
M odelling outflows, coastal 
currents and eddies

Byoung Woong An 
Department of Mathematics 

University College London

A thesis submitted for the degree of 

D octor o f Philosophy

Supervisor: N. Robb McDonald 

5th April 2004



UMI Number: U 602400

All rights reserved

INFORMATION TO ALL U SE R S  
The quality of this reproduction is d ep en d en t upon the quality of the copy subm itted.

In the unlikely even t that the author did not sen d  a com plete m anuscript 
and there are m issing p a g es , th e se  will be noted. A lso, if material had to be rem oved,

a note will indicate the deletion.

Dissertation Publishing

UMI U 602400
Published by ProQ uest LLC 2014. Copyright in the D issertation held by the Author.

Microform Edition ©  ProQ uest LLC.
All rights reserved . This work is protected against  

unauthorized copying under Title 17, United S ta tes C ode.

P roQ uest LLC 
789 E ast E isenhow er Parkway 

P.O. Box 1346  
Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6



I would like to dedicate this thesis to my loving parents and my wife 
Adele who offered me unconditional love and support throughout 

the course of this thesis.



Acknowledgements

I would like to use this opportunity to express my special thanks to a 
man who made this thesis possible. Dr. Robb McDonald, my super
visor and mentor: I thank him for his great understanding, patience, 
help and support friendly and consistently throughout the three years 
of this undertaking.
I would like to thank the members of my thesis examiner Professor 
Andrew Willmott of University of Keele and Dr. Ian Eames of Uni
versity College London for their effort in helping to make this thesis a 
success. I would like to thank the members of the Geophysical Fluid 
Dynamics group for cooperation. I wish them all the best as members 
of the GFD profession. Also, I am grateful to my second supervisor 
Professor Ted Johnson.
To my friends and colleagues I wish to express my appreciation of 
their time and moral support. In particular, I would like to thank 
Simon Parry, Phil Wilson and Evgeniy Shapiro.
Generous financial support was provided by the Government of Korea 
in the form of a Korean Overseas Graduate Scholarship for three years.



Abstract

Several types of flows driven by outflows on the continental shelf are 
examined mathematically and numerically. Within a quasigeostrophic 
framework, a variety of vertical structures and topographies are used. 
Features are explained in terms of potential vorticity conservation.
The combined effects of topography and anomalous vorticity of the 
outflow are studied. First, shelf-like topography is considered. The 
role of topographic wave radiation is studied using the linearised 
barotropic potential vorticity equation for a weak outflow with zero 
vorticity. Contour dynamics is used for stronger outflows with relative 
vorticity.
Next, the effects of anomalous vorticity in driving such coastal cur
rents are studied using 1^-layer model and its interaction with topog
raphy. Simulations show that the strong tendency for the development 
of anticyclonic eddy near topographic change.
Two-layer outflows and their interaction with topography are exam
ined. Purely buoyancy driven outflows are considered in which only 
one of two layers enters the flow domain. Purely barotropic outflows 
are also considered. Simulations show the development of eddies by 
interaction with topography in the lower fluid.
The effect of topography whose gradient lies perpendicular to the 
coastline on coastal currents and eddies is investigated. The formation 
of dipole eddies is found to be a robust feature when the coastal 
current interacts with the topography depending on the sign of the 
topographic gradient.
The stability of a two-layer converging/diverging coastal jet associ
ated with piecewise constant potential vorticity is studied numerically. 
Baroclinic instability is demonstrated. The origin of the instability 
appears first at the coast, and may explain the meandering and ed
dying associated with detaching western boundary currents.
The final study revisits the barotropic outflow problem. Owing to 
boundary layer separation at the exit, the outflow may consist of a 
dipolar structure. The interaction of this dipole with shelf-like topog
raphy is studied numerically.
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Chapter 1

Introduction

In coastal regions, a wide range of physical processes exist, ranging from the 

long-term basin scale circulation to short-term turbulent mixing. Coastal areas 

especially the shelfbreak and continental slope are important regions to predict 

coastal circulation phenomena because these regions influence both on-shelf and 

open-ocean dynamics. Additionally, transient, short-term forcing events, such 

as storms and spring runoff, cause rapid changes in the physical dynamics of 

the coastal ocean. Each of these physical processes can affect the transport, 

distribution, and dynamics of the coastal region’s biology and sediment, nutrient, 

and toxic loadings.

In this thesis a series of analytical and numerical models are used to study 

various coastal flow phenomenon. In particular the interaction of vortical outflows 

and coastal currents and eddies with topography is studied.

In this chapter the two main areas concerning this thesis are reviewed, namely 

the dynamics of outflow plumes and the interaction coastal currents and eddies 

with topography.
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1.1 Physical problem  of outflows

1.1 Physical problem of outflows

The dynamics of many continental shelves are affected by river discharges. Con

versely, the dynamics of outflows are affected by the sharply varying topography 

of coastal shelf regions. An understanding of the interaction of the river dis

charge with ambient shelf water is important in order to evaluate the physical, 

biological, chemical and geological impacts on continental shelf environment. In 

particular, river outflows tend to form a plume and spread out along the shelf 

through boundary effects. Garvine (1995) has provided a simple classification 

system of buoyant discharges based on the Kelvin number K , defined as the ra

tio of the buoyant plume width to the baroclinic Rossby radius. The baroclinic 

Rossby radius c / f  is the ratio of the internal wave phase speed to the Coriolis 

parameter / ,  and may be thought of as the horizontal scale at which effects due 

to the earth’s rotation become important (Gill, 1976). Small scale discharges, 

characterized by AT <C 1, tend to be strongly non-linear, while large scale dis

charge tend to be sluggish and have linear dynamics. When the earth’s rotation 

is important, there is a tendency for the plume to turn to the right (in the north

ern hemisphere) as it spreads offshore and form a current flowing parallel to the 

coast. This tendency for the plume to turn to the right and flow alongshore is 

a consequence of the Coriolis acceleration associated with the earth’s rotation. 

If an outflow is small enough, the resulting plume may dissipate before it has a 

chance to turn in response to the earth’s rotation. Recent observational studies 

(e.g. Miincho and Garvine, 1993b) suggest that the plume dynamics are complex 

and can include a number of different dynamical regimes between the source and 

the downstream coastal current.
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1.1 Physical problem  of outflows

The vertical structure of buoyant plumes also varies. Most previous studies 

have focused on plumes which are confined to the upper few meters of the water 

column and are not contact with the bottom. However, some plumes, such as 

the Delaware River plume (Miincho and Garvine, 1993a), extend from top to 

bottom. In this case, the sharp density gradients between the plume and the am

bient shelf water tend to be horizontal rather than vertical. Simple linear models 

had suggested that plumes attached to the bottom would spread offshore indef

initely due to offshore transport of plume water in the bottom boundary layer. 

However, Chapman and Lentz (1994), using a numerical model that included the 

nonlinear interactions between density and velocity, found that the plume does 

not continue spreading offshore. Instead, the plume becomes trapped at a certain 

isobath, where there is no longer any offshore transport of plume water in the 

bottom boundary layer. This result shows the influence of topography limiting 

the offshore spreading of an outflow and provides a possible explanation for how 

coastal currents can be maintained over very long distances, for example along 

the east coast of North America (Chapman and Beardsley, 1989).

Another study which emphasizes the importance of nonlinearity in plume 

dynamics is a numerical model study by Oey and Meller (1993). They found that 

for a coupled estuary-shelf system, nonlinear interactions between the estuary 

and shelf resulted in large meanders that propagated alongshore in the buoyancy- 

driven coastal current. Such meanders or instabilities provide the potential for 

mixing and exchange between the buoyant plume and ambient shelf water.

A variety of different factors can influence a plume including tides, winds 

variations in the river discharges, and the ambient shelf circulation (e.g. Garvine, 

1991). A number of recent observational and numerical modeling studies have

3



1.1 Physical problem  of outflows

emphasized the importance of wind forcing on time scales of days to weeks (e.g., 

Miincho and Garvine, 1993a; Masse and Murthy, 1990). Surface plumes can be 

particularly sensitive to the wind stress because they are thin. Furthermore, the 

strong density gradients at the base of the surface plume can inhibit mixing and 

hence drag from the underlying shelf water.

Recent studies of the Niagara (Masse and Murthy, 1990) and Delaware (Miincho 

and Garvine, 1993a) River plumes show that downwelling favorable winds tend 

to concentrate the plume in a narrow current adjacent to the coast. In contrast, 

upwelling favorable winds retard or block the coastal current, causing the plume 

to spread offshore and thin in the vicinity of the estuary mouth. Miincho and 

Garvine (1993a) found that, for the Delaware River plume, strong upwelling favor

able wind can be enhanced mixing with the ambient shelf water during upwelling- 

favorable winds and inhibited mixing during downwelling-favorable winds (e.g., 

Masse and Murthy, 1990).

O’Donnell (1990) found a similar dependence on the orientation of an ambient 

current on the shelf in a numerical model study of a small plume, motivated by the 

Connecticut River plume. When the ambient alongshelf flow is in the direction 

the coastal buoyancy current normally flows (i.e., with the coast on the right in 

the northern hemisphere), the plume is confined near the coast, thickens, and is 

less susceptible to mixing. When the alongshelf flow has the opposite sense, the 

plume spreads offshore, thins, and becomes more susceptible to vertical mixing. A 

consequence of this asymmetry in the model response, was that in time dependent 

flows, such as a tidal current, significant mixing occurred during particular phases 

of the flow.

The above summary gives an idea of the many physical processes determining
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the dynamics of outflows. Relatively little studied is the effect of inherent vorticity 

of the outflow fluid itself. It is reasonable to suspect that outflowing fluid is of 

differing potential vorticity to that of the ambient potential vorticity of the shelf 

waters. The resulting anomalous vorticity of the plume will cause the plume to 

self-advect through the image-effect in the coastal boundary. It is this effect that 

is studied in chapters 3, 4 and 5 for barotropic, 1^-layer and two-layer outflows, 

along with the interaction of such outflows with topography.

Note that many of the ideas, results discussion here are equally applicable to 

flows between ocean basins through narrow gaps as well as river outflows. For 

example the flow of Mediterranean water into the Atlantic and the flow of deep 

water through narrow gaps connecting abyssal basins.

In order to study the evolution of a coastal current in the vicinity of sharp 

topographic change, we first use analytical methods to solve the linearised equa

tions for weak barotropic outflows (see chapter 3) and then perform numerical 

simulations under idealized conditions. In chapter 4, we examine l|-layer out

flows using a two timescale approach. First a rapid linear wave adjusted solution 

is found analytically. This is then use as the initial condition for slower, nonlinear 

numerically determined solution. Similarly in chapter 5, we examine two-layer 

outflows and their interaction with topography.
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1.2 Interaction and stability of coastal currents 

and their interaction w ith topography

It is well known that the coastal bottom topography is important for promot

ing and enhancing the growth of meanders and eddies. In general, anticyclonic 

(clockwise in the northern hemisphere) flows are found within the seawater above 

seamounts. There are different dynamical mechanisms that can generate these 

flow types. For example, to conserve potential vorticity in a steady outflow, a 

column of water will gain negative local vorticity as it is advected up over the 

seamount. This is referred to as Taylor column formation and results in anticy

clonic currents. Another mechanism is that giving rise to the topographic Rossby 

waves. Topographic waves travel with the shallower depth on the right in the 

northern hemisphere; hence, these waves are trapped to the seamount and will 

propagate clockwise around it.

Hurst and Johnson (1990) have studied uniform flow parallel to the coast 

past such topography using the linear approximation i.e. a seamount or hollow 

abutting a coast. In the case of a hollow (rather than a seamount) the behaviour 

is similar to the escarpment case of Johnson (1985) where the escarpment extends 

perpendicularly offshore. Johnson (1985) found a linear solution for coastal flow 

driven by a source-sink pair in a coastal wall in between which a step escarpment 

oriented perpendicular to the wall is located. Depending on whether shallow 

water was located on the right or left looking away from the coast (i.e. left or 

right-handed geometry) the steady flow crossed the step at infinity or at a singular 

point where the waves escarpment intersects the coast. Johnson (1985) explained 

this asymmetry by appealing to the uni-directional propagation velocities of the
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topographic wave along the escarpment. Later, Willmott and Grimshaw (1991) 

extended Johnson’s (1985) to consider a wedge-shaped escarpment extending from 

the coast, and showed that a steady geostrophic solution is established by long 

topographic waves. Carnevale et al. (1999) showed also that the evolution of 

coastal current depends on the geometry where the escarpment is located. They 

studied numerically the nonlinear problem over smoothly varying topography 

with isobaths perpendicular to the coast. As in Johnson, they studied two cases, 

namely when topographic wave propagate toward or away from the coast and 

called these different geometries left- and right-handed respectively. They showed 

that part of the coastal current is thrown back into the region upstream of the 

escarpment in the form of a dipolar jet for the left-handed geometry, but in the 

right-handed geometry the current bifurcates with a portion along the escarpment 

or leaves the coast entirely and follows the escarpment when the magnitude of 

the amplitude of the escarpment is sufficiently large.

Vortex formation has also been shown to occur over a canyon abutted on the 

coast perpendicularly in the Gulf of Cadiz (Cherubin et al. (1996)). According to 

their numerical results, eddy generation is due primarily to the strong topographic 

gradients associated with the canyon.

In chapter 6 we further evaluate the roles of physical and geometrical parame

ters of this problem, especially in the nonlinear case which is studied numerically.

Another part of this work is to study the stability of two-layer separating 

coastal currents. The baroclinic instability of large scale ocean currents could 

play the role of such mechanism due to the space-time characteristics of growing 

disturbances. Meanders and Rossby wave like motion are often found in regions 

where western boundary currents separate from continental margins, for example,
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Southern Hemisphere boundary currents (e.g. North Brazil current) which are 

frequently observed to meander and shed eddies.

Stern (1985) studied the evolution of large amplitude disturbances of a piece- 

wise uniform potential vorticity fluid flowing parallel to a straight coast. The 

results show the engulfment and entrainment of lower vorticity fluid into that 

of higher potential vorticity. Pratt and Stern (1986) studied the formation and 

detachment of quasigeostrophic eddies in a 1^-layer fluid flowing parallel to a 

coast and, subsequently, Pratt et al. (1991) included an additional potential 

vorticity front to that of Pratt and Stern (1986) which allows the possibility of 

barotropic instability. Relevant to this study, though not a coastal flow is the 

study of Meacham (1991) who used a two-layer quasigeostrophic jet with vanish

ing barotropic transport with a piecewise constant potential vorticity distribution 

in each layer enabling instability to be studied. By varying the horizontal and 

vertical structure of the jet, he obtained shingle formation and eddy detachment 

through baroclinic instability, da Silveira et al. (1999) considered the conver

gence of coastal jets in one of the two layers which leads to an offshore current. 

As in Meacham (1991) zero barotropic transport is assumed, so in the other layer 

there axe diverging coastal currents fed by an onshore current, da Silveira and 

Flierl (2002) studied the formation of nonliner eddies using a 2^-layer fluid and 

obtained a variety of eddy-shedding events and dipole formation.

The stability in a two-layer converging/di verging coastal jet associated with 

piecewise constant potential vorticity anomalies is studied using a contour dy

namics method and the results are presented in chapter 7.
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Chapter 2

Prelim inaries

In this chapter the equations fundamental to this research are briefly discussed

along with the main numerical method used in this research, namely contour 

dynamics.

The shallow water equations are frequently used as the starting point in analysing 

ocean dynamics. They describe the evolution of homogeneous, incompressible, in- 

viscid fluid flow in response to gravitational and rotational accelerations using the 

hydrostatic assumption. We can write the shallow water horizontal momentum 

equations as

2.1 Shallow water equations

du du du , dh
(2.1)

(2.2)
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2.1 Shallow water equations

and the equation of the mass conservation which states that no fluid crosses the 

free surface and no fluid can cross the lower boundary and the topographic height 

is independent of time as

p j Z T  Oj

1W + rJuH) + e-ŷ H) = °- ( 2 - 3 )

Here u , v are the two-dimensional, horizontal velocities, H  is the thickness of the 

fluid layer, /  is the Coriolis parameter, and g is the gravitational acceleration of 

the earth. If the bottom is not flat, then h in the equations (2.1, 2.2) need to 

replaced by the depth of the fluid H = h — hb where h(x, y , t) is the height of this 

free surface, hb(x, y) is the height of the bottom topography. The independent 

variables are x,y,  the horizontal coordinates, and t the time variable which has 

units

?  = §> (2-4) 

where L is the typical length scale for horizontal motions with corresponding 

velocity scale U. The vertical scale in the derivation of the shallow water equations 

is

§  <  1, (2.5)

where D is the typical layer depth. It implies that the horizontal length scale is 

much larger than the vertical length scale. (2.5) is a necessary requirement in the 

shallow water model.

The Coriolis parameter /  is a measure of planetary rotation as a function of 

latitude. It varies with latitude (j> according to /  =  20, sin <j), in which Q is the 

frequency of planetary rotation. Therefore in most geophysical circumstances,
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2.1 Shallow water equations

the horizontal deflection of horizontal motion is most significant i.e. zonal motion 

experiences an acceleration f v  and meridional motion experiences an acceleration 

fu.

The /-plane represents at a fixed latitude (f) a tangent plane approximation 

to the curved surface of the planet and describes well mid-latitude motions with 

only small meridional (i.e., latitudinal) variations.

The effective acceleration of gravity acting on one fluid in contact with a fluid 

of different density due to buoyancy forces is reduced gravity, g' = gAp/po, in 

which g is the acceleration of gravity, po is the reference density, and Ap  is the 

difference in density between the two fluids. 1^-layer ocean model is useful to 

understand where the ocean is divided into a deep layer of constant density and a 

much shallow layer above it. The lower layer is considered motionless on account 

of its large vertical extent. The thickness of the upper layer is allowed to vary.

2.1.1 Shallow water vorticity equation

A cross differentiation of the momentum equations (2.1 and 2.2) yields

D ( .du d v . .du d v . d f  , .
■m = -«Tx+ Ty)- f(irx + d;)- % ’ ( 2 - 6 )

where £ =  which is called the relative vorticity, where the possibility that

/  =  f(y)  (e.g. /?-plane) has been allowed for.

Using

Ei + v°L= D« + f) (27)
Dt dy Dt ’ ( }
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and from (2.3),
du dv 1 DH
dx^~ dy H Dt (2 .8)

we get the conservation of potential vorticity equation as

+ /)
Dt

C + f D H  
H Dt ’ (2.9)

or
D fC + f

=  0 . (2 .10)
D t \  H

The potential vorticity (q =  ^ j f )  is a useful and fundamental quantity in the

atmospheric and oceanic sciences, because it combines apparently distinct factors, 

such as topography, stratification, relative vorticity, planetary vorticity, into a 

single dynamical quantity which is conserved under ideal conditions.

2.2 Quasigeostrophic m otion

Rotating stratified flow can be viewed as controlled by the distribution of poten

tial vorticity in a similar way that two-dimensional incompressible flow is con

trolled by the distribution of vorticity. The quasigeostrophic theory of rotating 

stratified flow is particularly convenient mathematical since the conservation of 

potential vorticity (2.10) reduces to a single equation in one unknown. This 

quasigeostrophic model is based on some of the scaling assumption that the ver

tical component of relative vorticity is small compared to the vertical component 

of planetary vorticity i.e. small Rossby number. Formulation of quasigeostropic
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system requires a perturbation expansion of a set of shallow water equations at 

small Rossby number, and the quasigeostrophic equation expresses conservation 

of the leading order potential vorticity of the flow. It is also required that any 

depth variations due to topography are small compared to the mean depth of the 

fluid.

