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Abstract

The telencephalon is the embryonic structure that in mammals gives rise to the 

cerebral cortex and the basal ganglia. Despite the manifest differences in size, 

structure and function of telencephalic derivatives in different vertebrate species, the 

underlying patterning of the embryonic telencephalon is highly conserved.

Very little is known about the development of the zebrafish telencephalon 

beyond the earliest embryonic stages of neural induction and patterning. One major 

outstanding question is the mechanism underlying telencephalic eversion, a process 

that is peculiar to ray-finned fish and that results in the dorsal telencephalon folding 

out laterally rather than evaginating as it does in most other vertebrate species. I 

used a range of techniques to monitor proliferation, neurogenesis, and axon 

extension over the entire period of embryogenesis. This led me to propose a 

mechanism for an observed rearrangement within the telencephalon between 2 and 3 

days post fertilisation (dpf) that may also underlie the eversion process.

To characterise the neuronal populations of the dorsal telencephalon I made a 

careful expression analysis of three LIM-homeobox (Lhx) genes, genes that are 

involved in neuronal subtype specification in a variety of systems. The Lhx genes 

Ihxla, lhx lb  and lhx5 are expressed in spatially co-ordinated overlapping domains in 

the dorsal telencephalon and some of these genes are later expressed in the 

telencephalon-derived olfactory bulb. This suggested a dorsal origin of some 

olfactory bulb neurons.

To further probe the morphogenetic movements and cell migrations that 

shape the zebrafish telencephalon I performed a fate map of the ldpf telencephalon.

I developed a cell labelling technique that uses the Kaede protein, a green 

fluorescent protein that is converted to a red fluorescent form on irradiation with UV 

light. By labelling small groups of cells in the ldpf telencephalon and following 

them to their positions at 5dpf I established that the most posterior regions of the 

dorsal telencephalon contribute to the OB at 5dpf. In addition I identified two 

populations of migratory cells in the ventral telencephalon, contributing cells to the 

OB and the dorsal telencephalon respectively. These populations may reveal a 

previously unknown conservation between fish and tetrapods.
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Chapter 1: Introduction

The vertebrate nervous system has a complexity that is quite awe-inspiring. An 

extraordinary number of neuronal and glial cells are generated, organised and the 

neurons connected in functional circuits, controlling and co-ordinating almost all 

physiological functions. Understanding the origins of nervous system complexity is 

one of the major goals of neuroscience, and studying nervous system formation 

during the course of embryogenesis is currently one of the most exciting and 

productive approaches.

This focus of this thesis is the development of one area of the brain - the 

telencephalon. The telencephalon is an embryonic brain area that in mammals gives 

rise to the adult structures of the cerebral cortex and basal ganglia. In humans, these 

brain areas, particularly the cerebral cortex, are thought to be responsible for a 

plethora of higher functions, including consciousness, memory, language, cognition 

and emotion.

It may therefore seem a strange choice to study the telencephalon in a non

mammal such as the zebrafish Danio rerio. The telencephalon is indeed the most 

divergent area of the brain, and it is without question that the functions performed by 

this area vary widely between species. However, the study of telencephalic 

development has revealed a striking degree of conservation, particularly in terms of 

telencephalic subdivisions, across a wide range of vertebrate species (Bachy et al., 

2002a; Fernandez et al., 1998; Puelles et al., 2000). This has led to the notion of a 

common telencephalic Bauplan, variations in which give rise to the manifest 

differences in size, complexity and function observed across vertebrates. One of the 

purposes, therefore, of studying zebrafish telencephalic development is to further 

establish the commonalities and divergences between zebrafish and better-studied 

species and examine how this relates to differences in adult structures and in 

function.

The comparative anatomical approach

The field of developmental neuroscience is not more than 20 years old, but its 

foundations in neuroanatomy go back almost 200 years. Using a combination of 

histological methods including axon tract tracing, anatomists investigated the
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structure and organisation of a huge variety of vertebrate telencephalons including 

those of tetrapod amphibians, reptiles, birds and mammals, and of a variety of fish 

species (Butler and Hodos, 1996; Striedter, 1997). By making comparisons between 

closely and distantly related species, the hope was that homologous and homoplastic 

structures could be deduced. This would therefore reveal telencephalic organisation 

in terms of highly conserved and more recently evolved structures.

The comparative anatomical approach identified one of the most fundamental 

conserved features of the telencephalon, its subdivision into the dorsally located 

pallium (roof of the telencephalon) and the ventrally located subpallium (floor of the 

telencephalon). In mammals, the subpallium consists of structures that bulge into 

the ventricular space called the ganglionic eminences. These structures give rise to 

components of the basal ganglia including the striatum and pallidum. The pallium, 

on the other hand, gives rise to cortical structures including the olfactory cortex and 

the hippocampus. However, anatomy alone was unable to determine the origins of 

several structures in the mammalian telencephalon, such as the amygdala, septum 

and olfactory bulb (Striedter, 1997).

One major shortfall of the comparative anatomical approach was that it rested 

heavily on morphology of telencephalic structures and connectivity between 

telencephalic and other brain areas. The telencephalon is the most divergent area of 

the brain and varies widely in its morphology and connectivity between species. 

Comparisons, therefore, even between quite closely related groups such as mammals 

and birds proved very problematic for comparative anatomists. For example, the 

avian telencephalon has cortical structures but also a massive thickening in the 

lateral telencephalic wall called the dorsoventricular ridge (DVR). Using 

morphological comparison, the DVR has greatest similarity to the mammalian 

ganglionic eminences, suggesting that it is part of the subpallium. In fact, as a result 

of subsequent more sophisticated examination the DVR is now known to be a pallial 

area, albeit one that looks radically different to the mammalian neocortex (Fernandez 

et al., 1998; Puelles et al., 2000; Striedter, 1997). Such confusions are widespread 

through the literature and are only now being unravelled.

Extending the comparative anatomical approach to the embryonic 

telencephalon already has many advantages over studying adult brain anatomy. Von 

Baer proposed that ontogeny recapitulates phylogeny, the idea being that an 

organism passes through its ancestral evolutionary states during the course of its
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development. Although modem evolutionary and development theory firmly 

contradicts this idea, it is nonetheless true to say that more similarities exist earlier in 

development than later (Striedter, 1997). Studying early development therefore 

gives unique insights into the commonalities and divergences between different 

species in their telencephalic organisation.

The zebrafish telencephalon develops b \ a process o f eversion 

Comparative approaches to studying telencephalic organisation often exclude fish 

species such as zebrafish, restricting studies to tetrapod species (Marin et al., 1998; 

Striedter, 1997). This is not because of a lack of information about fish 

telencephalic anatomy, but because the adult zebrafish telencephalon is radically 

different in its morphology to that of tetrapods. The tetrapod telencephalon is 

evaginated, with the telencephalic vesicles enclosing two lateral ventricles. The 

zebrafish telencephalon, however, is everted, with dorsal telencephalic tissue turned 

out laterally, and the entire dorsal surface covered by a thin choroid tela or 

epithelium (Butler, 2000; Butler and Hodos, 1996).

A schematic diagram in Fig 1.1 A shows the proposed mechanisms of 

evagination and eversion, adapted from Butler (2000). The striking difference is that 

during the evagination process, dorso-medial structures in the neural tube remain 

medial with the telencephalic vesicles bulging out laterally i.e. evaginating. In 

contrast, during the eversion process, structures that were dorso-medial in the neural 

tube are displaced to lateral positions, resulting in a topographical rearrangement of 

telencephalic areas. A further consequence of eversion is that the proliferative 

ventricular zone, which in an evaginated telencephalon would line the ventricles, 

becomes located on the dorsal surface of the telencephalon.

The everted telencephalon is not restricted to zebrafish but is a property of 

the large group of actinopterygian or ray-finned fish, of which zebrafish is one 

species. Eversion is a peculiarity of actinopterygian fish, as other groups of fish such 

as the jawless agnathans (species such as the lamprey) and cartilaginous fish undergo 

an evagination process. Similarly, all tetrapod species, which diverged from the 

actinopterygian lineage some 420 million years ago, undergo telencephalic 

evagination. Figure 1.1 B shows the evolutionary relationships of these species. 

Actinopterygians, despite being the only group to undergo telencephalic eversion, 

still represents the vast majority of fish species including experimental species such
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Figure 1.1

A shows the contrasting telencephalic evagination and eversion processes, adapted 
from Butler (2000). During evagination, the telencephalic vesicles bulge out laterally; 
in eversion, the dorsal parts of the neural tube turn out like flaps and the dorsal surface 
is covered with a choroid tela. Hypothetical regions within the neural tube (labelled 
a-d) are arranged differently in an evaginated versus an everted telencephalon.

B shows a basic evolutionary tree indicating some of the major transitions in the 
vertebrate lineage. Zebrafish are part of the actinopterygian fish group, which 
diverged from the tetrapod lineage 420 million yeas ago (adapted from Bachy et al.,
2001). The hypothesised evolution of eversion is indicated by an asterisk.
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as goldfish. It is therefore of interest to uncover how this alternative strategy 

evolved and why it was retained by single but species-rich group of fish.

The topological rearrangement of telencephalic areas in everted versus 

evaginated telencephalons poses a considerable and unresolved problem for fish 

neurobiologists. Distinct areas of the zebrafish pallium are evident anatomically 

(Wullimann and Rupp, 1996), but the general lack of functional data about these 

areas makes comparisons difficult. Areas such as those receiving olfactory input are 

located in the lateral pallium in both evaginated and everted species, casting doubt 

on simple topological eversion for all pallial areas (Wullimann and Rink, 2002). 

Other areas, however, inferred from lesion studies as the fish homologues of the 

mammalian hippocampus and amygdala, are topologically shifted as would be 

expected during eversion (Portavella et al., 2002; Salas et al., 2003). These results 

highlight the need to provide a comprehensive description of eversion, involving the 

location of many more functional areas of the everted dorsal telencephalon.

The eversion process is likely to be an embryonic event, setting the stage for 

subsequent adult proliferation and morphogenesis. To date, the only evidence of 

embryonic eversion has come from a study of proliferation in the zebrafish 

telencephalon. The authors report proliferating cells at the dorsal telencephalic 

surface from stages as early as 2 days post fertilisation (dpf) (Wullimann and Knipp,

2000). However, there have been no attempts to address the mechanism of 

telencephalic eversion during embryogenesis, and in general descriptions of this 

process are based on speculation rather than observation (Butler, 2000). It is 

therefore one of the main aims of this thesis to make observations of telencephalic 

development over the entire period of embryogenesis use this information to develop 

potential mechanisms for the eversion process.

Highh conserved genes reveal telencephalic subdivisions 

The comparative anatomical approach has been revolutionised by the discovery of 

the genes that highlight telencephalic subdivisions. These genes are remarkably 

conserved between a wide range of vertebrate species (Fernandez et al., 1998; 

Puelles et al., 2000). For example, the expression of vertebrate orthologues of the 

Drosophila empty spiracles (ems) gene have now been compared in a range of 

tetrapod species including frog, turtle, chick and mouse, where they highlight similar 

pallial areas. Early patterns of Emx and of other highly conserved pallial genes have
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therefore been able to resolve some of the issues that the comparative anatomical 

approach could not, such as the pallial nature of the DVR in birds (Fernandez et al., 

1998; Puelles et al., 2000). Furthermore, the Emx genes are expressed in the dorsal 

telencephalon of evolutionarily distant groups, such as cartilaginous fish (Derobert et 

al., 2002) and may even perform a similar role in the specification of Drosophila 

dorsal neuronal identity (Weiss et al., 1998).

The striking conservation of telencephalic patterning mechanisms across all 

vertebrate species is facilitating rapid progress in understanding zebrafish 

telencephalic development. The difficulties inherent in the comparative anatomical 

approach, as outlined above, can now be somewhat overcome by following domains 

of gene expression through development. However, not many of these studies have 

yet been undertaken, and it is one of the aims of this thesis to further characterise the 

expression domains of genes within the dorsal telencephalon in order to extend the 

comparative analysis.

Strengths o f the zebrafish model

The zebrafish has a number of attributes that make it an excellent model for studying 

brain development. Of prime importance is the genetic tractability of the organism. 

The zebrafish model is very amenable to large-scale mutagenesis screening, and 

mutants identified by this forward genetics method underpin much zebrafish 

developmental research. Mutants produced by insertional mutagenesis methods are 

easy to clone (Golling et al., 2002), and the cloning of those produced by ENU- 

mediated mutagenesis is facilitated by improved mapping techniques and the 

progressive sequencing of the zebrafish genome (Talbot and Hopkins, 2000). As the 

genome sequence becomes more comprehensive, techniques such as TILLING 

should enable specific mutants in any known gene to be generated (Wienholds et al., 

2003). Gene expression can also be manipulated by the injection of DNA and RNA 

sequences, the external fertilisation of zebrafish oocytes giving access to the embryo 

from the 1-cell stage. Morpholino oligonucleotides are a further genetic tool, 

specifically disrupting the translation of a targeted RNA sequence (Heasman, 2002) 

and frequently phenocopying their respective mutant lines (e.g. Walshe and Mason, 

2003).

Zebrafish are also amenable to the introduction of engineered transgenic 

sequences, and this has led to an explosion of transgenic lines bearing reporters such
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as green fluorescent protein (GFP) under the control of specific regulatory sequences 

(lessen et al., 1998). Transgenic GFP lines are particularly useful to zebrafish 

researchers because the transparency of the early embryo offers unrivalled 

opportunities for live DIC and fluorescence imaging (e.g. Koster and Fraser, 2001). 

This attribute of transparency, a result of the yolk being contained in a sac rather 

than distributed through the embryo (Kimmel et al., 1995), also enables detailed 

observation of stained wholemount preparations. This is an attribute I have fully 

exploited during the course of this thesis work.

Furthermore, the genome duplication event that occurred in the 

actinopterygian fish after they diverged from the tetrapod lineage gives insight into 

the evolutionary forces that have shaped the zebrafish brain (Amores et al., 1998; 

Postlethwait et al., 1998). For example, zebrafish seem to have retained a large 

proportion of their duplicated genes, and it has been suggested that many of these 

genes have undergone a process of subfunctionalisation whereby the ancestral 

expression pattern of a single gene becomes partitioned between the duplicates 

(Force et al., 1999). This process is still little understood, especially in terms of 

functional consequences for different brain areas, but it is clear that gene duplication 

events as also happenned much earlier in the vertebrate lineage provided great scope 

for functional innovation, such as the evolution of jaws (Postlethwait et al., 1998).

Early forebrain development in zebrafish

The numerous attributes of the zebrafish model, as described above, have made it 

one of the foremost models for studing early CNS development and patterning. In 

this section, I will outline some of the main events that underlie neural induction and 

the subsequent

patterning of forebrain areas including the telencephalon. I will also describe some 

of the dramatic morphogenetic movements that shape the most rostral neural tissue 

and the implications of these movements for subsequent patterning events.

Neural induction is a complex process that occurs during gastrulation and 

involves the acquisition of neural identity by a subset of ectodermal cells. Numerous 

molecules are involved in neural induction, but I will only touch on some of the 

known key players here. Neural induction itself seems to rest primarily on the 

antagonism of anti-neuralising BMP signalling by molecules emanating from the 

embryonic organiser, the embryonic shield in zebrafish (reviewed in Wilson and
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Houart, 2004). These molecules have mainly been isolated through work in 

Xenopus, and include molecules that bind directly to BMPs such as Noggin and 

Chordin. The neural fate is therefore somewhat the default state of the tissue, 

although work in other species suggests other factors such as Fgf signalling may be 

additionally required for neural induction (reviewed in Bally-Cuif and 

Hammerschmidt, 2003; Stem, 2002).

The activation-transformation model of Nieuwkoop (reviewed in Stem,

2002), infers that induced or “activated” neural tissue has anterior character that 

must be subsequently patterned by posteriorising or “transforming” signals. More 

recent evidence also suggests that posteriorising signals are responsible for imparting 

A-P pattern on neural tissue with otherwise anterior character. The candidate 

posteriorising signals are numerous, and in zebrafish include Wnts, Fgfs, Retinoic 

acid, Nodals and BMPs (reviewed in Wilson and Houart, 2004; Bally-Cuif and 

Hammerschmidt, 2003).

The induction of the telencephalon itself has been well-studied in zebrafish 

and relies on local signalling from a population of cells at the anterior border of the 

neural plate (ANB; Houart et al., 1998). Removing these cells at mid-gastrulation 

stages results in the loss of telencephalic markers, and transplanting them to more 

caudal levels of the neural tube induces ectopic telencephalic markers (Houart et al.,

1998). The ANB is therefore a source of signals that promote telencephalic fates and 

recent work indicates that one signal emanating from the ANB is a locally-acting 

antagonist of prospective posteriorising factors. The ANB secretes Tic, a Wnt 

antagonist, potentially interfering with a number of posteriorising Wnt signals 

emanating from more caudal levels of the neuraxis (Houart et al., 2002). The ANB, 

and the equivalent signalling centres in other species are likely to have more 

extensive roles than Wnt antagonism, possibly involving Fgf signalling (Shimamura 

and Rubenstein, 1997). The zebrafish ANB also expresses fgf3  and fgf8, both of 

which affect the patterning of the telencephalon when misexpressed 

(Shanmugalingam et al., 2000; Walshe and Mason, 2003).

The forebrain comprises not only the telencephalon, but also the eyes and the 

diencephalon, including the hypothalamus. The early development of these 

structures involves both a host of patterning events as outlined above as well as 

dramatic morphogenetic movements. The prospective forebrain areas occupy the
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most anterior part of the neural plate, but their arrangement gives little indication of 

how they will come to be organised in the brain. Thus, at early neural plate stages 

telencephalic precursors form the most anterior and lateral field, with prospective 

ventral telencephalon lying anterior to dorsal telencephalon (Whitlock and 

Westerfield, 2000) and the eye field and prospective diencephalon lying 

progressively more posteriorly. This organisation is dramatically rearranged as axial 

midline neural tissue (hypothalamic precursors) moves rostrally, splitting the eye 

field and coming to underlie the telencephalon (Varga et al., 1999). By the time the 

neural plate has converged to form a rod, the telencephalon occupies a dorsal rostral 

position, with the hypothalamus directly underliying it in a ventral rostral position 

(reviewed in Wilson and Houart, 2004). The mechanisms controlling this 

morphogenetic movement are unclear, but nodal signalling is required for the correct 

specification and subsequent migration of the hypothalamic precursors, without 

which the hypothalamus is absent and the retinal fields develop as a single cyclopic 

eye (Varga et al., 1999).

The early events in telencephalic induction and patterning, therefore, rely 

primarily on the sequential antagonism of factors that induce non-neural fates 

(BMPs) and caudal neural character (Wnts). However it is also clear that numerous 

other factors are at play during the complex interlinked processes of gastrulation, 

neural induction and patterning, and neurulation.

Dorso-ventral patterning within the telencephalon

As I have outlined, some of the key players in the early induction and patterning of 

the telencephalon have been identified through work in zebrafish. However, the 

subsequent patterning of the telencephalon that generates the progenitor domains of 

the subpallium and pallium is relatively little understood in fish. Most of this work 

has been carried out in the mouse, where elegant experiments predominantly using 

mutants have probed the mechanisms underlying patterning and neurogenesis within 

the telencephalon (Fig 1.2 A).

Substantial evidence points to the mechanisms involved in telencephalic 

patterning being highly conserved between vertebrate species (Fernandez et al.,

1998; Puelles et al., 2000). Therefore, despite the lack of functional experiments 

addressing these issues in zebrafish, the progressive identification of fish 

orthologues of the mammalian genes invoved in telencephalic patterning gives
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substantial insight into these processes. The next major challenge for zebrafish 

researchers is to use the data generated from the mouse model to design functional 

experiments to probe zebrafish telencephalic patterning.

Dorso-ventral patterning -  the role o f sonic hedgehog

The secreted signalling protein Sonic hedgehog (Shh) plays a key role in dorso- 

ventral (D-V) patterning within the telencephalon, as it does at more caudal levels of 

the neural tube. In the spinal cord, a ventral source of this diffusible signal sets up a 

gradient imparting D-V positional information to different levels of the neural tube. 

Cells respond to this positional information by turning on a variety of mostly 

homeodomain-containing transcription factors, each with a defined D-V limit 

(Briscoe et al., 1999). The transcription factors work both in concert with each other 

and in mutually repressive interactions to specify discrete neural and glial progenitor 

domains that are both spatially and temporally regulated (reviewed in Jessell, 2000).

The parallels with the telencephalon are striking, with Shh signalling playing 

a vital role particularly in ventral telencephalon specification. Zebrafish shh mutants 

lack both ventral telencephalic and anterior diencephalic territories (Barth and 

Wilson, 1995; Rohr et al., 2001) and mutants in zebrafish smoothened, which codes 

for a protein required for Shh signal transduction show similar defects (Varga et al.,

2001). Shh mutant mice also have a lack of ventral forebrain tissue and are cyclopic 

(Chiang et al., 1996), as are some humans with Shh mutations. The source of the 

Shh signal is unlikely to itself be telencephalic, as the small population of ventral 

telencephalic Shh-expressing cells appear too late during development to pattern this 

tissue. The presumptive telencephalon may be exposed to Shh signalling from the 

organiser during gastrulation (Gunhaga et al., 2000), or Shh signalling may emanate 

from ventral tissues such as the prechordal plate or the hypothalamus (reviewed in 

Wilson and Houart, 2004).

As at more caudal levels of the neuraxis, Shh activity is antagonised by 

signalling from the dorsal neural tube (Jacob and Briscoe, 2003). In mammals, the 

Shh antagonist Gli3 is expressed in the most dorsal regions of the telencephalon.

Gli3 is essential for dorsal telencephalic fates (Kuschel et al., 2003; Theil et al.,

1999; Tole et al., 2000) and the role of this transcription factor will be discussed in 

detail later. In the Gli3 mutant, ventral markers are expanded at the expense of 

dorsal markers, and the reverse is seen in Shh mutants (Rallu et al., 2002). However,
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Figure 1.2: Patterns o f  neurogenesis and cell migration in the mouse 
telencephalon

A-C show schemas representing the right telencephalic hemisphere from an E l4 
mouse embryo (adapted from Wilson and Rubenstein, 2000). A shows different 
progenitor domains specified by combinations of transcription factors. B shows the 
major subdivisions of the subpallium (LGE, MGE and AEP/POa) and pallium (Cx and 
Hi), and the predominant neurotransmitter phenotypes of the neurons generated within 
these areas. C shows the migration pathways of neurons, using arrows to indicate 
their origins within different progenitor domains. Radial migrations are indicated 
with dotted lines, and tangential migrations by solid lines.

ACh - acetylcholine; AEP - anterior endopeduncular area; BMC - basal magnocellular 
cluster; Cx - cortex; GABA - gamma-amino-butyric-acid; Glu - glutamate; GP - 
globus pallidus; Hi - hippocampus; LGE - lateral ganglionic eminence; MGE - medial 
ganglionic eminence; POa - anterior preoptic area; STR - striatum.

23



the Shh/Gli3 double mutant retains aspects of D-V patterning within the 

telencephalon (Rallu et al., 2002). This data strongly implicates other factors in the 

D-V patterning of the telencephalon and candidate molecules include Wnts, BMPs, 

nodals and Fgfs. In zebrafish, nodals are known to lie upstream of Shh signalling, 

and abrogation of nodal signalling results in very severe cyclopia and loss of ventral 

forebrain tissues as described above (Rohr et al., 2001; Varga et al., 1999).

Ventral telencephalic patterning and neurogenesis

Prominent features within the mammalian subpallium are the lateral and medial 

ganglionic eminences (LGE and MGE), two adjacent bulges in the ventral 

telencephalic wall (Figure 1.2 A and B). The LGE, which abuts the cortex, gives 

rise to the striatum, while the MGE gives rise to the pallidal component of the basal 

ganglia (reviewed in Wilson and Rubenstein, 2000). Shh has the ability to induce 

the expression of genes essential for LGE and MGE specification, namely Gsh2 and 

Nkx2.1. Gsh2, which is expressed predominantly in the LGE, also has a vital 

function in D-V telencephalic patterning, because it cross-represses a dorsal 

telencephalic gene Pax6, forming the cortico-striatal boundary (Corbin et al., 2000; 

Stoykova et al., 2000; Toresson et al., 2000; Yun et al., 2001). The adjacent MGE is 

dependent on a different homeobox gene, Nkx2.1, which like Gsh2 is induced by Shh 

signalling. In Nkx2.1 mutants, the MGE acquires LGE character (Sussel et al.,

1999), with no expansion of cortical markers. However Nkx2.1 and Gsh2 are not 

cross-repressive in their action, rather acting co-operatively to pattern the ventral 

telencephalon (Corbin et al., 2003).

In the zebrafish telencephalon, embryonic structures equating to the LGE and 

MGE have not yet been defined. Ventral telencephalic development is dependent on 

Shh signalling, with nodal signals acting upstream of shh (Rohr et al., 2001). 

Downstream of Shh signalling is nk2.1b, a zebrafish orthologue of the mammalian 

MGE-specific Nkx2.1 gene (Rohr et al., 2001). Although zebrafish nk2.1b is 

expressed in a restricted region of the ventral telencephalon, the expression pattern 

alone is not enough to designate this area the zebrafish equivalent of the MGE. 

Further hampering the elucidation of zebrafish subpallial subdivisions is the lack of 

zebrafish orthologues of Gshl and Gsh2, genes that would give insight into a 

possible equivalent of the LGE.
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Comparative anatomical evidence from studies in adult actinopterygian 

species (particularly teleosts, the zebrafish group) indicates that there are likely to be 

subdivisions within the embryonic zebrafish subpallium that would correspond to the 

mammalian LGE, MGE and the septal region. Adult subpallial nuclei have been 

identified as either striatal (the dorsal tier of nuclei) or septal (the ventral tier) on the 

basis of neurotransmitter expression and connectivity (Wullimann and Rink, 2002). 

In particular, the striatal formation is uniquely Substance P immunoreactive, and 

receives ascending dopaminergic innervation from the ventral diencephalon. The 

septal formation, on the other hand, is uniquely cholinergic and as in amniotes has a 

massive descending output to the midline hypothalamus (Wullimann and Rink,

2002). The embryonic subpallium, therefore, is likely to be divided into different 

progenitor zones responsible for generating these different neuronal subtypes.

Further experiments are needed to establish whether the genes responsible for this 

patterning in mammals play the same roles in zebrafish.

The genes controlling neurogenesis, as opposed to patterning, within the 

mammalian ventral telencephalon have clear zebrafish orthologues. The proneural 

gene Mashl plays an instructive role in subpallial neurogenesis (Casarosa et al.,

1999), and its zebrafish orthologue, zashl, is also expressed exclusively in the 

ventral telencephalon (Wullimann and Mueller, 2002). Downstream of Mashl 

activity, the Dlx genes are involved in subpallial progenitor differentiation. Dlx 

genes are upregulated in the Mashl mutant, indicating premature differentiation of 

progenitors (Casarosa et al., 1999), and they negatively regulate Notch signalling 

thereby promoting neural progenitor differentiation (Yun et al., 2002).

Dlx genes are organised in pairs within the genome, a feature that is 

conserved between mammals and zebrafish (Ellies et al., 1997), and the Dlxl/2 and 

Dlx5/6 pairs are those most strongly implicated in subpallial neurogenesis (Anderson 

et al., 1997b; Eisenstat et al., 1999; Long et al., 2003; Stuhmer et al., 2002). Dlx 

function has not been well investigated in zebrafish, but a number of dlx genes have 

expression domains restricted to the subpallium (Akimenko et al., 1994; Zerucha et 

al., 2000). The recent generation of a GFP line under the control of the dlx4/6 

intergenic region (equivalent to Dlx5l6 in mouse) provides a useful tool for further 

investigating the functions of these genes in subpallial neurogenesis (Zerucha et al.,

2000).
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Dorsal telencephalic patterning and neurogenesis

The mammalian dorsal telencephalon, or pallium, comprises the cerebral cortex 

(neocortex), olfactory cortex, hippocampus and cortical hem (Grove et al., 1998). 

The most dorsal telencephalic neuroepithelium also gives rise to a monolayered 

secretory neuroepithelium called the choroid plexus (reviewed in Campbell, 2003). 

The molecules responsible for generating these structures are being rapidly 

elucidated in the mouse model, but very little is known about their roles in the 

zebrafish.

Development of the dorsal telencephalon is critically dependent on two 

signalling centres, the roofplate and the anterior neural border (ANB). One of the 

key molecules expressed in the roofplate is the Shh antagonist Gli3. In the roofplate, 

Gli3 induces the expression of a variety of BMPs and Wnts, both of which have 

roles patterning the adjacent cortical tissue and both of which are absent in Gli3 

mutants (Kuschel et al., 2003; Theil et al., 1999; Tole et al., 2000). BMPs have a 

very local role specifying choroid plexus fates, with particularly clear roles for Bmp2 

and Bmp4 (Hebert et al., 2002). Wnt signalling, on the other hand, is responsible for 

the growth and differentiation of the adjadent hippocampus, with a clear role for 

Wnt3a (Lee et al., 2000).

Gli3 is also required for neocortical gene expression, with mutants showing a 

dorsal to ventral transformation of the telencephalon. This is because in Gli3 

mutants, where roofplate signalling molecules are absent, Fgf signalling from the 

ANB promotes rostro-ventral structures over dorso-medial ones (Kuschel et al.,

2003). This fits well with the observation that Gli3 is required for the expression of 

the dorsal telencephalic genes Emxl and Emx2 (Theil et al., 1999), of which Emx2 at 

least is expressed in a gradient highest caudally (Bishop et al., 2000; Mallamaci et 

al., 2000). The Emx genes play critical roles in dorsal telencephalic development, 

with Emx2 mutants and Emxl 12 double mutants showing particularly severe defects 

in many aspects of dorsal telencephalon development (Bishop et al., 2003;

Mallamaci et al., 2000; Muzio et al., 2002; Muzio and Mallamaci, 2003; Shinozaki 

et al., 2004; Yoshida et al., 1997).

One of the major roles of Emx2 is to repress Fgf signals emanating from the 

ANB, thereby regulating positional signalling within the cortex (Fukuchi-Shimogori 

and Grove, 2003). This has been most elegantly shown for the positioning of the
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barrel cortex, a somatosensory field that receives input from the rodent whisker pad. 

By selectively increasing the levels of Emx2 within the range of Fgf signals from the 

ANB, the position of the barrel cortex could be shifted rostrally. Local 

overexpression of Fgf8 conversely shifted the barrel cortex to more caudal positions. 

The patterning of mid-cortical areas therefore relies on competition between signals 

in the roofplate and those emanating from the ANB (Fukuchi-Shimogori and Grove,

2003).

Pax6 is another gene that plays a vital role in dorsal telencephalic patterning, 

interacting with the cortical patterning processes outlined above. At early embryonic 

stages the role of Pax6 is predominantly mututal repression of Gsh2, thereby 

forming the cortico-striatal boundary (Corbin et al., 2000; Toresson et al., 2000; Yun 

et al., 2001). In the neocortex, Pax6 may interact antagonistically with Emx2 (Muzio 

and Mallamaci, 2003). The two genes are expressed in opposing gradients, with 

Pax6 modulating the rostro-lateral cortex (Bishop et al., 2000; Bishop et al., 2002) 

whereas Emx2 acts primarily in the caudal-medial cortex (Mallamaci et al., 2000).

Pallial patterning in the zebrafish is very little understood. This is partly 

because no roofplate-based signalling centre has been identified in the zebrafish.

The other major signalling centre implicated in mammalian dorsal telencephalic 

patterning, the ANB, has been identified and relatively well characterised.

Following its role as a source of anti-caudalising Wnt antagonists early in 

development (Houart et al., 2002), the ANB is a source of Fgf signals, and 

abrogation of this signalling results in multiple forebrain defects (Houart et al., 1998; 

Shanmugalingam et al., 2000; Walshe and Mason, 2003). It is unclear, however, to 

what extent dorsal telencephalic development is specifically affected. Further 

characterisation of this brain area and the markers expressed within it will help to 

clarify this issue.

The zebrafish pallium does however express many of the same genes as the 

vertebrate pallium, including three members of the Emx family -  emxl, emx2 and 

emx3. All three genes have very similar expression domains within the 

telencephalon (Kawahara and Dawid, 2002; Morita et al., 1995), with emx2 at least 

being additionally expressed in the olfactory placodes as it is in mouse (Yoshida et 

al., 1997). The zebrafish pallium also expresses two members of the T-box family 

of transcription factors, tbrl and eomeosodermin (Mione et al., 2001; Yonei-Tamura 

et al., 1999). In the mammalian pallium the T-box genes Tbrl and Tbr2 play roles in
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cortical neuron specification and differentiation (Bulfone et al., 1999; Bulfone et al., 

1995; Bulfone et al., 1998), and their precise function in zebrafish is being 

investigated (M. Mione, personal communication).

Pax6 expression is less conserved between mammals and fish, with no pallial 

radial glia-associated expression evident in the zebrafish. Pax6 expression is 

however evident at the pallial-subpallial boundary (Wullimann and Rink, 2002), an 

expression domain that is conserved between amniotes (Puelles et al., 2000).

Various pallial and subpallial identities for this region have been proposed, but one 

possibility is that Pax6 marks a ventral pallial region that contributes to the 

claustrum and amygdala (Puelles et al., 2000; Wullimann and Rink, 2002).

The subpallium generates migratory interneurons that populate the pallium 

Until recently it was thought that the two main cortical neuronal subtypes, the 

glutamatergic projection neurons and GABAergic intemeurons, were both generated 

in the cortical ventricular zone. However, the discovery of cortical cells expressing 

the ventral telencephalic marker Dlx2, and the continuity of these cells with 

subpallial D Ix2-qxpressing cells (reviewed in Marin and Rubenstein, 2001) opened 

the door on not only the tangential migration of GABAergic intemeurons from the 

ganglionic eminences to the cortex, but a host of other tangential migrations (Figure

1.2 B and C). In rodents the ganglionic eminences are now known to supply not 

only the vast majority of GABAergic cortical intemeurons (including those of the 

piriform cortex and hippocampus), but also intemeurons to the olfactory bulbs and to 

components of the basal ganglia. The careful dissection of the genetics of ventral 

telencephalon specification, as outlined above, has revealed the distinct sources and 

phenotypes of these various migratory populations (reviewed in Marin and 

Rubenstein, 2001).

The notion that the tangentially migrating and GABAergic intemeuron 

populations were one and the same came from pioneering work by Anderson et al. 

(1997). They showed that GABA-expressing cells could migrate in brain slices in 

vitro from subpallial to pallial areas (Anderson et al., 1997a). Furthermore, severing 

a cultured coronal brain slice at the cortical-striatal boundary lead to a massive 

decrease in GABAergic cortical cells, similar to the effect of knocking out the Dlxl 

and Dlx2 genes, known to be essential for ventral telencephalic neuron 

differentiation (Anderson et al., 1997b). Subsequently, a variety of elegent

28



experiments from a number of groups identified the MGE rather than the LGE as the 

primary source of cortical intemeurons. Dil application to the MGE labels 

tangentially migrating cells that express GAB A (Lavdas et al., 1999) and cells from 

the MGE and LGE have quite different properties, with transplanted MGE cells 

readily migrating into the cortex both in slice culture and adult brain (Wichterle et 

al., 1999) and in utero (Wichterle et al., 2001). Genetic manipulations that 

specifically perturb the MGE, as in the Nkx2.1 mutant, also dramatically reduce 

cortical intemeuron numbers (Sussel et al., 1999).

The MGE and the ventrally adjacent anterior endopeduncular area / anterior 

preoptic area (AEP/Poa) are also the source of tangentially migrating GABAergic 

and cholinergic intemeurons that populate the striatum, the basal ganglia derivative 

of the LGE. Again, mutants such as Nkx2.1, Mashl and Dlxl/2  affect this 

population, with Mashl and Dlxl/2 mutants affecting predominantly the early- and 

late-born intemeurons respectively (Marin et al., 2000). The AEP is also thought to 

be the source of telencephalic oligodendrocytes, a lineage that is also controlled by 

Shh-signalling (Nery et al., 2001)

Olfactory bulb intemeurons migrate from the LGE

The LGE is the predominant source of quite a different population of tangentially 

migrating cells, supplying the olfactory bulb (OB) with its juxtaglomerular and 

granule cell intemeuron populations. This migration has been known for much 

longer than tangential migrations from the MGE, because the continual supply of 

intemeurons to the OB into adulthood was highlighted in studies of adult 

proliferation (reviewed in Alvarez-Buylla, 1997; Marin and Rubenstein, 2001).

In transplantation studies, the cells of the embryonic LGE show distinct 

migratory behaviours to those of the MGE, with very few cells migrating to the 

cortex and instead migrating to the OB (Wichterle et al., 1999; Wichterle et al.,

2001). Studies of ventral telencephalon patterning mutants also reveal OB 

phenotypes; the Gsh2 -/- mouse has a massive reduction in OB intemeurons at mid- 

embryonic stages (Corbin et al., 2000; Yun et al., 2001), suggesting that the dorsal 

LGE is the primary origin of these neurons. The dorsal LGE also expresses Pax6 

(Corbin et al., 2000; Yun et al., 2001), and Er81 (Stenman et al., 2003), both of 

which mark OB neurons, while Islet1, which is found in other areas of the LGE, is 

not expressed in the OB (Stenman et al., 2003). Mashl -/- and Dlxl/2 -/- mice also
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show defects in the OB intemeuron population, predominantly affecting early and 

late-born populations respectively (reviewed in Marin and Rubenstein, 2001).

Intemeurons specified in the LGE migrate from an area just underlying the 

embryonic proliferative ventricular zone called the sub-ventricular zone (SVZ).

Cells from the LGE SVZ converge to form a continuous stream of migratory cells 

known as the rostral migratory stream (RMS; reviewed in Alvarez-Buylla, 1997), 

which enters the OB and seeds the OB SVZ with progenitor cells (Wichterle et al.,

2001). The RMS persists from early embryonic stages to adulthood, when the entire 

lateral wall of the lateral ventricle seems to contribute to the RMS (reviewed in 

Alvarez-Buylla, 1997). Cells in the postnatal RMS migrate in chains, expressing 

high levels of the cell adhesion molecule PSA-NCAM and surrounded by a sheath of 

astrocytes that seem to serve as a conduit for the migrating cells (Figure 2 in 

Alvarez-Buylla, 1997)(Chazal et al., 2000). Despite expressing neuronal markers 

such as TuJl, cells in the RMS continue to divide during migration, indicating that 

they are indeed a progenitor population (Pencea and Luskin, 2003).

