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Abstract

In this thesis three main problems are studied. The first is a generalization

of a well known question by P. McMullen on convex polytopes:

‘Determine the largest number v(d,k) such that any set of v(d, k) points
lying in general position in R? can be mapped, by a permissible projective

transformation, onto the vertices of a k-neighbourly polytope.’

Bounds for v(d, k) are obtained. The upper bound is attained using oriented
matroid techniques. The lower bound is proved indirectly, by considering a

partition problem equivalent to McMullen’s question.

The core partition problem, mentioned above, can be modified in the follow-

ing manner:

‘Let X be a set of n points in general position in R? then, what is the
minimum k such that for all A, B partition of X there is always a set
{z1,...,zk} C X, such that

conv(A\{z1,...zx}) N conv(B\{z1,...zx}) =02’

For this question, through an asymptotical analysis, a relationship between
the number of points in the set (n) , and the number to be removed (k) , is

shown.

Finally, another problem in convex polytopes proposed by von Stengel is

considered:

‘Consider a polytope, P, in dimension d with 2d facets, which is simple. Two
vertices form a complementary pair, (z,y), if every facet of P is incident
with = or y. The d — cube has 2%~ complementary vertez pairs. Is this the

mazimal number among the simple d — polytopes with 2d facets?’,

It is shown that the conjecture stated above holds up to dimension seven;
and extra conditions, under which the theorem holds in general, are exposed.
A nice interpretation of von Stengel’s question, in terms of coloured Radon

partitions, is also introduced.
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Introduction

Among all theorems in Discrete Geometry, Radon’s theorem has proved one
of the most useful in applications within the subject. Together with its
most natural generalization, Tverberg’s theorem, both have sown the seed
for a fruitful study on geometric partitions. Both have endless branches and
forms, from coloured and conical, to those that study the geometry of the

intersections of their partitions.

This thesis exposes several variations on the study of precisely that type of
theorems. Most of the time, the variations have been inspired by geometric
theorems, helping in their solution. But also, those variations have accepted
re-stylings which, despite having no straightforward geometric meaning, re-

sult just as interesting as those who have.

The first and second chapters are completely introductory. Chapter 1, Con-
vexity and Geometry, standardizes definitions and properties of concepts to
be used later on the thesis. It also states four of the quintessential theorems
of discrete geometry, which provide the foundation of several of the argu-
ments contained in the forthcoming chapters. Chapter 2, however, provides
a brief summary of Oriented Matroid theory, with an especial focus on the
development of the Matroid Polytopes tools. The latter will be crucial for

the proofs revealed in chapter 3.

Chapter 3 deals with a generalization of the following problem on convex

polytopes, by P. McMullen :
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‘Determine the largest number v(d) such that any set of v(d) points lying in
general position in R? can be mapped, by a permissible projective transfor-

mation, onto the vertices of a convez polytope.’

Up to date, only bounds for v(d), in the original McMullen’s problem are
known. It has also been proved that the bounds are sharp for some low
dimensions. All the methods used for achieving the bounds and the bounds

themselves, are reviewed at the beginning of chapter 3.

Recalling that a convex d-polytope, P, with vertex set, V, is k-neighbourly
for some k < [g_{, if every S C V such that |S| < k is contained in a
proper facet of P; one might modify the question above, in the succeeding

manner:

‘Determine the largest number v(d, k) such that any set of v(d, k) points
lying in general position in R® can be mapped, by a permissible projective

transformation, onto the vertices of a k-neighbourly polytope.’

Aided by the progress made in the solving of McMullen’s problem, section
3.3 provides original bounds for the generalized problem, shows examples
of when the bounds are sharp and proposes a further generalization of the

problem.

The generalized McMullen’s problem, has a nice equivalence in terms of

partitions, namely:

‘Determine the smallest number A\(d, k) such that for any set X of A(d,k)

points in R there exists a partition of X into two sets Ay, Ay such that

conv(Ai\{z1,z2, ..., xk}) N conv(A\{z1, T2, ..., zk}) # 0

for all {z1,z2,...,zx} C X,

Considering the equivalence above, and introducing a new direction which
still keeps the same core partition problem, chapter 4 deals with the solution

of the question:

‘Let X be a set of n points in general position in R? then, what is the
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minimum k such that for all A, B partition of X there is always a set

{z1,...,zx} C X, such that
conv(A\{z1,...zk}) Nconv(B\{z1,...zx}) =07’

This chapter parts completely from the methods employed in chapter 3. Here
purely geometric arguments and constructions are used to prove that k has

to be roughly half the size of the cardinality of the set of points.

Chapter 5 introduces a fresh question, proposed by von Stengel, which

reads:

‘Consider a polytope, P, in dimension d with 2d facets, which is simple. Two
vertices form a complementary pair, (z,y), if every facet of P is incident
with  or y. The d — cube has 24~1 complementary vertez pairs. Is this the

mazimal number among the simple d — polytopes with 2d facets?’.

This question relates to the previous two only in that they deal with partition

problems that can have geometric interpretations.

Taking the dual problem, on simplicial polytopes, several conditions whose
assumption make the conjecture above true, are discovered. Among them,
2 — neighbourliness seems to play an important role in their natural fulfill-
ment. Given that in low dimensions polytopes are not 2 — neighbourly, an
induction tool, built within the chapter, grants that the conjecture holds up

to dimension seven.

Finally, a coloured partition equivalence of von Stengel’s question is exhib-

ited, as a corollary of the above, in section 5.5.



Chapter 1
Geometry and Convexity

The beauty of combinatorial problems relies not only in their often surpris-
ing and elegant solutions but on the simplicity of their statement. Simplicity
that has created a need for defining mathematically a plethora of very intu-
itive concepts, often the hardest to describe. The expert reader might not
need the following survey concepts but they will help pave the way for what

is to come.

1.1 Affine Geometry

This first section consists of a study of some basic concepts, vital in the
description of the geometrical phenomena that are the matter of this thesis.
Not only do the subsequent definitions provide the notation for the objects in
the study space, they also help define what is a very useful tool in discrete
geometry; the Gale transform. This tool is absolutely necessary for the

development of the coming chapters.

The natural setting for the problems to be studied in this thesis is the d —
dimensional real space with the usual metric, R%. Unless otherwise stated,

z denotes a point and X usually denotes a finite set of points in R¢.

A point ' € R? is an affine combination of X if there is a linear combi-

10
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nation ¢’ = . x @z where a; € R and ), x @z = 1. The set of all affine
combinations of X is called the affine span of X, denoted by aff(X).
If one drops the condition Zzé x &z = 0 and only allows a; > 0, the re-
sulting space is called the positive affine span of X, denotedby aff(X)*.
The negative affine span is analogously defined, and denoted by af f(X)~.
The dimension of the affine span is denoted by dim af f(X) and the affine
span of a set X C R? such that dim aff(X) = d — 1 is called an affine
hyperplane.

In the case where X is finite, say X = {z1,...,zn} with dimaff(X) =,
the set D(X) C R™ of affine dependences of X is defined as the set of all

points a = (o, .. .,0n) € R™ such that

Yooz =0 and
Z?:l Qp = 0.

The dimension of D(X) is dimD(X) =n —r — 1.

A set of points X with cardinality |X| = n is said to be in general position
if no subset S C X with |S| = k is such that dim aff(S) < k — 1 for all
1 < k < d. It is said of a hyperplane, H, that it is in general position
in respect to a set of points X, if and only if H is neither parallel nor
perpendicular to any plane in the set {af f(S)|S C X, dimaff(S)=d—-1},
of hyperplanes spanned by X.

All the concepts reviewed, up to this point, arise naturally in Euclidean
geometry. However, what comes next deals with the building blocks of what

is possibly the most surprising tool in combinatorial geometry.

A projective transformation P is a transformation from R¢ into itself

which, has the form :
_ Az +b

(e,x)y +4’
where A is a linear transformation of R into itself, b and c are vectors in

R? and § € R, with at least one of ¢ # 0 or § # 0. Furthermore, P is
permissible for aset X Cc RYiff Vz € X, (c,z) + 0 # 0. P is non-singular

11
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iff the matrix 7" is non-singular, where

T A Y
c ¢
A’ denotes the matrix of the linear transformation A and &' is the transpose

of b.

Now, if X and D(X) are as before and the n —r —1 vectors {a1,...,an_r—1}

of R™ form a basis of D(X), consider the following matrix:

a1 12 o Olp—r-1
Q21 Q22 - O2p-—r-1
! ! / — ) ) ]
D = (a},a},...a_,_;) =
Qnl1 Qn2 *'°° Qupn-r-1

The rows of D may be considered as vectors in R®*~"~1, Let the j — th row
of D be denoted as ZT; = (aj1,0j2,...,0jn—r—1) for all j = 1,...,n. The

set X = {Z1,...,Tn} is a Gale transform of X.

It is emphasized that X is a Gale transform of X, rather than the Gale
transform of X, because the resulting points depend on the specific choice
of basis for D(X). Still, the Gale transforms of the same set of points using

two different bases are linearly equivalent.

Once introduced, some important and relevant properties of the Gale trans-

form are to follow.

Proposition 1.1.1. Let X = {z1,...,z,} be a set of n points in R¢ and let

X = {Z1,...,Tn} be its Gale transform, then the following statements hold:
LY m=0.
2. X linearly and positively spans R*~7~1,

3. The n points of X are in general position in R? if and only if the

n-tuple X consists of n points in linearly general position in R*~94-1

12
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4. Let P = ﬁﬁb‘a be a nonsingular projective transformation of R into
itself, permissible for X. Let Y = {P(x1),...,P(zn)}. Then Y is lin-
early equivalent to the n — tuple {({c,z1) + 0)Z71,. .., ({¢c,zn) + 8)Zn}.
Conversely if X, Y are two n — tuples in R® such that there exist non-
zero numbers {A1,... A\n} with the property J; = N fori=1,...,n,
then there erist c € R and § € R such that \; = (c,x;) + & for all
i=1,...,n, and a linear transformation A and a vector b € R? such
that, P = ﬁ;tf—a is a non-singular projective transformation, permis-
sible for X, satisfying y; = P(z;).

Lastly, if in the preceding definition of a Gale transform one considers

the set X’ = {:c’ = |§| if Z; # 0 and z’ = 0 otherwise, V ¢ = 1,...n},

0 € conv(X’) and properties 2, 3 and 4, stated in proposition 1.1.1, hold.

Sometimes it is more convenient to use this newly defined set, named a Gale

diagram of X.

1.2 Convex Polytopes

The most basic units of discrete convexity will be listed subsequently, using
the concepts in the previous section, and the usual conventions on polytopes
will be restated. As the subject of study throughout this thesis consists
only of convex polytopes, after this section they will only be referred to as

polytopes.

A set K C R is convex if for any two points z,y € K then the line segment
[z,y] = {Az+ (1 - A), y 0< <1} is contained in K.

If X is a set of points in R%; a point 2’ € R? is a convex combination of X
if there is an affine combination z’ = Exé x @zT where a; > 0. The set of all

convex combinations of X is the convex hull of X, denoted conv(X).

When K is a convex set, an element z € K such that z ¢ conv(K\z) is

called an extreme point of K.

Still, defining analogous concepts to those in the affine spaces section, one

13
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might define a new kind of special position. A set of points X C R¢ is said to

be in convex position if Vz € X, z is an extreme point of conv(X).

Before entering into establishing terminology for polytopes, another property

of the Gale transform should be mentioned.

Proposition 1.2.1. Let X C R? be a set of points, then 0 € relintconv(X),
where X is the Gale transform (diagram) of X.

Back to the subject matter, a convex polytope is the convex hull of a finite
set of points in convex position, X. The vertices of a polytope, P, are the
points of the form x = P N H, where H is any hyperplane. It is also true
that the set of vertices of a polytope, vert(P) or V(P) is precisely X. If P
is such that dim af f(P) = d then P is called a d-polytope.

It is necessary to establish terminology for the several important parts of a

polytope.

A hyperplane H = {z € X|(z,c) = 0} is said to be a support hyperplane
of P if (z,c) = § for some z € P, and (z,c) < § for all z € P or (z,c) > ¢
for all £ € P. According to these terms a face of P can be described as any
set of the form FF = P N H where H is a support hyperplane of P. If one
considers the set of vertices of any given face, V(F'), and its complement in
the set of vertices of the polytope, V(P)\V(F); a face can also be defined
as conv(V(F)). Furthermore, one can define a new object, a coface, as
conv(V(P)\V(F)). The dimension of a face is precisely dim(P N H), and
the dimension of a coface is the dimension of the smallest affine subspace

that contains it.

In contrast with 3 — dimensional polytopes (polyhedra), in higher dimen-
sions the word face does not denote the highest dimensional face properly
contained in the polytope. As these highest dimensional blocks are often re-
ferred to; a face, F, of a d-polytope, P, such that dim(F) = d—1 is called a

facet and, as a consequence, its conv(V(P)\V(F)) is a cofacet of P.

Two very important types of polytopes normally arise when studying general

problems, mainly because they have nice properties that often make their

14
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analysis easier: simplicial and simple polytopes. A polytope P is simplicial
if all its faces are k — dimensional simplices. A d — dimensional polytope
P is simple if it is the dual of a simplicial polytope, or it can also be
described as a polytope such that all of its vertices are incident to exactly d

(d — 1) — dimensional faces.

In three dimensional space it is obvious that, apart from the tetrahedron
(3-simplex), other simplicial polytopes do exist. For example, the octahe-
dron and the icosahedron. Although both the tetrahedron and octahedron
can be generalized to higher dimensions, and be baptized as simplex and
cross-polytope respectively, the reader might wonder if there are any more
interesting simplicial (and by duality, simple) polytopes in higer dimensions.
The answer is yes. As an example, what is possibly the most influential poly-

tope in convex geometry will be described.

Consider the d — dimensional moment curve C(t) = {(t,t2,t3,...t%)|t €
R} and let T = {z; < --- < z,} be a set of real numbers. The set of points
X = {C(z1),C(z2),...,C(zn)} is in general position. Furthermore, it is
in convex position, and is therefore the set of vertices of a d-dimensional
simplicial polytope, denoted C(n,d). Any polytope constructed in such a
way is called a cyclic polytope.

Cyclic polytopes can be constructed with other curves, nevertheless, the
parametrization given above is the most recurrent within the subject. This
type of polytopes have many very important characteristics; among them,
a d — dimensional cyclic polytope has the property that any set of k of its
vertices is contained in one of its facets, forall 1 < k < [%J Such a property
among polytopes is called k-neighbourliness. Also, among all polytopes
in R4, C(n,d) is the polytope with n vertices, with the highest number of

facets.

To finish off this section, it is important to show several results that offer
a connection between the special properties of polytopes and their Gale
transforms (diagrams), and how to tell when, based on its Gale transform,

a set of points is actually a the vertex set of a polytope.

15
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Proposition 1.2.2. Let X be the set of vertices of a d — dimensional poly-
tope P, and let X be its Gale transform. Then the following statements
hold:

1. LetY C X, Y is a coface of X if and only if either
Y =0 or 0 € relint conv(Yx).
Here Yx represents the points of X that correspond to Y in X.

2. P is simplicial if and only if dim conv(Yx) = dim conv(X) for every

non empty coface Y.

Proposition 1.2.3. Let X C R?, aff(X) = R?, and X be the Gale trans-
form of X. Then X is the set of vertices of a polytope if and only if one of

the two following conditions holds:
1. T=0 forallz € X and P is a simplex, or

2. for every hyperplane H C R4 such that 0 € H, |{i|z; € H*}| > 2.

1.3 Discrete Geometry

Although discrete geometry contains, as a field, the subject of polytopes,
the distinction made here is justified on the basis that none of the material
presented in this section belongs inherently to the theory of convex poly-
topes, but to its complement in discrete geometry. Nevertheless, describing
the ideas that follow as complementary to those enclosed by the study of
convex polytopes is certainly an abuse of ideology. The classic results about
configurations of points that follow have been pivotal in the proof of sev-
eral theorems in this thesis which, mainly deal with properties of convex

polytopes.

16
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Proposition 1.3.1. (Radon’s Theorem) Let X be a set of d + 2 points
in R, Then there exist two disjoint subsets A, B of X such that

conv(A) N conv(B) # 0.

A partition, A, B, of a set X, with the property above, is called a Radon

partition.

Proposition 1.3.2. (Tverberg’s Theorem) Let d and r be given positive
integers. For any set X of at least (d+ 1)(r — 1) + 1 points in R? there are
Ay, ... A, disjoint subsets of X such that ();_, conv(A;) # 0.

Proposition 1.3.3. (Erdos-Szekeres Theorem) There is a number N (t)
such that if {z1,x2,...,zn}, where n > N(t), are n points in the plane in
general position, then {z1,x2,...,Zn} contains a subset of t points in convex

position.