The ratio of the acceleration to the Coriolis force is characterized by the 

Rossby number i.e. Rq =  U / f L , where U and L are characteristic velocity and 

horizontal length scales, respectively and /  is the Coriolis parameter. Note that

r j2
_  ~Y~ inertia force relative vorticity ,
Rq =  —  ~ ~ ---------------------—, (2 .1 1 )fU  Coriolis force planetary vorticity’

and
1 1 y  rotation period

(2 .12)
f T  27r T  evolution time of motion ’

i.e. in the context of eddy rotation, the Rossby number is the ratio of the inertial 

period to the eddy turnover time and represents the importance of rotation on 

the vortex evolution.

Many studies in geophysical fluid dynamics use the simplified quasigeostrophic 

model which are intended to capture the key features of large scale phenomena 

while filtering out undesired fast (high frequency) oscillations which are thought 

to be unimportant. Recently a large body of literature has been devoted to 

gauging the importance of high frequency oscillation on the slower time scale 

(so called “balance”) motions. For a single layer of fluid the quasigeostrophic 

equation is

qt + Jty q̂) = 0, (2.13)
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where q is the potential vorticity

■d
(2.14)

ip(x,y,t) is the streamfunction, Rj = y/g'H/ f  is the Rossby deformation radius, 

h(x,y) is the bottom topography, and J{f,g)  =  f xgy — f ygx is the Jacobian 

operator. The leading order velocity field in this scaling is

hence the name “quasigeostrophic”. This streamfunction can be an efficient 

method of defining the flow using a single scalar variable rather than a pair 

of dependent variables which make up the vector u = (u,v).

The quasigeostrophic equation can be derived as an approximation of the ro

tating shallow water equations by the conventional asymptotic expansion in small 

Rossby number. The shallow water flows converge to the quasigeostrophic flows 

in the limit of zero Rossby number, i.e. high rotation rate. Steady geostrophic 

waves satisfy

J(4>,q) = 0. (2.17)

Since — -gzip) =  0, this equation leads to
d

J(tp, + h(x,y)) = 0, (2.18)

which implies that rfr and V2̂  +  h(x,y) axe functionally dependent. We can
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express as

'Ipxx +  'Ipyy +  h(x, y) = gty),  (2.19)

where g(ip) is an arbitrary function. Once gfy)  is determined by specifying the 

potential vorticity at one point on each streamline, (2.19) determines the steady 

flow. The quantity ij)xx + ipyy +  h(x, y) is called the potential vorticity.

Two-layer quasigeostrophic equations are derived later in this thesis in chapter

5.

2.3 Numerical procedure of contour dynamics

Contour dynamics (Deem and Zabusky, 1978; Pullin, 1992; Dritschel, 1989) has 

become a widely used method for the investigation of two-dimensional rotational 

flow of an incompressible inviscid fluid. It has been used by various authors to 

study various phenomenon such as vortex-vortex interactions, the computation 

of V-states and flow over topography. It is the principal numerical method used 

in this thesis.

The evolution of areas of uniform vorticity V2̂  =  cj =constant is fully de

scribed by the evolution of its bounding contour. In particular the velocity at the 

contours of vorticity-discontinuity, can be computed using the Green’s function 

of the associated Laplace operator. This amounts to calculating a sum of contour 

integrals the sum being over the various contours. The velocity field is then used 

to advect the contours. In general, the shape of the contours becomes increasingly 

complex with time. Contour surgery (Dritschel, 1989) allows extended runs by 

truncating the dynamic range through the automatic removal of contour features 

smaller than a prescribed scale, say S. These “surgical operations” greatly con
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trol the build-up of resolution associated with both the formation of regions of 

high curvature and the growth in total contour perimeter. The node adjustment 

scheme distributes a variable number of nodes in such a way that the interpo

lated curve between adjacent nodes remains very nearly straight, and this in turn 

enables the contour integral formulation of the velocity field to be expanded in 

a perturbation series in the small departure of the curve from a straight line 

segment between any pair of adjacent nodes.

2.3.1 Barotropic rigid-lid dynamics

The dynamics in two-dimensional incompressible, inviscid, and constant density 

fluid can be described by the material conservation of potential vorticity q:

g  =  °, (2.20)

where q = k • (V x u) is the vertical component of the potential vorticity and u

is the two-dimensional velocity of the flow.

Incompressibility requires that V • u = 0 and implies the existence a stream

function ifj of the form u =  V^. This yields the usual relationship between 

two-dimensional vorticity and streamfunction q — V 2tp. The general solution can 

be obtained using the Green’s function G(r):

- I h  ,7},t)G(r)d£dr}} (2.21)

where

r =  y/(x — £)2 + (y — rj)2 and V 2G(r) = <5(r). (2.22)
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For the two-dimensional infinite plane, G(r) =  ^  log r, thus

ip(x,y,t) = J  J  q{£, 7}, t) log rd£dr}. (2.23)

Using the inversion expression (2.23) the velocity (u , v) can be written in the 

form:

dipu =

V dx

dy ~ k  I J  ̂ ,t)^(logr)d^dr, M v ^ Q o g rW d n

(2.24)

9^  = ' k r f  J  J  J  9{^y,t)-^(^ogr)d^dri.

(2.25)

showing that, along with (2 .2 0 ), the vorticity distribution q entirely determines 

the evolution of the flow.

Applying Stokes theorem,

J <226)
to u , with R = 0 and P — — log(r), and to v with R  = — log(r) and P  =  0 leads 

to the velocity field in terms of line integrals,

u (z, V) =  77-  Y ]  &qk I  log(rfc)dxk, (2.27)
2?r * b k

where Ck is the boundary of region Rk enclosing fluid of constant anomalous 

potential vorticity and Xk is a point on Ck- It means that the velocity at an arbi

trary point can be calculated from the contour position Xk- The time evolution
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of the contour can be computed by advecting the contour using that velocity.

2.3.2 Free-surface effects

In the case of a deformable free-surface the general solution may also obtained 

using the Green’s function G(r). For the two-dimensional infinite plane, G(r) = 

— ■^K0{r) and expressions for the velocity field in terms of boundary integrals 

similar to (2.27) are obtain with log(r) replaced by — K q{t). In the absence of 

topographic variations, recall that the quasigeostrophic potential vorticity for the 

case of a deformable free-surface is

v 2ip — if> = q. (2.28)

When q is a constant the inhomogeneous Helmholtz equation can be inverted 

using the Green’s function G(r).

2.3.3 Num erical parameters

In all the numerical results reported in this thesis, a 4th-order Runge-Kutta 

method was used for the time-stepping with a time-step of 0.1. Further a spatial 

resolution better than 0.15 was used in all experiment. All of the results reported 

are insensitive to these choices of resolution.
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Chapter 3

Barotropic coastal currents 

generated by outflow and 

vorticity and their interaction  

w ith topography: one layer fluid

3.1 Introduction

Outflows from rivers and straits often comprise of fluid with different physical 

characteristics from that of the main body of receiving fluid. In particular the 

density, temperature, salinity, sediment content, biological and chemical compo

nents of the outflow fluid may differ. It is not surprising, therefore, that com

plicated dynamic processes occur when anomalous outflow waters enter basin 

waters. An understanding of the physical processes governing the behaviour of 

such outflow plumes is important since they play a significant role in the coastal
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ocean circulation. Outflows may occur over a wide range of spatial scales; from 

sewage outflows to basin-scale flow through the Indonesian archipelago. Here, 

the focus is on large scales, so that the Earth’s rotation is important but not so 

large that the beta effect needs to be considered. That is, typical length scales 

of interest here are of the order of 100km e.g. the outflows from large rivers such 

as the Amazon and the Changjiang rivers.

Wiseman and Garvine (1995) argue theoretically that typically an outflow 

plume in the northern hemisphere will spread along the right-hand coast (looking 

away from the coast) in the direction of Kelvin wave propagation e.g. the outflow 

from Delaware Bay (Miinchow and Garvine, 1993a). For barotropic outflows in 

which Kelvin wave radiation is eliminated through the rigid-lid approximation, 

it is expected that the same direction of spreading will occur if, as is typical, 

the depth of the receiving fluid increases away from the coast. In this case, 

continental shelf waves play the same role as Kelvin waves. Such topographic 

waves propagate with shallow water on the right (i.e. the same direction as 

Kelvin waves) and establish drainage pathways for the plume to the right of the 

outflow.

Shelf topography can have a significant effect on the behaviour of the outflow 

plume. Beardsley and Hart (1978) obtained analytical solutions to the one-layer 

outflow problem in the steady frictional limit for special choices of shelf profile 

having increasing depth offshore. They found the far-field flow to be concentrated 

toward the right-hand coast and attributed this asymmetry to a balance between 

topographic vortex stretching and bottom friction. Xing and Davies (2002) use 

a numerical model of the primitive equations to show how the change in shelf 

width influences the alongshore and offshore extent of the Ebro outflow plume.

20



3.1 Introduction

Kourafalou (2001) suggested the importance of interaction of the plume with the 

ambient flow and the topography and geometry of the basin in determining the 

behaviour of a number of specific outflows. For instance, the narrowness of the 

basin near the discharge site of the Axios River (discharging into the Thermaikos 

gulf, Greece) allows for offshore expansion of the plume all the way to the east 

coast and the establishment of anticyclonic flow over a large part of the shelf, 

regardless of wind conditions.

As reviewed in McCreary et al. (1997) there is also observational evidence for 

upstream (i.e. the opposite direction to Kelvin and continental shelf wave prop

agation) propagation of the outflow plume. Using a l|-layer, numerical model 

incorporating the effects of finite Rossby number and mixing, McCreary et al. 

(1997) studied outflows and showed that river plumes consist of an offshore bulge 

in the vicinity of the source and a coastal current in the direction of Kelvin wave 

propagation. The Rossby number of the outflow was found to be an important 

parameter in determining the nature of the outflow i.e. if the Rossby number is 

large enough, the river water flows directly offshore and only a portion of it recir

culates to form a coastal plume propagating along the shore. Kubokawa (1991) 

also studied outflows using a l|-layer model, but assumed quasigeostrophic dy

namics (i.e. valid for small Rossby numbers). This enabled the use of contour 

dynamics to track the outflow plume and he showed that the downstream coastal 

current had a limited capacity to advect low potential vorticity fluid so that gyre 

formation was inevitable. That is, if the outflow consisted of fluid of lower poten

tial vorticity than the surrounding the resulting relative negative vorticity of the 

outflow fluid would drive the fluid upstream owing to an image effect in the coast. 

Nof (1978) and Nof and Pichevin (2001) also studied the effect of anomalous po

21



3.1 Introduction

tential vorticity on the outflow dynamics and attributed upstream propagation 

and gyre formation to low potential vorticity outflows. Such upstream propaga

tion of low potential vorticity fluid also occurred in the contour dynamics study of 

nonlinear geostrophic adjustment of an initial discontinuity in free-surface height 

in a channel by Hermann et al. (1989)

The above studies indicate that the nonlinear behaviour of a general out

flow is complex and represents a demanding task to numerically model given the 

many different physical processes at work. It is especially true that interactions 

between outflows and topography remain poorly understood particularly in the 

case when the outflow has anomalous potential vorticity. In this study the aim 

is to study the interaction of vortical outflows and topography and we choose 

to model shelf-like topography in the form of an infinitely long escarpment (i.e. 

step-change in depth) running parallel to the coast. While not especially realistic 

it does serve to highlight the role of topographic wave dynamics in establishing 

coastal currents. A similar choice of topography was made by Johnson (1985), 

who investigated analytically the flow across a depth discontinuity perpendicular 

rather than parallel to the coast, and also by McDonald (1992) who studied the 

problem of suddenly initiating a buoyancy source near an escarpment (but no 

coast) using analytical and numerical methods. Both these studies demonstrate 

the role of topographic waves in inhibiting fluid transport across topography.

In the present study we focus on the dual roles of topography and inherent 

vorticity of the outflow fluid in determining its behaviour. In doing so we use 

make a number of assumptions, some of which are of debatable validity in ap

plication to outflow plumes. First, the fluid is assumed to be barotropic. This 

completely removes the possibility of Kelvin waves and the associated tendency
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of outflow plume to spread alongshore to the right of their source regions in the 

northern hemisphere. This assumption (which will be relaxed in chapter 4) is 

clearly not valid for outflows which are anomalously buoyant, but allows us to 

isolate the alongshore spreading effects due to topography and the ‘ image’ effect 

of the anomalous vorticity of the plume. Note also that the barotropic assumption 

implies that the outflow is not driven by buoyancy effects but is instead forced 

by external effects such as river discharge or tidal forcing. Second, it is assumed 

that the dynamics are quasigeostrophic. This implies that the Rossby number 

U/  J L , where U is a velocity scale, /  the Coriolis parameter and L  a length-scale, 

is small. Further, quasigeostrophic theory demands that the scale height of the 

topographic variations are small compared to the mean depth of the fluid. This 

latter assumption in particular is, again, arguable since the depth variations in 

many continental shelf regions are often comparable to the depth of fluid itself. 

Nevertheless, the combination of quasigeostrophy and topography in the form of 

a step parallel to the coast will illustrate the steering effect of the topography. 

Third, we assume, as does Kubokawa (1991), the relative vorticity of inflow fluid 

is constant while the fluid to which it is flowing into is quiescent (and so has 

zero relative vorticity). The vorticity of the inflow fluid then feels its ‘image:* in 

the coast which serves to drive the alongshore outflow. Note that such constant 

relative vorticity of inflow fluid may be achieved through potential vorticity con

servation when, say, fluid from a basin of one uniform depth flows into another 

basin with a different uniform depth. The above assumptions, along with further 

assumptions of zero friction and mixing, imply that we can use potential vorticity 

conservation to interpret the behaviour of the outflow plume. Since the vorticity 

distributions of both the outflow and the receiving fluid are piecewise constant,
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the efficient numerical method of contour dynamics can be used. This chapter 

is arranged as follows; after the problem formulation in section 3.2, we solve in 

section 3.3 an initial value flow problem with shelf topography for large times in 

the weak outflow (linear) limit. Numerical results using a contour dynamics are 

presented in section 3.4 and interpreted using potential vorticity conservation. 

In section 3.5 ambient flow effects on the rate of plume spreading are studied 

analytically and numerically. Finally conclusions are given in section 3.6.

3.2 Problem  formulation

The fluid is assumed homogeneous and inviscid, and the bottom and the surface 

are flat except at the step change in depth running parallel to a straight coast, a 

distance L offshore. The geometry of the outflow problem is shown in Figure 3.1 

(where L = 1 after non-dimensionalisation). An inviscid, non-diffusive fluid with 

constant relative vorticity uj flows onto a shelf (0 < y < L, region 2) of uniform 

depth H\. Deeper fluid of depth H 2  lies offshore for (y > L , region 1). The flow is 

barotropic (i.e. rigid-lid) and the Rossby number Rq = U/ f L,  where U is a typical 

outflow velocity and /  is the Coriolis parameter, is assumed small. Further, the 

ratio 8 =  (H 2 — Hi)/Hi  is also assumed small. These two assumptions imply the 

outflow dynamics are quasigeostrophic. The velocity scale U is set by the outflow 

flux Q/2 i.e. U = Q/2L2.

Non-dimensionalising using L  as the lengthscale and t R o ' r  1 as the time- 

scale, gives the non-dimensional quasigeostrophic equation of motion as

V V t +  Jbl>, v fy ] +  SJ[1>, d\ = 0 , (3.1)
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where J[f,g] = f x gy — f ygx , d = — isgn(?/), S  =  5/Rq and ^  is the stream func

tion for the flow. The above equation implies conservation of potential vorticity 

q = V 2̂  + Sd. The parameter S  measures the relative importance of topography 

and advection (see Dunn et al., 2001). For S' C  1 topography is negligible and 

fluid columns are easily advected across the step. On the other hand, for S  1 

topography constrains the outflow. The outflow has non-dimensional vorticity u  

(made non-dimensional using R of ), hence there are then two parameters in this 

problem: S  and lj. Also shown in Figure 3.1 are the relative vorticities acquired 

by fluid that is forced to cross the escarpment, represented by the deflected to

pographic contour which initially lays along y =  1 . Fluid going from shallow to 

deep regions acquires relative vorticity V2,0 =  S  according to potential vorticity 

conservation. Similarly fluid going from deep to shallow acquires relative vorticity 

V 2V> = - S .

3.3 Initial flow problem with bottom  topogra

phy

3.3.1 Formulation of the linear problem

In this section we solve the linearised version of (3.1). This linearisation is valid 

provided S/Q  1 , i.e. the effects of topography dominate those of advection at 

the escarpment, and is therefore valid for very weak outflows i.e. small Rossby 

number Rq. Also, it is assumed u  =  0, so that the outflow is passive.

We introduce the new time scale r  =  St  in (3.1). For y ^  1 , (3.1) becomes 

V 2ip =  0. Integrating (3.1) across y =  1 gives the condition (c.f. Johnson, 1985;
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Region 1 (deep)

y=l

Region 2 (shallow)
V2 y = 0

y=o

Source

(b)
y=0 y=i

Region 2 (shallow)
Hi

Region 1 (deep)

H  2

Figure 3.1: Sketch of the basin and outflow system: (a) Plan view, showing the 
localised source of outflow fluid at (0,0) and the width of the shelf L = 1; (b) side 
view. The dashed line indicates the position of the topographic step at the edge 
of the shelf, and the solid lines in (a) indicates boundaries separating different 
(constant) vorticities.
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3.3 Initial flow problem  w ith  bottom  topography

Dunn et al., 2001)

[ i j j y r ] -  0 * =  o, on y =  1 , (3.2)

where [ ] denotes the jump of the enclosed quantity across y = 1 .

The task is to solve V20  =  0 subject to the boundary conditions:

(3.3a)

V 0 —> 0 , as y —► oo,

[0 ] =  0 , on y = 1 ,

[0 yr] -  0 * =  0 , on y =  1 .

(3.3b)

(3.3c)

(3.3d)

In addition to (3.3d) these conditions represent the following; (3.3a) is the re

quirement of no normal flow at the wall with a source of non-dimensional strength 

Q/2 at the origin, (3.3b) says the fluid is at rest in the far-held, and (3.3c) is the 

continuity of 0  across the escarpment.

We write the total streamfunction 0  as 0  =  0 +  0*, where 0* is the stream 

function of the initial flow. At t  = 0, topography is not felt and the flow is 

potential everywhere. Thus, the initial stream function satisfying V 20, =  0 is

where Q{r)/2 is flux from the source at (x, y) = (0,0). The constant term in

(3.4) is to make it consistent with boundary condition (3.3a).

In region 2 (0 < y < 1), after Fourier transforming in x , we have (f>yy — k2(f) =  0,

(3.4)

To solve for 0, we take the Fourier transform in x  i.e. 0 =  J^  0(x, y)etkxdx.
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3.3 Initial flow problem w ith  b ottom  topography

which has solution

<j> = A(k, t ) sinh ky +  B(k, r) cosh ky. (3.5)

From (3.3a) and (3.4) it follows (f> = 0 at y = 0, and therefore </> =  0 at y =  0, 

and so B(k,r)  =  0. In region 1 (y > 1), the solution for 4> which is bounded as 

y —*■ oo is

<{> =  C(k ,r)e~^y. (3.6)

At the boundary of the regions (y = 1 ), 0 is continuous since ^  is everywhere 

continuous. Hence matching (3.5) and (3.6) at y =  1 gives A(k, r) sinh k = 

C(k,r)e~\k\.

