs leave from, in its 3-bit label y2y2yl. The other
two bits y2 and y? in the label determine which symbol (or arc) is chosen from the
corresponding subset, and hence any one of these bits can selected as the dirty bit. The
bit chosen as the dirty bit should ensure the resulting symbols are separated as far as
possible. Since the partitioning of subset A} or A] in Figure 5.5 maximises the distance
between the symbols in the resulting subsets, i.e. A2, A%, A2, and A2, the second bit, i.e.
yZ, is selected as the dirty bit. In other words, if y2 is chosen as the dirty bit, Figure 5.7
will undergo a slight change to produce the modified trellis as shown in Figure 5.8 and
the resulting trellis can then be used for watermarking applications. In general, when
using a set of coded MPSK symbols, where M denotes the number of symbols in the
alphabet .4, the second bit of the log, (|.4|)-bit label is selected as the dirty bit using the
argument described earlier.

So far, we have only considered TCM trellises having arc labels which are 2-
dimensional, i.e. each arc is associated with a 2-sample symbol. However, for digital
watermarking, it is a common practice to use many more samples per arc, e.g. a few
tens. In this perspective, previous work by Pietrobon ez al [PDL*90] is of particular
interest. They investigated the use of 1 xMPSK symbols, i.e. the concatenation of u 2-
D MPSK symbols, for TCM which results in an alphabet of A/# symbols of dimension

"Note that the definition of constraint length mentioned is slightly different from that used throughout

this thesis.
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Figure 5.8: The dirty paper 8-state TCM trellis, which is generated by the convolutional
encoder in Figure 5.6, uses the alphabet of 8PSK symbols whose partitioning is shown

in Figure 5.5.

2u. For security reasons, it may be required that the alphabet is not disclosed to the
public, i.e. it is necessary to have a secret key, K, to have access to the alphabet. This
can be easily done by applying a pseudo-random rotation to a generic known alphabet
such as the one described in [PDL*90]. In some sense, it is similar to the dither term

introduced in QIM schemes [CWO1].

For this multi-dimensional TCM, the steps for searching for a TCM trellis with
the maximum free distance, d,., is the same as that mentioned by Ungerboeck, i.e.
“mapping by set partitioning” followed by searching for an appropriate binary convo-
lutional encoder. However, higher dimensional TCM might not be able to increase the
minimum subset distance at each partition level during set partitioning. In such cases,
the partitioning process should lead to a maximum reduction in the number of nearest
neighbours within the smaller subsets. In practice, with ¢ xMPSK symbols, it is pos-
sible to perform partitioning and mapping in a systematic manner by making use of

block codes [PDL*90]. Since this partitioning process is complicated, it is out of the
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context of this thesis and we will just use the results on mapping and trellis structure
from [PDL*90]. Interested readers are encouraged to refer to [PDL*90]. By using this
new multi-dimensional TCM, Pietrobon et a/ [PDL*90] have shown coding gains in
the range of 1.76 dB to 5.33 dB (depending on the constraint length ») can be achieved
by using a coded 2 x 8PSK modulation in 4-D.

For illustration of a higher dimensional TCM, let us consider a coded 2 x 8PSK
modulation in 4-D, i.e. 4 samples per label. In this case, the coded symbols come from
a concatenation of two 8PSK symbols and hence there are 64 different symbols in all,
i.e. M* = 82. The coded symbols can be represented as a 6-bit label y€ylyiydy2yi.
As explained earlier, the first bit, y, is the same for all the arcs leaving a given node.
To confirm that, in this case, the fidelity is best when using the second bit of the bi-
nary symbol, i.e. y2, output by the convolutional encoder, we conducted an experiment
using synthetic signals with various bit of the 6-bit label as the dirty bit. Normally
distributed random cover Works, c,, of length 4L = 4000, with each element hav-
ing unit variance, were generated. Next, a dirty paper trellis, designed using TCM
(called a TCM DPTC as opposed to random DPTC, which refers to the original dirty
paper trellis), with 128 states and 32 arcs per state was generated using 2 x 8PSK sym-
bols based on Tables VII and XXIV reported in [PDL*90]. Using the relevant data
from these tables, the binary convolutional encoder with the mapping block for the de-
scribed TCM DPTC is shown in Figure 5.9. Note that the front portion of the 6-bit
label, i.e. y8yPy?, selects a symbol from an 8PSK constellation while the end portion
of the label, i.e. y2y2y{, corresponds to another symbol from the 8PSK constellation.
Random messages of L = 1000 bits were then generated and the dirty paper trellis was
constructed based on different bits of the 6-bit label used as the dirty bit. The path in
the dirty paper trellis which encoded the message and had the highest linear correla-
tion with the cover Work, c,, using the Viterbi decoder correspond to the watermark
pattern, w,,, that was eventually embedded using the direction quantisation (or vector
quantisation) approach described as follows:

_ |Co
|Wm| "

(5.6)

w

This embedding process is called vector quantisation because the cover Work, ¢,

which is in the form of a vector, is “quantised” to the nearest codeword, i.e. the water-
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mark pattern w,,,, on the surface of the sphere.
The mean square error (MSE), defined as

o Vle2

_ e
MSE = ===, (5.7)

is then computed. This experiment was repeated 10000 times to obtain a fairly accurate
average value of the mean square error for different assignments of the dirty bit. Their
mean square error values can be found in Table 5.1. From the table, it is clear that, in
this case, if the second bit (i.e. y?) of the 6-bit label by the convolutional encoder is
chosen as the dirty paper label of each arc, the distortion is minimised, assuming vector
quantisation is used as the embedding method. Therefore the second bit of the 6-bit
label, y2, output by the convolutional encoder will be used as the dirty bit for TCM
DPTC using 2 x 8PSK, having 128 states and 32 arcs per state.
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Figure 5.9: A convolutional encoder that generates a dirty paper TCM trellis having

128 states, 32 arcs per state, and 2 x 8PSK symbols for every arc.