The structure and origins o f the olfactory bulb

The OB is a derivative of the telencephalon and is the primary olfactory centre for 

odorant-sensing neurons in the olfactory epithelium. In mouse, the OB protrudes 

from the rostral tip of the pallium, close to the pallial-subpallial border. Evagination 

of the OB from the pallium is an Fgf-dependent process and may involve regulation 

of cell proliferation (Hebert et al., 2003). This initially evaginating OB structure is 

formed by the bulb projection neurons and is later invaded by subpallial-derived 

intemeurons (reviewed in Alvarez-Buylla, 1997).

The projection neurons of the bulb, the mitral and tufted cells, are primarily 

glutamatergic and express pallial markers such as Reelin, Tbrl and Emx2. Mitral 

cell expression of these pallial markers has been sufficient to infer their pallial 

origins in Xenopus (Moreno et al., 2003), but this has only recently been confirmed 

by cell labelling experiments in the rat telencephalon (Nomura and Osumi, 2004). 

The development of the OB, then, has many parallels with that of the cortex, with 

projection neurons and intemeurons having segregated embryonic origins.

As I have outlined above, mouse mutants where the LGE is affected also 

show defects in OB intemeuron populations. Similarly, mutations targeting dorsal 

telencephalic markers, such as Tbrl and Emx2, show defects in the mitral cell
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population as well as in the cortical projection neurons (Bulfone et al., 1998; 

Yoshida et al., 1997). What is very surprising is the seeming independence of the 

OB and the structure that innervates it, the olfactory epithelium (OE). Even in 

mouse mutants with severely compromised bulb structures, such as the Tbrl and 

Dlxl/Dlx2 knockouts, olfactory sensory neurons from the OE still project axons to 

their stereotyped positions within the bulb (Bulfone et al., 1998). Conversely, 

mutations that affect the development of the OE do not prevent development of the 

bulb. For example, both Mashl (Casarosa et al., 1999) and Dlx5 (Long et al., 2003) 

mutants still form an OB, albeit one that lacks some intemeurons (due to the actions 

of these genes in the ventral telencephalon) and despite an absence of innervation 

from the OE.

Cell migration within the zebrafish telencephalon

The tangential migration of intemeurons from the MGE to the cortex is now a very 

well-described phenomenon that is conserved between rodents and birds (Cobos et 

al., 2001a). Similarly, the tangential migration of OB intemeurons from the LGE 

has been observed in primates (Komack and Rakic, 2001; Pencea et al., 2001) and in 

birds (Cobos et al., 2001a). This type of migration obviously has the possibility of 

increasing neuronal diversity within a given brain area and may therefore be a 

mechanism conserved beyond tetrapod vertebrates.

Such migrations have yet to be described in zebrafish, but some indication 

that these migrations occur is provided by the expression of subpallial genes in the 

pallium and OB. For example, single dlx-expressing cells are seen in the dorsal 

telencephalon and OB from late embryonic stages (M.Mione, personal 

communication). This possibility needs to be further investigated and it is one of the 

main aims of my thesis to chart cell movements in the telencephalon throughout the 

period of embryogenesis to establish the origins and patterns of migratory cell 

populations.

Neuronal subtype specification within the dorsal telencephalon 

The generation of multiple neuronal subtypes is fundamental to the formation of 

functional, interacting neuronal circuits within any brain area. Populations of 

neurons must therefore be endowed with different phenotypes, whether it is in terms 

of their pathfinding capabilities and axonal projections, or their neurotransmitter and
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receptor repertoire. As I have outlined, the telencephalon uses the spatial 

segregation of different progenitor domains to specify neurons with different 

neurotransmitter phenotypes. Cell migration then serves to increase neuronal 

diversity within any given area, particularly in the dorsal telencephalon (reviewed in 

Marin and Rubenstein, 2001).

Many of the genes that are involved in the specification of pallial neurons, 

such as those of the Emx and Tbr families are expressed in broad domains over 

extended periods of embryogenesis. This absence of refined spatial and temporal 

regulation of gene expresssion raises the question of whether these genes are solely 

responsible for the observed incredible arealisation and specialisation of the 

mammalian cortex (Monuki and Walsh, 2001). The zebrafish dorsal telencephalon 

does not share the complexity of the mammalian cortex, but functional areas are 

proposed and have been identified in closely related species such as the goldfish (e.g. 

Portavella et al., 2002). It is therefore of prime importance to address the 

mechanisms that may specify neuronal subtypes within the dorsal telencephalon.

The LIM-HD family o f transcription factors 

LIM-HD structure and function

Some of the prime candidates for controlling neuronal subtype specification are 

members of the LIM-homeodomain (LIM-HD) family of transcription factors, 

factors highly conserved in organisms as diverse as Drosophila, C. elegans and 

humans. These proteins form subset of the homeodomain (HD) superfamily, a 

superfamily whose members are involved in almost every aspect of embryonic 

patterning, polarity and differentiation. The distinguishing feature of the LIM-HD 

proteins is that they contain not only a DNA-binding homeodomain, but also two 

protein-interacting LIM domains. This is in contrast to other members of the HD 

superfamily that contain at most either a short protein-interaction motif (HOX 

proteins) or DNA binding domains (POU-HD or PAX proteins) in addition to the 

homeodomain (reviewed in Hobert, 2000; Bach 2000). Another feature of the LIM- 

HD proteins is that they are widely, although not exclusively, involved in the 

development of the nervous system (Dawid and Chitnis, 2001), and in vertebrates 

particularly in the more subtle aspects of neuronal phenotype such as axon extension 

and neurotransmitter profile.
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LIM-HD proteins play instructive roles in neuronal subtype specification 

within the zebrafish CNS, especially in the spinal cord (Appel et al., 1995; Kikuchi 

et al., 1997; Segawa et al., 2001). However, almost nothing is known about the roles 

of LIM-HD proteins at more rostral levels of the CNS such as the telencephalon. A 

number of Lhx genes are expressed in the zebrafish telencephalon, including the 

genes Ihxla, lhx lb  and lhx5 (Toyama et al., 1995; Toyama and Dawid, 1997). Their 

expression patterns at early embryonic stages have been somewhat described, and 

may indicate a role in organiser function (Shawlot and Behringer, 1995; Taira et al., 

1994; Watanabe et al., 2002). However, the later embryonic and postembryonic 

expression domains of these genes are as yet poorly characterised and it is unknown 

whether they highlight specific subpopulations of neurons within the telencephalon. 

It is one of the primary aims of my work to characterise the expression patterns of 

these genes in order to be able to infer a role for them in telencephalic neuronal 

specification.

LIM-HD proteins in other species are strongly implicated in the specification 

of forebrain neuronal subtypes. For example, mouse Lhx5 seems to have a specific 

role in the morphogenesis and differentiation of the hippocampus (Zhao et al., 1999). 

A further study has postulated that combinations of LIM-HD proteins and their 

cofactors may delineate many mammalian cortical regions, although functional 

evidence for this is currently lacking (Bulchand et al., 2003). Furthermore, 

combinations of transcription factors, including members of the LIM-HD family, 

mark specific nuclei in complex brain areas from embryonic to postnatal (or 

postembryonic) stages. For example, five Lhx genes (Isll, Lhxl, Lhx2, Lhx5 and 

Lhx9) and three other genes parcellate the developing thalamus, highlighting specific 

nuclei from embryonic to postembryonic stages (Nakagawa and O'Leary, 2001). A 

similar situation exists in Xenopus, where the same patterns of Lhx gene expression 

are seen to mark functional subdivisions within the forebrain at embryonic, larval 

and adult stages (Bachy et al., 2001; Moreno et al., 2004; N. Moreno, personal 

communication).

UM-HD function requires multi-protein complexes

The key to understanding the mechanism of LIM-HD function lies within the 

structure of the protein. LIM-HD proteins can bind directly to other factors such as 

POU-HD proteins, but the majority of LIM-HD interactions are via the cofactor
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family of Ldb proteins (also called NLI/CLIM/Chip; reviewed in Bach, 2000; Figure

1.3 A). Zebrafish have four Ldb proteins, all of which are widely expressed during 

development, especially in the forebrain (Toyama et al., 1998). Ldb proteins have 

intrinsic dimerising capacity, separate from their LIM domain binding sites (Jurata 

and Gill, 1997; Jurata et al., 1998), and are therefore able to mediate interations 

between LIM-HD proteins including the formation of homomeric and heteromeric 

complexes (reviewed in Bach, 2000). Since cells often express more than one LIM- 

HD protein, the exact combination being critical for appropriate cell subtype 

specification (e.g. Appel et al., 1995; Thaler et al., 2002), it has been proposed that 

heteromeric LIM-HD complexes may underlie the so-called LIM combinatorial 

code. Recent persuasive evidence, reviewed below, indicates that this may indeed be 

the case.

LIM-HD proteins do not only form transcription-activating complexes. Via 

Ldb, they can also bind a class of LIM-domain only proteins (LMO). Complexes 

with LMO may cause transcriptional repression because of the absence of the DNA- 

binding homedomain in LMO proteins (reviewed in Bach et al., 2000; Figure 1.3 B). 

Similar to LMO, transcriptional repression may also be caused by the binding (via 

Ldb) of a LIM-HD protein with an alternatively spliced form of the same protein that 

lacks a functional homeodomain (Failli et al., 2000). Failli et al. postulate that this 

could be a method both to spatio-temporally regulate the transcriptional effects of 

Lhx9 and to add another level of refinement to the LIM-HD code. Finally LIM-HD 

proteins can form repressive complexes by binding to RLIM, which in turn recruits 

the Sin3A/histone acetylase transcriptional repressor complex (Bach et al., 1999).

The huge variety of potential binding partners for LIM-HD proteins, and 

their ablity to act in both transcriptional activation and repression complexes, 

highlights the difficulties of pinning down LIM-HD function in any given cell type. 

However, a number of researchers have been able to assess LIM-HD function in a 

variety of systems, and I will review some of the work most relevant to zebrafish 

below.

The instructive and combinatorial action of LIM-HD proteins was first 

implied by experiments in the zebrafish spinal cord. Different primary motomeuron 

subtypes express different combinations of the LIM-HD proteins Islet 1, Islet2 and 

Lhx3 (Appel et al., 1995). It had already been shown that the fate of the three 

primary motomeuron subtypes, which have different axon trajectories, could be
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Figure 1.3

Schematic diagrams showing LIM-HD protein interactions.
A shows two LIM-HD proteins in a complex with an Ldb dimer. This transcription 
activating complex can involve two identical or two different LIM-HD proteins.
B shows how the binding of a LIM-domain only (LMO) protein in place of a LIM-HD 
protein can inhibit transcription.
C shows the hexameric protein complex involved in spinal cord motor neuron 
determination as proposed by Thaler et al., 2002. Lhx3 binds to sites near the 
homeodomain of Isletl rather than in a heteromeric complex with Ldb and Isletl. 
Diagrams adapted from Hobert and Westphal, 2000 and Thaler et al., 2002.
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changed by transplantation until just before axonogenesis (Eisen, 1991). Appel et al. 

(1995) then showed that this fate change was accompanied by a change in isletl 

mRNA expression, appropriate for the new position of the transplanted motomeuron. 

Thus the MiP motomeuron, which would normally express isletl, could be induced 

to express islet2, a characteristic of the CaP/VaP neurons, and extend a CaP/VaP 

axon if transplanted to the more caudal position at least 2 hours before axonogenesis 

(Appel et al., 1995). This result indicated not only the importance of specific LIM- 

HD expression for cell subtype specification, but also the finely grained positional 

information that must exist within the spinal cord to control Lhx gene expression.

Work by members of Hitoshi Okamoto’s group investigated more closely the 

roles of the LIM-HD Islet factors in neuronal subtype specification (Kikuchi et al., 

1997; Segawa et al., 2001). They disrupted the action of Isl2 and Isl3 by 

overexpressing only the LIM domains of these two proteins, which then acted as 

dominant negative constructs. The LIMIs12 and LIMIs13 constructs overlapped in their 

effects, both affecting cell types where either Isl2 or Isl3 is expressed, including the 

primary motomeurons. However, a surprising result was that the rescue was much 

more specific, Isl2 rescuing only Isl2-expressing cell types and the same for Isl3. A 

further surprise was that overexpressing the LIM-interacting domain of Ldb, which 

should also act as a dominant negative but bind the LIM domains of all LIM-HD 

proteins, produced the same phenotype as the expression of LIMIs12 and LIMIs13 

(Segawa et al., 2001). These results highlight the surprising specificity of LEM-HD 

interactions despite extensive sequence similarities between closely-related 

members, and suggest that there may be yet more factors invoved that regulate these 

processes (Dawid and Chitnis, 2001; Segawa et al., 2001).

The confirmation that heteromeric complexes of LIM-HD proteins are 

directly responsible for cell type specification was recently shown by Thaler et al., 

(2002). In the chick ventral spinal cord, postmitotic neurons choose between V2 

intemeuron (V2 IN) and motomeuron (MN) cell fates. V2 IN’s express Lhx3 and 

Ldb, whereas MN’s express Lhx3, Ldb and Isletl (Isll). Using a variety of 

engineered fusions that brought together the functional domains of Lhx3, Ldb and 

Isll in single molecules rather than as protein complexes, the authors demonstrated 

that a 2 Ldb: 2 Lhx3 tetramer is responsible for V2 IN specification, while MN’s are 

specified by a novel 2 Ldb: 2 Isll: 2 Lhx3 hexamer (Figure 1.3 C). In the MN- 

specific hexameric complex, Isll displaces Lhx3 because of its greater affinity for
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Ldb, but Lhx3 still binds in the complex via its LIM domains to sites in Isll. 

Surprisingly, the authors found no role for homomeric or heteromeric tetramers of 

Isll or Lhx3 in MN specification, and this raises interesting questions about the 

structure and function of heteromeric complexes in other systems.

Transcriptional targets o f LIM-HD proteins

LIM-HD proteins clearly play roles in neuronal subtype specification, as outlined in 

the many examples above. However their transcriptional targets remain largely 

unknown. Recent evidence suggests LEM-HD and Ldb proteins may regulate the 

expression of F3, a cell recognition molecule expressed on axons and glia, in a 

subset of zebrafish neurons (Gimnopoulos et al., 2002). This is consistent with a 

role for LIM-HD proteins in regulating axon outgrowth and pathfinding. Other 

recent evidence suggests that downstream targets of LIM-HD proteins in spinal 

motor neurons may include the Eph/ephrin family of genes (Kania and Jessell,

2003), a family with wide-ranging roles in cell migration and axon pathfinding, 

including in the guidance of thalamocortical axons (Bishop et al., 2003).

Aims o f the work

In the course of this introduction I have outlined the present level of knowledge with 

respect to the development of the zebrafish telencephalon. Beyond the early 

induction and patterning of this brain area, very little is known about the 

morphogenesis or cell movements that shape the mature telencephalic structure. The 

process of dorsal telencephalic eversion remains particularly unexplored, yet a 

thorough description of this process is central to any comparative approach 

involving zebrafish. Furthermore, little is known about the specification of neuronal 

subtypes within the telencephalon. The broad conservation of patterning 

mechanisms gives some insight into these processes, but the specification of 

telencephalic derivatives such as the olfactory bulb has yet to be investigated.

My work therefore has three main aims:

1. To provide a detailed description of the basic processes that shape the zebrafish 

telencephalon over the entire period of embryogenesis, including morphogenesis, 

proliferation, neurogenesis and axon tract formation, and to use these observations to 

gain insight into the eversion process.
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2. To investigate the potential roles of Lhx genes in telencephalic subtype 

specification, particularly focussing on the specification of olfactory bulb cell types.

3. To use cell labelling techniques to build a picture of the morphogenetic 

movements and migrations that shape the telencephalon, with a particular focus on 

the spatial origins of the olfactory bulb.
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Chapter 2: Materials and Methods

Many of the methods described in this chapter were used throughout the practical 

work of this project; those methods are described in detail here. General zebrafish 

methods can also be found in the Zebrafish Book (Westerfield, 2000). Methods that 

apply specifically to the work of one chapter are described in the respective 

“Materials and Methods” section of the appropriate chapter.

2.1 Live embryo care

Embryos were staged according to Kimmel et al., (1995) and cared for according to 

standard protocols described in the Zebrafish Book (Westerfield, 2000). Embryos 

were grown at 28.5°C in either system water with a small amount of methylene blue 

to offset infection or in embryo medium (Zebrafish Book). To prevent pigment 

formation, 0.003% w/v Phenylthiocarbamide (PTU, Sigma) was added to the 

embryo medium from 24hpf.

Wild type embryos were generally provided by communal stocks of fish from a 

mixture of genetic backgounds, kept on a 14h/10h light/dark cycle. Spawning was 

natural and embryos were collected in mesh-lined boxes. I also used the 

Tg(HuC:GFP) line (Park et al., 2000) and the Tg(dlx4/6:GFP) line (Zerucha et al., 

2000). Embryos were dechorionated using sharpened watchmaker’s forceps.

2.2 Agarose mounting o f  live embryos

For all mounting, dechorionated embryos were anaesthetised according to the 

Zebrafish Book using tricaine (3-amino benzoic acid ethylester, Sigma) in embryo 

medium. Embryos were mounted in 1.5% low melting-point agarose (Sigma) that 

had been previously dissolved in embryo medium. Embryos for mounting were 

pipetted singly into a glass bijou bottle containing molten agarose at approximately 

37°C. They were then drawn up into a fire-polished glass pipette with excess 

agarose and expelled onto a slide or coverslip. Precise orientation of the embryos 

was performed within 30 seconds using a blunt tungsten needle.

For imaging procedures, live embryos were usually mounted in agarose on a 

coverslip and surrounded by either a ring of silicone grease (RS, Oxford) or a glass
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ring (Fisher). The well was then filled with embryo medium/tricaine into which 

water immersion lenses were directly dipped.

2.3 DNA and RNA microinjection

Embryos from natural spawnings were collected and injected from the 1- to 4-cell 

stage according to guidelines in the Zebrafish Book. Briefly, micropipettes were 

pulled from borosilicate glass capillaries (with filament) on a horizontal 

Flaming/Brown micropipette pulier (model P-87, Sutter Instrument Co.), producing 

micropipettes with a long, fine, sealed tip. Micropipettes were backfilled with l-2(xl 

DNA or RNA solution, made up in Danieau buffer (Zebrafish Book), and the very 

tip of the micropipette was broken off such that a short (< 0.5 second) puff from the 

Picospritzer (General Valve Corporation) would dispense a drop approximately 

100 pm in diameter.

Embryos were laid, in their chorions, along the edge of a glass slide glued to 

the inside of a petri dish lid. Excess liquid was removed so that the meniscus held 

the embryos along the slide. Embryos were then injected through the chorion, 

directly into a single blastomere with minimum disruption to the underlying yolk. 

Following injection, embryos were transferred to embryo medium and grown at 

28.5°C.

2.4 Preparation o f DNA

Plasmid DNA was introduced into XLl-blue/ DH5a strains of E.coli using a 30 

second heat shock at 42°C. After overnight growth at 37°C on LB Agar plates with 

lOOpg/ml ampicillin (Sigma), single colonies were picked and innoculated into mini 

cultures of 2-3ml of LB with lOOpg/ml ampicillin and grown overnight. Plasmid 

DNA was prepared from individual cultures using Qiagen miniprep kits (Qiagen), 

and eluted from the column with lOmM Tris-Cl, pH 8.5.

Larger scale midi- and maxipreps of plasmid DNA were performed using Promega 

kits with standard protocols (Promega). The final concentration of plasmid DNA 

was established by spectrophotometry at 260/280nm and adjusted to lpg/pl with 

ultrapure H2O, before being stored at -20°C.

2.5 Preparation o f  synthetic mRNA

All solutions and tips should be DNase/RNase-free
40



1. Linearise construct with appropriate enzyme to include polyA sequence in the 

transcript

2. Purify linearised DNA using Qiagen Quickspin columns. Elute in 30pi lOmM 

Tris-Cl, pH 8.5

3. Using Mmessage machine kit (SP6; Ambion), make up transcription reaction 

with lpg DNA, 2pi lOx buffer, lOpl 2x dNTP’s, 2pl enzyme in a total volume of 

20pl

4. Incubate at 37°C for 2 hours; add 2pl DNase and incubate for a further 30’

5. Add 30pl H2O to the reaction

6. Add 50pl phenol-chloroform; mix, spin at 13K rpm for 2’; remove and save top 

layer

7. Prepare Sephadex G50 column by vortexing and then spinning for 1 * at 2K rpm; 

load top layer onto top of column and spin for 2’ at 2K rpm

8. Add 50pl 5M NH4OAC to column eluate

9. Add 200pl 100% EtOH; vortex; leave at -20°C for at least 2 horns

10. Spin at 13K rpm for 30’ to pellet RNA

11. Wash pellet with 70% EtOH and spin at 13K rpm for 10’

12. Remove all liquid and air-dry pellet; resuspend in 20pl RNase-free H2O

2.6 Preparation o f  probes for in situ hybridisation

1. Linearise construct with the appropriate enzyme for making antisense probe. 

Digest mix is lOpl DNA at lpg/pl, 1.5pl enzyme, 4pl lOx enzyme buffer in a total 

volume of 40pl. All enzymes from Promega

2. Digest DNA for 2 hours at 37°C

3. Purify linearised DNA using a Quickspin purification column (Qiagen). Elute in 

30pl lOmM Tris-Cl, pH 8.5.

4. Make up probe synthesis/labelling mix: 11.5pl H2O, 3pi linearised DNA 

template, 5 pi 5x polymerisation buffer, 1 pil 0.1M DTT, 0.5pi RNasin (Promega), 2pl 

DIG or FITC labelling mix (Roche), 2pl polymerase (T7 or T3; Promega).

5. Run reaction for 2h at 37°C. Add 2pl DNase and incubate for a further 30 

minutes
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6. Spin a Mini Quick Spin RNA purification column (Roche) for 2 minutes at 2K 

rpm. Load entire reaction mixture onto column matrix and spin for 4 minutes at 4K 

rpm.

7. Add 40pl deionised formamide (Sigma) to the eluate and freeze at -80°C.

8. Run a small aliquot on gel to verify probe size and quality

2.7 In situ hybridisation

Clean solutions are DNase/RNase free.

Hybridisation solution (all reagents from Sigma): 25ml Formamide, 3.25ml 20xSSC 

pH 5.0 with citric acid, 0.5ml 0.5M EDTA pH 8.0, 25pl Torula yeast RNA 

lOOpg/ml, 1ml 10% Tween-20, lOOpl Heparin (sodium salt) 50pg/ml, made up to 

50ml with RNase-free water.

1. Fix in 4% PFA made up in clean PBS overnight at 4°C

2. Wash embryos in clean PBS

3. Dehydrate embryos through 25%/50%/75% MetOH/PBS and store at -20°C for 

up to one month.

4. Rehydrate embryos through 75%/50%/25% MetOH/PBS; 5 mins each step

5. Wash embryos 2 x 5  mins in clean PBTw (PBS+0.5% Tween-20)

6. Digest embryos with 10 pg/ml Proteinase K (Roche) in PBTw (10 pg/ml is lx 

concentration; stock is usually 10-15 mg/ml). Times can vary from 2 minutes in lx 

ProK (24hpf) to lhour in lOx ProK (5dpf); each batch of enzyme should be tested

7. Wash embryos briefly in PBTw

8. Post-fix for 20 mins in 4% PFA at room temperature

9. Rinse and wash once with PBTw

10. Rinse once with 50% PBTw/50% Hyb mix. Let embryos settle

11. Incubate in 100% Hyb mix at 65°C for at least 1 hour

12. Add pre-warmed probe in fresh Hyb solution to embryos and incubate overnight 

at 65°C. Amount of probe needed varies widely, but is usually lpg per tube (400pl 

hyb).

All hyb and SSC washes should be at 65°C; heat solutions in the waterbath

13. Rinse twice with pre-warmed Hyb solution

14. Wash 2 x 30 mins with Hyb solution
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15. Wash in 75%Hyb, 25% 2xSSC, 50%Hyb, 50% 2xSSC, 25%Hyb, 75% 2xSSC; 5 

mins each.

16. Wash 10 mins in 2xSSC

17. Wash 30 mins 0.2xSSC

18. Wash in lOmM PIPES 0.5M NaCl for 5 mins

19. RNase treatment (if necessary): 10 pg/ml RNase A (Sigma), lp l RNase T1 

(Sigma) in 5ml PIPES/NaCl

20. Wash in PIPES/NaCl

21. Wash in MAB for 5 mins

22. Incubate in MAB + 2% Boehringer Block reagent for at least lhr

23. Incubate overnight at 4°C in fresh MAB+block with appropriate antibody - anti- 

DIG AP (Roche) 1:5000; anti-FLU AP (Roche) 1:2500

24. Wash in MAB for 6 x 30 mins

25. Wash 3 x 5  mins in buffer for appropriate colour reaction, and perform colour 

reaction

NBT/BCIP (blue/purple):

Tris-HCl, pH9.5 2.5ml of 2M

MgC12 2.5ml of 1M

NaCl 1ml of 5M

Tween-20 0.5ml of 10%

Make up to 50ml with P water

Colour reaction: 5ml AP buffer + 15pl 

NBT (75mg/ml) + 17.5pl BCIP 

(50mg/ml)

26. Wash in PBTw, and add 1 drop 0.5M EDTA to stop reaction. Do not do this for 

double in situs.

27. Dehydrate in MetOH: 25%/50%/75% and rehydrate. This may intensify staining 

and reduce background, especially in the yolk

28. Post-fix in 4% PFA for 20 mins at room temperature

29. Dehydrate into 70% glycerol with PBS and store at 4°C

FastRed (pink/red; also fluorescent) 

Tris-HCl, pH8.2-8.5 2.5ml of2M  

MgC12 2.5ml of 1M

NaCl lml of 5M

Tween-20 0.5ml of 10%

Make up to 50ml with P water

Colour reaction: 2ml AP buffer + 1 

FastRed tablet (Roche). Filter with 

0.2pm syringe filter before use
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2.8 Double in situ hybridisation

Localising two transcripts simultaneously involves labelling two different probes 

with DIG and FITC respectively. These are hybrisdised at the same time but then 

detected separately, both with alkaline phosphatase-conjugated antibodies with 

different coloured substrates - NBT/BCIP (blue) and Fast red (red/pink). The 

stronger probe is usually labelled with FITC and detected with Fast Red substrate, 

but this can be varied.

The double in situ hybridisation protocol is carried out as detailed in the protocol 

above, except that both probes (DIG and FITC-labelled) are hybridised at the same 

time (step 12). Then following the first colour reaction (step 25):

1. Rinse in PBT but DO NOT add EDTA

2. Inactivate the AP in 0.1 M glycine pH 2.2 in PBS for 10 minutes -  no longer

3. Rinse 5 x 5  mins in PBT. It is very important to remove all of the glycine

4. Incubate 15 mins in 2% Boehringer block in MAB

5. Incubate overnight with second antibody diluted appropriately in 2% block in 

MAB

6. Follow steps 24-29 from above protocol.

2.9 In situ hybridisation followed by antibody labelling

For in situ hybridisation followed by antibody labelling, follow single in situ 

hybridisation procedure to step 25. Then:

1. Following in situ revelation step, rinse well in PBTw. Do not add any EDTA if 

secondary antibody to be used is an enzyme conjugate (e.g. -HRP, -AP)

2. Refix in 4% PFA for at least 20 minutes

3. Incubate in blocking solution of 10% NGS (Sigma) in PBTw for 1 hour

4. Incubate in primary antibody in 1% NGS/PBTw overnight at 4°C

5. Wash 6 x 20 minutes in PBTw

6. Incubate in secondary antibody in 1% NGS/PBTw overnight at 4°C

7. Wash 6x20 minutes in PBTw. For fluorescent secondary antibodies the protocol 

is finished.

8. For DAB staining, follow antibody labelling protocol (below) from step 12

9. Postfix embryos in 4% PFA, wash and store in PBS
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2.10 Antibody labelling

A standard antibody labelling protocol was used for all antibodies apart from anti- 

BrdU, described in the next section. All washes and incubations were either in 1.5ml 

microtubes (Merck), 4- or 24-well plates (Nunclon) or 7ml plastic universal tubes.

1. Fix embryos in 4% Paraformaldehyde (PFA, Sigma) in lx  PBS (phosphate- 

buffered saline) overnight at 4°C if younger than 48hpf

Fix embryos in 2% Trichloroacetic acid (TCA, Sigma) for 3 hours at RT if 48hpf or 

older

2. Wash 3 x 5  minutes in PBTr (PBS + 1% Triton X-100 (Sigma))

3. Permeabilise embryos if older than 24hpf. Prechill trypsin solution on ice (0.25% 

trypsin (Sigma) in PBS).

Incubate the embryos in this solution on ice for 5-10 minutes. Older embryos may 

need longer time and time of incubation also depends on sensitivity of the antibody. 

Each batch of trypsin can be different so titration is often necessary upon first use.

4. Wash 5 x 5  minutes in PBTr.

5. Wash in 10% normal goat serum (NGS; Sigma) in PBTr for 1 hour at room 

temperature.

6. Incubate embryos in primary antibody +1%  NGS in PBTr overnight at 4°C.

The concentration of primary antibody depends on the individual antibody.

7. Wash 4-5 x 20 minutes with PBTr.

8. Block endogenous peroxidase if using a peroxidase-conjuagated secondary 

antibody:

Wash 1 x 5  minutes in 50% methanol/PBS 

Wash 1 x10  minutes in 100% methanol

Incubate in methanol/peroxide for 10 minutes at room temperature, (1ml 

methanol/ 50pl 6% H2O2).

Wash 5 minutes 50% methanol/PBS.

9. Wash 5 minutes in PBTr.

10. Incubate in secondary antibody +1%  normal goat serum in PBTr overnight at 

4°C or for 4 hours at room temperature.

11. Wash for 6-8 x 15 minutes in PBTr.

If using fluorescent secondary this is the end of the procedure.

45



12. If developing embryos with Diaminobenzoic acid (DAB; Sigma) then prepare a 

dilute potassium permanganate solution and keep to one side in case of spillages of 

DAB.

13. Develop embryos in DAB (1 tablet (10mg;) per 12ml PBS). Incubate embryos 

in this for 10 minutes.

14. Start reaction by adding l-2pl 6% H2O2 per 3 ml of DAB solution. Monitor 

reaction under dissecting microscope.

15. End reaction by transferring embryos back to PBS.

16. Refix embryos in 4% PFA for 20 minutes.

17. Store in either PBS or 30% glycerol until imaging.

2.11 BrdUpulse labelling

1. Make up BrdU at a working concentration of l-2mg/ml in embryo medium with 

15% dimethyl sulfoxide (DMSO, Sigma).

2. Take embryos through washes of 5%, 10% and 15% DMSO in embryo medium, 

allowing the embryos to equilibrate at each step (approximately 3 minutes).

3. Place embryos in the petri dish with the solution containing BrdU and place dish 

on ice for 20minutes.

4. Wash embryos back into embryo medium until fixation or further manipulation. 

Detection o f  the BrdU signal

1. Fix in 4% Paraformaldehyde (PFA) for at least 24h at 4°C

2. Wash in PBS

3. Dehydrate embryos through a methanol series into 100% MeOH for at least lhr at 

-20°C. Embryos can be stored like this for several weeks.

4. Rehydrate embryos through PBS/MeOH series back into PBS.

5. Wash in PBS 2 x 5  minutes.

6. Permeabilise embryos in 10 (Ag/ml proteinase K (Roche) for 20-40 minutes if 

older than 10 hpf.

7. Rinse in 2 mg/ml glycine (Sigma)/ PBS 2-3 times.

8. Rinse in PBS 3-4 times.

9. Re-fix in 4%PFA for 30-60 minutes.

10. Rinse in H2O 3-4 times.
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11. Incubate in 2N HC1 for lhr (8.6ml stock/50ml (IH2O) at room temperature. It is 

important to make this 2N solution up fresh each time.

12. Wash in PBTr 3-4 x 5 minutes

13. Block in 2% normal goat serum in PBTr for 1 hr at room temperature

14. Incubate in primary antibody (anti-BrdU, 1:200, Sigma) at least overnight at 

4°C.

15. Wash in PBTr 6-8 x 15minutes

16. Incubate in secondary antibody overnight.

17. Wash off secondary antibody by 6-8 x 15 minutes PBTr. If  revealing secondary 

antibody using DAB then follow antibody labelling protocol from step 12.

18. Refix for about 24 hrs prior to dissection.

2.13 Image acquisition

A variety of microscope systems were used during the course of this project. DIC 

images of non-fluorescent in situ hybridised and immunolabelled specimens were 

taken on an upright Nikon microscope, with a Micropublisher digital camera (Q 

imaging) run by Openlab 3.1.4 software (Improvision, UK). Epifluorescence and 

DIC imaging of live specimens was carried out on a Zeiss Axioplan 2 microscope, 

with water immersion lenses. Images were captured with a Hammamatsu Orca-ER 

digital camera run by Openlab 3.1.4 software (Improvision, UK). Confocal imaging 

of fluorescent specimens was carried out on Leica microscopes running Leica 

software.

2.14 Image processing

Fluorescence images from confocal microscopy were processed using the freely- 

available NIH image vl.63 software (http://rsb.info.nih.gov/nih-image/Default.html) 

to assemble and project stacks of images. ImageJ vl.32 software 

(http://rsb.info.nih.gov/ij/) was used to create red/green overlays. Adobe Photoshop 

7 was used to create fluorescence/DIC overlays, and for general image adjustment. 

Figures were prepared in Adobe Illustrator 10.
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3.1: Aim and Introduction

The zebrafish brain is a relatively little-studied structure compared to that of the 

mouse and chick. The telencephalon, the area of the brain that in mammals gives 

rise to the cerebral cortex and basal ganglia, is among those structures that remain to 

be explored. We have substantial insight into the induction and early patterning of 

this brain region (reviewed in Wilson and Houart, 2004), and also some information 

about the structure and connectivity of the adult brain e.g. (Rink and Wullimann, 

2001; Wullimann and Rink, 2002). However, particularly lacking is a study of how 

basic characteristics of the telencephalon such as proliferation, differentiation and 

connectivity change over the period of embryogenesis. This information is essential 

for developing a comprehensive model of telencephalic development and will 

provide the basis for more functional experiments in the future.

Morphogenesis o f the zebrafish telencephalon

The morphogenesis of the forebrain is a complex process (reviewed in (Wilson and 

Houart, 2004)). During the patterning of the neural plate at gastrulation stages, the 

telencephalon is the most rostrally-located of all the forebrain subdivisions, with 

ventral telencephalic precursors lying anterior to dorsal telencephalic precursors 

(Whitlock and Westerfield, 2000). However, as hypothalamic precursors move 

anteriorly, splitting the eye fields, and under the telencephalic anlage (Varga et al., 

1999), the telencephalon becomes a dorsal rather than rostral structure in the neural 

tube. A variety of fate-mapping experiments indicate this is the case for species as 

diverse as Xenopus, turtle, chick and mouse, leading Fernandez et al. to conclude 

that the telencephalic vesicle derives from the dorsal aspect of the prosencephalic 

(forebrain) vesicle (Fernandez et al., 1998). This distinguishes the telencephalon 

from more caudal brain areas, which are formed as transverse segments of the neural 

tube, and has implications for the patterning and morphogenesis of this brain area.

The early morphogenesis of the telencephalon has been somewhat described 

(Wilson et al., 1990). The optic recess (OR) is the point from where the optic cups 

evaginate from the rest of the forebrain, and is taken to be the anterior-ventral limit 

between the telencephalon and the hypothalamus. The ventricular space that leads 

into the OR, strictly the third ventricle, then becomes the structure delimiting the
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telencephalon from the diencephalon (Wilson et al., 1990). The ventricular space is 

continuous between the telencephalon and diencephalon. A feature also evident 

between ldpf and 2dpf is the ventral flexure in the brain, caudal to the hypothalamus 

and rostral to the midbrain (Ross et al., 1992; Wilson et al., 1990). Subsequent 

studies have shown that the ventral flexure causes a kink in the longitudinal axis of 

the brain eventually reorienting forebrain expression domains almost 90° relative to 

the original brain axis (Hauptmann and Gerster, 2000; Hauptmann et al., 2002).

Pallial and subpallial divisions within the zebrafish telencephalon 

The prosomere theory proposes that subdivisions analogous to the well-characterised 

hindbrain segments (Lumsden and Keynes, 1989) are present in the forebrain and 

can be defined by gene expression domains. At its inception, the prosomere theory 

was applied to all forebrain regions including the telencephalon (Puelles and 

Rubenstein, 1993), but the recently revised model proposes only three diencephalic 

prosomeres -  the pretectum, thalamus and prethalamus (Puelles and Rubenstein, 

2003). However, the telencephalon is not without its subdivisions; a highly 

conserved feature of the telencephalon across species is its division into subpallial 

(ventral) and pallial (dorsal) regions (Fernandez et al., 1998; Puelles et al., 2000). 

These divisions have functional relevance, the subpallium giving rise to the basal 

ganglia and the pallium to the cerebral cortex and other associated structures in 

mammals.

The zebrafish telencephalon can also be divided into pallial and subpallial 

regions, based primarily on the expression of conserved genes such as emx 

(Kawahara and Dawid, 2002; Morita et al., 1995), tbrl and eomesodermin (Mione et 

al., 2001) and reelin (Costagli et al., 2002) in the pallium, and the dlx genes 

(Akimenko et al., 1994; Zerucha et al., 2000) and nk2.1b (Rohr et al., 2001) in the 

subpallium. However, unlike the morphologically evident ganglionic eminences that 

mark the subpallium in mammals (for review see Wilson and Rubenstein, 2000), 

there are no obvious morphological subdivisions between pallial and subpallial areas 

in zebrafish. Some researchers use cell morphology to infer the subdivisions (e.g. 

(Wullimann and Rink, 2002), but this has not been extensively backed up by gene 

expression analysis. In fact, a rigorous analysis of zebrafish pallial and subpallial 

areas over the entire period of embryogenesis is not present in the literature.
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The zebraflsh dorsal telencephalon is everted

The actinopterygian (ray-finned) fish-specific process of eversion further hampers 

understanding of zebrafish telencephalic development. Eversion is contrasted with 

the much more widely-employed evagination of the telencephalic vesicles. In an 

evaginated telencephalon, dorso-medial structures in the neural tube remain dorso- 

medial following evagination, while the telencephalic vesicles bulge out laterally 

(Butler, 2000; Butler and Hodos, 1996). In contrast, in an everted telencephalon, 

dorso-medial structures in the neural tube become relocated to lateral positions. The 

right and left sides of the dorsal telencephalon therefore form laterally turned out 

“flaps”, with the proliferative VZ on the dorsal surface.