Now we use the Fourier transform of the matching condition (3.3d). First 

note the Fourier transform of the initial stream function (3.4) which gives the 

correct velocity components for a source of strength Q / 2  at the origin is

*  =  b-w*- (3-7) 

Similarly, the Fourier transform of <j)yT for y > 1 is

4>yT =  -\k\$r = -\k\CTe-Wy, (3.8)

for 0  < y < 1 is

(j)yT = kAT cosh ky. (3.9)
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3.3 Initial flow problem  w ith  bottom  topography

Thus, from (3.8) and (3.9), the jump in §yT across y = 1 is

[4>yT\ =  — \k\Cre~^  — kATcosh.k,

=  — l&IArSinh/c — A:Ar coshA:, (3.10)

=  - k e ^ A r ,

^4sinhfc at y = 1 has been used. Thus, condition

ie~\k\ sinh/^4 = ---- -—q(k), (3.11)
k

q(k) = - i ^ | y=i,

=  (3-12)

-  Q W  -w  
2

Equation (3.11) may be written as

Q( 7"̂ g—̂1̂1
A t -  icr(k)A = -------—-----, (3.13)

where cr(k) = e- ^  sinh k. This is an evolution equation for A(k, r)  which needs

to solved subject to the initial condition A =  0 at t =  0.

where the fact that Ce ^  =  

(3.3d) gives

AT -

where
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3.3 Initial flow problem  w ith  bottom  topography

The unforced problem: Linear waves

Consider the homogeneous version of (3.13) which has solution A(t ) = elCT. 

Thus,

a(k) = e~\k\ sinh A;, (3.14)

is the dispersion relation for the linear topographic waves.

The phase velocity cp and group velocity cg calculated from (3.14) are

sinh A; _it i 
c? = — e  ’

-2|fc| (3.15)

Figure 3.2 shows a plot of cp and cg as a function of k. Note Cp,cg > 0 

and thus the waves propagate phase and energy to the right i.e. with shallow 

water on their right. In this way they behave like typical continental shelf or 

vorticity waves i.e. propagating with high potential vorticity on their right in 

the northern hemisphere. This preferred direction of propagation is important in 

understanding the large-time behaviour of the source flow (see section 3.3.2).

3.3.2 Solution o f the initial value problem

The solution of (3.13) for A(k , r)  subject to A = 0 at t =  0 is

A  =  ~ ? T)f (1 -  e ^ ) . (3.16)2k sinh k '
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0 .

- 4 0  
k

2

Figure 3.2: Plot of the phase velocity (solid line) and the group velocity (dashed 
line) as a function of wavenumber k.

Thus, for 0 < y < 1, we have

4> = A  sinh ky ,

(3.17)

and for y > 1
~Q(r)i

2k (i (3.18)

For general r  these Fourier transforms are difficult to invert analytically and 

must be done numerically. Since the large-time behaviour (r  —> oo i.e. t > 0(1)) 

is of most interest here, we look at the steady state, i.e. we ignore the time- 

dependent terms in (3.17) and (3.18). Therefore, for 0 < y < 1, the steady state
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3.3 Initial flow problem  w ith  bottom  topography

streamfunction, tpss = (j) +  is

- q  r  . q- if £  + s  £  (sk*) <319>
where the last term is ipi written as a Fourier integral.

For y > 1, the steady state streamfunction is

*- - if £  st*""*""* + I  £  (a*-* ) - * <“•>
Thus, for y > 1 as r  —> oo, the flow vanishes, i.e. fluid is quiescent. Hence, for 

large r , the source flow is confined to the channel 0  < y < 1 . This is consistent 

with the fact that in steady quasigeostrophic flow, fluid can not cross isobaths. 

Consider now the Fourier inversion of

- O  f°° ie~W
*“ (*■y) = 1 7 L  2 k ^ h k sinhkye~' *dk- ( 3  21)

This must be inverted subject to a radiation condition. In particular, as 

t —» oo, we require eia^ T —> 0  on all points of contour, so Re[ia(k)] < 0 near the 

singularity at k =  0  and accordingly the inversion contour must be indented to 

pass above singularity at A; =  0.

In addition to the singularity at k = 0, there are simple poles at k = ±imr ,

n = 1 ,2 ,3 , Using a residue calculation, for x < 0 the contour is closed in the

upper half plane and the poles at k — inn, n =  1 , 2 ,3, . . . ,  give
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3.3 Initial flow problem  w ith  bottom  topography

4*ss |x< 0  =  2iri Residues 

_ sin ri7ryen7rx
<3 2 2 >n=l

and for x > 0  the contour is closed in the lower half of the &-plane giving

</>ss|x> 0  =  —2ni y y  Residues

y (3.23)

Finally combining (3.22) and (3.23) gives, for —oo < x  < oo,

^ ss = ~2m ^ sgna; X J \  sin(m^ /̂)e_m̂ ,a:, +  ^yH(x)^  .

Now, since

=
q_ r 
2 tt J_t e-y\k\e-ik*dk ,

(3.24)

(3.25)

a similar residue calculation to that above gives the contribution from the pole 

at k = 0  as

Q2m
2ir 2  * ( . )

=  § * (* )• (3.26)

Thus, combining (3.26) and (3.24) gives the total streamfunction ij)3S as r
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X

Figure 3.3: Contours of streamlines for steady linear flow from a source at the 
origin. Note that no fluid crosses the shelf-edge at y =  1.

oo:

^sgnx y j  i  sin(n7 +  7r l) tf (x )J  . (3.27)

Note from (3.27) ijjss\y=i =  0 as required to match the quiescent flow for y > 1. 

Also ^ss|y=o =  ®H(x), which agrees with boundary condition (3.3a).

Now calculating w, v from (3.27) gives

u =  -'ipssy =  j  | sgnx ^  cos(nny)e n7r|x| +  irH(x) ] ,

sinh 7xx9
4

9
2

cosh ttx — cos Try +  1

=  ^ s s x  =  — ^sin (ri7 n /)e  n7r|x|,

n—1

Q sin(7ry)
4 cosh 7xx — cos ny

(3.28a)

(3.28b)
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3.4 N onlinear behaviour of the outflow

Note that as x  —> oo, u —» Q/2, i.e. uniform outflow, and a s r - >  —oo, u —► 0 

i.e. no flow. Thus the flow is that of a source of strength Q/ 2  in a infinitely 

long channel of unit width, with a uniform along channel flow superimposed so 

as to make the net flow vanish at one end of the channel (see appendix A for an 

alternative derivation of the steady state velocity field 3.28a, b). A plot of the 

streamlines is shown in Figure 3.3 and are similar to those obtained by Beardsley 

and Hart (1978) for steady, frictional outflows onto uniformly sloping shelf. The 

fact that the topographic wave propagate only toward positive x gives rise to the 

asymmetric nature of the source flow. It is analogous to Kelvin waves causing 

outflows to deflect to the right in the northern hemisphere. This deflection to 

the right will always be the case for any choice of topography which increases in 

depth away from the coast.

3.4 Nonlinear behaviour of the outflow

3.4.1 Num erical m ethod

The piecewise constant distribution of potential vorticity in the problem illus

trated in Figure 3.1 means that the method of contour dynamics can be used to 

study the evolution of the outflow. Here we adapt the contour surgery algorithm 

of Dritschel (1989). The potential vorticity jump at the step y = 1 is treated 

in a similar manner to that in Dunn et al. (2001). Further, the presence of the 

wall involves the introduction of image contours about y = 0  in order to satisfy 

the no normal flow boundary condition there. In particular, there are two im

age contours; one for the contour bounding the source fluid and another for the
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3.4 N onlinear behaviour of th e  outflow

contour initially overlaying the step. An additional requirement is to represent 

a point source at the origin. This is achieved by initialising the algorithm with 

a small (radius 0 .2 ) semicircular contour (representing the outflow fluid) centred 

at the origin (x =  0 ). A potential source flow with constant on-shelf mass flux 

Q / 2  is switched on at t — 0, causing the contour to grow and evolve according 

to potential vorticity dynamics. The initial flow consists of a source in the wall 

(y = 0) at the origin and the step is located y = 1 (see Figure 3.1). Points 

on the contours are advected using a 4th-order Runge-Kutta scheme and are 

added as required as the contours grow in order to maintain the same resolution. 

The results of the numerical experiments axe to be displayed in a domain such 

that — 2 0  < x < 2 0 , however the computational domain occupies a larger extent 

namely — 50 < x  <  50j so that end effects are negligible.

3.4.2 N o topography: self-similar outflow

Consider an outflow with transport Q/2 emanating from a point source located on 

a coastal boundary flowing into an ocean with no topography (Figure 3.4(a)). The 

removal of topography (which is, in general, described by two parameters namely 

its offshore distance and height S ) means that there are no free parameters. In 

fact using t ~  a; - 1  as the time scale, and ip ~  Q as the stream function scale, 

and L  ~  (Q/uj)1̂ 2 as the length scale, the original quasigeostrophic equation can 

be non-dimensionalised to give:

V V ( +  J [^ ,V V l =  0. (3.29)
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Figure 3.4: (a) Sketch of a basin and outflow system with no topography. Dashed 
line represents the image contour, (b) At large times the constant vorticity out
flow has constant width W  with uniform shear.

Since there are no free parameters in (3.29) the flow is self-similar and the values 

uj =  Q = 1 are chosen for the numerical simulation. The evolution of the outflow 

is shown in Figure 3.5. Outflow fluid spreads to the right under the influence of 

the negative (clockwise) circulation of the image vorticity. Note that its ‘head’ 

formation is similar to the evolution of the vorticity front studied by Stern and 

Pratt (1985). Behind the ‘head’ of the outflow the current settles down to a 

coastal current which approaches a nearly uniform width W  flowing parallel to 

the coast (see Figure 3.4(b)). Conservation laws may be used to find an expression 

for W.  First note that since the flow behind the ‘head’ is approximately parallel, 

it follows that in this region

V V  = ipyy =co (3.30)

and solving gives ip =  |j /2 + ay + b,where and are constants. Using the 

offshore boundary condition u = — ipy = 0 at y = W,  we find a = — W . Equating
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-1 0  0 10 20 30 -1 0  0 10 20 30

Figure 3.5: Evolution of outflow plume from numerical solution in the case of 
Q = 1.0 with cyclonic potential vorticity u  — 1.0 shown by the panels for times 
t = 1 — 50 at a time interval of 5 units.

the volume flux of the current to that of the source gives

O f w W 2
~2 =  Jo Udy =  ~^\v=w — ■ (3.31)

Thus from (3.31) for Q = 1 we have W  =  1. This compares well to Figure 3.5, 

which shows the coastal current settling down to unit thickness behind its ‘head’. 

The simulation shown in Figure 3.5 was continued to very large times (t = 150) 

and there was no evidence for the ‘head’ detaching from the main current, but 

instead continues to grow in the manner shown in Figure 3.5.
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3.4.3 Outflows with topography

With the addition of topography in the form of an infinitely long step running 

parallel to the coast some distance offshore, the flow is no longer self-similar. 

Choosing the offshore distance as the lengthscale there are three parameters, 

namely S  (see section 3.2) measuring the relative effects of topography and ad- 

vection, the vorticity lj of the outflow and Q , the outflow strength, though, as 

discussed in section 3.2, only two are independent. However, in the following 

experiments we choose to vary all three of Q,cj and S  so that their individual 

effects can be studied.

Figure 3.6 shows the behaviour of the outflow plume, with Q =  0.3, u  =  0.0, 

and S  =  0.5. In this case, S/Q > 1 i.e. topography dominates the effects of 

advection and the outflow should share some of the characteristics of the linear 

solution (which recall is valid for S/Q  —» oo). Figure 3.6 confirms this, as the 

outflow spreads to the right and is largely confined to the shelf region 0 < y < 1. 

Note, unlike the example in Figure 3.5, since u  =  0, it is solely the effect of 

the deflected topographic contour which causes the outflow fluid to flow toward 

positive x. In particular, the deflected contour bounds fluid which has gone from 

shallow to deep water and thus, by potential vorticity conservation, has positive 

circulation. It is this positive (anticlockwise) circulation in the deep region y > 1 

which advects the outflow plume to the right.

Figure 3.7 shows an experiment with the same outflow strength (Q =  0.3) and 

vorticity (uj — 0) as that shown in Figure 3.6, but with a weaker topographic effect 

{S =  0.2). It shows that the weaker topography allows some of the outflow fluid 

to cross the step, but there is a tendency for the outflow to spread to the right
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Figure 3.6: Evolution of the outflow and topographic contour for t =  1 — 50 is 
shown by the panels for every 5 time units. Here Q = 0.3, u  = 0, S  = 0.5.

owing to the anti-clockwise circulation of the deflected topographic contour. Note 

also that in comparison to Figure 3.6, the plume spreads a smaller distance along 

the wall in the same time, since the topographic effect is weaker in comparison.

Figure 3.8 shows the behaviour of the outflow plume forQ  =  0.3,o; =  0.5 and 

S  = 0.2 i.e. the same as the experiment in Figure 3.7, except the outflow now 

has positive anomalous vorticity (c.f. Figure 3.5). In comparison to Figure 3.7, 

it spreads further to the right over the same time period. This is because both 

the topographic effect discussed above and the image effect owing to the positive 

vorticity u  of the plume reinforce each other in driving the plume to the right. 

Because the plume spreads more rapidly to the right, the offshore penetration
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Figure 3.7: Evolution of the outflow and topographic contour for t = 1 — 50 is 
shown by the panels for every 5 time units. Here <2 =  0.3, a; =  0, 5  =  0.2.
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of the plume in Figure 3.8 is less than that in Figure 3.7. There is also a well- 

defined ‘head’ to the outflow plume like that of self-similar no-topography case 

of Figure 3.5, such a ‘head’ occurring whenever u  ^  0.

Figure 3.9 shows the outflow with Q = 0.3, S  = 0.5 and lj =  0.5 and so 

demonstrates the effect of increasing S  relative to the experiment shown in Fig

ure 3.8. The increase in S  enhances the rate at which the plume spreads to the 

right. Note also the ‘head’ of the plume is much reduced in size in comparison 

to Figure 3.8. This is because the increase in S  gives the topographic contour a 

greater ‘stiffness’ and thus inhibits fluid transport across the step and resists the 

growth in the size of the head.

Figure 3.10 shows an outflow with the same parameters as that in Figure 3.9 

with the significant difference that the sign of the vorticity of the outflow fluid is 

reversed i.e. Q = 0.3, S  — 0.5 but u  =  —0.5. In this case, the image vorticity 

drives the plume to the left and therefore acts in competition to the effect of 

the topography. The part of the outflow closest to the wall feels its image to 

the greatest degree and spreads to the left. On the other hand, the part of the 

outflow plume closest to the topography ‘feels’ the anticlockwise circulation due 

to the displaced topographic contour and therefore wants to spread to the right. 

As a result, the plume becomes sheared, and overall spreading in any particular 

direction parallel to the coast is impeded. The lack of net transport along the 

coast means that the offshore penetration is enhanced. Indeed, it is apparent that 

the displaced topographic contour which circulates anticlockwise for y > 1 and 

the clockwise circulation (negative vorticity) of the source fluid have paired up to 

form an efficient dipolar transport mechanism which carries fluid off-shore. Such 

dipolar formation is frequently observed in dynamics with piecewise constant
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Figure 3.8: Evolution of the outflow and topographic contour for t = 1 — 50 is 
shown by the panels for every 5 time units. Here Q = 0.3, u  = 0.5, S  = 0.2.

vorticity distributions (see, e.g., Dunn et al., 2001). The dipolar transport of 

fluid offshore is a robust mechanism and occurs over a wide range of parameters. 

For example, Figure 3.11 has Q = 0.5, u  = —0.5 and S  =  0.5 i.e. the vorticity 

jump across the plume and topographic contours are now equal in magnitude but 

opposite in sign. The plume’s penetration offshore is enhanced by the oppositely 

circulating patches of vorticity. The dipolar mechanism here is more efficient than 

the experiment in Figure 3.10 since the vorticity jumps are matched.

Figure 3.12 summarizes the behaviour of the outflow plume for a number of 

experiments with varying Q and S  but with fixed u; =  —0.5 i.e. when the topo

graphic and image effects oppose each other. Specifically Figure 3.12(a) shows
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Figure 3.9: Evolution of the outflow and topographic contour for t = 1 — 50 is 
shown by the panels for every 5 time units. Here Q = 0.3, u  = 0.5, S  = 0.5.
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Figure 3.10: Evolution of the outflow and topographic contour for t =  1 — 50 is 
shown by the panels for every 5 time units. Here Q = 0.3, u  =  —0.5, S  =  0.5.
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Figure 3.11: Evolution of the outflow and topographic contour for t = 1 — 50 is 
shown by the panels for every 5 time units. Here Q =  0.5, lj =  —0.5, S  =  0.5.
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* * *
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Figure 3.12: Maximum distances achieved by the negative vorticity (u  =  —0.5) 
outflows at T  = 50. (a) represents the maximum alongshore distance to the left 
and (b) shows the maximum off-shore distance achieved by the outflow plume 
at T  = 50. Each set of symbols represent five experiments varying S  =  0.1 to 
S  = 0.5 going from left to right. The different symbols correspond to different 
outflow strengths: Q = 0.1(+), Q = 0.2(*), Q = 0.3(o), Q = 0.4(x), and 
Q = 0.5(A).
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Figure 3.13: Maximum distances achieved by the outflows at T  = 50 with S  = 0.5. 
(a) alongshore to the right and (b) offshore. Each set of symbols represent three 
experiments varying with u  = 0.5, u  = 0.0, and u  =  —0.5 going from left to right. 
The different symbols correspond to different outflow strengths: Q = 0.1(+), 
Q = 0.2(*), Q =  0.3(o), Q =  0.4(x), and Q = 0.5(A).
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3.4 N onlinear behaviour o f the outflow

the maximum distance (to the left) the outflow plume reaches at T  = 50, and Fig

ure 3.12(b) shows the maximum offshore distance at the same time. For a given 

Q, Figure 3.12(a) demonstrates the alongshore spread increases with S. This is 

perhaps surprising since increased S  increases the topographic effect pushing the 

plume to the right. However, the increase in S  implies a ‘stiffer’ topographic 

contour which impedes the offshore spreading of the plume and so increases the 

shear of the plume in the coastal direction i.e. the plume spreads further both 

to the left and right. As Q increases there is an increase in the spreading of the 

plume in both directions since there is now more source fluid to be spread out. 

Figure 3.12(b) shows for a given Q there is an increase offshore penetration dis

tance with S  as the dipolar mechanism becomes more efficient as the vorticities of 

the topographic and outflow contours become more evenly matched. Curiously, 

however, Figure 3.12(b) shows a decrease in offshore penetration distance for the 

case when S  =  0.5 in the experiments with Q =  0.2, 0.3, 0.4 and 0.5. This is due 

to the curved path (due to a mismatch in the areas of the fluid comprising the 

dipole) of the dipole which begins to head back toward the coast. The curved 

path of the dipole is evident, for example, in Figure 3.10.

Figure 3.13(a,b) is a similar plot to Figure 3.12(a,b) but now S  = 0.5 is fixed 

and Q and u  are varied. Maximal coastal (to the right) and offshore penetration 

distances are shown for different values of Q = 0.1, 0.2, 0.3, 0.4 and 0.5 with 

u  — —0.5, 0 and 0.5 for each value of Q. Clearly shown in Figure 3.13(a) is 

that, for a given Q, when u j  =  0.5 the spread of the plume is greatest since both 

the image and topographic effect complement each other. For u; =  —0.5 the 

two effects oppose each other, inhibiting the spread of plume along the coast in 

either direction. This however means, by mass conservation, that the offshore
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3.5 Effects of am bient flow

penetration distance is enhanced as u j  decreases -see Figure 3.13(b). The general 

trend as Q  increases is both the alongshore and offshore penetration distances to 

increase since there is now more fluid to disperse.

