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Abstract

Migration of the posterior lateral line primordium is a process of directed 

response to a chemotactic signal. We have observed directional protrusions of the 

cells at the leading edge of migrating primordia. The p21 activated kinase (Pak) family 

of proteins are downstream effectors of the small GTPases Rac and Cdc42 and have 

been shown to play important roles in the regulation of cell adhesion and migration in 

many organisms. In order to understand the molecular mechanisms underlying 

directed cell migration in zebrafish we have identified and characterised two zebrafish 

pak2 genes (pak2a and pak2b) and found that their functions are important for 

migration of the lateral line primordium. Pak2a and Pak2b have similar protein 

sequences suggesting similar functions in development.

Knock down of Pak2 using antisense morpholino oligonucleotides resulted in 

a variety of defects in zebrafish development including retarded migration of the 

posterior lateral line primordium and aberrant migration of primordial germ cells. 

Zebrafish pak2  genes may function by dynamically regulating the F-actin 

reorganisation and focal adhesion formation required for directed migration. 

Differences in the phenotypes generated by knock down of Pak2a and Pak2b may be 

explained in part by the observation that Pak2a can bind to the adaptor protein Nek 

while Pak2b cannot.

Pak2b is required to establish and/or maintain F-actin organisation, cadherin- 

mediated adhesion and tissue integrity within the migrating lateral line primordium. We 

show that dynamic regulation of the actin cytoskeleton and cell adhesion is involved in 

the formation of rosette-like structures within the lateral line primordium which are 

deposited as a unit and represent the nascent neuromast precursors. We have also 

identified possible roles for Pak2a and Pak2b in regulating gene expression in early 

zebrafish development. Pak2 proteins may control the expression of several genes 

involved in mesoderm formation through regulation of transcriptional activators and 

repressors.
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Chapter One

Introduction

Embryonic development relies on highly regulated and coordinated migrations 

of cells. Understanding the mechanisms controlling cell migration will allow us to 

discover how different organs and tissues are formed by the coordinated movements 

of cells.

It has been well characterised that migration of adherent cells involves regulation 

of the actin cytoskeleton and the assembly and disassembly of cellular adhesions to 

the extracellular matrix (ECM) (Christopher and Guan, 2000). When cells move they 

alter this internal, actin skeleton to push the cell membrane out at the front and pull it 

in at the back (Cory and Ridley, 2002). Actin polymerisation at the cell front provides 

the protrusive force required for extension of membrane at the leading edge (Rottner 

et al., 1999). Membrane extensions at the leading edge are known as lamellipodia and 

as the cell advances the lamellipodia form adhesions to the ECM, known as focal 

adhesions. These adhesions are disassembled at the trailing edge as the rear of the 

cell is pulled forward by contraction of actin-myosin fibres (Christopher and Guan,

2000). In addition, migration of a group of cells requires cell to cell adhesion to 

maintain integrity (Gumbiner, 1996).

Regulation of these factors depends on the cooperative effects of many 

intracellular signalling events resulting in the activation of proteins that can control 

actin dynamics and adhesion formation (Christopher and Guan, 2000). Many proteins 

are known to be involved in the regulation of the actin cytoskeleton and of these the 

roles of the small GTPases have been well described (see (Hall, 1998) for a review). 

The Rho family of small GTPases, Rac, Cdc42 and Rho, have different roles in
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regulating the actin cytoskeleton: Cdc42 triggers the formation of the thin membrane 

protrusions, filopodia, Rho controls actin stress fibre formation and Rac regulates 

formation of lamellipodia and membrane ruffles, which contain small focal adhesions 

(Christopher and Guan, 2000). Although much is known of the effect of the small 

GTPases, less is known of their downstream effector molecules. In a screen carried 

out to look for proteins acting downstream of the small GTPases a novel kinase was 

identified that could bind with Rac and Cdc42 and mediate their effects on the 

cytoskeleton. As a result of this interaction it was named p21 activated kinase (Pak) 

(Manser eta!., 1994).

Work carried out in our lab aims to further elucidate control of cell migration 

during development using the zebrafish, Danio rerio, as our model organism. 

Embryonic zebrafish have a conspicuous sensory system present on their surface, the 

lateral line system. This system is formed by migration of lateral line primordia that 

deposit lateral line sensory organs at stereotypical positions. The easy identification 

and reproducible pattern of the lateral line system make it an excellent model for 

studying cell migration. The zebrafish has many features that make it an excellent 

system for studies in developmental biology, including the ability to obtain large 

numbers of embryos and a short life cycle. Of particular interest to the analysis of cell 

migration is the optical clarity of zebrafish embryos that permits direct observation of 

individual cells and cell movements within the developing embryo.

1.1 A model for cell migration -  development of the zebrafish 

posterior lateral line system.

The lateral line is a mechanosensory system present on the skin of fishes and 

amphibians (Metcalfe et al., 1985; Stone, 1933; Winklbauer and Hausen, 1983). It is 

composed of two organs, the mechanoreceptive neuromasts, that contain sensory 

hair cells like those found in the ear that act as water displacement detectors 

(Kornblum et al., 1990), and the electroreceptive ampullary organs that respond to
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weak electric fields (Baker and Bronner-Fraser, 2001). These organs are innervated 

by axons of the lateral line ganglion and function in various activities including 

obstacle avoidance and schooling behaviour. Lateral line organs are derived from two 

dorsolateral placodes (focal ectodermal thickenings) on the head of the embryo, these 

placodes give rise to the neuromasts of a particular line and the neurons that 

innervate it (Stone, 1922). Each placode is polarised such that one part gives rise to 

the cells of the migratory primordium while the other part gives rise to the lateral line 

ganglion (Stone, 1922). The migrating primordia deposit the precursors of the 

neuromasts over the head and along the body.

The embryonic zebrafish lateral line has two major components, anterior and 

posterior. The anterior lateral line comprises the neuromasts of the head, jaw and 

opercle and the sensory neurons of the anterior lateral line ganglion. The anterior 

system forms from a placode that is derived from the ectoderm rostral to the otic 

vesicle. The posterior lateral line system is formed from the posterior lateral line 

placode which is first detected caudal to the otic vesicle adjacent to the developing 

sensory ganglion (Metcalfe, 1985). The posterior lateral line consists of the 

neuromasts of the trunk and tail and the sensory neurons of the posterior lateral line 

ganglion (Metcalfe, 1985). Both the anterior and posterior lateral line systems 

comprise several branches. The major branch of the posterior lateral line is the lateral 

or midbody line, which is the first to arise (Metcalfe, 1985). It is the characterisation of 

this line that will be discussed in this study.

1.1.1 Migration of the posterior lateral line primordium.

Migration of the posterior lateral line primordium is first detectable at 20 hours 

post fertilisation (hpf), at this stage scanning electron microscopy of zebrafish embryos 

shows the primordium as an elongated elevation of the epidermis (Metcalfe, 1985).
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Figure 1.1: Development of the posterior lateral line system.

The posterior lateral line arises from a placode posterior to the otic vesicle which gives 

rise to the ganglion of the posterior lateral line and the migratory primordium. As the 

primordium migrates along the trunk and tail it deposits seven neuromasts at 

stereotyped positions. The neuromasts are innervated by nerve fibres of the lateral 

line ganglion. This schematic adapted from (Ledent, 2002) shows primordium 

migration and neuromast deposition from commencement of migration at 

approximately 22hpf, deposition of neuromast precursors at 36hpf, and differentiation 

of the full complement of posterior neuromasts at 72hpf. Abbreviations refer to: ov, 

otic vesicle; pllp, posterior lateral line primordium.
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The primordium migrates caudally under the epidermis along the midbody line and 

migration is complete by 42hpf (Metcalfe, 1985). During this time seven neuromast 

precursors are deposited at stereotypically spaced intervals along the trunk and tail 

(Figure 1.1). The first five neuromast precursors are deposited along the horizontal 

myoseptum, an area in middle of the zebrafish trunk, parallel to the notochord and 

overlying the somites. The neuromasts along the horizontal myoseptum are found at 

somite borders (Gompel et al., 2001). At the level of somite 30 the primordium moves 

ventrally and the final two neuromasts are deposited close to the tip of the tail. These 

neuromast precursors are deposited simultaneously when the primordium has 

reached the tip of the tail, stops migrating and splits into two, forming the sixth and 

seventh neuromast precursors (Gompel et al., 2001). Deposited neuromast 

precursors mature into recognisable sensory neuromasts 6-9 hours after deposition 

(Metcalfe, 1985).

The neuromasts of the posterior lateral line system are innervated by the 

posterior lateral line sensory neurons which are found under the epidermis at the 

midline along the horizontal myoseptum (Metcalfe et al., 1985). The sensory neurons 

and the migratory neuromast precursor cells arise from a common postauditory 

placode (Metcalfe, 1985). The growth cones of the sensory neurons comigrate with 

their innervation targets, the migratory lateral line primordium, and follow the migratory 

path of the primordium..

Gompel et al have described initial characterisation of the morphology and 

movement of the neuromast precursor cells of the zebrafish posterior lateral line 

primordium during migration and deposition. The posterior lateral line primordium is 

highly amenable to such studies as during its migration it is clearly distinguishable 

from the surrounding ectoderm as a stripe of small round cells that migrate as a tight 

group. The primordium is about 4-5 cells wide and 20-25 cells in length at the 

beginning of migration and extends over 2-3 consecutive somites. The number of cells 

within the lateral line primordium varies during migration, mitosis occurs within the 

migrating primordium and cells are lost during neuromast precursor deposition
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(Gompel et al., 2001). Deposition of the neuromast precursors is characterised by the 

slowing down of a group of cells at the trailing end of the primordium. The other cells 

in the primordium maintain their migration rate resulting in thinning of the primordium 

between the cells being deposited and those continuing their migration. The slowing 

down of the trailing cells is progressive as the neuromast precursor splits from the 

primordium about two somites posterior to the point at which deposition began. The 

neuromast comes to rest one or two somites caudal to the point of splitting. The final 

position of the neuromast varies between embryos and between left and right sides of 

a single embryo. Gompel et al (2001) investigated this variation using the somites, 

over which the neuromast are deposited, to plot the distance between consecutive 

neuromasts. In doing this they found that, although neuromast position varies, the 

spacing between adjacent neuromasts is absolute.

1.1.2 Guidance of the migration of the posterior lateral line primordium.

The molecular mechanisms governing the guidance of migration of the lateral line 

primordium are beginning to be elucidated. Ablation studies in axolotl have 

demonstrated that signals from the overlying ectoderm and underlying somites are 

required for proper migration of the lateral line primordium (Smith et al., 1990). In 

zebrafish the homologue of the growth-cone repulsive molecule semaphorin Ill/D or 

collapsin 1, semaZIa, has been shown to be expressed in the dorsal and ventral 

portions of the myotome, but not in the horizontal myoseptum, over which the 

primordium migrates. This observation suggested a semaZIa-free zone acts to guide 

primordium migration by inhibiting movement of the lateral line primordium over the 

dorsal or ventral myotome and restricting the migration pathway to the horizontal 

myoseptum (Shoji et al., 1998). Indeed in mutants where the horizontal myoseptum is 

absent, such as floating head, semaZIa is uniformly expressed and the lateral line 

primordium migrates aberrantly along the ventral myotome (Shoji eta!., 1998).
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Recent studies in zebrafish, looking at migration of the posterior lateral line 

primordium, have identified a trail of the chemokine Sdfla (a zebrafish homologue of 

stromal cell-derived factor-1) along the horizontal myoseptum and expression of its 

receptor (cxcrfb) in the migrating cells of the lateral line primordium (David et al.,

2002). The inactivation of either the ligand or the receptor blocks primordium migration 

and in mutants where the horizontal myoseptum is absent the lateral line primordium 

migrates ectopically along an alternative, ventral trail of Sdfla. These data provide 

strong evidence that correct migration of the posterior lateral line primordium along the 

horizontal myoseptum is directed by attractive, chemokine signalling and is restricted 

by inhibitory domains of SemaZla.

Whilst the guidance pathways of lateral line primordium migration are beginning 

to be understood, little is known of the molecular mechanisms that provide the 

physical, intracellular changes required to respond to such migration cues and control 

migration in the developing lateral line. The main aim of our work is to better 

understand how the cellular changes required to initiate and regulate the directed 

migration of the cells of the lateral line primordium are mediated. This was initially 

approached through detailed characterisation of the behaviour of the cells of the 

lateral line primordium during their migration and deposition. With a good 

understanding of normal cell behaviour in the migratory lateral line primordium we can 

approach investigations into the molecular mechanisms underlying this migration 

using loss-of-function analyses.

1.2 Regulation of cell migration.

The ability of a cell to migrate is dependant on the cooperative effects of many 

intracellular signalling events triggered through cell surface receptors, internal cellular 

mechanics and the extracellular matrix (Christopher and Guan, 2000). Migrating cells 

display a polarised morphology with distinct leading and trailing ends. At the leading 

edge polymerisation of the actin cytoskeleton leads to formation of membrane
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protrusions, or lamellipodia, that extend in the direction of migration, while at the 

trailing end, contraction of the actin/myosin cytoskeleton causes the cell body to 

retract (Wittmann and Waterman-Storer, 2001; Zeng et al., 2000). Cell motility 

requires the transmission of forces generated by actin movements inside the cell to 

the matrix outside through regulated formation and dissolution of cell-substrate 

adhesions (Beningo et al., 2001). Cell to substrate adhesions are mediated by focal 

adhesions and during cell migration new focal adhesions are formed at the 

lamellipodia and broken down at the rear of the cell (Mitchison and Cramer, 1996). 

Thus regulation of cell migration can be discussed in two sections: organisation of the 

actin/myosin cytoskeleton in stimulating extension at the cell front and retraction at the 

cell rear, and regulation of focal adhesions.

1.2.1 The actin/myosin cytoskeleton -  advancement and retraction.

At the leading edge of motile cells high levels of filamentous actin permits the 

formation of highly dynamic protrusive structures that contain dense arrays of actin 

filaments (Mitchison and Cramer, 1996). These membrane protrusions can be thin 

filopodia, such as those observed in neuronal growth cones, or sheet-like lamellipodia, 

characteristic of many motile cells. Amoeboid cells tend to protrude thicker processes 

termed pseudopods (Mitchison and Cramer, 1996). Formation and extension of 

protrusions requires polymerisation of actin filaments at the leading edge through 

elongation of existing filaments or nucleation of new filaments (Mitchison and Cramer, 

1996). It has been demonstrated that lamellipodia extension is simply correlated with 

actin filament growth using fluorescently labelled actin filaments and that disruption of 

actin filaments using Cytochlasin D arrests the formation of protrusions (Theriot and 

Mitchison, 1991; Wang, 1985; Wessels, 1971).

Actin filaments are double helical polymers of globular subunits arranged 

head to tail resulting in a filament polarity and based on the pattern created by 

decoration with myosin, one end of the filament is described as barbed and the other
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end pointed (Pollard and Borisy, 2003). The barbed end is favoured for growth and 

faced towards the edge of the cell.

The initial step in the formation of an actin filament is known as nucleation. 

Once the “nucleus” is established the filament will grow rapidly. The initial combination 

of actin monomers is unfavourable owing to the instability of actin dimers and trimers 

and is, therefore, the limiting step of actin polymerisation (Pollard and Borisy, 2003). 

Actin polymerisation is enhanced by factors that stimulate nucleation such as WASp 

(Wiskott-Aldrich Syndrome protein) and WAVE/Scar (Eden et al., 2002). Active 

nucleation-promoting factors stimulate a complex known as Arp2/3 to initiate 

nucleation of a new actin filament, possibly by mimicking an actin trimer (Cory and 

Ridley, 2002).

Actin filaments then continue to grow through addition of monomer until 

stopped by the addition of capping proteins to the barbed end (Pollard and Borisy,

2003). Actin monomers in filaments are bound to ATP and filaments age by hydrolysis 

of their bound ATP to ADP and phosphate. Phosphate is slowly released and it’s 

dissociation stimulates the ADF/cofilin proteins that promote actin filament 

depolymerisation and dissociation of ADP from the actin monomers (Pollard and 

Borisy, 2003). Profilin is the nucleotide exchange factor for actin, catalysing the 

exchange of ADP for ATP and returning the ATP-actin-profilin complex to the actin 

monomer pool, ready for another cycle of assembly (Pollard and Borisy, 2003). The 

profiling-actin complex fails to form nuclei and in the absence of preformed filaments 

will not assemble into filaments, however, profiling-actin complexes can readily add to 

free barbed ends of assembled filaments (Bubb et al., 2003). A concentration of actin 

monomers is maintained at a level far from equilibrium by depolymerisation and 

capping and this large pool of monomers permits rapid growth at non-capped, barbed 

ends (Pollard and Borisy, 2003). Cofilin increases the rate of depolymerisation and 

therefore the size of the pool of actin monomers, while capping proteins bind the 

growing end of selected actin filaments to enhance the rate of polymerisation of
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uncapped filaments, therefore making polymerisation more efficient (Pantaloni et al.,

2001).

The movement of actin filaments is powered by myosins, that function as 

motor proteins by hydrolysis of ATP. This process requires that the actin filament 

interacts with the myosin motor domain, the head domain, in such a way as to 

accelerate release of ADP and phosphate (de la Roche and Cote, 2001). The myosins 

are a large family of proteins which play a number of roles within cells depending on 

their type and localisation.

Cytoskeletal dynamics are primarily modulated by actin and myosin II and 

these interactions are modulated by the phosphorylation state of the regulatory light 

chain of myosin II (rMLC). (Sanders et al., 1999). Studies in Dictyostelium have 

demonstrated that phosphorylation, and therefore activation, of myosin II filaments is 

critical for contraction at the rear of a migrating cell (Zeng et al., 2000). 

Phosphorylation of rMLC, by myosin light chain kinase (MLCK), stimulates the actin 

activated ATPase activity of myosin II and contraction (Wirth et al., 2003). The reverse 

reaction is catalysed by myosin light chain phosphatase (MLCP), which, 

dephosphorylates the rMLC and results in relaxation in smooth muscle cells (Wirth et 

al., 2003). Myosin phosphorylation is also regulated by Caldesmon, a thin filament 

associated protein that inhibits the actin-activated ATPase activity of myosin II and 

may be involved in the regulation of tension development (Wirth et al., 2003). The 

actinomyosin cytoskeleton is subject to continuous remodelling in response to 

extracellular signals and actin and myosin can be rapidly assembled or disassembled 

to allow the cell shape changes associated with directed movement (van Leeuwen et 

al., 1999).

1.2.2 Focal adhesions.

The formation of protrusions initiates migration, but for migration to occur the 

protrusions must be stabilised by attaching to the underlying substratum (Geiger and
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Bershadsky, 2001). Attachments to the underlying substratum, the ECM, are mediated 

by the integrin family of heterodimeric receptors. Engagement of integrin receptors 

with their extracellular ligands leads to the formation of well-defined structures that link 

the ECM to the cytoplasmic actin cytoskeleton. Sites of ECM-integrin adhesion are 

dynamic, heterogeneous structures that vary in size and organisation (Parsons et al., 

2000).

Initial adhesions are located at the cell perhiphery and the leading edge of 

motile cells. They are highly tyrosine phosphorylated and contain avp3 integrin. The 

cytoplasmic proteins, Paxillin and Talin are initially recruited into these adhesion, 

followed by Vinculin and Focal Adhesion Kinase (FAK) (Zaidel-Bar et al., 2003). The 

recruitment of Vinculin marks the transition from an initial adhesion to a ‘focal 

complex’, so named because the distance between the ECM and the adhesion is 

decreased to become ‘tight’ or ‘focal’ (Galbraith et al., 2002). Recruitment of these 

binding proteins is induced by ligand binding or aggregation of integrin receptors 

(Parsons eta!., 2000).

The formation of focal complexes, i.e. the recruitment of Vinculin, is rapid, 10 

to 40 seconds, and stabilises the adhesion so that cytoskeletal force can be applied to 

the ECM. This is critical for cell migration and requires Vinculin (Galbraith etal., 2002). 

Proteins associated with actin filament assembly may also be found within focal 

complexes, such as, vasodilator-stimulated phosphoprotein (VASP) and the Arp2/3 

complex, as well as the actin binding protein a-actinin (Brindle et al., 1996; Zaidel-Bar 

et al., 2003).

Focal complexes are short lived and highly dynamic. Maturation of a focal 

complex into the more stable focal adhesion is Rho-dependant and requires localised 

membrane retraction. This retraction produces tension that induces the recruitment of 

other adhesion proteins including, the focal adhesion specific protein, Zyxin and the 

actin filament binding protein, Tensin (Chen etal., 2000; Zaidel-Bar etal., 2003). Zyxin 

may regulate actin filament organisation and acts as a docking protein in binding a- 

actinin, indeed an increase in the level of a-actinin is associated with formation of
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focal adhesions (Reinhard etal., 1999). The clustering of these proteins contributes to 

adhesion and to integrin-mediated signalling. Associated proteins such as FAK as well 

as MAPK act upstream in promoting cell proliferation and migration (Boudreau and 

Jones, 1999).

The size and maturity of intergrin-ECM adhesions depends on their position 

within the cell. At the leading edge of a migrating cell new contacts are formed, 

established contacts are maintained between the body of the cell and the ECM, and at 

the trailing end old contacts are weakened and broken (Galbraith et al., 2002). At the 

cell front Paxillin-containing focal complexes remain small and these nascent 

attachments serve as traction points for the propulsive forces that drive the cell 

forward. As the cell moves forward the nascent adhesions are turned over and 

reformed at the new leading edge (Webb et al., 2002). In contrast, under the body of 

the cell and at the cell rear, adhesion to the ECM is via mature, stable focal 

adhesions. Unlike focal complexes at the leading edge, focal adhesions are not 

released by simple dissociation of the component proteins. As the cell migrates the 

linkage between cytoplasmic adhesive proteins and the integrin receptors at the rear 

of the cell are initially maintained. As the rear of the cell retracts through contraction of 

the actin-myosin cytoskelton, the intracellular adhesion proteins, which are under 

tension by virtue of their interaction with the cytoskeleton, are eventually pulled 

towards the cell body and break contact with the integrin receptors (Webb et al.,

2002). In this way cell contacts are released at the trailing edge and the cell moves 

forward.

1.3 The small GTPases.

Dynamic regulation of the actinomyosin cytoskeleton and focal adhesions 

during cell migration requires the interaction of many proteins. The Rho family of small 

GTPases have emerged as key regulators of such activities (see /(Hall, 1998) for a 

review). GTPases alternate between an active “on” state when GTP bound, and an
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inactive “off” state when GDP bound. In the “on” state GTPases are able to bind and 

activate specific effector proteins (Lodish et al., 1995). Activation of GTPases is 

stimulated by extracellular ligands binding to cell surface receptors such as PDGF in 

fibroblasts (Hall, 1998) or G-protein linked receptors in Dictyostelium (Chung et al., 

2000). This activation occurs in two steps, release of GDP, accelerated by the action 

of guanine nucleotide exchange factors, and binding of GTP, which occurs 

spontaneously. Inactivation occurs by hydrolysis of GTP to GDP through the action of 

GTPase activating proteins (Lodish etal., 1995).

The Rho family of small GTPases comprises Rac, Cdc42 and Rho and all 

three members have important roles in regulating the actin cytoskeleton and focal 

adhesions. The small GTPases can also regulate with each other as Cdc42 can 

activate Rac, and Rac can activate Rho (Hall, 1998). Studies in neutrophils have 

demonstrated specific roles for Rac and Rho in coordinating leading edge extension 

and trailing edge retraction respectively and these two activities inhibit each other (Xu 

et al., 2003). By opposing each others function Rac and Rho act maintain polarisation 

of the migrating cell (Xu et al., 2003). Additionally, studies in Dictyostelium have 

characterised an action of Rac on polymerisation of the actin since expression of 

dominant negative Rac results in loss of the well defined F-actin rich leading edge, 

failure to extend pseudopodia and poor motility (Chung et al., 2000). In addition 

expression of constitutively active Rac leads to a loss of directed motility and 

extension of aberrant lateral pseudopods (Chung et al., 2000). A similar role for Rac 

has been described in other systems. Treatment of fibroblast cells with agents that 

increase levels of GTP bound Cdc42 and Rac leads to de novo formation of F-actin 

networks (Hall, 1998). This indicates that Rac and Cdc42 integrate signalling 

pathways leading to actin polymerisation and this results in the formation of 

lamellipodia and filopodia respectively (Parsons et al., 2000). The roles of Rac and 

Cdc42 in actin filament formation are two-fold. Firstly Rac and Cdc42 can promote 

actin nucleation through the activation of WAVE, by Rac, and WASp, by Cdc42, which 

in turn activate the Arp2/3 complex (Eden et al., 2002). Secondly, Rac and Cdc42 can
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activate Pak, which in turn phosphorylates and thereby activates LIM kinase resulting 

in inhibition of Cofilin-induced disassembly of actin filaments (Edwards etal., 1999).

In contrast to the extension activities of Rac and Cdc42, activation of Rho 

leads to the formation of actin stress fibres which have focal adhesions at their 

terminus (Parsons et al., 2000). Studies in monocytes have shown that RhoA is 

required for tail end retraction by regulating contraction of the actinomyosin 

cytoskeleton (Worthylake etal., 2001).

In addition to their effects on the actinomyosin cytoskeleton the Rho family of 

GTPases regulate cell migration through control of substrate contact dynamics 

(Rottner et al., 1999). Active Rac can induce the formation of focal adhesions, 

possibly through stimulation of actin polymerisation and clustering of integrins (Geiger 

and Bershadsky, 2001). Rac induced focal adhesions are short lived and rapidly 

turned over during cell migration (Rottner et al., 1999). The influence of Rho-mediated 

myosin contraction is required to form mature and stable focal adhesions (Rottner et 

al., 1999). This action of Rho is mediated by the downstream kinase, Rock, which acts 

to promote actinomyosin-driven cell contraction (Rottner etal., 1999). In agreement 

with the studies in Dictyostelium, Rac and Rho pathways can also antagonise each 

other in mammalian cells, in this case during regulation of focal adhesion formation 

(Rottner etal., 1999).

1.4 p21 activated kinase.

Although much is known of the effect of the small GTPases, less is known of their 

downstream effector molecules. The p21-activated kinase (Pak) was identified in a 

screen for binding partners of the small GTPases, Rac and Cdc42 and it was shown 

that the serine/theronine protein kinase activity of Pak could be stimulated by binding 

of activated, GTP-bound Cdc42 and Rac (Manser et al., 1994). Identification of a 

downstream target for Rac and Cdc42 showed that they act like other GTP-binding 

proteins in stimulating a target/effector protein and suggested an analogy to the well
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characterised Ras signalling pathway where the small GTPase Ras directly binds the 

serine/theronine protein kinase Raf (Bagrodia and Cerione, 1999). The possibility of a 

Rac/Cdc42/Pak signalling pathway lead to identification of downstream components 

and a better understanding of how the effects of Rac and Cdc42 on the cytoskeleton 

are achieved.

1.4.1 The p21 activated kinase family.

The Pak family of proteins are serine/theronine kinases and six members have 

been found in humans to date (Abo et al., 1998; Dan et al., 2002; Knaus and Bokoch, 

1998; Yang et al., 2001). Pak homologues have also been identified in Dictyostelium, 

yeast, Drosophila, Xenopus laevis and mouse amongst others (Bagrodia et al., 1995; 

Chung and Firtel, 1999; Gulli et al., 2000; Hing et al., 1999; Islam et al., 2000). The 

Pak family can be grouped into two classes based on the conservation of structure, 

Group I (Pak1, Pak2, Pak3) and Group II (Pak4, Pak5, Pak6). The Group I Paks share 

a number of defining structural characteristics: Firstly a Rac/Cdc42 interaction site or 

p21 binding domain (PBD) in the N-terminal region, and secondly a C-terminal kinase 

domain (Knaus and Bokoch, 1998). Overlapping the PBD of Group I Paks is a 

sequence implicated in autoinhibition, the autoinhibitory domain or inhibitory switch 

(AID/IS), which inhibits catalytic activity in the absence of activating stimuli (Lei et al.,

2000). In the inactive state Pak proteins are found as dimers. Binding of GTP-Rac or 

Cdc42 to the PBD relieves autoinhibition of the catalytic domain through disruption of 

the dimer and conformational change, permitting kinase activity and 

autophosphorylation (Lei et al., 2000). Pak1 proteins can also be activated by 

interaction with sphingosine or related long chain sphingoid bases in a similar manner 

to GTPase-mediated activation (Bokoch etal., 1998).

The N-terminal PBDs of the Group II Paks are less than 40% identical to the 

Group I PBDs, however they remain able to bind to activated Rho family proteins 

(Jaffer and Chernoff, 2002). The Group II Paks do not posses an identifiable
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autoinhibitory domain and despite the ability to bind small GTPases the kinase activity 

of Group II Paks does not appear to be stimulated by interaction with activated Rho 

GTPases. However, truncated versions of both Pak4 (Abo et al., 1998) and Pak6 

(Yang et al., 2001) containing only the catalytic domains, have greater kinase activity 

than the full-length proteins. The kinase domains of Group II Paks are even more 

diverged and these differences imply that Groups I and II Paks may be regulated 

differently and may have different downstream effectors (Jaffer and Chernoff, 2002). 

These results suggest that the Group II Paks probably are regulated intramolecularly 

but by a different mechanism (Jaffer and Chernoff, 2002).

Activation of Group I Pak is dependent on cell adhesion to the ECM and this 

dependence is related to the inability of Rac to activate Pak in non-adherent cells. 

Growth factor stimulation of adherent cells leads to Rac localisation at the plasma 

membrane where it can activate Pak, however in non-adherent cells Rac remains in 

the cytosol where even when GTP bound it is unable to activate Pak (del Pozo et al.,

2000).

1.4.2 Protein interactions and activities of Pak.

Investigations into the proteins interacting with the Pak family is a highly active 

field of research, as a result many proteins have been described that bind, activate or 

are activated by Pak (see (Kumar and Vadlamudi, 2002) for a review). In this thesis 

we will focus on the role of Pak in the regulation of cell adhesion and cell migration 

through protein interactions. However, some other Pak interactions will be discussed. 

A summary of some of these interactions can be found in Figure 1.2.
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Figure 1.2: Summary of known Pak interactions.

The Group I family of Pak proteins interact with a large number of proteins and have 

influences on many different signalling pathways. Pak can be recruited to growth 

factor receptors by interaction with Nek (Bokoch etal., 1996; Galisteo etal., 1996) and 

focal adhesions via binding to PIX (Brown et al., 2002). Recruitment to the cell 

membrane enhances activation of Pak by GTP bound Rac or Cdc42 (Lu et al., 1997; 

Lu and Mayer, 1999). In adherent cells active Pak can promote cell growth through 

the MAPK pathway (Howe and Juliano, 2000b). Pak can also act upstream in cell 

survival pathways, through phosphorylation of Bad and apoptosis pathways by 

caspase induced cleavage into an N-terminal region (Pa) and a constitutively active 

kinase domain (K). Pak also regulates the actinomyosin cytoskeleton by inhibiting the 

action of Cofilin through LIMK (Edwards et al., 1999) and stimulating contraction of the 

actin-myosin cytoskeleton (Felsenfeld etal., 1991; Kiosses etal., 1999; Sells et al.,

1999).

Abbreviations refer to: Pak, p21 activated kinase; GF, growth factor; EGFR, epidermal 

growth factor receptor; PDGFR, Platelet-derived growth factor receptor; GDP, guanine 

diphosphate; GTP, guanine triphosphate; PIX, Pak interacting exchange factor; PKL, 

paxillin kinase linker; FAK, focal adhesion kinase; LIMK, LIM-domain kinase; F-actin, 

filamentous actin; MLC, myosin light chain; MLCK, myosin light chain kinase; MAPK, 

mitogen-activated protein kinase; MEK, MAP or ERK kinase; ECM, extracellular 

matrix; P, phosphorylation.
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In addition to the PBD the N-terminal region of Group I Paks, described as the 

regulatory domain, comprises an acidic region and a number of proline-rich sites of 

interaction with Src3 homology (SH3) domain containing proteins (Knaus and Bokoch, 

1998). In addition to the three proline-rich SH3 domain binding sites in the N-terminal 

regulatory domain, protein interaction occurs through the kinase domain and a binding 

site for the G-protein py-subunit at the extreme C-terminus. The most N-terminal SH3- 

binding site binds the adapter protein Nek and targets Pak to the plasma membrane, 

this relocation is associated with increased activity of Pak by virtue of the high levels 

of active Rac at the membrane (Lu etal., 1997). SH3-domain binding sites are usually 

characterised by a PxxP motif, where P is a proline residue and x any residue 

(Bokoch et al., 1996). The binding site specific for the SH3-domain of Nek has been 

further characterised as a consensus binding sequence of PxxPxRxxS20 (Chong etal.,

2001). Autophosphorylation of serine residues within this motif (Ser19 or Ser20) has 

been shown to cause a loss of affinity between Pak and Nek that results in 

dissociation of Pak for the membrane (Chong et al., 2001).

Specific protein binding at the second proline-rich motif has not been described. 

The third proline-rich motif is atypical (PPxxxPRP) and binds the Pak-interacting 

exchange factor, PIX (Manser etal., 1998). Interaction of PIX with Pak is also 

negatively regulated by serine phosphorylation at residues close to the C-terminus of 

the PIX binding domain (Zhao et al., 2000a). Binding of PIX recruits Pak to sites of 

focal adhesion through an interaction with Paxillin kinase linker (PKL) (Brown et al.,

2002) and this interaction will be discussed in more detail later in this Chapter.

The C-terminal kinase domain is highly conserved and is autophosphorylated in 

response to activated Rac/Cdc42 binding or lipid interaction (Bokoch et al., 1998; Lei 

et al., 2000). In this state the kinase domain can activate a series of downstream 

effectors including: Raf1, which allows its maximal activation by Ras (King et al., 

1998), and MEK1, allowing stable interaction of MEK1 and Raf1 (Frost etal., 1997). 

Both Raf and MEK are upstream components of the MAPK cell proliferation signalling

37



pathway, therefore Pak activity can trigger this pathway. Phosphorylation of other 

proteins by the Pak kinase domain also has inputs on a number of other pathways.

The mitogen-activated protein kinase (MAPK) cascade is activated by a wide 

variety of extracellular signals and is an essential component of pathways that 

regulate cell division, motility and differentiation. It has been shown that activation of 

the MAPK cascade by soluble factors is inhibited in non-adherent cells (Howe and 

Juliano, 2000b). Expression of a constitutively active Pak mutant stimulates 

anchorage-independent cell growth through the MAPK pathway (Vadlamudi et al.,

2000). Inhibition of the cAMP-dependent protein kinase A (PKA) also permits 

anchorage-independent stimulation of the MAPK pathway via Pak. In non-adherent 

cells PKA inhibits Pak and activation of the MAPK pathway resulting in inhibition of 

cell cycle progression (Howe and Juliano, 2000a).

Members of the Pak family also have been shown to act in cell survival pathways 

to either promote or inhibit apoptosis. Pak1 is able to phosphorylate the death agonist 

Bad, a member of the Bcl-2 family of proteins that augment cell death (Schurmann et 

al., 2000). This phosphorylation alleviates Bad inhibition of the cell survival signals 

Bcl2 and BclXL and prevents activation of downstream members of the apoptotic 

pathway (Schurmann et al., 2000). Promotion of cell survival has also been 

demonstrated by the Group II Pak, Pak4 (Gnesutta etal., 2001).

An opposing role has been described for Pak2, which, can generate the 

morphological changes associated with apoptosis including the formation of apoptotic 

bodies. These changes are induced by a constitutively active kinase fragment 

generated from caspase-mediated cleavage of Pak2 (Rudel and Bokoch, 1997). 

However expression of a constitutively active form of Pak2 increases phosphorylation 

of Bad and protects cells from cell death induced by ectopic expression of Bad (Jakobi 

et al., 2001). Therefore Pak2 can act as both a pro- and anti-apoptotic factor 

depending on the mode of activation (Kumar and Vadlamudi, 2002).