Eversion is thought to occur during embryogenesis, but almost no description 

of this process exists beyond some proliferation data discussed below (Wullimann 

and Knipp, 2000). Models such as the one in Figure 1.1 A, and Butler (2000) are 

instead derived from adult telencephalic morphology, interpolating between the 

starting point of the neural tube and the end point of the adult telencephalon. The 

events that occur in between are currently purely speculative.

Adressing the issue of eversion is therefore critical for any comparative 

approach to studying telencephalic development. Recent evidence suggests that 

functional areas of the zebrafish telencephalon are quite conserved between everted 

and non-everted species (Wullimann and Rink, 2002), suggesting the dramatic 

topological eversion illustrated in Fig 1.1 A may not present an accurate picture of 

eversion. However, until there is a more detailed study of the eversion process this 

issue will remain unresolved.

Proliferation and differentiation in the zebrafish telencephalon 

Patterns of proliferation through and beyond embryogenesis have been partially 

described in work by Mario Wullimann. He used PCNA, a relatively crude marker 

of proliferating cells because of its persistance in postmitotic cells, to look at 

proliferation between 1 and 5dpf (Wullimann and Knipp, 2000; Wullimann and 

Puelles, 1999). Unfortunately, with only limited data presented for each timepoint, it 

is difficult to establish a complete picture of proliferation in this complex and 

dynamic 3-dimensional brain area. But broadly speaking, proliferation is restricted 

to the ventricular zone (VZ) and he defines further pallial and subpallial areas where 

proliferation is particularly focussed (Wullimann and Knipp, 2000). In addition,
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Wullimann reports that an everted dorsal telencephalon is apparent by 48hpf, as 

evidenced by PCNA +ve profiles on what he labels as the dorsal surface of the 

telencephalon (Wullimann and Knipp, 2000). Certainly by 5dpf, PCNA +ve profiles 

are evident over the entire medio-lateral surface of the dorsal telencephalon, 

indicating an everted telencephalon (Wullimann and Puelles, 1999).

Neurogenesis in the zebrafish telencephalon has also been somewhat 

described although mostly at early embryonic stages. The first neurons to form in 

the telencephalon are in the ventral telencephalon and are called the dorsorostral 

cluster (drc; to distinguish them from the ventrorostral cluster in the anterior 

diencephalon; Easter et al., 1992; Ross et al., 1992). The neurons of the drc are 

marked at 16hpf by immunoreactivity for acetylcholine esterase (Ross et al., 1992) 

and HNK-1 (Macdonald et al., 1994), and by 17hpf they extend axons that cross the 

boundary between the telencephalon and diencephalon, pioneering the supraoptic 

tract (Chitnis and Kuwada, 1990).

The early axon scaffold

In conjunction with studying neurongenesis, members of the Easter and Kuwada labs 

characterised the early axon tracts and commissures of the zebrafish brain to further 

investigate its development and connectivity (Chitnis and Kuwada, 1990; Wilson et 

al., 1990). Overall the 24hpf brain contains a very simple scaffold of tracts and 

commissures, with the telencephalon containing only two tracts and one 

commissure. The commissure is the anterior commissure (AC) that lies just anterior 

to the optic recess and the tract of the anterior commissure (TAC) is the fasciculated 

bundle of telencephalic axons that feeds into it. The other telencephalic tract is the 

supraoptic tract that crosses from the telencephalon to the diencephalon, initially 

carrying only telencephalic efferents including the first axons of the drc neurons 

(Chitnis and Kuwada, 1990; Wilson et al., 1990).

At 24hpf, axons are also seen invading the dorsal telencephalon from the 

olfactory placode (Chitnis and Kuwada, 1990; Wilson et al., 1990). These are the 

axons of pioneer neurons in the placode, pathfinding for the axons of olfactory 

sensory neurons that enter the telencephalon at around 48hpf (Whitlock and 

Westerfield, 1998). The area of the telencephalon innervated by the olfactory 

neurons is or will become the olfactory bulb (OB), the primary receptive field for 

olfactory information. By 48hpf, axons labelled from the olfactory epitheluim
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terminate in distinctive glomeruli within the telencephalon (Wilson et al., 1990), 

suggesting the beginnings of a differentiated OB. Indeed, more recent studies show 

that by 3.5dpf, a nascent form of the stereotyped glomerular map found in the adult 

OB is apparent (Dynes and Ngai, 1998). Although the OB forms within the 

telencephalon, by adult stages the bulbs are located at the rostral tip of the brain, 

segregated from the rest of the telencephalon (Wullimann and Rupp, 1996). The 

development of this brain area will be addressed in detail in Chapter 5.

Axon tracts coincide with domains o f regulatory gene expression 

The forebrain can be divided into longitudinal and transverse domains according to 

the expression patterns of a variety of genes, but this is much more apparent in the 

diencephalon than in the telencephalon (Hauptmann and Gerster, 2000; Hauptmann 

et al., 2002). Furthermore, axon tracts and commissures and the neuronal 

populations that pioneer them are often aligned with domains of regulatory gene 

expression (Hjorth and Key, 2001; Macdonald et al., 1994; Wilson et al., 1997). 

Especially well studied is the commissure region of the anterior telencephalon and 

diencephalon. The optic recess is flanked by the AC on the telencephalic side and 

the postoptic commissure (POC) on the diencephalic side, and local activity of 

regulatory gene expression in domains flanking the commissures is required for their 

formation. The regulatory genes include members of the Eph/ephrin family, netrinl 

and netrin2,pax2.1 and shh (reviewed in Wilson et al., 1997) and robo2 (Hutson and 

Chien, 2002).

The requirement of these regulatory genes for commissure formation is 

supported by the identification of a number of loss-of-function mutants with 

forebrain commissure defects. The noi (pax2.1) mutant shows aberrant crossing of 

commissural axons between the AC and POC as well as retinal axon pathfinding 

defects (Macdonald et al., 1997). The ace (fgf8) mutant also shows severe 

commissure defects, with AC and POC axons wandering between the two 

commissures in the optic stalk territory (Shanmugalingam et al., 2000). Optic axons 

are also severely affected in ace where they cross the midline at the optic chiasm. 

These phenotypes may be attributable to the loss or mis-specification of midline 

cells, as evidenced by the disruption of many midline gene expression domains in 

ace (fgf8) (Shanmugalingam et al., 2000). Finally the astray(robo2) mutant shows 

pathfinding and error correction defects particularly in retinal axons navigating the
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optic chiasm (Hutson and Chien, 2002). The Robo ligands Slit2 and Slit3 are 

expressed in tissue flanking the chiasm, and the inability of astray axons to sense 

this signal seems to be the origin of their pathfinding defects.

Aim o f this chapter

The aim of this chapter is to broadly characterise the development of the 

telencephalon in terms of its morphogenesis, regionalisation, proliferation, 

differentiation and connectivity over the entire period of embryogenesis. Covering 

the period from early embryonic (ldpf) to early postembryonic (5dpf) stages allows 

me to follow the dynamics of telencephalic development and leads me to propose a 

new model for the eversion process.
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3.2: Materials and Methods

Fish lines

In addition to various wildtype strains, the Tg(HuC:GFP) (Park et al., 2000) and 

Tg(dlx4/6:GFP) (Zerucha et al., 2000) transgenic lines were used in the experiments 

in this chapter.

Bodpiy labelling

Bodipy 505/515 is a simple fluorophore that permeates cell membranes and binds to 

yolk platelets in the cell cytoplasm of zebrafish embryos (Cooper et al., 1999). The 

fluorophore stains the cytoplasm selectively when imaged on the confocal 

microscope giving contrast between the stained cytoplasm and unstained nuclei and 

interstitial space.

All Bodipy dyes were made up in 100% DMSO at a concentration of 100 pM and 

stored at -20°C. Embryos were labelled in their chorions from the tailbud (lOhpf) 

stage at a final concentration of 5pM of the Bodipy dyes in embryo medium. 

Embryos were washed 2-3 times in embryo medium before being imaged. Bodipy 

dyes are not fixable and hence can only be used on live tissue.

DU labelling o f the olfactory projection

Projections from the olfactory epithelium were labelled in live zebrafish at 5dpf 

following the method of Dynes and Ngai (1998). Briefly, a solution of 2mg/ml Dil 

(Molecular Probes) in 95% ethanol, 5% dimethyl formamide (Sigma) was diluted 

1:1000 in embryo medium (Zebrafish Book). Embryos were incubated in this 

solution for 20 minutes at 28.5°C followed by several rinses in embryo medium. 

Embryos were left for 1 hour for the Dil to label the projections, before being fixed 

and dissected for epifluorescence imaging on a Zeiss Axioplan2 microscope with a 

x40 water immersion objective.
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Kaede RNA injection

Kaede is a green fluorescent protein derived from a stony coral species(Ando et al.,

2002). Kaede RNA was synthesised as described in section 2.5 from a pCS2-Kaede 

construct kindly provided by Dr Atsushi Miyawaki and amplified using conventional 

maxiprep methods (section 2.4). A Notl site was used to linearise the construct for 

in vitro transcription with SP7 polymerase (section 2.5). Synthesised RNA was 

purified by phenol chloroform extraction and precipitation (section 2.5), and the 

pellet resuspended in Danieau buffer (The Zebrafish Book) to give a working 

concentration of 50ng/pl for microinjection.

Embros were injected at the 2-8-cell stage to give chimeric labelling as described in 

section 2.3.

Immunolabelling

Immunolabelling was performed as described in section 2.10. The following 

antibodies were used -  anti-acetylated a-tubulin (Sigma) followed by anti-mouse 

IgG Alexa 488 (Molecular Probes), and anti-GFP (Upstate Biotech) followed by 

anti-rabbit IgG Alexa 488 (Molecular Probes). BrdU labelling was performed as 

described in section 2.11 and detected as described in section 2.12. The primary 

anti-BrdU antibody (Sigma) was followed by an anti-mouse IgG Alexa 568 

secondary antibody (Molecular Probes). The HuC:GFP signal was imaged without 

any antibody labelling.

Imaging

Fixed and stained embryos were dissected using fine watchmaker’s forceps and 

microsurgical blades (John Weiss), and the skin was removed where possible. 

Dissected specimens were mounted on slides, coverslipped and the slides sealed with 

nail varnish before imaging. Image acquisition and image processing were carried 

out as described in sections 2.13 and 2.14.
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3.3: Results

External morphology o f the telencephalon

My investigations into the telencephalon began with simple observations of brain 

structure at a variety of stages from 24hpf to 5dpf (Fig 3.1), extending previous work 

by Wilson et al., (1990). One of the most obvious features of the telencephalon is its 

boundary with the diencephalon, marked initially by the optic recess (OR). The 

ventricle leading into the OR highlights the entire ventral and medial surface of the 

telencephalon. This ventricle, which begins to form at 16hpf, is expanded and more 

clearly seen at 24 and 36hpf (Fig 3.1 A and B). At 48hpf, the ventricle continues to 

delimit the telencephalon, particularly at the dorso-posterior border with the 

diencephalon (Fig 3.1 C). Beyond 48hpf the ventricle becomes less evident, and at 3 

and 5dpf, a morphological boundary within the brain tissue itself seems to indicate 

the border between telencephalon and diencephalon (Fig 3.1 D and E).

Another feature that is immediately obvious, and is central to understanding 

anatomical descriptions, is the previously described ventral flexure of the brain 

(Wilson et al., 1990; Hauptmann and Gerster, 2000; Fig 3.1). This flexure takes 

place between late somitogenesis stages (19hpf) and 36hpf, and distorts the alar- 

basal boundary of the neural tube so that it is no longer horizontal (Hauptmann and 

Gerster, 2000). The telencephalon, first recognisable morphologically as a dorsally- 

located structure in the neural tube becomes a rostrally-located structure. 

Consequently, the telencephalon becomes reoriented almost 90° with respect to the 

longitudinal axis of the rest of the brain. Surfaces of the telencephalon that were 

dorsal, become anterior (rostral) relative to the rest of the brain. However, the point 

of flexure lies outside the telencephalon, between the expanding hypothalamus on 

the ventral side and the expanding midbrain (especially the optic tectum) on the 

dorsal side. It is therefore logical to maintain the dorso-ventral and antero-posterior 

axes consistent with their positions at somitogenesis stages (Hauptmann and Gerster, 

2000, 2002). The axes are indicated in Fig 3.1 for stages up to 48hpf; beyond this 

point orientation within the telencephalon is not discemable without further 

labelling.
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Figure 3.1: Brain morphology 24hpf to 5dpf

A-E are DIC images of fixed, fully dissected specimens at the stages indicated; A ’- 
E’ are outlines of the same specimens. All scale bars represent 100p,m. In A’ and 
B’ red arrowheads indicate the point of ventral flexure and in A ’-C’ blue arrowheads 
indicate the position of the telencephalic roof.
Anterior-posterior and dorso-ventral axes are indicated as compass points, but refer 
only to the orientation of the telencephalon.

F is an outline drawing of an adult zebrafish brain taken from Wulliman (1996).

AC -  anterior commissure 
E -  epiphysis 
hy -  hypothalamus 
OB -  olfactory bulb 
t/tel -  telencephalon 
v - ventricle
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A final observation that can be made from unstained fixed tissue is the 

position of the olfactory bulb (OB) at 5dpf (Fig 3.1 E). This structure lies within the 

telencephalon at 5dpf and is telencephalically derived. However, by adult stages, the 

paired olfactory bulbs lie outside the telencephalon, forming the most rostral part of 

the CNS (Fig 3.1 F). The embryonic development of the OB will be addressed in 

detail in Chapter 5.

Early organisation o f the neuroepithelium

I used confocal microscopy to analyse the structure of the telencephalic 

neuroepithelium. Cells in living embryos were visualised either with the fluorescent 

protein Kaede (see Chapter 5; Ando et al., 2002) or with the vital dye Bodipy 

505/515 that labels the cytoplasm of all cells (e.g. Cooper et al., 1999). These 

techniques enabled examination of both individual cell morphology and at 

morphology of the tissue as a whole.

At 16hpf the CNS has the form of a solid neural rod, in contrast to other 

vertebrates where primary neurulation directly generates a neural tube enclosing 

ventricular space. The neural rod is devoid of ventricular space and is comprised of 

cells with an elongated neuropithelial morphology (Lyons, 2003; Fig 3.2 A and B). 

As in all vertebrates (and as at other levels of the zebrafish neuraxis), cell division is 

restricted to the ventricular surface that in the neural rod equates with the midline 

seam. Neuroepithelial cells therefore undergo interkinetic nuclear migration 

between the midline and pial surfaces (data not shown). At about 16hpf, the first 

signs of a border between the telencephalon and diencephalon are visible as the OR 

and ventricular space begin to form. This is more evident ventrally (Fig 3.2 B) than 

dorsally (Fig 3.2 A).

Between 16hpf and 24hpf the ventricle opens up substantially, with the 

border of the telencephalon and diencephalon positioned at the point where the 

ventricle is most expansive. Also at 24hpf, the right and left sides of the 

telencephalon become separated as the ventricle enlarges, remaining closely apposed 

only in dorsal areas (Fig 3.2 C and D). However, the telencephalic and diencephalic 

neuroepithelium are still continuous. At this stage neurons become visible at the pial 

surface of the telencephalon, forming a distinct mantle layer. The axons of these 

neurons, although not visible in these figures, will extend over the lateral surface of 

the brain in the neuropil of the marginal zone. The mantle zone is more extensive at
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Figure 3.2: Structure of the forebrain neuroepithelium

All figures show single confocal sections; A-D and F show horizontal sections, 
anterior to the bottom, E a sagittal section. All figures except E show embryos 
mosaically expressing Kaede RNA; E shows an embryo labelled with BODIPY 
505/515. All scale bars are 50pm.
A and B show two horizontal sections through the same 15ss (16hpf) embryo; A is 
more dorsal than B. In A, elongated neuroepithelial (NE) cells span the width of the 
neural tube. In contrast, cells at the most anterior tip of the neural tube have a 
pyramidal morphology (arrowheads in A and B). In B, the ventricular space is 
starting to form (arrow).
C and D are sections through different 24hpf embryos. C shows neurons, 
identifiable by their morphology in the mantle layer (white arrowheads) and a cell 
dividing perpendicular to the ventricular surface (red line). A white arrow indicates 
the border between the telencephalon and diencephalon in C and D. In D, pyramidal 
cells in the anterior neuroepithelim are visible (arrowhead).
E shows a parasagittal section close to the midline of a 19hpf embryo. A distinct 
layer of regularly arranged cells is visible at the dorsal surface of the telencephalon, 
extending into the “roof’ (arrowhead).
F shows a further horizontal section at 30hpf. Red arrowheads and the dotted line 
indicate a distinct mantle layer; the transition between telencephalon and 
diencephalon is indicated by a white arrow.

di - diencephalon 
ey -  eye
hy -  hypothalamus 
OP -  olfactory placode 
tel - telencephalon 
v -  ventricle 
VZ -  ventricular zone
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30hpf (Fig 3.2 F) and is clearly distinct from the proliferative ventricular zone, 

where the nuclei of neuroepithelial cells are located.

Examining embryos from the lateral aspect at 19hpf highlights the tissue that 

connects the dorsal posterior telencephalon to the dorsal diencephalon; tissue I call 

the roof. In 19hpf specimens labelled with Bodipy 505/515, this tissue is seen as a 

continuation of the dorsal telencephalic neuroepithelium, comprising a single layer 

of regularly arranged cuboidal cells of uniform size (arrowhead in Fig 3.2E).

Neurogenesis is precocious in the telencephalon

The telencephalon contains some of the earliest differentiating neurons in the CNS, 

and is accelerated in its neurogenesis compared to the adjacent diencephalon. I used 

the Tg(HuC:GFP) line, a pan-neuronal line expressing GFP in all postmitotic 

neurons (Park et al., 2000), to observe this rapid neurogenesis. The first neurons 

appear in the presumptive telencephalon at about 13hpf (Fig 3.3 A and B). These are 

neurons of the dorsorostral cluster (drc; Easter et al., 1992; Ross et al., 1992). The 

drc is surprisingly extensive, even at 13hpf (Fig 3.3 A), with the brightest neurons 

lying very laterally in the telencephalon (Fig 3.3 B). At 19hpf, the drc is more 

substantial with additional GFP +ve cells in the posterior telencephalon (Fig 3.3 C 

and D). A similar pattern of GFP labelling was seen using anti-GFP antibody 

labelling in the Tg(HuC:GFP) line (Fig 3.3 E-F), and included the labelled axons of 

drc neurons pioneering the SOT (Chitnis and Kuwada, 1990; Fig 3.3 F).

By 26hpf, a substantial population of GFP-expressing neurons exists in the 

telencephalon (Fig 3.3 G and H). This is in marked contrast to the anterior 

diencephalon where only a small group of neurons lie ventral to the OR. At this 

stage, and a little later at 30hpf (Fig 3.3 I and J), the telencephalic neuronal 

population extends into the roof. This observation, as well as confirming the roof as 

a continuation of the neuroepithelium, also has interesting implications for the 

origins of some dorsal telencephalic neurons that will be explored further in Chapter 

5.

Neurogenesis and cell division

In order to mark proliferating and differentiated cells simultaneously and thus 

describe the organisation of ventricular zones and mantle layers, I pulsed 

Tg(HuC:GFP) embryos
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Figure 3.3: Early neurogenesis in the telencephalon

A-D and G-J show images of live Tg(HuC:GFP) embryos at the stages indicated. 
A-D are single confocal sections, G and I are projections of multiple parasagittal 
sections to the midline; H and J are projections of sections taken as indicated in G 
and I. E and F are single sections through Tg(HuC:GFP) embryos labelled with 
anti-GFP antibody. All scale bars are 50p,m

A and B show the first telencephalic neurons of the dorsorostral cluster (drc; white 
arrowheads) at 14hpf (lOss) in a lateral (A) and a horizontal (B) section.
C and D show an expanded drc at 19hpf (arrowheads and arrow in C) in a sagittal 
(C) and a horizontal (D) section.

E and F show single sagittal sections in embryos labelled with a fluorescently- 
conjugated anti-GFP antibody. White arrowheads indicate neurons of the drc, which 
by 19hpf are extending axons into the supraoptic tract (SOT; arrowheads in F). 
Immunostaining is also visible in posterior areas of the 16hpf telencephalon (white 
arrow in E).

G and H show the neuronal population of the telencephalon at 24hpf; neurons are 
present in the roof (white arrow in G).

I and J show the neuronal population at 30hpf in the telencephalon and anterior 
diencephalon. Neurons are visible in the telencephalic roof (arrow in I) and GFP 
+ve axons are visible in the anterior commissure (arrowhead in J).

E -  epiphysis 
di -  diencephalon 
OP -  olfactory placode 
tel -  telencephalon
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with BrdU. I used short pulses of BrdU (15-30 minutes) with minimal survival 

times to label cells undergoing DNA replication in S-phase. This population should 

be mutually exclusive of GFP- expressing neurons. S-phase occurs away from the 

ventricular surface, where cells return to divide (e.g. Lyons, 2003), so BrdU labelling 

should highlight the maximum width of the VZ at any given stage.

I performed BrdU pulse experiments at stages from 24hpf to 5dpf, fixing the 

specimens immediately after the pulse. Two main themes emerge from this data.

The first is that as cavitation separates the right and left sides of the telencephalon, 

the VZ forms as a convex medial surface. The second important observation is that 

the eversion process happens between 2 and 3dpf and results in an everted VZ on the 

dorsal surface of the telencephalon.

At 24hpf and 36hpf, the VZ is a continuously curved surface (Fig 3.4). 

Dorsally and anteriorly, the right and left sides are closely apposed, but more 

ventrally and posteriorly they are separated by ventricular space (Fig 3.4 C, F, G). A 

broad area of proliferation is evident anteriorly (arrowheads in Fig 3.4 B and E).

The telencephalic VZ is also continuous with the diencephalic VZ, as indicated by 

the dotted white lines in all panels. A further interesting observation is that BrdU 

+ve profiles are present at most levels in the VZ, including at the ventricular surface 

in some cases (arrow in Fig 3.4 C). This observation suggests that, unlike in the 

hindbrain (Lyons, 2003), S-phase is not restricted to the basal VZ. At 24hpf and 

36hpf, there is no evidence of a dorsally everted VZ. BrdU profiles seen on the 

dorsal surface of the telencephalon are in fact skin cells, evident from their flattened 

morphology and from comparison with DIC images (Fig 3.4 A and D).

48hpf is the stage at which other researchers have reported a dorsally-everted 

VZ using either a marker of mitosis (Shanmugalingam, 1999), or the broad 

proliferating cell marker PCNA (Wullimann and Knipp, 2000; their Figure 2A). The 

critical difference between their data and my data is that the surface they define as 

dorsal VZ, I define as posterior VZ, taking into account the ventral flexure as 

illustrated in Fig 3.1 C. What I see at 48hpf (Fig 3.5 B and C) and at slightly earlier 

stages (Fig 3.5 A), using the presence of BrdU profiles as the defining criterion for 

the VZ, is a very similar situation to that seen at 24 and 36hpf. Namely, the VZ is 

still a continuously curved surface covered in proliferating cells. Critically, dividing 

cells are evident up to the posterior border of the telencephalon with the 

diencephalon, but the VZ does not extend over the dorsal surface of the
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Figure 3.4: BrdU labelling in the Tg(HuC:GFP) line -  24hpf and 36hpf

All figures show single confocal sections at the levels shown in the right-hand panel 
of line drawings. All scale bars are 50pm; line drawings are not to scale. In all 
panels white dotted lines indicate continuity of the telencephalic and diencephalic 
VZ.

A and B show parasagittal sections through the 24hpf telencephalon. BrdU +ve cells 
line the ventricle at all levels (white dotted lines); BrdU +ve cells on the dorsal 
surface of the telencephalon in A are skin cells. In the midline, the VZ is broader 
anteriorly and ventrally (arrowhead in B). In C, a horizontal section shows the 
continuously curved surface of the VZ; BrdU +ve profiles appear very close to the 
ventricular surface (arrow).

D and E show parasagittal sections through the 36hpf telencephalon. In D, the VZ 
lines the ventricle (white dotted lines), including the preoptic area (arrow) and the 
telencephalic roof (blue arrowhead). More medially, in E, the anterior proliferation 
zone is prominent (arrowhead), as it is in F (arrowhead). F and G are two sections at 
the levels shown in the right-hand panel. The continuity of the telencephalic and 
diencephalic VZ is indicated by white dotted lines

di - diencephalon
E -  epiphysis
hy -  hypothalamus
OP -  olfactory placode
POa -  preoptic area
skin -  skin cells on surface of the brain
t/tel -  telencephalon
v -  ventricle
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Figure 3.5: BrdU labelling in the Tg(HuC:GFP) line -  44hpf to 5dpf

All figures show either parasagittal confocal sections with anterior to the left (A, B, 
D and G) or as shown in the drawings at the bottom of the page (C, E-F, H). All 
scale bars are 50 pm; drawings are not to scale.

A shows a projection of sagittal sections at 44hpf. BrdU profiles line the ventricle, 
from the preoptic area (POa) to the posterior border with the diencephalon (blue 
arrowhead).
B shows a single section from a specimen at 48hpf, showing the same pattern of 
proliferation in the preoptic area (POa) and posterior telencephalon (blue 
arrowhead). No BrdU profiles are evident on the dorsal surface of the telencephalon. 
C shows a section through the telencephalon and dorsal diencephalon; the anterior 
proliferation zone is broad and continuous with the remaining VZ (arrows).

D shows BrdU profiles on the dorsal telencephalic surface, with a rostral limit 
indicated by the blue arrrowhead. BrdU profiles are also evident in the posterior VZ 
(arrowhead) and the preoptic area (POa).
Dorsally everted BrdU profiles are seen in a transverse section in E (blue 
arrowheads), and the anterior proliferation zone is evident (white arrowhead). More 
posteriorly in the telencephalon, F shows BrdU profiles intercalated with neurons in 
the midline VZ (arrow).

G shows that at 5dpf, BrdU profiles are present in the dorsal surface of the 
telencephalon with their rostral limit at the olfactory bulb (blue arrowhead). BrdU 
profiles are absent from the posterior ventricular surface in this section (dotted white 
line), but are present in the preoptic area (POa)
In ai horizontal section (H), the dorsal surface of the telencephalon is dotted with 
BrdU +Ye profiles (white arrowheads) in marked contrast to the adjacent habenulae 
(Ha). A projection of all BrdU profiles in a different specimen (I) shows the 
mediolateral extent of the everted VZ and the absence of everted profiles in the OB. 
The anterior proliferation zone is evident (arrow), as are elongated blood vessels that 
are also BrdU positive (arrowhead). Dark shadows are caused by pigment cells on 
the Ibrain surface.

AC -  anterior commissure 
E -  epiphysis
Ha - habenula (dorsal diencephalon) 
hy - hypothalamus 
OB -  olfactory bulb 
OE -  olfactory epithelium 
POa -  preoptic area
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telencephalon (blue arrowheads in Fig 3.5 A and B). This is true for all timepoints 

up to and including 48hpf, and is constant despite the changing morphology of the 

ventricle and the telencephalic tissue.

At 3dpf, a markedly different situation is apparent with respect to the 

telencephalic VZ. For the first time, BrdU +ve profiles are evident within the dorsal 

surface of the telencephalon as defined in Fig 3.1 D (Fig 3.5 D); the removal of the 

skin prior to imaging ensures that these are not dividing skin cells. The dorsal VZ 

may extend as far as the olfactory bulb, although without an additional marker this is 

uncertain. In the mediolateral axis BrdU profiles do not extend to the lateral limits 

of the telencephalon (blue arrowheads in Fig 3.5 E). BrdU profiles are also still 

evident on the posterior surface of the telencephalon, although these are relatively 

sparse in my specimens probably due to the short BrdU pulse times. Despite the 

altered situation in the dorsal telencephalon, the proliferation zones in the midline 

(Fig 3.5 F), anterior telencephalon (Fig 3.5 E) and preoptic area (Fig 3.5 D) remain 

constant.

At 5dpf the eversion of the telencephalon is more extensive. BrdU +ve 

profiles are located in the dorsal surface of the brain, with a clear rostral limit at the 

border with the olfactory bulb (Fig 3.5 G and I). Horizontal sections reveal BrdU 

+ve profiles over the entire rostro-caudal and medio-lateral surface of the dorsal 

telencephalon, in contrast to the adjacent habenulae where no dorsally-located BrdU 

+ve profiles are seen (Fig 3.5 H and I). Dividing cells are also present in the midline 

VZ, especially in the anterior proliferation zone, and there are a few BrdU profiles at 

the posterior ventricular surface (data not shown). The preoptic area continues to 

show strong proliferation ventral to the level of the supraoptic tract (Fig 3.5 G).

Summary o f proliferation and differentiation studies

In summary, neurogenesis in the telencephalon is precocious with respect to adjacent 

brain areas, such that at 24hpf the telencephalon already contains a substantial 

neuronal population (Fig 3.3). Proliferation is continuous over all ventricular 

surfaces of the telencephalon, but there are also zones of enhanced proliferation in 

the anterior telencephalon and in the preoptic area as identified by others 

(Shanmugalingam, 1999; Wullimann and Knipp, 2000). A key finding is that a 

dorsal, everted proliferative area becomes evident between 2dpf and 3dpf, and by 

5dpf covers the dorsal surface of the telencephalon (Fig 3.5). This everted VZ

70



covers the entire rostro-caudal and medio-lateral extents of the dorsal surface of the 

telencephalon, except the rostrally-located olfactory bulb.

The axon scaffold provides landmarks in the telencephalon 

In order to gain a more thorough understanding of telencephalic morphogenesis, I 

used an antibody to acetylated a-tubulin to label all axon tracts and commissures at a 

variety of stages. Axon tracts and commissures have the advantage that their 

positions are usually stable relative to one another. Therefore, any movement of 

these tracts may indicate a morphogenetic movement of the surrounding tissue. 

Secondarily, careful analysis of acetylated a-tubulin-labelled specimens provides 

interesting information about the connectivity of different telencencephalic areas, 

much of which has been relatively poorly described, especially at stages beyond 

48hpf.

Morphogenetic movements are most evident by comparing lateral views of 

embryos from 24hpf to 5dpf. Firstly, between 24 and 36hpf, the ventral flexure 

clearly alters the orientation of the telencephalic tract of the anterior commissure 

(TAC) and the anterior commissure (AC) with respect to the longitudinal axis of the 

brain (Fig 3.6 A and B). However, as previously observed, the ventral flexure does 

not seem to cause any internal reorganisation within the telencephalon, as the AC, 

SOT and POC retain their orientation with respect to one another. This is in contrast 

to the tract of the postoptic commissure (TPOC), which goes from being relatively 

straight at 24hpf to making a right-angled bend in the ventral diencephalon at 36hpf 

(Ross et al., 1992); Fig 3.6 B). This confirms previous results and indicates that 

acetylated tubulin labelling is a possible readout of morphogenetic tissue movement.

Major changes within the telencephalon itself happen between 48hpf and 

3dpf. At 48hpf, the TAC and AC are much more robust than at 36hpf and in 

addition, the first clear evidence of OB neuropil is visible (Fig 3.6 C). The OB has a 

glomerular structure, formed by the multiple contacts between axon terminals of 

incoming olfactory sensory neurons (OSN) and the dendrites of bulb neurons. This 

gives the OB an appearance distinct from the rest of the telencephalic neuropil and 

locates it in the most posterior dorsal area of the telencephalon, almost adjacent to 

the border with the diencephalon.

At 3dpf, the OB neuropil is not only much more substantial, but is now 

located at the rostral tip of the telencephalon, at some distance from the diencephalic
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Figure 3.6: Telencephalic organisation from 24hpf to 5dpf labelled by anti-acetylated
cx-tubulin.

A-E show projections of confocal sagittal sections to the midline in each specimen. 
Tracts and commissures are marked and the brain mrphology outlined at each stage. 
Scale bars are 50p,m in all figures.

A shows the simple axon scaffold of the 24hpf forebrain. Fibres are just reaching 
the midline in the AC (arrow); the SOT has formed.

B shows the forebrain at 36hpf; all axon tracts and commissures are much thicker 
than at 24hpf

C shows the 48hpf forebrain. The olfactory bulb (OB) neuropil is visible, with its 
posterior limit (indicated by red arrowhead) close to the border with the 
diencephalon. The stria medullaris projection is evident, leading to the habenular 
commissure (white arrow).

D shows a 3dpf embryo; the OB is rostrally-located, with its posterior border at 
some distance from the diencephalon (red arrowhead). The incoming olfactory 
nerve (ON) is substantial but has been severed in this preparation. The stria 
medullaris has two components in this specimen (white arrowheads), but other 
embryos show a single tract.

E shows the rostral position of the OB at 5dpf (red arrowhead indicates limit); again 
the ON has been severed. A branch of the ON looks to be bypassing the OB (white 
arrow). The stria medullaris consists of a single fasciculated tract (arrowhead).

AC -  anterior commissure
DVDT -  dorsoventral diencephalic tract
Ha -  habenula
OB -  olfactory bulb
OC -  optic chiasm
ON -  olfactory nerve
PC -  posterior commissure
POC -  postoptic commissure
SOT -  supraoptic tract
TAC -  tract of the anterior commissure
TPC -  tract of the posterior commissure
TPOC -  tract of the postoptic commissure
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border (Fig 3.6 D). This striking change in dorsal telencephalic organisation is 

paralleled somewhat by a change in ventral telencephalic areas. Thus, the AC 

becomes “tucked in” on the underside of the telencephalon, close to the diencephalic 

border. The SOT retains its position but the angle between the AC and SOT is 

decreased.

At 5dpf, this situation is more marked. The OB is now located right at the 

rostral tip of the telencephalon, more than 100|xm from the posterior border with the 

diencephalon (Fig 3.6 E) where the OB was situated at 48hpf. The OB neuropil is 

slightly more extensive and segregated from the rest of the telencephalon than at 

3dpf, and lies more basally within the telencephalon. The AC and SOT retain very 

similar positions to those at 3dpf.

In conclusion, tracking the position of the OB from 48hpf to 5dpf seems to 

indicate a morphogenetic movement within the telencephalon that brings the OB 

from a dorsal-posterior position close to the border with the diencephalon to a rostral 

location. This “rotation” is paralleled somewhat by changes in the organisation of 

the ventrally-located AC and SOT.

Secondarily, acetylated tubulin labelling revealed a number of tracts and 

commissures that have been as yet poorly described in the zebrafish brain. These 

features, although their functions are presently unknown, nonetheless provide a more 

complete picture of telencephalic connectivity:

1) stria medullaris

The stria medullaris forms part of a system that connects telencephalic and thalamic 

efferents to the habenulae, and then on to the interpeduncular nucleus via the 

fasciculus retroflexus (e.g.Yanez and Anadon, 1994). A component of the stria 

medullaris is evident at 48hpf leading from the telencephalon to the habenular 

commissure (Fig 3.6 C; there are no known reciprocal connections from the 

habenulae to the telencephalon). At 3dpf these tracts are still evident, appearing as 

two parallel tracts in some specimens but more frequently as a single fasciculated 

tract (Fig 3.6 D). The tract has a similar appearance at 5dpf (Fig 3.6 E). Although 

the stria medullaris appears to originate in the mid-telencephalon, at 48hpf there may 

be a component that originates in the OB (arrowheads in Fig 3.7 A). This 

observation would need to be substantiated by more detailed tract tracing, especially 

at later stages when connections from the bulb are much more complex.
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2) olfactory tracts

The olfactory tracts are present in the adult as the medial and lateral olfactory tracts 

(MOT and LOT), and carry secondary olfactory fibres from the bulb to the 

telencephalon. In the 3dpf embryo, there are multiple connections between the OB 

and telencephalon, especially dorsally where the secondary olfactory fibres are 

hardly fasciculated (Fig 3.7 D). By 5dpf these connections are much more 

fasciculated, forming the two main tracts with other minor connections between the 

OB and telencephalon (Fig 3.7 E-G). The two main tracts are presumed to 

correspond to the adult LOT and MOT, with the LOT more dorsal and lateral (Fig 

3.7 E) and the MOT more medial and ventral (Fig 3.7 F).

3) olfactory epithelium projections into the TAC

Examination of the olfactory tracts lead to the identification of a projection from the 

olfactory epithelium (OE) that rather than terminating in the bulb projects directly 

into the TAC of the telencephalon (Fig 3.7 G). This projection was robust and was 

also labelled by the application of Dil to the OE (Fig 3.7 H). OE projections labelled 

in this way were variable, with some projecting contralaterally via the AC and others 

ipsilaterally. This projection bears strong similarity to projections from OE cells 

described by Dynes and Ngai (1998) at 3.5dpf. In their study, the neurons extending 

these axons were unipolar as opposed to the bipolar olfactory sensory neurons.

4) intra-olfactory bulb commissure

A  further observation revealed that that the right and left olfactory bulbs are 

connected by a fine, relatively defasciculated commissure. This commissure is 

evident at 3dpf (Fig 3.7 C) and 5dpf (Fig 3.7 E) and connects the bulbs in their most 

dorsal region. It is not known, and would be interesting to establish, whether this 

commissure persists into adulthood.
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Figure 3.7: Details of telencephalic projections 48hpf-5dpf labelled by anti-
acetylated a-tubulin.

A-G show single confocal sections with the orientations indicated in the bottom 
panel; H shows an epifluorescence image.

A shows a confocal section through the fore- and midbrain at 48hpf. Part of the stria 
medullaris tract is indicated by arrowheads; a component of this projection may 
originate in the OB.
B shows the massive extent of the 3dpf anterior commissure (AC) compared to the 
habenular commissure (HaC).
C shows the intra-OB commissure at 3dpf (arrow) and the glomerular structure of 
the OB.
D shows multiple unfasciculated projections from the dorsal OB to the telencephalon 
at 3dpf (arrows).
E and F show sections at different D-V levels through the lateral (E) and medial (F) 
olfactory tracts at 5dpf. The intra-OB commissure is also visible in E (arrowhead).
G shows projections into the tract of the anterior commissure (TAC) -  one from the 
OB (arrowhead) and one from the olfactory epithelim (OE) that bypasses the bulb 
(arrow).
H shows that labelling the OE with Dil indeed labels both the ON and projections 
direct to the AC. In this specimen, growth cone-tipped axons are seen in the AC at 
5dpf (red arrows).