3.5 Effects of ambient flow

The spreading characteristics of the alongshore current generated by outflow vor

ticity are altered in the presence of background flows. In particular the effect of 

a uniform ambient flow, U stre a m , parallel to wall is studied in the absence of shelf 

topography. This then forms a one-parameter, U stre a m ,  family of solutions. In 

particular, the ambient flow affects the “nose-velocity”, UnoSe, and the offshore 

extent of the outflow. To find an expression for U n o se , first consider the general 

expression for the stream function ^(x^y)  in the presence of a plane boundary 

along y = 0,

UJ

47T

rO  r W ( r i )

/ / lnJ —oo J 0

(;X -  0 2 + (y- v)‘
Xx-i)2 + (y + y)2. d£dr} Ustreamy. (3.32)

Here the coastal current is assumed to be of semi-infinite length extending from 

x  =  —oo to x  =  0 with width y = kF(x)-see Figure 3.14.

The x-velocity at the nose is given by —tyy|x=y=0 i.e.

uj d
Unose a A I47T dy 7 - 0 0  7 o

(x -  Z)2 + ( y -  rj)'-

UJ

2n I

(x ~  f )2 +  (2/ +  ri)2.

d £  ~ f*  U gtream ,’

d^dy\x=y=Q T  Uts tre a m

(3.33)

The integral expression in (3.33) was also found by Stern and Pratt (1985). Sup-
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3.5 Effects of am bient flow

Ustream

x=0
Figure 3.14: Coastal current in a uniform stream parallel to the coast.

pose that we approximate VF(£) ~  W  =  constant, (i.e. the width of the current 

is constant over most of its length). The integral in (3.33) can now be evaluated 

exactly (e.g. integration by parts) to give n W  and hence

U n o s e  —  U in ose is s trea m +
u W

(3.34)

Now, what determines the current width W? Proceeding as in (3.30) and (3.31) 

(i.e. assuming parallel flow in a coastal current of uniform vorticity u j , an expres

sion for the stream function is

ip = - u y 2 + ay. (3.35)

Equating the flux in the current to the source flux Q/2  gives

pwI udy =  +  ^\y= 0

Jo

= - - 0 JW2 + - a W  =
2 2 (3.36)
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3.5 Effects o f am bient flow

Further, matching the velocity of the current to Ustream at y — W  gives

^  —  ^P y  | y = W  —  U s t r e a m

or

-  U W  -  a  =  U 3t r e a m • (3.37)

Equations (3.36) and (3.37) give a quadratic in W  which has solution

y y    U s t r e a m  d l  \ U s t r e a m  ~f~ q q \

iJ

Thus from (3.37) and (3.38)

t U .  =  ±  \  VUZtream+u>Q. (3.39)

In order for (3.39) to be consistent with Figure 3.14, U n o s e  > 0 and hence the 

positive root in (3.39) must be taken.

Figure 3.15 shows the evolution of an outflow plume with Q = u  = 1 (i.e. the 

same parameters used in the self-similar outflow experiment shown in Figure 3.5) 

with a uniform stream Ustream =  1- Note that in comparison to Figure 3.5 the 

plume spreads to an alongshore distance of ~  60 units in comparison to ~  22 

units in the Ustream =  0 case shown in Figure 3.5 over the same timescale. Note 

also that the current width is also much smaller in the U s t r e a m  = 1 case, as it 

must, to accommodate the same flux.

Figure 3.16 shows a plot of the nose velocity U n o S e  against Us t r e a m  for a numer

ical experiments (0 < Ustream < !)• Also plotted as a solid line is the analytical
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Figure 3.15: Evolution of the outflow for t = 1 — 50 is shown by the panels for 
every 5 time units. Here Q =  1.0, u j  = 1, U s t r e a m  —  1-
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Figure 3.16: The relation between Unose and Ustream- — represents analytic results 
and * represents the numerical results. Here u  = Q = 1.

relation given by (3.39). The agreement of the numerical results with the analyt

ical prediction is excellent.

3.6 C onclusions

A simple model based on barotropic quasigeostrophic dynamics has been formu

lated to study the combined effects of shelf-like topography and inherent vorticity 

on the dynamics of outflow plumes.

For small outflow mass fluxes the linearized equations are valid and are solved. 

The solution demonstrates that topographic shelf waves act to turn the outflow
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plume to the right in the northern hemisphere. At large times the outflow is 

bounded by the shelf and the coast, and all the mass flux is to the right.

Contour dynamics is used to study the nonlinear evolution of the outflow for 

the case when the outflow fluid has vorticity u j  relative to the surrounding fluid. 

In addition to the topographic effect which steers the outflow to the right, the 

image of the outflow fluid in the coast will also serve to drive the outflow parallel 

to the coast, in a direction depending on the sign of u j .

For the special case when the step height S  is zero (i.e. there is no shelf 

topography) the outflow is to be self-similar, and evolves to a coastally trapped 

plume of uniform dimensional width ( Q / u j ) 1̂ 2 , where Q j 2 is the volume flux of 

the outflow, behind a growing head.

When topography is included and u j  > 0, the image and topographic effects 

reinforce each other and, for a given Q, the plume spreads further to the right 

in a given time as compared to when only one of these effects is acting. As a 

consequence of the enhanced spreading in the coastal direction there is a decrease 

in the offshore penetration of the plume.

When u j  < 0 the topographic and image effects act in competition. Near 

the coast the outflow is affected most by its image and spreads to the left. On 

the other hand the outflow near the step spreads to the right. The result is 

that the outflow becomes sheared as it spreads in both directions. In addition 

the negative vorticity of the outflow can ‘pair-up’ with the positive vorticity of 

fluid forced across the step into deeper water. This creates an efficient dipolar 

transport mechanism which carries fluid offshore. Overall the offshore penetration 

of the plume is enhanced with a consequent decrease in the alongshore spreading 

of the plume in either direction.
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The effect of a uniform flow parallel to the coast on the dispersal of the outflow 

plume has also been studied. An analytic expression for the rate of the plume 

spreading along the coast has been obtained. Numerical results for a variety of 

ambient flows agree well with the analytic prediction.

The numerical results show that anomalous vorticity is an important factor 

in determining the fate of outflow plumes. Aside from the present work and 

that of Kubokawa (1991), Nof (1978) and Nof and Pichevin (2001) this effect has 

received little attention in the literature. Anomalous vorticity may occur when the 

outflow enters a basin of different depth from whence it came. Potential vorticity 

conservation then implies that the outflow fluid have relative vorticity compared 

to that of it surrounds. However, it is natural to ask what may cause such an 

outflow to occur in this barotropic setting. Tidal forcing and river outflows being 

main possibilities here. More generally exchange between basins through gaps 

may occur through buoyancy effects. This, however, would require the inclusion 

of baroclinic effects (e.g. Yankovsky, 2000) and hence the possibility of coastal 

currents established by Kelvin wave radiation. This is the subject of study in 

chapter 4 and 5.
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APPENDIX: Alternative derivation of the steady-state linear ve

locity field

Here we present an alternative derivation of linear velocity field in the limit 

t —> oo. In the linear problem of section 3.3, it is evident that the role of 

topographic waves, which propagate only to the right, is to reduce the flow to 

that of a source in the channel, together with a uniform flow superimposed so 

that there is zero flux through the channel a s x - >  — oo.

The solution for the steady flow in an infinite channel of unit width with a 

source of strength Q/2 located in a channel wall (y = 0) is easily found using the 

complex potential w = (f) — iif? where <t>(x,y) is the velocity potential and ^{x^y) 

is the streamfunction. For example, Milne-Thomson (1968) gives

w = 5̂  logsinhT ’ (A_1)
where z = x + iy, gives a flow with a source of strength Q /2 at the origin and 

uniform flow with flux Q /4 distributed evenly at either end of the channel. Adding 

on a uniform stream with flux Q /4 flowing from left to right gives the required 

velocity potential
Q i • i Qz .

w = 2  ̂ s T  T '  ^
Note

(A-3)
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3.6 Conclusions

which, upon taking real and imaginary parts, agrees with (3.28a,b).
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Chapter 4

C oastal currents generated by 

outflow and vorticity and their  

interaction w ith  topography: 

one-and-a-half layer fluid

4.1 Introduction

In the previous chapter the barotropic flow of fluid from a localised source into 

a semi-infinite domain was studied. The source flow was a model for either river 

outflow or the tidal exchange between two basins through a narrow gap. In 

such cases the source flow occurs through external forcing and is not driven by 

buoyancy effects.

Buoyancy effects are, nevertheless, of vital importance in the dynamics of 

outflows and exchange flows between basins. In addition to the effect of anoma
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4.1 Introduction

lous vorticity studied in chapter 3, outflows are frequently anomalously dense or 

buoyant leading to bottom-trapped or surface-trapped outflows. Indeed anoma

lous buoyancy may be the driving force for the outflow itself e.g. the flow of dense 

water from the Mediterranean into the Atlantic ocean.

In its simplest form, buoyancy driven outflow can be modelled using a 1 ̂ -layer 

fluid. Consider a “dam-break” problem (Figure 4.1) in which fluid of differing 

surface heights is separated by a barrier along a narrow gap.

At t =  0 the barrier at y = 0 is removed and owing to the height difference 

fluid will adjust leading to flow from y < 0 to y > 0. Note the depth of fluid in the 

y < 0 region H_ may be more or less than that of the depth of the receiving fluid 

H . Since potential vorticity is proportional to the inverse of depth, the potential 

vorticity of the fluid entering the shelf region may be of relatively low or high 

potential vorticity compared to the shelf waters. For example in Figure 4.1(b) 

the source fluid (y < 0) is deeper than the receiving shelf fluid (i.e. H_ > H) 

and hence has relatively low potential vorticity when it flows onto the shelf. In 

Figure 4.1(c) the source fluid has relatively high potential vorticity.

As rapid geostrophic adjustment occurs, the presence of solid boundaries im

plies that Kelvin waves will establish drainage pathways along the coast in the 

manner depicted in Figure 4.2.

A similar dam-break scenario occurs in a channel (Gill, 1982) - see also Her

mann, Rhines and Johnson (1989).

In the following it is assumed that the (linear) Kelvin wave radiation occurs 

very rapidly and is followed by a slower, nonlinear, quasigeostrophic adjustment. 

A similar problem was studied by Kubokawa (1991), although here the addi

tional effects of offshore topography and anomalous vorticity (of any sign) are
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(a)

shelf
Low surface height H 

High surface height H

y=L

y=0

barrier

(b) \
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y>0 y=L
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high p.v. H_
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y<0
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A
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77777777
y=L

Figure 4.1: Dam-break scenario for 1^-layer outflows, (a) shows the outflow 
domain from above. A barrier separates fluid of higher potential energy (y < 0) 
from that of lower potential energy (y > 0). After the dam break fluid is driven 
by buoyancy from y < 0 to y > 0. (b) and (c) show that, depending on the depth 
of the upstream basin, the fluid entering y > 0 may be of higher (i.e. H - < H  
in (c)) or lower (i.e. H - > H  in (b)) potential vorticity relative to that of the 
receiving on-shelf fluid.
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/  low surface height
-------------------------------  /  y=0

„' high surface height

Figure 4.2: Kelvin wave induced flow through the gap. This flow is established 
on the ‘rapid’ time-scale immediately after release of the barrier at the gap.

considered.

4.2 Problem  formulation 

4.2.1 Fast tim e scale evolution

The single 1^-layer model can be thought of as a layer of relatively dense fluid 

lying under an infinitely deep, less dense upper layer, where the interface between 

layers is free to deform. The elevation of the free surface gives rise to horizontal 

pressure gradients which produce the initial adjustment of the plume.

In this section an expression for the flow-field induced by the initial linear 

adjustment is sought. Provided the difference in surface heights A (see Figure 4.1) 

is small compared the depth then the initial wave dynamics are well-modelled by 

linear theory. The linearized form of the shallow water momentum equations 

(2.1), (2.2) and (2.3) become for y > 0

ut -  f v =  - g'rjx, (4.1a)

vt + f u  = - g'rjy, (4.1b)

rjt +  H V  • u =  0, (4.1c)
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4.2 Problem  form ulation

where u, v are two-dimensional horizontal velocities, /  is the Coriolis parameter, 

g' is the reduced gravity, 77 is the displacement of the free surface and H  the mean 

depth of the fluid.

Non-dimensionalising using

t ~  / " \

u, v ~  yjg'Hh./H, 

x ,y  ~  Rd = y f t f H/ f ,

A,

where Rd is the Rossby deformation radius, gives the governing equations for the 

initial rapid (i.e. inertial time-scale) adjustment

ut -  v = -r)x, (4.2a)

Vt +u = -rjyi (4.2b)

rjt +  V • u =  0. (4.2c)

These equations are to be solved for y > 0 with a point source at (x , y) =  (0,0) 

and a coastal wall along y = 0.

To proceed take the Laplace transform of (4.2a, b, c) with respect to t and 

integrate by parts. We get, for example,

poo

/  ute~stds = su — u( 0), (4.3)
Jo

where u =  J0°° ue~stdt . With initial conditions u = v — r} = 0 a t t  = 0, the
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4.2 Problem  form ulation

equations (4.2a,b,c) become

su — v = —fjx, (4.4a)

sv + u — —fjy, (4.4b)

sf) +  V • u =  0, (4.4c)

which can be manipulated to give

(4 -5 a )

r -  ( 4 5 b )

srj -  g2-̂ _ 1 V2yy =  0. (4.5c)

To solve (4.5c) for rj write it in the form

(s2 +  1)77 -  V 2fj =  0, (4.6)

and take the Fourier transform with respect to x i.e. ^ =  J ^ f j e ^ d x .  After 

Fourier transforming in x, we have

f j y y  -  (1 +  s2 +  k2)rj = 0, (4.7)

which has solution, satisfying ^ —> 0 as y —> 0 0 ,

fj = j4(A:)e_(1+s2+*:2>1/2!'. (4.8)

64



4.2 Problem  form ulation

We can represent the outflow at x = y =  0 as

v\y=0 = Q(s)5(x), (4.9)

which becomes, after Fourier transform, with respect to x , and using (4.5b)

*ir=o =  Q(s) = z £ j r r 5 - (410)

Using (4.8) in (4.10) gives

s(l +  s2 +  k2y / 2A — ikA  =  (s2 +  l)0(s)- (4*11)

Thus, using (4.11) to substitute for A  in (4.8) gives

=  /i — . . e- (1+i,2+*:2)1/y  (4.12)s(l +  s2 +  k2)1/2 — ik

We are interested in the large time limit of this rapid linear response. The

steady limit t —► oo of ̂  corresponds to the limit s —► 0 of f\ in (4.12). Hence

^ _  _ ^ _ p-Vl+k2y 
V ~  e - i k

= -,/I+E^ (4.13)
ml k

where e « l  has positive real part (since s > 0). To find 77, we take the inverse 

Fourier transform and get

Oi f°° e~vi+k'2y
n = ~   — e - tkxdk. (4.14)

27ry_„ ie + h K ’
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Note that (4.14) can be written as

»y =  lim —  [  e~'/TTPy( - i f  e~i(k+ic)id A  dk, (4.15)
2n v j _ x  j

since

k — ie
e - i ( k - i e ) x  ( 4 1 g^

k — ie

Therefore, we get from (4.15)

r) =  lim Q- f  f  e -'/i+p!'e - i(fc+ie)?dfdfe. (4.17)
e— J—oo J—oo

Swapping the order of integration in (4.17) and noting

/OO /» oo
ie- iH dk  =  2 /  e -S i+ & v  c o s  k id k

-oo Jo
^  K i W + m  (418)

(y2 + £2)1/2 ’ ^ - A»/

Finally (4.17) and (4.18) give the large time expression for the free-surface 

displacement r)(x,y)

Q y T  K,  [(if + ̂ n  (419)
v «■ J—oo (y2 + e y /2 e  ( }

66



4.2 Problem  form ulation

The free-surface r](x,y) (4.19) has the following properties 

(i) x  —> —oo, 77 —> 0

2 Qy r K i[(y2 + e y /2]
W  , v  7T Jo ( y 2 +  e ) 1/2

Oi f°° e~ikx Oi
(in) y =  0 ,7 7  =  —  / ■: dk =  - — 2mH(x)  =  QH(x)

2ir y . o o  k + ie Zir
/. x QyKi(r)iiv) v = rix = —----------
v ' 1 2ir r

where r =  \ / x 2 + y2. Property (i) says that at large distances to the left of the 

source (x —► —0 0 ) there is no response. This is expected since Kelvin waves 

propagate from the source to the right.

Property (ii) says that far downstream to the right of the source there is 

boundary trapped disturbance rj = Qe~y carrying a flux J0°° —r)ydy = Q away 

from the source.

Property (Hi) says that the solution is that of a point source at x = y =  0.

Property (iv) says that the offshore velocity is even in x and decays rapidly 

as r —> 0 0 .

Further in the limit £, y  —> 0

K i[ (y2 + m ~  {y2 + e)1/2 (4.20)
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•̂ 1

Figure 4.3: Contour plot of 77 given by (4.19).

in (4.19). Thus as x ,y  —> 0,

r/ = Qy  f  1 ^
*■ J - „ y 2 + e
Qyy_ [ x/y
* y2 J-oc 1+  2'

r  -1/^x tt
=  — tan (“ ) + 97T I 2 / 2

(4.21)

i.e. 77 has a tan -1(^) structure which is precisely as expected for a barotropic 

(or potential) flow source. That is, as the lengthscale is much smaller than the 

deformation radius the flow due to the source tends to that a barotropic source.

Figure 4.3 shows a contour plot of 77, effectively, giving the streamlines of the 

linearly adjusted flow. The streamlines shown in Figure 4.3 confirm properties

(*)-(<«).
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4.2.2 Slow tim e scale evolution

In this section the two timescale approach of Hermann, Rhines and Johnson 

(1989) is used to study the source-flow adjustment problem. Returning to the 

non-dimensional nonlinear problem, the shallow water equations are

ut +  Ro(uux +  vuy) -  v =  -r)x (4.22a)

vt +  Ro(uvx +  vvy) + u =  -rjy (4.22b)

T)t +  V • [(1 -  SRod +  Rorj)u\ = 0 (4.22c)

where Rq is the Rossby number given by

n _ U _ V ¥ l I  A _ A
^  -  ? i -  j m n  -  h - (423)

Thus the linearisation is valid if Ro = jj 1, where A is a suitable scale for 

the initial free-surface amplitude anomaly -see Figure 4.1(b). Thus for 0 < t «  

R q1 the evolution is governed by the linear evolutions resulting in a free-surface 

displacement rj given by (4.19).

Following Hermann, Rhines and Johnson (1989) for longer times t ~  0 ( R ^ 1), 

the slow timescale T  =  Rot is introduced (4.22a,b,c) giving

R out  + R q{uux +  vuy) - v  — —rjXi (4.24a)

R ovt  +  Ro(uvx +  vvy) + u =  - r)y, (4.24b)

Rorjr +  V • [(1 — S R 0d -I- Rorj)u\ = 0 (4.24c)

where S  =  0(1) i.e. the magnitude of the topography is order S R q is of the
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same order as topography. Observe that in (4.24a,b,c) the small parameter Ro is 

precisely in the correct place for quasigeostrophic theory to hold (Pedlosky, 1987). 

Thus for T  = 0(1) (i.e. t =  0 ( R q1)) the source flow is quasigeostrophic (but 

nonlinear) with initial condition provided by the linearly adjusted state (4.19). 