The binding site for the Gfty subunit, located at the extreme C-terminus of Pak 

was initially characterised in the yeast homologue of Pak, Ste20 (Leeuw et al., 1998).
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Studies in neutrophils have shown that signalling through G-protein coupled receptors 

and activation of Pak is important for regulating the actinomyosin cytoskeleton (Xu et 

al., 2003) and recent studies are beginning to establish functional roles for the action 

of vertebrate Paks in the G-protein signalling pathway (Li etal., 2003).

1.4.3 Pak regulates the cytoskeletal changes required for cell migration.

One of the foremost roles for the Pak family of proteins is the regulation of cell 

migration. As we have already discussed, cell migration requires polarised 

rearrangement of the actin/myosin cytoskeleton. The actin cytoskeleton is highly 

dynamic and the rates of polymerization and depolymerization are important 

determinants of cell motility and the formation of specialized structures. Actin 

polymerization drives formation and extension of lamellipodia at the leading edge of 

motile cells, while the actin-based molecular motor myosin provides the traction forces 

necessary for cell movement and directs contraction at the rear of migratory cells 

(Edwards etal., 1999).

Initial evidence that Pak regulates the cellular cytoskeleton came from studies in 

Swiss 3T3 fibroblasts. Microinjection of certain activated mutants of Pak into these 

cells resulted in formation of polarised lamellipodia and membrane ruffles like those 

induced by Rac and Cdc42 (Sells et al., 1997). Pak has also been demonstrated to be 

colocalised with the filamentous actin at sites of membrane ruffles (Dharmawardhane 

et al., 1997). The chemotactic ability of Dictyostelium cells was used to examine the 

roles of the Rac effector PAKa in regulation of the assembly of F-actin in cell 

movement. Wild-type chemotaxing Dictyostelium cells are polarised with a leading 

edge enriched in F-actin. Activation of F-actin assembly and pseudopod extension is 

regulated by RaclB which has been shown to bind PAKa, implicating Pak in 

regulation of the actin cytoskeleton (Chung etal., 2000).

In fission yeast the Pak homologue, Shk1 (Ste-20 homologous kinase 1), is 

essential for cell viability acting as the effector of Cdc42. Shk1 is targeted to sites of
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actin deposition and in the absence of Shk1 there are defects in localisation of F-actin, 

disruption of the actin cytoskeleton and loss of morphological polarity (Kim et al.,

2001). In budding yeast the Pak-like kinase Cla4 is required for effecting Cdc42- 

induced polarised bud growth, acting in two ways to promote actin polymerisation. 

Cla4 binds the formin Bni1, which acts as a general regulator of actin polymerisation, 

as well as acting in a positive feedback loop by activating Cdc42 (Gulli et al., 2000). In 

mammalian cells actin polymerisation can be regulated through the kinase activity of 

Pak. Active Pak phosphorylates and thereby activates LIM kinase resulting in 

inhibition of Cofilin-induced disassembly of actin filaments (Edwards etal., 1999).

Pak-mediated polarisation of the actin cytoskeleton also plays a crucial role in 

growth cone guidance and neurite outgrowth. The Drosophila homologue of Pak is 

important for regulating axon guidance in the eye and the loss-of-function of DPak 

results in photoreceptor cell axon projection defects. DPak binds to Dock, the 

Drosophila homologue of Nek, and recruits DPak to the plasma membranes of growth 

cones. The Dock/Pak complex is then thought to transduce signals from the guidance 

receptors to control directional movement of growth cones by modulation of the actin 

cytoskeleton (Hing et al., 1999). Pak proteins have also been shown to play a role in 

nerve growth in cell culture as membrane targeted Pak1 induces neurite outgrowth 

from PC12 cells (Daniels etal., 1998).

In addition to the regulation of actin, Pak can also regulate myosin and 

contraction of the actinomyosin cytoskeleton. Pak proteins have been shown to 

phosphorylate and activate myosin molecules (Chew et al., 1998). In endothelial cells 

Pak2 has been shown to phosphorylates myosin II regulatory light chain at serine19 in 

a Ca independent manner and this induces cell retraction of endothelial cells (Zeng et 

al., 2000). In mammalian fibroblasts overexpression of Pak1 was accompanied by 

increased MLC phosphorylation (Sells etal., 1999). Further more, the Drosophila Pak 

homologue, DPak, phosphorylates the regulatory light chain of Drosophila non-muscle 

myosin II and activates myosin II function and activated DPak induces increased 

levels of phosphorylated light chain (Crawford etal., 2001).
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Intriguingly, the converse has also been demonstrated, in that Pak can 

phosphorylate and inactive MLCK preventing MLCK-mediated phosphorylation of 

myosin regulatory light chains (Goeckeler et al., 2000; Sanders et al., 1999). In 

Escherichia coli Pak was found to inhibit activation of MLCK and phosphorylation of 

MLC (Rudrabhatla et al., 2003) and in mammalian kidney cells where Pak 

phosphorylated MLCK leading to decreased MLCK activity and decreased MLC 

phosphorylation (Sanders etal., 1999).

In Dictyostelium PAKa colocalizes with myosin II to the posterior of polarized, 

chemotaxing cells via its N-terminal domain and is required for maintaining directional 

cell movement, suppressing lateral pseudopod extension, and proper retraction 

(Chung and Firtel, 1999). This requirement for Dictyostelium PAKa results from the 

ability of PAKa to maintain myosin filaments. PAKa functions to prevent the 

phosphorylation of the tail domain of myosin molecules, thereby preventing 

disassembly of myosin filaments (de la Roche and Cote, 2001). These studies show 

that Pak can act on the actin/myosin cytoskeleton in a number of ways to regulate 

many aspects of cell migration in a number of tissue types.

1.4.4 Pak regulates cell adhesion.

In addition to regulation of the actin/myosin cytoskeleton, cell migration 

requires dynamic assembly and disassembly of adhesions between cells and the 

ECM. The physical link between the ECM and the actin cytoskeleton is formed by the 

action of a cluster of adaptor and signalling proteins, known as focal adhesions 

(Wehrle-Haller and Imhof, 2002). During cell migration nascent focal adhesions within 

protrusions of the cell membrane make the initial exploratory contacts with the cellular 

environment. Mature focal adhesions form at this leading edge and provide the 

necessary traction force to pull the cell forward while focal adhesions at the rear of the 

cell are released allowing the cell to move forward (Wehrle-Haller and Imhof, 2002).
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Evidence for the involvement of Pak in the regulation of focal adhesion cycling 

during cell migration stems from the observation that Pak is localised to sites of focal 

adhesion. As described earlier, the third proline-rich motif of the Pak regulatory 

domain binds the Rac/Cdc42 guanine nucleotide exchange factor PIX. As well as 

initiating a positive feedback loop to promote GTP binding to Rac and Cdc42, PIX acts 

to target Pak to focal adhesions. This is achieved through a multiple step process 

where PIX binds the Paxillin kinase linker protein (PKL or p95Pkl) which then binds 

Paxillin, a component of focal adhesion complex (Brown et al., 2002). The adaptor 

protein Nek may also play a role in recruiting PAK to focal adhesions as well as to the 

plasma membrane (Bokoch etal., 1996; Galisteo etal., 1996). Recruitment of Pak/PIX 

to sites of focal adhesion also has an important influence on regulation of the actin 

cytoskeleton. PIX can induce membrane ruffling when associated with activation of 

Rac1 by the PIX/PAK complex this suggests a role for PIX in Cdc42 to Rac1 signalling 

and regulation of the cytoskeleton (Manser etal., 1998).

It is clear that Pak is part of the multi-protein focal adhesion complex, however, 

the precise role of Pak at focal adhesions is less clear. In Drosophila DPak dependent 

focal complexes are found at the leading edge of cells undergoing dorsal closure 

where Pak is thought to drive the morphological changes required for dorsal closure 

(Harden et al., 1996). Cell culture assays have shown that dominant negative 

mutations of Pak result in an increase in focal adhesions. Intriguingly a gain or loss of 

focal adhesions is observed in cells expressing constitutively active Pak1 (CAPak) 

depending on cell-type (Kiosses et al., 1999; Manser et al., 1997). In endothelial cells 

expression of CAPak1 results in an increase of focal adhesions (Kiosses et al., 1999) 

where as in epithelial cells expression of CAPak leads to a dramatic decrease in focal 

adhesions (Manser et al., 1997). These observations suggest that Pak acts in a highly 

regulated manner to regulate turnover of focal adhesions.

In migratory cells it has been proposed that Pak functions to disassemble focal 

adhesions at the trailing edge while forming peripheral Rac/Cdc42 adhesions at the 

leading edge, thereby promoting cell migration (Kiosses et al., 1999). Evidence for
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Pak influence of dissociation of focal adhesions results from PIX-induced coupling of 

Pak activity to the G-protein-coupled receptor kinase-interacting protein known as 

GIT1 (Zhao et al., 2000b). Overexpression of GIT1 in fibroblasts or epithelial cells 

causes a loss of Paxillin from focal adhesions and stimulates cell motility. Additionally, 

GIT directly couples to FAK and together GIT1 and FAK cooperate to promote motility 

both by directly regulating focal adhesion dynamics and by the activation of Rac (Zhao 

etal., 2000b).

While the major adhesion mechanism for controlling migration of an individual 

cell is clearly the adhesive interaction between the cell and the matrix over which it 

moves, the migration of a group of cells, such as the lateral line primordium, is more 

complex. We have previously described that a morphological prepattern can be 

observed within the lateral line primordium and that this is maintained during 

migration. In order for cells to migrate as a group while preserving an organised 

pattern, regulated cell to cell adhesion is required. One of the most important and 

ubiquitous types of adhesive interactions required for the maintenance of tissue 

architecture is the cadherin-mediated cell to cell adhesions (Gumbiner, 1996). The 

most well studied of these adhesions are those found in epithelial cells that are 

mediated by E-cadherin (Gumbiner, 1996). Clustering of the transmembrane E- 

cadherin molecules triggers an association with the actin cytoskeleton that stabilises 

the adhesion (Jamora and Fuchs, 2002). E-cadherin is linked to the cytoskeleton by 

the binding of p-catenin which in turn binds a-catenin, which, either binds to actin 

directly or indirectly through association with actin binding proteins such as Vinculin 

(Pokutta and Weis, 2002). This cadherin/catenin/actin complex is known as the 

adherens junction (Braga, 2002).

Evidence is emerging for the involvement of Pak in the cadherin-mediated 

adherens junctions. In Drosophila it has been shown that the mushroom-bodies-tiny 

(Mbt) protein, a homologue of the Group II family of Pak proteins, can be recruited to 

adherens junctions (Schneeberger and Raabe, 2003). In addition, one of the upstream 

activators of Pak, Rac, is recruited to cadherin-mediated adhesion sites and Rac has
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been shown to regulate these adhesions. Expression of a constitutively active Rac 

mutant results in a greater accumulation of E-cadherin and p-catenin at sites of cell 

contact and an inactive Rac mutant inhibits this accumulation (Nakagawa etal., 2001). 

The function of Rac in regulating cadherin-mediated cell adhesions relates to their 

dynamic rearrangement during cell movements. E-cadherin can be tethered to either 

the actin cytoskeleton, via a-catenin, or to the small GTPase effector IQGAP (Fukata 

and Kaibuchi, 2001). Activated Rac (and Cdc42) positively regulate cadherin- 

mediated cell adhesion by inhibiting the interaction of IQGAP with p-catenin (Fukata 

and Kaibuchi, 2001). As of yet it is unclear whether this regulation involves Pak, 

although, Pak has been demonstrated to function as an upstream activator of Rac in 

addition to its downstream effector role (Obermeier etal., 1998).

The fate of E-cadherin once it is delivered to the basolateral cell surface, and 

the mechanisms which govern its participation in adherens junctions, are not well 

understood. Surface biotinylation and recycling assays have shown that cell surface 

E-cadherin is actively internalized and is then recycled back to the plasma membrane. 

This indicates that a pool of surface E-cadherin is constantly trafficked through an 

endocytic recycling pathway and that this may provide a mechanism for regulating the 

availability of E-cadherin for junction formation in development (Le et al., 1999). Rac- 

mediated regulation of the actinomyosin cytoskeleton is required for formation of 

endocytic vesicle formation. Rac is also required for the formation of pinocytic vesicles 

and Pak localises to sites of pinocytic vesicles, suggesting that Pak mediates the 

effects of Rac on the cytoskeleton required for vesicle formation (Dharmawardhane et 

al., 1997). Pak can also regulate endocytosis through activation of the unconventional 

myosins (Yamashita and May, 1998) and inhibition of Pak activity blocks endocytic 

pathways (Buss etal., 1998; Dharmawardhane etal., 2000).
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1.4.5 Pak is a component of the heterotrimeric G-protein signalling pathway.

In addition to the many activities of Pak mediated through the N-terminal 

regulatory and C-terminal kinase domains are those mediated by the Gfty binding site 

in the non-catalytic carboxy-terminus. In the budding yeast homologue of Pak, Ste20, 

this binding site is involved in transmitting the mating-pheromone signal from the J3y- 

subunits of a heterotrimeric G-protein to a downstream kinase cascade (Leeuw et al., 

1998). In mammalian tissues G-protein-coupled receptors have a potent ability to 

stimulate Pak activity (Daniels and Bokoch, 1999). It has also been shown that Pak1 

can phosphorylate the unique Ga subunit Gc^ decreasing its affinity for Gpy subunits 

and sustaining activity of Gaz (Fan et al., 2000). The role of this Pak1-induced 

prolonged activation is not known, but may be related to cellular differentiation and 

transformation events as active Gc^ can inhibit adenylyl cyclase and the production of 

cAMP (Ho and Wong, 2001). The activity of the cAMP-dependent protein kinase A 

(PKA) contributes to anchorage-dependant signalling. PKA can inhibit Pak in non

adherent cells and prevent Pak from activating the MAPK pathway, resulting in 

inhibition of cell cycle progression (Howe and Juliano, 2000a). In addition, in 

vertebrates the active Gazcan inhibit Eya activity, a component of the Pax-Six-Eya- 

Dach regulatory network which is an important inducer of myogenic genes and 

myogenesis (Kawakami et al., 2000). Eya is an intrinsically cytosolic protein and is 

translocated into the nucleus by interaction with Six, whereupon transcription of 

downstream genes is activated. Association of Eya with Six and translocation to the 

nucleus is inhibited by activated Gaz (Fan et al., 2000). Therefore Pak-induced 

signalling through G-protein subunits may also regulate gene transcription.

Of particular interest, in terms of a possible role for Pak in regulating migration 

of the posterior lateral line primordium, is the recent work revealing that directional 

sensing requires Gpy-mediated activation of Pak1 (Li etal., 2003). Pak is known to be 

important for chemotaxis-induced cell migration from studies in Dictyostelium where 

PAKa, is required for maintaining directed cell migration, suppressing lateral 

pseudopod extension, and retraction of the posterior of chemotaxing cells (Chung and
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Firtel, 1999). Studies using smooth muscle tracheal cells have shown that Pak activity 

is also required for PDGF-induced chemotactic cell migration (Dechert et al., 2001) 

and that stimulation of neutrophils with chemoattractants results in rapid activation of 

Paks (Huang et al., 1998). Dissection of this pathway by Li et al has revealed that 

chemoattractant bound receptors activate heterotrimeric G-proteins and release Gffy 

proteins that recruit Pak1 via a direct interaction. PIXa is also recruited by its 

association with Pak in order to activate Cdc42 at the membrane. The active Cdc42 

then activates Pak and mediates the downstream cytoskeletal changes required for 

the directional sensing, cell polarisation and persistent directional migration (Li et al.,

2003). Studies in chemotaxis-activated neutrophils have demonstrated that Pak is 

colocalised with the F-actin found at sites of membrane ruffling and lamellipodia 

formation, indicating that the role of Pak in mediating chemotactic response is to 

reorganise the actin cytoskeleton (Dharmawardhane et al., 1999). This is similar to 

studies in neutrophils revealing that activation of G-protein associated receptors leads 

to release of G-subunits that play specific and opposing roles in inducing actin 

filament extension at the leading edge and retraction of actinomyosin filaments at the 

training end (Xu etal., 2003). It appears likely that this pathway will also involve Pak.

1.4.6 Negative regulators of Pak activation.

The apparent multiplicity of Pak structure and Pak-mediated signalling 

pathways suggest that Pak activity must be tightly regulated. As Pak activation is 

adhesion-dependant loss of cell adhesion can lead to inactivation of Pak (del Pozo et 

al., 2000). Additionally, specific proteins with an inhibitory action on Pak are being 

identified. In the fission yeast, Schizosaccharomyces pombe, Skb15 (Shk1 kinase 

binding protein 15), which shares homology with the Gp-subunit related WD repeat 

(tryptophan-aspartate repeat) proteins, functions as an inhibitor of Shk1, the fission 

yeast homologue of Pak, by negatively regulating kinase activity (Kim etal., 2001). 

Loss of Skb15 is lethal and results in severe deregulation of the actin and microtubule
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cytoskeletons (Kim et al., 2001). A homologous protein in mammalian cells, hPIP 

(human Pak/PLC-interacting protein 1) interacts with the N-terminal domain of Pak1 

and may act to stabilise Pak protein in the inactive dimeric conformation (Xia et al.,

2001).

As Pak activation requires phosphorylation of serine and theronine residues 

throughout the protein it is intuitive that dephosphorylation would lead to inactivation. 

Two serine/theronine phosphatases have been identified that efficiently inactivate 

Pak, POPX1 and POPX2 (Partner Of PIX) (Koh et al., 2002). POPX phosphatases 

form a trimeric complex of POPX-PIX-Pak and act directly on autophosphorylated Pak 

to block the phenotypic effects of Pak (Koh etal., 2002).

1.5 Approaches.

The aim of the work described in this thesis was to understand the molecular 

mechanisms that regulate cell migration during embryonic development using the 

formation of the zebrafish lateral line as the model. We set out to analyse in detail the 

behaviour of the cells within the lateral line primordium during development of the 

posterior lateral line system. The possible role of Pak in lateral line development will 

be studied in loss of function analyses. Observation of cell behaviour, both in normal 

development and following loss of Pak function, will help to elucidate possible 

mechanisms through which zebrafish Pak proteins may regulate cell migration. 

Biochemical approaches will also be used to study Pak protein interactions and 

analyse the effects of loss of function.
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Chapter Two

Materials and Methods

2.1 Zebrafish embryo collection and staging.

2.1.1 Zebrafish embryo collection.

Zebrafish (Danio rerio) embryos were produced by natural mating and raised in fish 

water (0.03g/L red sea salt, 2mg/L methylene blue) or 0.3x Danieau solution (1x 

Danieau solution: 58mM NaCI, 0.7mM KCI, 0.4mM MgS04, 0.6mM Ca(N03)2, 5mM 

HEPES, pH7.6). Embryos were generally raised at 28°C, however, temperatures 

ranging between 18°C and 30°C were used.

2.1.2 Embryo staging.

Embryos were staged in accordance with the criteria provided in (Kimmel et 

al., 1995). Stages are stated according to morphological feature or in hours-post- 

fertilisation (hpf) or days-post-fertilisation (dpf).

2.2 DNA Techniques.

2.2.1 Preparation of fresh competent cells.

DH5a cells were used to inoculate 1ml of 2xTY broth (16g Difco Tryptone, 10g 

Yeast Extract, 5g NaCI in 1L distilled water, dH20) and incubated overnight at 37°C at 

250 revolutions per minute (rpm) in an orbital shaker. From this culture 0.5ml was 

used to inoculate 100ml 2xTY and incubated until an optical density (OD595) of 0.34

48



was reached. Cells were pelleted by centrifugation at 3,000rpm for 5 minutes. The 

pellet was resuspended in 17ml of Hanrahans Buffer (HBT: 10mM CaCI2.6H20, 45mM 

MnCI2, 100mM RbCI, 3mM Hexamino-lll-colbalt chloride, 10mM MES pH6.3) and 

incubated on ice for 30 minutes. Cells were pelleted again by centrifugation at 

3,000rpm for 10 minutes. Supernatant was removed and replaced with 4ml HBT and 

140ptl Dimethylformamide (DMF) and kept on ice for 5 minutes, then 140pJ of 40mM 

Dithiothreitol (DTT) was added and left for 10 minutes. A further 140pil DMF was 

added and after 5 minutes the cells were ready to use.

2.2.2 Transformation of competent cells.

Fresh competent cells were used for “blunt end” ligations. For routine 

transformations and “sticky end” ligations stocks of competent cells stored at -80°C 

were used.

DH5a competent cells were dispensed (50pil) into pre-chilled 1.5ml Eppendorf 

tubes to which 1-5^1 of DNA solution was added and mixed gently. Cells were 

incubated on ice for 20 minutes and heat shocked for two minutes at 42°C. For 

transformation 500jliI (200^1 for ligations) of Luria-Bertani (LB) broth was added and 

the cells were allowed to recover at 37°C for 20 minutes. Fifty to 100^1 of cells were 

plated onto LB-agar plates containing an appropriate antibiotic (ampicillin; amp or 

kanamycin; kan). Bacterial plates were incubated upside down at 37°C overnight.

2.2.3 Small scale preparation of DNA.

Overnight cultures of 3ml LB broth, grown from single colonies and containing 

the appropriate antibiotic, were pelleted in 1.5ml Eppendorf tubes by centrifugation at 

12,000rpm for 1 minute. Supernatant was removed and preparation of DNA was 

carried out using the QIAprep Spin Mini-prep Kit (Qiagen) following manufacturer’s 

protocol. DNA was generally eluted with 30pil EB buffer (Qiagen) and stored at -20°C.
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2.2.4 Large scale preparation of DNA.

Overnight cultures of 100ml LB or 2xTY broth containing the appropriate 

antibiotic were pelleted in 50ml Falcon tubes by centrifugation at 3,000rpm for 15 

minutes. Supernatant was removed and preparation of DNA was carried out using the 

Plasmid Maxi Kit (Qiagen) following manufacturer’s protocol. DNA pellets were 

generally resuspended in 200-400pl s te rile  low TE (0.1 mM 

Ethlenediaminetetraacetate (EDTA), 10mM Tris) and stored at -20°C.

DNA and RNA were quantified by spectrophotometry at 260nm; an OD 

reading of 1 equates to 50pg/ml double stranded DNA, 40pg/ml of RNA or 35pg/ml 

single stranded DNA. The ratio of readings at 260nm and 280nm provided an estimate 

of purity of the preparation; pure preparations achieve a ratio of 1.8 for DNA and 2.0 

for RNA.

2.2.5 Preparation of DNA fragments for sub-cloning.

Plasmid DNA was cut using restriction enzymes according to the 

manufacturer’s instructions (Roche, New England Biolabs) using the appropriate 

supplied buffer. Enzyme volumes never exceeded 10% of the total reaction volume. 

Approximately 100ng was run on a 1% agarose gel to confirm completion of 

enzymatic digest.

To remove proteins from nucleic acid solutions an equal volume of Tris- 

saturated phenol was added and the sample was vortexed thoroughly and 

centrifugated at 13,000rpm for 2 minutes. The aqueous phase was removed to a 

clean tube and extracted with an equal volume of chloroform by vortexing and 

centrifugation at 13,000rpm for 2 minutes. The aqueous phase was again removed to 

a clean tube for ethanol precipitation.

DNA was precipitated by adding 3M NaOAc (pH5.5) to a final concentration 

of 0.3M and 2.5 volumes of 100% ethanol, the reaction was then left at -20°C to -80°C 

for 1 hour or longer. DNA was pelleted by centrifugation at 13,000rpm for 10 minutes.
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The pellet was washed in 70% ethanol, air dried and resuspended in low TE or 

DNase- and RNase-free water (Sigma).

2.3 Generation of Constructs.

Three types of construct were used to analyse zebrafish Pak function: yellow 

fluorescent protein tagged full length Pak2a and Pak2b constructs (Pak2aFLYFP and 

Pak2bFLYFP), yellow fluorescent protein tagged truncated Pak2a and Pak2b 

constructs (Pak2aAcYFP and Pak2bAcYFP) and C-terminal truncated Pak2a and Pak2b 

GST fusion proteins (Pak2aAcGST and Pak2bAcGST). Fluorescently tagged constructs 

were designed for in-vivo injection of RNA and the GST fusion proteins were used to 

screen for zebrafish Pak2a and Pak2b specific antibodies (carried out by Lynne 

Fairclough, Division of Developmental Biology, NIMR) and protein pull down assays. 

Constructs were created by amplification of cDNA using primers containing restriction 

sites and ligation into the relevant vectors. All constructs were sequenced to ensure 

no mutations were generated by PCR.

2.3.1 Incorporation of a restriction enzyme site using PCR.

PCR primers (Oswell) were designed by hand to amplify the desired DNA 

sequence and incorporate a restriction enzyme site. Care was taken to avoid high G/C 

content, hairpin, palindromic or repetitive sequences. Sequences were generally 33 

base pairs (bp), including a 21 bp gene specific sequence, 6bp corresponding to the 6- 

cutter restriction enzyme site and 6bp flanking the restriction site to aid enzymatic 

digestion.

Primer stocks were diluted to 100pg/ml before use. Annealing temperatures 

were calculated by the average Tmfor a primer pair minus 5°C (Tm data provided by 

Oswell). The annealing temperature was reduced by a further 2-8°C to account for 

the restriction enzyme site and flanking sequence which will not anneal. PCR reaction
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solution contained: 1pl 10mM dNTP mix, 5pl Pfu buffer (Stratagene), 2\i\ Pfu 

polymerase (Stratagene), 50ng DNA, 2pl primer 1, 2pl primer 2 and RNaseVDNase- 

free water to 50pl. The PCR cycle was 3 minutes at 95°C followed by 30 cycles of 

95°C for 1 minute, 48-60°C for 30 seconds and 72°C for 4 minutes and final 

elongation was at 72°C for 10 minutes.

2.3.2 Gel purification of DNA.

If required, following restriction digest or PCR, DNA fragments were gel 

purified. Samples of up to 50pl were run on a 1% agarose gel with 1xTBE (0.89M Tris 

Borate pH8.3 and 20mM Na2EDTA concentrate; National Diagnostics) diluted 1:10 

with distilled water (dH20) containing Ethidium Bromide (EtBr). DNA bands were cut 

out from the gel and purified using the QIAquick Gel Extraction Kit (Qiagen) according 

to the manufacturer’s protocol. Samples were eluted using 30pJ EB buffer (Qiagen).

2.3.3 Ligation of DNA fragments.

DNA fragments were produced and host vectors prepared by restriction 

enzyme digestion. If required 5’ overhangs were end-filled with Klenow polymerase 

(Promega) prior to ligation. To a 50^1 restriction digest, 1pl polymerase buffer 

(Promega), 1pl Klenow polymerase, 2pl 2mM dNTP and 6pl RNase-/DNase-free 

water were added and incubated at 37°C for 30 minutes. DNA fragments were purified 

using S300HR columns (Amersham) or by gel extraction (section 2.3.2). DNA 

fragments were ligated into linear vectors using the Rapid DNA Ligation Kit (Roche) 

according to manufacturers instructions. A 1:3 ratio of vector to insert was used.

2.3.4 Generation of full length YFP tagged Pak constructs.

Full length Pak2a and Pak2b YFP constructs were generated by amplification 

of the full length coding region including the 5’ untranslated region against which the
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morpholino sequences were designed. Primers against pak2a were designed to 

incorporate Bgl II and Sal I restriction sites at the 5’ and 3’ termini respectively 

(underlined):

5’ end: 5’ GGA CTC AGA TCT ACC CTT CTG AGT GTG TTT CCC 3’

3’ end: 5’ GGT ACC GTC GAC TGG TAA CGG TTA CTC TTC ATT GC 3’.

Primers against pak2b were designed to incorporate EcoRI and BamHI 

restriction sites at the 5’ and 3’ termini respectively (underlined):

5’ end: 5’ AGC TTC GAA TTC TGT CTC CTC ATC CTG ATC ATG 3’

3’ end: 5’ ACC GGT GGA TCC GAG TAG CGG TTG TTC TTC ATG GC 3’.

PCR products were gel purified and ligated into pEYFP-N1 (Clontech) at the 

corresponding restriction sites, before the YFP sequence. The Pak-YFP fusion 

sequences were then excised from pEYFP-N1 by digestion with Bgl I (Pak2a) or 

BamHI (Pak2b) and Notl and were sub-cloned into the BamHI and Xhol sites of 

pCS2+ following blunting of the Notl and Xhol sites using Klenow DNA polymerase 

(Promega).

2.3.5 Generation of dominant negative Pak constructs.

Dominant negative Pak proteins were generated by removal of the majority of 

the C-terminal kinase domain and comprised amino acids 1-241 and 1-263 of Pak2a 

and Pak2b respectively. Primers were designed to truncate Pak2a and Pak2b 43 

amino acids into the N-terminus of the kinase domain. Primers at the 5’ terminus 

incorporated an EcoRI restriction site (underlined) adjacent to the start codon:

Pak2a 5’ AGC TTC GAA TTC ACC ATG TCT GAC AAC GGC GCG CTG 3’

Pak2b 5’ AGC TTC GAA TTC ACC ATG TGT GAT AAT GGC GAT GTG 3’.

The 3’ primer was designed against a homologous region of the kinase 

domain of Pak2a and Pak2b (one amino acid difference, therefore, 50% of primers 

were designed to have T and 50% C at position Y) and incorporated a BamHI 

restriction site (underlined).
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5’ GAC CGG TGG ATC CCG GAT GAT CAG CTC TTT YTT GGG CTG 3’.

PCR products were gel purified and ligated into pEYFP-N1 (Clontech) at the 

corresponding restriction sites, before the YFP sequence. The PakACYFP fusion 

sequences were then excised from pEYFP-N1 by digestion with EcoRI and Notl. 

PakACYFP fusion sequences were sub-cloned into the EcoRI and Xhol sites of pCS2+ 

following blunting of the Notl and Xhol sites using Klenow DNA polymerase 

(Promega).

2.3.6 Generation of GST-Pak fusion protein constructs.

Glutathione-S-transferase (GST) tagged Pak proteins were designed to find 

proteins or antibodies that only interact with the N-terminal regulatory domain. PCR 

primers were designed to truncate the Pak proteins N-terminal to the kinase domain at 

aa236 of Pak2a and aa259 of Pak2b.

Primers at the 5’ terminus incorporated a BamHI restriction site (underlined) 

adjacent to the start codon:

Pak2a 5’ CCG CGT GGA TCC ATG TCT GAC AAC GGA GAG CTG 3’

Pak2b 5’ CCG CGT GGA TCC GTC TGT GAT AAT GGC GAT GTG 3’

Primers at the N-terminal to the kinase domain incorporated an EcoRI 

restriction site (underlined):

Pak2a 5’ CAC GAT GAA TTC TCC AAT ACT GAC AAT GGT TCT 3’

Pak2b 5’ CAC GAT GAA TCC GTC TCC AAT GCT GAC TCT GGT 3’

PCR products were gel purified and ligated into pGEX6.1 (Amersham) at the 

corresponding restriction sites, following the GST sequence.

2.4 DNA sequencing.

Zebrafish pak2a and pak2b cDNAs in pSPORTI were obtained from the 

expressed sequence tagged (EST) sequences. Initial sequencing was carried out
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using standard pSPORT T7 and SP6 sequencing primers and the sequences 

obtained were used to design further, sequence specific, primers as listed below.

Eâ  .512 ^  . . .   514
T7 prim er ^

5 U  ^ ^ V. l  ^   >
—— —— —— — — ' '

 C.Q,ding...Seqii£,nc£___________

  ,, s <:_____213_________ < -3 ,1 .^    ^  <  . -3.̂ 2 <jSP6 pnmer

T7: 5’ GTAATACGACTCACTATAGGGC SP6: 5’ G A ATTT AG GTG AC ACTATAG A 

5’.1: 5’ GCTCTAAACCCCTGCCCTCCG 3 M : 5’ CCGGTGTTCTGTCAGATTGTT

5’.2: 5’ GCCATTGCAGACACAGATGGC 3’.2: 5’ GGAGAGACATCAGTAGAAACG

5’.3: 5’ GCTCAAATTGCTGCTGGCTGC 3’.3: 5’ GGCAAGACACGGTGATTGTGC

5’.4: 5’ GCTGCCTGGAGATGGATGTGG 3’.4: 5’ GCT CAT CT CCAACCAAG AAG C

3\5: 5’ GCTTAATAGCAACCTCTTGGC 

3’.6’ : 5’ CCC AC AT GT AT AGT GTGCT CG

Pak2b: <’ o a

 5U _>  5 '2------ - »  v.3  >
 T7 p rim er ^

______________ Coding Sequence__________
r  <  a u ----------

< ____214________   r ^ <    ^P 6 primer

T7: 5’ GTAATACGACTCACTATAGGGC SP6: 5’ G AATTT AGGT G ACACT AT AG A

5 M : 5’ GCGCAAGCG C AAC AAG AT CT A 3M : 5’ G A AT A AC AAC A AAG G C ACG AG

5\2: 5’ GCCGT CGT CT CCAGT CAAAGC 3’.2: 5’ GGAAGTCTCGGAAGATTGGCG

5’.3: 5’ CCATCAAACAGATCAACCTGC 3’.3: 5’ CGATCTGAGCTTCATCCATGC

5’.4: 5’ GCAACCAATGGCACTCCAGAG 3’.4: 5’ CGCTCTTAGTGTGTTCAGGCC
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2.4.1 Cycle sequencing PCR.

Cycle sequencing PCR was performed using the ABI PRISM Big Dye 

Terminator Kit (Perkin Elmer) according to manufacturer’s instructions. Briefly, 0.5jig 

DNA was combined with 2pJ Big Dye, 3p,l 5x PCR buffer (1M KCI, 1M Tris-HCI pH8.4, 

1M MgCI2, 100mM dATP, 100mM dTTP, 100mM dGTP, 100mM dCTP, 0.8ng/ml 

BSA), 5fil Primer 1, 5 îl Primer 2 and RNase-/DNase-free water to 20^1, in a 0.5ml 

thin-walled bubble-cap tube. Annealing temperatures were calculated as described in 

section 2.3.1. PCR was cycled 25 times at 96°C for 30 seconds, 45°C for 15 seconds 

and 60°C for 4 minutes.

2.4.2 Automatic sequencing.

PCR samples were prepared for sequencing by adding 2̂ 1 3M NaOAc pH5.5, 

1 fj.l glycogen and 58p,l ethanol. Samples were placed on ice for 15 minutes and then 

centrifugated at 13,000rpm for 30 minutes. The pellet was washed in 70% ethanol 

with brief vortexing. Samples were pelleted again with centrifugation for 15 minutes. 

All ethanol was removed and pellets were left to air dry. Once dry, pellets were 

resuspended in 4jliI ABI dye (Perkin Elmer) and denatured at 95°C for 3 minutes. On 

an acrylamide gel (18g Urea, 5ml 10x TBE, 5ml Long Ranger acrylamide, 250^il 10% 

ammonium persulphate, 25 îl TEMED in 50ml dH20) 2\i\ of sample was loaded. 

Samples were run on the ABI Prism 377 DNA sequencer (Perkin Elmer).

2.4.3 Sequence analysis.

Sequences were manipulated using Sequencher (Gene Codes) and 

MacVector (Oxford Molecular Groups). Analysis of sequences was ̂ performed using 

BLAST (NCBI). Praline was used for protein sequence alignment (Heringa, 1999), 

along with CLUSTAL through MacVector.
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The Sanger Centre zebrafish genome site was also used for sequence 

searches and comparisons (http://www.sanger.ac.Uk/Projects/D rerio/L

2.5 RNA techinques.

2.5.1 Preparation of total RNA from zebrafish embryos.

One hundred embryos at 24hpf were homogenised in 1 ml TRIzol reagent (Life 

Technologies). Following a 5 minute incubation at room temperature 200^1 of 

chloroform was added and the sample was shaken for 5 minutes before centrifugation 

at 12,000rpm for 20 minutes at 4 °C. The aqueous phase was transferred to a fresh 

tube and RNA was precipitated with 500pl isopropyl alcohol by incubation at room 

temperature for 10 minutes. After centrifugation at 12,000rpm for 15 minutes at 4 °C 

the supernatant was discarded and the pellet washed in 70% ethanol, air dried and 

resuspended in 20pl RNase-/DNase-free water. RNA was stored at -80°C.