27 bit (y?) | 37 bit (y?) | 4" bit (yf) | 5" bit (y}) | 6™ bit (y?)
MSE 0.3651 0.3706 0.4228 0.4462 0.5745

Table 5.1: Average mean square error between cover Works, c,, and watermarked
Works, c.,, with different bits of the 6-bit label output by the convolutional encoder as
the dirty bit. If the second bit of the 6-bit label is chosen as the dirty bit, the distortion

caused during vector quantisation embedding is the minimum.

Before attempting to use TCM for dirty paper watermarking purposes, we need to
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ensure that TCM performs better than a random dirty paper trellis. Since the perfor-
mance of a trellis can be determined from its free distance (see Equation 5.2), the free
distances of TCM and dirty paper trellis are compared. The free distance of a trellis
is obtained by exhaustively searching the trellis for a pair of different codewords, i.¢.
paths, (having the same start and end states) which gives the smallest Euclidean dis-
tance between them. Note that the search for free distance disregards the dirty paper
nature of the trellis, i.e. it does not matter what bit (‘0” or ‘1°) is associated to a particu-
lar arc. Due to the fact that dirty paper trellis is randomly generated, i.e. the symbols of
the arcs are random, there is a need to obtain several free distance values since different
generated dirty paper trellises lead to different free distances. In this case, 1000 free
distance values are gathered so that a fairly accurate average can be produced. In order
for fair comparison, the number of states, S, the number of arcs per state, 4, and the
number of samples per arc, &, for both TCM and dirty paper trellises are kept the same,
e.g.at S = 128, A = 32 and N = 4. In particular, the TCM trellis is the one generated
by the convolutional encoder in Figure 5.9. Upon completion of the search for the free
distances, dre., of TCM and dirty paper trellises, we found that d¢,.. = V2 =1.4142
for TCM whereas dy,.. = 0.2070 (an average value) for dirty paper trellis. It can be de-
duced that, in the communications perspective, TCM performs much better than dirty

paper trellis.

5.3 Watermarking Using TCM DPTC

From the previous section, we have seen that how a trellis, which is based on the de-
sign of trellis coded modulation (TCM), can be altered for use as a dirty paper trellis
called TCM DPTC. Using a coded 2 x 8PSK modulation, the second bit of the output
of the convolutional encoder can be chosen as the dirzy bit. Before jumping straight
into any practical TCM DPTC application, we first consider a simple scenario so as to
gauge the performance of TCM DPTC over random DPTC. In Section 5.3.1, a sim-
ple experimental setup involving synthetic signals and vector quantisation (VQ) as the
embedding method is discussed.

Since vector quantisation (using dirty paper trellis) is unsuitable for practical
watermarking due to its high distortion, an iterative embedding strategy, described

in [MDCO04], which provides a fixed robustness, is used instead. This iterative em-
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bedding algorithm is described in Section 5.3.2 with Section 5.3.3 illustrating the use
of this algorithm on TCM DPTC and random DPTC.

5.3.1 Vector Quantisation

To verify that the proposed TCM DPTC outperforms a randomly coded design, ex-
periments were carried out with synthetic signals. Normally distributed random cover
Works c,, of length 4L = 4000, with unit variance, were generated. Next, two kinds
of dirty paper trellises with 128 states, 32 arcs per state and 4 samples per arc were
generated: either following the original design [MDC04], or following a TCM-guided
design shown in Figure 5.9. Random messages of L = 1000 bits were then gener-
ated and embedded using the direction quantisation approach described in Equation
5.6. Subsequently, the watermarked cover c,, is corrupted by additive white Gaus-
sian noise (AWGN) with variance o2. The signal-to-noise ratio (SNR) is defined as
SNR = 10logo(|cw|?/4La?). The extracted message obtained by Viterbi decoding
is finally compared to the message which has been actually embedded and the bit error
rate (BER) is computed. Additionally, the Message Error Rate (MER) and the Path
Error Rate (PER) are also computed. The MER relates to the probability of extracting
all the bits of the message, whereas the PER indicates the probability that the detected
path through the trellis is identical to the one chosen for embedding. This experiment
is repeated for different SNR values and for each SNR, it is repeated /0000 times to

obtain meaningful statistics.

The results are reported in Figures 5.10 and 5.11. When considering the Figure
5.10, it is difficult to make any statement in favour or against the TCM design. The two
curves cross over which suggests that there is no best design, i.e. alternative designs
have to be chosen depending on the SNR regime. This is a bit surprising with respect
to previous results in digital communications. However, it should be kept in mind that
the BER is computed by considering only a single bit per arc, i.e. the dirty bit instead
of 6 bits from its label (yfy2yty2yZyl). On the other hand, Figure 5.11 clearly shows
that the TCM design always outperforms its random counterpart. For any SNR regime,
there is less chance to deviate from the correct path with a TCM DPTC than with a
random one. This is because the free distance, d ., is significantly higher for the TCM

design, as seen in the Section 5.1. This was the whole purpose behind the construction
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of these codes.
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Figure 5.10: BER performance comparison between random DPTC and TCM DPTC

with synthetic signals and direction quantisation embedding.

5.3.2 Iterative Embedding Algorithm

The performance of TCM DPTC using synthetic signals, with vector quantisation (VQ)
as the embedding method, suggests that TCM DPTC is to be preferred. Hence we
are prepared to employ TCM DPTC in practical watermarking scenarios. However,
vector quantisation can cause large distortions if it is chosen as the embedding method.
An alternative to vector quantisation is the iterative embedding algorithm described
in [MDCO04]. Iterative embedding is similar to vector quantisation (VQ) except that
the embedding process determines a point within the detection region containing the
selected watermark pattern, wy,, as the watermarked Work, c,,, so as to provide a
certain robustness to additive white Gaussian noise (AWGN). This way, not only the
watermarked Work c,, is resistant to a certain amount of Gaussian noise depending on

how robust the user wants it to be, the distortion caused to the original cover Work
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Figure 5.11: PER performance comparison between random DPTC and TCM DPTC

with synthetic signals and direction quantisation embedding.

is reduced considerably compared to vector quantisation (VQ). This subsection first
describes the iterative embedding algorithm used in [MDCO04] before applying it to
TCM DPTC in Section 5.3.3.