Proposition 1.3.4. Let X be a set of n points in general position in R
For any 9 € RA\X define Sz, = {S C X||S|=d+ 1,z € conv(S)} and
va(X) = maz cga\ x|Sz|, and let vg = maz xcga v4(X). Then

(nikjé_g;j )_:—_S’jl[rl;de—;lJl{;l) if n—d—1 1iseven
2("-L 2 J_l) if n—d—1 isodd

[==5=]

Vg =

This is the end of a first chapter, full of rather standard definitions and
results. It is intended to be a very brief introduction to affine spaces, con-
vex polytopes and configurations of points and, as such, it is imperative to
mention some references. All of the concepts and results contained in this
chapter can be found in [7], [13] and [20], maybe except proposition 1.3.4,

due to Bérany, which proof can be found in [1].

17



Chapter 2

Oriented Matroids

The aim of this chapter is to introduce a minimum amount of notions in
Matroid and Oriented Matroid theory. The focus throughout is to select
those concepts and results which will be used to prove the main theorems
in chapter 3. The latter will become apparent as, together with the defi-
nitions and propositions, the geometrical interpretations of all objects and

descriptions of the phenomena are presented.

The first section deals with Matroids, and uses two axiomatization systems;
one which highlights their similarity to linear spaces, and another one which
will help introduce Oriented Matroids. For other axiomatizations of matroids

the reader may refer to [19] and [14].

2.1 Matroids

The study of matroids is an analysis of an abstract theory of dependence.
The term matroid was first used by Whitney in a 1935 paper entitled ‘On
the abstract properties of linear dependence’. There, he conceived matroids
as a generalization of matrices. As a consequence, some of the matroid

terminology is based on the language of linear algebra.

However, his approach was also motivated by his earlier work in graph theory,

18



CHAPTER 2 2.1 MATROIDS

ergo, the terminology also bears some resemblance to that in the subject:
there lies the connection to combinatorics. Matroids, in many cases, have
proven extremely useful to solve difficult combinatorial problems, and to
simplify the solution of some already solved ones; always laying bare the

essential information about the problem.

2.1.1 Independent Set Axiomatization

Definition 2.1.1. A matroid M consists of a finite set E and a collection

I of subsets of E such that they satisfy the following conditions:
I1. D e I
2. if Xe€landY C X thenY € I; and

I3. if XY € I and |X| = |Y|+ 1 then there exists z € X\Y such that
Yu{z} el

The sets in I are called independent sets and subsets of E that do not
belong to I are called dependent sets. One can think of these sets as sets
of independent and non-independent vectors in a linear space. Therefore
property I3 makes it natural to introduce the concept of rank, motivated by

linear algebra.

Definition 2.1.2. The rank of a set X € I is
r(X)=maz{|lY|: Y C X and Y € I}.

The rank of a matroid is therefore r(I).

Just as rank has its equivalence in matroids, also a base, a hyperspace and

spanning set have theirs.
Definition 2.1.3. A base of M is a mazimal independent subset of I.

Definition 2.1.4. A flat or subspace of M is a subset X C E such that for
allz € E\X, r(XU{z})=r(X)+ 1.

19
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Definition 2.1.5. A subset X C E is a spanning subset in M if it con-

tains a base.

Definition 2.1.6. A circuit of M is a minimal dependent set in E. The

set of all circuits in E is denoted C.

Just as one can have minimal linearly dependent sets in a vector space, their

analogue in this context is defined as circuits.

2.1.2 Circuit Axiomatization

As it was mentioned at the beginning of this chapter, a matroid can be
described in several ways. The following one is by its sets of circuits, as

defined above, using a suitable equivalent set of axioms.

Definition 2.1.7. A collection C of subsets of E is the set of circuits of a
matroid on E if and only if conditions C1 and C2 are satisfied:

Cl. forall XY € Cif X #Y then, X ¢ Y; and

C2. fX,)YeC,X#Y and3 z € X NY, then there is Z € C such
that Z C (X UY)\z.

Still drawing the parallel to linear spaces, a circuit X = {z;,...,zx} can be

viewed as a minimal set of linear dependences.

Suppose X = {z1,...,Z,} is a set of n points in R¥, with n > k + 1, and

consider the matroid of linear dependences of X. It is known that there is a

vector {a1,...,ax} € R* with at least one o # 0, such that
n
Z Q; Ty = 6
=1

Thus, signs can be assigned to each z; in X in the following manner:
X(zi) = sgn(o).

All through this chapter and the next, X (z;) will denote the sign of z; in
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the circuit X, where the context so requires. This assignment motivates

the next definitions, which will be clarified in the next section.

Definition 2.1.8. A signed set X of E is a set X C E together with a
partition (X+,X ™) of X into two different subsets (where X* or X~ may
be empty) such that X* U X~ = X. The set X is called the support of X.

Definition 2.1.9. The opposite signed set of a set X, —X, is the set with
support X and signed set (—X*,—X~),where (-X)* = X~ and (-X)™ =
X+,

Definition 2.1.10. The reoriented set _s X, where S C X, is the set with

sXT=(XN\S)U(X~NS) and _sX~ = (X"\S)U(X+NS).

Definition 2.1.11. Given any two signed sets X1, X2, the composition
Y = X, o Xy, is defined as the signed set with ground set Y = X, U X,,
and signs defined by Y (z) = X;(x), where i = ming=) 2{z € Xs}.

Note that compositions, as defined above, can be formed by several signed
sets. Furthermore, a composition of several sets is associative but in general

not commutative.

2.2 Oriented Matroids

In the previous section the structure of a matroid was completely given
by its independent sets or by its circuits. The notion of signed sets was
only artificially imposed over the matroid structure, which could potentially
provoke having two different systems of signs for the circuits of the same
matroid: and therefore, the extra information available wouldn’t be exploited
to its full extent. But, in any case, according to historical notes in [2], that

is not the motivation behind the theory of oriented matroids.

It seems reasonable to assume, after studying a portion of the extensive ori-

ented matroid bibliography, that the motivation behind different oriented
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matroid axiomatizations lies behind a desire of abstraction. The main con-
tributors to the origination of the theory had been pursuing very different
results in the areas of Convex Polytopes (Jon Folkman and Jim Lawrence),
Graph Theory and Combinatorics (Michel Las Vergnas), and Abstract Lin-
ear Programming Duality (Robert Bland). It is consequently not surprising
that this theory yields much of the latest progress on McMullen’s prob-

lem.

Precisely in the context of McMullen’s problem, it is that one can interpret
oriented matroids as an abstraction of configurations of points over a real
space. It is thus pertinent that, along with the basic definitions behind
the ideas in Ramirez-Alfonsin’s paper [16] and theorems 3.3.1 and 3.3.10, a

parallel to properties of configurations of points is outlined.

2.2.1 Circuit Axioms and Chirotopes

Here an oriented matroid will only be defined by its sets of circuits. However,
just as for matroids, there are several equivalent sets of possible axiomatiza-
tions, all conceived with very different motivations and all having different

virtues. All the systems of axioms and their equivalences can be found in
[2].

After the circuit axiom system, there is also a review of the concept of a
chirotope, or basis orientation, that is closely related to the signature of the
circuits of a matroid, and constitutes a foundation stone for the proof in

proposition 3.2.7.

Definition 2.2.1. A collection C of signed subsets of E is an oriented ma-
troid M if and only if it satisfies the following:

Co. 0 &C;
Cl. C=-C;

C2. forall X,YeC,if XCY then X =Y or X =-Y; and
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Figure 2.1: The signed circuits of a matroid of affine dependences on a
ground set {z1,z2, T3, 74}, which consists of the configurations in the figure
are: (+,—,+,—) or (—,+, —,+) for the configuration on the left hand side;
(+,+,+,—) or (=, —,—,+) for the configuration on the right hand side.

C3. for all X,Y € C where X # —Y andx € Xt NY ™ there is a
ZeC suchthat Zt C (XTUY*t)\zand Z- C (X~ UY )\z.

The set of circuit supports, C = {X|X € C}, of an oriented matroid
M, together with E| is the underlying matroid, M = (F,C), which is a

matroid.

Also, in the case of oriented matroids, the definitions of base, rank, flat and

spanning subset are those corresponding to their underlying matroid.

A very useful oriented matroid is M = (E,C) where E = {e1,...,en} is a set
of points in the affine space A%, and a circuit is a minimal affinely dependent
point set in E. The signs of elements in a circuit are defined by the sign of
the coeflicients on the equation of the affine dependence. So, if X is a circuit
in M, Xt and X~ define a Radon partition of the points in X. Figure 2.1

shows this for two different configurations in the plane.

In this case, a basis of M is a maximal affinely independent subset of F, the
rank of the matroid is the dimension of the space af f(E), and a flat is any

maximal subset of F, of a given dimension.
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Definition 2.2.2. An oriented matroid M is acyclic if it does not contain

positive circuits.

Note that, with the signature inherent to matroids produced from an affine

point configuration, they are acyclic.

Definition 2.2.3. A rank r uniform oriented matroid M on a ground
set E is a matroid such that all their minimal dependence sets (circuits) have
the same cardinality, v + 1. Or, equivalently, all their marimal independent

sets (bases) have cardinality r.

Matroids of affine dependences of a set of points in general position in A%

are obviously uniform of rank d + 1.

The following definitions remind of the nature of oriented matroids as geo-

metrical objects, some of which are very familiar.

Definition 2.2.4. A vector of an oriented matroid is any composition of
stgned circuits. The set of vectors of an oriented matroid is denoted with the

character V.

Vectors in a matroid of affine dependencies are signed subsets of F that form
dependent sets, but are not necessarly minimal. The signature of a vector is
one of the many affine dependences possible among its points. In such affine
dependencies some of the vertices might not be used. Hence, the sign of an

element in a signed vector is one of {—,0, +}.

Definition 2.2.5. Two sets X,Y C E are orthogonal (denoted X 1Y) if
XNY =0 or there are z,y € X NY such that X(z)-Y(z) = —X(y) - Y (y).

Definition 2.2.6. Let M = (E,C) be an oriented matroid. The set of signed
sets Y of E such thatY L X for all X € C is the set of cocircuits, C*, of
M.

In a configuration of points X, cocircuits are the points outside of hyper-
planes formed by subsets of X, and their signature reflects whether the points

are in the positive or negative half-space defined by such hyperplanes. An
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Figure 2.2: In a matroid of affine dependences on a set {z1, z2, z3, z4}, which
consists of any of the configurations in the figure, the set of its covectors in-
cludes: on the right hand side, a cocircuit with ground set {z;,z2}, has
signature (+,—) or (—,+) and a cocircuit with ground set{z;,z4}, has
signature(+,+) or (—,—); on the left hand side, a cocircuit with ground
set {z1,z2}, has signature (0,+) or (0,—) and a cocircuit with ground set
{z1, x4}, has signature(+, +) or (—, —).

instance of this, can be observed in figure 2.2.

Definition 2.2.7. A covector of an oriented matroid is any composition

of signed cocircuits.

The familiar looking notation for the set of cocircuits, suggests that they are
in fact the set of circuits of another matroid, M*, which is called the dual
of M. As cocircuits encode approximately the same information about the
matroid as the set of circuits, there is an analogous axiomatization for an

oriented matroid in terms of its set of cocircuits.

Given a configuration of points, sometimes it might be useful to apply pro-
jective transformations to it. The application of a projective transformation
will result in a reorientation of the circuits of the oriented matroid. Proving

these facts needs of the following definitions.
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Definition 2.2.8. Let M = (E,C) be an oriented matroid. The reorien-
tation of a matroid M over a set S C E, _sM, is the oriented matroid

over the set of reoriented circuits _s C= {_s X|X € C}.

It is visible now that a lot of information about a configuration of points
can be encrypted in an oriented matroid’s circuits. But, just as in geometry,
rather than thinking about the dependent sets, one can think about sets that
are independent: the bases of M, and the information they encode. It might
then be useful to know whether each of these bases has a ‘left hand side’ or a
‘right hand side’ orientation. Precisely that is the geometrical interpretation

of the next definition.

Definition 2.2.9. A basis orientation of an oriented matroid M is a

mapping X of the set of ordered bases of M onto the set {—1,1} satisfying:
Bl1. X is alternating; and

B2. for any two ordered bases of M of the form (z1,z2,...,2;) and

(=, z2,...,zr), where z1 # i,
X(z1,29,...,2;) = —X(z1) * X () » X(z}, 2o, .. ., 1),

where X (z1) and X (z)) are the signs of z1 and z!, respectively, in one

of the two opposite signed circuits of M on the set {z1,2},z2,...,2}.

Therefore, the signature of the circuits can be read off from the basis orien-

tation of M in the following way:

Let X = {r1,...,zr4+1} C E be a circuit such that {z;,...,z,} is a base of

the underlying matroid, M. Then the sign of an element z; in X is

X(JI;) = (—l)i * X(.’El, ey i1, Ti41y - - - ,:ET).

Now that a definition of basis orientation has been given, it is natural to
define the set of basis orientations of a matroid; and conversely, given some
assignment of signs, find rules that ensure they provide a coherent orientation

of the set of basis of a matroid.
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Definition 2.2.10. Let E be a finite set. A chirotope of rank r on E is a
mapping, X : E* — {—1,0,1}, that satisfies the following properties:

B1. X #0;
B2. X is alternating; and

B3. for all {z1,...,Zr,¥1,--.,Yr} C E such that

X(y‘i?mz»'-'amT)*X(yla'"ayi—laxlayi+lu"',y7‘) ZO)

X(xl,xZa“')xT)*X(ylv"'ayr) >0

Considering the close connection between circuit signatures and basis orien-

tations, it is relevant to define a chirotope reorientation.

Definition 2.2.11. The reoriented chirotope _gsX of a reoriented ma-
troid _sM is:
_sX:E — {-1,0,1},

where (T1,...,2,) — X(x1,...,T.) * (—1)I5MHz12rH,

The following subsection deals with a lot of important constructions that
enrich the family of oriented matroids. These will lead to the definition of a

Lawrence Oriented Matroid, the core of theorem 3.2.7.

2.2.2 Direct Sum and Union of Oriented Matroids

The direct sum and union of oriented matroids are techniques used to build
an oriented matroid from two smaller ones. Before proceeding to this con-
struction, some preliminary notions are needed. First, the single element ex-
tensions, which are particularly useful when proving properties by induction
on the cardinality of the ground set of a matroid. Secondly, the lexicographic

extensions as compositions of single element extensions.

Definition 2.2.12. A single element extension on a matroid M is an

oriented matroid, M, on the ground set E = E U p for some p ¢ E, where
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E is the ground set of M, and such that the restriction to E of M is M.

Once a matroid has been extended, it is also important to investigate how
its signature extends to a signature of its single element extension. The

following proposition deals with such matter.

Proposition 2.2.13. Let M be a single element extension of M. Then for
every cocircuit Y € C* there is a unique way of extending Y to a cocircuit of

M. Also, there is a unique function o : C* — {—,0,+} such that
{(Y,o(Y)): Y eCc*} CC,

where Y is represented by its signed vector.

In the case of a matroid on a configuration of points, this function indicates
for each cocircuit, Y, the side of the complementary hyperplane, spanned by

E\Y, where the new point p is.

Definition 2.2.14. Let 0! and o2 be two extending functions, their com-

position over the set of cocircuits of the matroid is:

HY) if o}(Y
dooty)={ oY) FoF)#0
o?(Y)  otherwise.
Geometrically, 0! o 02 defines a point in the configuration near to the one

defined by ¢!, perturbed in the direction of the point described by o2.

Definition 2.2.15. Let M be an oriented matroid and C* its set of cocir-
cuits. The function ole*|(Y) =Y (e), VY € C*, where M has ground set E
and e € E, defines an eztension by an element that is parallel to e. Sim-
ilarly, ole”}(Y) = —Y(e) V Y € C*, is an extension by an element that is

antiparallel to e.

So far, only extensions by points which are not in £ had been made. How-
ever, one can choose one of the points e € F to generate an extending

function. In this case, if M is a matroid of affine dependences, the new
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point in the configuration will be very near to e.

Definition 2.2.16. Let M be an oriented matroid and I = {e},...,ex} an
ordered subset of E, also let o = |ay, ..., ax) € {+,—}*. The lezicographic

extension of M by p := [I?] is the single element extension,
M = MU {p} = M[I°],

given by o[I%] = ole1*'] o - -- o olex**].