2.5.2 Northern Blot analysis.

High stringency detection of RNA transcripts was achieved using specific DNA 

probes. DNA probes were radiolabelled using the New Megaprime Kit (Amersham) 

according to the manufacturer’s protocol with some amendments. In brief, 0.5^g DNA 

was denatured in the presence of 5pl primer in a total volume of 1 O jlx I  at 95-100°C for 

5 minutes. At room temperature 10pl labelling buffer including dNTPs (Amersham), 

2jxl Klenow polymerase (Promega), and RNase-/DNase-free water to 45^1 was added 

and the mixture briefly spun down to the bottom of the tube. Finally 5p.l dCTP32was 

added and the reaction was incubated at 37°C for 10 minutes to 1 hour. The reaction 

was stopped by addition of 2pl 0.5M (EDTA). Unincorporated nucleotides were 

removed by filtration through S300HR columns (Amersham). Probes were denatured 

at 95-100°C for 5 minutes before use.
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Total RNA was separated on a formaldehyde gel and transferred to a 

membrane as previously described (Sambrook et a!., 1989). Briefly, 

morpholinopropanesulphonic acid (MOPS) running buffer (10x MOPS; 0.2M MOPS 

pH7.0, 50mM NaAc, 1mM EDTA pH8.0) and a formaldehyde gel were prepared (1.5% 

Agarose, 1x MOPS, 2.2M formaldehyde in dH20). RNA samples were prepared for 

loading by mixing a maximum of 4.5p,l (20|ig) RNA with 2pl 10x MOPS, 3.5 îl 

formaldehyde, 1 OjliI formamide and 1pl EtBr (800p,g/ml) and incubating at 55°C for 15 

minutes. Samples were loaded with the addition of 2ja,l sterile loading buffer (50% 

glycerol, 1nM EDTA, 0.4% bromophenol blue and 0.4% xylene cyanol) and separated 

by electrophoresis. RNA was transferred from the gel to a nylon blotting membrane 

(Electran; BDH) overnight under alkaline conditions.

After RNA transfer the membrane was briefly washed in 5x Saline Sodium 

Citrate (SSC) and dried between blotting paper. The RNA was then cross-linked in a 

UV transluminator and the membrane baked at 80°C for 30 minutes before a 3 hour 

incubation at 50°C in pre-hybridisation buffer (5xSSC, 1/10 Denharts, 50% formamide, 

0.1% Sodium Dodecyl Sulphate (SDS), 0.1% sodium phosphate and 100ng/ml 

sonicated and denatured salmon sperm DNA). P32 labelled DNA probes were 

denatured and added directly to the pre-hybridisation buffer and membranes were 

further incubated overnight at 68°C. Membranes were then washed for 20 minutes at 

room temperature in 1x SSC, 0.1% SDS, followed by three washes of 20 minutes 

each at 68°C in 0.2x SSC, 0.1% SDS. Binding of probes was visualised by exposing 

the membrane to OMAT X-ray film (Kodak).

2.5.3 Whole mount in situ hybridisation.

Linearised plasmids containing zebrafish cDNA were used as templates in the 

synthesis of dioxygenin (DIG) (Roche) labelled anti-sense probes. A table of probes 

and restriction digest sites for synthesis of anti-sense RNA can be found in Table 2.1. 

Following synthesis, template was removed by treatment with RNase-free DNase I
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(Promega) and RNA was purified by filtration through S300HR columns (Amersham). 

Probe was then diluted in 100pl hybridisation buffer (50% formamide, 5x SSC pH6.0 

adjusted with 1M citric acid, 50pg/ml yeast RNA, 50ng/ml heparin, 0.1% Triton-x-100) 

and stored at-20°C. Probe integrity and approximate concentration was determined 

by agarose gel electrophoresis.

In situ hybridisations were performed essentially as described (Xu and 

Wilkinson, 1998). However proteinase K (PK) treatment was not carried out on 

embryos as this damages superficial structures of the embryo including the lateral 

line. Probes were used at 0.5-10% of total hybridisation solution depending on 

expression levels. Following detection of probe embryos were rinsed in PBT 

(Phosphate buffered saline and 0.1% Triton-x-100) and refixed in 4% 

paraformaldehyde (PFA) in PBS for 30 minutes or longer at room temperature. 

Embryos were then stored in 70% glycerol/PBS at 4°C.

2.5.4 Preparation of capped RNA for microinjection.

In vitro transcription of capped RNA was carried out in a 50pl reaction volume; 

5pl 10x transcription buffer (Roche), 5pl rNTPs (1mM GTP and 10mM ATP, CTP, 

UTP), 5pl 5mM m7G(ppp)G RNA cap structure analogue (New England Biolabs), 2pJ 

RNasin (Promega), 2̂ 1 RNA polymerase (SP6; Roche, T7, T3; Promega), 2pg purified 

linear DNA and RNase-/DNase-free water to 50pil. The reaction was incubated at 

37°C for 3 hours or longer. DNA template was removed with 1pl RNase-free DNase I 

(Promega) for 30 minutes at 37°C. RNA was purified by water-saturated 

phenol/chloroform extraction and filtration through S300HR columns (Amersham). 

Aliquots of RNA were stored at -80°C. For micro-injections 3nl RNA was used 

undiluted or diluted up to 1:5 and was injected at one-cell stage.
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2.6 Protein analysis

2.6.1 In vitro translation.

Proteins were translated in vitro using the TnT Rabbit Reticulocyte Translation 

System (Promega). Translation was performed using the manufacturer’s protocol. 

Briefly, 25pl TnT rabbit reticulocyte lysate was combined with 2pl reaction buffer, 1pl 

TnT RNA polymerase, 1pl amino acid mixture minus methionine, 0.04mCi 35S 

methionine, 40 units RNase inhibitor, 1pg DNA template and RNase-/DNase-free 

water to 50pl. The reaction was incubated at 30°C for 2 hours. Translation products 

were separated by SDS-PAGE (see section 2.6.4). Protein gels were fixed for 10 

minutes (45% methanol, 45% dH20  and 10% acetic acid) and vacuum dried. 

Radiolabelled protein bands were detected using a phosphoimager or by exposure to 

Biomax film (Kodak).

2.6.2 Preparation of protein extracts from embryos.

Whole cell extracts were prepared from zebrafish embryos at stages 50% 

epiboly to 48hpf, in lysis buffer (1x cell lysis buffer; (Cell Signalling Technology), 1x 

protease inhibitor; (Roche) in dH20) using 10pl per embryo. For some experiments 

whole cell extracts were further fractionated by centrifugation at 12,000rpm for 10 

minutes at 4°C, into a pellet containing proteins linked to the cytoskeleton and the 

supernatant. Extracts were stored at -80°C.

2.6.3 Preparation of GST-fusion protein.

Betty Bennett (Division of Developmental Biology, NIMR) carried out 

preparation of GST-fusion protein. In brief, 90ml of a 100ml overnight culture (grown in 

2xTY containing chloramphenicol, (cpI) and amp) was added to a 1L medium (amp 

and cpI) and grown for 1 hour at 37°C. After 1 hour 1ml 1M Isopropyl p-D- 

thiogalactopyranoside (IPTG) was added and growth continued for 4 hours. Cells
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were then pelleted by centrifugation at 3,000rpm for 15 minutes and washed with 

phosphate buffered saline (PBS). Pellets were resuspended in 80ml ice-cold MTPBS 

(150mM NaCI, 16mM Na2HP04, 4mM NaH2P04, pH7.3) containing proteinase 

inhibitors and 100p,l lysozyme (50mg/ml). To the cell suspension, 48p,l 

Phenylmethylsulfonyl Fluoride (PMSF; 10mg/ml in isopropanol) was added and 

incubated on ice for 15 minutes. Samples were sonicated (Roth Scientific, “Vibra- 

Cell”) in 48p,l 1M DTT and 2ml 10% Sarkosyl using large tips at 70% power for five 10 

second bursts. Samples were then centrifugated at 16,000rpm for 20 minutes. 

Supernatants were saved and Triton-x-100 (Sigma) was added to a final concentration 

of 1%. To purify the GST-fusion protein 2ml 50% glutathione beads (Sigma) were 

added and the mixture was incubated at 4°C for 30 minutes. The beads were then 

pelleted at 1,000rpm for 5 minutes and washed with PBS twice. The GST-fusion 

protein was then eluted with 2ml glutathione elution buffer (5mM glutathione, 50mM 

Tris pH8) and dialysed at 4°C against 3L PBS, changing buffer once. The purified 

protein was mixed with an equal volume of glycerol and stored at -80°C. For pull 

down assays the GST-fusion protein was retained on the beads and stored at 4°C in 

the presence of 0.1% sodium azide.

2.6.4 Protein separation by sodium dodecyl sulphate polyacrylamide (SDS- 

PAGE) gel electrophoresis.

SDS-PAGE gels were prepared essential as described (Sambrook et a i, 

1989). A 10-12% acrylamide resolving gel (13.3ml 30% (v/v) bis-acrylamide (37:5:1 

acrylamide:bis; Bio-Rad), 10ml 1.5M Tris pH8.8, 200pl 20%SDS, 400pJ 10% (w/v) 

ammonium persulphate (APS), 16pJ NNN’N’-tetramethylethylenediamine (TEMED) 

and 16.1ml dH20) was poured and overlaid with isopropyl alcohol. Following 

polymerisation the alcohol was removed and replaced by a 5% acrylamide stacking 

gel (1.3ml 30% (v/v) bis-acrylamide (37:5:1 acrylamide:bis; Bio-Rad), 1ml 1M Tris
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pH6.8, 40pl 20% SDS, 80pl 10% APS, 8pl TEMED and 5.5ml dH20) into which a 

comb was inserted to form sample wells.

Protein samples were prepared by addition of an equal volume of 2x sample 

loading buffer (100mM Tris.HCI, 200mM DTT, 4% SDS, 20% Glycerol, 0.2% 

Bromomethylblue, 20% p-mercapto-ethanol) and denatured by boiling for 5 minutes. 

Samples were then loaded into wells and elecrophoresed in Tris-glycine 

electrophoresis buffer (25mM Tris base, 250mM glycine, 0.1% SDS in dHzO).

2.6.5 Western Blot analysis.

Following SDS-PAGE electrophoresis, separated protein samples were 

transferred onto polyvinylidene difluoride (PVDF) membrane (Bio-Rad). The 

membrane was permeablised by immersion in methanol and washed in transfer buffer 

(10mM Cyclohexylamino-propanesulfonic acid (CAPS; Sigma), 10% methanol in 

dH20) before being laid over the protein gel. Proteins were transferred to the 

membrane by electrophoresis.

The membrane was blocked in milk (10% non-fat milk powder in PBS) for one 

to two hours at 37°C before incubation with primary antibody in 1% milk powder for 

one hour at room temperature (details of antibodies used, source and dilution factor 

can be found in Table 2.2). After two rinses in PBTw (0.1% Tween20 (Sigma) in PBS), 

the membrane was washed once for 15 minutes and twice for 5 minutes in PBTw. The 

membrane was then incubated for one hour at room temperature in 1% milk with a 

1:3000 dilution horseradish peroxidase-conjugated secondary antibody (Amersham). 

Horseradish-peroxidase (HRP) signal was detected using the ECL detection kit 

(Amersham) and exposed to Hyperfilm (Amersham) according to manufacturer’s 

instructions.

Membranes were rinsed and stored in PBTw at 4°C. To reuse, the membrane 

was incubated in 1x stripping buffer (10x stripping buffer (Chemicon) in PBS) for 10 

minutes at room temperature and washed three times in PBTw for 5 minutes.
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2.6.6 GST fusion protein pull down assay.

The Pak2-GST fusion proteins were prepared as described in section 2.6.3. 

Protein extracts from 100 embryos were combined with 100pl of a 50% slurry of GST 

fusion protein and glutathione-agarose beads and incubated overnight at 4°C with 

gentle rotation. The beads were then pelleted by centrifugation (12,000rpm for 10 

minutes at 4°C) and washed three times with lysis buffer. Samples were resuspended 

in an equal volume of 2x sample loading buffer, boiled for 5 minutes and separated on 

a 10% SDS-PAGE gel.

2.6.7 Immunoprecipitation (IP) analysis.

Detection of proteins interacting with the Pak2AcYFP proteins was achieved 

using immunoprecipitation. Whole cell extracts from 50 embryos injected with Pak2aAc- 

YFP or Pak2bAcYFP were precleared by incubation with 5pl of protein-A sepharose 

beads for 1 hour at 4°C, with gentle rotation. In 150pl lysis buffer, 5jil anti-GFP 

antibody (Clontech) was bound to 40pl protein-A sepharose beads by incubation for 1 

hour at 4°C, with gentle rotation. Beads were removed from the embryonic protein 

extracts by centrifugation at 12,000rpm for 10 minutes at 4°C, the supernatant was 

then combined with the antibody-bead slurry and incubated overnight at 4°C with 

gentle rotation. The beads were then pelleted by centrifugation (12,000rpm for 10 

minutes at 4°C) and washed three times with lysis buffer. Samples were resuspended 

in an equal volume of 2x sample loading buffer, boiled for 5 minutes and separated on 

a 10% SDS-PAGE gel.
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2.7 Cell staining techniques.

2.7.1 Whole mount immunocyctochemistry.

A range of fixation conditions were employed for whole mount 

immunocyctochemistry to ensure the best possible antibody penetration and signal 

strength. The antibodies used and fixatives can be found in Table 2.2. Generally 

embryos were either fixed for 45 minutes at room temperature in 4% 

paraformaldehyde (PFA) or 2% Trichloroacetic acid (2% TCA in PBS) or for 10 

minutes in 100% methanol. For staining with the F59 antibody (Devoto et al., 1996) 

embryos were fixed in 4% PFA and stored at least overnight in methanol and 

subsequent washes were performed using PBDT (PBS, 0.2% Triton-x-100 and 1% 

DMSO).

Fixed embryos were washed in PBT (0.1% Triton-x-100 in PBS) and blocked 

in 5% goat serum (GS) in PBT for two hours or longer at room temperature. Embryos 

were then incubated in 2% GS/PBT containing primary antibodies overnight at 4°C 

with gentle shaking. Following incubation embryos were washed extensively in PBT at 

room temperature before overnight incubation in 2% GS/PBT containing secondary 

antibodies conjugated with Fluorescein, Cy3 or Cy5 (Stratech; 1:400 dilution). 4',6- 

Diamidino-2-phenyindole (DAPI) counterstain was added (0.2pg/ml) and incubation 

continued for one hour at room temperature. Embryos were washed thoroughly in 

PBT, stored and mounted in 70% citifluor/PBS (Citifluor).

For antibody staining following in situ hybridisation embryos were refixed for 

20 minutes in 4% PFA/PBS and washed in PBT. Immunostaining was carried out as 

above but a horseradish peroxidase (HRP) conjugated secondary antibody 

(Amersham) was used. HRP activity was visualised in 3,3’-Diaminobenzidine (DAB) 

solution (one DAB fast tablet (Sigma) dissolved in 5mls 0.1 M Tris pH7.6) 6pl 30% H202 

was added to catalyse the reaction. The reaction was stopped by washing three times 

in PBT and refixing in 4% PFA/PBT for 20 minutes. Stained embryos were stored at 

4°C in 70% glycerol/PBT.
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2.7.2 Staining for endogenous alkaline phosphatase activity.

Embryos were fixed at three days post fertilisation with 4% PFA/PBS for 15 

minutes at room temperature. Fixed embryos were then washed twice with PBT and 

three times with BCL buffer (0.1 M Tris.HCI pH9.5, 50mM MgCI2, 0.1 M NaCI and 0.1% 

Triton-X-100). Endogenous alkaline phosphatase was detected with NBT/BCIP 

solution (4.5^1/ml NBT, 3.5^1/ml BCIP, (Roche) in BCL buffer). After 8-12 minutes the 

reaction was stopped by washing with PBT and embryos were refixed for 20 minutes 

in 4% PFA/PBS. Embryos were then washed twice in PBT and stored in 70% glycerol 

at 4°C.

2.7.3 Phalloidin labelling of actin filaments.

Embryos were fixed in 4% PFA/PBS for 1.5 hours at room temperature, 

washed 3 times for 5 minutes in PBT and blocked in 5% GS/PBT for one hour at room 

temperature. Embryos were then incubated in 2% GS/PBT containing a 1:500 dilution 

Cy3-conjugated phalloidin (5ptg/pil; Sigma) for a further hour at room temperature and 

in the dark. Excess phalloidin was removed with PBT washes and embryos were 

stored and mounted in 70% citifluor/PBS.

2.7.4 Assay for cell proliferation and apoptosis.

Detection of proliferative and apoptotic cells was performed simultaneously. 

Proliferating cells were identified using BrdU incorporation essentially as described 

(Gray et a i, 2001). DNA fragmentation in apoptotic cells was detected using the 

terminal deoxynucleotide transferase-mediated dUTP nick-end labelling (TUNEL) 

method. The ApopTag kit (Serologicals Corporation) was used with a protocol 

adapted from the manufacturer’s instructions. Embryos were treated in 10mM 

BrdU/10% DMSO in 0.3x Danieau solution for 30 minutes at 28°C. After washing twice 

in 0.3x Danieau solution, for 15 minutes, the embryos were allowed to continue 

development at 28°C for four hours. Embryos were then fixed in 4% PFA/PBS for 1
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hour at room temperature, transferred to 100% methanol and stored at -20°C 

overnight. Following rehydration, embryos were re-fixed in chilled ethanoliglacial 

acetic acid (2:1) for 10 minutes at -20°C and washed 3 times for 5 minutes in PBT. 

Following incubation in 75pl of equilibration buffer at room temperature for one hour, 

the terminal transferase reaction was performed in 17̂ 1 working strength TdT enzyme 

(70% reaction buffer:30% TdT enzyme) with incubation overnight at 37°C. The 

reaction was stopped by washing embryos six times for 30 minutes at 37°C in 

stop/wash buffer diluted 1:35 in distilled water. Embryos were then blocked for one 

hour at room temperature in blocking solution (2mg/ml Bovine serum albumin, 5% 

GS/PBT) and incubated overnight in 47% anti-DIG-rhodamine:53% blocking solution 

at 4°C. Antibody was removed with PBT washes and embryos were not refixed.

To detect proliferating cells using BrdU, embryos were washed once and

incubated in 2N HCI for 1 hour at 37°C. Following three 15 minute washes with PBT,

embryos were blocked in 5% GS/PBT and incubated at 4°C overnight in 2%GS/PBT 

containing 1:400 anti-Brdll (Sigma) and other primary antibody if required. After 

extensive washing in PBT embryos were incubated overnight at 4°C with 1:400 

fluorescently conjugated secondary antibodies (FITC and/or Cy5). DAPI counterstain 

(1|ng/ml) was added and incubation continued for 1 hour at room temperature. 

Embryos were washed 10 times in PBT and mounted in citifluor.

2.7.5 Whole mount embryo staining with vital dye.

Cell behaviour and migration of the lateral line primordium was followed using

live zebrafish embryos stained with Bodipy-Sphingomyelin FL (Molecular Probes). 

Embryos were dechorionated by hand and stained at 24hpf in 2% Bodipy (2.5ng/^il 

Bodipy-Sphingomyelin/DMSO in 0.3x Danieau solution). Embryos were kept in the 

dark and placed on an orbital shaker at 150rpm for 2 hours. Embryos were rinsed 3 

times for 5 minutes in 0.3x Danieau solution and allowed to develop at 28°C for three 

hours.
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For time-lapse microscopy embryos were anaesthetised with Tricane (Kimmel 

et al., 1995) and then immobilised on a microscope slide (BDH) with a drop of 3% 

methyl cellulose. Embryos were covered with 0.3x Danieau solution, sealed using 

silicone grease (Dow Coring) and a cover slip.

2.8 Design and preparation of morpholino 

oligonucleotides.

2.8.1 Morpholino oligonucleotide design.

Morpholino oligonucleotides were obtained from Gene Tools, LLC. Sequences 

were selected based on the manufacturer's recommendation of 25mer antisense 

oligonucleotides with 50%G/C and ATT content and no predicted hairpins. Four 

consecutive guanine nucleotides were avoided. Each morpholino sequence was 

tested by BLAST at NCIB for representation elsewhere in the zebrafish genome.

The pak2a morpholino was designed against the 5’UTR immediately adjacent 

to the predicted translation initiation methionine (ATG). The pak2b morpholino was 

designed against the 5’UTR including the initiation site. Selected sequences were as 

follows:

pak2a: 5’-G ACAG GG AAAC AC ACT CAG AAG G GT-3’

pak2b: 5’-CACACATGATCAGGATGAGGAGACA-3’

2.8.2 Preparation of morpholino oligonucleotides for microinjection.

Morpholino oligonucleotides at 300mM were solubilised in 63pil RNase- 

/DNase-free water. The resulting stock solutions were diluted to working 

concentrations of 1:8 to 1:32 in morpholino dilution buffer (200mM KCI, 5mM HEPES, 

pH 7 and 5p,g/ml phenol red) at 1:16 dilution this corresponded to a concentration of 

approximately 1.5ng/nl. Embryos were injected with 3nl of diluted morpholino 

oligonucleotide.
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2.9 Microscopy techniques.

2.9.1 Photomicrography.

Bright field low power images of whole embryos were taken on a 

stereomicroscope (Leica MZ FLIII) with a Hamamatsu Digital camera using Openlab 

software (Improvision). Flat mounted embryos were imaged using the Zeiss Axiophot 

microscope with a Jenoptik ProgRes C14 camera attachment and Openlab software.

2.8.2 Confocal microscopy.

Fluorescent images of flat mounted embryos and timelapse of live embryos 

were collected using the Leica SP confocal microscope and accompanying software. 

Timelapse movies and still images were processed with the Imaris (Bitplane AG), 

softWoRx (AppliedPrecision), Photoshop Image Ready (Adobe) and Quicktime 

(Apple) software packages.

2.8.3 Electron microscopy

Electron microscopy was performed by Elizabeth Hirst (Electron microscopy 

lab, NIMR). Whole zebrafish embryos were dechorionated manually and fixed 

overnight with 2% glutaraldehyde, 2% PFA in 0.1 M sodium cacodylate buffer, pH7.2 

(SCB). Embryos were then washed for 10 minute in SCB and post fixed for 1 hour in 

1 % osmium tetroxide, SCB. Following a second wash with SCB embryos were stained 

en bloc with 1 % aqueous uranyl acetate for 1 hour. Samples were dehydrated through 

a graded ethanol series followed by two changes of propylene oxide over 20 minutes 

and embedded in Epon resin (Agar Scientific). Ultra thin, 50nm sections were cut and 

mounted on pioloform coated slot grids and stained with 1% aqueous uranyl acetate 

for 15 minutes followed by Reynold’s lead citrate for 7 minutes. Sections were 

visualised in a Jeol 1200 EX electron microscope.
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Gene Reference Enzyme RNA
pol

pak2a RZPD Notl T7
pak2b RZPD Notl 17
nkx5-1 (Adamska et al., 2000) EcoRI 17
papc (Yamamoto etal., 1998) Apal 17
myoD (Weinberg eta l, 1996) BamHI 17
shh (Krauss etal., 1993) Hindlll 17
fli-1 (Brown et al., 2000) Xbal 13

eya-1 (Hammond etal., 2002) EcoRI 17
col I la (Yan etal., 1995) Hindlll 13

ptc (Concordet etal., 1996) BamHI 13
lst-1 (Inoue etal., 1994) Xbal 13

nanos (Koprunner et al., 2001) Notl 17

Table 2.1: In situ hybridisation probes.

Origin of cDNA used for in situ hybridisation, the restriction enzyme used to linearise 

the plasmid and the RNA polymerase required to generate antisense RNA probes.
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Antibody Original source Clonal
origin

fixation Dilution
immuno

Dilution
Wb.

F59 (Crow and Stockdale, 
1986; Miller etal., 1989) m PFA 1:50 -

Acetyl ated 
tubulin Sigma m PFA 1:1000 -

S100 DAKO P PFA 1:500 -
p-catenin Sigma m/p PFA 1:500 1:1000

E-cadherin BD Biosciences m PFA 1:500 1:2000
Paxillin BD Biosciences m TCA 1:200 1:10,000
Vinculin Sigma m TCA 1:100 1:200

1025 Simon Hughes, KCL m PFA 1:50 -

4D9 (en)
(Ekker etal., 1992; Hatta 
etal., 1991; Patel etal., 

1989)
m PFA 1:200 -

BrdU Sigma m PFA 1:400 -
GFP Clontech P - - 1:500
PIX (Koh etal., 2001) P - - 1:500

a-catenin Sigma P - - 1:1000
Nek Oncogene m - - 1:200
Rac Upstate m - - 1:1000

Cdc42 Santa Cruz P - - 1:500

Table 2.2: Antibodies.

Antibodies used in this work, original source, clonal origin (m; monoclonal, p; 

polyclonal), fixation method and dilution factor for immunocytochemistry (immuno) and 

Western blot (Wb).
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Chapter Three

Development of the embryonic posterior 

lateral line system

3.1 Introduction.

We are interested in understanding the molecular mechanisms underlying cell 

migration in zebrafish, using development of the lateral line primordium as a model 

system. The lateral line primordium is readily identifiable and shows directional 

migration along a specific pathway. A number of factors have been shown to be 

important for regulating cell migration. Firstly, directed migration of cells requires 

polarised organisation of the actin cytoskeleton in order to drive extension of 

lamellipodia at the leading edge and contraction at the trailing edge (Wittmann and 

Waterman-Storer, 2001). Failure to generate a polarised actin cytoskeleton, extend a 

single lamellipodia and retract the trailing edge results a loss of persistent directed 

migration (Sells et al., 1999). Secondly, traction forces generated by focal adhesions 

are necessary to link cells to the extracellular matrix and provide the grip required for 

cells to migrate. Migration proceeds with the regulated formation and dissolution of 

these focal adhesions (Wittmann and Waterman-Storer, 2001). Finally, the 

maintenance of cell to cell adhesion is important for the correct migration of a group of 

cells. Cell to cell adhesion in epithelial cells, like the lateral line primordium cells, is 

initiated by E-cadherin-mediated adherens junctions (Nagafuchi, 2001). Adherens 

junctions have been shown to be critical in maintaining cell adhesion, tissue integrity 

and polarisation of cells in Drosophila (Cox et al., 1996).
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To gain a better understanding how migration of the lateral line primordium is 

controlled, we observed cell behaviour during migration of the lateral line primordium 

using confocal microscopy. Time-lapse analyses were focused specifically on the 

behaviour of cells at the trailing end during neuromast deposition and on the 

protrusive activity of cells at the leading edge. Within the cells of the lateral line 

primordium, the actin cytoskeleton, cell to cell adhesions and cell to ECM adhesions 

were visualised by detecting the localisation of F-actin, adherens junction proteins, 0- 

catenin and E-cadherin, and the focal adhesion protein, Paxillin. The results of these 

studies will allow us to better interpret the role of the actin cytoskeleton cell adhesion 

and the proteins that regulate them might have in controlling migration of the lateral 

line primordium.

3.2 Characterisation of cellular organisation within the lateral 

line primordium.

The zebrafish primary posterior lateral line consists of seven mechanosensory 

neuromasts deposited by the posterior primordium during migration along the trunk 

and tail. Work from our lab and others has shown that a molecular and morphological 

prepattern exists within the lateral line primordium that presages and correlates with 

the deposition of cells to form neuromasts. Itoh et al have shown that the immature 

sensory hair cells of nascent neuromasts can be readily identified within the migrating 

primordium by the restriction of the proneural gene, zathl, and neurogenic genes, 

deltaA, deltaB and notch3 (Itoh and Chitnis, 2001). Expression of a third member of 

the delta family of genes, deltaD, has also been recognised to demarcate nascent 

neuromasts (Q, Xu; pers. comm.).

We aimed to further characterise this prepatterning by investigating the 

organisation of cells within the migratory primordium, the role of cell adhesion in 

maintaining the prepatterning and real time observations of nascent neuromast 

patterning during primordium migration and neuromast deposition. By fluorescently
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labelling the cell membranes of live embryos, with bodipy sphingomyelin FL, we were 

able to directly observe the organisation of cells within the primordium using confocal 

microscopy.

Shortly after migration was initiated, cells of the trailing end and of the mid 

region of the primordium were clustered into distinct repetitive groups. The groups of 

cells were organised into circular structures whose cells were broad at the outer face 

of the circle and narrowed to a point at the centre, thus giving them a rosette-like 

appearance (Figure 3.1a). The rosettes spanned the width of the primordium and at 

the centre were characterised by a concentration of membrane label (Figure 3.1b). 

Rosette-like structures were not observed in the leading edge of the primordium, 

where cells were tightly packed, but randomly organised.

At different stages of development 2-4 rosette-like structures could be 

identified within the primordium. This mirrored the expression patterns of neurogenic, 

and other genes, that have been shown to become restricted to 2-4 single cells or 

small clusters within the primordium. Additionally, gene expression was increasingly 

restricted towards the trailing end while molecular prepatterning was not observed in 

the cells of the leading edge (Gompel et al., 2001; Itoh and Chitnis, 2001). These 

restricted patterns of gene expression have been shown to correspond to the 

neuromast precursors, therefore it seemed likely that the rosette-like structures 

observed within the primordium represented nascent neuromast precursors.

The absence of organisation of the leading edge cells into rosettes suggested 

that neuromast precursors were determined in an anterior to posterior manner, with 

anterior neuromasts determined first. This was in agreement with the observation of 

more tightly organised neuromast precursors at the anterior, or trailing end, intuitively 

the end from which neuromast precursors are deposited. Thus we have demonstrated 

that cellular patterning of the neuromast precursors is established within the 

primordium, prior to their deposition.
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Figure 3.1: Visualisation of a morphological prepattern within the posterior 

lateral line primordium.

Confocal sections of the migrating primordium in 28hpf embryos stained with bodipy 

sphingomyelin FL (a,b). Two to three membrane clusters, corresponding to nascent 

neuromasts, are identified by arrows (a). The rosette-like structure is maintained in 

deposited neuromast precursors (b). Filamentous F-actin was visualised by taking 

confocal sections of embryos stained with TRITC-phalloidin, F-actin foci are indicated 

by arrows (c-h).
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Figure 3.2: Distribution of adhesion molecules in the migratory primordium.

p-catenin and E-cadherin proteins were visualised by fluorescent 

immunocytochemistry in 24hpf to 28hpf embryos and were found clustered at the 

apex of the rosette-like structures (a-b). p-catenin protein (red) was localised to cell 

membranes and concentrated at the centre of the rosette (a-b; arrows). E-cadherin 

protein (green) was associated with membranes surrounding the primordium (a-b) and 

within cells of nascent neuromasts was polarised towards the apex (a-b, arrows). It is 

also noteworthy that, within cells of the surrounding epithelium, E-cadherin protein 

was polarised towards the face in contact with the lateral line primordium.

Panels c-f show localisation of paxillin protein (red) within the primordium using anti p- 

catenin antibody (green) to aid visualisation of the primordium (c,e). Paxillin protein 

was localised to the outer edge of the primordium (d,f; arrowheads).
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The actin cytoskeleton plays an important role in maintaining cell shape and 

contacts with other cells and the ECM. As cells of the nascent neuromast precursors 

were observed to form a tightly organised pattern within the lateral line primordium 

even during deposition, we were interested in visualising actin cytoskeleton 

localisation in these cells. Actin cytoskeleton was visualised by staining embryos with 

fluorescently labelled phalloidin, which, binds to the filamentous actin (F-actin). F-actin 

was found to be distributed around the cell membranes within the primordium and a 

high concentration of F-actin was localised at the focal point of each rosettes (Figure

3.1 c-h). Actin clustering at a site where cells are in close contact is indicative of high 

levels of adhesion complexes. This suggested that the cells of the neuromast 

precursors are tightly held together at a central point where the cells meet.

Adhesion of cells to one another or to the ECM is essential to the formation 

and maintenance of tissue structure and are certain to be required for the formation of 

nascent neuromast rosettes and maintenance of these structures during migration of 

the primordium and deposition. Linking the cytoskeleton of adjacent cells confers 

tensile strength (Braga, 2002), which would be required to maintain the shape of 

neuromast precursors throughout migration and particularly during deposition, during 

which the cells are under a great deal of mechanical stress (see section 3.3). Many 

adhesion complexes form links to the actin cytoskeleton (Braga, 2002). It is of interest 

to know the adhesion molecules involved in the clustering of F-actin at the central 

point of nascent neuromasts.

In epithelial tissues, adherens junctions form the first cell to cell contacts 

(Pokutta and Weis, 2002). Adherens junctions are multi protein complexes mediated 

by cadherin molecules (Braga, 2002). In the adherens junctions of epithelial cells p- 

catenin is required to link E-cadherin to a-catenin, which, in turn binds the actin 

cytoskeleton (Gumbiner, 1996). We used fluorescently conjugated antibodies to 

visualise the localisation of E-cadherin and p-catenin proteins in the lateral line 

primordium. p-catenin was found to exhibit a very similar pattern of localisation to that 

of F-actin where protein was present at the membranes of all cells within the lateral
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line primordium and was concentrated at the apical tips of rosettes (Figure 3.2a-i). In 

the more randomly organised cells of the leading edge no focal clustering of p-catenin 

protein was observed. However, distribution of the p-catenin protein appeared to be 

polarised in some cells at the leading edge, possibly representing an early step in the 

clustering of cells into rosettes.

High levels of E-cadherin protein were detected throughout the epidermis 

including the migrating primordium (Figure 3.2a-b). Expression of E-cadherin indicated 

that cells of the lateral line primordium are epithelial in nature. E-cadherin protein was 

distributed in a similar pattern to p-catenin with higher levels of the E-cadherin protein 

present at the foci of neuromast precursors (Figure 3.2a-b). Taken together these data 

suggest that nascent adherens junctions may be involved in establishing and 

maintaining the structure of neuromast precursors.

3.3 Characterisation of migration of the primordium.

It is known that the driving force for cell migration is reorganisation of the actin 

cytoskeleton, which includes the protrusions of lamellipodia at the cell front and 

retraction of the cell rear (Wittmann and Waterman-Storer, 2001). The retraction of the 

cell rear is regulated by the release of adhesive contacts to the extracellular matrix 

(Ballestrem et al., 2000). Focal adhesions provide a structural link between the 

extracellular matrix and the intracellular actin cytoskeleton (Turner, 2000). Focal 

adhesions are mediated by intergrins and form a complex of proteins including 

Paxillin. Using Paxillin antibody for immunostaining we have shown that Paxillin 

protein was localised to sites where the primordium was in contact with the membrane 

of cells surrounding the membrane and the overlying epidermis (Figure 3.2c-f). Higher 

levels of paxillin were observed around the leading edge of the primordium compared 

to around the trailing end (Figure3.2d).

Time-lapse analysis was carried out to study cell behaviour of the leading 

edge of the migrating primordium. By focusing on the leading cells of the lateral line

79



primordium we have found that cells behave differently depending on their relevant 

position within the primordium. There were two main types of cell behaviour in terms 

of motility and shape changes. At the leading edge of the migrating primordium cells 

were more loosely associated with each other and were actively changing their shape. 

These cells were seen to be actively extending and contracting both laterally and in 

the direction of migration (Figure 3.3). Away from the leading edge cells underwent 

little shape changes if any, and appeared to migrate as a tightly packed group, any 

elongation that occurred was in the direction of migration. Over a 30 minute time 

course looking at the leading edge, the primordium could be seen to narrow. It is 

possible that the primordium narrowed as neuromast precursors were deposited and 

cells at the trailing end elongated (Figure 3.4). The primordium may have broadened 

again as the neuromast precursor was released and cells at the trailing end retracted, 

much like the action of an elastic band being stretched and released.

This hypothesis was confirmed by time lapse analysis focusing on the trailing 

end during the deposition of neuromast precursors. Deposition of the neuromast 

precursors was marked by slowed movement of the rosette at the trailing end in 

relation to the rest of the primordium. Time lapse studies revealed that the deposition 

process was gradual and deposition was completed when the neuromast precursor 

became stationary while the remainder of the primordium continued to migrate away. 

During deposition contacts were maintained between the cells of the depositing 

neuromast precursor and the remainder of the primordium and this resulted in 

elongation of cells at the boundary (Figure 3.4 180’). Formation and dissolution of 

contacts between the neuromast precursor and the primordium appeared to be 

dynamic. Eventually the cell contacts were lost when the newly deposited neuromast 

precursor pinched off from the primordium and elongated cells returned to their normal 

shape (Figure 3.4 220’).
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Figure 3.3: Time lapse series focusing on the leading edge of the migrating 

posterior lateral line primordium.