To understand how iterative embedding [MDC04] works, let us consider a simple
system with only two possible messages, each represented by a different vector with
g as the “good” vector (i.e. the watermark pattern w,,) and b as the “bad” vector.
g is the vector to be embedded into the cover Work ¢, whereas b is the vector that
is hopefully not detected from the watermarked Work c,,. The detector returns the
message associated with g if g - ¢y > b - ¢y, where g - ¢ = Y. gli]c,[i] is the
correlation between g and cy,.

Assuming that the distortions applied to a watermark Work c,, are modelled as

additive white Gaussian noise (AWGN)?, n, which is a length L x N vector whose ele-

ZRefer to [CMBO1] for a justification of this assumption.



5.3. Watermarking Using TCM DPTC 101

ments are drawn independently from a Gaussian distribution of mean zero and variance
o2, i.e. N(0,042%), the detector will receive cwn = cw + n. In this case, in order for
correct detection, the condition g - Cwn > b - Cywy has to be met.

Before plunging straight into the iterative embedding algorithm, consider first the
geometric interpretation of the embedding region, given the good vector g (i.e. water-
mark pattern w,,,) to be embedded, as illustrated in Figure 5.12. This figure shows a
Voronoi diagram representing six detection regions for different vectors indicated with
‘X’. If the watermarked Work, c,,, is to resist a certain minimum noise of variance
02, ¢y, has to be a certain distance away from the edge of the detection region for g,
i.e. indicated by the boundary of the gray region. The gray region indicates the set of
images that has a robustness ¢,,,., i.€. resistance to noise of variance at least o2, . .
The solid circle indicates an original cover Work c,, and the triangle shows the closest
possible watermarked Work c,, that has an acceptable robustness. The ideal embedder
moves ¢, straight to the closest point in the acceptable embedding region, to produce a

watermarked Work c.,.

Figure 5.12: Geometric interpretation of the embedding region defined by specifying a

fixed robustness 7,

However, it is difficult to implement such an algorithm to find the optimal wa-
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termarked Work, c,,, as illustrated in Figure 5.12 since the detection boundaries are
not easily determined. Therefore Miller et al. [MDCO04] proposed a sub-optimal iter-
ative algorithm mentioned in [MDCO04]. Assume that there is a black-box watermark
encoder, W(m), that maps a given message into a watermark signal, g, and also a
black-box watermark detector, D(c,, ), that maps a given image, c,, into another wa-
termark signal with which the image has the highest correlation. Given a cover Work,
Co, a message, m, to embed, and a target robustness o,,,,,, the complete, general ver-
sion of the iterative embedding algorithm (which is a form of informed embedding
since the cover Work c,, is used during the production of the watermarked Work cy,) is

as follows:
1. Letg = W(m), cw = €0, 0, = 0,and j = 0.

2. Let b = D(cw + n), where n is a random vector with each element drawn

independently from a Gaussian distribution with mean zero and variance o2.

3. If b # g, modify c,, as follows:

g—b
d=—"—— 5.8
gDl G5
a=d-(cy+n) (5.9
Cw < Cw —ad (5.10)

Then reset j to 0 and go back to Step 2.
4. If b = gand j < 100, then increment ; and return to Step 2.

5. If b= gand j = 100, thenresetj to 0. If 0, < 0,4+, Increase o, by ¢ and return

to Step 2. Otherwise, terminate.

The sequence of this algorithm can be shown geometrically in Figure 5.13. Before
starting the iterative process, the standard deviation, o,,, of every element in the noise
vector, n, is initialised to zero. In the first iteration, the watermarked Work, c,,, is as-
signed the cover Work, c,, which lies in the detection region of by and hence the bad
vector b = b; in Step 2. The watermarked Work, c,,, is then moved to the detection
boundary between g and b;. At the end of the first iteration, c, lies in the detection

region of b,. Then in the second iteration, b = b, and c,, is moved to the detection
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boundary between g and b,. Now that the watermarked Work, c.,, can be detected to
possess the good vector g, but it is still susceptible to any noise that may be present dur-
ing the transmission of the watermarked Work c,,. Hence in the next step, the standard
deviation, o, of the noise vector, n, is incremented by a pre-assigned increment, J, and
this noise vector, n, is added to ¢, to produce a corrupted version of the watermarked
Work cwn. If cwnp is still within the good detection region (i.e. in the detection region
of g), then increment the counter J to indicate that it has attained a robustness to noise
with a standard deviation of ¢,,. However, being able to withstand that amount of noise
once does not mean that c,, has already achieved that level of robustness. Therefore c,,
has to be tested by several noise vectors, n, in order to be certain that it can withstand
that amount of random noise in most situations. If ¢, is outside of the good detection
region as denoted by a solid square in Figure 5.13, then c,, has to move further into the
good detection region by the distance in which ¢y, is away from the boundary between
g and ba. The counter j is then reset to 0 and the iterative process of testing cypn, With
various noise vectors, n, continues. The algorithm terminates when o,, reaches 0,,,,.
and the counter j reaches /00, i.e. the final watermarked Work, c,,, is very certain to
withstand an additive white Gaussian noise (AWGN) with a standard deviation of 7,4,

for each element in the noise vector n.

Now that the iterative embedding algorithm is described and the working princi-
ples explained, we can then go on to use this algorithm with TCM DPTC in Section
5.33.

