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Abstract

Dust is believed to play a significant role in the evolution of interstellar clouds and 

hence in processes such as star formation. The physics involved is similar to that 

responsible for terrestrial aerosols.

Certain chemical reactions in interstellar conditions may only occur on the sur­

face of a host particle and are not viable purely in the gas phase. The traditionally 

used rate equations approach to describe these reactions fail to account for the 

statistical fluctuations in the reactant populations, which would be significant in 

situations where the mean population may be well below unity. This can easily 

occur in interstellar conditions and quite often in reactions catalysed by terrestrial 

aerosols. This thesis considers a master equation approach that provides a stochas­

tic description of heterogeneous chemical kinetics and demonstrates that classical 

kinetics may have been overestimating the reaction rates by one order of magnitude 

under interstellar conditions.

The same idea can be extended to study mantle growth on dust surfaces. Tradi­

tionally, this is described using a classical description of nucleation kinetics, generally 

suitable for large systems. Again, this can be unreliable for heterogeneous nucle­

ation taking place on small particles under low vapour concentration where the mean 

population of adsorbed nucleating species could be of order unity or less. The the­
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sis explores a stochastic description of heterogeneous nucleation kinetics and solves 

the arising equations numerically to demonstrate that the stochastic nucleation rate 

could be significantly different from that derived using the traditional approach.

The chemical composition of interstellar dust has for long puzzled experts. The 

key to determining this lies in an accurate description of the physical processes 

underlying the formation of these particles. Magnesium oxide is considered to be 

one of the major candidates as the primary nucleating material, but recently doubts 

have been cast over this. However, the models employed in reaching that conclusion 

seem to be rather inaccurate. The thesis attempts to calculate free energies of 

molecular clusters using newly designed potential models for MgO. It is found that 

MgO is probably not the primary nucleating dust species in stellar winds.
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Glossary

The following is a list of acronyms and mathematical symbols used, except for the 
trivial and self-explanatory ones. The middle column lists the Chapter or the Section 

where the given entry is first mentioned, or in some cases, discussed prominently.

Symbol First Meaning
appearance

x  Mean value of a given quantity x.
(. . .) Averaging a quantity over statistical fluctuations.
a, P, 7 ,8 6.3 When appearing in index, each of these can take on

any of the coordinate values x, y or z.
a .1 6.2 Dipole polarizability of the ^-th ion.
aij 6.3 Parameter characterising the shape of ionic charge

density.
AIM 6.3 Aspherical ion model.

6.2 Parameter that measures the repulsive strength of the
Born-Mayer potential.

P* 4.2 Rate of attachment of monomers to a cluster of crit­
ical size i*.

Pi 4.1 Rate of monomer attachment to a cluster of size i.
P[ 4.1 Reaction rate between monomers and an i-cluster.

Pi =  P in i

B 6.3 Dipole-dipole-quadrupole hyperpolarizability.

c 3.2 Concentration of gas phase molecules surrounding a
host particle.

Cq 6.3 Dipole-dipole dispersion parameter.

12
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Symbol First
appearance

Meaning

C& 6.3 Dipole-quadrupole dispersion parameter.
CIM 6 . 1 Compressible ion model.

ct 6.3 Quadrupole polarizability of the ^-th ion.

S(J£ 6.3 Change in the instantaneous radius of the ^-th ion .
D 6.3 Half the energy of reference ion without compression.
D' 6.4 Mass-weighted dynamical matrix of force constants.
E j 6 . 2 Electric field at the position of the j -th ion.

S{i) 4.2 Total energy of an i-cluster.
F{z) 3.3 The generating function introduced to simplify the 

kinetics of the heterogeneous reaction A +  A —> C. 
The first and second derivatives of this function give 
the mean reactant population and the reaction rate.

F (x ,y \ t ) 3.3 The generating function introduced to simplify the 
kinetics of the heterogeneous reaction A +  B —>■ C.

Fi,j 3.4 Shorthand for the generating function value F(xi, yj).
4.2 Helmholtz free energy of an i-cluster.

TJ mon 4.2 Helmholtz free energy of a monomer.

7* 4.1 Rate of monomer detachment from a cluster of size i.
r  ( Z ) 3.3, App. A Gamma (factorial) function, defined for > 0.
G(x, i/; t) 3.4 Equivalent to In[F(x,y\t)]\ useful in obtaining a nu­

merical solution to the kinetics of the heterogeneous 
reaction A +  B —> C.

Gm 3.4 Shorthand for G(x, y; tm), the function G at time-step
4-

c 3.3
L,m-
A mathematically convenient parameter, expressed 

as C =  ‘I s j x i v  +  1 ) ( 1  +  z).
h 4.2 Planck’s constant (6.6262 x 10- 3 4  J s).
h 4.3 /z/2?r (1.0546 x 10" 3 4  J s).

n 4.3 Hamiltonian of a system of particles.

6.3 Induced quadrupole moment at the j -th ion position.

i 3.4 In Chapter 3, i is an index marker.
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Symbol First Meaning
appearance

4.1 From Chapter 4 onwards, i is the number of 
monomers in a molecular cluster.

i* 4.1 Critical cluster size required for nucleation to occur.
imax 4.1 Maximum cluster size allowed in a nucleating system.

I h h i h  4.3 Three principal moments of inertia of a crystal about
the centre of mass.

Imon 4.4 Moment of inertia of a monomer about its centre of
mass.

IGM Chap. 1  Intergalactic medium.
ISM Chap. 1 Interstellar medium.

Iv(z) 3.3 Modified Bessel function of the first kind with the
index v being a real number and z being complex.

j  5.2 Rate of monomer attachment on particle surface.
3 a i jb  3.2, 3.3 Rate at which A and B molecules are adsorbed on

the particle surface respectively.
j c  3.3 Production rate of the dimer C in heterogeneous

chemistry.
J  4.1 Nucleation rate; the rate at which cluster of critical

size i* are created.
Jy  4.6 Nucleation rate per unit volume.
k 3.2 Reaction rate constant such that k/ V  is the reciprocal

timescale of the heterogeneous reaction.

K£ 6.3 Parameter of quadrupole symmetry of the i-th. ion.
Ub  3.5 Boltzmann’s constant (1.3807 x 10- 2 3  J K-1).

kn  3.2 Henry’s Law constant.
K v(z) 3.3 Modified Bessel function of the second kind. The

index v  is real and z can be complex.
A 4.2 Thermal de Broglie wavelength.

5.2 Evaporation rate of monomers from particle surface.
Xa ,Xb 3.3 Evaporation rate of the molecules of species A and B

respectively from the particle surface.
A*; 6.4 ft-th eigenvalue of the matrix D'.
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Symbol First Meaning
appearance

LH 3.1 Langmuir-Hinshelwood.
fjtj 6.2 Induced dipole moment at the position of j- th  ion.

pv,p c 4.2 Chemical potential of the vapour and the condensed
phase respectively.

M  6.4 Diagonal matrix containing the masses of oscillators
in a crystal.

M q Chap. 1  One solar mass.
v 3.3 Parameter that represents the adsorbed phase

branching ratio in the reaction A +  A -> C. It is 

given by v =  (2VXa / k) — 1 .
Vi 6.3 Parameter of dipole symmetry of the ^-th ion.
rii 4.1 Classical mean population of an ?-cluster.

N  3.3 Number of reactant molecules present on a particle
surface in heterogeneous reactions.

6.2 Total number of ions in a crystal.
N a ,N b 3.3 Number of reactant molecules of species A or B

present on a particle surface.
Ni 5.2 Exact number of i-clusters present on a particle sur­

face.
£ 5.4 Parameter that characterises the size of the host par­

ticle in heterogeneous nucleation.
p 3.2 Partial pressure of a species in the gas phase.
p  4.3 Momentum vector of an atom.

4.2 Vapour pressure.

pSat 4.2 Saturated vapour pressure.
Pi(Ni) 5.2 Probability distribution for cluster populations.

Pu(Ni, Ni) 5.2 Joint probability distribution for two cluster popula­
tions Ni and

PIM 6.1 Polarizable ion model.
Qi 6 . 2  Electric charge of the ^-th ion.

pi 6.5 Initial number density of monomers when no i-
clusters have been formed.
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Symbol First Meaning 
appearance

Pi
Pij

Pv

Psat

r

r *3

RIM

0t
0t
S

SW.S®

S ( i )

T

T^1)
ip(2)

U

U0

t t  mon u 0

V

V

Uk

Ur

4.6 Classical mean population density of an i-cluster.
6 . 2  Steepness of the repulsive part of Born-Mayer poten­

tial.
4.2 Number density of monomers in the vapour phase.

4.2 Number density of monomers in a saturated vapour.
4.3 Position vector of an atom.

6.2 Separation between the i-th  and the j-th. ion.

6.3 Rigid ion model.

6.3 Radius of £-th ion.
6.3 Reference value of ionic radius.
3.5 Sticking coefficient for molecules striking a host par­

ticle.
6.3 Interaction tensors that account for aspherical ion de­

formations.
4.2 Entropy of an i-cluster.
3.5 Temperature of the gas phase.
6.3 Charge-dipole interaction tensor.
6.3 Dipole-dipole interaction tensor.
6.2 Potential energy within a molecular cluster.
4.3 Potential energy of a crystal when the atoms are at 

their mean positions.
4.4 Potential energy of a single monomer when the indi­

vidual atoms within it are at their mean position.
3.2 Thermal velocity of reactant gas molecules.

3.2 Volume of the host particle in heterogeneous reac­

tions.
4.3 In nucleation, this is the volume of the ‘container’ in 

which a given cluster can translate freely.
4.3 Angular frequency of the k-th  vibrational mode of a 

crystal.
4.3 Angular frequency of vibration of a monomer.
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Symbol First Meaning
appearance

W (N , t) 3.3 Probability of finding N  reactant molecules on the

particle surface at time t.
W (N A, N b ) t) 3.3 Probability of finding NA and N b molecules of species

A and B respectively on the particle surface at time 

t.
W  ({Ni}; t) 5.2 Probability of finding Ni monomers and in general Ni

i-clusters on the particle surface at time t (p. 1 0 0 ).
W (i)  4.2 Work of formation required for an i-cluster.

W* 4.2 Critical work of formation.
Weff(i) 4.6 Effective classical work of formation of an i-cluster.
x  3.3 One of the arguments of the generating function

F (x ,y \ t ) .
X  3.3 A parameter that represents the gas-particle equilib­

rium constant in the reaction A +  A —» C. It is given 

by X  = j A/ \ A-
y 3.3 One of the arguments of the generating function

F{x ,y \t) .
z  3.3 Argument of the generating function F(z).
Z  4.2 Zeldovich factor.
Z  4.3 Partition function.



Chapter 1

Introduction

The Universe exhibits its material content in the form of structures ranging all 

the way from tiny particles of minuscule scale to gigantic stars and galaxies. The 

wonderful irony is that the large structures are thought to have been built as a result 

of painstakingly slow evolution of microscopic entities such as dust particles over 

millions of years. To find that a lively hot star that measures millions of kilometres 

in diameter would have had its origin in sub-micron dust particles wandering around 

in lonely, cold, dark space in the past, can be a great exercise of imagination. The 

driving processes within the giant structures themselves occur at microscopic and 

nanoscopic scales.

W hat is generally known as the ‘empty space’ is, in fact, not all that empty. 

There exists sparsely distributed gaseous and dusty material in the vast spaces be­

tween stars, known as the interstellar medium (ISM). Although sparse, this material 

is by no means little in amount when considered in aggregate. Crude estimates sug­

gest that while the total mass of all stars in the Milky Way Galaxy is of the order 

of 101 1 M@, the ISM makes up some 1O9 M 0  in the Galaxy, though a major propor­

tion of the total Galactic mass (> 90%) is attributed to the yet-mysterious ‘dark

18
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m atter’ in order to explain the total mass of 1O1 2 M0  [1]. Here M© denotes one solar 

mass. Ordinary stars are surrounded by hot magnetised plasma that seethes out 

into space in thermally powered winds, feeding the material into the ISM. Within 

the disks of spiral galaxies, dusty clouds of molecular gas are often seen collapsing 

under their own gravity to form new stars. Dying stars eject enormous amounts of 

dusty material back into the interstellar medium, or even into the space between 

galaxies.

Amazing as it may all seem, it may also be bemusing as to why we should worry 

about chunks of worthless dust, which are so far from us that they cannot possibly 

have any effect on our life whatsoever. Among the many possible answers, perhaps 

the most captivating one -  and the most publicly quoted one -  is that every piece 

of m atter in the solar system would have been a part of the interstellar medium 

and almost every atom in the human body would have been created in some violent 

stellar explosion such as a supernova. We are literally made of stardust.

Studies concerning cosmic dust began in the mid-19th century as a quest to 

quench the curiosity about this mysterious looking isolated m atter in space, although 

little progress was made until the beginning of the 20th century. Later it became 

apparent that there was some rich chemistry going on in these clouds and the branch 

called ‘astrochemistry’ was born in the 1960s. Revelation of complex molecules in 

the interstellar environments has led to further recognition that a full development 

of ‘astrobiology’ would shed light on some fascinating facts about the origins of life 

itself.

Diffuse m atter exists in the Universe over length scales ranging anywhere be­

tween 101 3  m (smaller than the Solar System) and 102 2  m (which encompasses whole 

clusters of galaxies) [2]. The upper value is when one considers not only the inter­
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stellar, but also the intergalactic medium (IGM), which exists as a result of active 

galactic nuclei shooting away jets of hot plasma (ionised hydrogen) perpendicular to 

the galactic plane. However, the intergalactic material does not appear to contain 

any dust [3] and the plasma is so tenuous in the IGM that it almost never cools 

again to participate in useful chemistry due to the extremely small rate of collisions 

within it. A hydrogen nucleus could travel a distance of our galaxy in the IGM 

before encountering another of its kind. Therefore, we shall only consider the in­

terstellar medium here since it holds great significance in relation to the process of 

star formation.

The dusty environment surrounding many of the giant stellar objects in the form 

of an atmospheric shell is quite analogous to the Earth’s atmosphere, though the 

physical conditions may vary significantly between these two cases. For instance, 

in the plane of the Milky Way Galaxy, the mean density of gas is around 3 x 

1 0 5  m - 3  and inside a potential star formation region, this can be about 1 0 1 2  m - 3  

[2]. These are negligible concentrations compared to about 2 x 102 4  m - 3  that we 

normally encounter in the Earth’s atmosphere. Further, atomic collisions in the 

denser ISM occur on a timescale of several days, compared to a few nanoseconds in 

the terrestrial atmosphere. But there are also striking similarities that are hard to 

ignore. Gas and dust grains in space follow an evolutionary path in a very similar 

fashion to planetary atmospheres. Dust clouds in interstellar space contain a range 

of species from atomic gases to dust grains. These clouds may have been formed as a 

result of material ejection from stellar outflows. In the vicinity of cool atmospheres 

of red giants and supergiants, we find perfect conditions for the nucleation and 

growth of dust grains to occur. The grains may grow as a result of gas phase atoms 

and molecules adsorbing permanently on the grain surface. This is known as the
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mantle growth of dust grains. Another mechanism for the grain growth is through 

coagulation, whereby the dust particles themselves may collide and occasionally 

stick together, growing from sub-micrometre sized grains to small pebbles. If the 

interstellar conditions are right, these pebbles may grow and eventually collect into 

even macroscopic objects, whereupon gravity assists the building process of giant 

structures like planets and stars. The possibilities are far more diverse in outer 

space than in terrestrial atmospheres and the densities of the material involved may 

be much lower in space with no gravity. However the underlying physics of grain 

condensation, nucleation and growth from microscopic size is very much the same 

in both cases.

It has been generally recognised that small dust particles participate in several 

chemical reactions, which would otherwise be impossible to come about in the ab­

sence of these particles. Certain chemical reactions can only occur on the surface 

of suspended particulate matter, rather than purely in the gas phase, in order to 

ensure the conservation of energy and momentum of the reactant molecules. In 

such a case, the dust acts as a ‘catalyst’, such as in the case of the simple reaction 

H +  H —> H2 . Similarly, atmospheric aerosols assist important aqueous reactions like 

HSO3  +  OH -> SO3  +  H2 O and there are many more examples of heterogeneous 

chemical reactions in our atmosphere [4]. In fact, some aerosol scientists often like 

to term cosmic dust as simply ‘cosmosols’.

The original stimulus behind this thesis was the formation and the evolutionary 

role of dust in cosmic environments. However, given the similarities between the 

interstellar and atmospheric dusty environments, the theoretical ideas developed 

here have been applied to both these cases. Any knowledge obtained from one 

perspective may conveniently be applied to the other one, so while modelling cosmic
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dust, some of the known features of atmospheric aerosol science have also been 

instrumental.

The issue mentioned above can be categorised into mainly three aspects: (i) 

formation of cosmic dust from vapour phase through homogeneous nucleation, (ii) 

growth of dust grains by means of heterogeneous nucleation of mantles and (iii) 

recombination chemistry occurring on the surface of dust particles. Each of these 

aspects is a comprehensive problem in itself and yet they all combine together in 

order to give a more complete picture of the subject. This thesis will touch upon 

each of these in one way or another and attem pt to fill some of the gaps in our 

knowledge.

Since the cosmic dust problem is intrinsically related to the physics of star 

formation, in the next Chapter we begin by reviewing the accepted model for the 

cycle of star formation from interstellar dust and its eventual dispersion back into 

the ISM. In Chapter 3 we develop a model for grain surface chemical reactions that is 

suitable for the low density conditions of the ISM. A major part of this work has been 

published in Ref. [5], which was co-written by the author. Chapter 4 notes some 

of the key ideas of the theory of nucleation, which will be useful in the subsequent 

two Chapters. The model developed in Chapter 3 is further extended in Chapter 5 

to describe heterogeneous mantle growth on dust grains in conditions where the gas 

and dust concentrations may be very small. This has been published in Ref. [6 ]. 

The question of which chemical species nucleates first to form dust in space has been 

addressed in Chapter 6 , where we examine the possibility of MgO as a candidate 

by calculating the free energy of formation of MgO clusters in circumstellar shells. 

Finally, the major conclusions are listed in Chapter 7.



Chapter 2

Star Formation and Evolution

Cosmic dust is seen by the observational astronomer as an irritating factor that 

obscures vision and hampers efforts to obtain trustworthy spectra of cosmic objects. 

For the astrophysicist, however, dust is a crucial ingredient of the cosmic soup, for 

it is dust that connects two seemingly separate generations of stars through a rich 

network of reactions.

Stars are formed from the huge amount of gaseous and dusty material available 

in the form of the interstellar medium and when a star reaches the end of its life­

cycle, the stellar material is returned back into the same ISM. Thus the cycle of 

construction and destruction of a star somewhat resembles the classic chicken-and- 

egg problem; one could not have come into existence without the other one having 

existed previously. How exactly the first stars, or the first interstellar medium, 

appeared in the universe is a complicated problem for cosmologists [7] and is well 

beyond the scope of this brief overview. For us, it is sufficient to focus on a pic­

ture where the existence of both stars and the ISM is sustained through a mutual 

exchange of material between the two.

23
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2.1 The main sequence

During its lifetime, a star’s stability is guaranteed due to a balance between its 

self-gravity and the outward force due to the energy released in burning its nuclear 

fuel in the core. Hydrostatic equilibrium is maintained due to the fact that as we 

approach the centre of the star, the gravitational pressure increases, but so does 

the outward pressure originating from the heat of nuclear burning, hence preserving 

the stability [3]. The star is most stable when hydrogen within it is being burnt 

to produce helium through nuclear fusion via the proton-proton chain (which is the 

predominant process in the Sun) and/or the CNO cycle (if the star has carbon in 

it). During this phase, the star is said to be on the main sequence of its lifecycle, 

which is the longest stage in its life. The time a star spends on the main sequence 

strongly depends on its mass. The Sun has a main sequence lifetime of 10 billion 

years (about 80% of its total lifetime), of which 5 billion years have passed. In 

contrast, a star with 15M0 will stay on the main sequence for only about 10 million 

years [8 ]. Also, the Sun at present has a core temperature of around 15 million K, 

whereas its surface temperature is some 5,700 K. Compared to this, the higher mass 

O-stars have surface temperatures in the range of 28,000 -  50,000 K during the main 

sequence.

2.2 Star death and dispersion

When all the hydrogen is burnt up in the core, the star moves off the main sequence. 

Adjustments are needed in order for the star to survive further and this leads to 

fundamental changes in its structure. The inert core contracts rapidly, which in 

turn releases gravitational energy, heating the surrounding layers of hydrogen to the
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point where hydrogen burning recommences not in the core, but in a shell around 

the core. The new outpour of energy pushes the outer layer of the star further 

and further. The expanding shell eventually cools, which means the star appears 

reddened in addition to having attained a much larger size. In other words, the star 

becomes a red giant [9].

The newly created helium core continues to contract until it reaches a tempera­

ture of ~  107  K again, so that it is hot enough for the fusion of helium into carbon 

and oxygen to begin.

Eventually, all the helium in the core is also consumed. W hat happens subse­

quently depends on the mass of the star. In the more massive stars, contraction 

of the core after each fuel has been exhausted raises the temperature sufficiently 

to ignite a new, heavier fuel. Ultimately, a situation can be reached in which the 

central core has been converted to iron, while around the core, in a series of shells, 

increasingly lighter elements like silicon, oxygen, carbon, helium and hydrogen are 

being burnt simultaneously. By this time, a star of 10M© would have taken the 

form of a red supergiant, with a diameter of about 100 to 500 times that of the 

Sun [3]. Once a star has developed an iron core of about one solar mass, no new 

reactions are possible. Iron has the maximum nuclear binding energy per nucleon

8 . 8  MeV), hence it will be favoured over the slightly heavier elements that hold 

their nuclei less tightly [10]. At this stage, the stellar core contracts until it implodes 

catastrophically (in less than one second), quickly setting off a supernova explosion, 

the most violent event known in the Universe after the Big Bang. Copious material 

containing a rich variety of chemical elements is thrown off into the surrounding 

space. A supernova is also believed to be the production house for elements heavier
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F igure  2.1: The Dumbbell nebula was the first planetary nebula ever discovered, which 
was in 1764, and remains the most impressive object of its kind in the sky. It is about 
125,000 lightyears away. Estimate suggests that at present we axe observing the shell 
ejection 3,000 -  4,000 years after it started. The central star is likely to be an ex­
tremely hot O-star with a surface temperature of axound 85,000 K. ©  J. M. Anderson 
(www.astro.virginia.edu/~jma2u).

than iron*. The naked compact, heavy core left behind following a supernova often 

succumbs to its own gravity, reaching a dead end in the form of a neutron star, the

most compact object ever observed directly.

* Nuclei of heavier elements are formed due to successive captures of neutrons by an existing 
nucleus. A captured neutron, however, will tend to /3-decay into a proton and as a result, certain 

nuclei tend to be more stable than the others, especially in the heavier elements region. As we move 
towards heavier elements in the periodic table, the number of neutrons in a nucleus increasingly 
exceeds the number of protons. Hence for a nucleus to grow from one stable size to the next stable 

size, the neutron capture rate needs to be more rapid than the /3-decay rate so that the right 
balance between the number of protons and neutrons can be struck in the next stable nucleus. As 
one tries to build heavier and heavier nuclei, an ever-faster feeding rate of neutrons is required. 
Even the hottest of the staxs do not have a neutron producing mechanism that is fast enough to 
create elements heavier than iron. Such conditions may only be created in a supernova, in which 

large amount of neutrons are believed to be created in a short time span. (See, for example, Refs. 
[11, 12, 13])

http://www.astro.virginia.edu/~jma2u
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In the lower mass stars, however, the end is less extravagant and there is possi­

bility of a more enduring future. In stars like the Sun, the central temperature never 

gets high enough to progress beyond the burning of hydrogen and helium in the core 

and the outer shell. The contracting core gives rise to an increasing temperature, 

which leads to an acceleration in the shell-helium burning rates. These instabilities 

make the star pulsate until the outer layers of the star are separated from the core. 

An expanding shell of gas, known as a planetary nebula, is formed, which gradually 

disperses into space. Even the high mass stars have been observed to undergo rapid 

mass loss towards the end of their lifetime, forming planetary nebulae (Figure 2.1). 