Time lapse analysis showed that cells at the leading edge of the primordium were 

highly active and explorative and elongated in the direction of migration (arrows 

highlight two cells which are particularly active during this series). Cells within the 

primordium and away from the leading edge were rigid in shape and that there was no 

explorative activity of the cells at the sides of the primordium into the surrounding 

tissue (yellow dot highlights an unchanging cell). Embryos were live stained with 

bodipy sphingomyelin and times are shown in minutes.
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Figure 3.4
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Figure 3.4: Time lapse series showing posterior lateral line primordium 

migration and neuromast precursor deposition.

A rosette-like structure was visible at the at the trailing end (white dashed circle). 

Arrows identify changes in cell shape between the migrating primordium and the 

depositing trailing neuromast precursor. Embryos were live stained with bodipy 

sphingomyelin and times are shown in minutes.
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Following deposition of a rosette-like neuromast precursor a new rosette could be 

observed to take shape within the primordium. We observed that the rosette-like 

structure of neuromast precursors was maintained throughout deposition despite what 

appeared to be the exertion of large stress forces between the cells of the migrating 

primordium and the depositing neuromast precursor. Maintenance of this structure is 

likely to require the interaction and support generated by cell adhesion and the 

dynamic regulation of adhesion both within and surrounding the primordium. This 

would permit migration of the primordium and deposition of neuromast precursors, 

while maintaining the rosette structure of nascent neuromast and the organisation of 

the primordium.

3.4 Sensory organs of the lateral line system.

Neuromast precursors are deposited by the lateral line primordium at somite 

borders along the trunk or more ventrally at the tail as shown in the schematic (Figure 

3.5A). The neuromast precursors differentiate into mature mechanosensory organs 

approximately 8 hours after their deposition (Metcalfe, 1985). Structurally, the 

differentiated neuromasts consist of a centrally elongated strip of sensory hair cells 

surrounded by a peripheral zone of mantle and supporting cells (Abbate etal., 2002).

We have previously observed that the mantle cells can be visualised by the use 

of an alkaline phosphatase substrate as a result of the high level of endogenous 

alkaline phosphatase activity (unpublished observations). Analysis of this activity 

showed that high levels were only detected in differentiated neuromasts, after 3dpf, 

and the activity was restricted to the outer, mantle support cells (Figure 3.5B).

We also characterised specific markers of the sensory hair cells. The sensory 

hair cells are so named because of their apical hair-like projections. The apical bundle 

of sensory “hairs” consists of a single kinocilium and tens to hundreds of hexagonally 

packed stereocilia (Hackney and Furness, 1995). The kinocilium is composed of 

microtubles arranged in a classical 9+2 array and is located at the periphery of the
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apical bundle (Cernuda-Cernuda and Garcia-Fernandez, 1996). The stereocilia 

contain a core of cross-linked actin filaments and are generally arranged in rows, the 

heights of successive rows increasing in the direction of the kinocilium (Hackney and 

Furness, 1995). This arrangement of stereocilia and kinocilum provides the hair cell 

with directional polarity (Cernuda-Cernuda and Garcia-Fernandez, 1996).

The microtubules of the kinocilium in the vertebrate ear have been shown to 

contain posttranslationally acetylated a-tubulin (Ogata and Slepecky, 1995). Analysis 

of the localisation of acetylated a-tubulin protein in 3dpf zebrafish embryo showed 

labelling of the hair-like projections of the sensory cells and of nerve fibres of the 

lateral line ganglion innervating the individual neuromasts (Figure 3.5: C).

To label the hair cell itself we used another molecular marker. Calcium ions play 

a key role in the physiology of the vertebrate sensory hair cell, and in 

mechanosensory transduction. The large family of EF-hand, Ca2+ binding, S100 

proteins are present in a wide range of cells including the sensory and secretory cells 

of the vertebrate inner ear (Fermin and Martin, 1995). Hair cells of the fish ear are 

known to exhibit strong immunoreactivity to the S100 antibody (Saidel et ai, 1990) 

and recently the S100 protein has been shown to be a marker for sensory hair cells of 

the lateral line system in teleosts (Abbate et al., 2002). Staining of zebrafish embryos 

at 3dpf, when all neuromasts of the embryonic posterior lateral line have 

differentiated, the S100 antibody specifically labelled the central cluster of sensory 

hair cells (Figure 3.5: C). In combination, staining of S100 and acetylated tubulin 

permit excellent visualisation of the sensory cells, including the projections, of the 

lateral line organs. These markers are valuable tools to study the formation of the 

lateral line system.
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Figure 3.5: Development and visualisation of the sensory neuromasts.

A: Mantle cells of the differentiated neuromasts can be visualised by detection of the 

high levels of endogenous alkaline phosphatase at 3dpf. Neuromasts are labelled 

according to (Ledent, 2002).

B: Confocal images of the mechanosensory hair cells stained with S100 (red), the 

stereocilia and posterior lateral line axons (axon) are labelled with acetylated tubulin 

(green) at 3dpf.
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3.5 Discussion

Using bodipy sphingomyelin to label cell membranes in live embryos we have 

been able to visualise the cellular organisation and cell behaviour of the posterior 

lateral line primordium during migration and deposition of neuromast precursors. Time 

lapse imaging has demonstrated that nascent neuromasts are readily identifiable 

within the lateral line primordium by their distinctive rosette-like structure. It is evident 

that this cellular organisation is established prior to neuromast deposition. This is in 

agreement with work by Gompel efa/(2001) who show that the primordium is 

dynamically prepatterned, and that clusters of cells corresponding to presumptive 

neuromasts are already defined within the primordium several hours before their 

deposition. Consistent with this prepattern is the expression pattern of the proneural 

gene, zathl, and of neurogenic genes, notch3, deltaA, deltaB and deltaD. Within the 

primordium the expression patterns of these genes appear to correlate with the cells 

of the neuromast precursors (Itoh and Chitnis, 2001; personal communication, Dr 

Q.Xu). Two further genes have been identified that also exhibit expression patterns 

that reflect the prepatterning of the primordium into neuromast precursors, these 

genes have been initially characterised as an epithelial glycoprotein and a chemokine 

receptor (Gompel eta i, 2001).

It is, as yet, unknown how the lateral line primordium becomes patterned to 

form the neuromast precursors, although there are two main possibilities. Firstly, the 

formation of the neuromast precursor rosettes may be induced by factors external to 

the primordium, such as the underlying somites or growth cones of the lateral line 

nerve. Secondly, it is possible that prepatterning of the primordium cells into 

neuromast precursors is intrinsic to the primordium itself. The fact that neuromast 

precursors are patterned in a stepwise manner, with only one to two neuromast 

rosettes visible within the primordium at any one time, suggests an intrinsic 

mechanism, or at least intrinsic differences in the competency of primordium cells to 

respond to external cues.
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It has been proposed that the primordium undergoes a process known as 

metamerisation, similar to that described for presomitic mesoderm during 

somitogenesis (Gompel et al., 2001; Pourquie, 2000). By this method a continuous 

strip of cells, the primordium, is segregated into discrete clusters, the neuromast 

precursor rosettes. However, this possibility is still conjecture and as yet it is unclear 

how the lateral line primordium is prepatterned and what the molecular controls might 

be that govern it. It this work we chose to focus on the mechanisms regulating 

migration of the primordium as a whole and the mechanisms that maintain the 

prepattern of the primordium once it has been established.

Time-lapse analysis also showed that the rosette structure of nascent 

neuromasts is maintained during deposition despite great elongation of the cells at the 

posterior of the neuromast and the anterior of the primordium. The gradual deposition 

and release of the neuromast precursors observed in this work is in agreement with 

previous findings (Gompel eta i, 2001).

Maintenance of the rosette structure within the primordium and during 

deposition can be ascribed to strong focal clustering of adhesion molecules. Adherens 

junctions play pivotal roles in cell and tissue organisation by mediating cell adhesion 

(Tepass, 2002). By interdigitation of stable adhesive elements between adjacent cells, 

adherens junctions maintain overall tissue architecture (Gumbiner, 1996). We have 

provided evidence that adherens junctions may play a role in maintaining integrity of 

the lateral line primordium and nascent neuromasts. Components of adherens 

complexes; p-catenin, E-cadherin and F-actin are found at the focal point of the 

nascent neuromast rosette. Additionally the asymmetric distribution of E-cadherin and 

P-catenin protein within cells at the leading edge of the primordium suggests that the 

formation and clustering of adherens junctions functions to draw cells together to form 

the nascent neuromast rosettes. Cadherin-mediated adhesion may also provide 

tensile strength to the primordium in order to permit the cells to migrate as a group.

Cadherin-mediated cell adhesions are dynamically rearranged during cell 

movements by tethering of E-cadherin to either the actin cytoskeleton via a-catenin or
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to small GTPase effectors (Fukata and Kaibuchi, 2001). Activated Rac and Cdc42 

positively regulate cadherin-mediated cell adhesion by promoting formation of the E- 

cadherin-p-catenin-a-catenin complex (Fukata and Kaibuchi, 2001). This provides an 

interesting mechanism through which Pak may regulate formation of cadherin- 

mediated adhesion.

The presence of higher levels of Paxillin around the primordium indicates that 

the focal adhesions may be involved in regulating migration. As focal adhesions have 

been shown to transmit strong forces and serve as traction points to aid cell migration 

(Webb et al., 2002) it is likely that the focal adhesion sites serve as traction points for 

the propulsive forces that would move the lateral line primordium along the trunk. It is 

interesting that Paxillin was distributed differentially around the primordium with higher 

levels at the leading edge and low levels at the trailing end. In this sense the 

primordium can be thought of as one giant polarised cell. Higher levels of Paxillin at 

the front of this “cell” is consistent with the idea of new focal adhesions being actively 

formed at the leading edge as the primordium migrates. At the rear of the primordium, 

the focal adhesions are disassembled and this is reflected in the lower levels of 

Paxillin observed around the trailing end.

The p21 activated kinase, Pak, is a key regulator of focal adhesions as well as 

effecting the GTPase-mediated regulation of the cytoskeleton (Frost et al., 1998). Pak 

is able to regulate the cytoskeleton and focal adhesion formation through interaction 

with a number of downstream targets including LIM-Kinase by inhibiting dissociation of 

actin filaments (Edwards et al., 1999) and Myosin Light Chain Kinase by promoting 

phosphorylation of MLC and cell retraction (Kiosses et al., 1999; Rudrabhatla et al., 

2003; Sells et al., 1999). Pak has also been demonstrated to localise to focal 

adhesions. The binding of Pak to the guanine nucleotide exchange factor, PIX, 

recruits Pak to focal adhesion sites through interaction with Paxillin (Brown et al., 

2002). Once recruited Pak functions to promote disassembly of the focal adhesion 

(Frost et al., 1998; Manser et al., 1997; Zhao et al., 2000b). This activity of Pak may
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be crucial in regulating turnover of focal adhesions to facilitate migration of the lateral 

line primordium.

Another role for Pak in migration of the lateral line primordium lies with the 

ability of Pak to regulate the actin cytoskeleton. Paks are effectors of Cdc42 in 

pathways that regulate the organisation of the cortical actin cytoskeleton and hPakl 

co-localizes with F-actin to cortical actin structures (Dharmawardhane et al., 1999; 

Eby etal., 1998). Therefore zebrafish Pak may play a role in inducing clustering of F- 

actin at the centre of nascent neuromast precursors. Furthermore Pak can induce the 

rapid formation of polarised filopodia and membrane ruffles observed in motile cells 

(Sells et al., 1997). Migration of the lateral line primordium is likely to require formation 

of polarised extensions and as a consequence the activity of Pak.

Pak is involved in many pathways that could be important during lateral line 

primordium migration in zebrafish, the challenge is to assess which, if any, of these 

are critically important. The work described in this thesis aims to establish whether 

Pak is important for the migration of the posterior lateral line primordium and provide 

direction for future studies to dissect the role that Pak may play.
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Chapter Four

Identification and characterisation of 

zebrafish p21 Activated Kinase.

4.1 Introduction

Cell migration involves regulation of the actin cytoskeleton and the assembly 

and disassembly of cellular adhesions to the ECM (Christopher and Guan, 2000). Pak 

proteins are key regulators of the actin cytoskeleton and focal adhesions. Studies in 

cell culture as well as in yeast and Drosophila have indicated that Pak has a crucial 

role in controlling cell migration. We were interested in identifying the zebrafish 

homologues of pak and characterising their role in development and particularly in the 

formation of the lateral line system. This chapter describes the identification, 

sequence analysis and characterisation of zebrafish pak.

4.2 Identification of zebrafish p21 activated kinase genes.

No pak genes have previously been described in zebrafish. A BLAST search 

of the EST database (NCBI) was carried out using the full-length Xenopus pak1 cDNA 

sequence. This search identified four highly related zebrafish sequences with 

homology to Xpakl (Genbank accession numbers: AI545254, AI878231, AI722617 

and AI877550).

High quality sequence data provided by the NCBI for the ESTs was limited to 

less than 500bp. Conceptual translation produced short sequences which showed 

homology to either the 5’ terminus of xPakl, including the 5’ untranslated region
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(UTR) and the start codon (AI545254, AI878231), or homology to the 3’ terminus, 

including the stop codon (AI722617 and AI877550). These four EST clones were 

requested from the RZPD Resource Centre/Primary Database (Heubnerweg 6, D- 

14059 Berlin: RZPD clone identification: MPMGp609P0214, MPMGp609M0634, 

MPMGp609C0529 and MPMGp609P1133).

4.3 Sequence analysis of the zebrafish pak cDNAs.

Zebrafish pak EST clones were sequenced as described in Chapter Two. 

Sequence analysis identified clones MPMGp609P1133 (AI877550) and 

MPMGp609C0529 (AI722617) as partial cDNA sequences comprising part of the Pak 

C-terminal kinase domain and were not pursued further. However, the clones 

MPMGp609P0214 (AI545254) and MPMGp609M0634 (AI878231) contained the 

complete open reading frame and the predicted translation products suggested 

proteins of 517aa and 539aa respectively. Alignment of these two protein sequences 

showed a high number of shared identities (88%) however, divergence between the 

sequences was observed in the N-terminus where MPMGp609M0634 contained small 

insertions (Figure 4.1).

The Pak family of proteins comprises six known members, Pak 1-6, which are dived 

into two groups according to their structure and activation mechanism (see reviews: 

(Jaffer and Chernoff, 2002; Knaus and Bokoch, 1998)). Each of the putative zebrafish 

Pak protein sequences were aligned with known human sequences for each of the 

family members (data not shown). Both of the zebrafish sequences shared the highest 

number of conserved identities with human Pak2 (hPak2) with 87% and 85% for 

MPMGp609P0214 and MPMGp609M0634 respectively. Identification of both 

zebrafish sequences as homologues of Pak2 was further confirmed by high homology 

with sequences from rabbit, rat and Xenopus laevis (Figure 4.2, sequences obtained 

from the NCBI database). No zebrafish Pak homologues of the other members of the 

Pak family were identified from the RZPD search, therefore work in this thesis focuses
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only on zebrafish homologues Pak2. Comparison of the DNA sequences of the 

zebrafish pak cDNAs revealed differences that suggest they are likely to be encoded 

by two different pak2 genes, MPMGp609P0214 shall be referred to as pak2a and 

MPMGp609M0634 as pak2b.

Recent sequencing of the zebrafish genome by the Sanger Centre has 

identified a zebrafish homologue of pak2 (assession number CAD59176). The 

predicted translation product of this gene is 517aa in length. Alignment of the 

translated sequences of the 517aa Pak2a and CAD59176 showed them to be 

identical at 516 of 517 amino acid positions (data not shown). This further confirmed 

the identification of pak2a as a zebrafish homologue of pak2 and showed sequencing 

carried out in this study to be accurate and correct. At the time of writing no zebrafish 

sequence identical to the longer pak2b had been identified by the Sanger Centre.

4.4 Characterisation of pak2a and pak2b genes.

Northern blotting analysis was employed to detect and determine the size of 

pak2a and pak2b transcripts in zebrafish embryos. Total RNA was prepared from 

24hpf zebrafish embryos and was separated on a formaldehyde gel then transferred 

to nylon blotting membrane. DNA probes specific to pak2a or pak2b coding regions 

were radiolabelled and used to probe the membrane. The sizes of RNA transcripts 

detected were determined by comparison with the bands representing the ribosomal 

subunits. Specific transcripts of 3kb in length were detected for both pak2a and pak2b 

(Figure 4.3A).
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Figure 4.1
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Figure 4.1: Alignment of zebrafish Pak2a, Pak2b and hPak2 proteins.

Alignment of the two novel zebrafish Pak sequences (Pak2a and Pak2b) with human 

Pak2 (hPak2). The different domains are individually highlighted. Protein interaction 

sites in the N-terminal regulatory domain were conserved, including the conventional 

and unconventional SH3 domain binding motifs (green and orange respectively) and 

the Rac/Cdc42 binding site (dark blue). The auto-inhibition sequence (light blue) was 

also conserved. The C-terminal kinase domain (pink) showed strong homology to the 

human sequence. The putative binding site for the G-protein subunit, G(3 is also 

highlighted (red). Sites of autophosphorylation are marked with asterisks.
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Figure 4.2: Protein sequence alignment of zebrafish Pak2a and Pak2b with 

human, rat, rabbit and Xenopus laevis Pak2.

Protein sequences obtained from the NCBI database and alignment carried out using 

PRALINE (Heringa, 1999). Colour shows amino acid conservation with red 

corresponding to highly conserved and dark blue corresponding to unconserved. 

Consistency gives a measure (out of 10) of conservation at a particular amino acid 

between protein sequences. A indicates all amino acids are in agreement and “0” 

indicates no amino acid agreement.
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Full length cDNA corresponding to zebrafish pak2a and pak2b were transcribed and 

translated in vitro using the TNT rabbit Reticulocyte Translation System (Promega). 

Synthesis of Pak2a protein resulted in two products with molecular weights of 62kD 

and 59kD and synthesis of Pak2b protein also resulted in two products with a similar 

separation in molecular weight, 67kD and 65kD (Figure 4.3B). The molecular weights 

of the protein products are in agreement with the size of protein predicted from the 

DNA coding region. For both genes the lower molecular weight products may be the 

result of a translation from a second initiation site found 48bp downstream of the 

predicted primary initiation site. It is not known if the second initiation site is utilised in 

vivo.

4.5 Comparative analysis of zebrafish Pak2a and Pak2b 

domains

The group I family of Pak proteins are characterised by the presence of an N- 

terminal regulatory domain and a C-terminal serine/theronine kinase domain. The N- 

terminal regulatory domain of Pak2 contains three binding sites recognised by 

proteins with Src-Homology-3 (SH3) domain and the p21 binding domain (PBD). SH3- 

domain binding sites are generally characterised by a PxxP motif, where P is a proline 

residue and x any residue (Bokoch etal., 1996). The adapter protein Nek binds to the 

first of the proline-rich domains and associates Pak with the membrane, this 

association is sufficient to increase activation of Pak (Galisteo et al., 1996; Lu and 

Mayer, 1999). The consensus binding sequence for Nek has been identified as 

PxxPxRxxS (Chong et al., 2001). This sequence is conserved in Pak2a and Pak2b 

(Figure 4.1: green). Pak proteins have also been shown to contain a third, 

unconventional, SH3 binding site (PPxxxPRP) which binds the Pak-interacting 

exchange factor, PIX (Manser etal., 1998). Binding of PIX recruits Pak to sites of focal 

adhesion through an interaction with Paxillin kinase linker (PKL) (Brown et al., 2002).
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Figure 4.3
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Figure 4.3: Size of pak2a and pak2b RNA transcripts and molecular weight of 

proteins.

A: Detection of pak2a and pak2b RNA transcripts by Northern blot analysis. Transcript 

size was determined by comparison to ribosomal RNA subunits, 16S: 1.6kb and 28S: 

4kb.

B: Protein products of pak2a and pak2b cDNAs synthesised by in-vitro transcription 

and translation. The negative control was generated by carrying out the reaction in the 

absence of DNA template. The molecular weight of the protein products were 

determined by comparison with molecular weight markers.
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The consensus site for PIX binding was also conserved in the zebrafish Pak2a and 

Pak2b sequences (Figure 4.1: orange).

The PBD is the site of Pak activation through the binding of the small 

GTPases, Rac and Cdc42. Analysis of the protein structure of Pak1 identified amino 

acids 70-113 as the PBD (Lei etal., 2000) and this corresponds to an identical region 

in Pak2a and Pak2b . Lei et al further characterised this domain by alignment of group 

I Pak family members (Pak1-3) with the related Wiskott-Aldrich Syndrome proteins, 

WASP and N-WASP based on NMR structure. Using this approach they identified the 

minimal motif required for Cdc42/Rac-interaction binding (CRIB) as 

ISxPxxFxHxxHxGxD. Among Group I Pak proteins, including zebrafish Pak2a and 

Pak2b, this motif can be more explicitly described as ISxPSDFEHTIHVGFD (Figure

4.1, dark blue).

The Pak family of proteins exhibit autoregulation through binding of an 

autoinhibitory (Al) sequence (Figure 4.1, light blue) with the kinase domain (Figure

4.1, pink). This interaction maintains Pak in an inactivate conformation in the absence 

of binding of Rac or Cdc42. Within the autoregulatory region key residues have been 

identified that contribute to the interface between the inhibitory sequence and the 

kinase domain (Lei et al., 2000). The key residues, Leu107, Glu116 and Asp126 are 

conserved in both zebrafish Pak2 proteins. Release of autoinhibition permits 

autophosphorylation of Pak proteins at a number of stereotyped positions including six 

serine residues in the N-terminal domain and one tyrosine residue within the kinase 

domain (Figure 4.1, asterisks). The phosphorylation of Ser19 is unique to Pak2 and its 

phosphorylation has been shown to negatively regulate binding of the Nek SH3 

domain (Zhao et al., 2000a). The number and position of these residues within the 

zebrafish Pak proteins agrees with the published work for hPak2 (Chong etal., 2001).

It is interesting to note that Pak2b contains an insertion of 10, mostly acidic, 

amino acid residues in the region between the Al sequence and the PIX binding SH3 

domain (Figure 4.1, aa177-186). In addition, there is divergence in amino acid 

residues immediately following the Nek consensus binding domain in Pak2b (Figure
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4.2, aa positions 25 and 30). It is not clear what effect, if any, these differences have 

on the activity of Pak2b.

In the C-terminal domain Pak proteins contain a serine/theronine kinase 

domain and a binding site for the heterotrimeric G-protein p-subunit (Gp) (Leeuw et 

al., 1998). The kinase domains of zebrafish Pak2a and Pak2b were highly conserved 

when compared to each other and to the Pak2 protein sequences of other species 

(Figure 4.2). The putative Gp interaction site was conserved in both zebrafish Pak2 

proteins (Figure 4.1, red). The Gp interaction site, initially identified in the budding 

yeast PAK homologue Ste20, is implicated in signalling from heterotrimeric G proteins 

to mitogen-activated protein (MAP) kinase cascades. In mammalian systems G- 

protein-coupled receptors have a potent ability to stimulate Pak activity (Daniels and 

Bokoch, 1999) and Gpy-mediated Pak1 activation of Cdc42 is required for efficient 

chemotactic directional sensing (Li etal., 2003).

The high level of conservation of zebrafish Pak2 suggests they may function 

in a similar manner to the other Pak2 proteins.

4.6 Identification of proteins interacting with Pak2a and 

Pak2b.

Sequence comparisons show that zebrafish Pak proteins are highly 

conserved in many regions including the kinase domain, PBD and Nek and PIX 

binding sites. However interesting differences adjacent to the Nek and PIX binding 

sites are present in Pak2b. Pull down experiments using the GST fusion proteins were 

carried out to verify the binding of known interacting proteins. The GST fusion proteins 

were generated by fusing the N-terminal regulatory domain of Pak2a or Pak2b with 

the GST protein (Pak2aAcGST and Pak2bAcGST). Whole cell extracts were prepared 

from 15-somite stage embryos and incubated with the Pak-GST fusions, or GST 

alone. Proteins not bound to the Pak-GST fusion protein were washed from the 

glutathione beads with four rinses in lysis buffer containing 2x phosphatase inhibitor.
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Beads with proteins specifically bound to Pak2a or Pak2bGST were resuspended in 

lysis buffer and run on an agarose gel. Western blot analysis was then carried out and 

interacting proteins were detected by specific antibodies.

The small GTPases, Rac and Cdc42, were both found to bind the zebrafish 

Pak-GST fusion proteins (Figure 4.4). The interaction with Rac/Cdc42 suggests that 

Pak2a and Pak2b are able to act as their effectors during zebrafish development.

Interaction of proteins known to bind Pak through the conserved SH3-domain 

binding sites was investigated. The adapter protein, Nek, was predicted to interact 

with both Pak2a and Pak2b by virtue of a conserved binding motif at the N-terminal 

SH3 binding site. Available sequence data from the zebrafish genome has indicated 

two Nek genes and the predicted molecular weights of zebrafish Nek are around 

45kD. Western blot analysis of zebrafish embryo extract using the Nek antibody 

detected bands of; 54, 51, 46, 42 and 35kD (data not shown). Western blot analysis of 

Nek proteins pulled down by Pak2aAcGST and Pak2aAcYFP showed that Pak2a may 

interact with two isoforms of Nek with molecular weights of 48kD and 42kD.

Intriguingly we found that no Nek proteins were pulled down by the 

Pak2bAcGST fusion protein (Figure 4.4). This was confirmed by immunoprecipitation 

using bead immobilised anti-GFP antibody bound to the Pak2bAcYFP fusion protein. 

Western blot analysis of proteins bound to Pak2bAcYFP also revealed no interaction 

with Nek (data not shown). These two fusion proteins are constructed differently, the 

GST is fused to the N-terminus to generate the Pak2bAcGST fusion, whereas the YFP 

protein is fused to the C-terminus of Pak2bAcYFP. Therefore the failure of these Pak2b 

fusion proteins to bind Nek is likely to represent a real result. Thus we have shown 

that Pak2a, but not Pak2b, can bind Nek.

Interaction of Pak2a and Pak2b with PIX was explored using an antibody 

against the serine-rich C-terminus of hp2PIX (Koh et al., 2001). This revealed binding 

of a number of proteins of different molecular weights. The pPIX antibody is specific 

for a human protein of 68kD. In zebrafish, genome sequencing has identified three 

isoforms of pPIX with predicted molecular weights of 75kD, 68kD and 62kD. Western
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blot analysis of zebrafish embryo extract using the PPIX antibody detected bands at: 

79, 74, 68, 62, 57 and 48kD (data not shown), this may indicate the presence of 

further PPIX isoforms or that the antibody may show some unspecific binding.

Western blot of proteins pulled down by Pak2aAcGST, Pak2bAcGST or GST 

alone detected bands at: 74, 68, 62, 60, 57, 48 and 45kD (Figure 4.4). Although the 

two larger isoforms (74 and 68kD) appeared to be pulled down by control GST protein 

a higher affinity of binding was observed between these isoforms and Pak2aAcGST or 

Pak2bAcGST. The binding of the larger PPIX isoforms to GST may represent 

unspecific interaction between the PPIX isoforms and GST. There was low affinity 

binding of the 62kD protein to both Pak2aAcGST and Pak2bAcGST and of the 60kD 

isoform to Pak2bAcGST, PPIX proteins of these molecular weights were detected in 

Western blot analysis of total embryo extract. Pak2aAcGST was also found to bind, 

with high affinity to a PPIX protein of 57kD, while Pak2b-GST failed to bind this 

isoform. Intriguingly detection of PPIX proteins after pull down using Pak2aAcGST or 

Pak2bAcGST revealed strong bands at 48kD, a band of this size was also identified in 

total embryo extract. A strong band was also detected at 45kD in the Pak2aAcGST pull 

down sample which could not be seen in total embryo extract. These proteins are 

significantly smaller than the hp2PIX of 68kD and it is not clear precisely what these 

small bands represent.

It will be interesting to find out what functional differences are conferred by the 

differences in protein interactions observed between Pak2a and Pak2b, particularly in 

relation to the inability of Pak2b to bind Nek.
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Figure 4.4
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Figure 4.4: Pull down assays showing proteins that interact with Pak2a and 

Pak2b.

Fusion proteins, Pak2aAcGST, Pak2bAcGST or GST alone (control), were immobilised 

on beads and incubated with whole cell embryonic extract (15 somite stage). 

Interacting proteins were detected by Western blot analysis using antibodies against 

proteins known to interact with Pak: PIX, Nek, Rac and Cdc42. These results were 

consistent over two repeats.
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4.7 Expression of the zebrafish pak2 genes during 

embryogenesis.

In order to gain insight into the function of the zebrafish pak2 genes it is 

necessary to analyse their spatial and temporal expression pattern. Expression of the 

zebrafish pak2 genes was investigated by whole mount in situ hybridisation during 

different stages of development.

4.7.1 Expression pattern of pak2a.

Whole mount in situ hybridisation showed the presence of maternal pak2a 

transcripts throughout the embryo at blastula stage (Figure 4.5a,b) and zygotic 

expression was ubiquitous during early stages of gastrulation (data not shown). At the 

tailbud stage a higher level of the transcripts was detected in the notochord and there 

was weak labelling of the epidermis, this staining became more marked at the 10- 

somite stage (Figure 4.5c,d). From the 15-somite stage, the expression in the 

notochord began to be restricted posteriorly and all epidermal cells expressed high 

levels of pak2a (Figure 4.5k). Dynamic expression of pak2a in the developing 

notochord, neural tube and epidermis was examined in detail by looking at transverse 

sections over a range of embryonic stages (Figure 4.5p-r).

At the 10-somite stage higher levels pak2a transcripts were detected in the 

eye, apical and basal surfaces of the neural tube and in epidermal tissue abutting the 

yolk (Figure 4.5c-e). Flat mount preparations showed that pak2a transcripts were 

enriched in the tailbud (Figure 4.5h). Expression of pak2a was observed throughout 

the developing brain from 10-somite stage and the expression was clearly visible at 

the 26-somite stage (Figure 4.5i). Expression in the brain and other anterior structures 

decreased in accordance with the general decrease in transcript level from 28hpf.

At the 26-somite stage a strong band of pak2a expression was observed in 

stripes through the central region of the somites, particularly in the more mature
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somites (Figure 4.5j). The posterior lateral line primordium could be distinguished at 

the 26-somite stage, however, levels of transcripts within this tissue were comparable 

to the surrounding epidermis. From 28hpf transcript levels decreased throughout the 

embryo with the exception of epithelial cells (Figure 4.5m). At 28hpf and 32hpf 

staining in epithelial cells was enriched over somitic boundaries. Interestingly pak2a 

transcripts were highly expressed in epithelial cells adjacent to the posterior lateral 

line primordium (Figure 4.5n,o). This expression was maintained as the primordium 

migrated along the trunk. Expression of pak2a appeared to be down regulated within 

the posterior lateral line primordium.

4.7.2 Expression pattern of pak2b.

A low level of maternal pak2b transcripts was detected ubiquitously at blastula 

stage and the zygotic expression remained weak and ubiquitous up to the tailbud 

stage. Like the expression pattern of pak2a, pak2b transcripts were detected on the 

apical and basal surface of the neural tube from the 5-somite stage and the 

expression was increase in embryos at the 10-somite stage (Figure 4.6a,d).

Expression of pak2b was also detected in the anterior to posterior extent of 

the notochord at the 5-somite stage, however, the expression was restricted to the 

posterior at the 10-somite stage. The down regulation of expression in the notochord 

occurs earlier with pak2b than pak2a. At the 15-somite stage there was enrichment of 

pak2b transcripts in the adaxial cells and expression in the notochord was restricted to 

the tailbud (Figure 4.6f,g). At the 26-somite stage pak2b transcripts in the mature 

somites were detected at the same location as pak2a, forming stripes in the centre of 

the somites (Figure 4.6h). This pattern was maintained at 24hpf after which it could 

not be detected.
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Figure 4.5: In situ hybridisation analysis of pak2a expression during zebrafish 

development.

Expression of pak2a visualised by in situ hybridisation is shown in whole embryos at 

the following stages: blastula (a,b), 10-somite (c-h, p,q), 20-somite (r), 26-somite (i-k), 

28hpf (n) and 32hpf (o) and in transverse, hand cut sections of approximately one- 

somite in thickness, at 10-somite (p,q) and 20-somite (r) stages. Arrows indicate 

tissues with high levels of pak2a transcripts. Embryos are orientated anterior to the left 

except a, animal to the top and b, a view of the animal pole and transverse sections 

(p-r). Abbreviations refer to: nt, neural tube; nc, notochord; s, somites; e, eye; fb, 

forebrain; mb, midbrain; hb, hindbrain; tb, tailbud; pllp, posterior lateral line 

primordium.
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Figure 4.6: In situ hybridisation analysis of pak2b expression during zebrafish 

development.

Expression of pak2b visualised by in situ hybridisation is shown in whole embryos at 

the following stages: 5-somite (h), 10-somite (a-d,i,j), 15-somite (e,f), 26-somite (g), 

28hpf (k,n) and 32hpf (l,m,o) and in transverse hand cut sections of approximately 

one-somite in thickness, at 5-somite (h) and 10-somite (i,j) stages. Arrow indicate 

tissues with high levels of pak2b transcripts. Embryos are orientated anterior to the 

left, expect transverse sections (h-j). Abbreviations refer to: ad, adaxial cells; nt, 

neural tube; nc, notochord; s, somites; e, eye; fb, forebrain; mb, midbrain; hb, 

hindbrain; tb, tailbud; pllp, posterior lateral line primordium.
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Transverse sections of embryos at the 5- and 10-somite stages showed 

enrichment of pak2b transcripts in the lateral regions of the neural tube and on the 

apical surface (Figure 4.6: i). This was maintained at later stages and down regulated 

by 32hpf. Sections also showed that, unlike pak2a, there was no increased 

localisation of pak2b transcripts in the epidermal ceils.

From 28hpf there was a general decrease in the level of pak2b transcripts 

although the expression remained in the brain, eyes, epidermis and somitic tissue 

(Figure 4.6k-m). The striking pattern of pak2a expression in epithelial cells 

surrounding the posterior lateral line primordium was not observed with pak2b. 

Expression of pak2b in the primordium was indistinguishable from that in the 

surrounding cells (Figure 4.6n,o).

4.8 Discussion.

This chapter described identification and characterisation of the two novel 

zebrafish homologues of pak2. The genes, pak2a and pak2b, were shown to be 

actively transcribed during embryogenesis (Figure 4.3A). In-vitro transcription and 

translation analysis indicated that the pak2a and pak2b cDNAs encoded proteins of 

approximately 62kD and 67kD respectively (Figure 4.3B). This is in agreement with 

published data for the molecular weights of the rat Group I Pak proteins (Pak1: 68kD, 

Pak2: 62kD, Pak3: 65kD) (Knaus and Bokoch, 1998).

Pak2a and Pak2b protein sequences showed very high homology to Pak2 

proteins identified in other species (rat, rabbit, Xenopus, human) with specific domains 

including the proline rich SH3 binding domains, PBD and CRIB motif, kinase domain 

and Gp subunit binding site highly conserved (Figures 4.1 and 4.2).

Zebrafish Pak2aAcGST and Pak2aAcGST proteins were found to bind to the 

small GTPases, Rac and Cdc42. Interaction of Pak with Rac and Cdc42 has been 

shown to be important for regulating organisation of the actin cytoskeleton (Eby et al., 

1998), therefore the pull down result indicates that both Pak2a and Pak2b proteins
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could act as downstream mediators of Rac and Cdc42 in regulating the actin 

cytoskeleton. Interaction of Pak2a and Pak2b with SH3-domain proteins showed 

interesting differences. While Pak2aAcGST was able to bind to two isoforms of Nek, 

Pal^b^GST appeared unable to bind to Nek. Differences were also apparent in the 

binding of pPIX isoforms to Pak2aAcGST and Pak2bAcGST proteins in the intensity, 

size and number of PPIX proteins pulled down. Variation between Pak2a and Pak2b in 

the ability to interact with Nek and PPIX was surprising as binding motifs for these 

proteins were absolutely conserved in both proteins. One possible explanation for 

these differences results from the amino acid divergence at residues flanking the Nek 

and PIX binding sites of Pak2b. Single amino acid differences around the Nek binding 

site (aa6,7, 25 and 29) and the insert of 10, mostly acidic, amino acids in the region 

immediately preceding the PIX binding site in Pak2b could affect the conformation of 

the Pak2b protein. Changes to the conformation of Pak2b may then affect the binding 

of Nek or PIX by altering the accessibility of the binding sites.