5.3.3 Fixed Robustness Embedding

To evaluate the performance of TCM DPTC under more realistic conditions, another
round of experiments with a database of /000 grayscale images of dimension 240 x 368
has been considered. First, a feature vector is extracted from each image to serve as the
cover Work c,. This is done by computing the 8 x 8 block discrete cosine transform
(DCT) and extracting 4 middle-frequency AC coefficients, as shown in Figure 5.14,
from each of the L = 1380 DCT blocks in the image. Middle frequency AC coeffi-
cients are chosen so that they are not vulnerable to signal processes such as lowpass
filtering, i.e. attentuating high frequency components of a content, and lossy compres-

sion, i.e. eliminating perceptually non-salient components of an image or audio. The
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Figure 5.13: Geometric interpretation of the sub-optimal, iterative algorithm for in-

formed embedding.

extracted vector of length 4L is then pseudo-randomly shuffled according to the secret
key K to obtain the cover Work, c,, which will subsequently be considered for wa-
termarking. Once again, two kinds of dirty paper trellises with /28 states and 32 arcs
per state are considered: random DPTC on one hand and TCM-DPTC using 2 x 8PSK
symbols [PDL*90] on the other hand. Subsequently, a L-bit long random message
is generated and the codeword, w,,, which is obtained by using the modified trellis
as described in Section 3.3, is embedded. In practice, the crude quantisation embed-
ding technique given in Equation 5.6 introduces strong visual distortion. Therefore, the
iterative embedding algorithm described in 5.3.2 has been preferred. Instead of quan-
tising the cover Work, c,, to the centre of the desired detection region, the algorithm
basically brings the Work inside this region by a margin set by a specified robustness
parameter. This parameter can be adjusted to control the distortion induced by the wa-
termarking process. In our experiments, this distortion was kept fixed as measured by
the mean square error (MSE). The statistics of the observed MSE are given in Table
5.2. The distortion has been kept on average around 0.83. However, more importantly,

it should be noted that the variance is significantly lower with TCM DPTC than with
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random DPTC. Once again, this confirms that TCM induces a better distribution of the

codewords on the surface of the hypersphere.

DC

Figure 5.14: The 4 middle-frequency DCT coefficients (shaded in gray) used for em-
bedding. The top-left corner DCT coefficient is the DC term.

Mean | Variance
Random DPTC | 0.8305 | 0.3083
TCM-DPTC 0.8295 | 0.1958

Table 5.2: Statistics of the MSE with both codes under study.

The watermarked images, c, are then degraded by additive white Gaussian noise
with standard deviation 0. During the watermark detection process, a feature vector,
Cwn, 18 extracted from each corrupted image. Next, the Viterbi decoder is fed with ¢y,
and several results are stored, e.g. the number of error bits between the embedded and
the extracted message, the occurrence of a message error, and the occurrence of a path
error. These values are then averaged for all images to estimate the BER, MER and PER
for a given standard deviation . Repeating this process for different values of o, it is
then possible to produce the Figures 5.15 and 5.16. Once again, by looking at Figure
5.15, the comparison between the two designs is not easy. Although, TCM always
outperforms its random counterpart, the distance between the two curves is fluctuating,
thus giving an unclear conclusive statement. However, one should keep in mind that

with DPTC, only one message bit is associated with each arc compared to several coded



5.4. Summary 106

bits per arc in the actual communications case. Therefore what is important is whether
all the bits of the embedded message have been correctly retrieved. When looking at
Figure 5.16, it is clear that the TCM design achieves greater robustness compared to
the random one. With comparable embedding distortion, 80% (as suggested in [KP99])
of the TCM-DPTC watermarks survive noise addition up to a standard deviation of
o = 1.5, whereas random DPTC watermarks are only able to cope with noise addition
up to 0 = 1. In other words, for a given distortion budget, it is possible to go further
into the detection region with TCM DPTC as compared to random DPTC. This is a

direct consequence of a better distribution of the codewords.
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—©- Random DPTC
—«— TCM DPTC
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Figure 5.15: BER performance between random DPTC and TCM DPTC with real

images and iterative embedding .

5.4 Summary

Dirty paper trellis codes (DPTC) are a form of spherical codes. In previous work,
a practical implementation using DPTC has been proposed to generate such a code

in a high dimensional space [MDC04]. However, the original design was random,



5.4. Summary 107

1 PR RN R BB RDRR PR RRRRRRR

-5- Random DPTC .

Message error rate (MER)

—— TCM DPTC
i | - 1 |
25 3 35 4 45 5

Noise std

Figure 5.16: MER performance between random DPTC and TCM DPTC with real

images and iterative embedding .

thus possibly leading to a suboptimal distribution of the codewords on the unit sphere.
Ideally, the codewords should be well separated to optimise the fidelity-robustness
watermarking trade-off. In this chapter, relevant work on trellis coded modulation
(TCM) [Ung82, PDL*"90] has been revisited to produce a better DPTC. In our pro-
posed TCM DPTC design, each arc was labelled with a concatenation of 2-D MPSK
signals as suggested in [PDL"90]. Experimental results have validated that codewords
generated by TCM DPTC are more regularly distributed on the unit sphere and con-
sequently ensure higher performance in terms of MER compared to random DPTC.
Nevertheless, it is not clear whether this approach leads to an optimal distribution of
the codewords. On the other hand, designing good spherical codes is also critical when
suboptimal embedding techniques are used. For instance in [LCDOS5], the fixed ro-
bustness embedding region is approximated by the same hyperbola for all detection

regions even though these regions are not equally shaped. In other words, the hyper-
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bolic embedding region will not guarantee a fixed robustness and this is not desirable.
Furthermore, as mentioned in the original paper [Ung82], TCM can be used with bi-
nary symbols instead of spherical symbols. Recent studies have reported that such an
approach can significantly improve the performances of traditional quantisation-based

watermarking schemes [ABPGMOS5].



