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Abstract

Generalized linear models (GLMs) were originally used to build regression mod­

els for independent responses. In recent years, however, effort has focused on 

extending the original GLM theory to enable it to be applied to data which ex­

hibit dependence in the responses. This thesis focuses on some specific extensions 

of the GLM theory for dependent responses.

A new hypothesis testing technique is proposed for the application of GLMs 

to cluster dependent data. The test is based on an adjustment to the ‘indepen­

dence’ likelihood ratio test, which allows for the within cluster dependence. The 

performance of the new test, in comparison to established techniques, is explored.

The application of the generalized estimating equations (GEE) methodology 

to model space-time data is also investigated. The approach allows for the tem­

poral dependence via the covariates and models the spatial dependence using 

techniques from geostatistics.

The application area of climatology has been used to motivate much of the 

work undertaken. A key attribute of climate data sets, in addition to exhibiting 

dependence both spatially and temporally, is that they are typically large in size, 

often running into millions of observations. Therefore, throughout the thesis, 

particular attention has focused on computational issues, to enable analysis to be 

undertaken in a feasible time frame. For example, we investigate the use of the 

GEE one-step estimator in situations where the application of the full algorithm 

is impractical.

The final chapter of this thesis presents a climate case study. This involves 

wind speeds over northwestern Europe, which we analyse using the techniques 

developed.
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Chapter 1

Introduction

1.1 Overview

Generalized linear models (GLMs) were originally proposed by Nelder and Wed- 

derburn (1972) in an attem pt to unify a vast array of statistical models. Subse­

quently, GLMs have been applied extensively to build regression models within 

a wide range of application areas. One of the main, and potentially restrictive, 

characteristics of the univariate GLM is that responses are assumed independent, 

given the covariates in the model. In recent years, however, a vast amount of 

material has been published on extending univariate GLMs so that they may be 

applied to data sets that exhibit dependence in the response. Examples of such 

techniques include generalized estimating equations (GEEs) and generalized lin­

ear mixed models (GLMMs). This subject of extending GLMs for dependent 

response data is the focus of this thesis.

The application area of climatology has been used to motivate much of the 

work undertaken. Data sets taken from this field typically possess two key at­

tributes, which are highly influential in determining the nature of the statistical 

analysis undertaken. Firstly, data sets exhibit dependence both spatially and tem­
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porally, hence the need for methods which allow for dependence. And secondly, 

data sets are typically large in size, often running into millions of observations. 

Methods applied therefore need to be computationally efficient and for this reason 

particular attention is given to computational issues throughout this thesis.

When modelling climate data sets, typically interest lies in explaining how 

the various components of the climate system interact or affect one another. For 

example, if rainfall at a network of sites is the variable under consideration, the 

effect of factors such as spatial location and seasonality upon rainfall is likely 

to be of interest. Generalized linear models provide a natural framework within 

which to explore such relationships. In the above example, rainfall amounts 

would be classed as the response variable and factors such as seasonality and 

spatial location would be potential explanatory variables. The first work to be 

published on the application of GLMs to model climate variables was Coe and 

Stern (1982), and later Stern and Coe (1984), who considered the modelling 

of rainfall data. In recent years, these ideas have been extended extensively 

by Chandler and Wheater (2002) and Yan et al. (2002). The main challenge 

faced when applying GLMs to climate data is allowing for the dependence in the 

response variable. This dependence usually exists both temporally and spatially, 

as a result of parallel time series being collected at a network of neighbouring 

sites. For the single site problem, accounting for the temporal dependence is 

possible via covariates. However, for the multi-site case, allowing for the spatial 

dependence at neighbouring sites, in addition to the temporal dependence, is 

problematic. Within this thesis we explore some methods of extending the GLM 

framework to allow for this dependence.

Broadly speaking, when applying GLMs to dependent response data, one of 

two approaches can be adopted. Either the GLM fitting routine can be extended 

to allow parameters to be estimated while accounting for the dependence or, 

alternatively, a univariate GLM can be fitted and then the subsequent inference

13



adjusted to allow for the dependence within the responses. Within this thesis both 

approaches are considered. A new hypothesis testing technique is proposed for the 

application of univariate GLMs to the modelling of cluster dependent data. This 

technique uses theory embedded within the independence estimating equations 

(IEE) approach to adjust the ‘independence’ likelihood ratio test to allow for 

the dependence. Within a climate context, this technique can be applied to 

allow for inter-site dependence. This technique also has computational benefits 

since the efficient GLM fitting routine does not need to be adjusted to obtain 

the parameter estimates. Instead, only a small extra step is required to make 

inference on these parameters. As an alternative to the above approach, we 

consider the application of GEEs to model climate data. This approach allows 

for the temporal dependence via the covariates and uses ideas from geostatistics 

to suggest appropriate spatial dependence structures.

Even though many of the techniques presented have been motivated within 

a climate context, they are applicable to a much wider field. For example, the 

work undertaken on hypothesis testing can be applied to any cluster based data 

set, such as a longitudinal study. Also the work undertaken on the application of 

the GEE methodology can be applied to other space-time settings.

1.2 Outline of thesis

This thesis is organised in the following manner. Chapter 2 provides the nec­

essary background required for subsequent chapters. Univariate GLM theory is 

introduced, along with a few possible extensions. Chapter 3 focuses on extending 

univariate GLMs so that dependent responses can be modelled. This material 

predominantly focuses on the GEE approach, but GLMMs are also considered. 

In Chapter 4 we propose a new hypothesis testing technique for GLMs, when 

applied to cluster correlated data. Using simulations we investigate the per­
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formance of the new method in comparison with other established techniques. 

Chapter 5 moves on to consider how GEEs can be applied to model climate or, 

more generally, space-time data. Computational aspects are considered through­

out. In Chapter 6 the analysis of a specific climate data set, involving wind 

speeds over Northern Europe, is undertaken. This enables us to demonstrate the 

GLM methodology which has been developed. Finally, Chapter 7 summarises 

and concludes the work undertaken, and considers a few possible extensions.

1.3 Notation and abbreviations

Realizations of random variables are denoted by lower case italic letters, while 

the random variables themselves are represented by the corresponding upper case 

italic letter. For example, y represents a realization of the random variable Y.  

Generally speaking, unknown parameters will be represented by lower case Greek 

letters and their corresponding estimators by the hat notation. For example, 

an estimator of the parameter a  is represented by a. Matrices and vectors are 

represented in bold font and scalars in normal font. W ith respect to matrices and 

vectors, the notation A T denotes the transpose of A. For square matrices, the 

notations A -1 and A 1/2 denote the inverse and matrix square root of the matrix 

A respectively.

Abbreviations that are commonly used throughout the thesis are given in Ta­

ble 1.1.
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GLM Generalized linear model

IEE Independence estimating equations

GEE Generalized estimating equations

GLMM Generalized linear mixed model

pdf Probability density function

cdf Cumulative density function

mle Maximum likelihood estimator

df Degrees of freedom

AR Autoregressive

ACF Autocorrelation function

Table 1.1: Abbreviations commonly used throughout thesis.
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Chapter 2

Univariate generalized linear 

models

Within this chapter we review univariate generalized linear models (GLMs), 

which underlie many of the techniques discussed throughout this thesis. Due 

to limitations on space, only the material needed for reference in subsequent 

chapters has been included. For a fuller account of univariate GLM theory the 

reader is referred to Dobson (2002) for an introductory account, and McCullagh 

and Nelder (1989) for a more advanced treatment.

2.1 Introduction

Univariate GLMs are regression models which enable us to explore the relation­

ship between a single response variable and several explanatory variables. They 

extend the classical linear model from normal response data to the much wider 

class of response data belonging to the exponential family of distributions. A 

transformation of the linear predictor is also accommodated, for example, to en­

sure that all fitted values lie within the permitted range of the response. As with

17



classical linear normal models, a fundamental assumption of univariate GLMs is 

that individual responses are independent given the explanatory variables in the 

model.

More formally, a univariate GLM can be defined as follows. Let Y T =  

(Y i,. . . ,  Yn) denote a response vector of random variables, whose n independent 

elements (given the explanatory variables in the model) share the same form of 

parametric distribution from the exponential family. Corresponding to each Yi 

are the values x f  =  (xnf . . .  ,XiP) of p explanatory variables, which can be com­

bined across the n observations to form a n  x p design matrix X, whose ?th row 

is given by x f . The linear predictor r) =  X/3 is related to the mean of Y  through 

the model equation

g(n) = r, = X/3, (2.1)

where /x =  E(Y), /? =  ( f t , . . . , /3P) T is a p x 1 vector of unknown parameters, and 

g(-) is a monotonic and differentiable link function. By g(fi) we mean the n  x 1 

vector whose ith  element is g(pi).

2.2 Exponential family

When fitting a GLM we assume that the distribution of the response variables 

Yi belongs to the exponential family of distributions, such that the probability 

density function (pdf) or probability mass function (pmf) can be written in the 

following standard form

' y 9 -b (9 )
f ( y ; 6, <j>) = exp a(<f)

+ c(y, <j>) (2.2)

where 9 is called the natural parameter, <j> is called the dispersion parameter, and 

a(-), &(•) and c(-) are specific functions corresponding to the type of exponential 

family.

The natural parameter 0 is a function of the mean, 9 =  9{p). Moreover,

18



applying the standard results E (d£/dO) = 0 and E[(cM/dO)2] =  —E (d2£/d02), 

where £ =  £(0, </>; y) =  log f(y; 0, (f>) denotes the log-likelihood function, it follows 

that n  =  E (y ) =  db(0)/d9 and var(y) =  a{<j>)d2b{6) /  d62. The variance of Y  

is often written var(T) =  a(</>)v(fi), where v ( / j l )  =  dfi/d9  denotes the variance 

function, to emphasis the dependence of the variance on the mean.

Well-known distributions belonging to the exponential family include the nor­

mal, Poisson, binomial and gamma. For example, consider the gamma pdf given 

by

f(y\Ab v) =  Vv~l exp > 0 ^  V < 00, W  > 0, (2.3)

where
u2

E(T) =  ji and var(T) =  —
i/

Rewriting (2.3) in the form

=  exP [ ( - - -  A  A*
logfi ] v  -  logT(i/) +  v logv  +  (v — 1) logy

it can be seen that the gamma density is a member of the exponential family as 

defined by (2.2), with 0 =  — l/ / i ,  b(0) = — log(—0), a(<j>) =  \ j v  and c(y, <j>) =  

— log r(i')  +  v \ogv  + (v — l)logy . Hence, E(T) =  b'{0) =  — 9~l =  n and 

var(F) =  a{(j))bn{6) =  6~2/ v  =  /i2/^ , as above.

2.3 Likelihood inference

For GLMs, the parameter vector (3 is estimated by maximum likelihood. Before 

proceeding to discuss the details of this, however, the more general topic of like­

lihood inference will be reviewed as this material is used extensively throughout 

the thesis.

19



2.3.1 M aximum likelihood estim ation

Let y  =  (j/i,. . . ,  yn) be a realisation of the n  independent random variables 

Y  =  (Yi,. . . ,  Yn) whose pdf f(y;  0) depends on a p x 1 vector of parameters 0. 

The likelihood function, which is a function of the unknown 0 given the data y, 

is defined as n

L(0; y) = /(y; 0) = n  (2-4)
*=1

where the product follows from the fact that the yi s are independent. Typically, 

it is more convenient to work with the log-likelihood function, which is given by
n

logL(0;y) =  £(0;y) =  ^ lo g / ( j / j ; f l ) .  (2.5)
i=l

The maximum likelihood estimator (mle) of 0, is the value which maximizes the 

log-likelihood function. More formally, the mle of 0, denoted by 0, is defined by

t (0;y)  > i (0;y)  V0 G fi,

where is the parameter space. The mle is obtained by solving the p equations

0 < ( 0 ;y ) _ n
~ a e ~  ~  ° ’ (26)

simultaneously. The mle 0 is a consistent estimator of the ‘true’ value 0 under 

mild regularity conditions (see below) (Cox and Hinkley, 1974).

Define the score U(0) =  d£(0;y)/d0.  This is a random vector, which eval­

uated at the true 0 has the following properties: E[U(0)] =  0 and var[U(0)] =  

E[U (0)U r (0)] =  1(0), where 1(0) is known as the Fisher information matrix. 

Under mild regularity conditions, relating to the ability to interchange the order 

of differentiation and integration, the information matrix is also given by

m  = -E  =  -E  [U'(0)1, (2.7)

where U '(0) is the derivative of the score vector U(0) with respect to 0. Asymp­

totically, the score vector is distributed as

U (0 )£ tf (O ,I (0 ) ) ,  (2.8)
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where £  denotes ‘is asymptotically distributed as’. Result (2.8) is obtained by 

application of the central limit theorem, which holds because the score vector and 

information are sums of n independent contributions.

A first order Taylor series approximation of U (0) about the true parameter 

value 0 is given by

U(0) =  U(0) +  U '(0)(0  -  0) +  Op( 1). (2.9)

Now, given tha t U(0) =  0, as 0 satisfies (2.6), we obtain

U ( 0 ) = I ( 0 ) ( 0 - 0 ) + O p(l),

where the observed information matrix —U '(0) has been replaced by its expected 

value (which is asymptotically equivalent). Thus,

0 - 0  = r 1(0)U(0) +  Op(n~l ). (2.10)

Using (2.10), and since E[U(0)] =  0 and var[U(0)] =  1(0), we obtain E(0) =  0 

and var(0) =  I _1(0)var[U(0)]I_1(0) =  I -1(0)> where =  denotes ‘is asymptoti­

cally equal to ’. Moreover, application of the weak law of large numbers and the 

central limit theorem as detailed in Cox and Hinkley (1974, p. 294), yields the 

following asymptotic result

0 - A T (0 ,r1(0)). (2.11)

For (2.11) to hold several regularity conditions must be satisfied, these include: a) 

the true parameter 0 must be interior to the parameter space fi, b) the parameter

vector 0 is identifiable, i.e. if 0 ^  0* then f (y \  0) ^  f (y \  0*), c) the log-likelihood

function is three times differentiable with respect to 0 and the third derivative 

is bounded. For further details on the above regularity conditions see Cox and 

Hinkley (1974, p. 281).
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2.3.2 Tests of hypotheses

Having calculated the mle 0, consider testing the null hypothesis H0 : 0 =  0O, 

for fixed value Oq. By definition, the mle 0 maximizes the likelihood function, 

and therefore a sensible quantity to consider for testing Ho is the following ratio 

of likelihoods

A =  ^ 1 .  (2.12)
m

Naturally, the quantity A is bounded by 0 and 1, with values closer to one sup­

porting H0.

The Neyman-Pearson lemma (Casella and Berger, 2002, p. 388) states that 

the best test of size a  that can be constructed for testing Ho is based on (2.12). 

We now show how, under H0, Wl =  —2 log A follows an asymptotic chi-squared 

distribution with p degrees of freedom (d.f.), where p =  dim(0). This result forms 

the basis for testing H0.

Consider the second order Taylor series approximation of £(0q) about the 

consistent mle 0

t ( 0 a )  =  1 ( 0 )  +  ( O q  -  0 ) T \ J ( 0 )  +  l- ( 0  -  0 q ) T \ J ' ( 0 ) ( 0  -  O q )  +  Op(n~ lt2).

Since U(0) =  0, and again replacing U'(0) by its expected value we obtain

e(0o) =  m  -  \ ( 0  -  0O)TI(0)(0 -  Oq) +  Op(n -1/2).

Finally, replacing 1(0) by its asymptotic equivalent I(0o)> and rearranging we 

obtain

- 2 1(0o) -  ^(6)] =  (0 -  0o)Tl(Oo)(O -  Oo) + O p(n-1/2). (2.13)

Due to the asymptotic normality of 0 given by (2.11), under i f0, the right hand 

side of (2.13) follows an asymptotic chi-squared distribution with p  d.f. It follows 

that the quantity on the left hand side of (2.13), —2 log A, also has a limiting 

chi-squared distribution with p d.f. Thus, the test statistic

w L =  - 2  [<?(0O) -  e(d)\
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can be used to test Hq. This test is known as the likelihood ratio test.

An alternative to the likelihood ratio test, for testing Ho, can be obtained by 

making direct use of the asymptotic normality of the mle. Under Ho, the Wald 

test statistic

WT = (0 -  0o)Tl{0)(0 -  0O)

follows an asymptotic chi-squared distribution with p d.f., by (2.11). In the case 

of a scalar 0, the signed square root of Wt  has a standard normal distribution.

A further alternative for testing Ho can be obtained by making use of the 

asymptotic normality of the score vector. Under H0, the score test statistic

Ws = U (0o)Tr 1(^o)U(6>o) 

follows an asymptotic chi-squared distribution with p d.f., by (2.8).

The Wald and score tests are quadratic approximations to the likelihood ra­

tio test. Asymptotically, all three tests are equivalent (Cox and Hinkley, 1974, 

Section 9.3). The asymptotic equivalence of the Wald and likelihood ratio test 

statistics can be seen from (2.13), while to show the asymptotic equivalence of 

the score and likelihood ratio test statistics we make use of (2.13) and (2.10). 

Substituting the right hand side of (2.10) into the right hand side of (2.13) we 

obtain WL =  U (0o)TI-1(0o)tJ(0o) +  Op{n~V2) = Ws  +  Op(n~ll2). For large 

samples, therefore, all three tests should provide similar results. For small and 

medium sized samples, however, the methods can differ (Cox and Hinkley, 1974, 

Section 9.3). Likelihood ratio tests and score tests are invariant under parameter 

transformation, while Wald tests do not possess this appealing property (Rot­

nitzky and Jewell, 1990). For a more extensive comparison of the three tests see 

Buse (1982).
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2.4 Parameter estimation

Having reviewed the general topic of likelihood inference in the previous section, 

we now focus on the more specific case of parameter estimation for GLMs. When 

fitting a GLM, two quantities must be estimated, these being the regression pa­

rameter vector (3 and the dispersion parameter <j> (assuming it is unknown). In 

this section, the estimation of each of these is considered in turn.

2.4.1 Estim ation of the regression parameters

The parameter vector f3, consisting of p elements, can be estimated by the method 

of maximum likelihood. The log-likelihood function for n  independent responses 

Yi, of the form (2.2), is given by

+ c ( y ^ ) .  (2.14)

To maximize this log-likelihood function with respect to /3, the p  score equations 

U(/3) =  dt/d(3 =  0 are solved for (3, where the j  th element of the score vector is 

given by

9 1  -  U  -  V  (j/i ~  w ) X i * ( 7 - 1  V  fo  15)
w  ’ ~ h  var« )  U J ’ (2-15)

The derivation of (2.15) involves the application of the chain rule dii/dfij =

(idii/dOi) (d9i/dfj,i)(dfj,i/dr}i)(dr]i/dl3j), see McCullagh and Nelder (1989, Chapter 

2). In matrix notation the p score equations are given by

U(/3) =  X r D (/3)E-1 (/3)S(/3) =  0, (2.16)

where D(/3) is an n  x n diagonal matrix with elements (dp i /dp i , . . .  ,dp,n/drjn), 

E(/3) is an n x n  diagonal variance-covariance matrix for Y  with elements (var(yi),

. . . ,  var(Yn)} and S(/3) is an n x l  vector with elements {yi — /xi(/3), . . . , y n — pn{P)} 

These score equations, consisting of p simultaneous equations in p unknowns, are 

often non-linear and thus a numerical technique is usually adopted to solve them.
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The most commonly used technique is known as the method of scoring, which 

is a modification of the Newton-Raphson method, where the matrix of second 

derivatives are replaced by their expected value. The (t +  l) th  iteration of the 

method of scoring is given by

/9<t+1> =  /3(t) +  [i (,3(t)) p  U  ( 3 (t))  , (2.17)

where I(/3) denotes the Fisher information matrix given by

d V (0 )
1(0) = cov [CJ09>] =  E [U(j8 )U (^ )r ] =  - E

d p

and W  is an n x n diagonal matrix whose ith  diagonal element is

=  X J W X , (2.18)

“ var(Fj) [ d r ) J  ■

( t )P=Mi .

Equation (2.17) can be re-expressed in iterative weighted least squares (IWLS) 

form

(X TW (t)X ) p (t+1) = X r W (t)z(t), (2.19)

where and z^  are evaluated at j3 ^ \ and zW is an n x 1 vector with ith 

element

2*w =  ^ ) +  p - ^ )) ( §
For details of expressing (2.17) in IWLS form see McCullagh and Nelder (1989, 

Chapter 2).

The fitting process is iterative as both Wa and Z{ depend on the current fitted 

value //*, which in turn depends on the current estimate of /3 through the link 

function g(fii) =  rfr. Therefore, to obtain /3 we begin by calculating and

z(°\ using an initial estimate j3^°\ and are then substituted into (2.19),
~ ( i )which is solved for (3 . This new estimate of /3 is then used to obtain new

* (2)estimates and z ^ ,  which in turn are used in (2.19) to solve for $  . This 

iterative procedure continues until the successive estimates j3^  and +  ̂ agree 

to within a specified tolerance.
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As the appropriate regularity conditions stated in Section 2.3.1 are satisfied

normal distribution with mean equal to the true parameter value /3 and variance- 

covariance matrix given by I -1(/3). Thus,

2.4.2 Estim ation of the dispersion parameter

The dispersion parameter <j> remains constant across observations and must be 

estimated when unknown. The following method of moments estimator provides 

a consistent estimate of 0 (Fahrmeir and Tutz, 2001, p. 47)

The above estimator is generally advocated, in favour of its maximum likeli­

hood (ML) counterpart, as it is considered more robust. For example, for gamma 

response variables, if a zero observation is recorded, the ML approach does not 

yield an estimate of </> (McCullagh and Nelder, 1989, p. 295-296).

By inspecting (2.15) we see that 0 only enters into the score equations via 

var(F), and therefore <j> does not affect the estimation of j3. The covariance of P 

is a function of 0, however, but provided </> is replaced by the consistent estimate 

0, then the asymptotic result (2.20) remains valid for ft.

For GLMs, hypothesis testing is usually undertaken via one of the three general 

tests outlined in Section 2.3.2, these being the likelihood ratio, Wald and score

for GLMs, from (2.11) we obtain the result that j3 has an asymptotic multivariate

where the matrix l(/3) can be consistently estimated by I(j3).

(2 .20)

(2 .21)

2.5 Hypothesis testing
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tests. Within this section we outline the specific form these tests take for GLMs.

For the remainder of this section, assume that the parameter vector p  is 

partitioned into two subvectors, such that PT =  ( P i , @2) 1 where P x and P2 have 

Pi  and P2 elements respectively. The null hypothesis is of the form

Ho : P2 = P i  (2.22)

where P2 denotes a specific value of P2.

2.5.1 Likelihood ratio test

The likelihood ratio test, also known as a scaled deviance test within the GLM 

context, is given by

Wt = - 2  [ * ( & , # ) - / ( / & ) ] ,  (2.23)

where P x is the restricted mle of p x under H0, and P  is the unrestricted mle of 

P. It can be shown, using arguments similar to those used in Section 2.3.2, that 

W l  has in large samples an approximate x 2 distribution with P2 d.f., under Ho 

(Cox and Hinkley, 1974, p. 321-323). Thus, H0 is rejected at significance level a  

if W l  >  Xp2,a> where Xp2,<* the uPPer 100a% point of a x 2 distribution with p2 

d.f.

If the dispersion parameter (j> is unknown and has to be estimated, it is

common to eliminate it from the calculated test statistic by replacing the above

X2 test with an F-test (Venables and Ripley, 1994). This corresponds to the 

conventional F -test for model comparison in normal theory linear models.

2.5.2 Wald test

The Wald statistic is given by

Wt = 02 -  Pl)T [Cb(0)] _1 02 -  $ ) ,
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where C(/3) =  I -1(/3), and C 22(0) is the p2 XP2 submatrix of C(0)  corresponding 

to 0 2. ft can be shown, using arguments similar to those used in Section 2.3.2, 

that Wt  has in large samples an approximate x2 distribution with p2 under 

H0. Thus, H0 is rejected at significance level a  if Wt  > Xp2,Q> where Xp2>Q is the 

upper 100o:% point of a x 2 distribution with p2 d.f.