The expression patterns of pak2a and pak2b  were in agreement with 

observations of pak2  localisation in other species. In rat and Xenopus pak2  

expression was found to be ubiquitous (Jaffer and Chernoff, 2002; Souopgui et al., 

2002). Higher levels of Xpak2 transcript have been noted in the neural plate and later 

in the brain, eye and tailbud. The enrichment of Xpak2 in the brain, eye and tailbud 

was mirrored in zebrafish pak2a  and pak 2 b  expression in early stages of 

development. An interesting pattern of pak2a expression was observed surrounding 

the migrating lateral line primordium. Although the cells of the posterior lateral line 

primordium expressed low levels of both pak2a and pak2b, there were high levels of 

pak2a transcripts in the epithelial cells surrounding the lateral line primordium. It is 

interesting to note that during dorsal closure in Drosophila the pak homologue, DPak, 

is enriched in epidermal cells flanking the amnioserosa and associated with the focal 

adhesions at the leading edge of these migrating cells (Harden et al., 1996). We have 

shown that high levels of the focal adhesion protein Paxillin are found surrounding the 

posterior lateral line primordium. These data raise the interesting possibility that
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Pak2a may be associated with focal adhesions and could be involved in regulating 

migration of the posterior lateral line primordium. Pak can be recruited to focal 

adhesions by means of binding to the PIX/PKL complex (Brown et al., 2002). PIX 

binds to Pak proteins through the atypical SH3 motif that is conserved in Pak2a and 

Pak2b, suggesting that both zebrafish Pak proteins would be able to interact with PIX. 

Pull down analysis with the Pak2aAcGST and Pak2bAcYFP showed that Pak2a and 

Pak2b were able to bind to PIX, however Pak2a and Pak2b bound a number of 

isoforms with differing affinity.

In addition to PIX, Nek is also thought to play a role in recruiting Pak to sites of 

focal adhesion complexes (Zhao et al., 2000a) and Nek can increase activation of Pak 

by co-localisation of Pak with its activator Rac (Lu et al., 1997). Binding of Nek to 

Pak2a implies that zebrafish Pak2a could be activated by Nck-directed recruitment to 

the membrane. The finding that Pak2a binds to Nek but Pak2b does not raises some 

interesting questions regarding the regulation of focal adhesion complexes by 

zebrafish Pak2 and the activation of Pak2a and Pak2b.

In summary Pak2a and Pak2b are likely to be involved in regulation of the 

actin cytoskeleton and formation of focal adhesions during zebrafish development by 

virtue of interactions with proteins such as Rac/Cdc42, Nek and PIX. We have found 

significant differences in the binding of Pak2a and Pak2b to Nek and PIX. The 

ubiquitous nature of pak2a and pak2b gene expression suggests that these proteins 

may act in a number of tissues during development including the formation of the 

posterior lateral line system. We will employ a loss-of-function approach to investigate 

the role of Pak2a and Pak2b during zebrafish development, in particular during the 

development of the posterior lateral line system.
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Chapter Five

Role of Pak in development of the 

posterior lateral line system.

5.1 Introduction

In order to investigate the role of Pak2a and Pak2b in zebrafish development 

we have primarily utilised a morpholino knock down approach and analysed the loss- 

of-function phenotypes. This chapter describes the general phenotype of pak2a and 

pak2b morpholino-mediated knockdown and detailed analysis of the posterior lateral 

line development. We utilised the techniques described in Chapter Three to follow 

migration of the lateral line primordium, patterning of cells within the lateral line 

primordium, deposition of neuromast precursors and their differentiation. Furthermore 

we explored the effect of Pak2 knock down on cadherin-mediated adherens junctions 

and focal adhesions by immunocytochemistry and Western blot analysis.

5.2 Morpholino knock down of Pak2a and Pak2b.

Morpholinos are chemically modified oligonucleotides with base-stacking 

abilities similar to those of natural genetic material. Morpholinos have been shown to 

bind to and block translation of mRNA by hindering translational initiation (Nasevicius 

and Ekker, 2000). This approach makes in vivo targeting highly predictable and 

reduces non-specific effects. Injection of morpholino into zebrafish embryos at the 

one-cell stage can effectively knock down expression of the target gene, providing a 

useful method for loss-of-function experiments.
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Morpholino sequences were designed to target the 5’ untranslated region 

(UTR) immediately adjacent to the translation initiation methionine (ATG) of Pak2a 

and against the 5’UTR including the initiation site of Pak2b (Chapter Two). Both 

morpholino sequences were tested by BLAST at NCBI for representation elsewhere in 

the EST database and shown to be unique. As no antibody was available to 

specifically identify zebrafish Pak2a or Pak2b we generated RNA expression 

constructs. The constructs comprised the full length pak2a or pak2b gene, including 

the 5’ UTR to which the morpholino was designed, fused to the yellow fluorescent 

protein (YFP). This construct could be utilised to evaluate the knock down effect of the 

morpholinos on protein translation by co-injection of Pak2aFLYFP or Pak2bFLYFP RNA 

with the corresponding morpholino oligonucleotide. The strength of fluorescence in 

embryos co-injected with morpholino was considerably reduced when compared to 

embryos injected with either Pak2aFLYFP or Pak2bFLYFP RNA alone (data not shown). 

This result was quantified by Western blot analysis of whole cell extract prepared from 

embryos injected with pak2aFLYFP or pak2 tfLYFP RNA alone and together with the 

corresponding morpholino. Pak2aFLYFP and Pak2bFLYFP protein was detected using 

an anti-GFP antibody which could detect YFP. The levels of Pak2aFLYFP and 

Pak2bFLYFP were significantly reduced in embryos co-injected with morpholino 

(Figure 5.1 A). As a result it is evident that translation of pak2a and pak2b was 

effectively blocked by their specific morpholino sequences.

Initial experiments were carried out to define the dose of morpholino required 

to produce a specific phenotype. Stock morpholino oligonucleotides (300mM), 

dissolved in 63jxl RNase- and DNase-free water, were further diluted from 1:8 down to 

1:32 and 3nl was injected into embryos at one-cell stage. With both pak2a and pak2b 

morpholinos a morphological phenotype was observed following injection of 1:16 

dilution, equivalent to 2ng/nl. The phenotypes of embryos injected with pak2b 

morpholino were more severe than those observed in embryos injected with pak2a 

morpholino.
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5.2.1 General phenotype of morpholino-mediated knock down of pak2a and 

pak2b.

At early stages the development of the pak2a and pak2b morpholino injected 

embryos proceeded normally and as for control morpholino injected embryos (data not 

shown). The morphological shield was formed and gastrulation appeared normal in 

pak2a and pak2b morpholino injected embryos, although the process was 

occasionally slightly delayed in embryos injected with pak2b morpholino. At advanced 

epiboly stages the forerunner cells were present and by the tailbud stage embryos 

injected with pak2a or pak2b morpholino had completed epiboly and the notochord 

anlagen was present. As morpholinos do not affect levels of maternal protein the 

absence of phenotype at early stages may result from activity of maternal Pak2, which 

would be degraded by later stages.

Defects began to be visible from the 10-somite stage, whereupon the head 

appeared smaller and in embryos injected with pak2b morpholino a convergent 

extension defect was visible (Figure 5.1 i,j and q,r). This was characterised by a 

reduction in advancement of the tailbud over the yolk sac (Figure 5.1 r). A mild 

convergent extension defect was apparent in embryos injected with pak2a morpholino 

from the 15-somite stage. This was characterised by a shortened body axis and at 

later stages by a ventral curl of the tail, posterior to the yolk tube (Figure 5.1 p). Ventral 

curling of the tail was more pronounced in embryos injected with pak2b morpholino 

(Figure 5.1 x). In both cases the somites at the bent area of the tail were compacted 

and more “u” shaped than the classical chevron shaped and many “u” and irregular 

shaped somites were present in embryos injected with pak2b morpholino (Figure

5.1 m,p and u,x). The morphology of the notochord appeared normal in embryos 

injected with pak2a morpholino, however, the notochord exhibited kinks in pak2b 

morpholino injected embryos (Figure 5.1 u).
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Figure 5.1: Phenotypes of embryos injected with pak2a and pak2b morpholino.

A: Morpholino-mediated knock down of the Pak2a and Pak2b YFP-fusion proteins 

shown using Western blot analysis. Embryos were injected with pak2a-YFP/pak2b- 

YFP alone or co-injected with the corresponding morpholino.

B: Images of live embryos injected with 3nl control (a-h), pak2a (i-p) or pak2b (q-x) 

morpholino at a 1:16 dilution, equivalent to 4.5ng. Embryos are shown at the 10- 

somite stage (a-c, i-k, q-s), 15-somite stage (d-f, l-n, t-v) and at 24hpf (g,h,o,p and 

w,x). Embryos are shown from ventral, lateral and dorsal views and are orientated 

anterior to the left. Tissues are labelled by the following abbreviations; e, eye; tb, 

tailbud; nc, notochord; s, somite; ys, yolk sac; pc, pericardium; dtf, dorsal tail fin; vtf, 

ventral tail fin; yt, yolk tube.
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Posterior constriction of the yolk sac to form the yolk tube was defective, 

resulting in a thin yolk tube (Figure 5.1 m,p and u,x). The heart was small and 

resembled an early heart tube (data not shown). The heart rate was slow and 

circulation was poor or not evident and as a result there was swelling of the 

pericardium (Figure 5.1 o,w). A swelling was also present over the mid and hindbrain 

ventricles in embryos injected with pak2a morpholino (Figure 5.1 p).

At later stages of development the epidermis of embryos injected with pak2a 

or pak2b morpholino had a necrotic appearance and the dorsal and ventral tail fins 

were greatly reduced or absent (Figure 5.1 p,x). Embryos injected with pak2a 

morpholino were able to hatch from their chorions and swim and a large percentage 

survived until 5dpf. Some embryos injected with pak2b morpholino were able to hatch 

and swimming was hampered by the highly curved tail. Approximately 50% of 

embryos injected with pak2b morpholino survived to 5dpf. Survival beyond this stage 

was not investigated.

5.3 Effect of Pak2 knock down on development of the 

posterior lateral line.

As discussed previously Pak has been shown to play important roles in the 

control of cell migration. We have demonstrated that development of the posterior 

lateral line represents a valuable model system for studying cell migration in zebrafish 

development. The superficial location and characteristic patterning of the lateral line 

primordium presents a useful system to investigate the effects of pak2 morpholino- 

mediated knock down on cell migration in vivo.
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5.3.1 Neuromast number and position in morpholino injected embryos.

Detection of the endogenous alkaline phosphatase activity was used to 

identify the mantle cells of mature neuromasts in order to analyse pattern formation in 

the lateral line system. In normal development the primary posterior lateral line 

consists of five neuromasts along the midline and two neuromasts in a more ventral 

position at the tail (Figure 5.2a,f).

In a large percentage of embryos injected with pak2a morpholino mature 

neuromasts were present along the full length of the trunk and tail. However, the 

number and position of the neuromasts was disrupted and in 63% of embryos 

analysed (n=27) there was a reduction in the number of neuromasts. Most common 

(35%) was the loss of one neuromast and increased spacing between either the first 

and second neuromasts (Figure 5.2c) or between the second and third neuromasts 

(Figure 5.2b). Staining with the differentiated hair cell marker, S100, and nuclear 

counter-staining did not identify any further neuromasts.

A more severe phenotype was observed in embryos injected with pak2b 

morpholino. In the majority of cases (85%, n=70) no mature neuromasts were 

detected by staining for endogenous alkaline phosphatase activity (Figure 5.2d,e). 

However when using the antibodies against S100 and acetylated tubulin, 

differentiated hair cells could be observed in the anterior trunk of some pak2b 

morphant embryos (Figure 5.2n-p). Closer observation revealed these S100 labelled 

hair cells were surrounded by tightly packed support-like cells that in some cases 

showed weak alkaline phosphatase activity (Figure 5.2m). In general, only one 

neuromast was identifiable in this manner, however as many as three could be 

observed in a small number of embryos (12%). Therefore injection of pak2a or pak2b 

morpholino results in a loss of differentiated neuromasts.
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Figure 5.2: Effect of Pak2 knock down on the number and position of mature 

neuromasts in the posterior lateral line system.

Differentiated neuromasts were visualised by staining for endogenous alkaline 

phosphatase activity at 3dpf. The number and position of neuromasts was compared 

between control embryos and embryos injected with 4.5ng morpholino. Positions of 

the posterior neuromasts are indicated by arrows in control embryos (a,f-i), embryos 

injected with pak2a morpholino (b,c) and embryos injected with pak2b morpholino 

(d,e,m-p).

Differentiated hair cells were detected by S100 (red) and acetylated tubulin (green) 

antibodies in control (j-l) and upon the anterior trunk of pak2b (n-p) morpholino 

injected embryos at 3dpf.
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5.3.2 Migration of the posterior lateral line primordium in morpholino injected 

embryos.

While alkaline phosphatase activity and S100 staining revealed the defects in 

the formation of the posterior lateral line in terms of the position and number of mature 

neuromasts, we needed to look at earlier stages to understand how these defects 

arose. One possible explanation for the reduction in the number and the anterior 

position of neuromasts in embryos injected with pak2b morpholino is defective 

migration of the posterior lateral line primordium. The position of the primordium in 

embryos injected with pak2a or pak2b  morpholino over a series of stages was 

visualised by whole mount in situ hybridisation using molecular markers of the 

posterior lateral line primordium. The markers, nkx5-1 and eya-1, were selected for 

their complete temporal coverage of posterior lateral line development and broad 

expression in many cell types of the lateral line system. Nkx5-1, a homologue of the 

Drosophila NK homeobox genes, is expressed in the posterior lateral line from the 4- 

somite stage (11.3hpf) and is maintained in the migratory primordium throughout it’s 

passage along the trunk and tail (Adamska et al., 2000). Zebrafish eyal is a member 

of the eyes absent-like family of transcriptional co-activators, and is expressed in the 

lateral line placodes, lateral line ganglion, migratory primordium and is maintained in 

neuromast precursors following deposition (Sahly eta i, 1999).

Knock down of Pak2a or Pak2b did not have any effect on the specification of 

the lateral line primordium as a focal thickening of nkx5-1 and eyal positive cells 

could be detected in embryos injected with pak2a or pak2b  morpholino (data not 

shown). Detection of the primordium at stages throughout migration revealed that 

while the primordium migrated normally in embryos injected with pak2a morpholino, 

knock down of Pak2b resulted in retarded migration. Distance of the lateral line 

primordium migration was measured in relation to the number of somites it had moved 

over. In embryos injected with pak2b morpholino the rate of migration of the 

primordium was severely affected and much reduced.
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Figure 5.3: Migration of the lateral line primordium is retarded in embryos 

injected with pak2b morpholino.

Whole mount in situ hybridisation of nkx5-1 was carried out with control embryos (a-e) 

or embryos injected with 4.5ng pak2b morpholino (f-j) over a range of stages; 24hpf 

(a,f), 26hpf (b,g), 28hpf (c,h), 30hpf (d,i) and 32hpf (e,j). The migration of the 

primordium was also investigated using bright field microscopy, (k) control, (l-o) pak2b 

morpholino injected. The position of the primordium is denoted by the number of the 

underlying somites.
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The primordium typically stopped in the mid-trunk and did not reach the tail 

end of the embryo (Figure 5.3f-j). This defect in primordium migration is manifest at 

later developmental stages, at 3dpf a cluster of cells, indicative of the lateral line 

primordium, was detected in the mid-trunk region by labelling of cell nuclei with DAPI. 

Co-labelling of the lateral line ganglion with acetylated tubulin revealed that this cell 

cluster was associated the termination of the lateral line ganglion (data not shown).

The primordium was often smaller and of irregular shape in embryos injected 

with pak2b morpholino compared with control morpholino (Figure 5.3a-e and i,j). 

These defects in migration, shape and primordium size have also been observed 

morphologically in live embryos by virtue of the distinctive thickening of the primordium 

(Figure 5.3k-o).

5.3.3 Real-time analysis of migration of the posterior lateral line primordium in 

pak2b morpholino injected embryos.

In order to gain a better understanding of the defects in the developing lateral 

line when pak2 translation was attenuated, we looked at migration of the primordium 

in real time. Time-lapse analysis was focused mainly on embryos injected with pak2b 

morpholino, as these embryos showed retardation in the migration of the primordium. 

The lateral line primordium was visualised in live embryos injected with morpholino 

using bodipy sphingomyelin or co-injection of gapGFP to label cell membranes. The 

gapGFP fusion protein is specifically targeted to the cell membranes (Moriyoshi et al., 

1996; Okada etal., 1999) and was used as an alternative to bodipy to aid visualisation 

of activity at the leading edge. Injection of gapGFP after the one cell stage produced 

mosaic expression and labelling of only a fraction of cell membranes, which enhanced 

visualisation of cell activity. This technique was also used in control embryos and did 

not affect normal migration of the primordium (data not shown).
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Figure 5. 4: Effect of Pak2b knock down on lateral line migration.

A: Time lapse series showing typical cell behaviour at the leading edge of the

migrating posterior lateral line primordium following injection of 4.5ng pak2b  

morpholino. Images shown are consistent with observations of pllp migration in more 

than 15 pak2b morpholino injected embryos. Cell membranes were visualised in live 

embryos by injection at the one cell stage with gapGFP. Times shown are in minutes. 

White dashed lines outline the posterior lateral line primordium. Arrows highlight 

lateral extension of cell membrane from labelled cells (pink).

B: Confocal sections showing disruption to the cellular organisation of the posterior 

lateral line primordium of embryos injected with 4.5ng pak2b  morpholino (b-f) 

compared to a control (a). Primordia of embryos injected with pak2b morpholino 

exhibited a loss of cellular patterning and the rosette-like structures of nascent 

neuromasts were not detected or were poorly organised (arrows). Numbers indicated

the position of the primordium in relation to the underlying somites.
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The Pak family of proteins have emerged as important regulators of the 

changes to the cytoskeleton required for cell migration (Kiosses et al, 1999). Time- 

lapse analysis was used to look at the activity of cells at the leading edge of the 

primordium comparing embryos injected with pak2b morpholino to uninjected controls. 

We have already described that, in a normal environment, cells at the leading edge of 

the migrating primordium are loosely associated with each other and actively change 

their shape, extending and contracting both laterally and in the direction of migration. 

Away from the leading edge cells undergo fewer shape changes and migrate as a 

tightly packed group, with elongation only in the direction of migration (Figure 3.3). 

When embryos were injected with pak2b morpholino the cells within the body of the 

primordium were rigid in shape but, unlike control embryos, explorative cell membrane 

protrusions at the sides of the primordium and into the surrounding tissue was 

observed (Figure 5.4A). At the leading edge of the primordium cell behaviour in 

embryos injected with pak2b morpholino was comparable to that in control embryos. 

However, despite the fact that cells at the leading edge were highly active and 

explorative, extending membrane processes both laterally and posteriorly, very little 

migration of the primordium was observed (Figure 5.4A). This loss of forward motility 

can be clearly observed in the time lapse series, by looking at the position of the 

primordium within the field of view. In control embryos the primordium visibly travels 

across the field of view in a 30 minute time period (Figure 3.3). However in embryos 

injected with pak2b morpholino the position of the primordium within the field of view is 

more or less unchanged over a 60 minute time period (Figure 5.4A). Furthermore, 

when position of the primordium, relative to the underlying somites, is compared in 

control and pak2b morpholino injected embryos it is clear that primordia in control 

embryos have migrated 4 to 8 somites further than the primordia of embryos injected 

with pak2b morpholino at the same developmental stage (Figure 5.5b-f). Thus it 

appears that knock down of Pak2b does not effect the motility of the cells of the lateral 

line primordium perse, but results in a loss of directed migration.
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Interestingly the organisation of cells within the lateral line primordium was 

disrupted in embryos injected with pak2b morpholino, and to a lesser extent in 

embryos injected with pak2a morpholino. At early stages of migration the rosette-like 

structure of nascent neuromasts could be identified (Figure 5.4b,c), however as 

migration proceeded, cells of the primordium became progressively less organised 

and “rosettes” could no long be identified (Figure 5.4d,f). Furthermore the cells within 

the primordia of embryos injected with pak2b morpholino lost the characteristic 

teardrop shape and cell shape became randomised and irregular (n=20). These 

observations suggested that embryos injected with pak2b, and to a lesser extent 

pak2a morpholino, were unable to maintain the cellular prepattern of the primordium 

as it migrates which may indicate an inability to dynamically rearrange cellular 

adhesions during migration of the lateral line primordium.

5.3.4 Effect of knock down on primordium cellular organisation and adhesion 

molecules.

The observation of disrupted cellular organisation in the primordium of 

embryos injected with pak2a or pak2b morpholino raised the possibility of a role for 

Pak2a and Pak2b in establishing or maintaining the cellular prepattern of the lateral 

line primordium. We have shown that components of adherens junctions, E-cadherin 

and p-catenin, and focal adhesions, Paxillin, as well as F-actin have a characteristic 

pattern of localisation in the migrating lateral line primordium and we proposed that 

regulation of the actin cytoskeleton, adherens junctions and focal adhesions would 

have critical roles in controlling migration of the posterior lateral line primordium 

(Chapter Three). These roles would include directed migration of the primordium 

through polarisation of the actin cytoskeleton, focal adhesion-mediated traction forces 

to "pull” the cells of the lateral line primordium along their migratory pathway and 

dynamic cell to cell adhesions to maintain the close association of primordium cells 

throughout migration and during neuromast deposition. Analysis of the lateral line
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primordia of embryos injected with morpholino, particularly pak2b morpholino, 

revealed disruption to cell shape, a lack of rosette-like structures and loss of directed 

migration of the primordium indicating an effect on regulation of the actin cytoskeleton 

and adhesion molecules.

It is known that Pak can play a role in the regulation of focal adhesion sites, 

through its association with Paxillin (Brown et al., 2002) and affect Cdc42-mediated 

organisation of the actin cytoskeleton (Eby et al., 1998). Dynamic regulation of 

adherens junctions is known to require Rac and Cdc42 activity (Fukata and Kaibuchi, 

2001).

Immunostaining experiments were carried out to investigate the localisation of 

p-catenin, E-cadherin and Paxillin proteins and F-actin. Using fluorescently labelled 

phalloidin to label F-actin we found that F-actin was clustered in the primordium of 

embryos injected with pak2a morpholino in a similar manner to that observed in 

controls (Figure 5.5c,d). Although the clusters were often less dense than in the 

control embryos, three to four foci could be identified within the primordium of 

embryos injected with pak2a morpholino. However, in embryos injected with pak2b 

morpholino only one focal cluster of F-actin could be identified although occasionally a 

second very much reduced cluster was seen (Figure 5.5e,f). The major cluster in the 

primordium of embryos injected with pak2b morpholino was always located in the 

trailing end, corresponding to the first nascent neuromast precursor. This is consistent 

with the finding that one to two mature neuromast precurors can be detected in 

embryos injected with pak2b morpholino (Figure 5.2d,e,m). This suggests that pak2b 

may be required to maintain cellular organisation of subsequent neuromast 

precursors.

We analysed the localisation of the adhesion molecules that are associated 

with the actin cytoskeleton, p-catenin and E-cadherin, in embryos injected with pak2a 

or pak2b morpholino (Figure 5.5i-l). We have previously shown that, like F-actin, p- 

catenin and E-cadherin were clustered at the apex of the rosette-like structures of 

nascent neuromast precursors (Chapter Three). In the embryos injected with pak2a
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morpholino clusters of p-catenin and E-cadherin could be observed at the foci of 

rosette-like structures (Figure 5.5i,j). However, in more than 50% of cases the clusters 

of p-catenin and E-cadherin were less concentrated and elongated, rather than 

focused to a point in the leading edge of the primordium (n=15). As the leading edge 

is where the most cellular activity is occurring elongation of the p-catenin and E- 

cadherin cluster suggests dynamic maintenance of the cluster is defective. Expression 

of E-cadherin in the epithelial cells surrounding the primordium did not appear to be 

affected by the knock down of Pak2a.

Disruption to the patterning of P-catenin and E-cadherin within the primordium 

of embryos injected with pak2b morpholino was similar to that observed for F-actin 

localisation. Only one focal cluster of p-catenin and E-cadherin proteins could be 

detected following injection of pak2b morpholino (n=15). Like F-actin, this cluster was 

found in the trailing end of the primordium (Figure 5.5k,I). In the absence of p-catenin 

and E-cadherin clusters, the cells within the primordium were randomly organised and 

less tightly packed resulting in irregular primordium shapes, such as broadening of the 

primordium at the leading edge. The E-cadherin expression in the cells surrounding 

the lateral line primordium did not appear to be significantly affected by the knock 

down of Pak2b.

As Pak is known to be an important regulator of focal adhesion formation we 

were interested to discover whether the expression of the focal adhesion protein, 

Paxillin, was disrupted following knock down of Pak2a or Pak2b. In normal embryos 

Paxillin is clustered around the edge of the lateral line primordium (Chapter Three) 

and this pattern was not affected by injection of control morpholino. However, in 

embryos injected with either pak2a or pak2b morpholino the level of Paxillin around 

the primordium was reduced and in embryos injected with pak2b morpholino it was 

frequently difficult to detect the presence of Paxillin protein (Figure 5.6). This 

suggested that Pak2b is required to form focal adhesions around the migrating lateral 

line primordium.
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Figure 5. 5: The cellular organisation of the lateral line primordium is disrupted 

in pak2a or pak2b morpholino injected embryos.

Embryos were labelled with Cy3-conjugated phalloidin to visualise F-actin (a-f). 

Images shown are generated from a stack of sections through the lateral line 

primordium at 24hpf. Embryos were injected with 4.5ng of control (a,b), pak2a (c,d) or 

pak2b (e,f) morpholino. Arrows indicate the centre of the rosette-like structure of 

nascent neuromast precursors.

Localisation of p-catenin (red) and E-cadherin (green) proteins was also visualised 

using fluorescent immunostaining at 24hpf (g-l). images shown are confocal sections 

of one plane through the lateral line primordium. Embryos were injected with 4.5ng 

control morpholino (g,h), pak2a morpholino (i,j) or pak2b morpholino (k-l). Arrows 

indicate foci of rosette-like structure of nascent neuromast precursors.
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5.4 Effect of morpholino-mediated knock down of Pak2 on 

levels of adhesion proteins.

Immunocytochemical analysis of adherens junction and focal adhesion 

proteins demonstrated a disruption to their localisation in embryos injected with pak2a 

and pak2b morpholino oligonucleotides. In particular we noted a decrease in the 

intensity of Paxillin staining surrounding the lateral line primordium of embryos 

injected with the pak2b morpholino (Figure 5.6). We were interested to discover 

whether the changes to adhesion protein level observed by immunostaining were 

indicative of a significant effect of Pak2 knock down on the levels of adhesion proteins 

associated with the cytoskeleton. Whole cell extracts from embryos injected with 

control, pak2a or pak2b morpholino were separated into 1% Triton-soluble “cytosolic” 

and insoluble “cytoskeleton” fractions using a well established method of fractionation 

(Reiter et al., 1985). Western blot analysis was then carried out to assay for levels of 

various adhesion proteins (Figure 5.7A). We investigated the levels of adherens 

junctions proteins, E-cadherin, p-catenin and a-catenin, the focal adhesion protein, 

Paxillin and Vinculin, which is associated with both types of adhesion (Pokutta and 

Weis, 2002; Turner, 2000).

Western blot analysis revealed clear differences in the fraction enriched in 

cytoskeleton between the levels of proteins associated with the cytoskeleton in 

morpholino injected embryos and in controls (Figure 5.7A). Quantitative analysis of 

the bands was carried out by measuring and comparing the density and the density of 

bands detected in control and morpholino injected embryos was compared. A general 

increase in the levels of all adhesion proteins assayed was detected in embryos 

injected with pak2a morpholino (Figure 5.7B). The greatest increases were observed 

for p-catenin and a-catenin with two fold increases and Vinculin, which, was detected 

at a level three times greater than the control level. The levels of Paxillin and E- 

cadherin were slightly increased at a 1.1 fold greater density than the control (Figure 

5.7B).
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Figure 5.6: Levels of focal adhesion protein surrounding the primordium are 

decreased in morpholino injected embryos.

The level of Paxillin protein surrounding the lateral line primordium in 24hpf embryos 

injected with 4.5ng of either pak2a (e-h) or pak2b morpholino (i-l) is reduced when 

compared to the control (a-d). Localisation of Paxillin protein (red) was detected by 

immunostaining and visualised as confocal sections. The anti p-catenin antibody 

(green) to aid visualisation of the primordium (a,c,e,g,i,k). The edge of the lateral line 

primordium is indicated by arrowheads.

141



Levels of cadherin-mediated adhesion proteins were also increased in 

embryos injected with pak2b morpholino, particularly a-catenin and Vinculin. In 

comparison E-cadherin and Paxillin protein levels were decreased, only a very low 

level of Paxillin protein was associated with the cytoskeleton in pak2b morpholino 

injected embryos (Figure 5.7A). These results show that Pak2a and Pak2b have 

significant roles in regulating the levels of adhesion molecules associated with the 

cytoskeleton, however, these two Pak proteins are clearly acting in different ways.

5.5 Effect of knock down on cell death and proliferation 

within the posterior lateral line primordium.

Previous work in our lab has shown that deposition of the correct number of 

neuromast precursors during normal lateral line development requires cell proliferation 

(Q. Xu, pers. comm.). Members of the Pak family of proteins have been shown to 

have roles in both cell proliferation and survival and in promoting apoptosis (Rudel 

and Bokoch, 1997; Schurmann et al., 2000). Following injection of pak2a morpholino 

we have observed a reduction in size of the lateral line primordium (Figure 5.3) and a 

reduction in the number of neuromasts deposited (Figure 5.2). This prompted us to 

look at patterns of apoptosis and proliferation within the lateral line primordium of 

pak2a morpholino injected embryos to discover whether changes to such patterns 

could contribute to the defects observed.
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Figure 5.7: Levels of cytoskeleton associated adhesion proteins are altered in 

pak2a and pak2b morpholino injected embryos.

A: Western blot analysis showing changes in the levels of cytoskeleton associated oc- 

catenin, p-catenin, E-cadherin, Paxillin, and Vinculin in embryos injected with 4.5ng 

control, pak2a or pak2b morpholino. Cytoskeleton-enriched extracts were prepared 

from 50 embryos and protein bands were detected with specific antibodies as 

indicated.

B: Protein levels were quantified by measuring the optical density of the bands 

detected by Western blot analysis. This graph illustrates the average optical density, 

recorded over two experiments, for embryos injected with 4.5ng of control, pak2a, or 

pak2b morpholino.
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Figure 5.8: Cell proliferation is reduced in embryos injected with pak2a 

morpholino.

Numbers of proliferating and apoptotic cells within the lateral line primordium of 24- 

28hpf embryos injected with 4.5ng of control (a) or pak2a morpholino (b,c) were 

investigated in tandem. Proliferating cells were identified by incorporation of BrdU and 

labelled using a fluorescently conjugated anti-Brdll antibody (green). Apoptotic cells 

were labelled using a fluorescent TUNEL method (red). Visualisation of the lateral line 

primordium was aided by co-staining with anti-pcatenin antibody (blue). Average 

numbers of proliferating and apoptotic cells in the posterior lateral line primordium 

were calculated from four embryos and shown as a bar graph. Error bars indicate 

standard deviation from the mean. A student’s t-test was used to calculate whether 

the two sample means were equal, p values less than 0.05 were taken to be 

significant and an asterisk indicates a significant change.

146



The number of cells undergoing proliferation or programmed death in the 

lateral line primordium was investigated by tandem detection of DNA fragmentation in 

apoptotic cells using the TUNEL technique and detection of BromodeoxyUridine 

(BrdU) incorporation into the S-phase DNA of proliferating cells. Our results showed 

that there was a increase in the number of cells undergoing apoptosis within the 

primordium of embryos injected with pak2a morpholino compared to embryos injected 

with control morpholino (p=0.08). Concomitantly we detected a significant decrease 

(p=0.03) in the number of proliferating cells in the primordium of embryos injected with 

pak2a morpholino (Figure 5.8).

This significant reduction in cell proliferation in the primordium of embryos 

injected with pak2a may be sufficient to reduce the number of cells within the 

primordium and lead to a decrease in the number of neuromasts deposited from the 

primordium.

5.6 Effect of Pak2 knock down on migration of the primordial 

germ cells.

Directed cell migration in response to chemotatic signals is important for many 

biological processes, in particular the migration of lymphocytes in immune response 

(Muller et al., 2001). Recent studies in zebrafish development have shown that the 

chemokine sdf-1 and its receptor cxcr4 are involved in the guidance of cell migration 

in development of the lateral line (David et al., 2002). Migration of the primordial germ 

cells (PGCs) also requires the activity of the chemokine Sdf-1 and it’s receptor cxcr4 

and the migratory pathway of the germ cells is well characterised (Knaut et al., 2003). 

The defect in migration of the lateral line primordium observed in embryos injected 

with pak2b morpholino could result from a defect in the chemotatic response. We 

investigated this possibility by analysing the migration of PGCs in embryos injected 

with pak2a or pak2b morpholino.
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We used the nanos-likel gene (nanos), which is expressed in the germ plasm 

and primordial germ cells (PGCs) of the zebrafish, as a molecular marker to follow 

movement of the PGCs during development (Koprunner et al., 2001). At the dome 

stage of development PGCs originate at random positions along the edges of the 

embryo, then converge to form two lateral stripes and migrate towards the dorsal 

midline (Figure 5.9a,b). During somitogenesis, strong sdf-1 expression domains at the 

level of the third and eighth somites, act to attract PGCs. The PGCs finally converge 

at a point just posterior to the yolk sac at 24hpf where the future gonad will form 

(Figure 5.9e,f).

When we looked at the location of the nanos positive PGCs in embryos 

injected with either pak2a or pak2b morpholino we found a number of defects. Firstly, 

the initial convergence of PGCs at early stages was disrupted or delayed and cells 

were scattered over the embryos rather than aligned to form the lateral stripes in 75% 

of pak2a morpholino injected embryos (n=8) and 80% of pak2b morpholino injected 

embryos (n=15) (Figure 5.9g,h and m,n). At the 10-somite stage PGCs could still be 

observed in the posterior most region of embryos injected with pak2a or pak2b 

morpholino (Figure 5.9j and p).

By 24hpf ectopic PGCs were found in 66% of pak2a morpholino injected 

embryos (n=15) and in 83% of pak2b morpholino injected embryos (n=12). Ectopic 

PGCs could be found in the head and dorsal midline of embryos injected with either 

pak2a or pak2b morpholino (Figure 5.9k,I and q,r). This suggested that PGCs were 

unable to respond correctly to the chemotactic signals emanating from somites. It was 

interesting to note that defects in PGC migration were seen in both pak2a and pak2b 

morpholino injected embryos as migration of the lateral line primordium is not 

significantly affected in pak2a morpholino injected embryos. Further work is required 

to characterise the role of zebrafish Pak2 in regulating directed cell migration in 

response to chemotactic signals during development.
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5.7 Discussion.

We have shown that morpholino-mediated knock down of Pak2a and in 

particular Pak2b, has striking effects on the migration of the lateral line primordium 

and on cell adhesion proteins within the primordium and throughout the whole 

embryo. Our results compare favourably with the defects that have been observed in 

cell culture systems following a decrease in Pak activity. Such studies have shown 

that Pak activity has significant effects on cell adhesion, contractility (Kiosses et al., 

1999) and the polarisation of the actin cytoskeleton required for directed migration 

(Eby etal., 1998; Sells etal., 1999).