Chapter 6

Using Perceptual Distance to Improve
the Selection of Dirty Paper Trellis
Codes for Watermarking

As mentioned in Section 2.3, the watermark embedding process consists of two stages:
message coding and modification. During the message coding stage, the watermark
pattern, w,,, chosen depends on the cost function, i.e. the cost of choosing an arc. So
far, the cost function considered in Chapters 4 and 5 is the linear correlation between
the cover Work c, and the reference patterns, w,., associated with the arcs regardless
of the embedding strategy used in the modification stage. It is logical to choose the
reference pattern with the highest linear correlation' with the cover Work ¢, since less

distortion, in terms of Euclidean distance, is expected after watermark embedding.

In certain scenarios, the watermarked Work, cy, has to be within a specified fi-
delity, i.e. the distortion between the cover Work, c,, and the watermarked Work, c.,,
has to be within a specified limit. What are the ways to measure the distortion between
two images? The most common way is to compute the mean square error (MSE) be-
tween them as has been seen in Chapter 5. However, mean square error is known to be
a poor way to measure perceptual distortion [Gir93]. To illustrate this, consider Figure
6.1. In this figure, the original image is distorted by two different processes, namely an
addition of white noise and an addition of lowpass filtered noise. The computed MSE

for the first and second distorted images are 16.18 and 16.11 respectively. Although the

'Having the highest linear correlation is equivalent to saying having the smallest Euclidean distance.
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resulting distorted images show similar distortions as measured by MSE, the human

eye does not perceive the same distortion.

Original image

White noise added Filtered noise added

Figure 6.1: Illustration of a case in which mean square error (MSE) is a poor measure

of perceptual distortion.

Since MSE is not a good measure of perceptual distortion, better perceptual mod-
els had been designed to follow the response of the human visual system (HVS).
One such perceptual model is Watson’s DCT-based visual model, which estimates
the perceptual changes in individual DCT terms of an image block before combining
those estimates into a single estimate of perceptual distance, called Watson distance,
Diyat(Co, Cw ), Where ¢, is the cover Work and c,, is the watermarked Work. The Wat-
son distance is measured in terms of the number of just noticeable differences (JNDs).
A JND is defined as the fidelity difference typically considered as the minimum that is
generally perceptible. The computation of perceptual distance in terms of Watson dis-
tance is described in Section 6.1. In order to show that this model is better than MSE
at estimating the perceptual distortion, the images in Figure 6.1 are used for compar-

ison. The image with white noise added has a Watson distance of 62.57 whereas that
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with filtered noise added has a Watson distance of 108.18, thus showing the perceptual
model correctly shows the difference in the perceptual quality.

In this chapter, the aim is to show that the choice of watermark pattern, w,, can be
improved by accounting for the subsequent perceptual distortion that will be incurred
to embed the watermark pattern w,,. In other words, the cost function should take into
account the perceptual distortion caused by that particular arc. In view of this, we pro-
posed a new cost function and an improvement can be observed under a fixed fidelity
environment, i.e. the watermark pattern, w,,, is embedded with a certain strength such
that the perceptual distortion is fixed. The fixed fidelity embedding strategy is described
in Section 6.2 to provide a foundation in which the watermark pattern, w,, is embed-
ded during modification stage. Then the watermarking system based on the proposed

new cost function is evaluated in Section 6.3 using the fixed fidelity embedding scheme.

6.1 Watson’s DCT-based Visual Model

Because of the fact that a lot of images are stored in the JPEG format, Watson’s DCT-
based visual model [Wat93] is useful for measuring the perceptual fidelity by estimating
the perceptual distance, D4 (cCo,cw), Where c, is the original image and c,, is the
distorted version of c,. Perceptual distance is measured in terms of just noticeable
distance (JND).

Watson’s model first divides the entire image into 8 x 8 blocks of pixels. If the
image is denoted by ¢, the i, j** pixel in block number & is denoted by c[i, j, k], 0 <
i,J < 7. The image is transformed into the DCT domain and is denoted by C. Therefore
Cli, j, k], 0 < i,j < 7, denotes a DCT coefficient in the k£t* block. Obviously, C[0, 0, k]
is the DC term of the k** block.

Watson’s model consists of four components, namely sensitivity, luminance mask-

ing, contrast masking, and pooling.

6.1.1 Sensitivity

The sensitivity component is based on a frequency sensitivity table, t. Each table entry,
t[¢, j], is approximately the smallest amount of change in the corresponding DCT coef-
ficient in a block that will produce one JN D. The eye is more sensitive to a frequency

if that value, t[i, j], is small, and less sensitive otherwise. This sensitivity table is de-
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pendent on several parameters and it is derived in [AP92]. The set of parameters has
been determined so that the resulting frequency sensitivity table, shown in Table 6.1,

can be used in experiments mentioned in this report.

140 101 1.16 1.66 240 343 479 6.56
1.01 145 132 152 200 271 3.67 493
1.16 132 224 259 298 3.64 460 5.88
1.66 1.52 259 377 455 530 628 7.60
240 200 298 455 6.15 746 871 10.17
343 271 634 530 746 9.62 11.58 13.51
479 3.67 460 6.28 871 11.58 14.50 17.29
6.56 493 588 7.60 10.17 13.51 1729 21.15

Table 6.1: DCT frequency sensitivity table.

6.1.2 Luminance Masking

If the average intensity of the 8 x 8 block is brighter, the Watson’s model adapts by ad-
justing a DCT coefficient by a larger amount before being noticed. In Watson’s model,
this is achieved by adjusting the sensitivity table, t[i, 7], for eaéh block, k, according to
the block’s DC term. The luminance-masked threshold, ¢ [z, j, k], is given by

tL[i7ja k] = t[i,j](Co[O, O, k]/CO,O)aT1 (61)

where a7 is a constant with a suggested value of 0.649, C,[0, 0, k] is the DC coefficient
of the k** block of the original image, and Cy is the average value of all the DC
coefficients in the image. Equation 6.1 indicates that brighter regions can accommodate

larger changes before being noticed.