In fact, what drives the huge mass loss during the final stages of a star’s lifecycle 

still remains an intriguing topic of research, but what is known is that significant 

mass is probably lost from most stars through stellar winds during the later stage 

of evolution. The remaining core of the lower mass star cools and shrinks until it is 

about the size of the Earth. Because of the high core density, the matter becomes 

degenerate there and a white dwarf is formed. White dwarfs continue to cool further, 

since there is no internal source of energy left.

The gaseous and dusty material expelled by dying stars travels far out into space 

and as a result the interstellar medium is full of sparsely distributed matter. The 

Sun at present loses mass at a rate of some 1 0 - 1 4 Mo yr - 1  due to the solar wind. 

Red giants and supergiants are known to throw away envelopes at rates of 10- 7  

to 1 0 _6 M© yr - 1  [3, 14]. Still, the densities associated with the ISM are extremely 

small: on the average, one dust particle can be found in 1 0 6  m3  of interstellar 

space [15], whereas the density of atomic hydrogen, the most abundant element 

in the Universe, can range anywhere between 103  m - 3  (supernova remnants) and 

101 1  m - 3  (molecular clouds) [1 ]. Nevertheless, the collective effect of the vast regions
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F igure 2.2: The Milky Way as seen from the Earth. The dark patches within the 

galactic disc are created due to dusty regions blocking the light from stars behind them. 
©  IG Astrofotografie Bochum (aida.astroinfo.org/iab).

of interstellar dust is such that they can obstruct light from stars located behind 

them and create huge dark patches in the night sky (Figure 2.2). This dust can 

also scatter light back into space, giving rise to beautiful reflection nebulae. The 

exact nature of the scattering depends on the size, shape and composition of the 

dust grains. Scattered starlight makes up about a quarter of the light we see from 

the Milky Way, so meaningful observation of an awful lot of objects requires a good 

understanding of cosmic dust.

2.3 Birth of a new stellar generation

When a certain region of the diffuse ISM experiences a significant external influence, 

such as a shock wave originating from some colliding or exploding cosmic objects in 

the neighbourhood [2, 16], gravitational instabilities are set up and it collapses to
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form a molecular cloud. It is noteworthy that very massive stars, which might appear 

to be selfishly short-lived and extremely violent, in fact do a good job of stirring 

and mixing the interstellar clouds and pave the way for future generations of star 

systems. Molecular clouds can have diameters anywhere from 40 to 350 lightyears 

(Figure 2.3). Gravitational collapse of a cloud can occur at several different places 

in the interstellar region. As the molecular cloud shrinks, molecules within it are 

heated and the dust grains radiate at infrared wavelengths. As long as this radiation 

can escape into the surrounding space, the cloud remains cool, the pressure stays 

low and the collapse continues as gravitational free fall. Such a cloud is known as a 

protostar.

Figure 2.3: N70 in the Large Magellanic Cloud: A luminous bubble of interstellar gas, 
measuring about 300 light-years in diameter. It was created by winds from hot, massive 
stars and supernova explosions and the interior is filled with tenuous, hot expanding 

gas. An object like N70 provides astronomers with an excellent opportunity to explore 
the connection between the lifecycles of stars and the evolution of galaxies. ©  European 
Southern Observatory (www.eso.org).

http://www.eso.org
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F igure  2.4: The largest emission nebula in the sky, the Tarantula Nebula (also known 

as NGC 2070 or 30 Doradus) is located in the Large Magellanic Cloud (LMC), one of the 
satellite galaxies to our own Milky Way system. Seen far down in the southern sky at 
a distance of about 170,000 light-years, this beautiful nebula measures more than 1000 
light-years across. Thousands of stars are being born in this fertile region of gas and dust. 
©  European Southern Observatory (www.eso.org).

At some stage, however, the cloud becomes optically thick and the radiation 

starts getting trapped, which not only heats up the cloud, but also slows down the 

collapse dramatically as hydrostatic equilibrium is established. Thereafter, the star 

is treated as a pre-main-sequence (PMS) star. The temperature is still so low that its 

opacity is relatively high. Hence, convection rather than radiation is the means for 

transporting the energy outwards. A newly formed PMS star is fully convective from 

centre to surface and the effective transport of energy makes it extremely luminous. 

This is the reason why star forming regions, such as the spectacular 30 Doradus, are 

often so colourfully bright (Figure 2.4).

Eventually, the opacity drops to a level where radiative transport of energy

http://www.eso.org
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F ig u re  2.5: An illustration of the evolutionary cycle of star formation and destruction 
from interstellar dust. Based on Ref. [17].

dominates over convection. This happens first at the core and gradually spreads 

outwards. When the core heats up to a few million Kelvin, thermonuclear reactions 

trigger off and a full-fledged star is born. It is believed that most probably a high 

mass star is first formed close to the front edge of the molecular cloud where the 

shock was incident. This in turn can send further shocks back into the molecular 

cloud, which then act to trigger further formation of smaller star systems. If any 

isolated globules are created containing mass that is insufficient to form stars, they 

gradually become dispersed in the interstellar medium due to actions of stellar winds 

and shocks. A schematic representation of the entire cycle of star formation and 

death is shown in Figure 2.5.
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It must be stressed that even after more than a century of research, the exact 

mechanism driving star formation remains mystifying. Nevertheless, a few facts 

are known for certain. Star formation is not only an extremely slow process, but 

also very inefficient. A parent molecular cloud can be as massive as 105  — 106 MQ, 

whereas the mass of each star formed would be typically in the range 0.1 — 50MQ. 

This means that only a small fraction of the material is consumed from a molecular 

cloud after each star birth. This explains the massive amount of interstellar medium 

we are able to observe at any given epoch. It also highlights long-lasting possibilities 

of further star formation and the need to have a good understanding of the dust 

that plays a crucial role in it.



Chapter 3

Stochastic K inetics of Grain 

Surface Chem istry

3.1 Heterogeneous chemical reactions

Particulate m atter plays a key role in the chemical evolution of its gaseous envi­

ronment [4, 18]. Some reactions can only occur in the presence of a third body 

rather than purely in the gas phase (for example, see Ref. [19]). This is familiar in 

atmospheric heterogeneous chemistry and in astrochemistry too. An example is the 

simple reaction H +  H —> H2 , an important reaction in the evolution of the cosmic 

chemical environment. It was pointed out by Gould & Salpeter [20] in 1963 that 

gas phase reactions cannot be an efficient enough process for the production of H2  

under interstellar conditions. The H atoms cannot recombine directly by two-body 

encounters in the gas phase because there is no feasible method of losing binding 

energy. Three-body encounters would be extremely unlikely, therefore Gould & 

Salpeter advocated the idea that dust grains may act as the third body catalysts 

for such reactions. The surface of a grain provides both a substrate on which atoms

33
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can get trapped and a heat reservoir that absorbs excess energy.

For simplicity, we shall use the term molecule for both atoms and real molecules 

since for the present discussion the exact identity and constitution of the reactant 

species are immaterial. In the same context, we shall refer to a dust particle simply 

as a particle.

Primarily there are two physical mechanisms that could lead to chemical pro­

cesses inside or on the surface of aerosol and interstellar particles. In the first one, a 

gas phase molecule incident upon the grain surface lands directly on top of another 

adsorbed molecule and the two may react in order to produce a dimer. This is the 

so-called Eley-Rideal mechanism and Farebrother et al. [21] have investigated the 

formation of molecular hydrogen under this scheme.

The study presented here, however, is concerned with a second mechanism, 

known as the Langmuir-Hinshelwood (LH) mechanism. Here the particle is consid­

ered to be a tiny reaction vessel within which chemistry takes place. A dust particle 

surrounded by gas phase molecules will have a certain probability of adsorbing such 

a molecule onto its surface over a given period of time. The adsorbed molecule may 

wander on the surface of the particle (or within its volume), during which it may 

encounter another molecule that happened to be there from a previous capture. In 

such a case, the two molecules may combine to produce a reaction product, which 

might then desorb. Again for simplicity, we shall refer to the reactants being able 

to move on a particle surface alone, rather than within it.

As an attem pt to study grain surface reactions via the LH mechanism, mainly 

two theoretical approaches have been developed. The first of these is that of Allen 

& Robinson [22], according to which the surface chemistry is “accretion limited” ,
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i.e. the chemistry is limited by the adsorption rate of reactant molecules onto 

the grain surface. If two reactive molecules are present on the surface and if at 

least one of them is able to move around the surface quickly enough, then the 

two can combine before a third molecule lands on the surface. Provided that this 

condition is fulfilled, the diffusion rate holds little significance and the chemistry 

can be characterised solely by the adsorption of gas phase molecules. This approach 

is particularly promising for the low density conditions of the interstellar medium. 

It can be, and has been, implemented with the aid of Monte Carlo simulations 

[23, 24, 25, 26]. However, these attempts have only resulted in time-independent 

chemical models and the desired time-dependency has not been achieved so far under 

this approach. Furthermore, it is limited in scope due to the basic assumption of 

accretion limitation.

In the second approach to the LH mechanism, the ideas of standard gas phase 

chemical kinetics are applied. This approach was formulated by Pickles & Williams 

[27] and has been the more popularly used method due to its flexible nature [28, 

29, 30, 31, 32]. Reactions are described by the classical rate equations of chemical 

kinetics, written in terms of the average number of reactant molecules present on 

the particle surface which is time-dependent in general. The key calculation in 

determining the reaction rate is the probability of a collision between reactants. 

This is normally obtained by multiplying the molecular flux (proportional to the 

mean molecular concentration) by the collision cross section (also proportional to 

the concentration), yielding a reaction rate proportional to the square of the mean 

population.

This is all very well for macroscopic reaction vessels, but as A. G. G. M. Tielens 

pointed out at a conference in 1995 (unpublished), when the particles have sub­
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micrometre dimensions there is cause to question the rate equation approach of 

Pickles & Williams. If the mean number of molecules of a reactant on the particle 

is around unity, then there are often no attached molecules present and only on rare 

occasions, more than one. In other words, fluctuations in the populations will be 

significant. Multiplying two average populations together is unlikely to provide the 

correct reaction rate and the classical approach will no longer apply.

3.2 The stochastic limit

Concern about the validity of the classical approach is the greatest for reactions 

involving ultra-low concentration gases adsorbing onto ultrafine particles, since the 

adsorbed reactant populations are the smallest for these conditions. The need for a 

stochastic approach in the light of fluctuations in populations has long been recog­

nised and has been addressed in different ways and contexts. Gillespie [33, 34] 

developed stable numerical methods for simulating the time evolution of stochastic 

chemical systems involving several coupled reactions. A stochastic master equation 

approach was applied to the chemistry occurring in micelles by Hatlee & Kozak 

[35, 36, 37]. Later, the possible effects of small populations on chemistry taking 

place on atmospheric aerosol particles was highlighted [38] and a Monte Carlo sim­

ulation based on stochastic arguments has also been constructed before [39], but 

a rigorous analytic insight into the kinetics of these reactions remained at large. 

Attempts were even made to address this problem by modifying the classical rate 

equations in such a way as to match the results of, for example, Monte Carlo simu­

lations without identifying the underlying physical processes at low concentrations
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F igure  3.1: Poisson distribution for two different values of mean population (N ) of 

reactant molecules according to P(N) =  e~NN n /N\.  When N  is reasonably large (for 

instance, N  =  25), the distribution is symmetric. As N  tends to unity, the plot becomes 

asymmetric since it is meaningless for N  to take negative values. Only integer values of 

N  are physical; the dotted lines axe fitted to demonstrate the qualitative behaviour.

A more appropriate description of the kinetics would be to focus on the prob­

ability distribution for the number of adsorbed molecules, N , on the particle. In 

Figure 3.1, a Poisson distribution for this number is shown, in situations where the 

mean is large and where it is small. When the probability of ‘success’ of an event 

is large, such as in the limit of reasonably moderate or high density clouds of gas, a 

Gaussian shape may well approximate the actual probability distribution. However, 

when the success probability is small within a large sample of trials, the statistics 

is represented by the Poisson distribution, whose mean N  is equal to the variance 

N 2 — N 2. In low density clouds, the adsorption probability of a molecule is small 

and the probability of finding two reactant molecules simultaneously on the surface 

is even smaller. The probability of reaction is therefore proportional to N (N  — 1) 

(for N  > 1), which in low density conditions may be significantly different from 

the estimation N 2 that is normally used in the classical approach. For N  =  0, the
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reaction probability would of course be zero regardless of the way one treats the 

kinetics. The identity N ( N  — 1 ) =  N 2 always holds true for a Poisson distribu­

tion, so strictly speaking, the classical rate law is only valid if one considers that 

distribution. For a better accuracy of the kinetics, we ought to determine through 

a stochastic method how the entire probability distribution, rather than only the 

mean population, evolves in time.

Incidentally, it is worth asking whether populations of reactant molecules of 

order unity are realistically to be found in practice. Let us consider the simplest 

possible second order chemical process A +  A —> C and a dust particle of radius a, 

surrounded by gas phase molecules A with a concentration c, so that there is a flux 

j 'a  of A-molecules onto the particle surface per unit time. This flux is estimated as 

j'a  ~  vra2vc, where v is the thermal velocity of reactant molecules. To quantify the 

dimer production, we may regard the reaction as taking place in a vessel of volume 

V  ~  | 7ra3  and assign an effective reaction rate constant k  such that the reciprocal 

time of reaction is k /V .  Such an effective reaction rate could be used to characterise 

surface reactions too.

The ratio of the adsorption rate to the reaction rate is of the order of unity at the 

concentrations c ~  K,/7ra2vV.  Let us now consider particles with radius a = 0.1 /im 

and a reaction coefficient of k = 10-20 m 3  s - 1  [4]. We also assume v ~  103 m s-1. 

The gas phase molecular concentrations at which the ratio of rates is unity are not 

incredibly small: c ~  101 4  m-3, so may well be encountered in real situations. These 

concentrations are a few parts per 1011 in the terrestrial atmosphere. Concentrations 

of trace atmospheric constituents can fall below these thresholds and interstellar gas 

species are easily dilute enough. Furthermore, if the particle is smaller, or if the 

sticking coefficient is less than unity, then the respective threshold concentrations
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are higher. This may well lead to the scenario where the population of the reactants 

is of order unity.

More precisely, the number of molecules N  of a trace atmospheric gas dissolved 

in a droplet will depend on its partial pressure p, the size of the droplet V  and the 

Henry’s Law constant kn  according to

N  = NA10i kHpV, (3.1)

where N a is Avogadro’s number, p is in atm, V  is in m 3  and kff is in units of 

M atm -1. Taking ozone as an example, present in the lower atmosphere typically 

at a concentration of 10 ppb (p «  10- 8  atm), with kn = 1.1 x 10- 2  M atm - 1  for 

dissolution in water, we find that N  =  0.28 for a droplet of radius 1 pm.  It would 

appear that any aqueous phase ozone chemistry taking place in droplets of this size 

is operating in a regime where the (mean) reactant population is less than unity.

The issue of heterogeneous chemistry in this limit is addressed in this Chap­

ter with a new formulation of reaction kinetics (the so-called stochastic chemistry) 

that was developed independently by Lushnikov et al. [43, 5] and by Green et al. 

[44] as a replacement of the standard chemical kinetics approach. We begin with a 

simple reaction involving two molecules of the same type reacting to produce some 

new molecule. We shall later extend this idea to the slightly more realistic reaction 

between two different species. To compare the stochastic approach with the results 

of traditional chemical kinetics, we shall apply both of them to examples of reac­

tions, each in interstellar medium and in terrestrial atmosphere. This will allow us 

to draw conclusions on the applicability of standard rate equations for describing 

heterogeneous chemistry in tiny reaction vessels.
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3.3 Stochastic treatment of heterogeneous 

chemical kinetics

3.3.1 R eaction  A +  A —>• C

For reactions of the type in which two molecules (or atoms) of the same species A 

combine to form a product C on the surface of a spherical particle of volume V, each 

state of the particle can be characterised by the number N  of A-molecules attached 

to it. We assume that there is a flux of A-molecules adsorbing on the particle 

surface per unit time (Figure 3.2). To quantify the dimer production, we may assign 

a reaction rate constant k such that the reciprocal time of reaction is k/ V . On the 

other hand, many of the adsorbed molecules will evaporate from the surface before 

they get a chance to react with another molecule, hence introducing an evaporation 

rate which has the dimension of inverse time.

• Incoming # 
Molecule A

Gas

Dimer
^  Product C

i
Escaping 

Molecules A

•
/ •

Flux/,

F igure 3.2: A schematic representation of grain surface reactions. A comparatively 

large dust particle of radius a is surrounded by a gas comprising A-molecules. The mean 

population of the A-molecules on the dust particle surface in equilibrium will be N.
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Let W (N , t) be the probability of finding exactly N  molecules on the particle. 

We can then write down a master equation governing the time evolution of W  (AT, t ):

— =  j A [ W ( N - l , t ) - W ( N , t ) ]

+ W ^ N + 2 ^ N + ^ + 2 ’ *) -  N (N  ~ V W (N ’ *)]

+  XA [ ( N  +  l ) W { N + l , t ) - N W ( N , t ) ] .  (3.2)

The meaning of the terms on the right hand side of this equation is as follows. The 

first term, J a W (N  — 1,£), represents the increase in the probability of finding N  

adsorbed molecules through the attachment of molecules at a rate ja  to a particle 

containing N  — 1  molecules. The term J a W (AT, t) describes the decrease in proba­

bility of finding N  molecules in the droplet, through a similar attachment process 

to a droplet already containing N  molecules. The first group of terms in squared 

brackets therefore describe jumps in population N  — 1 — > N  — > N  + 1  due to the 

adsorption of a molecule from the outside.

The second group of terms corresponds to the transitions N + 2  — > N  — ¥ N —2 

due to the binary reaction (with the removal of product from the surface). The 

probability of finding +  2 molecules is N  +  2, t) and the probability of finding 

AT molecules increases at a collision rate k / V  multiplied by the number of pairs of A 

molecules that can be found amongst the iV+2 molecules, namely (Af+2)(AT+l)/2. 

The third group describes the jumps N  + l  — > N  — > N —l  due to the evaporation 

of a molecule from the particle. Factors of N  etc. appear where necessary to give 

the correct coefficients. The initial and normalisation conditions completely define 

the solution of Equation (3.2).

This scheme replaces the much simpler equation of classical chemical kinetics:
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where N  is the average number of A-molecules on the surface. The terms on the 

right hand side correspond, respectively, to adsorption, reaction and desorption. 

This equation can in fact be derived from Equation (3.2), by multiplying both sides 

by AT, summing over N  and regarding N  as large.

3.3.1.1 Simplification of master equations through generating function

In order to simplify Eq. (3.2) let us introduce a generating function

oo

F(z)  =  J 2  z N W ( N ) .  (3.4)
N = 0

It can be shown that in steady state (i.e. when dW /d t  = 0), the master equation 

reduces to

^ 2 +  1€  +  a4 7 - ^  =  ° -

This can be demonstrated as follows. The first and second derivatives of F(z)  

in Eq. (3.4) will give rise to terms in z N~l and zN~2  within the series. If we then 

substitute the expressions for F{z) and its derivatives in Eq. (3.5) and expand the 

summations explicitly, we are left with an infinite series with ascending powers of z. 

One may focus on some particular value of N  (say N  = 4), collect terms in zN from 

this expanded series and equate it with zero, as required by Eq. (3.5). This gives

0 =  ^ [ ( A r + i ) j \ w ( i V  +  l )  +  (jV +  2)(iV +  l)W(jV +  2)]

+  \ A { N  +  l ) W ( N + l ) - j A W ( N ) .  (3.6)

Performing a similar procedure for terms in zN~l gives

0 =  ^;[iV(JV-l)W (JV) +  ( J V + l ) W ( iV + l ) ]  +  A A JW (J\0 -jA W (JV -l) .  (3.7)
Z V

By subtracting Eq. (3.7) from Eq. (3.6), the steady state version of the master

equation (3.2) is recovered (i.e. with dW /d t  =  0). Solving the ordinary differential
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equation (3.5) is therefore equivalent to solving the original master equation, but the 

problem is simplified considerably. This is the purpose of introducing the generating 

function.

3.3.1.2 Solution for the generating function

Before proceeding further, let us define two parameters X  and v  as

x  =  j A / X A (3.8)

and
2 VAa

v = ------------1, (3.9)
K

which represent the gas-particle equilibrium constant and the adsorbed phase 

branching ratio respectively, reflecting the gain and loss mechanisms of A-molecules. 

These will be convenient for later analysis. It is also useful to define another param­

eter £ such that

C = 2yjx(u + l ) { l  +  z). (3.10)

The solution for F(z)  may now be obtained through use of the following ansatz 

[45, p. 985-986]. We start with a trial solution of the form

F(z) =  F0(l +  z ) - ' /2<l>(0, (3-11)

where F0 is a constant and <j> is a yet to be determined function. By suitable ma­

nipulations, it may be shown that Equation (3.5) reduces to the following equation

for 0 :

C2x l  +  C 3 7 - ( C 2  +  ^2)0 =  O. (3.12)

The solutions to Equation (3.12) are the modified Bessel functions I v(£) and



3.3. Stochastic treatment of heterogeneous chemical kinetics 44

K v{£) (see Appendix A). The general solution may therefore be expressed as

F{z) =  >1(1 +  C) +  B{  1  +  C), (3.13)

where A  and B  are constants. However, the second part of this solution (the K v 

term) ought to be discarded. Consider the definition of F(z)  according to Equation 

(3.4). The gradient of F(z)  at z =  — 1 will be

d F
dz

=  Y  N { ~ ^ )n ~1W (N )  < Y  N W { N )  = N  (3.14)
z ~ —1 N = 0 N —0

and also
dF
dz > - Y  =  - N -  (3.15)

Z — —1 N = 0

Hence the gradient is strictly finite at z = — 1. Any explicit solution for F(z)  must 

exhibit this feature.

For convenience, the full solution expressed in Eq. (3.13) can be written as

F{z) =  A ( 1  +  2 ) - ^ 2/„ (C (l +  z )1' 2) + B(  1  +  z ) -" '2^  (C (l +  z)1/2) , (3.16)

where A  and B  are integration constants and C  is a specified combination of the 

parameters V ,  ja  and k. The parameter j/ takes values in the range — 1  <  v  < oo.

Let us first examine the I v part of the solution and write

F,{z) =  (1 +  z ) -" '2! ,  (c( 1 +  z f ' 2) , (3.17)

so using the identities (A.9) from the Appendix A for the derivative of Bessel func­

tion, we obtain

d F 7  

dz = - v-{\ + zY^UO  + (i + zY1'/2 ( w c )  + ^ ( f l )  \c {i +  zY1/2 

= ! ( i  +  * )-(w-1 )/2 W O ,  (3-18)

where f  =  C ( 1  +  z )1/2.
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Consider the behaviour of this gradient when z —>■ — 1  and hence £ —> 0. Using 

the standard result in Equation (A.5), we find that as z —> — 1 ,

f r  ~  ( f  r  r ( ^ 2 ) ( 1 + ^ ■ “ '+ l)/2 (1+2)“ '+1)/2’ (3-19)

which is finite, irrespective of the sign of v.

Now let us examine the K v part of the solution in Eq. (3.16) and as before, we 

may write

Fk (z) =  (1 +  z ) - vI2K v (C (l +  z f ' 2) . (3.20)

In order to evaluate the gradient of Fk  we use the standard result (A. 10), which 

then leads to

^  =  - | ( 1  +  z ) - ^ 2 K v+,{0-  (3-21)

To see the behaviour of dFj^/dz  in the limit z  —> — 1 (f —> 0), we apply the identity 

(A.7) together with (A.2 ) to Eq. (3.21), upon which we find that as z —> —1 ,

^ 7  =  - ( f )  '/ ^ ^ - ( l  + z ) - ^ iy 2(l + z ) - ^ 2 (3.22)

which goes to infinity even if v is negative, remembering the fact that the value 

of v has a lower limit of —1. This will violate the requirement that the gradient 

of F(z  = — 1) must be finite. Hence the K v part of the solution (second term) in 

Equation (3.13) is untenable and we conclude that the actual solution to Equation 

(3.12) is

F(z) = A ( l  + z ) - ' / % ( 0 . (3.23)

The normalisation constant A  in this equation can be evaluated by considering 

Eq. (3.4) at z =  1 so that

oo
F ( l )  =  £  W ( N )  =  1.