When the null hypothesis (2.22) takes the specific form H0 : 0 2 =  0, the 

Wald statistic of (2.24) simplifies to Wt  =  02 C 22(^)j 0 2.

2.5.3 Score test

The score test statistic is given by

Ws =  U  (,31i/3“) T - 1 ( K f i i )  U  ( fa ,  01) , (2.25)

where 0 X is the restricted mle of 0 X under Ho. It can be shown, using arguments 

similar to those used in Section 2.3.2, that Ws  has in large samples an approxi­

mate x2 distribution with p2 d.f., under H0. Thus, Ho is rejected at significance 

level a  if Ws > Xp2,Q> where Xp2>Q is tire upper 100a% point of a x2 distribution 

with p2 d.f.

When the null hypothesis (2.22) takes the specific form Hq : 0 2 =  0, the 

score test statistic of (2.25) simplifies to Ws = U 22(j31)TI22(j31)U 22(j3i), where 

U 22& 1) is the P2 x 1 subvector of U ^ i )  and l 22 (^ i) is the p2 x p2 submatrix of

I -1(/&i), both corresponding to 0 2.

The score test has a computational advantage over both the Wald and like­

lihood ratio test, since only the restricted model needs to be fitted. In turn, the 

Wald test has a computational advantage over the likelihood ratio test in that 

while the likelihood ratio test requires both the restricted and unrestricted models 

to be fitted, the Wald test only requires the fitting of the unrestricted model.
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2.6 Analysis of residuals

An examination of the model residuals can provide a valuable insight into how 

well specific aspects of the model are performing. For GLMs there are several 

different types of residual that are commonly used. For example, the Pearson 

residual for observation ^  is defined as

(P) _  Vi — fit /2 26')

which can be viewed as a standardised residual since the raw residual is divided 

through by the square root of the variance function. If the fitted model is correct 

then the Pearson residuals follow distributions with mean 0 and variance </). In 

later chapters, we see how Pearson residuals play a central role in estimating 

the correlation in the Y-s , when the restrictive assumption of independent Y(s is 

relaxed.

Other types of residual frequently used for GLMs include Anscombe and 

deviance residuals. For a detailed account of residuals in GLMs, see Pierce and 

Schafer (1986).

2.7 Extensions

Two specific ways in which the univariate GLM theory can be extended to a wider 

class of response data are examined in this section. In Section 2.7.1 we consider 

how GLMs can be fitted for distributions close in form to the exponential family, 

such as the Weibull distribution. This material will be used in Chapter 6 when 

a Weibull GLM is applied to model a climate data set. Then, in Section 2.7.2 

we consider how the GLM theory can provide an estimation technique when only 

the first two moments of Y  are specified. This technique is developed further in 

Chapter 3, when generalized estimating equations are used to model dependent 

response data.
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2.7.1 Distributions close to exponential family form

The GLM fitting routine can be extended to accommodate some distributions 

which are not members of the exponential family, as defined by (2.2), but are 

close in form. More specifically, if the distribution of the response Y  is not of

form, then the GLM algorithm can be extended for Y ,  where r  is a known mono-

forth between fitting a GLM to V  for fixed a ,  and estimating a  given the fitted 

values for V . For example, consider the Weibull distribution, with pdf given by

it can be seen that the Weibull density can not be expressed in the standard 

exponential family form of (2.2). However, for fixed shape parameter a, the

exponential distribution. Thus, a GLM can be fitted to Weibull response data 

via the fitting routine for the exponential distribution, with an extra iteration 

level added for the estimation of a.

Under the iterative scheme outlined above, the natural way to fit the Weibull 

model is as follows:

1. Fix a  to an initial value. One possible choice would be a  =  1, corresponding

to an exponential distribution.

exponential family form, but the distribution of V  =  r(Y;ot)  is of the required

tonic function and a  is a parameter vector. The basic idea is to iterate back and

/(y ;A ,a )  = j V a *exp , 0 < y < oo, A, o: > 0, (2.27)

where

and Var(K) =  \ 2' a T ( l  +  ^ )  -  T2 ( l  +  i )

Rewriting (2.27) in the form

yf ( y ; A, a) = exp log a  +  (a -  1) logy -  log A -  —

density of V  — Y a is in standard exponential family form, since V  follows an
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2. W ith a  fixed, estimate the parameter vector /3 via the fitting of an exponen­

tial GLM for the transformed response variable V  =  Y Q. The exponential 

model takes the form

log A =  »7,

where E(V) =  A.

3. Re-estimate a  using the method of maximum likelihood, by solving the 

equation
d£ n 1 Q
fc  = 5 + I > » - * * l o M i  = 0

i=1

numerically, where the Aj’s are the exponential fitted values from step 2.

4. Repeat steps 2-3 until successive estimates of a  converge to the specified 

tolerance.

An alternative implementation of the Weibull model is given by Aitkin and 

Clayton (1980), who consider the modelling of censored survival data. They im­

plement the Weibull model by fitting a series of Poisson log-linear models to the 

censoring indicator, for fixed shape parameter a. The algorithm oscillates be­

tween the fitting of a Poisson model and the estimation of the shape parameter 

until convergence is achieved. The presentation of their approach for Weibull re­

sponse data, is standard within the GLM literature, as the Weibull distribution is 

usually presented within a survival analysis context. However, while Aitkin and 

Clayton’s method can still be implemented for non-survival data, the method 

detailed above has the advantage that it eliminates the redundant censoring in­

dicator.

2.7.2 Quasi-likelihood

Wedderburn (1974) identified that the GLM score equations given in (2.16) only 

depend on the first two moments of Y . Therefore, in situations where it is not
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possible to specify the full distribution of Y , but it is reasonable to specify the 

first two moments, the GLM score equations can be used as a set of estimating 

equations to obtain an estimate of the regression parameters /3. Any relationship 

between the mean and variance of Y  can be assumed, with the choice no longer 

being restricted to correspond to a specific distribution. This method is known 

as quasi-likelihood estimation, because integrating the score equations with re­

spect to (3 does not necessarily produce a true log-likelihood function, instead it 

corresponds to what Wedderburn (1974) called a ‘quasi-likelihood’.

The implementation of quasi-likelihood estimation proceeds along similar 

lines to that of univariate GLMs. The individual elements of the response vector 

Y  are assumed independent given the covariates in the model, and the mean and 

variance of Y  are specified as E(Y) =  /x and var(Y) =  0u(/x). For the regres­

sion equation g(fi) =  X/3, the GLM score equations (2.16), referred to as the 

quasi-score equations, are solved for j3 using (2.19). McCullagh (1983) proved 

that the quasi-likelihood estimate of (3 follows an asymptotic multivariate normal 

distribution with mean equal to the true parameter value /3 and variance given 

by the inverse of (2.18). Hypothesis testing for quasi-likelihood estimates can be 

undertaken via Wald and quasi-score tests.

Quasi-likelihood estimation provides a simple method of accounting for overdis­

persion in count data. The natural choice of distribution for the modelling of 

count data is the Poisson, which possesses the property E(Y) =  var(Y) =  /x. 

Many data sets, however, exhibit greater variability than that permitted by the 

Poisson distribution, and for these situations quasi-likelihood estimation can be 

implemented with E(Y) =  /x and var(Y) =  0/x. The inclusion of the additional 

dispersion parameter <j>, enables the variance to be inflated by an appropriate 

factor. The quasi-likelihood estimate obtained for /3 is identical to that obtained 

under the Poisson GLM, while the standard errors of /3 are inflated by the factor 

V?. This theory is implemented in Section 3.1.6 when a longitudinal data set is
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analysed.

2.8 Summary

Within this chapter we have introduced univariate generalized linear models for 

independent response data, since they provide a suitable starting point for the 

more complicated dependent data case, which is the subject of the remainder of 

this thesis. A discussion of standard likelihood theory has been undertaken, as 

it plays a prominent role in subsequent chapters. Hypothesis testing theory has 

also been reviewed, since this provides the foundation for the work undertaken in 

Chapter 4 on hypothesis testing for cluster correlated data. Finally, in Section 2.7, 

two ways in which the univariate GLM theory can be extended were outlined. 

This provides a preview of some extensions of the basic GLM theory that will be 

presented in later chapters. In particular, the ideas of quasi-likelihood estimation 

are extended further in Chapter 3 to account for dependent data.
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Chapter 3

Generalized linear models for 

cluster correlated data

The term ‘cluster correlated data’ refers to data with multiple observations on 

the same sampling unit or cluster. A key feature of such data is that observations 

taken from the same cluster are correlated. An example is provided by a longi­

tudinal study (Diggle et al., 2002) which involves a set of individuals, on each of 

whom a response variable and set of covariates are measured on several occasions 

over time. Responses for different individuals are assumed independent, whereas 

responses measured on the same individual are correlated. Thus, each individual 

forms a cluster of correlated measurements. Clustered data arise naturally in 

many other settings, such as in family studies and dentistry.

Regression analysis for cluster correlated data is complicated by the correla­

tion present within cluster. The direct application of the theory of Chapter 2 is 

inappropriate, as it assumes that all responses are independent given the covari­

ates. Cluster correlated data therefore necessitate an extension of the univariate 

GLM theory to account for dependent responses and, in recent years, a wide 

range of techniques have been developed. In this chapter we explore some of
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these techniques. Section 3.1 is dedicated solely to generalized estimating equa­

tions, as they form the basis for many of the techniques covered in subsequent 

chapters. Section 3.2 then outlines some extensions of the GEE methodology, 

along with the alternative technique of generalized linear mixed models.

3.1 Generalized estimating equations

3.1.1 Introduction

Generalized estimating equations (GEEs) were originally proposed by Liang and 

Zeger (1986), Zeger and Liang (1986) as an extension of GLMs to longitudinal 

data. More recently, the generality of the GEE methodology has led to them 

being applied to many more situations in which the responses fall naturally into 

clusters. Within the GEE framework, responses within clusters are assumed to 

be correlated, while those from different clusters are considered independent after 

allowing for the covariates. GEEs are designed for situations in which the primary 

research interest lies in the dependence of the response variable on the covariates, 

with the association between responses being regarded as a nuisance.

A natural way to account for within cluster dependence is to fit a multivariate 

distribution to each cluster. In general, however, this approach is impractical for 

non-normal responses due to the lack of availability of appropriate multivariate 

distributions (Fitzmaurice, 1995). Liang and Zeger (1986) avoid this problem by 

not specifying a multivariate density for each cluster, but specifying instead the 

marginal distribution for each response, along with a working covariance structure 

for the responses within the same cluster, to allow for the dependence. In Liang 

and Zeger’s (1986) original presentation the marginal distribution of the response 

variable was assumed to belong to the exponential family of distributions (see 

Section 2.2). However, in the spirit of quasi-likelihood (see Section 2.7.2), the
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specification of a marginal distribution for the response variable may be relaxed, 

such that only a functional relationship between the marginal mean and variance 

is specified.

We now formalise the GEE methodology. Let Y* =  (Y n , . . .  ,Y imi)T be a 

response vector of random variables for the ith  cluster, where i =  1 , . . . ,  k. In 

general, the cluster size m* may vary by cluster, however to simplify presentation 

we assume that the cluster size m  is the same for all clusters. Thus, Y * =  

(Yii,. . . ,  Yim)T , and the total number of responses is n  =  k x m. Corresponding 

to each response are the values =  (a;*ji,. . . ,  Xijp)T of p covariates, where 

Xiji is set to 1 to allow for an intercept. Thus, for each cluster there is an m  x p 

matrix of covariates X* =  (xji , . . .  ,Xjm)T, where each covariate can either vary 

or remain fixed within cluster.

As with GLMs, the response variable is related to the covariates through the 

relationship

9 ( f a j )  =  Vij 5

where

E(K,_,) =  tnj, rjij = xjjfi,

P  is a p x 1 vector of regression coefficients and g(-) is a monotonic and differen­

tiable link function. The variance of Y^ depends on the mean of Y^ as follows

var(YSj) =  (/wifaj),

where v(pij) and <j> denote the variance function and the dispersion parameter, 

respectively. In addition to specifying the marginal mean and variance structure, 

the within cluster dependence structure is also specified. The covariance between 

Yij and Y^, within cluster i , is assumed to depend on their fitted means and an 

association parameter vector a , such that for a known function r

cov(Yij, Yik) =  r(/Xij, pik, a ) . (3.1)
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GEEs can be thought of as a multivariate extension of the quasi-likelihood tech­

nique introduced in Section 2.7.2. They amend the GLM score equations to 

incorporate the above information regarding the first two moments of the re­

sponse, including the within cluster covariance structure defined in (3.1). A key 

feature of GEEs is that the within cluster covariance structure given in (3.1), and 

assumed during the estimation process, is only a working assumption which may 

not necessarily correspond to the true covariance structure. For this reason the 

covariance structure assumed during the fitting process is known as the ‘work­

ing covariance structure’. In Section 3.1.2 we introduce independence estimating 

equations, which are the simplest example of a GEE, as an independence work­

ing covariance assumption is used. Then in Section 3.1.3 we outline the more 

general class of GEEs where non-independent working covariance structures are 

permitted.

3.1.2 Independence estim ating equations

Independence estimating equations (IEEs) use the GLM score equations (as given 

by (2.16) in Section 2.4.1) as a set of estimating equations for estimating the 

regression parameter vector /3. To emphasis the clustered nature of the data, the 

GLM score equations are re-expressed such that all matrices are redimensioned to 

the size of each cluster and a sum is formed over the k (conditionally independent) 

clusters. Thus,

U f 03) =  £  X j D t(/3)'E~1(l3)St(l3) = 0, (3.2)
t=l

where X* is a m x p  design matrix, D*(/3) is a m x m  diagonal matrix with elements 

(dfiii/drjn, . . . ,  dfiim/driim), S  j(/3) is a m x  m  diagonal variance-covariance ma­

trix of the responses with elements (var(Yii),. . . ,  var(Y*m)} and Sj(/3) is a m  x 1 

residual vector with elements {yn — Hn{(3) , . . . ,  Vim — V>im{0)}T- Notice that a 

subscript q has been introduced for the vector U(/3) to emphasis that a multi­

variate distribution has not been specified for Y * and thus U g(/3) represents what
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is termed a ‘quasi-score’ vector.

For GLMs, the n  independent responses are assumed to follow a specific 

distribution from the exponential family and thus the matrices S*(/3) are diagonal 

and assumed to correspond to the ‘true’ covariance of Y*, which we denote by 

cov(Yj). For cluster correlated data the true covariance matrix cov(Yj), will be 

non-diagonal, reflecting the within cluster dependence. For IEEs, however, the 

assumption that E*(/3) is diagonal is maintained, but it is recognised that in 

general Sj(/3) ^  cov(Yj), and thus S i((3) is now labelled a working covariance 

matrix.

The IEEs estimate of the true parameter vector /3, denoted by is obtained 

by solving (3.2) for /3. Liang and Zeger (1986) showed that under appropriate 

regularity conditions j3j is consistent and asymptotically normal

P i  ~  N (p ,  F -1(/3)V(/3)F-1 (/3)), (3.3)

where

F(/3) =  —E[U ; 0 ) ]  =  (3.4)
i=l

and
k

V(/3) =  cov[U,(0)] =  £  X fD ,( /3 )S -1(/3)cov(Y ,)Sr1(/3)D.(/3)X,. (3.5)
*=1

The regularity conditions necessary for this result to hold are similar to those 

stated in Section 2.3.1 for the asymptotic normality of the mle, with additional 

conditions placed on the cluster size.

To see why E (^ z) =  (3 and cov(y&7) =  F -1(/3)V(/3)F-1(/3) we follow a similar 

argument to that used in Section 2.3.1 for the derivation of the asymptotic dis­

tribution of the mle. A first order Taylor series approximation of U g(/3Z) about 

the true parameter /3 is given by

u , (& ) =  U,(/3) +  V'qm 0 ,  - 0 ) +  0 ,(1 ).
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Using U q(/3j) =  0, replacing U 'q((3) by its expected value and rearranging we 

obtain

0 1 - 0 =  { -E [u ;(jS )]}_1 U,(/3) +  0 „ (k -1). (3.6)

Thus, E(j3r) =  f3 since E[Ug(/3)] =  0, and

COV&) =  { -E IU ',^ ) ]} -1 cov [U,(/3)l { -E [u ;(/3 )]}_1. (3.7)

Referring to Section 2.3 on likelihood inference, for a univariate GLM we have 

-E [U '(/J)] =  cov[U(/3)] and thus the right hand side of (3.7) reduces to {—E[U'(/3)]} 

For IEEs, however, since in general Ei(fl) /  cov(Y*) this simplification does not 

arise and thus c o v 0 f ) =  F -1 (/3)V(/3)F-1(/3).

The covariance matrix F -1(/3)V(/3)F-1(/3) can be consistently estimated by

TUfli) =  F _10 / )  V  (^ 7)F -1 ( fij) , (3.8)

where the term cov(Yj) in V(/3) is replaced by SjSf. The matrix T£(/37) is 

known as the robust variance estimator of cov()3/), since it provides a consistent 

estimator of c o v 0 7) even when the covariance structure has been misspecified. 

Another name frequently used for (3.8) is the sandwich estimator due to the 

matrix V ^ j )  being sandwiched between the matrix F -1 (/07). If the elements 

of Y i really are independent and E i(/3) =  cov(Yj), the expression for c o v 0 7) 

reduces to F -1 (/3). For this reason, when the matrix

V  0 3 , ) = F - l 03,) (3.9)

is used to estimate cov(/§7), it is known as the naive variance estimator, as its 

use naively assumes that the responses are independent.

If the marginal distribution of Y{j belongs to the exponential family of distri­

butions then f)j corresponds to the mle /3 for a univariate GLM. For this reason, 

IEEs can be viewed as a post-estimation adjustment for dependence, as we es­

sentially fit a univariate GLM and then adjust the subsequent precision of the 

estimates to account for the dependence.



3.1.3 Generalized estim ating equations

IEEs are a specific example of GEEs, where the working covariance matrix for 

cluster i , Ej(/3), is assumed to be diagonal. In general, however, GEEs take 

the GLM score equations of (3.2) and replace the diagonal matrix S*(/3) with 

a non-diagonal working covariance matrix. Again, in general S*((3) /  cov(Yj) 

since E*(/3) is only a working covariance assumption which is usually adopted for 

convenience.

The working covariance matrix Ej(/3, a )  is expressed as follows 

S i( ^ 1a )  =  A,1/20 )R (a )A ,1/2(/9),

where R (a )  i s a m x m  working correlation matrix and A  j(/3) is a m  x m  diagonal 

matrix with elements (var(l^ i),. . . ,  var(ytm)}. The working correlation matrix 

R (a )  is determined by an s x 1 vector of association parameters a ,  which is 

estimated during the fitting process from the Pearson residuals (see Section 3.1.4 

below). Various structures can be placed on a ,  some of which will be discussed 

in Section 3.1.4.

The GEE estimate of (3, denoted by @G, is obtained by solving (3.2) for /3, 

where E*(/3) may be non-diagonal. Liang and Zeger (1986) showed that under 

appropriate regularity conditions and provided that <f> and a  are replaced by 

&1/2 consistent estimates then (3G is consistent (with respect to k , the number of 

clusters) and follows an asymptotic normal distribution

0a ~  N (£>F-1 (/3)V(/3)F-1 (£)), (3.10)

where F(/3) and V(/3) are given by (3.4) and (3.5), and the matrix Ej(/3) may be 

non-diagonal. The matrix cov(/3G) can be consistently estimated by the robust 

variance estimator given in (3.8) where j3j is replaced by f3G. Use of the naive 

variance estimate Af ( 0 G) =  F _1()&G) implicitly assumes the cov(Yj) has been 

modelled correctly.
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The regularity conditions which must be met for (3.10) to hold are similar 

to those for IEEs, with additional conditions placed on the working covariance 

structure.

According to Liang and Zeger (1986), one of the appealing properties of GEEs 

is that provided the mean of Y{j is correctly specified then consistent estimates 

of p G and cov(/3g ) are obtained, even if the working covariance matrix has been 

misspecified. In contrast, Crowder (1995) showed that for some simple cases 

of misspecification of a ,  the above consistency properties breakdown, due to 

problems with the estimation of a .

One further point regarding the estimation of the covariance of j3G is worth 

highlighting. Liang and Zeger (1986) proposed estimating the cov(Y*) term 

within the robust variance estimator by S jS f, which is based on data from cluster 

i only. Pan (2001b) suggests a more efficient estimator of the term cov(Y»), which 

pools information from across the k clusters. Use of this estimator, however, re­

quires the additional assumptions that the marginal variance of the response has 

been modelled correctly and that there is a common correlation structure across 

clusters.

3.1.4 Param eter estim ation

Three quantities need to be estimated during the fitting process, these being the 

parameter vector /3, the association vector a  and the dispersion parameter (j>. 

The estimation process, as detailed by Liang and Zeger (1986), involves iterating 

back and forth between estimating the parameter vector (3 and estimating the 

pair a. and 0. To begin with, all quantities are initialized to some plausible values, 

for example, 0 could be set to 1 and R (a )  the identity matrix. Using these initial 

values, the set of non-linear quasi-score equations (3.2), are solved iteratively for
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/3, using the following modified Fisher scoring method

0G+1) = 0G +  [ f  (do ) ] u ,  (d o )  , (3.11)

where t denotes the tth  iteration. Once convergence is reached in j3G, a function of 

the current Pearson residuals (as described below) is used to obtain new method 

of moments estimates of a  and <j>. These new estimates are then used in (3.11) 

to obtain a new estimate of /3, which in turn is used to obtain updated Pearson 

residuals for re-estimating a  and <j>. This oscillating between /3, and the pair a  

and 4> continues until successive estimates of all parameters agree to a specified 

tolerance.

Estimation of the dispersion parameter and association parameters

Liang and Zeger (1986) proposed estimating the dispersion parameter <j> and 

association vector a  by the method of moments. The parameters are estimated, 

at each iteration, from the current Pearson residuals

*  -  ( 3 -1 2 )

where i =  1 , . . . ,  k and j  = 1 , . . . ,  m. Given the set of n (=  m k ) Pearson residuals, 

the dispersion parameter (j) is estimated by

1 k m  

i—1 j =1

The exact method of estimation of a  is determined by the specific structure used. 

Some common structures are outlined below.

1. Independence - letting R (a )  =  I, where I  denotes the identity matrix, 

the working assumption that responses within a cluster are uncorrelated 

is adopted, corresponding to IEEs. In this case there are no correlation 

parameters to estimate.
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2. Exchangeable - assumes that the pairwise correlation is constant for all 

pairs of observations within the cluster, corr(Y^, Yu) =  a, j  ^  1. Only a 

single correlation parameter a  needs to be estimated (s =  1), and this can 

be achieved by

i *
ot =       y  y  rurij. (3.13)

<j>{[^km(m-  1)] - p }  j r l  t>j

3. AR(1) - an autoregressive structure of order one is commonly placed on a  

within a longitudinal setting, c o r r^ j ,  Yu) = Again, only a single

parameter a  needs to be estimated (s =  1),

1 k m — 1
a  =  -s--------------------------y  y  fijfij+i. (3-14)

4. Unstructured - a  is left completely unspecified and each of the pairwise

correlations are estimated separately, c o r r^ j ,  Yu) =  aji , j  ^  /. Under

this structure, a  is a vector with s =  |m (m  — 1) elements, which can be 

estimated by

(3-15)
~  p )

An alternative approach for the estimation of a  involves supplementing the 

set of estimating equations for (3 with an additional set for a . This approach is 

discussed further in Section 3.2.1

There has been considerable debate concerning the relative merits of GEEs 

with a non-diagonal working covariance structure, compared to their IEEs coun­

terparts. Liang and Zeger (1986) stated that increased efficiency results from 

using a non-diagonal structure which is as close as possible to the true covariance 

structure. Also, Fitzmaurice (1995) showed that use of IEEs can result in con­

siderable loss of efficiency when covariates which vary within cluster are present 

and the correlation between responses is high. However, McDonald (1993) and 

Sutradhar and Das (1999) both highlight benefits of adopting an IEEs approach.
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An additional advantage of IEEs, which is particularly important for large data 

sets, is that they are computationally more efficient to implement.