6.1.3 Contrast Masking

Contrast masking is the reduction of visibility of a change in one frequency due to
the energy present in that frequency. This affects the luminance-masked threshold,

ti[i, j, k], and results in a masking threshold, s[z, 7, k], given by

sli, j, k| = maz{t.[i, ], k], |Cols, 4, K][“B7¢L [i, 5, k] 871}, (6.2)
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where wlz, j] is a constant between 0 and 1. Watson chooses a value of w[i, j] =
0.7,Vi,j. The masking threshold called slacks, s[i, j, k], is the estimated amount of
change in individual terms of the block DCT that result in one JND.

6.1.4 Pooling

Comparison between the original image, c,, and a distorted image, c,, is done by
first computing the differences between their DCT coefficients C, ¢, 7, k] and C, |3, j, k]

respectively. These differences are then scaled by their respective slacks and eventually

p) p ; (6.3)

combined into a single perceptual distance given by

Dwat(co, Cu)) = (Z

i!j)k

Culi, j, k] — Coli, 4, K]
sli, J, k|

where p = 4 is a value recommended by Watson.

6.2 Fixed Fidelity Embedding

In Section 5.3, a fixed robustness scheme is used during the watermark embedding
stage to provide a fixed resistance to additive white Gaussian noise (AWGN). However,
in some watermarking applications, the fidelity of the watermarked Work, c, is of
paramount importance and a fixed fidelity constraint is preferred. In this scenario, a
perceptual model is required to measure distortion and thus provide a basis for fixed
fidelity embedding. In particular, we consider the Watson’s DCT-based visual model
[Wat93], described in Section 6.1, which estimates the number of JNDs (just noticeable
differences) between images.

The simplest method to achieve a fixed perceptual distance, Dy4;get, during embed-
ding is to allow automatic adjustment of the global embedding strength «.. This method
uses a simple watermarking algorithm, E PERC_GSCALE, mentioned in Section 7.4
of [CMBO1] and is described as follows.

The watermarked Work is

Cw = Co + W, (64)

where c, is the original cover Work and w,, is the added mark. The added mark is given
by w, = awp,, where wy, is the message mark.
The perceptual distance between c,, and c,, as measured by the Watson’s model,

Doyat(Co, €w), is a linear function of a. Let Cy,, C, and W, be the block DCT of ¢,
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Co, and wy,, respectively. Because the block DCT is a linear transform, we have
Cuw=Co+aW,, 6.5)

According to the pooling function used in the Watson’s model (Equation 6.3), the

perceptual distance between c., and c, is estimated as

Duat(Cor €w) = 4\‘2 (Cw[i,j, k] — Coli, J, k]) 6.:6)

i,j,k S[iﬁj) k]

where s is an array of slacks based on the estimated sensitivity function of the eye and

the masking properties of ¢,. Substituting aW,,.[i, j, k] for Cy[i, j, k] — C,[i, 4, k] gives

Dyat(Co, Cw) = dZ(W)Aﬁ (6.7)

igk
Winli, §, K]\ *
— 4 _mindJr 4
“JZ( s[é, 5, K] ) ©8)
1,7,k
= aDyat(Co,Co + Win) (6.9)

Thus, to set Dyat(Co, Cw) €qual to a desired perceptual distance, D;arget, We obtain
o as
: D
o = target (6 1 0)
Dwat(co, Co + Wm)

In practice, round-off and clipping (i.e. underflow and overflow) can cause wa-

termarks embedded with this o to have different numbers of JNDS. To mitigate this
problem, we perform an exhaustive search of values between 0.2a and 1.1a, looking
for one that, with round-off and clipping, yields the closest value to the desired number
of INDS.

Figure 6.2 illustrates how fixed fidelity embedding is carried out. The surface of a
hypersphere is divided into many detection regions, each consisting of a codeword in
its centre. The bad codewords are denoted by x while the good codeword, i.e. Wp,, 1S
denoted by M. The fixed fidelity region can be approximated by an elliptical boundary
(in blue) with the cover Work, c,, denoted by e, in the centre. Anywhere on this
elliptical boundary represents a Work with the same fidelity measured by the Watson
model. The size of the elliptical region varies according to the allowed distortion.

Since fixed fidelity embedding is defined by Equation 6.4, the embedder searches

for a point on the elliptical boundary that lies along the direction towards the correct
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codeword, w,,, taking reference from the cover Work, c,. Hence the watermarked
Work, cy, is the point denoted by A that satisfies the conditions.
X wrong codeword

| | correct codeword

= fixed fidelity region

Figure 6.2: An illustration of fixed fidelity embedding.

6.3 New Cost Function

When we use the combination of informed coding and informed embedding based on
the scheme used in Section 6.2, the watermark embedder first selects the preferred
codeword from the set of codewords that represent the desired message. The preferred
codeword is chosen to maximise the linear correlation between the pattern to be em-
bedded and the cover Work c,. The watermark detector also uses linear correlation to
determine the most likely message.

Once the preferred codeword is selected, it is embedded with a strength, «, that is
chosen to maintain a fixed fidelity. Unfortunately, there is no clear relationship between
linear correlation and perceptual distance. Thus, it is entirely possible that a codeword
chosen to have a high correlation with the cover Work, may, in fact, be embedded with

a low strength due to the perceptual distortion that it introduces. Conversely, it may
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transpire that a codeword that has a smaller linear correlation with the cover Work,
Co, can be embedded with a high strength if the corresponding perceptual distortion
is smaller. Ultimately, we are seeking to maximise the linear correlation between the
codeword, w,, and the watermarked Work, c.,, not the original unwatermarked Work,
Co, in order to minimise the probability of erroneous detection.