N = 0
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Hence

A = -----------  (3.24)
2 - ' l * I v { 2 j 2 X ( v  +  l ) )

and the solution to Eq. (3.5) is given by

F{z)  =  ( I  +  £ ) ~ vn  J- ( V X(;  +  l ) ( 1  +  z)i .  (3.25)
'  2 '  / „ ( 2 p x { v  +  l ) )

Since all the individual parameters contributing to the definitions of X  and v 

are always positive, X  G [0, oo] and v G [—l,oo]. In the stochastic limit, where 

the gas-phase concentration of molecules and the particle size are both likely to be 

extremely small, one expects both X  and v  to be at the lower end of the allowed 

ranges.

3.3.1.3 Mean population of reactants

In the stochastic context, the measurable mean adsorbed population, N , is defined 

as
- 0 0  d P

N  = V) N W ( N )  = . (3.26)
N = 0 z = 1

Equation (3.23) can be differentiated to give

- 1 /2=  ~A ~ { \  +  z) *'/2" 1/„(C ) +  A(  1 +  z)~"/2 ( /„ + i(C )  +  \ - C ( l  +  z)

=  A ^ ( l  + z ) - ^ m i v+1 (c)i (3.27)

where C = 2y jx (v  + 1). Evaluating this derivative at z =  1 and substituting the 

full expressions for A and C leads to the result

N = J X f L til M V ^  + 1)) (3.28)
V 2 7„(2v/2X (i/ +  l ) )
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3.3.1.4 Dimer production rate

The average production rate of the dimer C is defined as

(3.29)30 =  £  £  ~  1 )W (N)  = ±  &2F2 V f c 0 '  '  '  '  2V dz* z=1

This can be evaluated by differentiating Equation (3.27) and using identities (A.9) 

again. Two recurrence relationships for Ip~2 {t) and ip+2 M  are needed, which can 

be easily obtained from the original identities (A.9). We thus get the expression

d2F

Z — l
dz2

and hence we arrive at

_  X(v +  l) h + 2 (2^2X(v  +  1))  
2 i v ( 2 p X ( v  +  \))

(3.30)

. 3 a  ( 2 \ f 2 X ( v  +  l ) )

3°  2  h  ( 2 v/2 X(i/ +  1 ))

Mass conservation in the steady state requires that the production rate of species 

C must be proportional to the difference between the molecules’ incoming rate and 

the escape rate, namely
3a  ~  Aa N  , v

3c =  g • t3,32)

The factor 2 here reflects the fact that one molecule of species C is created at the 

cost of two A-molecules. It is in fact possible to show that the result (3.31) together 

with Equation (3.28) indeed satisfies this simple relationship.

3.3.1.5 Comparison with classical theory

The stochastic results obtained above must be compared with the correspond­

ing classical results. In order to obtain the classical mean population of re­

actant molecules in a steady state, we may set d N /d t  = 0 in Eq. (3.3).
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This leaves a simple quadratic equation in N , the valid solution to which is

X classical
Aa +  +  ^ 3 a )

2k/ V

The classical expression for the dimer production rate is

■classical _  ^  a>2
j c  2 y  classical"classical* (3.34)

The stochastic results should agree with classical theory in three limits on the

very large. For example, when X  —> 0, either the adsorption rate ja is very small 

or the desorption rate is very large, both of which mean that the probability

means the Poisson distribution will have the shape of an extremely narrow spike

re-established. When X  —¥ oo for fixed z/, the adsorption rate overwhelms the des­

orption rate. The mean adsorbed population becomes very large, the probability 

distribution takes a Gaussian shape and the Poisson distribution is not required. 

This is clearly a regime where the stochastic approach should correspond with the 

classical treatment. Nevertheless, if the value of v is simultaneously small, for ex­

ample due to the reaction rate k being large, it may complicate matters and the 

classical result may not necessarily be adequate enough. Finally, the limit v  —> oo 

at fixed X  corresponds to a situation where the adsorbed A-molecules evaporate 

so fast that there would be hardly any chance for two of them to react. Again, 

this means the Poisson distribution taking the shape of a quasi-delta function near 

N  =  0 and both treatments should agree that the C-molecule production rate falls 

to zero.

(X , v) parameter space: when X  is either very large or close to zero and when v is

of finding an A-molecule on the surface at a given time is vanishingly small. This

located almost at N  =  0, which is an indication of the deterministic limit being
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X  —y oo, fixed v ±  — 1

We check consistency in this limit between the two models using the standard 

approximation (A.6 ) in Equation (3.28) and then Taylor expanding the term arising 

in the denominator. Ignoring terms in 1 / X  and higher order enables one to show 

that

To check this against the classical result, the square root term in Eq. (3.33) can

Equations (3.35) and (3.36) indicate that the stochastic model yields approximately 

the same result as the classical kinetic theory does in the asymptotic limit of very 

large flux of reacting molecules. Note, however, that if v < 0, and particularly if

(3.36). In that case, some noticeable difference may appear between the stochastic 

and classical results.

v  oo, fixed X

A second limit where the stochastic model converges with its classical counter­

part is when v —>■ oo at constant X .  Although v appears as part of the argument of 

Bessel function in Equation (3.28), it is unwise to employ the approximation (A.6 ) 

since v is also the order of the Bessel function. A better approach would be to 

consider the series expansion of N  in Eq. (3.28) through Equation (A.3) so that

(3.35)

again be Taylor expanded about the point X  —» oo and then if we ignore the terms 

in 1 / X , we obtain

-^classical (3.36)

it is close to —1 , it may act to neutralise the effect of large X  in Eqs. (3.35) and

2X(i/+l) , 1 AX2(u+1)2 ,
(i/+2) 2 (i/+3)(i/+2) ~T~
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For a relatively large value of v, assuming that v +  1 «  v +  2 and so on, the 

two squared braces above would cancel each other out. Noting that T{v +  2) =  

(v +  1) r ( v  +  1), the approximation for N  is

N n X .

On the other hand, if we write the classical expression in Equation (3.33) as

(3.38)

N<classical —
V +  1 1 +

s x
v + l \

(3.39)

then the series expansion for Arciassicai may be written as

i V „  =  p ± i )  

« x  +  o

1 4 X  1 +  r +
v + 1

C-ii) (3.40)

for large v. Hence the classical and stochastic models yield approximately the same 

production rate when v —»• oo.

X - > 0 , i / ^ - l

For this limit we use the approximation (A.5) in Equation (3.28) together with 

the identity (A.4). It can then be easily shown that

(3.41)

=  0 as X  —> 0.

To compare this with the classical result, let us write Equation (3.33) as

Arciassicai — {y  “I-  l )  ^
■1/ +  1 X  

16 +  2 J
(3.42)

so that in the squared brackets the terms in X  and v are separated. When X  is 

very small, this can be Taylor expanded to obtain the series
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N<classical

v + l  v  2 X 2  
— -  + X -

( V  +  1 \  a X  / J ' + l N  2 X 2  ( U + l \  2 

I 16 )  + T V 16 )  ~  32 V 16 )  + " '

(^ )I/ + 1

= X -
2 X 2 

v + 1
(3.43)

Hence the classical result also yields a zero reactant population when X  =  0, but 

as X  —> 0, ^classical approaches the zero in a different manner than the stochastic 

expression (3.41). This will be evident when we look at some of the results in 

§3.5.1.1.

v —\ —1 , fixed X

This is not a limit where stochastic and classical treatments coincide, but it is 

included for an interesting comparison with the model of Mozurkewich [38]. The 

limit v  —> — 1  at fixed X  corresponds to k/ V  being very much greater than In 

this case the series expansion appearing in Equation (3.37) may be written as

r(i/ + i) \ i [i + S  + °(f2)]N  = X { v  + l) (3.44)
(v +  l)r(i/ +  1 )/ (1 +  2X)  | i  +  +  0 (e2)]

where e =  v +  1 and is assumed to be very small as v  —>■ — 1 . If we ignore the terms 

of the order of e2  and higher and perform a Taylor expansion of the squared brace 

in the denominator, we arrive at

X
N  —

1 +  2X
1 + 2 * q - f ) £ + 0 ( £ 2) (3.45)

iy + 2)

If e is very small {y —> — 1 ), the factor in squared brace can be neglected. If we now 

consider large X, then N  ~  0.5, which is in fine agreement with the result obtained 

by Mozurkewich [38] for atmospheric species in the case of k/ V  —> oo with =  0. 

However if X  is very small, Equation (3.45) suggests that N  ~  0, which is consistent
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with what one expects from the classical result (3.33).

3.3.2 Reaction A +  B —>> C

We now extend the problem to the situation where molecules of two different chemi­

cal species A and B are incident onto the particle surface and occasionally react with 

each other to form some product C. In such a case, we need to consider the proba­

bility W ( N a , N b ; t) of finding exactly N a molecules of species A and N B molecules 

of species B on the particle. Similarly, we shall now have two different rates of 

adsorption of molecules, jA and j s ,  and for molecular escape, we introduce rate 

coefficients A  ̂ and A#, corresponding to the two species A and B respectively. The 

master equation for such a process will be much more complicated in this case:

d W ^ NB' ^  =  j A[W(NA - l , N B; t ) - W ( N A, N B;t)\

+ 3b [W(Na , N b -  1; t) -  W (N A, N B; f)]

+  ^ [ ( N a + 1 )(Nb + 1 )W (N a +  1 , N b + 1; t)

-  N ANBW (N A, N B;t)\

+ Xa [(Na + 1)W(Na + 1, N b -, t) -  N a W ( N a , Nb ; *)]

+  Ab [(JVb +  1 )W (N a , N b +  1; t) -  N b W (N a , Nb \ i)]. (3.46)

This equation is constructed using the same kind of arguments as before. Once

again, in order to simplify this equation we introduce a generating function

oo
F { x , y , t ) =  Y ,  W ( N A, N B;t)xNAyNB (3.47)

Na= 0
*b= 0

so that the master equation (3.46) reduces to a second order time-dependent partial 

differential equation:
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Similarly to the previous case, the average numbers of molecules A and B are 

defined as

- 0 0  BF
Na =  £  NAW (N A, N B;t) =

na - o 
n b =  0

0 0  BF
N b = £  NBW (N A, N B-,t) =  —

N B = 0

x=y-l

(3.49)

x = y = l

This will replace the classical rate equations which, under equilibrium, would have 

been the coupled equations

0 = j A — j f N AN B — \ aN a

k - - (3-50)
0 =  3b  ~  y N ANB -  Ab N b .

Unlike the previous case of A +  A —> C, Eq. (3.48) cannot be solved analytically. 

However, it is possible to gain some insight about the approximate nature of its 

solution. If we ignore the last term in Eq. (3.48), then by guessing that

F  =  exp[NA(x -  1) +  N B(y ~  1)] (3.51)

it is possible to get back Eqs. (3.50) from Eq. (3.48). Indeed, this is the exact 

solution in the absence of any reactions taking place on the grain surface (i.e. k =  0 ), 

with N a = Ja I ^ a and N B = j B/XB. It represents independent Poisson distributions 

for the two populations, whose covariance is zero, so that the deterministic rate law 

should hold for all reactions. We shall use this generating function, with N a and 

N b as given above, to provide a starting point for the computations described in 

§3.4.2.
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3.4 Numerical com putation

3.4.1 A +  A - + C

The stochastic result obtained in the above model for the simple reaction A +A  —>• C 

was compared with that of a Monte Carlo simulation, in which we provide j'a, k , Aa 

and V  as input parameters to begin with. Given these conditions, the time evolution 

of the system is then observed until it settles into a steady state.

After starting the time-loop, at each time-step we define three relative proba­

bilities

Pi  =  3a

P2 = A a N  (3.52)

ft, =

which respectively represent the reactant molecules’ influx on the particle surface, 

the escape of a molecule from the surface and the reaction between two molecules 

in order to produce a dimer. These relative probabilities need to be normalised so 

that they lie in the range [0, 1]. To do this, we weight them with a specific number 

/x, i.e. evaluate

=  ^  (* =  1,2,3). (3.53)
P

In practice, the number /j, is chosen by trial and error such that p[ +  p '2 +  p'z never 

overshoots unity, /x is input at the very beginning of the simulation and remains 

unaltered during the rest of the procedure. Often a sufficiently safe guess for /x is to 

take it equal to the value of pi +P2 +P3 based on the anticipated maximum value of 

N.  Nevertheless this scheme will almost invariably leave p[ + P2 +P 3 slightly short 

of unity. This shortfall is assigned as p'A, the probability corresponding to ‘no event’
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taking place on the grain surface (see Figure 3.3). The normalised probabilities 

p[, p'2 and p3 now represent the probabilities of adsorption, escape or reaction of 

molecules respectively, such that (p[ + p2 + p 3 +  P4 ) =  1. The introduction of pA is 

essentially due to the fact that N  varies as the simulation progresses. In practice 

it can be kept very small compared to p[ , p2 and p3 if p  is chosen wisely enough, 

so as to speed up the simulation. Though it is also possible to eliminate p'A entirely 

[33, 34].

I p 'i I ^  I A  | a

0

F ig u re  3.3: The normalised probabilities corresponding to the three possible events (p[ , 

p2 and p3) plus the probability of no event taking place (p4 ). These are such that they 

add up to 1 in order to allow a Monte Carlo simulation.

Since each one of p 'l 3  p2 and p3 will represent a unique segment in the interval 

[0, 1], the usual Monte Carlo procedure for simulating the three possible events at 

each time-step can be employed. We continue for a time-span that is long enough 

to produce a steady state mean population. The results are shown in §3.5.1.1.

3.4.2 A +  B - + C

The solution of Eq. (3.48) promises to provide all the information about the system 

of our interest. In the absence of an analytic solution, some kind of numerical 

technique should be sought. In the following subsections, we explore three possible 

ways of solving Eq. (3.48) numerically. The first approach is a naive one that occurs
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most naturally to one’s mind, but is not very reliable for large mean population of 

reactants. Approach 2 is a modification of the first approach, taking into account the 

shortcomings of the Approach 1 . For not-too-small values of the mean population, 

the second approach is valuable, but tends to be very unstable for very small N a 

or N b - Hence a third technique, which is ideal for low reactant populations, is 

described at the end of this Section.

3 .4 .2 . 1  A pp ro ach  1

The simplest method to solve Eq. (3.48) is to discretise the (x, y) space and ap­

ply the Equation at each point on the discretised space in the steady state con­

ditions, i.e. with dF /d t  =  0. Let us divide the (x, y) space in such a way 

that a specified interval on x  axis (e.g. x  =  0 . . .  1 ) is divided into n divisions 

of length Ax and a given interval on y axis is divided into n divisions of length 

A y  (Figure 3.4). The co-ordinates of each point on the grid may be assigned as

(3.54)
Xi = iA x  (i =  0 , 1 , 2 , . .  .n)

V j = j A y  (j = 0 , l , 2 , . . .n ) .

Let us further simplify the notation by calling

F{x{, yj) = Fij

and so on. Provided that Ax and A y  are very small, Eq. (3.48) for the points not 

on the boundary of the defined grid may be approximated as

^ — 3 a  (%i l)F ij +  Jb (iJj

Fi+l,j ~  Fi-l,j-  AA(xi -  1)
2 Ax ~  AB{Vj ~  1 )

F*i,j+1 F ij- 1
2 A y

K
~  y f a V j  ~  1)

Fi+lj+l -  -  Fi-l,j+l +  F i-ij-1
( 2  Ax) ( 2  Ay)

(3.55)
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n

y

(0 , 1)

Ay

(x,y)  (1,1)
. * ( h j )  =

Ax

(x ii

(0, 0)
0 1 2  3

(1,0) x 
• n

Figure 3.4: Discretization of the (x , y ) space appearing in the generating function

F(x, y).

using approximate expressions for the derivatives of F  with respect to x  and y. 

For the ‘boundary points’ on the grid, slightly different approximations for the 

derivatives need to be employed by considering only the points within the defined 

grid.

We need to determine the numerical value of F  at each point on the 

discretised (x,y)  space of interest. Thus a grid of (n +  1) x (n +  1) 

points will pose (n +  l )2 unknowns to be evaluated in general. With Eq.

(3.55) applied to each of these (n  +  l )2 points on the grid, we have as 

many equations in hand, leading to a system of linear equations of the form
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s l ,  1^0,0  +  s l , 2^0,1 H---------I" ^ l,n 2+2n-^n,n—1 +  S l ,( n + l)2F n ,n — 0

S2,1^0,0 +  S2,2-^0,l H-------- H 52,n2+ 2 n ^ n ,n - l +  52,(n + l)2-^n,n =  0

...........................................................................................................................(3.56)

^n2+2n,l-^0,0 “t" ^n2+2ra,2-^0,l “t~ ' ' * ”H •Sn2+2n,n2+2n-^n,n—1 d" ^n2+ 2 n ,(n + l)2-^n,n =  0  

s (n + l )2,1^0,0 +  5 (n+1)2,2F 0,i  H-----------1- 5 (n + i)2 >n2+ 2n F njn_ i  +  S (n + l)2,(n + l)2F n ,n =  0

where s ^ i . . .  S(n +1)2 }(n + 1 )2  are some coefficients. However, we already know the 

boundary condition, namely F ( l ,  1 ) =  Fn>n =  1 , leaving only (n + 1 ) 2  — 1  =  n2 +  2 n 

unknowns. It also turns out that imposing this boundary condition eliminates all 

the terms in the equation corresponding to the point (x, y) =  (1 , 1 ) in the above set

(3.56), thus removing an entire equation. That leaves a system of n 2  +  2n equations 

with as many unknowns. This can be reduced into a matrix inversion problem by 

carefully arranging the simultaneous equations so that

S F  =  T, (3.57)

where S is an (n2 +2n) x (n2 +2n) square matrix comprising the coefficients of all F ij 

except Fn>n. This will leave a few ‘left over’ terms which were coefficients of Fn n̂ and 

T  is a column matrix containing (negatives of) these terms. Now the solution F(x,  y) 

can be reached simply by evaluating the inverse of the square matrix: F =  S- 1 T.

As an illustration, if the space spanning x  G [0,1] and y  G [0,1] was divided into

20 fragments (n = 20) in both the x  and y  directions, then Ax =  A y  = 1/20. The

order of the square matrix S will then be n 2  +  2n, so the inverse of the 440 x 440 

matrix should lead to the final solution F(x, y).
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^  0.6

1.0

y

X

Figure 3.5: The function F(x, y ) for a typical set of parameters.

Figure 3.5 shows one such solution achieved with this method with a set of 

parameters that are characteristic of conditions found in interstellar space or the 

Earth’s upper atmosphere where gas concentrations are very low. The striking 

feature of this plot is that F(x,y)  rises extremely sharply near the point of our 

interest, that is at x =  y =  1, where the derivatives of F( x , y) are to be calculated 

to obtain Na and Nb according to Equation (3.49). Given the discretised nature 

of the (x, y) space, this is problematic. No matter how finely we discretise the 

(x , y) space, the accuracy of the gradient at x = y = 1 cannot be guaranteed. For 

small gradients, however, this technique will be quite powerful, requiring negligible 

computational time.
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3.4.2.2 Approach 2

Due to such problems encountered in dealing with F (x ,y ), a safer strategy is to 

work with the function

G(x, y ; t) =  In [F(x, y\t)\  (3.58)

which is likely to be better behaved than F (x , y) at x  =  y =  1. Equation (3.48) can 

be re-written in terms of G(x , ?/; t) as

dG • / ^  1 \ > / , „ d G-Qj: =  3 A ( x - l ) + 3 B{ y - l ) - \ A{ x - l ) — - \ B{ y - l ) —

(3.59)

Furthermore, using the identity d ln F /d x  =  (1 /F)(dF/dx),  and using the fact that 

F(  1,1; t) = 1, we note that

dF  
A dx

and similarly NB = dG/dy \x=y=i.

r, ^ l l l F dG
dxx=y=l x=y—1 dx

(3.60)
x=y= 1

Here matrix inversion is no longer an option as it was in the first method, since 

the discretised equations would be non-linear. In order to solve Equation (3.59), 

Ja j j B, Aa, A# and V  are provided as input parameters and the time dependent 

problem is solved, starting from a trial solution and terminating when the solution 

has converged to a steady state. As a first approximation, we make use of Eq. (3.51) 

and thus assign the following values to G and to its first and second derivatives at 

time t = 0 :

G(x, y;t = 0) =  N ĉ ( x  -  1 ) +  JVg“ (y -  1 ) (3.61)

dGdG
dx t= 0

' A  >

d2G
dxdy

dy 

=  0

= N clas

t=0
(3.62)

(3.63)
i=  0
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where N l̂as =  j'a/Aa and iV̂ las =  j^/A #, which are the classical values of Na and 

N b respectively in the absence of any reactions (/c =  0) as determined by Eqs. 

(3.50). At t = 1, the reaction rate constant k is then ‘switched on’, which enables 

one to allow G(x, y ; t) to evolve in time according to Eq. (3.59) while maintaining 

the boundary condition G{x =  y =  1; t) =  0.

^  -50

S '  *100
-150
-200

0.5

0.5

X

Figure 3.6: The function G(x,y)  for a typical set of parameters when equilibrium has 

been reached at the end of time-evolution.

For computational purpose, the (x , y) space as well as the time t are discretised 

and thereafter the Explicit Euler Method is applied in order to obtain an iterative 

solution over the time-series. If the time-steps are labelled by m  and if we call 

G(x , y \ tm) =  Gm, then the left hand side of Eq. (3.59) may be expressed as

dG(x, y] tm) Gm Gm—i . .
‘ "a t"  =  " ' A t  ™ (3'64)

where At should be a very small time-step size, and is provided as an input. The 

right hand side of Eq. (3.59) is evaluated by considering the values of all the deriva­

tives at the ‘previous’ time-step tm_i, which are known from the previous iteration.
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Thus Eq. (3.59) can be reduced to the approximation

Gm — Gm~i +
dG

j A{x -  1) +  j B (y -  1) -  Aa {x  -  1)

- ± t Xy
V ( y M dxdy

m— 1
dG dG Y

m 1 +  dx771— 1 m— 1 dV 771—1 s .
A t

m— 1

(3.65)

where the derivatives of G may be approximated using the discretised nature of the 

(x, y) space in the same was as in Eq. (3.55). This leaves only one unknown Gm, 

which can be explicitly evaluated. We thus proceed in the time-series until G settles 

into equilibrium, i.e. Gm ~  Gm - 1  for each point (x ^ y j ), eliminating the need for 

any further iterations. A typical converged solution is shown in Figure 3.6.

The evolution of G is a very delicate process and can diverge very quickly away 

from the actual equilibrium state, particularly as the mean populations become 

smaller. This arises from the insufficient means by which the solution is fully de­

termined with the help of boundary conditions. To avoid this, it is best to keep 

A t  as small as possible. The explicit Euler method has been used here for simplic­

ity, though it is possible to use an implicit technique such as the Crank-Nicholson 

method [46], which is far more stable but much more complex. Alternatively, for 

very small mean populations, a further approach can be examined.

3.4.2.3 Approach 3

Yet another method of solving the problem of the reaction A +B —> C is to evolve the 

probabilities W (N a , AT#; t) numerically in time until a steady state has been reached. 

As with Approach 2, we may discretise time t and replace the dt in Eq. (3.46) with 

a very small At.  After providing jA , in , ft, A^, Ab and V  as input parameters we let 

the system evolve according to equation (3.46). The initial condition was chosen as 

W (0,0; t  =  0) =  1 and all other elements of W  equal to zero, indicating that there
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are no molecules on the particle surface to start with.

Ideally, one needs to evolve an infinite number of probability elements 

W ( N A, N b ', t ), where N a £ [0, oo] and N b £ [0, oo]. However, this is not practicable 

in reality given the finite capacity of computers. As a way out of this difficulty, 

we may set an upper limit on the maximum number of A and B molecules that 

the particle surface can possess at a given time, namely and N b **, instead of 

infinity. Effectively, this means that we are approximating the mean populations in 

Equations (3.49) by

jy  max jymax

&A = £  E  NAW ( N A, N B;t)
N a = 0 N b =  0

Na** ^b ^  (3.66)
K b = £  £  N BW ( N A, N B',t).