In the case of a realizable oriented matroid given by any configuration in

R", the relative position of the new point p can be determined as:

ek—l

p=al.el+€.a2.e2+...+ akek

Proposition 2.2.17. Let M be an oriented matroid, I = [ey,...,ex] an
ordered subset of E and a = [ay,...,ox] € {+, —}*. Then the lezicographic

extension M[I%] is given by:

¥) a; - Y(e;) if iis minimal and such that Y(e;) #0
o =
0 ifY(e)=0V 1<i<k

Since i can be minimal with Y (e;) # 0 only if e; is not in the flat spanned by
{e1,...,ei—1}, the lexicographic extension is determined by the lexicograph-
ically first basis contained in I, together with the corresponding signs. It is,

therefore, customary to require I to be an independent set.

Proposition 2.2.18. Let M; and M3 be two oriented matroids on ground
sets Ey and Ey, with EyNEy = 0. For i = 1,2 let C; be the set of circuits,
C; the set of cocircuits, X; the chirotope and r; the rank of M;. There exists
an oriented matroid M of rank r1 + ro on the disjoint union Ey U Ey such
that:

1. C =C1UCy;

2. C*=C{UC3; and
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3. X(elv"'yerlafl)"'af’l‘z) :Xl(elw'-)erl)'X2(f1)"'1f7‘2)
for all {e1,...,er } C E1 and {f1,..., fra} C Ea.

M is called the direct sum, M1 @& My of M1 and Maj.

In the realizable case, the direct sum of matroids of affine dependences,
corresponds to the placement of the two configurations that realize M; and

M3, into orthogonal subspaces of dimensions r; and r2 in R™*72,

The following matroid construction is needed as a preparation for the defi-

nition of the union of oriented matroids.

Let E; = {e1,...,en} and Ey = {f1,..., fm} be disjoint linearly ordered
sets, and let G be any bipartite graph on F1U Es. For each f; € E», consider
the set G; = {ei;,-.., € di} consisting of all e;; € Ey such that (eij, fi) is an
edge of G. Now, suppose M), is any oriented matroid on E;. G induces an

oriented matroid, Mg, on FE; as follows:

Define M';;41 = My, and fori € {m,m —1,...,1}, let M’; be the oriented
matroid on E1U{ fm, ..., fi} obtained from M;_ ; by the lexicographic exten-
sion f; :=[e;, ", ..., €& di+]' Finally, let M3 be the oriented matroid obtained
from M] by deleting the set E; : M is the matroid induced from M; by
the graph G.

Definition 2.2.19. Let M; and My be oriented matroids on the same
ground set E = {ej,...,en}. Identify E with disjoint sets E; and E2 and
consider the direct sum, M1 & Ms. Now, let G be the bipartite graph on
(E1UER)UE whose edges are (e1,,e;) and (ey,, ;) for alle; € E. The union
of My and Ma, My U Mg, is defined then as the oriented matroid induced
from M & My by the graph G.

Before, it was said that the direct sum of two oriented matroids is equivalent
to placing the two point configurations F; and E> in orthogonal spaces of
adequate rank. The union will then be formed by elements e; € E such that
each e; is in the segment formed, in the direct sum, by [e1,, e2,], but close to

€1;-

3
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It is important to observe that the union of oriented matroids is not com-
mutative, as the geometric annotation above hints at. It is also worth men-
tioning that the union of two realizable oriented matroids is again realizable.
Moreover, as done before, it is relevant to study the chirotope of this class

of matroids in respect to its parts.

Proposition 2.2.20. Let M; and M3 be oriented matroids of rank r1 and
rq, respectively, on a linearly ordered set E, such that M; U My has rank
T1 + 9. Suppose that {ey < --- < e, } and {fi < --- < fr,} are bases of
M and Mo, respectively, such that for all lexicographic earlier permutations
(€, - ers fly- o fh,) of (e, ery, f1,- ., fry) either {el,..., e } is not
a basis of My or {fi,..., f;,} is not a basis of Ma. Then

Xi2(e1, - vlry f1y- -y fra) = Xiler, ... eny) - X2(f1, .05 fra)s

and X 2 is called the chirotope of the union M;U M.

2.2.3 Lawrence Oriented Matroids

All necessary tools have been gathered for unveiling the definition of a

Lawrence oriented matroid.

Definition 2.2.21. A rank r uniform oriented matroid, M, on a ground
set, E, is a Lawrence Oriented Matroid if there erist rank one uniform
oriented matroids M1, ..., M, on E, such that M = M;U---UM,.

As a Lawrence oriented matroid is a union of realizable oriented matroids,
it is realizable [2]. Additionally, by 2.2.20, it can be concluded that in this
instance:

X(ey,...,er) = Xi(e1) - - Xr(er),

where E = {ej,...,en}, X is the chirotope of M, and A& is the chirotope of
M.

Thus, one can represent a uniform rank r Lawrence oriented matroid, on

an n element set E, as a matrix A = (ai;), where a;; = Aj(e;) for all
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jeE={1,...,n}and 1 <i <

Finally, it would be nice to know under what circumstances a matrix A, with
entries in {+1,—1}, is the chirotope of a Lawrence Oriented Matroid. The

following proposition answers this question.

Proposition 2.2.22. A chirotope, X, corresponds to some Lawrence ori-
ented matroid, M, if and only if there exists a matriz A = (ai;), where
1<i<r 1<j<nanda;;€{+1,-1}V 4,3, and such that

x(B) =[] aij..
=1

forallB={j1<--<jr}CE.

Under this representation, the opposite chirotope —X can be obtained in-
versing the signs of one row in the matrix A; and the reoriented matroid
_sM, for any S C E, is obtained by inversing the sign of all the coeficients
of the columns j € S.

As mentioned before, this last section constitutes the foundation stone of
the techniques that lead to the latest improvement on the upper bound for
McMullen’s problem, in particular proposition 2.2.22 is extremely important

in the proof of proposition 3.2.7.

2.3 Matroid Polytopes

This section focuses on the Oriented Matroid results which have a clear
motivation on convex polytope theory, and hence of great importance for
chapter 3. The matroid equivalent of convexity notions are defined, and
an understanding of basic properties of convex polytopes, from the point of
view of oriented matroid theory, developed. It also offers a round up of the

geometrical illustrations outlined in the preceding sections.

For the whole of this section, and subsequent chapters, a rank r oriented

matroid M will be interpreted as the matroid of affine dependences of a
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configuration of points in general position, E, in (r-1)-space.

Given any circuit X € C, the partition (X+, X ™), defined by the signature
of X, can be interpreted as a Radon partition of the points in X. Now, let Y
be a cocircuit in C* and consider (Y+,Y ™), the partition consisting of sets
contained in af f(E\Y)" and af f(E\Y)™, respectively. By definition, Y is

a cocircuit if for every X € C one of the next two conditions hold:
1. YNX =0; or

2. if YN X # 0, there are z,y € X NY such that
X(z) - Y(z) = -X(y) - Y(y)

Suppose Y N X # @. Then either

af f(E\Y)Nconv(X) =0, or aff(E\Y) Nconv(X) # 0.

In the first case, one can suppose that X € Y+, and condition two holds. In
the second case, 3r € XNY* T and y € X NY . If X(z) = X (y), condition
two holds. If Vz € XNY* and Vy € X NY ™, but X(z) # X(y), then
(X*, X~) would not be a Radon partition of X.

Hence cocircuits of M can be interpreted as the complements of sets of

points which span a hyperplane.

Definition 2.3.1. Let M be an acyclic oriented matroid on a set E. Given
any cocircuit Y of M, the set Yt is said to be an open half space of M.
IfFE\Y =Y° Y+t UY? is a closed halfspace of M.

From the definition above and the usual definitions of facets and faces, it is

easy to translate these concepts into oriented matroid language.

Definition 2.3.2. A facet of M is a set of points, H, which forms a hy-
perplane, such that E\H is an open half-space. In other words, the facets of

M are the complements of its positive cocircuits.

Definition 2.3.3. Any intersection of facets of M is a face of M. The
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faces of M are the complements of its positive covectors.

In particular, if a positive covector has ground set E\{z}, then z is called a

vertex of M.

Definition 2.3.4. An oriented matroid M, on a ground set E, is a matroid

polytope if all the one element subsets of E are vertices of M.

To finish off this section, the notions of convex hull and extreme point of
a matroid are highlighted; and a very important proposition is mentioned.
This proposition will constitute the most important tool for the translation

of McMullen’s problem into an oriented matroid setting.

Definition 2.3.5. The convex hull, conua(S), of a set S C E, relative to
M, is:

Su{z € E\S| 3X =(X*,X") € C with X~ = {z} and X+ C S}.

Definition 2.3.6. An extreme point z in the matroid M is an element
z € E such that z & conupm (E\z).

It is also important to be able to tell, from an oriented matroid, when a

point is contained in the convex hull of the others.

Definition 2.3.7. An interior point x of the matroid M is an element
x € E such that there is a circuit, X, with {z} = X*.

Finally, recalling that one of the different equivalent settings of McMullen’s

problem states,

‘Determine the largest integer n = v(d) such that any set of n points in
general position in the affine d — space, R%, can be mapped by a permissible

projective transformation on to the vertices of a convex polytope’;

it is necessary to investigate what is the matroid equivalent of a projective
transformation. This can be easily derived from the next result on separation

of matroid polytopes.
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Proposition 2.3.8. Let E be a finite set in R, M the oriented matroid of
affine dependences of E and S C E. The following statements are equivalent:

1. _gM is acyclic.

2. convpag (S) N conupa ((E\S) Up) = B for every M’ single element ez-

ension of M.
3. conv(S) N conv(E\S) = 0.
4. There is a hyperplane H in R separating S strictly from E\S.

Proposition 2.3.9. Let E be a finite set in R%, M the oriented matroid of
affine dependences of E and S C E. Then there is an acyclic reorientation
_s M, by reversing the signs of S, if and only if there is a nonsingular
projective transformation P, permissible for E, such that _s M is precisely

the matroid of affine dependences of the set of points P(E).

The proofs of the last two propositions are due to Cordovil and da Silva and

can be found in [5].

All the terminology needed to show Ramirez-Alfonsin’s proof of the best
known bound for McMullen’s problem, and the newly proven bounds for the

generalized McMullen’s problem, are contained in this chapter.

There are many more concepts in the study of Matroid Polytopes. For
example, a lot of useful tools have been built for the study of cyclic polytopes
from an oriented matroid point of view. Nevertheless, the concepts presented
in this section should be enough to preserve the self-conteindness of this

thesis.

Lastly, let this paragraph be the final reminder that the exposition given
in this chapter is not even intended as an abridgement of the rich oriented
matroid theory. It represents a very small fraction of the axiomatization sys-
tems, main properties and applications needed to comprehend fully chapter

number 3. For further reference one should go to [2].
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Chapter 3

McMullen’s Problem on
Convex Polytopes

Since it emerged in the seventies, McMullen’s problem has occupied the
minds and efforts of several outstanding mathematicians. Its beauty resides
in the simplicity of its statement and, the elusiveness of a definitive answer,
which will undoubtedly enrich our understanding of the theory of convex

polytopes. The question reads as follows:

Q 1. Determine the largest number v(d) such that any set of v(d) points
lying in general position in R® can be mapped, by a permissible projective

transformation, onto the vertices of a convex polytope.

The beginning of this chapter deals with the progress achieved up to date
by several researchers, and presents a very detailed development of the tools

which helped the proof of the best known upper bound for v(d).

The last section will focus on proving upper and lower bounds for a version
of McMullen’s problem, the Generalized McMullen’s problem, which provides

information about neighbourliness in polytopes.

McMullen’s property for a set of points, could be interpreted as an attempt

to find sets of points that can be transformed into vertices of a 1-neighbourly
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polytope (one in which every point is a vertex). Considering the past obser-

vation, one might ask:

Q 2. What is the largest number v(d, k) such that any set points lying in
general position in R% can be mapped, by a permissible projective transfor-

mation, onto the vertices of a k-neighbourly polytope?

Due to its nice geometrical interpretation, this will be deemed to be Mc-
Mullen’s generalized problem. The question can be stated in a more general
form, for which a nice geometrical interpretation has not yet been found.
Initially, it was deduced from an attempt to study partitions of points in
space, with a certain generalized separability property. Such a property is
the translation of McMullen's property into a configuration of points setting,
using Gale Diagrams. That original setting will be carefully looked at in the

forthcoming sections.

3.1 Chronological Development of a Solution

3.1.1 Larman’s Paper

McMullen’s problem was first presented by Peter McMullen to David Lar-
man. Using Gale diagrams, Larman proved that the question could be re-

formulated as follows:

Q 3. Determine the smallest number A(d) such that for any set X of A(d)
points in R® there exists a partition of X into two sets, A, B, such that

conv(A\z) Nconv(B\z) # 0, V zreX.

The relationship between v and X is,

A(d) = min{w|w < v(w — d — 2)}.
weN
The next definition is taken from this question.
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Definition 3.1.1. Let X C R? be a set of points such that there ezists a

partition of it into two disjoint sets, A, B, where
conv(A\z) Nconv(B\z) # 0, V zeX,

then X 1is said to be divisible.

Using this reformulation, Larman found the lower bound 2d + 1 < v(d) by
proving that any set of 2d + 3 points is divisible. He also proved that this
bound is sharp in the cases where d = 1,2 and 3, by constructing sets of
six and eight points which are not divisible. This supports his conjecture
that the lower bound is sharp for higher dimensions. According to him, an
example of a divisible set for each dimension will be provided by a non-
divisible configuration of points formed by the vertices of two simplices, one

on top of the other, not necessarily regular, and slightly twisted. [9]

Using computational methods, in the year 2001 D.Forge, M. Las Vergnas
and P.Schuchert [6] found a divisible configuration of 10 points in dim 4,
confirming the validity of the conjecture. Furthermore, a close analysis of
the set of coordinates they found, shows that the example is precisely the

convex hull of a pair of simplices, one on top of the other.

In the paper referred in [9], Larman also found a set of (d + 1)? points in
R? such that no projective transformation takes them into the vertices of a

convex polytope. So, his bounds were as follows,

2d+1<v(d) < (d+1)%

3.1.2 Oriented Matroid Approach.

Chapter 2 is a broad introduction to all the topics needed to understand
the work contained in a 1985 paper by 1. Da Silva and R. Cordovil [5],
where Oriented Matroids were used for the first time in an attempt to solve
McMullen’s Problem. They studied what the matroid equivalent of a pro-

jective transformation is, and what the exact equivalent of Q1 would be in
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an oriented matroid setting.

Using that the matroid of a set E, of points in general position spanning
R9, is a uniform oriented matroid of rank d + 1, McMullen’s question can be

stated, as follows,

Q 4. Determine the largest integer n = ~(r) such that for any realizable
oriented matroid of uniform rank r = d + 1 on a set of of y(r) elements,
M, there is an acyclic reorientation, _g M, where all the points are extreme

points.

or in its dual version,

Q 5. Determine the smallest integer n = v(r) for which there ezists a realiz-
able oriented matroid M on a set of v(r) elements, of rank r = d+1, having

the following property: every reorientation, _sM, has no interior points.

Not long after the aforementioned equivalencies were proven, in 1986 M. Las

Vergnas [10] proved that:

(d+1)(d+2)

v(d) < 5

In order to construct an oriented matroid large enough to fulfill the condition
in Q5, he constructed the matroid of oriented cycles of a tournament on d+2
vertices. He then lifted its edges into the vertices of a cube, perturbed it
slightly to achieve general position (in order to show it was indeed realizable
as a point configuration); and, jumping back an forth between the properties
of a tournament and the point configuration, concluded that such a matroid

will always contain an interior point.

After these achievements, there was no further progress for more than a
decade. Until, in 2001, J. Ramirez Alfonsin published a paper with a new
upper bound:

v(d) < 2d + [?] . (3.1)
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He proved this bound by building a family of oriented matroids such that a
reorientation which contains an interior point can always be found. This is

the subject matter of the next section.

3.2 The Best Upper Bound.

All this section is based in work by Ramirez-Alfonsin contained in [16]. In
subsection 2.2.3, a Lawrence oriented matroid was defined. It was also ob-
served that any union of r uniform rank one oriented matroids on a ground
set E = {e1 < --- < ep}, M, is a Lawrence oriented matroid, hence re-
alizable. Furthermore it can be represented by a matrix A = (a;;), with

1<i<rand1<j<n, whose entries are in the set {1, —1}.

Also, note that if A = (a;;) is as before, the matrix corresponding to the
reorientation over an element ¢ € F of the matroid M, .M 4, is obtained
by inverting the sign of all the coefficients in the column c of A, denoted
A.

c

With the purpose of finding an example of a realizable oriented matroid,
such that there is a reorientation with an interior element, the search will
first be reduced to the class of Lawrence oriented matroids described above.
Inside that class, it is needed that the matroid is acyclic, and a way to tell

when it has interior elements.

So, the aim now is finding conditions over a family of matrices with entries
in the set {+1, —1}, such that any acyclic reorientation contains something

that can be interpreted as an interior element in the matroid.