3.1.5 H ypothesis testing

Within this section we consider hypothesis testing for the regression parame­

ters of GEEs. The tests outlined here are extensions of those tests detailed 

in Section 2.5 for GLMs, with appropriate adjustments for the within cluster 

dependence. Throughout this section we consider testing the null hypothesis 

Ho : 0 2 = (32, where /3T =  and 0 2 denotes a specific value of 0 2. The

dimensions of and (32 are p\ and p2 > respectively.

Robust Wald test

By the asymptotic normality of @G given in (3.10), the robust Wald statistic

W r = 0G2 ~ 0 i ) T [k 2 2 0 g)\ _1 0G2 -  $ )■  (3-16)

follows an asymptotic Xp2 distribution under H0, where 7 ^ 2 {Pg) the P2 x P2

submatrix of the robust variance matrix (3.8) corresponding to P2.

Robust Wald tests are by far the most commonly used method of hypothesis

testing for GEEs. This is largely due to convenience, as robust standard errors 

are routinely available from standard software packages.

Quasi-score test

The quasi-score vector defined in (3.2) is asymptotically distributed as

U ?(/3) ~  /V(0, V(/?)), (3.17)
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where V(/3) is given by (3.5). Result (3.17) follows from a similar argument to 

that used in Section 2.3.1 for the asymptotic distribution of the score vector. 

Under H0, it follows that the quasi-score test statistic

Ws  =  U , [pci,l32]T V - 1 [/3G1,/3“] U , [/3G1,# j]  (3.18)

follows an asymptotic Xp2 distribution, where /3Gl is the restricted GEE estimate 

of under Hq. The term cov(Yj) in V(/3) must be estimated and as in (3.8) 

this can be achieved using S*Sf, under H0.

L ikelihood ra tio  te s t

While extending the Wald and score tests of Section 2.5, such that they are 

appropriate for GEEs, is fairly straightforward, unfortunately this is not the case 

for the likelihood ratio test. The reason for this is that while the Wald and score 

tests involve only first and second moments of Y , the likelihood ratio test depends 

on full distributional properties and since GEEs do not assume a specific form 

for the multivariate distribution of Y* we do not have a likelihood function.

Assuming the marginal distribution of Yij belongs to the exponential family, 

Rotnitzky and Jewell (1990) derived the asymptotic distribution of the ‘indepen­

dence’ likelihood ratio test statistic when applied to clustered data. This test 

statistic is constructed under the assumption that all responses are independent 

and Rotnitzky and Jewell (1990) derive its asymptotic distribution using proper­

ties of quadratic forms of non-normal random variables (see Johnson and Kotz, 

1970, p.150). They propose using this theory as a basis for testing H0, essentially 

by calculating the ‘independence’ likelihood ratio test statistic and adjusting the 

critical value of the test to allow for the within cluster dependence.

More formally, under Ho, the ‘independence’ likelihood ratio statistic is given

by

WL = - 2  3°) -  I 0 t ) ]  , (3.19)
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where £{Pn->P%) and £{Pr) are the restricted and unrestricted independence log- 

likelihood functions, respectively. Rotnitzky and Jewell (1990) show that, under 

H0 and for clustered data, asymptotically,
P 2

WL = Y JdiX i , (3.20)
1 = 1

where Xi, i =  1, . . .  ,p2, are independent x t  random variables and d{ are the eigen- 

values of (F ^ V F -1)^ [(F -1)22]-1 . The matrices (F -1V F -1)22 and ( F - %  are 

the p2 x p 2 submatrices of F -1V F _1 and F-1 corresponding to P2, and calculated 

under a working independence assumption. The matrix (F-1 VF' - 1)22 [(F -1) 22] 

can be consistently estimated by 7L22{Pi) A / 2 2 0 ^ / ) ]  > where 7 ^ 2{Pi) and Jsf2 2 {Pi)
are the p2 x p 2 submatrices of the robust and naive variance estimates correspond­

ing to p 2, and calculated under a working independence assumption.

If the data really are independent then F =  V  and hence we arrive back at 

the usual chi-squared distribution with p2 d.f., since (F_1V F _1)22 [(F—1)22]—1 is 

the identity matrix whose eigenvalues are all 1.

In the simple case where a single parameter is being tested, the above theory 

simplifies such that W ^jd  follows a chi-squared distribution with 1 d.f., where d 

is the ratio of the robust to naive variance estimates for the parameter of interest. 

When more than one parameter is being tested, the asymptotic distribution of 

Wl follows a linear combination of x l  random variables, which in practice must 

be approximated. Rotnitzky and Jewell (1990) suggest adjusting the test statistic 

and treating W i/d  as a x 2 random variable with p2 d.f., where d =  X)i=i ^i/P 2 * 

An improved approximation can be obtained, as detailed in Bowman and Azzalini 

(1997, p. 86-88), by using results on quadratic forms of normal random variables. 

This method involves approximating the distribution of W l by a shifted and 

scaled chi-squared distribution of the form axl  +  c5 where the constants a, b and 

c are found by matching the moments of a axl  +  c distribution with those of W l -  

Thus, the adjusted test statistic {Wl — c)/a  is treated as a x 2 random variable 

with b d.f.
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Using a similar argument to that used for the ‘independence’ likelihood ratio 

test, Rotnitzky and Jewell (1990) present what they term ‘working’ Wald and 

score tests. The ‘working’ Wald test replaces the robust variance estimate in 

(3.16) with the naive variance estimate J\f 22(Pg)i while the ‘working’ score test 

replaces the matrix V -1 in (3.18) with the naive variance estimate. Rotnitzky 

and Jewell (1990) show that, like the ‘independence’ likelihood ratio statistic, 

these test statistics follow a linear combination of x j  distributions. Thus, these 

working tests have a more complicated asymptotic distribution than their robust 

counterparts. However, they have the advantage that they remove the need to 

estimate the term cov(Yj) in V  which involves the estimation of \m (m  — 1) 

values. Rotnitzky and Jewell (1990) advocate the use of these tests when there 

are a small number of clusters and cluster sizes are large, since the estimation of 

cov(Yj) can become unstable in this setting. Unlike the ‘independence’ likelihood 

ratio test, these tests may be used for all GEEs and not just IEEs.

3.1.6 Longitudinal example

We now analyse a small longitudinal data set using both a univariate GLM anal­

ysis and a GEE analysis to gain an insight into how the estimates from these 

two approaches differ. The data set has been taken from Thall and Vail (1990) 

and the presentation of results is similar to Pickles (1998). The data relate to an 

epilepsy trial, where for each of 59 patients, the number of seizures experienced 

within a two week period was recorded for four successive periods. The purpose 

of the study was to see if a drug called Progabide was effective in reducing the 

number of seizures experienced. Each patient was assigned to either a placebo 

(treatment=0) or Progabide (treatm ent=l), and the covariates of baseline mea­

surement and age were controlled in the study.

This data set has been presented on numerous occasions within the GEE 

literature, for example, by Pickles (1998) and Hardin and Hilbe (2002). A Poisson
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distribution is assumed for the marginal distribution of the response variable, and 

it is argued that a GEE analysis is necessary to allow for the dependence within 

individual, which arises as a result of four successive measurements being taken. 

An alternative and more parsimonious analysis would involve modelling the totals 

for each subject directly, with some allowance for overdispersion. For illustrative 

purposes, however, we follow the approach adopted by other authors.

We now proceed to fit various models to this data set using S-Plus (Venables 

and Ripley, 1994). The results from fitting a Poisson GLM, overdispersed-Poisson 

quasi-model (see Section 2.7.2) and Poisson IEE are given in Table 3.1. The 

coefficient estimates under the three different approaches are the same, whereas 

the standard errors differ. The standard errors for the GLM are labelled ‘naive’ as 

they do not allow for the within subject correlation. The standard errors for the 

overdispersed model are labelled ‘quasi’ and allow for the dependence by scaling 

the naive standard errors by the constant factor 0 1/2, where (j> =  5.1 (which is 

substantially bigger than the value 1 for Poisson data). Finally, the IEE standard 

errors are labelled ‘robust’, which allow for the dependence via the robust variance 

matrix. Ignoring the dependence and using naive standard errors for inference, 

leads us incorrectly to conclude that the treatment effect is significant at the 

5% level. Once the dependence is accounted for via robust standard errors, the 

treatment effect becomes insignificant at the 5% level.

Table 3.2 shows the results of fitting three different GEEs to the data set, 

where the three separate sets of results correspond to three common working 

correlation structures: exchangeable, AR(1) and unstructured. The regression 

estimates and standard errors from the three separate fits are all similar and 

therefore the three different approaches produce similar conclusions. Moving 

on to compare these coefficient estimates with those from the GLM analysis in 

Table 3.1, we see that again the estimates are similar.

Table 3.3 shows the lower triangle of the estimated working correlation matrix
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Covariate Estimate Naive Std Err Quasi-Std Err Robust Std-Error

Time

Treatment

Age

Baseline

Constant

-0.0589

-0.1544

0.0226

0.0227

0.7115

0.0202 (-2.92) 

0.0478 (-3.23) 

0.0040 (5.65) 

0.0005 (45.4) 

0.1444 (4.92)

0.0458 (-1.29) 

0.1080 (-1.43) 

0.0091 (2.48) 

0.0011 (19.7) 

0.3260 (2.18)

0.0353 (-1.67) 

0.1718 (-0.90) 

0.0126 (1.79) 

0.0012 (18.92) 

0.3482 (2.04)

Table 3.1: Results from fitting a Poisson GLM, overdispersed Poisson quasi-model and Poisson 

IEE to the epilepsy data. The coefficient estimates are the same for all three approaches, while 

the estimated standard errors differ (‘naive’ for GLM, ‘quasi’ for overdispersed quasi-model and 

‘robust’ for IEE); t-values are given in brackets.

under each of the three GEE structures. The unstructured matrix resembles the 

AR(1) structure and therefore the AR(1) structure is preferred as it avoids the 

potential problem of estimator bias, caused by the need to estimate a large number 

of nuisance parameters (Liang and Zeger, 1995). In this particular case, however, 

this concern is not too serious since there are only six nuisance parameters in the 

unstructured form, which is fairly small compared with the number of clusters. 

This explains why, in this case, the estimates of the regression parameters are 

similar for all methods.

3.2 Alternatives to conventional generalized es­

timating equations

W ithin this section we consider extensions to the basic GEE algorithm, along 

with the alternative technique of generalized linear mixed models.
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Covariate Structure Coefficient Estimate Robust Std Err t-value

Time Exchangeable -0.0589 0.0350 -1.68

AR(1) -0.0640 0.0338 -1.89

Unstructured -0.0516 0.0423 -1.22

Treatment Exchangeable -0.1495 0.1689 -0.88

AR(1) -0.1647 0.1602 -1.03

Unstructured -0.1480 0.1317 -1.12

Age Exchangeable 0.0234 0.0118 1.98

AR(1) 0.0260 0.0119 2.19

Unstructured 0.0237 0.0122 1.93

Baseline Exchangeable 0.0227 0.0012 18.27

AR(1) 0.0232 0.0012 18.65

Unstructured 0.0228 0.0012 19.44

Constant Exchangeable 0.6802 0.3547 1.92

AR(1) 0.5974 0.3510 1.70

Unstructured 0.6249 0.3780 1.65

Table 3.2: Results from fitting three separate GEEs to the epilepsy data.

Exchangeable AR(1) Unstructured

1.00

0.40 1.00 

0.40 0.40 1.00 

0.40 0.40 0.40 1.00

1.00

0.51 1.00 

0.26 0.51 1.00 

0.13 0.26 0.51 1.00

1.00

0.24 1.00 

0.42 0.68 1.00 

0.21 0.29 0.59 1.00

Table 3.3: Estimated GEE working correlation matrices for the epilepsy data.
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3.2.1 Second order generalized estim ating equations

GEEs are usually applied in situations where explaining the relationship between 

the response and the covariates is the main aim, with the association between 

responses being a nuisance. If the association is important, however, then the 

GEE methodology can be extended to allow additional emphasis to be placed on 

the estimation of the association. One such approach involves supplementing the 

set of estimating equations for 0  with an additional set of estimating equations 

for a  (Prentice, 1988) and solving these sets of equations jointly. This is known 

as second order generalized estimating equations or GEE2 for short. We now 

provide a brief overview of this method.

The set of estimating equations for 0  given in (3.2) can be written in a slightly 

different form as follows

U fl(/3) =  g  ( ^ ) r Sr>(/3) [yj -  Mi] =  0, (3.21)

where is an ra x p matrix with its jkth. element equal to

Similarly for a ,  we can define a set of estimating equations of the form

U a (a )  =  ^ ( | ^ ) T W r 1[ti -  0*1 =  0, (3.22)
1=1 '  '

where tj =  (£*12? »̂i3 ) • • • > ti,m—i,m)j tijk =  (Uij fak)i @i — ^(T*) and

is the working covariance matrix of t*. W* has dimensions m (m  — l ) /2  x m (m  — 

l) /2 , and a convenient choice is W* =  diag{var(tji2), var^*^) , . . . ,  var(^)m_i>m)}.

If 0  and a  are treated as if they are orthogonal, then equations (3.21) 

and (3.22) can be solved for 0  and ot using separate modified Fisher scoring 

algorithms. This approach is known as first order generalized estimating equa-
s

tions (GEE1). Alternatively, both sets of estimating equations can be solved
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jointly

T -1
cov(Yj) cov(Yi,T») 

cov(Yj, Tj) cov(Tj) t i - 0 i j
(3.23)

and this is known as second order generalized estimating equations (GEE2).

In contrast to GEE1, GEE2 does not provide consistent estimates of /3 when 

the working correlation structure has been misspecified. The GEE2 approach 

can, however, provide more efficient estimates. Generally speaking, these gains 

in efficiency, while potentially significant for a ,  are small for /3 (Liang et al., 1992). 

Thus, GEE2 is only recommended if significant interest lies in the estimation of 

the association.

Within this thesis we are concerned with modelling large data sets and there­

fore the GEE2 algorithm has the significant disadvantage that it is computa­

tionally more expensive to implement than conventional GEEs. Furthermore, 

our primary aim is in explaining the relationship between the covariates and the 

response, with the association between the responses being less important. For 

these reasons, the GEE2 algorithm is less appealing than the conventional GEE 

algorithm and we will not consider GEE2 further.

3.2.2 One-step generalized estim ating equations

One drawback of the GEE method is that it is computationally more intensive 

than the univariate GLM algorithm, due to the extra level of iteration involved in 

estimating the working correlation matrix. Therefore, it would be beneficial if we 

could speed up or adjust the GEE algorithm in some way to make it more practical 

for modelling large data sets, such as those typically experienced in climatology. 

Lipsitz et al. (1994) consider a completely different problem relating to the full 

GEE algorithm failing to converge, which can be quite common when sample sizes
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are small and the correlation is high (Lipsitz et al., 1994). The authors recommend 

using a one-step GEE algorithm when the full GEE algorithm fails to converge. 

This one-step method involves starting with the /3 vector corresponding to a GLM 

fit. From this independence fit, a  and (j) are estimated from the Pearson residuals 

and finally one further iteration of the GEE algorithm for (3 is undertaken. The 

authors carry out simulations for the binary case and show that the performance 

of the one-step estimator is qualitatively similar to that of the full GEE method 

in terms of bias and power.

We propose applying the one-step estimator to large data sets, which would 

otherwise require an excessive amount of computing time for implementation of 

the full GEE algorithm. In Chapter 6 we apply the one-step estimator to a 

climate case study and consider its performance.

3.2.3 Generalized linear mixed models

Generalized linear mixed models (GLMMs) are an alternative technique to GEEs 

to account for within cluster dependence. They extend univariate GLMs by as­

suming that the responses are conditionally independent given a vector of cluster- 

specific random effects, and it is the introduction of these random effects which 

induces correlation within cluster. The conditional distribution of the responses 

belongs to the exponential family, while typically the distribution of the random 

effects is assumed to be multivariate normal.

Estimation of the regression parameters (3 can be undertaken by the method 

of maximum likelihood. To achieve this, however, a marginal likelihood for the 

responses must be obtained, which involves integrating out the random effects. 

In addition to obtaining estimates of the regression parameters, estimates of 

the variance components of the random effects are also of interest and these 

are usually obtained using maximum likelihood (ML) or restricted maximum
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likelihood (REML). REML estimates are often preferred as they avoid some of 

the bias problems that arise with ML estimation.

In recent years, the topic of parameter estimation for GLMMs has been con­

sidered at great length from various perspectives and there are now many compet­

ing techniques available. One of the original treatments was due to Schall (1991) 

who used a penalised-likelihood approach, avoiding the need for integration. Sim­

ilar approaches were adopted by Breslow and Clayton (1993), and Wolfinger and 

O’Connell (1993). Alternative techniques include approximating the integrals by 

numerical Gauss-Hermite quadrature, Gibbs sampling (Zeger and Karim, 1991), 

and application of the EM-algorithm (McCulloch, 1997) which treats the ran­

dom effects as missing data. A simplification also arises when the distribution 

chosen for the random effects is conjugate to the conditional distribution of the 

responses, as analytical solutions are then available.

Distinction between GEEs and GLMMs

GEEs can be viewed as marginal methods since parameter estimates are obtained 

by averaging over clusters. In contrast, GLMMs are called subject-specific mod­

els, since all parameter estimates obtained are conditional on the realised random 

effects. Thus, the parameter estimates obtained from GLMMs should be inter­

preted on a subject by subject basis. When analysing a specific data set, the 

choice of technique will depend largely on the purpose of the study. If explain­

ing the average overall influence of the covariates on the response is the primary 

aim then the GEE methodology is likely to be the most appropriate. If, however, 

identifying risk on an individual basis is most important, then the subject-specific 

approach of GLMMs is likely to be preferable. The distinction between parameter 

interpretation for GEEs and GLMMs is covered at length in Zeger et al. (1988).

As outlined in Chapter 1, climatology has been used to motivate this work,
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where we are typically interested in explaining the whole system under study 

rather than individual aspects. Therefore the GEE methodology is most appro­

priate since we attem pt to explain the average overall dependence of the response 

on the covariates. Moreover, as climate data sets are typically large, the GEE 

methodology has the additional advantage that it is, in general, computationally 

more efficient to implement when compared with GLMMs. For these reasons, we 

focus on the GEE methodology for the remainder of this thesis.
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Chapter 4

Hypothesis testing for 

generalized linear models applied 

to clustered data

4.1 Introduction

One approach to modelling clustered data is to fit a univariate GLM and then ad­

just the subsequent inference to allow for the within cluster dependence. This ap­

proach is adopted by Liang and Zeger’s (1986) IEEs (see Section 3.1.2), which al­

low for the dependence by using the robust variance matrix for inference. Within 

this chapter we propose a new hypothesis testing technique for this setting, which 

involves adjusting the ‘independence’ likelihood ratio test statistic to allow for 

the within cluster dependence. This approach to modelling clustered data has 

considerable computational advantages over other techniques such as GEEs and 

GLMMs.

This chapter is organised as follows. Section 4.2 outlines the theory of the new 

approach to hypothesis testing. In Section 4.3, the geometry of the new method
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is explored, when testing both a single unknown parameter and two unknown 

parameters. Then in Section 4.4, using simulations, the new method is compared 

with the established hypothesis testing techniques outlined in Section 3.1.5.

4.2 New adjusted likelihood ratio test

4.2.1 M otivation

In Section 3.1.5 various hypothesis testing techniques were introduced for the re­

gression parameters of IEEs, which included the robust Wald test, the quasi-score 

test and Rotnitzky and Jewell’s likelihood ratio test. All of these techniques have 

some drawbacks, for example, the performance of the robust Wald test can be 

adversely affected when correlated predictors are present (Chandler, 1998). Rot­

nitzky and Jewell’s likelihood ratio test statistic, on the other hand, follows a com­

plicated asymptotic distribution which in practice must be approximated. Their 

test also uses the independence log-likelihood function to construct confidence 

regions, which are therefore likely to be of the ‘wrong’ shape (see Section 4.3).

Within this section we propose a new hypothesis testing technique as an 

alternative to the established techniques outlined above. The approach is similar 

to Rotnitzky and Jewell’s, in that an adjustment is made to the ‘independence 

likelihood ratio’ test to allow for the within cluster dependence. The two methods 

differ, however, in that Rotnitzky and Jewell use the same test statistic and adjust 

the critical value of the test, whereas we propose adjusting the test statistic itself 

and maintain the same critical value for the test.
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4.2.2 General theory and derivation of test

Let Y i =  (YJi,. . . ,  Yim)T be a response vector of random variables for the zth 

cluster (i =  1 where the marginal distribution of YJj belongs to the

exponential family of distributions. Corresponding to each are the values 

Xij =  (xiji, . . .  ,XijP)T of p covariates, which are related to the response via the 

usual GLM relationship

9 (E[Vy]) =  xfj/3,

where j3 is a p x 1 vector of unknown regression parameters and g(') is a link 

function.

Interest lies in testing the null hypothesis H q : 0 2 = 0 2i where the parameter 

vector P  has been partitioned p T =  (/3^, (32) and /3° denotes a specific value of 

P 2- The dimensions of and 0 2 are pi and P2 , respectively.

If the responses were independent then the log-likelihood function would be 

given by
k m

tiND{0) =  £ E los [ / f e ; /3)], (4.1)
t=l j=1

where /(•) denotes the pdf of Yy. Then to test H0 we could calculate the ‘inde­

pendence’ likelihood ratio test statistic

Wr. =  - 2 tlND 0 1 , $ )  - W £ ) ] ,  (4.2)

where under Hq, £ in d 0 u @ 2) an(l £i n d ( P )  are the maximized restricted and 

unrestricted ‘independence’ log-likelihood functions respectively, and Wl  follows 

an asymptotic Xp2 distribution.

For clustered data, responses are not independent and therefore the ‘inde­

pendence’ log-likelihood function of (4.1) does not hold. Moreover, since we do 

not assume a joint distribution for the within cluster responses we are unable to 

write down a likelihood function. Therefore, no standard likelihood ratio test can
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be applied. Thus, we propose adjusting the independence likelihood ratio test 

statistic of (4.2) to allow for the within cluster dependence.

The new method constructs a new ‘dependence adjusted’ inference function 

£(/3), for carrying out inference on (3. The function is constructed about 

(the mle from the independence model) and is designed in such a way that the 

profile of the independence log-likelihood function is maintained, since we believe 

this contains valuable information. To achieve this a linear transformation is 

defined between (3* on the independence log-likelihood surface and /3 on the new 

dependence adjusted surface. The transformation is designed in such a way that 

m  =  £ind(P*) is accurate to second order (in the sense that Wald tests are 

preserved) in the neighbourhood of Below we formalise these ideas.

In general terms, a linear transformation from (3 to f3* can be defined as 

follows

0 * =  T(p)  =  p ,  +  c ( p - p , ) ,  (4.3)

where C is a p x  p square matrix. Thus we may define

i(P) = t iNo(P') = i,ND [ p ,  + C [/3 - /3 , ] )  ,

and a second order Taylor series expansion of Iind ( p i  +  C[/9 — /9/]J in the 

neighbourhood of is given by

iiND ( p i  + C\ p -  P,])  =  W 0 /)  + (c[/3 -  £,]) W 0 /)

+  \  ( c [ / 3  -  p t f  e"ND(P,) ( c [ / 3  -  p a ) + o P(k-1/2)

= e,ND(P,) - \ ( P -  PrfC^NDiPACiP -  P,) + Op(k-V2), 

(4.4)

where Iind(P) denotes the information matrix under the independence model.

Also, a second order Taylor series expansion of t(f3) about j3j is given by

t(P) =  i (p , )  -  \ ( p  -  p , ) Tl(Pi)(P -  P i )  +  0„(fc-1/2), (4.5)
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where I(/3) denotes the information matrix under dependence. Equating the 

second order approximation of £(0) given by (4.4) with the one given in (4.5), 

and since £ 0 i )  =  £i n d ( P i ) by construction, we obtain

10,) =  CT1,ND0,)C. (4.6)

Now, defining M/wd(/3) to be a matrix square root of I in d {P), such that

(4.6) can be written as

10,) = CTl,ND0,)C = CtMJnd0,)Mind0 i)C = [MrND0,)C]TMIND0,)C.