AC -  anterior commissure
HaC -  habenular commissure
LOT -  lateral olfactory tract
MOT -  medial olfactory tract
OB -  olfactory bulb
OE -  olfactory epithelium
ON -  olfactory nerve
SOT -  supraoptic tract
TAC -  tract of the anterior commissure
tec -  tectum
tel - telencephalon
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Neuronal populations marked by the Tg(dlx4/6:GFP) line 

The experiments presented so far have addressed global telencephalic neuronal 

populations and their projections. However, one of the major issues that remains 

unresolved is how the pallial and subpallial areas of the zebrafish telencephalon 

develop. Pallial gene expression patterns have been reported at various stages 

(Kawahara and Dawid, 2002; Mione et al., 2001), but subpallial gene expression 

patterns remain little reported (Akimenko et al., 1994; Zerucha et al., 2000). The 

generation of a transgenic GFP line under the control of the dlx4/dlx6 intergenic 

region provides an ideal tool to follow subpallial neurons over time (Zerucha et al., 

2000). The dlx4 and dlx6 genes are well-characterised markers of the subpallium in 

many species including mouse (where dlx4 is Dlx5), chick and zebrafish (Akimenko 

et al., 1994; Fernandez et al., 1998; Puelles et al., 2000), and the Tg(dlx4/6:GFP) 

line accurately replicates the endogenous expression of both these genes (Zerucha et 

al., 2000).

The most striking feature highlighted by this line is the vast extent of the 

subpallium, especially at later embryonic stages (Fig 3.8). Expression of the 

transgene at 26hpf highlights a broad band in the ventral telencephalon that 

corresponds well to the D-V division postulated in Fig 3.1 A (Fig 3.8 A). dlx4/6 

expression is parallel to but stops several cell diameters from the ventral ventricular 

surface, indicating that the transgene is not expressed in proliferating cells of the VZ. 

At 36hpf, expression of dlx4/6 is slightly more condensed but nonetheless restricted 

to the ventral telencephalon (Fig 3.8 B). GFP +ve fibres are seen in the SOT but are 

considerably less frequent in the AC (data not shown).

At 2dpf, dlx4/6 expression is broader than at 36hpf, and extends into more 

rostral parts of the telencephalon; the same is true at 3dpf and 5dpf as the dlx4/6 

population continues to expand (Fig 3.8 C-E). Horizontal sections reveal that the 

bulk of dlx4/6 expression is very medial in the telencephalon -  lateral areas are 

generally dlx4/6 negative (Fig 3.8 F). Labelled axons, which appear primarily in the 

SOT at 2dpf, appear additionally in the AC at 3dpf and 5dpf, indicating a large 

population of commissural neurons in the ventral telencephalon.

This transgenic line also highlights two other groups of neurons in addition to 

those located in the ventral telencephalon. Scattered dlx4/6-cxpressing cells are seen 

in the dorsal telencephalon, the first cells appearing there at 48hpf (arrowheads in 

Fig 3.8 C-E). These are single, isolated cells and confocal imaging from the dorsal
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Figure 3.8: Cell populations labelled in the Tg(dlx4/6:GFP) line -  26hpf to 5dpf

A-E show projections of sagittal sections to the midline in Tg(dlx4/6:GFP) embryos; 
F shows a projection of sections as indicated in E. G and H are 20pm sagittal (G) 
and transverse (H) sections with tbrl expression in blue and Dlx-expression in 
brown, kindly provided by M. Mione. All scale bars are 50jum except where 
indicated.

A shows dlx4!6 expression in a live 26hpf embryo. dlx4/6 is expressed broadly in 
the ventral telencephalon, several cell diameters from the ventricular surface. This 
expression is matched by a similar domain in the diencephalon.
B shows a fixed embryo at 36hpf. dlx4/6 is again expressed ventrally, around the 
AC, with GFP +ve fibres present in the SOT (arrowhead).
By 2dpf (C), d/jt4/<5-expressing cells are not only present in the ventral 
telencephalon, but also as single cells in the posterior dorsal telencephalon 
(arrowhead in C).
D shows a 3dpf embryo; d£c4/d-expressing cells are present in the OB (arrow), 
dorsal telencephalon (arrowhead) and throughout the ventral telencephalon.
E shows an embryo at 5dpf; the OB cells have an elaborate morphology 
characteristic of intemeurons (arrow). Single cells in the dorsal telencephalon 
(arrowheads in E and F) also have an elaborate morphology (inset E ’; scale bar =
5 pm).
F shows the interface of Dil-labelled olfactory sensory neuron axon terminals and 
OB intemeurons (arrow). At higher magnification in a single section (F’; scale bar = 
5pm), the two populations make multiple contacts within a glomerulus. Also 
evident in F is the restriction of dlx4/6 expression to midline regions in the 
telencephalon.

G shows Dlx-expressing cells in the ventral telencephalon around the AC. tbrl 
expression is evident in dorsal areas, as well as in the OB (asterisk) and just rostral 
to the AC, overlapping with but not coexpressing with Dlx (arrowhead).
H shows a section at the level indicated in G. Dorsal and lateral tbrl expression 
surrounds medial Dlx-expressing cells, again overlapping with Dlx in an area just 
rostral to the AC (arrowhead).

AC -  anterior commissure 
OB -  olfactory bulb 
OC -  optic chiasm 
OE -  olfactory epithelium 
SOT -  supraoptic tract 
tel -  telencephalon
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aspect reveals extensive processes characteristic of intemeuron morphology (Fig 3.8 

E’). Indeed, these cells may well represent the ventral to dorsal migration of 

telencephalic

intemeurons seen in higher vertebrates such as chick and mouse (Cobos et al., 

2001a; reviewed in Marin and Rubenstein, 2001)

The second group of neurons highlighted are intemeurons within the OB (M. 

Mione, work in progress; Long et al., 2003). These cells are visible in the OB from 

3dpf (Fig 3.8 D-F). They again have a characteristic morphology with extremely 

elaborate dendritic arbours, and do not project outside the bulb as confirmed by the 

absence of GFP fibres in the olfactory tracts (Fig 3.8 F and data not shown). The 

intemeuron arbours are intimately connected with incoming OSN axon terminals; 

labelling the OSNs with Dil reveals the close apposition of these two populations 

(Fig 3.8 F and F’). The intemeuron cell bodies themselves also occupy a distinctive 

position within the bulb, lying in the posterior OB at 3 and 5dpf (Fig 3.8 D-F).

To further investigate the pallial and subpallial subdivisions of the zebrafish 

telencephalon I analysed specimens prepared by M. Mione that highlight both of 

these populations. Sections were labelled both with the anti-Dll antibody (which 

labels all Dlx-expressing cells) and hybridised with tbrl (a pallial marker; Mione et 

al., 2001). tbrl expression is evident in dorsal areas, but also extends into the 

olfactory bulb (asterisk in Fig 3.8 G), where it highlights projection neurons (Mione 

et al., 2001). The transverse section also shows tbrl expression extending from 

dorsal into lateral telencephalic areas, lateral to Dlx expression (Fig 3.8 H).

A further domain of tbrl expression is evident very ventrally in the 

telencephalon, just anterior to the AC (arrowheads in Fig 3.8 G and H). High 

magnification examination of this domain indicates it overlaps with but does not 

coexpress with Dlx. Although this tbrl expression domain is very ventral, it is 

nonetheless continuous with the other expression domains described above. The 

subpallial or pallial nature of this domain is unclear.

In summary, the pallial-subpallial division in the 4dpf zebrafish 

telencephalon is both a dorso-ventral and a medio-lateral division. That is the 

pallium in dorsal and lateral areas seems to envelop a core of ventral and medial 

subpallial cells, in a small way not dissimilar to “the overarching ambition” of the 

mammalian cortex.
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3.4: Discussion

The aim of this chapter was to make a broad characterisation of the telencephalon, in 

terms of its morphology, proliferation, differentiation and connectivity over the 

entire period of embryogenesis. This information is generally missing from the 

literature, with most studies either focussing on multiple features at a single time 

point or a single feature through time. Furthermore, the zebrafish telencephalon is 

morphologically so different to that of mouse or even Xenopus, that it was 

impossible to use data from these species as the groundwork for my studies. I 

therefore felt this work was necessary background in order to perform further 

investigations into how the telencephalon develops, and after speaking to other 

zebrafish researchers and struggling to make comparisons with their data I realised 

the importance of making observations at multiple time points. In addition, even 

these simple observations have lead to novel insights into the morphogenetic 

movements that shape the telencephalon, movements that may underlie the 

actinopterygian-specific process of telencephalic eversion.

Major morphological changes between 2dpfand 3dpf

The description of a morphogenetic movement that results in major adjustments 

within the telencephalon is the major finding of this chapter. This morphogenetic 

movement, which occurs between 2 and 3dpf, is distinct from the previously 

reported ventral flexure that occurs earlier in development and brings the 

telencephalon to the rostral pole of the brain (Hauptmann and Gerster, 2000; 

Hauptmann et al., 2002; Ross et al., 1992). The ventral flexure, as judged by 

acetylated tubulin labelling of mature axons, does not result in any discemable 

reorganisation within the telencephalon.

In contrast, the morphogenetic movement between 2 and 3dpf causes quite 

major adjustments within the telencephalon. Most notably, the olfactory bulb (OB) 

moves from a very dorsal-posterior position (close to the border with the 

diencephalon) at 2dpf to a rostral position at 3dpf, even more pronounced at 5dpf 

(Fig 3.6 C-E). This striking movement is paralleled by some minor changes in the 

ventral telencephalon, with the AC moving closer to the ventral border with the 

diencephalon.
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The observed morphogenetic movement is also apparent looking at changes 

in the VZ as highlighted by BrdU incorporation into proliferating cells. At stages up 

to and including 2dpf, BrdU profiles are continuous over the ventricular surface of 

the telencephalon, and are evident in the roof of the telencephalon and diencephalon 

(Fig 3.4). At 2dpf, BrdU profiles are apparent up to the posterior border of the 

telencephalon with the diencephalon (Fig 3.5 A and B). However, at 3dpf, BrdU 

profiles are evident for the first time on the dorsal surface of the telencephalon, an 

area that was not previously ventricular (Fig 3.5 D). This pattern of dividing cells is 

more enhanced at 5dpf, where BrdU profiles are seen covering the entire dorsal 

surface of the telencephalon except for the OB (Fig 3.5 G-I).

These two lines of evidence therefore strongly point towards a “rotatory” 

morphogenetic movement that brings the OB to a rostral position and the VZ to the 

dorsal surface. These two processes appear to be coordinated, in that the OB and VZ 

are adjacent to each other both at 48hpf and at 3dpf. In other words, the VZ never 

covers the OB, suggesting the altered position of the two structures at 3dpf is the 

result of the same underlying movement. The “rotation” does not however seem to 

affect the ventral telencephalon as much as the dorsal, as evidenced by the 

persistence of the preoptic area proliferation zone and the position of the SOT.

Eversion as a result o f the morphogenetic rotation

One of the major implications of my BrdU data is that an everted telencephalon 

could be a direct result of the morphogenetic movement described above. Eversion 

is the actinopterygian-specific process by which the dorsal ventricular surface 

apparently becomes “turned out” in a medio-lateral direction, as illustrated in Figure 

3.9 B. Thus it has been proposed that structures that are originally medial and dorsal 

in the neural tube later become lateral and more ventral, with the whole dorsally- 

everted surface covered by a thin choroid tela (Butler, 2000; Butler and Hodos,

1996). The mechanism by which the eversion process takes place has remained 

elusive, although understanding it is key to comparative uses of the zebrafish 

telencephalon.

In my model (Fig 3.9 A), key event would be the separation of the right and 

left sides of the telencephalon that occurs during ventricle formation at about 16hpf. 

From this point onwards, the posterior-ventral surfaces lose contact with each other, 

forming the continuously curved surface seen in the medio-lateral axis of my
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specimens. The subsequent rotatory morphogenetic movement between 48hpf and 

3dpf then brings an already parted VZ from the posterior to the dorsal surface of the 

telencephalon. In this model there is no need for the VZ to undergo extensive 

medio-lateral spreading, because the entire medio-lateral surface is already VZ and 

has been since the ventricle first formed. Once proliferative cells are present on the 

dorsal surface, subsequent proliferation would elaborate the pallial telencephalon, 

producing the enlarged and obviously everted structure seen in the adult (Wullimann 

and Rupp, 1996).

The lack of a substantial literature means it is in fact difficult to know what 

the “current model” of eversion is and therefore how my model compares. Much of 

the work on eversion has rested on an analysis of the adult telencephalon (Butler, 

2000; reviewed in Butler and Hodos, 1996), the end-point of the eversion process, 

with no examination of intermediate time points. Although the adult telencephalon 

has strong similarities with the organisation at 5dpf, there are also major differences. 

Simply in terms of size, the embryonic telencephalon is not more than 250 pm in any 

dimension, while even at 1 month post fertilisation the telencephalon is 

approximately 1 millimetre in all dimensions. Therefore the huge cell proliferation 

that occurs during this period, and into adult stages, could dramatically alter 

telencephalic morphology and mask the underlying morphological arrangements. 

Furthermore, the methods used to assess eversion have been very indirect, relying on 

features such as blood vessels in the sulci of the brain (Butler, 2000).

Mario Wullimann is one of the few zebrafish researchers who has addressed 

eversion at embryonic stages. Using the proliferating cell marker PCNA, he 

observed a dorsally everted pallial proliferation zone already at 2dpf (Wullimann and 

Knipp, 2000). Aside from the drawbacks of using PCNA, a marker known to persist 

beyond final mitosis (Wullimann and Puelles, 1999), the data he presents broadly 

agrees with my observations. The key difference is that the surface he labels as 

dorsal, I label as posterior. It is also clear that the region of proliferation he 

observes, even though he labels it as the dorsal surface, does not extend beyond what 

would be the posterior border of the telencephalon with the diencephalon. The exact 

timing of the appearance of a dorsally-everted telencephalon is not as important as 

the mechanism by which it gets there. Unfortunately, on this topic Wullimann 

makes little comment.
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Figure 3.9: Models of eversion

A shows a model of eversion based on a morphogenetic rotation between 2dpf and 
3dpf. The VZ is indicated by thick red lines; dotted lines indicate places where 
proliferation may be very sparse. Blue arrowhead indicates the roof at early stages 
and the choroid tela at 5dpf. Light blue ovals represent the olfactory bulb. In the 
transverse section of the 5dpf telencephalon, the full medio-lateral extent of the VZ 
is indicated.

B shows the conventional model of eversion and evagination, adapted from Butler 
(2000)
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There are limited mechanisms by which a new area of VZ can form. Importantly, 

the new area must come from existing proliferative cells. The model suggested by 

the simplified schematic drawings in many anatomical texts (e.g. (Butler and Hodos, 

1996) involves an opening out of the right and left sides at the midline dorsal surface 

(Figure 3.9 B). This model also uses as its starting point a neural tube with 

ventricular space. Unfortunately this is far from an accurate starting point for the 

zebrafish telencephalon, which is a dorsal compartment of the uncavitated neural 

rod. However, extrapolating from this schematic model to the zebrafish would mean 

the dorsal midline VZ would separate and turn out laterally. This does not seem to 

be what my data shows, but it would certainly be worth exploring this possibility 

with further experiments.

Questions posed by the eversion model

My model is not intended to explain the entire eversion mechanism, merely to 

suggest that it may be the posterior VZ rather than the midline VZ that is the origin 

of dorsally-everted VZ. Obviously many questions remain, and are indeed posed by 

this model. For example, how is the movement of the VZ driven and orchestrated? 

Are all areas of the posterior VZ recruited to the dorsal surface? Do progenitors in 

the VZ already have pallial or subpallial identities and how are these reconciled with 

the morphogenetic movement? Future experiments, initially focussing on making a 

more detailed description of the changing VZ with closely-spaced time points, but 

extending to cell labelling in transgenic lines will hopefully begin to address these 

questions.

A further question to consider is to what extent the adult zebrafish 

telencephalon is everted, morphologically or in terms of functional areas. Across the 

teleost group (a subgroup of the actinopterygians, of which zebrafish and goldfish 

are members), eversion seems to be morphologically simple, i.e. a lateral folding out 

of the dorsal telencephalon that is not further complicated by secondary migration of 

cell masses (Butler, 2000). However, functional evidence is not so clear-cut. 

Behavioural experiments involving lesion studies have identified putative areas 

within the goldfish that correspond to the hippocampus and amygdala, on the basis 

of their selective roles in spatial and emotional learning respectively (Portavella et 

al., 2002). The amygdala is medially located in goldfish, while the hippocampus is 

laterally located. A simple rearrangment of functional areas in the everted
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telencephalon is therefore evident, as the amygdala and hippocampus occupy lateral 

and medial locations respectively in the evaginated telencephalon. However, the 

major olfactory input to the teleost telencephalon is laterally and posteriorly located, 

as it is in tetrapods (Wullimann and Rink, 2002). The question is, therefore, whether 

the eversion process affects all areas of the dorsal telencephalon.

The identification of markers for areas such as the amygdala and 

hippocampus at embryonic stages would help to clarify this issue. The movements 

of functional areas could then be tracked throughout the eversion process. Although 

I have not followed the movements of any functional areas during eversion, my 

model would support more dramatic rearrangments for some pallial areas than for 

others, thus an incomplete eversion as suggested in Wullimann and Rink (2002).

Establishing axes within the telencephalon

Establishing dorso-ventral and anterior-posterior axes within the telencephalon is not 

a trivial matter. A-P usually equates with rostro-caudal, with D-V perpendicular to 

this axis. However, as in other species the telencephalon is a derivative of the dorsal 

neural tube/rod (Fernandez et al., 1998), and only comes to be located at the rostral 

pole of the zebrafish brain through the subsequent morphogenetic movement of the 

ventral flexure (Wilson et al., 1990; Hauptmann and Gerster, 2000; discussed 

above). It is therefore not appropriate to treat the telencephalon as a transverse 

segment of the neural tube, and A-P and D-V axes have to be adjusted accordingly.

Also somewhat problematic is the notion that in the telencephalon, dorsal and 

ventral should equate with pallial and subpallial regions. The zebrafish 

telencephalon, as this chapter suggests, is lacking a rigorous characterisation of 

pallial and subpallial areas. Markers have been established for the two regions - emx 

genes (Kawahara and Dawid, 2002; Morita et al., 1995), tbrl and eomesodermin 

(Mione et al., 2001) for the pallium; dlx genes for the subpallium (Akimenko et al., 

1994)) but these have not been characterised over the entire period of 

embryogenesis. Nor have I addressed this issue comprehensively in this chapter. 

However, using the Tg(dlx4/6:GFP) line (Zerucha et al., 2000) as a marker of 

subpallial neurons has given some interesting insights into the extent and position of 

the subpallium at various stages (Fig 3.8). Namely, dlx4/6 expression is restricted to 

topographically ventral telencephalic areas at early stages (Fig 3.8 A and B), but 

extends progressively more rostrally up to 5dpf (Fig 3.8 C-E). dlx4/6 expression is
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predominantly medial, particularly from 2dpf onwards (Fig 3.8 F), but is excluded 

from the VZ itself at all stages. Pallial gene expression, as assessed in specimens 

prepared and kindly donated by M. Mione, compliments Dlx expression, covering 

dorsal and lateral areas of the telencephalon (Fig 3.8 G and H). The pallial and 

subpallial populations are exclusive of each other, although there is an area anterior 

to the AC where Dlx and tbrl expression are strongly intermingled but not 

coexpressing. This ventral tbrl-positive region may be associated with one of the 

olfactory tracts (M. Mione, personal communication), and this will be discussed 

further in subsequent chapters.

How does this assessment of pallial and subpallial areas therefore match with 

the axes described in Fig 3.1? Initially, dlx4/6 expression fits broadly within the 

ventral portion of the telencephalon. But at progressively later stages, dlx4/6 

expression extends into regions that would be dorsal according to the D-V axis at 3 

and 5dpf (Fig 3.1 D’ and E’). Ultimately, having a system of axes is important in 

order to be able to describe expression domains and the relative positions of different 

structures. However, it is not imperative that dorsal and ventral should equate 

absolutely with pallial and subpallial areas. It would certainly be convenient to have 

such a system, even if just to ease the task of anatomists, but since zebrafish pallial 

and subpallial areas are so extensively overlapping in the medio-lateral axis (Fig 3.8 

G and H) this is not possible. Instead, a major focus of future work should be to 

provide a rigorous characterisation of pallial vs. subpallial areas at a variety of 

stages, to enable anatomists to fit their descriptions within functionally relevant 

subdivisions of the telencephalon rather than topographic positions.

Neurogenesis in the telencephalon

The telencephalon is precocious in its neurogenesis compared to the adjacent 

diencephalon. I used the Tg(HuC:GFP) line (Park et al., 2000) to assess the 

telencephalic neuronal population over time, and found that between 13hpf and 

24hpf the population grows dramatically.

Neurogenesis from 24hpf onwards was monitored using the Tg(HuC:GFP) 

line in conjunction with BrdU labelling (Fig 3.4 and Fig 3.5). These experiments, 

with short BrdU pulses followed by immediate fixation, highlighted two mutually 

exclusive populations of cells. In comparison to previous studies analysing 

proliferation and differentiation (Wullimann and Knipp, 2000), the combination of
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the HuC-GFP line with BrdU gave a much more detailed picture. For example, 

PCNA levels can remain at 30-40% of their maximum for about 24hours after 

division (Wullimann and Puelles, 1999), leading to an inaccurate picture of the 

24hpf telencephalon as entirely proliferative. PCNA also labels such large numbers 

of cells, especially at early stages, that the analysis of subtle changes in the VZ is 

very difficult. In contrast, my results show that in many cases, BrdU incorporation 

is not restricted to cells in the basal VZ but takes place at all levels in the VZ. I also 

saw that in areas where proliferation was very sparse, BrdU profiles and HuC 

positive neurons were found side by side at the ventricular surface (Fig 3.5 F).

These results suggest that proliferation within the telencephalon may be regulated 

somewhat differently to other areas, and may warrant further investigation.
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4.1 Aim and Introduction

The mechanisms that underlie the specification of neuronal subtypes are of great 

interest to developmental neurobiologists. Functional neuronal circuitry within and 

between brain areas relies on the ability to generate neurons with a variety of axonal 

projection patterns, neurotransmitter and receptor profiles. The mammalian dorsal 

telencephalon, which gives rise to the cerebral cortex, is a brain area with numerous 

specialisations including visual, auditory, olfactory, somatosensory and motor areas. 

The zebrafish dorsal telencephalon, although not as elaborate as its mammalian 

equivalent, also shows specialisations especially in terms of its connectivity, 

suggesting it too has functional specialisations (Wullimann and Rink, 2002). 

However, the molecular mechanisms underlying the specification of different 

neuronal subtypes in the zebrafish, and especially within the telencephalon, remain 

elusive.

Lhx genes and neuronal subtype specification

The LIM-homeobox (Lhx) genes encode a large family of transcription factors, the 

LIM-HD proteins, that are known to be involved in the specification of neuronal 

subtypes in a wide variety of species (Bach, 2000; Dawid and Chitnis, 2001; Hobert 

and Westphal, 2000). The feature that sets LIM-HD proteins apart from other 

transcription factors in the homeodomain superfamily is their ability to bind both 

DNA via the homeodomain and other proteins via their LIM domains. This means 

that LIM-HD proteins can form both homomeric and heteromeric complexes 

involving other LIM-HD proteins or other classes of transcription factor (Bach, 

2000; Dawid and Chitnis, 2001; Hobert and Westphal, 2000). In many systems 

studied to date, it seems that specific combinations of LIM-HD factors are 

responsible for the specification of neuronal subtypes. For example, in the zebrafish 

spinal cord, motomeuron subtypes are specified by different combinations of the 

LIM-HD proteins Isletl, Islet2 and Lhx3 (Appel et al., 1995; Segawa et al., 2001). 

The combinatorial expression of LIM-HD proteins suggests that LIM-HD 

heteromeric complexes may underlie the function of these proteins, but biochemical 

evidence for this is somewhat lacking and the exact composition of transcriptional 

complexes may vary between systems (e.g. Thaler et al., 2002).
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The Lhxl/5 subgroup in mouse, Xenopus and zebrafish

Mammals have thirteen known LIM-HD proteins, Drosophila five and C. elegans 

seven, and these proteins can be grouped into six subgroups each containing LIM- 

HD proteins with sequences conserved across species (Hobert and Westphal, 2000). 

My work addressing LIM-HD proteins in zebrafish has focussed on members of the 

LIN-11 subgroup of LIM-HD proteins. This group, named after the C. elegans 

founding members lin-11 and mec-3, contains the vertebrate Lhx genes Lhxl and 

Lhx5 (Hobert and Westphal, 2000). Zebrafish, as a result of an ancient genome 

duplication (Postlethwait et al., 1998), has three members. Originally called liml, 

lim5 and lim6 (Toyama et al., 1995; Toyama and Dawid, 1997), these genes have 

recently been renamed lhx la  (liml), Ihxlb (lim6) and lhx5 (lim5) to fit with standard 

nomenclature (ZFIN).

Lhxl and Lhx5 are expressed early in development

The vertebrate Lhxl and Lhx5 genes are somewhat different from the other LIM-HD 

subgroups because although they are expressed in neurons in the CNS, Lhxl at least 

seems to have a highly conserved role much earlier in development. Gain-of- 

function experiments in Xenopus show that x-Lhxl has a role in neural induction 

(Taira et al., 1994), dependent upon activation by activin/nodal signals (Watanabe et 

al., 2002). In mouse, knocking out the Lhxl gene results in severe truncation of head 

structures anterior to the otic vesicle (Shawlot and Behringer, 1995) and the gene is 

required in both primitive streak-derived tissues and visceral endoderm for proper 

head formation (Shawlot et al., 1999). Later roles of Lhxl have therefore been 

difficult to dissect because of the drastic effects of interfering with early organiser 

function. Lhx5 is also expressed early in development in mouse (Sheng et al., 1997) 

and Xenopus (Toyama et al., 1995), but misexpression experiments have yet to 

reveal the role of LhxS in early development. In fact, the mouse knockout of Lhx5 

has relatively specific effects on the development of the hippocampus, interfering 

particularly with the differentiation and migration of cells that contribute to 

Ammon’s horn and the dentate gyrus (Zhao et al., 1999).

The function of the zebrafish orthologues of Lhxl and Lhx5 - lhxl a, Ihxlb 

and lhx5 has been little studied, but their expression patterns have been briefly 

described (Toyama et al., 1995; Toyama and Dawid, 1997). Lhxla and Lhxlb,
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proteins sharing 81% amino acid identity, are both predominantly expressed in the 

shield (zebrafish organiser) at gastrulation stages (Toyama and Dawid, 1997). 

Conservation of activin/nodal response elements between Xenopus Lhxl and 

zebrafish lhxl a suggests similar regulation of early expression (Watanabe et al., 

2002), and a possible conservation of function. Indeed, experiments I attempted 

injecting Ihxla mRNA lead to massively expanded head tissue at the expense of 

trunk tissue (data not shown). This potential role of Ihxla in the head organiser of 

zebrafish was not investigated further. Zebrafish Lhx5, sharing 69% amino acid 

identity with Lhx lb, also has an early expression pattern but one which is distinct 

from Ihxla or Ihxlb expression. Ihx5 is expressed in the entire blastoderm of the 

gastrulating embryo, except at the margin where mesoderm is forming (Toyama and 

Dawid, 1997).

Lhx expression in the forebrain

Expression analysis of Ihxla, Ihxlb and lhx5 at post-gastrulation stages shows 

widespread expression in the CNS. Ihxla and Ihxlb are expressed in discrete groups 

of cells in the forebrain, midbrain and hindbrain from early somitogenesis stages 

(13hpf) onwards (Toyama and Dawid, 1997). Ihx5 is similarly expressed in many 

regions of the neuraxis, with a particularly strong expression domain in the 

presumptive diencephalon from 13hpf onwards (Toyama et al., 1995). All three 

genes have distinct expression domains in the telencephalon, and a detailed study of 

these expression domains is the focus of my work in this chapter.

Bachy et al., (2001) have already undertaken a detailed analysis of the 

forebrain expression of xLhxl and xLhx5, as well as other members of the LIM-HD 

family, in Xenopus, and compared the expression to mouse. They find very strong 

conservation of expression patterns of Lhxl and Lhx5 between the two species in the 

diencephalon, but more divergent patterns in the telencephalon (Bachy et al., 2001). 

While mouse Lhxl is expressed in the pallium, xLhxl is only expressed in the 

subpallium. Lhx5 is more similar, with both species showing broad pallial 

expression domains. Xenopus forebrain expression of these genes has been analysed 

further at larval and adult stages, where they are found to mark the same 

subdivisions through time (Moreno et al., 2004). Both genes have restricted 

expression domains within pallial and subpallial subdivisions, with xLhx5 being
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notably expressed in the mitral cells of the olfactory bulb, suggesting a pallial origin 

for these cells (Moreno et al., 2003; Moreno et al., 2004).

This relative wealth of data from other species gives a good grounding for 

making a comparitive study with zebrafish. The retained duplication of the Lhxl 

gene in zebrafish makes the comparison particularly interesting, because the 

combined expression patterns of zebrafish duplicates have often been found to 

replicate the expression patterns seen in other species (Force et al., 1999).

Aim o f this chapter

The main aim of this chapter is to make a detailed characterisation of the 

telencephalic domains of Ihxla, Ihxlb and lhx5, with a view to identifying 

telencephalic subdivisions. Analysing the expression of these genes in combination 

with each other and with other markers highlights the relationship of different 

telencephalic domains over the period of embryogenesis. It also gives some insight 

into morphogenetic movements that may be important in generating the mature 

telencephalic structure.
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4.2: Materials and Methods

Fish lines

In addition to wildtype strains of zebrafish, I also used the Tg(HuC:GFP) line (Park 

et al., 2000) and the Tg(dlx4/6:GFP) line (Zerucha et al., 2000).

DNA constructs

The DNA constructs used during the course of this chapter were liml (Ihxla) and 

lim6 (Ihxlb) (Toyama and Dawid, 1997), lim5 (lhx5) (Toyama et al., 1995), shh 

(Krauss et al., 1993)), mitfb (Lister et al., 2001), emx3 (originally named 

mx7)(Morita et al., 1995), tbrl (Mione et al., 2001).

Preparation o f antisense probes

DNA constructs were amplified using conventional midi- and maxiprep methods 

(section 2.4). Antisense probes were made from lineraised DNA according to 

conventional methods (section 2.6), and with the following enzymes:

Ihxla, Ihxlb and lhx5 -  linearise with BamHI, transcribe with T7; shh -  linearise 

with Hindlll, transcribe with T7; mitfb -  linearise with Notl, transcribe with T3; 

emx3 -  linearise with BamHI, transcribe with T3; tbrl -  linearise with Sail, 

transcribe with SP6.

Double in situ hybridisation

Double in situ hybridisation was performed as described in section 2.8 to 

simultaneously visualise the expression patterns of two different genes. This 

involved using both dioxygenin (DIG) and fluorescein (FITC)-labelled probes. The 

two substrates used for alkaline-phosphatase conjugated antibodies were NBT/BCIP 

(Boehringer Mannheim) and Fast Red (Roche). The Fast Red colour reaction was 

always performed first, to avoid the NBT/BCIP signal overwhelming the weaker 

Fast Red signal. The stronger probe was usually labelled with FITC and detected 

with Fast Red, the weaker probe was therefore usually labelled with DIG and 

detected second. However, in as many cases as possible I tried different 

combinations of probe-labelling and AP substrate, to control for any possible 

differences between probes.
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All in situ hybridised specimens were photographed on a Nikon microcope 

with a Micropublisher digital camera (Q imaging), contolled through Openlab 3.1.4 

software (Improvision, UK).

Vibratome sectioning o f double in situ labelled specimens 

Double in situ hybridisation was performed as described in section 2.8 to 

simultaneously visualise the expression patterns of two different genes. In some 

cases, vibratome sections of these specimens were made, in order to more closely 

exmine expression domains. At the end of the double in situ protocol, specimens for 

sectioning were left in PBS rather than being transferred to 70% glycerol.

1. Prepare solutions with 0.375g gelatin (Sigma) in 25ml PBS (heat to dissolve) and 

20g egg albumin (Sigma) in 50ml PBS (do not heat).

2. Mix the gelatin and albumin solutions together and add 15g sucrose (Sigma).

3. Put 2ml gelatin/albumin in a small mould, add 200p,l 25% glutaraldehye and the 

embryo and orient immediately before the block sets.

4. Trim the block, mount it with superglue on a vibratome chuck and cut 35-50pm 

sections.

5. Mount the sections in PBS on a slide for imaging

These specimens were imaged on a Nikon microscope with a Micropublisher digital 

camera (Q imaging) and Openlab 3.1.4 software (Improvision, UK).

In situ hybridisation in GFP lines

The embryos used for these experiments were from the Tg(HuC:GFP) and 

Tg(dlx4/6:GFP) lines. In situ hybridisation was performed for Ihxla, Ihxlb and lhx5 

as described in sections 2.7 and 2.9, using DIG-labelled probes and the fluorescent 

Fast Red AP substrate. GFP was then detected using the anti-GFP primary antibody 

(Upstate Biotech), and an Alexa 488 conjugated anti-rabbit IgG secondary antibody 

(Molecular Probes).
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Outline of unsuccessful projects

A transgenic lhxla:GFP line

With our interest in cell tracing and live imaging, I tried to develop a transgenic GFP 

line under the control of sequences that regulate Ihxla expression. Constructs 

containing either 9kb or 3kb of genomic sequence, including the first exon, first 

intron and part of the second exon of the Ihxla gene as well as upstream sequences 

were developed and kindly donated by Dr N. Takahashi in the laboratory of Dr I. 

Dawid (NIH, Bethesda MD). Injection of either the short or long construct, 

linearlised or circular, did not result in discemable GFP expression in any of the 

injected embryos. Nonetheless, injected embryos were grown to adulthood and in

crossed, but no fluorescent progeny were obtained. The first intron has been shown 

to be essential for early embryonic expression (Watanabe et al., 2002), raising the 

possibility that other intron sequences that were absent from the genomic constructs 

are required for later CNS expression.

Antibodies to LIM-HD proteins

I also tried to develop an antibody specific to Lhx la. Because of the extensive 

homology between Lhxla and Lhxlb (81% amino acid identity), I used very short 

(100-150bp) regions from the more variable 3’ regions of the gene and fused them to 

the 3’ end of the sequence for glutathione-S-transferase (GST; pGEX-2T vector 

donated by M. Redd). Following purification of these GST fusion proteins by 

glutathione columns, the proteins were injected into rabbits to generate polyclonal 

antibodies (Cambridge Biosciences). Unfortunately, I did not detect any specific 

binding of the resulting antisera to either whole protein extracts from wildtype or 

//zx/a-overexppressing embryos in Western blots or in wholemounts. Other groups 

have also generated antibodies to LIM-HD proteins including to Lhxl. However, no 

specific staining in wholemount was observed either with an antibody to Xenopus 

Liml (xLhxl; Karavanov et al., 1996; sold by Chemicon International) or an 

antibody to rat Lim2 that also cross-reacts with chick, rat and mouse Liml and Lim2 

(4F2; Developmental Studies Hybridoma Bank, Iowa).

Morpholinos to lhxla and lhxlb
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A further attempt to probe Lhx gene function involved generating morpholino 

oligonucleotides to disrupt the translation of lhxla and lhxlb  mRNA. 25mer 

sequences were designed to the 5’ UTR of the lhxla and lhxlb  genes, as these 

regions share little sequence similarity. Specific effects on neurogenesis or Lhx- 

expressing populations were not observed, although high doses of morpholino 

resulted in gastrulation defects that may be related to the early expression of these 

genes (Toyama and Dawid, 1997).
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4.3: Results

I have undertaken a detailed study of the expression of three zebrafish LIM- 

homeobox (Lhx) genes, lhxla, lhxlb and lhx5 over the first five days of 

development. I have also analysed the expression of these genes with respect to 

other markers in the telencephalon, including those that define pallial and subpallial 

territories. Through this analysis I have been able to extensively characterise the 

Lhx-expressing populations, and gain clues about their possible functions in the 

developing telencephalon.

I started my expression analysis at late somitogenesis stages and continued 

through to beyond the end of embryogenesis, 5dpf. By 5dpf, the telencephalon has 

much in common with the adult telencephalon in terms of neuronal organisation, the 

presence of tracts and commissures and the location of proliferative regions 

(Wullimann and Puelles, 1999). My primary interest, therefore, was to analyse 

telencephalic domains of Lhx expression and to relate them to the processes that 

shape the telencephalon during embryogenesis. To aid in the imaging and 

interpretation of telencephalic expression domains I made use of “whole 

telencephalic sections”, which involved cutting off the telencephalon and mounting 

it on its flat side for imaging, as shown below.

Figure 4.1: Cutting and mounting of whole telencephalic sections from wholemount 

stained specimens.

Expression of lhxla in the telencephalon

Expression of lhxla in the CNS begins at approximately 8ss (13hpf) in cells 

throughout the neuraxis, mostly in the presumptive hindbrain and spinal cord but 

with single cells in the presumptive telencephalon (Toyama and Dawid, 1997; data 

not shown). At 20ss, when the boundary of the telencephalon is clearly visible,
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Ihxla is expressed in a group of posteriorly-located dorsal telencephalic cells (Fig 

4.2 A and B). Looking from the rostral aspect at the telencephalon, the Ihxla- 

expressing cells form bilateral stripes close to the midline (Fig 4.2 C). In a number 

of cases, cells expressing Ihxla were observed still in contact with the prospective 

ventricular surface, suggesting that a few of these cells may still be proliferative or 

had just undergone their final mitosis (data not shown). At later stages Ihxla- 

expressing cells are not seen in obviously proliferative areas (data not shown).

At 24hpf, Ihxla expression in the telencephalon appears as two bilateral 

domains separated by 4-5 cell diameters of non //zjt/a-expressing tissue (Fig 4.2 D- 

F). I have designated the more dorso-posterior domain as Ihxla domain 1 and the 

more dorso-anterior domain as Ihxla domain 2, to simplify their identification within 

the telencephalon. The two domains have slightly different sizes (Fig 4.2F) and 

domain 1 lies very close to the posterior border with the diencephalon (Fig 4.2D). 

These telencephalic expression domains remain similar at 32hpf and 48hpf, although 

the distance between domain 1 and 2 increases, and domain 2 becomes progressively 

further from the midline (Fig 4.2 G, I, J and L). In addition, between 32hpf and 

48hpf, domain 1, while remaining juxtaposed to the posterior telencephalic border, 

expands dramatically in the mediolateral axis (Fig 4.2 K and L). Examination of 

stages between 32hpf and 48hpf reveals this mediolateral expansion begins laterally 

as a thin stream of //uc7a-expressing cells and becomes more robust up to 48hpf (data 

not shown).