Hermann, Rhines and Johnson (1989) use a similar approach to study the slow, 

nonlinear adjustment in a channel, using the linear solution of Gill as the initial 

condition. Thus on the slow timescale, realising that topographic effects are 

(possibly) important, (4.24a,b,c) gives

V2?7t  ~  Vt  +  J[ih V277] +  SJ[rj, d(y)] =  0, (4.25)

where S  =  6/Ro (see e.g. 3.1). Again, we use contour dynamics to study the 

quasigeostrophic evolution of the source flow implied by (4.25).

In order to use contour dynamics it is necessary to compute the velocity 

components due to the linearly adjusted state given by (4.19). First, write

Q y (  [°  KrKy2 + e ) 1/2] r  m y 2+ e ) i/2} \
n » u - »  {y2 + e y / 2 Jo (y2 + e v /2 J ’

= 9 a  jl,-» 4- 9 a  f
7T ‘ 2ye +  7r X  (j/2 +  ^ 1 /2
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Taking the appropriate gradients of (4.26) give the velocity components:

2  f + QyL r  W + a i/2u
% 2 e W o  (y2 +  £ 2 ) ’ / 2 5  tt y„ (y2 +  £ 2) 3/ 2 4

<2y Z-1 y
-  io (y2^ 2) ^ ^

q - v  _ qr w + M  , « . < ? £
■ 2 6 W o (y2 +  £ 2) ‘/ 2 4 7T 7o (r/2 +  f 2)3/2 5

, ^  rz w + O T  . rfc
« Jo \  (y2+ e )  [ y ^ + e  ?

Q - y _ Q  f  ^ i[fa2 +  g2)1/2] / .  _  2y2  ̂ O / 1 , , ^ o to 2 +  a l/2) .„
" 2  W o  (y2 +  ?2)1/2 V (y2 +  £2) W  W o

(4.27)

Thus for x > 0

< ? - *  <3 r ^ i [ ( 2 / 2 +  ? 2) 1/2] / , 2  . <3 r ila*'o[(y* +  «9) , /* L ,
*>0 = r y - - ; J 0 W T ? W 2 - y ^  (v2+ e )  *■

(4.28)

and for x < 0, working directly from (4.19)

o r  u{y2+e)l/2\ ,2W, . o , m i /2+ a i/2i
« X < o =  —  /  , ,  ,  t 2 ' 3 / 2 -  (y -  4 )  « ;  +  —  /  2 /

^ ./-oo (y 2 +  r ) 3/2 *■ y-oo (y 2 +  42)
(4.29)

Also ti is given by the property (iy) after (4.19) i.e. y =  ^  .

The expressions for (4.28) and (4.29) involve integral expressions. In the 

contour dynamics code it is necessary to compute these numerically. This is done 

using Simpson’s rule and truncating the lower limit of the integral at —20 which is 

sufficient to maintain accuracy given the rapid (exponential) decay of the Bessel 

function K \ with its argument.
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4.3 Numerical experim ents

4.3.1 N o topography

As discussed earlier, on the rapid time-scale the gravity wave radiation is effec

tively instantaneous and establishes a surface height field r)(x, y) in geostrophic

where u =  —rjy, v =  rjx.

On the slow, advective time scale, the flow is quasigeostrophic and effectively 

forced by equation (4.30) and we again use contour dynamics to study the outflow. 

This gives the following results.

When the vorticity of the outflow fluid is zero, the fluid is passive and ad- 

vected to right by the Kelvin-wave induced velocity field -see Figure 4.4. The 

offshore penetration of the plume grows very slowly in comparison to its along

shore spreading rate.

Another important parameter of this study is the inherent vorticity of the 

plume. When the vorticity u  = 1 (see Figure 4.5), the velocity field is again 

swept to the right, this time by a combination of Kelvin wave induced flow effects 

and the image effect discussed previously in relation to barotropic outflows. The 

net result is a further limitation in the offshore spreading and a coastal current 

of uniform width (as occurs in the barotropic case). It spreads at a rate close the 

u  =  0 case, indicating that the Kelvin wave induced flow is primarily responsible 

for the alongshore spreading.

When the vorticity is negative, as shown in Figure 4.6 (u  =  —1.0), the vor-

balance,

(4.30)
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Figure 4.4: Evolution of the boundary of the outflow for t = 1 — 100 is shown by 
the panels for every 10 time units. The outflow strength Q =  1 and the vorticity 
o j  =  0 .

73



4.3 N um erical experim ents

2.0 

1.5 

1.0 

0.5 
0.0

-2 0  0  20 40  60

2.0 iM 
vo
0 .5 

0.0
- 2 0  0  20 40  60

Figure 4.5: Evolution of the boundary of the outflow for t = 1 — 100 is shown by 
the panels for every 10 time units. The outflow strength Q = 1 and the vorticity 
W=*l.
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Figure 4.6: Evolution of the boundary of the outflow for t =  1 — 100 is shown by 
the panels for every 10 time units. The outflow strength Q = 1 and the vorticity 
u  =  — 1.
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ticity drives most of fluid to the left opposite to the direction induced by Kelvin 

waves. Observe how the plume penetrates further offshore in this case. This is a 

consequence of the opposing effects of forcing velocity and vorticity. The overall 

spreading alongshore in any direction is reduced and hence offshore penetration is 

enhanced. Kubokawa (1991) obtained a similar result for the flow of low potential 

vorticity fluid onto a shelf.

4.3.2 1^-layer outflows w ith shelf-topography

A series of numerical experiments were conducted simulating 1—layer outflows 

in the presence of shelf topography in the form of an infinitely long step running 

parallel to the coast i.e. the same topography as in section 3.4.3.

Note that since we are examining the evolution of the flow on the long (advec- 

tive) timescale it is required that the timescale associated with the topographic 

waves also have this timescale. This implies that |5| < 0(1), where, recall, S  

is a non-dimensional measure of the step-height. In the experiments shown here 

5  =  1, and the step is located unit distance offshore.

Figure 4.7 shows the spread of an irrotational (u> =  0) plume for Q = 1 

i.e. the same parameters as in the experiment in Figure 4.4. The presence of 

topography confines the plume to the shelf. For comparable times (t = 50) the 

alongshore spread of the plumes is similar in Figure 4.4 and Figure 4.7, indicating 

that the alongshore spreading rate of the plume is primarily determined by the 

Kelvin wave induced velocity field. This is confirmed in Figure 4.8 which is for 

a plume with relative vorticity (co =  0.5). In this case compared to the u  — 0 

case (Figure 4.7) the alongshore spreading rate is similar. In fact there is little
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difference between Figure 4.7 and Figure 4.8, suggesting that free-surface (Kelvin 

wave) effects are more important than vorticity effects, provided u  > 0.

Two experiments for u  < 0 were carried out and the time evolution of the 

plumes are shown in Figure 4.9 (u> = —0.5) and Figure 4.10 (a; =  —1). In 

these case the image effect for u  < 0 causes the plume to propagate in the 

opposite direction to that established by Kelvin wave radiation. Several features 

are apparent. First the offshore penetration of the plume is enhanced. This is 

owing to the same mechanism as discussed in chapter 3 on barotropic outflows, 

namely that the negative vorticity of the plume is able to pair up with shallow 

shelf water which has entered deep water (thus acquiring positive vorticity). The 

opposite signed regions of vorticity are then able to advect each other offshore. 

Second, the overall extent of alongshore penetration is decreased. The spreading 

toward the positive ^-direction is achieved only in a very thin boundary layer 

where the Kelvin wave induced velocity field is maximal. It is likely that with 

inclusion of frictional effects, which are most significant near boundaries, such 

thin boundary-trapped, layers would not exist.

Finally, the Kelvin wave velocity field decays rapidly as x  —> — oo (see property 

(i) after 4.19 and Figure 4.3). Thus the plume is able to effectively spread to the 

left under the image effect ( e l s  in Figure 4.6) although there is some opposition 

by the effect of topography.

4.4 Conclusions and Discussion

We have considered the steady discharge of a homogeneous lJ-layer fluid onto 

a rotating, two-dimensional continental shelf with constant depth using a two-
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Figure 4.7: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t = 1 — 50 is shown by the panels for every 5 time units. 
The outflow strength Q =  1 , the vorticity uj = 0 and the stepheight 5 = 1 .
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Figure 4.8: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t = 1 — 50 is shown by the panels for every 5 time units. 
The outflow strength Q = 1, the vorticity lj = 0.5 and the stepheight 5  =  1 .
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r x

.......

Figure 4.9: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t = 1 — 50 is shown by the panels for every 5 time units. 
The outflow strength Q = 1 , the vorticity u  = —0.5 and the stepheight S  = 1.
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Figure 4.10: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t =  1 — 50 is shown by the panels for every 5 time units. 
The outflow strength Q — 1 , the vorticity u  =  — 1 and the stepheight S  = 1.
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timescale approach. The source flow initiates Kelvin waves and rapidly establishes 

a flow field which turns the outflow to the right as a coastal current of width equal 

to the deformation radius. This boundary flow is then used as the initial condi

tion for a numerical study of the slow time evolution of the plume in which the 

effects of advection, topography and plume vorticity are included. The numerical 

results indicate that the offshore motion of the river discharge turns to the right 

at the river mouth, in agreement with the arrested topographic wave solutions 

given by Csanady (1979) and Beardsley and Hart (1978). When the outflow has 

a cyclonic (positive) vorticity, the combined topography induced vorticity, so the 

flow is advected alongshore more quickly (Figure 4.7, 4.8). The results of another 

numerical experiments indicate that for negative vorticity, the flow generate cy

clonic eddies along on the topography (Figure 4.9, 4.10) enhancing the off-shore 

penetration of the plume.

Due to the idealized character of the study, the problem presents some limita

tions. First, the flow is modeled by a coastal current generated by the propagation 

of a baroclinic Kelvin wave. In the real ocean outflow at the strait or river is more 

eddy-like rather than flowing as a well-defined coastal current. Second, it is also 

likely that buoyancy driven outflows occur in a two-layer environment (e.g. as 

dense outflows, or freshwater river outflows over more dense saline shelf waters). 

Two-layer outflows are considered in the next chapter.
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Chapter 5

Coastal currents generated by 

outflow and vorticity and their  

interaction w ith topography: two  

layer fluid

5.1 Introduction

Fluid at the river mouth can vary from weakly stratified to highly stratified. The 

highly stratified flow can be modeled as a two-layer system. Frequently river 

run-off is fresher than that of the receiving shelf waters and it can be modelled 

as outflowing upper layer of a two-layer fluid. On the other hand, some outflows 

are anomalously dense (e.g. the Mediterranean outflow) and are best modelled 

as an outflowing lower layer.

In the previous chapters single layer outflows were considered either as a
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rapid adjustment

/ / / / / / / / / / / / / / / / / / /  
y=o, t=o

/ / / / / / / / / / / / / / / / / / /  
(a) t > 0

rapid adjustment

/ / / / / / / / / / / / / /  7 7/ ' / ' /  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ^
y=0, t=0 (b) t > 0

Figure 5.1: Two layer outflows (with no topography) due to a dambreak scenario. 
In (a) the initial density profile adjusts causing inflow (for y > 0) in the upper 
layer and corresponding outflow in the lower layer. The subsequent positions 
of the initial potential vorticity fronts are indicated by the dashed lines. In (b) 
adjustment causes outflow in the upper layer (for y > 0) and inflow in the lower 
layer.

barotropic (rigid-lid) outflow (chapter 3) or 1^-layer outflow (chapter 4). In the 

case of the barotropic outflow, the driving mechanism can be due to tidal forcing 

or a river discharge. For 1^-layer outflows in addition to tidally or river-driven 

forcing mechanisms, the flow can be thought a being buoyancy driven (see chapter 

4, Figure 4.1).

In this chapter two-layer buoyancy driven outflows are also considered between 

basins of the same depth (see Figure 5.1). In the numerical experiments that 

follow only dynamics for y > 0 is considered. As shown in the Figure 5.1 for 

purely buoyancy driven flows there is outflow in one layer and inflow in the other
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layer. Thus it is necessary only to use one contour to represent the outflow (since 

the potential vorticity front shown by the dashed line occurs in only one of the 

layers for y > 0 in Figure 5.1) and this contour will occur in the either the upper 

or lower layer depending on whether scenario of Figure 5.1(a) or Figure 5.1(b) 

occurs. Note that there is zero net barotropic forcing in both of the scenarios 

shown in Figure 5.1 (a, b) and so Q\ =  —Q2  i.e. the volume flux is equal and 

opposite in each layer. In the presence of topography the symmetry between the 

2 cases is lost and both upper and lower layer outflows must be considered.

Finally it remains to specify the potential vorticity of the outflowing fluid. 

Note that in both scenarios shown in Figure 5.1 that the fluid entering the com

putational domain (y > 0) has origin from a layer of depth greater than that of 

the receiving fluid. Thus the outflow fluid has anomalous low potential vorticity 

and acquires negative relative vorticity for y > 0.

Thus, in summary, in the purely buoyancy driven outflows which occur in 

one of two layers axe considered with inflow occurring in the other layer. The 

anomalous fluid entering y > 0 is represented by a potential vorticity contour 

with negative relative vorticity. In addition to the purely buoyancy driven case, 

purely barotropic outflows are also considered in which there is outflow of equal 

magnitude in both layers with zero vorticity. This requires two contours; one for 

each layer.

In section 5.2 the evolution equations for two-layer quasigeostrophic flow are 

derived along with a description of how they are treated using contour dynam

ics. Section 5.3 presents results for barotropic outflows and upper and lower 

layer buoyancy driven outflows in the presence of topography. Conclusions are 

presented in the section 5.4.
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5.2 Problem  formulation

The dynamics of an outflow in the presence of two-layer stratification and bot

tom topography are made through consideration of a simple two-layer quasi

geostrophic system. In the two-layer problem, it is necessary to consider Kelvin 

wave propagation at the interface of the two layers. The ratio of the two layer 

depths is 8 = This assumption is made to restrict the size of parameter

space. It does not, however, sacrifice the main aim of this chapter which is to

study two-layer outflows.

In the quasigeostrophic approximation, the potential vorticities qx, qi for each 

layer (including topography in the lower layer) may be written as

9i =  V2t/>i -  -  i>i), (5-la)

q2 =  V2V>2 -  ^ 7 ( ^ 2  ~  Vb) +  j ^ h ,  (5.1b)

where h = h(x,y) is the topography and the upper layer streamfunction is 0i 

and the lower layer streamfunction is 0 2 - 9 ' is the reduced gravity. 

Nondimensionalise using

0i,2 ~  RofL2p,

/  (  h x h 2 \  
\ h^ h2 )

h ~  Ai?2

L ~ L P =
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where Lp is the baroclinic radius of deformation and A i/2 is the height of topog

raphy in the lower layer. The nondimensional potential vorticities for each layer 

are then

9i = V V i -  Wh -  ^ 2), (5.2a)1 +  d

q2 = V2̂ 2 -  7 7 7 W 2  -  V h )  +  SVi, (5.2b)
1 + 0

where 0 =  H 1 /H 2  is the ratio of the upper and lower depths and S = 

measures the effective strength of topography. It is convenient to define the 

barotropic streamfunction

= T T s * 1 + T T s ^ 2' ( 5 - 3 )

and the baroclinic stream function

=  *02 -  "01 • (5.4)

With these definitions (5.2a) and (5.2b) give

vr2 , <*9i , 92 Sh (
v ^  = — s + T T 5 - r T 8 ’ ( 5 ' 5 )

and

V2̂ c -  ipc =  92 -  9i -  STi- (5.6)

The streamfunctions in the upper layer and the lower layer are represented
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related to -0c and by

^2 =  tpT + Z— ,Ac- (5.7b)

(5.7a)

1 +  5

In order to carry out the two-layer contour dynamics simulations it is necessary 

to calculate separately the barotropic, u t , and baroclinic, uc, velocities at nodes 

along contours. These are then used to obtain using (5.7a,b) the upper and lower 

layer velocities U\ and U2  which are then used to advect the contours which either 

lay in the upper or lower layer.

The separate calculations of the barotropic and baroclinic responses of the 

system are straightforward to calculate using the contour dynamics code since 

the appropriate logarithm or Bessel function and Green’s functions for (5.5) and 

(5.6) have been used previously in studying barotropic and baroclinic outflows.

In addition it is required to specify the volume flux forcing determining the 

barotropic and baroclinic responses. Let Q\ and Q2  be the volume fluxes for 

the upper and lower layer respectively. Thus the forcing for the barotropic and 

baroclinic responses are (see 5.5 and 5.6)

Observe, for example, if Q\ =  Q2  and <5=1 then Q t =  Qi(=  Q2 ) and Qc =  0. 

Thus if the outflow in both layers is the same the forcing is purely barotropic and

Q t — +  Q2 ) (5.8)

and

Qc Q2  Q I- (5.9)
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no baroclinic (or Kelvin wave) mode is excited. On the other hand if Q\ = —Q 2  

and 5 = 1 then Q t = 0 and Qc = 2Qi. In this case there is no barotropic forcing 

and a purely baroclinic outflow occurs with equal but opposite flow in each layer.

5.3 Two-layer simulations

Two cases are considered, (i) purely barotropic outflows (Q\ = Q2 ) and (ii) purely 

baroclinic outflows (Q\ = —Q2 ). In what follows the upper layer contour is shown 

as a solid line and the contour(s) in the lower layer are dashed. In all experiments 

to be reported the depth ratio is taken to be 5 = 1.

5.3.1 Barotropic outflows (Qi =  Q2)

For purely barotropic outflow Q 1 =  Q2  and hence Qc = 0 i.e. no Kelvin waves 

are radiated at the source. Also, as discussed earlier, only the case u)\ = U2  — 0 

is considered for barotropic outflows.

In comparison to chapter 3 on single layer barotropic outflow, topography is 

expected to the influence lower layer more than upper layer.

Figure 5.2 shows a typical evolution of the outflow (with Qi = Q2  =  0.5 and 

S  = 0.5). The asymmetry in the evolution of the layers is clear in Figure 5.2. 

The lower layer is significantly affected by the lower layer topography in a similar 

manner to single layer outflow with no vorticity (see e.g. Figure 3.6). Topography 

inhibits transport of lower layer fluid across y = 1 and the current is deflected 

to the right in accordance to the uni-directional properties of the topographic 

shelf waves (see chapter 3). The upper layer outflow, on the other hand, does 

not ‘feel’ topography directly and is able to penetrate across y = 1 into the deep
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Figure 5.2: Evolution of the outflow from both layers and topographic contour 
for t = 1 — 50 is shown by the panels for every 5 time units. Here Qi = Q2 — 0.5, 
u)\ = U2  = 0, S = 0.5. The lower layer and the topography evolutions are marked 
by dashed lines.
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ocean. It spreads slightly asymmetrically and spreads with a slight preference to 

right. This is owing to presence of cyclone (positive) vorticity in the lower layer as 

shallow water in the lower layer is pushed across y = 1. This is the same vorticity 

that advects the lower layer to the right. In the lower layer the barotropic and 

baroclinic vorticity combine in the same sense (5.7b) to produce a large effect, 

whereas in the upper layer (5.7a) they are opposed producing a smaller effect. The 

greater range of the barotropic mode (algebraic decay) compared to the baroclinic 

mode (exponential decay) means there is a net, though small, deflection of the 

upper layer to the right.

5.3.2 Baroclinic exchange flow (Qi = —Q2 )

There are two cases to consider: (i) Q\ > 0 and (ii) Q\ < 0.

(i) Consider the case Q\ =  1, Q2 =  — 1 i.e. there is outflow in the upper layer 

and corresponding inflow in the lower layer. Further, as argued in section 5.1 

the outflow fluid necessarily possesses anomalous negative vorticity. This can be 

non-dimensionalised such that u  =  — 1. There are two cases to consider, namely 

5  =  0 and 5 ^ 0 .