Observations of embryo morphology following injection of pak2a or pak2b  

morpholino has revealed a possible role for Pak2 in extension of the zebrafish body 

axis. Morpholino injected embryos have a shortened body axis and compacted 

somites, consistent with a defect in convergent extension movements. In Xenopus 

laevis convergent extension of axial mesoderm during gastrulation was found to be 

dependent on the regulated activity of Rho and Rac (Tahinci and Symes, 2003). 

During convergent extension in Xenopus, cells of the future trunk mesoderm elongate 

and extend cytoplasmic protrusions laterally. These protrusions contact neighbouring 

cells and create traction and force enabling the cells to intercalate between one 

another (Tahinci and Symes, 2003). It is possible that Pak, as a downstream effector 

of Rac, is acting to mediate the converging and extending activities of cells in both 

Xenopus and zebrafish.

We have also begun to elucidate a role for Pak2b in controlling migration of 

the posterior lateral line primordium as time-lapse analysis of embryos injected with 

pak2b morpholino revealed retarded migration of lateral line primordium. We have 

shown that while no directed migration was observed, the ability of lateral line 

primordium cells to extend processes was not affected. This is in agreement with 

previous work demonstrating that Pak is not required for the formation of lamellipodia 

or membrane protrusions (Sells et al., 1999).
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Figure 5.9: Migration of the primordial germ cells (PGCs) is disrupted in

embryos injected with pak2a or pak2b morpholino.

Migration of PGCs was visualised by in situ hybridisation using the molecular marker, 

nanos. Embryos were injected with 1.5ng control (a-f), pak2a (g-l) or pak2b (m-r) 

morpholino and the location of PGCs investigated at tailbud (a.b.g.h.m.n), 10-somite 

stage (c.dj.j.o.p) and 24hpf (e.f.kj.q.r). Arrows highlight ectopic PGCs.
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However, Pak is known to regulate other aspects of cell migration control, for 

example, Pak can regulate cell migration through myosin-dependant contraction of the 

cell rear. Pak has been shown to phosphorylate myosin light chain (MLC), and 

phosphorylation of MLC by Pak2 has been demonstrated to induce cell retraction 

(Kiosses et al., 1999; Sells et al., 1999; Zeng et a!., 2000). In the lateral line 

primordium, knock down of Pak2b, may be acting to inhibit retraction of the trailing 

edges accompanied by a failure to form new adhesions at the leading edge. This 

could result in a primordium that remains static. The ability of the lateral line 

primordium to migrate normally in embryos injected with pak2a morpholino may 

suggest some redundancy in Pak2a function or significant functional differences 

between Pak2a and Pak2b. Functional differences of the two zebrafish Pak2 proteins 

may be a reflection on differences in amino acid sequence and interacting proteins, as 

we have identified significant differences in the binding of Nek and PIX isoforms 

between Pak2a and Pak2b (Chapter Four).

An additional pathway through which Pak activity may exert influence on 

migration of the lateral line primordium is the chemotaxis signaling pathway. 

Chemoattractants are known to stimulate signaling pathways that involve Rho family 

GTPases. The p21-activated kinases are specific targets of activated GTP-bound Rac 

and Cdc42, and have been proposed as regulators of chemoattractant-driven actin 

cytoskeletal changes in fibroblasts (Dharmawardhane et al., 1999). In Dictyostelium 

discoideum the Pak homologue, PAKa, is also required for maintaining the direction of 

cell movement, suppressing lateral pseudopod extension, and proper retraction of the 

posterior of chemotaxing cells (Chung and Firtel, 1999). Recent work has shown that 

efficient chemotaxis requires directional sensing and cell polarization and this process 

utilises a signalling pathway involving aPIX-associated Pak, the Gfty subunit and 

Cdc42. This G(fy-PAK1/aPIX/Cdc42 pathway is essential for the localization of F-actin 

formation to the leading edge, directional sensing, and the persistent directional 

migration of chemotactic leukocytes (Li et al., 2003). Migration of both the lateral line 

primordium and the primordial germ cells is dependant on chemotactic signalling
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(David et al., 2002; Knaut et al., 2003) and we have shown that injection of pak2a 

morpholino disrupts PGC migration and injected of pak2b morpholino disrupts 

migration of both tissues. Analysis of PGC migration in morpholino injected embryos 

revealed some PGCs in ectopic locations, suggesting an inability to respond correctly 

to the chemotatic signals. Taken together the defects in lateral line primordium 

migration and PGC migration indicate a role of zebrafish Pak2 in mediating the 

chemotactic response.

We have also shown that development of the lateral line primordium requires 

dynamic regulation of adhesion molecules. Our analysis of protein localisation has 

indicated that components of adherens junctions are required to maintain the rosette 

structure of nascent neuromast precursors during migration of the primordium. We 

also demonstrated that the actin cytoskeleton is polarised within the nascent 

neuromasts such that high levels of cortical actin are found at the focal points of these 

rosettes. Furthermore the focal adhesion protein, Paxillin, is found at high levels 

surrounding the lateral line primordium leading us to suggest that these adhesions are 

dynamically formed and disassembled as the primordium migrates to provide the 

traction forces for primordium migration. There is strong evidence for the involvement 

of Pak proteins in the regulation of focal adhesions. In addition Pak proteins may 

regulate cadherin-mediated adhesions through interactions with F-actin or by 

activation of Rac.

Pak is known to regulate localisation of F-actin, which, in turn, stabilises the 

membrane localisation of part of the adherens complex, the E-cadherin-P-cateinin 

complex which binds to actin via a-actinin or Vinculin (Dharmawardhane et al., 1997; 

Pokutta and Weis, 2002). Additionally active Rac can regulate E-cadherin-mediated 

adherens junctions by promoting their dissociation, through endocytosis of E-cadherin 

from the membrane and metalloproteinase induced cleavage of E-cadherin. 

Alternatively Rac can stabilise these adhesion by promoting association of the E- 

cadherin-p-catenin complex with a-catenin as a result of inhibiting the association of 

the E-cadherin-p-catenin complex with IQGAP (Fukata and Kaibuchi, 2001). As Pak

153



acts downstream of Rac and Cdc42 and can positively regulate their activity, it is 

possible that Pak may also regulate adherens junctions. In support of this it has been 

shown that Drosophila Mbt, a group II Pak protein, can be recruited to adherens 

junctions and associates with the Drosophila homologue of p-catenin, Armadillo 

(Schneeberger and Raabe, 2003). In agreement with this we observed that the 

rosette-like structures were largely lost from embryos injected with pak2b morpholino, 

as revealed by disrupted localisation of F-actin, p-catenin and E-cadherin.

Disruption to the cellular patterning of the primordium was also observed 

during time-lapse analysis of pak2b morpholino injected embryos, during which the 

cells of the rosette-like structures became dissociated and lost the characteristic 

teardrop shape. Together with the disruptions to adherens junction proteins and F- 

actin, these observations suggest that Pak2b is required to maintain the cellular 

prepattern of the primordium as it migrates by dynamic rearrangement of cellular 

adhesions during migration of the lateral line primordium.

Analysis of the levels of cadherin-mediated adhesion protein associated with 

the cytoskeleton in morpholino injected embryos, further aided characterisation of the 

action of Pak on regulation of this type of adhesion. In embryos injected with pak2a 

morpholino an increase in the level of all adhesion molecules tested was detected. 

Increased adherens junction components associated with the cytoskeleton in embryos 

injected with pak2a morpholino suggests that Pak2a normally functions to dissociate 

adherens junctions. A possible mechanism for this is through Pak-mediated control of 

actin and/or Myosin during macropinocytosis.

It has been shown that Pak co-localises to areas of membrane ruffling and 

pinocytic vesicles, where, it co-localises with polymerised actin (Dharmawardhane et 

al., 1997). In addition, inhibition of endogenous Pak blocks growth factor induced 

macropinocytosis while injection of active Pak enhances Platelet-derived growth factor 

(PDGF) stimulated macropinocytosis in fibroblast cells (Dharmawardhane et al., 

2000). The force for vesicle budding, movement and the protrusion and retraction of 

membranes is thought to require ATP-dependant interactions between myosin family
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proteins and actin (Buss et al., 1998). Myosin VI has been shown to be recruited into 

surface ruffles and may play a role in macropinocytosis and transport of internalised 

vesicles (Buss et al., 1998). Pak3 is able to phosphorylate Myosin VI and active it’s 

motility (Yoshimura et al., 2001). Additionally, studies in Dictyostelium have 

demonstrated that Pak can directly phosphorylate and activate Myosin I, another 

Myosin protein thought to be play a role in macropinocytosis (Buss et al., 1998; de la 

Roche and Cote, 2001). Therefore Pak2a may function in an endocytosis pathway to 

cycle E-cadherin away from the membrane and disassociate adherens proteins.

Unlike pak2a morpholino injected embryos, levels of E-cadherin were 

decreased in embryos injected with pak2b morpholino, this may suggest an opposing 

role for Pak2b in maintaining E-cadherin at the membrane, possibly through activation 

of Rac and therefore inhibition of the E-cadherin-p-catenin-IQGAP complex (Fukata 

and Kaibuchi, 2001). However this data is preliminary and additional experiments are 

required to confirm this possibility. The increased levels of other cadherin-mediated 

proteins, p-catenin, a-catenin and Vinculin, in the cytoskeletal fraction of pak2b  

morpholino injected embryos does suggest that both Pak2a and Pak2b normally act to 

dissociate cadherin-mediated adhesions.

In relation to regulation of focal adhesions, Pak is known to play an important 

role and is recruited to focal adhesions by PIX (Brown et al., 2002; Manser et al., 

1997; Turner, 2000), indicating that zebrafish Pak2 and may be involved in the 

formation of the focal adhesions surrounding the lateral line primordium. Morpholino- 

mediated knock down indeed revealed a role in the formation of focal adhesions. 

Levels of the focal adhesion protein, Paxillin, surrounding the lateral line primordium 

were slightly reduced in embryos injected with pak2a morpholino and largely absent in 

embryos injected with pak2b morpholino. The dramatic decrease in levels of Paxillin 

associated with the cytoskeleton in embryos injected with pak2b morpholino was 

confirmed by Western blot analysis. Taken together the immunocyctochemical and 

molecular data indicate that Pak2b is required for dynamic regulation of focal 

adhesions during lateral line primordium migration by inducing their formation or
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stabilisation. In respect to Pak2a, the data from Western blot showing an increased 

level of Paxillin associated with the cytoskeleton is in disagreement with the reduced 

staining of Paxillin observed surrounding the lateral line. This may reflect a tight 

regulation of focal adhesion turnover by Pak2a that results in increases and 

decreases of focal adhesions when Pak2a activity is removed. Increases in Vinculin in 

both pak2a and pak2b morpholino injected embryos may also reflect an increase in 

focal adhesions, where this protein is also found. Alternatively differences in levels of 

Paxillin and Vinculin may reflect the different regulation of focal adhesions at the 

leading edge and trailing end. Pak is known to play a role in the dissociation of focal 

adhesions (Frost et al., 1998) and the increased levels of Paxillin and Vinculin in 

embryos injected with pak2a morpholino suggests that Pak2a also functions to 

disassemble focal adhesions.

In summary, an important role for zebrafish Pak2 proteins, in many aspects 

cell migration is emerging. From dynamic regulation of the actin cytoskeleton and cell 

adhesion to responding to chemotactic signals and regulation of cell proliferation and 

apoptosis. Further studies will help to elucidate the precise role that Pak2 is playing in 

these aspects of zebrafish development.
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Chapter Six

Requirement of pak2 in early zebrafish 

development

6.1 Introduction

The embryos injected with pak2a or pak2b morpholino were truncated along 

the anterior to posterior axis, presented small anterior structures curled tails and 

defects in somite formation. Defects in somite formation could be observed in embryos 

injected with pak2b morpholino as early as the 10-somite stage when somites were of 

irregular shape and organisation and extended medially. At later stages the somites of 

the tail region of both pak2a and pak2b morpholino injected embryos were narrow and 

compacted forcing them into a “u” shape. In order to further characterise the 

morphological defects in early embryogenesis we looked at the expression patterns of 

various molecular markers in embryos injected with pak2a or pak2b morpholino using 

in situ hybridisation and immunocytochemistry. We also studied adhesion complexes 

in the early embryos since Pak plays an important role in regulating cell to cell 

adhesion.

To complement our investigations into Pak function using morpholino- 

mediated knock down we have recently generated constructs to express a truncated 

form of Pak2a and Pak2b proteins. The Pak2aAcYFP and Pak2bAcYFP constructs were 

comprised of the N-terminal regulatory domain fused with yellow fluorescent protein at 

the C-terminus to permit visualisation of the subcellular localisation of these proteins. 

It has previously been postulated that expression of truncated Pak proteins retaining 

the CRIB motif act to titrate out endogenous GTP-bound active Rac and Cdc42
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(Osada etal., 1997). This titration would inhibit the functions of the molecules that rely 

on an interaction with Rac and/or Cdc42 for their activation, including the group I 

family of Pak proteins. In addition Pak2AcYFP proteins could act to sequester proteins 

that interact with the N-terminal regulatory domain including Nek and PIX. It is most 

likely that the Pak2AcYFP will act in a dominant negative manner however their precise 

mode of action remains to be tested. Although the work using Pak2AcYFP proteins is 

preliminary it nevertheless provides a means to increase our understanding of the 

phenotypes of pak2a and pak2b morpholino injected embryos.

6.2 Effect on pak2 knock down on somite development.

To investigate the effect of morpholino mediated knockdown of Pak2 on 

somite development we looked at the expression of myoD. The myogenic basic helix- 

loop-helix transcription factor myoD is essential for establishment of muscle cell 

precursors and their differentiation. During somitogenesis myoD is expressed in the 

adaxial cells and in a dynamic temporal pattern in the somites (Weinberg etal., 1996). 

Expression of myoD in the somites and adaxial cells appeared to be normal in 

embryos injected with either pak2a or pak2b morpholino and the somitic boundaries 

could be observed. However, in 55% (n=139) of pak2a morpholino injected embryos 

and 15% (n=40) of pak2b morpholino injected embryos, ectopic myoD expressing 

cells were present in the midline (Figure 6.1 b,c). The ectopic myoD expressing cells 

were evident from the 10-somite stage in embryos injected with either pak2a or pak2b 

morpholino. In pak2b morpholino injected embryos the ectopic myoD expressing cells 

were no longer detected at the 14-somites stage as opposed to the 20-somite stage in 

embryos injected with pak2a morpholino. In normal development myoD expression 

has begun to be down-regulated in the older somites at the 20-somite stage 

(Weinberg et al., 1996). The ectopic myoD expressing cells were most frequently 

found in the anterior midline, adjacent to the more mature somites. Transverse 

sections have revealed that the ectopic myoD expressing cells were located ventral to
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the notochord and in the most severe phenotype the two lateral somitic expression 

domains were fused under the notochord (Figure 6.1 d,e).

To test whether the ectopic myoD expressing cells were able to differentiate 

into muscle we used the monoclonal antibody, A4-1025, which recognises an epitope 

that is conserved among the myosin heavy chain (MHC) isoforms that are present in 

all striated muscle (Blagden et al., 1997). Normally striated muscle fibres are found in 

the lateral somitic tissue and are orientated in an anterior to posterior direction. 

However in embryos injected with pak2a morpholino, ectopic muscle fibres were 

present at the ventral midline. Some of the fibres were orientated in a lateromedial 

direction and crossed medially from their normally lateral somitic locations (Figure

6.1 h). By looking at different focal planes it was clear that these defective muscle 

fibres occupied a ventral location, under the notochord and contained myoD  

expression (Figure 6.1 h).

Pak plays an important role in regulating cell migration in many cell types 

(Dechert et al., 2001; Kiosses et al., 1999) therefore we investigated the possibility 

that ectopic myoD expressing cells may result from a defect in cell migration. The 

skeletal muscle of the trunk is derived from the dorsal myotome of the zebrafish 

somite (Stickney et al., 2000). There are two populations of cells in the myotome, 

lateral presomitic cells, which comprise the non-adaxial segmental plate cells and 

differentiate to form fast muscle, and the adaxial cells. Adaxial cells form adjacent to 

the notochord, express high levels of myoD and differentiate into slow muscle fibres 

(for recent reviews of somite development see, (Christ etal., 1998; Keller, 2000; 

Pourquie, 2001; Stickney et al., 2000). The adaxial cells are known to contain two 

sub-populations, muscle pioneers (MP) and non-muscle pioneers (NMP). MPs remain 

in contact with the notochord where they demarcate the prospective horizontal 

myoseptum, whereas NMPs move away from this medial position to form slow muscle 

fibres on the lateral surface of the somite. Initially the NMP cells extend dorsoventrally 

adjacent to the notochord before travelling radially through the lateral somite (Devoto 

etal., 1996).
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Figure 6.1: Ectopic myoD expressing cells at the ventral midline of pak2a 

morpholino injected embryos.

Expression of myoD was visualised at the 16-somite stage by in situ hybridisation of 

control (a) and pak2a morpholino injected (4.5ng) embryos (b,c). Transverse sections 

(d-g) show ectopic myoD expressing cells ventral to the notochord. Differentiated 

muscle fibres were visualised with the A4-1025 antibody and revealed ectopic ventral 

fibres in embryos injected with pak2a morpholino (h). Arrows highlight ventral ectopic 

myoD and A4-1025 labelled cells. Embryos are orientated anterior to the left (a-c,h). 

Abbreviations refer to, s, somite; ad, adaxial cells; nc, notochord and nt, neural tube.
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A defect in migration of NMP cells, such that they migrate ventrally rather than 

laterally, presents one possible explanation for the ectopic myoD expressing cells 

observed in embryos injected with pak2a or pak2b morpholino. To address this 

possibility we looked at the position of slow muscle cells using the antibody F59, a 

specific marker of adaxial cells which strongly labels slow muscle precursor cells 

(Devoto etal., 1996). Adaxial cells were observed to differentiate normally, adjacent to 

the notochord in embryos injected with either pak2a or pak2b  morpholino (Figure 

6.2e,i). In morpholino injected embryos the adaxial cells then extended dorsoventrally 

and could be observed to move laterally through the somites in the distinctive hour 

glass shape described by Devoto et al (Figure 6.2b-d,f-h,j-l). By 24hpf F59-positive 

cells were detected on the lateral surface of the somites in all embryos no F59- 

positive cells could be detected in the ventral midline of morpholino injected embryos 

(Figure 6.2h,l). This result also suggested that the ectopic muscle fibres found in the 

ventral midline were fast muscle fibres.

We also analysed the MP subpopulation of the adaxial cells using an antibody 

against a specific marker of MP cells, Engrailed (Devoto et al., 1996). We found that 

the MP population was unaffected in morpholino injected embryos and the number 

and position of the Engrailed positive cells was normal (data not shown). Taken 

together these results indicated that the ventral ectopic myoD expressing cells could 

not result from aberrant migration of the slow muscle precursor cells.

6.3 Effect on Pak2 knock down on somitic cell adhesion.

In was clear from the analysis of F59 staining that the general organisation of 

the somites was disrupted in embryos injected with pak2a and particularly pak2b 

morpholino. Somitic cells were loosely packed and the general shape of the somitic 

blocks was irregular (Figure 6.2). Roles for Pak in cell adhesion have been well 

characterised and we have shown that knock down of Pak2 in zebrafish affects cell 

adhesion (Chapter Five).
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Figure 6.2: Migration of slow muscle precursors is normal in morpholino 

injected embryos.

Slow muscle cells differentiate adjacent to the notochord before moving laterally 

through the somite. In embryos injected with 4.5ng of control (a-d), pak2a (e-h) or 

pak2b (i-l) morpholino. Slow muscle cells were labelled with the marker F59 (green) at 

16-somites (a,e,i), 23-somites (b,f,j), 25-somites (c,g,k) and 24hpf (d,h,l). Somites and 

other midline tissues were visualised using the nuclear counterstain, DAPI (blue), and 

cell membrane label, p-catenin (red). Following antibody staining transverse sections 

were cut by hand and visualised by confocal microscopy. Abbreviations refer to: nt, 

neural tube; nc, notochord; s, somite and ad, adaxial cells.
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One of the major steps in somitogenesis is the development anterior-posterior 

polarity of cells in the presomitic mesoderm (PSM). This is achieved through the 

activity of a number of transcription and signalling factors and by development of cell 

adhesion properties within the somite (Rhee et al., 2003). In zebrafish, somites form 

by alignment and polarisation of their border cells and new homotypic adhesions 

between boundaries cells is required to establish somite segmentation (Crawford et 

al., 2003). Initiation of strong homotypic cell to cell adhesion has been shown to be 

mediated by cadherins (Gumbiner, 1996). During zebrafish somitogenesis a member 

of the cadherin family, protocadherin C (papc), is expressed in the anterior PSM 

(Yamamoto et al., 1998). In addition papc is expressed in the unsegmented paraxial 

mesoderm including adaxial cells, newly formed and forming somites. Expression of 

papc is down regulated in the anterior somites including the adaxial cells (Yamamoto 

etal., 1998). Perturbing the activity of Papc in mouse has been shown to disrupt 

somitogenesis (Rhee etal., 2003).

Injection of pak2a or pak2b morpholino disrupted the expression pattern of 

papc. Ectopic papc expressing cells were observed anterior to the normal expression 

domain and were found in high numbers in the anterior adaxial cells (Figure 6.3b-e, h- 

m). A small number of ectopic cells were also found in the ventral midline and within 

the segmented somites. Ectopic cells were detected in 53% of pak2a morpholino 

injected embryos (n=62) and 40% of embryos injected with pak2b morpholino (n=20).

Interestingly an ectopic band of cells, which appeared to represent the second 

most recently segmented somite, could also be detected in embryos injected with 

either pak2a or pak2b morpholino (Figure 6.3c,d). These ectopic cells may indicate an 

inability to downregulate papc expression at the correct time. In addition to ectopic 

cells, disruption to the segmentation of the paraxial mesoderm was observed. In 20% 

of embryos injected with either pak2a morpholino (n=62) and 5% of embryos injected 

with pak2b morpholino (n=20) bands of papc expression in the developing somites 

were fused (Figure 6.3b,h,I).
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Figure 6.3: Aberrant expression of papc in embryos injected with pak2a

morpholino or pak2b morpholino.

Expression of papc was visualised by in situ hybridisation at the 16-somite stage in 

embryos injected with 4.5ng control (a,f,g), pak2a (b,c h-m) or pak2b (d,e) morpholino. 

Somites are labelled according to convention, second segmented somite (s2), newly 

segmented somite (s1), forming somite (sO), presumptive somite (s-1). Ectopic 

expression is highlighted with brackets or arrows. Embryos are shown as whole mount 

(a-e, anterior to the top) or flat mount (f-m, anterior to the left). Abbreviations 

correspond to: nc, notochord; psm, presomitic mesoderm; ad, adaxial cells.
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In the majority of pak2a morpholino injected embryos fusing of bands was 

also accompanied by ectopic expression of papc (Figure 6.3b,h,l). The fused pattern 

of papc expression showed that development of distinct somites is affected by Pak2 

knock down. It has been suggested that stabilisation of somite boundaries requires 

deposition of matrix proteins and adhesion of somite border cells to these proteins 

(Crawford et al., 2003) and focal adhesion proteins mediate the attachment of cells to 

the ECM (Parsons et al., 2000). Therefore we further investigated the somitic defect in 

embryos injected with either pak2a or pak2b morpholino by analysis of the levels and 

distribution of F-actin and two focal adhesion proteins, Paxillin and Vinculin, at the 

somite boundaries.

Phalloidin labelled F-actin was found to be distributed around the cell 

membranes of all tissues at the midline and very high levels were found along the 

lateral surfaces of the notochord and surrounding the somites (Figure 6.4a-c). The 

levels of F-actin surrounding the somites was not uniform, levels of actin cable were 

higher at somite-somite boundaries than on the lateral surface of the somite, and the 

strongest site of F-actin localisation was at the interface between the adjacent somites 

and between somites and the notochord (Figure 6.4a). This general pattern of F-actin 

localisation was not disrupted by morpholino-mediated knock down of Pak2a or Pak2b 

(Figure 6.4d-f, Pak2a knock down not shown). The somites shape of embryos injected 

with pak2b morpholino appeared compacted with narrowing in the anterior-posterior 

direction and mediolateral extension. Cells within the somites also appeared small and 

compacted although both the cuboidal outer ring of epithelial cells and the inner 

loosely packed mesenchymal cells could be observed.

During zebrafish somitogenesis high levels of Paxillin have been observed at 

the somite boundaries (Crawford et al., 2003). Western blot analysis has 

demonstrated a significant decrease in the levels of cytoskeletal associated Paxillin in 

embryos injected with pak2b morpholino (Chapter Five).
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Figure 6.4: Reduced levels of focal adhesion proteins in embryos injected with

either pak2a or pak2b morpholino.

Distribution of F-actin at the midline was visualised by staining embryos with phalloidin 

at the 10-somite stage in control morpholino (a-c) or pak2b morpholino injected 

embryos (4.5ng). Confocal sections of the midline are shown in an anterior (a/d) to 

posterior series (c/f). Levels of focal adhesion proteins, Paxillin (g-i) and Vinculin (j-k) 

were visualised by fluorescent immunocytochemistry at the 10-somite stage. The 

amount of proteins detectable was reduced in embryos injected with either pak2a (h,k) 

or pak2b morpholino (i,l) compared to embryos injected with control morpholino (g,j). 

The nuclear stain, DAPI (green) was used as a counterstain with antibodies against 

the focal adhesion proteins (red). Embryos are orientated posterior to the top (a-f) or 

anterior to the top (g-l). Abbreviations indicate: s, somite; nc, notochord; ad, adaxial 

cells; ep, somitic epithelium; me, somitic mesenchyme.
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In agreement with this observation we found that levels of Paxillin protein at the 

somite boundaries of embryos injected with pak2a morpholino were decreased and 

very low levels of Paxillin were detected at the somite boundaries of embryos injected 

with pak2b morpholino (Figure 6.4h,i).

Decreased levels of Paxillin at the somite boundaries of embryos injected with 

either pak2a or pak2b morpholino suggested that focal adhesion formation at the 

somite boundaries was decreased following knock down of Pak2. Further evidence for 

this was provided by analysis of Vinculin distribution. Vinculin is a structural protein 

that links the actin cytoskeleton to adhesion complexes and is directly bound to 

Paxillin within focal adhesions (Turner, 2000). Cytoskeleton associated Vinculin was 

similarly distributed to F-actin and Paxillin, with high levels at the somite boundaries 

(Figure 6.4j). Cytoplasmic Vinculin could also be observed throughout the midline. 

Following morpholino-mediated knock down of pak2a of pak2b levels of Vinculin at the 

somite-somite and somite-notochord boundaries were reduced, however cytoplasmic 

protein could be detected at levels comparable to the control (Figure 6.4j-l).

Electron microscopy was used to further investigate the midline of embryos 

injected with pak2b morpholino and revealed interesting defects in the organisation of 

midline tissues. Sections were analysed from two embryos injected with pak2b 

morpholino. Pak2b morpholino was used since the more severe morphological 

phenotype of somite development was observed in these embryos. Embryos were 

fixed and stained at the 15-somite stage and processed for electron microscopy. In 

control embryos cells were tightly packed together within the somites (Figure 6.5b,c), 

however, in embryos injected with pak2b morpholino somitic cells were loosely 

packed and cells appeared rounded up (Figure 6.5e,f). Additionally, in some sections 

of pak2b morpholino injected embryos the round somitic cells had apparently 

detached from the somite block (Figure 6.5: g). This rounding up of cells is 

characteristic of a loss of cell adhesion (Leffers et al., 1993; Luber et al., 2000). The 

data obtained by electron microscopy provided further evidence that cell adhesion 

within somites was disrupted following knock down of Pak2.
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Figure 6.5: Loss of cell adhesion in pak2b morpholino injected embryos.

Transverse sections of control embryos (a-c) and embryos injected with 4.5ng pak2b 

morpholino (d-g) were viewed under an electron microscope. Midline tissues are 

shown at x3,750 magnification and somites are shown at x10,000 magnification. 

Apparently loose and rounded up somitic cells are indicated with arrows (g). 

Abbreviations refer to: nt, neural tube; nc, notochord; s, somite; he; hypochord.
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6.4 Effect on Pak2 knock down on ventral midline tissues.

The ectopic myoD expressing cells observed in the ventral midline may 

indicate defects in the formation of ventral midline structures. Using molecular markers 

we investigated whether ventral tissues, such as the hypochord and dorsal aorta were 

formed normally in embryos injected with either pak2a or pak2b morpholino. The 

hypochord is a transient rod-like structure identifiable as a single row of cuboid 

shaped cells directly ventral to the notochord (Latimer et al., 2002). There is some 

debate as to whether the hypochord is derived from the mesoderm (Appel et al., 2003; 

Latimer et al., 2002) or the endoderm (Cleaver et al., 2000; Eriksson and Lofberg, 

2000). However, recent work suggests that hypochord precursors arise from the 

lateral edges of the organizer in zebrafish, closely associated with midline precursors 

and the paraxial mesoderm and that signalling from paraxial mesoderm induces a 

subset of neighbouring midline precursors to develop as hypochord, rather than as 

notochord (Latimer etal., 2002).

We carried out in situ hybridisation of embryos injected with either pak2a or 

pak2b morpholino using collagen type lla (col2a) a molecular marker of the hypochord 

(Yan et al., 1995). In addition to the hypochord, col2a is expressed in the developing 

notochord and floorplate. In embryos injected with either pak2a or pak2b morpholino 

expression of col2a in the floor plate and notochord was unaffected (Figure 6.6c-f). 

However, col2a expression in the hypochord revealed fragmentation and many areas 

of non-expressing cells (Figure 6.6c-f). At the 16-somite stage an incomplete 

hypochord was observed in over half of embryos injected with pak2a (n=40) or pak2b 

morpholino (n=40) and loss of col2a expression was generally restricted to the 

anterior and mid sections of the hypochord. This phenotype remained similar at 24hpf.

The hypochord is intimately associated with the notochord so when the 

notochord moves dorsally at 15-16 somite stages the hypochord moves with it, 

detaching itself from the underlying endoderm and leaving a space between itself and 

the endoderm.

174



con
mo

pak2a
mo

pak2b
mo

con
mo

pak2a
mo

Figure 6.6

175



Figure 6.6: Disruption to the formation of the hypochord and dorsal aorta in

embryos injected with pak2a or pak2b morpholino.

Expression of collagen type lla was investigated 16-somite stage embryos that had 

been injected with 4.5ng of control (a.b), pak2a (c,d) or pak2b morpholino (e,f). Loss 

of col2a expression in the hypochord is indicated by linked arrows (c-f). Vasculature, 

including the dorsal aorta was labelled using the molecular marker fli-1 at 22hpf in 

control (g) and pak2a (h-k) morpholino injected embryos. Disrupted expression of fli-1 

is indicated by (]) and shown at high magnification (i,k). Abbreviations represent: fp, 

floor plate; nc, notochord; he, hypochord; da, dorsal aorta; and s, somite.
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This space is thought to be important for recruitment of the angioblasts by hypochord 

signals, the formation of blood islands and eventually formation of the dorsal aorta 

(Eriksson and Lofberg, 2000). Fli-1 is an ETS-domain transcription factor expressed in 

the developing vasculature, including the dorsal aorta, and in sites of blood formation 

(Brown et a i, 2000). In situ hybridisation of embryos injected with either pak2a or 

pak2b morpholino to look at fli-1 expression revealed a similar phenotype to that seen 

with col2a. The dorsal aorta was present following knock down of pak2a or pak2b, 

however, gaps were observed at the dorsal boundary of fli-1 expression (Figure 6.6h- 

j). An incompletely formed dorsal aorta was observed in 44% of pak2a morpholino 

injected embryos (n=30) and 66% of embryos injected with pak2b morpholino (n=20). 

The width of the gaps ranged in size and could be observed from the anterior to the 

posterior of the dorsal aorta. By morphological analysis it appeared that in some 

sections of the aorta, adjacent to the notochord, fli-1 expressing cells were replaced 

by somitic cells (Figure 6.6i,k).

6.5 Effect of Pak2aAcYFP and Pak2bAcYFP on early 

development of zebrafish embryos.

6.5.1 Localisation of PakZa^YFP and Pak2bAcYFP.

Pak2sF°YFP and pak2tYcYFP RNAs were injected at the one-cell stage and 

the localisation of yellow fluorescent protein and the morphology of injected embryos 

was analysed. Localisation of Pak2aAcYFP and Pak2bAcYFP protein was initially 

investigated at the shield stage. The morphological shield is formed by the involution 

of cells at the marginal region, forming the germ ring, and the convergence of cells 

towards the dorsal midline results in the formation of the morphological shield (Kimmel 

et al., 1995). At this stage a number of cell types can be identified. The enveloping 

layer (EVL) is a superficial layer, one-cell thick, that covers the deep cells of the 

blastoderm and is attached by the vegetal rim to the yolk cell.

177



T 1
CQ
C

CD
C D

-vioo <

1 }

i  k Vi

24hpf 15s 75% epiboly shield



Figure 6.7: Localisation of Pak2aAcYFP and Pak2bAcYFP protein and morphology 

of injected embryos.

Pal^a^YFP and Pak2bAcYFP proteins were highly concentrated at the boundary 

between the yolk syncitial layer (YSL) and the yolk cytoplasmic layer (YCL) as 

indicated by white arrows at shield stage (a-d) and 75% epiboly (ipk). The 

morphological shield is indicated by a circle (b,d: lateral view). The marginal rim of the 

YSL is indicated by arrows (e-h: vegetal view) or the lower dashed line (i-l: lateral 

view). The upper dashed line represents the boundary of the blastoderm. 

Pak2aDcYFP and Pak2bDcYFP protein localisation and morphology of injected 

embryos is shown at the 15-somite stage (m-p: dorsal view) and (q-t: lateral view) and 

24hpf (u,v). Abbreviations correspond to: b, blastoderm; ysl, yolk syncitial layer; nc, 

notochord; s, somite; e, eye.

179



Also present are, the anuclear yolk cytoplasmic layer (YCL), that surrounds the bulk 

of the yolk mass, and the yolk syncytial layer (YSL), that forms between the YCL and 

the blastoderm (Solnica-Krezel and Driever, 1994; Solnica-Krezel et al., 1995). Within 

the blastodermal cells of the morphological shield we detected high levels of 

Pal^a^YFP and Pak2bAcYFP protein, however this may simply reflect the greater 

volume of cells at this position. Interestingly at the boundary between the YSL and 

YCL, a ring of Pak2aAcYFP and Pak2bAcYFP protein was observed at a high level. This 

ring was maintained as epiboly proceeded and until the YSL fully covered the yolk cell 

(Figure 6.7 and 6.8). The position of the ring corresponded to a highly active site of 

endocytosis (Betchaku, 1986; Cooper and D'Amico, 1996; Solnica-Krezel and Driever, 

1994; Solnica-Krezel et al., 1995). Epiboly of the surface of the YSL has been 

explained, in part, by endocytosis of the YCL resulting in expansion of the YSL and 

loss of the YCL (Betchaku, 1986).

Using confocal microscopy to visualise cellular localisation, Pak2aAcYFP and 

Pak2bAcYFP proteins were found in the cytoplasm as well as at the membrane. At the 

membrane, high levels of protein were visualised along cell boundaries and 

concentrated in bright spots, which may represent focal adhesion sites or forming 

membrane protrusions (Figure 6.8g,j). In agreement with our observations at low 

magnification, Pak2aAcYFP and Pak2bAcYFP were highly concentrated at the YSL/YCL 

boundary (Figure 6.8g,j). In contrast high levels of gapGFP were not detected at the 

YSL/YCL boundary (data not shown). At later stages higher levels of Pak2aAcYFP and 

Pak2bAcYFP proteins could be observed at the somite boundaries (Figure 6.8c,f). 

Confocal microscopy at the 15-somite stage revealed Pak2aAcYFP and Pak2bAcYFP 

protein within the cytoplasm but not within the nucleus and concentrated at the 

membrane where two cells were in contact (Figure 6.8h,i,j). Time-lapse analysis 

revealed that cells expressing Pak2aAcYFP or Pak2bAcYFP were able to produce 

membrane ruffles and extend lamellipodia (Figure 6.8h,k).
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Figure 6.8: Confocal analysis of Pak2aAcYFP and Pak2bAcYFP localisation.