Na = 0 Nb = 0

Since we expect the probability distribution to look something like those in Figure 

3.1, this clearly means that the values of N™** and N g &x must be sufficiently large 

in order to allow the elements of W  towards the end of the series in Equation (3.66) 

to be negligible. That will ensure that the achieved solution is satisfactory.

This technique works very well when the steady state corresponds to reasonably 

small N A and N B so that some modest values of iVJiax and Ng** will suffice to obtain 

a good solution. However, as the mean populations reach high values, through 

increasing j A or j B for example, one needs to have quite large N J13* and N g 3*. 

Hence, depending on the available computer resources, there is an upper limit on 

the values of N a and N B that one can obtain with this technique. For large mean 

populations, Approach 2  would be more suitable. It is worth mentioning here that 

an alternative method for solving this problem was explored by Green et al. [44], in 

which the master equation (3.46) was solved directly in the steady state through a 

matrix inversion approach similar to that in Approach 1 .
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3.5 Results and discussion

An extreme example of grain surface chemical reactions taking place under ultra 

low concentration of both the gas and the dust is seen in the interstellar medium. 

For this reason the stochastic model developed in §3.3 was tested under parameters 

corresponding to interstellar conditions and by making use of the computational 

techniques described in §3.4. It was then applied to conditions more akin to the 

terrestrial atmosphere.

3.5.1 A +  A ^ C

3.5.1.1 Interstellar conditions

The simplest example of this type of reaction is the production of molecular hydrogen 

from its atomic state, i.e. H +  H —> H2. Although simple, this is a very significant 

reaction in the Universe. The result of the analytical stochastic approach, the Monte 

Carlo simulation, as well as the classical theory for this process under interstellar 

conditions is shown in Figures 3.7 and 3.8. The calculations have been performed 

for dust particles of radius ~  0 . 1  fj,m within a cloud of gas phase concentration of 

1 atom cm-3, held at a temperature of 10 K. The corresponding rate parameters 

used here are k/(2V)  = 5.1 x 104  s_ 1  and =  1.9 x 10~ 3  s_1, taken from prior 

calculations of Caselli et al. [40]. A value of =  107 s_ 1  corresponds to X  — 5 x 109  

and jA =  10- 5  s_ 1  is equivalent to X  = 5 x 10-3.

In Figure 3.7 the average population of A-molecules in equilibrium, N , is plotted 

against the influx jA . Figure 3.8 shows the production rate of C for the same set 

of parameters. Note that the stochastic N  is higher than the classical counterpart, 

whereas the situation is reversed for j c  since according to Eq. (3.32), a higher N
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F igure 3.7: Average number of A-molecules (hydrogen atoms) present on the particle 
surface in equilibrium (iV, denoted here as < N  >) as a function of flux jA in interstellar 
conditions with 0.1 /mi dust (A  ̂ = 1.9 x 10-3 s-1). The corresponding v = -0.99999... 
which is very close to the lower limit of —1. (a) The stochastic curve agrees with the 
classical curve at large jA- (b) When we zoom in around ultra-small value of a 
considerable difference appears between the two. The stochastic curve is in good agreement 
with Monte Carlo calculations. Note the different scales on the abscissa.
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F igure 3.8: Production rate of H2 (j c ) as a function of ja in interstellar conditions 
with 0.1 fi m radius dust and A a = 1-9 x 10-3 s-1 (corresponding to v = -0.99999...). (a) 
Stochastic model converges towards its classical counterpart at large flux, (b) When the 
flux is very small, the stochastic approach predicts such a small production rate that it 
can hardly be seen at the bottom of the graph.
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means a lower j c .

Clearly, Monte Carlo calculations are in good agreement with the stochastic 

model, both being significantly different from the classical curve at low flux or 

at low gas concentration. The value jA =  1.4 x 10- 5  s_ 1  is what we typically 

expect in such interstellar clouds [40], for which we get V̂ciassicai =  8.28 x 10-6, in 

contrast to iVst0Chastic =  7.27 x 1 0 -3. In terms of the dimer production rate, we have 

•̂classical _  7  x io _6 s_ 1  and jst°chastlc =  1  x 10- 7 s_1. Hence the classical rate equation 

approach may overestimate the production rate by over one order of magnitude.

Another feature that can be clearly seen in Figs. 3.7 and 3.8 is that the stochastic 

model converges with the classical theory at both limits of jA , i.e. as jA —► 0  and 

jA —> oo. There is a certain range of the parameter space for which the classical 

kinetics becomes unreliable; the range being characterised by the values of X  and v. 

The limits where classical results hold reasonable validity are discussed in §3.3.1.5.

Figures 3.9 and 3.10 show the area on the (A, v) plane where the stochastic 

N  and j c  differ from the classical results of rate equations. Figure 3.11 shows 

a part of the same data presented in Figure 3.10, but in a simpler way; here the 

ratio of production rates as predicted by the classical and stochastic models, namely 

iclas/ic toch, 1S plotted as a function of the parameter v for three arbitrarily chosen 

values of X .  Figures 3.10 and 3.11 show that the distinction between the dimer 

production rates according to the two models fades away with increasing X .  Both 

the ratios Acias/Astoch and j^las/ j § och are 1  a t large v. In order to have a clear 

difference between the results of the two approaches, small values of both X  and v 

are required.

In the classical treatment, the rate of dimer formation is taken to be proportional
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Figure 3.9: The contour plot of the ratio -/V^sicai/jVst0chastic as a function of X  and v. 
The values quoted in white boxes refer to the boundaries between the shades. The ratio 
is zero at v = —1 for all X  due to Nc\assical falling to zero. The stochastic model yields 
similar results to the classical rate equations in the three limits discussed in §3.3.1.5, so 
the ratio will reach l a s X —>0, X —►ooorz/—>oo.
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Figure 3.10: The contour plot of the ratio jg ochastlc/ jcjassical ^  a function of X  and v. 

This ratio is also zero at v — — 1 where j^lassical —» oo due to infinitely large «.
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Figure 3.11: The ratio of dimer production rate as predicted by the stochastic model 
presented here, divided by the classical rate equations prediction, as a function of the 
parameter v. The ratio of roughly 1 indicates that the two methods agree. The difference 
between the two models is visible when X  and v are small.

to N 2. When the mean population of reactants is below unity, say N  =  0.5, the 

classical approach will calculate the dimer production rate as k/ 2V  times 0.25. In 

reality, if the probability distribution of the reactant population exhibits a monotonic 

decrease such as in Figure 3.1 (N  ~  1 curve), then a mean population of 0.5 means 

that on most instances there will be either one monomer present on the surface, or 

none at all. None of these two situations will actually lead to dimer production, as 

at least two monomers are required to form a dimer. Only through a lucky chance 

there will be two or more monomers present on the surface simultaneously, which 

may then lead to dimer production. That would be indeed rare. The classical rate 

equation approach, which considers ‘half’ a molecule to be present on the surface at 

all times, overlooks the unbreakable nature of the reactant molecules and hence leads 

to an error in the dimer production rate when N ( N  — 1) /  N 2. In the first three 

limits discussed in §3.3.1.5, this error becomes negligible compared to the actual
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mean population; hence the two models appear to agree.

3.5.1.2 Terrestrial conditions

Terrestrial atmospheric conditions provide a further demonstration of the possibility 

that a classical treatment can be in error. Let us consider a reaction coefficient of 

k  =  10- 2 0  m3  s- 1  for terrestrial conditions [4]. In order to obtain the appropriate 

adsorption rate we may use the expression

j A =  57ro2 n ( ,^ 2 ^ ' )  '  (3.67)
\  7r m  j

where S  is the sticking coefficient of the molecules on the particle surface (between 

0 and 1), a is the particle radius, is the Boltzmann constant, Tg is the gas tem­

perature and m  is the mass of the reactant molecules. The value jA =  13.5 s- 1  cor­

responds to a gas phase species with molecular mass of 3.3 x 10- 2 5  kg (200 g mol-1) 

at a concentration of 100 ppt in an atmosphere of 1 bar pressure and 300 K of 

temperature. It is meant to be typical of a small organic trace species, with unit 

sticking probability.

The evaporation rate Xa is estimated from the expression

f3-68*

where p is the particle mass density and K p is the partition coefficient [47], which 

expresses the way gas species are adsorbed onto particles. K p was taken to be 

4 x 10-6 m 3  /ig-1 for a 0.1 pm  particle [48], which is again characteristic of a trace, 

fairly non-adsorptive atmospheric species. With a molecular mass of 3.3 x 10-25 kg, 

this provides a value =  333 s-1, corresponding to a residence time of about 3 ms.

Figure 3.12a shows the mean population of A-molecules as a function of its 

adsorption rate, under the above mentioned atmospheric condition where the aerosol
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F igure 3.12: Terrestrial conditions with 0.1 //m radius dust particles and = 333 s 1. 
(a) Average number of A-molecules present on the particle surface and (b) dimer pro­
duction rate (jc) as a function of jA• The reason for the lack of difference between the 
classical and stochastic approaches here is the corresponding high value of is «  278. Any 
discrepancy would require roughly v < 0 (see Fig. 3.11).
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radius is 0.1/im. The dimer production rate for the same conditions is shown in 

Figure 3.12b. The mean population (N) is well below unity in the range of jA shown 

and one would have expected the classical approach to differ from the stochastic 

model in this parameter space. Yet remarkably no distinction appears between the 

two approaches. The reason for this seemingly peculiar result is that the values of 

X  and v corresponding to the atmospheric conditions at jA =  13.5 s-1 are X  «  

4.05 x 10~2 and v »  278. The rather large value of v leads to the classical limit 

discussed in §3.3.1.5; for the stochastic model to differ from the classical approach 

the value of v must be much smaller.

— Stochastic
— Classical

: 1.5E-04 —
C/3

^  1.0E-04

j  A /  S''

Figure 3.13: Terrestrial conditions with 0.01/im dust particles. Dimer production rate 
(jc) as a function of Ja is shown. Corresponding v = —0.72. At larger values of jA than 
shown here, the two curves start to converge and hence not shown here. Chemistry on a 
0.01/im particle, however, may not constitute a realistic case.

One way of having a reasonably small value of v under terrestrial atmospheric 

conditions is if the particle size is ~  0.01/im, with the rest of the parameters unal­
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tered. Figure 3.13 shows the dimer production rate under such terrestrial conditions, 

for which we get v «  —0.72 and X  still unchanged at 4.05 x 10-2. The differ­

ence between the classical and stochastic results is noticeable now. Ja — 13.5 s - 1  

specifically corresponds to the atmospheric conditions mentioned above, for which 

jgochastic _  Q 4  s- i  whereas j£lassical =  1.29 s-1. Hence the classical rate equations 

overestimate the dimer production rate by over a factor of 3. However this case may 

not be very realistic since chemistry on 0 . 0 1  micron particles is almost irrelevant; 

they constitute a negligible fraction of surface area and mass within a cloud.

The conditions for failure of a classical approach are clearly delineated by the 

conditions X  < 1 and v < 0 as shown in Figures 3.9 and 3.10. Particular conditions 

and cases can easily be judged on the basis of these conditions.

3.5.2 A +  B C

We now turn to the A +B  —> C reaction. Figure 3.14 shows results for the number of 

molecules A present on the particle surface in equilibrium as a function of Ja while 

jB is held at a fixed value. The model reaction chosen here is O +  N —» ON, again 

under interstellar conditions. Here oxygen is treated as the species A and nitrogen 

is taken as species B. For a cloud at temperature 10 K, Caselli et al [40] estimate 

the values jB =  3.9 x 10- 6  s-1 , k/ V  =  8.7 x 10- 5  s - 1  and «  A# «  10- 2 3  s-1 .

As in the case of reaction A +  A -> C, at low flux the stochastic model predicts 

a higher mean population of reactant molecules compared to the classical result. 

Interestingly, once Ja falls below the value of jB, the classical value of N a imme­

diately collapses to almost zero (Na ~  1 0 ~13) , while the stochastic value sustains 

larger non-zero values. Note that as in the previous case, a higher mean population 

will lead to a lower production rate of the dimer.
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Figure 3.14: In reaction A + B —>• C, average number of molecules A present on the 

particle surface {Na , denoted here as < Na >) in equilibrium as a function of ja with 
j s  held at a fixed value, (a) For relatively large range of jA- (b) At very small flux, the 
difference between the stochastic and classical models shows up.
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Although the numerical techniques developed to solve the kinetics of A +  B —> C 

are rather difficult to employ under certain conditions and perhaps not always to 

be recommended, they are nevertheless each valuable in their sphere. Techniques 

described in the first two methods allow us to gain insight into the likely nature of the 

analytic solution F ( x , y). Whilst the matrix inversion technique of the first method 

provides the solution in almost no time with the current generation of computers, 

the second and third methods are also much faster than alternative Monte Carlo 

approaches. A code developed for the evolution of W (AT, t) in the case of reaction 

A +  A —> C, for instance, was found to be about 30 times faster than the Monte 

Carlo technique for the same reaction as described in §3.4.1. Similarly, it is believed 

that the evolution of W ( N a , N b ; t) for the A +  B —> C reaction, as explained in the 

third method, would also be faster than a corresponding Monte Carlo approach.

3.5.3 Possible observational tests

Testing the predictions of this stochastic model against observation is relatively 

easier in the earth’s atmosphere, for obvious reasons, compared to observations of 

interstellar clouds. In astronomical situations, the only information that can be 

gained about an object is through electromagnetic radiation coming from the direc­

tion of the object. Molecular hydrogen (H2), for example, does not produce radio 

emission; it can only be detected through the fact that it absorbs ultraviolet radi­

ation and hence its spectrum will exhibit absorption lines in this region. However, 

the gas and dust normally becomes so thick in a molecular cloud that the ultraviolet 

extinction is too large to accurately measure all of the H2  in the interior of a cloud. 

In principle though, it should still be possible to estimate the amount of molecular 

hydrogen. Carbon monoxide emits radio waves due to H2  molecules colliding with
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them, so there is a correlation between the amount of CO and H2  in the interstellar 

medium. Hence the easily detected CO radio emission lines can be used to infer the 

amount of H2. A decrease in the density of the H2  gas results in fewer collisions 

with the CO molecules and a decrease in the CO emission.

Alternatively, a lower production rate of H2  will mean a higher proportion of 

atomic hydrogen left in a given interstellar cloud. Hence, it has also been suggested

[49] that by observing the easily detectable atomic hydrogen, an estimate of the 

amount of molecular hydrogen can be made.

3.6 Conclusion

In summary, a stochastic model to describe chemical reactions occurring on the sur­

face of ultra-fine aerosol or interstellar particles under extremely low concentrations 

of the surrounding reactant gas has been investigated here. Analytic solution is 

possible in this model for the reaction of type A +  A —> C in the steady state. The 

solution has been tested against Monte Carlo simulation and the two agree very 

well. For the reaction of type A +  B -> C analytic solution is not feasible. Hence 

a number of numerical techniques were developed that seek a solution for the state 

of the particle surface in terms of the mean population of reactant molecules. The 

model presented here provides, in general, a time-dependent description of the het­

erogeneous chemistry mentioned, although the solutions were only obtained for the 

steady state since the interstellar or atmospheric dust clouds are assumed to have 

existed for very long. A time-dependent solution to the master equations would be 

desirable if, for instance, one sought to study industrial processes occurring on much 

shorter timescales.
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As expected, the contrast between the stochastic and classical approaches is 

most notable at low flux of molecules on the particle surface, although the two 

approaches agree well when the flux becomes either zero or very large. The result of 

the simple reaction of type A +A  —> C showed that under interstellar conditions, the 

classical theory may be overestimating the production rate of molecular hydrogen 

from its atomic form by over one order of magnitude. Under terrestrial conditions, 

the overestimation may be lower, but still quite significant. We can conclude that 

differences in the reaction rate emerge when X  < 1 and v < 0, where X  and 

v are dimensionless combinations of the fundamental process parameters. This 

is illustrated in Figure 3.11. Similar features emerge for slightly more complex 

reactions of type A + B  —> C. Especially at very low flux of reactant molecules, when 

the classical theory predicts almost no reactant population on the dust surface, the 

stochastic model predicts a larger mean population. Clearly, the use of classical 

kinetic equations, which are based upon the assumption that the populations of 

reacting species are large, can be misleading when applied in circumstances where 

populations are very small.

The stochastic model presented here may be extended to more complex reaction 

networks by modifying the master equation (3.46), with the variables N a and N b 

replaced by a set of variables {Ni}, where i would be the number of chemical species 

participating in the reactions. The exact form of such master equation would be 

dictated by the way the reactions are interconnected, but this may be done using 

the same type of arguments as those used in constructing Eqs. (3.2) and (3.46). 

Such a model is unlikely to have an analytic solution, so the numerical techniques 

of §3.4.2 will need to be extended accordingly. Computationally this would be 

a very expensive task in terms of execution time if approaches analogous to the
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second and third methods of §3.4.2 are employed. However, the scheme described 

in the first method essentially relies on matrix inversion, so the computational time 

consumption is generally tiny once the problem is set up correctly.



Chapter 4

Nucleation: Basic Concepts

In the next two Chapters, we shall consider aspects of the formation and subsequent 

growth of dust particles. Both of these processes entail the clustering of one or more 

molecular species, which leads us to consider the phenomenon of nucleation. It is 

therefore worthwhile sketching a brief description of its basic theoretical concepts 

[50, 51, 52, 53].

Nucleation is the initial stage of a first order phase transition whereby molecular 

clusters of a stable phase form out of a metastable phase. It is the first step in many 

phase transformations and they are very common; dramatic examples can be found 

in the atmosphere, where the condensation of water vapour, driven below its dew 

point, gives rise to the formation of water and ice clouds of great variety and beauty 

[4]. Similar processes on a grander scale are believed to take place in the vicinity 

of stars, giving rise to equally beautiful dusty nebulae. Even the phase transitions 

involved in the early Universe soon after the Big Bang are thought to be explicable to 

a certain extent through the principles of nucleation [7, 54, 55]. Domestic examples 

are also familiar and processes such as melting, freezing, boiling or condensation are 

common in industry. An understanding of nucleation is therefore important in both

79
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studying natural phenomena as well as in developing technological applications.

Most of the phase transformations mentioned above are first order, which is 

to say that a latent heat is transferred during the process and a surface tension 

exists between the two phases at equilibrium. The transformation usually involves 

the emergence of assemblages, or clusters, of molecules with characteristics (density, 

symmetry, etc) of the new phase. However, these clusters are not necessarily all 

thermodynamically more stable than the original phase. Small clusters, with high 

proportions of ‘surface’, tend to be unstable and tend to break apart. For moderate 

degrees of metastability of the original phase, there exists a ‘bottleneck’ in the 

process, corresponding to the need to form a so-called critical molecular cluster. 

Once one has been formed, further growth is thermodynamically favourable. This is 

the process of nucleation, driven fundamentally by thermal fluctuations. However, 

for greater degrees of metastability of the original phase, the phase transformation 

can become deterministic, with no thermodynamic bottleneck. The process then 

becomes a second order transformation and proceeds via spinodal decomposition

[50].

There are two classes of nucleation, namely homogeneous and heterogeneous. 

In the former class, which is perhaps more obvious to imagine, monomers of the 

‘vapour’ phase aggregate to form clusters of condensed phase on their own. The lat­

ter class involves the need for a host particle that provides a catalytic surface where 

monomers can gather and form clusters, in a way similar to the heterogeneous chem­

ical reactions described in Chapter 3. Although heterogeneous nucleation is a much 

more efficient process, the bulk of research has so far been directed towards under­

standing homogeneous nucleation because of its conceptual simplicity. In outlining 

the key ideas of nucleation in this Chapter, we keep mainly homogeneous nucleation
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in mind, while remembering that the same ideas can normally be extended to the 

heterogeneous case also.

4.1 Classical rate equations

Nucleation is often treated as a growth-decay ladder of molecular clusters. Consider 

a vapour cloud full of ‘monomers’, which could be atoms or even large molecules, that 

are moving around and occasionally colliding with each other randomly. On collision, 

two monomers might stick together and then yet another one could stick and form a 

‘cluster’. The growth of the cluster may thus proceed through attachments of more 

monomers. The cluster may also decay by loss of monomers, induced, perhaps, 

by energy input from the surroundings or due to the heat created by the chemical 

reaction between the monomers. Between these two competing processes, clusters 

need to reach a critical size i* before they will, on average, be able to grow further 

easily. In other words, for clusters consisting of i < i* molecules, the probability per 

unit time for a cluster to grow, divided by the probability for it to lose a molecule 

(decay) is less than unity. For sizes greater than the critical size, the ratio of growth 

to decay probabilities is greater than unity. Most clusters tend to languish in the 

sub-critical size region and only occasionally do they manage, by a lucky sequence of 

growth steps, to reach the critical size and thereafter grow. When a cluster reaches 

the critical size, nucleation is said to have occurred.

Kinetically, the time-evolution of such a system is modelled using the rate equa­

tions
dri ■

= Pi-iU i-i -  jiUi -  PiUi +  7i+ini+i (4.1)

for i >  2 , where n* is the mean population of clusters of size i in the system, f t is
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fti-l —— f t  i ——
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F ig u re  4.1: A schematic of nucleation kinetics. A cluster of size i may grow or decay 

due to the addition or removal of a monomer, the rates of these processes being ft and 7 i 

respectively.

the rate at which molecules attach themselves to clusters of size i and 7 * is the rate 

at which molecules are lost from clusters of size i (Figure 4.1). The growth rates ft 

are proportional to the number of monomers n\ in the system, so that we can write

f t  =  A W  (4.2)

The nucleation rate, that is the rate at which large clusters are formed, is defined 

as the difference between ftrij, the number of growth events from size i to (i +  1 ), 

and 7 j+i 7ij+i, the number of decays from size (i +  1 ) to i:

J  =  ftrij -  'Yi+irii+i. (4.3)

By solving the rate equations (4.1) for a steady state situation, Becker and Doring 

[56] almost 70 years ago arrived at an expression for the nucleation rate,

j  = _______ @2—1__________________  ( 4  4)
1 + ESrn U M b Y  '

where imax is the maximum cluster size allowed in the system, which could well be 

infinity. Equation (4.4) is known as the ‘kinetic’ expression for the nucleation rate. 

This solution applies when the growth ladder is terminated by the assumption that 

clusters at size imax +  1 do not decay, hence J  =  f tmaxn*max. For many realistic
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situations, the solution is insensitive to the choice of imax, as long as it is large 

enough. In §5.4.1 we shall explore one way of setting the parameters involved in the 

above equations. For the moment, this background will be sufficient to proceed to 

the next Section, and indeed to the next Chapter also.

4.2 Free energy barrier

The same problem can be studied from a different angle by considering the thermo­

dynamic quantities involved. Let us go back to our cloud of vapour and assume it 

to have a pressure p and temperature T. When this vapour is in thermodynamic 

equilibrium with a condensate, the vapour is said to be saturated and its chemical 

potential, /i„ , will be equal to that of the condensed phase, fic. The assumption of 

thermodynamic equilibrium is reasonable since the dust particles are considered to 

be thermalised through the absorption and emission of radiation in the diffuse ISM 

(as in Chapter 3), and also through collisions with the surrounding gas molecules 

in the denser molecular clouds (as in Chapter 6 ) [15]. A vapour with pressure less 

than the saturated vapour pressure, psat, is called undersaturated and if p > psat, we 

have a supersaturated vapour, for which pv > pc (Figure 4.2). More precisely, the 

supersaturation, S, is defined as

s = — , (4-5)
Psat

where psat is related to the number density of monomers in the saturated vapour, 

Psat, by

Psat =  PssX^b F

for an ideal gas.