Figure 5.3 shows an experiment with Q1 =  —Q2 =  1, uji = — 1, u2 = 0 

and 5  =  0. Note how the contour overlaying y = 1 in the lower layer is drawn 

toward the sink. However in this example 5  =  0 and so the displacement of this 

contour is ‘passive’ in the sense no vorticity is generated. In fact the lower layer 

plays little role in the evolution of the upper layer outflow plume. This can be 

seen by noting the similarity of Figure 5.3 to Figure 4.6 which shows a l|-layer 

outflow with uj =  — 1. There are some small differences owing to the change in
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Figure 5.3: Evolution of the outflow from the upper layer and topographic contour 
for t = 1—50 is shown by the panels for every 5 time units. Here Q\ =  1, Q2 =  — 1, 
u\ =  — 1 , UJ2 =  0 , S  =  0 . The lower layer and the topography evolutions are 
marked by dashed lines.
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Figure 5.4: Evolution of the outflow from the upper layer and topographic contour 
for t = 1—50 is shown by the panels for every 5 time units. Here Q\ =  1 , Q2 = — 1, 
lji = — 1 , o>2 =  0, S  = 1. The lower layer and the topography evolutions axe 
marked by dashed lines.

the deformation radius associated with two-layer dynamics.

Figure 5.4 shows the same experiment as Figure 5.3 but with non-zero shelf 

topography S  = + 1 . Now as lower layer fluid from the deep ocean is pulled onto 

the shelf by the sink flow (Q2 = — 1 ) it generates negative vorticity or clockwise 

circulation. This additional vorticity affects little the evolution of the upper 

layer outflow plume (compare Figure 5.3 and Figure 5.4). The lower layer, not 

unexpectly, evolves in a more complicated fashion and is suggestive of significant 

mixing between the lower layer shelf and ocean waters.

(ii) Figure 5.5 shows an experiment with Q\ =  —1 , ( 2 2  — 1 > ^ 2  =  —1 and
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Figure 5.5: Evolution of the outflow from the lower layer and topographic contour 
for t =  1 — 50 is shown by the panels for every 5 time units. Here Q\ =  — 1 , 
Q2 = 1, wi =  0, CJ2 =  — 1, 5  =  0. The lower layer and the topography evolutions 
are marked by dashed lines.

5  =  0  i.e. no topography. As expected this case is identical to that of Figure 5.3 

except that the outflow occurs in the lower layer. This is not the case with shelf 

topography S  = +1 as shown in Figure 5.6. This time the outflow evolves in 

a similar way to that of the l|-layer outflow shown in Figure 4.9. Intense eddy 

activity occurs along the shelf, enhancing the offshore penetration of the plume.
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Figure 5.6: Evolution of the outflow from the lower layer and topographic contour 
for t = 1 — 50 is shown by the panels for every 5 time units. Here Q\ = — 1 , 
Q2 = 1, u\ = 0, UJ2 = — 1, 5  =  1. The lower layer and the topography evolutions 
are marked by dashed lines.
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5.4 Conclusions

The nonlinear evolution of two-layer outflows having piecewise constant vorticity 

has been studied using contour dynamics.

Two cases have been considered. The first of these considers purely barotropic 

outflow onto a shelf. The topography influences the lower to a greater degree 

confining it to the shelf and it spreads to the right of the source owing to the 

topographic wave mechanism of chapter 3. The upper layer is relatively unaffected 

by topography and penetrates into the deep ocean.

Purely baroclinic outflows were also considered. These can be thought of as 

arising from the adjustment of an initial discontinuity of the interface of a two- 

layer fluid (i.e. a dam-break problem). This implies the inflowing fluid necessarily 

has negative vorticity. The subsequent evolution of the outflow is similar to the 

1 f-layer outflows studied in chapter 4.
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Chapter 6 

Interaction of coastal currents 

and eddies w ith topography

6.1 Introduction

We have seen that a coastal eddy may form as part of the outflow onto a conti

nental shelf. In time, as the outflow grows in size, the plume spreading will move 

it away from the source region. We have also seen that outflows from rivers and 

straits in basin walls with anomalous vorticity are able to propagate parallel to 

the coast or wall under the action of their images (e.g. chapter 3, 4 and 5, Stern 

and Pratt (1985); Kubokawa (1991)). Such vorticity currents and coastal eddies 

may eventually encounter regions of variable topography e.g. capes, canyons or 

escarpments whose isobaths, at least in some regions, axe perpendicular to the 

coast. This is in contrast to the shelf-like topography considered in previous 

chapters whose isobaths run parallel to the coast.

The importance of the uni-directional properties of the propagation of the
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long topographic waves for the coastal escarpment problem (i.e. in which the 

isobath separating two regions of different constant depth runs perpendicular to 

the coast) has been pointed out in several previous articles.

Johnson (1985) studied a flow forced by a source-sink pair to cross a step 

change in depth bounded by sidewall (i.e. coast) and showed the direction of a 

wavefront depends on the geometry where shallow water lies i.e. if the shallow 

water lies to the right (left) looking away from the wall, a wavefront moves out

ward (inward). These waves play an important role in determining the steady 

state flow: the source-sink flow crosses the step either at infinity or at a singular 

point where the step joins the coast. Hurst and Johnson (1990) have studied 

uniform flow (again using the linear approximation) parallel to the coast past 

a semi-circular submerged seamount or canyon. They find similar behaviour to 

Johnson (1985). That is the flow either crosses isobaths at the coast in the 

case of flow encounting a canyon, or passes around the isobaths in the case of 

a seamount. Hurst and Johnson (1990) account for this behaviour due to the 

topographic waves trapped by the topographic feature. Gill et al. (1986) exam

ined the flow when the bottom topography was a step-like discontinuity running 

perpendicular to the line of the initial jump in surface elevation. They found 

that when the double-Kelvin wave moves offshore there is no transport across the 

step. However, when the waves propagate toward the coast, there is pinching of 

the longshore current into a narrow boundary layer and decrease in wavelength. 

Johnson and Davey (1990) studied the adjustment of rotating free-surface over 

a step-like escarpment abutting a vertical wall and verified the solution of the 

information-propagation arguments of Johnson (1985) and Gill et al. (1986) and 

also showed interchange of fluid across the escarpment as eddies formed as the
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current crosses the step travel along the step with shallow water to their right. 

The flow pattern depends on the sign of the topographic step and is independent 

of the direction of the flow. If waves travel towards the wall then the current is 

pinched into the wall and fluid crosses the escarpment in a thinning jet. When 

the waves propagate away from the wall, the wall has little effect on the gen

eral flow pattern. When the waves propagate towards the wall a thin boundary 

layer forms near the wall-step junction together with a narrow jet. Willmott and 

Grimshaw (1991) extended Johnson’s (1985) to consider a wedge-shaped escarp

ment extending from the coast, and showed that a steady geostrophic solution is 

established by long topographic waves.

All of the above studies are linear and concentrate on the role of topographic 

wave in determining the long-time evolution of the flow. A feature is that often 

flows evolve to highly concentrated jets (or boundary layers) which cross isobaths 

in singular (vanishingly small) regions. It is likely, given the large velocities 

in such regions, that nonlinear effects will be of crucial importance. There are 

relatively few such studies incorporating nonlinearity and this chapter addresses 

such effects. Another study including nonlinearity is that of Carnevale et al. 

(1999). Carnevale et al. (1999) showed that the evolution of a coastal current 

depends on the geometry where the escarpment is located. According to their 

analytical solution, the speed of coastal currents which cross the escarpment will 

increase for left-handed geometry (in which the coast is in the left when looking 

across the escarpment from the deep to the shallow region, see Figure 6.1) and 

is not affected by the direction of the coastal current. Although the propagation 

of topographic waves is an important part of the evolution of the flow, nonlinear 

effects can change the nature of the evolution, (cf. Hallberg and Rhines (1996)).
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In this work the nonlinear evolution of coastal currents and eddies near coastal 

topography is studied numerically. Using the barotropic, quasigeostrophic equa

tions of motion and assuming piecewise constant distribution of potential vorticity 

enable the efficient method of contour surgery (Dritschel (1989)) to be used. The 

latter assumption implies that the topography consists of escarpments or steps. 

In particular, two types of topography are considered. The first is a semi-infinite 

step (y = 0, x > 0) perpendicular to the shore (x = 0), with shallower fluid 

occupying the region y > 0 -see Figure 6.1. The linear problem for this choice 

of topography has been studied by Johnson (1985) who demonstrated a coastal 

current crosses the escarpment at a singular point at the origin where the es

carpment meets the coast. It is of interest to see how nonlinear effects modify 

this conclusion. Note, that assuming shallow fluid for y > 0 implies that topo

graphic waves propagate toward the coast and this enables use of a computational 

domain of finite width in the x-direction. If, on the other hand, shallow fluid oc

cupied y < 0, the topographic waves propagate toward the open boundary and it 

was found that this leads to numerical difficulties, and this case was not studied 

numerically.

The second choice of topography is that of semi-circular mound or hollow 

abutting the coast (Figure 6.3). Such a choice of topography is similar to Hurst 

and Johnson (1990) and, again it is of interest to see how the inclusion of nonlinear 

effects modify these conclusion. Also, the choice of a mound or a hollow enable 

both the case of topographic waves which either propagate away or toward the 

initial encounter zone to be studied, unlike the semi-infinite escarpment case 

described above.

This work is presented as a series of sections beginning with a description of
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the numerical model (section 6.2). Results are presented in section 6.3. Following 

that, conclusions and discussion of the result are presented in sections 6.4.

6.2 M odel description

As in previous chapters the numerical method of contour surgery (Dritschel, 1989) 

is used. Two different model forcings are considered: uniform outflows and a 

coastal eddy (see Figure 6.1, 6.2, 6.3, and 6.4). In each case the outflows and 

eddies have anomalous vorticity and so are driven parallel to the coast under the 

action of their images whereupon they encounter the given topographic feature. 

In the case of uniform outflows, we have seen in the absence of topography the flow 

is self-similar i.e. there are no parameters. When step topography is included 

there are now two non-dimensional parameters: namely the distance L of the 

outflow source from the escarpment and the non-dimensional vorticity jump S  

associated with the step (effectively measuring the height of the step). For the 

case of a semi-circular mound or hollow abutting the coast, there is an additional 

parameter namely the radius R  of the mound and, also, the sign of the depth 

change. For the case of a coastal eddy, in the absence of topography for initially 

circular vortex propagating from infinity (of unit radius), there is only one non- 

dimensional parameter, the offshore distance W  of the vortex.

We assume the relative vorticity of the outflow fluid or approaching eddy is 

constant while the fluid to which it is flowing into is quiescent. The vorticity 

of the outflow fluid then feels its ‘ image1 in the coast which serves to drive the 

alongshore outflow.

First we consider a constant density ocean with a straight north-south vertical
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Flux Q=1

Shallow

Deep

Figure 6.1: Sketch of the basin and outflow system showing the source of outflow 
fluid and the geography of step topography. L represents the distance from the 
source to the step. The potential vorticity jump across the step is S , and relative 
vorticity of + 5  is acquired by fluid going from shallow to deep regions and —S  
in going from deep to shallow regions.

boundary and a north-south depth change along the boundary. The fluid is 

assumed homogeneous and inviscid, and the bottom and the surface are flat 

except at the step change in depth running perpendicularly to a straight coast. 

The geometry of the outflow problem is shown in Figure 6.1. An inviscid, non- 

diffusive fluid with constant relative vorticity u  flows from the origin (0,0) onto a 

shelf (—L < y) of shallow region and deeper fluid lies in the region y < —L. The 

escarpment is represented by dashed line. Figure 6.2 shows the same the geometry 

with an eddy of vorticity 1 and initial radius 1 impinging on the topography. W  

is the offshore distance of the vortex. The other parameters are the same as those 

of Figure 6.1.

The other geometry we consider is a hollow (or canyon) and a mound (seamount). 

A constant density ocean with a semi-circular boundary adjoined the coast and
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y

X

w

radius 1

Shallow

Deep

Figure 6.2: Sketch of the basin and eddy system showing the source flow of eddy 
and the geography of step topography. W  represents the distance of the eddy 
centre from the wall and u  is the vorticity.

an in-out depth change along this boundary (Figure 6.3, 6.4, 6.5 and 6.6). The 

fluid is also assumed homogeneous and inviscid, and the bottom and the surface 

are flat except at the step-like depth change along the semi-circular boundary. A 

distance L from the topography is on which outflow moves owing to its constant 

relative vorticity u  (Figure 6.3), or an (initially circular, radius 1) eddy with a 

distance W  from the coast to the centre of the eddy (Figure 6.4). Deeper fluid 

lies inside the semi-circular boundary abutting the coast.

In the case of a mound (or seamount), shallow water lies inside the semi

circular boundary. An outflow problem is shown in Figure 6.5 and an eddy 

problem is in Figure 6.6.
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Shallow

Figure 6.3: Sketch of the basin and outflow system showing the source of outflow 
fluid and the geography of step topography. L represents the distance from the 
source to the step.

w

radius 1

Shallow

R

Figure 6.4: Sketch of the basin and eddy system showing the source flow of eddy 
and the geography of step topography. W  represents distance from the wall and 
lj is the vorticity.
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Flux Q: 

L

R

Figure 6.5: Sketch of the basin and outflow system showing the source of outflow 
fluid and the geography of step topography. L represents the distance from the 
source to the step.

radius 1

/  V 2 v | / = - S > ^ v 2 V = + S

/  Shallow \

Figure 6.6: Sketch of the basin and eddy system showing the source flow of eddy 
and the geography of step topography. W  represents distance from the wall and 
a; is the vorticity.

/  Shallow
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6.3 Results

6.3.1 Step topography

Before studying the interaction of a coastal current or eddy with topography, an 

investigation of the evolution of an initial perturbation in the contour overlying 

the semi-infinite step topography is considered.

Figure 6.7 shows the evolution of an initial perturbation given by y = exp(—x2)/4. 

As shown by Johnson (1985), the direction of phase and group velocity for to

pographic waves is toward the wall when shallow water lays to left of the step, 

looking away from the coast. As time evolves, energy accumulates at the wall 

and the displacement of the contour becomes large. Eventually an eddy forms 

(t =  25) which propagates toward y < 0. The eddy shedding continues. Ed

dies are always observed to propagate. The eddy activity is proportional to the 

amplitude of the initial displacement and can be made arbitrarily small. In this 

sense, the quiescent flow is stable -see chapter 7.

Figure 6.8 shows the interaction of a vortical coastal current with topogra

phy in the form of an infinitely long step running perpendicularly to the coast 

some distance L  from the outflow. Johnson (1985) showed, according to linear 

dynamics, that the flow should cross the step at a singular point where the step 

meets the coastal wall. The solid line contours represents the outflow plume and 

the dashed line represents the topographic contour initially overlaying the step.

It shows the behaviour of the outflow plume, with outflow strength Q =  0.5, 

vorticity u  = 1, distance from the source to the step L = 10 and stepheight 

5=0.5. As time evolves the outflow forms a coastal current which is driven by 

its image vorticity toward the step. As the coastal current approaches the step
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Figure 6.7: Evolution of topographic wave boundary generated by a perturbation 
to the contour (solid line) initially overlaying the step (dashed line). The first 
plot on the top left shows t = 0 (i.e. initial perturbation). Subsequent plots are 
t = 5 — 30 at a time interval of 5 units.
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it displaces fluid from the shallow side of the step to the steep side as indicated 

by the displacement of the dashed line in the first three frames of Figure 6.8. 

The displaced fluid acquires positive vorticity of magnitude 0.5 which causes it to 

propagate (due to its image) in the same direction as the coastal current. As the 

current collides with the topography (t=20) some fluid is transported across the 

step from deep to shallow, so acquiring negative relative vorticity of -0.5. Some 

of the source fluid then pairs up with this negative vorticity forming a dipole 

which propagates toward positive x  and y. This dipole formation, as we shall see, 

is a robust mechanism and is able to transport fluid back in the direction from 

when it came. However most of the current is able to cross the escarpment and 

continue toward negative y becoming thinner as it does so.

Figure 6.9 shows an experiment with the same outflow strength (Q = 0.5) 

and vorticity (u =  1) as that shown in Figure 6.8, but with a strong topographic 

effect (S  =  1). Note that in comparison to Figure 6.8, the dipole propagate 

further from the wall, since the topographic effect is stronger in comparison with 

the case of Figure 6.8 and so the halves comprising the dipole axe more evenly 

marched. The eddy shedding process continues when the experiments runs for 

longer.

Figure 6.10 shows an experiment with the same outflow strength (Q =  0.5) 

and vorticity (u = 1) as that shown in Figure 6.8 and 6.9, but with a more strong 

topographic effect (S  =  1.5). Note that in comparison to Figure 6.9, the dipole 

is able to propagate a larger distance from the coast.

The experiments shown in Figure 6.8, 6.9, 6.10 indicate that the formation 

of dipolar eddies occurs when the current collides with the topography. It shows 

that the stronger topography the dipole structure propagate more orthogonally
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Figure 6 .8 : Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t — 1 — 40 is shown by the panels for every 5 time units. 
The outflow strength Q =  0.5, the vorticity u  =  1, the distance from the source 
to the step L = 10 and the stepheight S  =  0.5.
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Figure 6.9: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t = 1 — 40 is shown by the panels for every 5 time units. 
Q =  0.5, u  =  1, L = 10 and S  = 1.
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Figure 6.10: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t = 1 — 40 is shown by the panels for every 5 time units. 
Q = 0.5, u  = 1, L =  10 and S = 1.5.
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to the coast.

Figure 6.11 shows the evolution of an eddy with u> = 1, initial radius 1 and 

distance of the centre from the coast W  = 1 interacting with topography in the 

form of an infinitely long step (S  = 0.5) running perpendicularly to the coast. 

The solid line contours represents the eddy and the dashed line represents the 

topographic contour. In a similar way to the coastal current of Figure 6.8, the 

eddy pushes fluid ahead of it across the step from shallow to deep. This fluid 

acquires positive relative vorticity and continues to propagate toward negative y 

due to the image mechanism. Some of the eddy is able to cross the step, but 

part ‘teams up’ with ambient fluid of negative relative vorticity arising from fluid 

crossing from deep to shallow. The subsequent dipole formation is similar to that 

occurring in the coastal case. It is, however, clear in Figure 6.11 (t =  15 — 40) 

that the vorticity of the primary (i.e. initial) eddy is stronger since it is able to 

wrap up the ambient fluid indicated by the dashed contour.

Figure 6.12 shows the effect of increasing (S  =  1) relative to the experiment 

shown in Figure 6.11. The increase in S  enhances the rate at which the dipole 

moves to the right along the escarpment since the halves comprising the dipole 

are evenly matched in terms of their vorticity. Note also the size of the eddy is 

much reduced in size in comparison to Figure 6.11, but similar shape of dipole is 

generated as Figure 6.8. This is because the increase in S  gives the topographic 

contour a greater ‘stiffness’ and thus inhibits fluid transport across the step.