High levels of Pak2aAcYFP and Pak2bAcYFP were localised to the boundary between 

of the yolk syncitial layer and yolk cytoplasmic layer. Localisation at this boundary at 

75% epiboly is shown in live embryos at low magnification (a,b) and in confocal 

sections (c,d). High levels of Pak2aAcYFP and Pak2bAcYFP protein were detected at 

the membranes where cells contact (d,g) and in polarised clusters at the membrane 

(c,d). Extension of membrane protrusions, lamellipodia, were visible in cells 

expressing Pak2aAcYFP (e) and Pak2bAcYFP (f). Localisation of Pak2aAcYFP and 

Pal^b^YFP were compared to gapGFP, a membrane-associated GFP construct, as a 

control (h). At 28hpf higher levels of Pak2aAcYFP and Pak2bAcYFP were localised to 

the intersomitic boundaries (i,j).
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6.5.2 Morphology of embryos injected with pak2aPcYFP or pak2bPcYFP RNA.

The gastrulation movements of involution and formation of the morphological 

shield all occurred normally in embryos injected with either pak2a*°YFP or 

pak2tf°YFP (Figure 6.7a-l). However, the process of epiboly was disrupted, from 

approximately the 70% epiboly stage a vegetal protrusion of the yolk occurred and 

there were problems in completing the closure of the yolk plug, particularly in embryos 

injected with pak2tf°YFP. From the tailbud stage, defects in the formation and 

patterning of the body axis could be observed. At the 15-somite stage the notochord 

was absent or difficult to distinguish and the body axis had failed to extend normally 

(Figure 6.7r,t). The mesoderm was frequently unsegmented, particularly in the anterior 

region (Figure 6.7r,t,u,v). Segmented somites were visible in the posterior region of 

the trunk although these were small and “u” shaped. By 24hpf the tail region was short 

and highly curled and necrosis began to be evident (Figure 6.7u,v).

Development of the eyes was also affected, particularly in embryos injected 

with pak2afcYFP (Figure 6.7u). The eyes were small and poorly developed and 

embryos injected with pak2a*°YFP, showed mild cyclopia, suggesting defects in the 

ventral forebrain development. Pak2a*°YFP and pak2tf°YFP injected embryos were 

not viable and embryos with morphological phenotype did not survive to 5dpf.

The defects in gross morphology of embryos injected with pak2afcYFP and 

pak2b*°YFP were similar, although more severe, to those observed following injection 

of pak2a or pak2b morpholino. Defects were further analysed using the same panel of 

in situ markers used to investigate midline defects in pak2a and pak2b morpholino 

injected embryos.
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6.5.3 Molecular analysis of embryos injected with pak2aAcYFP or pak2b*cYFP 

RNA.

We investigated the midline defects of pak2af°YFP and pak2tY°YFP injected 

embryos using the molecular markers of somites, myoD and papc, and the notochord, 

hypochord and floor plate, col2a.

The disrupted pattern of myoD expression reflected the morphological 

segmentation defects with fusing of the somites. We also observed ectopic myoD 

expressing cells at the ventral midline (Figure 6.9c-h). This ectopic expression of 

myoD in ventral cells, also observed following injection of pak2a or pak2b morpholino, 

was observed more frequently in embryos injected with pak2bPcYFP (Figure 6.9g,h).

A defect in somite segmentation was also revealed by detection of papc which 

is expressed within the presomitic and somitic mesoderm. Expression is detected in 

bands that demarcate the next somite to be segmented (s-1) the somite undergoing 

segmentation (sO) and the most recently formed somite (s1). Most commonly all three 

bands were fused (Figure 6.9o), however, there was also specific fusion of the sO and 

s-1 bands (Figure 6.9m,p). Interestingly, in approximately 10% of embryos injected 

with pak2tYcYFP (n=18) a weak fourth band of papc expression could be detected, 

suggesting that papc expression was maintained in the second most recently formed 

somite. This maintenance of papc in the second somite was also observed in pak2a 

and pak2b morpholino injected embryos. Maintenance of papc expression in adaxial 

cells of the somitic mesoderm, as detected in embryos injected with either pak2a or 

pak2b morpholino, was also noted in embryos injected with pak2afcYFP or 

pak2bicYFP (Figure 6.9k,I). Ectopic papc was also observed in the somitic tissue of 

embryos injected with pak2tYcYFP (Figure 6.9n). Consistent with the observation that 

formation of the notochord was defective in embryos injected with pak2a*cYFP or 

pak2tf°YFP we noted that papc expressing mesodermal cells were able to encroach 

into the midline.
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Figure 6.9: Aberrant expression of somitic genes in embryos injected with

pak2afcYFP or pak2tfcYFP.

Disruptions to the expression pattern of myoD were observed in 15-somite stage 

embryos injected with pak2aAcYFP (c,d) and pak2b^°YFP (e-h) when compared with 

gapGFP as a control (a,b). Arrows identify sites of ectopic myoD expression. Aberrant 

expression of papc was also observed in 15-somite stage embryos injected with 

pak2a*cYFP (k,m,o) and pak2tY°YFP (l,n,o). Somites are labelled according to 

convention, newly formed somite (s1), forming somite (sO), presumptive somite (s-1). 

Fused bands of expression are indicated by brackets and ectopic cells are identified 

by arrows. Embryos are shown as whole mount with anterior to the top. Abbreviations 

correspond to: nc, notochord; s, somite; psm, presomitic mesoderm; ad, adaxial cells.
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Figure 6.10: Fragmentation of the midline tissues in embryos injected with

pak2aAoYFP or pak2t/cYFP.
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Figure 6.10: Fragmentation of the midline tissues in embryos injected with

pak2a*cYFP or pak2&cYFP.

Disruptions to the formation of the midline tissues were observed in embryos injected 

with pak2afcYFP (c-j) and pak2tY°YFP (k-p) when compared to gapGFP injected 

controls (a,b). Midline tissues were visualised using expression of col2a as a marker 

at the 15-somite stage. Gaps in the hypochord are indicated with a dotted line. 

Abbreviations refer to: fp, floorplate; nc, notochord; he, hypochord.
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To investigate the development of the notochord, as well as to compare 

expression to that observed in embryos injected with either pak2a  or pak2b  

morpholino, we looked at the localisation of the notochord, floorplate and hypochord 

marker, col2a. Expression of col2a revealed striking defects in the formation of midline 

tissues particularly in embryos injected with pak2b*cYFP. In embryos injected with 

pak2a?cYFP defects were similar to those seen in embryos injected with either pak2a 

or pak2b morpholino, such that gaps were present along the hypochord (Figure 6.10c- 

f). However these gaps were also accompanied by disorganisation of the floorplate 

cells, a phenotype that was not observed in embryos injected with either pak2a or 

pak2b morpholino. Additionally a more severe phenotype could be observed in half of 

the affected embryos, in which gaps in floorplate and notochordal expression were 

observed, particularly in embryos injected with pak2kfcYFP (Figure 6.10g-p). The 

gaps in expression in the three tissues were often colocalised resulting in sections of 

the midline where no col2a expression could be detected. Focused analysis of such 

regions revealed that a notochord-like structure was occasionally visible but appeared 

necrotic (Figure 6.1 Op). Analysis of the localisation of the no-tail (ntl) protein, which is 

found in undifferentiated notochord cells revealed the presence of a partially 

undifferentiated notochord in embryos injected with pak2sFcYFP or pak2bicYFP which 

was very thin in places but did not have the large gaps revealed by col2a expression 

(data not shown).

6.6 Discussion.

Initial investigations into the role of Pak in early zebrafish development, using 

embryos injected with pak2 morpholino or pak2*°YFP constructs, have begun to 

reveal a role for Pak2 in the development of midline tissues. In addition to Pak2 

function in the maintenance of cell adhesion and tissue integrity, our results suggest 

that Pak2 may be involved in regulating myogenic cell fate.
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A contribution from Pak to the myogenic pathway is indicated by the ectopic 

expression of myoD in embryos where levels of Pak have been abrogated. MyoD is a 

dominant regulator of the myogenesis pathway and ectopic expression of myoD is 

sufficient to convert non-somitic cells into muscle cells (Hopwood and Gurdon, 1990; 

Ludolph et al., 1994). In zebrafish, myoD is expressed at high levels in the mesoderm 

prior to somitogenesis (Weinberg et al., 1996), however, the exact nature of the 

signals that regulate this expression remains to be established. It is known that a 

number of factors, such as, sonic hedgehog (shh), wnt and BMP, act to promote or 

inhibit the expression of myogenic genes in order to restrict their expression to the 

future muscle cells. Additionally the overexpression of muscle-promoting factors, shh 

and wnt results in ectopic expression of myoD (Blagden et al., 1997; Christian and 

Moon, 1993). Shh has a specific role in inducing adaxial cell fate and ectopic 

expression of shh, either in wild-type or mutant embryos, leads to ectopic slow muscle 

and abrogation of the number of engrailed positive cells (Barresi et al., 2000; Blagden 

et al., 1997). However the number of MP Engrailed positive cells and slow muscle 

cells is not affected in pak2a or pak2b morpholino injected embryos. This raises the 

possibility that Pak acts on the wnt pathways to restrict the expression of myoD.

In Xenopus laevis Xwnt-8 activity has been shown to be necessary for 

expression of myoD during gastrula stages and overexpression of Xwnt-8 leads to 

ectopic expansion of XmyoD across the dorsal midline, converting notochord 

progenitors to muscle (Fisher et al., 2002). Furthermore injection of an Xwnt-8 

construct into Xenopus embryos results in fusion of the lateral somite files along the 

ventral midline, however this may be secondary to the loss of the notochord in these 

embryos (Christian and Moon, 1993). Since overexpression of wnt leads to ectopic 

expression of myoD it is possible that zebrafish Pak2 normally functions to inhibit this 

signalling pathway. In mammals Wnt signalling can act through a classic pathway 

involving the receptor frizzled-1 and downstream proteins: Dishevelled, Glycogen 

synthase 3-kinase, p-catenin and the transcriptional regulator T-cell factor (Tcf) to 

activate transcription of myogenic genes (Cossu and Borello, 1999). The co-repressor
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C-terminal binding protein (CtBP) interacts with Tcf and inhibits transcription of wnt 

responsive genes in the absence of wnt signalling (Chinnadurai, 2002). During 

Xenopus development the binding of XTcf-3 to Xmyf-5 restricts expression of this 

gene in the mesoderm of Xenopus embryos (Yang et al., 2002). The N-terminus of 

active Pak1 has recently been demonstrated to interact with the CtBP and inhibit 

translocation of CtBP into the nucleus, where it acts to repress gene transcription 

(Barnes et al., 2003). The Pak2aAcYFP and Pak2bAcYFP proteins may act to restrict 

CtBP to the cytosol and therefore prevent repression of myoD gene expression.

In contrast Wnt signalling can also influence myogenic gene transcription 

through a p-catenin-independent pathway and studies in Xenopus have demonstrated 

that this pathway involves Frizzled, G-proteins, Protein Kinase C and Pax3 (Cossu 

and Borello, 1999; Sheldahl et al., 1999). During myogenesis in chick Pax3 activates 

the transcriptional activator Eya2 and the homeodomain-containing transcription factor 

Six1. Eya2 is an intrinsically cytosolic protein and is translocated into the nucleus by 

interaction with Six, whereupon transcription of downstream genes is induced. 

Association of Eya with Six and translocation to the nucleus is inhibited by the 

activated G-protein subunit, Goc* (Fan et al., 2000). As Pak is an important activator of 

Gc^ (Fan et al., 2000) the absence of prolonged activation of Ga2 in morpholino 

injected embryos may result the Six-Eya complex freely translocating to the nucleus 

and ectopic expression of myoD. Thus it appears that pak2a and pak2b can affect 

levels of gene expression, either indirectly by regulating localsation of key 

transcription factors or directly by binding to a repressor of transcription.

Pak2 also appeared to influence the maintenance of cell adhesion and tissue 

integrity within the somites. We have already shown that Pak2 plays an important role 

in maintaining the integrity of the lateral line primordium during zebrafish development 

and decreased levels of focal adhesion proteins at the somite boundaries and the 

detachment and rounding up of somitic cells suggest a similar role in somitic tissue. 

Decreased levels of Vinculin at the somite boundaries in embryos injected with either 

pak2a or pak2b morpholino would appear to be inconsistent with the increased levels
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of cytoskeleton associated Vinculin detected by Western blot analysis (Chapter Five). 

However this may simply be the result of using different methods to assay for Vinculin 

as Western blot analysis does not look specifically at levels within somitic tissue.

Preliminary investigations using Pak2aAcYFP and Pak2bAcYFP constructs 

have begun to shed more light on the role of Pak during zebrafish development. 

Although the precise mechanism of Pak2aAcYFP and Pak2bAcYFP action needs to be 

clarified, interesting similarities were observed in the phenotypes of morpholino and 

pak2*°YFP injected embryos. The phenotype of a short body axis observed in 

embryos injected with pak2a and particularly pak2b morpholino (Chapter Five) was 

also observed in embryos injected with pak2a?cYFP or pak2b*°YFP. This suggests a 

critical role for Pak in the convergent extension movements required to lengthen the 

body axis possibly through Pak-mediated regulation of the actin cytoskeleton to initiate 

the changes to cell shape during intercalculation and extension. Defects in formation 

of the eye were also a consistent factor in morpholino and pak2icYFP injected 

embryos, insinuating a direct or indirect role for Pak2 in eye and forebrain 

development.

Confocal time-lapse imaging of Pak2aAcYFP and Pak2bAcYFP expressing cells 

revealed that cells remained able to actively extend lamellipodia. This confirms our 

work looking at migration of the lateral line primordium where the ability of cells to 

extend processes was not affected. These data are in agreement with previous work 

suggesting that Pak is not required for the formation of lamellipodia or membrane 

protrusions (Sells eta i, 1999).

Despite the preliminary nature of our investigations into the effect of 

Pak2aAcYFP and Pak2bAcYFP in zebrafish development these constructs and the 

Pak2aFLYFP, Pak2bFLYFP constructs nevertheless provide a foundation on which we 

can build on our understanding of Pak2 function in zebrafish development. The 

introduction of mutations within these constructs to alter the ability of Pak2 to interact 

with proteins such as Rac, Cdc42, PIX, or Nek will allow careful dissection of the 

precise roles of Pak2 during zebrafish development.
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Chapter Seven

General Discussion

Cell migration is a highly regulated process that is important for many aspects 

of development. Cell migration requires the formation of membrane protrusions at the 

leading edge and these protrusions form attachment sites, known as focal adhesions, 

with the ECM. Actin-myosin filaments terminate at these focal adhesions allowing the 

cell to generate the necessary force to pull itself over the ECM. As the cell advances, 

focal adhesions are disassembled at the trailing end and the rear of the cell is pulled 

forward by contraction of myosin fibres (Christopher and Guan, 2000). Key regulators 

that control actin dynamics and adhesion formation are the Rho family of small 

GTPases and their effectors the p21 activated kinases.

We set out to investigate the migration of the posterior lateral line primordium in 

zebrafish development and the possible regulation of this migration by Pak2 proteins. 

Initially we used confocal time-lapse imaging of the posterior lateral line primordium to 

gain an understanding of the organisation and activity of cells within the primordium 

during its migration. Furthermore we investigated the distribution of Pak2 proteins, 

adhesion proteins and the actin cytoskeleton in the migrating lateral line primordium. 

The importance of the results and their implications on regulation of migration of the 

posterior lateral line primordium will be discussed here.

In order to investigate the role of Pak proteins in migration of the lateral line 

primordium we have identified and characterised two zebrafish genes, pak2a and 

pak2b, that are homologues of the hpak2 gene. Using loss-of-function approaches, 

primarily through morpholino oligonucleotide-mediated knock down, we have analysed 

in detail, the defects in migration of the posterior lateral line primordium. We have
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found that Pak2 function is important for dynamic regulation of cell adhesion, 

maintenance of tissue integrity and directed cell migration. We have also 

characterised other potential roles for Pak2a and Pak2b in early zebrafish 

development and found a possible role for Pak2a and Pak2b in regulation of myogenic 

cell fate.

7.1 Cell behaviour and cellular organisation in the migrating 

primordium.

7.1.1 Cells at the leading edge of the primordium explore the environment.

By using real time imaging of the migration of the lateral line primordium we have 

demonstrated that cell activity is dependant on the position within the primordium. 

Cells at the leading edge are highly active while cells away from the leading edge are 

tightly packed and less dynamic. Leading edge cells extended many membrane 

processes during migration along the trunk. This suggests that these cells actively 

explore their surrounding environment and that factors in the environment restrict 

migration to the correct pathway. This sensing activity fits with the evidence that 

migration of the posterior lateral line primordium is directed by chemotactic signalling 

and guided by inhibitory signals in the dorsal and ventral myotome (David et al., 2002; 

Shoji eta!., 1998).

The attractive chemokine sdfla  is expressed along the horizontal myoseptum 

and its receptor (cxcr4b) is localised to the migrating cells of the lateral line 

primordium (David et al., 2002). It is likely that multiple membrane protrusions at the 

leading edge of the migrating primordium detect where levels of Sdfla are high and 

this is then interpreted by the cells to elicit a directional migration response by 

coordinated reorganisation of the cytoskeleton. The chemotactic nature of these cells 

suggested to us that Pak may be involved in regulating migration of the lateral line
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primordium as Pak is known to mediate reorganisation of the actin cytoskeleton in 

response to chemotactic activation in neurophils (Dharmawardhane etal., 1999).

7.1.2 The rosette-like structures within the primordium represent nascent 

neuromast precursors.

Work from our laboratory has shown that there is a morphological and molecular 

prepattern within the migrating primordium that presages deposition of neuromast 

precursors. By analysis of cellular organisation using membrane labels, we confirmed 

the presence of a morphological prepattern. Rosette-like structures were readily 

discernable within the migrating lateral line primordium and at different stages of 

development 2-4 rosette-like structures could be identified. It is interesting to note that 

the rosette-like structures were absent in the leading front of the primordium. Cells at 

the leading edge were generally less organised which may reflect that neuromast 

precursors were determined in an anterior to posterior manner, with anterior 

neuromasts determined first. Using time-lapse analysis we have been able to show 

that the rosette structure is maintained during deposition and is deposited as a unit. 

Our data clearly demonstrated that the rosette-like structures represent the nascent 

neuromast precursors.

During deposition the leading edge of the primordium maintains a constant speed 

of migration while cells of the depositing rosette slow their migration. As a result a 

boundary becomes apparent between the rosette and the remainder of the 

primordium. Cells at the boundary became highly elongated and returned to their 

normal rounded shape once deposition had been completed. These observations 

suggested that strong cell to cell adhesions were acting within the rosette and the 

primordium to maintain cell to cell contact during deposition.

7.1.3 Cell adhesions maintain the organisation of the primordium.

Maintenance of the rosette structure within the primordium and during 

deposition can be ascribed to strong clustering of adhesion molecules. Adherens
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junctions play pivotal roles in cell and tissue organisation by mediating cell adhesion 

(Tepass, 2002). By interdigitation of stable adhesive elements between adjacent cells, 

adherens junctions maintain overall tissue architecture (Gumbiner, 1996). By 

analysing the localisation of components of adherens complexes; p-catenin, E- 

cadherin and F-actin we have shown that these proteins were localised at the focal 

point of the established rosettes and are likely to be important in maintaining the 

integrity of the lateral line primordium and nascent neuromasts. Consistent with this 

idea we found that there was no clustering of E-cadherin and p-catenin proteins at the 

leading edge where rosettes were not discernable. It is likely that formation and 

clustering of adherens junctions functions to draw cells together to form the nascent 

neuromast rosettes.

By studying the organisation and behaviour of cells within the lateral line 

primordium we have increased our understanding of how regulation of cell adhesion 

and the actin cytoskeleton may contribute to controlling the migration of the lateral line 

primordium. We have attested to the need for dynamic regulation of cell adhesion and 

the directed reorganisation of the actin cytoskeleton in response to chemotactic 

signals for migration of the lateral line primordium.

7.2 Characterisation of the zebrafish pak2 genes.

We have identified and characterised two zebrafish homologues of pak2 

which represent the first pak family members to be characterised in zebrafish. The 

ubiquitous nature of pak2a and pak2b expression was in agreement with observations 

of pak2 localisation in rat and Xenopus (Jaffer and Chernoff, 2002; Souopgui et al., 

2002). In addition, the enrichment of zebrafish pak2a and pak2b expression in the 

brain, eye and tailbud was mirrored by the expression of Xpak2 in Xenopus (Souopgui 

et al., 2002). It is interesting to note that two homologues of pak2 have been also 

been identified in Xenopus, although only one of these has been characterised (Cau 

et al., 2000; Souopgui et al., 2002). We also observed a high level of pak2a
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expression in the cells surrounding the migrating primordium. This pattern of 

expression is very reminiscent of the localisation of focal adhesion proteins and may 

suggest a role for Pak2 in regulating the formation of focal adhesions.

By in vitro translation of pak2a and pak2b RNA we found the molecular 

weights of the Pak2a and Pak2b proteins were approximately 62kD and 67kD 

respectively. This is in agreement with published data for the group I Pak proteins 

(Pak1: 68kD, Pak2: 62kD, Pak3: 65kD) (Knaus and Bokoch, 1998). It is well known 

that many zebrafish genes are duplicated, probably as a result of a whole genome 

duplication event during the evolution of fish (Amores et al., 1998). The presence of 

two zebrafish homologues of pak2 many reflect this duplication. The protein 

sequences of the two zebrafish Pak2 homologues revealed that divergence has 

occurred between these two proteins after duplication. The similar lengths of 

vertebrate Pak2 and zebrafish Pak2a proteins suggests that this gene was duplicated 

to give rise to Pak2b and this was followed by an insertion event, resulting in a larger 

Pak2b protein. By looking at the conservation of protein interaction domains and 

detecting binding of known interacting proteins with Pak2a and Pak2b we are able to 

predict conserved and divergent roles for these proteins in zebrafish.

7.2.1 Zebrafish Pak2 protein domains are highly conserved.

By aligning the known homologues of Pak2 to the zebrafish homologues we 

have been able to ascertain the conservation of key features common to the Pak 

Group I family of proteins. The catalytic kinase domains of Pak2a and Pak2b were 

highly homologous to other Pak2 proteins and all the sites for autophosphorylation 

were conserved. Within the N-terminal regulatory domains of Pak2a and Pak2b the 

consensus binding site for Rac/Cdc42 (CRIB) was completely conserved and using 

pull down assays we were able to show that Pak2a and Pak2b were capable of 

binding both Rac and Cdc42. Interaction of Pak with Rac and Cdc42 has been shown 

to be important in regulating organisation of the actin cytoskeleton (Eby et al., 1998)

197



therefore both Pak2a and Pak2b proteins could act as downstream mediators of Rac 

and Cdc42 in regulating the actin cytoskeleton.

We were also able to identify other known sites of protein interaction within 

Pak2a and Pak2b including the three proline rich SH3 domain binding sites and the 

Gpy subunit binding site. We also show that not only is the atypical PIX SH3-domain 

binding site conserved in both Pak2a and Pak2b, but PIX isoforms were able to bind 

both these proteins, although some differences in the number and size of isoforms 

bound was observed. As the interaction of Pak and PIX leads to recruitment of Pak to 

focal adhesion sites (Brown et al., 2002) we can predict that both Pak2a and Pak2b 

can be recruited to focal adhesions during zebrafish development.

7.2.2 Pak2a but not Pak2b binds to Nek.

The consensus binding site for the adaptor protein Nek was present in both 

Pak2a and Pak2b. However, pull down assays using Pak2AcYFP proteins and 

immunoprecipitation assays using Pak2AcGST proteins clearly revealed that only 

Pak2a could interact with Nek. Single amino acid differences around the Nek binding 

site (aa6,7, 25 and 29) in Pak2b may be responsible for preventing interaction with 

Nek. The inability of Pak2b to bind Nek may have important functional consequences. 

Nck-mediated recruitment of Pak to the cell membrane can increase the activation of 

Pak by colocalisation with its activator Rac (Lu et al., 1997). Furthermore, in addition 

to PIX, Nek is also thought to play a role in recruiting Pak to sites of focal adhesion 

complexes (Zhao et al., 2000a) Thus, the finding that Pak2a binds to Nek but Pak2b 

does not suggests differences in the function, protein localisation and activation of 

Pak2a and Pak2b.
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7.3 Cell adhesion mediated by Pak2 is required for 

maintaining the integrity of the lateral line primordium.

We have presented detailed analysis of the organisation and behaviour of 

cells within the lateral line primordium during migration and have provided evidence 

that the cadherin-mediated adherens junctions may be important for maintaining the 

integrity of the lateral line primordium and nascent neuromast precursors. Using a 

morpholino-mediated loss-of-function approach we have been able to identify a role 

for Pak2 and particularly Pak2b in maintaining this integrity. By visualising the 

distribution of adherens junctions proteins and F-actin in the lateral line primordium of 

pak2b morpholino injected embryos we have found that knock down of Pak2b disrupts 

clustering of adherens junctions in the lateral line primordium.

Concomitant with disruptions to cell adhesion, time lapse analysis of 

primordium migration in embryos injected with pak2b morpholino revealed disruption 

to the cellular patterning of the lateral line primordium and loss of the rosette-like 

structures. These analyses have indicated a correlation between the localisation of 

adherens junctions proteins and the rosette-like pattern of the nascent neuromast 

precursors. This may suggest that adherens junctions play a role in forming or 

maintaining the rosette structure during migration of the primordium. Additionally the 

disruption to adherens protein localisation and rosette-structure following knock down 

of Pak, in particular Pak2b, may indicate that Pak2b plays a part in establishing and/or 

maintaining the nascent neuromast structure.

Despite disorganisation of adherens junction protein distribution, the analysis 

of levels of components associated with the cytoskeleton in embryos injected with 

pak2a or pak2b  morpholino revealed no significant changes to adherens junction 

proteins. A direct action of Pak on adherens junctions has not been described, 

although it has been shown that Drosophila Mbt, a group II Pak protein, can be 

recruited to adherens junctions and associates with the Drosophila homologue of (3- 

catenin, Armadillo (Schneeberger and Raabe, 2003). However, clustering of cadherin-
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mediated adhesions is stabilised through the association of the transmembrane E- 

cadherin molecules with the actin cytoskeleton (Jamora and Fuchs, 2002) and Pak is 

known to regulate organisation of the actin cytoskeleton (Dharmawardhane et al., 

1997). Therefore the primary adhesion defects may lie with the loss of F-actin 

concentration at the apex of the rosettes. F-actin stabilises the membrane localisation 

of the E-cadherin-p-cateinin complex (Pokutta and Weis, 2002). Our time-lapse 

analyses showed the formation of adhesive focal points within the rosette is highly 

dynamic, therefore it is likely that dynamic regulation of F-actin by Pak2 is important 

for the dynamic formation of adherens junctions within the migrating primordium. The 

loss of adhesion within the primordium may result in disruption to the regular shape of 

the primordium.

Another possible mechanism by which Pak2 proteins could mediate regulation 

of the adherens junctions is through dissociation from the cytoskeleton. E-cadherin is 

actively internalised from the cell membrane by endocytosis and then recycled back to 

the cell surface (Le et al., 1999). We have observed high levels of cytoplasmic and 

membrane associated E-cadherin within and surrounding the lateral line primordium 

by immunostaining, suggesting that cycling of E-cadherin is likely to occur and 

underlie the dynamic regulation of adherens junctions during migration of the lateral 

line primordium. It is known that active Rac can promote endocytosis of E-cadherin 

from the membrane and Pak can promote Rac activity by acting upstream of Rac 

(Obermeier et al., 1998). Additionally, Pak can directly mediate endocytosis by 

phosphorylation of myosin and the activation of Pak increases endocytic uptake (Buss 

et al., 1998; Dharmawardhane etal., 2000). Therefore Pak2a may function to regulate 

internalisation of E-cadherin from the membrane and disassociation of adherens 

junction proteins.
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7.4 Pak2b plays a role in migration of the lateral line 

primordium.

We have shown that morpholino-mediated knock down of Pak2a and in 

particular, Pak2b has striking effects on the migration of the lateral line primordium 

and on cell adhesion proteins within the primordium and throughout the whole 

embryo. Our results compare favourably with the defects that have been observed in 

cell culture systems following decrease in Pak activity. Such studies have shown that 

Pak activity has significant effects on cell adhesion, contractility (Kiosses et al., 1999) 

and the polarisation of the actin cytoskeleton required for directed migration (Eby et 

al., 1998; Sells etal., 1999).

We have also begun to elucidate a role for Pak2b in controlling migration of 

the posterior lateral line primordium. Time-lapse analysis of embryos injected with 

pak2b morpholino revealed retarded migration of lateral line primordium. We have 

shown that while no directed migration was observed, the ability of lateral line 

primordium cells to extend processes was not affected. This is in agreement with 

previous work demonstrating that Pak is not required for the formation of lamellipodia 

or membrane protrusions (Sells et al., 1999). However, Pak is known to regulate other 

aspects of cell migration control, for example Pak can regulate cell migration through 

myosin-dependant contraction of the cell rear. Pak has been shown to phosphorylate 

myosin light chain (MLC) and phosphorylation of MLC by Pak2 has been 

demonstrated to induce cell retraction (Kiosses etal., 1999). In the lateral line 

primordium, knock down of Pak2b, may inhibit retraction of the trailing end 

accompanied by a failure to form new adhesions at the leading edge. This could result 

in a primordium that remains static. The ability of the lateral line primordium to migrate 

normally in embryos injected with pak2a morpholino may suggest some redundancy in 

Pak2a function or significant functional differences between Pak2a and Pak2b. 

Functional differences of the two zebrafish Pak2 proteins may be a reflection on 

differences in amino acid sequence and interacting proteins, as we have identified
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significant differences in the binding of Nek and PIX isoforms between Pak2a and 

Pak2b.

7.4.1 Pak2 regulates focal adhesions to aid migration of the posterior lateral line 

primordium.

Dynamic cycling of focal adhesions resulting in formation of new adhesions at 

the leading edge and dissolution of adhesions at the trailing end is a key factor in 

regulating migration (Mitchison and Cramer, 1996). Since a component of the focal 

adhesions, Paxillin, is highly concentrated where the posterior lateral line primordium 

is in contact with the ECM we suggest that these adhesions are dynamically formed 

and disassembled as the primordium moves along the trunk to provide the traction 

forces for migration. The binding of Pak to the guanine nucleotide exchange factor, 

PIX, recruits Pak to focal adhesion sites through interaction with Paxillin (Brown et al., 

2002). Analysing the level of Paxillin proteins associated with the cytoskeleton in 

embryos injected with pak2a morpholino indicated a role for Pak2a in the dissolution 

of focal adhesions, as levels were increased in the absence of Pak2a. This idea is 

supported by previous studies which have shown that expression of activated Pak 

leads to a dramatic loss of focal adhesions (Frost et al., 1998; Manser et al., 1997; Qu 

etal., 2001).

However in contrast to this, both immunocytochemical and Western blot 

analysis indicated a opposing role for Pak2b as levels of Paxillin are decreased in the 

absence of Pak2b. This suggested that endogenous zebrafish Pak2b functions to 

regulate formation or stabilisation of focal adhesions. In support of such a role the 

expression of a constitutively active mutant of Pak in endothelial cells has been shown 

to result in an increase in the number of focal adhesions (Kiosses etal., 1999). These 

opposing roles for Pak suggest that Pak acts in a highly regulated way to control the 

dynamic formation and dissolution of focal adhesions.
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A role for Pak in linking the dynamic regulation of focal adhesions and the 

migration of cells has been demonstrated in Drosophila. Dorsal closure involves 

migration of the lateral epidermal flanks to close a hole in the dorsal epidermis 

occupied by an epithelium called the amnioserosa (Harden, 2002). During dorsal 

closure the Drosophila homologue of Pak, DPak, is enriched in epidermal cells 

flanking the amnioserosa and is associated with the focal adhesions at the leading 

edge of these migrating cells (Harden et al., 1996). Harden et al proposed that DPak 

may be regulating the cytoskeleton through its association with focal adhesions and 

may be participating with DRacA in a c-Jun amino-terminal kinase (JNK) signalling 

pathway required for dorsal closure. JNK phosphorylates the focal adhesion protein 

Paxillin and regulates cell migration in keratocytes and epithelial cells and it has been 

shown that JNK is required for dorsal closure in Drosophila. (Huang et al., 2003; 

Riesgo-Escovar et al., 1996). The retardation of migration of the lateral line 

primordium in embryos injected with pak2b morpholino indicates that Pak2b may be 

regulating the cytoskeleton during primordium migration through its association with 

focal adhesions.

In addition to the cell adhesion defects, knock down of Pak2b may be 

affecting cell migration through Pak-mediated regulation of the cytoskeleton. Cell 

motility requires polarized rearrangements of the actinomyosin cytoskeleton (Sells et 

al., 1999) and Pak is known to colocalise with F-actin and regulate the cytoskeletal 

changes required for cell migration (Dharmawardhane etal., 1997; Sells et al., 1997). 

The action of Pak on the actin cytoskeleton is mediated though kinase-dependant 

activation of downstream molecules, such as LIM-kinase (LIMK) and myosin light 

chain kinase (MLCK) (Edwards etal., 1999; Kiosses etal., 1999; Sells etal., 1999). 

LIMK inhibits the action of cofilin which dissociates F-actin and thereby allows the 

polymerisation of the actin cytoskeleton required for extension of lamellipodia and cell 

migration (Edwards et al., 1999). However we have shown that following either 

morpholino-mediated knock down of Pak function or expression of dominant negative 

Pak protein, cells remain able to form lamellipodia. From this we interpret that Pak2 is
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not required for the formation of lamellipodia and this is in agreement with cell culture 

work demonstrating a non-essential role for Pak in the formation of membrane 

protrusions such as lamellipodia (Sells etal., 1999).

Although cells at the leading edge of the migratory lateral line primordium, in 

embryos injected with pak2b morpholino remain active, their movement is highly 

retarded. In addition to the extension of lamellipodia at the leading edge of the cell, 

migration requires that the trailing end of the cell is retracted. Active Pak increases 

MLC phosphorylation which then induces retraction at the trailing end of a migratory 

cell (Kiosses etal., 1999). It remains to be investigated whether loss of Pak2b function 

results in decreased phosphorylation of MLC that in turn may lead to a failure in cell 

retraction.

7.4.2 Pak2a and Pak2b may regulate directed cell migration in response to 

chemotactic signals.

By looking at migration of both the lateral line primordium and the PGCs we 

have been able to propose a role for Pak2a and Pak2b in the regulation of migration in 

response to a chemotactic gradient. Migration of both the lateral line primordium and 

the primordial germ cells is dependant on Sdf-1-mediated chemotactic signalling 

(David et al., 2002; Knaut et al., 2003) and we have shown that injection of pak2a or 

pak2b morpholino disrupts migration of both cell types. In embryos injected with pak2b 

morpholino the lateral line primordium failed to migrate and did not reach the tail. 

Analysis of PGC migration in pak2a or pak2b morpholino injected embryos revealed 

that some PGCs failed to reach the final site of germ cell development. In addition, the 

presence of a chemotactic gradient exerts a polarising effect on responding cells such 

that lamellipodia are only extended in the direction of the chemotaxis signal (Zigmond, 

1980). In embryos injected with pak2b morpholino we observed that cells in the lateral 

regions of the primordium extended lamellipodia in an aberrant direction away from 

the pathway of chemokine expression. Furthermore we observed increased protrusive
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activity at the leading edge. Taken together these data suggest that cells of the lateral 

line primordium and PCG were unable to undergo polarised, directional migration in 

response to chemotaxis signals.