By definition, an interior element of an oriented matroid, M, is an element
¢ € E such that there is a circuit X with X* = {c}. If M is then reoriented
on ¢, the matroid, .M 4, would be cyclic. This same reasoning holds even

if there are sets of interior elements of higher cardinality.

It is then imperative to find out how to tell when a matrix A represents an

acyclic matroid. With this purpose, it is practical to think of the matrix as
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a grid with crossings in the elements a; ;.

3.2.1 Travels and Acyclic Reorientations.

In an r x n grid, imagine a path that starts from the upper left hand side
corner and travels from left to right following only edges of the grid, in such a
way that it can only move right or down the grid until either the last column
or the last row of the grid are reached. If, additionally, the movements
possible are restricted further by asking that the maximum number of steps
down to be taken at any time, between steps to the right, is one, this path

is referred to as a Travel.

If in A, we consider the grid formed by the elements a; ;, one can further
restrict the movement of the travel by asking it to go one step down if and
only if it has just passed trough two crossings with opposite signs in the
same row. A travel made with such restrictions is a Top Travel. Now, rotate
the grid, together with the top travel, 180 degrees. One would end up with
a path, which follows a similar logic, but opposite movement. Such a travel
is a Bottom Travel. An example of the Top and Bottom travels for a small

matrix is in figure 3.1. Or, more formally:

Definition 3.2.1. . A Plain Travel (PT) in A is the following subset of
the entries of A,

PT = {[a1,1,81,2, 81,5}, [@2,5;, Q2,51 415 -+ B2,ja ], s [@s jy_ 15 Bs s 1+1» s Bs 5 )}
with2<ji1<ji<n V 1<i<r, 1<s<r7randj;=n.

Definition 3.2.2. A Top Travel (TT) in A is a PT with the following

additional constraints:
Loag_, Xa;=1, V ji_1<7<gs;
2. Qi 5,1 X Q45 = -1, and

3. either
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Figure 3.1: Top and Bottom travels for a 6 x 10 matrix.

-1<s<r thenjs=n or
-s=r and js < n.

Definition 3.2.3. A Bottom Travel (BT) in A is defined as a TT starting

from the bottom left corner of the matriz, i.e.
1. a;j,, Xai;=1, VYV 7j;<j<Jis;
2. aij,,, X a;j = —1; and
3. either
-l<s<rthenjs=1 or
-s=1andl < j,.

Remember that, in subsection 2.2.3, it has been shown that the matrix A

encodes the chirotope of the matroid in the following way:

,
X(B) =[] ae.,
=1

where E = {e1,...,en} is the ground set of the matroid and B = {j; <
< jrrc{1,...,n}

Also, the signature of every circuit in a union of uniform oriented matroids
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of rank one, can be read from the chirotope as:

X(B) = X(ejl’ et ’ejr) = le(ejl) e X}r(?jr)’

where X is the chirotope of M = U]_;M; and &; is the chirotope of
M.

It is also known that the sign of the element z; in a circuit C is

C(eji) = (_l)i : X(ejw s €519 iy e ’ejr)’

SO

Clej,) = (=1)"- X5, (e5,) -+ Xy (€5iy) - Koy (€5y) -+ - X e5,)-

In the matrix representation this means that if C = {e;,,...,€; } is a circuit

with j; € {1,...,n} then,

Clej) = (=1) a1y " Qim1jiy * ijigy " " Cr—1,jr-

Hence C(ej;) - C(ejiy1) = —@ijiy, - Gij;,- So Clej;) = Cleyy,,) if and only if
Gij;,1 = —aij;- But, that is precisely the way in which travels detect when
to take a step downwards. So PT can be associated with circuits of the
matroid. Hence in order to study cyclicity in the matroid, one only needs to

study the behavior of travels.

Using these definitions, in [16] the following propositions have been proved:

Proposition 3.2.4. Let A = (a;;) with1 < i < r, 1 < j < n,bea
matriz with entries from {1, -1}, M4 its corresponding Lawrence oriented
matroid, and TT and BT the top and bottom travels constructed on A. Then

the following conditions are equivalent:
1. M4 is cyclicy

2. TT ends at ars for some 1 < s < n; and
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3. BT ends at a1 ¢ for some 1 < s’ <n.

Proposition 3.2.5. Let A = (a;;) with1 <i <7, 1< j <n, be a matriz
with entries from {1, -1} and M 4 its corresponding Lawrence oriented ma-
troid. Then there is a bijection between the set of all plain travels of A and

the set of all acyclic reorientations of M 4.

In order to show the bound in equation 3.1, in [16], a suitable family of
matroids of rank 7 = d + 1 on a set E, with cardinality n = 2d + [4}],
is constructed. For such family of matroids it is always enough to reorient
one of the elements to make them cyclic. That is, after just one column
reorientation, in the matrix which represents the matroid, either the TT

ends at the last row or the BT ends at the first row.

3.2.2 Chessboards

The construction of the desired families of matrices will mainly consist of
restricting the pattern of the signs in the grid. A graphical way of defining

how the signs of the grid form patterns is the chessboard of the matrix.

Definition 3.2.6. The chessboard of the matriz A is a black and white
grid, with size (r — 1) * (n — 1), where the square s(i,j) has its upper left
corner in the intersection of the row ¢ and the column j. A square s(i, ),
withl1 <i<r—1andl < j <n-—1, will be black if the product given by

the entries a; j, a; j41,@it1,5, @Git1,5+1 15 —1, and white otherwise.

Chessboards are invariant under reorientations of .A. They provide a main-
frame of how to study the information encoded in A because, despite the
many combinations of patterns of signs possible in a matrix, the analysis

can be reduced to types of chessboards.

Observe that a chessboard has the following property: if there is one black
square between T'T" and BT, their behavior is opposite. In other words,
if TT makes a single horizontal movement from a;; to a;j4+1 and contin-

ues its movement forward, in the same row, then BT goes from Qith j+1
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i

Figure 3.2: Here the top and bottom travel can be observed to have opposite
behavior when there are black blocks between them and same if there are
not.

to aiyh; and moves vertically to aj;p—1; (With A > 1), and the other way
around. Figure number 3.2 illustrates the opposite behavior of travels de-

scribed above.

Ramirez-Alfonsin uses a r x (2(r — 1) + [5]) chessboard, as the one in figure
3.3, to prove that any matrix with that type of chessboard has at least one
column whose reorientation will lead to either 7T ending at row r or BT

ending at row 1. Or, geometrically, he proved:

Proposition 3.2.7. Let v(d) be the largest number such that any set of
v(d) points lying in general position in R can be mapped by a permissible

projective transformation onto the vertices of a convex polytope. Then

g1

v(d) < 2d + "—2—-‘ )

Define UD and LD as the following sets of elements of A :

UD = {ai; | s(i,5) or s(i,7 —1) is black}

LD ={a;; | s(i—1,j—1) or s(i—1,j7) is black}.

That is, UD consists of all the elements delimiting the black diagonal from

above, and LD are the elements delimiting the diagonal from below.
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Figure 3.3: Corners of a chessboard which consists of two-block and three-
block steps alternating along the diagonal, until as many steps as the dimen-
sion are placed.

The advantage of the black diagonal structure is that, in an acyclic matrix, it
helps define an induction tool for the proofs of the theorems in this chapter.
Also, it has been observed TT and BT have opposite behaviors for as long
as the black diagonal is between them, this provides insight in the behavior

of the travels.

3.3 The generalized McMullen’s Problem

Considering the equivalence of McMullen’s problem with Larman’s problem
given in Q3, one might try to generalize in two directions: the number of
parts in the partition made or the number of removable points. For a further

twist, one might try to generalize in both directions:

Q 6. Determine the smallest number A(d, s, k) such that for any set X of
M(d, s, k) points in R? there exists a subdivision of X into s sets Ay, Ag, ..., Ag
such that

ﬂconv(Ai\{a:l,zg,...,zk}) #0, V {z1,z3,...,z} C X.

i=1

But, the focus of this section is the proof of the following theorem, which is

a special case of Q 6:
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Theorem 3.3.1. Let k > 2 and let A(d, k) be the smallest number such that
for any set, X, of A(d,k) points in R? there exists a subdivision of X into
two sets A, B, such that

conv(A\{z1, x2, ..., Tk }) N conv(B\{z1, z2, ..., zx}) # 0,

V{z1,z2,....,zk} C X. Then 2d + k+3 < A\(d, k) < (k+1)d + (k +2).

Before fully entering into the build up of the proof of the theorem above, a

couple of equivalences of Q6, in the case where r = 2 are necessary.

Lemma 3.3.2. The following two statements are equivalent:

Determine the largest number v(d, k) such that any set of v(d, k) points
lying in general position in R? can be mapped, by a permissible projec-

tive transformation, onto the vertices of a k-neighbourly polytope.

Determine the smallest number u(d,k) such that for any set, X, of
u(d, k) points lying in linearly general position on S4-1 it is possi-
ble to choose a sequence E = (€1, ..,€uak)) € {1, —1}”(d’k) such that
for every k-membered subset of Xg, X,’g, 0 e conv(XE\XE), where

XE = {61271, ey 6u(d,k)xp(d,k)}-
The relationship between v(d, k) and u(d, k) is:
v(d, k) = max{w > p(w — d — 1,k)},
weN
p(d, k) = min{w < v(w-d—1,k)}.
weN

Proof. Let X be a set of points in general position in RY, such that |X| =
v < v(d, k). By hypothesis and 1.1.1, there is a nonsingular projective trans-
formation, permissible for X, P(z) = ﬁ%, such that P(X) is the set
of vertices of a k-neighbourly convex polytope. Then the Gale diagram
of X, X, is linearly equivalent to the set Xg = {e1Z1,...,€,Z,}, where

€; = sgn({c,z;) + &) for all { = 1,...v. Hence, by 1.2.2, for all k-membered

47



CHAPTER 3 3.3 THE GENERALIZED MCMULLEN’S PROBLEM

subset of X , 7’;;, 0e conU(YE\Y%). Sov>uv—-d-1,k).

Conversely, let X in R%, such that | X| = pu > u(d, k), be the Gale diagram
of a set X C R#9~1 Then there is a sequence E = (€1,...,€,) € {1, —1}*
such that Xg = {77, ... ,€uZ;} is the Gale diagram of a k-neighbourly
polytope, where ¢; € {1,—1}. By 1.1.1 (4), there are c € R? and § € R

such that ¢; = (c,z;) + 6 for all i = 1,..., u, a linear transformation A and

Az+b
(c,z)+6

regular and permissible for X, and such that P(X) = Xg, where Xg is the
Gale transform of Xg. Hence u < v(pu—d - 1,k). O

a vector b € R? such that the projective transformation P(z) = is

Lemma 3.3.3. The following two statements are equivalent:

Determine the smallest number A(d,k) such that for any set X of
A(d, k) points in R there exists a subdivision of X into two sets A, B
such that conv(A\{z1, 2, ...,zk}) N conv(B\{z1,z2, ...,xzx}) # 0, for
all {z1,x9,...,zx} C X.

Determine the smallest number u(d, k) such that for any set, X, of
u(d, k) points lying in linearly general position on S%~1, it is possi-
ble to choose a sequence E = (e1,...,€44k)) € {1, —1}#(@K) sych that
for every k-membered subset of Xg, Xg, 0 e conv(XE\X}‘s), where

XE' = {E]IL‘l, ey e#(d,k)x#(d,k)}.
So, p(d+1,k) = A(d, k).

Proof. Let X be a set of ¢ < p(d + 1,k) points lying in linearly general

position in S% then for all sequences E = (e1,...,€,) € {1, —1}* there is a
k-membered set, X* = {z;, ...z;, } C X, such that 0 ¢ relintconv(Xg\XE),
where Xg = {€e121,...,€,2,} and Xg = {€i,Ziy, ..., €, Tip }

Therefore, there is a hyperplane, H' that weakly separates the origin from
conv(Xg\X g) However, as the points in X are in linear general position,

there is a hyperplane, H, through the origin, such that

Xp\XEkcs 4 2nHT
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Then, given any E € {1, —1}*, consider the partition of X formed by the
sets,

A = {zile; € Eis such that ¢; = +}
B = {z;|e; € E is such thate; = —},

For each E, the set X* induces a hyperplane, H, as above, such that H
separates conv(A\XF) from conv(B\XF). This implies that

Ad, k) > p(d+1,k).

Conversely, if a set of points, X = {z1,...,z)}, lies in an open hemisphere
of S%, and is not k — divisible, then there exists n > 0 such that every set
X' = {z},...,z\} with ||z; — z]|| < n is not k — divisible and lies in the same
hemisphere. Consequently, it can be supposed that X is in linearly general

position.

Given any sequence E = (e1,...,€)) € {1, —1})‘, with A < A(d, k) consider

the partition into two sets given by:
A = {zile; € Eis such thate; = +}

B = {z;|e; € E is such thate; = —}.
By hypothesis there are points X* = {z;,,...,z;,} € X such that,
conv(A\{zi,, ...,z }) Nconv(B\{zi,, ...,z }) = 0.
Thus, there is a hyperplane through the origin, H, that separates
conv(A\{zi,, ...,z }) from conv(B\{zi,,...,Zi.})
Hence Ag\{€i; 1, -.,¢€, i } and Bg\{€;, 21, - .., €, @i, } are contained in the
same open half space, with Ag = {¢;z;|lz; € A} and Bg = {€;z;|z; € B}.

Which proves that for all E € {1, —1}* there is a set {z;,,...z; } C X such
that 0 € conv(Xg\{zi;, ...,z }). Then u(d+ 1,k) > A\(d, k). a
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From the two lemmas above, we have the final relationship between A and

V.

Corollary 3.3.4.
v(d,k) = max{w > Mw —d — 2,k)},
weN

Ald, k) = meig {w <v(w—-d-2,k)}.

3.3.1 Proof of the Upper Bound

Recall that a polytope is k — neighbourly if every k < L%J vertices are

contained in a facet, and that matroid polytopes are always acyclic.

As the goal of this section is to use matroids to prove theorem 3.3.1, a
translation of geometrical neighbourliness into matroid neighbourliness is

needed:

Definition 3.3.5. A matroid polytope is k-neighbourly iff k +1 < |CT|
and k+1<|C~|,V C €C, where C is the set of circuits of the matroid M.

Also, a matroid is cyclic iff there is at least one C € C such that Ct = C.
So a matroid polytope has an acyclic reorientation with at most k interior
points iff there is at least one C € C such that [Ct| <k or |C7| < k.

As before, consider the set of Lawrence Oriented Matroids of unions of r
uniform rank one oriented matroids over a set E, with cardinality n. All
these matrices have a matrix representation A = (a; ;) where every a; ; is in
the set {+1,—1}.

In order to find an upper bound, it is therefore sufficient to find families
of realizable matroids (as in the previous section) such that any acyclic
reorientation of them contains at least one C € C such that |[C*] < k (or
|C~| € k). That is, by propositions 3.2.4 and 3.2.5, one only needs to
guarantee that for one family of acyclic matrices there is always a set, S C F,
with |S| < & such that the reorientation, _g M, is cyclic. This will be done
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Figure 3.4: Chessboard for a 5 x 9 matrix

by considering the class of acyclic matroids whose matrix representation has
a specific chessboard, and proving that a suitable set S can always be found.
From now, using a slight abuse of notation, the matrices corresponding to

cyclic (acyclic) matroids will be referred to as cyclic (acyclic).
First, take the case when k=2.

Let A= (a;;), with1 <i<rand1<j<n=2(r—1)+1, be a matrix

with entries from {1, —1}, with the following chessboard:
e s(i,7) is black if
—j=20G-1)+1,0r
—jH1=20)+1;
e s(i,7) is white otherwise.

The chessboard above, is just a chessboard consisting of length two black

steps in the diagonal, as figure 3.4 shows.

Lemma 3.3.6. A matriz A of sizer x n withn = 2(r — 1) + 1, and the

chessboard defined above, has a cyclic reorientation, s A , where |S| < 2.

Proof. Let r = 3 then n = 5. There are the five different cases where A
is acyclic, shown in figure 3.5. In those five cases, A always has a cyclic
reorientation, where the reoriented set has cardinality less or equal to 2.
Working from the top left hand corner in clockwise order in the figure, the

columns that can be reoriented to make the chessboards cyclic are as follows,
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Figure 3.5: Five cases where A is acyclic

chessboard columns to be reoriented

1st 4th
2nd 3rd
3rd 2nd
4th 1st and 4th
5th 2nd.

Suppose that for all » < r* the r x 2(r — 1) + 1 matrix, .4, has a cyclic

reorientation of less than 2 elements.

Let r = 7* and assume that T'T" last intersects UD N LD in a;; with j =
2(i—1)+1and 7 < r. If 2 < 4, by the induction hypothesis, the lemma
holds. Equally, suppose BT last intersects UD N LD (from right to left) at

an element ay j» with j' = 2(¢' — 1)+ 1. If ¢/ < r — 1, again the lemma holds.