How, then, should the informed code be selected? One alternative is to assign
a perceptual distance to each arc in the modified trellis and find the codeword that
minimises the perceptual distortion. A second alternative is to assign a cost that is a
linear combination of linear correlation and perceptual distance. In particular, the arc
cost, e;, is given by:

e = (1 - k)Z,' - kdl (611)

where z; is the linear correlation between the pattern, w,, and the cover Work c,,
d; =5 j (%1[][—11) ! is the corresponding perceptual distance? as a result of embedding the
pattern associated with arc i, and k is a constant. w, [j] and s[j] are j-th element of the
pattern associated with arc i and the corresponding slacks respectively. Clearly, when
k = 1, we have the first alternative, which minimises perceptual distortion only. And
when k£ = 0 we have the original algorithm, which maximises the linear correlation.
Other alternatives are possible but are not considered in this thesis. Note that although it
is desirable to normalise both z; and d;, the normalisation factors for z; and d; obtained
from any one image are not sufficiently accurate. A huge amount of statistics has to be
computed from a large collection of varying images and a large number of randomly
generated dirty paper trellises to ensure accuracy in the obtained normalisation factors.
Hence it is difficult for normalisation to be carried out.

To determine whether the performance of (i) linear correlation alone, (ii) percep-
tual distance alone or (iii) a linear combination of the two is superior, we conducted
an experiment using a dirty-paper trellis with 64 states and 64 arcs per state so as to
compare with the results reported in [MDC04].

Watermark embedding proceeds as follows:

1. Compute the discrete cosine transform (DCT) of each 8 x 8 block of an image,

Co, to obtain C,.

ZRefer to Equation 6.3. The quartic root is removed in this case since individual d;’s have to be added

while traversing the trellis.



6.3. New Cost Function 117

2. Extract the /2 lowest-frequency AC terms of each block, as shown in Figure 6.3,
to form a single, 12 x N, length vector, v, where /N, is the number of blocks in

the image. The vector v is referred to as the extracted vector.

3. Use the dirty-paper trellis to encode the desired message, m, into a watermark
vector, wWy,. This was done by running Viterbi’s algorithm on the extracted vec-
tor, v, using a trellis modified for message m. Refer to Section 3.3 to see how a
modified trellis is obtained. The cost associated with an arc is given by Equation

6.11.

4. Embed wy, into v with informed embedding: vy, = v + aw,,, where « is the
global embedding strength and is chosen such that the fidelity of the watermarked

Work, cy,, is fixed at a desired Watson distance D;4; ge;.

5. Place the values of vy, into the corresponding low-frequency AC terms of the

block-DCT of the cover Work, C,, to produce the watermarked Work C,,.

6. Convert the image, C,,, back into the spatial domain to obtain the watermarked

Work c,,.

Figure 6.3: The 12 lowest-frequency DCT coefficients (shaded in gray) used for embed-
ding. The top-left corner DCT coefficient is the DC term and is not used for embedding.

Watermark detection proceeds as follows:
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1. Extract a vector, v/, from the watermarked image in the same manner as in steps

1 and 2 of the embedding algorithm.

2. Apply the Viterbi algorithm to v’, by using the whole trellis, to identify the path

whose code vector yields the highest linear correlation.
3. Record the decoded message, m', associated with the corresponding path.

To evaluate the different algorithms, we used a database of 2000 images, each of
dimension 240 x 368. Thus, the number of 8 x 8 blocks is N, = 1380. The bit error
rate (BER) and message error rate (MER) are computed. The Message Error is defined
as being zero if all 1380 bits are correctly decoded and one, otherwise.

The BER and MER are shown in Figure 6.4 and Figure 6.6 for three values of
fidelity, i.e. three values of embedding strength, o and for & ranging from O to 1. The
percentage improvements (over the scheme in which linear correlation is used as the
cost function) in BER and MER are illustrated in Figure 6.5 and Figure 6.7. Figure 6.8
shows an original image and three watermarked images with three different fidelity, i.e.
Watson distances 30, 50, and 100.

Figure 6.4 and Figure 6.6 clearly reveal that the BER and MER are worse for k = 0
and k£ = 1, i.e. maximising linear correlation or minimising perceptual distortion. The
performance when minimising the perceptual distortion alone is much worse than for
maximising linear correlation alone.

Significantly improved performance is, however, obtained when a combination or
the two measures is used, i.e. 0 < k < 1. Figure 6.5 indicates that the BER is improved
by almost 50% for a fidelity of 100. A watermarked image, c,, with a Watson distance
of 100 is about the same as the original unwatermarked image. For a fixed Watson
distance of 50 and 30, the improvement is smaller but still significant.

Figure 6.7 shows that the MER is also improved, this time by almost 25% for a
fixed Watson distance of 100. Curiously, the MER continues to increase for values of
k up to 0.65, even though the improvement in BER peaks at about 0./. It is unclear
why this is so. As with the BER, the improvement in MER is less when the fidelity is
constrained to a Watson distance of 50 and no improvement is measurable for a Watson

distance of 30.
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Figure 6.4: The bit error rate (BER) as a function of & for three values of fidelity.

6.4 Summary

We have demonstrated that the choice of codeword to embed in a cover Work, c,, can
be significantly improved by maximising a cost function that is a linear combination of

linear correlation and perceptual distortion, rather than linear correlation alone.

Finding the codeword that maximises the linear correlation with the original cover
Work, c,, does not guarantee that the linear correlation is maximised after embedding.
This is because said codeword may need to be attenuated more strongly than alternative

codewords in order to satisfy a perceptual constraint.

Finding the codeword that minimises the perceptual distortion with the original
permits said codeword to be embedded more strongly. However, the codeword may
have a very low linear correlation with the cover Work, c,, and result in very poor

performance at the detector.