Figure 6.13 shows the evolution of the behaviour of an eddy with stronger 

topography (S — 1.5). A dipole forms (t =  10) which propagates along the es

carpment y > 0, x > 0. As in the coastal current case if step effect is strong, then 

the generated dipole moves closer to the topography. The unequal circulations of
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Figure 6.11: Evolution of an eddy (solid line) and topographic contour (dashed 
line) for t =  1 — 40 is shown by the panels for every 5 time units. The vorticity 
of the vortex patch u  =  1, the distance from the coast W  = 1 and the stepheight 
S  =  0.5.
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Figure 6.12: Evolution of an eddy (solid line) and topographic contour (dashed 
line) for t = 1 — 40 is shown by the panels for every 5 time units, uj =  1, W  = 1 
and 5  =  1 .
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Figure 6.13: Evolution of an eddy (solid line) and topographic contour (dashed 
line) for t = 1 — 40 is shown by the panels for every 5 time units, u  = 1, W  =  1 
and S  =  1.5.

the two halves of the dipole mean that the dipole travels in a curved trajectory 

(Figure 6.13).

Again, it is apparent that the dipolar transport of fluid offshore is a robust 

mechanism and occurs over a wide range of parameters.

6.3.2 M ound/Canyon topography

In this section semi-circular topography is considered, which may either be a 

raised mound or sunken canyon. Again, both coastal current and eddy collisions 

are considered.
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Figure 6.14 shows an experiment of the interaction of topography with an 

outflow of strength Q = 0.5 and vorticity u  = 1 with semi-circular topographic 

obstacle with S = 0.5 (positive S  implies it is a canyon or depression). The 

distance from the source to the closest edge of the topography is L = 5 and the 

radius of the canyon is R = 5. The direction of phase and group velocity of 

topographic waves around the edge of the canyon is anticlockwise. Thus the edge 

of the canyon closest to the source should behave like the experiments in section 

6.3 i.e. the leading edge of current first encounter a ‘dip-down’ in topography. 

This is indeed the case as a dipole is formed (t = 15) which propagates backward 

of the outflow direction, in a similar manner to the experiments in section 6.3.1.

Figure 6.15 shows an experiment with the same outflow strength (Q = 0.5) 

and vorticity (uj =  1) as that shown in Figure 6.14, but with a stronger topo

graphic effect ( 5 = 1 ) .  It shows that the stronger topography allows some of 

the outflow fluid to cross the step, but less than that of the weaker topography 

experiment (5 =  0.5) shown in Figure 6.14. Dipole formation is still observed, 

indeed there is a tendency for the periodic formation of dipoles as evident at 

t = 15, 20. Note that as the thin coastal current exits the canyon near y — —16 

there is some suggestion that the currents returns along the isobath in the same 

sense as the anti-clockwise propagating waves. This effect is noted in more detail 

later.

Figure 6.16 shows an experiment with the same outflow strength (Q =  0.5) 

and vorticity (u = 1) as that shown in Figure 6.14 and 6.15, but with even 

stronger topography (5 =  1.5). Again, some fluid crosses the step while the rest 

is transported offshore via the dipole mechanism. Note that in comparison to 

Figure 6.15, the dipole spreads a larger distance from the coast and it moves
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Figure 6.14: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t = 1 — 40 is shown by the panels for every 5 time units. 
The outflow strength Q =  0.5, the vorticity l<;=1, the distance from the source to 
the step L = 5, the radius of the canyon R  = 5 and the stepheight 5=0.5.
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Figure 6.15: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t = 1 — 40 is shown by the panels for every 5 time units. 
Q = 0.5, u = l ,  L = 5, R  = 5 and 5=1.
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Figure 6.16: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t = 1 — 40 is shown by the panels for every 5 time units. 
Q = 0.5, uj= 1, L =  5, R  =  5 and 5=1.5.

more perpendicularly to the coast. This is because the dipole is bigger than 

that in Figure 6.15 and so has greater circulation in each half and so propagates 

faster. Note also, as in Figure 6.15, Figure 6.16 shows evidence of secondary 

dipole formation.

Figure 6.17 shows the evolution of an eddy (with uj =  1 and the initial distance 

from the coast W  =  1) interaction with a weak semi-circular topographic canyon 

(5 =  0.5) of radius from the edge of the canyon R = 5. The eddy starts at 

a distance 5 from the edge of the canyon. The solid line contour represents the 

eddy and the dashed line represents the topographic contour. The image vorticity
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Figure 6.17: Evolution of an eddy (solid line) and topographic contour (dashed 
line) for t = 1 — 40 is shown by the panels for every 5 time units. The vorticity 
u  =  1, the distance from the coast W  = 1, the radius of the mound R  =  5 and 
the stepheight S  = 0.5.

drives the eddy toward negative y. When the eddy encounters the edge of the 

canyon, two eddies form (e.g. t = 15). These eventually split, one part continuing 

toward —y  driven by its image in the coast, the other pairing up with the negative 

vorticity generated by canyon fluid being advected into the surrounding ocean - 

dipole formation process. Again, just as in the coastal current case there is 

same evidence that as the eddy leaves with the canyon it begins to follow the 

topography, though in this case the coastal image effect eventually dominates.

Figure 6.18 shows the effect of increasing S  relative to the experiment shown 

in Figure 6.17 i.e. 5 = 1 .  Note also the size of the eddy propagating across
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Figure 6.18: Evolution of an eddy (solid line) and topographic contour (dashed 
line) for t = 1 — 40 is shown by the panels for every 5 time units. u/=l, W  = 1, 
R = 5 and 5=1.

the canyon edge is much reduced in size in comparison to Figure 6.17, implying 

that most of the incident eddy is ‘reflected’ by the dipole mechanism. This is 

because the increase in 5  gives the topographic contour a greater ‘stiffness’ and 

thus inhibits fluid transport across the step. The dipole eddy follows a curved 

trajectory since, even the vorticities in each lobe are equal in magnitude, the area 

of the incident eddy is greater and so has a greater circulation than the other half 

of the dipole.

Figure 6.19 shows the evolution of the behaviour of an eddy for u  = 1 and 

W  = 1 of interaction with yet stronger topography (5 =  1.5). A dipole forms (t =
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Figure 6.19: Evolution of an eddy (solid line) and topographic contour (dashed 
line) for t = 1 — 40 is shown by the panels for every 5 time units. u = 1, W  =  1, 
R =  5 and 5=1.5.

10) which propagates away from the coast. Very little of the incident eddy is able 

to propagate into, and across, the canyon. Unlike the semi-infinite step abutting 

the coast geometry, for this choice of semi-circular topography (having a finite 

length topographic contour) it is numerically feasible to study the interaction of 

an approaching eddy or current colliding with a shallow region.

Figure 6.20 shows an experiment of the interaction with the outflow strength 

(Q =  0.5) and vorticity (a; =  1) with a weak semi-circular topographic effect (S = 

—0.5, the distance from the source to the step L = 5, the radius of the mound 

R  = 5). The direction of phase and group velocity for the topographic waves is
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0 2 4  6 8  10 0 2 4 6 8  10 0 2 4 6 8  10 0 2 4 6 8  10

Figure 6.20: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t = 1 — 40 is shown by the panels for every 5 time units. 
The outflow strength Q =  0.5, the vorticity c j = 1, the distance from the source to 
the step L =  5, the radius of the mound R = 5 and the stepheight £=-0.5.

clockwise around the perimeter of the mound. For this relatively weak topography 

the current is able to cross isobaths and continue flowing toward negative y. Note 

that in contrast to a canyon with the same parameters (Figure 6.14) there is no 

dipole formation.

Figure 6.21 shows an experiment with the same outflow strength (Q =  0.5) 

and vorticity (u = 1) as that shown in Figure 6.20, but with a strong topographic 

effect {S =  1). In this case the coastal current appears to stall and flow offshore 

following the perimeter of the mound. It is expected that the tendency of the 

current to follow the topographic contour would be even more pronounced for
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Figure 6.21: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t = 1 — 40 is shown by the panels for every 5 time units. 
Q = 0.5, 1, L = 5, R  = 5 and S=-1.

larger S.

Figure 6.22 shows an experiment with the same outflow strength (Q =  0.5) 

and vorticity (cu =  1) as that shown in Figure 6.20 and 6.21, but with a strong 

topographic effect (S  = 1.5). It shows that the stronger topography blocks the 

coastal current so that it is constrained to follow the isobath.

Figure 6.23 shows the behaviour of an eddy (with u  =  1 and initial distance 

from the coast W  =  1) interacting with a semi-circular mound (5 =  — 1 and 

radius R = 5). The solid line contour represents the eddy and the dashed line 

represents the topographic contour. In this case, the image vorticity drives the
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Figure 6.22: Evolution of the boundary of the outflow (solid line) and topographic 
contour (dashed line) for t =  1 — 40 is shown by the panels for every 5 time units. 
Q = 0.5, u=  1, L  =  5, R  =  5 and £=-1.5.
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Figure 6.23: Evolution of an eddy (solid line) and topographic contour (dashed 
line) for t = 1 — 40 is shown by the panels for every 5 time units. uj= 1, W  = 1, 
R  = 5 and S=-1.

eddy toward negative y. The eddy causes ambient fluid from outside the mound 

to move on to the mound, so generating negative vorticity. This negative vorticity 

then pairs up with the original eddy (t =  15, 20) creating a dipole which closely 

follows the boundary of the mound.

6.4 C onclusions and discussion

The behaviour of a vortically-driven coastal current or eddy as it encounters to

pography whose isobaths intersect the coast at right-angles depends crucially on 

whether the eddy or current (with positive vorticity) approaches a region of shal-
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Shallow

dipole trajectory

Shallow

Deep

Figure 6.24: Schematic showing the dipole formation mechanism. In (a) the
circulation of the eddy advects deep water to the shallow side of the step which 
subsequently acquire negative vorticity. In (b) the displaced topographic contour 
has separated on the shallow side forming a dipole pair which propagates back 
into the shallow region.

low or deeper fluid. If the eddy or current approaches a region of deeper water 

(e.g. a canyon)then the eddy or current will advect some of this deep water onto 

the shallower plane. This fluid, by conservation of potential vorticity, will then 

acquire negative relative vorticity. Part of the current or eddy will then pair 

up with this negative to form a dipole which advects the eddy or current back 

in the direction it came. This dipole formation is a robust phenomenon and is 

observed for a range of topographic amplitudes. Figure 6.24 shows a schematic 

diagram of the dipole formation mechanism. The dipole mechanism becomes 

more efficient as the vorticity jump associated with the change of depth of the to

pography approaches the same magnitude as the vorticity of the current or eddy. 

Dipole formation, in the case of a current, may occur successively, generating 

many dipoles. It is interesting to note that this dipole formation affecting the 

trajectory of vortices incident on topography has been observed experimentally. 

Sanson, van Heijst and Doorschoot (1999) performed laboratory experiments in
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which a positive vortex encountered an escarpment from the shallow side. Sub

sequent dipole formation caused the vortex to back-reflect in a similar manner 

to the numerical experiments reported here. Sanson et al. (1999) also observed 

that a vortex with negative vorticity does not back-reflect. This is equivalent 

to a positive vortex in deep water approaching shallower water. The numerical 

experiments reported here for this situation also demonstrated that in this case 

no dipole formation occurs and so the vortex or current is not reflected. Depend

ing on the strength of the topography the current or vortex is able to continue 

propagating parallel to the coast (weak topography) or move along the isobath 

(strong topography).

The results reported here are robust and it is anticipated that similar be

haviour would apply for more complicated topography. Moreover similar be

haviour has also been observed for 1^-layer eddies and currents interacting with 

topography of the type studied here.
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Chapter 7

Baroclinic instability in a 

two-layer coastal flow

7.1 Introduction

Several studies have previously used contour dynamics to study instabilities in 

various types of coastal flow. Stern (1985) used contour dynamics to study the 

evolution of large amplitude disturbances of a piecewise uniform potential vortic

ity fluid flowing parallel to a straight coast. The results show the engulfment and 

entrainment of lower vorticity fluid into that of higher potential vorticity. Pratt 

and Stern (1986) studied the formation and detachment of quasigeostrophic ed

dies in a 1^-layer fluid flowing parallel to a coast and, subsequently, Pratt et al. 

(1991) included an additional potential vorticity front to that of Pratt and Stern 

(1986) which allows the possibility of barotropic instability.

da Silveira et al. (1999) also used contour dynamics to study the instability 

of 1—layer separating coastal jet. In their configuration the potential vorticity
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distribution is such that the potential vorticity front is normal to a straight coast 

which drives coastal currents which either converge or diverge at the coast leading 

to an offshore or onshore jet perpendicular to the coast. When the coast was in

clined to the jet they found a slowly evolving meandering pattern for the jet, and, 

in particular, reproduced the retroflection pattern typically observed opposing in 

boundary currents i.e. Gulf stream and North Brazil current retroflection.

Relevant to this chapter, though not a coastal flow is the study of Meacham 

(1991) who used a two-layer quasigeostrophic jet with vanishing barotropic trans

port with a piecewise constant potential vorticity distribution in each layer en

abling instability to be studied using contour dynamics. By varying the horizontal 

and vertical structure of the jet, he obtained shingle formation and eddy detach

ment through baroclinic instability.

The aim here is study the two-layer analog of da Silveira et al. (1999), using 

contour dynamics like that of the two-layer study of Meacham (1991). That is, we 

consider the convergence of coastal jets of the type considered by da Silveira et al. 

(1991) in one of the two layers which leads to an offshore current at the potential 

vorticity interface. As in Meacham (1991) zero barotropic transport is assumed, 

so in the other layer there are diverging coastal currents fed by an onshore current 

-see Figure 7.1. An exact solution is found to the basic state two-layer flow 

assuming quasigeostrophic dynamics with a piecewise constant potential vorticity 

distribution. The two-layer model permits baroclinic instability and the exact 

solution is demonstrated to be unstable and its nonlinear evolution is studied 

using contour dynamics1. It is also demonstrated that the corresponding 1—layer

1 During the preparation of this thesis the author has become aware of a similar study by 
da Silveira and Flierl (2002). They studied a similar flow situation in a 2^-layer fluid and 
obtained a variety of eddy-shedding events and dipole formation. There are some differences
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flow is stable.

This chapter is organized as follows. In section 7.2, the two-layer coastal flow 

problem is formulated and an analytical solution for the basic state is derived. 

Section 7.3 describes the results of the numerical simulation using contour dy

namics of baroclinic instability. Finally, conclusions and discussion are given in 

section 7.4.

7.2 Two-layer baroclinic instability

The two-layer quasigeostrophic potential vorticity equations on the /-plane for 

the case of no topography are (with subscripts 1,2 representing the upper and 

lower layers respectively-see equations (5.1a) and (5.1b))

9i =  V V i -  -  to), (7.1)

q2 =  V2to  -  ^ ; ( t o  -  to). (7.2)

where qi$ are the potential vorticities in each layer, ipi^ the stream function in

each layer, Hi and H<i the depths of each layer, fo the Coriolis parameter and g'

the reduced gravity. Equations (7.1) and (7.2) are non-dimensionalised using the

to this study, namely they have no barotropic mode and, here, an exact solution to the basic 
state is given.
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following scales

giving

r r 1 sW iH t±J ~  ±Jn ~   \ / -----------
p / o V ^ l + ^ 2

qi = V V i -  1 “  (7-3)

q2 = V2̂ 2 -  -  ^i), (7.4)
l +  o

where S = H 1 / H 2  and ipi and if)2 are non-dimensionalised streamfunctions.

7.2.1 Solution for the basic state

The basic state flow and corresponding potential vorticity distribution is shown 

in Figure 7.1. The flow is such that the potential vorticity is piecewise constant 

in each layer. In particular in the upper layer there is an offshore jet striking 

the coast at y =  0 leading to oppositely directed coastal currents. There is zero 

barotropic flow, so the flow in the lower layer is opposite i.e. converging coastal 

current collide at y = 0 leading to an offshore. The two-layer coastal flow shown 

in Figure 7.1 can be thought of as arising from the rapid geostrophic adjustment 

of the stratification shown in Figure 7.2. In this scenario the potential vorticity is 

piecewise constant and after geostrophic adjustment which preserves the potential 

vorticity distribution, flow is oppositely directed in each layer leading to that
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X (a)

high potential vorticity
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(q=l/2)
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Figure 7.1: Sketch of the basin system: The dashed line indicates the position of 
the potential vorticity interface, and the solid lines indicate the direction of the 
basic state flow in each layer.
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Figure 7.2: Sketch of the vertical structure: The upper layer has initial potential 
vorticity distribution q\ = \ H { —y) and the lower layer has q<i =  1H(y ). Rapid 
geostrophic adjustment does not change the potential vorticity distribution but 
leads to oppositely directed geostrophic current in each layer.
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Figure 7.3: (a) Schematic diagram of the corner flow and (b) the image system 
used to construct the Green’s function.

shown in Figure 7.1. Note that the initial stratification shown in Figure 7.2 

can be thought of as a crude model for the alongshore tilt in isopycnals that 

result from imposing an alongshore wind stress. In a two-layer fluid a sudden 

wind blowing parallel to the coast may cause an upper layer potential vorticity 

gradient as fluid varies in depth in the alongshore direction with the opposite 

potential vorticity gradient in the lower layer. In its crudest form this may be 

represented as a step-change in depth in the thermocline resulting a piecewise 

constant potential vorticity gradient. Rapid geostrophic adjustment then leads 

to a flow-field as described in Figure 7.1. For zero barotropic mode fa = —fa

and for equal unperturbed depths (i.e. <5 = 1), the baroclinic mode 0  =  fa — fa

satisfies V20 — 0  =  <72 — Qi- Choosing qi = \ H ( —y) and q2 = \H{y) gives

V20  — -0 = 1/2 x > 0,y > 0

V20  — 0  = —1/2 x > 0,y < 0. (7.5)
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Our task is to solve (7.5) subject to the boundary ?/> =  0 along x =  0 and y =  0 

and i/j —i► 0 as £, |y| —> oo. This is equivalent to finding the flow in a corner region 

(see Figure 7.3). The Helmholtz operator, (V2 — 1), has the Green function 

—Ko(r)/27r, which leads, in general, to

ip(x,y) = - ^  J  J  q(x',y')K0(r)dx'dy', (7.6)

where r 2 =  (x—x')2+(y—y')2 and q is the distribution of the vorticity field and the 

integral is taken over the entire fluid domain. The velocity field, u = —ipy, v = ipx, 

determined by (7.6) is

{u,v) = J  J q ( x \ y ' ) ^ p - ( - ( y  -  -  x'))dx'dyf. (7.7)

For the region x  > 0, y > 0 (i.e. flow in a corner-see Figure 7.3a) has Green’s 

functions g{x,y) (constructed by the method of images i.e. the images of the 

vortex at ± ( 2/, yf) in walls along x  =  0 and y =  0-see Figure 7.3b)

g(x, y) = - ^ K 0  ((s -  z ')2 + { y -  y ' f ) 1/2]

+ 2t t K °  [((x +  x')2 +  (y ~  j/)2) 1/2] (7-8)

+~trKo “  X' ^  + (y + V'W

~~trK°[^X + X̂2 + (y + y'^

1 / 2

,2\V2

Thus, for x > 0, y > 0, we have q — 1/2 and hence from (7.6)

p o o  p o o  2
*  = I  JQ 2 9{x ,y ,x ' , y')dx'dy'. (7.9)
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It is difficult to evaluate the above double integral exactly. However, the velocity 

components are a little simpler: i.e.

u = j j l = j (°° r d- i dX'dy>
dy 2 J 0 J 0 dy V

= ~^l L -yyK̂ - x'̂ -y'\ + yyK̂ +x'̂ -y'\
d d

+  — i f 0 [ z  - x f, y  +  y'] +  f y K olx +  x'>y + y 'W d x '

~ h L  I  - i p K ^ - x '’y - y ' ^ - ^ K ^ + x '’y - y ' ]

+ - ^ K 0[x - x ' , y  + y '] -  - ^ jK q[x + x ',y  + y ' ] d y ' d x (7.10)

Doing the y' integral in (7.10) exactly gives

1/2U =  J  - K 0 [((x -  x')2 +  y2) 1/2] +  K 0 ((x +  x')2 +  y2)

-  K 0 [((x -  x')2 +  y2) 1/2j +  K 0 [((x + x')2 +  2/2) 1/2] dd  

= — J  Ko [((a; -  x')2 + y2) 1/2J -  K 0 [((x + x')2 +  S/2) V2] dx'

=  ± j * K 0 [ ( e  +  y2) 1/2\d£.  (7.11)
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Similarly, for v = we get

_dH> _  1 [°° f°° dg ,
V dx 2 Jo J o  dx

= h j 0 L  - J ^ - x ^ - ^  + Ĵ oIx + ẑ -2,']
d d+ — K 0[ x - x ' , y  + y'\ +  — K 0[x + x',y  + y']dy'dx'

= ~tr Jo ~K° + (y ~ V>̂ 1/2] ~ K° ^  + (y ~ y' V2]
+  Ko [(x2 +  (2/ +  s/)2)  ̂ +  ^ 0  |(x 2 +  (y +  j /)2)  ̂ dx1

=  Jii Jo ~ K ° t̂ 2 + ( y ~ V' ^  V2] + K ° + ̂  + ̂ )2)V2] dx<
=  -  J  Ko [(f2 +  x2) 1/2] d£. (7.12)

Thus (7.11) and (7.12) give the velocity field for x > 0, y > 0. 