Thus,

The matrix C is not unique because M  and M jud are not uniquely deter­

mined. Thus, the transformation defined by (4.3) is also not unique, however, - 

the second order approximation (4.5) is unique.

The matrices I(/3) and I i n d ( P )  must be estimated and this can be consis­

tently achieved by the inverse of the robust and naive variance estimates (see

(3.8) and (3.9) of Section 3.1.2), evaluated at j3j, respectively. Thus, the matrix 

C can be estimated by

I IND0 )  =  M [wd(/3)M,wd(/3)

and, similarly

Mt0,)M0,) = [Mind0,)C]tMind0,)C,

which is satisfied by

m g &7) =  i v w ^ c .

Therefore, an appropriate transformation can be achieved by taking

(4.7)

(4.8)
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where the notation A 1/ 2 denotes the matrix square root of A  obtained from the 

Choleski factorization. In the special case when only a single parameter is being 

tested C  is a scalar, which simplifies to the square root of the ratio of the naive 

to robust variance estimates for the parameter of interest.

In applying the above theory to test H o, two GLMs are fitted to clustered 

data, one nested within the other. For the restricted model we then apply the
A y  n r

transformation defined in (4.3) to the vector (P i\ ,P 2 ) to obtain the correspond-
a a rji

ing vector ( P m P z  )• The usual ‘independence’ likelihood ratio test is then 

carried out using this transformed parameter vector. Thus, the null hypothesis 

is tested by calculating the following test statistic

WNL := - 2 Pin D0 n ,  @2*) ~  £in d 0 i )] , (4.9)

where asymptotically W nl follows a Xp2 distribution under Ho. This asymptotic 

result follows since the adjustment has been designed in such a way that the 

asymptotic theory outlined in Section 2.3 carries over directly.

Note that when the data really are independent, I(/3) and I i n d ( P )  are iden­

tical, the matrix C is the identity matrix, f) =  P* and hence we obtain the usual 

‘independence’ likelihood ratio test, as expected.

In some special cases, the transformation defined by (4.3) may result in /3* 

taking on a value outside of its allowable range. In this instance we recommend 

reparameterizing, for example, if 0  must lie in the interval [0 ,1 ] then a logistic 

transformation may be applied.
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4.3 Geometry of the new test

4.3.1 Single parameter case

Within this section we investigate the geometry of the new method when testing 

a single unknown parameter. To achieve this we focus on a simple example 

where the data, yi (i =  1 , . . .  , n), consist of n = 2 0  observations from a geometric 

distribution with pmf

Pr(Fi =  Vi) =  0(1 -  6)V\ Vi = 0 , 1 , . . . .  (4.10)

Interest lies in carrying out inference on the single unknown parameter 6.

The independence log-likelihood function for 9 can be written as

£(0,y) =  n{i/log(l - 0 )  + l og0} ,  (4.11)

where y denotes the sample mean of the data, which in this case is taken to be 

3. The mle is given by 0 =  1/(1 -h y) =  0.25. The independence log-likelihood 

function for 9 has been plotted in Figure 4.1 and based on this function, a 95% 

acceptance region for the null hypothesis H0 : 9 = 0O, has been constructed and 

is also shown.

For illustration, suppose that the 20 observations were actually obtained from 

k clusters of equal size, where the observations within each cluster are correlated, 

and that the ratio of the robust to naive variance estimates is 2 . As a result 

of this correlation the independence log-likelihood function is incorrect and the 

acceptance region for H0 based on this function is too narrow. To allow for the

dependence, the new method constructs a new inference function, by applying

the inverse transformation of (4.3) to each value 0* on the independence surface. 

For the single parameter case this transformation simplifies to

6> = 0 + ^/Q(0‘ -  §), (4.12)
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where Q =  C~2 is a scalar, which can be estimated by the ratio of the robust 

to naive variance estimate for 6. The transformed inference function, used to 

carry out inference on 0, is shown in Figure 4.1. A ‘dependence adjusted’ 95% 

acceptance region for ifo, based on the new inference function, is also shown.

It is interesting to compare our adjustment to that of Rotnitzky and Jew­

ell (see Section 3.1.5). They use the independence log-likelihood function and 

make an adjustment to the critical value to allow for the dependence. As dis­

cussed earlier, this corresponds to dropping the critical value line by a factor equal 

to Q, the ratio of the robust to naive variance estimates, and this is shown in 

Figure 4.2. We, on the other hand, essentially stretch out the independence log- 

likelihood function by the square root of the same ratio. This implies that when 

a single parameter is being tested and the independence log-likelihood function 

is quadratic, the two methods are equivalent. Thus, when testing a single pa­

rameter the new method and Rotnitzky and Jewell’s method are asymptotically 

equivalent.

4.3.2 Two parameter case

Having compared the new method with Rotnitzky and Jewell’s method when 

testing a single unknown parameter, we now consider a simple example when 

testing two unknown parameters. Suppose that a pair of correlated measurements 

are recorded on each of k individuals; suppose also that each pair of measurements 

follows a bivariate normal distribution with known variance-covariance matrix, 

where both variances are 1 and the correlation p is 0.7. Interest lies in carrying 

out inference on the unknown mean pL — (/zi, P2)T by testing the null hypothesis 

Ho : /x =  pL0. For illustration, we present calculations for 10 data pairs that have 

been simulated from a bivariate normal distribution with /z =  (2 , 3)T.

The ‘true’ bivariate normal log-likelihood function for /z, given the data, can
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Figure 4.1: Geometry of new method when testing a single param eter. 95% acceptance regions 
for H o , based on the independence log-likelihood function and the new inference function are 
given by [I1 J 2 ] and [JDi,D2] respectively.
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Figure 4.2: Comparison of new method with Rotnitzky and Jewell’s method when testing a 
single param eter. 95% acceptance regions for H q, based on the new method and Rotnitzky and 
Jewell’s method are shown by line types ( ) and ( ) respectively.
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be written as

Itbue{H', y) = -fclog (4.13)

This log-likelihood function for /x has been plotted for the simulated data in the 

top left hand plot of Figure 4.3. Acceptance regions for H0 based on the true 

bivariate normal log-likelihood function follow the elliptical contours shown.

To obtain an acceptance region for H0, Rotnitzky and Jewell work with the 

independence log-likelihood function, which assumes all observations are inde­

pendent. The independence log-likelihood function is given by

plot of Figure 4.3. When constructing a confidence region for /x they allow for

independent data. Nevertheless, acceptance regions for H 0 are still circular and 

not elliptical as given by the true bivariate normal log-likelihood function.

We, on the other hand, define an inference function £(fj,) on which acceptance 

regions for Ho are constructed. Our inference function is defined as ^(/x) =  

£in d {h *), with

to every point on the independence log-likelihood surface in the top right hand 

plot of Figure 4.3. Since the transformation applied is a function of the correlation 

between pairs of observations, the transformed surface obtained, which is shown

Iind(w y) =  - k  log(27r) -   ̂ [(yn -  /ii ) 2 +  (yi2 -  /x2)2] (4.14)
i=l

and this function has been plotted for the simulated data in the top right hand

the dependence by slicing this surface at a different level to that used for truly

This is equivalent to applying the inverse transformation, given by

(4.15)
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in the bottom left hand plot of Figure 4.3, has the same elliptical contours as 

the true bivariate normal log-likelihood function. Thus, an acceptance region for 

Ho based on the new inference function will be of the correct elliptical shape. 

This provides a good illustration of the claim made in Section 4.2, that the new 

method aims to produce an inference surface with the right shape.

Based on the above it is hoped that when testing more than one parameter 

the new method will outperform Rotnitzky and Jewell’s method, and this will be 

explored further in the next section. In the multiparameter case the new method 

also has the additional advantage of being computationally more efficient, since 

Rotnitzky and Jewell’s method involves computing both an eigenvalue analysis 

and an approximation to the asymptotic distribution of the test statistic (see 

Section 3.1.5).

4.4 Simulation studies

We now investigate the performance of the new method relative to the established 

techniques of the robust Wald test, the quasi-score test and Rotnitzky and Jewell’s 

likelihood ratio test. This is achieved via simulation, where the exact mechanism 

for generating the data is known. Two contrasting simulation environments are 

considered. Sections 4.4.2 and 4.4.3 present simulations based upon binary and 

gamma response variables respectively. Before presenting the results, we outline 

in Section 4.4.1 how we intend to use simulations to compare and contrast the 

various tests.

4.4.1 Performance assessm ent criteria

How good a particular test is, relative to other competing tests, is usually mea­

sured in terms of its type I and type II error rates. Under a given Hq, a test
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Figure 4.3: Comparison of new method with Rotnitzky and Jewell’s method when testing 

two parameters.

can result in one of two possible errors. A type I error is made if H0 is rejected 

when it is true and conversely, a type II error occurs if H0 is accepted when it is 

false. The probability of making type I and type II errors are denoted by a  and 

7  respectively. Naturally, it is desirable to have a  and 7  as small as possible. In 

practice, however, for a fixed sample size, decreasing a  results in an increase in 

7 , and vice versa. Therefore when comparing tests it is common to set the value 

of a  and then prefer the test with the smallest value of 7 . The quantity a  is also 

known as the size or significance level of the test and is typically set to a value 

of 0.05 or 0.01.
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A related quantity to the type II error, is the power of the test. The power 

of a test is defined as the probability of rejecting H0 when it is false. Clearly, the 

power of the test is equal to 1 — 7  and therefore when tests are compared with a  

fixed, the test with the greatest power is usually preferred.

Power curves can be constructed to compare tests under a specified null hy­

pothesis. Figure 4.4, which is based on Figures 10.13 and 10.14 of Wackerley 

et al. (2 0 0 2 ), shows some theoretical power curves, when testing the null hypoth­

esis Ho : (3 = (30 . The quantities along the horizontal and vertical sixes represent 

the true value of ft and the power of the test, respectively. Ideally, we would like 

to reject H0 with probability 1 when the true value /? is not equal to fio (P ^  Po), 

and accept Ho with probability 1 when p  is equal to /?0. This is represented in 

Figure 4.4 by the ‘perfect’ power curve, however, in reality such a curve is not 

attainable. A ‘typical’ power curve is also shown in Figure 4.4, where the further 

the true value moves away from fio, the greater the power of the test. Notice also 

that at the point ft =  Po the power is equal to a , the size of the test. Finally, 

in Figure 4.4 a ‘preferred typical’ power curve has also been plotted, where this 

power curve is preferred to the ‘typical’ power curve as it has greater power, being 

closer to the ‘perfect’ power curve.

Using simulations, we plan to construct power curves, similar to those in 

Figure 4.4, in an attem pt to compare the various competing tests. A wide range 

of scenarios and null hypotheses will be considered to enable as much evidence as 

possible to be collected. Using the results obtained, we hope to be able to answer 

many questions, some of which are as follows:

1. Does the new test have the correct coverage? Thus, if we apply the new 

test at size a, do we reject a true null hypothesis 1 0 0 o:% of the time?

2. How does the new test compare to Rotnitzky and Jewell’s test? Does the 

answer to this question depend on the number of parameters being tested?
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3. How does the new test perform relative to the robust Wald and quasi-score 

tests? In particular, does the new test outperform the robust Wald test 

when dealing with correlated predictors?

4.4.2 Binary simulations

In this section the performance of the new test is compared with the established 

hypothesis testing techniques introduced in Section 3.1.5, through simulations of 

binary variables. Using a marginal logistic regression model, the ability of the test 

to identify significant predictors under specified null hypotheses is considered.
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Simulation environment

The simulation environment adopted is the same as that used by Fitzmaurice 

(1995) and more recently by Pan (2001a). There are 100 clusters of data and 

within each cluster three repeated measurements are recorded over time. The 

response variable Yq is binary, and its marginal mean pij is modelled by a logistic 

regression model of the form

logit (/z*j) =  A) +  PiXiji +  P2x ij2, (4.16)

where i =  1 , . . . ,  100, j  =  1,2,3, is a Bernoulli variable which is fixed within 

each cluster (representing group membership) and takes the values of 0  and 1 with 

equal probabilities of 0.5, and Xij2 =  (j  — 1) representing a linear trend within 

each cluster. The true parameter values are /30 =  0.25 and Pi = fi2 = —0.25.

The joint distribution of Y* is simulated using the Bahadur (1961) represen­

tation which can be written as

/ ( yilPi. Pi) =  n  ^  “  ^ ~ yii • ( 1 +  5 Z  PijkWijWik) . (4.17)
j =1 \  j< k /

where W{j is the standardised variable Wij =  ( — /iy ) / \ / / ^ j ( l  — Hij) and pijk = 

E (WijWik) is the correlation between and Yik. The second term in (4.17) 

represents the extent of the dependence in Yj. All pairwise correlations p^k 

(j 7  ̂k) are set to 0.5, thus an exchangeable correlation structure is assumed. For 

more details on Bahadur’s representation see Cox (1972).

The implementation of the simulation process can be summarised by the 

following steps:

1 . Generate Xij\ for i =  1 , . . . ,  1 0 0  and j  = 1 , 2 ,3.

2. Using the true (3 and (4.16), calculate the marginal means pij for i =

1 , . . . ,  1 0 0  and j  =  1 , 2 ,3.
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3. For each of the 100 clusters, use the marginal means obtained in step 2 

above to simulate a correlated Y* vector using Bahadur’s representation, 

with pijk =  0.5.

4. Use these simulated Y j’s to fit the following logistic regression models:

(a) regress Y  on a constant only,

(b) regress Y  on a constant and

(c) regress Y  on a constant, X\ and ,

and obtain estimates of f t

5. Using the estimates of /3 obtained in step 4, test the null hypotheses H0 : 

f t  =  0 and Hq : f t  =  f t  =  0 for all test procedures under consideration. 

Since the true values are f t  =  f t  =  —0.25, these null hypotheses are in­

correct and should be rejected. For each procedure under each hypothesis 

obtain a p-value.

6 . Repeat steps 1 to 5, 1,000 times to obtain 1,000 independently simulated 

p-values for each test procedure under each hypothesis; use these to produce 

a simulated p-values cdf. These simulated distribution functions can then 

be compared across tests to assess the relative performance of each test.

Figure 4.5 shows the simulated p-values cdf, based on 1,000 simulations, for 

each of the four competing tests, under the null hypothesis H0 : f t  =  0. Since 

H0 is false, the method that corresponds to the greatest number of small p- 

values is preferred. It can be seen, however, that all four test procedures perform 

comparably as the four simulated cdf’s overlay each other.

When producing Figure 4.5, the 1,000 simulations were undertaken with the

true values of f t  and f t  both set equal to -0.25. To produce power curves similar

to those in Figure 4.4, the above process must be repeated for many different 

true values of f t  and f t .  This has been undertaken, where the true values of
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Figure 4.5: Simulated p -value cdf for each of the four competing tests under Ho : fa = 0. All 
four lines overlay each other and are therefore indistinguishable.

/?i and /?2 were varied together within the range -1 to 1 in steps of 0.05. Thus 

41 simulations, each of size 1,000 were performed. Using this computationally 

intensive method, simulated power curves were produced for the various tests 

under the specified hypotheses, for a chosen size of test.

Pow er curve resu lts

a) T esting H0 : /32 =  0

The first set of power curves considered relate to the testing of the null hypothesis 

Ho : /32 — 0. In Figure 4.6 the power curves for each of the four methods are 

displayed, where the size of the test is fixed at a  =  0.05 in all cases. This plot 

shows tha t all four tests perform comparably, as the four power curves overlay
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Figure 4.6: Power curves for each of the four competing tests under Ho : fa  — 0, a  =  0.05. 
All four power curves overlay each other and axe therefore indistinguishable.

each other. These results are fairly uninteresting, although they do highlight two 

im portant features of the new method. Firstly, the method produces sensible 

results, as in this case the results are comparable with the other established 

techniques. Secondly, the new test has the correct coverage properties, since 

when the true value of is zero, the null hypothesis is correct and the new 

method does indeed reject H0 5% of the time.

b) Testing H0 : fii = /32 =  0

In Figure 4.7 the simulated power curves under H0 : (3i = f32 = 0 are shown 

for the two competing likelihood ratio tests, where a  =  0.05. From this plot 

it is clear tha t the new method has greater power than Rotnitzky and Jewell’s 

method. This result is consistent with the theory discussed earlier, which sug­
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gested that the new method may be more powerful when testing more than a 

single parameter. Figure 4.8 reproduces Figure 4.7 with the additional power 

curves for the robust Wald test and quasi-score test added. It can be seen that 

the new method performs comparably with the robust Wald and quasi-score tests 

in terms of power.

C o rre la te d  covariates

All of the above simulations have been carried out with the two covariates x\ 

and X2 uncorrelated. We now consider introducing correlation between the two 

covariates. The definition of covariate x\  is modified, such that it is no longer 

a Bernoulli variable which is fixed within clusters, but instead it is allowed to 

vary within each cluster and is defined as x*ji =  Bernoulli(0.3j — 0.1). Thus Xiji 

is a 0/1 variable, with a probability of being 1 tha t increases over time. The 

definition of x 2 remains unchanged, Xij2 =  j  — 1. Thus, as both covariates on 

average, increase over time, this induces correlation between them. The above 

analysis has been repeated with the newly defined correlated covariates.

P ow er cu rve re su lts  for co rre la ted  covariates

a) T estin g  H0 : p2 =  0, x\ an d  x 2 c o rre la ted

Figure 4.9 shows the simulated power curves for the new method and the robust 

Wald test, for correlated covariates, under HQ : =  0. It can be seen that the

new method has greater power than the robust Wald test. This result is expected 

from the theory discussed earlier, since robust Wald tests are known not to per­

form particularly well when only a subset of the correlated covariates present, are 

tested. This is because a robust Wald test only considers the regression coeffi­

cients and their estimated variances for those covariates being tested, while none
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Figure 4.7: Power curves for new method and Rotnitzky and Jewell’s method under Ho : 

p 1 =  £2 =  0, a  =  0.05.
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Figure 4.8: Power curves for each of the four competing tests under Ho : ftl =  p 2 =  0> 
a  =  0.05. All power curves, except th a t for Rotnitzky and Jewell’s method, are very similar 
and therefore difficult to distinguish.
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of the other estimated effects are considered.

Figure 4.10 reproduces Figure 4.9 with the additional power curves for the 

quasi-score test and Rotnitzky and Jewell’s likelihood ratio test added. From this 

we can see that the new method also outperforms these methods very slightly.

b) T esting  H0 : j3\ =  /32 =  0, X\ an d  x 2 c o rre la ted

Finally, Figure 4.11 displays all four simulated power curves under H0 : f t  =  

P2 =  0, where x\  and x 2 are correlated. The results obtained here are very 

similar to those obtained under the same null hypothesis when X\ and x 2 were 

uncorrelated. Thus, the new method outperforms Rotnitzky and Jewell’s method, 

and is comparable with the robust Wald and quasi-score tests.

Overall, when all correlated covariates are tested together, the new method 

appears to provide no advantage over the robust Wald test in terms of power. 

However, when correlated covariates are present and only a subset of these are 

tested together, the new method appears to provide an advantage over the robust 

Wald test, since the robust Wald test is unable to account for the correlation in 

the covariates which are not being tested. The new test therefore is expected 

to be preferable when applied to climate data, where many of the covariates are 

correlated and it is not feasible to identify and then test all of the correlated 

covariates together.

4.4.3 Gamma simulations

In this section the performance of the new test is compared with the established 

hypothesis testing techniques introduced in Section 3.1.5, through simulations of 

gamma variables.
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Figure 4.9: Power curves for new method and robust Wald test under Hq : /?2 =  0, a  =  0.05, 

Xi and X2 correlated.
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Figure 4.10: Power curves for each of the four competing tests under H q : =  0, a  = 0.05,

Xi and X2 correlated.
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Figure 4.11: Power curves for each of the four competing tests under H q : = fa = 0,
a  =  0.05, X\ and correlated. All power curves, except Rotnitzky and Jewell’s method, are 
very similar and therefore difficult to distinguish.

S im ulation  environm ent

One of the main objectives of the thesis, is to develop methods tha t are suitable 

for space-time data. Therefore, we now consider a space-time simulation environ­

ment. A simple gamma GLM is fitted to some actual space-time data, and the 

fitted model is then used to generate simulations representing realistic spatial- 

temporal structure. Using these simulations, various null hypotheses are then 

tested using the various competing hypothesis testing techniques, in an attem pt 

to compare the performance of the tests.

The data relate to daily maximum wind speeds over northwestern Europe. 

This data set is analysed extensively in Chapter 6 and therefore the reader is 

referred forward for more details. Here we consider only a subset of the data, 

namely, six specific sites for the seven year period 1983-1989. The six sites are
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made up of two sub-groups; one sub-group comprises of two neighbouring sites 

located in the ocean just north of Ireland and the second sub-group consists of 

four neighbouring sites located over land in Germany. In total, there are 2,557 

days and 15,342 (=2,557x6) observations.

To formulate the above data set within a cluster correlated data framework, 

we incorporate autoregressive based covariates into the model and then assume 

that time points are independent, conditional on the covariates. Thus, time 

points correspond to conditionally independent clusters, and within cluster there 

are six spatially correlated measurements. Chapter 5 provides further details of 

formulating space-time data within a cluster correlated framework.

We assume that the daily maximum wind speed Yta, a t time point t and 

spatial location s, is gamma distributed, and its marginal mean fits is modelled 

by a gamma GLM of the form

l°g (fas) =  f t  +  PlXtsl +  ft^ ts 2 +  ft^ts3 +  ft^ts4 +  ft^a5  (4-18)

where t =  1 , . . . ,  2557, s =  1 , . . . ,  6 , x ts\ and x tS2 are autoregressive terms of the 

form log(l +  yt-i,a) and log(l +  yt-2,s) respectively, x tS3 is a cosine component 

used to capture seasonality, and x tSA and x tS5 are annualized climate indices for 

the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) respectively. 

The NAO and AO are large scale circulation patterns that are believed to impact 

upon climate within the region under study.

Model (4.18) was fitted to the data and the following parameter estimates 

were obtained f t  =  0.31, f t  =  0.67, f t  =  0-04, f t  =  0.06, f t  =  —0.01 and 

f t  =  0 .0 2 . In addition to these parameter estimates, the correlations in Anscombe 

residuals for each pair of sites were calculated. In summary, the pairwise corre­

lations for pairs of sites in different sub-groups was approximately zero, whereas 

the pairwise correlations for sites within the same sub-group ranged from 0.4-0.8.

The above fitted model was used to generate simulated data. Each simulated
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data set comprised of daily values for the period 1983-1989 at the six chosen sites, 

this being equivalent in form to the original data set. Five hundred simulated 

data sets were generated in total. Note that this is only half the number of 

simulated data sets used in the binary case of Section 4.4.2, however, in that case 

there were 300 (=100x3) observations per data set, whereas here we have 15,342 

(=2,557x6) observations. Thus, due to computational constraints we decided to 

produce 500 simulations only.

The implementation of the simulation process can be summarised by the 

following steps:

1. Initialize the simulated values for the first two time points ^ ( *  =  1 , 2 , . =

1 , . . . ,  6 ) to some observed wind speed values.

2. Using (4.18) and the estimate of (3 obtained from the data fit, calculate the 

marginal means fits (t — 3, s =  1 , . . . ,  6 ). This is possible since all covariate 

values are known.

3. Use the marginal means obtained in step 2 to simulate a correlated Y t =  

(YJi,. . . ,  Yto), t  =  3, consistent with the fitted correlations in Anscombe 

residuals. Anscombe residuals are approximately normally distributed, and 

for the gamma distribution are defined by =  (yta/l^ts)1̂ 3• Therefore 

the simulation process can proceed by simulating a vector of Anscombe 

residuals r[A  ̂ =  , . . . ,  r^  from a multivariate normal distribution with 

the fitted correlation structure. Then each simulated value can be obtained 

by rearranging the above relationship for the Anscombe residuals i.e. yts =  

/its( r ^ })3. This approach preserves the spatial structure within each time 

point.