Then TT has to go through elements {a1,,a1,2,a1,3,a14} and it always
travels above UD. Also BT always travels below LD. As A is acyclic, TT
finishes at an element a; ,,. These imply that if 77 makes 2(r —1) +1 -3
horizontal movements and ¢’ — 1 vertical movements in order to reach column
2(r — 1) + 1 from column 3, as BT always passes strictly below UD, it has
opposite behaviour. Hence, BT has to do precisely 2r — i/ — 3 vertical
movements before column 3. But i/ < r, so 2r —# — 3 > r — 3. That is, at

column 3, BT is already in row 2, and the result follows. O

In the case when k > 3, a chessboard which is suited for proving a lemma
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Figure 3.6: Two different types of chessboards valid for rank 8 matrices.

equivalent to 3.3.6, is constructed in the following manner:

Let A= (a;j) with1<i<rand1<j<n=2(r-1)-(k-2)+1,bea

matrix with entries from {1, —1}, with the following chessboard:
e s(i,7) is black if
- j=2() - [{=524, or
- j=20)- [g#]+1andi+s—l¢0 mod s;
e s(i,j) is white otherwise.

where s = [;:;], 3<k< Tgl and 1 <[ < s are fixed.

This chessboard incorporates single blocks, evenly distributed along the di-
agonal, between double blocks. Figure 3.6 illustrates this chessboard in the

cases where r =8, k=3 and [ = 1,4.

Lemma 3.3.7. A matriz A of sizer xn withn=2(r—1)—(k—2)+1 and
the chessboard defined above, has a cyclic reorientation s A with |S| < k for
all3 <k < |5].

Proof. As before, this proof will also work by induction, except this time it
will be needed for both k and r. Let k£ = 3, although the matrix A represents
a matroid and therefore r > 7, the purely combinatorial property holds for
chessboards with 3 < r. The proof will follow by induction on r, so first
consider the case r = 3. In this case the chessboard has four columns and

three rows, and it is easily seen that for any T'T, of an acyclic matrix, three
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reorientations are more than enough, to make the travel end at row 3.

Now suppose the lemma holds for all » < r*. Let r = r*, son = 2r — 2 and
s = r — 1. Then there is precisely one single black block in the diagonal.
Both TTNUDNLD # @ and LTNUD N LD # 0. Let ¢ be the largest
1 < ¢ < r such that a;; € TT NUD N LD or i the smallest such that
a;; € LTNUDNLD.

If 1 < ifor TT or i < r for LT, by the induction hypothesis, the lemma
holds.

Suppose i = 1. If [ = 1, then TT takes the elements {a1,1, a1,2,a1,3}. Hence,
if column one is reoriented, the new top travel, TT', takes the elements
{a1,1,a1,2,a22,a23}. But ago € UD N LD, and after column two there are

only double blocks in the diagonal so, by lemma 3.3.6, the lemma holds.

If I > 1, then T'T takes elements {aj,1,a1,2,21,381,4} and reorienting column
one, the new top travel, TT’, takes elements {a11,a1,2,a2;2,0a2,3,033,a834},

hence traveling below UD.
If TT' never crosses UD again the lemma holds.

Therefore, suppose TT'NUDNLD # §. Let i be the smallest 1 < i < r such
that a;; € TT'NUDN LD. By 3.3.6, if i > [, the lemma holds. Thus, it is
only left to suppose 3 <i<land j=2i—1.

The original T'T passes through an element ay 9;_; with with i’ < 4. So,
between column 3 and column 2¢— 1, T'T makes 27 — 4 horizontal movements
and ¢/ — 1 vertical movements. Given that TT' and T'T are strictly separated
by the diagonal of black blocks, between columns 3 and 2i — 1; the number
of vertical movements TT' makes, between those columns, equals 2i — i’ — 3.
On the other hand, by hypothesis, the number of vertical movements T'T’
makes between columns 3 and 27— 1, is precisely i —3. Then i —3 = 2{—¢' — 3,

so i = 7/, a contradiction.

Then if a;; € TT' N UD N LD, necessarily ¢ > [, and, by lemma 3.3.6, the

lemma holds for k£ = 3.
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Suppose now that for each k < kx, the lemma holds for all 2k < r . Let
k=ks.Both TTNUDNLD # ® and LTNUDN LD # 0. Let i be the
largest 1 < ¢ < r such that a;; e TTNUDNLD or i the smallest such that
a;; ELTNUDNLD.

Ifl <ifor TT or i < (k—1)s+1 for LT, by the induction hypothesis for k,

the lemma holds.

Suppose i = I, then TT the takes elements {a;;,a;j+1,aij+2}. Hence, if

column one is reoriented, the new top travel, 7T’ takes the elements

{ai,ja a5,5+15 Ait1,j+1, ai+1,j+2}~

But aiy1,541 € UD N LD and after column two there are only k — 3 single
blocks in the diagonal so, by the induction hypothesis, the lemma holds.

If i < ! then TT takes the elements {a; j, ai j+1, @i j+2, i j+3} and reorienting

column j, the new top travel, T'T”, takes elements

{Gij, Gij+1, Qit1,541, Gig1,j42, @it 2,j+2, Cit2,4+3}-

If TT’ never crosses UD again the lemma holds.

Therefore, suppose TT' NUD N LD # 0. Let i’ be the smallest 1 < ¢ < r
such that ay j; € TT'NUD N LD. By the induction hypothesis, if i’ > [, the
lemma holds. Thus, it is only left to suppose 3 < i’ <[ and j' = 2/’ — 1.

The original TT passes through an element a;» 21 with with i < ¢. So,
between column j + 2 and column 2i’ — 1, TT makes 2i’ — j — 3 horizontal
movements and ¢/ — 1 vertical movements. Given that TT' and TT are
strictly separated by the diagonal of black blocks, between columns 7 + 2
and 2i’ — 1; the number of vertical movements 7T’ makes, between those
columns, equals 2¢' — 7 — 7 — 2. On the other hand, by hypothesis, the
number of vertical movements T'T” makes between columns j +2 and 2i' — 1,
is precisely ¢/ — j —2. Then ¢/ — j -2 =2’ —j —i" —2,s04¢ =i, a

contradiction.
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Therefore, the lemma holds for all 3 < k and 2k < r. O
Summarizing, the previous two lemmas have proved:
v(d,k) <2d—k+1 Vk2>2,

the upper bound.

3.3.2 Proof of the Lower Bound

For the proof of the lower bound it is better to use the setting of the problem

in terms of partitions of points. In [9], Larman proved the following:

Proposition 3.3.8. Let X be a set of 2d + 3 points in general position in
R?. Then there is a partition of X into two sets, A, B, with the following
property:

conv(A\{z}) Nconv(B\{z}) #0 V {z} € X.

It is enough, in order to obtain the lower bound, to prove a generalization
of 3.3.8:

Lemma 3.3.9. Let X be a set of (k+1)d+ (k+2) points in general position
in RY. Then there is a partition of X into two sets, A, B, with the following
property:

conv (A\{z1,z2,...,zk}) mcom} (B\{z1,z2,...,zk}) # 0,
vV {z1,z2,...,xx} C X.

Proof. The proof will follow by induction on k. Let k = 1, by proposition
3.3.8 the lemma holds. Suppose the statement of the lemma is true for all

k < k*. Then it has to be proven that the lemma is true for k = k*.

For brevity, if a set of points X has the property stated in the lemma 3.3.9,
then X will be called k-divisible.
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Let 8’ = {s},...,55,1} be the set of vectors pointing at the vertices of
a regular simplex, centred at the origin. Consider the following set, ¥ =
Uty S!, where S) = {i x 8},...,ix Sy+1}- Now let X be the set of points in

general position obtained by perturbing Y. S; is the set of vertices obtained
from S;. For each k, let A =J S; and B = |J; ,4q Si-

i even

The set X with such a partition is & — divisible. The removal of any set of
k vertices, leaves at least one of the S; untouched (¢ > 1). Without loss
of generality it can be supposed that S; C A and there must be a vertex

y € S;_1, which is in B, such that y € conv(S;).

So there are (k+1)d+(k+2) points in general position which are k—divisible.
The property of being k-divisible is closed among all sets of (k+1)d+ (k+2)
points in general position in R%. Let {z1, 2, ...,Z,} be a k-divisible set. It
is therefore enough to prove that if {y, z1,z2,...,z,}, where n = (k + 1)d +
(k+2), is a set of points in general position in R¢, then the set {y, z2, ..., Zn}

is also k-divisible.
Let T be the set of real numbers t such that
X(@t)={1-t)z1 +ty,z2,...,zo| 0 <t < 1}
is k-divisible. T is a non empty closed subset of [0, 1]. Suppose
to =supt <1
teT

and let z;(t) = (1 — t)z; + ty for all ¢t € R. Then the set X (¢) is k-divisible
with a subdivision A(tg) = {z1(to), 2, ..., z-} and B(to) = {Zr41, T2, -, Tn}
(with some relabeling possibly needed).

By definition, for each t > tg there exist points

{z1(8), 25 (8), - 25, (B)} € X(2)

such that if A(t) = {z1(t),z2,...,2,} and B(t) = {zy+1, %2, ..., Tp}, then
conv (A()\{zj; (£), ... zj, (£)}) N conv (B(¢)\{z;y (¢), ..., z;, (t)}) = 0.
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Since there are only finitely many combinations of n points in subsets of size
k, there is a sequence t, — to™ asn — oo such that {z;, (tn), T, (tn), . Tj (tn)}
is fixed and equal to {zj,,Zj,, ..., Zj, }. Also, for each t > tg there is a hyper-

plane H (t) such that
conv (A(W)\{zj, (1), 35 (£), -, 25, (8)}) € H(t)™

and
conv (BOas, (), 5 (8), 23, (1)) € H(2)™.

So, there is a subsequence of the sequence of hyperplanes {H(t,)} that

converges to a hyperplane H, which necessarly weakly separates

conv (A(to)\{zj,» Tjs, ---» 5, }) from conv (B(to)\{zjy, Tjps -+ Tji })-
By hypothesis,

conv (A(to)\{Tj,, ZTjps - Tji }) N conv (B(to)\{zj,, Zjp, s Tji }) # 0,
which implies that

conv (A(to)\{Zj,» Tjps - Tj }) N conv (B(to)\{zj,, Tjp, ., Tj }) N H # 0.

Since the points of X (0) are in general position, the plane H has to contain
d + 1 points of X (tp), one of which has to be the point z1(¢p) and none of

which are in the set {z;,,zj,, ..., Zj, }.

By Radon’s theorem (proposition 1.3.1), the points in X(t9) N H can be
divided into two sets A’(tg) and B’(to) such that

conv(A'(to)) N conv(B'(tg)) # 0.

Consequently there are kd+ k+2 points in general position outside the plane
H for which we can find a partition A”(tg), B”(to) such that

conv (A" (to)\{@iy, Tig, -, Tir_, }) N conv (B” (to)\{zi,, i, T, }) £ 0
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V{:L‘,-l,a:iz, ey :L'i,c_l} C X(t()).

Suppose w.l.o.g. that z1(to) € A’(t), then for tp <t < 1 say z1(t) € HY.
Now consider the following partiton for X (t):

A(t) = A"(to) U (A'(to)\z1(to)) U z1(t), B(t) = B"(to) U B'(to)-

For all X; = {zi,,Ziy, ..., Ti }, subsets of X (t), if |(Xx N H)U{z(t)}] > 1,

the lemma holds. So the only case remaining to be dealt with is when

X C {A"(to) UB"(t0)}. Observe that if there is z, € {A”(to)\Xx N H ™} or

zp € {B"(to)\Xx N H*}, then for some t =ty + ¢,

0 # conv (A'(t) U {za}) N conv (B'(t)) C conv (A(t)\X) N conv (B(t)\Xk)
(3.2)

or

0 # conv (A'(t)) Nconv (B'(t) U {zp}) C conv (A(t)\Xk) N conv (B(t)\Xk) -
(3.3)

If there is X} such that {A"(to)\XxNH "} =0 and {B"(to)\XxNH*} = 0,
then B”(to)\Xx C H~ and A”(ty)\Xx C H*. As at least one of

B (to)\ Xk # 0 or A”(to)\Xx # 0,

A"(to) and B”(tp) can be swapped in the partition, and one of 3.2 or 3.3 will
hold. ]

Together, lemmas 3.3.9, 3.3.7 and 3.3.6 constitute the proof of the following

theorems:

Theorem 3.3.1 Let2 <k < [%J and A(d, k) be the smallest number such
that for any set X of \(d, k) points in R® there ezists a subdivision of X into
two sets A, B such that

conv(A\{z1, z2, ...,k }) N conv(B\{z1, z2, ..., 2k }) # 0,
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V {z1,z2,..,zx} C X.
Then 2d +k+3 < M(d, k) < (k+1)d+ (k+2).

Tracing back through the equivalences, in the geometric setting, it has also

been proven that:

Theorem 3.3.10. Let 2 < k < L%J and v(d, k) be the largest number such
that any set of v(d, k) points lying in general position in R? can be mapped
by a permissible projective transformation onto the vertices of a k-neighborly

polytope.
Thend+ [2] +1<v(d,k) <2d—k+1.

The upper bounds presented in this section for the general McMullen’s ques-
tion, look considerably better than the upper bounds obtained for the origi-
nal McMullen’s problem. This is mainly due to the fact that the reorientation
of more than two columns of the matrix in the proof, exploits further the
structure of the chessboard. In most cases the first reorientation is used in
the first column, pushing the T'T below the diagonal of black blocks and ini-
tiating an induction argument, which isn’t possible to follow through when

only one reorientation is available.

3.3.3 Bound Sharpness

This subsection contains a pair of lemmas which prove that, in the partition
setting, the upper bound, A(d,k) < (k + 1)d + (k + 2), is sharp for d = 2
and k = 2,3. In such cases A(2,2) < 10 and A(2,3) < 13. Thus, sets of 9
and 12 points which are not 2-divisible and not 3-divisible, respectively, are
exhibited.

Lemma 3.3.11. Let X be a set of 9 points in the plane, such that the points
in the set P = {pi1,p2,p3,P4,P5} form a regular pentagon and the points in
{Da, s Dc, Pa} are placed close to some of the crossings of the pentagon’s

diagonals, as in figure 3.7. Then X 1is not 2 — divisible
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Figure 3.7: Configuration of points for which A(d,k) = (k+ 1)d + (k + 2)
when d=2 and k=2.

Proof. Let p; be the highest vertex of the pentagon, and label the rest of the
vertices, {p2, 3,4, P5}, in successive clockwise order. The point p, is near
(~) the intersection of the segment [p1, pa] N [p2, ps], Po ~ [p1,p3] N [p2, ps],
Pe ~ [p1,p3] N [p2, pal, and pg ~ [p1,p4] N [p3, ps]-

Suppose the sets, A and B, form a partition of X that makes it 2 — divisible.
If, say, |A] = 3 and |B| = 6 then, when A contains at least one of the
points in the pentagon, then the removal of such point always separates the
convex hull of the remaining sets. If A is a set of three points contained
in the pentagon. Then the vertices in the pentagon all belong to B, and
the removal of some two consecutive vertices will produce disjoint remaining
partitions. Hence, both |A| > 3 and |B| > 3, and without loss of generality,
it can be assumed that |A| =5 and |B| = 4.

The set B can’t contain two consecutive points of P, and can’t either be
equal to the set {pq, Py, Pc, Pa}. So, B takes at least one vertex in the outer

pentagon.

If B takes precisely one vertex in the outer pentagon, then A contains one of

the fOllOWiIlg triangles, {pl)p2ap3}) {p2) D3, p4}1 {p3)p4)p5}a or {plap4ap5};
and the removal of the remaining two vertices in A would make the partition

non-divisible.

Thus, B has to contain precisely two vertices in P. If that is the case, the
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two vertices in B belong to the set of diagonals,

{61 = {p1,p3}, 02 = {p1,Ps},03 = {p2,pa}, 04 = {P2,p5},05 = {P3,p5}};

and their complements { P\d;, P\d2, P\d3, P\d4, P\ds}, are always in A. Due
to the symmetry of the configuration, the case §; C B is equivalent to §; C B,

and d3 C B is equivalent to d5 C B.