In reality, a vapour can be kept at pressure p > pnew for very long periods with-
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sat
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sat
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F ig u re  4.2: Vapour kept in a supersaturated state is metastable with respect to the 

equilibrium sate.

out observing condensation of the vapour to form the new phase. Although having 

a supersaturated ‘parent’ state is a necessary precondition for nucleation (homoge­

neous nucleation in particular), it does not necessarily occur just with the fulfilment 

of this condition. Supersaturated old phase can still remain in the metastable state, 

in quasi-thermodynamic equilibrium for a certain time. Likewise, a liquid can be 

‘superheated’ above its usual boiling temperature, or can be ‘supercooled’ below its 

normal freezing temperature. The reason for this is that condensation of subcritical 

clusters is characterised by an increase in the free energy, T ,  of the cluster with

respect to the pure vapour phase, which is often termed as the work of formation of

the cluster. The free energy of a cluster of size i is given by

F(i) = £ ( i ) - T S ( i ) ,  (4.7)

where S(i) and S(i)  are the total cluster energy and the entropy respectively, and 

the work of formation can be written as

W(») =  H ^ )  -  i^mon, (4.8)

where ^mon is the free energy of a single monomer in vapour phase. Here we have
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Cluster size i

F ig u re  4.3: The free energy barrier to nucleation. The creation of a cluster of the 

critical size i* requires the highest work of formation and clusters of this size are the least 
probable to be found in the system as the constrained equilibrium distribution n(i) shows 

a minimum at i*.

used the Helmholtz free energy, though sometimes the Gibbs potential is also em­

ployed. In order for nucleation to occur, the system has to climb a free energy 

barrier as more and more monomers are attached, before the cluster becomes super­

critical, whereupon the system free energy decreases as a function of the cluster size 

i. It is for this reason that nucleation phenomena can be very slow. Quantitatively, 

the height of this barrier is equal to the work of formation of the cluster of critical 

size i* (Figure 4.3). The constrained equilibrium distribution ni, which is equal to 

exp(—W(i) /kBT)  [57], shows a minimum at i*, indicating that the critical size is 

the most difficult to reach compared to any other sizes in a nucleation process.

The key question then to answer is, what is the nucleation rate for a given
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/  W* \
J = ^*exp(-5ur)’ (49)

supersaturation and a temperature? The nucleation rate is often written as

VV*
'B-

where W* is the thermodynamic work required to form a critical cluster of the new 

phase (particle) out of the old phase (vapour). j3* is the rate at which monomers 

are attached to a cluster of critical size i*. Z  is the so-called Zeldovich factor and 

is a dimensionless number, which is given by

- 1  d2 W (i ) l l / 2
(4.10)

2irkBT d i2

It accounts for the fact that critical and supercritical clusters can also re-evaporate 

occasionally due to Brownian motion of the molecules.

The work of formation can be thought to comprise a cost and a payback,

W(t) =  WcostW +  Wpaybax;k(i). (4.11)

The payback is the change in bulk free energy associated with the conversion of i 

monomers of vapour into condensed phase. This is simply i times the difference 

in free energies per monomer between the two phases. Since the free energy per 

monomer in any bulk phase is just the chemical potential of that phase,

TVpayback(0 =  (̂/ v̂ /̂ c)j (4.12)

where \iv and pc are the chemical potentials of vapour and the condensed phase 

respectively. When the vapour is supersaturated, or equivalently metastable with 

respect to the condensed phase, its chemical potential is higher and this payback 

contribution helps to drive the nucleation by reducing W (i).

Now, for an ideal gas, the chemical potential is related to the vapour pressure p

via

pv = kBT\n (pvX3), (4.13)
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where pv is the monomeric number density in the vapour, which is given by

Pv =  p /k BT. (4.14)

A is the so-called thermal de Broglie wavelength and is expressed as

A =  {2-ir m k g T y / 2’ 4̂ '15^

where m  is the mass of a single monomer and h is Planck’s constant. At saturated 

vapour pressure, the chemical potentials of the two phases are by definition equal, 

namely p v = /ic, so using Equations (4.13) and (4.6)

K  =  kBT  ln(psatA3) =  kBT  In ( | ^ A 3)  . (4.16)

Hence, substituting Equations (4.13) and (4.16) into (4.12), one obtains

WpaybadcM =  - i  ■kBT  [in ( ^ A 3)  -  In ( g | A 3);

=  —i k BT  In 5, (4.17)

where we have used the definition of the supersaturation, 5, from Equation (4.5).

The cost of forming a cluster of the new phase is written in terms of the so-called 

excess free energy, which is

•Fjxcess ~  kVCOs t ( 0  =  J~{ )̂ Wc- (^ *1^)

Hence, from Equations (4.11), (4.17) and (4.18), the overall work of formation 

can be written as

W(») =  [^ (0  -  ipc] ~  i kBT  InS. (4.19)

Using the fact that kBT \ n S  = pv — pc from Equations (4.5), (4.13) and (4.16), this 

can be simplified as

yy(i) =  T{i) -  ipv. (4.20)
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Figure 4.4: Adiabatic cooling of a parcel of vapour. As the vapour is cooled to below the 
dew point temperature, its pressure becomes greater than the saturated vapour pressure, 
creating the right condition for nucleation to take place.

The saturated vapour pressure is a function of temperature. If the temperature 

of a parcel of vapour falls through adiabatic cooling, for example, then the pressure 

changes, and so does the saturated vapour pressure (Figure 4.4). When the so-called 

dew point is reached, the vapour is said to be at the saturated vapour pressure. If the 

temperature is dropped further, In S  will be positive and there is a thermodynamic 

payback driving the nucleation. This is why one observes nucleation below the dew 

point temperature.
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4.3 Partition function and free energy

Since this treatment of nucleation will be applied to diatomic solid condensation 

in Chapter 6 , let us consider a cluster of such type with stochiometry XY. If the 

material is solid and the temperature is reasonably high, the atoms would oscillate 

with high frequency and small amplitude, which enables us to treat the oscillations 

as harmonic. In this approximation, the free energy appearing in Equation (4.20) for 

a crystal structure can be expressed as a sum of the temperature-independent po­

tential energy, Uo, associated with the interatomic interactions, and the free energy 

associated with the normal modes of lattice oscillations [58],

T  = U q +  3~modes* (4-21)

In general, the normal modes arise from vibrational, translational and rotational 

motion of the atoms and Anodes can be written in terms of a phase space integral. 

This is done by remembering that

•Pmodes =  h s T  \n  Z ,  (4.22)

where the partition function Z  is written in the form of the integral

z = W~hFi / drdPexP(-w/fcBr )- (4-23)

Here, r  and p are the positions and momenta of the atoms and % is the Hamiltonian 

of the system, i is the number of monomers in the cluster and since each monomer 

is a diatomic molecule, there are 6 i degrees of freedom in total within the cluster. 

Therefore, there are (i ! ) 2  number of ways of arranging i indistinguishable atoms of 

the X type and the same number of indistinguishable atoms of the Y type. This 

partition function can be factorised into translational, rotational and vibrational 

parts through a transformation to some suitable relative positions and momenta, so
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that

%  =  t̂ran^rot^vib) (4.24)

and

•Fmodes =  t̂ran +  •Frot +  ^vib- (4.25)

We focus on the vibrational degrees of freedom first. The integral can be eval­

uated in this case by considering the normal modes of vibration obtained from the 

dynamical matrix of force constants from a molecular dynamics simulation of the 

system, further details of which we shall discuss in §6.4. then becomes a prod­

uct of partition functions for 6 i — 6  oscillators, each of which in the classical limit 

of high temperatures takes the form kBT/huk , where ujk (k = 1 , 2 , . . . ,  6 z — 6 ) are 

the angular frequencies of the vibrational modes [59, 60]. Hence the vibrational free 

energy can be written as

/  6i—6 U T  \
jFvib =  - k BT  In =  -feBT l n ^ n  ^ )  (4-26)

There is also an alternative method for obtaining the vibrational modes, which is 

discussed in Appendix B.

Lifting the restriction of zero angular momentum for the configuration would 

now allow us to determine the rotational part of the partition function. It has been 

shown [61] that the result of doing the integration for rotational motion is

(4,7)
where I \ , l 2 and Is are the three principal moments of inertia of the cluster about 

the centre of mass when the atoms are in their mean positions, x  is the symme­

try number associated with a given crystal geometry, which corrects for repeated 

counting of indistinguishable orientations of the crystal in three dimensions.
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Finally, we need the translational free energy of the centre of mass. The partition 

function for this contribution is

3/2

^tran _  ^
_  (  2?r(E j m)kBT'

H2
(4.28)

where V  is the volume of the container in which the cluster is able to translate freely.

Using Equations (4.21), (4.22) and (4.24), together with (4.26), (4.27) and (4.28), 

we can now calculate the free energy of the cluster,

T(i)  =  Uo(l) — ln(Ztran^rot^vib)

( M ' E j m ) k BT \ 3/2 it1?2 ( 8ir2kBT \ 3 / 2
=  Ua( i ) - k BT \ n V

K h2 X V h2
n
k= 1

( W s ) 1/2

, (4.29)
6i- 6 k s T  

huk

where Uo(i) is the system potential energy at the mean atomic positions.

4.4 Chemical potential

The chemical potential of vapour that appears in Equation (4.20) can be worked 

out by remembering again that in a bulk phase the chemical potential is equal to 

the free energy per monomer of that phase. Hence the chemical potential of a single 

diatomic monomer of vapour is

fiv = Ug*m - k BT]n
1  ( 2 i r m k BT \ 3/2 (8w2kBT  \  kBT

’inP v \  h? )  \  h? monJ hujmo

where If™11 is the potential energy of a single monomer when the individual atoms 

within it are at their mean position, pv is the number density of monomers in the 

vapour, Imon is the moment of inertia of a monomer about its centre of mass and 

LJraon is the angular frequency of the vibrational mode of the free monomer.

(4.30)
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4.5 Cluster densities and nucleation rate

Now that we have worked out a way of evaluating all the quantities required in 

the implementation of Equation (4.20), the nucleation rate can be evaluated. We 

calculate the nucleation rate per unit volume, Jy,  and assume that the ‘container’ 

would be very large in naturally occurring processes. Hence, from Equation (4.9),

J  (  {W* + kBT \ n V } \  , ao^
Jv  = v  = Z 0 * p  ------- — -----j , (4.31)

where W* is calculated at the critical cluster size i* with the help of Equations

(4.20), (4.29) and (4.30). The term kBT  \nV would cancel out with a similar term 

in the expression for Jr(i), leaving Jy  independent of the volume.

The number of i-clusters, per unit volume is given by

, n  r^ (  {w (i) +  *BT i n m
pi=v = exp (-------- kyr j ' (4'32)

4.6 Effective work of formation

If one wants to look at the work of formation, W(i), itself, then the following

procedure is useful. Classically, the nucleation rate per unit volume is often written

as

J y ^ Z F ^ (4.33)

where pv is the number density of the vapour monomers and is related to the vapour 

pressure p by

pv kBT  =  p .  (4.34)

We can write Equation (4.31) as

r (  {W* + kBT \n V }  , ^
Jv = Z/3 pv exp I ---------------------------- ln^  J » (4-35)
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Comparing Equations (4.33) and (4.35) then allows us to write the effective classical 

work of formation at the critical cluster size i*, which can then be generalised for 

all cluster sizes as

Weff(i) =  F{i) -  ifJLy +  kBT\n(pvV). (4.36)

The term F f y  + k s T  InF would be independent of the volume and knowledge of the 

number density of the vapour would thus allow us to estimate the work of formation.



Chapter 5

Stochastic K inetics of 

H eterogeneous M antle Growth

5.1 Introduction

We now turn to the problem of the growth of dust particles in the interstellar 

medium (ISM). In the chemical reactions discussed in Chapter 3, the binding be­

tween the molecular species (A and B) and the dust particle was only physical in 

that it was reasonably easy for the atoms and molecules to break free from the dust 

surface. However, if these atoms and molecules manage to form chemical bonding 

with the surface atoms, molecules would accumulate on the surface, enabling for­

mation of a mantle around the core particle. Unlike the newly formed H2  molecule, 

which generally detaches from the dust grain after formation through heterogeneous 

chemistry, heavier molecules like OH, CH and NH would tend to remain attached 

to the grain and undergo further grain surface reactions with incoming molecules. 

This process then leads to condensation on the dust particle through the process of 

heterogeneous nucleation and growth. Incidentally, this growth eventually results

94
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o 0 o O

F igure 5.1: Heterogeneous mantle growth occurs through monomers adsorbing one by
one onto the dust surface, eventually forming a mantle around the particle.

in the formation of macroscopic pebbles that convert into the building blocks of 

large heavenly structures like stars, planets and so on. However, there are also more

often act as storage of molecular species. Or their chemical composition could be a 

suitable substrate for further production of new molecules which would have been 

almost impossible on the surface of the original grain core or in the pure gas phase.

Most research into nucleation is concerned with the homogeneous process, where 

the metastability of the original phase is overcome without the presence of special 

nucleation sites in the system. The critical clusters form in the absence of foreign 

bodies and container surfaces. However this is not the process responsible for most 

of the familiar phase transformation examples described in the previous Chapter. 

The terrestrial atmosphere, for example, is not entirely free of suspended matter and 

cloud formation takes place by a process of heterogeneous nucleation of water on 

these particles. The water clusters, and ultimately the cloud droplets, form on the 

surfaces of suspended particles called cloud condensation nuclei (CCN), since it is far 

easier thermodynamically to do this than to form a critical cluster homogeneously

subtle roles these mantles can play in the chemical evolution of the ISM. Icy mantles

[62, 63, 64, 65].
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Cloud condensation nuclei are solid or liquid aerosols, often only a fraction of a 

micrometre in diameter. Now, the metastability of a vapour is measured in terms of 

its supersaturation S, defined as the ratio of the vapour pressure to the saturated 

vapour pressure, and the critical supersaturation required to drive nucleation at 

a given rate is a measure of the ease with which critical clusters can be formed. 

While a value of S  of order 1 0  might be necessary in some circumstances to drive 

homogeneous nucleation, only S  ~  0 . 0 1  is sufficient to drive the heterogeneous 

process if CCN surfaces are present [6 6 , p. 287]. In the atmosphere, supersaturations 

are usually limited to these values and even smaller values of S  are to be found in the 

low densities of the interstellar medium, so heterogeneous nucleation is the dominant 

process.

Heterogeneous nucleation has been previously investigated via the free energy 

calculation approach [67, 6 8 ]. However, in understanding the kinetics, a lot more is 

to be desired for and the rate at which this process occurs is not easy to predict. 

It is generally considered that the kinetics of nucleation in general were correctly 

described by Becker and Doring [56] through the solution presented in form of Equa­

tion (4.4). Usually, the slightly unrealistic steady state situation is assumed, where 

the supersaturation of the original phase is held constant in spite of the consumption 

of material in the formation of new phase. Nevertheless, this is a reasonable approx­

imation when the rate of consumption is low, and so the processes of homogeneous 

and heterogeneous nucleation are considered to be well represented by formula (4.4) 

for the nucleation rate.

However, the Becker-Doring approach makes an assumption about the kinetics 

which may not be valid. The rate equations (4.1) are what we might call classical in 

that the number of growth transitions from size i to {i + 1 ), for example, is taken to
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be the population of i-clusters, n*, multiplied by a rate coefficient f t  proportional to 

7T-1 . If Tii were a precise constant, then this assumption would be valid, but in fact 

all cluster populations in the problem, including ni, display fluctuations about a 

mean value, since the processes of growth and decay occur as stochastic events. As 

we shall show in the next Section, the growth rate actually requires us to evaluate 

the mean of the product of the populations of monomers and i-clusters, rather than 

the product of the mean.

The error incurred by the neglect of fluctuations is small when the populations 

of clusters are large, by the usual statistical arguments. This is almost always the 

case in practical cases of homogeneous nucleation: the system is a sample of vapour, 

say, in a macroscopic container, so that the number of monomers present in the 

system is huge. However, when the process under consideration is heterogeneous 

nucleation taking place on the surface of a microscopic particle, such as in the 

atmosphere or in the interstellar medium, the possibility arises that populations 

could be small. An experiment involving vapour condensation could be conducted 

in a macroscopic container, but the actual ‘reaction vessel’ would be the surface of 

one of the many particles suspended inside the container. In experiments involving 

heterogeneous nucleation, therefore, it is possible for the Becker-Doring kinetics to 

be inappropriate.

It is this possibility that we investigate in this Chapter. There have been some 

attem pts at considering the discrete nature of the nucleating molecules with the 

aid of stochastic arguments. In particular, Ebeling et al. have examined a master 

equation approach in dealing with the nucleation kinetics [69]. To a limited extent, 

it is similar to what is proposed in the next Section, but the theory of Ebeling 

et al. gives only a general picture of the kinetics and is not intended for treating
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small systems with tiny mean populations of molecules. The possibility of low mean 

populations encountered in precipitation in small droplets has been considered by 

Manjunath et al., through stochastic simulations involving a series of the so-called 

product density equations [70].

Here we consider the complete solution to the heterogeneous nucleation kinetics 

of growth and decay of clusters of various sizes, where the possibility of fluctuations 

is properly taken into account [6 ]. This requires the setting up and solving of 

master equations for the probability distributions of cluster populations, much the 

same way as was done in studying dimer formation in Chapter 3. A simple set of 

rate coefficients is considered, which allows us to perform the computational tasks 

in an efficient manner and contrast the resulting nucleation rate with the Becker- 

Doring solution. The conditions necessary for large differences to exist between the 

‘classical’ Becker-Doring solution and the more appropriate ‘stochastic’ solution to 

the master equations have been exposed.

5.2 Stochastic approach to the kinetics of 

heterogeneous nucleation

5.2.1 Rate equations approach

Our system of interest now comprises a host particle surrounded by gas phase 

molecules (monomers) that occasionally strike and stick to the particle. Once ad­

sorbed, such a monomer may move around the particle during which it may en­

counter more monomers present on the surface and in due course form a cluster. 

There is also a possibility that the cluster may decay by loss of monomers.
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Figure 5.2: Kinetics of heterogeneous nucleation. Here the evolution of the system 
proceeds via attachment and loss of monomers only, leading to a size distribution n* at 
any given time t.

For convenience, let us reproduce Equation (4.1) here, which described the ki­

netic evolution of the system,

d fi ■
=  A-iTli-1 -  'Yi'Tli -  PiUi +  7i+l™i+l (5.1)

for i > 2, where,

ft =  (5.2)

In the case of heterogeneous nucleation, the special case for i = 1 has to be expressed 

through a separate equation to accommodate the fact that the ‘system’ now is only 

the surface of the particle and monomers (i = 1) are being added from outside the

system, i.e. from the vapour phase. The dynamics for the monomer are expressed

by

^  =  j - \ n x -  2ftrii +  2 7 2n2 -  ( f tn 2 -  7 3n3) -  ( f tn 3 -  7 4n4)  f tmax™w
imax 1

=  j  -  Ani -  2(ftri! -  7 2n2) -  (ftn* -  7 i+1ni+i) -  f tmaxnimax, (5.3)
i=2

where j  is the source rate at which monomers attach themselves to the surface from 

the surrounding medium and A is the evaporation rate of monomers from the particle
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surface. The population of monomers goes down by one when a monomer attaches 

to a dimer in order to make a trimer, but ni increases every time a trimer decays to 

a dimer, freeing up a monomer. This is reflected in the terms — ( f tn 2  — 7 3 %)- The 

creation (or decay) of a dimer, however, consumes (or releases) two monomers and 

this is represented by the terms — 2 f t  ni +  2 7 2 n2. Clusters of size larger than imax 

are assumed to be stable enough not to decay.

When fluctuations in populations about mean values are taken into account, it 

would seem reasonable that the rate equations (5.1) should be replaced by something 

like

®  =  P'i-1 M - i )  -  7i(Ni) -  P'iiNrNi) +  7 i+i(iVj+1}, (5.4)

where the angled brackets represent an averaging over the fluctuations and the clus­

ter populations are written in upper case Ni to remind us that they are fluctuating 

stochastic variables. Equation (5.3) would similarly be replaced. We shall see in the 

next Section how such equations can be derived from a stochastic treatment of the 

populations and how the averages can be evaluated.

5.2.2 Stochastic approach

In the stochastic approach we consider a probability distribution that describes 

the state of the system in terms of the exact populations of all the allowed cluster 

sizes. Let the probability that the system contains Ni monomers, iV2  dimers and 

in general Ni i-clusters at time t  be W ( N i , N 2, . . . ,  Ni, . . . ,  Nimax] t) = W  ({Ni}] t ). 

In order to limit the number of elements in this array, we introduce a maximum 

cluster size imax. We also limit each Ni to be less than or equal to N f 13*. The rate 

of change of this probability is then given by
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d W
<M

+  A(JVi +  l)W(A/i +  l , . . . ) - A J V i W ( . . . )

+  p[(N1 + 2)(N1 + l )W ( N 1 + 2 ,N2 - l , . . . )

-

tmax 1

+ E  FiWi +  !)W + W  + 1,..., JVj + 1, Ni+i — 1,...)
i=2

+  0 L .  M  + 1 ) + 1  + 1  , . . . ,  iVimax +  l)
®max

-

s=2

+ 7 2 (^ 2  + l)W(JVi -  2, JV2 + 1,...)
tmax

+ E  7iW  +  1 M M  -  1,..., iV̂ x -  1, JV4 + 1,...)
t=3

*max

-  E 7 i^ iW ( . . . ) .  (5.5)
i=2

On the right hand side of the above equation, t has been omitted for simplicity. 

The dots represent values of the Nj  that are the same as on the left hand side.

The processes considered are the growth transitions 1 +  (i — 1) —> i and 1 +  i —> 

(i +  1 ) due to monomer attachment, as well as the decay processes i —> (i — 1 ) +  1  

and (i +  1) —> i +  1 due to monomer detachment from the cluster. The attachment 

and detachment of dimers, trimers and higher size clusters are neglected. The first 

two terms (the j  terms) describe the addition of a monomer from the surroundings, 

leading to a monomer population change Ni  — Ni  + 1 . The third and fourth terms 

represent loss of a monomer from the particle surface due to the population jump 

N\  —>■ Ni — 1 . The rest of the terms are constructed using similar arguments for 

monomeric attachment and detachment to and from dimers, trimers and in general 

i-clusters. There is a term for f tmax, but no term involving 7imax+i since clusters at 

size zmax may grow, but the population at this size receives no additions from the
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decay of the next larger cluster. This acts as the boundary condition of the problem.

The classical limit corresponds to the probability distribution W  being unity for 

only one set of possible populations of the i-clusters, that is the mean populations. 

That is, W ( n i ,n 2, ...ni...) = 1  and all other elements are zero. Formally, this is 

represented, using the Kronecker delta, as

*m ax

tniV i,iV 2 ,.--) =  n < w  (5-6)
i—1

In the steady state and this classical limit, solving equation (5.5) would be 

equivalent to solving equations (5.1), (5.3) and (4.4), as shown in §5.3.

If Equation (5.5) can be solved by some means, knowledge of W  would allow us 

to generate probability distributions P i ( N i )  for the population of i-clusters:
jy m a x

f i ( M)  =  £  £  W ( N U . . . ,  N j , . . . ,  N i , . . . ) .  (5.7)
(j#») nj=q

The P i  are likely to look like gaussian distributions for large or Poisson distri­

butions for small n j. Ideally, the values of all the iVjnax ought to be infinity for a 

‘perfect’ evaluation of P i ( N i ) .  However in practice, as we shall see in §5.4.3, sat­

isfactory results may be obtained when the N J 1** are limited to reasonably small 

values.

It is also possible to calculate joint probabilities, such as P a ( N t ,  N i ) ,  which is 

the probability that we find N i  ^-clusters and N i  i-clusters in the system. These 

distributions are given by
jy m a x

P t i ( N e, N t ) =  £  i :  W { N U . . . ,  A J V , , J V i , .. .).  (5.8)
j ^ i , i  N j =  0

If the steady state elements of W  are known, it is possible to calculate the 

nucleation rate. This is done by summing all the probabilities of growth from any
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size i to size i +  1  and subtract those for decay in the opposite direction:

j =  £  ( f i l f iN tW a N ,} )  -  7 i+iArj+1 W ({iy,})), (5.9)

which by introducing the notation

(Ni) = ' £ N iPi (Ni) (5.10)
Ni

and

(NeNi) =  Y ,  NtNiPviN^Ni) ,  (5.11)
Nt ,Ni

allows us to write

J = < (5.12)
« (JV iJV i> -7 m W + 1> if* > 2

-  1 )) -  7 m  W +i> if * =  1 .

Any value of i > 2  in the first of the above expressions would give the same result 

in the steady state as the nucleation current should be independent of cluster size. 