4. Repeat steps 2 and 3 for all remaining time points t =  4 , . . . ,  2557.

5. Use these simulated Y*’s to fit a series of gamma GLMs, for example
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(a) regress Y  on xi and x<i

(b) regress Y  on aq, x 2, £3 , x± and x$

and obtain estimates of f t

6 . Using the estimates of /3 obtained from step 5, test, for example, the null 

hypothesis H0 : ft3 =  f t  =  f t  =  0 for all test procedures under consid­

eration. Since the true values of f t ,  f t  and f t  are all non-zero, the null

hypothesis is false and should be rejected. For each procedure under each 

hypothesis obtain a p-value.

7. Repeat steps 1 to 6 , 500 times to obtain 500 independently simulated p- 

values for each test procedure under each hypothesis; use these to produce 

a simulated p-values cdf. These simulated distribution functions can be 

compared across tests to assess the relative performance of each test.

Results

Figure 4.12 shows the simulated p-values cdf, based on 500 simulations, for each 

of the four competing tests, under the null hypothesis H 0 : f t  =  f t  =  f t  =  0. 

Here we are testing the effects of autocorrelation at lag 2 , NAO and AO, which 

are all non-zero ( f t  =  0.06, f t  =  —0 .0 1 , f t  =  0 .0 2 ) in the model, and therefore 

the null hypothesis is clearly false. Thus, the method that corresponds to the 

greatest number of small p-values is preferred. It can be seen, therefore, that the 

new method outperforms Rotnitzky and Jewell’s method. Also, the performance 

of the new method is comparable to that of the robust Wald and quasi-score tests.

Figure 4.12 suggests that in this case the new method is more powerful than 

Rotnitzky and Jewell’s method, however, it does not provide us with any infor­

mation as to whether or not the new method has the correct coverage properties 

i.e. if we apply the new test at size a, do we reject a true null hypothesis 100a% 

of the time. To achieve this we calculate a new set of 500 simulations, but this
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time with = {34 = fi5 = 0. Thus, the null hypothesis H0 : fa = (34 = /35 = 0 is 

true. Figure 4.13 shows the cdf of the simulated p -values under each technique. 

This plot suggests that all methods have the correct coverage properties, since 

the p-values follow an approximate uniform distribution, which is to be expected 

under a true H q. Thus, in this case the new method appears to have the correct 

coverage properties and is more powerful than Rotnitzky and Jewell’s method.

Various other null hypotheses were tested using the same simulation proce­

dure as outlined above. The results obtained were consistent with the previous 

results presented. Thus, in all cases the new method performed at least as well as 

all the other methods, and in some instances the performance of the new method 

was better. For this reason we do not present any further results.

4.5 Summary

We have developed a hypothesis testing technique which is appropriate for the 

modelling of clustered data with GLMs. The method adjusts the ‘independence’ 

likelihood ratio test to allow for the within cluster dependence. Using simulations 

we have shown that the power of the new test is comparable with other methods 

and in some instances better. In particular, it outperforms Rotnitzky and Jewell’s 

likelihood ratio test when testing more than one parameter. There is also evidence 

to suggest that the new method is more powerful than the robust Wald test when 

dealing with correlated covariates. These results are in line with what would be 

expected theoretically.
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Chapter 5

Generalized estimating equations 

for large space-time data sets

Within this chapter we consider applying the generalized estimating equations 

(GEEs) methodology to large space-time data sets. We focus on the specific 

case where data are collected at a series of spatial locations and these spatial 

readings are repeated over time. Typically, under this setting, dependence exists 

both temporally and spatially. The temporal dependence arises from successive 

measurements being taken over time, while the spatial dependence results from 

neighbouring sites being subjected to similar conditions.

Section 5.1 reviews some of the existing techniques available for space-time 

data. In Section 5.2, we provide an overview of the GEE approach we adopt, and 

introduce the notation used throughout the remainder of the chapter. Sections 5.3 

and 5.4 detail how we propose accounting respectively for the temporal and spatial 

dependence. Finally, Section 5.5 considers the use of the one-step estimator, 

which offers considerable computational advantages over the full GEE algorithm.
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5.1 Alternative approaches for space-time data

In recent years, a significant amount of research has been undertaken on the 

development of statistical models for space-time data. This activity, in part, has 

been driven by the desire to analyse a wealth of data from the environmental 

sciences, which includes fields such as hydrology, meteorology and air pollution. 

D ata sets from these application areas are typically very large in size and therefore 

advances in computing power have played a vital role in the development of these 

models.

Space-time data sets can take many forms. For example, spatial locations 

may form a regular grid, or they may be irregularly spaced. There may be few 

spatial locations and many time points, or conversely, many spatial locations and 

few time points. Typically, the analysis objectives will also vary across different 

data sets. For example, for one data set the identification of a new spatial location 

with specific characteristics may be the aim, whereas for another the prediction of 

future values at existing spatial locations may be the goal. Consequently, a vast 

array of space-time models have been developed to accommodate the various data 

set-ups and analysis objectives. Below we briefly highlight some of the approaches 

taken.

Haslett and Raftery (1989) considered the modelling of daily wind speeds 

in Ireland; their objective being to quantify the wind energy at a potential new 

site, while making use of long term records from other sites across Ireland. They 

applied a square root transformation to obtain approximately normal data, and 

deseasonalized the data to remove the seasonal component. Spatial correlation, 

short-memory temporal dependence and long-memory temporal dependence were 

allowed for through kriging, autoregressive moving average modelling and frac­

tional differencing respectively. They claimed that their method was capable of 

capturing the main features of the data, despite the fact tha t some of the as­
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sumptions they made are unlikely to hold in practice. For example, their model 

assumed constant seasonality across sites, the same univariate time series struc­

ture for each site, and an isotropic process in space.

An alternative approach for space-time data is detailed in Hughes et al. 

(1999). Here the authors aimed to investigate the relationship between precip­

itation occurrences and atmospheric circulation patterns, and produce simula­

tions of precipitation occurrences. To achieve this, a nonhomogeneous hidden 

Markov model for precipitation occurrences was proposed. Temporal dependence 

was captured indirectly by defining several unobservable ‘weather states’ for the 

atmospheric processes that drive precipitation. A Markov assumption was im­

plemented for the weather states, where the transition matrix was dependent 

upon a set of covariates, which were derived from atmospheric data obtained 

from a general circulation model (GCM). Conditional upon these weather states, 

precipitation was assumed to be temporally independent. Spatial dependence, 

on the other hand, was allowed for using an autologistic anisotropic model for 

the precipitation occurrences. The method presented did not attem pt to model 

precipitation amounts, though specific extensions for this case were discussed. 

Estimation was undertaken via a modified EM algorithm, which used the tech­

nique of Monte Carlo maximum likelihood and assumed that the hidden states 

were missing data.

A different approach was taken by Stroud et al. (2001), who allowed for spatial 

variability through the use of a locally weighted mixture of regression surfaces, 

while temporal variability was modelled within a Gaussian state space modelling 

framework. This approach enabled seasonality, autoregressive terms and tempo­

ral trends to be incorporated into their model. Goodall and Mardia (1994) also 

considered a state space modelling approach and jointly employed the techniques 

of kriging and the Kalman filter to allow for spatial and temporal dependence. 

Brown et al. (2000) considered a stationary model based upon Gaussian ‘blur-
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ring’. This method used a non-separable space-time covariance function, and was 

recommended for the modelling of processes, such as air pollution, which disperse 

over time. Wikle et al. (1999) adopted a hierarchical Bayesian approach; like most 

Bayesian approaches to space-time data, this method is highly computationally 

intensive, making it inappropriate for large data sets. Finally, Brix and Diggle 

(2 0 0 1 ) considered a class of models suitable for space-time point processes,

For the remainder of this chapter we focus on a GEE-based approach for 

space-time data. The method allows for temporal dependence via autoregressive 

based covariates and models the spatial dependence using techniques from geo­

statistics. Spatial non-stationarity and temporal trends can also be accounted for 

via spatial and time-varying covariates. Other key attributes such as seasonal­

ity can be incorporated into the covariates, and through the use of interactions, 

seasonality can easily be allowed to vary in space, for example. The method 

is computationally efficient and has considerable computational advantages over 

many of the techniques outlined above.

5.2 Overview of new generalized estimating equa­

tions approach for space-time data

GEEs are used to build regression models for clustered data (Chapter 3). Re­

sponses within a cluster are correlated, while clusters are assumed independent 

given the covariates. GEEs were originally applied to longitudinal data, where it 

is natural to view each individual as forming a cluster of correlated responses, with 

clusters assumed independent across individuals. For space-time data, however, 

dependence exists both temporally and spatially, and therefore the application of 

the GEE approach does not seem so natural. We propose a two stage approach 

to this problem. Firstly, the temporal dependence is accounted for via the co­

variates, using autoregressive terms. Then, conditional on the covariates, time
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points correspond to independent clusters, and the spatial dependence can then 

be allowed for by adopting a spatial within cluster working correlation structure. 

Techniques from geostatistics (Journel and Huijbregts, 1978) are used to suggest 

working correlation structures of a spatial nature.

As we are now operating within a space-time setting, slightly different nota­

tion is adopted from that used previously in Chapter 3. Let Yts be a response 

random variable for time point t at spatial location s, where t =  1 , . . .  ,T  and 

s — 1, . . . ,  S. Thus, the total number of responses is N  =  T  x S. Corresponding 

to each response Yts are the values x ta =  (a;tsi , . . . ,  x tSp)T of p covariates. Let 

Y t =  (Yti , . . . ,  Y ts)T denote the response vector of random variables for all spa­

tial locations at time point t. Correlation exists between the elements of Y t, and 

also in general between Y t and Y / (t ^  I). Further notation is the same as that 

used previously in Section 3.1.

5.3 Modelling temporal structure

5.3.1 Autoregressive approach

For simplicity, we begin by focusing on the single site case. If the time series 

of observations y =  ( y \ . . . ,  yr) consisted of T independent elements, then the 

joint density could be expressed as a product of the independent densities /(?/*), 

i =  1 . . .  T. Statistical analysis could then proceed in the standard manner de­

tailed in Section 2.3. Unfortunately, due to the presence of temporal dependence, 

observations are correlated and this prevents us from expressing the joint density 

as a product of independent densities. Standard statistical analysis must there­

fore be adjusted to allow for this dependence. On the other hand, if we are able 

to obtain a factorization of the joint density which enables it to be expressed as a 

product of independent terms then analysis could proceed in the manner detailed
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in Section 2.3.

Now the joint density can, as always, be factorized as a product of conditional 

densities
T

/(y) = Il/W p‘)’ (5'1)
i=l

where P* =  (y4_i, 2/*_2 , • • •, 2/1) represents the history of past responses. Within 

a time series setting, it is common to simplify (5.1) by adopting a Markovian 

structure. Under a Markov model of order ip, P t in (5.1) reduces to P t =  

(yt-i, • • •, 2/t-vO* Thus, the joint density can be represented by a product of con­

ditionally independent densities, where conditioning is undertaken on the recent 

past.

When fitting a GLM, one possible way of accounting for the temporal depen­

dence structure described above, is to include some function of the ip previous 

time point responses in the linear predictor. Thus, an autoregressive structure 

of order ip, denoted by AR(ip), is included in the covariates. By adopting this 

approach we can account for the temporal dependence at a specific site. In the 

multi-site case, the same theory can be applied to individual sites. Thus, con­

ditional on the covariates, we are able to obtain independent time points, which 

correspond to clusters in the GEE framework. This idea of using an AR repre­

sentation as a convenient and flexible approximation is well-established in other 

areas e.g. spectral estimation (Priestley, 1981). Also this approach naturally re­

sults in the loss of the first ip responses at each spatial location. However, as we 

are dealing with large data sets this should be of little concern.

Within a GLM framework, inference for AR based covariates can be under­

taken in the same manner as that used for other types of covariate (Fahrmeir and 

Tutz, 2001, Chapter 6 ). Therefore we propose the following approach to select 

the order ip. Begin by fitting a GLM with an AR(1) structure included in the co­

variates. Test the significance of this effect, for example, by using a robust Wald 

test or the new likelihood ratio test outlined in Section 4.2.2, where an allowance
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is made for the spatial dependence. Assuming the AR(1 ) effect is significant, fit 

a second GLM with ip = 2, and test the significance of the second AR effect. 

Continue in this manner until additional AR effects are insignificant or until they 

are too small to make any practical difference. As part of this model selection 

process, various transformations of the AR terms may also be considered. In 

practice, using the same transformation as that used for the link function can 

work well, since the covariates are then on the same scale as the response.

5.3.2 Checking the autoregressive representation

A key assumption of GEEs is that the contributions from distinct clusters to the 

estimating equations (3.2) are uncorrelated. These contributions are expressed 

in terms of model residuals. It is imperative therefore, that having allowed for 

the temporal dependence in the manner described above, the assumption of in­

dependence of residuals across time points (or clusters) is checked. Since Liang 

and Zeger (1986) originally proposed estimating the within cluster correlations 

via Pearson residuals (see Section 3.1.4), it seems sensible to base a check for this 

independence on some function of the Pearson residuals. We propose producing 

a sample autocorrelation function plot of the Pearson residuals, obtained from 

a GLM fit which includes the chosen AR structure. Any temporal dependence 

remaining in the residuals should be evident from this plot.

When there are a large number of spatial locations, a single ACF plot should 

be produced, calculated over all spatial locations. The sample ACF at lag k can 

be calculated by
_  Y L s = i  T , t = i  ( r ts  ~~ r ) { r t + k , s  ~  r )

E f = i  -  f )2
where rts is the Pearson residual corresponding to observation yts, and f  =

(£ ?= i Ef=i n , ) /N .

If the ACF plot shows no evidence of remaining temporal dependence, then a
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GEE approach can be adopted, where time points represent clusters and spatial 

readings correspond to the within cluster measurements. If, however, temporal 

dependence is identified by the ACF plot, then an alternative representation of 

the temporal dependence needs to be found before a GEE approach can be taken.

5.3.3 A lternative approaches

Space-time processes, such as climate, by definition evolve over time. Therefore it 

is likely that observations taken at neighbouring sites at previous time points will 

also be correlated with the current observation at a particular site. To account 

for this additional temporal dependence a more sophisticated approach to that 

outlined above is needed. We propose replacing the standard AR terms with 

‘refined’ AR terms which incorporate a neighbourhood structure. Weights can 

be allocated to each of the neighbours, reflecting the relative importance of each 

neighbour.

Up until now, autoregressive based covariates have been used to account 

for the temporal dependence. An alternative approach would be to adopt a 

moving average (MA) based structure. This would involve using covariates which 

are formed from transformations of past residuals instead of transformations of 

past observations. This approach, however, is more complicated to implement 

and computationally more intensive to fit. Besides, a linear MA process can be 

represented as an infinite order linear AR process (Chatfield, 2003, p. 43), which 

is essentially the approach we take, where all insignificant effects are set to zero. 

For these reasons we favour the AR representation.
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5.4 Modelling spatial structure

Having allowed for the temporal dependence, we now focus on modelling the spa­

tial dependence. Under the approach we adopt, the spatial dependence is allowed 

for via a within cluster working correlation structure. Therefore, within this sec­

tion we investigate GEE working correlation structures which are applicable to 

spatially correlated data.

In Section 3.1.4 we outlined some of the most common working correlation 

structures assumed within GEEs. Of the three structures considered, the AR(1) 

and exchangeable are not appropriate, and the unstructured is parameter in­

tensive, especially when there are many spatial locations. Therefore, below we 

consider alternatives that exploit the spatial nature of the data.

5.4.1 Isotropic structures

Typically, when modelling spatial data, observations recorded at nearby locations 

are more highly correlated than those observations taken further apart. For 

example, when modelling rainfall at a network of sites, typically observations 

taken from nearby sites are highly correlated because the sites are subjected 

to the same weather systems at the same time. It seems sensible therefore, to 

propose a spatial working correlation structure based on the distance between 

pairs of sites, such that pairs of sites the same distance apart are assigned the 

same working correlation value.

The first stage in the implementation of this working correlation structure is 

to calculate the Euclidean distances (u) between all pairs of sites:

u =  y /  (Ax)2 + (Ay)2, (5.3)

where A x  and A y  are respectively the x- and y- separations of the sites.
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The correlation between YtiSl and yt>S2, where sites s\ and s2 are located u 

spatial units apart, can be estimated as follows

(corresponding to ytjS), where the inner summation is over the set of all pairs of 

sites si, s2 located u spatial units apart, and G denotes the number of pairs in

the number of distinct pairwise distances.

For large cluster sizes, particularly when sites are irregularly spaced, the above 

approach can result in the dimension of a  being substantial. One way to reduce

Ripley, 1994). Groups of equal width can be set up to cover the entire range of 

distances and each pair of sites is then allocated to a group. All pairs of sites 

in the same group are then used to calculate a single a u using (5.4) (where a 

tolerance is now placed on u). This technique can reduce the dimension of a  

substantially, the extent of which naturally depends on the width chosen for each 

group.

As mentioned earlier, inter-site correlations will typically decrease with dis­

tance. Therefore, an alternative way of reducing the number of parameters needed 

for specification of a  is to smooth the individual elements au using a spatial cor­

relation function (Albert and McShane, 1995). Various families of correlation 

function have been proposed in the spatial statistics literature (Cressie, 1991). 

Three of the most common are outlined below.

(5.4)

where f t)S denotes the Pearson residual for time point t a t spatial location s

this set. Also the estimation of the dispersion parameter (j> is obtained by (j> = 

{1 / (N  — p)} E f= i ?ts- The working correlation matrix R (a )  is determined 

by the vector a ,  which consists of the elements a u and is of dimension equal to

the dimension of a  is to group together pairs of sites with similar distances as 

opposed to grouping together pairs of sites with identical distances (Venables and

a) P ow ered  E x p o n en tia l: The powered exponential family of correlation func-
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tions is given by

p(u) =  exp { - ( « /tp)*} , (5.5)

where u represents distance and p  and f  are parameters to be estimated. 

This correlation function is defined for p  >  0 and 0 < f  < 2.

b) M a te rn : The Matern family of correlation functions is defined by

p(u) =  {2 ?' 1r ( ^ ) } “ 1 (u/tp)(K((u/(fi), (5.6)

where ip and £ are parameters to be estimated, K^(.) denotes the modified 

Bessel K  function of fractional order f , and T(.) is the gamma function.

c) Spherical: The spherical family of correlation functions is defined by

p(u) = i
1 - |  (u/V) +  i(u /V ) 3 for 0 < u  < <p 

0  for u > ip

where p  is the only parameter to be estimated (ip > 0). This function differs 

from the previous two functions in that it reaches zero within a finite range 

(u =  ip). This family of functions is also less flexible than the previous two 

as it is only a function of a single parameter.

For some processes, the spatial correlation observed at arbitrarily small dis­

tances will be less than one, due mainly to measurement error and very small 

scale effects. In these instances, each of the above correlation functions can be 

extended to include what is termed a ‘nugget effect’, to capture this characteristic.

There are several advantages to smoothing the working correlation matrix 

with one of the correlation functions outlined above. Firstly, in general, conver­

gence of the GEE algorithm is faster. This is because only the one or two pa­

rameters which determine the correlation function need to converge, as opposed 

to each of the individual elements a u. This increased efficiency is particularly 

important when modelling large data sets. A second convergence related benefit
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is that smoothing alleviates the problem of non-convergence associated with the 

estimation of many parameters (Dobson, 2 0 0 2 ). A further advantage of smooth­

ing is that the potential problems of bias associated with the estimation of many 

nuisance parameters is avoided (Liang and Zeger, 1995).

Selecting a structure

If one of the correlation functions outlined above is to be used to parameterize the 

working correlation structure, then a specific structure needs to be selected from 

the available options. To achieve this, all candidate correlation functions should 

be fitted to the Pearson residual correlations obtained from a GLM fit, using 

a non-linear least squares algorithm. The various fits can then be represented 

graphically to ascertain whether any of the candidate functions provides a good 

fit to the correlations. When more than one correlation function provides an 

adequate fit, the function which minimizes the sum of squared errors between the 

fitted correlations and the individual estimates for each pair of sites, should be 

selected. Note that, for the Matern family, estimation of f  is difficult and it is 

usual therefore to carry out a grid search for this parameter, where typical values 

are f  =  1,1.5,2.

Once a structure has been selected, the full GEE algorithm can be imple­

mented, where the non-linear least squares fitting technique can be adopted to 

estimate the spatial correlation function parameters, at each iteration.

5.4.2 Anisotropic structures

The above isotropic structures assume that the correlation between pairs of sites 

is a function of distance only. For many spatial processes, however, the correlation 

between pairs of sites will not only depend on the distance which separates them 

but also upon their orientation. Such processes are known as anisotropic. Within
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this section we focus on the special form of anisotropy known as ‘geometric’.

In the case of an isotropic process the interpair correlations decay at the same 

rate in all directions and therefore the correlation contours are represented by 

circles. In geometric anisotropy, however, as the correlations persist to a greater 

extent in one direction, the correlation contours form ellipses. The spatial process 

is most highly correlated in the direction of the major axis of the ellipse, while 

the correlation is legist in the direction of the minor axis.

A geometrically anisotropic process can be transformed into an isotropic one 

by applying two co-ordinate transformations; the isotropic structures above can 

then be applied under the transformed co-ordinate system. The first transfor­

mation rotates the set of axes such that they are aligned along the major and 

minor axis of the ellipse. The second then rescales the minor axis to equal the 

length of the major axis. Using these transformations and (5.3) we find that the 

transformed distance between pairs of sites is given by

r denotes the anisotropy ratio of the ellipse which is defined to be the length of

direction from the East.

The correlation functions defined in (5.5) to (5.7) can be extended to allow for 

anisotropy. For example, the powered exponential function (5.5) can be extended 

as follows

which is now a function of the four parameters ( p ,£ , r , u ), where <p and £ are 

the powered exponential smoothing parameters, and r and u  are the anisotropy

v! =  y/ (Ax ')2 +  (A y')2, (5.8)

where

(5.9)

minor axis divided through by the length of major axis ( 0  < r  <  1 ) and uj denotes 

the anisotropy angle of the major axis of the ellipse, measured in a anti-clockwise

(5.10)



transformation parameters. All four parameters can be estimated simultaneously 

from the individual inter-site residual correlations during the fitting process, using 

non-linear least squares.

D etecting an anisotropic process

An anisotropic correlation function, such as the one given in (5.10) is clearly more 

complicated than its isotropic counterpart (5.5). Therefore fitting an anisotropic 

structure is only recommended if there is clear evidence against an isotropic 

structure. One way of detecting an anisotropic process was outlined by Cressie 

(1991). For each pair of sites calculate their orientation and their distance. Place 

each pair of sites into one of n groups depending on their orientation. For example, 

if n — 4 then there are four groups each covering 45°, centered on 0°, 45°, 90° 

and 135° (where 0° corresponds to the north and angles are standard compass 

bearings). Within groups, pairs of sites are then grouped according to their 

distance. Correlations in the Pearson residuals, obtained from a GLM fit, are 

then calculated. A separate isotropic correlation function, such as the powered 

exponential (5.5), is then fitted for each of the four orientation groups. Plots 

of the correlations against distance should also be produced for each orientation 

group. If the estimated correlation parameters differ significantly across the four 

orientation groups, and the plots show clear evidence of a different correlation 

decay rate in the various directions, an anisotropic structure such as (5.10) should 

be adopted.

5.5 The one-step estimator

As an alternative to the spatial GEE working correlation structures outlined in 

Section 5.4, a working independence structure could be adopted, corresponding 

to IEEs. The spatial GEE approach has the advantage over IEEs that it ex­
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plicitly allows for the spatial correlation during the fitting process. One of the 

drawbacks of the spatial GEE approach, however, is that it is computationally 

more expensive to fit than its IEE counterpart, which is a very important con­

sideration since large data sets are the focus. A compromise between the two 

approaches is provided by the spatial GEE one-step estimator, which initially fits 

a GLM and then carries out one iteration of the GEE algorithm, using a spatial 

working correlation structure. Thus, it allows for the spatial dependence during 

the fitting process, but is computationally less intensive than the full spatial GEE 

method.