In each of the different remaining valid cases, a list of the remaining possi-

bilities and the points which removal separates the convex hulls is given:

1. 61 C B and
{pa,po} € A = conv(A\{ps, p1}) N conv(B\{ps,p1}) = 0
{Pa,pc} € A = conv(A\{pz,pa}) N conv(B\{pz,pa}) = 0
{Pa,pa} € A = conv(A\{p2}) N conv(B\{p2}) = 0
{po:pc} € A = conv(A\{ps, pa}) N conv(B\{ps,pa}) = 0
{Po,pa} € A = conv(A\{ps3, pc}) N conv(B\{ps,pc}) = 0
{Pe;pa} € A = conv(A\{p1}) N conv(B\{p1}) = 0

2. 83 C B and
{Pa,Pp} € A = conv(A\{ps}) N conv(B\{p3}) =0
{pa,pc} € A = conv(A\{ps3,pc}) N conv(B\{ps,pc}) = 0
{Pa,pa} € A = conv(A\{ps}) N conv(B\{ps}) = 0
{Pe,pc} € A = conv(A\{p2, ps}) N conv(B\{p2,ps}) = @
{Ps,pa} € A = conv(A\{ps,pa}) N conv(B\{ps, pa}) = 0
{Pe;pa} € A = conv(A\{p1,ps}) N conv(B\{p1,ps}) = 0

3. 64 C B and

{pa,ps} € A = conv(A\{ps,pa}) N conv(B\{ps,ps}) = 0
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{Pa,pc} € A = conv(A\{p1,pa}) N conv(B\{p1,pa}) =@
{Pa;pa} € A = conv(A\{ps,ps}) N conv(B\{p3,ps}) = 0
{po,pc} € A = conv(A\{pz, pa}) N conv(B\{p2,pa}) = 0
{py,pa} € A = conv(A\{p1,p}) N conv(B\{p1,pp}) = 0

{pc;pa} € A = conv(A\{p1}) N conv(B\{p:1}) =0
O

Lemma 3.3.12. Let X be a set of 12 points in the plane, such that the set
of points {p1, p2, P3, P4, D5, D6} form a regular hezagon and above each of the

sides [p1,D2), [p3,pa] and [ps,pe| there are two points {q1,q2}, {g3,94} and
{gs,q6}, respectively, placed as in figure 3.8. Then X is not 3 — divisible.

Proof. Let p; be the point at the upper left hand corner of the hexagon and,
from there, label the rest of the vertices, {p2,ps,ps,ps,D6}, in successive
clockwise order. The point g is in conv({p1,p2,q1}), ga € conv({ps, ps,q3})
and g € conv({ps,ps,q5})-

Suppose the sets, A, B, form a partition of X which makes it 3 — divisible.
If, say, |A] = 4 then A contains at least one of the vertices in the outer
enneagon. Hence, the removal of all the vertices in A except one in the

outer enneagon, separates the convex hull of the remaining sets.

Now, suppose both |A| > 4 and |B| > 4. It is clear that none of the sets
of four points, {pi, pi+1, ¢, ¢i+1} with ¢ odd, formed by one of the edges of
the pentagon and the two points above it, can be contained in a set of the
partition. Considering the line [ = aff(q1,q2), it is true that each of the
open half-spaces I and [~ has to contain points in both sets of the partition.

If, out of the five points in [* only one belongs to A then,
1. if |A| = 5 then |B| =7, and

IBNl|=2,|BNi7|=1 ANt =1 =
conv(B\(BNI7)) Nconv(A\(ANLIT)) =0,
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Figure 3.8: Configuration of points for which A(d, k) = (k + 1)d + (k + 2)
when d=2 and k=3.

BNl =1,|BNI| =2 |AnTt =1 =
conv(B\(B NI17)) Neconv(A\(ANIT)) =0,

IBNl=0,|]ANnI"| =2, |ANnlT|=1 =
conv(B) Nconv(A\((ANIT)YU(ANI7))) =0:

2. if |A| = 6 then |B] = 6, so

IBNI"|=2,|[Anlt| =1 =
conv(B\(BNI7)) Neconv(A\(ANIH))=0:

3. if |A] = 7 then |B| =5, so

IBNI-|=1,|ANnlt|=1 =
conv(B\(BNI17))Nconv(A\(ANIt)) =0.

The case when only one of the five points in [T belongs to B is analogous.
So, it can be assumed that for all lines formed by the affine span of the sets
{q1,92}, {g3, 94} and {gs, g6}, there are two points of one set and three points

of the other on each side of it.

Considering that no set {pi,pi+1,qi,qi+1}, with 7 odd, is a subset of ei-
ther A or B, both A and B contain two points in {p;, pi+1, @i, ¢i+1}- Thus,
|A| = 6 = |B| and, either {p;,¢;} or {pi+1,¢;} are contained in one same
set of the partition. Suppose {p2,q1} C A, then conv(A) C aff({p2, 1 })*
and conv(B\(BNaff({pz,a1})*)) C aff({p2,q1})~. The other cases are
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analogous. Od

3.3.4 The Truly General McMullen’s Problem on Partitions

McMullen’s problem was originally posed as a geometrical property of a
configuration of points, and even the generalization dealt with in this chap-
ter, turns out to have a geometrical interpretation. However, the partition
problem, to which it is equivalent, is very interesting in itself and does not
need to have any restriction on the number, k, of points removed. So, as
mentioned before, one could aim to answer the Tverberg type question that

reads:

Q 6. Determine the smallest number \(d, s, k) such that for any set, X, of
A(d, s, k) points in RY there ezists a subdivision of X into s sets Ay, Ag, ..., As
such that

ﬂ conv(Ai\{z1,x2,....zk}) # 0, V {z1,22,..., 2} C X.

=1

This problem sits among many different questions, like Reay’s conjecture,
that rather than studying when the partitions of the sets intersect, focuses on
how the partitions intersect. Superficially, it seems that the dimension of the
intersection of the convex hulls of partitions, might bear a relationship with

k — divisibility. For now, all there is is the following very loose bound.

Lemma 3.3.13. Fach set, X, of A(d,s,k) < (k+ 1((s—1)(d-1)+1)
points in R? can be divided into s pairwise disjoint sets Ay, Ag, ..., As such
that (i, conv(A\{z1, 22, ...,z }) # 0, for all subsets {z1,z2,...,xx} C X.
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The lemma above is a direct consequence of proposition 1.3.2, Tverberg’s

theorem.

To end this chapter, it is pertinent to point out that the problems solved
in the next chapter were originally derived from variations of Q6. But, due
to the fact that they are approached in a completely different manner, they

were deemed to deserve their very own chapter.
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Chapter 4

A Related Problem on

Partitions

In the previous chapter a version of the generalized McMullen’s problem,
when the study is restricted to the case of partitions into two sets, was
proved. In this section that same problem is studied, but in an asymptotic

and dual manner:

Q 7. Let X be a set of n points in general position in R%, then what is
the minimum k such that for all A, B partitions of X there is always a set
{z1,..., 2k} C X, such that

conv(A\{z1,...zx}) Nconv(B\{z1,...zx}) =07

The focus now is in the conditions which provoke non-divisibility rather than
divistbility, as presented in chapter 3. The answer to this question will be
exposed in two parts. First, it will be proved that for all configurations of
points in the plane there are partitions for which k£ has to be roughly half
n. Secondly, a configuration of points will be inductively constructed for
every dimension, such that any set which separates the convex hull of the

remaining partitions, has cardinality k, roughly equal to 7.
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4.1 Planar Case

In general, if one takes a set of points in convex position and colours them
with two different colours, it is obvious that removing the points with the
least frequent color is sufficient to separate the convex hulls of what remains.
This is, k is less or equal than %, for all configurations and all partitions. The
next lemma proves that for points in convex position this bound is almost

sharp.

Lemma 4.1.1. Let X be t points in convez position in R2. Divide X into

two sets A, B alternately. If one removes s points 1,2, ...,Ts so that
conv(A\{z1, z2, ..., xs}) N conv(B\{z1, z2, ..., zs}) = 0
then s > |£] — 1.

Proof. Remove asetY C X so that conv(A\Y)Nconv(B\Y) = 0.If |[A\Y| <
1 or |[B\Y| < 1, then, since |A| > |%] and |B| > |£], |Y]| > [£] - L
Otherwise A* = A\Y and B* = B\Y each contain at least two points.

The line segment joining any two members of A* cannot meet the line seg-
ment joining any two members of B*. Consequently A* lies entirely between
some consecutive pair of points of B*, and B* lies entirely between some

consecutive pair of points of A*.

Let |A*| = o and |B*| = 8. Then, between any two consecutive members of
A*, at least one b € B liesin X. So |B\B*| > a—1. Similarly |[A\A*| > 5-1.

The equation o + 8 + |B\B*| + |A\A*| = ¢ holds, so a+ 8 < % + 1, and
|B\B*| +|A\A*| > £ — 1, therefore Y| > |£] - 1. O

In the case where X is a set of points in general position, the previous lemma
has little application. Nevertheless, if given a set X, one could split it into
several sets in convex position for any partition, the result could be applied

by parts to each one of the convex sets. The result that guarantees such
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splitting is possible, is the well known Erdos-Szekeres theorem, stated in

proposition 1.3.3.

Together, the previous lemma and proposition 1.3.3 constitute the core of

the proof of the main theorem in this section:

Theorem 4.1.2. In R? let X be a subset of n points in general position.
Let u(X) be the smallest k such that for all partitions A, B of X,

conv(A\{z1, x2, ..., zx }) N conv(B\{z1, 22, ...,k }) = 0,

for some {x1,x2,...,zx} C X, and let

= X
p(n) xei3, }u( )
then (n)
u(n 1
lim &~ =
=300 n 2

Proof. Consider a large set X of points in general position in the plane.
By lemma 1.3.3 one can remove from X successively subsets X1, X2, ..., Xr,
each comprising t points in convex position, until | X\ X1\ X2\...\Xr| < N(¢),
where N(t) is as required by 1.3.3.

Suppose that for a partition A, B of X, which alternates vertices of X; for
i=1,...,r, there exists a subset Y with conv(A\Y)Nconv(B\Y) = 0. Then
from Lemma 4.1.1, [Y N X;| > £ — 1. So

Y| > |YﬂX1|+...+|YﬂXT|2%t—r,

and as 7t = |X1| + ... + |X;| > |X| - N(t), [Y] > (|X|-N(@¢)) (3 - %)
Hence, p(n) > (n — N(t)) (% - %) .

On the other hand, at least one of A and B has cardinality less or equal

than |X| and so p(n) < in, consequently

1
lim AW _ 1
n—oo n
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Figure 4.1: In the figure on the left, two cycles of points are placed in a
cylinder and perturbed without leaving the walls of the cylinder. The figure
on the right shows that from the point of view of each cycle, the other looks
planar.

4.2 General Construction

This section lifts the idea presented in the previous section, in order to prove
that in any dimension there is a set with many points and a partition which
requires the removal of roughly half of the points to make it non-divisible.
However intricate the following construction and proofs may seem, behind

them lies a very simple idea.

From the previous theorem it has been observed that cycles in the plane
with a large number of points need at least half of them to be removed, in
order to separate the convex hulls of any of their partitions. Based on that,
several copies of a cycle are placed in a cylindric arrangement in dimension 3,
and perturbed slightly in order to achieve general position; so that from any
single point, the points in a different cycle seem to be in a plane (as in figure
4.1). The proof continues by reproducing this idea in further dimensions by

lifting the cylindric arrangement in a similar way.
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Definition 4.2.1. For everyd > 3 and k > 10 let
Xik = {x|x =a;+ N, 0z €A% and X\ € Ag}
where,

A¢ = {Xz = (M, A2, ..., Ag) € R?} is such that:

A E{(l-1)N|1 <1<k} for3<h<d.

A% = {a; = (01, 03, ..., aq) € R?} is such that:

o1 = cos (3 sg) + (—1)%=t,

ag = sin (3Fs;) + (—1)%t,2

ap = (=1)%=t" for3<h <d

with sz € {1,..., M} |(tz,t2,...,t3)| < € for all z, t; # ty if z # ', N is
large, M = 2k and one of the following two restrictions hold:

(i) Az # Ay or

(1) Az = Ay but sz # sy.

As sketched in figure 4.2, Ag is a lattice where the almost two dimensional

cycles in A% are hung.

By construction, all the vertices of Xg ; are in general position. Also observe
that |Xgx| = k42M for all k, Agk—1 C Agg, and that the projection into

x4 = c of Ad, k has the same divisibility properties as Ag_1 .
For each X, choose the following balanced partition in to two sets:

Agr = {:E € Xd,k|3z =27 — 1} and Bd,k = {:I: € Xd,kls:c = 2i}.

Note |Agx] = E52M — |By4|. Define for k fixed,

Yari = {z € Xax|Az-eq = (i — 1)N, where eg = (0,0,...,1)}.
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Figure 4.2: A corner of X5 collapsed to dimension 3.

Each of the Yy ; has the same divisibility properties as X4_1 % and [Ygi| =
|X4—1,k|- The set and its partitions, as defined above, are used to prove the

following theorem:

Theorem 4.2.2. For all d, there ezists a family of configurations of points,
in general position, Z = {Xgr}ren € R?, and there is partition, Aqk, Bak,
for each Xgqy, such that if p(Xgqx) is the smallest cardinality of a set X C
Xax with the following property:

COTL'U(Ad,k\X) N CO’n’U(Bd,k\X) =0

then
X
i K Xak) _ 1
k—oo IXd,kI 2

Proof. 1t is trivial to see that u(X3;) = 0. Take X339, there are planes
Hy, Hy and Hj parallel to the plane 23 = 0 such that H;™ N X35 C A3> ,
Hi*NHy N X33 C Bsa, HytNH3” NX32 C Az and H3* N X532 C Bsa.
Therefore pu(X32) < %
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Suppose that there is a set Y with |[Y] < % — 1 such that
conv(As32\Y) Nconv(B32\Y) =
then |A31\Y| > 1 and |B31\Y| > 1,
|A32NY322\Y|>1and |[B3aNVY322\Y|2>1

For every pair of vertices z4 € A32NY322 and zp € B3 2 N Y322 one can
construct the intersection of the cones with apices at such points, and a

plane near Y32 1:
Az, ={HNconv(zUzs)Vz € A31} and

B3, = {H Nconv(zUzg)|Vz € B3}

where H is the plane defined by z3 = 1, which is between Y32 and Y3 ;.

The rays between =4 and any vertex z € Az ; have parametrization:
2w s 2m s
2(t) = [cos ((37)2) + (=1)*ta](1 = ) + tleos (3 7)82,) + (-1)™Ata,]

(1) = Ioin ((2)s2) + (~1)* 11— 1) +tlsin (3r5,) + (1422,

M
2(t) = [(-1)*=€3](1 — t) + t [(-1)*4£3, + N]

and the rays between zp and a vertex z € B3 ; have parametrization:

z(t) = [COS((%)SI) + (—1)%t](1 - t) + t[cos(zﬁﬂst) + (=1)%Bt,,

. 2w Jse 1)%=5
=[sm((ﬁ)sz) (-1 t2](1—t)+tsm( Szp) + (—1)°=Bt2

2(8) = [(-1)=3)(1 — &) + ¢t [(-1)"2¢, + N]

Therefore, for every pair £ € A3, 4 (or x € B3z, zp) there is a t such

that 2’ = z +tza (or 2’ = 2+ tzp) and 2’ € A3, (or By;).
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As N is large, every z’ is almost an orthogonal projection image of z into
the plane z3 = 1. Hence X3, = A3, U By is a convex set in the plane

z3 = 1. Also notice

0 # conv(Aj3 ;) Nconv(By ;) C conv(Asz2) Nconv(Bs2) N H (4.1)

Symmetrically, if one takes points z4 € Az and zp € B3 and produces
sets A3 ,, B3, using a plane near Y32 and the partition of its points, as

before:

0 # conv(Aj ) N conv(By 5) C conv(As2) Nconv(Bs2) N H

Then, by lemma 4.1.1, conv(Aj5 5\Y’)Nconv(B3 5\Y') # 0 for some Y’ C X',
with X' = A3, U By, iff |Y']| > M _ 1. This implies that if there are still
vertices x4 € A3,2 N (Y3,2,2\Y) and zp € B3 N (Y3,2,2\Y), and Y3,2,1 nyY =

§ then, by equation 4.1, Y| > %’1 Consequently, u(Xs2) > % — 1 and
B(X32) 1

X3,2 4

It easy to see that u(X3x) < %(k — 1) for all k. Suppose 3Y C X3 such
that:

conv(Agk\Y) Nconv(Bs\Y) = 0

and |Y| < (k — 1)% Then there is an 7 such that the |Y35,;\Y| > % +1,

this implies that there are two points

T4 € (Y3k,i\Y NA3x) and zp € (Y34:\Y) N Bsk. (4.2)

So, if one defines for all j # 7 a special partition cone with apices in such

points :
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Ag,j ={H;jNconv(zUza)|Vz € A3 NY34;}

and
B ; = {HjNconv(z Uzp)|Vz € B3y N Y3y},

where Hj is the plane near Y3 ;, defined by z3 = (j — 1)N + (—1)s9n(i=9)
then the intersection of the convex hulls of the sets defined above and the

intersection of the convex hulls of the original partition are such that:

0 # conv(Aj ;) N conv(Bs ;) C conv(Aszx) N conv(Bs k) N Hj. (4.3)

Once again, by lemma 4.1.1 conv(A; ;\Y’) N conv(B; ;\Y') = @ for some
Y' C X', with X' = Ay ;U By, iff |Y’| > % But this has to hold for
every j #14,s0 |[Y NY3;| > % and 4.3 implies |Y| > k(%) This proves the

theorem for dimension 3.
In order to prove the theorem for dimension d > 4, proceed by induction.