A linear combination of perceptual distortion and linear correlation was shown to

be superior, improving the bit error rate by about 50% and the message error rate by
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Figure 6.5: The percentage improvement in bit error rate (BER) as a function of & for

three values of fidelity.

about 25% for a fixed fidelity of 100.
Further investigation is needed to determine the optimal criterion, which would

maximise the linear correlation after watermark embedding, subject to a fidelity con-

straint.
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Figure 6.8: Images with different fidelity. (a) is an original image while (b), (c), and

(d) are watermarked images with Watson distances 30, 50, and 100 respectively.



Chapter 7

Conclusion

Watermarking has been recognised as communications with side information at the
transmitter. The advantage of this is that the interference due to the cover Work is
eliminated, thereby increasing the capacity of the watermarking system. Practical wa-
termarking schemes such as lattice codes and syndrome codes were proposed but they
suffer from serious performance degradation if a simple scaling is applied to the water-
marked Works. Dirty paper trellis codes (DPTC) were suggested as an alternative since
they are a form of spherical code and therefore are robust to amplitude scaling.

| Many design parameters affect dirty paper trellises. However, the influence of
these parameters on the trellis performance was not fully understood. In particular, this
thesis examined the following factors: (i) the number of states and the number of arcs
per state in the trellis, (ii) the distribution of codewords generated by the trellis, and (ii1)
the cost function associated with each arc. Section 7.1 summarises the contributions of
this thesis in regard to these parameters and suggests some possible future work. All
works presented in this thesis were published in international conference proceedings

and the list of publications can be found in Appendix A.

7.1 Contributions and Future Work

Firstly, experimental results on synthetic signals provided a deeper understanding on
the influence of different trellis configurations, i.e. the number of states, S, and the
number of states per arc, 4, on trellis performance. An optimum trellis structure can
be selected based on both the bit error rate (BER) preformance and the computational
cost. For example, in the case of noiseless channel environment, a trellis configura-

tion having A < S should be chosen instead of that having A > S because errors are
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more difficult to occur for the former compared to the latter. Furthermore, experimen-
tal results suggested that trellis configurations A = S (i.e. fully connected trellis) and
A = S/2 (i.e. half connected trellis) are more desirable since these structures offer
similar BER performance compared to others but at a lower computational cost. How-
ever, in the situation when the channel is noisy, results have shown that neither a fully
connected trellis nor a half connected trellis can guarantee to be an optimum trellis
configuration. Whether the channel is noiseless or noisy, the trellis configuration with
the lowest computational cost at the desired operating error rate should be selected so

as to minimise the time taken during watermark detection.

Secondly, since a well-distributed set of codewords that are generated by a trellis
leads to a good trellis performance, we proposed a new type of trellis using trellis coded
modulation (TCM) for use to replace the original dirty paper trellis. Experimental
results on real images showed that, by using a fixed robustness embedding scheme,
this new type of dirty paper trellis, called TCM DPTC, outperforms its original random
DPTC. At roughly the same distortion, e.g. mean square error (MSE) equals to 0.83,
incurred during watermarking embedding, watermarks embedded using TCM DPTC
can survive a noise addition of up to a standard deviation of 0 = 1.5 whereas those
using random DPTC can only cope up to 0 = 1.0. This proved that trellis coded
modulation leads to an improved distribution of codewords on the hypersphere which

in turn leads to an improved in performance.

However, it is unclear if TCM DPTC generates a set of codewords that are op-
timally distributed on a sphere. Good spherical codes are known to be those with
their codewords separated as far as possible from one another. The design of spherical
codes is very important if suboptimal embedding techniques are used. For instance
in [LCDO05], the fixed-robustness embedding region is approximated by the same hy-
perbola for all detection regions even though these regions are not equally shaped. In
other words, the hyperbolic embedding region will not guarantee a fixed robustness. To
ensure all codewords are distributed uniformly on a hypersphere’s surface, a generic
codeword generation mentioned in [Ham96] can be used. This method uses an iter-
ative procedure to ensure that the minimum distance between any pair of codewords
increases each time. The procedure is terminated once it has reached a desired sepa-

ration among the codewords. The resulting set of codewords can be partitioned, in a
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similar way to trellis coded modulation (see Section 5.1), for use in dirty paper trellis
codes.

Lastly, we proposed a new cost function — a linear combination of linear corre-
lation and perceptual distortion — for use in dirty paper trellis watermarking instead
of the traditional cost function — linear correlation — since the latter may be difficult
to embed due to perceptual constraints. This means that the selection of the codeword
to embed depends on its closeness to the cover Work in terms of linear correlation and
perceptual distortion as measured by Watson’s distance. Experimental results demon-
strated significant improvements in the choice of codeword to embed in a cover Work
by maximising this new cost function. The performance, in terms of BER and MER,
have improved by about 50% and 25% respectively when the linear combination factor
of around k£ = 0.1 and k£ = 0.65 are selected respectively.

It is unclear why the two k values are different when two different error rates,
BER and MER, are used. Further investigation is needed to determine the optimal
criterion, which would maximise the linear correlation after watermark embedding,
i.e. cw - W, subject to a fidelity constraint. Alternatively, different perceptual models
can be used in place of Watson’s model, especially since Watson’s model is sensitive to
blocking artifacts. For example, Gabor filters by C. J. van de Branden Lambrecht and
J. E. Farrell [vF96] and pixel-based model by Voloshynovskiy et al. [VHBP99] are of
particular interest.

Currently, dirty paper trellises are built on the foundation of convolutional codes.
An improvement to dirty paper trellises is to use a more powerful channel code than
convolutional codes. In 1993, the concept of turbo codes appeared in the communi-
cations community. Since then, it is known that turbo codes [BGT93] perform much
better than convolutional codes although this performance improvement comes at the
expense of a higher computational cost. In order to achieve low error rates, turbo codes
employ an iterative search at the detector to determine the codeword that has been sent.
Future work should examine whether dirty paper trellis codes can make use of turbo
codes to generate more powerful dirty paper turbo codes. This new class of dirty paper
codes might be designed to effectively embed the chosen codeword and then minimise

the error rates at the watermark detector through iterative decoding.
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