If one uses i = 1 to compute the nucleation rate, a slight modification is required 

as in the second expression in Equation (5.12), since having just a single monomer 

in the system cannot give rise to a nucleation current towards the critical size. In 

contrast, the nucleation rate given in equation (4.3) according to the standard rate 

equation (5.1), in the same notation, reads

J clas =  f i iN M N i)  -  7 i+ i W + i> -  (5 .1 3 )

One would expect relative fluctuations in the populations to become negligible when 

the populations are large, so that a mean of a product becomes the product of the 

means. It is therefore evident from the comparison of Equations (5.12) and (5.13) 

that the standard rate equations are valid in the large population limit. It is also 

possible to visualise how the standard result for the nucleation rate must be modified 

for small systems. By writing

P'i(NiNi) =  (1 +  e iW iN J iN i ) ,  (5.14)
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the expression for the rate given in equation (4.4) can be used to see that the 

nucleation rate, Jiargej appropriate for a large system may be related, to a good 

approximation, to the nucleation rate for a small system, JSmaiij by introducing a 

modification factor e* such that

i*

ŝmall =  Jl&rge J J  (l “I” î) j (5.15)
i = 1

where i* is the critical size, where the rate coefficients for growth and decay are equal 

(fa =  7 *). We are interested in calculating the modification factor, or equivalently,

^small/ «̂ large-

5.3 Reduction of master equations to rate 

equations

It is possible to show that the master equations (5.5) of heterogeneous nucleation do 

indeed reduce to the rate equations (5.1) and (5.3) in the classical limit of relatively 

large populations of clusters. In this Section, we go through the detailed derivation.

To begin with, we define an operator O such that

oo
8 - f =  E  Ni - f ,  (5 -!6 )

{ N i } = 0

i.e., we multiply the given term /  by N i  (where I  — 1 , . . . ,  imax) and sum the result 

over all the { N i } .  Let us perform this operation on both sides of Eq. (5.5). This 

makes the left hand side read as

£ N t m m .  ® , (, 17)
{ATi}=0 ^  ^

which is equivalent to the L.H.S. of Equations (5.1) and (5.3). Now consider the

consequence of this operation on the right hand side of Eq. (5.5). On the R.H.S.,
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one needs to treat separately the cases of t  =  1  and I  > 1  since there are different 

rate equations for the two cases of N\  and Ni (I > 1) in the classical picture. Let 

us consider terms proportional to the parameters j ,  A, and j * one by one and try 

to compare them with those found in the rate equations (5.1) and (5.3).

5.3.1 Adsorption term

S L . 1 = 1

Operating upon the first term in Eq. (5.5) by O along with 1 = 1  will produce

oo
£  j N \  W (N i  — 1,. . .) .

{ N i } = 0

In order to bring the probability W  in the same form as on the left hand side, that 

is W (Ni,  N 2, . . . ,  Nimax), we can make the substitution Ni  —»■ Ni  +  1 , which is what 

happens to the monomer population due to the j  term. The above notation will 

then turn into
oo
£  j ( N 1 + l ) W ( N 1, . . . ) = j ( N 1 + l).  (5.18)

{ N i } = 0

The sum over this new Ni  label should run from — 1  to oo, but in that case the

unphysical first term in the series would vanish, so the lower limit is indeed zero.

Operating upon the second term in Eq. (5.5) with O will give

oo
-  E  = - j m .  (5.19)

{N i } = 0

In the classical limit, the upper case Ni  together with angled brackets is replaced 

by rii, so from Equations (5.18) and (5.19), the net result of applying O on both the 

j  terms in Eq. (5.5) is

j ( n x +  l) -  j n x = j .  (5.20)
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This is precisely what we have as the lj  term ’ in the rate equation (5.3), which was 

written down explicitly for the monomeric (£ =  1 ) population.

b. £ >  1

If £ is not equal to 1, then the operation due to O will make the first term in Eq.

(5.5) read
oo
E  jNiW{Ni  — 1, . . . ) ,

{N i } = 0

where £ ^  1. This time the substitution Ni  —>■ Ah +  1  will lead to

oo
E  j N t W {N u . . . ) = j ( N t). (5.21)

{ N i } = 0

The second term of the master equation under the operation of O will be similar to 

the expression (5.19):

oo
-  E  .) =  - j ( N t). (5.22)

{ N i } = 0

Hence the sum of Equations (5.21) and (5.22) will be zero and indeed, there is no j  

term in the rate equations (5.1).

5.3.2 Desorption term

a. £ =  1

If we apply the operator O to the third term of the master equation (5.5), we have

oo
£  A A ^M  +  lJ J ^ jV i +  l , . . . ) .

{ N i } = 0

This time we make the substitution Ni —> Ni — 1 so that the above expression is 

converted into

oo
£  X(N1 - 1 ) N 1W ( N 1, . . . )  = X((N1 - 1 ) N 1). (5.23)

{JV4>=0
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The lower limit for the sum over the shifted variable Ni  should be +1, but we can 

extend this to zero without changing the result of the summation.

Performing the operation O on the fourth term of the master equation will give

us
oo

-  Y  AiV1 AT1 W(.. . )  =  -A(iV12). (5.24)
{ N i }=o

Once again, to see the correspondence with the classical model, we replace the angled 

brackets and the upper case N\  with the lower case ni, so we are left with the net 

result

A (n2  — ni) — An2  =  — Xn\. (5.25)

This is the A term found in the monomeric rate equation (5.3).

b. i  > 1

The third term of Eq. (5.5) under the influence of O will this time become

oo
Y  XN£(Ni +  1) W (N i  +  1, . . . ) ,

{ N i } = 0

and the substitution Ni —> Ni  — 1  will make it

oo
Y  XNeN 1W ( N u .. .) = X{NlN 1). (5.26)

{ N i } = 0

The operation due to O on the fourth term of Eq. (5.5) will give us — A^^A^).

Hence the lambda term will vanish for the I  > 1  case and is absent in the rate

equation (5.1) also.
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5.3.3 Growth term

a. i  =  1

If we operate on the fifth term in the master equation (5.5) with O, using i  =  1 , we 

get
oo

£  f t N i i N i  +  2)(iV1 +  1) W(Nr  +  2, JV2  -  1, . . . ) ,
{JV<}=0

which with substitutions JVi —> Ni — 2  and AT2  —> +  1  becomes

oo
£  #(JVi -  2)(iVi -  l )N i  W ( N U . . . ) =  Pi((Ni -  2)(M  -  1)>. (5.27)

{ N i}= 0

where we have used the fact that f t  =  ft'Ai. The sixth term can be operated on

without having to do any re-labelling of N:

oo
-  f i N 1N 1(N1 - l ) W ( . . . )  = - p 1(N1(N1 - l ) ) .  (5.28)

{Ni}=0

The seventh term will, however, require re-labelling in order to bring W  in the

desired form. We first operate on it with O to get

OO im ax — 1

£  £  P i N i ( N i  +  l ) ( N i  +  1 ) W ( N i  +  1 , . . . ,  TV* +  1 , N i + i  — 1 , . . . ) ,
{ N i} = 0 i= 2

and then use the substitutions Ni —> Ni — 1, Ni —> Ni — 1 and Ni+i —>■ ATi + 1  +  1 in 

order to obtain

OO i max 1 im ax 1

E  E  0HN1- l ) N 1Ni W ( N u . . . , N i,N M , . . . ) =  £  ft((JVi-l)M>. (5.29)
{JVj}=0 i = 2  i = 2

W ith some thought, it is possible to realise that result (5.29) will hold true for any 

value of i in the series. A similar procedure on the eighth term of Eq. (5.5)

will give us

P im & x m  -  l)JVi >, (5.30)
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which essentially completes the series in Equation (5.29) from i = 2 to *max. Finally, 

we operate on the ninth term with O and obtain

OO Imax im ax

-  E  E  flJViJViM w (. • •) =  -  £  M W ,  (5.3i)
{ N i } = 0 i=2  i = 2

which again holds no m atter what value of i is chosen in the £<=“  series.

Hence the sum of all the terms in Equations (5.27), (5.28), (5.29), (5.30) and 

(5.31) will be

im ax im ax

£  -  1 )Ni) -  £  /^IVjJVi) +  Pi [((IVi -  2) (AT, -  1 )) -  ((JVi -  l)JVi>]• (5.32)
i = 2 i = 2

If we now replace the upper case N  with its lower case counterpart, discarding the 

angled brackets to reflect the classical limit, expression (5.32) is easily reduced to

im ax

- £ A n i - 2 / 3 1 (n1 - l ) .  (5.33)
i = 2

It can be seen that these are the ft terms in the rate equation (5.3) provided that

ni -  1  r*i in the above expression. This is a fair approximation in the classical

limit where the monomeric population is high.

b. i  > 1

Additional care is required when one deals with the case of t  ^  1  in the terms. 

This is due to the series involved and unlike the I  =  1 case, contributions due 

to different values of i need to be examined explicitly.

Consider the fifth term in Eq. (5.5) first. With the operator O applied, it will 

read
oo

£  P'i N ^ N !  +  2)(iVi +  1) W (N i  + 2, JV2  -  1, . . . ) ,
{M}=o
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and the substitutions N\  -> Ni — 2  and AT2  —> N2 +  1 will make it

oo

£  p[NtNi{Ni  — 1) W ( . ..) =  Pi{(Ni — l)Ni)  if ^ > 3  (5.34)
{ N i } = 0

and

oo

£  -  1 )(AT2  +  1) W ( . ..) =  Pi((Ni -  1)(N2 +  1)> if 1 = 2. (5.35)
{ N i } = 0

The sixth term in Eq. (5.5) will not require any re-labelling of N  after being 

operated on by O and regardless of the value of I  it will become

oo

-  £  p[NeN 1(N1 - l ) W ( . . . )  = -/31{(N1 - l ) N e). (5.36)
{ N i } = 0

Hence for i  > 3 the sum of the positive and negative f t  terms, given in expression 

(5.34) and (5.36), is zero. The rate equation (5.1) written down for i > 3 will surely 

have no f t  terms. For the special case of i  =  2, the sum of expressions (5.35) and 

(5.36) will leave f t(n i — 1) in the classical language. Considering the rate equation 

(5.1) for i =  2 case, one would find the term ftrii, which is approximately equal to 

the stochastic result ft(rii — 1), provided that n\ 1. This is a valid assumption 

in the classical limit, and so the f t  terms in the stochastic master equation are 

reducible to those in the classical rate equations when the mean populations are 

large.

Let us now consider the seventh term in Eq. (5.5). With operator O acting on 

it, it would read

OO im a x  — 1

J 2  E  f t N e(Nl + l ) (N i + l ) W ( N 1 + l , . . . , N i + l , N i+1- l , . . . ) .
{ N i } = 0 i = 2

Consider the expansion of the second summation here:
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£  P'2N i { N i + 1 )(JV2 +  1) W ( N ,  + 1 , N 2 + 1 , N 3 - 1 , . . .)
{N i}= 0

OO

+  £  f i sN t ( N 1 +  l ) ( N 3 +  l ) W ( N 1 +  l , . . . , N !t +  l , N 4 - l , . . . )
{Ni}=0

OO

+  Y ,  f i N t { N 1 +  l ) { N A +  l ) W ( N 1 +  l , . . . , N i  +  l , N 5 - l , . . . )  +  •••
{N i}= 0

With appropriate re-labelling, as done before, and remembering that ft =  ft'Ai, it 

is possible to show that this reduces to

im a x

+ 1)) +  P i ( N t ( N t  -  1)) +  £  P i ( N i N t ) .  (5.37)
i—2

The operator O will reduce the eighth term of Eq. (5.5) into

oo

E  PL~Nt(N i +  +  !) W (Ni +  1 , . . . ,  Nimax +  1),
{N i}= 0

and with the re-labelling Â i —>• Â i — 1 and Nim&x —>• Â max — 1 will give us

oo

E  P l ^ i X i N i^ LW (...)  = pim„ ( N i ^ N t) if * =  2 , . . . , w - l
Wi=o (5.38)

OO

E  ^ L a x ( ^ W - l ) ^ W ^ ( . . 0 = f t maxW_(ATi_ - l »  if £ = i max.
{N i}= 0

A similar argument applies to the ninth term of Eq. (5.5). The operator O will 

reduce this term to

OO im a x  im a x

-  E  E # W i N i W ( . . . )  =  - ' £ p i { N i N t ) (5.39)
{N i}= 0 i= 2 i= 2

regardless of the value of i. Hence summing the seventh, eighth and ninth terms 

of the master equation, given here as expressions (5.37), (5.38) and (5.39), and 

replacing the upper case N  with the lower case n in the classical picture will give us 

— f t  ni, where I  =  2 , . . . ,  imax. These are the ft terms in the classical rate 

equation (5.1).
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5.3.4 Decay term

a. 1 =  1

The effect of the operator O, with t  =  1 , on the tenth term in the master equation

(5.5) will be
oo
E  72M(iV2 + l W i V i - 2 ,Ar2  + l , . . . ) ,

{jVt}=0

and the re-labelling N\ —> N\ +  2  and N 2 —>• N 2 — 1 will give us

oo

E  7 2(iVi +  2 )AT2  W ( . . .) = 72<(iVi +  2 )N2). (5.40)
{^}=o

The eleventh term of Equation (5.5), under the operation due to O will become

OO imax
£  ] £  7 iN i(N i  + 1 ) W ( N 1 — 1, . .  • , ATj-, — 1, JVj +  1 , . . . ) ,

{7Vi}=0 i= 3

which with the re-labelling iVi —>• Â i +  1 , iVj_i —>• A^_i +  1 , Ni —> A/i — 1  becomes

OO Im ax im a x

£  £  TiOVi +  i)JVi W (...) =  £  7 i((iVi +  1)JV4>. (5.41)
{N i}= 0 i= 3  i= 3

The last term in Equation (5.5) is more straight forward and does not require

any re-labelling, so the operator O will make it

OO im a x  im a x

-  £  £  7 < JViAl W ( . . .) =  -  £  7 i W > -  (5-42)
{N i}= 0 i= 2  t=2

Replacing the angled brackets and the upper case N  with the lower case n  in

the classical limit, the sum of all the 7 * terms expressed in (5.40), (5.41) and (5.42) 

will be
im a x  im a x  — 1

2  7 2 ^ 2  +  E  ' f * =  2  7 2 ^ 2 +  E  7i+i™i+i- (5.43)
i= 3  i —2

These are precisely the 7 i  terms appearing in the monomeric rate equation (5.3).
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b. £ >  1

If we operate on the tenth term of Equation (5.5) with O, we get

oo

E  7 2 ^ 2  + 1 ) ^ ! -  2, JV2 + 1,...),
{N i}= 0

and with the re-labelling Ni —> Ni +  2  and AT2  —> N 2 — 1  it becomes

0 0

E  7 2 ^AT2 V E (...)= 7 2 (i^iV2). (5.44)
{ivo=o

If operated upon by O, the eleventh term of Equation (5.5) will read

OO tm ax

E  E  'TiNiiNi + 1)W(M -  1,..., Ni-! -  1, Ni + 1,...).
{ATi}=0 t=3

With suitable substitutions, it can be shown that this expression is equivalent to

Im ax

-  1) +  're+i{Nt+i(N t + 1)> +  £  ^ (N tN i) .  (5.45)
t = 3

1

Finally, the last term in Equation (5.5) under the operation due to O will appear

as
OO im ax  *max

~  E  £  flr(. ■ •) =  -E 7 i( iv y v i> ,  (5.46)
{ N i}= 0 i= 2  i —2

where 1 — 2 , . . . ,  imax. Hence the sum of the all the 7 * terms given in (5.44), (5.45) 

and (5.46) will be

j e { N i ( N £  — 1)) -1- ' Y i + i { N t + i ( N i  +  1)) — j i i N i N f )  — 7^+ i(A ^+1A^),

which under the classical limit can be simplified as yi+ini+i — 7  ̂U£. These are the

7 i  terms found in the classical rate equation (5.1), except that here the subscript i

is used for the labelling purpose.

We therefore conclude that the set of stochastic master equations (5.5) are re­

ducible to the set of classical rate equations given in (5.1) and (5.3) when the mean
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populations are large. Furthermore, it is possible to justify the stochastic expression 

for the nucleation rate, given in Equation (5.12).

Having tested the validity of the master equations in the classical limit, we can 

now proceed to numerical calculations.

5.4 M odel calculations

5.4.1 Param eterisation

The master equations (5.5) are driven by the input parameters j ,  A, $  and 7 *. In 

order to investigate the problem of heterogeneous nucleation in small systems, we 

must carefully choose the input parameters that are likely to lead to small cluster 

populations.

Let us introduce a size parameter £, which may be taken to be proportional 

to the surface area of the host particle. The coefficients A and 7 * are the decay 

rates of monomers (i = 1 ) and i-mers (i >  2 ) respectively and hence may be taken 

as independent of the system size. The attachment rate j  of monomers onto the 

particle surface, however, should increase linearly with £. It is useful to consider 

temporarily the dynamics in the absence of any dimer production, in which case the

mean monomer population would be given by a balance between j  and A, namely,

{N i) — j/X .  If j 0  is the value of j  at f  =  1 then we can write

j  =  f  3o, (5.47)

so that a rough solution to Equation (5.3) is

m  K (5.48)
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For convenience, let us postulate that £ =  1 is the system with a nominal mean 

monomer population of unity. This imposes the condition jo = A.

i, i.e., f t  =  f t  =  • • • =  f tmax. On the other hand, f t  will be inversely proportional 

to £ since it measures the likelihood that an adsorbed monomer will encounter an 

adsorbed z-mer. As the system gets bigger, this likelihood would diminish. Further­

more, we may fix f t  such that at £ =  1  the mean growth rate of an z-mer is unity. 

Remembering from Eq. (5.2) that f t =  ft(A i), this means that ft- =  1 at £ =  1 and 

in general therefore,

The choice of the parameters 7 * must satisfy the requirement that at the critical 

size z*, a cluster is as likely to decay as it is likely to grow, i.e., 7 ** =  ft,(iVi). With 

the above stated choice of f t  and (N i), this means that 7 *. =  1 at £ =  1. Indeed,

system size. The z-dependence of 7 * may be chosen to express the fact that small 

clusters are more likely to decay than large clusters. We therefore choose

where (j) is some constant to be decided. Entirely for computational convenience, 

and without suggesting that the model should represent a real system, we shall

(i > i*) will find it easier to grow.

The relative values of jo (and A) and f t  control the degree to which the mean 

monomer population is close to the estimate (5.48). We shall explore cases where

For simplicity, we assume the growth rate f t  to be independent of the cluster size

(5.49)

this should be true for any value of £ as the decay rates are independent of the

(5.50)

choose 4> =  2 and i* = 2. This form of 7 * ensures that a cluster below the critical 

size (i < i*) has a high probability of decay, whereas those above the critical size
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jo >  1 and j 0 = 1 in §5.4.3.

5.4.2 Classical solution

The most convenient way of deducing the classical nucleation rate for a given set 

of parameters jo, A, f, f t  and 7 i is through the expression (4.4). However the n\ 

appearing in that equation still needs to be known. Although in the large jo limit 

expression (5.48) for (Ni) may provide a reasonable estimate, this is not guaranteed 

to be true in general. A better method of finding n\ is as follows.

Equation (5.3) in the steady state may be written, with the help of Eq. (4.3),

as

0 — jo^ A 7li 2  J  (imax 2) J  J

~  jo£ AtZi ( im a x  “I- l) f t  (5.51)

where J  is given by Eq. (4.4). Let us assign a function

== jo t  Arii (imax “I- l)«L (5.52)

This function decreases with increasing ni. As an initial approximation, we provide 

fti =  jof/A, which in all practical cases is at least a slight overestimation of the 

actual value of n\. We then iteratively search for a zero of the function <7 (7 1 1 ) by 

subtracting a very small amount (typically ~  1 0 -6) from the trial value of n\ and 

evaluating a new value of g(ni). This process is continued until a solution is found 

within a very small tolerance. The final value of that corresponds to g(ni) = 0 

can then be utilised in Eq. (4.4) to find the classical value of the nucleation rate.
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5.4.3 Solving the master equation

Given all the necessary parameters given in §5.4.1, we are in a position to solve the 

master equations (5.5) which should ultimately yield the stochastic solution to the 

system. Solving Eq. (5.5) analytically does not appear to be a feasible task. We 

therefore look for an appropriate numerical technique to act as a substitute.

Computationally, we discretise time t and replace the dt by a very small but 

finite A t  in Equation (5.5). The dW{t) may then be replaced by W {t + At) — W(t), 

thus allowing Eq. (5.5) to be solved iteratively. As an initial condition, we set 

W (0,0,0, . . . ,  0; t =  0) =  1 with all the remaining elements of the array W{{Ni}) 

set to zero, specifying an empty system to start with. The system thereafter evolves 

in time until a steady state is reached.

Equations (5.5) represent a set of coupled differential equations. imax is the 

largest size of cluster that can form on the particle and needs to be specified explicitly 

at the beginning. In principle, it should be large enough so that the contribution 

due to terms with «max +  1  in the series appearing in Equation (4.4) is negligible.

Strictly speaking, the multidimensional array W({Ai}) consists of an infinite 

number of elements, but for computational purposes we may set an upper limit 

on the maximum number of i-clusters the system can possess at any time. In 

other words the array W ({Ni})  takes the form W  (o : iVJ113*, 0 : N™3* , . . . ,  0 : N j P ^ . 

These values TV™**, A ^ ax, . . . ,  should be decided by educated guess such that 

all of the imax probability distributions in Eq. (5.7) die down to negligible levels at 

Ni =  N™3* at the end of the iterations.

A steady state is considered to have been reached when all the elements of 

W ({Ni})  have converged within a very small tolerance. The nucleation rates J
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Figure 5.3: Evolution of the nucleation rate when different values of i are used in 
Equation (5.12). Any value of i will lead to the same nucleation rate in the steady state. 
Parameters used in this example were i* = 2, zmax = 4, jo = A = 1 and £ = 1.

with different values of i in Equation (5.12) will normally evolve differently with 

time, but eventually they will all converge upon a common value (Figure 5.3). This 

convergence of J  with different values of i in fact serves as a ‘double check’ for 

ensuring that a steady state has indeed been achieved.

In Figure 5.4 we plot the classical as well as the stochastic nucleation rates 

obtained under different values of imax, with fixed values of i* =  2, j 0 =  A =  1 and 

£ =  1. As can be seen, the nucleation rate J  is not very sensitive to im&x. The 

stochastic J  decreases slightly with increasing zmax, but the essential message is that 

a value of imax =  4 may be trusted in order to demonstrate at least the qualitative 

behaviour of the system.

An example of the probability distributions Pj(iVj), as defined in Equation (5.7) 

and calculated once the steady state has been reached, is shown in Figure 5.5. 

Pi(iVi) is the probability distribution for the monomer population, is the

same for dimers, and so on. It serves to demonstrate that for a system with low
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F igure 5.4: Nucleation rate as a function of imax with i* = 2, jo = A = 1  and £ =  1. 
The filled triangles show the ratio of classical to stochastic results for the nucleation rates, 
which happens to be close to unity in the example chosen here. It is reasonably safe 
to choose imax = 4, since the results obtained with a higher imax = 6, for instance, are 
approximately the same.

mean populations of the clusters, it is possible to obtain a numerical solution to 

the master equations by restricting ourselves to fairly small values of hence

making the system computationally manageable.

Figure 5.6 shows the stochastic and classical nucleation rates as a function of the 

particle size parameter £ for jo =  A =  100. The calculation has been performed with 

i* =  2 and imax =  4. Figure 5.7 shows the mean monomer population for the same 

system as predicted by the two models. There is a good agreement between the two 

models for the monomer population in this limit of jo 1 . The nucleation rates in 

Fig. 5.6 according to the two models, however, start diverging as £ falls below 0.1. It 

is interesting to note that the mean monomer population between £ =  0.1 and £ =  1 

is below unity and yet the stochastic nucleation rate does not differ considerably 

from its classical counterpart in this range and for these parameters.

-X - Stochastic

Classical

•or------------------- ------ ______

J(clas)/J(stoch)

~  ^ X
i r
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F igure 5.5: A typical example of probability distributions Pi(N{). Only values plotted at 
integer N  axe physical; the curves have been fitted as a guide to the eye. In this example, 
jymax _  ^  jv™31* = 12 etc. were sufficient to give satisfactorily smooth probability 

distributions for the mean populations.