Suppose that Vd < d', u(Xgx) > kd_z(%) has been proved. Let d’ = d, and
suppose 3Y such that

conv(Agk\Y) Nconv(Bak\Y) =0

and |Y| < kd“2(% — 1). Therefore there is Yy ; such that [Yy5;NY| <
kd=3(M —1).

Then, there exist vertices

A € (Yari\Y)NAgr and zp € (Ygi:\Y) N Byk.

For every i # j consider,

A:i,j ={HjNconv(zxUzy)|lr € Agr N Yqr;}
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and
B,'j,j = {HjNconv(zUzp)lx € Byx N Yk},

where H; is the plane defined by z4 = (j — 1)N + (—1)%97(=7), Then

0 # conv(Aqy ;) Nconv(By ;) C conv(Agx) N conv(Bgx) N H.

By induction on the d — 1 dimensional set, X "1,]. = Afi,j U B"i,j which is of
type X4-1k, it is known that if there is Y/ C X c,l,j such that

conv(Ay ;\Y') N conv(By ;\Y') # 0

then, |Y'| > kd‘3(%). Therefore |Y NYy ;| > kd‘3(%) for all j. It follows
Y] > k2.

So, it has been proved that Vd > 3 and Vk > 1,

M M
kd‘z(g —1) <p(Xgx) < kd_z;-

Hence, the result follows:

li PKar) 1
k—oo Xd,k 2

By the previous lemma, the next theorem holds:

Theorem 4.2.3. In R%, let X be a subset of n points in general position.
Let u(X) be the smallest k such that for all partitions A, B of X, there is a
set {z1,...,zk} C X such that

conv(A\{z1, z2, ..., zx }) N conv(B\{z1, z2, ...,z }) = 0,
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and
n) = max X
p(n) {xmdnm:n}“( )
then
i A _ 1
im —= = —.
n—oo N 2

This is, in the case of partitions in to two sets, in the presence of a large
number of points, there are always configurations and partitions of them
entangled enough to require the removal of roughly half of the points, in

order to untangle the convex hulls of the partititions.

In order to prove a theorem similar to 4.1.2 for higher dimensions, not only
do we need a generalization of Erdés-Szekeres’ result which finds convex
polytopes in higher dimensions, but also a partition of the points of the
polytopes, such that the convex hulls are entangled enough to require the

removal of about half of the points to separate them.

Also, recalling lemma 3.3.1, we know that for a set of points in general
position ,X, such that | X| =n < (k+1)d+ (k+2), X is k — divisible. Thus
for all d > 3,

IX|—1 1
— 1< ulX) < <-|X|.
- 1< u(X) < 51x]

Then if u(n) = min{Xckd||X|=n} /J,(X),

_1__5 i M<
d+1 n—oo N

[N

In the case where d = 2 the upper bound is sharp, as proved in this chapter.
For d > 3, there exists no evidence which points towards any conjecture
about the sharpness of the upper or lower bound, except for é = % if d

equals two.

To conclude this chapter, it seems natural to conjecture on a generalization
of the above. Namely, that if p(X,s) is the smallest number such that for

all partitions of X into s sets, Aj,..., A, there is always a set of u(X,s)
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points, X, C X such that (;_; conv(4;\X,) = 0 and

n,s) = max X
p(n, s) {XCRd||X|=n}'u( )
then
1
lim —;t(n, ) = —.
n—oo n S

More questions than answers, it seems. The next chapter follows the same
inquisitive fashion of the previous two, except this time, in a completely
unrelated topic. But also, as the title of the thesis indicates,it is a geometrical

problem where partitions are relevant.
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Polytopes with Many Pairs

of Facets

In 1999 B. von Stengel proposed, in his paper about the maximal number of

Nash equilibria in d x d bimatrix games [17], the following problem:

Q 8. Consider a polytope P in dimension d with 2d facets which is simple.
Two vertices form a comlementary pair, (z,y), if every facet of P is incident
with z or y. The d — cube has 2! complementary vertez pairs. Is this the

mazimal number among the simple d — polytopes with 2d facets?

He did not answer the question above, instead he found a more general
question that would somehow answer his problem, and solved it instead.
However, he accurately noticed that in the dual setting Q8 can be rephrased

as,

Q 9. Let P be a d — dimensional simplicial polytope with 2d vertices. Two
facets form a complementary pair, (F1, F2), if every vertex of P is incident
with Fy or Fy. The d cross — polytope has 2%~1 complementary facet pairs.
Is this the mazimal number among all the simplicial d — polytopes with 2d

vertices?

Considering simplicial polytopes and pairs of facets instead of pairs of ver-
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Figure 5.1: The two black vertices, on the image on the left, cover all the
faces of a cube. The two shaded faces of the octahedron, on the right, cover
all its vertices.

tices, no cyclic polytope has more than 29! pairs of complementary facets.

Figure 5.1 shows complementary pairs for the cube, and the octahedron.

Nonetheless, von Stengel’s problem has proved fruitful, not only because
it has contributed with a new question in convex polytopes, but also be-
cause it has inspired research in a slightly different but nevertheless close

direction.

In 1999, Bremner and Klee published a paper which is concerned with pairs
of vertices that form inner diagonals. [4] An inner diagonal of a polytope
P is a segment whose extremes are two vertices of P and that lies in the

relative interior of the polytope.

Given that complementary pairs of vertices in the cube form inner diagonals,
they seem to be a natural way of finding complementary pairs in simplicial

polytopes.

Bremner and Klee’s paper focuses on finding the maximum number of inner
diagonals for simplicial and simple polytopes with a fixed number of vertices
or facets. Their findings, unfortunately, have no helpful repercussion in the
solving of Q8. The latter is mainly because the highest numbers of inner

diagonals, for 3 dimensional polytopes, occur when the polytopes have more
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than 2d vertices: and in the case when the number of facets is fixed, as they
arrive to the conclusion that the maximum occurs in the simplicial case, they

do only study simplicial polytopes.

Interestingly, many other covering and illumination (by opposite directions)
problems have been proven or conjectured to have upper bound 2¢, sharp
exactly when the convex body is a parallelotope [11]. For instance, P. Erdos
proved a non-projective version of Q9. Specifically, he proved that the max-
imum number of pairs of parallel facets that a convex polytope can have is

precisely 2471, [3]

Another connection is found linking covering pairs of vertices to affine an-
tipodals. A pair of points a,b in a set X C R? is called (affinely) antipodal
provided there are distinct parallel hyerplanes H, and H}, through a and b,
respectively, such that X lies in a slab between them. Moreover, the pair
{a, b} is called strictly antipodal if X N H, = {a} and X N Hy, = {a}. It is
easy to prove that if X is the vertex set of a polytope then a covering pair

is also a strict antipodal of X.
Let A4(X,) be the number of antipodal pairs in a set X, C R%, and
Ag(n) = max {Aqg(X,)}.
a(n) = max {A4(Xn)}
Clearly Ag4(n) is an upper bound over the maximum number of covering
pairs of vertices.

In 1963, Griinbaum posed the problem on the upper bound for A4(V;,), where
Vo is the vertex set of a convex d — polytope, and proved As(V,,) = ]_%"J
Also, if

Makai and Martini proved that ["TQJ < Vi(n) < 2 and for all d > 4,

16
(1 - 5xms)% — O(1) < Va(n) < (1 - &)%. [12]

Although Vy(n) is even better than A4(n) as an upper bound for the number

of covering pairs of vertices, in all cases, it is very far off von Stengel’s
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conjectured bound.

There seems to be nothing else in the literature resembling even an attempt
to directly solve this problem. Therefore, starting from zero, this chapter
describes all the progress made up to date. Q8 is answered in the affirmative,

up to dimension seven, using just basic geometric tools.

But first, some definitions and preliminary results are needed.

5.1 Preliminaries

If F1, F» is a covering pair of facets of a d — dimensional simplicial polytope,
P, then V(F;) NV (F2) might be empty or nonempty. If V(F)NV(Fy) =0
then |V(P)| = 2d. This is the case which will be considered in this chapter.
So, for convenience, most of the definitions in this section make full advan-
tage of this fact. However, most of them can be adjusted to accommodate

the other case.

Also, as P is a simplicial polytope, it might be assumed that its set of vertices

is in general position. This will not affect its face structure.

Definition 5.1.1. A balanced partition of a set X is a partition (A, B)
of X such that ANB=0, AUB =X and A= [l;i'] B = ['%J .

Definition 5.1.2. Let P be a d-dimensional polytope. Let F(P) = F be its
set of facets. A pair of facets Fy, Fy € F is a complemetary pair of facets
if its respective sets of vertices, V(F1) and V(F3), are a balanced partition
of V(P). Denote the number of complementary pairs of facets of P as v(P).

So Q9 can be written in the following shortened form:

Q 10. Let S? be the set of d-dimensional simplicial polytopes. What is the
value of

v(d) = 11)116% v(P)?
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Back in the case where rather than pairs of facets one is interested in pairs

of vertices, one can define:

Definition 5.1.3. Let P be a d-dimensional polytope. Let F(P) = F be its
set of facets. A pair of vertices vi,ve € V(P) is a complementary pair of
vertices if F1 U Fy = F, where F; = {F € Flv; € V(F)}, the set of facets
incident to v;, for i = 1,2. Denote the number of complementary pairs of
vertices of P by A(P).

Q8 can be written in the following way:

Q 11. Let T% be the set of d-dimensional simple polytopes. What is the
value of

Ald) = ;;I?T)fi A(P)?

Now, preparing for a further equivalence, suppose X is a Gale diagram of a
simplicial polytope P with 2d + 2 vertices. It is known that 0 € conv(X),
and X has the property that for every H hyperplane through the origin
both |[H* N X| > 2 and |[H™ N X| > 2. It is also true that a set A,
A C X, represents the vertices of a face of the polytope if and only if
0 € relint conv(X\A).

If P is simplicial and in general position in RY, then X is in linear general
position in RIV(P)I=4=1 Therefore, no subset of X with less than |V (P)| —d
points contains the origin in its convex hull. Hence, if (A, B) is a partition
of X such that both A and B represent facets of a simplicial d — polytope

with 2d vertices, necessarily (A, B) is a balanced partition of X.

Definition 5.1.4. A balanced partition of a Gale transform of X, (A, B),
such that 0 € relint conv(A) and 0 € relint conv(B) will be referred to as

an embracing partition.

If P is a simple polytope and X is its Gale diagram then a covering pair of
vertices {v1,v2} such that 73 N F; = @, do not form an edge. Therefore in
X, there is a hyperplane which separates them from the rest of the points in

the diagram.
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Definition 5.1.5. A pair of vertices of a Gale transform of X, {a,b}, such
that there is a hyperplane through the origin, H, p, that separates {a,b} from
X\{a, b} will be referred to as an isolated pair.

So, as complementary pairs of facets of a polytope P correspond to embrac-
ing partitions of its Gale diagram, X, in this context, question 9 can be

reformulated as:

Q 12. Let X be a set of 2d + 2 points in general position in the (d — 1)-unit
sphere such that for every H, hyperplane through the origin, both |HT NX| >
2 and |H™ N X| > 2. What is the mazimum number of embracing partitions,
(A, B), that X can have?

or, using Q 8 and a Gale transform,

Q 13. Let X be a set of points in the (d — 1)-unit sphere such that for every
H, hyperplane through the origin, both |H* N X| > 2 and |[H- N X| > 2
and, given any x € X, there are at most d other points, {z1,...,z4}, such
that 0 € relint conv(X\{z,z;}), for alli =1,...,d. What is the mazimum

number of isolated pairs {a,b} that X can have?

The setting in Q12 will be the one used to study the problem. With such a

purpose, the following definition is introduced.

Definition 5.1.6. Let X be a set of points in S*~1, such that |X| > d. Then
for every A C X such that |A| < d, define the spherical hull as follows:

sph(A) := relint conet ({0} U A)n §¢!

A set of A of d+ 1 points in a sphere centred at the origin contains it in the
interior of its convex hull if and only if for every z € A, T € sph(A\{z}). Here
T represents the antipodal point to = in the sphere. Similarly A represents

the set of antipodal points to A.

Notice that if (A, B) is an embracing partition of X, for all z € A there is a
unique point y € B such that T € sph(B\y).
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JIbN

Figure 5.2: The shaded area is the spherical hull of three points on a 2-
dimensional sphere.

To finish this section let us analyze what the answer to Q 8 is in low dimen-

sions.

All polygons are simplicial and, in this case, 2d = 4. Therefore, only quadri-
laterals can have a pair of covering facets, which implies #(2) = 2!. Hence,

the conjecture holds for d=2.

Lemma 5.1.7. Let P be a d-dimensional polytope then v(d) < 2471, for
d=3,4.

Proof. If d=3, and X is a Gale diagram of P, then X is a set of six points
in the unit circle. By 1.3.4 the maximum number of simplices which contain
the origin, with vertices in X, is eight. Therefore there are at most four pairs

of covering facets of P.

If d=4 , one can proceed through two different routes. First, by scrutiny
over Griinbaum’s list [8] of all 4-dimensional simplicial polytopes, one can
confirm that there is no simplicial polytope with more than 8 pairs of facets.

Or, by a Radon-like argument which will be discussed in section 5.5.

O

To finish this section, a results about the geometry of spherical hulls of sets

and their diametrically opposite sets, will be shown.
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Lemma 5.1.8. Let Y be a set of 2(d — 1) points in linearly general position
in S92 let A, B, be a partition of them into two sets, such that |A| = |B| =
d — 1 and sph(A) N sph(B) # 0. If there is no y € B such that y € sph(A)
or x € A such that = € sph(B), then sph(A) N sph(B) = 0.

Proof. Suppose 3z € sph(A) such that z € sph(B), then 0 € conv({z} U B).
Also, by hypothesis Vz € A, the hyperplane H, = af f(0U A\z) is such that
HFfNB#0and H; NB #0.

Fix z € A such that af f*(A\z U 0) N sph(B) and consider the following
cone, C, z = af fH(0U conv(z U [af f*(A\z) N sph(B)])). Observe

conv(z U [afft(A\z) N sph(B)]) C conv({z} U B),

also af f(conv(z U [af fT(A\z) N sph(B)])) separates the origin from some

vertices in B, suppose y is one of those vertices. Then
aff(0Uy) N conv(z U [af f*(A\z) N sph(B)]) # 0,

this implies y € C, .. Therefore y can be expressed as a positive affine
combination of 0,z and points in af fT(A\z U0), and y € af ft(AU0), a

contradiction.

O
Lemma 5.1.9. LetY be a set of 2(d—1) points in linearly general position in
S92 let A, B be a partition of them into two sets such that |A| = |B| = d—1
and sph(A) N sph(B) # 0. Then sph(A) N sph(B) # 0 if and only if there is
T € A such that T € sph(B) or y € B such that y € sph(A).

Proof. The reverse implication is trivial.

Suppose sph(A) N sph(B) # 0 but there is no = € A such that T € sph(B)
or y € B such that y € sph(A).

Let A’ = A and B’ = B. Then, sph(A’) N sph(B’) # 0 and there is no z € A’
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such that Z € sph(B’) or y € B’ such that 7 € sph(A’). Therefore by lemma.
5.1.8 sph(A’) N sph(B') = 0, but this is sph(A) Nsph(B) = 0, and the lemma.
holds.

5.2 An almost Proof of the Conjecture

Before fully entering the general analysis, which will lead to the main the-
orem in this section, one might wonder which hypothesis are necessary to
make the statement of Q8 easier to prove. The next (and only) lemma of
this section deals with a specific additional condition. However, the proof of
the lemma is very important in understanding the main issues to be faced

when solving the general case.

Lemma 5.2.1. Let P be a d — dimensional simplicial polytope such that all
of its faces are part of a complementary pair, then P has at most 241 pairs

of complementary facets.
Proof. Let X be a Gale diagram of the vertices of P and let
F(X) = {S C X|0 € conv(S)}.