At 3dpf, the expression of Ihxla in the telencephalon looks surprisingly 

different to the pattern at 48hpf. Two domains of Ihxla expression are still present, 

but domain 1 now lies far from the posterior border of the telencephalon (Fig 4.2M), 

within the olfactory bulb (OB; Fig 4.2N). The OB has a structure distinct from the 

rest of the telencephalon because of its glomeruli (see Chapter 3), and can therefore 

be identified in fixed tissue under high power magnification (data not shown). 

Domain 2 lies just anterior to the AC (Fig 4.2M). From 3dpf onwards the expression 

of Ihxla in the telencephalon changes little -  at 5dpf Ihxla continues to be expressed 

in both the OB and adjacent to the AC (Fig 4.2 O and P). This is confirmed by in 

situ hybridisation on cryostat sections from this region (data not shown).
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Figure 4.2: Ihxla expression 19hpf to 5dpf

Figure shows expression of Ihxla in lateral wholemounts (A, D, G, J, M, O; scale 
bars=100pm), dorsal wholemounts (B, E, H, K; scale bars= 100pm) and whole 
telencephalic sections (C, F, I, L, N, P; scale bars=50pm) at 19hpf (A-C), 24hpf (D- 
F), 32hpf (G-I), 48hpf (J-L), 3dpf (M-N) and 5dpf (O-P).
Q and R show shh expression in lateral (Q) and dorsal (R) wholemounts at 36hpf; 
blue arrowheads mark the zona limitans intrathalamica (zli)

In lateral wholemounts, white dotted lines demarcate the telencephalon, and green 
spots mark the anterior commissure where appropriate. Black arrowheads mark the 
posterior border of the telencephalon with the diencephalon.

At 19hpf (20-somite stage), Ihxla is expressed in a single posterior-dorsal 
telencephalic domain (blue arrowheads in A and B and bracket in C), close to the 
border with the diencephalon (black arrowhead in A). Additional expression is seen 
in the anterior hypothalamus, ventral midbrain, and in the hindbrain rhombomeres.

At 24hpf, Ihxla is expressed in two bilaterally symmetrical domains in the 
telencephalon, domain 1 adjacent to the border with the diencephalon (blue 
arrowhead in D and F) and domain 2 more anteriorly (blue arrow in D, E and F). 
Lhxla expression in the ventral thalamus, midbrain and hindbrain rhombomeres is 
broader than at 19hpf (D and E).

By 32hpf, lhxla expression is strengthened in all areas (G and H), especially in the 
thalamus both dorsal and ventral to the zli (compare G and Q). In the telencephalon, 
domain 1 (blue arrowhead in G, H and I) lies close to the border with the 
diencephalon (black arrowhead in G), while domain 2 lies close to the anterior 
commissure (AC; blue arrow in G and I).

At 48hpf, lhxla expression persists in the hypothalamus, ventral and dorsal thalamus 
and tegmentum, and a new expression domain appears in the optic tectum (J and K). 
In the telencephalon, domain 1 (blue arrowhead in J) still lies close to the border 
with the diencephalon (black arrowhead in J), but the domain is spread in the 
mediolateral axis (brackets in K and L). Domain 2 (blue arrow in J and L) remains 
close to the AC.

In the 3dpf telencephalon, domain 1 (blue arrowhead in M and N) lies anteriorly 
within the OB, at some distance from the border with the diencephalon (black 
arrowhead in M). Domain 2 (blue arrow in M and N) is located just anterior to the 
AC. The cut made to produce the section in N is shown by a black dotted line in M.

At 5dpf, lhxla expression persists in the dorsal OB (blue arrowhead in O and P) and 
adjacent to the AC (blue arrow in P). The cut made to produce the section in P is 
shown by a black dotted line in O.

di -  diencephalon mb -  midbrain dl -  domain 1 of lhxla
t -  telencephalon hb -  hindbrain d2 -  domain 2 of lhxla
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Expression o f lhxla in other brain areas

Outside the telencephalon, lhxla expression begins in small clusters of cells in the 

anterior hypothalamus, ventral midbrain and hindbrain rhombomeres (Fig 4.2 A and 

B). These expression domains expand during the 5 days of embryogenesis 

examined, with a new expression domain appearing in the optic tectum at 48hpf (Fig 

4.2J). The expression of shh at 36hpf identifies the zona limitans intrathalamica 

(zli), a boundary between the dorsal and ventral thalamus (Fig 4.2 Q and R) and 

comparison with lhxla suggests that lhxla expression flanks the zli but is not 

expressed within it (compare Fig 4.2 G and Q). The lhxla  hindbrain expression is 

also worth noting - a distinctive rhombomeric pattern with stripes of expression 

adjacent to rhombomere boundaries and “loops” of Ihxla-expressing cells in the 

lateral part of each hindbrain segment (Fig 4.2 H and K).

Expression o flhxlb  in the telencephalon

The expression of Ihxlb, a gene unique to zebrafish and highly homologous to lhxla, 

also shows complex patterns in the telencephalon throughout development. At lOss 

(14hpf), Ihxlb is already expressed in single cells in the presumptive telencephalon 

(Fig 4.3A). By 20ss (19hpf) this telencephalic domain is much broader and dorsally 

located within the posterior telencephalon, adjacent to the border with the 

diencephalon (Fig 4.3B). From the rostral aspect, the Ihxl^-expressing cells appear 

as bilateral stripes, 2-3 cell diameters from the midline (Fig 4.3C). As with lhxla 

expression at this stage I sometimes observed Ihxl ̂ -expressing cells in contact with 

the midline, perhaps indicating that they were about to or had recently undergone 

their final mitosis (data not shown).

From 24hpf to 48hpf, the bilateral stripes of Ihxlb expression in the 

telencephalon remain relatively constant in size and shape (Fig 4.3 F, I and L) but 

are located progressively more anteriorly with respect to the posterior border of the 

telencephalon and therefore closer to the anterior commissure (Fig 4.3 D, G and J).

A second expression domain appears in the telencephalon at 36hpf, between the AC 

and the ventral border of the telencephalon (Fig 4.3 G and I), in a region known as 

the preoptic area (Wullimann and Knipp, 2000). This domain is visible but much 

weaker at 48hpf (Fig 4.3 J and L).

In the 3dpf telencephalon, Ihxlb expression directly abuts the AC, which 

now lies on the ventral side of the brain (Fig 4.3 M and N). No expression between
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Figure 4.3: Ihxlb expression 14hpf to 5dpf

Figure shows Ihxlb expression in lateral wholemounts (A, B, D, G, J, M, O; scale 
bars=100p,m), dorsal wholemounts (E, H, K; scale bars= 100pm), whole 
telencephalic sections (C, F, I, L; scale bars=50pm) and ventral wholemounts (N and 
P; scale bars=50pm) at 14hpf (A), 19hpf (B and C), 24hpf (D-F), 36hpf (G-I), 48hpf 
(J-L), 3dpf (M-N) and 5dpf (O-P). Black arrowheads indicate the posterior 
telencephalic/diencephalic border, white dotted lines demarcate the telencephalon, 
and green spots mark the anterior commissure where appropriate.

At 14hpf (10 somite stage) Ihxlb is expressed in discrete cells in the telencephalon 
(A), and in isolated cells in the diencephalon.

By 20ss, telencephalic Ihxlb expression consists of a broad dorsal domain (dotted 
line in B), which comprises bilateral stripes of expression (C). Ihxlb is also 
expressed in the posterior hypothalamus and ventral midbrain, as well as in the 
hindbrain rhombomeres (B).

24hpf expression of Ihxlb shows expansion of all previously existing expression 
domains (D and E). Telencephalic expression (dotted line in D) abuts the border 
with the diencephalon (black arrowhead in D). Bilateral stripes in the telencephalon 
are slightly reoriented to form an inverted “V” shape (F).

At 36hpf, an additional expression domain appears in the ventral telencephalon, in 
the preoptic area (blue arrow in G and I). A further expression domain appears in 
the diencephalon, just anterior to the postoptic commissure (black arrow in G). 
Expression in the hypothalamus, ventral thalamus and tegmentum are expanded (G 
and H). Rhombomeric expression is highly organised, with each hindbrain segment 
displaying a stereotyped pattern of Ihxl ̂ -expressing cells (black arrows in H).

At 48hpf expression in the telencephalon is weaker than at earlier stages but both the 
bilateral stripes (dotted line in J; bracket in L) and expression in the preoptic area 
(blue arrow in J and L) remain. In the diencephalic preoptic area, Ihxlb expression 
is very strong (black arrow in J and L). In the hindbrain, the stereotyped pattern of 
Ihxlb expression remains (black arrows in K).

At 3dpf, the bilateral stripes of Ihxlb expression lie on the ventral side of the brain, 
abutting the AC (blue arrowhead in M, a specimen dissected before in situ 
hybridisation). Cells in the diencephalic preoptic area also continue to express Ihxlb 
(black arrows in M and N).

5dpf expression patterns show bilateral domains adjacent to the AC (blue 
arrowheads in O and P) and diencephalic preoptic area expression (black arrow in 
O).
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the AC and ventral telencephalic border is detected, suggesting that the domain seen 

at 36 and 48hpf is only transient. Similarly at 5dpf, bilateral weak domains of Ihxlb 

adjacent to the AC are the only domains present in the telencephalon (Fig 4.3 O and

P).

Expression o f Ihxlb in other brain areas

Outside the telencephalon, Ihxlb is expressed in the ventral thalamus, dorsal 

thalamus, ventral midbrain and hindbrain rhombomeres from 19hpf onwards. At 

36hpf, a new expression domain appears between the optic recess and the postoptic 

commissure (Fig 4.3G) and remains until at least 5dpf (Fig 4.30). These cells may 

form part of the preoptic area (Wullimann and Knipp, 2000). In the hindbrain, the 

expression of Ihxlb is very similar to expression of lhxla, with each rhombomere 

containing two stripes of Ihxl ̂ -expressing cells adjacent to the boundaries and a 

“loop” of cells more laterally (Fig 4.3 H and K).

Expression oflhx5 in the telencephalon

In contrast to lhxla and Ihxlb expression, lhx5 does not begin to be expressed in the 

telencephalon until 19hpf (20ss), where it appears as a faint domain in the dorsal 

telencephalon adjacent to the diencephalic border (Fig 4.4 A and B). By 24hpf, 

expression in the dorsal telencephalon is much more robust (Fig 4.4 C and D), and 

when viewed rostrally comprises broad bilateral domains which begin approximately 

2-3 cell diameters from the midline (Fig 4.4E). At 24hpf, an additional expression 

domain appears in the ventral telencephalon (blue arrow in Fig 4.4C), which 

becomes stronger at 36hpf (Fig 4.4 F). This posterior domain is visible, deep from 

the tissue surface, in a rostral view at 36hpf, as is the now broadened, more 

superficial expression of lhx5 in the dorsal telencephalon (Fig 4.4H), which appears 

as two inverted triangle-shaped domains. Noticeably, lhx5 expression is much closer 

to the midline posteriorly than it is more anteriorly. At 48hpf, the triangular domains 

of lhx5 in the dorsal telencephalon closely resemble those at 36hpf. However lhx5 is 

not evenly expressed throughout the domain, being stronger in the most posterior 

part (Fig 4.4K). In general, lhx5 expression in the telencephalon seems weaker than 

at 36hpf, although this may be due to technical reasons.
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Figure 4.4: lhx5 expression 19hpf to 5dpf

Figure shows lhx5 expression in lateral wholemount (A, C, F, I, L, N; scale 
bars= 100pm), dorsal wholemount (B, D, G, J; scale bars= 100pm) and whole 
telencephalic sections (E, H, K, M, O; scale bars=50pm) at 19hpf (A-B), 24hpf (C-
E), 36hpf (F-H), 48hpf (I-K), 3dpf (L-M) and 5dpf (N-O).
The telencephalon is demarcated by white dotted lines, the posterior border of the 
telencephalon indicated by a black arrowhead and the AC indicated with a green spot 
where appropriate.

At 20ss, lhx5 expression is strongest in a broad dorso-ventral band through the 
diencephalon. Faint expression is also seen in the dorsal telencephalon (blue 
arrowheads in A and B), close to the diencephalic border (black arrowhead in A) and 
in the anterior hypothalamus.

By 24hpf lhx5 is broadly expressed in the dorsal telencephalon (blue arrowheads in 
C and D; E) and in a small domain in the ventral telencephalon (blue arrow in C). 
Ihx5 continues to be expressed in a broad band of the diencephalon and in the 
anterior hypothalamus (C).

At 36hpf, the broad dorsal expression domain in the telencephalon (blue arrowhead 
in G; H) remains adjacent to the border with the diencephalon (black arrowhead in
F). The ventral telencephalic expression domain is strengthened (blue arrow in F 
and deep out of focus in H). Additional strong expression is observed through the 
diencephalon and midbrain (F), as well as in the hindbrain rhombomeres (G).

48hpf expression of lhx5 (I-K) is very similar to the expression at 36hpf. However, 
expression in the telencephalon is not uniform, with posterior cells expressing the 
highest level of lhx5 (bracket in K).

Expression of lhx5 in the 3dpf telencephalon is found in an anterior domain in the 
OB (blue arrowhead in L; bracket in M), far from the border with the diencephalon 
(black arrowhead in L). The ventral telencephalic domain lies between the tract of 
the anterior commissure and the telencephalic/diencephalic boundary (blue arrow in 
L).

Similarly at 5dpf (N-O), lhx5 telencephalic expression is seen in the OB (blue 
arrowhead in N; bracket in O) and through a broad region of the ventral 
telencephalon (blue arrow in N).

OB -  olfactory bulb 
di - diencephalon
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In the 3dpf telencephalon, lhx5 expression occupies quite different positions than at 

48hpf, with a strong expression domain in the OB and another caudal to the AC (Fig 

4.4L). Looking at the OB shows that lhx5 is expressed broadly in this region (Fig 

4.4M), in contrast to lhxla, which is restricted to the dorsal OB at this stage (Fig 

4.4N). At 5dpf, the telencephalic expression domains remain similar to those at 

3dpf, although all expression domains lie a little more basally within the brain (Fig

4.4 N and O).

Expression oflhxS in other brain areas

Outside the telencephalon, lhx5 is expressed in a broad band in the diencephalon 

(Fig 4.4 A and B). This expression domain appears much earlier than any 

telencephalic expression, around 5ss (12hpf) (Toyama et al., 1995; data not shown). 

An additional diencephalic expression domain appears in the anterior hypothalamus 

at 24hpf (Fig 4.4 C) and persists as the hypothalamus grows until at least 48hpf (Fig

4.4 F and I). Ihx5 expression elsewhere in the brain is difficult to classify without 

further markers, but is probably also expressed in the ventral thalamus, dorsal 

thalamus, the pretectum and the tegmentum, and in the hindbrain rhombomeres (Fig

4.4 F, G, I and J). In the hindbrain, lhx5 expression bears strong resemblance to 

lhxla expression, with lateral “loops” of expression in each rhombomere (Fig 4.4G).

lhxla and lhx5 are expressed in the olfactory bulb

My analysis of the expression of lhxla and lhx5 shows that both genes are expressed 

in the olfactory bulb (OB), a telencephalon-derived structure, at 3dpf and 5dpf. To 

further investigate the relationship between lhxla and lhx5 and the OB, I performed 

in situ hybridisations for mitfb, a gene expressed in the OB (Lister et al., 2001) at a 

variety of stages. Without two-colour in situ hybridisation it is impossible to say that 

the genes are expressed in precisely the same domain, but lhxla  and lhx5 do share 

similar dorsal limits of expression with mitfb at 48hpf (Fig 4.5 A-E) and the same 

dorsal limit at 3dpf (Fig 4.5 F-I). Performing a double in situ with lhxla and mitfb in 

the same colour also suggests at least a partial overlap of the two genes at 48hpf (Fig

4.5 D). This fits well with my previous observation that lhxla  and lhx5 are 

expressed in the OB from 3dpf, if not before.

To see whether lhxla and lhx5 expression persists in the OB beyond 

embryonic stages I analysed in situ hybridisations on cryostat sections for these
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Figure 4.5: lhxla and lhx5 in the OB

A-C and G-I show lateral wholemounts, rostral to the left, scale bars= 100pm. D-F 
show whole telencephalic sections, dorsal to the top, scale bars=50pm. The 
telencephalon is demarcated by white dotted lines and the AC indicated by a green 
spot where appropriate.

A shows the telencephalic expression of mitfb at 48hpf (blue arrowhead) which 
occupies a similar position to domain 1 of lhxla (black arrowhead in B) and dorsal 
telencephalic expression of lhx5 (black arrowhead in C).

D shows mitfb expression in a whole telencephalic section at 48hpf (blue arrowhead 
in D). In E, lhxla  (black arrowheads) and mitfb expression (blue arrowhead) are 
somewhat overlapping. F shows mitfb expression at 3dpf

G-I show the similar position of mitfb (blue arrowhead in G), lhxla (black 
arrowhead in H) and lhx5 (black arrowhead in I) expression at 3dpf.

J shows lhxla expression in isolated cells (black arrowhead) in the olfactory bulbs at 
1 month post fertilisation. Scale bar= 100pm
K shows lhx5 expression in isolated cells (black arrowhead) and in the bulb 
periphery (black arrow) at 1 month post fertilisation. Scale bar= 100pm

OB -  olfactory bulb
tel -  telencephalon
dl -  domain 1 of lhxla  expression
d2 -  domain 2 of lhxla  expression
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genes at 1 month post fertilisation in specimens prepared by M. Mione and C. 

Kwong. Lhx gene expression is known to persist in telencephalic regions until adult 

stages (Moreno et al., 2004) and indeed in juvenile zebrafish lhxla  and lhx5 continue 

to be expressed in a subset of cells in the OB. lhxla is expressed in scattered cells in 

an outer lamina of the bulb, in the position of mitral cells (Fig 4.5 J; Mione et al., 

2001 and M. Mione, personal communication). Ihx5 is expressed strongly in the 

periphery of the bulb, probably in the olfactory nerve layer, and also in scattered 

cells within the bulb (Fig 4.5 K). Further expression analysis to establish whether 

lhxla- and /foc5-expressing populations overlap was attempted but was unsuccessful.

Expression o f lhxla, Ihxlb and lhx5 in combination

Observations of the expression patterns of single Lhx genes through development 

led to the question of whether the domains of lhxla, lhx5 and Ihxlb are overlapping 

in the CNS, especially within the telencephalon. To address this question I used 

two-colour double in situ hybridisation techniques to label pairs of genes 

simultaneously, and performed these experiments at 24hpf when the Lhx expression 

patterns are relatively simple and at 32hpf, when they are more complex. Technical 

difficulties hindered attempts to perform these experiments at later stages.

lhxla and Ihxlb

In the telencephalon, lhxla and Ihxlb are expressed in strikingly co-ordinated 

domains with respect to each other (Fig 4.6 A, B, C and E). Of the two lhxla 

domains, domain 1 is exclusive of Ihxlb expression (Fig 4.6 B and B’), while 

domain 2 overlaps completely with the //zjci^-expressing domain (Fig 4.6 B and B” ). 

The Ihxlb domain extends posteriorly from lhxla domain 2 towards the midline.

The co-ordinated expression of these two genes is very similar at both 24hpf and 

32hpf (Fig 4.6 B and E).

Elsewhere in the brain, lhxla and Ihxlb have almost completely overlapping 

expression domains at 24hpf, although lhxla is slightly more broadly expressed in 

the ventral diencephalon (Fig 4.6 A). Similarly, at 32hpf, expression of the two 

genes in the midbrain and hindbrain is completely overlapping (Fig 4.6 C and D). 

Only one region of the dorsal hypothalamus expresses lhxla  exclusive of Ihxlb (Fig

4.6 C).
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Figure 4.6: lhxla , Ihxlb and lhx5 in combination

Figures show double in situ hybridisations for lhxla with Ihxlb (A-E), lhxla  with 
lhx5 (F-J) and lhx5 with Ihxlb (K-P). Specimens are shown at 24hpf (A-B, F-G, K- 
M) and 32hpf (C-E, H-J, N-P). Scale bars represent 100pm in lateral and dorsal 
wholemounts, 50pm in whole telencephalic and vibratome sections, and 5pm in the 
highly magnified images in B’, B” , G’ and G” . A white dotted line demarcates the 
telencephalon in lateral wholemounts.

lhxla and Ihxlb are expressed in extensively overlapping domains at both 24hpf and 
32hpf (A, C and D), except in the ventral thalamus at 32hpf where they are 
expressed in adjacent domains (black arrowhead in C). In the telencephalon, Ihxlb 
expression overlaps with domain 2 of lhxla at both 24hpf (red arrow in A, B, and 
region shown magnified in B”) and at 32hpf (red arrow in C and E). However Ihxlb 
expression does not overlap with lhxla domain 1 at either stage (red arrowhead in A, 
B, C and E; region shown magnified in B’).

lhxla and lhx5 expression also overlaps extensively at 24hpf (black arrowhead in F), 
and at 32hpf (black arrowheads in H; I) although lhxla is expressed alone in the 
midbrain (H). In the telencephalon, lhx5 is expressed in a broad domain of the 
dorsal telencephalon which encompasses lhxla domain 1 (blue arrowhead in F, G, H 
and J; region shown magnified in G’). Domain 2 of lhxla expression, however, lies 
just ventral to the lhx5 expression domain at both 24hpf and 32hpf (blue arrow in F, 
G, H and J; region shown magnified in G”).

Ihx5 and Ihxlb expression overlaps somewhat at 24hpf (K and L), most strikingly in 
the ventral thalamus (black arrowhead in K). At 32hpf, expression is still 
overlapping in the ventral thalamus (black arrowhead in N) but Ihxlb is expressed 
alone in the midbrain (N). In the telencephalon, Ihxlb expression lies medial to the 
broad domain of lhx5 expression at 24hpf (M). At 32hpf, a similar pattern is 
evident, although Ihxlb expression is not level with the dorso-posterior border of 
lhx5 (arrows in O). A horizontal 50pm vibratome section through the telencephalon 
at the level shown in N confirms the more medial expression of Ihxlb (blue 
arrowhead in P), with a possible zone of overlap of the two genes (black bracket in
P).
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lhxla and lhx5

In the telencephalon, lhxla and lhx5 also show strikingly co-ordinated expression 

domains with respect to each other (Fig 4.6 F, G, H and J). Both at 24hpf and 32hpf, 

lhxla domain 1 falls completely within the lhx5 domain (Fig 4.6 G, G’ and J). 

However, the same is not true for lhxla domain 2, which lies juxtaposed to, but not 

within, the lhx5 domain (Fig 4.6 G, G” and J). Assessment of this was made by 

high power light microscopy and confirmed by lateral wholemount views that show 

domain 2 of lhxla  lying just dorsal to lhx5 expression (Fig 4.6 F and H). At 48hpf, 

the relationship between these two domains is even clearer, with lhxla domain 2 

positioned below the anterior limit of lhx5 expression (data not shown).

Outside the telencephalon, the lhx5 expression domains in the diencephalon 

encompass all diencephalic Ihxla-expressing regions and extend more broadly, both 

at 24hpf and 32hpf (Fig 4.6 F and H). The two genes also overlap completely in the 

hindbrain at 32hpf (Fig 4.61); at 24hpf lhx5 is not highly expressed in the hindbrain. 

The midbrain is the only region where the two genes are not overlapping -  here 

lhxla  is expressed alone at both 24hpf and 32hpf (Fig 4.6 F and H).

Ihx5 and Ihxlb

Again the telencephalon shows an interesting co-ordination of the expression 

domains of lhx5 and Ihxlb. At 24hpf, Ihxlb expression lies along the medial edge of 

lhx5 expression, probably overlapping to some extent (Fig 4.6 M). The A-P limits of 

the two genes are very similar at 24hpf, but at 32hpf, Ihxlb expression has shifted 

anteriorly with respect to lhx5 (Fig 4.6 O). This is confirmed by vibratome sections 

cut through the telencephalon of stained specimens -  dorsal-posterior sections 

contain only Ihx5-Qxpressing cells and ventral-anterior sections only Ihxlb- 

expressing cells. A mid-telencephalic vibratome section contains both populations 

with a possible zone of overlap between them (Fig 4.6P).

Outside the telencephalon, the expression of lhx5 and Ihxlb is very similar to 

the expression of lhxla and Ihxlb. In the diencephalon and hindbrain the two genes 

are overlapping; the midbrain is the only area to express Ihxlb alone (Fig 4.6 K, L 

andN).
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Summary

Comparison of the expression domains of lhxla, Ihxlb and lhx5 using double in situ 

hybridisation techniques reveal precise spatial co-ordination of Lhx-expressing 

domains in the telencephalon. Combining the results for the three genes 

(summarised in Fig 4.7) indicates that domain 1 of lhxla  overlaps completely with 

lhx5 expression, but is exclusive of Ihxlb. Domain 2 of lhxla, however, is the other 

way round, overlapping completely with Ihxlb expression but exclusive of lhx5. 

Ihxlb, which forms bilateral stripes in an inverted V-shape, lies just medial to lhx5 

expression, possibly overlapping slightly at both 24hpf and 32hpf. Between these 

two timepoints, Ihxlb expression shifts relative to lhx5, moving slightly more 

anteriorly. However, all other relationships between the gene expression domains 

remain constant between 24hpf and 32hpf.

Outside the telencephalon, the Lhx genes studied here are frequently found in 

overlapping expression domains. This is especially true for lhxla  and Ihxlb that are 

particularly closely overlapping throughout the brain, except for in a region of the 

ventral thalamus. Ihx5 has a more restricted expression pattern than lhxla  or Ihxlb , 

but in the diencephalon lhxla and Ihxlb fall completely within the lhx5 domain. In 

the hindbrain, all three genes are expressed in indistinguishable domains.
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Figure 4.7: co-ordinated expression  of Ihxla, Ihxlb and Ihx5 in the  
telencephalon
Schematic diagram showing an anterior view of a the whole telencephalon at 32hpf. 
Domainl of lhxla expression overlaps with lhx5 (yellow and red stripes), domain 2 
overlaps with Ihxlb (yellow and blue stripes). Ihx5 (red) and Ihxlb (blue) expression 
domains are adjacent but almost entirely non-overlapping.
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lhxla, Ihxlb and lhx5 expression and neuronal phenotype 

Current evidence suggests that Lhx genes are switched on in neuronal progenitor 

cells at or around the time of their final mitosis (reviewed in Shirasaki and Pfaff, 

2002), i.e. when they become differentiated neurons. Rather than assume that this 

was the case for the telencephalic populations of lhxla , Ihxlb and lhx5,1 wanted to 

test this directly using the pan-neuronal Tg(HuC:GFP) line (Park et al., 2000). This 

line of fish expresses GFP under the control of the HuC promoter sequences in all 

postmitotic neurons with an approximate lag time of 4h (Lyons et al., 2003). By 

performing in situ hybridisation for the Lhx genes using a red fluorescent substrate, 

and combining this with immunostaining for GFP, I was able to analyse 

coexpression in detail with confocal microscopy. These experiments were 

performed at both 24h and 36hpf; the data presented is only for the later time point 

to reduce the possibility that the time lag between cells becoming neurons and 

switching on GFP would be responsible for the results.

In general the results indicate that telencephalic Lhx gene expression 

domains coexpress HuC at 36hpf. This is shown for domains 1 and 2 of lhxla (Fig 

4.8 A), for Ihxlb (Fig 4.8 B) and for the dorsal domain of lhx5 (Fig 4.8 C). 

Interestingly, the ventral domain of lhx5 expression in the telencephalon does not 

coexpress HuC (Fig 4.8 F). This may reflect a later birth of these cells compared to 

those in the dorsal telencephalon (see Fig 4.4 C).

In the diencephalon, the relationship between Lhx genes and HuC is more 

complex. All genes show regions of coexpression with HuC and regions of 

exclusivity, lhxla and Ihxlb largely coexpress HuC (Fig 4.8 D and E) while lhx5 is 

largely exclusive of HuC in the caudal diencephalon (Fig 4.8 G).

lhxla, Ihxlb and lhx5 expression andpallial markers 

Having characterised the expression domains of lhxla , lhx5 and Ihxlb both 

individually and in combination with each other, I wanted to know how expression 

in the telencephalon relates to markers of the dorsal telencephalon or pallium. The 

subdivision of the telencephalon into pallial (dorsal) and subpallial (ventral) regions 

has not only anatomical but also functional relevance since the pallium gives rise to 

neocortical structures (in mammals) and the subpallium to the basal ganglia 

(reviewed in Wilson and Rubenstein, 2000). Understanding these subdivisions in
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Figure 4.8: lhxla , Ihxlb and lhx5 in the Tg(HuC:GFP) line

All figures show single, transverse, confocal sections through 36hpf specimens 
double-labelled by anti-GFP antibody (green) and in situ hybridisation (red) for 
either lhxla (A and D), Ihxlb (B and E) or lhx5 (C, F and G). Single sections 
through the telencephalon with red and green channels superimposed are presented 
in the first column (A-C), followed by the red (A’, B’ and C’) and green channels 
alone (A”, B” and C”) in adjacent panels. D to G show further sections from the 
same specimens as in A-C through more caudal regions of the telencephalon (F) or 
the diencephalon (D, E and G).

A shows extensive coexpression of lhxla and HuC in a single section through the 
telencephalon of a 36hpf embryo. Domain 1 of lhxla (white arrowhead) is more
prominent in this section than domain 2 (white arrow); a few of these cells express
little or no HuC:GFP.

B shows that Ihxlb expression (B’) lies at the medial edge of HuC (B” ) expression.

C shows extensive coexpression of lhx5 (C’) and HuC (C” ) in a single section 
through the telencephalon.

D and E show coexpression of lhxla (D) or Ihxlb (E) and HuC in single sections 
through the diencephalon.

F shows the HuC-negative ventral telencephalic domain of lhx5 (white arrow); in 
addition medial cells in the posterior dorsal telencephalon express little HuC (white 
arrowhead). In G, a section through the diencephalon reveals further lhx5 expression 
exclusive of HuC (white arrow in G).

dl -  domain 1 of lhxla  expression 
d2 -  domain 2 of lhxla expression

119



Figure 4.8
120



zebrafish, and how the Lhx genes are expressed with respect to them is essential 

background for any work addressing Lhx gene function.

I performed double in situ hybridisation at 24hpf and 36hpf for the Lhx genes 

with two dorsal telencephalic markers, emx3 (Kawahara and Dawid, 2002; Morita et 

al., 1995), and tbrl (Mione et al., 2001; Yonei-Tamura et al., 1999). Emxl and Tbrl 

are largely overlapping but have slightly different pallial expression domains in both 

chick and mouse (Puelles et al., 2000). Zebrafish emx3 was originally designated 

emxl, but subsequent identification of a gene more similar to mouse Emxl lead to its 

reclassification. No emx3 group members are known in mammals (Derobert et al., 

2002), but telencephalic expression patterns for zebrafish em xl, emxl and emx3 are 

very similar (Kawahara and Dawid, 2002). Again, technical difficulties prevented 

these experiments from being performed at later stages but even between these two 

close timepoints differences were observed in the relative positions of lhxla, lhx5 

and Ihxlb and the dorsal telencephalic markers.

Double labelling with emx3

The Emx genes are well-characterised and consistent markers of the pallium in many 

vertebrate species (Fernandez et al., 1998; Puelles et al., 2000). At 24hpf and 36hpf, 

emx3 is expressed in the zebrafish posterior dorsal telencephalon (Fig 4.9 A and C) 

in bilateral domains a few cell diameters from the midline (Fig 4.9 B and D).

Looking anteriorly, emx3 also appears to be expressed in presumed ventricular zone 

cells, but at much lower levels.

In double labelling with lhxla at 24hpf, lhxla  domain 1 lies within the most 

posterior part of the emx3 domain, lhxla domain 2 also partially overlaps with the 

emx3 domain but extends slightly more anteriorly (Fig 4.9 E and F). At 36hpf lhxla 

domain 2 lies completely outside the emx3 domain, lhxla  domain 1, however, 

continues to occupy the same position in the most posterior part of the emx3 domain 

(Fig 4.9 G and H).

A similar pattern is found with double labelling for emx3 and Ihxlb. Ihxlb 

expression extends slightly beyond the anterior limits of emx3 at 24hpf (Fig 4.9 I and 

J). However, by 36hpf, approximately two thirds of the Ihxlb expression domain 

lies anterior to the emx3 domain (Fig 4.9 K and L).

With lhx5, the expression domains are more difficult to distinguish because 

lhx5 and emx3 both occupy a large area of the dorsal telencephalon. At 24hpf, lhx5
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Figure 4.9: lhxla , Ihxlb and lhx5 with pallial markers

Figures show in situ hybridisation for the pallial markers emx3 (A-D) and tbrl (S-T) 
and double in situ hybridisations for emx3 with lhxla  (E-H), Ihxlb (I-L) and lhx5 
(M-R) and for tbrl with lhxla (U and V). Specimens are shown at 24hpf (A-B, E-F, 
I-J, M-N, Q) and 36hpf (C-D, G-H, K-L, O-P, R-V). Scale bars represent 100pm in 
lateral views, and 50pm in whole telencephalic and vibratome sections. In all lateral 
wholemounts anterior is to the left, in telencephalic sections to the top and in 
vibratome sections to the bottom. White dotted lines demarcate the telencephalon in 
lateral wholemounts.

Figures A-D show expression of emx3 in the dorsal telencephalon in lateral 
wholemounts (A and C) and whole telencephalic sections (B and D), at 24hpf (A and 
B) and 36hpf (C and D). The position of the anterior commissure (AC) is indicated 
in C.

Figures E-H show expression of emx3 (red) with lhxla (blue) in lateral wholemounts 
(E and G) and whole telencephalic sections (F and H). (E-F) At 24hpf, lhxla  
domain 1 (blue arrowhead) and domain 2 (blue arrow) lie within the emx3 domain 
(red arrow shows anterior limit). (G-H) At 36hpf lhxla domain 2 (blue arrow) lies 
anterior to the emx3 domain (red arrow shows limit); lhxla domain 1 (blue 
arrowhead) lies within the emx3 domain.

Figures I-L show expression of emx3 (red) with Ihxlb (blue) in lateral wholemounts 
(I and K) and whole telencephalic sections (J and L). (I-J) At 24hpf, the anterior 
limit of Ihxlb (blue arrow) extends just beyond that of emx3 (red arrow). (K-L) At 
36hpf, Ihxlb expression (blue arrow) extends far beyond the limit of emx3 
expression (red arrow).

Figures M-R show expression of emx3 (red) and lhx5 (blue) in lateral wholemounts 
(M and O), whole telencephalic sections (N and P) and 35pm vibratome sections (Q 
and R). (M-N) At 24hpf, emx3 and lhx5 are almost entirely coincident in the 
telencephalon. A vibratome section at the level shown by the black dotted line in M 
shows the coincident expression domains (Q). (O-P) At 32hpf, the anterior limit of 
lhx5 expression (blue arrow) extends beyond the limit of emx3 expression (red 
arrow). A vibratome section at the level shown by the black dotted line in O shows a 
region of overlap (R).

Figures S-T show expression of tbrl in the 36hpf telencephalon; expression extends 
to the AC (labelled in S) and into the eminentia thalami (black arrowhead in S).

Figures U-V show expression of tbrl (red) with lhxla (blue) in lateral wholemount 
(U) and telencephalic section (V). Domain 1 (blue arrowhead) domain 2 (blue 
arrow) of lhxla lie within the tbrl domain at 36hpf.

dl -  domain 1 of lhxla  expression 
d2 -  domain 2 of lhxla  expression
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and emx3 seem to be completely overlapping (Fig 4.9 M and N); vibratome sections 

through this region show that the genes have similar A-P and D-V extents in the 

telencephalon (Fig 4.9 Q and data not shown). At 36hpf, lhx5 expression remains 

largely overlapping with emx3, but extends slightly beyond the anterior limit of 

emx3 expression (Fig 4.9 O and P). Vibratome sections confirm these observations 

(Fig 4.9 R and data not shown). The ventral domain of lhx5 expression, as seen 

deep from the tissue surface in Fig. 4.9 P, lies outside the emx3 domain at all stages.

Double labelling with tbrl

tbrl is another pallial marker expressed in a variety of species including zebrafish 

(Mione et al., 2001; Puelles et al., 2000; Yonei-Tamura et al., 1999). As in chick 

and mouse, tbrl expression in zebrafish is broader than emx3, extending in the 

mantlr layer of the anterior telencephalon almost to the level of the anterior 

commissure (Fig 4.9 S and T). Consequently, in double labelling experiments with 

lhxla , both lhxla domains lie within the tbrl expression domain (Fig 4.9 U and V). 

This is consistently seen up to 48hpf (data not shown). Following from 

observations of lhxla with tbrl, the dorsal telencephalic domains of lhx5 and Ihxlb 

would be inferred to lie within the tbrl domain at 24, 36 and 48hpf. This is because 

neither Ihxlb or lhx5 extends more anteriorly than lhxla  at these stages.

Summary o f Lhx genes with pallial markers

Examination of the Lhx genes with emx3 and tbrl reveals differences in the areas 

covered by the two pallial markers, with implications for the pallial nature of Lhx 

expression domains. emx3 has a smaller expression domain than tbrl, and double 

labelling with Lhx genes reveals that although the dorsal domains of lhxla , Ihxlb 

and lhx5 mostly overlap with emx3 at 24hpf, they all extend beyond its anterior limit 

at 36hpf. This is in marked contrast to results with tb rl, where lhxla  is and Ihxlb 

and lhx5 would be encompassed within the tbrl expression domain at all stages up to 

48hpf. It therefore seems likely that all of the primary expression domains of lhxla , 

Ihxlb and lhx5 lie within the pallium.

lhxla, Ihxlb and lhx5 expression and a subpallial marker

Having made a detailed examination of the relationship between lhxla , Ihxlb and

lhx5 and the dorsal telencephalic markers emxl and tbrl, I wanted to look at how the

124



same genes relate to a ventral telencephalic or subpallial marker. Although the 

primary Lhx expression domains lie within the pallium, as described above, I wanted 

to further investigate the relationship between pallial and subpallial areas. As a 

marker I used the Tg(dlx4/6:GFP) line, which expresses GFP under the control of 

the dlx4/6 promoter. A more detailed characterisation of this line is presented in 

chapter 3, but the dlx4!6 pair of genes are well-characterised markers of the 

subpallium and GFP expression in this line replicates their endogenous telencephalic 

expression (Zerucha et al., 2000). I used a combination of in situ hybridisation with 

a fluorescent subtrate for either Ihxla, Ihxlb or lhx5 with immunohistochemistry for 

GFP to look at how these two cell populations relate to each other at 24hpf and 

36hpf.

At 24hpf, no coexpression of Ihxla and dlx4/6 is seen in the telencephalon. 