5.6 Summary

Within this chapter we have considered modelling space-time data within a gen­

eralized estimating equations framework. The method proposed has many ap­

pealing properties, for example, it can be used to model both non-stationary and 

geometrically anisotropic processes. The method can also be applied to non­

lattice data, and is computational efficient to implement.

The theory developed in this chapter is applied to a climate data set in Chap­

ter 6 . Both the full GEE algorithm and the one-step estimator are considered.
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Chapter 6

Climate case study

In this chapter we analyse a climate data set within a generalized linear modelling 

framework. This enables us to bring together and demonstrate many of the 

techniques discussed throughout the thesis. In particular, we are able to apply 

the new hypothesis testing technique of Chapter 4 and the generalized estimating 

equations (GEE) methodology of Chapter 5, to a space-time data set. In addition, 

some of the broader issues relating to the application of the GLM methodology 

to climate data are discussed.

Section 6 .1  introduces the data set and outlines the aim of the study. Some 

preliminary analysis of the data is undertaken in Section 6.2 and a GLM ap­

proach to modelling the data is adopted in Section 6.3. An alternative analysis 

is undertaken in Section 6.4, which is based on a GEE approach. The two mod­

elling approaches are compared in Section 6.5 and finally, a summary of the work 

undertaken is provided in Section 6 .6 .
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F ig u re  6.1: Map of study area, with NCEP grid overlaid.

6.1 Introduction

6.1.1 The data set

The data relate to wind speeds and have been taken from the US National Center 

for Environmental Prediction’s (NCEP) reanalysis project (Kalnay et al., 1996). 

The study area is northwestern Europe, which is divided into 120 grid nodes 

within the region 47.5°-65°N and 12.5°W-22.5°E, as can be seen in Figure 6.1. 

Each grid node covers an area of 2.5° latitude x 2.5° longitude and for each 

grid node, instantaneous wind speeds are provided every 6 hours. Here we study 

the maximum of the four daily readings, which is labelled ‘daily maximum wind 

speed’ or DMWS for short. D ata are available for the 41 year period 1958- 

1998. This corresponds to 14,975 observations per location and almost 1.8 million 

observations in total.
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6.1.2 A im  of study

Extreme wind speeds have led to great devastation in recent years, resulting in 

substantial human and economic losses. Insurance companies are particularly in­

terested in being able to model wind speeds as they can incur substantial payouts 

under extreme conditions. This case study has been motivated as a direct result 

of these concerns.

Interest lies in identifying the important factors which affect the wind speed 

process, and understanding how the various physical components interact with 

one another. Generalized linear models provide a framework for building models 

to explain such processes. Also, once a suitable GLM has been identified, it can 

then be used to study extreme events via simulation. W ithin this chapter, we 

focus on the identification of a GLM which is capable of explaining the important 

factors affecting wind speeds within the area under study.

6.2 Preliminary analysis

We begin by carrying out some preliminary graphical analysis on the data. This 

provides an overview of the data, which will help guide the model building process 

later on.

6.2.1 Site specific properties

Figure 6 . 2  shows histograms of the DMWS values at various locations. The top 

left histogram has been produced for the DMWS values at all locations. The three 

other histograms represent the DMWS values at specific locations. All of the 

histograms are positively skewed. Possible candidate distributions for modelling 

such data include the gamma, Weibull and log-normal.
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F ig u re  6.2: Histograms of DMWS values over ail locations and three specific locations, 1958- 
1998.

Figure 6.3 shows the mean of the 14,975 DMWS values for each location. 

There is clear evidence of a land-sea effect, with the values over the sea generally 

being higher than those over land. This is nicely captured in the Baltic Sea where 

the higher values in the sea are surrounded by lower values on the surrounding 

land. The average values also tend to increase as we move in a north-westerly 

direction. However, as most of the north-west locations fall over the sea and most 

of the south-east locations fall over land, it is difficult to separate the land-sea 

effect from the north-west south-east effect. The greatest mean DMWS values 

are found to the west of the region between the latitudes 55°N-60°N. This corre­

sponds to the position of the North Atlantic storm track, which is the path most 

frequently followed by cyclones in the area.

Figure 6.4, which has been produced in a similar fashion to Figure 6.3, shows 

for each site the standard deviation of DMWS values. This standard deviation
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plot follows a very similar pattern to that for the mean. This suggests the stan­

dard deviation increases with the mean, which should result in a fairly constant 

coefficient of variation (standard deviation/mean) over locations. A plot of the 

coefficient of variation has been produced in Figure 6.5 and it can be seen that 

the coefficient of variation is indeed roughly constant across locations, with most 

values between 0.4 and 0.45. This plot suggests that the gamma distribution 

may be appropriate for modelling this data set, as one of the assumptions of the 

gamma distribution within the GLM framework is a constant coefficient of vari­

ation (see Section 2.2). However, note that Figure 6.5 does shows some evidence 

of clustering of similar sized values, for example the grouping of high values over 

Southern Germany.

Figure 6 . 6  shows the maximum DMWS value recorded over the 41 year period 

at each location. A similar pattern is evident to that for the means and standard 

deviations.

6.2.2 Seasonality

Plots of the monthly mean DMWS values by location have been produced in 

Figure 6.7. These provide an insight into seasonality and, as expected, show that 

winter months are on average windier than summer months. Further inspection 

of these plots suggests that seasonality is more pronounced in the north-west of 

the region than in the south-east. The land-sea and north-west south-east effects 

are again evident, along with the North Atlantic storm track.

Figure 6 . 8  shows the standard deviation of DMWS by location for each month 

of the year. A similar pattern to that for the means is evident. In Figure 6.9, 

plots of the monthly coefficient of variation of DMWS by location have been 

produced. Again, the coefficient of variation is fairly constant across locations in 

each of the monthly plots. However, the same clustering of high values occurs
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CD

Figure 6.3: Mean DMWS values (ms l ) over NCEP grid, 1958-1998. Contours

are at 2 ms 1 intervals.

Figure 6.4: Standard deviations of DMWS values (ms l ) over NCEP grid, 1958

1998. Contours are at 1 ms 1 intervals.
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Figure 6.5: Coefficients of variation of DMWS values over NCEP grid, 1958-1998. 

Contours are at intervals of 0.05.

Figure 6.6: Maximum DMWS values (ms x) over NCEP grid, 1958-1998. Con­

tours are at 5 ms-1 intervals.
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in each of the winter months for Southern Germany. In Figure 6.10, plots of the 

monthly overall maximum DMWS value by location have been produced. Again, 

a similar pattern to that for the means and standard deviations is evident.

In Figure 6.11 means and standard deviations for each day of the year (cal­

culated over 41 years) have been plotted for two specific locations; the most north­

westerly location (65°N,12.5°W) and the most south-easterly location (47.5°N,22.5°E). 

Clearly, seasonality is much more evident for the north-westerly location. This 

figure, together with Figure 6.7, suggests the presence of an interaction between 

spatial location and seasonality.

6.2.3 Trend

A time series plot of the annual mean DMWS values, taken over all locations, is 

shown in Figure 6.12. A simple linear regression of annual mean value on year has 

been calculated and the fitted regression line is shown. The slope of the regression 

line is positive and significant at the 5% level, suggesting that DMWS values have 

increased over time. Admittedly, this is a rather crude piece of analysis, however, 

it does highlight the existence of possible long term trends in the data.

Figure 6.13 has been constructed in a similar fashion to Figure 6.12, how­

ever, this time we focus on each location separately. For each location, a linear 

regression of annual mean on year is performed and the gradient of the slope, 

multiplied by ten to obtain a decadal trend, is plotted. Naturally, the values 

above zero represent an increasing trend over time, whereas values below zero 

represent a decreasing trend. Note, however, that no test for the significance 

of these slopes has been undertaken. Clear regional variability is evident from 

this plot. For example, an increasing trend of 0.3ms- 1  per decade has been ex­

perienced over some parts of the North Sea, while a decreasing trend of up to 

0.2ms- 1  per decade has been experienced over parts of continental Europe. These
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Figure 6.7: Monthly mean DMWS values (ms x) over NCEP grid, 1958-1998.

Contours are at 2ms-1 intervals.
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Figure 6.8: Monthly standard deviations of DMWS values (ms *) over NCEP

grid, 1958-1998. Contours are at 1ms-1 intervals.
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Figure 6.9: Monthly coefficients of variation of DMWS values over NCEP grid,

1958-1998. Contours are at intervals of 0.05.
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Figure 6.10: Monthly maximum DMWS values (ms x) over NCEP grid, 1958-

1998. Contours are at 5ms_1 intervals
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Figure 6.11: Daily mean and standard deviation DMWS for most north-westerly location 
(65°N,12.5°W) and most south-easterly location (47.5°N,22.5°E).

extreme trends, equate to approximately a 10% change in mean wind speeds over 

the 41-year study period.

In summary, the preliminary analysis undertaken above has highlighted some 

im portant features of the data, which will help to guide the model fitting process. 

For example, we have identified affects due to seasonality, land-sea, geographical 

location and various interactions. There also appears to be long-term trends in 

the data; these vary regionally in both their magnitude and direction.

6.3 G eneralized linear m odelling approach

We now model the data set using a univariate generalized linear model. W ithin 

this framework, temporal dependence is allowed for by including autoregressive
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Figure 6.12: Time series of annual mean DMWS values (ms over all locations, 1958-1998.

Figure 6.13: Decadal trends in annual mean DMWS values a t each NCEP grid point, 1958- 
1998. Units are average increases in DMWS (ms-1 ) per decade. Contours are a t intervals of 
0 .1 .
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based covariates in the model (see Section 5.3). Spatial dependence, however, is 

not fully accounted for and therefore inference needs to be adjusted to reflect this 

fact. Therefore, this approach corresponds to the use of independence estimating 

equations (IEEs, see Section 3.1.2), where time points correspond to clusters and 

the within cluster dependence is a function of spatial location.

A distribution for the response variable DMWS must be chosen. Figure 6 . 2  

suggests that the distribution chosen should be continuous, non-negative and pos­

itively skewed, and probably the most natural choice of distribution within the 

exponential family is the gamma. Figures 6.5 and 6.9 also suggest a fairly con­

stant coefficient of variation, corresponding to a constant dispersion parameter for 

the gamma model within a GLM context. Historically however, the Weibull dis­

tribution appears to be the most widely used distribution for wind speed analysis 

(Conradsen et al., 1984; Tuller and Brett, 1984). Unfortunately, the Weibull does 

not fit naturally into the exponential family of distributions. However, the GLM 

algorithm may be extended to accommodate its implementation, as detailed in 

Section 2.7.1. A consequence of this extension, is that the Weibull model is com­

putationally more demanding than the gamma model to fit. Within this section 

both the gamma and Weibull models are considered.

6.3.1 Gamma model

a) M odelling strategy

The gamma pdf is given by

/(l/iM i") =  ( ~ )  I/ " - 1  exp ( - “ )  > 0 < y < o o ,  /j,i / > 0 . (6 .1 )

Within a GLM context, the observation yt3, taken at time point t  and spatial 

location s, is assumed to be a realization from a gamma distribution with mean fita 

and constant shape parameter v. A log link between the means fits (t =  1, . . . ,  T,
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s =  1 , . . . ,  S) and their corresponding linear predictors r}t3 =  x^/3 is assumed, to 

ensure that all fitted values are positive. Thus,

log(fts) =  x£(3, (6 .2 )

where x ts are the values of p covariates corresponding to yta and (3 is a p x 1 

vector of regression coefficients to be estimated. Hence, /3j (j =  1, . . .  ,p) measures 

the average multiplicative effect of the j th  covariate upon the response variable 

DMWS.

Each of the candidate covariates under consideration can be assigned to one 

of four broad categories of effects, which are outlined below.

•  Geographical effects: representing systematic regional variability. The 

preliminary analysis undertaken suggested that the following predictors 

should be included in the model: a land-sea indicator (a variable taking 

the value 1 for land and 0  for sea), functions of altitude, functions of lat­

itude and functions of longitude. Altitude, latitude and longitude will be 

represented using Legendre polynomials (Abramowitz and Stegun, 1965). 

One advantage of using a Legendre polynomial representation is that it 

produces predictors that are approximately uncorrelated, thus benefiting 

model selection via Wald tests (Chandler, 1998).

•  Seasonal effects: represented by sine and cosine waves with periods of 1 

year and 6  months. Constant adjustments for individual months are also 

considered.

•  Autocorrelation effects: represented by including previous days DMWS 

values as predictors, in the form log(l +  yt-k,s)• Our experience is that 

this form is more efficient than the more natural log yt-k,s> perhaps because 

there are some values near zero in the data set, which may bias the results 

from a standard log-transform.
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• E x te rn a l effects: indices representing different aspects of global climate. 

Amongst others, indices for hemispheric average annual temperatures, re­

gional sea surface temperatures and teleconnection patterns such as the 

North Atlantic Oscillation (NAO) are considered. Table 6.1 provides a full 

list of the external effects considered, along with their abbreviations and 

brief descriptions. The data for most indices were obtained from the US 

NAOO Network Information Center (NNIC). The exceptions are AO, taken 

from Thompson and Wallace (1998); and SOI, SHT, NHT, NAT, and SAT 

which are from the Climatic Research Unit, University of East Anglia. Here 

we consider annual indices only.

In addition to the main effects outlined above, interactions between covariates 

will also be considered. Some of the external effects, for example, are likely to 

vary with spatial location and season, and therefore the inclusion of interactions 

will be necessary to represent this feature of the data.

W ith such a large complex data set, and vast array of potential covariates, a 

systematic approach to model selection is required. The approach taken here is 

largely drawn from Yan et al. (2002). This approach begins by introducing the 

most obvious covariates into the model first. These ‘obvious’ covariates can be 

identified from the preliminary analysis undertaken in Section 6.2, and include 

geographical, seasonal and autocorrelation effects. Covariates are added into the 

model on a one-by-one basis and inference is performed, at least in part, using 

robust Wald tests. Any terms added and subsequently found to be non-significant 

are discarded. Once all of the obvious main effects have been included, plausible 

interactions are then added into the model and tested. For example, if it is be­

lieved that temporal autocorrelation varies with season and landmark (land-sea 

indicator) then a three-way interaction involving these effects would be consid­

ered, to capture this aspect of the data. Only interactions of up to three factors 

are considered, since higher order interactions tend to be trivial and difficult to
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Index nam e and 
abbreviation In te rp re ta tion  of positive value

Arctic Oscillation (AO) Deeper polar vortex

Asian Summer Pattern 
(AS)

Positive pressure anomalies in summer over 
subtropical Asia and Africa

East Atlantic Pattern 
(EA)

Similar to NAO but with pressure anomaly centers 
shifted southward, except May-August

East Atlantic Jet Pattern 
(EAJ)

Enhanced westerlies over the NE Atlantic and 
Europe, April-August

East Atlantic /  West 
Russia Pattern (EAWR)

Positive pressure anomaly center in the NE Atlantic 
and negative in W Russia, except June-August

East Pacific Pattern (EP) Pronounced NE extension of Pacific Jet stream 
towards NW America, except August-September

North Atlantic 
Oscillation (NAO)

Sharper pressure gradient between Greenland/Iceland 
Low and Subtropical High in the North Atlantic

North Atlantic 
Temperature (NAT) Warmer sea surface within 5°-20°N, 30°-60°W

Northern Hemisphere 
Temperature (NHT) Warmer Northern Hemisphere

North Pacific Pattern 
(NP)

Southward shift and intensification of Pacific Jet, 
March-July

Pacific /  North America 
Pattern (PNA)

Wavy pressure pattern: positive anomalies in 
subtropical Pacific and negative in the Aleutian, 

except June-July
Polar /  Eurasia Pattern 

(POL)
Positive pressure anomalies in the polar and negative 

in Europe and northeastern China, winter

Pacific Transition 
Pattern (PT)

Wavy pressure anomalies from the Gulf of Alaska 
eastward to the Labrador Sea, with a prominent 

positive center over the western US, May-August.
South Atlantic 

Temperature (SAT) Warmer sea surface within 30°W-10°E, 0°-20°S

Scandinavia Pattern 
(SCA)

Positive pressure anomaly sometimes due to blocking 
anticyclones over Scandinavia, except June-July

Southern Hemisphere 
Temperature (SHT) Warmer Southern Hemisphere

Southern Oscillation 
Index (SOI)

Sharper pressure gradient along tropical Pacific 
corresponding to La Nina pattern

Tropics /  N. Hemisphere 
Pattern (TNH)

Mainly positive pressure anomaly centers in western 
and southern North America and negative in 

northeastern North America, November-February
West Pacific Pattern 

(WP)
Enhanced East Asian-Western Pacific Jet, mainly 

winter

Table 6 .1 : Summary of external effects considered. Units for temperatures are
°C. All other indices are dimensionless anomalies.
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interpret. Once a model has been developed which incorporates all of the obvious 

structure in the DMWS field, we then consider adding the external effects. Those 

external effects that, on physical grounds, are believed to have the largest effect 

upon the study region are added first. External effects are time dependent, but 

their effects upon regional wind speeds may be site and season dependent. There­

fore main external effects, along with interactions involving spatial location and 

season are considered. Throughout the model building process, the analysis of 

residual plots plays a vital role in dictating the inclusion of additional covariates. 

For example, when trying to account for spatial variability, mean Pearson resid­

ual plots by spatial location are extremely informative in identifying potential 

improvements to the model.

b) Fitted models 

Initial model

This model was developed using the modelling strategy outlined above, as 

described by Yan et al. (2002). The model contains 38 main effects, which in­

cludes six autoregressive terms, a land-sea indicator, three Legendre polynomials 

for altitude, four Legendre polynomials each for latitude and longitude, annual 

and half-yearly seasonal cycles, a constant adjustment for August, and various 

external effects. In addition, significant two-way and three-way interactions are 

also included. In total, the model consists of 110 predictors and explains 51.5% 

of the variability in the data. The remaining variance is principally due to daily 

weather fluctuations, and is regarded as random in the GLM framework. The 

autoregressive terms are easily the most important influence upon DMWS, based 

on the percentage of variance explained. The fitted gamma distributions have an 

estimated shape parameter, v, of 8.37.

To visualize the structure of the fitted model, covariate effects may be plotted.
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Figure 6.14 depicts the primary dependence of DMWS upon altitude, latitude, 

longitude and season, according to the model. The effects plotted are multiplica­

tive adjustments to an overall mean wind speed. Here we consider main effects 

only and exclude interactions. The results can be summarized as follows:

•  Altitude effect: There is a clear land-sea effect, with the multiplicative 

factor reaching its maximum over the sea (Om altitude). Over the land, at 

low altitudes, say less than 1 0 0 m, the wind remains stronger than average, 

mainly reflecting proximity to the coast. For higher altitudes, the effect is 

nearly constant, with a slight increase with altitude, reflecting a topographic 

effect.

•  Latitude effect: Wind speeds reach a maximum between 55°N and 60°N, 

corresponding to the position of the North Atlantic storm track.

• Longitude effect: The multiplicative factor decreases significantly from west 

to east.

• Seasonal effect: Not surprisingly, the winter is windier than the summer.

Overall, these results are consistent with the preliminary analysis undertaken.

Fifteen of the external effects considered, were found to have a statistically 

significant impact upon DMWS. Of these, the effects of AO, NAO, NHT, EA, 

NAT and SAT varied with site and season; the effects of SHT, EAJ, PNA, SOI, 

EAWR and EP varied with site only; and the effects of SCA, TNH and NP were 

constant. The North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) 

were identified as being the two most important external effects, in terms of their 

impact upon DMWS. This is not surprising, since they are known to be the 

large-scale circulation patterns most directly affecting the region under study. A 

strong AO/NAO year corresponds to strong DMWS almost everywhere in the 

region, except in the most southern and eastern part of the region in summer.
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Figure 6.14: Average seasonal and regional variation in DMWS, according to the 

gamma GLM.

The long-term enhancement of DMWS over the ocean and most of the British 

Isles and Scandinavia is closely related to enhanced AO and NAO during the last 

few decades. Global warming also appears to have impacted upon DMWS. In 

particular, Southern Hemisphere temperature (SHT) exhibits a significant effect 

on the distinct trends in DMWS shown in Figure 6.13. A possible explanation is 

that the steady warming in the Southern Hemisphere during the last few decades 

may have forces the North Atlantic storm track to shift in such a way that storms 

are enhanced towards the northwestern oceanic area, but weakened throughout 

most of continental Europe. In summary, by forming interactions between the 

external effects, geographical effects and seasonal effects we have been able to 

capture the regional trends in DMWS identified in the preliminary analysis.

Further details regarding the initial gamma GLM can be found in Yan et al.
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(2002).

M odified model

The initial model contains six autocorrelation main effects of the form

log(l +  DMWS value t day’s ago at same site) (6.3)

where t =  1 , 2 , . . . ,  6 . However, it seems likely that not only will DMWS values 

depend upon previous values at the same site but also on previous values at a 

neighbourhood of sites. Therefore we propose replacing the six predictors defined 

in (6.3) by six autoregressive terms which are weighted averages of previous values 

at a neighbourhood of sites.

The chosen neighbourhood structure can be seen in Figure 6.15. As well 

as considering the same site (SS) itself on previous days, the 8  surrounding 

neighbours (N1-N8) on previous days are also considered. A weighting system 

based on distance is adopted, where respectively wss  and Wi (i =  1 , . . . ,  8 ) de­

note the weights allocated to the same site and neighbouring site N i , subject to 

wss +  S i =i ^  = 1. Under this scheme, the weight l  — wss  is divided amongst the 

eight neighbours based on their distance from SS. Thus Wi oc d j l (i =  1 , . . . , 8 ), 

where d* denotes the distance from SS. Under this criterion, and assuming the 

sites form a regular grid, we have the weighting system given in Table 6.2. In 

practice, the sites do not form a regular grid as they are located on a globe, 

however, it is felt that the above approximation was sufficient. Also note that 

an appropriate weighting correction needs to be applied to sites which are lo­

cated on the boundary of the region and therefore do not have eight surrounding 

neighbours.

To implement the weighting scheme outlined above, a value of w$s must be 

chosen. To achieve this a grid search was undertaken on the value of wss • A 

series of models were fitted in which the value of wss  was varied. Table 6.3 shows
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Figure 6.15: Neighbourhood structure for autoregressive covariates. The same site on previ­

ous days is labelled SS, and the eight surrounding neighbours are labelled N1-N8

Site Weight

Same site

Nearest neighbours (sites N1,N2,N3,N4) 

Furthest neighbours (sites N5,N6,N7,N8)

wss

l —W s s  
4 + \/8

1—w s s  
My/2+1)

Table 6.2: Neighbourhood weighting scheme adopted for autoregressive covariates.

the performance of the various values of wss in terms of the independence log- 

likelihood and R 2. It can be seen that the best weighting system corresponds to 

wss  =  0-3, as this maximises both the independence log-likelihood and R 2. Also 

note tha t this weighting scheme produces a far superior fit to tha t obtained from 

the original autoregressive representation defined in (6.3), where wss  =  1*

Having assigned the same site a weighting of 0.3, this results in a weighting 

for the nearest neighbours of 0.1025 and a weighting for the furthest neighbours 

of 0.0725. We therefore take the initial model and replace the six autoregressive
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WSS Independence log-likelihood R 2

0 . 1 0 -664,373 52.85

0.15 -662,419 52.94

0 . 2 0 -661,162 53.00

0.25 -660,521 53.03

0.30 -660,423 53.04

0.35 -660,800 53.01

0.50 -664,236 52.84

0.75 -675,145 52.27

1 . 0 0 -689,721 51.51

Table 6.3: Grid search for the weight w s s  in the autoregressive neighbourhood.

predictors defined in (6.3) with predictors

log[l +  0.3(DMWS value t days ago at same site)
4

+  0.1025(y^ DMWS value t days ago at site Ni)
*=i

8

+  0 .0 7 2 5 (^  DMWS value t days ago at site Ni)], (6.4)
t=5

for t  =  1, . . .  , 6 . This model is labelled the modified model. The results from 

fitting the modified gamma GLM can be seen in Appendix A.