Suppose (A, B) is an embracing partition then, by hypothesis, foreach z € A
there is a unique y € B such that T € sph(B\y), and § € sph(A\z). The
latter is because if zU B\y is a cofacet then, yU A\ is also a cofacet. This is,
sph(A\{z}) N X = {z,y} and sph(B\{y}) N X = {z,y}. Hence, there are d
pairs of points {z;,y;} with z; € A and y; € B such that X N sph(A\{z;})N
sph(B\{y:}) = {zi, %)} for all i € {1,...,d}.

Take a fixed pair {z;,y;}, as above, then

sph(A\{z:}) N sph(B\{y:}) # 0
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and

sph(A\{z:}) N sph(B\{y:}) # 0.

Also, no z € X\{z;,y:} is such that z € sph(A\{z;}) or = € sph(B\{y:}).
Then there is a hyperplane through the origin which separates

A\{z:} U B\{:} from A\{z:}U B\{y:}.

To prove the later suppose sph(A\{z;}) N sph(B\{y:}) # 0. By 5.1.9 there
is either x € sph(A\{z;}) such that T € sph(B\{y:}) or ¥ € sph(B\{w:})
such that y € sph(A\{z;}), both of which lead to a contradiction. Therefore

sph(A\{z:}) N sph(B\{w:}) = 0,

so there is a hyperplane H, through the origin, which separates sph(A\{z;})
form sph(B\{y:}), and such a hyperplane separates

sph(A\{z:}) U sph(B\{y:}) from sph(A\{z:})U sph(B\{y:})-
This implies that for all ¢ € {1,...,d} there is a hyperplane H; that separates
{z;,yi} from X\{z;,y;}.

So the vertices {z;,y;}, of the Gale diagram, never represent a face of the

polytope, and for all embracing pairs(A, B) of X eitherz; € Aory; € A. O

5.3 Non-2-neighbourly Polytopes

2 — neighbourliness is relevant because if there are pairs of vertices that
are never contained in the same facet, then the members of an embracing
pair contain either one of the vertices or the other, providing an induction

argument. All of this will be clarified within this and the next sections.

Within this section, the set of polytopes studied is reduced to the set of

simplicial polytopes which are not 2-neighbourly.
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Lemma 5.3.1. Let X{ be the set of Gale diagrams of not 2 — neighbourly
(d + 1) — dimensional, simplicial polytopes with 2d + 2 vertices. For any
X € X define p(X,d) as the number of embracing partitions of X. Then

p(1,d) = max p(X,d) <2 x p(d —1).
Xexg

Here p(l) = maxxcyt p(X,1) and X! is the set of Gale diagrams of simplicial,
(I + 1) — polytopes with 2l + 2 vertices.

Proof. Let X € de. then there are two points x,y € X and a hyperplane
H such that {z,y} ¢ H* and X\{z,y} C H~. Thus, for every embracing
partition (A, B) one can suppose w.l.o.g. z € A and y € B. So that = €
sph(A\z) and y € sph(B\y), this is because as X is the Gale Diagram of a
simplicial polytope, A and B correspond to vertices of simplicial facets. So
A\z and B\y represent subfacets of the polytope. This implies that there is
z € B such that z # z and 0 € relint conv((A\z)Uz). But as both A\z and
B\y are in the same side of H, z = y. Hence, necessarily, y € sph(A\z) and
z € sph(B\y), so {z,y} € sph(A\z)Nsph(B\y) for all embracing partitions.

Let z = 3(z +y) then z € sph(A\z) N sph(B\y) for all embracing partitions
of X. Now consider a hyperplane Hy in general position with respect to X
such that 0 € Hy and X\{z,y} C H;. Consider the central projection
p: {Z} UX\{z,y} — Hp such that w — af f(w) N Hy. Define

v w=p@) | s z
X = { o ugi|» P U |

Then a balanced partition (A, B) of X is an embracing pair only if the
tition (4’ B') = (-w=pA\z) _w-p(B\y) ) ' ; ;
partition (A’, B') (”w—p(A\x)”’ o\ of X’ is an embracing pair,
and the result follows. O

Instead of considering 2-neighbourly polytopes now, a way of untangling
the conditions necessary for the conjecture to hold is by asking under what
circumstances the polytope that we are dealing with is precisely non 2-

neighbourly. The following two lemmas provide conditions on the Gale
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diagrams of simplicial polytopes which imply that the polytope is not 2-
neighbourly.

Lemma 5.3.2. Let X be the Gale diagram of a d — dimensional simplicial
polytope P, with 2d vertices and at least one pair of complementary facets.
Let (A, B) be an embracing pair of X, and suppose that there is x € A such
that

sph(A\z) N X = {z},

then P is not 2 — neighbourly.

Proof. There is a unique point y; € B such that z € sph(B\yz). Also for
some y € B it is true that sph(B\y) N sph(A\z) = 0. Note that if this
holds there is a hyperplane through the origin such that sph(B\y) C H*
and sph(A\z) C H~, hence sph(B\y) ¢ H~ and sph(A\z) C H*. This is
X NH~ = {z,y}, and the result follows.

By lemma 5.1.9, for y € B, sph(B\y) N sph(A\z) # 0, occurs only if either
of the following holds:

(a) there is ¥’ € B\y such that 3y’ € sph(A\z)
(b) there is ' € A\z such that z’ € sph(B\y).

By hypothesis, (a) is not possible. However (b) can always hold, maybe

except for y,. Once again, there are two instances.

First, suppose there is some z’ € A\z such that ' € sph(B\y;), this im-
plies that there is y,» € B\y; such that X N sph(B\y,) = {yw}. Then
sph(B\y,) N sph(A\z) = 0.

Secondly, suppose sph(B\yz) N X = {yz,z} and sph(A\z) N X = {z}. Then
sph(B\yz) N sph(A\z) = 0, and the result follows. O

Lemma 5.3.3. Let X be the Gale diagram of a d — dimensional simplicial
polytope P with 2d vertices and at least one pair of complementary facets.

Let (A, B) be an embracing pair in X, and suppose there are x € A and
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y € B such that
sph(A\z) N X = {z,y} and sph(B\y)NX = {z,y},
then P is not 2 — neighbourly.
Proof. Given that sph(A\z) N X = {z,y} and sph(B\y) N X = {z,y}, as

in the previous lemma, by 5.1.8, sph(B\y) N sph(A\z) # 0, occurs only if
either of the following theorem holds:

(a) there is ¥ € B\y such that y’ € sph(A\z)
(b) there is ' € A\z such that z’ € sph(B\y).
By hypothesis, neither of the cases is possible.

Hence, sph(A\z)Nsph(B\y) = 0. So, there is a hyperplane through the origin
such that sph(B\y) C H' and sph(A\z) C H~, hence sph(B\y) C H~ and
sph(A\z) C H*. Thisis X N H™ = {z,y}. O

5.4 Main Results

As the title suggests, all the instruments needed for concluding the results
contained in this section have been developed. So, without further ado, it is
observed that the lemmas in the preceding section particularly imply that
not all facets of a cyclic polytope can belong to a pair (which can also be
inferred using Gale’s evenness condition), and consequently the following

theorem holds:

Theorem 5.4.1. Let Sg be the set of d—dimensional at least 2—neighbourly
stmplicial polytopes with 2d vertices, and let v(P,d) the number of comple-
mentary pairs of facets of P. If P € S¢ then

1
max v(P,d) < —|F(C(2d,d))|.
PeS 4
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Proof. If X is the Gale diagram of a polytope which is at least 2—neighbourly
and has at least one pair of embracing pairs then the hypotheses of lemmas
5.3.2 and 5.3.3 must not hold. That is, if (A, B) is an embracing pair of X
then for all z € A there is y € B such that y € sph(A\z) but z ¢ sph(B\y).
So given z and y, as before, the partition (y U A\z,z U B\y) is never an
embracing pair. Hence none of the 2d d — dimensional facets incident to the
pair, represented by A, B, in the Gale transform, is part of a complementary
pair. Then
%V(P, d) + 20(P, d) < |F(P)]

holds for all P € S¢. O

The above is,

d
%(241—[[%]—1) if d is odd, and
max (P, d) < RV
PeS§ % (2d|_§l]2j) + (2d[glj2_Jl 1) i d s even.

Finally, the most anticipated theorem of this chapter.

Theorem 5.4.2. Let S¢ be the set of d — dimensional simplicial polytopes
with 2d vertices and v(P, d) is the number of complementary pairs of P € S¢.
Then

max v(P,d) < 247!
Pesd

ford=2,...,7.

Proof. Trivially the theorem holds for d = 2, and up to d = 3, a simplicial
polytope P can’t be 2 — neighbourly. So by 5.3.1 and simple induction, the

theorem holds for all simplicial polytopes up to dimension 4.

In the cases where d=5,6,7, if the polytope is at least 2 — neighbourly the
bounds given by theorem 5.4.1 are 10, 28 and 60, respectively. So if the
polytope is not 2 — neighbourly by 5.3.1 and using the bounds above it can
be concluded that the theorem holds. O
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5.5 A Coloured Radon-type problem

As announced in lemma 5.1.7, in this section another equivalence of Q8 will
be introduced. In the proof of the lemma, a projection into a hyperplane
through the origin is made. Such a projection produces a set of points where
instead of finding embracing partitions, the aim is to find partitions with a
coloured Radon sub-partition. That same idea is now reconsidered, to obtain

a question on coloured Radon partitions.

Let P be a simplicial (d+2) — polytope with 2d+4 vertices and X be its Gale
diagram in R%!. Then X can be assumed to be a set of points in general
position. If H' is any hyperplane through the origin in general position with
respect to X, then | X N H'*| > 2.

Let H be a hyperplane parallel to H’ such that 0 € H™,
Xt=H*NX=X*=H)NXand X*=HtNnX=X" =(H) nX.

Now, a balanced partition A, B of X represents a covering pair of facets of
the polytope if and only if 0 € relint conv(A) and 0 € relint conv(B). Then,
necessarily ANXt #0, ANX-#0,BNX* #0,and BN X~ #0.

Take X , the set of vertices diametrically opposite to X, and let Yt be
the central projection of X+ into H and Y~ be the central projection of

X . Here for every point on the sphere, z, its central projection is the point

aff(zu{0})NH.

Then, a balanced partition of X, (A, B), is an embracing pair if and only if
A and B induce coloured Radon partitionson Y = YUY ~, in the following
way: if (Ay, By) is the partition in Y induced by (A, B), then Ay has sub-
partition (Ay NY*, Ay NY ~) and By has sub-partition (ByNY*, By NY ™),
where both (AyNY*, AyNY ~) and (ByNY *, ByNY ~) are Radon partitions
of Ay and By, respectively.

This last observation motivates the following definition.
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Definition 5.5.1. Let X be a set of at least 2d + 4 points in R%, with a
colouring X+ and X~ such that | X*| > 2 and | X~| > 2. A subset S of
X, with |S| = 2d + 4, has a coloured balanced partition, (As, Bs), if
(AsNX*t,AsnNX~) and (BsN X, BsN X~) are Radon partitions of Ag
and Bg, respectively.

Thus, Q12 can be reformulated as follows:

Q 14. Let X be a set of 2d + 4 points in general position in R? and let X+
and X~ be a colouring of X such that | X*| > 2 and | X | > 2, and suppose
that for all x € X the set X\{z} contains a coloured Radon partition. What
is the mazimum number of different coloured balanced partitions (A, B) that

X can have?

Therefore, the coming corollaries are a consequence of theorems 5.4.1 and
5.4.2.

Corollary 5.5.2. Let X be a set of 2d + 4 points in general position in R?,
X+ and X~ be a colouring of X such that |X*| > 3 and |X~| > 3 such that
for all x € X the set X\{z} contains a coloured Radon partition. Let n(X)

be the mazimum number of coloured balanced partitions in X. Then

1 (2d—[51+2 . _
3 ( [%124-1 ) if d is odd, and

n(d) < g -3
1 [(2d [§]+3)+ (2d f§1+2) if d is even.

4\ 141+ 4]

where 1)(d) = max xcrd| x|=24+4]} 1(X)-

Corollary 5.5.3. Let X be a set of 2d + 4 points in general position in
R?, X* and X~ be a colouring of X such that | Xt| > 2 and | X~| > 2,
and suppose that for all x € X the set X\{z} contains a coloured Radon
partition. Let n(X) be the mazimum number of coloured balanced partitions
in X. Then

n(d) < 2441,

where 7(d) = max(x erd) x|=2d+4)} N(X) ford=1,..,5.
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These corollaries shed some light into the study of numbers of Radon parti-
tions of a given configuration of points. In the two-coloured case, the Gale
diagram approach looks like a good way of studying this type of partitions.
This will be further explored in the note contained in the Appendix A.

Finally we might remark that the assumptions made throughout the chapter

are,
- two facets in a pair do not intersect in vertices; and
- the polytopes are simplicial.

Both conditions were imposed because they seem natural in the original
statement of the problem. However, studying the theorem when any of the
assumptions are dropped should be equally interesting, and might even result

in the same bound.

It also remains to answer von Stengel’s question for d > 7. By the evidence

exposed in this chapter, it is enough to prove the following statement:

Let X be a set of 2d points lying in general position in S4=2 such that for
every hyperplane H through the origin [ X N HY| > 2 and X NH™| > 2.
Suppose that for all embracing partitions of A,B of X, ifx € A andy, € B
is such that x € sph(B\y;) then y; & sph(A\z); and also if y € B and
zy € A is such that y € sph(B\zy) then zy & sph(B\y). Then

lv(X)| <2971,

where v(X) is the number of embracing partitions of X.

If the statement above proves to be correct, using lemma 5.3.1, theorem 5.4.2

can be extended to every dimension.
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Another Coloured Radon
Type Theorem

In the proof of lemma 5.1.7, proposition 1.3.4, on the maximum number of
simplices with vertices on a fixed set X, containing one same point, has been

used strongly.

The obvious connection to Q12 is that it might seem that maximizing the
number of embracing partitions could be achieved by maximizing the number
of simplices embracing the origin, except that X has the restriction of been

the Gale diagram of a polytope.

Also, maximizing the number of simplices that contain the origin, when X
is the Gale Diagram of a polytope, has been done before. It is the Upper

Bound Theorem.

The question of finding the maximum number of simplices with vertices
on a set X, over the unit sphere, containing the origin, has been studied
by Wendel in a probabilistic setting. Given any d + 1 randomly selected
points, independent and identically distributed, according to the uniform
distribution in the unit (d-1)-sphere centered at the origin, he proved that

the probability of the convex hull of those points containing the origin is

1
2d-
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More generally, Wagner and Welzl [18] proved that:

‘For any absolutely continuous probability distribution in d-space, the proba-
bility that the convex hull of d+1 randomly and independently selected points

contains the origin is at most 2%, and this bound is tight.’

For proving the statement above they introduced an interesting continuous
analogue of the Upper Bound Theorem. They raised the question of whether
their theorem could be established by a simpler and ‘more illuminating’
direct argument. In [15] Pach provides a couple of such arguments when
considering the problem in dimension 2. Both arguments tackle discrete
variants of the problem, from where the Wagner-Welzl result follows by
passing to the limit. He claims that his arguments can be extended at least

to 3-space if the following planar problem is solved:

Q 15. Given n points in general position in the plane, coloured red and blue,
what is the mazimum number of multicoloured 4 — tuples with the property
that the convex hull of its red elements and the convez hull of its blue elements

have at least one point in common?

In particular, he wants to confirm that, when the maximum is attained, the

number of red and blue elements are roughly the same.

Question Q15 sounds incredibly familiar to Q14 and a closer look at it un-
covers that, by identical arguments to those used in the beginning of this

section, Q15 might be equivalent to:

Q 16. Given a set X of n points in linearly general position in S, what is the
mazimum number of subsets S of X with |S| = d+ 2 such that 0 € conv(S)?

The question above is, of course, answered by the Upper Bound Theorem.
Through a Gale transform, the points in S¢ can be taken into a n — d — 2
dimensional polytope. Therefore the maximum number of simplices of X
embracing the origin is |F(C(n —d—2,n))|. As C(n—d—2,n) is [9;%“—2J -
neighbourly, for any hyperplane through the origin, H,

|[Ht N X|>[2=4=2] and |H™ NX]|> [2=g=2].
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Therefore, when n is large, any set, X, achieving the maximum, originates
from a set Y with a colouring which paints roughly half of the vertices with

each colour.

However, it is true that a condition has been overseen. Namely, a set X is
the Gale diagram of a polytope iff for all H, hyperplanes through the origin,
|[H*NX| > 2and |[H~NX| > 2. Such condition is translated into the Radon
partition problem setting as follows. If X is a set of points in general position
in R¢, coloured red and blue, in such a way that both colours appear more
than once, and Vz € X there is still a coloured Radon partition with vertices

in X\z.

It seems likely that any configuration X, for which all coloured Radon par-
titions use one same fixed point, z € X, will not attain the maximum. But

this has yet to be studied carefully.
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