Both Ihxla domains lie dorsal to the </&t4/d-expressing cells with domain 2 adjacent 

to the dlx4/6 expression (Fig 4.10C). Coexpression (as indicated by yellow in a 

red/green overlay) is however seen more caudally in the diencephalon in a group of 

approximately ten cells (data not shown). At 36hpf, Ihxla domain 1 still lies 

posterior to any GFP expression, whereas domain 2 overlaps with d£t4/<5-expressing 

cells (Fig 4.10D). Strikingly, there is no discemable coexpression of Ihxla and 

dlx4/6 in this region, with the two markers seemingly restricted to separate but 

intermingled cell populations. More caudally in the diencephalon, a small 

population of cells coexpress Ihxla and dlx4/6, but the majority of cells express 

either one marker or the other (Fig 4.10E).

Ihxlb is very much like domain 2 of Ihxla in its relation to dlx4/6 expression. 

At 24hpf, Ihxlb is always found posterior, but directly adjacent, to dlx4!6 expression 

(Fig 4.101). However, by 36hpf, */Zx4/6-expressing and //uci^-expressing cells are in 

the same region with no coexpression evident (Fig 4.10J). More caudally, in the 

diencephalon, dlx4/6 and Ihxlb remain mutually exclusive, appearing in adjacent but 

non-overlapping domains (Fig 4.1 OK). The transient expression domain of Ihxlb in 

the preoptic area is not visible in these specimens.

Ihx5 shows similar patterns with respect to dlx4/6 expression. At 24hpf, lhx5 

expression within the telencephalon lies lateral to dlx4/6 expression, with no 

coexpression of the two genes (Fig 4.1 OF). In the diencephalon, dlx4/6 and lhx5 are 

again mutually exclusive with a small group of d£t4/6-expressing cells lying within 

the broad domain of diencephalic lhx5 expression (data not shown). At 36hpf, the
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Figure 4.10: Ihxla, lhx5 and Ihxlb in the Tg(dlx4/6:GFP) line

A and B show lateral wholemount views of an in situ hybridisation for dlx2 at 24hpf 
(A) and the expression of GFP in the at 32hpf (B). Scale bars= 100pm

Figures show in situ hybridisation for Ihxla (C-E), lhx5 (F-H) or Ihxlb (I-K) 
combined with immunohistochemistry for GFP in the Tg(dlx4/6:GFP) line. All 
figures show single transverse confocal sections; scalebar in C represents 100pm in 
C-K.

Ihxla expression (arrowhead in C) lies posterior to dlx4/6 expression (arrow in C) in 
the 24hpf telencephalon. At 36hpf, the two cell poulations are mixing but not 
coexpressing (arrow in D). In the 36hpf diencephalon, Ihxla (arrowhead) and dlx4/6 
(arrow in E) may have a small region of coexpression.

Ihx5 expression in the 24hpf telencephalon (arrowhead in F) lies lateral to dlx4/6 
expression (arrow in F). At 36hpf, the two cell populations are overlapping and 
mixing but not coexpressing (arrow in G). The posterior domain of lhx5 in the 
telencephalon (arrowhead in H) is also exclusive of, and lies lateral to, dlx4/6 
expression (arrow in H).

Ihxlb expression in the 24hpf telencephalon (arrowhead in I) lies posterior to dlx4/6 
expression (arrow in I). At 36hpf, the two cell populations are found in the same 
region but there is no coexpression (arrow in J). More caudally in the diencephalon, 
Ihxl^-expressing (arrowheads) and d£t4/<5-expressing (arrows) cells lie in adjacent 
non-overlapping domains.

tel -  telencephalon
di -  diencephalon
d2 -  domain 2 of Ihxla expression
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telencephalic populations of lhx5 and dlx4/6 are intermingled, but as with Ihxla and 

Ihxlb no coexpression is evident (Fig 4.10G). In addition, the ventral telencephalic 

domain of lhx5 expression is exclusive of and lies lateral to dlx4/6 expression (Fig 

4.10H).

Summary ofLhx relationship to a subpallial marker

The striking feature of Lhx expression in the Tg(dlx4/6:GFP) line is how rarely any 

coexpression of Ihxla , lhx5 or Ihxlb with dlx4/6 is seen. In the telencephalon, there 

is no evidence of coexpression at either 24 or 36hpf. However, Lhx-expressing and 

dlx4/6-expressing cell populations are intermingled at 36hpf, and this has interesting 

implications for the separation of pallial and subpallial neurons in the mantle zone. 

Evidence from the diencephalon indicates a similar lack of coexpression; only in one 

part of the ventral diencephalon is there a small region where Ihxla and dlx4/6 are 

coexpressed.
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4.4 Discussion

I have performed a detailed analysis of the expression of three Lhx genes -  Ihxla, 

Ihxlb and lhx5 -  in the zebrafish telencephalon from early embryonic to 

postembryonic stages. By analysing expression of these Lhx genes singly, in 

combination with each other and in combination with markers for differentiated 

neurons as well as for pallial and subpallial regions of the telencephalon, I have 

gleaned information about the development of the telencephalon and the regions 

within it. Although totally descriptive at this stage, this information provides the 

necessary background for any experiments probing the functions of these genes.

Expression o f Ihxla, Ihxlb and lhx5 subdivides the dorsal telencephalon 

In the course of this expression analysis, I have mainly considered the domains of 

Ihxla, Ihxlb and lhx5 that persist through the entire period of embryogenesis. These 

are all dorsal telencephalic domains and consist of two Ihxla domains (domain 1 that 

is initially close to the posterior border with the diencephalon, and domain 2 that lies 

more anteriorly), a broad lhx5 domain and an inverted V-shaped Ihxlb domain.

Double in situ hybridisation analysis indicates that the dorsal telencephalon is 

subdivided at 24hpf and 32hpf by spatially co-ordinated and overlapping regions of 

expression of these Lhx genes (Fig 4.7). Thus domain 1 of Ihxla overlaps with the 

posterior part of lhx5 expression, while domain 2 of Ihxla overlaps with the anterior 

part of Ihxlb expression. Ihx5 and Ihxlb are largely mutually exclusive, but may 

overlap slightly at the medial edge of lhx5 expression. The dorsal telencephalon is 

therefore subdivided into four molecularly distinct regions -  a lhxla/lhx5 region, a 

Ihxla/lhxlb region, a lhx5-on\y region and a Ihxlb-only region.

Coexpression of multiple LIM-HD proteins within a single cell is thought to 

underlie the combinatorial specification of cell fate (Dawid and Chitnis, 2001;

Hobert and Westphal, 2000). However, two-colour wholemount in situ 

hybridisation analysis with non-fluorescent substrates is not precise enough to detect 

coexpression at the single cell level. It would therefore be exciting to extend the 

analysis I have performed here by using two colour fluorescent in situ hybridisation 

techniques (Denkers et al., 2004) or by using specific antibodies to the LIM-HD 

proteins. Unfortunately, no such antibodies are currently available, but an
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alternative strategy would be to develop a transgenic GFP line for one of the Lhx 

genes and combine this with fluorescent in situ hybridisation techniques as I have 

used in this chapter.

Nonetheless the subdivision of the zebrafish dorsal telencephalon into 

molecularly distinct domains may reveal a LIM-HD combinatorial code in the 

vertebrate forebrain. This has certainly been postulated by other workers for the 

mammalian cortex (Bulchand et al., 2003), thalamus (Nakagawa and O'Leary, 2001) 

and Xenopus forebrain (Bachy et al., 2002b; Bachy et al., 2001; Moreno et al.,

2004), but functional experiments are lacking. It would therefore be of great interest 

to undertake these experiments in zebrafish and the possible strategies for this will 

be discussed later.

Spatial relationships o f Lhx expression domains are retained through development 

The striking subdivision of the dorsal telencephalon into four molecularly distinct 

regions of Lhx gene expression at 24hpf and 32hpf was a feature I wanted to explore 

at later stages of development. Unfortunately technical difficulties associated with 

performing two-colour in situ hybridisation in sections prevented this. Nonetheless, 

analysis of the Lhx genes by single in situ hybridisation in wholemount indicates 

that the spatial relationships of Ihxla, Ihxlb and lhx5 are retained through 

development. For example, domain 1 of Ihxla overlaps completely with the dorsal 

lhx5 domain at 24hpf and 32hpf; both of these genes are expressed in the OB at 3 

and 5dpf. Domain 2 of Ihxla overlaps with Ihxlb expression, and both of these 

genes are expressed adjacent to the anterior commissure at 3 and 5dpf. Ihx5 and 

Ihxlb, which only overlap slightly at the interface of their two domains, but which 

move relative to each other between 24hpf and 32hpf, have completely different 

locations at 5dpf.

The analysis of Lhx gene expression at multiple closely-spaced time points 

by no means guarantees the labelling of the same cell populations over time. 

However, I was unsuccessful in generating a GFP line for Ihxla which would have 

been a much more reliable tool for tracking //ucia-expressing cells (work performed 

in collaboration with N. Takahashi and I. Dawid). Thus, in the absence of GFP lines 

for any of the Lhx genes (and indeed for any pallial markers at the time these 

experiments), expression analysis by in situ hybridisation was the only option.
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The use of in situ hybridisation is not without precedent for following 

populations of Lhx-expressing cells. The Retaux laboratory, analysing Lhx genes in 

Xenopus, have frequently used expression of these genes to track populations of 

Lhx-expressing cells. In fact, in their most recent paper they follow the same 

populations from embryonic to post embryonic stages, leading them to suggest that 

Lhx genes can be used as reliable markers of the same cell populations (Moreno et 

al., 2003; Moreno et al., 2004). This suggests that Lhx gene expression is not only 

critical for the specification of neuronal subtypes but also for the maintenance of 

particular neuronal characteristics.

If my in situ hybridisation analysis does indeed track the same populations of 

neurons over time then it seems the populations move quite considerably.

Particularly between 2dpf and 3dpf, domain 1 of Ihxla and the dorsal domain of lhx5 

both move rostrally to appear in the OB at 3dpf. More anteriorly-located domains 

such as domain 2 of Ihxla and the Ihxlb expression domains seem to move to the 

ventral side of the brain where at 5dpf they lie adjacent to the anterior commissure 

(Fig 4.2 and 4.3 J and M). These movements are compounded by the major 

morphological changes that the telencephalon undergoes, particularly between 2dpf 

and 3dpf. In fact these morphogenetic movements may underlie the movements of 

Lhx-expressing domains, and this will be discussed further in Chapter 6.

Lhx-expressing cells are neurons with a pallial identity

It is widely accepted in the literature that Lhx gene expression in cells of the nervous 

system coincides with the adoption of a neuronal fate (Jessell, 2000; Shirasaki and 

Pfaff, 2002). In the zebrafish telencephalon, Lhx gene expression indeed 

predominantly coincides with a postmitotic neuronal marker. However, my data 

suggests that the time-lag between turning on Ihxla, Ihxlb or lhx5 and adopting a 

neuronal fate as assayed by HuC:GFP expression could be 12 hours or longer. For 

example, the second domain of lhx5 expression, which appears in the ventral 

telencephalon, is visible at 24hpf (Fig 4.4 C), but at 36hpf remains HuC negative 

(Fig 4.8 F). This is also true in the diencephalon where expression domains visible 

from late somitogenesis stages (before 24hpf; Fig 4.4 A) are still HuC negative at 

36hpf (Fig 4.8 G). Even allowing for the approximate 4-hour lag time between final 

mitosis and the appearance of detectable GFP expression (Lyons et al., 2003), Lhx 

expression must precede terminal differentiation by some time.
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Nonetheless, the Lhx expression domains in the dorsal telencephalon are 

postmitotic by 32hpf and also overlap with the expression of the pallial marker tbrl. 

Domain 1 of Ihxla and lhx5 expression additionally overlap with emx3, a further 

pallial marker, but domain 2 of Ihxla and Ihxlb expression lie outside the emx3 

domain by 36hpf. In chick and mouse, Emxl labels a smaller area of the pallium 

than does Tbrl (Puelles et al., 2000). The pallial domain that is Em xl-negative but 

Tbrl-positive is proposed to identify the ventral pallium, a region which gives rise to 

the claustrum and amygdala (Puelles et al., 2000). At present it is not known 

whether the same ventral pallial region exists in zebrafish, but it is proposed to 

express Pax6 (Wullimann and Rink, 2002) and so double labelling with this marker 

would go some way to clarify the issue.

One small caveat with using emx3 is that no known mammalian orthologues 

of this gene (Derobert et al., 2002; Kawahara and Dawid, 2002). It would therefore 

be wise to repeat these experiments with the newly-designated zebrafish emxl, 

whose orthologue Emxl has been much better characterised in tetrapod species 

(Fernandez et al., 1998; Puelles et al., 2000).

In agreement with a pallial nature for the dorsal Lhx domains, no 

coexpression of Ihxla, Ihxlb or lhx5 was ever seen with the subpallial marker 

Dlx4/6. The intermingling of the pallial Lhx and subpallial Dlx-expressing cells at 

36hpf confirms the postmitotic nature of both populations, as boundaries between 

the pallium and subpallium are only strictly maintained in the VZ, not in the mantle 

layer (Wilson and Rubenstein, 2000).

A further domain of lhx5 expression appears in the ventral telencephalon at 

24hpf. This domain does not overlap with emx3 expression, nor does it coexpress 

with Dlx4/6. The position of this domain and its gene expression profile suggest it 

may be part of the eminentia thalami (Wullimann and Mueller, 2004). The 

eminentia thalami also express tbrl (Mione et al., 2001; Puelles et al., 2000), so 

double in situ hybridisation for lhx5 and tbrl would easily confirm this.

Ihxla and lhx5 highlight olfactory bulb neurons

From 3dpf until at least 1 month post fertilisation, Ihxla and lhx5 are expressed in 

the olfactory bulb (OB). These genes are expressed in neurons that are pallium- 

derived, and it is therefore possible they highlight the projection neurons of the 

olfactory bulb, the mitral cells. A pallial origin of mitral cells has been shown in
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mammals by both mutant analyses (Bulfone et al., 1998; Yoshida et al., 1997) and 

cell tracing experiments (Nomura and Osumi, 2004). Moreover, Xenopus Lhx5 also 

highlights both pallial areas early in development (Bachy et al., 2001) and mitral 

cells of the OB at later stages (Moreno et al., 2003; Moreno et al., 2004). Finally, 

the positions of the isolated Ihxla and //zx5-labelled cells in the OB at 1 month post 

fertilisation agrees well with the known position of the mitral cell layer (Byrd and 

Brunjes, 1995; Edwards and Michel, 2002; Mione et al., 2001).

A key future experiment would be to establish whether Ihxla and lhx5 are 

coexpressed in individual neurons. The early expression domains of these two genes 

suggest that Ihxla is only expressed in a subset of the lhx5 domain. However, at 

1 month post fertilisation the two genes are expressed in similar numbers of cells in 

the putative mitral cell layer. The broader early expression domain of lhx5 may be 

reflected in the additional expression of this gene in the bulb periphery. However, 

the periphery is characterised as the cell-sparse olfactory nerve layer (Byrd and 

Brunjes, 1995; Edwards and Michel, 2002) and therefore the cell population 

highlighted by this expression requires further characterisation.

Lhx genes are widely implicated in the regulation of neuronal attributes such 

as neurotransmitter phenotype and axon pathfinding (Appel et al., 1995; Segawa et 

al., 2001). Mitral cells are glutamatergic (Edwards and Michel, 2002), and therefore 

not obviously different from pallial projection neurons in this aspect of their 

phenotype, although they may additionally express other as yet unidentified 

neurotransmitters. However, the axonal projection of mitral cells, into the 

telencephalon via the olfactory tracts, is an attribute not shared by any resident 

telencephalic neurons. Furthermore, zebrafish mitral cell axons have two potential 

routes to the telencephalon, the lateral or the medial olfactory tracts (LOT and 

MOT), and nothing is known about the factors intrinsic to the neurons that regulate 

this choice. Formation of the LOT in mammals is regulated at least in part by the 

chemorepulsive molecules Slitl and Slit2 that are secreted by the medially-located 

septum (Nguyen-Ba-Charvet et al., 2002). Mitral cell express one of the Slit 

receptors, Robo2, that may mediate this guidance (Nguyen Ba-Charvet et al., 1999). 

Guidance of mitral cell axons in the LOT may also involve semaphorin/neuropilin 

interactions, as mitral cells express neuropilinl and show both repulsive and 

attractive reactions to different semaphorin subtypes (de Castro et al., 1999). Future 

functional experiments with Ihxla and lhx5 might be able to investigate the possible
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regulation of guidance molecule expression in mitral cells by LIM-HD proteins as 

well as the factors that may regulate the choice of projection via the LOT or MOT.

Ihxla and Ihxlb are expressed in ventral telencephalic areas at 5dpf 

Domain 2 of Ihxla and the Ihxlb expression domain are seen in ventral telencephalic 

regions from 3dpf, despite their established pallial origin. This is reminiscent of tbrl 

expression, which is exclusively pallial at early stages but by 4dpf is seen in a 

domain in the ventral telencephalon. In fact, the expression of Ihxla domain 2, and 

presumably Ihxlb, in the anterior tip of tbrl expression at 36hpf suggests these cells 

may have similar or adjacent destinations.

The identity of the ventrally-located tbrl expressing cells is unclear but they 

may be aligned along one of the olfactory tracts (M. Mione, personal 

communication). There is precedent for this in mammals, where cells originating in 

the pallium migrate tangentially and ventrally to align themselves along the course 

of the future LOT (Tomioka et al., 2000). These so-called LOT cells are identified 

by the Loti antibody, but the antibody does not recognise any specific cell 

population in the zebrafish telencephalon (T. Hirata, personal communication). The 

expression domains of tbrl, Ihxla and Ihxlb in the ventral telencephalon suggest 

that if they are associated with an olfactory tract it is more likely to be the MOT than 

the LOT, on the basis of their ventral positions. This possibility should be further 

investigated by double labelling with axon markers and in situ hybridisation for 

Ihxla and Ihxlb. It is also interesting to consider that genes downstream of Lhx 

genes such as cell adhesion molecules (Gimnopoulos et al., 2002) and members of 

the Eph/ephrin family (Kania and Jessell, 2003) have the potential to both cell 

autonomously regulate processes such as cell migration and axon pathfinding, but 

also to provide contact-dependent guidance signals for the axons of other neurons, as 

might occur in the formation of the olfactory tracts.

A further explanation for the ventral destinations of Ihxla and Ihxlb- 

expressing cells is that they represent a dorsal to ventral migration. Such a migration 

is undertaken by the LOT cells discussed above, but actual invasion of the subpallial 

basal ganglia has been very rarely described. A lineage tracing experiment using 

permanent marking of Emxl -expressing cells reported a population of presumed 

pallial-derived neurons in the subpallium (Gorski et al., 2002), but no assessment
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was made of their migratory path, phenotype or function. Nonetheless, this would 

be an interesting possibility to address with subsequent experiments in the zebrafish.

Divergence o f expression along the rostro-caudal axis

A comparison of the expression domains of Ihxla, Ihxlb and lhx5 along the neuraxis 

indicates that the telencephalon is the region where greatest divergence in Lhx gene 

expression is seen. Even the paralogues Ihxla and Ihxlb , resulting from a 

duplication of the ancestral Lhxl gene, have somewhat different expression domains 

(discussed above). This indicates that the promoter elements controlling Ihxla and 

Ihxlb expression have diverged sufficiently from each other to establish at least 

some unique expression domains (Force et al., 1999). The telencephalon (or the 

prosencephalon as a whole), being one of the most recent additions to the vertebrate 

brain, is also a region where innovative use of existing genes can have major 

implications for the complexity and connectivity of the brain area (Bachy et al., 

2001).

Comparison o f expression domains between species

The telencephalon is also the most divergent brain area between vertebrate species. 

Innovations in telencephalic connectivity and subtype specification probably 

underlie the evolution of this brain area (Bachy et al., 2001). It might therefore be 

expected that few commonalities would exist between species with respect to 

telencephalic Lhx gene expression. In addition to this, Ihxlb is a gene unique to 

zebrafish, making comparisons with other species more difficult. However, the 

combined expression of the two paralogues may reflect more closely the ancestral 

expression pattern, as is the case for nk2Ja  and nk2.1b (Rohr et al., 2001).

In fact a comparison of Lhx gene expression with other species yields some 

evidence of conserved expression domains. Mouse Lhx5 is a pallial marker, as well 

as being expressed in the hypothalamus, ventral thalamus, zli, pretectum and tectum 

(Bachy et al., 2001; Sheng et al., 1997). Xenopus Lhx5 is also expressed in a large 

band of the pallium, juxtaposed to the x-dll3-defined subpallium and consequently 

with its border at the pallial-subpallial border (Bachy et al., 2001). As well as being 

a pallial marker, x-Lhx5 is also expressed in the olfactory bulb at later stages, 

specifically in the mitral cell population (Moreno et al., 2003), as discussed above.
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Less conservation exists for expression of Ihxla/Uixl. Murine Lhxl is also a 

pallial marker, overlapping considerably in its expression with Lhx5 (Bachy et al., 

2001; Sheng et al., 1997). However, in the Xenopus telencephalon x-Lhxl is 

expressed only in a small area within the x-Lhx9 positive subpallium (Bachy et al., 

2001). There is therefore little conservation between the pallial domains of Ihxla 

and Ihxlb in zebrafish and the subpallial domain of x-Lhxl in Xenopus.

Future experiments

Other Lhx genes in the telencephalon

This investigation has also been limited in the number of Lhx genes studied. 

Members of other groups of the Lhx family are expressed in the telencephalon, 

including the recently identified lhx2a and lhx2b (M. Mione and K. Kwong, personal 

communication; received from H. Okamoto) and islet 1 (Higashijima et al., 2000). 

There may well be others, including zebrafish orthologues of Lhx7 and Lhx9 (Bachy 

et al., 2001). In a more comprehensive analysis it would be interesting to see how 

these other members of the Lhx family compare with the Ihxla, Ihxlb and lhx5 

examined here.

Functional experiments with the Lhx genes

My initial aim after having characterised the expression domains of the three Lhx 

genes was to carry out functional experiments. However, morpholino 

oligonucleotides designed to the 5’ UTR of Ihxla and Ihxlb showed no specific CNS 

phenotype. This was compounded by a lack of good assays for Lhx gene function in 

the telencephalon, including failed attempts to raise antibodies specific to zebrafish 

Lhx la. High doses of morpholino also affected organiser function, suggesting they 

were interfering with the early expression of Ihxla and Ihxlb during gastrulation 

stages.

A possible way to circumvent the problems of interfering with early 

expression of Lhx genes would be to use dominant negative Lhx gene constructs 

under the control of a heatshock promoter. The dominant negative construct would 

consist of only the protein binding LIM domain of any given Lhx gene (Kikuchi et 

al., 1997; Segawa et al., 2001), while the heatshock promoter would allow 

expression of this construct to be controlled by treating an injected embryo with a 

brief period at elevated temperature. H. Segawa has already kindly provided LIM-
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domain only constructs for Ihxla, so these experiments would be a priority for the 

future.

One caveat to bear in mind for performing functional experiments with LIM- 

HD proteins is the range of binding partners they have, such as the Ldb and LMO 

proteins. The presence or absence of these factors, and even their respective 

concentrations modulate LIM-HD function (Bach, 2000; Segawa et al., 2001; Thaler 

et al., 2002). ldb gene expression seems to be ubiquitous in the zebrafish 

telencephalon (Toyama et al., 1998), but the expression of Lmo proteins and the 

possibility of differentially spliced forms of the Lhx genes, as suggested by Failli et 

al (2000) to modulate Lhx9 function, should also be investigated.
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5.1 Aim and Introduction

Many of the primary observations made in the previous two chapters indicate that 

cell and tissue movements play a significant role in shaping the developing 

telencephalon. I was particularly struck by the appearance of domains of Lhx gene 

expression in the olfactory bulb at 3dpf, and wanted to directly test whether these 

Lhx-expressing cells had their origins in the posterior dorsal telencephalon as their 

expression patterns suggest. I therefore developed and used a cell labelling 

technique to mark populations of telencephalic cells at ldpf and follow them to their 

positions at 5dpf. I was particularly interested in the areas of the telencephalon that 

contribute cells to the olfactory bulb, because this is a defined structure within the 

telencephalon and is also the region where the Lhx genes Ihxla and lhx5 are 

expressed.

OB structure and function

The OB is a specialised structure that, although derived from the telencephalon, 

protrudes from the rostral tip of the brain and comes to lie outside the main bulk of 

telencephalic structures at adult stages in many, if not all vertebrates. The OB is the 

primary olfactory centre, receiving its sole input directly from the sensory neurons 

(OSN) of the olfactory epithelium (OE). The olfactory sensory neurons express one 

of a repertoire of olfactory receptor genes -100 in zebrafish (Barth et al., 1996; Ngai 

et al., 1993); 1000 in mouse (Reed, 2004) giving them odorant specificity, and 

project to a specific glomerular location in the OB where other OSNs expressing the 

same odorant receptor converge (Mombaerts et al., 1996). The glomerulus is the 

interface of OSN axons with bulb neurons and the pattern of glomeruli is invariant 

between individuals of the same species (Baier and Korsching, 1994; Friedrich and 

Korsching, 1997).

The zebrafish olfactory bulb is gaining strength as a model for investigating 

olfaction (e.g. Edwards and Michel, 2002), but relatively little is known about its 

development. The first axons to reach the telencephalon from the olfactory placode 

(the precursor of the olfactory epithelium) reach and invade the prospective bulb 

region between 24 and 38hpf (Chitnis and Kuwada, 1990; Whitlock and Westerfield, 

1998; Wilson et al., 1990). These are the axons of pioneer neurons and are
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subsequently followed by the axons of the olfactory sensory neurons themselves 

from 2dpf onwards, which form distinctive glomeruli within the bulb (Dynes and 

Ngai, 1998; Whitlock and Westerfield, 1998). By 2dpf, a nascent form of the 

glomerular map is evident in the olfactory bulb, and by 3.5dpf approximately 15 

glomeruli can be consistently identified (Dynes and Ngai, 1998). In the adult 

zebrafish olfactory bulb, approximately 100 glomeruli are evident (Baier and 

Korsching, 1994). I

The OB contains two main neuronal subtypes -  projection neurons and 

intemeurons. The projection neurons, the mitral cells, are excitatory glutamatergic 

neurons (Edwards and Michel, 2002) that project to the olfactory areas of the 

telencephalon via the olfactory tracts. It is onto the dendrites of these neurons that 

OSN axons synapse in the glomeruli (Byrd and Brunjes, 1995). The intemeuron 

population falls into two groups -  glomerular intemeurons and granule cell 

intemeurons. Both populations are GABAergic and inhibitory (Edwards and 

Michel, 2002); the glomerular intemeurons form local connections within the 

glomerulus while the granule cells mediate inhibitory interactions between mitral 

cells (Reed, 2004). Neither intemeuron class projects outside the bulb. In both the 

zebrafish and mouse adult olfactory bulb, these cell types are segregated in different 

laminae, with the glomerular intemeurons and mitral cells situated more peripherally 

in the bulb, and the granule cells more centrally (Byrd and Brunjes, 1995; 

Wullimann and Rupp, 1996).

The embryonic origins o f the olfactory bulb

The embryonic origins of the mammalian OB are telencephalic and, as for the 

cerebral cortex, both pallial and subpallial areas contribute neurons to the bulb. The 

projection neurons, mitral and tufted cells, are glutamatergic and are thought to be 

pallial in origin. Mitral cells express pallial markers such as Tbrl and Emx2 and 

mouse mutants targeting these genes lack mitral cells in the OB (Bulfone et al.,

1998; Yoshida et al., 1997). Cell labelling experiments have also identified the 

pallium as the origin of bulb projection neurons, and they come from the rostral 

tissue directly underlying the point where the bulb will evaginate (Nomura and 

Osumi, 2004). In non-mammalian species, including zebrafish and Xenopus, mitral 

cells also express pallial markers such as Eomesodermin, Tbrl and xLhx5y and these
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markers have been used to infer a pallial origin for mitral cells (Mione et al., 2001; 

Moreno et al., 2003).

The OB intemeurons are, like the intemeurons of the cortex, subpallium- 

derived. In mammals, the subventricular zone of the lateral ganglionic eminence 

(LGE) is the predominant source of OB intemeurons during embryonic stages 

(Wichterle et al., 1999; Wichterle et al., 2001). Mutations that disrupt the patterning 

of the LGE or the neurogenesis within it, also affect the OB intemeuron population 

(Bulfone et al., 1998; Corbin et al., 2000; Long et al., 2003; Stenman et al., 2003; 

Yun et al., 2001). Particularly strongly implicated in the generation of OB 

intemeurons are the Dlx genes, genes that are expressed broadly in the subpallium. 

Both Dlxl/Dlx2 and Dlx5 mutants show massively reduced OB intemeuron 

populations (Bulfone et al., 1998; Long et al., 2003), and a recent paper has shown 

that a subpopulation of DZx5-expressing cells, also expressing the transcription factor 

Er81 gives rise to the majority of OB intemeurons (Stenman et al., 2003).

In zebrafish, the dlx genes are also widely expressed in the subpallium 

(Akimenko et al., 1994), and a GFP transgenic line driven by the dlx4fdlx6 promoter 

(Zerucha et al., 2000; Dlx5/Dlx6 in mouse) highlights intemeurons within the OB 

(M.Mione, personal communication and Fig 3.8). It therefore seems likely that 

zebrafish OB intemeurons also have a subpallial origin, but this has never been 

directly demonstrated.

The ganglionic eminences supply interneurons to cortical areas 

In addition to the migration of intemeurons from the LGE to the OB, the ganglionic 

eminences are also the source of migratory intemeurons that come to reside in pallial 

structures such as the cortex and hippocampus. This tangentially-migrating 

population of cells has been identified in both mammals and chick, and at least at 

early embryonic stages its source is the MGE rather than the LGE (Cobos et al., 

2001a; Wichterle et al., 1999; Wichterle et al., 2001). Again the Dlx genes are 

strongly implicated in the generation of these neurons, because in Dlxl/Dlx2 

mutants, tangential migration into the dorsal telencephalon is much reduced 

(Anderson et al., 1999; Anderson et al., 1997a). The zebrafish dlx4/dlx6 GFP line 

also highlights some individual cells in the dorsal telencephalon (M. Mione, personal 

communication and Fig 3.8), but the spatial origin of these cells is unknown.
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Aim o f this chapter

The aim of these experiments was to label small groups of telencephalic cells at ldpf 

and follow them to their positions at 5dpf, primarily to establish the origins of the 

OB. I found that OB cells are derived from a number of dorsally and posteriorly- 

located telencephalic areas; very ventral areas make no contribution to the OB. I 

also found that cells in different telencephalic regions show characteristic and 

consistent patterns of cell movement over the four days of embryogenesis examined, 

allowing me to build a picture of the migrations and morphogenetic movements that 

generate the telencephalon over this period.
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5.2 Materials and Methods

Properties o f the Kaede protein

The Kaede protein is a recently discovered photoconvertible protein native to a coral 

species (Ando et al., 2002). The protein exists in two forms - a longer green 

fluorescent form and a shorter red fluorescent form. The red fluorescent protein is 

produced from the longer green Kaede protein by a UV-light dependent photolysis 

(Mizuno et al., 2003). Both forms of the protein are stable in living cells.

The Kaede construct

The pCS2-Kaede construct, containing the full 1.8kb of Kaede cDNA was 

generously donated by Dr Atsushi Miyawaki and was amplified using conventional 

maxiprep methods (section 2.4). A Notl site was used to linearise the construct for 

in vitro transcription with SP7 polymerase (section 2.5). Synthesised RNA was 

purified by phenol chloroform extraction and precipitation (section 2.5), and the 

pellet resuspended in Danieau buffer (The Zebrafish Book) to give a working 

concentration of 50ng/ul for microinjection.

Expression o f Kaede using DNA and RNA

I tried two methods to express Kaede protein in zebrafish embryos -  injection of 

DNA and injection of synthetic mRNA. DNA injections of the circular construct 

resulted in extremely chimeric embryos, frequently having only a handful of albeit 

brightly expressing cells. RNA injection gave much more uniform expression of 

green Kaede that persisted until at least 6dpf. For photoconversion experiments, 

injections of Kaede RNA were made into one blastomere of the 2- or 4-cell embryo, 

resulting in chimeric expression of Kaede protein. Chimeric embryos were more 

suitable for photoconverting small numbers of cells because they gave a greater 

possibility of specific activations with defined limits.

Raising Kaede-injected embryos

Kaede-injected embryos were raised at 28.5°C in the dark, and from 24hpf in PTU to 

prevent pigment formation. At 24hpf, embryos were dechorionated and the brightest 

embryos selected using an FITC filter on a fluorescence dissecting microscope
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(Leica). During all subsequent procedures, embryos were exposed to minimal light 

to prevent the possibility of non-specific photoconversion of Kaede protein. This 

involved keeping the embryos covered to prevent exposure to ambient light and also 

reducing the intensity of and exposure to white light during imaging.

Agarose mounting

For all photoconversion procedures and subsequent imaging, embryos were 

anaesthetised in MS-222 and mounted individually in drops of 1.5% low melting 

point agarose. For all laterally-mounted embryos, the alignment of the eyes was 

used to orient the embryos; for other orientations, the midline was used. 3dpf and 

5dpf embryos were almost always mounted dorsally, to avoid having to image 

through the eyes. In some cases, one eye was removed from 5dpf embryos before 

confocal imaging, in order that the specimen could be imaged from the lateral aspect.

Focal photoconversion o f Kaede

I tried four different methods to generate a focussed and restricted beam of UV- 

wavelength light to perform the photoconversions:

1. Using a Zeiss Axioplan2 microscope with water immersion objectives, I reduced 

the aperture in the fluorescence light path to its minimum size while using the DAPI 

filter set to generate UV-wavelength light. This gave a focussed beam, but the 

aperture size was too great, allowing too much UV light to pass and resulting in 

excessively large numbers of cells being red Kaede-labelled.

2. Again using a Zeiss Axioplan2 microscope with a x63 water immersion 

objective, I placed a 0.2mm brass pinhole (made by T. Hawkins) in the fluorescence 

light path, using the DAPI filter set to generate UV-wavelength light. The pinhole 

was inserted into the slider that holds the fluorescence aperture diaphragm, and thus 

could be easily removed for all other imaging procedures. Activations performed 

with this method resulted in discrete labellings of between 2-20 cells, ideal for my 

purposes. This method was most successful in my hands and was employed in all 

the experiments in this chapter.

3. I used a UV Micropoint laser on a Zeiss Axioplan2 microscope, which provided a 

very restricted beam of a single UV wavelength. This method was unable to give 

robust photoconversion of green to red Kaede, possibly because of insufficient laser 

power.
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4. I tried multiphoton confocal microscopy, which offers the possibility of activating 

fluorophores only at the focal plane of the beam. Unfortunately, we were unable to 

establish the appropriate wavelength for the photoconversion and/or the laser was 

insufficiently powerful to trigger the photolysis reaction. Therefore I was unable to 

label any cells using this method.

Procedure for photoconversion o f Kaede

To perform the focal photoconversion, chimeric Kaede-injected embryos at 26-30hpf 

were agarose-mounted as described. Embryos were viewed using a x63 water 

immersion objective and an FITC filter set (the GFP filter set was unsuitable as it 

allowed UV wavelengths to pass). The pinhole beam was carefully positioned over 

this site chosen for photoconversion, and the embryo was exposed to UV light for 

between 30 and 45 seconds.

Following photoconversion, DIC and red fluorescent images were captured of the 

embryo. Every specimen was then re-mounted in agarose to view the activation 

from a different aspect; again DIC and red fluorescent images were captured. 

Embryos were then raised in the dark with PTU and re-imaged at 3dpf, mostly from 

the dorsal aspect. DIC and red fluorescent images were captured, often at a number 

of different focal planes, to record the positions of all labelled cells.

Confocal imaging

At 5dpf I made final observations of the embryos labelled at ldpf, by laser scanning 

confocal microscopy (LCSM). Embryos were anaesthetised and individually 

mounted in agarose. In the majority of cases, embryos were mounted dorsally, 

angled slightly to reduce the imaging depth required to sample the entire 

telencephalon. In a few cases, embryos were imaged from the lateral aspect 

involving the removal of one eye. Both red and green Kaede signals were imaged, 

along with transmitted light, in confocal sections 3pm apart. The green Kaede signal 

gave an excellent cellular background against which the photoconverted red cells 

could be located, as it enabled easy identification of the olfactory bulb (OB), and all 

of the telencephalic tracts and commissures.
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Analysis

Analysis of the Kaede specimens involved recording the position and approximate 

number of all red-labelled cells and axons in each specimen. The presence of red- 

labelled cells in the OB was recorded, along with particularly distinctive cell 

morphologies such as extensive dendritic arbours. The presence of labelled axons in 

the olfactory tracts was also recorded, although no distinction was made between the 

medial and lateral olfactory tracts (MOT/LOT). In the rest of the telencephalon, the 

positions of red-labelled cells were described as dorsal, mid- or ventral 

telencephalon according to whether they were present dorsal to the fasciculated tract 

of the anterior commissure (TAC -  dorsal), at the same levels as the TAC (mid-) or 

at the level of the AC itself (ventral) in horizontal sections. This classification is 

shown in Figure 5.2 F-I. The designation was not intended to reflect any 

pallial/subpallial divisions and was merely to aid in the description of the labelling. 

In addition to the location of cell bodies, the presence of axons in the TAC, AC or 

supraoptic tract (SOT, which leads from the telencephalon to the diencephalon) was 

recorded. Finally, a short summary of the positions of labelled cells was recorded 

for each specimen.
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5.3 Results

In this set of experiments, I primarily sought to establish the spatial origins of the 

neurons of the zebrafish olfactory bulb (OB). The OB, although morphologically 

separated from the rest of the telencephalon in the adult brain, forms within the 

telencephalon during embryogenesis. The OB is therefore derived entirely from 

telencephalic cells and I restricted my study of its origin to this brain region. I 

labelled small groups of cells in the telencephalon at an early stage (ldpf), before the 

OB has formed, and followed the cells to their positions at 5dpf, when the OB has a 

structure distinct from the rest of the telencephalon. Using this approach I was able 

to assess which telencephalic regions make contributions to the OB, and also 

whether there are stereotyped patterns of cell movements characteristic of certain 

telencephalic areas.