In Figure 5.8 the nucleation rate is plotted again as a function of £, but this 

time with j 0 =  A =  1, the rest of the parameters being the same as in Fig. 5.6. The 

mean monomer population for the same system is plotted in Figure 5.9 and now we 

see that the stochastic (Ni) does differ from classical (Ni) once £ goes below unity. 

Approximately below the size £ =  1, where the mean monomer population is below 

unity, visible difference between the classical and stochastic nucleation rates is again 

evident in Figure 5.8. The linear dependence of J  with respect to £ exhibited in the 

classical theory is lost when one deals with very small particle sizes. Note that the 

stochastic model gives a smaller nucleation rate, but a higher mean population of 

monomers than the classical prediction, since a higher nucleation rate would leave 

fewer monomers on the surface.

The ratios ĉlassical/̂ stochastic derived from both cases, jo =  A =  100 and
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Figure 5.6: Nucleation rate as a function of the size parameter £ for the jo = X = 100 
model. The prediction of rate equation approach is shown with cross signs and the squares 
are the results of the stochastic model presented here.
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Figure 5.7: Stochastic and classical mean monomer population, (N i), as a function of 
£ for the jo = X = 100 model. Both models predict essentially the same mean populations 
for this choice of parameters.
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Figure 5.8: Nucleation rate as a function of £ for the jo = A = 1 model. Difference 
between the stochastic and classical models emerges below £ = 1.
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Figure 5.9: Stochastic and classical mean monomer population, (N \ ), as a function of 
£ for the jo = A = 1 case. Unlike the jQ = X = 100 case, some difference can be seen here 
between the mean populations according to the two models.



5.4- Model calculations 123

1000
-B - jO  = 100 
- 9 -  jO  =  1

100

0.001 0.01 0.1 1 10

Figure 5.10: The ratio of classical versus stochastic nucleation rate calculated as a 
function of £ for the jo  =  X = 100 and j 0 =  X = 1 models.

jo  =  A =  1, have been plotted in Figure 5.10. This is simply the factor by which the 

classical Becker-Doring kinetics overestimates the nucleation rate as compared with 

the stochastic model presented here. The overestimation grows as we look at ever 

smaller sizes (£) of the host particle. Also, the ratio is larger for the jo =  A =  1 

calculations, compared with the jo  =  X = 100 case. This is due partly to the fact 

that a large value of jo produces a mean monomer population closer to the classical 

prediction as discussed in §5.4.1.

The classical treatment requires there to be a large population of the nucleating 

species so as to be able to use a mean value of the populations in treating the kinetics. 

However, when the mean monomer population is below unity, there are instances 

when there are no monomers present on the surface and only by a lucky chance 

are there more than one monomers present. Since the classical kinetics ignores this 

discrete nature of the molecular species, it assumes a higher reaction rate between
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the molecules, hence yielding an overestimated nucleation rate.

5.5 Conclusions

The problem of heterogeneous nucleation under conditions where the mean popula­

tions of the nucleating clusters may be of the order of unity has been studied here. 

The traditional rate equation approach, which treats the kinetics in terms of the 

mean cluster populations, is likely to fail in such limit. To investigate this, a new 

master equation approach has been proposed that takes into account the stochastic 

fluctuations in cluster populations and replaces the classical rate equations.

A method for solving the master equation numerically has been explored. The 

results of the model calculations performed here indicate a large difference in the 

nucleation rates as predicted by the stochastic and classical treatments as the nucle­

ation site becomes very small. However, if the system size and the mean populations 

are large, the stochastic treatment reproduces the classical Becker-Doring kinetics.

For simplicity, only monomer attachment and detachment to the nucleating 

cluster has been allowed in the stochastic model here. The master equation can 

nevertheless be extended easily to include the loss and gain of dimers, trimers etc., 

solving which would clearly require a much greater deal of computational power.



Chapter 6

The Prim ary N ucleating Species 

in D ust Formation: MgO as a 

Candidate

6.1 Dust formation and MgO

In Chapters 3 and 5 we saw how dust particles play a crucial catalytic role in inter­

stellar chemistry and heterogeneous mantle growth. The dust particles themselves, 

however, are very unlikely to form in the ultra-low density conditions of the interstel­

lar medium (ISM). We saw how difficult it is for molecules to form, or small clusters 

to nucleate, in the ISM even with the help of a catalysing surface. The painstakingly 

long chain of reactions required to form a macroscopic dust grain from an unstable 

phase may be so slow in the ISM that the cluster would probably disintegrate before 

it shapes into a stable grain. For clusters to grow to radius of 10- 7  m under typical 

interstellar conditions, the timescale required would be in terms of billions of years 

[71], i.e. comparable to the age of the universe itself, hence ruling out the ISM as a 

potential factory for cosmic dust grains.

125
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It therefore looks more plausible that the process of dust formation takes place 

well before the material is thrown out in the ISM -  in the denser regions of cir- 

cumstellar shells around stars that have completed one full lifecycle and are losing 

material rapidly due to thermal pulsation, which in a sense is a sign of the star 

breathing its last. The relatively high temperature around stars 103  K) also 

makes an ideal condition for gaseous atoms to fall into the most stable molecular 

states before participating in dust formation. The possibility of stellar atmospheres 

as regions for nucleation of stardust was first pointed out in 1962 by Hoyle and 

Wickramasinghe [72] and today this has become a widely accepted picture.

Circumstellar dust exists around most type of stellar objects [73]. These shells 

are huge: if R s is the radius of the actual star, the inner boundary of the shell 

normally starts at ~  10RS and outer boundary would be at ~  104  — 105 RS [15, 

p. 228]. The outer boundary is marked when the density and temperature within 

the shell become comparable with those of the ISM. Dust formation is believed to 

occur around a variety of objects such as late type giants and supergiants of spectral 

class M and C, novae, R CorB stars, WR-stars and S Dor variables [74]. Among 

these, late type giants and supergiants have a unique combination of advantages 

when concerned with the study of dust formation. They are quite numerous in 

the sky and their mass loss rate is very high; estimates suggest [75, 76, 77] that 

for very luminous red giants and supergiants, the mass loss rate can be as high 

as 10- 4  M© yr-1 , where M© denotes the mass of the Sun. This is an enormously 

large value when one notes that for the Sun, for example, the current mass loss 

rate is only about 2 x 10- 1 4  M© yr-1. In total, late type giants are thought to 

eject more than 0.3 M© yr - 1  of material into the interstellar medium in our Galaxy 

[73, 78, 79]. Unlike nova outbursts, giants and supergiants do not exhibit any strong
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source of ultraviolet radiation, which would introduce additional complexity in the 

chemistry. Also, since circumstellar shells around late type giants are a significant 

source of infrared and microwave emission, these objects are observationally quite 

well studied. It is therefore sensible to study the problem of dust formation around 

these objects.

Carbon and oxygen turn out to be the two crucial elements that decide the 

chemical evolution of a cloud. Due to its particularly high bond energy (11.09 eV), 

the formation of carbon monoxide (CO) around late type giant stars is a one-way 

process. Once formed, CO is indestructible up to about 3000 K in the hostile 

environments around stars, unless there is any high energetic radiation to dissociate 

it. As the gas outflow moves away from the star, CO formation takes place between 

3000 -  2 0 0 0  K and it is the first molecule to materialize from the atomic phase. Since 

there is no UV radiation around these giants, CO formation continues unhindered 

until either carbon or oxygen is entirely exhausted. This fact has led astrophysicists 

to classify dust chemistry environments into two types: oxygen-rich and carbon-rich. 

If a cloud has initially more oxygen than carbon, all the carbon would have been 

consumed in forming CO, leaving surplus oxygen free for further chemistry. This is 

the case around M-stars, whose surface temperatures lie within the range of roughly 

2700 -  3700 K. Similarly, for a cloud with carbon-to-oxygen ratio greater than unity, 

one finds an excess amount of carbon in the cloud, as around C-stars*. The large 

amount of carbon appears in some giant stars as a result of helium-burning and when 

the carbon is swept to the surface of the star, it is deposited into its circumstellar

shell. As a comparison, the Solar System C/O  ratio is roughly 0.5.

* There is no spectral type C among the classification of stars. C-stars are normally mixed 

in with G, K and M type of stars, but the name has been given to specifically indicate their 

carbon-richness.
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Carbonaceous grain formation has been studied with quite a lot of success and 

the associated chemical pathway is rather well understood [74, 80, 81]. This, how­

ever, is not the case for inorganic dust formation around M-stars. Astronomers can 

tell us the overall chemical composition of dust in oxygen-rich clouds, but identifying 

the primary condensing material has proved to be less than straightforward. Inter­

pretation of spectral features of the interstellar grains with the help of laboratory 

experiments [15, 82, 83, 84, 85] has brought about widespread acceptance that the 

main constituents of dust around M-stars are amorphous silicates. However, they 

cannot be the material directly nucleating from the gas phase. The formation of an 

amorphous dust species would have required annealing at low temperature and in 

stellar environments, one certainly finds high temperature. The seed nuclei there­

fore have to be formed in crystalline form on which further mantle growth occurs 

heterogeneously. It is also believed that the most abundant monomeric species that 

could facilitate the production of dust are Fe, Mg, SiO and H2 O. Among these, 

the SiO molecules has a high bond energy (~  8.3 eV). One popular belief was that 

SiO crystals nucleate first and then all these four species get involved in further 

growth of the particle. This scenario was, however, discarded on the grounds that 

the major condensation phase typically occurs around late type M-stars within the 

temperature range of 800 -  1 2 0 0  K and the nucleation temperature required for SiO 

would be 600 K or less [8 6 , 87, 8 8 , 89].

Earlier, spectroscopic analysis of the ISM suggested that some 10-30% of inter­

stellar magnesium is locked into MgO solids [90]. Further, MgO, often known as 

periclase, is among the species that possess some of the highest dew points, which 

would enable it to nucleate at high temperatures. Could it then be the primary nucle­

ating species in circumstellar clouds, some of which then transfers radially outwards



6.1. Dust formation and MgO 129

to the ISM? Kohler et al. investigated this possibility [91] and eventually concluded 

that the nucleation rate of MgO would be too small in stellar environments for it 

to form stable dust seeds. It appeared that MgO vapour could be supercooled sig­

nificantly, leading to a lower-than-expected condensation temperature, so that it no 

longer stood out on the basis of its high dew point temperature. The production 

rate of the condensed phase was low even for large degrees of supercooling since 

the work of formation of the critical cluster remained high. These calculations were 

based on a semi-empirical potential model that took into account several factors. 

These included the so-called T-Rittner potential, which considers polarizability of 

ions due to local electric fields in small clusters, and additional terms to account for 

a covalent character in the M g-0 bonding.

However, it has been found that magnesium oxide requires a much more detailed 

potential model in order to correctly explain its experimental data ranging from the 

interionic distance to phonon dispersion curves. In the present work, we therefore 

revisit the calculations of the critical work of formation of MgO, using a potential 

that is a combination of the ‘compressible ion model’ (CIM) and the ‘polarizable 

ion model’ (PIM) that was developed by Wilson and colleagues [92, 93, 94, 95]. 

It is a sophisticated, transferable interionic potential designed to provide a better 

description of the properties of MgO clusters than any other models used in earlier 

studies. It not only considers the polarizability of ions, but also allows for changes in 

an ion’s size and shape. The ions themselves are seen to be ‘breathing’ individually, 

making the model significantly more detailed than earlier models.

In the next section, the potential model of previous studies by Kohler et al. is 

briefly outlined and §6.3 contrasts this with the more accurate model of Wilson et 

al. The scheme for obtaining cluster free energy is described in §6.4, followed by
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the results in §6.5. Incidentally, we explore a novel method for calculating the free 

energies in Appendix B.

6.2 Potential used previously

We begin by briefly noting the main features of the potential used in the earlier 

study of Kohler et al. [91]. Details such as numerical parameters are skipped here 

and can be found in the original publication. The main purpose here is to gain a 

qualitative flavour of the model used.

6.2.1 Potential for simple ionic crystals

Magnesium oxide is a highly ionic species when the interionic distance is close to 

equilibrium. Ionic crystals are usually described by the Born-Mayer potential [96], 

the simplest form of the potential energy being

UB-u = l ^ ^  + l E A t je x p ( - Tf ) .  (6.1)
\  PtjJ

The first summation represents Coulomb interaction between charges Qi and Q j , 

situated at lattice sites labelled t  and j  respectively and whose mutual separation is 

r£j. The second summation quantifies the repulsion due to the overlap of the electron 

densities of two ions situated at I  and j .  A y  is the strength of this repulsion and 

pij measures how steep the repulsive potential is.

6.2.2 R ittner potential

In the B-M potential, individual ions are considered to be spherical charged dis­

tributions packed together in a stable lattice configuration. For an infinitely large
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lattice with high symmetry, this may hold true since electric fields in the immediate 

vicinity of a given ion would cancel each other out. When one deals with small 

particles, however, this symmetry is lost and hence each ion will experience a net 

electric field, which leads to the ion’s polarization.

Rittner [97] allowed for this effect in alkali-halide (MX) systems of diatomics by 

incorporating the monopole-induced dipole interaction, the induced-dipole-induced- 

dipole interaction and the work required to form the induced dipole moment. The 

resulting potential has the form

%h.= E  —  + E  Aejexp ( - r-H)
£,j pairs £,j pairs \  Pt f  J

Q t Q j i a i  T* o jj) 2  Q £ Q j { o t £ a j )  Q i j
-  E

£,j pairs 2 /p 4  rp l  /y*6
£j £j £j

. (6 -2 )

where at is the polarizability of the l-th. ion. The last term involving Ctj is the 

London approximation to the long range van der Waals attraction, but was 

neglected in the work of Kohler et al. on the grounds that it contributes less than 

one percent to the total bond energy that is generated by the electrostatic forces.

It was later shown [98] that the induced polarization terms in the squared braces 

of Equation (6.2) can be simplified as

uini =  -  E  (6-3)
£,j pairs r £j

with

Pj —
kk^j

Q k r k j  ^ r j k ( P k  ’ r j k )  P k+3 1 5̂
k j  j k  j k .

(6.4)

Here, fij is the induced dipole moment at the position of ion j  and is generated by 

the local electric field E j due to all charges Qk and induced dipoles fj,k.
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6.2.3 T-R ittner potential

Further simplification of the Rittner potential came when analysis based on quantum 

mechanical perturbation theory suggested that consistency with this theory requires 

that the term proportional to l / r j j  in Equation (6.2), together with the last two 

terms in the expression for fij in Equation (6.4), ought to be dropped [99]. This is 

known as the truncated-Rittner (T-Rittner) potential:

TT V™* Q l Q j  . a (  V—' Q t i P j  ( n  r \tfT—mtt= E  -r-1+ E  exP ( ~~r~.) ~ E  — i —  (6-5)
£, j  pairs £ j  pairs \  t ' l j  /  £ j  pairs

where

*  = “i E  (6-6)
k ' k j

k^j

6.2.4 M odified T-R ittner potential

The potential described so far (Eq. (6.5)) was developed primarily to describe the 

bonding of group I-VII comounds. Group II-VI compounds such as MgO have simi­

lar molecular characteristics, but they are not as purely ionic as the I-VII materials. 

The relatively moderate difference in the electronegativity of ions in MgO suggests a 

significant contribution of covalent bonding [100]. The Morse potential for covalently 

bound diatomic molecules is

^Morse =  .4 exp ( - 2 — \  -  B exp ( - — )  (6.7)
V Pt j J  \  P t j J

with

A  =  D0e2a, B = 2D0ea and p = rQ/a. (6 .8 )

Here D q is the depth of the potential, i.e. the dissociation energy reduced by the 

contribution of the zero-point energy of the vibrations. r0 denotes the equilibrium
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distance of ions and a is a free parameter that is usually fitted by requiring

2 d2U(r)fALU = (« .«
r=rod r 2

where p, is the reduced mass and u; is the vibrational frequency of the molecule.

The second term in the Morse potential describes covalent attraction. The 

quantity B  vanishes in a large ionic solid, but is nonzero for small clusters. It is 

therefore dependent on the number of MgO monomers in the cluster. Equation 

(6.7) also has a repulsive term similar to the second term in Born-Mayer potential 

in Equation (6.1). Therefore, in their final potential, Kohler et al. replace the A y  

term with the A  term. Furthermore, rather than using bare charge Qi, an effective 

charge Q |ff was used in their calculations due to the lower electronegativity difference 

of the ions [101]. Hence, merging Equations (6.1), (6.5) and (6.7), we arrive at the 

full potential that was employed in the previous work:

TT f 1\A V- „ V- » , V- O f  O f  V- Q f f a j - t t j )UKoh(N) =  X , A e  - -  £  Be - +  £  — -------,
£,j pairs £,j pairs £,j pairs £,j pairs £j

(6 .10)

where pLj is given by Equation (6 .6 ), but with replacing Qk.

6.3 Potential used in the present work

We now go through the key features of the potential model that was used for the 

present calculations. It is a complex model that was developed through a series 

of publications [92, 93, 94, 95] in order to include a number of effects. The most 

radical of these is that individual ions are treated as compressible balls of charge 

distribution. This is a significant departure from the models described in the pre­

vious section, in which electron clouds of two neighbouring ions were allowed to 

overlap each other, but the ions maintained their original identity in terms of ionic
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radii. The only way ionic shape deformation was allowed in the Rittner potential, 

for example, was through polarization effects in finite size (small) clusters. It is 

therefore often termed a ‘rigid ion model’ (RIM). In the compressible ion model 

(CIM) [92], the size of an ion is allowed to change via compression of its charge 

distribution, effected by the neighbouring ions. Polarization effects are then added 

through the polarizable ion model (PIM) [93] and to further the refinement, there 

is also a scheme for allowing aspherical shape deformations of the ion [95].

This model is also more flexible than the Shell Model [102], which was tra­

ditionally used to describe effects due to an ion’s environment. By chance, ionic 

compression features do appear, in a sense, in “breathing-shell” models [103, 104]. 

However, these models still require a large number of parameters to be fixed by fit­

ting them to experimental data obtained for some specific material and for a given 

phase. It is then very difficult to ascertain that the same parameters would hold true 

for a different phase of the same species. In contrast, the CIM +  PIM representation 

relies on parameterisation with the aid of ab initio electronic structure calculations, 

making it fully transferable between chemically related species as well as between 

different phases.

6.3.1 Compressible ion model

As the starting point of the CIM, the Born-Mayer potential is again used, but with 

a more elaborate form:
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U b - m  =  +
1 i,i rf-i 1 e,jl±3

(~llj
(6 .11)

Tlj Ttj

— Ucou ”b Urep +  Udisp j 

i.e. the potential is a sum of Coulombic attraction, short range repulsion and an 

additional dispersion term. The repulsive potential in the second summation now 

includes ionic radii U£ and aj compared to Equation (6.1) and the range parameter, 

a y , characterises the shape of the charge density. Cq and are the dipole-dipole 

and dipole-quadrupole dispersion parameters respectively, relevant to interaction 

between species t  and j .  These can be derived from ab initio calculations or by 

experiments [105]. f n ( r£j) ar® the damping functions to characterise the effect of 

the overlap of electron densities of ions I  and j  and are represented by the so-called 

Tang-Toennies functions [106]. When the overlap between two ions’ wavefunctions 

is negligible, the damping functions are unity, but they drop towards zero as the 

overlap becomes significant. Hence the reduce the effect of the dispersion

terms in overlapping electron shells.

It is the repulsive part of the potential, UTep, that requires attention in order to 

allow for compression effects. In the CIM, the repulsive potential is a function of 

not only the ionic positions ({ r /} ^ !^ ) , where N  is the total number of ions in the 

system, but also the change in the instantaneous ionic radii, 6a£, with respect to some 

reference values G£. Further, UreP can be seen to be arising from two contributions: 

(i) the overlap between the electron clouds of two neighbouring ions (Z7ov) and (ii) 

the energy it costs to deform each ion’s electron density by the amount Sa£, denoted
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by C/geif. In other words,

UTep({re, 6cri}i= hN) = Uov({t£, 6ae}e= ljN) +  [/self ({r/, Scrt}i=1,N). (6.12) 

The simplest form for Uov is 

^ov({r/, 6 < t i } i = i jN) =  ^ 2  A *j exP (  “  a £j [r £j ~  f a  +  f o i )  ~  f a  +  f a ) \  )• (6 -13)
£,j  pairs

The Mg2+ ion is assumed to be electronically rigid compared to O2- owing essentially 

to the electronegativity of the latter and also because the polarizability of Mg2+ is 

some 3 orders of magnitude smaller than that of O2- in the crystal. A suitable form 

for [/seif for an oxide ion is

(6.14)
I

where 2 D  is the energy of the reference ion without any compression (Sai = 0 ) and 

can be taken as the second electron affinity of oxygen [107]. The parameter ft is such 

that Dj32  is the harmonic force constant that resists the ion’s breathing originating 

from the compression-decompression process.

6.3.2 Polarizable ion model

In this model, polarization effects are represented in a more realistic way than 

through the T-Rittner method. One has to consider not only polarization due to 

electric fields and field gradients due to the charges and dipole moments of neigh­

bouring ions, but also the fact that as an ion’s immediate neighbour moves off its 

lattice site, the shape of the confining potential changes. This in turn leads to 

additional short-range effects in the polarization potential energy. Furthermore, it 

turns out that the “covalent” bond contribution suspected in the earlier work (see 

§6.2.4) has been shown to be a manifestation of thoroughly defined polarization 

effects [108, 109].
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In the PIM [95, 110], additional degrees of freedom are assigned to each ion I  

alongside its position and the instantaneous change in its radius discussed in the 

CIM. These are the electric dipole moment = {fJ'i}(a=x,y,z) and the quadrupole 

moment Oi =  {0 ?^}(a0 =*x,lw,zz,xy,x*>yz)- In other words, n £ has three components, 

whereas 0£ has six, although 6 =  0£a implies that only five components of 0£ 

are independent. The Greek symbols a, j3 etc., when appearing as superscripts in 

this discussion, will take on any of the coordinate values x, y or z. The dipole and 

quadrupole moments are now related to the local electric field via the relations (cf. 

Equation (6.4))

n at = a ^ E ^ r e )  +  ^ B a^ sE ^ T e)EPs(re) (6.15)

and

d f  = \ B afi’i ‘Ei(ri)E*{Tt) + Ca^ sE yS(Te). (6.16)Zi

Here E a and E a& are components of the electric field and field gradient respectively,

a  and C are the dipole and quadrupole polarizabilities and B is the dipole-dipole-

quadrupole hyperpolarizability. After some lengthy analysis, it is possible to show 

[111] that for a spherical ion, the components of a ,  C and B are determined by a 

single number.

The route to a generalised polarization potential is quite involved, but essen­

tially the polarization contribution to the potential energy of a system of ions is 

given by
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£/Po, =  E
£,j pairs

-  Q tr f)  -  i f f  

+ J T?ff{2\nj) (Qidf + Qfif) + \  -  l$6t)3 

+ 1

+  ] l ( / ^ ) 2  +  +  ^4 ^ ( ^ ) 4- (6.17)
i t  t  i

The ‘T  tensors’ appearing here can be expressed as [111]

I f f * -  = V “V^V'1'V'! . . .  — . (6.18)
rtj

These tensors are symmetric in all suffixes and

V“v °  rj> = (V ) 2  r j l  =  0, (6.19)

i.e. a repeated Greek suffix reduces any T  to zero.

The first five terms in the squared braces of Equation (6.17) represent 

charge-dipole, dipole-dipole, charge-quadrupole, dipole-quadrupole and quadrupole- 

quadrupole interactions respectively. The radial functions / ^ ( r # )  and / ^ ( r / j )  

modify the interaction of charges with induced dipoles and quadrupoles respectively. 

These functions have a short-range effect only and are effective over length scales of 

nearest-neighbour separations. In practice, they are chosen to be of Tang-Toennies 

dispersion damping function form,

/<"*>(r«) = 1 -  e-*« E  (6.20)
k = 0 Km

where b is the so-called ‘short-range damping parameter’, which is the reciprocal 

of the length scale over which the damping is effective. This length scale would be

comparable to the a  introduced in the CIM. The terms with kj (j  =  1,2,3,4) in

Equation (6.17) represent the energy required to polarize the ion. The parameters kj
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are harmonic and anharmonic force constants, which are related to polarizabilities

а , C  and B  as described in Ref. [110].