For the remainder of this chapter, whenever we refer to the ‘gamma GLM’ 

we mean the modified gamma GLM of this section.

c) M odel checking

The fit of the gamma GLM is now investigated through the use of residual plots. 

Pearson residuals (see Section 2.6) are initially used, which for the gamma dis­
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tribution are defined as
m(P) Vts ~  fj'ts (a
rts =  —  ------• (6.5)

f̂ ta
Typically, when producing residual plots, individual residuals are plotted, for ex­

ample against the fitted values, to check for systematic structure in the residuals. 

W ith 1.8 million observations this approach is impractical, and therefore as an 

alternative we group together observations and analyse mean Pearson residuals.

In Figure 6.16 mean monthly Pearson residuals have been plotted, to check 

for unexplained seasonal structure. Also shown are approximate 95% confidence 

intervals, which allow for spatial dependence and have been calculated as detailed 

in Section 4.1 of W heater et al. (2000). It can be seen that one of the residuals 

is marginally significant. Overall, however, this plot looks fine as no systematic 

structure is evident. In Figure 6.17, mean annual Pearson residuals have been 

plotted, to check for unexplained trends. Again, no systematic structure is evi­

dent. Other Pearson residual plots were produced which are not presented here, 

such as mean residual by spatial location, and all results suggested an adequate 

fit.

Finally, we now check our distributional assumptions and investigate whether 

the DMWS values are well represented by gamma densities. To achieve this we 

introduce Anscombe residuals, which for the gamma distribution are defined by

/  \  1/3

r^ = ( — )  • (6 -6 )

Theoretically, the distribution of these residuals should be approximately stan­

dard normal, if the studied data are gamma distributed (McCullagh and Nelder, 

1989, Section 2.4.2). Therefore, a check on our gamma distribution assumption 

can be performed by producing a normal quantile-quantile plot of the Anscombe 

residuals from the model. This plot is shown in Figure 6.18, and since most 

points fall on the straight line, this indicates a good fit, despite there being a 

slight departure from the line in the upper tail.
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Figure 6 .16: Plot of monthly Pearson residuals for gamma GLM. Dotted lines are approximate 
95% confidence intervals.

1
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Figure 6.17: Plot of annual Pearson residuals for gamma GLM. D otted lines are approximate 
95% confidence intervals.
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Figure 6.18: Normal quantile plot of residuals from gamma GLM.

Overall, the residual analysis presented in this section suggests tha t the 

gamma GLM provides a good fit to the DMWS data. No systematic struc­

ture in the Pearson residuals has been identified and the gamma distributional 

assumption appears reasonable.

d) A pp lication  of th e  new hypothesis te stin g  technique

We now apply the new adjusted independence likelihood ratio test, derived in 

Chapter 4, to this data set. This enables us to apply the new test in a space­

time context and to consider its performance relative to other techniques. In this 

instance we compare it with the independence likelihood ratio test and the robust 

Wald test.

One of the external factors included in the gamma GLM is the Northern Hemi­

sphere Temperature (NHT). In fact, including interactions this effect is present 

in seven of the predictors in the model. For illustration, we now consider testing
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Independence log-likelihood 

ratio test statistic

New adjusted log-likelihood 

ratio test statistic

Robust Wald 

test statistic

236.6 30.0 27.6

Table 6.4: Calculated test statistics for testing the NHT effects.

the statistical significance of these seven predictors using the methods outlined 

above. Thus, we test the null hypothesis Ho : P N =  0, where P N corresponds to 

the seven effects involving NHT. The three calculated test statistics are given in 

Table 6.4. Comparing these test statistics to a x? distribution, we conclude that 

all tests provide strong evidence against i/o- The independence log-likelihood 

test, however, is calculated on the incorrect assumption of independent data. 

The new method corrects this test statistic for the dependence, and we can see 

that this correction is considerable. Finally, in this instance, the new method 

provides very similar results to that of the robust Wald test, however, in general, 

we prefer to base inference on the new method since it is better able to allow for 

correlated predictors (see Section 4.4).

6.3.2 W eibull model

Within a generalized linear modelling framework, the gamma distribution is the 

natural choice for modelling continuous, non-negative and positively skewed data, 

such as wind speeds. The most prominent distribution within the existing liter­

ature on wind speeds, however, is the Weibull. The motivation for this appears 

to be the observation that if the u and v components of wind velocity can be 

modelled by a Gaussian process, then the wind speed (=  y/u2 + v2) will follow a 

Rayleigh distribution, which is a special case of a Weibull distribution. Of course, 

if the above Gaussian assumption for the wind velocity components is misplaced, 

so to is the assumption that wind speeds follow a Weibull distribution. Never­
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theless, the Weibull is sufficiently established within the wind speed literature 

to warrant our attention. Therefore within this section, as an alternative to the 

gamma GLM of Section 6.3.1, we assume that all DMWS values are drawn from 

Weibull distributions.

The Weibull pdf is given by

The theory outlined in Section 2.7.1 was adopted to fit a Weibull GLM to 

the DMWS data. As detailed earlier, this approach involves extending the GLM 

algorithm, by fitting a series of exponential models for fixed shape parameter a. 

One of the major drawbacks of this method, in comparison to the gamma GLM, 

is that it is considerably more expensive to implement computationally, due to 

the extra level of iteration associated with the estimation of a. Due to this, it 

would have been extremely time consuming to build a Weibull model up from 

scratch, by carrying out a model selection process similar to that undertaken 

for the gamma model. The approach we adopted therefore was to fit a single 

Weibull model, containing the same 110 predictors as the modified gamma GLM 

of Section 6.3.1. This approach has the obvious benefit that since both the final 

Weibull and gamma models contain the same predictors, a direct comparison of 

the two models is relatively straightforward.

While the gamma GLM took slightly less than one hour to fit on a mod­

ern 3GHz pc, the equivalent Weibull GLM took more than three times as long. 

The Weibull model explains 52.4% of the variance in the data, which compares 

with the value of 53.0% for the equivalent gamma model. This suggests that 

the gamma model provides a slightly better fit to the data, however, it could be

A, a  > 0, (6.7)

where

E(F) =  A1/o r  ( l  +  i )  and Var(F) =  A2/q [ r  ( l  + -  T2 ( l  +
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argued tha t since the covariate selection process was based on the gamma model, 

then this provides the gamma model with an unfair advantage. A comparison of 

individual predictors in the two models was also undertaken and it was found that 

the estimated effect of each predictor was very similar for both models. There­

fore the conclusions drawn from the gamma model of Section 6.3.1, regarding 

the relationships between covariates and wind speeds, also apply to the Weibull 

model. Hence, the conclusions drawn, in general, appear to be insensitive to 

the choice of distribution. Pearson residual analysis was also undertaken for the 

Weibull model to check for any systematic structure remaining in the residuals. 

The results obtained were very similar to those presented in Section 6.3.1 for the 

gamma model and are therefore not presented here.

We now attem pt to compare the shape of the fitted gamma and Weibull dis­

tributions. The problem we have, however, is that a different distribution is fitted 

to each observation under each distribution, making a direct comparison difficult. 

By fixing the mean, however, we are able to gain an insight into the differences in 

the shapes of the two distributions. Figure 6.19 illustrates the shapes of the fitted 

gamma and Weibull distributions with mean 1 , where naturally each of the shape 

parameters have been fixed at their constant fitted value. The plot on the left 

hand side compares the two density functions and it is evident that the shapes 

are very similar, although the Weibull has a slightly larger spread in its central 

range, and the gamma has a heavier upper tail. This difference in the upper tail 

is also evident in the quantile-quantile plot located in the right hand window of 

Figure 6.19. Here, corresponding percentage points (0% point to 99.99% point) 

of each distribution have been plotted against each other, and the straight line 

corresponds to perfect agreement. The heavier upper tail of the gamma distribu­

tion is clearly evident; the largest percentile plotted for the Weibull distribution is 

approximately 2.2, whereas for the gamma distribution it is nearly 3. Naturally, 

if these two models were used to simulate extremes, the results obtained would 

be quite different, even though their mean structures are similar.
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Figure 6.19: Comparison of the shape 

tions.
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For the Weibull fit, the final estimate of the shape param eter a  was 3.19, 

which is considerably larger than the value of 2 consistent with a Rayleigh distri­

bution. This therefore casts doubt upon the validity of the historic perspective 

tha t wind speeds follow a Rayleigh distribution. A normal quantile-quantile plot 

of Anscombe residuals was also produced for the Weibull model, equivalent in 

form to the gamma model plot shown in Figure 6.18. Whereas the gamma model 

quantile-quantile plot generally looked fine, the Weibull model plot showed more 

deviation about the straight line. This suggests tha t a gamma distributional as­

sumption is more appropriate for the DMWS values than a Weibull assumption. 

Note tha t since the gamma quantile-quantile plot of Anscombe residuals looked 

fine and Figure 6.19 shows tha t the quantiles of the fitted Weibull and gamma 

distributions are quite different, i t ’s not surprising tha t the Anscombe residual 

quantile-quantile plot for the Weibull model suggests the Weibull is inferior to 

the gamma.

Overall, gamma distributions appear to provide a better fit to the DMWS 

values than Weibull distributions. In addition, the gamma model has a sub­
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stantial computational advantage over the Weibull model. For these reasons, we 

prefer the gamma model, and therefore we do not consider the Weibull model 

any further.

6.4 Generalized estimating equations approach

In Section 6.3 the DMWS data were modelled using a GLM, effectively assuming 

that the responses are independent given the covariates in the model. Temporal 

dependence was accounted for by including autoregressive effects in the model, 

and spatial dependence through geographical effects such as longitude, latitude 

and altitude. Including a neighbourhood structure in the autoregressive terms 

also helps to account for spatial dependence. Inevitably though, additional spatial 

dependence is still present, as a result of spatial locations close together being 

subjected to the same weather systems at the same time. To account for this 

additional spatial dependence in the response we apply the GEE methodology 

outlined in Chapter 5. Each day represents a cluster and within each cluster 

there are 1 2 0  potentially correlated responses, corresponding to the 1 2 0  spatial 

locations.

Throughout this section we aim to build a GEE using an identical set of 

covariates to that of the modified gamma GLM of Section 6.3. This approach is 

adopted to enable a comparison of the respective fits to be undertaken.

Before a GEE is fitted to the data set we must first decide upon a relationship 

between the marginal mean and variance. From the analysis already undertaken 

within this chapter, it seems plausible to assume that the marginal distribution 

of DMWS values, found at each site, follows a gamma distribution. The following 

standard link between the marginal mean and variance then follows

var(yts) =
v
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Figure 6.20: Plot of sample autocorrelation function of Pearson residuals from gamma GLM. 

where v is the common shape parameter.

6.4.1 Allowing for temporal dependence

To enable the GEE methodology to be applied we must be able to assume inde­

pendent time points, conditional on the covariates. As detailed in Section 5.3, to 

investigate this we plot the autocorrelation function of the Pearson residuals from 

the gamma GLM fit, detailed in Section 6.3. This ACF is shown in Figure 6.20, 

and it does appear that the temporal dependence has been accounted for via the 

covariates. Therefore we are able to continue with the GEE approach.

6.4.2 Allowing for spatial dependence

A structure must be chosen for the working correlation m atrix R (a ) ,  and to 

achieve this we investigate the pairwise correlations in the Pearson residuals



obtained from the gamma GLM fit. One possible structure would be the un­

structured form of R (a )  (see Section 3.1.4). The problem with this structure, 

however, is that since the clusters are of size 120, the parameter vector a  has 7140 

(=  120(120—1)/2) elements to be estimated, which is clearly excessive. Therefore 

we consider modelling the working correlation structure using an isotropic spatial 

correlation function as detailed in Section 5.4.1.

a) Calculating the distance between two sites

To apply this working correlation structure, the distance between all pairs of sites 

must be calculated. A very crude approximation to these distances is given by 

their Euclidean distance measured in degrees. The problem with this method, 

however, is that since the earth is not flat, pairs of sites which are separated 

by x° to the north of the region are, in general, closer than two sites which are 

separated by x° to the south of the region. We therefore decided to calculate the 

distance between all pairs of sites in nautical miles. From Roy and Clarke (1988), 

the distance (u), in nautical miles, between two sites at locations (Lati,Longi)  

and (Lat2}Long2), where latitude and longitude are measured in degrees, is given 

by

60 x 180 _! f • ( T + n \  • ( T + n \u = ---- -  x cos [sin (L ai, x —  J sin ( ^ 2  x —  j

+  cos (Lot  1 x cos (Lat2 x  cos {[Long2 -  Longi) x  ^ j j ) ] 6 -8 )

The distance between all pairs of sites was calculated using (6 .8 ) and then 

pairs of sites the same distance apart were grouped together. Correlations in 

Pearson residuals are then calculated using (5.4).
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b) Selecting a correlation function

We now turn to the question of selecting the most appropriate spatial correla­

tion function for this particular data set. To help answer this question we fit 

various correlation functions to the Pearson residuals from the gamma GLM fit. 

The correlation functions we consider are those introduced in Section 5.4.1, these 

being the 2 -parameter powered exponential, the 1 -parameter spherical and the 

2-parameter Matern correlation functions. These were fitted to the correlations 

using a non-linear regression routine. Figure 6.21 shows the fitted powered expo­

nential function, which fits the observed correlations very well. Figure 6.22 shows 

the fitted spherical correlation function. Clearly, this function does not provide 

a good fit to the observed correlations; this is probably due to the inflexibility of 

this 1 -parameter family (see Section 5.4.1). Finally, Figure 6.23 shows the fitted 

Matern correlation functions. Within this plot there are three separate fits. This 

is because only the parameter is estimated, while the £ parameter is fixed at one 

of three values £ =  1 ,1.5,2, resulting in the three separate fits. From studying 

this plot we see that setting £ =  1 or £ =  1.5 appears to provide the best fit.

To decide between the powered exponential and the Matern functions, the 

sum of squared errors for each fit has been calculated and these values, along 

with the parameter estimates, can be seen in Table 6.5. The best fitting Matern 

function is obtained when £ =  1. The powered exponential function, however, 

is marginally superior to this Matern function, according to the sum of squared 

errors criterion. We therefore select the 2 -parameter powered exponential model.

c) Testing for anisotropy

We now investigate for evidence of anisotropy. To achieve this we proceed in 

the manner detailed in Section 5.4.2. Thus, each pair of sites is allocated to 

one of four orientation groups. These groups are centered on 0°, 45°, 90° and
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Figure 6.21: Powered exponential correlation function fit to the pairwise correlations in 
Pearson residuals from the gamma GLM.
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Figure 6.22: Spherical correlation function fit to the pairwise correlations in Pearson residuals 
from the gamma GLM.
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Figure 6.23: M atern correlation function fits to  the pairwise correlations in Pearson residuals 
from the gamma GLM.

135°, with each group covering 45° (where 0° corresponds to the north and an­

gles are standard compass bearings). W ithin groups, inter-site Pearson residual 

correlations are calculated over the range of the inter-site distances. For each of 

the four groups a separate 2-parameter isotropic powered exponential correlation 

function is fitted to the pairwise correlations. These individual fits can be seen 

in Figure 6.24. The powered exponential correlation function fits the correlations 

well in all directions. In Figure 6.25, the four separate fitted correlation functions 

have been overlaid onto the same plot. This shows tha t the correlation decay 

rate varies with direction, with the angle of 45° possessing the greatest amount 

of correlation. This plot suggests some evidence of anisotropy, with the strongest 

correlation present in the south-west north-east direction. We therefore adopt 

the four parameter powered anisotropic exponential correlation function given by 

(5.10).
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Figure 6.24: Powered exponential correlation function fits to the pairwise correlations in 
Pearson residuals from the gamma GLM. The four separate plots correspond to the directions 
0°, 45°, 90° and 135°.
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Figure 6.25: Powered exponential correlation function fits to the pairwise correlations in 
Pearson residuals from the gamma GLM, all four directions.
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Correlation function f Sum of squared errors

Exponential 268.03 1.34 0.159

Spherical 984.09 - 1 1 . 2 0

Matern 240.83 0.50 0.649

Matern 158.09 1 .0 0 0.166

Matern 124.96 1.50 0.180

Matern 106.23 2 . 0 0 0.252

Table 6.5: Performance of the correlation functions in terms of sum of squared errors. Pa­

rameter estimates are also given.

6.4.3 R esults

Having identified a suitable spatial working correlation structure, the modified 

GLM of Section 6.3 was refitted using a GEE approach. A four parameter 

anisotropic exponential correlation function was fitted to the Pearson residuals, 

using non-linear regression, each time the R  matrix was re-estimated. In total 

the R  matrix was estimated 3 times before the parameters of the anisotropic 

powered exponential correlation function converged, resulting in the whole algo­

rithm converging. The final estimate obtained for the anisotropy ratio parameter 

(r in (5.10)) was statistically smaller than 1 and therefore supported our decision 

to model the spatial correlation using an anisotropic structure. When compared 

to the gamma GLM of Section 6.3.1, the spatial GEE took more than five times 

longer to converge to its final parameter estimates, highlighting the computational 

drawback of this method. The final estimated covariate effects and corresponding 

robust standard errors (see Section 3.1.2) obtained from fitting the spatial GEE 

can be seen in Appendix B.

In general, the overall fit obtained from the spatial GEE method was similar 

to the gamma GLM of Section 6.3.1. More will be said about this in Section 6.5.
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Due to the similarity of the fits, we do not present any model checking results 

here since the overall message is similar to that of the gamma GLM.

6.4.4 The one-step estim ator

As discussed earlier, one of the drawbacks of the GEE method is that it is com­

putationally more expensive to fit when compared with the GLM, due to the 

extra level of iteration involved in estimating the working correlation matrix R. 

Naturally, increasing the number of predictors or the number of observations only 

adds to the problem.

To investigate whether the one-step estimator is a viable option for this par­

ticular data set, we consider the convergence properties of the full spatial GEE 

algorithm implemented above. The GEE fit detailed above began with the R  

matrix set equal to the identity matrix. After this independence fit the R  matrix 

needed to be reestimated 3 more times before the algorithm converged. At each 

of these 4 iterations of the R  matrix we monitor the convergence of 4 separate 

quantities, these being, 1 ) the 1 1 0 -element parameter vector /3, 2 ) the variance- 

covariance matrix of 0  denoted by Q =  F - 1V F - 1  , 3) the anisotropic powered 

exponential correlation function 4-parameter vector a  and 4) the dispersion pa­

rameter </>. At the end of each R  matrix iteration we compare the estimates of 

these four quantities with their estimate at the previous R  iteration. To achieve 

this we introduce the following 4 statistics, one for each of the 4 quantities.

1 .

where 0® denotes the estimate of 0j at the end of the ith  R  iteration.
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q T  = \
Q\3̂3

110

where denotes the estimate of the j th  diagonal element of the matrix

Q at the end of the zth R  iteration.

3.

(0  a y  =
z U

where a ^  denotes the estimate of the j th  element of the 4-parameter vector 

which determines the working correlation structure at the end of the zth R  

iteration.

^ ( 0  _  abs (0 b+*) -  0 b)) 

where 0 b) denotes the estimate of 0 at the end of the zth R  iteration.

The results from calculating these statistics can be seen in Table 6 .6 . Note 

that column i =  1 corresponds to the comparison of the gamma GLM estimates 

with the one-step estimates. Some of these values are difficult to interpret since 

one or two of the elements explode due to estimates near zero. The most im­

portant feature we can take from these values therefore is the sharp decrease in 

magnitude of the values across iterations. This suggests that the bulk of the 

convergence effort takes place early on in the iteration process.

Another way to monitor convergence is to calculate the Mahalanobis distance 

between the estimate of ft at each R  iteration and the final GEE ft estimate, under 

the final ft variance-covariance structure. The Mahalanobis distance at the ith 

R  iteration is given by

=  (0 «  -  p W f C E ^ ) - 1^  - 0 (F)),
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i= l i=2 i=3

368.7 65.9 3.8

54.3 2.0 0.2

ag> 18.0 1.7 0.0

1.6 0.2 0.0

Table 6.6: Convergence properties of the full spatial GEE algorithm. Values have been 

multiplied by 100 to represent average percentage change per vector element.

i AfW

1 40,543.01

2 105.97

3 0.64

Table 6.7: Mahalanobis distance for the spatial GEE.

where is the estimate of 0  at the ith  R  iteration, is the final estimate of 

P under the spatial GEE and is the final estimate of the variance-covariance 

matrix.

The results from calculating these Mahalanobis distances can be seen in Ta­

ble 6.7. Again, note the sharp decrease in the values early on in the iteration 

process, suggesting that the GEE one-step estimator should provide us with sim­

ilar results to that of the full GEE algorithm, for considerably less computational 

cost.

Finally, we graphically compare the coefficient estimates and corresponding 

robust t-values obtained from the full GEE algorithm and the one step algorithm.
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In Figure 6.26 the two sets of coefficient estimates are plotted against each other. 

Since all points lie close to the line of perfect agreement, this suggests that the one- 

step estimator produces very similar results to the full algorithm. In Figure 6.27 

the corresponding robust t-values are plotted against each other and again the 

results are very similar, suggesting that inference carried out on the one-step 

estimator would produce very similar results to that of the full GEE algorithm. 

Overall, it is felt that the GEE one-step estimator offers a realistic alternative to 

the full GEE algorithm in this instance.

6.5 Comparison of approaches

W ithin this section we compare the gamma GLM and spatial GEE fits discussed 

in Sections 6.3 and 6.4. Table 6 . 8  lists various models along with their R 2 values. 

There are two different models in terms of predictors: the initial model which 

contains the 110 predictors detailed in Yan et al. (2002) and the modified model 

which replaces the 6  autoregressive terms in the initial model with the neighbour­

hood autoregressive terms detailed in Section 6.3. For each of these two different 

sets of predictors the gamma GLM and spatial GEE are compared. Focusing on 

the initial model, the best performing model, in terms of R 2, is the gamma GLM, 

with the spatial GEE performing substantially worse. Once we introduce the 

autoregressive neighbourhood structure we see that both the gamma GLM and 

spatial GEE gain in terms of i?2, however, the spatial GEE gains most. The spa­

tial GEE has benefited significantly from the additional modelling of the spatial 

dependence within the predictors. This may be related to the findings of Pepe 

and Anderson (1994), who found that biased estimates can be obtained when 

responses within clusters depend on the covariates of other responses within the 

same cluster.

An alternative method of comparing the gamma GLM and spatial GEE over-
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Figure 6.26: Comparison of coefficient estimates obtained from the full GEE algorithm and 
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M odel R 2(%)

In itia l m odel

GLM 

Spatial GEE

51.5

46.3

M odified  m odel

GLM 

Spatial GEE

53.0

51.0

Table 6.8: Comparison of gamma GLM and spatial GEE in terms of R 2.

all fits is provided by Pan (2001a). Here the author considers an extension of 

Akaike Information Criterion (AIC) for selecting the most appropriate working 

correlation structure within a GEE context. Now since the gamma GLM is equiv­

alent to independence estimating equations in this context, we are able to apply 

this theory. Pan’s selection criterion is called QIC and takes the form

QIC = - 2 1 0 )  +  2trace{Ar0)~1K0)},  (6.9)

where 1 0 )  denotes the independence log-likelihood function evaluated at the 

GEE estimate, and Af0)  and 110) correspond to the naive and robust vari­

ance estimates (see Section 3.1.2). The model which minimizes QIC is preferred. 

Notice that the closer the working covariance structure is to the true covariance 

structure, the smaller is the penalty term.

The results of calculating QIC for the gamma GLM and spatial GEE are 

given in Table 6.9. As expected, the penalty term is much smaller under the 

spatial GEE. However, the independence log-likelihood function is significantly 

smaller under the spatial GEE and this results in QIC selecting the gamma GLM 

over the spatial GEE.

In Figure 6.28 the gamma GLM coefficient estimates have been plotted against 

the spatial GEE coefficient estimates. There does appear to be a fair amount of

143



M odel In d ep en d en ce  log-likelihood P e n a lty  te rm Q IC

Gamma GLM -660,423 1856 1,322,702

Spatial GEE -690,359 2 1 1 1,380,929

Table 6.9: Comparison of gamma GLM and spatial GEE in terms of QIC.

deviation from the line of perfect agreement, suggesting that the estimates ob­

tained by the two methods are reasonably different. Figure 6.29 compares the 

corresponding robust t-values. Once again there does appear to be a fair amount 

of scatter, which suggests that inference based on the different methods could 

lead to different conclusions.