Chemoattractants are known to stimulate signaling pathways that involve Rho 

family GTPases and Pak has been proposed to act downstream of Rac and Cdc42 in 

regulating chemoattractant-driven cytoskeletal changes (Dharmawardhane et al., 

1999). Also, the Dictyostelium discoideum Pak homologue, PAKa, is required for 

maintaining directed cell migration, suppressing lateral pseudopod extension, and 

retraction of the posterior of chemotaxing cells (Chung and Firtel, 1999). Studies in 

Dictyostelium and neutrophils have also shown that Pak may be acting downstream of 

G-protein coupled receptors and RaclB to regulate the actinomyosin cytoskeleton 

(Chung and Firtel, 1999; Xu et ah, 2003). Thus it appears likely that the defects 

observed in embryos injected with either pak2a or pak2b morpholino result from a 

defect in reorganisation of the actin cytoskeleton. The precise action of pak2 on 

regulation of the actin cytoskeleton in response to chemotaxis is unclear. However, 

recent work has shown that chemotaxis utilises a signalling pathway involving aPIX- 

associated Pak, the G(3y subunit and Cdc42 and this pathway is essential for the 

localization of F-actin, directional sensing, and the directional migration of chemotactic 

leukocytes (Li et al., 2003). Abrogation of the formation of a polarised actin 

cytoskeleton can result in loss of motility, as is observed in macrophage expressing 

dominant negative Rac (Allen etal., 1998). Loss of Pak2b activity downstream of Rac 

may explain the failure of the lateral line primordium to migrate in embryos injected 

with pak2b morpholino. A different role for Cdc42 in chemotaxis has emerged and 

macrophage expressing dominant negative Cdc42 remain able to migrate but lack 

directionality in response to the chemotactic cues (Allen et al., 1998). Therefore the 

aberrant directional migration of PGCs in embryos injected with either pak2a or pak2b 

morpholino may indicate that Pak2a and Pak2b primarily act downstream of Cdc42, 

rather than Rac, during PGC migration. This divergence in signalling pathway 

between migration of the lateral line primordium and PGCs and the observation that
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the lateral line primordium can migrate normally in embryos injected with pak2a 

morpholino suggests that Pak2a and Pak2b have different roles in regulating the 

response to chemotaxis in different cell types.

7.5 Pak2 may regulate gene expression in early development.

7.5.1 Possible regulation of myoD gene expression by Pak2.

In addition to regulation of cell adhesion and migration we have also begun to 

elucidate a role for Pak2 in the development of midline tissues through the regulation 

of myogenic gene expression and development of the notochord. This is evidenced by 

the ectopic expression of the master regulator of myogenesis, myoD in embryos 

injected with either the pak2a and pak2b targeted morpholinos or the Pak2aAcYFP and 

Pal^b^YFP proteins.

In vertebrates the Pax-Six-Eya-Dach regulatory network is an important 

inducer of myogenic genes and myogenesis (Kawakami et al., 2000). It is known that 

the active G-protein a* subunit can inhibit Eya activity and that Pak is an important 

activator of Gaz (Fan et al., 2000). During myogenesis in chick, Pax3 activates the 

transcriptional activator eya and the homeodomain-containing transcription factor six. 

Eya and Six physically interact and synergise to induce expression of myogenic 

genes, including myoD (Heanue et al., 1999). Eya is an intrinsically cytosolic protein 

and is translocated into the nucleus by interaction with Six, whereupon transcription of 

downstream genes is induced. Association of Eya with Six and translocation to the 

nucleus is inhibited by activated Gaz (Fan et al., 2000). The absence of prolonged 

activation of Gc^ by Pak in embryos injected with either pak2a or pak2b morpholino 

would result in unregulated nuclear translocation of the Six-Eya complex and therefore 

increased activation and ectopic expression of the myoD gene. However the 

possibility that Pak2 proteins regulate myogenic gene expression through activation of 

Gaz in zebrafish embryos remains to be investigated.
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Additionally, Pak may regulate myogenesis by activating transcriptional 

repressors of myogenic genes. CtBP, C-terminal binding protein, is a co-repressor 

regulating the transcription of many genes (Chinnadurai, 2002). Recently it has been 

reported that Pak1 can modulate CtBP activity through phosphorylation and that 

phosphorylated CtBP is retained in the cytoplasm preventing co-repressor function in 

the nucleus (Barnes et al., 2003). Studies in Xenopus have indicated a role for CtBP 

in modulation of the wnt signalling pathway, which promotes myogenic cell fate 

(Chinnadurai, 2002; Cossu and Borello, 1999). In mammals Wnt signalling can act 

through a classic (3-catenin pathway and the Wnt1-activated Tcf-p-catenin complex 

may directly activate transcription of target genes (including MyoD) (Cossu and 

Borello, 1999). In the absence of wnt signalling Tcf inhibits transcription of wnt 

responsive genes, binding of XTcf-3 to Xmyf-5 restricts expression of this gene in the 

mesoderm of Xenopus embryos (Chinnadurai, 2002; Yang et al., 2002). CtBP 

interacts with Tcf and may contribute to the transcriptional repression activity of Tcf. 

The binding site for Pak interaction with CtBP is located in the N-terminal regulatory 

region, therefore expression of the Pak2ACYFP constructs may act to sequester CtBP 

in the cytoplasm and prevent its repressor function.

7.5.2 Pak2aAcYFP and Pak2bAcYFP affect notochord development.

An interesting role of CtBP as a context-dependant transcriptional activator 

has been described in mouse embryogenesis (Phippen et al., 2000). In mouse ctbp-2 

null mutants the expression of brachyury (bra) is reduced, suggesting that ctbp-2 can 

activate transcription of bra (Chinnadurai, 2003). In zebrafish embryos injected with 

Pal^a^YFP or Pak2bAcYFP we find decreased expression of no tail (ntl), the zebrafish 

homologue of bra, and absence of a discernable notochord structure. This suggests 

that Pak2aAcYFP or Pak2bAcYFP proteins may sequester CtBP in the cytosol and 

prevent the activation of ntl expression by CtBP. This effect may result in the failure of
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the notochord to express the later marker, col2a, in Pak2aAcYFP and Pak2bAcYFP 

injected embryos.

7.6 Perspectives

The work presented in this thesis begins to reveal important and diverse 

actions of Pak2 in many aspects of zebrafish development. Using loss-of-function 

analysis of Pak2a and Pak2b we have shown that Pak2b plays an important role in 

maintaining the architecture of the posterior lateral line primordium, possibly through 

an influence on dynamic regulation of adherens junctions. Pak2b is also likely to 

stabilise Paxillin-containing focal adhesions that provide the traction forces required 

for migration of the lateral line primordium. Analysis of the migration of PGCs in 

embryos injected with pak2a or pak2b morpholino has also alluded to a requirement 

for Pak2 activity in directed response to chemotactic signals. Finally we found that 

loss of active Pak2a or Pak2b through injection of morpholinos or expression of 

Pal^a^YFP and Pak2bAcYFP proteins leads to ectopic expression of myoD in the 

ventral midline. Further experiments are required to determine the precise roles 

played by Pak2a and Pak2b in regulating cell adhesion, cell migration and gene 

transcription during zebrafish development.

7.6.1 Further characterisation of Pak2a and Pak2b and Pak2aAcYFP and 

Paltfb^YFP.

In order to better interpret the results of the work described here and future 

experiments it will be helpful to have a better understanding of the behaviour of the 

both the endogenous and Pak2aACYFP and Pak2bACYFP proteins. Development of 

antibodies specific to Pak2a and Pak2b will be of significant help. By looking at the 

subcellular localisation of these proteins within the lateral line primordium we will be 

able to discover whether Pak2a and Pak2b are associated with adherens junction 

complexes at the apex of the nascent neuromast rosettes. Colocalisation of Pak2a
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and Pak2b with proteins such as p-catenin would suggest that these proteins do play 

a role in regulating cadherin-mediated adhesions in the lateral line primordium. In the 

same way a link between Pak2a and Pak2b and the regulation of focal adhesions 

could be better established by investigating colocalisation with Paxillin.

Our work using Pak2ACYFP proteins is very preliminary and characterisation of 

the effect of these proteins is required. We expect that these constructs will act to 

sequester active Rac and Cdc42. As a result we would expect immunocyctochemical 

analysis using active Rac and Cdc42 antibodies to reveal colocalisation with the 

Pal^a^YFP and Pak2bAcYFP proteins. Additionally we need to investigate how the 

Pak2AcYFP proteins affect activation of endogenous Pak2a and Pak2b.

A further method by which to understand the roles of zebrafish Pak is to 

dissect the function of specific domains of the proteins during development. The Pak 

family of proteins interact with and regulate a number of different proteins through 

their many protein binding sites and the kinase domain. Generation of constructs 

comprising the full length active Pak protein or the activity of specific Pak domains 

only, could be coinjected with the pak2a or pak2b morpholinos. Analysis of the 

resulting phenotypes, and any aspects that were rescued by injection of these 

constructs, would provide data to dissect the function of specific Pak activities.

7.6.2 Dissecting the role of zebrafish Pak2 in migration and chemotaxis.

It is of particular interest to us to extend our understanding of the role of pak2a 

and pak2b in the control of cell migration and in cellular response to chemotactic 

signals during lateral line primordium and PGC migration.

We have demonstrated that knock down of Pak2b leads to a failure of the 

lateral line primordium to migrate. We have discussed the possible mechanism by 

which knock down of Pak2 disrupts migration. In order to address the possibility that 

Pak2b may be having an effect on contraction of the trailing end of the cell through an 

action of MLC we could analyse levels of phosphorylated MLC in the lateral line
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primordium. Pak2 is known to phosphorylate MLC (Sells etal., 1999), therefore we 

might expect a decrease in the level of phosphorylation MLC in embryos injected with 

pak2b morpholino. A defect in MLC phosphorylation may contribute to the failure of 

the lateral line primordium to migrate.

Further work is required in order to distinguish whether Pak is specifically 

activated in response to a chemotactic signal or is simply mediating the effects of cell 

migration. This could be approached through in vitro assays looking at the response of 

cells to a chemotactic gradient when aspects of Pak activity have been abrogated, for 

example following transfection of kinase dead or CRIB domain mutants. Following 

chemotactic stimulation of these cells it would be of interest to visualise the 

localisation of components of the migratory machinery, in particular F-actin, as Pak is 

known to regulate the organisation of F-actin (Dharmawardhane etal., 1997).

7.6.3 Understanding the role of zebrafish Pak2 in transcriptional regulation.

We have proposed that Pak2a and Pak2b inhibit the expression of the 

myogenic gene, myoD by preventing transcriptional regulators, Eya and CtBP from 

translocating from the cytoplasm to the nucleus. In order to confirm that zebrafish 

Pak2a and Pak2b can influence the localisation of these proteins we need to visualise 

the localisation of Eya and CtBP in normal embryos and in embryos injected with pak2 

morpholino or Pak2AcYFP proteins. Development of antibodies against Eya and CtBP 

or construction of fluorescent fusion proteins would allow us to confirm whether this 

was the case. In addition the development of an antibody specific to CtBP would 

enable us to determine whether Pak2a or Pak2b could bind to CtBP by GST pull down 

of Pak2a and Pak2b and Western blot analysis.

Our work has revealed that the zebrafish Pak2 proteins integrate many 

signalling pathways and as a result a great deal more work is required to fully 

understand the very interesting functions of Pak2 during zebrafish development.
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Appendix

i) DNA sequence of pak2a

p ak2a coding sequence base pairs: 1 to 1554
10 20 30 40 50

ATGTCTGACA ACGGAGAGCT GGAGGACAAA CCCCCTGCCC CCCCAGTCAG 
TACAGACTGT TGCCTCTCGA CCTCCTGTTT GGGGGACGGG GGGGTCAGTC 

M S D  N G E L  E D K  P P A  P P V R >
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g _seq__a___________>

60 70 80 90 100
AATGAGCAGC ACCTTCAGCA CCGGTATTAA AGACAGTATG TCAACAAACC 
TTACTCGTCG TGGAAGTCGT GGCCATAATT TCTGTCATAC AGTTGTTTGG 

M S S  T F S  T G I K  D S M  S T N >
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

110 120 130 140 150
CCAGCTCTAA ACCCCTGCCC TCCGTCCCCG AGGAGAAGAG GGACAAACCG 
GGTCGAGATT TGGGGACGGG AGGCAGGGGC TCCTCTTCTC CCTGTTTGGC 
P S S K  P L P  S V P  E E K R  D K P >  
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

160 170 180 190 200
CGCAACAAGA TCATATCAAT ATTCTCAGCT GAGAAAGGAA GAAAAAAAGA 
GCGTTGTTCT AGTATAGTTA TAAGAGTCGA CTCTTTCCTT CTTTTTTTCT 

R N K  I  I  S I  F S A E K G  R K K D >
____________ a_TRAN S L AT I  ON OF pak2a c o d in g  seq__a___________ >

210 220 230 240 250
CAAGGATAAG GAGCGTCCTG AGATTTCTAA CCCTTCAGAT TTCGAGCACA 
GTTCCTATTC CTCGCAGGAC TCTAAAGATT GGGAAGTCTA AAGCTCGTGT 

K D K  E R P  E I S N  P S D  F E H >
____________ a_TRANSLATION OF pak2a  c o d in g  se q  a___________ >

260 270 280 290 300
CTATACATGT GGGCTTTGAT TCTGTCACAG GGGAGTTCAC GGGCATGCCA 
GATATGTACA CCCGAAACTA AGACAGTGTC CCCTCAAGTG CCCGTACGGT 
T I H V  G F D  S V T  G E F T  G M P >  
____________ a_TRANSLATION OF pak2a  c o d in g  seq  a___________ >

310 320 330 340 350
GAGCAGTGGG CTCGGCTACT GCAGACCTCC AACATCACGA AATCTGAGCA 
CTCGTCACCC GAGCCGATGA CGTCTGGAGG TTGTAGTGCT TTAGACTCGT 

E Q W  A R L L  Q T S  N I T  K S E Q >
____________ a_TRANSLATION OF pak2a  c o d in g  seq_a___________ >
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360 370 380 390 400
GAAGAAAAAC CCTCAGGCTG TGTTGGACGT GCTCAAATTC TACGACTCCA 
CTTCTTTTTG GGAGTCCGAC ACAACCTGCA CGAGTTTAAG ATGCTGAGGT 

K K N  P Q A V L D V  L K F  Y D S >
____________ a_TRANSLATION OF pak2a  c o d in g _seq_a__________ >

410 420 430 440 450
CAGGCAACAG CAGGCAGAAA TACCTCAGCT TCACAGATAA AGATGCACCA 
GTCCGTTGTC GTCCGTCTTT ATGGAGTCGA AGTGTCTATT TCTACGTGGT 
T G N S  R Q K  Y L S  F T D K  D A P >
____________ a_TRANSLATION OF pak2a  c o d in g _seq_a__________ >

460 470 480 490 500
CAAGCAAAAA AAGGCTCAGA GCAATCTCCT GTCAAAGACC CTGATGATGA 
GTTCGTTTTT TTCCGAGTCT CGTTAGAGGA CAGTTTCTGG GACTACTACT 

Q A K K G S E  Q S P  V K D P D D D>
____________ a_TRANSLATION OF pak2a  c o d in g _seq_a__________ >

510 520 530 540 550
TGACGAGGAT GCTCCACCCC CTGTTGTAGC ACCACGCCCA CAGCACACCA 
ACTGCTCCTA CGAGGTGGGG GACAACATCG TGGTGCGGGT GTCGTGTGGT 

D E D  A P P  P V V A P R P  Q H T >
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

560 570 580 590 600
TATCTGTATA CACTCGTTCT GTCATCGATC CTATTCCAGC ACCTGCTGCC 
ATAGACATAT GTGAGCAAGA CAGTAGCTAG GATAAGGTCG TGGACGACGG 
I S V Y  T R S  V I D  P I P A  P A A >
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

610 620 630 640 650
ATTGCAGACA CAGATGGCTC TAAAGCTGCA GACAAACAGA AGAAGGGCAA 
TAACGTCTGT GTCTACCGAG ATTTCGACGT CTGTTTGTCT TCTTCCCGTT 

I  A D T D G S  K A A D K Q  K K G K >
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

660 670 680 690 700
GGGAAAGATG ACCGATGAGG AGATTATGGA GAAACTTAGA ACCATTGTCA 
CCCTTTCTAC TGGCTACTCC TCTAATACCT CTTTGAATCT TGGTAACAGT 

G K M  T D E  E I M E  K L R  T I V >
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

710 720 730 740 750
GTATTGGAGA CCCCAAGAAG AAATACACAA GATACGAAAA AATTGGACAA 
CATAACCTCT GGGGTTCTTC TTTATGTGTT CTATGCTTTT TTAACCTGTT 
S I G D  P K K  K Y T  R Y E K  I G Q >
____________ a_TRANSLATION OF pak2a  c o d in g  se q a__________ >

760 770 780 790 800
GGTGCGTCTG GTACAGTGTA CACAGCCATT GATGTTGCTA CTGGCCAAGA 
CCACGCAGAC CATGTCACAT GTGTCGGTAA CTACAACGAT GACCGGTTCT 

G A S  G T V Y  T A I  D V A T G Q E >
____________ a_TRANSLATION OF pak2a  c o d in g  seq_a__________ >
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810 820 830 840 850
GGTTGCTATT AAGCAGATTA ACCTACAGAA GCAGCCCAAA AAAGAGCTGA 
CCAACGATAA TTCGTCTAAT TGGATGTCTT CGTCGGGTTT TTTCTCGACT

V A I  K Q I  N L Q K  Q P K  K E L >  
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

860 870 880 890 900
TCATCAATGA GATCCTGGTG ATGAAGGAGC TGAAGAATCC AAACATTGTC 
AGTAGTTACT CTAGGACCAC TACTTCCTCG ACTTCTTAGG TTTGTAACAG 
I  I  N E I  L V M K E  L K N P  N I V >
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g _seq_a__________ >

910 920 930 940 950
AACTTCTTAG ACAGCTTCTT GGTTGGAGAT GAGCTCTTTG TGGTGATGGA 
TTGAAGAATC TGTCGAAGAA CCAACCTCTA CTCGAGAAAC ACCACTACCT 

N F L  D S F L  V G D  E L F  V V M E >
____________ a_TRANSLATION OF pak2a  c o d in g _seq_a__________ >

960 970 980 990 1000
GTATCTTGCT GGAGGCTCTC TGACAGACGT AGTAACAGAA ACCTGCATGG 
CATAGAACGA CCTCCGAGAG ACTGTCTGCA TCATTGTCTT TGGACGTACC

Y L A G G S  L T D V  V T E  T C M >  
____________ a__TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

1010 1020 1030 1040 1050
ATGAGGCTCA AATTGCTGCT GTCTGCAGAG AGTGTTTACA AGCACTGGAG 
TACTCCGAGT TTAACGACGA CAGACGTCTC TCACAAATGT TCGTGACCTC 
D E A Q  I A A  V C R  E C L Q  A L E>
____________ a_TRANSLATION OF pak2a  c o d in g  seq  a__________ >

1060 1070 1080 1090 1100
TTTCTGCATG CAAACCAGGT CATCCATCGA GACATCAAAA GTGACAACGT 
AAAGACGTAC GTTTGGTCCA GTAGGTAGCT CTGTAGTTTT CACTGTTGCA 

F L H  A N Q V  I  H R D I K  S D N V >
____________ a_TRANSLATION OF pak2a  c o d in g  seq_a__________ >

1110 1120 1130 1140 1150
TCTTTTAGGA ATGGACGGAT CAGTCAAACT AACCGATTTT GGGTTCTGTG 
AGAAAATCCT TACCTGCCTA GTCAGTTTGA TTGGCTAAAA CCCAAGACAC

L L G  M D G  S V K L  T D F  G F C >  
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

1160 1170 1180 1190 1200
CTCAAATCAC TCCTGAGCAA AGCAAGAGGA GCACCATGGT GGGAACACCC 
GAGTTTAGTG AGGACTCGTT TCGTTCTCCT CGTGGTACCA CCCTTGTGGG 
A Q I  T P E Q  S K R  S T M V  G T P >
____________ a_TRANSLATION OF pak2a  c o d in g  seq_a__________ >

1210 1220 1230 1240 1250
TACTGGATGG CCCCTGAGGT GGTCACACGT AAAGCCTACG GGCCCAAAGT 
ATGACCTACC GGGGACTCCA CCAGTGTGCA TTTCGGATGC CCGGGTTTCA 

Y W M  A P E V  V T R  K A Y  G P K V >
____________ a_TRANSLATION OF pak2a  c o d in g  seq_a__________ >
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1260 1270 1280 1290 1300
GGACATTTGG TCTTTGGGTA TCATGGCCAT TGAAATGGTT GAGGGCGAAC 
CCTGTAAACC AGAAACCCAT AGTACCGGTA ACTTTACCAA CTCCCGCTTG 

D I W  S L G  I  M A I  E M V  E G E >  
____________ a_TRANSLATION OF pak2a  c o d in g  seq_a___________ >

1310 1320 1330 1340 1350
CTCCATATCT CAATGAGAAT CCTCTGAGGG CGTTGTACCT CATCGCTACT 
GAGGTATAGA GTTACTCTTA GGAGACTCCC GCAACATGGA GTAGCGATGA 
P P Y L  N E N  P L R  A L Y L  I A T >  
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a___________ >

1360 1370 1380 1390 1400
AATGGCACCC CGGAGCTCCA GAACCCAGAA AAGCTGTCTC CCATTTTTAG 
TTACCGTGGG GCCTCGAGGT CTTGGGTCTT TTCGACAGAG GGTAAAAATC 

N G T  P E L Q  N P E  K L S  P I F R >
____________ a_TRANSLATION OF pak2a  c o d in g  seq_a__________ >

1410 1420 1430 1440 1450
AGACTTCCTA AACCGCTGCC TGGAGATGGA TGTGGAGAAG AGAGGAGGAG 
TCTGAAGGAT TTGGCGACGG ACCTCTACCT ACACCTCTTC TCTCCTCCTC 

D F L  N R C  L E M D  V E K  R G G >
____________ a_TRANSLATION OF pak2a  c o d in g  seq_a__________ >

1460 1470 1480 1490 1500
GAAAAGAGCT TCTGCAACAT CCTTTCCTCA AGCTGGCAAA GCCTCTTTCC 
c t t t t c t c g a  AGACGTTGTA GGAAAGGAGT TCGACCGTTT CGGAGAAAGG 
G K E L  L Q H  P F L  K L A K  P L S >  
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

1510 1520 1530 1540 1550
AGCCTCACTC CTCTTATACT TGCTGCCAAG GAGGCAATGA AGAGTAACCG 
TCGGAGTGAG GAGAATATGA ACGACGGTTC CTCCGTTACT TCTCATTGGC 

S L T  P L I L  A A K E A M K S N R >
____________ a_TRAN S L AT I  ON OF pak2a  c o d in g  seq_a__________ >

TTAG
AATC

* >

 >
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ii) DNA sequence of pak2b

p a k 2 b  c o d in g  s e q u e n c e  b a s e  p a i r s :  1 t o  1 6 2 0

10 20 30 40 50
ATGTGTGATA ATGGCGATGT GGAGGACAAG CCGCCCGCTC CGCCTGTCAG 
TACACACTAT TACCGCTACA CCTCCTGTTC GGCGGGCGAG GCGGACAGTC 
M C D  N G D V  E D K  P P A  P P V R >  
___________a____ TRANSLATION OF PAK2B [A ]______ a___________ >

60 70 80 90 100
GATGAGCAGC ACCATCTTCA GCGGCGCCAA AGACCACGCC CTCACCGCCA 
CTACTCGTCG TGGTAGAAGT CGCCGCGGTT TCTGGTGCGG GAGTGGCGGT 

M S S  T I F  S G A K  D H A  L T A >  
____________ a____ TRANSLATION OF PAK2B [A ]_______a___________ >

110 120 130 140 150
ATCACAGCTC CAAGCCCCTC CCATCGGTCC CAGAGGAGCG CAAGCGCAAC 
TAGTGTCGAG GTTCGGGGAG GGTAGCCAGG GTCTCCTCGC GTTCGCGTTG 
N H S S  K P L  P S V  P E E R  K R N >  
____________ a____ TRANSLATION OF PAK2B [A ]_______a___________ >

160 170 180 190 200
AAGATCTACT CCATCTTCTC CGGCGCAGAG AAAGGTGGAC GCAGGAAGGA 
TTCTAGATGA GGTAGAAGAG GCCGCGTCTC TTTCCACCTG CGTCCTTCCT 

K I  Y S I F S  G A E  K G G  R R K D >  
____________ a____ TRANSLATION OF PAK2B [A ]______ a___________ >

210 220 230 240 250
TCGTGATAAA GAGCGTCCTG AAATCTCTCC ACCGTCAGAC TTCGAACACA 
AGCACTATTT CTCGCAGGAC TTTAGAGAGG TGGCAGTCTG AAGCTTGTGT 

R D K  E R P  E I S P  P S D  F E H >  
____________ a____ TRANSLATION OF PAK2B [A ]______ a___________ >

260 270 280 290 300
CCATTCATGT GGGATTTGAC GCCGTTACTG GAGAGTTCAC TGGAATGCCG 
GGTAAGTACA CCCTAAACTG CGGCAATGAC CTCTCAAGTG ACCTTACGGC 
T I H V  G F D  A V T  G E F T  G M P >  
____________ a____ TRANSLATION OF PAK2B [A ]______ a___________ >

310 320 330 340 350
GAGCAGTGGG CTCGATTACT GCAGACCTCC AACATCACCA AGTCGGAGCA 
CTCGTCACCC GAGCTAATGA CGTCTGGAGG TTGTAGTGGT TCAGCCTCGT 

E Q W  A R L L  Q T S  N I T  K S E Q >  
____________ a____ TRANSLATION OF PAK2B [A ]______ a___________ >

360 370 380 390 400
GAAGAAAAAC CCGCAGGCCG TTCTAGACGT GCTCAAGTTC TACGACTCCA 
CTTCTTTTTG GGCGTCCGGC AAGATCTGCA CGAGTTCAAG ATGCTGAGGT 

K K N  P Q A V L D V  L K F  Y D S >  
____________ a___ TRANSLATION OF PAK2B [A ]______ a____________ >
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410 420 430 440 450
CAGGCAACGG CAGACAGAAG TACCTCAGTT TCTCCTCAGA GAAGGACAGC 
GTCCGTTGCC GTCTGTCTTC ATGGAGTCAA AGAGGAGTCT CTTCCTGTCG 
T G N G  R Q K  Y L S  F S S E  K D S >
____________ a TRANSLATION OF PAK2B [A ]_______a____________>

460 470 480 490 500
TTTCCCTCCG GTGAACAGTC GCCTGCAAAG AAAACTCCAG AGCCGTCGTC 
AAAGGGAGGC CACTTGTCAG CGGACGTTTC TTTTGAGGTC TCGGCAGCAG 

F P S  G E Q S  P A K  K T P  E P S S >
____________ a TRANSLATION OF PAK2B [A ]_______a____________>

510 520 530 540 550
TCCAGTCAAA GCAGTGGATG ATGAAGATAA TGGTGAAGAT GAAGACGATG 
AGGTCAGTTT CGTCACCTAC TACTTCTATT ACCACTTCTA CTTCTGCTAC 

P V K  A V D  D E D N  G E D  E D D >
____________ a TRANSLATION OF PAK2B [A ]_______a____________>

560 570 580 590 600
ATGATGATGA TGATGAAGAA ACGCCGCCGC CTGTCGTAGC ACCCCGGCCT 
TACTACTACT ACTACTTCTT TGCGGCGGCG GACAGCATCG TGGGGCCGGA 
D D D D  D E E  T P P  P V V A  P R P >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

610 620 630 640 650
GAACACACTA AGAGCGTATA CACTCGACCG TCGGTCATCG ACCCACTCCC 
CTTGTGTGAT TCTCGCATAT GTGAGCTGGC AGCCAGTAGC TGGGTGAGGG 

E H T  K S V Y  T R P  S V I  D P L P >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

660 670 680 690 700
CCCGCCGGTG ACGTCTCCAG AAAGTGACGC AGCGTCGAAG GCCACTGACC 
GGGCGGCCAC TGCAGAGGTC TTTCACTGCG TCGCAGCTTC CGGTGACTGG 

P P V  T S P  E S D A  A S K  A T D>
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

710 720 730 740 750
GACAGAGACC CAAAAAGGGC AAGATGACGG ACGAGGAGAT CATGGACAAG 
CTGTCTCTGG GTTTTTCCCG TTCTACTGCC TGCTCCTCTA GTACCTGTTC 
R Q R P  K K G  K M T  D E E I  M D K >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

760 770 780 790 800
CTCAGAACCA TAGTCAGCAT TGGAGACCCC AAAAAGAAAT ACACACGATA 
GAGTCTTGGT ATCAGTCGTA ACCTCTGGGG TTTTTCTTTA TGTGTGCTAT 

L R T  I V S I  G D P  K K K  Y T R Y >
____________ a____ TRANSLATION OF PAK2B [A ]_______a___________ >

810 820 830 840 850
CGAGAAGATC GGACAAGGAG CGTCAGGAAC CGTGTTCACC GCAATAGACG 
GCTCTTCTAG CCTGTTCCTC GCAGTCCTTG GCACAAGTGG CGTTATCTGC 

E K I  G Q G  A S G T  V F T  A I D >
____________ a____ TRANSLATION OF PAK2B [A ]_______a___________ >
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860 870 880 890 900
TCGCCACTGG ACAGGAGGTG GCCATCAAAC AGATCAACCT GCAGAAACAG 
AGCGGTGACC TGTCCTCCAC CGGTAGTTTG TCTAGTTGGA CGTCTTTGTC 
V A T G  Q E V  A I K  Q I N L  Q K Q >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

910 920 930 940 950
CCCAAGAAAG AGCTGATCAT CAACGAGATC CTCGTCATGA AGGAGCTGAA 
GGGTTCTTTC TCGACTAGTA GTTGCTCTAG GAGCAGTACT TCCTCGACTT 

P K K  E L I I  N E I  L V M  K E L K >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

960 970 980 990 1000
GAATCCAAAC ATCGTCAACT TCTTAGACAG TTTTCTTGTA GGTGAGGAGC 
CTTAGGTTTG TAGCAGTTGA AGAATCTGTC AAAAGAACAT CCACTCCTCG 

N P N  I  V N F L D S  F L V  G E E >
____________ a TRANSLATION OF PAK2B [A ]_______a____________>

1010 1020 1030 1040 1050
TGTTTGTGGT GATGGAGTAT TTGGCCGGCG GGTCGCTCAC CGATGTCGTA 
ACAAACACCA CTACCTCATA AACCGGCCGC CCAGCGAGTG GCTACAGCAT 
L F V V  M E Y  L A G  G S L T  D V V >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

1060 1070 1080 1090 1100
ACTGAGACCT GCATGGATGA AGCTCAGATC GCCGCTGTGT GCCGAGAGTG 
TGACTCTGGA CGTACCTACT TCGAGTCTAG CGGCGACACA CGGCTCTCAC 

T E T  C M D E  A Q I  A A V  C R E C >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

1110 1120 1130 1140 1150
TTTGCAGGCG CTGGAGTTTC TTCATGCTAA TCAGGTCATT CATCGAGACA 
AAACGTCCGC GACCTCAAAG AAGTACGATT AGTCCAGTAA GTAGCTCTGT 

L Q A L E F  L H A N  Q V I  H R D >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

1160 1170 1180 1190 1200
TCAAGAGCGA CAACGTGCTT CTAGGAATGG ACGGTTCTGT CAAACTCACG 
AGTTCTCGCT GTTGCACGAA GATCCTTACC TGCCAAGACA GTTTGAGTGC 
I K S D  N V L  L G M  D G S V  K L T >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

1210 1220 1230 1240 1250
GACTTCGGTT TCTGTGCCCA GATCACTCCC GAACAGAGTA AGAGGAGCAC 
CTGAAGCCAA AGACACGGGT CTAGTGAGGG CTTGTCTCAT TCTCCTCGTG 

D F G  F C A Q  I  T P E Q S  K R  . S T >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

1260 1270 1280 1290 1300
GATGGTGGGT ACGCCGTACT GGATGGCTCC GGAAGTGGTG ACGCGCAAAG 
CTACCACCCA TGCGGCATGA CCTACCGAGG CCTTCACCAC TGCGCGTTTC 

M V G  T P Y  W M A P  E V V  T R K >
____________ a____ TRANSLATION OF PAK2B [A ]_______a____________>
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1310 1320 1330 1340 1350
CCTACGGACC CAAAGTGGAC ATCTGGTCAT TGGGCATCAT GGCTATCGAG 
GGATGCCTGG GTTTCACCTG TAGACCAGTA ACCCGTAGTA CCGATAGCTC 
A Y G P  K V D  I W S  L G I M  A I E >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

1360 1370 1380 1390 1400
ATGGTGGAGG GAGAGCCGCC GTATCTGAAT GAAAATCCAC TCAGGGCGCT 
TACCACCTCC CTCTCGGCGG CATAGACTTA CTTTTAGGTG AGTCCCGCGA 

M V E  G E P P  Y L N  E N P  L R A L>
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

1410 1420 1430 1440 1450
GTACCTGATT GCAACCAATG GCACTCCAGA GTTGCAGAGT CCCGAAAAGT 
CATGGACTAA CGTTGGTTAC CGTGAGGTCT CAACGTCTCA GGGCTTTTCA 

Y L I  A T N G T P E  L Q S  P E K >
____________ a____TRANSLATION OF PAK2B [A ]_______a____________>

1460 1470 1480 1490 1500
TGTCGCCAAT CTTCCGAGAC TTCCTAGGTC GCTGTCTGGA AATGGACGTT 
ACAGCGGTTA GAAGGCTCTG AAGGATCCAG CGACAGACCT TTACCTGCAA 
L S P I  F R D  F L G  R C L E  M D V >
____________ a____TRANSLATION OF PAK2B [A ]_______a___________ >

1510 1520 1530 1540 1550
GAGAAGAGAG GTGGAAGCAA AGAGCTTTTG CAGCATCCCT TCCTGAAGTT 
CTCTTCTCTC CACCTTCGTT TCTCGAAAAC GTCGTAGGGA AGGACTTCAA 

E K R  G G S K  E L L  Q H P  F L K L >
____________ a____TRANSLATION OF PAK2B [A ]_______a___________ >

1560 1570 1580 1590 1600
GGCCAAACCT CTCTCCAGTC TCACTCCTCT AATTCTGGCC GCCAAGGACG 
CCGGTTTGGA GAGAGGTCAG AGTGAGGAGA TTAAGACCGG CGGTTCCTGC 

A K P  L S S  L T P L  I  L A A K D>
____________ a____TRANSLATION OF PAK2B [A ]_______a___________ >

1610 1620 
CCATGAAGAA CAACCGCTAG 
GGTACTTCTT GTTGGCGATC 
A M K N N R *>
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iii) Poster Abstract.

Presented at the Third European Meeting on Zebrafish and Medaka Development and 

Genetics, Paris 11-14 June 2003.

A Possible Role for p21 Activated Kinase in Midline Patterning.

Guest JL and Xu Q.

The National Institute for Medical Research, Division of Developmental Biology, The 

Ridgeway, Mill Hill, London. NW7 1AA.

The p21 activated kinase (Pak) family of proteins are downstream effectors of 

the small GTPases Rac and Cdc42. Pak has been shown to play an important role in 

regulating the cytoskeleton and cell-cell adhesions as well as functioning in a number 

of signalling cascades. Here we present our investigations into the role of Pak in early 

zebrafish development.

We have identified two novel zebrafish pak genes with homology to hpak2, 

which we call zpak2a and zpak2b. Both genes are expressed maternally and 

ubiquitously throughout early embryogenesis. At later stages pak2a is expressed at 

higher levels in the notochord, epidermis and at the extremity of the embryo and 

pak2b expression is stronger in the intersomitic tissues.

To investigate the function of these pak genes during development we used a 

morpholino knock down approach. Both pak2a and pak2b morphant embryos showed 

“u” shaped somites, small heads and high levels of epidermal cell death. The somite 

phenotype observed in morphant embryos prompted us to look for a role for Pak in 

midline patterning. It is well established that induction of specific cell fates surrounding 

the midline requires graded signalling by factors secreted from the notochord. 

Changes to gene expression patterns in the midline of embryos injected with pak 

morpholino are consistent with disruptions to notochord derived signalling. Possible 

mechanisms by which zPak2 proteins pattern midline tissues will be presented.
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iiii) Supplementary Data -  Time-lapse movies.

Figure 3.3: Time-lapse series focusing on the leading edge of the migrating 

posterior lateral line primordium.

Figure 3.4: Time-lapse series showing posterior lateral line primordium 

migration and neuromast precursor deposition.

Figure 5.4: Time-lapse series showing of the leading edge of the migrating 

posterior lateral line primordium following injection of pak2b morpholino.
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