It has been noted [95] that for MgO, the quadrupolar effects are negligibly 

small in explaining phonon dispersion curves. Hence, if one considers only the case 

of dipole polarization, Equation (6.17) can be written in a more compact form,

t'poi({r*,M*}fci,Ar) = Y  / (1)(r«)Q*T(1)(r«) • Mj
£,j pairs

+ Y  M<T(2)(r«)-Mj
£,j pairs

+ £ (l/2 )fe^ , (6.21)
£

where T^1) and are the charge-dipole and dipole-dipole interaction tensors.

б.3.3 Aspherical ion model

The expressions for the repulsive potential given in Equations (6.13) and (6.14) 

apply well for spherical compression of the ion. However, they still do not accurately 

reproduce desired phonon dispersion curves for MgO. For a better description of 

the interactions, one needs to consider aspherical ion deformation. For instance, 

an oxide ion is inhomogeneously compressed by a number of magnesium ions 

from different directions (maximum six neighbours) and the resulting shape of 

the O2- ion would not be spherical. To incorporate aspherical compression, some 

modification of the repulsive potential is required. This is done by including yet 

more degrees of freedom (DOF) in terms of the parameters of dipole and quadrupole 

symmetry, Vi (3 DOF), and K£ (5 DOF), which control the shape of the ion’s re­

pulsive wall. The ‘aspherical ion model’ (AIM) is an extension of the CIM in which 

Uov and i/seif take more complex forms. The cation-anion part of Uov is generalised to
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^ o v ({ r ^ , 6(Ji, v i, k ^}^= i ,at)

= Y  Y  A -+ exP ( -  °-+ [r« -  fa + fa) -  fa)
£ G anion j  G cation

- S (1 )(r^) • 1/1 -  S(2)(rq) • «*] ), (6.22) 

where and are interaction tensors whose elements are given by

S $ \ t) = ra/r  and S^J(r) = 3 r ar^ /( r ) 2  — 6a^. (6.23)

Here 8a& is the Kronecker delta. The self energy of the CIM is generalised such that 

the energy required to cause the shape deformations of dipolar and quadrupolar 

symmetry is also considered,

UBdi({6<Tt,t'i,Kt}i=ijiUto.) =  Y  [£(e^'+e~^')+(ef2|I/'12—l)+(e’'2|K<|2 —1)],
£ G anion

(6.24)

where £ and r] are two “force constants” that can be chosen by noting high symmetry 

points on the phonon dispersion curve. Here we have assumed the cations Mg2+ to 

be non-compressible and the asphericity effect on the 0 2~ - 0 2~ interactions has 

also been neglected since these effects have been found not to be influential in 

reproducing the observed phonon curves [95]. The variables i/i and k,£ minimise the 

total repulsive energy at each step of the molecular dynamics simulation.

6.3.4 Full potential for MgO

To recap, the CIM makes a number of modifications to the repulsive part of the 

potential in the Born-Mayer expression (6.12). In its simple form, the second term 

of (6.12) is replaced by Equations (6.13) +  (6.14), but if one considers details of 

dipolar and quadrupolar shape distortions, a combination of (6.22) +  (6.24) would 

be more accurate. In addition, one needs to include the polarization potential, whose
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full form is given by Equation (6.17), although in the case of MgO the simplified 

version (6 .2 1 ) may well serve the purpose.

Hence the full potential for MgO, including all the compression, polarization 

and aspherical deformation effects, now reads

TT _  QlQj
t^CIM+PIM — 2 ^ ---------------------2 ^

£,j pairs ^̂ 3 £,j pairs

where

* QT% nj +  ^rep +  f̂ polj (6.25)

^rep =  Y  Y  A ~+ eXp ( ~  a~+ [r£j ~  (&£ +  &Ot) ~  (°j)
16 anion j  6 cation

- S (1)(r«) • v i  -  S(2)(r«) • k<] ),

+  £  [ D ( e^ ^ + e ^ fo')  +  (ef2 |I" |2 - l )  +  (e’,2 |K' i2 - l ) ] .  (6.26)
£ G anion

and Upoi is given by Equation (6.17).

6.4 Free energy calculation

Equipped with this potential model, it is now possible to perform free energy calcula­

tions on MgO clusters through the equations outlined in Chapter 4. An inspection of 

the relevant equations, particularly Equations (4.29), (4.30) and (4.36), shows that 

in addition to the vapour density of MgO monomers, one needs to know the system 

potential energy at the mean atomic positions, Uo(i), the mean ionic separations to 

calculate the moments of inertia, A, / 2  and / 3, plus the vibrational frequencies, t«;*, 

within the clusters. To obtain these quantities, the CIM +  PIM potential was imple­

mented using molecular dynamics (MD) simulation developed by Wilson et al., with 

the parameters appearing in the potential model chosen as in Refs. [92, 93, 94, 95].

In the bulk solid phase, MgO displays simple cubic lattice structure of B 1  type 

similar to NaCl (rocksalt), although it has been shown that for clusters smaller than
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32 MgO monomers, nanotubes of stacked hexagons are energetically more favourable

[94]. To start with, in the MD simulation, some nominal lattice structure is chosen 

for a given cluster size and the structure is then relaxed by performing energy 

minimisation. In such a configuration, U0 is the total energy of the cluster since 

the crystal has no kinetic energy and the interionic distances can also be measured 

easily because of the lack of vibrational motion.

To obtain the vibrational frequencies, we make use of the dynamical matrix of 

force constants. This was calculated in the molecular dynamics by displacing each 

ion of the relaxed lattice structure by a small amount one by one and measuring the 

force it experiences as a function of the displacement with respect to the relaxed 

position. It is assumed that the mutual force experienced between the j- th  and

the ^-th ion due to the displacement of the j- th  ion by an amount 8xj is governed

by Hooke’s law,

= - H g S i j ,  (6.27)

where is the spring constant, a  and P here go from 1 to 3 and label the 

components of the force and displacement. In a system of N  ions, each having 

three degrees of freedom, there will be 3N  spring constants. Hence the order of 

the dynamical matrix, which is composed of these spring constants, will be 3N. 

Equivalently, in the case of a crystal with i molecules of MgO, the order will be 6i. 

One then finds the eigenvalues Xk of the mass-weighted dynamical matrix

D ' =  M ' 1 /2 D M “1/2, (6.28)

where D is the dynamical matrix and M  is a diagonal matrix containing the masses 

of the 6 i oscillators on its diagonal [1 1 2 ].

The dynamical matrix, and hence D ', provides 6 i eigenvalues. However, six 

of them will, in principle, be zero because the modes corresponding to the entire
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crystal’s translation in three dimensions plus the rotation with respect to the three 

principal axes cannot contribute to the vibrational modes. Hence we are left with 

6 i — 6  non-zero eigenvalues of D ', except in the case of an isolated MgO monomer, 

which has one non-zero eigenvalue. The vibrational frequencies LJk are related to 

these eigenvalues by

which can be used to obtain the vibrational free energy according to Equation (4.26), 

so that the total free energy of a cluster can be calculated using Equation (4.29).

6.5 Results and discussion

As mentioned earlier, condensation of gaseous species around these stars is believed 

to occur in the temperature range of 800 -  1200 K and in the majority of cases, 

it is above 1000 K. We now have all the quantities required for calculating the 

free energies. A number of possible cluster geometries containing up to 24 MgO 

monomers were considered, the relaxed structures of which are shown in Figure 6.1. 

By calculating the free energy of each cluster as well as that of the monomer as 

discussed in Chapter 4, the effective work of formation of these clusters (Equation 

(4.36)) and the cluster number densities (Equation (4.32)) can be evaluated as a 

function of their size i.

The value of initial MgO vapour concentration was chosen to be pi = 106  m-3, 

which is a typical value in shells surrounding M-stars [85, 91]. In a circumstellar shell 

outflow, this would not necessarily be the number density of MgO free monomers, 

for a vapour moving away from the central star will cool gradually and molecular 

clusters will be formed, consuming the free monomers and reducing their number

(6.29)
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Figure 6.1: Various cluster geometries studied. Green balls are Mg2+ ions and red balls 
are O2-.
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Figure 6.2: Effective work of formation, Weff, as a function of the MgO cluster size for 

various temperatures and a monomer concentration of 106 m-3 . The full line is drawn 

considering that the cluster which requires the least work of formation will be the most 

favoured among each size.
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Figure 6.3: Distribution of the number densities of «-clusters for various temperatures 

and a monomer concentration of 106 m-3 . The full line connects the most abundant 

clusters of each size.
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Figure 6 .4: Number densities of various MgO cluster sizes as a function of temperature, 

with a fixed monomer concentration of 106 m-3 .

density. Hence, an iterative method was used which ensured that the total density of 

MgO units remained constant even after considering the number densities of all the 

cluster sizes considered. We do this by taking a trial value of monomer density, pv, 

then evaluate the distribution pi and calculate ptot =  pv +  2/?2 +  3p3 + . . .  +  imaxAmax 

using Equation (4.32). If ptot does not match the desired value of pi, we choose an 

improved trial value of pv and continue to perform the calculation in this way until 

Ptot ~  Pi within a small tolerance.

The effective work of formation obtained in this way for three different temper­

atures covering the range of interest is shown in Figure 6.2 and Figure 6.3 shows 

the corresponding distribution pi. No distinct peak is visible in Weff(i) and its value 

quickly rises to hundreds of which indicates a lack of nucleation of MgO clus­

ters in the given temperature range. This is also evident from the extremely small 

number densities for most cluster sizes, except for i = 2 and i = 3. The peak around
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these two sizes in Figure 6.3 is a little unusual and suggests that MgO is an associa­

tive species, which prefers remaining in clusters of (MgO) 2  and (MgO) 3  rather than 

as free monomers, at least under the circumstellar conditions mentioned above.

Figure 6.4 shows how the number densities of clusters evolve as the circumstel­

lar outflow moves away from the central star and cools down, assuming a constant 

vapour density. At around 1500 K, only monomers are predominant, but as the 

temperature drops, their concentration drops as (MgO) 2  and (MgO) 3  start to dom­

inate. The total number density of MgO units remains fixed at 106  m - 3  during the 

whole process.

T = 800 K

-18
2 x 1 0

-18
1 x 1 0

0

0 5 10 15 20 25
Cluster size, i

F igure 6.5: Effective work of formation, Weff, as a function of the MgO cluster size for 
various monomer concentrations, all at a fixed temperature T = 800 K. The full line joins 
the clusters that require the least work of formation for each size.

What if the initial number density of MgO monomers were to be significantly 

greater than 106  m~3? Figure 6.5 shows the work of formation curves for two ar­

bitrarily chosen higher values, p\ =  1 0 1 5  m - 3  and pi = 1 0 2 0  m“3, each at the tern-
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perature T  = 800 K, which is the lower limit of the temperature range of interest. 

For comparison, the T  =  800 K curve from Figure 6.2 has also been reproduced 

with these. The curve for pi =  101 5  m - 3  does seem to be heading towards a peak 

value at some cluster size soon after i = 25, but the work of formation has already 

reached several dozens of k s T  in the curve shown. The nucleation rate per unit 

volume, Jy , is proportional to exp(—W */hsT ), where W* is the peak value of W (i) 

(Equation (4.31)). Hence nucleation in such a system would be expected to be an 

extremely inefficient process. Comparing this with the curve for pi =  102 0  m-3, for 

which W* appears to be very small (perhaps negative), it can be said that notable 

nucleation would only occur for initial vapour densities well above 101 5  m-3. Such 

MgO monomer concentrations are, however, atypical of circumstellar shells around 

oxygen-rich stars. Hence MgO ought to be discarded as a candidate for the primary 

nucleating in stellar winds in those environments.

6.6 Effect of associative species on nucleation

It must be remembered here that some of the equations regarding the nucleation 

process in Chapter 4 were built on the assumption that only monomers (single MgO 

molecules in this case) are allowed to attach and detach to and from a given cluster. 

If (MgO) 2  and (MgO) 3  concentrations overwhelm the MgO monomer abundance in 

the circumstellar shell, some of those equations would require modification in this 

light. The expressions for the nucleation rate J  (and hence Jy) as written in Chapter 

4 apply only when monomers outnumber any other cluster size concentrations during 

the entire nucleation process. For example, Equation (4.9) depends on the rate at 

which monomers attach themselves to the cluster of the critical size i*. Intrinsic in 

this is the assumption that the concentration of monomers in the cloud is so much
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greater than that of other clusters that the attachment/detachment of the latter 

will be too rare and would make little difference to the nucleation rate. However, in 

the case of circumstellar MgO, this assumption will need to be replaced by the fact 

that (MgO) 2  and (MgO) 3  will attach far more frequently than the monomers and 

the relevant equations for the nucleation rate ought to be modified accordingly.

Nevertheless, the equations for the work of formation of an z-cluster, W (i), will 

remain unaffected by this, since in that case we are merely calculating the free 

energy of an i-cluster with respect to that of a monomer. It simply indicates the 

‘effort’ required to reach the size i from a monomer. Even if (MgO) 2  and (MgO) 3  

were in overwhelming proportions, they would have still required to go through this 

effort and only then can the higher size clusters follow. W (i) therefore for any 

value of i does not depend on whether there are more monomers than other cluster 

concentrations. The population densities p* are obtained from the work of formation, 

so they will also be unaffected by the associative nature of MgO. Hence, the results 

presented in this Chapter are indeed valid. Of course, no peak in the curve for 

Weff(i) was observed in the calculations for a realistic value of vapour density, so 

the question of evaluating the nucleation rate did not arise.

6.7 Conclusion

In this Chapter we have studied the homogeneous nucleation of MgO clusters and 

explored the possibility that it could be the primary nucleating material in circum­

stellar shells around oxygen-rich M-stars. To do this, a sophisticated potential model 

for MgO was used, which considers a number of details of the interactions within 

small MgO clusters. The model allows ionic shape deformations by modelling the
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compressibility of individual ions as well as considering non-vanishing polarization 

effects in small clusters. This model is much more complex than the ones previously 

used in similar studies of MgO.

Free energy calculations based on this model reveal that the work of formation 

required for the nucleation of MgO particles to occur is at least hundreds of 

in the temperature range of 800 -  1200 K for an initial vapour density of 106  m-3 . 

Hence, MgO can be ruled out as a likely candidate for the primary nucleating dust 

species. It was found that meaningful nucleation rates for MgO would only be 

achieved in such a temperature range if the initial vapour density was much larger 

than some 101 5  m~3. However, such large concentrations of MgO are not found in 

oxygen-rich circumstellar shells.

The non-possibility of MgO nucleation is in agreement with a similar conclusion 

reached in the earlier studies carried out with the help of a simpler potential model

[91]. Though it would be interesting to perform the free energy calculations using 

a novel technique based on the covariance matrix approach. Such calculations, 

however, were found to be very difficult and time-consuming (see Appendix B).



Chapter 7

Summ ary of Conclusions

The role of dust particles is well-known not only in our terrestrial atmosphere, where 

they are known as aerosols, but also in space where they exist around young stars 

and on the grander level throughout the interstellar medium. The problem of the 

formation and the evolutionary role of dust can be divided into three classes: dust 

formation, mantle growth around dust grains and the grain surface chemistry.

Heterogeneous chemistry taking place in or on the surfaces of finely divided par­

ticles within a cloud is usually described using traditional rate equations approach. 

In the limit where the mean number of adsorbed reactant molecules on each particle 

is of the order of unity, the traditional approach may lead to erroneous results. Situ­

ations of this kind are possible for ultrafine particles in the interstellar medium or in 

atmospheric clouds containing trace amounts of gas phase reactants. In such condi­

tions, evolution of the the entire probability distribution of the reactant population 

ought to be considered, taking into account the fluctuations in the populations, 

instead of the evolution of the mean population.

In Chapter 3, an analytic description of such ‘stochastic’ chemistry was studied

151
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through the use of master equations that govern the evolution of the population 

probability distribution and the results were compared with those of the traditional 

chemical kinetics. Two types of grain surface reactions were considered, namely 

A +  A —> C and A +  B -* C, with the former having an analytic solution. To solve 

the latter problem, a number of numerical techniques were explored. It was shown 

that the traditional approach can overpredict a reaction rate by over one order of 

magnitude in typical interstellar diffuse clouds. It was found that under terrestrial 

atmospheric conditions, the traditional approach may well serve the purpose even 

though the mean reactant population may appear to fall below unity.

Heterogeneous mantle growth of the dust grains may occur when the surround­

ing gas molecules adsorb permanently onto the grain surface and clusters ‘nucleate’ 

heterogeneously. Again, this process of nucleation is also normally described using 

rate equations for the mean populations of molecular clusters. This approach is 

appropriate for homogeneous nucleation, but may be unsuitable in the case of het­

erogeneous nucleation on small particles if the mean populations are of the order of 

unity or less, where the statistical fluctuations in the molecular populations ought to 

be taken into account. A stochastic treatment of heterogeneous nucleation kinetics 

was presented in this thesis, in which a set of master equations were presented and 

a modified expression for the nucleation rate was deduced. A numerical method for 

solving the stochastic system was examined, with the results showing that the rate 

of nucleation can differ greatly from that obtained with the traditional kinetics.

The initial nucleation of the dust particles themselves in space is thought to 

occur in the stellar winds around stars that are undergoing heavy mass loss. One 

of the major candidates for the primary nucleating species was MgO because of its 

apparently large abundance in interstellar clouds and its high dew point. Although
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earlier studies had ruled out this possibility on the grounds of its nucleation rate 

being too small, there was reason for sceptism about that conclusion. The potential 

model describing the interactions within MgO was outdated and recently, a very 

sophisticated potential model for MgO has become available. In Chapter 6  this 

potential was employed for the problem of the primary nucleating dust species in 

space and free energy calculations were performed in an attem pt to calculate the 

homogeneous nucleation rate of MgO. It was found that even the better potential 

model gave results that rule out the possibility of MgO nucleation in circumstellar 

shells.

A novel technique was finally tested to perform the free energy calculations, 

which is meant to give results with the help of molecular dynamics simulations 

performed at finite temperatures. This would clearly be better than the dynamical 

matrix approach, which in reality yields vibrational modes of a molecule at zero 

temperature. This technique was, however, found to be very difficult to implement 

for the very small MgO clusters that were of interest in this study.



A ppendix A  

Properties of M odified Bessel 

Functions

Here we note some useful features of the modified Bessel functions appearing in 

Chapter 3. These can be found in any mathematical reference book such as Refs. 

[45, 113, 114].

If one has a second order differential equations of the form

+ T<f o  ~ ( r 2 + =  ° ’ (A-1)

the solutions to this equation are the modified Bessel functions I±p{r) and K p(r). 

Ip(r) and K p{r) are real and positive when p > — 1  and r > 0. In general, Ip(r) and 

I~p(r) are linearly independent except when p is an integer. Further,

/_ n( r ) = / n(r) and K . p(r) = K p(r), (A.2)

where n  is an integer.

The ascending series of the function Ip(r) can be written as
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Here the gamma function is given by r(p) =  / 0°° up 1e Udu , which for integer p 

reduces to T(p + 1 ) =  p!, and is defined for 9ft p > 0. It is also useful to note that

r ( p + i )  = p r (p ) . (A.4)

If the argument r is very small, the Bessel function can therefore be approximated 

as

Ip(r) ~  ( r / 2 )p/ r ( p +  1 ) as r 0 (p #  - 1 , - 2 , . . . ) .  (A.5)

If the argument r  of the Bessel function is large,

4p2 -  1
Iv(r)

ITT
1 ---- £—-------1-----higher order terms in -

8  r  r
as r  —> oo. (A.6 )

For the function K p(r), the following relations hold:

KP(r) T(p) r-p  
~ 2 ~  2

as r  —> 0  ($Rp > 0 )

and

7T 4p2 -  1
1 +  t  +

higher order terms in

The function Ip(r) can be differentiated using the identities

(A.7)

as r oo.

(A.8 )

+ -W M 1  and Ip-i(r) -  Ip+i(r) = y lp ( r ) .  (A.9)

A similar relation for the function K p(r) has the form



A ppendix B

Covariance M atrix M ethod for 

Free Energy

We derived free energies of MgO clusters in Chapter 6  using the dynamical matrix 

approach. The molecular dynamics (MD) data produced using the CIM +  PIM 

potential described in that Chapter can also be analysed using an alternative tech­

nique to calculate free energies of MgO clusters. This technique involves a covariance 

matrix method that was originally devised to calculate entropies of macromolecules

[115]. The vibrational modes of a cluster are derived from the positional trajectory 

of the ions over a period of time. The dynamical matrix approach of §6.4 involves 

relaxing the crystal structure to its minimum energy state, which essentially in­

dicates reducing the system to absolute zero temperature, and then assuming the 

vibrational states to be the same at a given non-zero temperature. Its applicability 

may therefore be questionable at high temperatures such as in stellar environments.

The covariance matrix method ought to be more suitable at high temperatures 

since it utilizes the ionic position history from a molecular dynamics simulation cor­

responding to a specific temperature. At temperatures around 300 K, this technique

156



Appendix B. Covariance Matrix Method for Free Energy 157

has been shown to yield results with errors below 5% in physiological systems [116] 

and has been extensively analysed [117, 118].

Schlitter’s approach assumes that each of the 3N  degree of freedom within a 

cluster can be represented by a quantum mechanical harmonic oscillator. If one can 

obtain the positional trajectory of the ions using a molecular dynamics simulation, 

then the classical variance (x2)c can be obtained from the history of the oscillator’s 

Cartesian coordinate denoted by x. Here the angled brackets indicate averaging over 

a trajectory or over an ensemble of MD simulations. The frequency of each of the 

harmonic oscillator, u, is then related to (x 2)c through the equipartition theorem,

m u 2(x2)c =  k s T , (B.l)

where m  is the mass of the oscillator and T  is the temperature. As a fit to the 

quantum mechanical properties of the harmonic oscillator, it was proposed rather 

heuristically that the entropy S  of a single degree of freedom can be expressed as

S  < S h0< S ' = i kB In ^ 1  +  m (x2)^j , (B.2)

where <Sho 1S the entropy of the harmonic oscillator and e =  exp(l) is the Euler 

number. The meaning of the above formula is that the right hand side of the equation 

is an upper bound to the entropy of a one-dimensional quantum mechanical harmonic 

oscillator. According to Equation (B.2 ), S ' approaches zero when the temperature is 

reduced to zero and is proportional to In T  for T  —> oo. Both of these features satisfy 

the requirements of the quantum mechanical and the classical limits respectively.

For many degrees of freedom, the formula is generalised using the covariance 

matrix a  instead of the variance (x2)c, so that

S  < S ' = ^jks In det
2

(B.3)
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where the elements of the matrix cr are given by

Ots = { ( x t -  (xe))(xj ~  (Xj)) )■ (B.4)

Here x ^  . . . ,  x^n  are the Cartesian coordinates of the N  ions in the system.

Using a molecular dynamics simulation, an ensemble of ionic positions can be 

obtained over a period of time to determine cr. The matrix M 1 /2 o*M1 / 2  is then 

symmetric and semidefinite, so that its eigenvalues can be obtained through diag- 

onalization. These eigenvalues, A£ov are the classical variance (^2)c of the resulting 

new, uncorrelated coordinates qj. Contrasting this with the one-dimensional case, 

m (x2)c is now replaced by A£ov, so using Equations (B.l) and (4.26), it can be shown 

that the vibrational free energy from the covariance matrix method is expressed as

*Sb =  - \ k BT  In ( i f  )  - (B.5)

One can use this expression instead of the one given in Equation (4.26) and 

perform the rest of the calculations as in Chapter 4 to obtain the work of formation 

of an i— cluster. This was attempted and found to be very difficult due to mainly 

two reasons. Due to the fact that in astrophysical conditions the size of the critical 

cluster is of the order of 10, or maybe even smaller [85], the calculations needed to 

be carried out in the small size regime. This makes it difficult to accurately define 

the temperature of the cluster in an MD simulation and leads to a rather unreliable 

covariance matrix. Also, the clusters had to be simulated at the high temperatures 

of circumstellar clouds, so in the MD simulation the total energy of the system would 

settle down to a stable value after quite long time. The combined effect of these two 

difficulties was that in order to have reliable results, simulation for each temperature 

would have required an enormously long execution time with the current generation 

of computers and was therefore not pursued further.
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