The boxplots in Figure 6.30 provide us with an insight into the differences 

between the fitted values under the different fitting methods. For each observation 

in the data set, the difference between the gamma GLM and spatial GEE fitted 

values has been calculated. These differences have then been grouped according 

to their gamma GLM fitted values. For each of these groups a boxplot of the 

differences has been produced. The median difference is negative for the two 

left-most boxplots, and is positive for the other 4 boxplots. Therefore the lowest 

gamma GLM fitted values are, on average, smaller than the lowest spatial GEE 

fitted values, and the larger gamma GLM fitted values exceed those for the spatial 

GEE. As the GLM appears to generate more fitted values in both tails of the 

distribution this will have a substantial impact on its ability to simulate extremes.

6.6 Summary

Within this chapter a generalized linear modelling approach has been adopted 

to model daily maximum wind speeds over northwestern Europe. The GLM 

framework has enabled us to explain various patterns in the data and identify
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factors which effect wind speed within the region under study.

This case study has also enabled us to apply the new techniques developed 

throughout the thesis, to a space-time data set. A comparison of the results ob­

tained from employing different estimation techniques has also been undertaken. 

When comparing the gamma GLM and spatial GEE it was discovered that dif­

ference did exist in parameter estimates and robust t-values, which could impact 

on any conclusions drawn. Also, it was found tha t the GEE one-step estimator 

provided very similar results to the full algorithm in this case. Based on these 

results there would be a strong argument in favour of employing the one-step 

estimator over the full algorithm for large data sets.
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Chapter 7

Conclusions and further work

This thesis has focused on the application of generalized linear models to depen­

dent response data. Having covered mostly standard GLM theory in Chapter 2, 

we then proceeded to consider extensions of the standard theory for cluster cor­

related data in Chapter 3. Chapter 4 then built on the ideas discussed in the 

previous chapters to propose a new hypothesis testing technique, appropriate for 

the application of GLMs to cluster correlated data. This method essentially ad­

justs the independence log-likelihood ratio test statistic to allow for the within 

cluster dependence. Using simulations the performance of the new method was 

compared with established techniques, and it was found that in all cases consid­

ered, the new method did at least as well as the established techniques considered. 

In some instances, the performance of the new test was superior in terms of power. 

For example, the new method outperformed Rotnitzky and Jewell’s likelihood ra­

tio test, when testing more than one parameter. Also, robust Wald tests were 

outperformed when correlated predictors were present, and only a subset of these 

were being tested.

In Chapter 5 we then proposed applying generalized estimating equations to 

space-time data. Under this approach, the temporal dependence was accounted
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for via autoregressive covariates and the spatial dependence was modelled using 

working correlation structures of a spatial nature. This method has many appeal­

ing properties, for example, it can be used to model geometrically anisotropic and 

non-stationary processes. The method can also be applied to non-lattice data, 

and is computational efficient to implement, relative to other existing space-time 

approaches. Also, within Chapter 5 the application of the GEE one-step estima­

tor was proposed within a large data context, to ease computational concerns.

Chapter 6  then considered a climate case study, involving wind speeds over 

northwestern Europe. Here the GLM methodology was applied to explore and 

identify important factors which impact upon wind speeds. This case study also 

enabled us to apply many of the techniques proposed earlier. In particular, we 

were able to apply, the new hypothesis testing technique, the space-time GEE 

approach, the GEE one-step estimator, in addition to Weibull and gamma GLMs. 

Comparisons of the various approaches were also undertaken. While the full GEE 

algorithm and the one-step algorithm appear to produce very similar results, 

the parameter estimates and standard errors obtained from the GEE and GLM 

approaches appeared to differ.

With regards to further work, there are several areas in which the work under­

taken could be developed further. The first of these relates to the new hypothesis 

testing technique introduced in Chapter 4. Within this chapter, we considered 

the geometry of the test through specific examples and investigated the perfor­

mance of the test using simulations. However, to gain a greater understanding of 

the test, more work needs be undertaken. This further work could take the form 

of additional simulations, formulated within other space-time settings. Varying 

the simulation parameters in relation to factors such as the design of the clusters, 

the extent and nature of the within cluster correlation and the covariate design 

would provide further insight into the performance of the test.

A second possible extension involves carrying out further analysis on esti­
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mator comparison, for the various estimating techniques studied. In Chapter 6 , 

the estimates obtained from the spatial GEE and gamma GLM differed signif­

icantly. This was somewhat surprising, since due to the sheer size of the data 

set, it was expected that asymptotic theory would take effect and result in much 

closer estimates. A possible reason for this discrepancy is tha t the asymptotic 

theory for the GEE approach is breaking down and biased estimates are being 

obtained. This claim could be investigated through theoretical work and sim­

ulations. In addition to the above, a full investigation into the performance of 

the GEE one-step algorithm, in comparison with the full GEE algorithm, could 

be undertaken. Since we are operating within a large data context, significant 

interest lies in trying to identify methods which provide comparable results for 

less computational effort. This work could also involve simulations.
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Appendix A

Gamma GLM coefficient 

estim ates

Main effects: Coefficient Robust
Estimate Std Err

Constant 0.586264 0.011115
Landmark (0 sea - land 1) -0.061695 0.006498
Legendre polynomial 1 for Eastings -0.074910 0.010064
Legendre polynomial 1 for Northings 0.110178 0.009079
Legendre polynomial 1 for Elevation 0.003913 0.001225
Legendre polynomial 2 for Eastings 0.053014 0.009530
Legendre polynomial 2 for Northings 0.003789 0.007619
Legendre polynomial 2 for Elevation 0.016201 0.000753
Legendre polynomial 3 for Eastings -0.028675 0.001405
Legendre polynomial 3 for Northings -0.005976 0.001339
Legendre polynomial 3 for Elevation -0.048346 0.000558
Legendre polynomial 4 for East ings 0.003826 0.001027
Legendre polynomial 4 for Northings 0.024583 0.000919
NHT -0.014466 0.016882
SHT 0.023048 0.015456
SOI 0.002793 0.002741
NAO 0.012242 0.007050
EA -0.000654 0.004071
EAJ 0.005394 0.002541
EP -0.001446 0.003294
NP 0.001452 0.002212
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PNA
EAWR

SCA
TNH
NAT
SAT
AO
August effect
ln(l+Previous days weighted neighbourhood) 
ln(l+Weighted neighbourhood 2 days before) 
ln(l+Weighted neighbourhood 3 days before) 
ln(l+Weighted neighbourhood 4 days before) 
ln(l+Weighted neighbourhood 5 days before) 
ln(l+Weighted neighbourhood 6 days before) 
Daily seasonal effect, cosine component 
Daily seasonal effect, sine component 
Daily half-year cycle, cosine component 
Daily half-year cycle, sine component

2-way interactions:

Landmark (0 sea - land 1)
with Legendre polynomial 1 for Northings
Landmark (0 sea - land 1)
with Legendre polynomial 2 for Eastings
Landmark (0 sea - land 1)
with Legendre polynomial 2 for Northings
Landmark (0 sea - land 1)
with Legendre polynomial 3 for Eastings
Landmark (0 sea - land 1)
with Legendre polynomial 3 for Northings
Landmark (0 sea - land 1)
with Legendre polynomial 4 for Eastings
Landmark (0 sea - land 1)
with Previous days weighted neighbourhood
Landmark (0 sea - land 1)
with Weighted neighbourhood 2 days before
Legendre polynomial 1 for Eastings
with Legendre polynomial 1 for Northings
Legendre polynomial 1 for Eastings
with Legendre polynomial 2 for Northings
Legendre polynomial 1 for Eastings
with Legendre polynomial 4 for Northings
Legendre polynomial 1 for Eastings

0.005418
-0.006141
-0.007616
-0.004682
0.001732
-0.000664
0.016114
-0.016203
0.705660
-0.111034
0.059496
0.019506
0.006885
0.019825
0.003618
-0.006251
-0.008917
-0.040660

Coefficient
Estimate

0.010360

-0.023959

0.011014

0.206264

0.021178

-0.114491

-0.011253

0.021303

-0.020186

-0.049758

0.027072

0.004595
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0.003990
0.003957
0.003813
0.002419
0.007863
0.005797
0.008032
0.004312
0.003713
0.003969
0.003557
0.003444
0.003462
0.003173
0.010956
0.001881
0.001558
0.007059

Robust 
Std Err

0.001886

0.002062

0.001209

0.013210

0.001582

0.011208

0.003653

0.003993

0.002717

0.002433

0.001367

0.004184



with Previous days weighted neighbourhood
Legendre polynomial 1 for Eastings -0.013997
with Daily seasonal effect, cosine component 
Legendre polynomial 1 for Northings 0.027805
with Legendre polynomial 2 for Eastings
Legendre polynomial 1 for Northings 0.028008
with Legendre polynomial 3 for Eastings
Legendre polynomial 1 for Northings 0.028315
with Legendre polynomial 4 for Eastings
Legendre polynomial 1 for Northings -0.033078
with Previous days weighted neighbourhood
Legendre polynomial 1 for Northings 0.012653
with Daily seasonal effect, cosine component 
Legendre polynomial 1 for Northings -0.010872
with Daily seasonal effect, sine component
Legendre polynomial 2 for Eastings -0.022434
with Legendre polynomial 2 for Northings
Legendre polynomial 2 for Eastings -0.035402
with Legendre polynomial 3 for Northings
Legendre polynomial 2 for Eastings -0.032583
with Previous days weighted neighbourhood
Legendre polynomial 2 for Northings 0.022229
with Legendre polynomial 3 for Eastings
Legendre polynomial 2 for Northings -0.023148
with Legendre polynomial 4 for Eastings
Legendre polynomial 2 for Northings -0.019318
with Weighted neighbourhood 3 days before
Legendre polynomial 3 for Eastings -0.022599
with Legendre polynomial 3 for Northings
Legendre polynomial 3 for Eastings -0.027058
with Legendre polynomial 4 for Northings
Daily seasonal effect, cosine component -0.011420
with Previous days weighted neighbourhood
Daily seasonal effect, cosine component 0.034282
with Weighted neighbourhood 2 days before
Daily seasonal effect, cosine component 0.008431
with Weighted neighbourhood 3 days before
Daily seasonal effect, cosine component 0.013963
with NHT
Daily seasonal effect, cosine component 0.007260
with NA0
Daily seasonal effect, cosine component 0.008169
with EA
Daily seasonal effect, cosine component -0.010709
with EAJ
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0.002486

0.011454

0.001929

0.001335

0.003806

0.002042

0.001822

0.002054

0.001435

0.003886

0.001776

0.001412

0.003168

0.001058

0.001283

0.004463

0.004980

0.004412

0.009439

0.006885

0.003880

0.003393



Daily seasonal effect, cosine component 
with AO
Daily seasonal effect, sine component 
with NHT
Daily seasonal effect, sine component 
with NAO
Daily seasonal effect, sine component 
with EA
Daily seasonal effect, sine component 
with NAT
Daily seasonal effect, sine component 
with SAT
Daily seasonal effect, sine component 
with AO
Daily half-year cycle, sine component 
with Previous days weighted neighbourhood

0.005555

0.044024

-0.012888

-0.008412

-0.020932

-0.014821

0.006050

0.018181

3-way interactions:

Landmark (0 sea - land 1)
with Legendre polynomial 3 for Eastings
and Weighted neighbourhood 2 days before
Landmark (0 sea - land 1)
with Legendre polynomial 4 for Eastings
and Weighted neighbourhood 2 days before
Legendre polynomial 1 for Northings
with Legendre polynomial 2 for Eastings
and Previous days weighted neighbourhood
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Eastings
and NHT
Landmark (0 sea - land 1)
with Legendre polynomial 3 for Eastings
and NHT
Legendre polynomial 1 for Northings 
with Legendre polynomial 2 for Eastings 
and NHT
Legendre polynomial 1 for Northings 
with Legendre polynomial 3 for Eastings 
and NHT
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Eastings
and SHT
Landmark (0 sea - land 1)

Coefficient
Estimate

-0.031494

0.019281

-0.022374

0.024908

-0.021595

-0.003946

0.024142

-0.029194

0.087907
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0.005839

0.015792

0.007268

0.004290

0.009694

0.005618

0.007409

0.002949

Robust 
Std Err

0.005927

0.005012

0.004885

0.014622

0.010608

0.008985

0.007430

0.018102

0.017472



with Legendre polynomial 1 for Northings 
and SHT
Landmark (0 sea - land 1)
with Legendre polynomial 3 for Eastings
and SHT
Legendre polynomial 1 for Eastings 
with Legendre polynomial 1 for Northings 
and SHT
Legendre polynomial 1 for Northings 
with Legendre polynomial 2 for Eastings 
and SOI
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Eastings
and NAO
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Northings
and NAO
Legendre polynomial 1 for Eastings 
with Legendre polynomial 1 for Northings 
and NAO
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Northings
and EA
Legendre polynomial 1 for Eastings 
with Legendre polynomial 1 for Northings 
and EA
Legendre polynomial 1 for Northings 
with Legendre polynomial 3 for Eastings 
and EA
Legendre polynomial 1 for Northings 
with Legendre polynomial 2 for Eastings 
and EP
Legendre polynomial 1 for Eastings 
with Legendre polynomial 1 for Northings 
and PNA
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Eastings
and EAWR
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Northings
and NAT
Legendre polynomial 1 for Northings 
with Legendre polynomial 2 for Eastings 
and NAT
Landmark (0 sea - land 1)

0.037098

-0.040853

0.008120

-0.019122

0.002699

-0.016731

-0.023574

0.014995

-0.008935

-0.008548

-0.007460

0.010079

-0.021317

0.008129

-0.008100
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0.012878

0.014987

0.002627

0.005412

0.008440

0.008403

0.005078

0.005430

0.003480

0.003395

0.004899

0.005450

0.007942

0.006040

0.006307



with Legendre polynomial 1 for Northings 
and SAT
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Northings
and AO
Landmark (0 sea - land 1)
with Legendre polynomial 3 for Eastings
and AO
Legendre polynomial 1 for Eastings 
with Legendre polynomial 1 for Northings 
and AO
Legendre polynomial 1 for Eastings 
with Legendre polynomial 2 for Northings 
and AO
Legendre polynomial 1 for Northings 
with Legendre polynomial 3 for Eastings 
and AO

0.024026

0.004663

-0.010640

0.003943

0.006212

0.007106

0.003194

0.007507

0.003035

0.003266
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Appendix B

Spatial GEE coefficient estim ates

Main effects: Coefficient Robust
Estimate Std Err

Constant 0.352266 0.008424
Landmark (0 sea - land 1) -0.042684 0.002057
Legendre polynomial 1 for Eastings -0.319110 0.007814
Legendre polynomial 1 for Northings 0.089923 0.007363
Legendre polynomial 1 for Elevation -0.019290 0.000676
Legendre polynomial 2 for Eastings 0.056178 0.006502
Legendre polynomial 2 for Northings 0.099198 0.005389
Legendre polynomial 2 for Elevation 0.013548 0.000351
Legendre polynomial 3 for Eastings -0.023658 0.001029
Legendre polynomial 3 for Northings 0.009422 0.001007
Legendre polynomial 3 for Elevation -0.017845 0.000301
Legendre polynomial 4 for Eastings -0.005536 0.000755
Legendre polynomial 4 for Northings 0.002767 0.000789
NHT 0.001267 0.015348
SHT -0.008627 0.013652
SOI 0.000966 0.002567
NAO 0.005964 0.006407
EA 0.005904 0.003690
EAJ 0.004822 0.002374
EP -0.002828 0.003042
NP 0.002100 0.002083
PNA 0.004954 0.003749
EAWR 0.000118 0.003529
SCA -0.003949 0.003603
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TNH -0.000866 0.002246
NAT 0.006432 0.007186
SAT 0.005091 0.005315
AO 0.008972 0.007386
August effect -0.010430 0.004040
ln(l+Previous days weighted neighbourhood) 0.542549 0.002851
ln(l+Weighted neighbourhood 2 days before) 0.032149 0.002407
ln(l+Weighted neighbourhood 3 days before) 0.074840 0.002352
ln(l+Weighted neighbourhood 4 days before) 0.051984 0.002243
ln(l+Weighted neighbourhood 5 days before) 0.039047 0.002210
ln(l+Weighted neighbourhood 6 days before) 0.062578 0.002084
Daily seasonal effect, cosine component -0.020568 0.009183
Daily seasonal effect, sine component -0.001288 0.001788
Daily half-year cycle, cosine component -0.010212 0.001445
Daily half-year cycle, sine component -0.019200 0.006788

2-way interactions: Coefficient Robust
Estimate Std Err

Landmark (0 sea - land 1) 0.023285 0.000755
with Legendre polynomial 1 for Northing
Landmark (0 sea - land 1) -0.025033 0.000980
with Legendre polynomial 2 for Eastings
Landmark (0 sea - land 1) 0.003573 0.000577
with Legendre polynomial 2 for Northing
Landmark (0 sea - land 1) 0.132796 0.004524
with Legendre polynomial 3 for Eastings
Landmark (0 sea - land 1) 0.012552 0.000642
with Legendre polynomial 3 for Northing
Landmark (0 sea - land 1) -0.031702 0.004072
with Legendre polynomial 4 for Eastings
Landmark (0 sea - land 1) -0.004832 0.000915
with Previous days weighted neighbourhood
Landmark (0 sea - land 1) 0.017646 0.000989
with Weighted neighbourhood 2 days before
Legendre polynomial 1 for Eastings -0.024140 0.002154
with Legendre polynomial 1 for Northing
Legendre polynomial 1 for Eastings -0.029528 0.002166
with Legendre polynomial 2 for Northing
Legendre polynomial 1 for Eastings 0.009783 0.001223
with Legendre polynomial 4 for Northing
Legendre polynomial 1 for Eastings 0.116774 0.003175
with Previous days weighted neighbourhood
Legendre polynomial 1 for Eastings -0.024328 0.002018
with Daily seasonal effect, cosine
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Legendre polynomial 1 for Northings 
with Legendre polynomial 2 for Eastings 
Legendre polynomial 1 for Northings 
with Legendre polynomial 3 for Eastings 
Legendre polynomial 1 for Northings 
with Legendre polynomial 4 for Eastings 
Legendre polynomial 1 for Northings 
with Previous days weighted neighbourhood 
Legendre polynomial 1 for Northings 
with Daily seasonal effect, cosine 
Legendre polynomial 1 for Northings 
with Daily seasonal effect, sine 
Legendre polynomial 2 for Eastings 
with Legendre polynomial 2 for Northing 
Legendre polynomial 2 for Eastings 
with Legendre polynomial 3 for Northing 
Legendre polynomial 2 for Eastings 
with Previous days weighted neighbourhood 
Legendre polynomial 2 for Northings 
with Legendre polynomial 3 for Eastings 
Legendre polynomial 2 for Northings 
with Legendre polynomial 4 for Eastings 
Legendre polynomial 2 for Northings 
with Weighted neighbourhood 3 days before 
Legendre polynomial 3 for Eastings 
with Legendre polynomial 3 for Northing 
Legendre polynomial 3 for Eastings 
with Legendre polynomial 4 for Northing 
Daily seasonal effect, cosine component 
with Previous days weighted neighbourhood 
Daily seasonal effect, cosine component 
with Weighted neighbourhood 2 days before 
Daily seasonal effect, cosine component 
with Weighted neighbourhood 3 days before 
Daily seasonal effect, cosine component 
with NHT
Daily seasonal effect, cosine component 
with NAO
Daily seasonal effect, cosine component 
with EA
Daily seasonal effect, cosine component 
with EAJ
Daily seasonal effect, cosine component 
with AO
Daily seasonal effect, sine component

0.007842

0.016271

0.006531

-0.028315

0.008318

-0.006540

-0.027429

-0.020946

-0.017691

0.016557

-0.009424

-0.049307

-0.004871

-0.016797

-0.000996

0.022530

0.015611

0.007764

0.002937

0.006138

-0.005781

0.001921

0.017149
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0.007576 

0.001402 

0.000977 

0.003081 

0.001801 

0.001649 

0.001721 

0.001134 

0.002633 

0.001377 

0.001006 

0.002204 

0.000828 

0.001003 

0.003785 

0.003384 

0.002997 

0.008856 

0.006511 

0.003626 

0.003176 

0.005468 

0.014477



with NHT
Daily seasonal effect, sine component 
with NAO
Daily seasonal effect, sine component 
with EA
Daily seasonal effect, sine component 
with NAT
Daily seasonal effect, sine component 
with SAT
Daily seasonal effect, sine component 
with AO
Daily half-year cycle, sine component 
with Previous days weighted neighbourhood

-0.007836

-0.005188

-0.010458

-0.006463

0.005989

0.008957

3-way interactions:

Landmark (0 sea - land 1)
with Legendre polynomial 3 for Eastings
and Weighted neighbourhood 2 days before
Landmark (0 sea - land 1)
with Legendre polynomial 4 for Eastings
and Weighted neighbourhood 2 days before
Legendre polynomial 1 for Northings
with Legendre polynomial 2 for Eastings
and Previous days weighted neighbourhood
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Eastings
and NHT
Landmark (0 sea - land 1)
with Legendre polynomial 3 for Eastings
and NHT
Legendre polynomial 1 for Northings 
with Legendre polynomial 2 for Eastings 
and NHT
Legendre polynomial 1 for Northings 
with Legendre polynomial 3 for Eastings 
and NHT
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Eastings
and SHT
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Northings
and SHT
Landmark (0 sea - land 1)

Coefficient
Estimate

-0.033404

-0.000936

-0.018031

-0.025574

0.010893

0.005963

0.016046

-0.002843

0.004278

-0.010937

0.006729

0.003987

0.008967

0.005176

0.006844

0.002821

Robust 
Std Err

0.0019

0.0017

0.0032

0.0030

0.0039

0.0064

0.0052

0.0040

0.0051

0.0046
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with Legendre polynomial 3 for Eastings 
and SHT
Legendre polynomial 1 for Eastings 
with Legendre polynomial 1 for Northings 
and SHT
Legendre polynomial 1 for Northings 
with Legendre polynomial 2 for Eastings 
and SOI
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Eastings
and NAO
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Northings
and NAO
Legendre polynomial 1 for Eastings 
with Legendre polynomial 1 for Northings 
and NAO
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Northings
and EA
Legendre polynomial 1 for Eastings 
with Legendre polynomial 1 for Northings 
and EA
Legendre polynomial 1 for Northings 
with Legendre polynomial 3 for Eastings 
and EA
Legendre polynomial 1 for Northings 
with Legendre polynomial 2 for Eastings 
and EP
Legendre polynomial 1 for Eastings 
with Legendre polynomial 1 for Northings 
and PNA
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Eastings
and EAWR
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Northings
and NAT
Legendre polynomial 1 for Northings 
with Legendre polynomial 2 for Eastings 
and NAT
Landmark (0 sea - land 1)
with Legendre polynomial 1 for Northings
and SAT
Landmark (0 sea - land 1)

-0.029324

0.006361

0.000795

-0.000496

-0.006973

0.002687

0.001232

-0.005235

-0.007658

-0.010362

-0.000939

0.007263

0.001295

0.001873

0.008868
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0.0109

0.0019

0.0013

0.0024

0.0060

0.0013

0.0042

0.0024

0.0025

0.0040

0.0010

0.0024

0.0043

0.0017

0.0018



with Legendre polynomial 1 for Northings 
and AO
Landmark (0 sea - land 1)
with Legendre polynomial 3 for Eastings
and AO
Legendre polynomial 1 for Eastings 
with Legendre polynomial 1 for Northings 
and AO
Legendre polynomial 1 for Eastings 
with Legendre polynomial 2 for Northings 
and AO
Legendre polynomial 1 for Northings 
with Legendre polynomial 3 for Eastings 
and AO

0.000076

-0.006343

-0.004342

-0.000882
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0.0055

0.0024

0.0023