Features o f Kaede protein photoconversion

In order to label small groups of cells in the embryonic telencephalon I developed a 

novel use for the recently discovered photoconvertible protein, Kaede (Ando et al., 

2002). Native green fluorescent Kaede can be irreversibly cleaved by UV light to 

give a shorter red fluorescent form (Mizuno et al., 2003), making it an ideal tool for 

cell labelling experiments. The two proteins also have a number of excellent optical 

properties; the red and green forms are of similar brightness and the two proteins are 

excited by, and emit at, largely non-overlapping wavelengths. Experiments on 

Kaede-expressing cells in culture (Ando et al., 2002) have revealed other attributes 

that are essential for any live embryo applications. Namely, both forms of the 

protein are non-toxic and stable under normal cellular conditions, and both forms of 

the protein are distributed throughout the cytoplasm including in cell processes such 

as axons. Diffusion of the protein is also rapid; if green Kaede protein is 

photoconverted by a restricted UV beam directed to a cell body, all cellular 

processes are rapidly labelled with red Kaede protein (Ando et al., 2002). These 

properties of the Kaede protein made it a potentially ideal method for labelling and 

following cells with complex morphologies, such as neurons, in a live embryo.

Our novel application of the Kaede protein involved expressing it in 

zebrafish embryos and using its photoconvertible properties to non-invasively label
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cells and follow them during development. I expressed Kaede protein in zebrafish 

embryos by injecting synthetic Kaede mRNA at the 1 to 4-cell stage. This results in 

embryos expressing green Kaede protein, with variable mosaicism, in all cell types 

including those of the nervous system (see Fig 3.2 and 5.1 A). Before exposure to 

UV light, background levels of red fluorescence are very low in a Kaede-expressing 

embryo (Fig. 5.1 B). However, following a 2 minute exposure to UV-light via a 

DAPI filter set, red fluorescence increases dramatically while green fluorescence 

concomitantly decreases (Fig. 5.1 C and D).

Having confirmed that I could express and photoconvert Kaede protein in a 

non-invasive manner in live embryos, I established a method to restrict the green-to- 

red photoconversion to a much smaller number of cells. By placing a 0.2mm 

pinhole in the fluorescence light path, I generated a small and focussed beam of UV 

light that could be directed on specific regions of the telencephalon. Exposure to 30 

seconds of UV light via this method allowed me to perform discrete photoactivations 

of approximately 2-20 cells.

To check the extent and quality of the labelling I confocal imaged a number 

of specimens immediately following photoconversion. Figure 5.1 E-H shows one 

such specimen, imaged by epifluorescence microscopy from lateral and anterior 

aspects (Fig 5.1 E and F resp.) and then by confocal microscopy from the anterior 

aspect (Fig 5.1 G and H). The confocal images show a very similar pattern of 

photoconversion to the epifluorescence images (compare 5.1 F and H), although the 

confocal projection shows slightly more labelled cells than the epifluorescence 

image. This is probably attributable to the labelled cells not all being present in the 

same focal plane. Examining the photoconversion in single confocal sections (Fig 

5.1G) shows that the labelled cells consist of both red and yellow (i.e. red and green) 

cells. Red cells, where complete conversion of Kaede has taken place, are at the 

focus of the beam, whereas yellow cells, where conversion of Kaede is incomplete, 

are more peripheral. In total, this photoconversion or “activation” has a diameter of 

approximately 30pm and has resulted in approximately 15 red-labelled cells.

Designating regions within the telencephalon

The aim of my experiments was to establish which regions of the telencephalon 

contribute to the OB. I chose not to randomly sample the entire telencephalon with 

Kaede activations, instead focussing on making multiple labellings in restricted,
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Figure 5.1: Activation of Kaede protein

Scale bars are 50pm in all figures. In all lateral views, anterior is to the left. In all 
dorsal views anterior is to the bottom. In all rostral views dorsal is to the top.

A and B show green (A) and red (B) Kaede signal in the brain of a chimeric 30hpf 
embryo, before any exposure to UV light. C and D show green (C) and red (D) 
Kaede signal after a 2-minute exposure to UV light. The red Kaede signal inceases 
dramatically and there is concommittant loss of the green Kaede signal. All pictures 
are taken with the same exposure.

E, F, G and H show the same embryo immediately after a 0.2 mm pinhole activation 
at 28hpf in the mid-telencephalon. E and F are epiflourescence images overlaid on 
DIC images, G is a single confocal section and H is a maximum projection of all 
confocal sections overlaid on a transmitted light image. E shows cells labelled by 
the activation (blue arrowhead) from the lateral aspect; inset shows orientation for all 
subsequent panels. F shows the same embryo from the anterior aspect; the blue 
arrowhead indicates the focus of the activation. In G, a single confocal section 
reveals both red- (arrowheads) and yellow- (arrow) labelled cells. The projection 
(H) reveals all labelled cells and out-of-focus activation in the olfactory placode and 
contralateral telencephalon.

AC -  anterior commissure 
di -  diencephalon 
E -  epiphysis 
ey -  eye
OB -  olfactory bulb
OE -  olfactory epithelium
OP -  olfactory placode
SOT -  supraoptic tract
TAC -  tract of the anterior commissure
tel -  telencephalon
v - ventricle
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defined regions (designated T1 to T9). The arrangement and spacing of these 

regions are depicted schematically in Fig 5.2 A. In defining the regions, I primarily 

chose areas that could be easily and reproducibly located in the ldpf telencephalon. 

T1 to T8 are therefore located along the borders of the telencephalon, either 

anteriorly (T1 to T5) or posteriorly along the ventricular surface (v; T6 to T8). A 

further consideration was that both pallial and subpallial areas of the telencephalon 

should be sampled, including the areas where the Lhx genes Ihxla, Ihxlb and lhx5 

are expressed (Fig 5.2 B-D)

Imaging photoconverted specimens

Immediately following photoconversion in a specific region at ldpf, I imaged red 

fluorescence in each specimen from two aspects to establish the extent of the 

labelled cells. I also imaged each specimen at 3dpf, 2d after the activation, to 

observe the positions of labelled cells in a more mature telencephalon. I made final 

observations of the labelled cells at 5dpf by laser scanning confocal microscopy 

(LSCM). Both green and red Kaede signals (as well as transmitted light) were 

imaged through the entire telencephalon. The green Kaede signal, although 

distributed throughout the brain, provided an excellent cellular background against 

which to observe the red-labelled cells. For example, the distinctive structure of the 

OB, with its glomeruli, was easily identifiable.

Outside the OB I used landmarks provided by green Kaede expressing fibres 

in horizontal confocal sections to define broad dorsal, mid- and ventral telencephalic 

regions. These were not intended to reflect pallial/subpallial subdivisions within the 

telencephalon but simply aided in the location of red-labelled cells. Dorsal 

telencephalon was classified as being the area dorsal to the fasciculated bundle of 

ascending and descending fibres in the tract of the anterior commissure (TAC), mid

telencephalon was classified as being the region in which TAC fibres were present 

and ventral telencephalon was classified as the area in which commissural fibres of 

the anterior commissure (AC) were present (Fig 5.2 H). Representative horizontal 

sections through the telencephalon at dorsal, mid- and ventral levels are shown in 

Figure 5.2 F, G and H. with the bundles of TAC fibres highlighted in the mid- 

telencephalic section.

The green Kaede signal also enabled identification of axon tracts and 

commissures such as the lateral and medial olfactory tracts (LOT and MOT carrying
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Figure 5.2: Fate-mapped regions within the telencephalon

A shows the positions of regions T1 to T9 in a lateral view schematic diagram of the 
28hpf telencephalon. The anterior commissure, ventricle and epiphyis are marked. 
B, C, D and E show lateral views of subpallial and pallial gene expression patterns 
for comparison with A. Expression patterns of Tg(dlx4/6:GFP) (B; subpallial), 
emx3 (pallial), Ihxla and lhx5 are shown at the stages marked.
F, G and H show the classification of the 5dpf telencephalon in to dorsal, mid- and 
ventral areas. Single confocal sections (scale bars=50pm) at representative positions 
are shown in a schematic diagram (I) to indicate relative positions of sections. The 
dorsal telencephalic area (F) is characterised by the absence of a fasciculated TAC, 
the mid-telencephalon by the presence of a fasciculated TAC (G) and the ventral 
telenecphalon by the presence of the AC (H) in any given section.
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efferent fibres from the OB), as well as the TAC, the AC, and the supraoptic tract 

(SOT), which connects the telencephalon and diencephalon. Therefore, red-labelled 

fibres that appeared in these tracts and commissures could be recorded, giving added 

information about the axonal projections of labelled cells.

Cells labelled in Tl

I focussed my labellings on the region designated T l, in the most posterior dorsal 

telencephalon. This region is expected to lie within the pallium as defined by emx3 

and tbrl expression and close to the dorsal domain of Ihxla expression (Fig 5.2 C 

and D). Having made the observation that Ihxla is expressed in progressively more 

rostrally-located cells and by 3dpf is in the OB, I wanted to see if this reflected a real 

movement of cells in the telencephalon.

I performed a total of 31 activations in this area, approaching T l most 

frequently from the lateral aspect (Fig 5.3) but also from the dorsal aspect (Fig 5.4). 

Lateral activations tended to result in a broader medio-lateral distribution of red- 

labelled cells whereas dorsal activations were restricted in the medio-lateral axis but 

extended in the dorso-ventral axis; this was as a result of the orientation of the UV- 

light beam. The exceptions to this were activations targeted to the neuroepithelial 

“roof’, the most posterior dorsal area at ldpf, which although small in area has little 

tissue directly underlying it (see Fig 3.2 E). Therefore activations in this region 

generally resulted in a very restricted number of superficial cells being strongly 

labelled (e.g. Fig 5.4 D-F).

In all 31 activations in T l, red-labelled cells were observed in the OB at 5dpf 

(Fig 5.3 C and E). The labelled cells were found in all regions of the OB, with the 

number of cells present being dependent on the size of the original activation. The 

presence of cells in the OB was detectable before 5dpf, often by 3dpf (Fig 5.3 D). In 

addition to cell bodies being present in the OB in every 5dpf T l specimen examined, 

fibres projecting to the telencephalon from the OB via the LOT/MOT were observed 

in 7/31 cases (Fig 5.3F). This strongly suggested that at least some of the red- 

labelled OB cells were mitral (projection) cells, the output neurons of the OB. 

Intemeurons, the other major cell type of the OB, do not extended axons outside the 

bulb.

In many specimens activated in T l, (21/31), labelled cells were present in 

other telencephalic areas in addition to the OB (Fig 5.3 C). These cell profiles were
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Figure 5.3: Lateral activations in Tl 

All scale bars are 50p,m

A, B and C show the same embryo. A is a DlC/fluorescent overlay of a lateral view 
of a 28hpf forebrain, with a Kaede activation in Tl (blue arrowhead). The posterior 
limit of the telencephalon is marked with a blue dotted line. B shows the same 
embryo from the dorsal aspect; the focus of the activation (blue arrowhead) is on the 
left-hand side. C shows the fate of all labelled cells at 5dpf (projection overlaid on a 
transmitted light image of the telencephalon); most labelled cells are in the OB with 
a few cells present in the anterior left telencephalon (white arrowhead).

D, E and F show results from a second embryo also activated in the same T l 
position. D shows a 3dpf dorsal view of an activation in R1 at 28hpf; labelled cells 
are present bilaterally in the OB. E and F show single confocal sections at 5dpf at 
the levels shown in G; red cells are present in the OB (arrowheads in E) and red 
fibres (arrowheads in F) are present in the LOT/MOT (arrow in F), tAC and AC, 
indicating that some T l cells become OB projection neurons.
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sometimes much fainter than those observed in the OB, possibly suggesting that they 

had not been at the focus of the activation. However, in many cases robust labelling 

was seen in the mid- and dorsal regions of the telencephalon, with cell bodies 

generally located anteriorly rather than posteriorly (white arrowhead in Fig 5.3 C). 

Labelled cells were never seen in the ventral telencephalon, around the anterior 

commissure, suggesting that dorsal telencephalic region T l does not contribute cells 

to ventral telencephalic areas.

Cells labelled in T l also contributed fibres to the tracts and commissures of 

the telencephalon. 27/31 specimens showed labelling in the TAC, and 16/31 in the 

AC itself (Fig 5.3F). A subset of these specimens had labelled cells exclusively in 

the OB, which reveals that mitral cell axons form part of the TAC and may be 

commissural. A specimen with unilateral labelling in the OB, where labelled fibres 

appeared in the contralateral TAC, confirmed the commissural nature of at least 

some mitral cell axons. In addition, 5/31 specimens showed labelling in the SOT 

that connects the telencephalon and diencephalon. These fibres were only evident in 

specimens that had both OB and telencephalic labelling, as would be expected given 

the telencephalic origins of the SOT (Wilson et al., 1990).

9/31 specimens showed labelling of a component of the stria medullaris (see 

Chapter 3 and data not shown), a tract that projects from the telencephalon to the 

dorsal diencephalic habenulae. Analysis of these specimens did not establish 

whether the labelled axons in this tract originated in the OB or telencephalon, but the 

stria medullaris is known to contain efferents from both areas in other fish species 

e.g. (Riedel and Krug, 1997).

Cells labelled in the Tl roof

A subclass of activations in T l (7/31) was aimed directly at the cells of the 

telencephalic “roof’, a medial part of the neuroepithelium that lies just rostral to the 

border of the diencephalon and medially to the bulk of the telencephalic tissue (Fig 

5.4 A and D and Fig 3.2 E). The roof itself is maybe only one cell diameter thick, 

and forms part of the telencephalic neuroepithelium. Activations in this region were 

carried out from the dorsal aspect and usually resulted in very few labelled cells with 

processes that extended laterally towards the pial surface (Fig 5.4D and data not 

shown). Examining these specimens at 3dpf gave an indication that labelled cells 

had moved rostrally (Fig 5.4B), relative to the posterior border of the telencephalon,
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Figure 5.4: Dorsal activations in Tl/roof

A-C show one embryo and D-F a second; all scale bars are 50p,m

A shows an activation in Tl from the dorsal aspect at 28hpf (blue arrowhead); the 
position of the epiphysis is indicated. B shows a lateral view of the same embryo at 
3dpf. The tel/di border is indicated by a white arrowhead, the position of the 
labelled cells by a blue arrowhead. C is a single parasagittal confocal section through 
the telencephalon; labelled cells are present in the outlined OB, far from the tel/di 
border (white arrowhead).

D and E show dorsal (D) and lateral (E) views of another activation in T l from the 
dorsal aspect at 28hpf (blue arrowheads in D and E). At 5dpf, two labelled cells are 
visible lying within the OB (white arrowheads in F); other red labelling is within the 
skin.
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towards the position of the OB. Indeed, at 5dpf, all “roof’ activations had labelled 

cells in the OB and in 6/7 cases the OB was the exclusive destination of all of the 

strongly labelled red cells (Fig 5.4F). This striking result showed that the most 

posterior dorsal cells in the telencephalon contribute exclusively to the OB, and have 

a neuronal fate.

Cells labelled in T2

Mowing more rostrally along the border of the telencephalon, I made 12 activations 

in T2, all from the lateral aspect (Fig 5.5 A and B). At 3dpf, many specimens had 

labelled cells in the OB (data not shown) and by 5dpf all 12 T2 specimens showed 

labelling in the OB (Fig 5.5 C). In fact, similar to activations in T l, 5/12 specimens 

had labelled cells restricted solely to the OB, with no other telencephalic labelling.

In specimens with both OB and other telencephalic labelling, cells were found in 

mid- and ventral telencephalic areas, always anterior to the AC. In contrast to T l 

cells, T2 cells were never seen in dorsal telencephalic areas, but this fits well with T2 

being located more anterior and ventral than T l.

Labelled fibres were also visible in samples activated in T2. In 4/12 cases, 

fibres were seen in the olfactory tracts (Fig 5.5 D), again suggesting the presence of 

labelled mitral cells. Fibres were also clearly present in the TAC in 4/12 samples, 

and in the AC itself in a similar number of samples. No fibres were observed in the 

SOT, but this may be attributable to the limitations of imaging which was all done 

from the dorsal aspect. From this aspect, the SOT lies extremely deep in the tissue, 

and single labelled fibres may not be discemable.

Cells labelled in T3

Further anterior and ventral to T 2 ,12 activations were made in T3. From 

comparisons with the expression pattern of emx3 at this stage (Fig 5.2 C), T3 would 

be predicted to lie close to the pallial/subpallial border. Activations were mainly 

from the lateral aspect (Fig 5.5E) but 4/12 were from the anterior aspect; no 

difference in the distribution of labelled cells was seen between these two groups. 

Out of 12 activations in T3, 9 embryos had some labelling in the OB at 5dpf; the 

remaining 3 did not. However, in none of these specimens were labelled fibres seen 

in the LOT/MOT, although this does not rule out the labelled cells being projection 

neurons. Outside the OB, labelled cells were found in lower mid- and ventral
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Figure 5.5: Lateral activations in T2 and T3 

All scale bars are 50pm

A-D show a single embryo, activated in T2. A and B show lateral (A) and anterior 
(B) views of an activation in T2 at 30hpf (blue arrowheads in A and B). C shows the 
same embryo at 5dpf from the dorsal aspect; labelled cells are mainly present in the 
OB. In D, a confocal section at the level shown in H shows labelled fibres in the 
LOT/MOT (arrowhead) and labelled cells bilaterally in the OB.

E and F show an embryo activated in T3; G shows a second embryo. E shows a 
lateral view of an activation in T3 at 30hpf. At 5dpf, a single confocal section (F) 
shows labelled cells throughout the OB (arrowheads in F). G shows a confocal 
maximum projection of a T3 activated specimen, imaged at 5dpf from the lateral 
aspect. Cell bodies in the OB (arrow) and ventral telencephalon (arrowheads) are 
labelled, as well as fibres in the SOT and TAC.
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telencephalic areas. As with activations in T2, cells were always located anterior to 

the AC (Fig 5.5F).

Activations in T3 also resulted in labelled fibres in telencephalic tracts and 

commissures. In 4/12 specimens, axons were seen in the TAC, and in 2/12 

specimens in the SOT (where specimens were imaged from the lateral aspect; Fig 

5.5G). This indicated that at least some of the cells labelled in T3 activations send 

projections out of the telencephalon to more caudal brain areas.

Cells labelled in T4, T5 and T6

Labelling of cells in the regions designated T4, T5 and T6, in the most ventral- 

anterior part of the telencephalon, gave very consistent but remarkably different 

results to activations in the dorsal telencephalon (T1-T3). Out of a total of 33 

activations in these three regions, no labelling was ever seen in the OB at 5dpf. Nor 

were there ever any labelled fibres in the olfactory tracts, which correlated well with 

the absence of labelled OB cells. The only labelling visible in the OB came from the 

terminals of olfactory sensory neurons (OSNs), which were unavoidably labelled in 

the olfactory placode during the activations in these ventral regions.

Outside the OB, labelled cells from activations in T4, T5 and T6 were 

present in ventral, mid- and dorsal telencephalic areas. The 5dpf patterns of 

labelling were quite consistent between the three areas, with some informative 

differences. Generally, labelled cells were present both clustered around the AC in 

the ventral telencephalon and also distributed singly throughout the mid- and dorsal 

telencephalon. Specifically, in T4, 9/11 specimens showed clustering of cells around 

the AC with scattered single cells present in the mid- and dorsal telencephalon (Fig

5.6 A-D); 2/11 specimens showed only the ventral telencephalic labelling. The 

distributed cells reached the most dorsal levels of the telencephalon, classified as 

such by the absence of fasciculated TAC fibres in this region (Fig 5.6 C). In the 

ventral telencephalon, labelled cells were mostly located anterior to the AC at both 

3dpf and 5dpf (Fig 5.6B and D). This seemed to correlate with the position of T4 

just dorsal to the AC at ldpf (Fig 5.6A). Cells labelled in T4 at ldpf also 

contributed to tracts and commissures in the telencephalon, with 4/11 specimens 

showing labelled fibres in the TAC, and 5/11 in the AC (Fig 5.6D). No specimens 

were seen with labelling in the SOT.
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Figure 5.6: Lateral activations in T4 (A-D) and T5 (E-F).

A, C and D show the same embryo, E and F show another embryo; all scale bars are 
50pm

A shows a lateral view of an activation in T4 at 26hpf (blue arrowhead); the border 
of the telencephalon and position of the AC are indicated. B shows a similarly- 
activated embryo from the dorsal aspect at 3dpf; labelled cells lie anterior to the AC. 
Confocal sections (C and D) at 5dpf at the positions indicated in G reveal isolated 
labelled cells in the dorsal telencephalon (arrowheads in C; note the absence of 
labelled cells from the OB) and clustered labelled cells in the ventral telencephalon, 
anterior to the AC (D). A labelled neuron has an axon extending into the AC 
(arrowhead in D).

E shows a lateral view of an activation in T5 at 26hpf (blue arrowhead), with the 
position of the AC indicated. At 3dpf, a lateral view of the same embryo reveals 
labelled cells in mid- and dorsal telencephalic areas (F, blue arrowheads); no cells 
are present in the OB. Labelled cells clustered around the AC in this specimen are 
present at a different focal plane.
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As with activations in T4, activations in T5 showed the same distinctive 

pattern of labelled cells, with 15/16 specimens showing clustering of cells around the 

AC and a mid- and dorsal distribution of single cells. In these specimens, labelled 

cells were present both anterior and posterior to the AC, fitting with the relative 

positions of T5 and the AC at ldpf (Fig 5.6 E). By 3dpf, this distinctive pattern of 

labelled cells was already apparent, with labelled cells appearing both around the AC 

(data not shown) and in a “stream” through mid- and dorsal telencephalic areas (Fig

5.6 F). Similar patterns were seen when specimens were imaged from the dorsal 

aspect, with labelled cells appearing in the most dorsal telencephalic areas (data not 

shown). Activations in T5 also resulted in the labelling of fibres within the 

telencephalon. 6/16 specimens contained fibres in the TAC; two of these specimens 

also contained labelled fibres in the AC and SOT (see summary Table 5.1).

The third region to show a similar pattern of labelled cells was T6, where 5/6 

specimens had some cells clustered around the AC with more dorsal scattered single 

cells. With activations in this region, cells around the AC appeared posterior and 

slightly dorsal to the AC (Fig 5.7D), correlating well with the relative positions of 

T6 and the AC at ldpf (Fig 5.7A). The scattered single cells were present more 

dorsally than those around the AC, but not in the most dorsal regions of the 

telencephalon. However, in all other respects these single distributed cells looked 

much like those from activations in T4 and T5 (Fig 5.7C). In terms of labelled 

fibres, 6/6 activations in T6 showed fibres in the TAC, and 2/6 in the AC itself.

Again I did not observe any labelled fibres in the SOT, possibly for technical 

reasons.

Cells labelled in T7

Activations in T7 (Fig 5.7E), a site mid-way along the ventral border of the 

telencephalon, produced quite different results from either those in T1-T3 or in T4- 

T6. Cells labelled in this region never contributed to the OB (unlike T1-T3), nor 

were they found scattered in more dorsal regions at 5dpf (unlike T4-T6). In 6/6 

specimens, cells were found clustered in the posterior telencephalon, at mid- and 

ventral levels (Fig 5.7 F). In general, cells were restricted to a medial posterior 

quadrant in any telencephalic section; few cells appeared laterally. In the fibre
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Figure 5.7: Lateral activations in T6 (A-D) and T7 (E-F).

A-D show one embryo and E-F a second. All scale bars are 50pm

A and B show lateral (A) and anterior (B) views of an activation in T6 at 30hpf (blue 
arrowheads in A and B). Confocal sections (C and D) at 5dpf at the positions 
indicated in G reveal isolated cells in the dorsal telencephalon (arrowheads in C) and 
clustered labelled cells dorso-posterior to the AC (arrowhead in D).

E shows a lateral view of an activation in T7 at 30hpf (blue arrowhead). F shows a 
single confocal section through the mid-telencephalon at 5dpf (indicated in G) with 
cells located in the posterior medial telencephalon, posterior to the AC.
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tracts, cells labelled in T7 contributed to the TAC in 5/6 specimens, but no labelled 

fibres were observed in the AC or SOT.

Cells labelled in T8 and T9

In the final two regions, T8 and T9, cells labelled at ldpf made contributions to both 

the 5dpf OB and telencephalon (Fig 5.8). The position of these regions was close to 

the dorsal regions T l, T2 and T3 that also contributed cells to the OB, but 

activations in T8 and T9 gave slightly different patterns. Out of 8 specimens 

labelled in T8, 7 contributed cells to both OB and mid-telencephalic areas and one 

contributed to the OB alone. Noticeably in these specimens, labelled cells tended to 

remain relatively close together, even if they became segregated between the 

telencephalon and OB. In the OB, labelled cells were generally located in posterior 

regions of the bulb (arrows in Fig 5.8 D), in the area occupied by intemeurons (see 

Figure 3.8 E and F). In fact, in a number of T8 specimens, I saw labelled OB cells 

with intemeuron morphology -  a complex and enlarged dendritic arbour (Fig 5.8 E). 

In accordance with this observation, no labelled axons were seen in the LOT/MOT. 

In the telencephalon, labelled cells were located anteriorly in mid-telencephalic 

regions, adjacent to the OB (arrowheads in Fig 5.8 D). This distribution of cells was 

also visible at 3dpf (Fig 5.8 C). Cells labelled in T8 also contributed fibres to the 

TAC (3/8), but not visibly to the AC or SOT.

The final region, T9, was located in the middle of the telencephalon, 

surrounded by the other eight regions (Fig 5.8 G). In terms of cell labelling, this 

region showed strongest similarity to activations in T8. In 7/7 specimens, labelled 

cells were found at 5dpf in posterior locations in the OB and in adjacent anterior 

regions of the telencephalon, at mid- and ventral telencephalic levels (Fig 5.8 H). 

Contributions to the OB were often quite limited, with a number of specimens 

containing only a couple of labelled OB neurons. Again like T8 activations, 

specimens activated in T9 showed no labelling of the LOT/MOT, implying that 

labelled OB cells might be intemeurons. However, distinctive intemeuron 

morphology was not obvious in these specimens. In the telencephalic tracts and 

commissures, labelled axons were present in 4/7 specimens in the TAC and in 1/7 in 

the AC.
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Figure 5.8: Lateral activations in T8 (A-E) and T9 (G-H).

A-D show the same embryo, G-H a second; all scale bars are 50pm, except where 
indicated.

A and B show lateral (A) and anterior (B) views of an activation in T8 at 26hpf (blue 
arrowheads in A and B). C shows a dorsal view of the same embryo with labelled 
cells in the OB and anterior telencephalon. In a single confocal section (D) at 5dpf, 
at the level shown in F, labelled cells are present both in the posterior OB (arrows) 
and anterior mid-telencephalon (arrowheads). E shows a higher power view of the 
OB in an T8-labelled specimen; white arrowheads indicate local processes of a 
possible intemeuron.

G shows a lateral view of an activation in T9 at 28hpf (blue arrowhead). At 5dpf, a 
single confocal section (H) at the level shown in F reveals a labelled cell in the 
posterior OB (arrow) and other labelled cells in the anterior mid-telencephalon 
(arrowheads in H).
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Timing o f Tl/roof contribution to the OB

Having established that the most posterior region of the dorsal telencephalon, 

designated T l, contributes cells to the OB, I wanted to look more closely at the 

timing of this contribution. I labelled cells in the single-layered neuroepithelium of 

the telencephalic roof at ldpf, analysing the activations immediately afterwards by 

confocal microscopy (Fig 5.9 A and B). I then re-imaged the same specimens at 

2dpf and 3dpf to visualise the movements of labelled cells during this time.

At ldpf, immediately following the photoconversion, labelled cells were present in a 

medially-located cluster in the posterior dorsal telencephalon (Fig 5.9 A and B). At 

2dpf, these same cells had spread slightly in the medio-lateral axis, but remained 

adjacent to the posterior border of the telencephalon (Fig 5.9 C). Using the presence 

of glomeruli to define the limits of the OB, I saw that the labelled cells were directly 

juxtaposed to but not within the OB at 2dpf (Fig 5.9 D). However at 3dpf, the same 

labelled cells could be seen within the distinctive morphology of the OB (Fig 5.9 F). 

Between 2dpf and 3dpf the cohort of labelled cells also continued to spread in a 

medio-lateral direction, resulting in one labelled cell being at the lateral edge of the 

OB. However, there was little or no spread in any other axis during this time, with 

all labelled cells remaining very dorsal in the OB. I repeated this experiment with 5 

specimens, and all showed a similar timing of contribution to the OB.

Summary

I have followed the fate of cells from each of nine regions in the telencephalon, 

designated T1-T9 (Fig 5.10 A). The cells derived from regions labelled at ldpf fall 

into two distinct categories -  those that make contributions to the OB and those that 

do not. This data is summarised in Table 5.1 below. The regions that contribute 

cells to the 5dpf OB are located in more dorsal and posterior regions of the ldpf 

telencephalon, namely T1-T3 and T8-T9 (Fig 5.10 A and B). Particularly striking 

was the result that the most posterior region of the dorsal telencephalon at ldpf, the 

telencephalic roof, contributes cells to the OB.

The cells labelled in the OB at 5dpf from activations in T1-T3 and T8-T9 

included both projection neurons (as evidenced by the presence of efferent axons in 

the olfactory tracts) and intemeurons (as evidenced by characteristic dendritic 

arbours). The origins of these two cell types seem to be segregated in the 

telencephalon, with T l, T2 and T3 contributing more projection neurons and T7 and
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Figure 5.9: Following cell movement from Tl into the OB.

All figures show the same embryo; all scale bars are 50pm.

A, C and E are maximum projections of confocal sections, overlaid on transmitted 
light pictures of the telencephalon; B, D and E are single confocal sections from the 
same stacks at the levels shown in the schematic diagrams at the end of each panel. 
Axes within the telencephalon are indicated at the end of each panel.

A and B show all cells (A) and a single confocal section (B) immediately after a 
dorsal activation in T l at 28hpf. Labelled cells (arrow in A and arrowhead in B) are 
located at the midline in the telencephalic “roof’. C and D show the same cells at 
48hpf in a projection (C; arrows) and single section (D). Arrowheads in D mark 
labelled cells which lie posterior to the OB territory (marked by dotted lines). In E 
and F, the same cells are shown at 3dpf in a projection (E; arrows) and single section 
(F). Labelled cells (arrowheads) are rostrally-located in the telencephalon, within 
the OB territory (marked in F).

AC -  anterior commissure 
di -  diencephalon 
E -  epiphysis 
ey -  eye
OB -  olfactory bulb
OE -  olfactory epithelium
OP -  olfactory placode
SOT -  supraoptic tract
TAC -  tract of the anterior commissure
tel -  telencephalon
v - ventricle
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Figure 5.10: Summary diagram showing contributions of regions T1-T9

A shows a schematic diagram of a ldpf telencephalon with the regions T1-T9 
marked and colour-coded. Regions where 100% of specimens show some OB 
contribution are highlighted by a red ring; regions where less than 100% show OB 
contribution are highlighted by a dashed red ring. Regions giving rise to cells which 
migrate dorsally are highlighted by a green ring.

B shows a schematic diagram of a 5dpf telencephalon, with the distributions of 
labelled cells resulting from photo-activations in the regions identified and colour- 
coded in A. The distribution of labelled cells for each region is not intended to 
exactly replicate the data, but simply to give a general idea of the telencephalic and 
OB areas to which each region contributes.
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T8 more intemeurons. This is further suggested by the patterns of labelled fibres in 

the olfactory tracts (for summary see Table 5.1). However, a precise classification 

or quantification of these cell types has not been carried out, and some cells with 

intemeuron morphology were also found in T1 specimens.

More ventral regions of the telencephalon, T4-T6, do not contribute any cells 

to the OB. Rather, they contribute cells to the ventral telencephalon and also single 

cells to more dorsal telencephalic areas. The positioning and scattered nature of the 

dorsal cells bears strong similarity to cells seen in the Tg(dlx4/6:GFP) line (Fig 3.8).

Table 5.1: Summary of destinations and projections of cells labelled in T1-T9 at 

ldpf

Numbers of specimens showing labelling in a particular area, as a proprtion of the 

total number of specimens, is shown in each column; percentages are in red.

Region Total

n=

OB Tel LOT/

MOT

TAC AC SOT Positions of labelled cells at 

5dpf

T1 31 31/31

100

21/31

68

7/31 27/31 16/31 5/31 OB labelling; mid- and dorsal 

tel anteriorly

T2 12 12/12

100

7/12

58

4/12 4/12 4/12 0/12 OB labelling; mid- and ventral 

tel anterior to AC

T3 12 9/12

75

12/12

100

0/12 4/12 0/12 2/12 OB labelling in most specimens; 

mid- and ventral tel anterior to 

AC

T4 11 0/11

0

11/11

100

0/11 4/11 1 5/11 0/11 No OB labelling; ventral tel 

anterior to AC and mid- and 

dorsal distribution

T5 16 0/16

0

16/16

100

0/16 6/16 2/16 2/16 No OB labelling; ventral tel 

around AC and mid- and dorsal 

distribution

T6 6 0/6

0

6/6

100

0/6 6/6 2/6 0/6 No OB labelling; mid- and 

ventral tel posterior to AC and 

mid-tel distribution

T7 6 0/6

0

6/6

100

0/6 5/6 0/6 0/6 No OB labelling; medial, 

posterior mid- and ventral tel

T8 8 8/8

100

7/8

100

0/8 3/8 0/8 0/8 Posterior OB; anterior mid-tel

T9 7 7/7

100

7/7

100

0/7 4/7 1/7 0/7 Posterior OB; anterior mid-tel
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5.4 Discussion

I have generated a coarse fate-map of the zebrafish telencephalon between ldpf and 

5dpf, principally to establish the spatial origins of the olfactory bulb (OB). To do this 

I developed a novel fate-mapping technique based on the naturally fluorescent Kaede 

protein (Ando et al., 2002). By using a photo-conversion technique to label small 

groups of cells I sampled a large proportion of the telencephalon, making restricted 

photo-activations in defined areas (Fig 5.10 A). The strength of this technique is its 

non-invasiveness, the long-term stability of the tracer and its accessibility to almost 

all brains areas. In addition, the visualisation of cell morphology remains impressive 

over the 5-day timescale of the experiment. The fate mapping observations have 

enabled me to build a picture of the developing telencephalon that fits well with data 

from other species and gives some novel insights into this brain area.

Pallial areas Tl, T2 and T3 contribute to the OB -  a potential source o f projection 

neurons?

My findings indicate that the dorsal and posterior telencephalic regions, designated 

T l, T2 and T3 in this study, contribute cells to the OB. In a subset of labellings 

performed from the dorsal aspect in the posteriorly-located Tl/roof region, the OB 

was the exclusive destination of labelled cells in the vast majority of specimens (Fig 

5.4). This result was particularly striking because it was not predicted for extremely 

posterior cells in the telencephalic roof to contribute to the rostrally-positioned OB. 

Furthermore, this result confirmed that at least part of the roof region is neurogenic.

Gene expression analyses suggest that areas T l, T2 and T3 lie within the 

zebrafish pallium. Genes that mark the pallium in mouse and chick, such as Emxl 

and Tbrl (Puelles et al., 2000) are also expressed in the presumptive pallial areas of 

the zebrafish telencephalon (Kawahara and Dawid, 2002; Mione et al., 2001; Morita 

et al., 1995; Chapter 4). The pallium extends to the posterior dorsal limit of the 

telencephalon, although genes such as emx3 and tbrl probably do not show its full 

extent, being primarily expressed in postmitotic cells (Fig 5.11 B and C). In the 

telencephalic roof, for example, which is mostly mitotically active (Fig 3.4 A and 

D), it is not clear whether these genes are expressed. However, a gene that is 

additionally expressed in proliferating pallial cells, eomesodermin (eom; Mione et
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Figure 5.11: Comparison of regions T1-T9 with known markers

A shows the same schematic diagram as in Fig 5.10, a ldpf telencephalon with the 
regions T1-T9 marked and colour-coded, and their contributions to the OB indicated.

B-H show lateral views of pallial (emx3, B; tb rl, C), subpallial (dlx4/6, D; nk2.1b, E, 
taken from Rohr et al., 2001) and Lhx genes (Ihxla, F; Ihxlb, G and lhx5, H).
Stages are indicated in the lower left comer of each panel.
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al., 2001), suggests a pallial nature for the roof; a more detailed analysis would be 

required to confirm this. The critical feature of the roof for my experiments was that 

its thin nature enabled the unambiguous labelling of very small numbers of posterior 

dorsal cells and revealed their OB contribution.

My data suggests that OB projection neurons have their origins in the 

pallium. I have not attempted a detailed characterisation of the OB cells labelled by 

activations in T l, T2 and T3, due to the difficulties of combining the Kaede 

technique with other cell markers. However, the presence of red Kaede-labelled 

fibres in the olfactory tracts in 11/43 T l and T2 specimens (although not in T3 

specimens) indicates that some of these cells become OB projection neurons (Fig 5.3 

F). A pallial origin of mitral cells was actually suggested by a fate map of the 12hpf 

zebrafish neural plate, where presumptive pallial regions gave rise to labelled cells in 

the OB with axons that extended into the AC (Whitlock and Westerfield, 2000). 

Unfortunately, the authors identified these cells as intemeurons, whereas their 

projection outside the OB actually identifies them as projection neurons. These cells 

originated in a region that would be included in the T l, T2 or T3 sampled here 

(Whitlock and Westerfield, 2000). My results also indicate that the expression of the 

pallial genes eom and tbrl in zebrafish mitral cells (Mione et al., 2001) does reflect a 

pallial origin for these cells.

Pallial regions are known to be the source of OB projection neurons in a 

number of other species. In null mouse mutants for the pallial Tbrl or Emx2 genes 

the entire mitral cell layer is missing from the bulb (Bulfone et al., 1998; Yoshida et 

al., 1997). Fate mapping with an Emxl reporter line also shows extensive labelling 

in the OB mitral cell layer, with some sparse labelling in other layers of the bulb 

(Gorski et al., 2002). Furthermore, the expression of pallial markers such as xLhxS 

and eomesodermin by OB mitral cells in Xenopus has been used as evidence of their 

pallial origins (Moreno et al., 2003).

One interesting contrast between my data and that from mammals is the 

difference in the area of the pallium that contributes projection neurons to the bulb. 

Focal electroporations of lineage tracing constructs in the rat telencephalon found 

that only the pallial area directly underlying the future evagination point of the OB 

contributed mitral cells (Nomura and Osumi, 2004). Similarly fate-mapping studies 

of early stage chick neural plate found only a small domain nested within the 

presumptive ventral pallium gives rise to OB neurons (Cobos et al., 2001b).
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Unfortunately the chick OB cells were not phenotyped in detail, but they are not 

intemeurons as the origins of those cells have been fate-mapped to the subpallial 

striatum (Cobos et al., 2001a). In contrast, I find a broad area of the presumed 

pallial telencephalon contributes to the OB (Fig 5.11). The possible reasons for this 

and the factors that control OB contribution will be discussed later.