For x > 0, y < 0, u stays the same, but v changes sign, i.e.

v(x, - y) = -v (x ,y ) . (7.13)

Thus, in summary, the entire flow field for x > 0, —o o < y < o o ,  is given by

u  =  ~  J o  K °  [ ( £ 2 + y 2 ) 1 / 2 ]  ^

v =  -^ sg n y  J  Ko [(f2 +  x2) 1/2] d£.

(7.14)

(7.15)
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Note that, examining various limits of the velocity field gives,

(7.16b)

(7.16a)

and also observe that

y = 0, v = 0.

x =  0, u = 0 (7.17a)

(7.17b)

Thus for large distances from the coast, x  —> oo, the flow tends to that of a 

unidirectional jet (7.16a), and at large distance, \y\ —» oo, from the convergence 

zone y =  0, the flow is that of a coastally trapped jet. Conditions (7.17a) and 

(7.17b) show that the boundary conditions are satisfied.

7.3 Numerical experim ents

7.3.1 Contour dynamics

The piecewise constant distribution of potential vorticity shown in Figure 7.1 

mean that contour dynamics is the ideal method to study the full nonlinear 

problem and, in particular, to compute the evolution of any instabilities that 

may arise. Note that in this problem, unlike previous chapters, the potential 

vorticity distribution is provided by the current structure (7.14) and (7.15) rather 

than topography. In particular conservation of potential vorticity leads to the
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inhomogeneous Helmholtz equation,

(V2 -  1)V> =  q2 ~  qu (7.18)

where ^  is the baroclinic stream function. Once ip is known then in the absence 

of any barotropic mode ^ 2  =  \^> and ipi = — i.e. the upper and lower stream 

functions are determined.

In the present work the background potential vorticity is given by d = \  sgn (y), 

and arises through the velocity field (7.14) and (7.15). There are two contours 

free to evolve, one in each layer and both initially lay along y = 0. In addition, 

each of these contours has an image contour in x  =  0 in order to ensure u =  0 

along x  =  0. The evolution of the contours is computed in a similar way to 

the previous chapters in which the background potential vorticity is provided by 

topography. The major difference here is including the background velocity field 

(7.14) and (7.15). Note that for small x  and \y\ it is necessary (since the numerical 

integration of the integrals in (7.14) and (7.15) becomes inaccurate owing to the 

large values of the argument of K q) for accuracy to use exact asymptotic forms 

for these velocities which is computed at each node by numerical integration (see 

Appendix).

Before doing the two-layer numerical experiments, a preliminary 11-layer ex

periment (results not displayed) with a flow field given by (7.14) and (7.15) is 

run for times up to t =  100. During this time no instability is observed and the 

contour remains undisturbed. This strongly suggests that the flow field is stable 

in the barotropic sense.

Figure 7.4 shows that the simulation without any prescribed initial perturba-
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0 5 10 15 20 0 5 10 15 20

Figure 7.4: Evolution of a baroclinic instability without prescribed perturbation 
for times t  = 1 —100 at a time interval of 10 units. The contours in the upper layer 
and the lower layer are represented as a solid line and a dashed line respectively.
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Figure 7.5: Evolution of a baroclinic instability with an initial perturbation at 
the corner of the both layers for times t =  1 — 50 at a time interval of 5 units.
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7.3 N um erical experim ents

Figure 7.6: Evolution of a baroclinic instability with an initial perturbation in 
the middle of the both layers for times t = 1 — 50 at a time interval of 5 units.
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tions in a two-layer fluid with the baroclinic flow field given by (7.14) and (7.15). 

There are, however, numerical errors which provide the perturbations which ul

timately grow (t =  50 —► 100). Such numerical errors are also present in the 

1—layer case but they do not grow. Hence it seems that the two-layer case is 

baroclinically unstable. It is of significance to note that the origin of the instabil

ity is at the coast and that the meanders grow in amplitude and the meandering 

penetrates further and further offshore

Figure 7.5 shows the nonlinear evolution of the instability which has an initial 

perturbation at the wall given by y = exp(—x)2/S  and Figure 7.6 also shows 

the nonlinear evolution of the instability which has an initial perturbation at 

the middle of the domain given by y = exp(—(x — 21)2)/8. As expected in 

Figure 7.5 the instability evolves more quickly, than the instability owing to 

purely numerical error in Figure 7.4. It does, however evolve in a similar manner, 

with the meanders growing off-shore. In Figure 7.6 the meandering spreads out 

in both directions from the initial perturbation. This is consistent with Meacham 

(1991) who demonstrated the instability of a two-layer infinite jet (i.e. without 

any coastal wall).

7.4 Conclusions

The stability in a two-layer converging/diverging coastal jet associated with piece- 

wise constant potential vorticity anomalies is studied using a contour dynamics 

method. The model is relevant to the retroflection typically observed in Southern 

Hemisphere boundary currents (e.g. North Brazil current) which are frequently 

observed to meander and shed eddies. The results here suggest that the mean
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dering may arise through the baroclinic instability of the separating boundary 

current.

Comparison of a two-layer and 1^-layer experiment with no initial prescribed 

perturbation other than those provided by numerical error shows that the flow 

is unstable only in the two-layer case and is therefore an example of baroclinic 

instability. The origin of the instability appears to be at the coast. This seems 

plausible as it here that there is largest possibility of numerical error (e.g. through 

the use of asymptotic expressions of the velocity field as in Appendix A). The 

instability grows in the same way as when a prescribed perturbation is placed at 

x = y = 0, with meanders growing in amplitude and offshore.
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7.4 Conclusions

APPENDIX: Asym ptotic forms of u and v  for small x  and y

In the numerical model the numerical integration method for computing the inte

grals in (7.14) and (7.15) loses accuracy as x , y  —> 0 and it is necessary to replace 

them by their asymptotic forms. Recall

u (A-l)

and note that as z —> 0, Kq(z)  —> —ln(z), hence as x ,  \y\ —► 0

u  =

~ h l

-  1 2y  tan-1 -  2x  +  x  ln(x2 +  y 2)

- - tan-1 \n(x2 +  y 2) +  - .
7r  V y  J  Z 7T  7r

}■
(A-2)

Similarly,

v =  - i  sgny J  K 0 [(£2 +  rr2) 1/2j d£,

= 7J”  sgn2/ 12x tan-1 -  2\y\ +  \y\\n(x2 +  ?/2) | ,

x l /H A  2/ ln(x2 + y2)= sgn y -  tan ^  -  g  +  y_ . V. J  I . A_3
7T \  X  J IT IT T

The asymptotic forms (A2) and (A3) are used in the contour dynamic codes when 

0 < x 2 +  y2 < 0.0001.
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Chapter 8 

Dipolar outflows and their  

interaction w ith topography

8.1 Introduction

In this chapter the barotropic outflows problem is studied further. In chapter 

3 the vorticity of the outflow was assumed to be constant and, necessarily, of 

the same sign (e.g. purely cyclonic). There is, however, some observational 

evidence that outflows often have a dipole structure. For example, Ginsburg and 

Fedorov (1984) present observational evidence for the formation of vortex pairs 

from narrow jets emanating from river outflows and straits. It is particularly 

interesting that in most cases, as inferred from satellite images, in the coastal 

zone the jet currents forming vortex pairs are directed approximately normally 

to the shoreline. This phenomenon is observed frequently near a river mouth. In 

a related experimental study, Flor and van Heijst (1994) showed that, after the 

emergence of the pancake-shaped dipole vortex structure, the flow is quasi-two-
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8.1 In troduction

(a) (b)
Figure 8.1: (a) The vorticity distribution in a channel flow is such that the 
vorticity changes sign either side of the velocity maximum. Upon leaving the 
channel, the boundary layers separate and roll-up, causing a dipole to form.

dimensional in nature. Dipole vortex structures, sometimes called mushroom-like 

currents, are characterized by two closely packed patches of oppositely signed 

vorticity. In particular, the vortex pairs that are frequently observed in the shelf 

zone provide a very effective mechanism for transport and horizontal mixing in 

an ocean.

The origin of these dipole vortex structures emanating from narrow channels 

is easily understood in terms of boundary layer separation. Figure 8.1 shows a 

schematic diagram of the dipole-generation process. Supposing that friction is 

important in the channel, the velocity profile typically looks like that in Fig

ure 8.1(a), with vorticity u  = Vx of opposite signs either side of the velocity 

maximum. Upon entering a sudden expansion the boundary layers may separate 

and, typically, begin to roll-up forming a dipole vortex (Figure 8.1(b)). Of course,
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8.1 Introduction

in the present model the effects of friction will be neglected once the dipole has 

reached the open ocean.

Goncharov and Pavlov (2001) have discussed theoretically some features of the 

motion of strong localized vorticity concentrations in a given flow in the presence 

of boundaries. They assumed a two-dimensional point vortex model with an 

open polygonal boundary and made estimations for the characteristic parameters 

of dipole vortex structures emitted from river mouths into the open ocean.

Very recently Wells and van Heijst (2003) have studied experimentally dipole 

formation by the tidal exchange mechanism i.e. periodic flow in and out of a 

bay through the narrow channel according to a mechanism like that shown in 

Figure 8.1. According to Wells and van Heijst (2003), there is an asymmetry 

between the flow entering and leaving the channel on different phase of the tide 

owing to flow separation. They considered the creation of vorticity in the channel 

and the formation of a dipole that can propagate away from the returning flow 

of the later phase of the tide.

Here a contour dynamics model is used to model a dipole issuing from a 

confined source onto a shelf. In order to use contour dynamics it is necessary to 

assume that the dipole is comprised of regions of constant vorticity. The shelf 

geometry is the same as that used in chapter 3. The aim of this work is not to 

perform an in-depth study of dipolar outflow dynamics, but to demonstrate the 

usefulness of contour dynamics in tackling this problem.
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8.2 Problem  form ulation

deep

V 2V|/=0 shailow

source flow
Figure 8.2: Sketch of a basin and dipolar vortical outflow system with topography. 
The outflow consists of two different signs of vorticities, ± cj.

8.2 Problem  form ulation

The outflow problem is shown schematically in Figure 8.2. Like chapter 3, the 

outflow is generated by a source flow at the origin which causes the initially 

small hemispherical contour to grow. The difference here being that the contour 

consists of equal and opposite vorticity which drives a dipolar flow normal to the 

coast. In addition, each of these contours will have corresponding image contours 

about y = 0 in order to satisfy the no flow boundary condition on y =  0.

The dynamics at the shelf y = 1 are handled in precisely the same way as in 

the chapter 3.

The source flow is held constant after t = 0, but may be turned off at some 

later time to simulate a brief flushing event.
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- 2  0

j  ]
14
12
10

F  :

F  . . :

8
6
4

8 •  . .
- 2  0

- 2  0 2

- 2  0

r
- 2  0

—y*

Figure 8.3: Evolution of the dipole for t = 1 — 50 is shown by the panels for every 
5 time units. Here Q = 1, S  =  0. The dashed line is the = +1 contour and 
the solid line is the = — 1 contour.

8.3 R esults

Figure 8.3 shows the evolution of a dipole vortex emitted in the strait for a 

continuously maintained source. The topography is zero. The flow is driven 

offshore by a dipolar mechanism. In fact the contours are images of each 

other about x  =  0 and the outflow plume behaves very much like that of single 

signed vortical outflow except that is is rotated through by 90°. The offshore 

transport mechanism is very efficient.

Figure 8.4 shows a similar experiment except the source flow is switched off 

momentarily for 10 < t < 20. Note that a distinct self-propagating dipole forms
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Figure 8.4: Evolution of the dipole for t = 1 — 50 is shown by the panels for every 
5 time units. Here = 1, —1 and S  = 0. Q = 1 for 0 < t < 10 and t >  20.

ahead of the main outflow plume. The formation of just a single dipole is well- 

illustrated in Figure 8.5. Here Q = l f o r 0 < £ < 1 0  but is then switched off 

permanently.

The presence of a topographic shelf destroys the x-symmetry in the outflow 

dynamics. This is evident even for very weak topography S  =  0.1 as shown in 

Figure 8.6. Here the source flow is switched off after t =  10 as in Figure 8.5. 

The deflection of the topographic contour into the deep ocean generates cyclonic 

vorticity which pushes both lobes of the outflow toward x  > 0. The ensuing 

dynamics is complicated. The initial dipole appears to become separated as the 

left-hand lobe intensifies and the right-hand lobe weakens in deep water owing to
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- 4  -2  0 2 4

Figure 8.6: Evolution of the outflow and topographic contour for t = 1 — 45 is 
shown by the panels for every 5 time units. Here Q =  1, Ui# =  1, —1, S  = O.land 
switched off after t =  10.

vortex stretching. Indeed part of the left-hand vortex head back toward the shelf. 

Overall, the offshore penetration is much less than that shown in Figure 8.5. The 

rate of horizontal mixing is, however, considerably greater.

Figure 8.7 shows a similar meandering pattern this time for a constant source 

strength. Again the outflow is initially skewed to the right as shelf water is 

forced into the deeper ocean so generating cyclonic vorticity. The intensification 

and weakening of the vorticities upon entering deeper water causes the outflow 

to meander.
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Figure 8.7: Evolution of the outflow and topographic contour for t = 1 — 45 is 
shown by the panels for every 5 time units. Here Q = 1, uj\$ =  1>—1> S  — 1*
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8.4 Conclusions

8.4 Conclusions

The intent of this chapter was not to perform a full investigation into the dynam

ics of dipolar outflows in shelf-like topography, but rather, to demonstrate the 

feasibility of using contour dynamics similar to that used earlier in this thesis. 

The idea of applying contour dynamics to dipolar outflows comes from a very 

recent experimental study by Wells and van Heijst (2003) on dipole emission into 

a fluid of uniform depth (i.e. no topography). It has been demonstrated here that 

using ideas and methods developed earlier in this thesis, contour dynamics can 

be used to model dipolar outflows and, further, it is relatively straightforward to 

include shelf-like topography, such topography being of importance to real ocean 

dynamics.

A careful numerical study of the effects of topographic amplitude, strength 

and interval of emission and vorticity magnitude remain to be done.
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Chapter 9 

Summ ary and conclusions

Analytical and numerical methods, principally contour dynamics, have been used 

to study a series of problems relevant to coastal ocean dynamics.

Chapters 3, 4 and 5 studied the outflow of a fluid from a localised source 

in a coastal wall for a variety of different vertical fluid structures. In particular 

barotropic, 1—layer and two-layer stratifications were considered. The outflows 

can be thought of as arising from river discharge, tidally driven discharges through 

narrow gaps or choke points in the case of two-layer fluid, through baroclinic 

exchange flows. A common feature to each of these studies is that an outflow 

plume with positive vorticity flowing onto a shelf will form a coastal current 

and offshore spreading is inhibited. On the other hand, a plume with negative 

vorticity will, under the image effect, spread in the opposite direction to the 

direction of propagation of both Kelvin and shelf (topographic) waves. As a result 

overall spreading of the plume along the coast is reduced with a corresponding 

enhancement of offshore spreading. Offshore dispersal is made efficient by a dipole 

transport mechanism in which the negative vorticity source fluid ‘pairs-up’ with 

shelf fluid passing into the deeper ocean which acquires positive relative vorticity.

The outflows models presented in this thesis are, of course, highly simpli
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fied. Many real-ocean effects have been neglected. Principal among these is the 

neglect of dissipative processes. Friction in the form of bottom drag and side

wall (i.e. coast) friction is likely to be of important especially in shallow coastal 

seas. Indeed many previous studies have highlighted the importance of frictional 

effects in the coastal flows (e.g. Chapman and Lentz, 1994). Unfortunately in

clusion of such dissipative effects precludes the use of contour dynamics (which 

is based on conservation of potential vorticity). A further restriction of contour 

dynamics is that is based on quasigeostrophic theory. This, in turn, demands 

that the Rossby number be small and that the height of any topographic varia

tions be small compared to mean depth of the fluid. It is this latter requirement 

that is particularly questionable, especially in coastal shelf regions where the 

deeper ocean is much larger than the on shelf depth. Finally, outflows are fre

quently frontal phenomenon, whose fronts often outcrops at the ocean’s surface 

(for freshwater buoyant plumes e.g. Narayanan and Garvine, 2002). Unfortu

nately, quasigeostrophic theory is invalid for such frontal flows. Thus it is of 

interest to incorporate more realistic effects, but their inclusion would necessarily 

mean the use of more realistic ocean models. The resulting increase in complex

ity would inevitably mean longer computational times and extra complications 

in interpreting model results. The motivation for present models was to isolate 

the effects of shelf-topography and anomalous plume vorticity and see how they 

interact and influence the outflow dynamics.

Chapter 6 studied the interaction of coastal currents and eddies with coastal 

topographic feature whose isobaths intersect the coast. Contour dynamics al

lowed the nonlinear interaction problem to be studied thus extending the worths 

of previous linear theories (e.g. Johnson, 1985; Hurst and Johnson, 1990). A

157



ubiquitous and robust feature for a current or eddy having positive vorticity 

approaching a region of deeper water is the formation of dipoles and partial re

flection of the incident current or eddy. If, on the other hand, the current or 

eddy approaches a shallow region of fluid, then depending on the strength of the 

topography the current tends to follow isobaths.

Finally, chapter 7, demonstrates the baroclinic instability and subsequent non

linear evolution of a two-layer flow involving converging and diverging coastal 

current. The subsequent meandering may explain, the meandering observed in 

the oceans separating Western boundary currents.

Again, it would be of interest to see how the inclusion of friction and non- 

quasigeostrophic effects would modify these conclusions. For example it was 

observed that the origin of the instability was at the coast. In this region it would 

be expected that boundary friction would be at its most important, - would such 

friction be sufficiently large to damp out the growth of any disturbances, thus 

preventing baroclinic instability. This would need to be tested using, for example, 

a two-layer shallow water code.

Within the framework of the present contour dynamics model several exten

sions to this thesis research are possible. Time-dependent forcing of outflows is 

straightforward to include. This could consist of a ‘switched-on’, ‘switched-off’ 

outflow representing a discharge of finite duration. Alternatively, oscillatory out

flow strengths could represent tidal forcing. Both of these time-dependent forcing 

would introduce a further timescale into the problem. Further, it would also be 

straightforward to introduce two, or more, sources into the outflow problem. It 

would of interest to study the interaction of outflow plumes.
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