The reduced proportion of specimens contributing cells to the OB from T3 

(75%) compared with T l and T2 (100%) may indicate that T3 lies on the border of 

an OB-contributing region. Comparison with the pallial markers emx3 and tbrl 

would place T3 at the anterior border of emx3 expression, probably extending into 

the emx3-negative, tb rl-positive region (compare Fig 5.11 A-C). One possibility is 

that T3 straddles the pallial/subpallial boundary, and only those activations that 

labelled at least some pallial cells make an OB contribution. A further possibility is 

that the Emx-negative Tbrl-positive area highlights the ventral pallium, as it does in 

chick and mouse (Puelles et al., 2000). This seems somewhat unlikely, because as 

discussed above the ventral pallium is the OB contributing region in chick (Cobos et 

al., 2001b) and probably in rodents (Nomura and Osumi, 2004; Puelles et al., 2000). 

Therefore T3 labellings would be expected to label more OB cells than T l and T2, 

which is clearly not the case. A final possibility is that the ^r7-positive emx3- 

negative cells are pallial but migrate to a ventral position around the olfactory tracts 

by 5dpf (M. Mione, personal communication). This is similar to the movements of 

some T3 cells that contribute to an area just anterior to the AC (see Table 5.1) and 

also fits well with my observations of tbrl expression at both early and later 

embryonic stages (Fig 3.8 G and H and 4.9 S and T). It is therefore possible that T3 

specimens contribute both to the OB and to structures involved with the formation of 

the secondary olfactory projections from the bulb into the telencephalon.

Subpallial contribution to the OB -  a potential source o f interneurons?

Cells labelled in the regions designated T8 and T9 also contributed cells to the OB.

In many ways the patterns of labelled cells in these specimens bore strong 

similarities to those labelled in T1-T3. However, one striking difference was that no 

labelled axons were ever seen in the olfactory tracts. Although this does not prove 

an absence of labelled projection neurons (labelled axons were also absent in T3 

specimens), it suggests that T8 and T9 may contribute OB intemeurons, neurons that
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do not project outside the bulb. These neurons can also be identified by their 

extremely elaborate dendritic arbours, and OB cells with such a morphology 

originated from T8 (Fig 5.8 E). In fact, cells with an intemeuron morphology were 

also observed in some T l specimens, especially those in which the initial activation 

was relatively broad (data not shown). This suggests that the populations of cells 

giving rise to intemeurons and projection neurons of the OB may initially lie 

adjacent to each other in the developing telencephalon.

This situation closely parallels that seen in mouse, where early-born 

GABAergic intemeurons of the OB are derived from the ventral telencephalic lateral 

ganglionic eminence (LGE) (Corbin et al., 2000; Stenman et al., 2003; Yun et al., 

2001). This region lies adjacent to the cortex and it is the dorsal part of the LGE that 

directly abuts the cortex that is the primary source of OB intemeurons (Stenman et 

al., 2003). The LGE expresses a number of ventral telencephalic genes, among that 

are members of the Dlx family. Dlxl and Dlx2 have been shown to be critical for 

OB intemeuron specification (Anderson et al., 1997b; Bulfone et al., 1998) and these 

genes continue to be expressed in both granule cells and juxtaglomerular 

intemeurons within the bulb (Anderson et al., 1999). Comparisons with zebrafish 

indicate a very similar situation; dlx gene expression in zebrafish also marks the 

ventral telencephalon (Akimenko et al., 1994), a feature highlighted particularly well 

by the Tg(dlx4/6:GFP) line (Zerucha et al., 2000; Fig 5.11 D). In addition this line 

marks dorsally migrating cells (discussed later and Fig 3.8) and OB intemeurons (M. 

Mione, personal communication; Fig 3.8 and Chapter 3 discussion). A ventral 

telencephalic origin of OB intemeurons in the zebrafish therefore seems extremely 

likely.

Simply comparing the expression domain of dlx4l6 at ldpf with the positions 

of T8 and T9 indicates that these regions would encompass some ventro-posterior 

parts of the dlx4/6 domain and could therefore be potential sources of OB 

intemeurons (Fig 5.11 A and D). I wanted to test this directly and performed Kaede 

activations in T8 and T9 in the Tg(dlx4/6:GFP) line. Confocal analysis immediately 

post-activation indicated that T8 and T9 are indeed at least partially overlapping with 

dlx4!6 expression (data not shown). Activations in T8 also labelled VZ cells that 

would potentially turn on dlx4/6 on becoming postmitotic. However, by 5dpf the 

disparity between the fluorescence levels of Kaede (low fluorescence levels due to 

RNA injection) and GFP (extremely high fluorescence from the integrated
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transgene) were too great to identify any double-labelled red Kaede/GFP cells. I was 

therefore unable to confirm that it is specifically the posterior part of the dlx4/6 

expression domain that gives rise to the intemeurons labelled in T8 and T9.

More specific location of the zebrafish equivalent of the LGE, and further 

experiments to establish whether it is indeed the source of OB intemeurons are 

needed. Unfortunately, zebrafish orthologues of Gshl and Gsh2 (Corbin et al.,

2000) are unknown, but other LGE markers such as Islet 1 (Stenman et al., 2003) 

have been identified and are highlighted in a zebrafish transgenic GFP line 

(Higashijima et al., 2000). Although Isletl cells are a population of LGE cells that 

do not contribute to the OB (Stenman et al., 2003), the Tg(isletl:GFP) line could 

still be a useful tool for addressing this issue. Furthermore, in the adult zebrafish 

telencephalon, the ventral telencephalic areas Vd and Vc have been postulated as 

striatal (the derivative of the LGE) and, as in mouse, they lie adjacent to the pallium 

(Wullimann and Rink, 2002). However, the expression patterns of the 

neurotransmitters that mark the adult fish striatum, such as Substance P (Wullimann 

and Rink, 2002), are completely unknown in the embryonic telencephalon.

Non-OB contributions ofT l-T3 and T8-T9

Contributions of T1-T3 and T8-T9 included not just OB cells but also cells in other 

telencephalic regions. These are represented in the schematic diagram in Fig 5.10 B. 

I have not analysed the non-OB contribution in great detail, partly because in the 

absence of other markers, for the pallium and subpallium for example, it is difficult 

to draw meaningful conclusions about the locations of labelled cells. However, there 

is a surprisingly strong contribution at 5dpf to mid- and ventral areas from presumed 

pallial regions such as T2 and T3.

As discussed above, some cells labelled in T3 may move to positions around 

the olfactory tracts by 5dpf, in a region highlighted by tbrl expression. Labellings in 

T2 and T3 may also highlight a pallial to subpallial migration of cells, a potentially 

exciting finding, although not completely without precedent. Cell tracing 

experiments using a pallium-specific Emxl reporter line in mice revealed isolated 

tagged cells in the ventral pallium (an area that does not normally express Em xl) and 

in a variety of basal ganglia structures (Gorski et al., 2002). However, without more 

comprehensively defined pallial and subpallial regions in zebrafish it seems 

premature to draw parallels between these findings and my own.
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A major aim for the future would be to analyse telencephalic distributions of 

labelled cells more closely. I will need to consider the medio-lateral distribution of 

labelled cells at 5dpf more carefully, and compare this with the expression domains 

of known and extensively characterised pallial and subpallial markers.

T4, T5 and T6 -subpallial areas with a pallial contribution 

The fate of cells from T4, T5 and T6 suggests these regions lie within the zebrafish 

equivalent of the ganglionic eminences. The distribution of labelled cells shows that 

these regions generate a resident population of ventrally located cells and a second 

population of migratory cells destined for the dorsal telencephalon (Fig 5.6 and 5.7 

A-D). Interestingly, labelled cells in the ventral telencephalon were located around 

the anterior commissure, their position relative to the commissure dependent upon 

their relative positions at the time of the activation.

Analysis of the zebrafish Tg(dlx4/6:GFP) line (Fig 3.8) shows similarly 

scattered single cells in mid- and dorsal telencephalic areas at 5dpf. These cells are 

GABAergic and have the complex morphology characteristic of intemeurons (M. 

Mione, personal communication). They are therefore likely to be ventral 

telencephalic in origin and could well represent the zebrafish equivalent of the 

ventral-to-dorsal migration observed for mammalian cortical intemeurons (Anderson 

et al., 1999; Marin and Rubenstein, 2001; Pamavelas et al., 2000). One question is 

whether my observations of ventral-to-dorsal migration of cells labelled in T4, T5 

and T6 can be equated with observations from the Tg(dlx4/6:GFP) line. In terms of 

location, T4, T5 and T6 would be expected to overlap considerably with dlx4/6 

expression (Fig 5.11 A and D), although T4 might also overlap somewhat with the 

most ventral portions of tbrl expression (Fig 5.11 A and C). In addition, none of the 

other potential d/jt-expressing regions (T7, T8 and T9) contribute single cells to 

dorsal telencephalic areas.

This raises the possibility that subpallial regions that give rise to intemeurons 

in the OB and dorsal telencephalon are mutually exclusive. There is strong 

precedent for this in mammals, where OB intemeurons originate predominantly in 

the LGE (reviewed above), while cortical intemeurons originate predominantly in 

the adjacent medial ganglionic eminence (MGE) (Lavdas et al., 1999; Sussel et al., 

1999; Wichterle et al., 1999 and 2001). Both the LGE and the MGE express and are 

dependent upon Dlx genes for their correct specification (Anderson et al., 1997a;
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Anderson et al., 1997b); the MGE is additionally dependent on the expression of 

Nkx2.1 (Sussel et al., 1999). One question is therefore whether the regions T4, T5 

and T6 could lie within the zebrafish equivalent of the MGE. In Xenopus, the MGE 

is very ventrally located in the telencephalon, and expresses x-Lhxl (Bachy et al.,

2001) and x-Nkx2.1 (Bachy et al., 2002a). Nkx2.1 has been duplicated in zebrafish, 

and one of the paralogues, nk2.1b, is indeed expressed in the ventral telencephalon in 

the environs of T4, T5 and T6 (Rohr et al., 2001; Fig 5.11 E). It would certainly be 

tempting to designate this region of the zebrafish telencephalon as MGE but this 

requires more detailed examination of both gene expression domains and cell 

behaviour.

T4, T5 and T6 may contribute striatal interneurons

The mammalian and avian MGE and preoptic/anterior endopeduncular (POa/AEP) 

area also give rise to a tangentially migrating population of cells that furnish the 

adjacent striatum with cholinergic intemeurons (Cobos et al., 2001a; Marin et al., 

2000). In some specimens from labellings in T4, T5 and T6, isolated cells were not 

only present in the most dorsal telencephalic areas but also in mid-telencephalic 

areas (see Table 5.1), presumably outside the pallium (see Fig 3.8 G and H). It is 

possible that these cells represent a migration within the subpallium from the 

zebrafish MGE/POa/AEP equivalents to the striatum. Indeed, the adult zebrafish 

striatum is proposed to directly underlie the pallium, in the position where these mid- 

telencephalic scattered cells are seen at 5dpf (Wullimann and Rink, 2002). A 

combination of fate-mapping with acetylcholine esterase immunolabelling would 

address this possibility.

Morphogenetic movement vs. migration

My fate map data demonstrates considerable cell rearrangements in the zebrafish 

telencephalon over the first 5 days of development. These rearrangements could 

result from morphogenetic movements of whole populations of cells and/or from 

discrete cell migrations within a stable background. Some evidence points to the 

predominance of morphogenetic movement over migration, excepting the obviously 

migratory cells from T4, T5 and T6 (discussed earlier and in the next section).

Firstly, cells labelled in a single region often remained as cohorts being 

relatively closely associated, if not in direct contact with each other at 5dpf.
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Labelled cells obviously segregated between the OB and the telencephalon, but 

within the telencephalon they were often relatively closely grouped, especially in 

areas around the AC.

Furthermore, my analysis of the movements of cells labelled in the Tl/roof 

region at ldpf and followed for two further days show little evidence of a long

distance migration. The cells move little between ldpf and 2dpf, and between 2dpf 

and 3dpf move from a position juxtaposed to the bulb to a dorsal position within the 

bulb. Even though the whole OB undergoes a significant change in position between 

2dpf and 3dpf, data from Chapter 3 suggests this is due to a morphogenetic 

movement as well as considerable expansion of the bulb. Furthermore, the cells 

shown in Figure 5.9 do not obviously show the characteristic morphology of 

migrating cells such as a polarised morphology with leading and/or trailing 

processes (e.g. Alvarez-Buylla, 1997; Anderson et al., 1997a; Nadarajah et al.,

2001).

Guiding tangential migration within the telencephalon 

This study has identified at least one population of migrating cells -  those that 

originate in the ventral telencephalon and move to more dorsal areas. There may 

also be a migration of intemeurons from posterior telencephalic regions to the 

rostrally-located OB, although this has not been directly observed. It is interesting to 

consider the factors that regulate tangential migration in other systems, which are 

primarily the cellular substrate for migration and guidance factors (Marin and 

Rubenstein, 2003).

Preliminary observations of cells migrating from ventral to dorsal areas of 

the zebrafish telencephalon at 3dpf indicate that these cells move primarily in 

superficial, subpial regions (data not shown). This suggests they may migrate in the 

environs of the tract of the anterior commissure. Mouse corticofugal axons, 

expressing the cell adhesion molecule TAG-1, have been proposed as a substrate for 

tangentially migrating cells (Denaxa et al., 2001). However, observed migration 

routes through the proliferative subventricular zone and neuron-dense lower 

intermediate zone also indicate non-axonal substrates for tangential migration (Marin 

and Rubenstein, 2003). Zebrafish do not have an identified SVZ, but tangential 

migration could certainly occur through the neuron-rich mantle layer. Time-lapse
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confocal microscopy of Kaede-labelled or Tg(dlx4/6:GFP) tangentially migrating 

cells would help to address this question.

Experiments in mammals have also identified both repulsive and attractive 

guidance cues in the ventral AEP/POa and cortex respectively, guiding subpallial to 

pallial migration (Marin et al., 2003; Wichterle et al., 2003). In zebrafish, slitlb  is 

expressed around the AC, at the right time and place to act as a putative repulsive 

signal for tangentially migrating cells (Hutson et al., 2003). Mammalian Slitl and 

Slit2 are not the ventrally-located repulsive factors for MGE cells migrating to the 

cortex, but they are involved in tangential migration from the MGE to the striatum 

(Marin et al., 2003). The potential role of zebrafish slitlb  in the guidance of cells 

migrating to the striatum and/or the pallium should be investigated more closely, 

possibly using the inducible slitl knockdown fish (H. Okamoto and M. Redd, 

personal communication).

Slit-mediated guidance has also been proposed to regulate the path of OB 

intemeuron precursors migrating from the LGE SVZ in the rostral migratory stream 

(RMS; Nguyen-Ba-Charvet et al., 2004). As described above it is predominantly the 

septal source of Slitl and Slit2 that gives directional cue for Robo2/Robo3- 

expressing RMS cells. Again, it would be interesting to further examine the 

expression of zebrafish slits and robos to see what role they might play in OB- 

directed cell migration.

A further potential guidance cue is the secreted molecule Reelin. Zebrafish 

reelin is widely expressed in the pallium (Costagli et al., 2002), and its intracellular 

effector disabledl (dabl) is expressed largely in complimentary areas (A. Costagli, 

unpublished results). Furthermore, abrogation of Reelin signalling using a dabl 

morpholino results in reduced numbers of pallial Dlx-expressing cells at 5dpf (M. 

Mione, personal communication). It therefore seems very likely that Reelin 

signalling plays a role in subpallial to pallial migration in fish. In mammals, Reelin 

is implicated more in lamination than in guidance, affecting the cortical positioning 

of both projection neurons and intemeurons (Marin and Rubenstein, 2003).

However, since the zebrafish pallium does not contain a laminar cortex, the role of 

Reelin signalling in this system may be predominantly guidance rather than 

lamination.

Reelin signalling also has roles in the migration of OB intemeurons from the 

striatal SVZ where it acts as a detachment signal for cells in the subpallial RMS once
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they reach the OB (Hack et al., 2002). I have not directly shown a migration of OB 

intemeurons from subpallial areas, but reelin is expressed in the zebrafish OB and 

dabl extensively in the subpallium (A. Costagli and M. Mione, personal 

communication). It would therefore be interesting to investigate the possibility of an 

OB intemeuron migration using the Reelin/Dabl system and by looking at the 

expression of PSA-NCAM, a cell adhesion molecule essential for the migration of 

cells in the mammalian RMS (Chazal et al., 2000).

Co-ordinating Kaede fate-mapping data with Lhx expression domains 

One of the primary motives behind carrying out a fate map of the ldpf telencephalon 

was to establish whether the progressively more rostrally-located expression 

domains of the Lhx genes Ihxla, Ihxlb and lhx5 reflected real cell movements. In 

the absence of GFP lines for any of the Lhx genes, my only way to address this 

question was to label groups of cells in the areas where Ihxla , Ihxlb and lhx5 are 

expressed and compare the cell movements and observed expression patterns. 

Unfortunately, because of the nature of the Kaede labelling technique, I had no 

possibility of combining the fate-mapping with in situ hybridisation for Lhx genes.

My fate-mapping data concurs very strongly with the observed expression 

domains for Ihxla, Ihxlb and lhx5. The Ihxla telencephalic domain 1 (Fig 5.11 F), 

which by inspection would lie between T l and T2 at ldpf is seen in the OB at 5dpf; 

T l and T2 cells also contribute to the OB at 5dpf. The Ihxla domain 2 (Fig 5.11 F), 

which would map to somewhere between T3 and T4, lies anterior to the AC at 5dpf. 

T3 and T4 cells also contribute to this ventral telencephalic region, among other 

structures. The expression of Ihxlb (Fig 5.11 G) is slightly more difficult to place, 

but it overlaps with the anterior Ihxla domain. This probably equates Ihxlb with T4 

and T3, possibly reaching a little further dorsally. At 5dpf, Ihxlb expression is seen 

in the ventral telencephalon possibly overlapping with the putative olfactory tract 

tbrl domain just anterior to the AC (M. Mione, personal communication). Cells in 

T3 and T4 contribute to this region, among other structures. Finally, the lhx5 dorsal 

domain (Fig 5.11 H) would be expected to cover a broad area of the dorsal 

telencephalon, probably T l, T2 and T3, maybe including T8 and T9. At 5dpf, lhx5- 

expressing cells are seen covering a broad region of the OB (Fig 4.4 N and O); in 

agreement with this T1-T3 and T8-T9 all contribute to the OB. The ventral domain 

of lhx5 (Fig 5.11 H) is more difficult to place. It is dlx4/6 -ve (Fig 4.10 H) but
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probably maps to T7 at ldpf. At 5dpf, //uc5-expressing cells are found in a broad 

ventral-posterior region of the telencephalon (Fig 4.4 N); T7 cells also contribute to 

this region.

The general concordance between Lhx expression data and Kaede fate- 

mapping data is very good. Although it is difficult to precisely align regions of Lhx 

gene expression to Kaede regions, my comparisons indicate that Kaede-labelled cells 

from regions where particular Lhx genes are expressed are found in the same regions 

as Lhx expression at 5dpf. One important point, however, is that the destinations of 

L/uc-expressing cells represent only a subset of the destinations of Kaede-labelled 

cells. That is to say in general, ZAx-expressing cells only form a subset of those 

labelled in each Kaede region. The obvious explanation for this is that often the 

Kaede activations label a broad medio-lateral domain of cells, whereas the Lhx 

expression domains, especially of Ihxla and Ihxlb are restricted in the medio-lateral 

axis.

What specifies the dorsal telencephalic contribution to the OB?

Having established that dorsal telencephalic areas contribute projection neurons to 

the OB, it is interesting to speculate what might define this region. My results show 

that the region contributing neurons to the OB is larger than the Ihxla domain 1. It 

is more likely that lhx5, expressed much more broadly than Ihxla, is a marker of 

cells contributing to the OB. In my expression analysis, the sole destination of the 

lhx5 dorsal domain is the OB, similar to the situation in Xenopus (Moreno et al., 

2003; Moreno et al., 2004). However, in general Lhx genes are late markers of 

neuronal phenotype, and there may be genes upstream that regulate Lhx expression 

to instruct the OB fate.

Mouse knockouts may provide some insight into the genes controlling the 

mammalian pallial contribution to the OB. However, all knockouts analysed to date 

have multiple phenotypes with both OB and cortical structures being affected, 

suggesting that these are upstream of genes that specify OB projection neurons (Zaki 

et al., 2003). For example, the Tbrl knockout mouse has both an absence of 

mitral/tufted cells in the OB, but also defects in cortical organisation and 

neurogenesis (Bulfone et al., 1998). Similarly Emx2 knockouts and Emxl 12 double 

knockouts show OB and cortical defects among others (Bishop et al., 2003; Yoshida 

et al., 1997).
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The only mouse mutant with a specific OB phenotype is the FgfRl 

conditional knockout (Hebert et al., 2003). However, the defect in this mutant is not 

one of mitral cell specification but of proliferation within and morphogenesis of the 

olfactory bulb. A zebrafish ,/g/* mutant, acelfgfS, also has severe olfactory bulb 

defects with reduced and disorganised glomeruli and a marked reduction in 

emxl(emx3)-\afoelling in the OB at 3dpf (Shanmugalingam et al., 2000). However, 

ace/fgfS has many other telencephalic defects including disrupted midline patterning 

in dorsal and ventral territories. It is therefore not clear what role/g/8 plays in OB 

development, although the study of this mutant in combination with Kaede labelling 

might help to elucidate this.

It is my hope that the observations I have made of OB development will aid the 

screening of mutants, mutagenesis screening being a particular strength of zebrafish 

research. Particularly relevant is a mutagenesis screen taking place in the 

Tg(dlx4/6:GFP) background (M. Mione et al., personal communication), which 

should be ideally suited to identifying mutations affecting the OB intemeuron 

population.

Post-embryonic development o f the OB

My experiments demonstrate that the OB is a major derivative of the early 

telencephalon. Out of the nine regions sampled, five contributed at least some cells 

to the OB. This suggests that the OB is an important structure for zebrafish and 

merits a large contribution from the telencephalon. However, at the stage where I 

ended my experiments the OB is only a fraction of the size it will be in the adult. 

Estimates place the number of glomeruli in the 3.5dpf embryo at 15 (Dynes and 

Ngai, 1998), whereas the adult has some 100 glomeruli (Baier and Korsching, 1994). 

Therefore, although I have established the spatial origins of the embryonic OB, it is 

still largely unknown how new OB neurons are recruited/generated (Byrd and 

Brunjes, 1998; Byrd and Brunjes, 2001). A further aspect of postembryonic 

development that requires further work is how the olfactory bulbs come to be 

completely separated from the telencephalon as they are in the adult (Wullimann, 

1996; Fig 3.1 F). The morphogenetic movements and/or migrations that orchestrate 

this process will be fascinating to discover.
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Limitations o f the method and further work

The photoconversion method, using Kaede protein, has proved an excellent tool for 

making a relatively coarse fate-map of the ldpf zebrafish telencephalon. By 

labelling multiple cells in the first instance, I have been able to quickly compile data 

on the major cell movements and migrations of a large proportion of the 

telencephalic population. Naturally, I have not sampled the entire brain region but 

the focus of my question was the origins of the OB and this has been addressed.

However, the Kaede method does have limitations, one of which is the out- 

of-focus activation that results from using a beam of UV light. This problem is 

compounded by the fact that the light beam is actually a cone, most restricted at the 

focal point but flaring out on either side. Thus, performing photoactivation from the 

lateral aspect can result in a medio-lateral column of labelled cells. Nonetheless, the 

photoconversion is brightest at the focal plane and my confocal analysis immediately 

post-activation shows that activations consist of a discrete population of labelled 

cells (Fig 5.1 E-H). Most importantly, the epifluorescence images taken of each 

specimen at the time of the photoconversion, from two different aspects, meant that 

the starting population of labelled cells was always known and could be correlated 

with data acquired at 5dpf.

Further refinements of the Kaede technique are still desirable, to reduce the 

numbers of cells labelled and their medio-lateral extent. This may be especially 

important for activations in the regions where pallial and subpallial areas overlap in 

the medio-lateral axis, subpallial areas lying medial to pallial areas (Fig 3.8 G and H, 

also compare dlx4/6 and emxl expression in Fig 5.11). Using Kaede, I hope to 

develop UV-laser and multi-photon methods to reduce or eliminate out-of-focus 

activation.

Another approach, not involving Kaede, is to use microelectrode techniques to label 

single cells with fluorescent tracers (Lyons et al., 2003). I hope to do this in the 

posterior dorsal region, between T l and T8. The aim of this approach would be to 

use GFP lines in conjunction with tracer injections to establish more conclusively the 

boundary between pallium and subpallium. Following on from this I would hope to 

identify a region of the subpallium which gives rise to OB intemeurons that I could 

confidently designate as the zebrafish equivalent of the LGE.

Experiments using Kaede RNA, as I have done here, may also be affected by 

the dilution effects of multiple rounds of cell division. This problem can not create
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false-positive results, as red-labelled cells have always either been photoconverted 

themselves or are descendents of cells that were. However, it may lead me to 

underestimate the destinations of cells labelled in any particular region. To explore 

this possibility I could do the experiments over a shorter period (from 1 to 3dpf for 

example) and could actively target proliferating cells in the VZ to see through how 

many rounds of division the red signal is sustained.
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Chapter 6: General discussion

Over the course of this thesis work I have used a variety of techniques to characterise 

the zebrafish telencephalon over the entire period of its embryonic development.

The three main findings of my work are:

- the photoconvertable fluorescent Kaede protein can be used as a non-invasive long

term fate mapping tool in the zebrafish embryo

- a combination of gene expression analyses and fate mapping studies has revealed 

the posterior telencephalic origin of the zebrafish OB

- fate mapping and the 4D analysis of neuronal organisation and proliferative zones 

demonstrate a major morphogenetic rearrangement of the zebrafish telencephalon 

that accounts for the rostral movement of the developing OB and may account for 

telencephalic eversion

In this final discussion I will draw together the main themes outlined above 

and discuss a model that may underlie the formation of the mature zebrafish 

telencephalon.

Evidence points to a morphogenetic movement between 2 and 3dpf 

The main findings of the three data chapters in this thesis all point towards a similar 

conclusion, that a morphogenetic movement between 2dpf and 3dpf is an event 

which both reorganises the telencephalon and may underlie the eversion process.

The main evidence for this can be summarised as:

1. BrdU labelling of proliferating cells reveals a VZ that extends to the posterior 

dorsal border of the telencephalon at 2dpf, but which by 3dpf is evident on the dorsal 

surface, underlying the epidermis. At 5dpf, this dorsally-everted VZ covers the full 

medio-lateral and rostro-caudal axes of the dorsal telencephalic surface, except for 

the olfactory bulbs (Fig 3.5).

2. Immunolabelling for mature axons reveals that the olfactory bulb occupies a 

posterior-dorsal position in the telencephalon at 2dpf but by 3dpf is very rostrally 

located in the brain (Fig 3.6).

3. Domains of expression of Ihxla and lhx5 in the posterior dorsal telencephalon at 

2dpf appear in the OB at 3dpf where they remain until at least 1 month post 

fertilisation (Fig 4.5).
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4. The most posterior areas of the dorsal telencephalon at ldpf contribute cells to the 

OB at 5dpf (Fig 5.4, 5.9 and table 5.1)

All of these lines of evidence, accumulated using a variety of different techniques, 

point towards a morphogenetic movement between 2dpf and 3dpf, which serves to 

bring posterior-dorsal structures to more rostrally-located positions. I have
i

previously described this movement as rotatory, but it is unclear whether changes in 

the dorsal telencephalon are parallelled by similar movements in the ventral 

telencephalon. The perdurance of the preoptic area proliferation zone and the 

relatively static position of the anterior commissure suggest that the movement may 

be more confined to the dorsal telencephalon.

What drives a morphogenetic movement?

If there is indeed a morphogenetic movement that significantly rearranges the 

telencephalon, then an immediate question is what drives this movement?

Presumably forces both intrinsic to the telencephalon and/or extrinsic forces exerted 

by adjacent tissues could be responsible. Even differential proliferation may be 

sufficient to account for the perceived morphogenetic movement. For instance, at 

48hpf the ventricular space between the posterior telencephalon and the 

diencephalon is quite large, meaning that these adjacent brain areas are some 

distance from each other (Fig 4.5 A and B). However, at 3dpf the space seems much 

reduced (Fig 4.5 D), and it is possible that proliferation in the dorsal telencephalon 

fills in this gap and brings the VZ to direcly underlie the epidermis on the dorsal 

surface of the brain. Discriminating between these possibilities would not be easy, 

but lineage or fate mapping cells in the posterior VZ at 2dpf would give some 

indication of proliferation and cell movement in this area.

The rostral movement may underlie eversion

It is clear that whatever the precise mechanism underlying the movement within the 

dorsal telencephalon between 2 and 3dpf, it results in VZ being evident for the first 

time on the dorsal rather than the posterior surface of the telencephalon. This is the 

primary feature of an everted rather than an evaginated telencephalon (Butler, 2000; 

Butler and Hodos, 1996; Wullimann and Knipp, 2000), and raises the possibility that 

the observed rostral movement does indeed underlie the eversion process.
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The model I am proposing here is certainly much less dramatic than the 

process suggested by schematic models of eversion such as Fig 6.1 A (Butler, 2000). 

These models have the major difficulty that they predict a massive rearrangment of 

telencephalic areas in an everted versus an evaginated telencephalon. Although 

zebrafish telencephalic areas are not well characterised in terms of function, areas 

receiving secondary olfactory input are identified by the projections of the olfactory 

tracts. In both everted and non-everted brains, the olfactory pallium is laterally- 

located (Wullimann and Rink, 2002). I am not disputing that the adult teleost 

telencephalon is everted, with deep sulci evident in the lateral wall (Butler, 2000), 

but simply suggesting that this might arise from extensive cell proliferation during 

postembryonic stages and therefore mask the much simpler embryonic arrangement.

Insights into the origin o f the choroid tela

A further reported consequence of an everted telencephalon is that the dorsal VZ is 

covered by a thin choroid tela (Wullimann and Puelles, 1999). This epithelium lies 

juxtaposed to the neural tissue and is almost certainly secretory (producing 

cerebrospinal fluid), at least in parts. It has been observed in sectioned material at 

adult stages (Wullimann and Puelles, 1999) but the embryonic origins of this 

structure remain completely unexplored. The model I have proposed for 

telencephalic eversion may also have implications for the origins of the choroid tela.

If the choroid tela has any similarities with the secretory eplithelium of 

evaginated brains, the choroid plexus, then it must be a derivative of the roof of the 

neural tube. I predict this would be the posterior area of the neuroepithelium that 

joins the telencephalon to the roof of the diencephalon at 48hpf (Fig 6.1 B). The 

point of attachment of this roof structure would be just caudal to the developing 

olfactory bulb, and as the bulb moved to a more rostral position the prospective tela 

would be pulled over the dorsal surface of the telencephalon, in parallel with the VZ. 

Thus by 5dpf, a tela would cover the entire dorsal surface of the telencephalon 

except for the olfactory bulbs (Fig 6.1 B).

My experiments have not directly addressed the origins of the tela, but some 

of my observations support the model proposed above. In the 24-36hpf 

telencephalon, a thin area of neuroepithelium forms a bridge between the posterior 

telencephalon and the roof of the diencephalon. It is mainly proliferative although a 

few neurons are evident in the most rostral part of the roof. I suggest that these
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Figure 6.1: Models of eversion and the possible origin of the choroid tela

A shows the contrasting processes of evagination and eversion, adapted from (Butler 
2000). The everted telencephalon is covered by a thin choroid tela, a structure that 
has its origins in the dorsal neural tube.

B shows my model of eversion from Fig 3.9, modified to include the possible origin 
and morphogenesis of the choroid tela. The VZ is indicated with red lines, the OB in 
light blue and the direction of the morphogenetic movement with purple arrows.
The choroid tela is indicated by a green line and a green arrowhead. The tela may 
have its origins in the roof of the 48hpf telencephalon, and following a rostral 
morphogenetic movement may become spread over the dorsal surface of the 
telencephalon. Thus the point of attatchment of the tela remains just caudal to the 
OB at all stages.

196



Evagination Eversion

B

Figure 6.1

48hpf 3dpf

5dpf

transverse

197



neurons would be among the cells we have marked by Kaede labellings in this area 

and would contribute to the OB. By 48hpf, the epithelial bridge between the 

telencephalon and diencephalon is much thinner (it is easily removed during 

dissection) and its point of attachment is just posterior to the OB (Fig 3.1 C and Fig 

3.6 C). Cells labelled in the roof at ldpf are now clearly part of the bulk of 

telencephalic tissue, suggesting that they have left the roof (Fig 5.9 C and D). At 

3dpf, these cells lie within the OB, probably as a result of growth of the OB (Fig 5.9 

E and F), and the epithelial tissue is no longer evident (Fig 3.1 D). This of course 

does not necessarily indicate that it has spread over the dorsal surface of the 

telencephalon, but it is a possibility.

Testing the predictions o f the eversion!choroid tela model 

My model (Figure 6.1) makes a number of predictions relating to the choroid tela 

that could be directly tested experimentally. Firstly, no structure resembling the tela 

should be visible over the dorsal surface of the brain at 48hpf. At 3dpf and 5dpf, the 

point of attachment of the tela should be just caudal/posterior to the OB -  the same 

point at which it attached at 48hpf. There should also therefore be no choroid tela 

evident over the surface of the OB at any stage. These morphological characteristics 

would probably be best observed by electron microscopy.

Secondly, markers for the roofplate/tela should expand rapidly between 

48hpf and 3dpf and come to cover the dorsal surface of the brain. There are 

presently no known markers of the choroid tela in zebrafish. Transthyretin, which is 

a good marker for the choroid plexus in other species is not expressed in fish choroid 

plexus (Power et al., 2000; Schreiber, 2002). However there are a number of genes 

involved in the patterning of the mammalian roofplate, choroid plexus and adjacent 

structures such as members of the Wnt and BMP families. In mammals, Wnt2b is 

expressed in the cortical hem (Monuki et al., 2001) and Wnt3a has a role in 

hippocampal development (Lee et al., 2000). Bmp2 and Bmp4 are also expressed in 

the roofplate and are implicated in choroid plexus specification (Hebert et al., 2002). 

The roofplate is also beautifully marked by Gdf7 in mouse (Monuki et al., 2001) and 

chick (Alexandre and Wassef, 2003) and has been cloned in zebrafish but with little 

expression analysis (Davidson et al., 1999). In zebrafish, very few members of the 

Wnt and BMP families have been studied at later stages of embryonic development, 

but wnt8b is expressed in the roof region between the telencephalon and

198



diencephalon at around 24hpf, and affects development of forebrain structures 

including the telencephalon (Buckles et al., 2004; Kelly et al., 1995). A future aim 

would be to assess the expression of this excellent candidate gene between 2 and 

5dpf to see whether its expression marks an expanding choroid tela.

Thirdly, the roof of the telencephalon should have dual fates, that is both 

neurons and choroid tela cells. There is precedent for this in mouse, where tissue 

labelled with the roofplate marker Gdf7 gives rise to both neurons and choroid 

plexus (Monuki et al., 2001). My experiments using Kaede labelling indicate that 

areas of the roof do indeed give rise to neurons. However, without any information 

about the nature of choroid tela cells I was unable to establish whether any of my 

experiments also labelled these cells. Future fate tracing experiments and 

identification of a marker of the choroid tela should establish the neurogenic and 

non-neurogenic regions of the roof.

Evaluation o f the work

Over the course of this thesis I have explored and described some of the basic 

processes that underlie the development and morphogenesis of the zebrafish 

telencephalon. By not confining my work to a single stage, but rather by following 

processes from early embryonic to postembryonic stages (24hpf to 5dpf), I have 

been able to monitor the dynamics of proliferation, neurogenesis and morphogenetic 

movements over the full course of embryonic development. These observations 

have led me to propose a model that pairs a rostrally-directed morphogenetic 

movement within the brain with the appearance of a dorsally-everted telencephalon, 

a characteristic of the actinopterygian fish. A possible, but so far unsubstantiated, 

extension of the model proposes that the formation of the choroid tela may also 

result from the previously described morphogenetic movement.

Concluding remarks

At the moment, much of the research into the development of the zebrafish 

telencephalon (aside from work on early patterning) is still at a largely observational 

stage. I see this as being the first phase of necessary groundwork for performing 

more functional experiments. It is clear from descriptive studies, such as the work 

presented here, that the commonalities between zebrafish and “higher” vertebrates 

are probably much more extensive than previously thought. For example, the
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identification of populations of migrating cells from subpallial to pallial and OB 

areas is strongly reminiscient of the migration that populates the chick and 

mammalian telencephalon and OB with GABAergic intemeurons (reviewed in 

Marin and Rubenstein, 2003).

Much of the literature comparing telencephalic organisation in different 

species has focussed on tetrapods i.e. mammals, reptiles, birds and amphibians 

(Marin et al., 1998; Striedter, 1997). Authors have used the term tetrapod to imply 

that the evolution of tetrapody also saw the evolution of a different kind of brain 

organisation. Fish have largely been excluded from these analyses, it seems, not 

because of their lack of land-conquering limbs but because of the everted 

telencephalon (Striedter, 1997). This is despite the relative wealth of information 

indicating that the patterning mechanisms at work in the zebrafish telencephalon are 

similar to those in higher vertebrates (Akimenko et al., 1994; Costagli et al., 2002; 

Hauptmann et al., 2002; Kawahara and Dawid, 2002; Mione et al., 2001; Morita et 

al., 1995; Rohr et al., 2001). The lack of a clear model of eversion is clearly 

hampering much of the potential comparative work that could be done in zebrafish.

It is obviously one of the eventual aims of zebrafish researchers to move 

beyond comparative studies with mouse and chick, and to use the unique attributes 

of the zebrafish to their full advantage. For example, the transparency of the early 

embryo and the ability to follow cells in timelapse without perturbation over 

extended periods (as shown by Dynes and Ngai, 1998; Koster and Fraser, 2001) are 

not attributes shared by any other model organism. The ease of mutagenesis 

screening and the development of transgenic technology are also great incentives for 

using zebrafish. It is also important, I feel, to encourage non-zebrafish researchers to 

use zebrafish as part of a question-lead (rather than model-lead) approach to 

elucidating telencephalic development. Central to such a use of zebrafish is, 

however, the resolution of some of the outstanding issues such as teleost 

telencephalic eversion. If the model I propose here is borne out by further 

experiments, eversion may well turn out to be not such a complicated process after 

all. But only when this has been rigorously described, with clear identfication of 

telencephalic subdivisions and their homologous structures in the evaginated 

telencephalons studied by the vast majority of researchers, will the use of the 

zebrafish model become more widespread.
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